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Abstract
We consider an optimal control problem involving a nonlinear ODE with control, an inte-
gral cost functional, and a control constraint. Our main assumptions include a coercivity
condition and the condition that the optimal control is an isolated solution of the variational
inequality appearing in the first-order optimality condition. We show that the optimal open-
loop control is Lipschitz continuous in time; moreover, we identify the dependence of the
Lipschitz constant of the optimal control on the data of the problem. Then, we establish the
existence of a Lipschitz continuous optimal feedback control. As an application, we study
regularity properties of the optimal value function. A main tool for obtaining these results
is the property of uniform strong metric regularity.

Keywords Optimal control · Optimal feedback control · Lipschitz continuity · Value function
Mathematics Subject Classification (2010) 49N60 · 49K40 · 49J30

1 Introduction

In this paper, we consider an optimal control problem for a time-dependent nonlinear control
system over a fixed time interval [0, T ] with an integral cost functional. The set of feasible
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controls consists of all functions in L∞ (the space of measurable and essentially bounded
functions over [0, T ]) with values in a given convex and closed set in Rm. We assume twice
differentiability with respect to the state and the control of the functions involved in the
problem and local Lipschitz continuity of these functions together with all their derivatives
with respect to all arguments. We also assume the existence of a reference optimal solu-
tion. Since the reference optimal control is a function in L∞, its values can be changed
in a subset of [0, T ] with Lebesgue measure zero without violating the optimality. In fact,
the optimal control is a class of functions that differ from each other on a set of measure
zero.

Our first task is to prove that, under an integral coercivity condition at the reference
solution, we can select from the class of optimal controls a function which satisfies the first-
order optimality condition for all t ∈ [0, T ], instead of for almost every (a.e.) t ∈ [0, T ].
Then, we show that under a coercivity condition this representative of the optimal controls is
Lipschitz continuous with respect to time t ∈ [0, T ] provided that it is an isolated solution of
the Hamiltonian variational inequality in the first-order optimality condition. Moreover, we
establish that the Lipschitz constant of the optimal control depends only on two constants:
the coercivity constant and the Lipschitz constant of all functions defining the problem and
their first and second derivatives over a bounded set in the space of variables (time, state,
control).

The integral coercivity condition is a rather standard assumption in optimal control; the
specific condition we use here goes back to the work of Hager [7]. In contrast, the iso-
latedness condition was introduced only recently in [2, Definition 3.6] in the context of
the so-called differential variational inequalities, with the aim to prevent different solu-
tion curves from crossing each other. The isolatedness assumption is automatically satisfied
when the Hamiltonian has a unique minimizer for each t ∈ [0, T ], e.g., when the Hamilto-
nian is strictly convex. In [2, Theorem 4.1], it was established that if an optimal control ū

is an isolated solution of the Hamiltonian variational inequality and for each t ∈ [0, T ] the
mapping defining this variational inequality is strongly metrically regular at ū for 0; then,
the optimal control ū is Lipschitz continuous on [0, T ]. We also mention the earlier work [4]
in that direction for an optimal control problem with linear dynamics and a strongly convex
cost for which strong regularity holds automatically; in fact, only continuity of the opti-
mal control is claimed there but the Lipschitz continuity can be gleaned from the proof. We
note that the coercivity condition implies strong metric regularity in the respective function
spaces, see [2, Theorem 4.2].

Our next task is to prove the existence of a Lipschitz continuous optimal feedback
control. We show that under the coercivity and isolatedness conditions for the optimal
control, there exists an optimal feedback control (τ, ξ) �→ u∗(τ, ξ) which is a Lips-
chitz continuous function; here (τ, ξ) represents the parametrizing pair initial time–initial
condition.

Our third and last task is to show that the existence of a Lipschitz continuous optimal
feedback control implies that the optimal value function (τ, ξ) �→ V (τ, ξ) is differentiable
with respect to ξ and its derivative is Lipschitz continuous.

An outline of the paper follows. In Section 2, we introduce the optimal control problem
considered and set the stage for the further developments. Section 3 contains preliminary
material showing in particular that the optimal control can be redefined on a set of mea-
sure zero so that the first-order optimality system holds for all t ∈ [0, T ]. Section 4 gives
conditions for Lipschitz continuity in time of the optimal open-loop control while Section 5
is devoted to the existence of a Lipschitz continuous optimal feedback control. The last
Section 6 applies the latter result to show Lipschitz differentiability of the value function.
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2 The Optimal Control Problem

We consider the following optimal control problem:

min

{
J (u) := g(x(T )) +

∫ T

0
h(t, x(t), u(t))dt

}
, (1)

subject to

ẋ(t) = f (t, x(t), u(t)) , x(0) = x0,

x ∈ W 1,∞, u ∈ U := {u ∈ L∞ : u(t) ∈ U for a.e. t ∈ [0, T ]}, (2)

where the state x(t) ∈ R
n, the set U of feasible control values is a closed and convex

subset of Rm, and the functions g : R
n → R, h : [0, T ] × R

n × R
m → R and f :

[0, T ] × R
n × R

m → R
n. The final time T and the initial state x0 are fixed.

Throughout we assume that the function g is twice differentiable and its second deriva-
tive is locally Lipschitz continuous, the functions h(t, ·, ·) and f (t, ·, ·) are two times
continuously differentiable (with respect to (x, u)), and these functions, together with all
their derivatives, are locally Lipschitz continuous (with respect to (t, x, u)).

We also assume that problem (1)–(2) has a locally optimal solution (x̄, ū). The local
optimality is understood in the following way: there exists a number e0 > 0 such that for
every u ∈ U with ‖u − ū‖∞ ≤ e0 either there is no solution of (2) over [0, T ] or such a
solution exists and J (u) ≥ J (ū).

In this paper, we employ the standard function spaces L∞, L2, W 1,∞, W 1,2, all over
[0, T ]. Specifically, the space of controls u is L∞, the space of measurable and essentially
bounded functions. The state trajectory x is in W 1,∞, the space of Lipschitz continuous
functions. For the controls we also use the space L2 of measurable square integrable func-
tions, and for the state trajectory x the space W 1,2 such that both x and its derivative ẋ are
in L2. Furthermore, for an element x of a metric space we denote by IBa(x) (respectively
◦
IBa(y)) the closed (respectively open) ball centered at x with radius a.

Clearly, any feasible control u is actually a class of functions which differ from each
other on a set of Lebesgue measure zero. We call any particular function from this class a
representative and denote it in the same way, by u.

Introducing the Hamiltonian H(t, x, u, λ) = h(t, x, u) + λ�f (t, x, u), where � means
transposition, we employ the standard first-order necessary optimality condition (a conse-
quence of the Pontryagin maximum principle) in the form used, e.g., in [7], according to
which there exists a Lipschitz continuous function λ̄ : [0, T ] → R

n such that the triple
(x̄, ū, λ̄) satisfies for a.e. t ∈ [0, T ] the following optimality system:

−ẋ(t) + f (t, x(t), u(t)) = 0, x(0) − x0 = 0,

λ̇(t) + Hx(t, x(t), u(t), λ(t)) = 0, λ(T ) − gx(x(T )) = 0, (3)

Hu(t, x(t), u(t), λ(t)) + NU(u(t)) � 0,

where Hx denotes the derivative of H with respect to x, etc., and NU is the normal cone
mapping to the set U defined as

u �→ NU(u) =
{ {y ∈ R

n | 〈y, v − u〉 ≤ 0 for all v ∈ U} if u ∈ U,

∅ otherwise.

