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Abstract
In real-world application scenarios, the identification of groups poses a significant
challenge due to possibly occurring outliers and existing noise variables. Therefore,
there is a need for a clusteringmethodwhich is capable of revealing the group structure
in data containing both outliers and noise variables without any pre-knowledge. In
this paper, we propose a k-means-based algorithm incorporating a weighting function
which leads to an automatic weight assignment for each observation. In order to cope
with noise variables, a lasso-type penalty is used in an objective function adjusted by
observation weights. We finally introduce a framework for selecting both the number
of clusters and variables based on a modified gap statistic. The conducted experiments
on simulated and real-world data demonstrate the advantage of the method to identify
groups, outliers, and informative variables simultaneously.

Keywords Clusters · Outliers · Noise variables · High-dimensions · Gap statistic

Mathematics Subject Classification 62H30

1 Introduction

The identification of groups in real-world high-dimensional datasets reveals challenges
due to several aspects: (1) the presence of outliers; (2) the presence of noise variables;
(3) the selection of proper parameters for the clustering procedure, e.g. the number of
clusters. Whereas we have found a lot of work addressing the three aspects separately,
a much smaller number of studies is available in case all three aspects are treated
simultaneously. Indeed, in any large and high-dimensional complex dataset, not only
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outliers but also noise variables are very likely to appear. Hence, a clustering method
needs to be designed in such a way that both aspects are taken into account, no matter
if outliers are considered as highly interesting observations due to their typically
different content or just as noise. The data complexity in terms of the number of
groups and the proportion of outliers as well as the number of noise variables very
much depends on the dataset itself. Therefore, a clustering procedure should ideally
be data-independent. In other words, no information about the data complexity should
be assumed. The goal of this paper is to introduce a clustering method designed for
such an application scenario.

Considering the task of revealing the group structure in contaminated data, i.e.
data with outliers, a natural step is to first apply an outlier detection procedure to
exclude deviating observations for the following cluster analysis. However, coping
with outliers in such a way might be complicated due to the parameter specification,
which is commonly required by most existing clustering (e.g. the number of clusters)
as well as outlier detection methods (Aggarwal 2016). Better strategies can be to
incorporate a measure of outlyingness through data clustering (see e.g. Campello et al.
2015), to use forward search techniques (see e.g. Cerioli et al. 2018; Atkinson et al.
2018), or trimming-based clustering approaches (see e.g. Neykov et al. 2007; Gallegos
and Ritter 2009; García-Escudero et al. 2008, 2010; Coretto and Hennig 2016). The
general idea of trimming-based approaches is to exclude observations which usually
do not fit to an assumed model. In order to apply a trimming concept, not only the
number of clusters but also the trimming level, i.e. the proportion of observations
supposed to be discarded, need to be specified in advance. Several techniques have
been proposed to solve the problem of pre-specifiyng this parameter (see e.g. García-
Escudero et al. 2011; Dotto et al. 2018). Although all these approaches perform well
on contaminated data sets, they can be easily affected by a large number of variables
holding no information for cluster separation.

Theproblemof data clustering in the presence of noise variables is usually addressed
by sparse- and variable selection-based clustering approaches (see e.g. Witten and
Tibshirani 2010; Raftery and Dean 2006). The methods generally aim at removing
noise variables that can easily mask a group structure (Gordon 1999). An overview of
suchmethods can be found in the study by Galimberti et al. (2018) with a special focus
onmodel-based clustering. Although the number of clusters inmodel-based clustering
is commonly estimated based on the Bayesian information criterion, some methods
usually assume that the size of a group is typically larger than the dimensionality of the
data spacewhere a group is located. Therefore, such approachesmight have troubles to
sufficiently discover high-dimensional low sample size groups. A suitable method for
such a situation is introduced by Witten and Tibshirani (2010). The method imposes
a lasso-type penalty on incorporated variable weights in the objective function of k-
means leading to the sparse k-means algorithm. In order to apply the sparse k-means,
the number of clusters needs to be determined in advance, which is hardly possible
for most real-world application scenarios.

The task of identifying groups becomes even more problematic when both outliers
and noise variables are present. For this situation, Kondo et al. (2016) introduce the
robust and sparse k-means (RSKC) that robustifies the sparse k-means by Witten
and Tibshirani (2010) by incorporating a trimming concept. However, the approach
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assumes prior knowledge about the number of clusters, the degree of sparsity, and the
trimming level in order to correctly detect clusters. Furthermore, the method has been
tested only in terms of clustering and no evaluation has been performed regarding the
detection of outliers. Such observations may additionally provide useful information
about the analyzed datasets since they usually differ from the main group structure.

In contrast to RSKC, we introduce a robust and sparse k-means-based procedure
that is capable of finding the true underlying structure in very complex data, i.e. data
containing clusters, outliers, and noise variables simultaneously. The presented k-
means-based algorithm incorporates a weighting function employing a measure of
outlyingness in order to automatically assign a weight to each observation. While
a high weight indicates that an observation is part of a cluster, a low weight refers
to a potential outlier. The advantage of using a weighting function is that we do
not have to pre-specify any trimming level as for trimming-based approaches. To
exclude noise variables, we use a lasso-type penalty imposed on the variable weights
in an objective function adjusted by observation weights. In order to correctly detect
groups, we eventually propose a framework aiming at the determination of the optimal
parameters, such as the degree of sparsity and the number of clusters.

The rest of this paper is organized as follows. Sect. 2 briefly reviews k-means-
based clustering approaches and motivates the proposed clustering procedure which
is described in detail in Sect. 3. The parameter selection is presented in Sect. 4. Section
5 describes the evaluation setup. The algorithm is thoroughly tested on simulated data
sets in Sect. 6 and eventually compared to other k-means-based clustering methods
on a real-world dataset in Sect. 7. Section 8 concludes the paper.

2 k-means-based algorithms

Despite the large number of developed clustering procedures, k-means remains one
of the most popular and simplest partition algorithms (Jain 2010). Given a data matrix
X = {xi j }, i = 1, . . . , n, j = 1, . . . , p,with n observations described by p variables,
the task of finding k clusters based on k-means was originally established using the
within-cluster sum of squares Wk for the given number of clusters k as

Wk
j =

k∑

r=1

∑

i∈Kr

(xi j − m jr )
2,

Wk =
p∑

j=1

Wk
j → min

K1,...,Kk
,

(1)

where Wk
j corresponds to the within-cluster sum of squares in the j th variable and

the set Kr contains the indices of the observations assigned to the r th cluster, for
r = 1, . . . , k. Note that such an optimization problem can also be reformulated with
respect to the between-cluster sum of squares Bk (Witten and Tibshirani 2010) as

123



908 Š. Brodinová et al.

