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Abstract

Probabilistic modeling is a type of statistical analysis that focuses on the inherent
randomness of natural systems, and which avoids taking any summary value�
such as an expected value�prior to the �nal results, and even then the results are
often listed alongside a measure of probability or certainty. Clearly, all statistical
methods involve some measure of certainty, but probabilistic modeling emphasizes
the uncertainty of all quantities, including intermediate values and data points.

High-dimensional data consist of relatively few measurements of a large num-
ber of quantities, and tools which measure thousands of quantities simultaneously,
resulting in high-dimensional data, are called �high-throughput�; a popular exam-
ple in bioinformatics is a microarray experiment, which may comprise fewer than
twenty measurements of each of thousands of genes. This often creates under-
determined systems, depending on the statistical model chosen, in which there
could be many possible parameter solutions that are able to produce the same
result. There are ways to address this under-determinedness, among which prob-
abilistic modeling has clear advantages, both theoretically and practically.

Analysis of high-dimensional data can bene�t from probabilistic modeling pri-
marily because the consideration of inherent randomness allows a probabilistic
model to consider not only the existence of one or many parameter solutions to
the system, but also consider the probability or likelihood of a particular solu-
tion. For instance, if a data set contains replicates, the reproducibility (a type
of inherent randomness) can be exploited to prefer the most reproducible good
solution. The biological sciences contain many such situations, in which we have
relatively few measurements of many quantities, and thus provide the opportu-
nity to demonstrate the usefulness of probabilistic modeling, while solving some
important biological problems.

This work presents probabilistic modeling as an approach to data-oriented sci-
enti�c problems, including both knowledge-based model design as well as param-
eter inference via two popular inference algorithms: variational Bayesian learning
and Markov Chain Monte Carlo (MCMC) sampling. The probabilistic framework
is then applied to three problem classes in the biological sciences: gene-gene inter-
action, microRNA-gene targeting, and the prediction and comparison of athletic
performances. In all three cases, the inference and/or prediction proved valuable
in both understanding the underlying system as well as indicating likely candidates
for further study�perhaps via more sensitive individual experiments.

Overall, this work presents the methods and illustrative applications that de-
tail the concept and process of probabilistic modeling of high-dimensional data,
allowing interested researchers to follow similar steps in their own work to create
and derive insight from probabilistic models of biological systems.



Kurzfassung

Probabilistic Modeling ist einer Form der statistischen Analyse, die auf die in-
herenten Zufälligkeit von natürlichen Systemen fokussiert ist, und quantitia-
tive Zusammenfassungen�zum Beispiel Mittelwertbildung�vermeidet, bis zum
letzten Schritt der Analyse, und selbst dann bleibt eine Unsicherheit oder
Wahrscheinlichkeit. Natürlich spielt Wahrscheinlichkeit eine Rolle in jeder statis-
tischen Analyse, aber Probabilistic Modeling betont, dass wir immer eine Menge
Unsicherheit haben, mit jedem Wert.

High-dimensional Data (hoch-dimensionale Daten) bestehen aus relativ wenige
Datenpunkten für eine groÿe Anzahl von Variablen. Messinstrumente, die
tausende Werte gleichzeitig messen können und dadurch hoch-dimensionale Daten
produzieren, wurden dann high-throughput genannt. In der Bioinformatik, ein
Beispiel dafür wäre ein Microarray Experiment, bei dem man typischerweise
weniger als zwanzig Messungen durchführt, aber jede Messung besteht aus
tausenden Genen. Die nachfolgende Analyse ist also oft unterbestimmt, abhängig
von den verwendeten Methoden, worin es viele mögliche Losungen für die Sys-
teme gibt, die alle die gleiche Ergebnisse oder Daten liefern können. Probabilistic
Modeling hat verschiedene theoretische und praktische Vorteile, die die folgende
Probleme zu überwinden helfen.

Die Analyse von hoch-dimensionalen Daten ist eine gute Anwendung für Prob-
abilistic Modeling aufgrund seiner Berücksichtigung von Zufälligkeit und lässt ein
Modell alle mögliche Losungen beachten und dann nach Wahrscheinlichkeit bew-
erten, um genauer zu sagen, welche Lösungen besser passen.

Diese Arbeit präsentiert Probabilistic Modeling als Betrachtungsweise für
datenorientierte wissenschaftliche Probleme; diese inkludiert nämlich die Entwick-
lung von Modellen, die auf Fachwissen basiert sind, und Parameterinferenz durch
bekannte Methoden: variational Bayesian Learning und Markov Chain Monte
Carlo (MCMC) Sampling. Diese Methoden werden dann in drei biologische Prob-
lemklassen angewendet: Gene-Gene Interaktionen, microRNA-Gene Targeting,
und das Prognostizieren und Vergleichen von Leistungen in Leichtathletik. In
allen drei Fällen, erweist sich die probabilistische Inferenz oder Prognose als be-
deutend, in Hinblick auf das Verstehen der natürlichen Systeme, von denen die
Daten stammen, und auf das Identi�zieren von Kandidaten für weitere Studien.

Im Allgemeinen beschreibt diese Arbeit probabilistische Methoden und demon-
striert Anwendungen, die das Konzept und Ablauf des Probabilistic Modeling
zeigen. Hoch-dimensionale Daten und Systeme sind ein wissenschaftlicher Bere-
ich, für den diese Betrachtungsweise besonders geeignet ist. Das Ziel ist solche
Methoden für alle interessierten Wissenschaftler erreichbar zu machen.
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Chapter 1

Introduction

1.1 Background

Many great discoveries have been made in recent years due to the ever-increasing
volume and quality of data sets. As we collect and analyze more data, if we
are careful, we will continue to make small improvements in our knowledge of
the world around us. Sometimes, new data from recently developed, increasingly
accurate tools allows us to make a breakthrough discovery, advancing the �eld
signi�cantly. On the other hand, we cannot always rely on improved quantity
and quality of data to be the basis of new discoveries. A good argument can be
made that re-visiting old data with new methods of analysis is as important as
generating newer and better data sets. This may be obvious to many researchers
in mathematical and statistical methods, but is an important point to consider
for the purposes of project planning and funding.

Entire sub-�elds of biology have prospered in recent years based solely on the
idea that quantitative methods need improvement: bioinformatics, computational
biology, biostatistics, etc, to name a few. These �elds have developed in parallel
with�and sometimes because of�advances in biochemistry and bioengineering
that have led to new tests and tools that can measure biological activity more
accurately than ever before. This is great for the related �elds, but to rely heavily
on technological advances would be a mistake.

However, I do not intend simply to promote data analysis methods to the
exclusion of biotechnological research. But, I do wish to contribute to the idea
that�even while better technology and better, bigger data sets are leading to
huge advances in science�improving analysis methods, particularly by develop-
ing methods speci�c to the problem at hand, can lead to signi�cant advances in
scienti�c knowledge. The sport of auto racing gives a relevant analogy: faster
cars lead to ever-faster lap times, but no matter how fast the cars become, the
skill of the driver determines whether or not the lap times re�ect the improved
capabilities of the car. Some might even say that the skill of the driver becomes
more important as the cars become faster, and certainly the driver will be able to
operate at higher speeds after more experience and familiarity behind the wheel.

Such is the case with the analysis of biological data; as laboratory instruments

1



CHAPTER 1. INTRODUCTION 2

become more re�ned and more sensitive, the analysis of the resulting data requires
more rigor, and bene�ts from methods that are suited speci�cally for the highly
specialized data source. Hence, every data source, every experiment, and every
quantitative, biological question that needs to be answered can bene�t from a
data analysis method designed speci�cally for itself. Only through familiarity,
rigor, and experience can such methods be developed to their fullest potential.