In further lines, we give the following long but important remark, which summarizes
various observations that will be used later on.
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Remark 1 It is a standard fact that under our assumptions there exist positive reals d0 and
d such that for every ũ ∈ U with ‖ũ − ū‖∞ ≤ d and for every ξ ∈ IBd0(x0) there exists a
unique solution x̃ of the differential equation

ẋ(t) = f (t, x(t), ũ(t)) for a.e. t ∈ [0, T ], x(0) = ξ, (4)

which satisfies ‖x̃ − x̄‖W 1,∞ ≤ 1. Moreover, making d0 and d smaller if necessary, we
obtain that the (unique) solution λ̃ of the linear adjoint equation

λ̇(t) + Hx(t, x̃(t), ũ(t), λ(t)) = 0 for a.e. t ∈ [0, T ], λ(T ) = gx(x̃(T )) (5)

satisfies ‖λ̃ − λ̄‖W 1,∞ ≤ 1. Without loss of generality, we assume that d ≤ 1 and d ≤ e0,
where e0 appears in the definition of local optimality given in the beginning of this section.

Since ū ∈ L∞, there exists a compact set Ū such that ū(t) ∈ Ū for a.e. t ∈ [0, T ]. Define
the set

� = {(t, x, u, λ) : t ∈ [0, T ], dist(u, Ū) ≤ 1, |x − x̄(t)| ≤ 1, |λ − λ̄(t)| ≤ 1}.
Denote by L the Lipschitz constant on � of each of the functions f , g, h, fx , fu, hx ,
hu, fxx , fxu, fuu, hxx , hxu, huu, as well as of the functions H , Hx , Hu, Hxx , Hxu,

Huu. Since f and Hx are bounded in �, then ˙̃x and ˙̃
λ are also bounded. Make L larger

if needed so that for every x̃ and λ̃ that satisfy (4) and (5), respectively, the functions
(t, v) �→ Hu(t, x̃(t), v, λ̃(t)) and (t, v) �→ Huu(t, x̃(t), v, λ̃(t)) are Lipschitz continuous
with constant L in the set {(t, v) : t ∈ [0, T ], dist(v, Ū) ≤ 1}. This concludes Remark 1.

To shorten the notations, we skip arguments with “bar”, shifting the “bar” to the
functions, e.g., H̄ (t) := H(t, x̄(t), ū(t), λ̄(t)), H̄ (t, u) := H(t, x̄(t), u, λ̄(t)), f̄ (t) :=
f (t, x̄(t), ū(t)), ḡxx := gxx(x̄(T )), etc. Define the matrices

A(t) = f̄x(t), B(t) = f̄u(t), Q(t) = H̄xx(t), S(t) = H̄xu(t), R(t) = H̄uu(t).

Our first main assumption is the following:

– COERCIVITY: there exists a constant ρ > 0 such that

y(T )�ḡxxy(T ) +
∫ T

0

(
y(t)�Q(t)y(t) + w(t)�R(t)w(t) + 2y(t)�S(t)w(t)

)
dt

≥ ρ

∫ T

0
|w(t)|2dt (6)

for all w ∈ L2, y ∈ W 1,2 such that w(t) ∈ U −U , ẏ(t) = A(t)y(t)+B(t)w(t) for a.e.
t ∈ [0, T ], and y(0) = 0.

The coercivity condition was first used in [7] to show convergence of the multiplier
method and later in [5] to establish Lipschitz stability as well as convergence of discrete
approximations in optimal control. It can be viewed as a strong second-order sufficient
condition in optimal control. Checking this condition would very much depend on the spe-
cific problem at hand; sometimes it is enforced numerically by adding penalty terms to the
cost. The coercivity condition has also been used for a posteriori numerical verification of
optimality after an approximate solution is found.

In the following section, we present some preparatory material. In particular, we show
that the coercivity condition implies a pointwise in time coercivity property which plays an
important role in further analysis.
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3 Preliminaries

Denote by meas(E) the Lebesgue measure of a set E. Let � ⊂ [0, T ] be a measurable
set with meas(�) > 0, and let v : � → R

m be a measurable and bounded function. For
t ∈ � denote by V�(v; t) the set of points w ∈ R

m with the following property: there is a
sequence of measurable sets Ek ⊂ � such that

meas(Ek) > 0, Ek ⊂ [t − 1/k, t + 1/k], lim
k→∞ sup

s∈Ek

|v(s) − w| = 0.

We denote V[0,T ](v; t) simply by V (v; t).
A point t ∈ � is said to be essentially non-isolated if for every ε > 0 the set [t − ε, t +

ε] ∩ � is of positive measure.

Lemma 1 Let � ⊂ [0, T ] be a measurable set and let v : � → R
m be a measurable and

bounded function. Then, for any t ∈ �, the following statements are equivalent:

(i) V�(v; t) �= ∅;
(ii) t is essentially non-isolated point of �.

Proof If (i) holds, then the very definition of V�(v; t) implies that t is essentially non-
isolated.

Let us pick an essentially non-isolated point t of �. Let K ⊂ R
m be a compact set such

that v(s) ∈ K for every s ∈ �. Take an arbitrary w ∈ K . If for every ε > 0 and every
natural number k there exists Ek ⊂ [t − 1/k, t + 1/k] ∩ � such that meas(Ek) > 0 and
sups∈Ek

|v(s)−w| < ε, then w ∈ V�(v; t). If this is not the case, then there exist ε(w) > 0
and a natural number k(w) such that |v(s) − w| ≥ ε(w) for a.e. s ∈ [t − 1/k(w), t +
1/k(w)] ∩ �; that is, v(s) �∈ ◦

IBε(w)(w) for a.e. s ∈ [t − 1/k(w), t + 1/k(w)] ∩ �. If
w �∈ V�(v; t) for everyw ∈ K , then, due to the compactness ofK , there existw1, . . . , wr ∈
K such that K ⊂ ∪r

i=1

◦
IBε(wi)(wi). Denote k̄ := max{k(w1), . . . , k(wr)}; then, v(s) �∈

∪r
i=1

◦
IBε(wi)(wi) for a.e. s ∈ [t − 1/k̄, t + 1/k̄] ∩ �. This contradicts the essential non-

isolatedness of t , since K ⊂ ∪r
i=1

◦
IBε(wi)(wi) and meas([t −1/k̄, t +1/k̄]∩�) > 0. Hence

V�(v; t) �= ∅ and the proof is complete.

Taking � = [0, T ], we obtain that V (v; t) is non-empty for every t ∈ [0, T ].

Lemma 2 Let u and ũ be two measurable and bounded functions acting from [0, T ] to Rm,
and let u(t) ∈ V (u; t) for every t ∈ [0, T ]. Then, the function ũ can be redefined on a set
of measure zero in such a way that ũ(t) ∈ V (ũ; t) and |ũ(t) − u(t)| ≤ ‖ũ − u‖∞ for every
t ∈ [0, T ].

Proof Take an arbitrary t ∈ [0, T ]. Consider first the case where both functions u and ũ are
approximately continuous at t . We recall that u is approximately continuous at t ∈ (0, T ) if
there exists a measurable set E ⊂ [0, T ] containing t such that

lim
k→∞ 2kmeas (E ∩ [t − 1/k, t + 1/k]) = 1

and the restriction of u to E is continuous. Let Ẽ be the set in the definition of approximate
continuity of ũ at t ∈ (0, T ). Then, the set E′

k := E ∩ Ẽ ∩ [t − 1/k, t + 1/k] satisfies
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limk→∞ 2kmeas(E′
k) = 1. In particular, meas(E′

k) > 0 for all sufficiently large k. Due to
the continuity of u and ũ on E ∩ Ẽ, we have

|ũ(t) − u(t)| ≤ lim
k

∣∣∣∣∣
1

meas(E′
k)

∫
E′

k

(ũ(s) − u(s)) ds

∣∣∣∣∣ ≤ ‖ũ − u‖∞.