Bk
j =

n∑

i=1

(xi j − m j )
2 −

k∑

r=1

∑

i∈Kr

(xi j − m jr )
2,

Bk =
p∑

j=1

Bk
j → max

K1,...,Kk
,

(2)

where Bk
j denotes B

k in the j th variable, m j is the j th coordinate of the overall data
center, and m jr denotes the center of the r th cluster in the j th variable.

Although k-means is very popular, it has several disadvantages that need to be
taken into account when developing a clustering procedure. The first drawback of
k-means is the random initialization of cluster centers, which may lead to non-optimal
solutions. This can be overcome by using an appropriate initialization method; an
overview of such approaches can be found in a study by Celebi et al. (2013). For our
method, we incorporate the ROBIN (ROBust INitialization) approach by Mohammad
et al. (2009). The method is able to find optimal centers in a small number of runs
unlike the original k-means. ROBIN seeks for k initial centers that are located in
the most dense region and are simultaneously far away from each other in order to
avoid the selection of outliers as initial centers. In order to identify the observations in
highly dense regions, ROBIN uses LOF (Local Outlier Factor) proposed by Breunig
et al. (2000). LOF was primarily introduced to measure a degree of outlyingness
of an observation with respect to its q nearest observations, i.e. neighbors, in data
where observations tend to form groups. The outlyingness of an observation xi is
defined as

lo fq(xi ) = 1

Nq(xi )

∑

x∈Nq (xi )

lrdq(x)
lrdq(xi )

, (3)

where Nq(xi ) refers to the local neighborhood of xi spanned by its q neighbors and
lrdq(xi ) denotes the so-called local (reachability) density of xi reflecting how far xi is
from itsq neighbors on average. The resulting outlyingness, lo fq (xi ), of an observation
xi close to 1 indicates that xi is potentially part of a cluster and, therefore, a candidate
for an initial cluster center, as proposed by ROBIN. In contrast, lo fq(xi ) � 1 suggests
that xi is a possible outlier and thus xi should not be considered as an initial center.
ROBIN searches for the clusters centers subsequently in the set of observations for
which lo fq(xi ) > 1.1. The first center is selected randomly and the next centers are
those with the largest distances to all previously chosen.

The second limitation of k-means is the employed sample mean that suffers from a
lack of robustness. As a result, k-means is also not resistant against outliers and even a
single deviating observation can affect the final clustering solution (Garcia-Escudero
and Gordaliza 1999). In order to robustify k-means, Cuesta-Albertos et al. (1997)
proposed a trimmed version defined as
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t Bk
j =

∑

i∈L
(xi j − m j )

2 −
k∑

r=1

∑

i∈Kr∩L

(xi j − m jr )
2,

t Bk =
p∑

j=1

t Bk
j → max

K1,...,Kk ,L
,

(4)

where t Bk = ∑p
j=1

t Bk
j represents the between-cluster sum of squares calculated

on the untrimmed observations, L denotes the set containing indices of [n(1 − α)]
(untrimmed) observations that have the smallest distance to their closest cluster center.
The symbol [·] stands for the integer part of a real number and α is the trimming level.
The maximization (4) can also be reformulated by incorporating binary observation
weights tvi as

t Bk =
p∑

j=1

⎧
⎨

⎩

n∑

i=1

tvi (xi j − m j )
2 −

k∑

r=1

∑

i∈Kr

tvi (xi j − m jr )
2

⎫
⎬

⎭ → max
K1,...,Kk

, (5)

where m j = 1∑n
i=1

tvi

∑n
i=1

tvi xi j , m jr are calculated analogously for the r th cluster,

and the binary observation weights tvi are defined as

tvi =
{
0, if di ≥ d([n(1−α)])
1, if di < d([n(1−α)]),

(6)

where di is the distance between xi and its nearest cluster center, d(l) are the order
statistics, i.e, d(1) ≤ d(2) ≤ · · · ≤ d(n), α is the pre-specified trimming level. While
the observations with tvi = 1 are considered as untrimmed, the observations with
tvi = 0 are marked as trimmed and discarded from the calculation of t Bk . Such
a robustification excludes the α fraction of observations, i.e. potential outliers, for
calculating the cluster centers in order to achieve an accurate clustering solution if α is
chosen correctly according to the true outlier proportion. Determining α may however
be problematic for real-world data. In order to avoid the parameter-dependent robust
k-means, we propose to incorporate a measurement of outlyingness which leads to a
clear decision on determining outliers. Such a concept was introduced by Filzmoser
et al. (2008) in case of a one-group data structure resulting in a more sophisticated
choice of observationweights. Theweights reflect howmuch anobservation is outlying
on the [0, 1]-scale with a low weight indicating a potential outlier. We incorporate the
concept of such weights in k-means in order to robustify the method in such a way
that no parameter pre-specification is required.

The last disadvantage of k-means occurs when a group structure is detectable only
in a small subset of variables. In order to find such variables, Witten and Tibshirani
(2010) introduced a framework for sparse k-means based on a lasso-type penalty
leading to the problem of maximizing the weighted Bk for a given k and a sparsity
parameter s as
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Bsk =
p∑

j=1

w j B
k
j → max

K1,...,Kk ,w
, (7)

subject to ||w||2 ≤ 1, ||w||1 ≤ s forw = {w j ≥ 0} ∀ j and s ∈ (1,
√
p ], which can be

solved in an iterative way as proposed byWitten and Tibshirani (2010). The parameter
s controls the degree of sparsity in the variable weight vector, i.e. the values of w j .
The more important (informative) the j th variable, the higher the value of w j . Our
method also uses a lasso-type penalty in the objective function, but the value of Bsk is
additionally adjusted by observation weights in order to achieve robustness. Although
the proposed method is similar to RSKC by Kondo et al. (2016), our procedure can
be seen as a better alternative since no trimming level is required. In addition, we aim
at analyzing the data structure more thoroughly, i.e. discovering clusters, outliers, and
informative variables simultaneously.

3 The proposed algorithm

The introduced method is an iterative three-step approach. In the first step, k-means
employing a weighting function is applied on the data space spanned by the variables
with some contribution to a cluster separation [i.e. with the variables having w j > 0,
see Eq. (7)]. The incorporated weighting function robustifies k-means and results in
observation weights reflecting the outlyingness. The second step aims at updating
the variable weights with respect to both clusters and observation weights from the
first step. The two steps are iteratively repeated until the variable weights stabilize. In
the third step, the observations are clustered with respect to the identified informative
variables and the observationswith smallweights are classified as outliers. The detailed
description of the algorithm is given in the following subsections.

3.1 Step 1: Downweighting outlying observations

The aim of the first step is to robustify k-means by incorporating a weighing func-
tion in order to downweight the influence of potential outliers. Assuming that the
number of clusters k is known, we apply ROBIN with a default of 10 nearest
neighbors (Mohammad et al. 2009), i.e. q = 10 in Eq. (8), on weighted data,
wX = {wxi } = {w j xi j },∀i,∀ j, where w = {w j = 1/

√
p},∀ j . Note that the

initial values w j = 1/
√
p are considered only in the first iteration as recommended

by Witten and Tibshirani (2010), but in the next iteration w j will be already different
and will better reflect the contribution to a cluster separation.