Therefore, this work describes a process by which quantitative methods devel-
oped from a thorough consideration of the biological system at hand, as well as an
acute awareness of the questions that the project intends to answer, can lead to
conclusions that are more usable than those generated by more generic statistical
methods.

The following sections begin to describe, in more detail, problems that arise in
everyday analysis of biological data sets, including properties and limitations of
the data, obstacles and di�culties inherent in some analysis tasks, and potential
misunderstandings of both the initial experimental question as well as the �nal
results. This work then gives some ways to address these problems, as well as a
series of speci�c cases in which tailor-made analysis methods�in particular, using
probabilistic modeling and latent variable inference�have outperformed existing,
less specialized methods.

1.2 High-dimensional biological data

I use the term �high-dimensional data� to mean the class of data sets for which
the number of parameters or variables we typically estimate is far greater than the
number of data samples. For instance, a typical microarray experiment measures
the expression of thousands of genes under ten or fewer experimental conditions;
when such a large number of things are measured simultaneously, this is often
called �high-throughput�. For these data sets, �tting most common models of gene
activity or interaction would require estimating�at a minimum�one parameter
per gene, and thus thousands of parameters must be estimated from ten or fewer
data points for each gene. Even a simple analysis of variance (ANOVA) model
whose purpose is to detect up- or down-regulation of genes under certain conditions
requires a statistical test�and thus a parameter estimation�for each gene under
consideration.

In addition to the dimensionality being far greater than the number of samples,
in the biological sciences, the number of samples taken is usually also signi�cantly
smaller than the number of samples it is possible to take. For instance, in most
microarray experiments, it is theoretically possible to take hundreds of samples
throughout a time course experiment, but due to monetary and time costs, most
experiments include no more than ten or twenty. Contrast this with constant elec-
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tronic monitoring of a chemical process that might occur in larger-scale commer-
cial applications; in this case, sensor data can be collected and analyzed arbitrarily
often.

Within this paper, I address mainly this class of data sets that contain far fewer
samples than presumed model parameters and, in addition, contain signi�cantly
fewer samples than it is possible, in theory, to collect. Both of these distinctions
are important for various reasons, which I outline in the next section.

1.2.1 Challenges of modeling high-dimensional data

When data contain far fewer samples than measurable dimensions, most modeling
tasks include the estimation of parameters in an under-determined system. To
be more speci�c, a system is �under-determined� if the number of facts that we
know about a system is fewer than the number of things we are trying to estimate.
This notion is most commonly applied to linear systems, whenever the number of
equations is fewer than the number of unknown quantities. A speci�c case of this
is a linear gene interaction model, whereby we attempt to infer the interaction
coe�cients (in the style of a continuous Markov model) of thousands of genes
based on a series of ten to twenty time points; assuming that most genes vary
their expression over time, there must be a very large number of possible linear
combinations of gene expression values that can give the same result. This would
be an under-determined system.

Because there can be many possible solutions to an under-determined system,
and because under-determined systems exist in many �elds, including biology,
much work has been done on developing methods that aid the selection of the best
possible, most biologically relevant of those solutions. There is a large number of
such methods�including minimum norm and maximum entropy preference among
possible solutions (a good survey of these appears in Madych [1991])�and I do
not propose to review them all here; however, the vast majority of these methods
attempt to accomplish one of the following goals:

1. to reduce the dimensionality of the data

2. to constrain, regularize, or reduce the dimensionality of the model parameter
space

3. to rank the set of possible solutions based on evidence in their favor

Examples of goal (1) include principal component analysis (PCA, Jolli�e
[2005]), independent component analysis (ICA, Lee [1998]), or clustering of var-
ious types. Goal (2) might be accomplished by a regularization technique such
as Tikhonov regularization (ridge regression), LASSO (least absolute shrinkage
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and selection operator, Tibshirani [1996]) regression, or some heuristic involving
de-activation of less helpful parameters. Lastly, the ranking of solutions as in goal
(3) could be accomplished by a statistical test and accompanying p-value or, as I
demonstrate throughout this paper, the ranking of solutions can be accomplished
via a probabilistic model and the parameter likelihoods that such a model implies,
given the data.

Estimated parameter likelihood distributions can be used in statistical tests
to give direct estimations of the signi�cance of the parameter values themselves.
Thus, we can rank the possible solutions of the system by the signi�cance of their
corresponding parameters. Speci�c methods for accomplishing this are given in the
following sections, but for now su�ce it to say that in the presence of data repli-
cation (i.e. some number of speci�c experimental data points have been repeated)
an estimate of uncertainty can be included in the modeling task. Furthermore,
this measure of uncertainty can propagate through the parameter inference task
so that the signi�cance of parameter estimates is a�ected and the corresponding
solution set can be ranked according to the resulting estimated certainty.

1.2.2 Probabilistic modeling

A probabilistic model is a formalization of the relationships of random variables
to one another in the form of probability distributions which may include con-
ditional relationships between variables. Formally, a probabilistic model may be
indistinguishable from a statistical model; however, I use the term �probabilistic
model� to emphasize two ideals:

1. Parameters are random variables, not unknown �xed values.

2. A parameter estimate consists of an estimated probability distribution, and
not a single value.

Admittedly, there is some redundancy in these ideals, and in fact they can
be summarized in one phrase: every quantity, observed or inferred, is a random
variable. However, separating the ideals as above has some practical use in the
formulation of speci�c probabilistic models.

To clarify the above ideals, let us consider a case where we have a set of sample
data points, and we would like to know whether the samples come from a distri-
bution with mean signi�cantly di�erent from some value, for example zero. Let
us assume that the samples are normally distributed. A (frequentist) statistician
might remark that this is a perfect example of an application of Student's t-test.
In fact, this is what Student's t-test was designed to do. William Sealy Gosset,
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forced to write his statistical articles under a pseudonym by his employer, Guin-
ness brewery, developed the t-test with the explicit purpose of addressing small
samples and the corresponding uncertainty in mean values [Wikipedia 2013].

Speci�cally, for small-sample data sets, it is bene�cial to admit some uncer-
tainty in the value of the sample mean and variance; this is the main scienti�c
advancement of the development of the t-test, and is at least partially in agree-
ment with ideal (1) above. A one-sample t-test assumes that the samples are
normally distributed, with unknown mean as well as an unknown variance that
follows a chi-squared distribution. This contrasts with a Z-test, whose test statis-
tic is assumed to follow a normal distribution, and where the sample variance is
assumed to be the value estimated directly from the sample. Thus, whereas the
null hypothesis of a Z-test is that the samples follow a normal distribution with
known mean and known, estimated variance, the null hypothesis of the t-test is
that the samples come from a normal distribution with known mean and unknown
variance. Because the t-test admits uncertainty in the variance, the corresponding
t-distribution used in the test has heavier tails than the normal distribution of the
Z-test. This admission of uncertainty is in agreement with probabilistic ideal (1)
written above.

So, while a Z-test essentially admits no variance in parameter values (though
uncertainty about the correct value is still present), and a t-test admits uncer-
tainty in the sample variance, it is possible to go even further in this direction.
The purpose of a one-sample t-test or Z-test is to consider two alternatives, the
null hypothesis and an alternative hypothesis, but since the canonical alternative
hypothesis is simply to reject the null hypothesis, very little need be assumed
about what model might be a more appropriate model, if not the null hypothesis
model. A probabilistic model typically does not ask, �guratively, �Does this model
�t?� but instead presents some well-de�ned alternatives and asks, �Which alter-
native �ts best?� Therefore, probabilistic modeling is usually best achieved with
some Bayesian ideals in mind; more detail is presented in the following section.