Moreover, since the sets Ek in the definition of V can be replaced by E′
k , we conclude that

ũ(t) ∈ V (ũ; t).
Now, let t ∈ [0, T ] be such that u or ũ is not approximately continuous at t , or t equals

0 or T .
We will now redefine ũ(t) to fit the claim. It is well known (see, e.g., [8, Theorem 7.54])

that almost all t ∈ [0, T ] are points of approximate continuity of both u and ũ; therefore
we need to redefine ũ only on a set of measure zero. Note that the sets V (ũ; t) are invariant
with respect to changes of ũ on a set of measure zero.

Denote w := u(t) ∈ V (u; t). Let Ek be the sets in the definition of V . In particular,

εk := sups∈Ek
|u(s) − w| k−→ 0. Since Ek is of positive measure, it contains an essentially

non-isolated point tk ∈ Ek . According to Lemma 1, there exists w̃k ∈ VEk
(ũ; tk); hence,

there exists a sequence {Ei
k}i , Ei

k ⊂ Ek , such that

meas
(
Ei

k

)
> 0, Ei

k ⊂ [tk − 1/i, tk + 1/i] , εi
k := sup

s∈Ei
k

|ũ(s) − w̃k| i−→ 0.

Let w̃ be a cluster point of the sequence {w̃k}. To show that w̃ ∈ V (ũ; t), we employ
the following argument involving choosing a diagonal sequence. For an arbitrary natural
number j , choose k = kj so large that

|tkj
− t | ≤ 1

2j
and |w̃kj

− w̃| ≤ 1

j
.

Then, choose i = ij such that

1

ij
≤ 1

2j
and ε

ij
kj

≤ 1

j
.

We have

Ẽj := E
ij
kj

⊂ [
tkj

− 1/ij , tkj
+ 1/ij

] ⊂ [
t − |t − tkj

| − 1/ij , t + |t − tkj
| + 1/ij

]
⊂ [t − 1/j, t + 1/j ]

and

sup
s∈Ẽj

|ũ(s) − w̃| ≤ |w̃kj
− w̃| + sup

s∈Ẽj

|ũ(s) − w̃kj
| ≤ 1

j
+ ε

ij
kj

≤ 2

j
.

Taking also into account that meas(Ẽj ) > 0, the last two relations imply that w̃ ∈ V (ũ; t).
For every k and i, we have Ei

k ⊂ Ek ,∣∣∣∣∣
1

meas(Ei
k)

∫
Ei

k

u(s)ds − w

∣∣∣∣∣ =
∣∣∣∣∣

1

meas(Ei
k)

∫
Ei

k

(u(s) − w)ds

∣∣∣∣∣ ≤ εk,

and ∣∣∣∣∣
1

meas(Ei
k)

∫
Ei

k

ũ(s)ds − w̃k

∣∣∣∣∣ =
∣∣∣∣∣

1

meas(Ei
k)

∫
Ei

k

(ũ(s) − w̃k)ds

∣∣∣∣∣ ≤ εi
k .
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Hence,

|w̃k − w| ≤
∣∣∣∣∣

1

meas(Ei
k)

∫
Ei

k

(ũ(s) − u(s))ds

∣∣∣∣∣ + εk + εi
k ≤ ‖ũ − u‖∞ + εk + εi

k .

Passing to the limit with i and then with k, we obtain |w̃ − w| ≤ ‖ũ − u‖∞. Then, we
redefine ũ(t) as ũ(t) = w̃. This completes the proof.

Corollary 1 Every v ∈ U can be redefined on a set of measure zero in such a way that
v(t) ∈ V (v; t) for every t ∈ [0, T ].

For a proof, apply Lemma 2 with ũ = v and the constant function u(t) = u for all
t ∈ [0, T ].

Remark 2 From now on, the element ū ∈ L∞ will be identified with a function (denoted
again by ū) satisfying ū(t) ∈ V (ū; t) for every t ∈ [0, T ].

Observe that the coercivity condition (6) does not depend on the particular representative
of ū.

Lemma 3 Let the coercivity condition (6) hold, where ū is identified as in Remark 2. Then,

w�R(t)w ≥ ρ|w|2 for every t ∈ [0, T ] and w ∈ U − U . (7)

Proof Fix an arbitrary t ∈ [0, T ]. Since ū(t) ∈ V (ū; t), there exists a sequence Ek ⊂ [0, T ]
such that

meas(Ek) > 0, Ek ⊂ [t − 1/k, t + 1/k], εk := sup
s∈Ek

|ū(s) − ū(t)| → 0. (8)

For an arbitrary w ∈ U − U , we define a function wk as

wk(s) =
{

w if s ∈ Ek,

0 if s �∈ Ek .

Using the Cauchy formula for the equation

ẏk(s) = A(s)yk(s) + B(s)wk(s) for a.e. s ∈ [0, T ], y(0) = 0,

we obtain that yk(s) = 0 for s ∈ [0, t−1/k] and |yk(s)| ≤ c1meas(Ek) for s ∈ (t−1/k, T ],
where here and further c1, c2, . . . are positive reals independent of k. Then, for the terms
involved in (6), we have

∣∣∣yk(T )�gxxyk(T )

∣∣∣ +
∣∣∣∣
∫ T

0
yk(s)

�Q(s)yk(s)dt

∣∣∣∣ ≤ c2(meas(Ek))
2,

∣∣∣∣
∫ T

0
yk(s)

�S(s)wk(s)dt

∣∣∣∣ =
∣∣∣∣
∫

Ek

yk(s)
�S(s)ds w

∣∣∣∣ ≤ c3(meas(Ek))
2,

∫ T

0
wk(s)

�R(s)wk(s)ds = w�
∫

Ek

R(s)ds w,

∫ T

0
|wk(s)|2ds = meas(Ek)|w|2.



586 A.L. Dontchev et al.

Since R(s) = H̄uu(s, ū(s)), using (8), we obtain (see Remark 1) that for s ∈ Ek one has

|R(s) − R(t)| ≤ L(|s − t | + εk) ≤ L(1/k + εk) =: ε̃k → 0.

Using the above estimated in (6) and the above five displayed formulas, we obtain

meas(Ek)w�R(t)w ≥ ρmeas(Ek)|w|2 − c4(meas(Ek))
2 − c5 meas(Ek)ε̃k .

Dividing by meas(Ek) (here we use the first inequality in (8)) and passing to the limit with
k, we obtain (7).

4 Lipschitz Continuity of the Optimal Control

Let us recall the optimality system (3):

− ẋ(t) + f (t, x(t), u(t)) = 0,

x(0) − x0 = 0,

λ̇(t) + Hx(t, x(t), u(t), λ(t)) = 0, (9)

λ(T ) − gx(x(T )) = 0,

Hu(t, x(t), u(t), λ(t)) + NU(u(t)) � 0.

Lemma 4 Let the coercivity condition hold. Then, the optimal control ū ∈ L∞ has a rep-
resentative ū such that the matrix R(t) = H̄uu(t, ū(t)) satisfies (7) and (x̄(t), ū(t), λ̄(t))

satisfies (9) for all t ∈ [0, T ]. In fact, any representative of the optimal control that satisfies
ū(t) ∈ V (ū; t) for all t ∈ [0, T ] has this property.

Proof Let us redefine ū so that ū(t) ∈ V (ū; t) for all t ∈ [0, T ] (see Corollary 1 and
Remark 2). Then, according to Lemma 3, the pointwise coercivity condition (7) holds for
every t ∈ [0, T ].