After applying ROBIN, each observation is assigned to its closest cluster center
leading to the corresponding cluster membership K1, . . . , Kk . We then propose to
apply a weighting function on the detected clusters to reveal outliers. The weighting
function should be a monotonic decreasing function using an outlyingness measure
as an argument in order to obtain observation weights that range between 0 and 1,
with a low weight indicating a potential outlier. Hence, it is essential to choose both a
suitable outlyingness measure and an appropriate weighting function.
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A naive approach is to calculate the Euclidean distance of an observation to its
closest cluster center. However, using the Euclidean distance provides the information
about how far an observation is from its closest center rather than how much an obser-
vation deviates or to what degree it is an outlier. In fact, such information can be easily
obtained by applying LOF on each detected cluster as lo f (wxi ) := lo fq(wxi ), i ∈
Kr , ∀r , with q = 10. The choice and role of q is discussed later on in Sect. 4. The
LOF scores calculated according to Eq. (8) are then standardized as

lo f ∗
i = lo f (wxi ) − mean(lo f (wxi ), i ∈ Kr )

sd(lo f (wxi ), i ∈ Kr )
(8)

to be suitable for the weighting function with the mentioned properties. Preliminary
studies indicated good empirical results when the observation weights, denoted as
v

(1)
i , were obtained using the translated bi-weight function (Rocke 1996) as follows

v
(1)
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, lo f ∗
i ≥ c

(
1 −

(
lo f ∗

i −M
c−M

)2)2

, M < lo f ∗
i < c,

1, lo f ∗
i ≤ M

(9)

for i ∈ Kr , r = 1, . . . , k, and c > M . Based on the preliminary studies, the values of
the parameters are taken as c = 2 andM = med(lo f ∗

i , i ∈ Kr )+MAD(lo f ∗
i , i ∈ Kr ),

where med stands for the median and MAD refers to the median absolute deviation.
The obtained weights correspond to the measure of outlyingness values in [0, 1].
While a value close to 1 indicates that an observation is part of a cluster, v

(1)
i ≈ 0

suggests that xi is an outlier with respect to the detected cluster. The weights based on
LOF are smoother and better express the degree of deviation than e.g. using a simple
Euclidean distance of an observation to the closest cluster as employed in the trimmed
k-means [see Eq. (6)] or RSKC. In addition, the weights should be more robust against
elliptically-shaped clusters due to the properties of LOF; see Breunig et al. (2000). If
the shape of a cluster is slightly elliptical, RSKC might exclude observations which
are further away from the cluster center but still part of a cluster.

After assigning weights to observations from each detected cluster according to (8)
and (9), we plug the weights v

(1)
i into the weighted between-cluster sum of squares

for a given w, and optimize the cluster assignment as

v(1)
Bk
j =

n∑

i=1

v
(1)
i

(
xi j − 1

∑n
i=1 v

(1)
i

n∑

i=1

v
(1)
i xi j

)2

−
k∑

r=1

∑

i∈Kr

v
(1)
i

⎛

⎝xi j − 1
∑

i∈Kr
v

(1)
i

∑

i∈Kr

v
(1)
i xi j

⎞

⎠
2

(10)

p∑

j=1

w j
v(1)

Bk
j → max

K1,...,Kk
(11)
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Fig. 1 The generated dataset shown in the principal component space. The observations from 3 groups,
outliers placed in informative and noise variables are displayed in different colors and symbols (color figure
online)

in order to robustify k-means. We can clearly see from (10) that if an observation is a
potential outlier, i.e v

(1)
i ≈ 0, the distance of such an observation to its closest cluster

center is downweighted by the corresponding value of v(1)
i . In contrast, an observation

with v
(1)
i ≈ 1 highly contributes to the maximization. The observation weights are

also used to determine the next cluster centers, i.e. 1∑
i∈Kr v

(1)
i

∑
i∈Kr

v
(1)
i xi j ,∀r , in a

robust way by using the weightedmean of observations in each coordinate. The cluster
centers with the corresponding cluster assignment are iteratively updated until a local
optimum is reached during a certain number of iterations in the sense of maximization
of (11). In our experiments the method is allowed to search for the local optimum
during 15 iterations, but also a higher number can be considered. Note that the local
optimum is achieved on the weighted data, i.e. in a data space spanned by the variable
vector with w j > 0 adjusted by the values of w j .

We illustrate the efficiency of the weighting function on an example dataset that
consists of three groups with the same sizes of 40 observations. The group structure is
described by 50 variables leading to high-dimensional low sample size groups.We add
750 noise variables and contaminate 10% of the observations from each group in the
informative variables and in 75 noise variables; a detailed description of the data setup
is provided in Sect. 6 and corresponds to the first simulation study. Figure 1 visualizes
the generated dataset in the space spanned by the first two principal components; the
group membership and outliers are differentiated by colors and symbols. The final
weights, obtained during two iterations given the initial cluster centers by ROBIN, are
shown in Fig. 2 in decreasing order to visualize the shape of the weighting function.
Importantly, the observation weights are calculated in the data space defined by 50
informative variables. In other words, we now assume that w is known beforehand in
order to demonstrate the concept of the weighting function.We can see in Fig. 2 that all
observations from group 3 are correctly assigned to cluster 1 because no observations
from group 3 are visible in the following plots. The plot particularly indicates that
the weighting function works properly since all non-outliers obtain a weight around
1. In contrast, outliers placed in informative variables receive a weight around 0 and
can thus be easily identified. A similar conclusion can be made in case of the other
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Fig. 2 Illustration of incorporating the weighting function in k-means in order to reveal outliers as obser-

vations with low v
(1)
i and to detect 3 clusters on the weighted data

two clusters. The plots may suggest that the non-outliers with a weight smaller than
1 could be located on the edge of a cluster or slightly further from the other clustered
observations. However, we cannot reveal outliers placed in noise variables as indicated
by their weights equal to 1, since the noise variables are not involved in the clustering
due to their zero weights.

In order to identify outliers in noise variables as well, we additionally apply the pro-
posed weighting function on unweighted data clusters, consisting of the data matrices
Xr = {xi }, i ∈ Kr , r = 1, . . . , k, leading to the second observation weights v

(2)
i . Note

that Xr = {w j xi j }, where w j = 1, ∀ j , and i ∈ Kr , r = 1, . . . , k. Figure 3 shows the
second resulting observation weights obtained on the data example shown in Fig. 1.
The three plots clearly indicate that all outliers placed in noise variables receive consid-
erably lowerweights in contrast to both non-outliers and outliers present in informative
variables.