1.3 Bayesian inference

Bayesian inference can be summed up succinctly with a single equation, Bayes'
Theorem:

P (Θ | D) =
P (D | Θ)P (Θ)

P (D)
(1.1)

which relates the probability densities of two quantities Θ and D. This theorem,
�rst proposed by Thomas Bayes in the 18th century, is now often put to use in
�Bayesian updates�, whereby some prior belief about Θ�denoted P (Θ)�can be
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updated given new information resulting from the outcome D, which was not
present before the prior belief about Θ was constructed. The updating of beliefs
is often touted as the principal bene�t of using Bayesian methods, since the calcu-
lation of updates need not consider all prior data, but only the latest data, which
can save considerable time. However, even when we do not wish to update any
beliefs, Bayes' Theorem can be very useful in determining or comparing the �t of
models to data.

If, in equation (1.1) above, we let Θ be a set of model parameters, and we let
D be the data collected from the system we wish to describe using the model, then
Bayes' Theorem de�nes the concept of a posterior probability : our best estimate
of the distribution of the parameters Θ given the data D.

This approach to estimating model parameters may seem similar to more tra-
ditional, frequentist methods of parameter estimation, most notably maximum
likelihood estimation, which consider the optimization of a function related to
P (D | Θ) as in equation (1.1) above, but there are a couple of important dif-
ferences. First of all, Bayes' Theorem describes a probability distribution of the
parameter values, not just an estimate of the best-�t values. Secondly, by utiliz-
ing a prior distribution of the model parameters in P (Θ), we consider the model
parameters as random variables and not as unobserved �xed values, which is a
perspective that in practice often seems closer to the truth. To illustrate, consider
a task of inferring a day's rainfall based on data from several measuring devices;
the random nature of raindrops falling and small changes in climate between the
locations of the devices creates variances that may be better described by a prob-
ability distribution than a point estimate.

One disadvantage of Bayesian methods is that in order to calculate P (Θ | D),
the posterior probability distribution of the model parameters given the data, we
�rst need P (Θ), P (D), and P (D | Θ). The evidence P (D) does not depend on
the model parameters Θ, so in most cases of estimating Θ we can ignore P (D)
as a constant value that does not a�ect the shape of the posterior probability
distribution even if it does change the scale. The more complex of the other
two required densities, P (D | Θ), which describes the probability of the data
given the model parameters, is usually the more cumbersome to deal with during
estimation. The prior probability density (often written simply �prior�) P (Θ) of
the model parameters can usually be selected in such a way as to simplify the
calculations or to be non-informative, if desired.

The choices of speci�c functions for both P (D | Θ) and P (Θ) are very im-
portant. The choice of P (D | Θ) may be considered to be the model itself�as
it is in frequentist approaches�and thus depends heavily on knowledge or beliefs
about the system that created the data. In many cases, common distributions
such as the normal distribution, binomial distribution, or gamma distribution can
be justi�ed, but in other cases these may not be appropriate. Likewise, the prior
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distribution P (Θ) can also signi�cantly a�ect results. This is often cited in criti-
cism of Bayesian methods, but in fact in most applications it is possible to create
a prior that is �non-informative� or otherwise equivalent to a frequentist method
that does not have an explicit prior distribution. The prior distribution is one
way, along with other aspects of the model design, to use the knowledge that we
have about the system we are measuring.

1.3.1 Prior distributions

As stated above, with respect to Bayes' Theorem in equation (1.1), the probability
density P (Θ) represents the prior beliefs or knowledge about the model parame-
ters, or latent variables, Θ. The goal, then, of Bayesian inference, is typically to
update our beliefs about the distribution of Θ using the data D, represented by
P (Θ | D). Sometimes these prior beliefs come from existing experiments or anal-
yses, sometimes they are merely a guess at what constitutes a reasonable value,
and sometimes we have literally no idea what the values of Θ might actually be.
Each of these cases requires a di�erent approach to construction of priors.

In the case where we have previous analyses giving hard evidence about the
distribution of Θ, we can construct what is usually called a �strong prior�. A strong
prior is intended to impose previous knowledge about Θ into the current analyses;
this can be very useful whenever the new data set D is too small or too incomplete
to derive statistically signi�cant results, and thus the strong prior can be used to
regularize the possibly anomalous new data. If we have no hard evidence about
Θ, but we do have educated guesses about the value of Θ, a weak prior might be
used. For instance, if we suspect that a certain value is usually relatively close to
zero, but we can't say for sure how much it varies, then we might choose a weakly
informative normal prior with mean zero and a high variance. In this case, the
prior is designed to penalize values of Θ that are vastly di�erent from expectations,
but largely treats all reasonable values the same. A non-informative prior, on the
other hand, does not penalize any possible value of Θ; all values are treated the
same. These priors often come in the form of �improper� priors, meaning that
they are not, in fact, probability distributions at all, but often an analytical form
that is the result of taking the limit of a probability distribution as one or more
of its parameters approaches in�nity or zero. For instance, a commonly-used
non-informative prior is a ��at� prior, which assigns the same probability to all
possible values. Though a constant value of 1 is commonly used, this value cannot
represent a true probability density (its unbounded integral is in�nite) but could
be thought of as, say, the limit of a normal distribution as the variance approaches
in�nity, adjusted by an arbitrarily large scaling factor.
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1.3.2 Hyper-priors

Clearly, in some cases, a prior distribution may include some set of parameter val-
ues, chosen as described above. Usually, these parameters of the prior distribution
are referred to as �hyper-priors� since they are one level further abstracted from the
data. It is the goal of selecting priors and hyper-priors that speci�c values chosen
do not meaningfully a�ect the �nal results. In this sense, the actual values of the
hyper-priors should not matter as long as they are within reasonable ranges, as
determined by the context of the experiment itself. Therefore, every probabilistic
modeling task using priors and hyper-priors should conduct a sensitivity analy-
sis, in which, at the very least, the values of the hyper-priors should be varied
throughout a reasonable range in order to make sure that nothing signi�cantly
changes.

1.3.3 Conjugate prior distributions

Sometimes, the prior P (Θ) and the model probability density P (D | Θ) can be
chosen in such a way as to guarantee that the posterior density P (Θ | D) is of
the same family of probability distributions as P (Θ), then P (Θ) and P (D | Θ)
are considered conjugate. This often simpli�es inference tasks, and can make the
involved integrals analytically tractable. Notably, for a Gaussian model density
P (D | Θ), choosing a Gaussian prior over the mean and a gamma prior over the
precision (inverse variance) results in posterior distributions of the same forms.
This is very useful particularly in variational Bayesian inference, described later
in this paper.

1.4 Variable inference algorithms

Once a probabilistic model has been designed, from the priors and hyper-priors
down to the distributions assumed for the data, the canonical probabilistic mod-
eling task is to infer the values of some of the latent variables or parameters
involved. Again referring to Bayes' Theorem in equation (1.1), with latent param-
eter variables Θ and data D, we would like to draw conclusions about some of
those parameters given the data, and the posterior density P (Θ | D) may achieve
this.

Depending on the assumed distributions in the model, P (Θ | D) may be
calculated analytically, for example through appropriate integration techniques.
However, this is often not possible even for relatively simple models; for more
complex probabilistic models, it is almost never possible to evaluate P (Θ | D)
analytically�a necessary integral is intractable�and thus some approximation
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must be made. This is one reason that many people shy away from using Bayesian
methods: the lack of an analytic solution, together with the approximation of a
complex probability distribution (instead a single, best point estimate), can lead
to greatly increased computation times.