Fix an arbitrary t ∈ [0, T ]. Since ū(t) ∈ V (ū; t), there exists a sequence {Ek} of mea-
surable subsets of [0, T ] such that (8) holds. Since meas(Ek) > 0 and (9) is satisfied by
(x̄(t), ū(t), λ̄(t)) almost everywhere, there exists tk ∈ Ek such that (9) holds for tk . From
(8), we obtain that tk → t and ū(tk) → ū(t). Then, due to the continuity of the function
(t, u) �→ Hu(t, x̄(t), u, λ̄(t)) and the upper semi-continuity of the mapping u �→ NU(u),
(9) holds for t as well.

We recall next the property of strong metric regularity of a general set-valued mapping
F : Y ⇒ Z , whereY andZ are Banach spaces (for more on that, see, e.g., [6, Section 3.7]).
A mapping F is said to be strongly metrically regular at ŷ for ẑ if there exist constants
κ ≥ 0, a > 0 and b > 0 such that the truncated inverse mapping

IBb(ẑ) � z �→ F−1(z) ∩ IBa(ŷ)

is single-valued (a function) and Lipschitz continuous on IBb(ẑ). Here F−1(z) = {y | z ∈
F(y)}.

Our further analysis is based on the following version of Robinson’s implicit function
theorem. It was first stated as [6, Theorem 5G.3]1 and then in corrected form as Theorem 3.2
in [2] (see also [3, Theorem 2.3] for a slight extension):

1See Errata and Addenda at https://sites.google.com/site/adontchev/

https://sites.google.com/site/adontchev/
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Theorem 1 Let a, b, and κ be positive scalars and let a mapping F : Y ⇒ Z be strongly
metrically regular at ŷ for ẑ with neighborhoods IBa(ŷ) and IBb(ẑ) and constant κ . Let
μ > 0 be such that κμ < 1 and let κ ′ > κ/(1− κμ). Then, for every positive α and β such
that

α ≤ a/2, 2μα + 2β ≤ b and 2κ ′β ≤ α

and for every function g : Y → Z satisfying

‖g(ŷ)‖ ≤ β and ‖g(y) − g(y′)‖ ≤ μ‖y − y′‖ for every y, y′ ∈ IB2α(ŷ),

the mapping z �→ (g +F)−1(z) ∩ IBα(ŷ) is a Lipschitz continuous function on IBβ(ẑ) with
Lipschitz constant κ ′.

Compared with the standard Robinson’s implicit function theorem, see [6, Theo-
rem 2B.1], Theorem 1 exhibits the fact that everything hinges on the constants involved;
that is, the constants of metric regularity of the perturbed mapping g +F do not depend on
the actual perturbations but only on ‖g(ŷ)‖, the Lipschitz constant of g and the constants of
the strong regularity of F . In that sense, Theorem 1 shows strong metric regularity which is
uniform with respect to perturbations.

Let us get back to the optimal control problem at hand. If (t, u) ∈ cl gph(ū), then there
exists a sequence tk → t such that ū(tk) → u. According to (7), we have

w�H̄uu (tk, ū(tk)) w ≥ ρ|w|2 for every w ∈ U − U .

Passing to the limit, we obtain that

w�H̄uu(t, u)w ≥ ρ|w|2 (10)

for every (t, u) ∈ cl gph(ū) and every w ∈ U − U . It is well known that the property (10)
implies that for every (t, u) ∈ cl gph(ū) the mapping

v �→ H̄u(t, u) + H̄uu(t, u)(v − u) + NU(v) (11)

is strongly metrically regular at u for 0 with constants κ ′ = 1/ρ, a′ = b′ = +∞ (that
is, with any positive a′ and b′), see, e.g., [7, Lemma 1]. Note that these constants are
independent of t .

Next, we reformulate, adapted to our notations and needs, a simplified version of
Theorem 3.5 in [2], which in turn is a corollary of Theorem 1.

Theorem 2 Assume that for every (t, u) ∈ cl gph(ū) the mapping in (11) is strongly met-
rically regular at u for 0 with constants κ ′, a′, b′ that are independent of (t, u). Then, for
every t ∈ [0, T ], the mapping u �→ H̄u(t, u) + NU(u) is strongly metrically regular at ū(t)

for 0 with any constants κ , a, b satisfying the inequalities

a ≤ a′

2
, 2L′aκ ′ < 1, 4L′a2 < b′, κ ′

1 − 2L′aκ ′ < κ, 4L′a2+2b < b′, 2κb < a, (12)

where L′ is a Lipschitz constant of the mapping u �→ H̄uu(t, u) on IBa′(ū(t)), for every
t ∈ [0, T ].

The conditions (12) are not stated in Theorem 3.5 in [2], but are explicitly written in the
beginning of its proof there.
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Continuing the analysis of (11), we apply Theorem 2 with a′ = 1, b′ = +∞ and κ ′ =
1/ρ, having the inequalities (12) reduced to

a ≤ 1

2
, 2La < ρ, κ >

1

ρ − 2La
, 2κb < a, (13)

where now L is the constant from Remark 1.

Remark 3 The important consequence of (13) is that the constants κ , a, b of strong regular-
ity of u �→ H̄u(t, u) + NU(u) at ū(t) for 0 can be chosen to depend only on the constant ρ
in the coercivity condition (6) and the constant L in Remark 1.

We introduce next our second main assumption:

– ISOLATEDNESS: The function ū (represented as in Lemma 4) is an isolated solution
of the inclusion H̄u(t, u) + NU(u) � 0 for all t ∈ [0, T ], meaning that there exists a
(relatively) open setO ⊂ [0, T ] × R

m such that

{(t, u) ∈ [0, T ] × R
m : H̄u(t, u) + NU(u) � 0} ∩ O = gph(ū). (14)

For example, the isolatedness assumption holds if for every t ∈ [0, T ] the inclusion
H̄u(t, u) + NU(u) � 0 has a unique solution (which has to be ū(t)). In this case, one
can verify the isolatedness condition taking any (relatively) open set O ⊂ [0, T ] × R

m

containing gph(ū).

Theorem 3 Suppose that the isolatedness assumption (14) and condition (7) hold. Then,
the optimal control ū is Lipschitz continuous on [0, T ]. Moreover, the Lipschitz constant of
ū depends only on the number ρ in (7) and the constant L in Remark 1.

Proof The proof is somewhat parallel to the proof of Theorem 3.7 in [2]. Here we use
Theorem 2 and (13) instead of the more general Theorem 3.5 in [2] (used in the proof of
Theorem 3.7 in [2]), which does not imply the second claim of Theorem 3.

As mentioned around (10), condition (7) implies that for every (t, u) ∈ cl gph(ū) the
mapping in (11) is strongly metrically regular at u for 0. Then, we can apply Theorem 2.
Let the numbers a, b, κ be chosen to satisfy conditions (13), so that for every t ∈ [0, T ]
the mapping u �→ H̄u(t, u) + NU(u) is strongly metrically regular at ū(t) for 0 (see The-
orem 2). Let L be the constant in Remark 1; then, the mappings (t, u) �→ H̄u(t, u) and
(t, u) �→ H̄uu(t, u) are Lipschitz continuous with constant L on the set {(t, u) : t ∈
[0, T ], u ∈ IBa(ū(t))}. Without loss of generality we consider ū as taking values in the set
Ū in Remark 1; we also recall that a ≤ 1.

Take an arbitrary t ∈ [0, T ]. Then, pick αt < a/2 and then γt ∈ (0, 1) such that (τ, v) ∈
O for every τ ∈ [t − γt , t + γt ] ∩ [0, T ] and v ∈ IBαt (ū(t)), and also

κLγt < 1/2, L(a + 2)γt ≤ b, 4κLγt ≤ αt (1 − κLγt ). (15)

For an arbitrary τ ∈ [t − γt , t + γt ] ∩ [0, T ] define the mapping gτ,t : U → R
m as

gτ,t (u) = H̄u(τ, u) − H̄u(t, u), u ∈ U .