As a consequence of applying the weighting function for the second time, each
observation has two weights, v

(1)
i and v

(2)
i , which are finally combined in a single

weight

vi = min
{
v

(1)
i , v

(2)
i

}
. (12)

Determining vi in this way ensures that all outliers receive low weights and that

we can easily identify whether or not an observation is an outlier as indicated by
zero weights for all outliers in Fig. 4. The obtained weights vi are used in the
next step aiming at selecting the variables which are informative for the cluster
separation.
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Fig. 3 Illustration of applying the weighting function on the 3 unweighted data clusters in order to reveal

outliers in noise variables as observations with low v
(2)
i

3.2 Step 2: Variable selection

The purpose of the second step is to updatew j according to themaximization of (7) for
a given sparsity parameter s and the observation weights vi fromEq. (9). Incorporating
vi assures that the variable selection is not affected by outliers. Indeed, the presence of
an outlier apparent even in one variable can considerably increase the between-cluster
sum of squares. As a result, such a variable receives a highweight although the variable
does not contribute to the cluster separation but rather to the separation between an
outlier and a cluster (Kondo et al. 2016).

Therefore, for the obtained cluster assignment K1,…, Kk , the observation weights
vi from the first step, and for a given s, we update the weights w j according to

vBks =
p∑

j=1

w j
vBk

j → max
||w||2≤1,||w||1≤s

, (13)

where vBk
j corresponds to Eq. (10) with vi from Eq. (9) instead. In order to optimize

(13)with respect tow for a given tuningparameter s,we follow theprocedure suggested
by Witten and Tibshirani (2010). Whereas small s leads to high sparsity, i.e. w j = 0
for most variables, a high value of s results in almost no sparsity corresponding to
w j > 0 for most variables. High w j suggests that the j th variable is informative and,
thus, it contributes to the maximization of (13). In contrast, w j = 0 indicates that the
j th variable is not informative for the cluster separation and it is thus excluded in (13).
Once the variable weights w are updated, the first iteration is completed and the

algorithm continues with the first step with respect to updated weightsw j . This means

123



Robust and sparse k-means clustering for high… 915

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
i

v i
cluster 1

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
i

v i

cluster 2

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40
i

v i

cluster 3

observation

outlier in informative

group 1

group 2

group 3

outlier in noise

Fig. 4 Illustration of combining the two observations weights leading to the final observation weights vi
calculated on 3 clusters

that the ROBIN approach is again applied on wX = {wxi } with updated w in order
to find the next cluster centers. The reason for the re-initialization is that ROBIN is
not primarily designed to deal with a large number of noise variables. Therefore, the
selection of the first cluster centers is very likely to be affected by noise variables
due to w = {w j = 1/

√
p},∀ j in the first step. After obtaining the next centers, the

method continues as described. The two steps of the proposed approach are iteratively
repeated until there are no considerable changes in vBks . Such a stopping criterion is
closely related to the criterion employed by Witten and Tibshirani (2010).

3.3 Step 3: Detection of groups and outliers

The last step aims at determining the cluster membership K1, . . . , Kk by assigning
observations to their closest cluster center in the data space spanned by variables
with w j > 0, adjusted by their corresponding final weights. We estimate the final
observation weights vi as described in Sect. 3.1 in order to classify observations with
low weights as outliers. This classification can be made based on visualization of the
resulting observation weights against the corresponding observation index, as shown
in Fig. 4, and the following search for a cut-off value which clearly separates low
weights from high weights. Nevertheless, we recommend to use vi < 0.5 for the
identification of outliers as we observed good empirical results for such a choice.

3.4 Summary of the algorithm

In order to better understand the proposed algorithm, a brief summary is provided
below.
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Phase 1: Calculation of observation weights vi .

Step1: Identify clustermembershipwith respect to a given number k of cluster centers determined
by the ROBIN approach on weighted data wX. Keep the cluster membership for Phase 2.

Step 2:Calculate observationweights v
(1)
i according to Eq. (9) onweighted data clusterswxi , i ∈

Kr .
Step 3: Calculate observation weights v

(2)
i according to Eq. (9) on unweighted data clusters

xi , i ∈ Kr .

Step 4: Combine v
(1)
i and v

(2)
i as in Eq. (12) to obtain observation weights vi . Keep vi for Phase

2.

Phase 2: Calculation of variable weights w j .

Step 1: Calculate vBk
j according to Eq. (11) with respect to vi , the cluster membership from

Phase 1 and given sparsity parameter s.
Step 2: Calculate variable weights w j according to Eq. (13) for a given s with vBk

j calculated
in Step 1.

Phase 1 and Phase 2 are repeated until convergence is achieved.

Phase 3: Identification of outliers informative variables, and clusters.

Step 1: Identify informative variables with final w j > 0.
Step 2: Identify the final cluster membership in the space spanned by informative variables.
Step 2: Calculate final vi as described in Phase 1 with respect to final cluster membership and
declare outliers as observations with vi > 0.5.

4 Selection of parameters

This section provides details about the selection of the parameters, i.e. k, s, q, and c.
While the number of clusters k with the sparsity parameter s are required for clustering,
the number of the nearest neighbors q and s are essential for the proposed weighting
function in order to sufficiently detect outliers. In this section, we first present an
automatic procedure to select k and s. Then, we discuss the fixed choices of q and c.

4.1 The number of clusters k and sparsity parameter s

We have so far assumed pre-knowledge about the number of clusters k as well as the
tuning parameter s determining the variable weights w j . Such information is usually
not available beforehand for most real-world data and, therefore, there is a need for a
systematic way of estimating both parameters. The problem of selecting the optimal k
has been widely studied for data where the assumption is that all variables are involved
in data clustering; an overview of such procedures can be found in the studies by Sugar
and James (2003), Xu and Wunsch (2005). However, we have not found much work
dedicated to the optimization of k in case that the sizes of groups are much lower than
the dimensionality of the data space describing the group structure and at the same
time the group structure is hidden in a large number of noise variables.

Wediscuss the effectwhen k is optimizedwith andwithout taking the contributionof
variables into account using the gap statistic (Tibshirani et al. 2001). The gap statistic,
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ofGapk applied on a data set with both noise variables and outliers (left); the resulting Gapk from a dataset
where the effect of noise variables is eliminated (middle); the obtained Gapk when both noise variables
and outliers are neglected (right)

Gapk , is calculated for a clustering solution obtained by a clustering algorithm, e.g.
k-means, for a given k and can be formulated as

Gapk =
p∑

j=1

w j

(
1

A

A∑

a=1

log
(
aW

k
j

)
− log

(
Wk

j

))
, (14)

where w j = 1,∀ j since all variables are assumed to contribute equally, aWk =∑
j aW

k
j corresponds toW

k = ∑
j W

k
j calculated on the clustering solution obtained

on the dataset with independently permuted observations in each variable (Witten and
Tibshirani 2010), and A represents the number of permuted datasets. In our experi-
ments we consider A = 10.Gapk is generally calculated for a clustering solution with
varying k and the optimal number of clusters is chosen as the smallest k for which
Gapk ≥ Gapk+1 − sek+1 is fulfilled (Tibshirani et al. 2001), where sek denotes the
standard error of log(aWk). From (14) it is obvious thatGapk does not only depend on
k but also on w representing the contribution of each variable. Since all variables are
assumed to be informative, Gapk might be considerably affected if a dataset contains
a large number of noise variables. Moreover, the presence of deviating observations
can lead to an unreliable decision on k as well.