Hence, many methods of approximate Bayesian inference have been devel-
oped, each having strengths and weaknesses. There are two popular classes of
such algorithms�among others�to which I will refer as �iterative� and �sam-
pling�. Iterative algorithms, such as variational Bayes (VB), create successively
better approximations to the posterior via some approximating function, whereas
sampling algorithms test the density of P (D | Θ)P (Θ) using many points in the
parameter space of Θ to approximate P (Θ | D). The main advantages of iterative
methods often include guaranteed convergence and well-de�ned posterior distri-
butions, but sampling methods are often a better choice when convergence is not
expected to be a problem (e.g. for known unimodal posteriors) and in models that
include analytically inconvenient distributions that could complicate iterative al-
gorithms. Further information about these algorithms is given in the following
sections.

1.4.1 Variational Bayes

Variational Bayesian methods are a class of iterative algorithms that generate an
analytical approximation to the desired posterior probability such that the ap-
proximation provides a lower bound to the actual marginal likelihood of the data.
That is, the result of variational Bayesian inference is a probability distribution
Q(Θ) over the latent parameter variables Θ that

1. is of a simpler analytical form than P (Θ | D),

2. approximates P (Θ | D) as closely as possible, and

3. gives a marginal likelihood that is a lower bound for the true marginal like-
lihood.

In practice, it is enough to assume that Q is a factorable distribution density
among the variables in Θ. That is,

Q(Θ) = Q1(θ1)Q2(θ2)Q3(θ3) . . . Qn(θn) (1.2)

where the θi are disjoint groups of variables, and the entropy of each Qi(θi)

H(Qi) =

∞∫
−∞

Qi(θi) logQi(θi)dθi (1.3)
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is analytically tractable.
Then, the goal of inference is to �nd such a probability density Q(Θ) that

is as similar to P (Θ | D) as possible. We measure the similarity of these two
distributions using the Kullback-Leibler (KL) divergence [Kullback and Leibler
1951; Winn 2003], given by

KL(Q ‖ P ) =

∫
X

Q(x) log
Q(x)

P (x)
dx (1.4)

where �log� is the natural logarithm. KL(Q ‖ P ) is always non-negative, where
zero indicates that P (x) and Q(x) are identical, and a larger value indicates higher
dissimilarity.

Thus, the task at hand is to �nd the factorable density Q(Θ) as in equa-
tion (1.2) that is as similar as possible�measured by the KL-divergence�to our
desired posterior density P (Θ | D). That is, we wish to �nd Q(Θ) that minimizes

KL(Q ‖ P ) =

∫
Θ

Q(Θ) log
Q(Θ)

P (Θ | D)
dΘ (1.5)

Since we do not know the function P (Θ | D) (that's the goal of these calcula-
tions), we use Bayes' Theorem from equation 1.1 to make the substitution and
simpli�cation

KL(Q ‖ P ) =

∫
Θ

Q(Θ) log
Q(Θ)P (D)

P (D | Θ)P (Θ)
dΘ (1.6)

=

∫
Θ

Q(Θ) log
Q(Θ)

P (D,Θ)
dΘ + logP (D) (1.7)

The �nal term of equation (1.7) does not depend at all on the choice of Q(Θ),
so we can ignore it in the minimization task. Therefore, I will borrow notation
from Winn [2003] and de�ne L(Q) to be the negative of the remaining term of
equation (1.7), as in

L(Q) = −
∫
Θ

Q(Θ) log
Q(Θ)

P (D,Θ)
dΘ (1.8)

=

∫
Θ

Q(Θ) logP (D,Θ)−Q(Θ) logQ(Θ)dΘ (1.9)
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which due to the negation is a quantity we wish to maximize. Now, since Q(Θ) is
factorable as in equation (1.2),

L(Q) =

∫
Θ

∏
i

(
Qi(θi)

)
logP (D,Θ)dΘ−

∑
i

(∫
θi

Qi(θi) logQi(θi)dθi

)
(1.10)

and we can separate out a single factor j as in

L(Q) =

∫
θj

Qj(θj)

(∫
· · ·
∫

θi 6=j

∏
i 6=j

(
Qi(θi)

)
logP (D,Θ)dθi 6=j

)
dθj

−
∫
θj

Q(θj) logQ(θj)dθj −
∑
i 6=j

(∫
θi

Qi(θi) logQi(θi)dθi

)
(1.11)

Now, let us de�ne the density of a distribution Q∗j over the parameters in factor
j:

Q∗j(θj) =
1

Z
exp

(∫
· · ·
∫

θi 6=j

∏
i 6=j

(
Qi(θi)

)
logP (D,Θ)dθi 6=j

)
(1.12)

where Z is the constant that makes this a valid probability distribution. Note
that the exponent here appears in equation (1.11) and is the density of the joint
distribution P (D,Θ) marginalized over all variables in Θ except for θj. More
details on the derivation of Q∗j can be found in Beal [2003]; here, I provide only
con�rmation that it is useful.

Letting the notation H(Qj) indicate the entropy of Qj as in equation (1.3),
and using the de�nition of Q∗j in equation (1.12), we can re-write equation (1.11)
as

L(Q) =

∫
θj

Qj(θj) logQ∗j(θj)dθj − logZ −
∫
θj

Q(θj) logQ(θj)dθj −
∑
i 6=j

H(Qi(θi))

(1.13)

=

∫
θj

[
− Qj(θj) log

Q(θj)

Q∗j(θj)

]
dθj − logZ −

∑
i 6=j

H(Qi(θi)) (1.14)

=−KL(Qj ‖ Q∗j)− logZ −
∑
i 6=j

H(Qi(θi) (1.15)
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As mentioned previously, KL-divergence is non-negative, and it is zero if and only
if the two distributions are identical. Also, the �nal two terms here have nothing
to do with Qj. Therefore, L(Q) is maximized with respect to Qj when Qj = Q∗j ,
and a local optimum Q(Θ) can be found by iteratively updating each of the Qj(θj).

The result of each update step is a factorable probability density whose KL-
divergence with P (Θ | D) is less than the previous iteration, and the factors
of each density are analytically tractable for many applications, often including
hypothesis testing and other subsequent statistical inference tasks.

Variational Bayesian algorithms have a lot in common with the popular
expectation-maximization (EM) algorithm. Both iteratively update individual
(or groups of) parameters or latent variables according to a set of speci�ed, inter-
related probability distributions. The primary di�erence is that the distribution
updates in EM consider only the expectations of the other distributions (e.g. when
updating Qj, we use only the expectation of Qi and not its full density) whereas
variational Bayesian updates consider the other variables' full distributions. This
leads the two algorithms to have very similar results in some applications and
very di�erent results in others, depending very much on the variance and cer-
tainty present in the data.

More detail and examples of variational Bayesian methods and applications
can be found in Beal [2003]; Winn [2003].

1.4.2 Markov chain Monte Carlo sampling

One of the most popular sampling algorithms for latent variable inference is called
Markov chain Monte Carlo (MCMC) sampling; it comes in many speci�c forms,
but all of them include some kind of �random walk� (or similar idea) around the
space of possible latent variable values of Θ. At each point along the random walk,
the probability density of interest, P (Θ | D), or a function proportional to it, is
evaluated, and the densities�or relative densities�can be used to approximate
the posterior distribution.