Then, we have that

|gτ,t (ū(t))| ≤ L|τ − t | ≤ Lγt , (16)
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and, for any u, u′ ∈ IBa(ū(t)),

|gτ,t (u) − gτ,t (u
′)| = |H̄u(τ, u) − H̄u(τ, u

′) − H̄u(t, u) + H̄u(t, u
′)|

≤
∫ 1

0
|H̄uu(τ, u

′ + s(u − u′)) − H̄uu(t, u
′ + s(u − u′))|ds |u − u′|

≤ Lγt |u − u′|.
Set

κ ′
t = 2κ/(1 − κLγt ), βt = μt = Lγt .

According to the inequality αt < a/2, the inequalities in (15), and the definitions of κ ′
t , αt ,

βt , the following inequalities are fulfilled (for convenience we skip the subscripts t for a
moment):

μ > 0, κμ < 1, κ ′ > κ/(1 − κμ), α ≤ a/2, 2μα + 2β ≤ b, 2κ ′β ≤ α. (17)

Now, we apply Theorem 1. For short, denote Gt(u) := H̄u(t, u)+NU(u). In our context
all assumptions of the last theorem are satisfied with g = gτ,t . Thus we obtain that the
mapping

IBβt (0) � z �→ (gτ,t + Gt)
−1(z) ∩ IBαt (ū(t)) = (Gτ )

−1(z) ∩ IBαt (ū(t))

is Lipschitz continuous with Lipschitz constant κ ′
t = 2κ/(1 − κLγt ) ≤ 4κ (see the first

inequality in (15)). In particular, there exists a unique v ∈ IBαt (ū(t)) such that 0 ∈ Gτ (v).
Since τ ∈ [t − γt , t + γt ] ∩ [0, T ] and v ∈ IBαt (ū(t)), we also have that (τ, v) ∈ O. Due
to isolatedness condition, we obtain that v = ū(τ ). From (16), we obtain that gτ,t (ū(t)) ∈
IBβt (0). Thus

ū(t) = (gτ,t + Gt)
−1 (

gτ,t (ū(t))
) ∩ IBα(ū(t)).

Since ū(τ ) = (gτ,t + Gt)
−1(0) ∩ IBα(ū(t)), using (16), we get that

|ū(t) − ū(τ )| ≤ κ ′|gτ,t (ū(t))| ≤ 4κL|t − τ |.
Summarizing, we obtain that for every t ∈ [0, T ] there exists a neighborhood (t − γt , t +
γt ) ∩ [0, T ] in [0, T ] in which ū is Lipschitz continuous with the same constant 4κL. This
implies that ū is Lipschitz continuous with the same constant in the whole interval [0, T ].

The second claim of the theorem follows from Remark 3 concerning κ .

The example displayed in Remark 9 in [5] demonstrates that the isolatedness assumption
(14) is essential for the Lipschitz continuity of the optimal control shown in Theorem 3. In
this example h = (u2 − 1)2, g = 0, f = 0, U = R, T = 1. Here, for each measurable set
� ⊂ [0, 1] the function defined as u(t) = −1 for t ∈ � and u(t) = 1 for t ∈ [0, 1] \ �

is an optimal control, and the coercivity condition is satisfied. However, the isolatedness
condition is satisfied only if the measure of � is either zero or 1. In these two cases the
optimal control is Lipschitz continuous.

5 Lipschitz Continuous Optimal Feedback Control

In this section, we prove the existence of a Lipschitz continuous locally optimal feedback
control for problem (1)–(2). For this purpose we embed the problem into a family of prob-
lems by replacing the initial time 0 with any τ ∈ [0, T ] and the initial condition x(0) = x0
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with x(τ) = ξ ∈ R
n. Denote this new family of problems by P(τ, ξ ), so that P(0, x0) is (1)–

(2). Also, denote by J (τ, ξ ; u) the value of the objective function of P(τ, ξ ) for a control
u ∈ U being defined as

J (τ, ξ ; u) := g(x(T )) +
∫ T

τ

h(t, x(t), u(t))dt,

where x is the solution of the initial-value problem

ẋ(t) = f (t, x(t), u(t)) for a.e. t ∈ [τ, T ], x(τ ) = ξ . (18)

To set the stage, we give first the following definition which recasts the usual way a
locally optimal feedback control is understood. Recall that (x̄, ū) is a locally unique solution
of problem (1)–(2).

Definition 1 The function u∗ : [0, T ] × R
n → U is said to be a locally optimal feedback

control around the reference solution pair (x̄, ū) if there exist positive numbers ε0 and ā,
and a set  ⊂ [0, T ] × R

n such that

(i) gph(x̄) + {0} × IBε0(0) ⊂ ;
(ii) for every (τ, ξ) ∈  the equation

ẋ(t) = f (t, x(t), u∗(t, x(t))), x(τ ) = ξ, (19)

has a unique absolutely continuous solution x̂[τ, ξ ] on [τ, T ] which satisfies
gph(x̂[τ, ξ ]) ⊂ ;

(iii) the function û[τ, ξ ](·) := u∗(·, x̂[τ, ξ ](·)) is measurable, bounded, and satisfies
‖û[τ, ξ ] − ū‖∞ ≤ ā, and J (τ, ξ ; û[τ, ξ ]) ≤ J (τ, ξ ; u), where u is any admissible
control on [τ, T ] with ‖u − ū‖∞ ≤ ā for which the corresponding solution x of (19)
exists on [τ, T ] and satisfies gph(x) ⊂ ;

(iv) u∗(·, x̄(·)) = ū(·).

The main result of this section follows.

Theorem 4 Let the coercivity condition (6) and the isolatedness condition (14) hold. Then,
there exists a locally optimal feedback control u∗ : [0, T ] × R

n → U around (x̄, ū) which
is Lipschitz continuous on the set  appearing (together with the positive numbers ε0 and
ā) in Definition 1.

Let us first sketch the idea of the proof. First, we prove that for ξ close to x̄(τ ) a
unique solution (x̄[τ, ξ ], ū[τ, ξ ]) exists and it is close to the restriction of (x̄, ū) to [τ, T ];
moreover, ū[τ, ξ ] depends in a Lipschitz way on ξ (in the space L∞). Then, we show that
ū[τ, ξ ] is Lipschitz continuous.

For any τ ∈ [0, T ), we define the spaces

Yτ = W 1,∞ × L∞ × W 1,∞, Zτ = L∞ × R
n × L∞ × R

n × L∞,

where the time interval for these functional spaces is [τ, T ]. It is convenient to define the
norm in Yτ as ‖(x, u, λ)‖ := max{‖x‖1,∞, ‖u‖∞, ‖λ‖1,∞}. For any fixed τ ∈ [0, T ), any
(locally) optimal solution-multiplier triple y := (x, u, λ) ∈ Yτ for P(τ, x̄(τ )) satisfies the
inclusion

Fτ (y) + Gτ (y) � 0, (20)
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where Fτ : Yτ → Zτ and Gτ : Yτ ⇒ Zτ are defined as

Fτ (y) =

⎛
⎜⎜⎜⎜⎝

−ẋ + f (·, x, u)

x(τ ) − x̄(τ )

λ̇ + Hx(·, x, u, λ)

λ(T ) − gx(x(T ))

Hu(·, x, u, λ)

⎞
⎟⎟⎟⎟⎠ , Gτ (y) =

⎛
⎜⎜⎜⎜⎝

0
0
0
0

N∞
U (u)

⎞
⎟⎟⎟⎟⎠ .