Figure 5 demonstrates the effect of noise variables and outliers on the choice of
k based on the gap statistic. We consider the same data example as in Sect. 3.3 and
apply k-means with ROBIN initialization for the numbers of clusters k = 2, . . . , 6.
The gap statistic is calculated for each clustering solution in order to select the optimal
k as described above. Figure 5 (left) shows the values of Gapk with the corresponding
standard errors calculated on the data example with both outliers and noise variables.
As expected, the presence of both disturbing factors leads to a wrong choice of the
optimal k corresponding to 5 clusters. Moreover, even if only the 50 informative
variables are taken into account, the choice of k is also influenced by outliers as
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illustrated in Fig. 5 (middle) resulting in k = 4. In contrast, Fig. 5 (right) shows Gapk
when downweighting outlying observations and noise variables leading to a correct
decision, i.e k = 3.

The example indicates that both disturbing factors have to be considered when
selecting an optimal k for k-means. In the proposed k-means-based clustering
approach, we directly downweight the effect of outliers by observation weights vi .
However, the impact of noise variables, which is reflected by their corresponding vari-
able weights w j , can be neglected only if the sparsity parameter s, see Eq. (13), is
correctly selected. In order to optimize s, Witten and Tibshirani (2010) introduced the
gap statistic Gaps , which is defined for given k as

Gaps = log(Bsk) − 1

A

A∑

a=1

log(a B
sk), (15)

where a Bsk denotes the weighted between-cluster sum of squares calculated, compare
(7), with respect to a clustering solution obtained on a permuted dataset. Obviously,
the calculation of Gaps is impossible if the number of clusters k is unknown which is
often the case for real data. Moreover, the presence of outliers might also influence the
correct estimation of s. Therefore, we propose to adjust Gaps by observation weights
vi in order to downweight the influence of outliers leading to the modified gap statistic
vGapsk calculated as

vGapsk = log(vBsk) − 1

A

A∑

a=1

log(va B
sk), (16)

where v
a B

sk represents vBsk obtained on a permuted dataset. We calculate vGapsk for
a clustering solution not only with various s but also various k in order to first optimize
the degree of sparsity s for each k. The value of vGaps∗k for the optimal parameter
s∗ is compared with the largest vGapsk such that vGaps∗k ≥ vGapsk − sesk , where
sek refers to the standard error of log(va B

sk). The optimization of s leads to k values
of vGaps∗k for which the largest value corresponds to an optimal k.

Figure 6 depicts the gap statistic for both tuning parameters when applying the
proposed method on the data example in Sect. 3.3 with k = 2, . . . , 6. The value of
s starts at 1.1 and increases in steps of 0.5 to such a value that leads to no sparsity
in the variable weights, i.e w j �= 0,∀ j . We show the optimal s for each k by larger
symbols in Fig. 6. As expected, the optimal degree of sparsity s differs almost for all k.
We select the optimal parameter setting which leads to the largest vGaps∗k resulting
in k = 3 and s = 6.6. The plot additionally illustrates that a smaller choice of s,
e.g. s = 4.1, results in an incorrect number of clusters when following the rule for
optimizing k based on Gapk according to Tibshirani et al. (2001). This supports the
fact that both parameters need to be optimized at the same time in order to correctly
identify groups.

The selected choices k = 3 and s = 6.6 correspond to the correct number of clusters
as well as appropriate values of w j leading to non-zero weights for all 50 informative
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Fig. 7 The variable weights corresponding to the optimal s = 6.6 and k = 3, the first 50 informative
variables are separated by dashed line from the rest 750 noise variables

variables as shown in Fig. 7. Considering higher values of s, more and more noise
variables obtain non-zero weights. In contrast, lower values of s lead to less variables
with non-zero weights.

4.2 The number of nearest neighbors q and the constant c

The choice of q = 10 and c = 2 has already been mentioned while presenting
the proposed clustering method. Both values were selected based on our preliminary
studies as well as on the properties of LOF (Breunig et al. 2000) employed in the
weighting function, see (8) and (9). LOF is also employed in the ROBIN initialization
method.
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According to Breunig et al. (2000), the choice of q needs to be selected based on the
sizes of clusters in order to keep the LOF properties, such that lo f (xi ) >> 1 indicates
outliers whereas values around 1 pointing on clustered observations. Indeed, the value
of q should not be smaller nor larger than the size of any cluster in a dataset. This
heuristic guideline has been developed for a dataset where clusters are of different
sizes. In our algorithm, LOF is applied on each cluster separately, which makes it
easier to decide on q. In addition, Breunig et al. (2000) recommend to set q at least to
10 to avoid fluctuations in LOF scores. Based on these facts, we decided to set q = 10
in the weighting function. The same value is also taken for ROBIN. Such choice,
however, implies that initial centers of very small clusters might not be correctly
detected. Nevertheless, the observations of such small clusters could be considered
and declared as outliers by the proposed method.

The role of c in theweighting function is to trim all observations with a standardized
LOF score greater than c. Accordingly, such observations are downweighted to zero.
Therefore, the parameter c plays a similar role as a trimming level. Nevertheless,
using c = 2 discards the most outlying observations independently of specifying how
many of them should be trimmed. In contrast, using a trimming level removes the
pre-specified number of observations no matter if these observations actually deviate.
In case c is slightly higher, there is a next boundary, i.e. M in Eq. (9), being data-
derived from LOF. M ensures that observations with LOF scores lower than M are
downweighted as well. This is very helpfully in case that c is too large. The opposite
case, i.e. if c smaller 2, can be selected, but c > M has to be fulfilled. However, we
recommend to select c = 2 because it worked well in all our experiments.

5 Evaluation setup

We evaluate the performance of the proposed method in terms of the clustering solu-
tion, outlier detection, and the identification of informative variables. The clustering
solution is evaluated based on the Classification Error Rate (CER), also used byWitten
and Tibshirani (2010). CER measures to which extent clustering and group member-
ships disagree on any pair of observations. While CER=0 refers to the best cluster
solution, CER=1 corresponds to the poorest performance. In order to evaluate the abil-
ity of our method to detect outliers, we report the mean value of observation weights
vi separately for the true non-outliers, i.e v̄nonout , and outliers, denoted as v̄out . The
weights for outliers are supposed to be considerably lower than the weights for non-
outliers. Since we recommend to use the final weights vi for classifying outliers as the
observations with vi < 0.5, we calculate True Positive and False Positive Rates (TPR
and FPR) ranging between 0 and 1. TPR is defined as the proportion of the number of
correctly identified outliers and the actual number of outliers present in a given dataset.
High TPR indicates a good ability to identify outliers while low TPR demonstrates
poor performance. FPR is calculated as the ratio between the number of non-outliers
wrongly declared as outliers and the number of the actual non-outliers in an analyzed
dataset. Hence, low values of FPR are preferable over high values. The performance
regarding the variable selection is evaluated by comparing the mean value of w j for
informative variables, w̄ in f , with the mean value of w j that are different from zero,

123



Robust and sparse k-means clustering for high… 921

denoted as w̄ non0. The higher and more similar the values, the better the ability to
correctly select informative variables. We provide a similar evaluation for noise vari-
ables and calculate the mean of their weights, w̄ noise, which is supposed to be close
to zero.