The primary concern when using any sampling method, including MCMC, is
that a successful approximation requires that the set of samples cover roughly
all of the areas with non-negligible probability density. If, for instance, we had
a bi-modal distribution and we took samples only from the area around one of
the modes but not the other (perhaps we were unaware of that mode), it would
result in a poor approximation. But, a good set of samples that cover the sample
space well directly results in a good approximation for the distribution. Hence,
when approximating a distribution using sampling, most of the hard work and
computational time is used for �nding a good set of samples.

One of the most popular MCMC sampling algorithms is the Metropolis-
Hastings algorithm [Hastings 1970]. In this algorithm, starting from an arbitrary
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point within the variable space, a proposal step is generated randomly from a
proposal distribution, and then that step is either accepted or not based on the
acceptance distribution. Such steps are proposed, possibly accepted, and repeated
with the goal of traversing roughly the entire area of signi�cant probability mass.

For example, a common proposal distribution is a Gaussian distribution with
mean at the current parameter value. Let us say that Q(Θ | Θ0) is the Gaussian
proposal distribution centered on the current sample point Θ0, or

Q(Θ | Θ0) = N (Θ0,Σ) (1.16)

then the ideal choice for the covariance matrix Σ is one that results in proposal
steps that are big enough to traverse the space in a reasonable amount of time
but are small enough to stay within the region of probability mass. Here, some
knowledge of the distribution to be estimated can be helpful.

The acceptance distribution A(Θ | Θ0), then, could take the form

A(Θ | Θ0) = min

(
1,
P (Θ0)Q(Θ | Θ0)

P (Θ)Q(Θ0 | Θ)

)
(1.17)

where P (Θ) is the distribution we wish to approximate, which for the purposes of
Bayesian inference is usually the posterior P (Θ | D). The acceptance distribution
in equation (1.17) is known as the Metropolis choice and is quite common.

Because the proposal distribution and the acceptance distribution de�ne a
Markov process�i.e. the probability distribution of the next step, given the cur-
rent state, does not depend on any previous states�the process converges to an
equilibrium, called the stationary distribution of the process. Convergence to an
equilibrium means that, given an initial state s0, the expected probability distri-
butions for the nth state sn and the (n+k)th state sn+k are identical for su�ciently
large n and k. In other words, over time, a Markov process tends to return to the
same states with the same probabilities, and this set of states and probabilities is
the stationary distribution. Since the Metropolis-Hastings algorithm designs the
Markov process to have a stationary distribution identical to the posterior distri-
bution we wish to estimate, the challenge lies in tuning the process to converge to
this distribution.

As mentioned earlier, the covariance matrix of the proposal distribution (which
determines the step size) might generate proposal steps that are either too big or
too small. In the case that they are �too big�, the proposed step takes the Markov
process outside of the area of reasonable probability density, and will probably
not be accepted, given an acceptance distribution such as equation (1.17). In this
case, very few proposals are accepted. On the other hand, if the proposed steps
are too small, then the density at the proposal is very similar to the density at the
current state, and the acceptance rate approaches 1. In both cases, it would take
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a very large number of steps (and/or proposals) in order for the Markov process
to reasonably cover the posterior distribution we wish to estimate. Therefore, in
tuning the algorithm, it is optimal to choose a proposal distribution from which the
acceptance rate is neither too close to 0 nor too close to 1. It has been suggested
that 0.2 is a good acceptance rate, but it has been shown that this is sometimes
far from optimal. [Gelman et al. 2004]

Given a well-tuned Markov process, Markov chains starting in di�erent initial
states should end up converging to the same stationary distribution, which we have
de�ned to be the desired posterior. This is the basis for a convergence diagnostic
known as the Gelman-Rubin diagnostic. [Gelman and Rubin 1992] Essentially, if
a set of Markov chains with �over-dispersed� initial states result in�after some
number of �burn-in� steps�sets of samples that are indistinguishable from one
another, then the chains have converged to the posterior distribution, and the
corresponding samples can be used as an empirical approximation to the true
posterior.

Markov chain Monte Carlo sampling is particularly useful for practical data
analysis because one needs only to de�ne and code the model's probability distri-
bution, and then let the chosen MCMC algorithm (such as in the mcmc package
in R [Geyer. 2010; R Development Core Team 2009]) do the rest of the work,
aside from tuning. No special calculations or parameter updates, like in varia-
tional Bayesian methods, are needed. However, for complex distributions, tuning
the algorithm may prove to be a challenge, and convergence within a reasonable
time is not guaranteed.

For more information about MCMC sampling and many other aspects of
Bayesian data analysis, refer to Gelman et al. [2004].

1.5 Applications

A probabilistic model and inference derived from it can be successful only if the
model su�ciently describes the natural process being measured. Thus, it is very
important that knowledge of the system be taken into account when designing
the model. Because this is often a di�cult task, a main focus for the rest of this
chapter as well as those following will be the selection and design of appropriate
models.

Here, I describe the context for three general applications of probabilistic
models�gene interaction, miR targeting, and athletic performance�and discuss
the motivation for the choice of model with regard to the data and the goal of the
analyses.
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1.5.1 Gene interaction models

Gene interactions are known to play an important role in cell-level biological pro-
cesses, and the principal way to measure gene activity is through the gene expres-
sion. Gene expression is typically measured using microarrays or, more recently,
genetic sequencing; the output from both of these technologies is a set of relative
abundances of genes within the sample, where the number of genes measured is
typically in the thousands or tens of thousands. The number of expression mea-
surements in a time-course experiment, though, is orders of magnitude smaller,
usually approximately 10. Thus, if the goal is to detect gene interactions from
such a data set, the problem is severely under-determined.

Though the mechanisms of gene expression and interaction are obviously
continuous-time processes, studies have been done on the time-scales of these
processes, and so it is at least somewhat justi�ed that we can measure them at
carefully chosen time points and subsequently model them as discrete-time pro-
cesses. Work has been done on both continuous-time models and discrete-time
models�see the review of Penfold and Wild [2011] for a comparison�with varied
results. Given that we always have discrete-time data (only a �nite number of
measurements are possible) there are challenges to models both in continuous and
discrete time. I have chosen to work with discrete-time models because they are in
agreement with the data, but not the underlying process, and they are generally
simpler in terms of complexity.

A simple discrete-time model of gene expression and interaction is a linear
model such as:

xt+1 = Axt + ε1 (1.18)

where the expression xt of all genes at a given time point t + 1 is assumed to be
a linear combination�via the matrix A�of the expressions at the previous time
point t, plus some random noise. If we treat the gene expression values xt as latent
variables for which we have noisy measurements yt then our measurements can be
modeled by

yt = xt + ε2 (1.19)

If we de�ne and �t such a model in a Bayesian fashion then this model could
be called a dynamic Bayesian network (DBN). A DBN typically assumes that
the noise terms and expression values are Gaussian random variables and the
related precision (inverse of variance) terms are distributed according to gamma
distributions. In fact, two relatively early works on the application of DBNs to
gene expression and interaction did just that; see Kim et al. [2003] and Husmeier
[2003] for more details on these methods.



CHAPTER 1. INTRODUCTION 16

One big advantage of using a DBN instead of the equivalent non-probabilistic
model is that, because probabilistic models are explicitly concerned with variance
and certainty, they can give preference to higher-certainty results in the case where
two (or more) linear combinations can give the same result. In a severely under-
determined linear system such as we have here, this can be very useful.

Beyond the simplest cases of DBNs, there are many ways to extend the model
to achieve better results. One such model, introduced in Lèbre [2009], is referred
to as G1DBN ; it exploits conditional (�rst-order) dependence within nodes of
the network, as well as an assumption of relative sparseness, to e�ciently infer
network structure. Generally speaking, G1DBN makes use of two assumptions,
conditional dependence and sparseness, about gene interactions that are generally
considered to be valid in many cases, but not necessarily all.