Here
N∞

U (u) := {v ∈ L∞ : v(t) ∈ NU(u(t)) for a.e. t ∈ [τ, T ]}.
By using the superscript ∞ in the notation of the latter set we emphasize that the cone
N∞

U (u) includes only a part of the normal cone NU (u) which is a subset of the dual space
of L∞; note that the dependence on τ is not indicated.

Proposition 1 Let the coercivity condition (6) hold. Then, the mapping Fτ +Gτ is strongly
metrically regular at the restriction of ȳ := (x̄, ū, λ̄) to [τ, T ] (denoted in the same way) for
0. Moreover, the constants of strong regularity, call them κ̄ , ā, b̄, can be chosen independent
of τ .

Proof The strong metric regularity of the mapping Fτ follows from [5, Theorem 5], with the
only difference that in [5] there is no terminal term in the cost functional and the functions h

and f do not depend on time t . As is well known, under the smoothness conditions imposed
the problem with a terminal cost can be transformed into an equivalent problem without a
terminal cost. In addition, the time-dependent problem is handled in exactly the same way as
the time-invariant; thus, the difference is basically formal. For reader’s convenience, below
we outline the proof by highlighting the main steps and utilizing Theorem 1 as a shortcut.

First, observe that the coercivity condition (6) is fulfilled for problem P(τ, x̄(τ )) with the
same constant ρ for all τ . To show this, it is enough to take w(t) = 0 on [0, τ ) in (6). The
next step is to linearize the generalized (20) at ȳ = (x̄, ū, λ̄), obtaining

Fτ (ȳ) + Aτ (y − ȳ) + Gτ (y) � 0, (21)

where

Aτ (y) =

⎛
⎜⎜⎜⎜⎝

−ẋ + Ax + Bu

x(τ) − x̄(τ )

λ̇ + Qx + Su

λ(T ) − ḡxxx(T )

ST x + Ru

⎞
⎟⎟⎟⎟⎠ .

The strong regularity of the mapping appearing in the linearization (21), say with constants
κ , a, b independent of τ is established in [7, Lemma 3] (with the caveat concerning the
terminal cost and the dependence on t). Consider the function

gτ (y) = −Fτ (y) + Fτ (ȳ) + Aτ (y − ȳ).

Then, gτ (ȳ) = 0. SinceAτ is the strict derivative (in L∞) of Fτ at ȳ, the Lipschitz modulus
of gτ at ȳ is zero. Thus, in the notation of Theorem 1, taking α sufficiently small one can
make μ arbitrarily close to zero; furthermore, κ ′ and β could be chosen accordingly to
satisfy (17). It remains to put k̄ = k′, ā = α, b̄ = β and to observe that these constants are
independent of τ .

As a consequence of the last proposition, for any ξ ∈ IBb̄(x̄(τ )) the inclusion Fτ (y) +
Gτ (y) + ζ � 0 with ζ = (0,−ξ, 0, 0, 0) has a unique solution (x̄[τ, ξ ], ū[τ, ξ ], λ̄[τ, ξ ]) in
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IBā((x̄, ū, λ̄)) and it is Lipschitz continuous with respect to ξ ∈ IBb̄(x̄(τ )) with Lipschitz
constant κ̄ in the norms of Rn and Yτ .

Clearly, the constant b̄ can be decreased, if necessary, without affecting the strong reg-
ularity property. Then, we may assume that b̄ > 0 is chosen so small that the coercivity
assumption (6) adapted to problem P(τ, ξ ) with ξ ∈ IBb̄(x̄(τ )) holds with a constant ρ/2
(instead of ρ). Here and further “adapted” means that the matrices A, B, Q, R, S are cal-
culated along (x̄[τ, ξ ], ū[τ, ξ ], λ̄[τ, ξ ]) instead of (x̄, ū, λ̄) and the integration in (6) is on
[τ, T ]. Since under the coercivity assumption, the necessary optimality condition (3) is also
sufficient (for local optimality), we obtain the following proposition.

Proposition 2 Let the coercivity condition and isolatedness condition hold. Then, for any
ξ ∈ IBb̄(x̄(τ )), the pair (x̄[τ, ξ ], ū[τ, ξ ]) defined in the second to last paragraph is the
unique locally optimal solution of problem P(τ, ξ ), in the set IBā((x̄, ū)). Moreover, the
function IBb̄(x̄(τ )) � ξ �→ ū[τ, ξ ] is Lipschitz continuous in the norm of L∞ with Lipschitz
constant κ̄ .

It is important to note that assuming b̄ small enough we may guarantee that Remark 1
is still valid with e0, d0 and d replaced with e0/2, d0/2 and d/2, respectively, and for the
interval [τ, T ] and the function ū[τ, ξ ], ξ ∈ IBb̄(x̄(τ )), instead of [0, T ] and ū. The constant
L remains the same.

As already mentioned, the coercivity assumption, adapted to problem P(τ, ξ ), would hold
(with ρ/2 instead of ρ) provided that ξ ∈ IBb̄(x̄(τ )). According to Lemma 4, an arbitrary
redefinition of ū[τ, ξ ] on a set of measure zero which satisfies ū[τ, ξ ](t) ∈ V[τ,T ](ū[τ, ξ ]; t)

for every t ∈ [τ, T ] (and such exists due to Corollary 1) fulfills the conditions that the
matrix R(t) satisfies (7), and ȳ[τ, ξ ] satisfies (9) for every t ∈ [τ, T ], all adapted to problem
P(τ, ξ ). Moreover, according to Lemma 2, ū[τ, ξ ] can be assumed to satisfy |ū[τ, ξ ](t) −
ū(t)| ≤ ‖ū[τ, ξ ] − ū‖∞ for every t ∈ [τ, T ].

Lemma 5 Let the coercivity condition and the isolatedness condition hold. Then, there
exists a number ε ∈ (0, b̄] such that for every τ ∈ [0, T ) and ξ ∈ IBε(x̄(τ )) the control
ū[τ, ξ ] satisfies the isolatedness condition (on [τ, T ]), namely there exists a (relatively)
open setO ⊂ [τ, T ] × R

m such that

{(t, u) ∈ [τ, T ] × R
m : Hu(t, x̄[τ, ξ ](t), u, λ̄[τ, ξ ](t)) + NU(u) � 0} ∩ O

= gph(ū[τ, ξ ]). (22)

Proof Let us take ε > 0 so small that

ε ≤ b̄, L
(
2κ̄ + L̄ + 1

)
ε < ρ, (23)

where L̄ is the Lipschitz constant of ū (see Theorem 3). For arbitrarily fixed τ ∈ [0, T )

and ξ ∈ IBε(x̄(τ )) denote (for short) x̃(t) = x̄[τ, ξ ](t), ũ = ū[τ, ξ ] redefined as described
before the statement of the lemma, λ̃(t) = λ̄[τ, ξ ](t) and ỹ = (x̃, ũ, λ̃). Also denote R̃(t) =
Huu(t, ỹ(t)), H̃u(t, u) = Hu(t, x̃(t), u, λ̃(t)). Then, due to the first inequality in (23) and
the redefinition of ũ, we know that for every t ∈ [τ, T ]

|ũ(t) − ū(t)| ≤ ‖ũ − ū‖∞, H̃u(t, ũ(t)) + NU(ũ(t)) � 0, (24)

w�R̃(t)w ≥ ρ

2
|w|2 ∀ w ∈ U − U . (25)
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Let us define

O =
(
gph(ũ) + (−ε, ε) × ◦

IBε(0)

)
∩ ([τ, T ) × R

m),

which is relatively open in [τ, T ] × R
m. We shall prove that the claim of the lemma holds

with this set O.
Note that the right side of (22) is contained in the left side; thus, it is sufficient to prove

the opposite inclusion. Targeting a contradiction, let us assume that there exists a point

(t0, u0) ∈ {(t, u) ∈ [τ, T ] × R
m : H̃u(t, u) + NU(u) � 0} ∩ O (26)

which is not in gph(ũ). Then, ũ(t0) �= u0. From (26) and the second relation in (24), we
have

H̃u(t0, u0) + NU(u0) � 0, H̃u(t0, ũ(t0)) + NU(ũ(t0)) � 0.