Since the clustering procedure employs k-means, we compare the method with
several existing k-means-based clustering algorithms, such as k-means (K),1 trimmed
k-means (TKC)1 by Cuesta-Albertos et al. (1997), and sparse k-means (SKC)2 byWit-
ten and Tibshirani (2010). The proposedweighted robust and sparse k-means (WRSK)
is also compared with trimmed and sparse k-means (RSKC)2 by Kondo et al. (2016).
Although our algorithm is designed in a similar way as RSKC, we avoid to pre-specify
the trimming level by incorporating the proposed weighted function. Since no proce-
dure for selecting the optimal k and s has been presented by Kondo et al. (2016) for
RSKC in case that no information about data is available, we employ the modified
gap statistic considering zero weights for trimmed observations and weights equal to
one for untrimmed observations. Note that all trimming-based algorithms require for
the pre-specification of a trimming level α, therefore, when applying these methods
we consider α as the true percentage of outliers present in a simulated dataset and
α = 0.10 for real-world data as recommended by Kondo et al. (2016) being a suitable
choice for most cases.

6 Simulation study

In this section, we explore the ability of the proposed clustering method to correctly
reveal the complex data structure in three simulation studies. We first show the effi-
ciency of the gap statistic to properly select s and k. Then, we test the method on the
datasets containing various percentages of outliers. Finally, the proposed method is
compared with several existing k-means-based approaches.

We nowdescribe the general setting of the simulated datasets considered in the three
studies. Each dataset consists of n observations described by the informative as well as
uninformative part in termsof the group separation.Theobservations in the informative
part form g groups of sizes nt , t = 1, . . . , g. The groups are described by pin f
variables and are generated following a Gaussian model with parameters μt ∈ R

pin f

and Σ t ∈ R
pin f ×pin f . The elements of the mean vector μt = (μt1, . . . , μtpin f ) are

constructed as

μt j =
{

μ, j = az,

0, else
(17)

where μ is randomly chosen from the uniform distribution in [− 6,− 3] ∪ [3, 6],
i.e U [− 6,− 3] ∪ U [3, 6]. az represents the arithmetic sequence defined as az+1 =
az+g, a1 = t meaning that the first nonzero element ofμt is placed on the t th position
and the following nonzero elements, i.e. μ, are always on the position increased by g
with respect to the previous index of the nonzero element. Considering, for example,
4 groups of 10 dimensions, the mean vectors of the first two clusters are constructed

1 We employed the code implemented in the R package RSKC (Kondo et al. 2016).
2 The used code for sparse k-means as available in the R package sparcl (Witten and Tibshirani 2013).
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as μ1 = (μ, 0, 0, 0, μ, 0, 0, 0, μ, 0, 0) and μ2 = (0, μ, 0, 0, 0, μ, 0, 0, 0, μ, 0). The
covariance matrix Σ t is generated according to Campello et al. (2015) as

Σ t = Q

⎛

⎜⎜⎜⎜⎝

1 ρt . . . ρt

ρt
. . .

. . .
...

...
. . .

. . . ρt
ρt . . . ρt 1

⎞

⎟⎟⎟⎟⎠
Q�, (18)

whereQ denotes a random rotation matrix satisfyingQ� = Q−1 and the off-diagonal
elements ρt are random numbers from U [0.1, 0.9] which are exclusively generated
for each group. To the informative part, we also add pnoise noise variables that follow
univariate standard normal distributions leading to a total dimensionality of p =
pin f + pnoise.

Such an obtained dataset is finally contaminated by replacing a certain percentage
of observations in each group by outliers. We create two types of outliers in the infor-
mative variables. While uniformly distributed outliers are generated as random values
from U [−12, 6] ∪ U [6, 12], the scattered outliers follow a Gaussian model with the
same location as a group, i.e. μt , but a different covariance structure σ I ∈ R

pin f ×pin f .
The parameter σ is randomly generated from an uniform distribution in [3, 10]. We
also replace a certain proportion of observations from each group in the noise variables
by uniformly distributed outliers, according to U [−12, 6] ∪ U [6, 12]. Note that the
observations contaminated in the informative variables differ from those in the noise
variables. Furthermore, we always replace (contaminate) the first observations from
each group in the informative variables, whereas observations in the noise variables
are randomly selected for the following contamination.

6.1 Simulation 1: Selection of parameters

In the first study, we investigate the ability of the modified gap statistic to correctly
select the number of clusters k and the sparsity parameter s when applying the intro-
duced algorithm. We consider 100 datasets of 800 dimensions in which the first 50
variables describe the group structure. In order to explore the performance of the gap
statistic, 3 situations with different numbers of groups are considered, i.e. g = 3, 4, 5.
The sizes of the observations in the groups are randomly selected, ranging from 50
to 150. The contamination strategy corresponds to replacing the first 10% of obser-
vations from each group in all informative variables by scattered outliers. In contrast,
the uniformly distributed outliers are placed in 75 randomly selected noise variables.

The proposed method is applied with k = 2, . . . , 7 and various s going from 1.1
up to

√
p in steps of 0.5, in order to calculate the gap statistic and to select optimal

parameters. The results are evaluated in terms of the estimated number of clusters
and the evaluation measures described in Sect. 5. It should be noted that CER is
calculated with respect to the group membership before contamination. Since each
group is contaminated by scatter outliers, such outliers have the same location as a
group and, therefore, they should be assigned to the corresponding group.
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Figure 8 summarizes the resulting optimal k selected by the gap statistic as his-
tograms, for the three different numbers of underlying groups (g = 3, 4, 5). While the
gap statistic works perfectly in case of 3 groups, its performance gets slightly worse
for a higher number of groups. Nevertheless, the last two histograms clearly indicate
that the optimal k is correctly chosen in most cases.