Another DBN, from Beal et al. [2005], includes �hidden� states in the model,
which are intended to represent unmeasured quantities that have a signi�cant im-
pact on gene expression. These hidden states could be compared with component
analysis (e.g. PCA or ICA) in that a single hidden state can explain variance in
any number of gene expression values, and thus potentially improve the model �t
in cases where there seems to be an unknown external quantity driving a signi�-
cant amount of gene expression changes. However, adding hidden states actually
increases the complexity and the under-determinedness of the model, though the
hidden states have been shown to improve interaction inference in many cases.

Because the application of DBNs to gene expression and interaction is rea-
sonably well-studied, signi�cant improvements in these methods are largely based
on further incorporation of knowledge and assumptions about the underlying sys-
tems. Therefore, it is helpful to look at literature on all types of gene expression
time-course experiments and analysis in order to learn from them and apply that
knowledge to improve the inference of gene interactions.

A thorough review of gene expression time-series analysis can be found in
Bar-Joseph et al. [2012] and an earlier version from the same principal author,
Bar-Joseph [2004], indicates the rate at which the body of literature is expanding.
Much of the work deals with pro�les of gene expression over time (e.g. increasing,
decreasing, peaking) and co-expression of genes, as well as interaction models such
as the DBN. A considerable body of work on gene clustering exists, and this work
seems relatively under-utilized in gene interaction models, and thus might provide
valuable improvement in gene interaction inference.

Gene clustering, in this context, is the grouping of genes by expression pattern,
such that genes in the same cluster can be said to have similar expression values
under a variety of conditions or time points. It can then be said that genes in
the same cluster might share a similar function, be co-regulated by some common
regulator, or be related in some other meaningful way.

A signi�cant proportion of gene clustering research looks at expression patterns
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across time; Ernst et al. [2005] collect short time-series data by assigning them to
speci�c pre-de�ned pro�les that have meaning within the particular experiment;
Schliep et al. [2003] perform a similar cluster analysis of time-series, but instead of
using pre-de�ned expression patterns, they use a hidden Markov model (HMM) to
infer dynamics of a limited number of clusters between a small number of states;
Sivriver et al. [2011] cluster genes to inferred expression pro�les, focusing mainly
on impulse models in experiments where one might expect peaks in the expression
values.

Clustering on its own can give powerful insight into cellular processes, particu-
larly because clustering is a well-established method of dimensionality reduction,
and gene expression analysis contains some very high-dimensional problems. Thus,
it stands to reason that clustering can be combined with other methods to infer
meaning in a reduced-dimension space. In particular, gene interaction models
might bene�t from a smaller number of dimensions and reduced correlation be-
tween regulators. Hirose et al. [2008] and Shiraishi et al. [2010] have done work
in this direction, combining state-space models and clustering heuristics for si-
multaneous, integrated inference. We extend this idea into a formally rigorous
model�a DBN with integrating Bayesian clustering�in chapter 2, published in
Godsey [2013b], �nding that clustering gives signi�cant advantages in gene inter-
action inference.

1.5.2 Models of miR targeting

MicroRNAs (miRs) are short RNA sequences which are known to a�ect expres-
sion of messenger RNA (mRNA), often by binding to complementary sequences
and either inhibiting translation or directing cleavage of that mRNA. For more
information about miRs, see www.mirbase.org. [Kozomara and Gri�ths-Jones
2011; Gri�ths-Jones et al. 2008, 2006]

Like with genes or mRNAs, miR expression can be measured using microar-
rays or sequencing, quantifying the relative abundance of the several hundred miRs
which might be present in a sample. Since it is known that miRs can target and/or
regulate mRNAs, much research has gone into detecting or inferring such inter-
actions. Recently, some of the most successful attempts to identify likely target
pairs include the integration of expression data�most often microarrays�with
sequence-based target prediction algorithms that consider the binding a�nities
between a particular miR and a complementary or near-complementary section of
an mRNA sequence. Each data source by itself is prone to error�expression data
are noisy, correlation does not imply causation, and prediction algorithms are rife
with �false� positives. But, the combination of information from two very di�er-
ent sources had led to vast improvements in the ability to identify likely candidate
target pairs. A nice review of the topic can be found in Muniategui et al. [2013].
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In the case where we have paired expression measurements for both mRNAs
and miRs�i.e. we have both mRNA and miR expression data for the same set of
samples�as well as sequence-based predictions, we can modify a standard DBN
model so that the regulators (miRs) are separated from the regulatees (mRNAs)
such that the vector of mRNA expression yi in sample i can be expressed as a linear
combination of miR expression values xi via a matrix of coe�cients A, which in
the most basic form looks like:

yi = Axi + εi (1.20)

Each entry in the matrix A can then be informed (via a prior distribution) by
sequence-based predictions. A few algorithms have been developed starting with
this basic idea.

GenMiR++ [Huang et al. 2007b] is an algorithm that uses variational Bayesian
methods to infer negative (down-regulating) interactions in expression data, given
an n×m binary matrix where a 1 in entry (i, j) indicates that miR i is predicted
to target mRNA j. This algorithm was later updated, to become, eventually,
GenMiR3 [Huang et al. 2008], with the most prominent update being that the
newer algorithm is able consider sequence-based information (not just presence
or absence on a list of predictions) in determining the strength and likelihood of
targeting interactions.

TaLasso [Muniategui et al. 2012] is another algorithm that combines the pres-
ence of an miR-mRNA pair in a targeting prediction database with expression
data. It uses LASSO regression, restricted to non-positive interactions, and in-
cludes tuning parameters to adjust the sensitivity/sparseness of the solution. Ta-
Lasso has been shown to outperform GenMiR++ in some cases. [Muniategui et al.
2012, 2013]

Another Bayesian model, proposed by Stingo et al. [2010], uses a Markov chain
Monte Carlo (MCMC) algorithm to �t the model and estimate parameter values,
using a model formulation that is similar to that of GenMiR++ and GenMiR3.
It restricts interactions to be non-positive using a combination of binomial and
gamma distributions, like both GenMiR algorithms, and can include sequence-
based algorithms and scores, as GenMiR3 does. In addition, a �time-variant�
version of the model is presented, in which targeting parameters are allowed to
vary over time in a time-series data set.

In some analyses, a basic Pearson correlation is used to rank putative targets,
possibly in combination with prediction algorithms. [Jayaswal et al. 2009; Mu-
niategui et al. 2013] Spearman correlation and other varieties of regression have
been proposed for the same task, but none have performed as well as GenMiR or
TaLasso. [Muniategui et al. 2013]

In chapter 3, and published in Godsey et al. [2012], we describe a related
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Bayesian model for inferring miR-mRNA targeting interactions based on target
prediction algorithms and expression data, which we �t using variational Bayesian
methods like the GenMiR algorithms, and which can utilize any sequence-based
(or other external) information like GenMiR3 and the Bayesian model from Stingo
et al. [2010]. Unlike the models just described, which either assume unreplicated
measurements or ignore/average replicates, our model considers replication and
uses it to propagate uncertainty all the way into the inference results of interest.

1.5.3 miR targeting with clustering

If we take the main ideas from the previous two applications

1. Clustering can improve gene interaction inference, and

2. propagating uncertainty and incorporating exogenous information can im-
prove miR targeting inference,

and we combine them into a single model; the result is a model of miR targeting
that includes integrated clustering and which hopefully further improves inference.

miR clusters and clusters of miR-regulated mRNAs have previously been in-
vestigated [Tanzer and Stadler 2004; Wang et al. 2009], but the idea has not been
incorporated into probabilistic models using paired expression data.