From here

H̃u(t0, u0)(ũ(t0) − u0) ≥ 0, H̃u(t0, ũ(t0))(u0 − ũ(t0)) ≥ 0,

which implies
(H̃u(t0, u0) − H̃u(t0, ũ(t0)))(u0 − ũ(t0)) ≤ 0.

Then, using (25) (notice that u0 ∈ U , since otherwise NU(u0) = ∅), we obtain
0 ≥

(
H̃u(t0, u0) − H̃u(t0, ũ(t0))

)
(u0 − ũ(t0))

=
∫ 1

0

d

ds
H̃u(t0, ũ(t0) + s(u0 − ũ(t0)))ds (u0 − ũ(t0))

=
∫ 1

0
(u0 − ũ(t0))

�H̃uu(t0, ũ(t0) + s(u0 − ũ(t0)))(u0 − ũ(t0))ds

≥
∫ 1

0
(u0 − ũ(t0))

�R̃(t0)(u0 − ũ(t0))
�ds −

∫ 1

0
sL|u0 − ũ(t0)|3ds

≥ ρ

2
|u0 − ũ(t0)|2 − L

2
|u0 − ũ(t0)|3.

Hence,
ρ ≤ L|ũ(t0) − u0|.

Due to the inclusion (t0, u0) ∈ O, there exists (t1, u1) ∈ gph(ũ) such that |t1 − t0| ≤ ε,
|u1 − u0| ≤ ε. Then, continuing the inequality (26), we obtain

ρ ≤ L (|ũ(t0) − ū(t0)| + |ū(t0) − ū(t1)| + |ū(t1) − ũ(t1)| + |ũ(t1) − u0|)
≤ L

(‖ũ − ū‖∞ + L̄|t0 − t1| + ‖ũ − ū‖∞ + ε
) ≤ L

(
2κ̄ + L̄ + 1

)
ε.

This last inequality contradicts (23). Hence, (22) holds.

Having proved that the isolatedness condition is also fulfilled for problem P(τ, ξ ), we
can apply Theorem 3 to this problem and obtain that the (locally) optimal control ū[τ, ξ ] is
Lipschitz continuous. The Lipschitz constant, L̄, depends on the problem only through the
constant ρ (now ρ/2) and the constant L, therefore can be chosen independent of τ and ξ ,
provided that |ξ − x̄(τ )| ≤ ε, where ε > 0 is sufficiently small (independent of τ ).

Proof of Theorem 4 Let the number ε ∈ (0, b̄] be the one from Lemma 5. There exists a
number ε0 ∈ (0, ε] such that for every τ ∈ [0, T ] and ξ ∈ IBε0(x̄(τ )) the corresponding
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(x̄[τ, ξ ], ū[τ, ξ ]) exists on [τ, T ] and satisfies, |x̄[τ, ξ ](t) − x̄(t)| ≤ ε for every t ∈
[τ, T ], and ‖ū[τ, ξ ] − ū‖∞ < ā. Such an ε0 exists because the mapping IBb̄ � ξ �→
(x̄[τ, ξ ], ū[τ, ξ)] is Lipschitz continuous in W 1,∞ × L∞ with constant κ̄ .

Define the set

 = {x̄[τ, ξ ](t) : τ ∈ [0, T ], ξ ∈ IBε0(x̄(τ )), t ∈ [τ, T ]}. (27)

Clearly, gph(x̄) + {0} × IBε0(0) ⊂ . For τ ∈ [0, T ] denote
τ := {ξ : (τ, ξ) ∈ }.

Since for every τ ∈ [0, T ] we have τ ⊂ Bε(x̄(τ )), the function τ � ξ �→ ū[τ, ξ ] is Lip-
schitz continuous with Lipschitz constant κ̄ . Moreover, each of these functions ū[τ, ξ ] is
Lipschitz continuous on [τ, T ] with Lipschitz constant L̄. In addition, according to Propo-
sition 2, for every τ ∈ [0, T ) and ξ ∈ τ , the function ū[τ, ξ ] is the unique locally optimal
control for the corresponding problem P(τ, ξ) in the set IBā(ū).

Now, define feedback control mapping x �→ u∗(·, x) as

u∗(t, x) := ū[t, x](t) for (t, x) ∈ . (28)

The values ū[t, x](t) are well defined since ū[t, x] is a (Lipschitz) continuous function.
Clearly, all requirements of Definition 1 are satisfied; the last one following from the
identity ū[t, x̄(t)] = ū(t).

Let us consider two arbitrary pairs (τ, ξ), (s, η) ∈ . Due to the Dynamic Programming
Principle, for every s ≥ τ , τ, s ∈ [0, T ) and every t ∈ [s, T ], we have

ū[τ, ξ ](t) = ū[s, x̄[τ, ξ ](s)](t).
Then,

|u∗(τ, ξ) − u∗(s, η)| = |ū[τ, ξ ](τ ) − ū[s, η](s)|
≤ |ū[τ, ξ ](τ ) − ū[τ, ξ ](s)| + |ū[τ, ξ ](s) − ū[s, η](s)|
≤ L̄|s − τ | + |ū[s, x̄[τ, ξ ](s)](s) − ū[s, η](s)|
≤ L̄|s − τ | + κ̄|x̄[τ, ξ ](s) − η|
≤ L̄|s − τ | + κ̄ (|x̄[τ, ξ ](s) − ξ | + |ξ − η|)
≤ L̄|s − τ | + κ̄ (M|s − τ | + |ξ − η|) ,

where M is an upper bound of |f (t, x, u)| in the set � defined in Remark 1. This completes
the proof of Theorem 4.

Remark 4 The last part of the proof and the uniqueness claim in Proposition 2 imply that
the function û[τ, ξ ] appearing in Definition 1 is the unique locally optimal control for in
problem P(τ, ξ) in the set IBā(ū).

6 Regularity of the Value Function

In this section, we show that the existence of a Lipschitz continuous optimal feedback estab-
lished in Theorem 4 implies certain smoothness properties of the value function. In the
preceding sections we assume only local optimality at the reference point, see Definition 1.
In line with that assumption, we introduce the following definition:
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Definition 2 The function V : [0, T ] × R
n → R is said to be a local value function of

problem (1)–(2) around a reference admissible pair (x̄, ū) if there exist positive numbers ε0
and ā, and a set  ⊂ [0, T ] × R

n such that gph(x̄) + {0} × IBε0(0) ⊂  and for every
(τ, ξ) ∈  one has

V (τ, ξ) = inf
u

J (τ, ξ ; u),

where the infimum of the objective function J (τ, ξ ; u) in problem P(τ, ξ ) is taken over all
admissible pairs (x, u) for which ‖u − ū‖∞ ≤ ā, (18) has a unique solution x on [τ, T ],
and gph(x) ⊂ .

By this definition, the local value function, with a set  and a neighborhood IBā(ū),
is finite if for every (τ, ξ) ∈  there exists at least one admissible pair (x, u) satisfying
‖u − ū‖∞ ≤ ā and gph(x) ∈ . Clearly, in that case (x̄, ū) is a locally optimal solution.