Figure 9 summarizes the results based on the evaluation measures. In general, there
is no clear dependence between the considered numbers of groups and the resulting
values of evaluation measures. Overall, low CER indicate that the proposed procedure
can correctly identify the group structure. In addition, high as well as similar values
of w̄ in f and w̄ non0 demonstrate the appropriate selection of s. Hence, it seems that
most of the informative variables can be correctly identified. The high performance
of variable selection is also supported by zero values of w̄ noise suggesting that the
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method is able to discard all noise variables. We also evaluate the method regarding
the detection of outliers. We can see that outliers receive on average considerably low
weights, i. e. around 0, in contrast to non-outliers, i. e. around 1; compare v̄out and
v̄nonout . Therefore, classifying the observations with vi > 0.5 as outliers seems to be
a reasonable choice. Indeed, such a cut-off value leads to a great ability to identify
outliers indicated by high TPR centered around 1 as well as low FPR centered around
0. Considering the values of the evaluation measures, we can conclude that the method
as well as the parameter selection work efficiently.

6.2 Simulation 2: Resistance against outliers

The second simulation study aims at investigating how resistant the proposed method
as well as the modified gap statistic are against various proportions of outliers. For
this study, we generate 100 datasets that consist of 3 groups of different sizes ranging
between 50 and 150 (randomly selected). The data space is defined by 170 informative
variables and 830 noise variables, leading to 1000 dimensions in total. Overall, we
consider 8 contamination strategies in terms of different percentages of outliers. The
datasets in the first strategy are free of outliers. In contrast, the second strategy consid-
ers 5% of scatter outliers in all informative variables and no outliers in noise variables.
The datasets in the remaining strategies are contaminated with 10%, 15%, 20%, 30%,
and 40% scatter outliers, respectively, in the informative variables. In addition, the
proportion of outliers in the 83 (10%) noise variables is always kept as 10%.

Again, the proposed algorithm is applied with the different numbers of clusters
(k = 2, 3, 4, 5, 6) and various s. Subsequently, the gap statistic is employed to estimate
the optimal parameter settings. The performance is finally evaluated by the measures
described in Sect. 5 as well as the selected k. As in the previous study, we calculate
CER by taking the true group membership before contamination into account.

Figure 10 shows the optimal number of clusters estimated by the proposed gap
statistic for each contamination strategy. The histograms clearly indicate that the gap
statistic allows to correctly select the number of clusters, i.e. k = 3, even if data sets
contain 40% outliers in total. Even if the highest contamination level is considered, in
most cases the correct k is selected. It should be noted that such a high contamination,
i.e. 50% outliers, is very extreme and unrealistic in practice.

Figure 11 summarizes the performance in terms of evaluationmeasures and demon-
strates a great ability to discover the group structure independently of the number of
outliers, reflected by low CER. The low CER can also be observed in case of the
highest contamination. This might indicate that even if the gap statistic estimates a
higher number of clusters than the true underlying number of groups (see Fig. 10), the
detected clusters seem to be to some extent still homogeneous. The great performance
of the gap statistic is additionally supported by similar values of w̄non0 and w̄in f , indi-
cating highly efficient variable selection. Furthermore, zero values of w̄noise imply
that most noise variables are discarded for data clustering. Therefore, we can assume
that the sparsity parameter s is appropriately estimated. Regarding the detection of
outliers, the method can identify most outliers indicated by TPR around 1. However,
TPR is slightly below 1 for the extremely contaminated data sets (i.e. 40/10). Such
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Fig. 10 Evaluation of the ability to correctly estimate k, considering different percentages of outliers in
informative and in noise variables (x/x). The reported values of evaluation measures represent all 100
simulated datasets
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low TPR can be a consequence of high observation weights for outliers, reflected
by higher v̄out . This might indicate that the weights of some outliers are similar to
the weights of non-outliers, or the cut-off value 0.5 needs to be increased in order to
achieve perfect outlier detection for a large contamination level. Although the method
misclassifies around 10% of normal observations in case of no contamination (0/0), it
is able to correctly classify almost all non-outliers in contaminated datasets indicated
by zero FPR. Based on the overall evaluation, the method demonstrates a great ability
to identify a complex data structure in contaminated datasets.

6.3 Simulation 3: Comparison

In the last study, we compared the proposed weighted robust and sparse k-means
(WRSK) algorithm with other k-means-based approaches, such as k-means (KC),
trimmed k-means (TKC), sparse k-means (SKC) and its trimmed version (RSKC)
on 30 simulated datasets. Each dataset is represented by 4 groups of various sizes
ranging between 15 and 150. The generated observations are described by 4000 vari-
ables. Since the additional goal is to investigate the influence of different proportions
of informative variables, three settings are considered, such as a percentage of 1%,
2%, and 5% of informative variables. Moreover, 20% of the observations are replaced
by uniformly distributed outliers in the first 20% of the informative variables, and
10% of other observations are contaminated in 20% of randomly selected noise vari-
ables.

When applying the methods on the generated datasets, we assume prior knowl-
edge of the number of clusters and optimize s in case of sparse-based algorithms.
The trimming level for both TKC and RSKC corresponds to the total percentage of
outliers, i.e. α = 0.30. We evaluate the clustering solution by CER, and if appro-
priate, the performance regarding the outlier detection by TPR and FPR. Note that
CER is again calculated with respect to the true group memberships before con-
tamination. Since the outliers are placed only in the subset of informative variables,
there is still some information about the group separation in non-contaminated vari-
ables.

Figure 12 summarizes the result based on 30 simulations. In general, in compari-
son to the remaining k-means-based methods, both the proposed method and RSKC
seem to be resistant against the different percentages of informative variables. The
clustering performance of KC, TKC, and SKC increases with an increasing pro-
portion of informative variables, indicated by decreasing CER. In addition, CER
shows that the proposed method outperforms the remaining methods in terms of
identifying the underlying group structure reflected by the lowest CER for most
simulated datasets. Although lower TPR demonstrate that our WRSK is not capa-
ble of identifying all outliers in comparison to the trimmed-based methods, the
proposed method misclassifies fewer non-outliers indicated by the lowest FPR. Con-
sidering the performance, it seems that our method is able to sufficiently identify
the group structure even if a large amount of noise variables is present in a data
set.
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7 Analyzing the group structure of glass vessels

The proposed algorithm is particularly useful in the situation where a large number
of variables is present as in the case of archaeological glass vessels from the 16th and
17th centuries, which were excavated in Antwerp being one of the most important
historical centers of both glass manufacturing and trade. In 1997, chemical analysis
was conducted in order to get better insight into the glass collection, including also
the possible origin of the various glass samples. For this reason, the glass vessels were
analyzed by an electron-probe X-ray micro-analysis (EXPMA) to measure spectra
at different energy levels (Janssens et al. 1998). Consequently, traditional calibration
methods were applied on spectra to extract major chemical elements resulting in the
separation of four glass vessels groups, i.e. sodic, potasso-calcic, calcic, and potassic.
The connection between element concentrations of glass vessels and their origin was
discussed by Janssens et al. (1998). Lemberge et al. (2000) used their findings on an
extended dataset consisting of 180 glass samples described by 1920 variables (different
energy levels) in order to predict the same concentrations of the major elements as
Janssens et al. (1998), using partial least squares. In this paper we employ the extended
dataset consisting of 4 groups as well, as shown in Fig. 13. The plot additionally shows
that the largest group (sodic) is split into two subgroups that are not clearly separated in
the two-dimensional space of chemical concentrations. The two subgroups are caused
by the installation of different detector efficiencies in the EXPMA. Detecting the
subgroup of glass samples analyzed after the installation has been investigated e.g. by
Serneels et al. (2005) and Filzmoser et al. (2008).
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Fig. 13 Group membership of analyzed glass vessels, based on element concentrations (Lemberge et al.
2000)