Due to my results in gene expression DBN models, we know that clustering of
genes by their expression pro�les improves interaction inference by reducing the in-
teraction parameter space as well as the uncertainty arising from highly correlated
potential regulators. [Godsey 2013b] To summarize, it is di�cult to determine the
true regulator if two (or more) potential regulators are highly correlated, and this
high inferential uncertainty can cause both potential regulators (together with
their common regulatee) to fall far down the list of top-ranked inferred interac-
tions; thus, it is better to group highly correlated regulators together and allow
all members of the group to maintain a top ranking than to allow competition to
diminish the inferred contribution of all members.

This idea can be applied directly to probabilistic models of miR-mRNA in-
teraction (i.e. miR targeting) such as that previously described in Godsey et al.
[2012], or GenMiR or TaLasso. This is the goal of chapter 4, published in Godsey
[2013a].

1.5.4 Athletic performance

Though clearly not within the �eld of bioinformatics, the task of comparison of
athletic performances across di�erent disciplines possesses some strikingly similar
challenges to the probabilistic models in bioinformatics I have already outlined
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here. First of all, the data available�lists of the top few hundred performances
of all time in each event�are only a very small subset of the data that are the-
oretically possible to attain. Secondly, though these data might not be seem
high-dimensional at �rst glance, the number of athletes competing every year and
the number of variables involved with training and competing indicate otherwise.
This combination of a relatively complex process with the fact that available data
comprises only a small fraction of what is it possible to measure allows us to uti-
lize a few of the ideas from models in bioinformatics to improve the quality of
inference. First, though, let us review prior work in the area, which is unusually
sparse.

There are a few good models that are valid for running events only, particularly
longer distances, namely those by McMillan [2011], Cameron [1998], Riegel [1977],
and Daniels and Gilbert [1979]. These models rely on physiological measurements
such as speed and running economy to compare performances at di�erent race
distances, either for men or for women, but not between them.

Purdy Points [Gardner and Purdy 1970] have long been used to compare marks
from di�erent events in both track and �eld, but these scores are based mainly
on the world records of each event at a particular date in the past, which leads
to two main disadvantages: (1) it is impossible to compare world records to each
other if the model is based on them, and (2) basing the model on such a small
data set leads to much uncertainty and variation in the scores as the records and
model evolve over time.

Currently, the most popular method for comparing performances across all
events in track and �eld as well as road running is to consult the IAAF scoring
tables [Spiriev and Spiriev 2011]. These tables are updated every few years using
methods that are not fully disclosed, with the last two updates occurring in 2008
and 2011. But, we know that point values P in these tables can be calculated
using a formula of the form P = a(M−b)c, whereM is the measured performance
(use M = −T for running times T , where a lower performance is better) and a, b,
and c are constants estimated by undisclosed methods. [International Association
of Athletics Federations 2001]

No fully probabilistic model has been applied to such performance data, but
athletic performances lend themselves well to such modeling. The random nature
of the events, plus the expectations of the athletes that exist because of their
previous performances, �t very well into the probabilistic framework. Therefore,
chapter 5, and published in Godsey [2012], describes a probabilistic model where,
for each event, I estimate a log-normal distribution, allowing the calculation of
both the probability that a speci�c mark is exceeded as well as the expected
number of such performances within a given time period. This paper was published
just before the 2012 Olympic Games in London, with some measurable predictions
that can be compared with subsequent athletic results from 2012 through the
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present day.

1.6 Outline of the rest of this thesis

Chapter 2 gives the basis for the dynamic Bayesian network and integrated clus-
tering model mentioned above which improves the quality of inference of gene
interactions when analyzing time course expression data. This chapter appeared
in PLoS ONE in 2013. [Godsey 2013b]

Chapter 3 describes a probabilistic model of miR-mRNA interaction/targeting
that incorporates exogenous, sequence-based target predictions. This chapter ap-
peared in PLoS ONE in 2012. [Godsey et al. 2012]

Chapter 4 combines the ideas from chapters 2 and 3, and re�nes some de-
tails in order to create another probabilistic model of miR targeting of mRNAs
that includes both exogenous prediction information and clustering. This chapter
appeared in the Journal of Integrative Bioinformatics in 2013. [Godsey 2013a]

Chapter 5 shows how a probabilistic model of athletic performances can give
signi�cant insight into what it means to have a rare or exceptional performance,
in addition to establishing a new benchmark of how to compare performances
between two disparate disciplines. This chapter appeared in the Journal of Quan-
titative Analysis in Sports in 2012. [Godsey 2012]
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Improved inference of gene regulatory networks

through integrated Bayesian clustering and dy-

namic modeling of time-course expression data

Published in PLoS ONE [Godsey 2013b]

by Brian Godsey1

1 Department of Statistics and Probability Theory, Vienna University of Technology, 1040
Vienna, Austria

Abstract: Inferring gene regulatory networks from expression data is di�cult, but
it is common and often useful. Most network problems are under-determined�
there are more parameters than data points�and therefore data or parameter
set reduction is often necessary. Correlation between variables in the model also
contributes to confound network coe�cient inference. In this paper, we present
an algorithm that uses integrated, probabilistic clustering to ease the problems of
under-determination and correlated variables within a fully Bayesian framework.
Speci�cally, ours is a dynamic Bayesian network with integrated Gaussian mixture
clustering, which we �t using variational Bayesian methods. We show, using
public, simulated time-course data sets from the DREAM4 Challenge, that our
algorithm outperforms non-clustering methods in many cases (7 out of 25) with
fewer samples, rarely underperforming (1 out of 25), and often selects a non-
clustering model if it better describes the data. Source code (GNU Octave) for
BAyesian Clustering Over Networks (BACON ) and sample data are available at:
http://code.google.com/p/bacon-for-genetic-networks.

2.1 Introduction

Inferring gene regulatory networks from high-throughput gene expression data is
a di�cult task, in particular because of the high number of genes relative to the

22
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number of data points, and also because of the random noise that is present in
measurement. Over the last several years, many new methods have been devel-
oped to address this problem; a nice review of these can be found in Penfold and
Wild [2011]. This review directly compares several di�erent types of approaches
by summarizing the correctness of the genetic networks inferred from synthetic
(in silico) data generated from a known network. Of particular interest are the
results of each of the algorithms when applied to the DREAM4 In Silico Network
Challenge data sets, which includes data types such as �knock-out�, �knock-down�,
and time-series data among the sub-challenges. See Prill et al. [2011] for more
details on the DREAM challenges.

Though Green�eld et al. [2010] have had success combining methods in order
to infer genetic networks from di�erent types of data simultaneously, here we focus
on time-series data and the corresponding methods for network inference. In the
review of Penfold and Wild [2011], two types of algorithms seem to outperform the
others when applied to time-series data: dynamic Bayesian networks and causal
structure identi�cation (CSI) in non-linear dynamical systems (NDSs).

Dynamic Bayesian networks (DBNs) are typically some variation of the basic
linear model

xt+1 = Axt + ε1 (2.1)

yt = xt + ε2 (2.2)

where in the context of gene regulatory networks, xt is the vector of �true� gene
expression levels at time t, yt is a vector of observations of these expression levels, A
is a matrix of interaction coe�cients, and ε1 and ε2 are random (Gaussian) noise.
More information on DBNs and their application to gene regulatory networks can
be found in Kim et al. [2003] and Husmeier [2003].