As in Section 5, we denote τ := {ξ : (τ, ξ) ∈ }. Thus, the condition gph(x̄) +
{0} × IBε0(0) ⊂  in Definition 2 means that IBε0(x̄(t)) ⊂ t for every t ∈ [0, T ]. We also

denote
◦
 = {(τ, ξ) : τ ∈ [0, T ], ξ ∈ int(τ )}.

Theorem 5 Let the coercivity condition and the isolatedness condition hold. Then, problem
(1)–(2) has a (finite) local value function V around (x̄, ū) (with a set  and parameters ε0

and ā); moreover V (τ, ·) is differentiable with respect to ξ whenever (τ, ξ) ∈ ◦
 and the

derivative Vξ is Lipschitz continuous on
◦
.

Proof The proof is routine, in principle, but we present it in full, because we deal here with
a local value function, which requires some attention to detail. We will prove the theorem
with , ε0 and ā as in Theorem 4. Then, there is a locally optimal Lipschitz continuous feed-
back control u∗ in the sense of Definition 1, with the corresponding pairs (x̂[τ, ξ ], û(τ, ξ ]).
According to this definition, we have

V (τ, ξ) = g(x̂[τ, ξ ](T )) +
∫ T

τ

h(s, x̂[τ, ξ ](s), û[τ, ξ ](s))ds. (29)

First, we prove the following claim.

Claim A: for every (τ, ξ0) ∈ ◦
 there exists a number δ > 0 such that for every ξ, ξ ′ ∈

IBδ(ξ0) one has ‖û[τ, ξ ] − ū‖∞ ≤ ā and the initial value problem

ẋ(t) = f (t, x(t), û[τ, ξ ](t)), x(τ ) = ξ ′, (30)

has a unique solution xξ,ξ ′
on [τ, T ] and gph(xξ,ξ ′

) ⊂ . Note that xξ,ξ = x̂[τ, ξ ].
We recall (see Definition 1) that x̂[τ, ξ ] is the solution of (18) with control

u∗(t, x̂[τ, ξ ](t)), where u∗ is defined in (28). Since x �→ u∗(·, x) is Lipschitz continuous,

we obtain by a standard argument that for any (τ, ξ0) ∈ ◦
 there is a constant δ0 ∈ (0, ā/L̄]

such that IBδ0(x̂[τ, ξ0](t)) ⊂ t for every t ∈ [τ, T ]. Indeed, due to the Lipschitz con-
tinuity of the right-hand side of (18) every solution starting backwards from a point in a
sufficiently small neighborhood of x̂[τ, ξ0](t) at time t > τ takes values only in IBε0(ξ0) at
time τ . From the definition of  in (27), the graph of each such trajectory in contained in 

and ‖û[τ, ξ ] − ū‖∞ ≤ ā. Then, Claim A follows from (30) thanks to the Lipschitz continu-
ity of û[τ, ξ ] in ξ (Proposition 2). The proof of that last assertion, e.g., by contradiction, is
straightforward
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In addition, we have the representation

xξ,ξ ′
(t) − x̂[τ, ξ ](t) = �[τ, ξ ](t, τ )(ξ ′ − ξ) + o(|ξ ′ − ξ |), t ∈ [τ, T ],

where �[τ, ξ ](t, s) is the fundamental matrix solution of the linearization of the differential
equation in (30) normalized at t = s, that is,

∂

∂t
�(t, s) = fx(t, x̄[τ, ξ ](t), ū[τ, ξ ](t))�(t, s), �(s, s) = the identity.

In particular, there exists a constant C such that for every ξ, ξ ′ ∈ IBδ(ξ0) one has∥∥∥xξ,ξ ′ − xξ,ξ
∥∥∥∞ =

∥∥∥xξ,ξ ′ − x̂[τ, ξ ]
∥∥∥∞ ≤ C|ξ ′ − ξ |. (31)

From Definition 2 and Claim A, we have that

V (τ, ξ ′) ≤ g
(
xξ,ξ ′

(T )
)

+
∫ T

τ̄

h
(
s, x̂ξ,ξ ′

(s), û[τ, ξ ](s)
)
ds,

Utilizing this last inequality in (29), we obtain

V (τ, ξ ′) − V (τ, ξ) ≤ g
(
xξ,ξ ′

(T )
)

− g(x̂[τ, ξ ](T ))

+
∫ T

τ

[
h(s, xξ,ξ ′

(s), û[τ, ξ ](s)) − h(s, x̂[τ, ξ ](s), û[τ, ξ ](s))
]
ds

= gx

(
x̃T

)
�[τ, ξ ](T , τ )(ξ ′ − ξ)

+
∫ T

τ

hx(s, x̃(s), û[τ, ξ ](s))�[τ, ξ ](s, τ )(ξ ′ − ξ)ds + o(|ξ ′ − ξ |),

where x̃T ∈ co
{
xξ,ξ ′

(T ), x̂[τ, ξ ](T )
}
and x̃(·) is a measurable selection of the set-valued

map s �→ co{xξ,ξ ′
(s), x̂[τ, ξ ](s)}. Due to the Lipschitz continuity of gx and hx , and (31),

we obtain

V (τ, ξ ′) − V (τ, ξ) ≤ [gx(x̂[τ, ξ ](T ))�[τ, ξ ](T , τ )

+
∫ T

τ

hx(s, x̂[τ, ξ ](s), û[τ, ξ ](s))�[τ, ξ ](s, τ )ds](ξ ′ − ξ) + o(|ξ ′ − ξ |).

It is well-known that the expression in the brackets equals (λ̂[τ, ξ ](τ ))�, where, as before,
λ̂[τ, ξ ] is the solution of the adjoint equation (9) for the reference pair (x̂[τ, ξ ], û[τ, ξ ]) and
end-point condition λ̂(T ) = gx(x̂[τ, ξ ](T )). Hence,

V (τ, ξ ′) − V (τ, ξ) ≤ 〈λ̂[τ, ξ ](τ ), (ξ ′ − ξ)〉 + o(|ξ ′ − ξ |). (32)

Using this inequality with ξ ′ = ξ0 and taking into account the Lipschitz continuity of λ̂[τ, ξ ]
with respect to ξ , we obtain

V (τ, ξ0) − V (τ, ξ) ≤ 〈λ̂[τ, ξ ](τ ), ξ0 − ξ〉 + o(|ξ0 − ξ |)
= 〈λ̂[τ, ξ0](τ ), ξ0 − ξ〉 + o(|ξ0 − ξ |).

Using (32) with ξ ′ := ξ and ξ = ξ0, we obtain

V (τ, ξ) − V (τ, ξ0) ≤ 〈λ̂[τ, ξ0](τ ), ξ − ξ0〉 + o(|ξ − ξ0|).
Combining the last two inequalities, we obtain that V is differentiable with respect to ξ at
ξ0; furthermore, Vξ (τ, ξ0) = λ̂[τ, ξ0](τ ). The Lipschitz continuity of Vξ follows from the
last expression and the Lipschitz continuity of the function (τ, ξ) �→ λ̂[τ, ξ0](τ ).
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Observe that , ε0 and ā in this theorem can be taken to be those in the proof of Theo-
rem 4. Also, observe that at the end of the last proof we obtained the equality Vξ (τ, ξ0) =
λ̂[τ, ξ0](τ ), which, as is well known, holds under various sets of assumptions. Moreover,
based on Theorem 5, one can verify that if ū is a globally optimal solution, then the value
function V is a classical solution of the corresponding Hamilton-Jacobi-Bellman equation
(see, e.g., [1, Chapter III.3]).
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