Table 1 Evaluation of the clustering performance of k-means-based clustering methods

Method WRSK KC TKC RSKC SKC

CER 0.039 0.183 0.166 0.191 0.167

Our focus is to detect an entire group structure, i.e. 5 groups, which might be
hidden in the high-dimensional data space. Note that there is no pre-knowledge about
the informative variables, neither of outliers in each group. In addition, the group
membership based on the chemical concentrations does not necessarily have to reflect
the group structure based on the origin of the glass samples. However, there exist
some assumptions about the connection between the chemical elements - the glass
manufacturing process - and the origin (Janssens et al. 1998). Therefore, we evaluate
the performance in terms of CER with respect to the group membership shown in
Fig. 13, and the clustermembership obtained by k-means-based algorithmswith k = 5.
Although it is not sure whether or not the dataset contains outliers, we set the trimming
level to 0.10 for the trimming-based methods as suggested by Kondo et al. (2016).
The optimal sparsity parameter for RSKC and WRSKC is selected from 1.5 to

√
p

in steps of 0.1 based on the gap statistic described in Sect. 4. The evaluation of the
resulting clustering solution is presented in Table 1, which clearly shows that WRSK
outperforms the remaining methods indicated by the lowest CER. Incorporating the
trimming concept or sparsity seem to improve the performance of k-means (KC)
as demonstrated by slightly larger CER for TKC or SKC. RSKC shows the worst
performance. The reason might be that either important variables have been excluded,
or that wrong observations have been trimmed, or a combination of both.

We also examine the final variable weights obtained by the sparse k-means-based
algorithms. Figure 14 shows the final weights for each sparse method. The resulting
values of the weights demonstrate that SKC completely fails in terms of achieving
sparsity in the variable weight vector, asw j > 0 for almost all variables. Nevertheless,
there are several variables that receive a higher weight than in case of RSKC; see
two peeks highlighted by dashed lines. This may indicate that there could be useful
information about the group separation in the last energy levels of themeasured spectra.
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Fig. 14 The final variable weights obtained by sparse k-means-based clustering methods

−2

0

2

4

0002005100010050

variable

va
lu

e

0.3

0.5

0.7

0.9

5 10 15

Na2O

C
aO

(C
aO

+
K

2O
) cluster

1

2

3

4

5
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by WRSK (top) and the corresponding cluster membership (bottom)
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A very similar conclusion can be made for the weights obtained by the proposed
WRSK. In addition, WRSK results in a slightly sparse variable weight vector and at
the same time can appropriately identify 5 groups as indicated by the lowest CER.

In order to investigate the final variable weights obtained by the proposed method
in more detail, we examine how the centers of the detected clusters are distinguishable
at each energy level of the spectra, i.e. for each variable. For this reason, we calculate
the cluster centers as a weighted mean of the observations in each variable with the
corresponding observation weights and the identified cluster membership. The result-
ing centers are displayed as spectra in Fig. 15 (top) and are distinguished by different
colors based on the final cluster membership visualized in Fig. 15 (bottom). Figure 15
(top) particularly indicates that the centers appear to be well separated already at the
low energy levels, i.e. in the first part of the variable vector. Furthermore, the cen-
ter of cluster 3 appears to be well separated from other centers in the higher energy
levels, highlighted by two dashed lines. In fact, the proposed WRSK is capable of
identifying this informative part of the spectra; see Fig. 14. Although the proposed
method does not lead to high sparsity in the variable weight vector, the final cluster
membership visualized in Fig. 15 (bottom) indicates a great ability of WRSK to cor-
rectly identify informative variables since all 5 glass vessels groups are well recovered
with only 5 misclassified observations. Whereas the misclassified calcic glass sample
has an observation weight equal to 1, the remaining four misclassified potassic glass
samples obtain weights considerably smaller than 1, i.e. 0.06, 0.00, 0.60, 0.76. This
might indicate that although these observations are originally from the potassic group,
their chemical structure seems to be different from the remaining observations of that
group.

8 Conclusion

We propose a k-means-based clustering procedure that endeavors to simultaneously
detect groups, outliers, and informative variables in high-dimensional data. The moti-
vation behind our method is to improve the performance of the popular k-means
method for real-world data that possibly contain both outliers and noise variables.
Kondo et al. (2016) have addressed both issues in the robust (trimmed) and sparse
k-means procedure, but our method goes even further. Firstly, our method aims to
identify clusters, outliers, and noise variables at the same time. Secondly, the proposed
procedure is designed in such a way that the required parameters are automatically
estimated and, therefore, no pre-knowledge about the data is required. By incorpo-
rating the weighting function in k-means, each observation automatically receives a
weight reflecting the degree of outlyingness based on which the outliers are identified.
In order to correctly detect the informative variables, we employ a sparsity concept
adjusted by observation weights. The proposed modified gap statistic is employed to
optimize both the sparsity parameter and the number of clusters.

The introducedmethod together with themodified gap statistic has thoroughly been
tested on a variety of simulated data sets as well as on a high-dimensional real data
set. The conducted experiments indicated a great ability of the proposed procedure
to discover the group structure. Two properties, the convergence and the stability of
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the algorithm, have been investigated additionally. Although for reasons of space,
the results are not presented here, our findings are briefly discussed. We observed
that the algorithm, as applied in our simulation studies, typically convergences after
around 6 iterations. Themaximum number of iterations, considered as 15, was reached
only occasionally. This can happen because the objective function is non-convex and
rather difficult to optimize, but still the results as shown previously are convincing.
Regarding the stability, the algorithm usually appeared to be insensitive to the order
of observations or variables in terms of cluster membership as well as in terms of the
identified outliers. The algorithm is implemented in the R Core Team (2016), freely
available at https://github.com/brodsa/wrsk.

Future research includes extending the analysis of a data structure to identify the
variables which are responsible for outliers. Such an idea is closely related to cell-wise
outlier detection by Rousseeuw and Bossche (2018) for the situation of a single group
data structure. A similar concept was introduced by Farcomeni (2014) in the context of
clustering. The aimwas to demonstrate that cell-wise contamination does not affect the
introduced approach. However, the method has been tested in terms of clustering only,
and no investigation has been conducted with respect to cell-wise outlier detection.
Considering that outliers are commonly highly interesting observations due to their
typically different content, it is even more important to find out which variables are
behind this unusual behavior.
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