The algorithms considered in Penfold and Wild [2011] include a model very
similar to that of the basic DBN formulation above, but which exploits conditional
[�rst-order] dependence within nodes of the network, as well as an assumption of
relative sparseness, to e�ciently infer network structure. This model, from Lèbre
[2009] is referred to as G1DBN and is available as an R package from CRAN [R
Development Core Team 2009]. The second DBN considered by Penfold and Wild
[2011] is that of Beal et al. [2005], which adapts a state-space model with inputs
to include hidden states, the quantity and values of which are inferred through
variational Bayesian learning. This algorithm is referred to as VBSSM, as in
the review. Causal structure identi�cation (CSI) in non-linear dynamical systems
(NDSs) avoids the restriction of linearity when determining network structure,
and in the case of Klemm [2008], which is also considered in the review, latent
interaction parameters of a discrete Gaussian process model are inferred using a
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Bayesian framework. According to Penfold and Wild [2011], both the G1DBN
and VBSSM algorithms performed well on the DREAM4 data sets, as did the
CSI algorithm of Klemm [2008]. Both DBNs and CSI outperformed ordinary
di�erential equations (ODEs) and models using Granger causality.

Though these results are convincing, there is still room for improvement, and
the discussion of optimal methods is still open; in fact, the body of research in the
area of gene expression time-series analysis continues to grow quickly. A recent
review, Bar-Joseph et al. [2012], outlines the state of the art in gene expression
time-series analysis, including much information on clustering methods and soft-
ware. We can see that, when compared to a similar, earlier review, Bar-Joseph
[2004], a considerable amount of work has been done. However, we feel that there
is still a branch of time-series data analysis that is under-utilized in gene regu-
latory network inference. Despite the vast amount of work that has been done
on the clustering of gene expression data, much of which deals speci�cally with
time-series, relatively little work has been done on inferring time-dependent inter-
actions between gene clusters or between a gene cluster and an individual gene.
Let us brie�y discuss clustering methods for time-series data before continuing on
to its potential use in inferring gene regulatory networks.

In order to successfully cluster time-series data, we need to utilize the stronger
dependencies between data in consecutive time points relative to more distant time
points. Quite often, researchers are interested in expression patterns across time;
Ernst et al. [2005] cluster short time-series data around speci�c pre-determined
pro�les that may have meaning within the particular experiment. Schliep et al.
[2003] perform a similar cluster analysis of time-series, but instead of using pre-
determined expression patterns, they use a hidden Markov model (HMM) to infer
dynamics of a limited number of clusters between a small number of states (e.g.
nine discrete expression levels). Sivriver et al. [2011] take a slightly di�erent ap-
proach by clustering genes to inferred pro�les, focusing mainly on impulse models
in experiments where one might expect peaks in the expression values.

In each of the above papers, it was shown that gene clustering can infer bi-
ological meaning, whether co-expression, co-regulation, involvement in particular
biological processes, or some other e�ect. Such information may also be valuable
in inferring genetic regulatory networks. Hirose et al. [2008] and Shiraishi et al.
[2010] have done work in this direction, combining state-space models and clus-
tering heuristics for simultaneous, integrated inference. However, both of these
are demonstrated on data containing hundreds of genes which are clustered or
grouped into a low (fewer than 20) number of clusters/modules and subsequently
the large cluster size prevents any meaningful conclusions about regulatory inter-
actions between speci�c genes.

In this paper, we describe a fully Bayesian model of gene cluster interaction,
and we demonstrate that probabilistic gene clustering in conjunction with a dy-
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namic Bayesian network can aid in the inference of gene regulatory networks, even
in the DREAM4 data sets, where no clusters were explicitly included. It achieves
this by potentially reducing�in a fully Bayesian manner�the parameter space
and helping solve the problem of solution identi�ability in under-de�ned, noisy
data models such as are common in gene expression analysis. The algorithm pre-
sented here is a variational Bayesian hybrid of a DBN and a Gaussian mixture
clustering algorithm, both of which have been shown to infer meaningful solutions
to their respective problems [Beal et al. 2005; Teschendor� et al. 2005], and which
we show can work even better in tandem. We call this algorithm BAyesian Clus-
tering Over Networks (BACON ). BACON is built speci�cally to simultaneously
consider multiple data sets based on the same network, such that for each data
set, expression states are inferred independently, but that cluster membership and
regulatory dynamics are assumed to be constant for all data from the given net-
work, regardless of the particular data set. This gives more accurate results than
a heuristic combination of interaction rankings based on the various time-series
for each of the DREAM4 networks.

2.2 Methods

In this paper we introduce an algorithm called BACON, which is a variational
Bayesian algorithm that combines a Gaussian mixture clustering model with a
DBN. However, before we give the speci�c formulation of our model, it may be
helpful �rst to look at a simple case where integrated clustering can help infer
gene regulatory networks, even if no �true� clusters are present.

2.2.1 A simple example

Assume, as an illustration, that we have a three genes, X, Y, and Z and that
we have time-series expression data for each of them, such that the observed
expression levels of these at time t are given by xt, yt, and zt, respectively, for
time points t ∈ {1, . . . , T}. Let us, for simplicity's sake, assume that we are
concerned only with potenial regulators of gene Z, and that X and Y are the only
two candidates. Furthermore, we assume a simple linear model of dynamics, in
which zt+1 is assumed to be a noisy observation of the dot/inner product of the
vector of two interaction coe�cients ax and ay with the vector of xt and yt, namely:

zt+1 = (ax, ay)(xt, yt)
′ + ε (2.3)

Note that this is a simple linear model on three variables, where all interaction
coe�cients except ax and ay are set to zero. It is a special case of the standard
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linear model, given in equation 2.1, where for this example we treat the observa-
tions as the true expression values, we attempt only to infer ax and ay, and for
illustration purposes we ignore all other possible interaction coe�cients. When
attempting to infer ax and ay under a Bayesian framework, we make the following
assumptions:

zt+1 ∼ N
(
(ax, ay)(xt, yt)

′, λ
)

(2.4)

(ax, ay) ∼ N (µ,Λ) (2.5)

where λ is a precision parameter (inverse of variance), µ is the prior mean of the
multivariate normal distribution, and Λ is a 2× 2 precision matrix (inverse of the
covariance matrix).

Given these assumptions, the data xt, yt, and zt, and the precision parame-
ter λ (�xed), the estimated posterior distribution for (ax, ay) under a variational
Bayesian framework (see Beal [2003] and Winn [2003] for a detailed explanation)
is multivariate normal, with mean µ̂ and precision Λ̂, such that

Λ̂ = Λ +
T−1∑
t=1

λ

[
x2
t xtyt

xtyt y2
t

]
(2.6)

µ̂ =
(
µ+

T−1∑
t=1

λ
[
xt yt

] )
Λ̂
−1

(2.7)

Under some conditions, such inference works quite well, but if the expression
pro�les for X and Y are highly correlated (or negatively correlated), then the

determinant of Λ̂ approaches zero, and the diagonal elements of Λ̂
−1

(the estimated
variances of ax and ay) approach in�nity. Such a problem can be overcome with
a strong prior for ax and ay, but this is usually not desireable since typically µ is
set to zero (as in Beal et al. [2005]), and a high prior precision Λ merely pulls the
estimate µ̂ towards zero, and potentially decreases the statistical signi�cance of
the inferred interaction parameters. Thus, we are faced with a decision between
strong priors or very high variances of posterior parameter estimates.

If the xt and yt are highly correlated, and if they are likewise correlated with
zt+1, then we might be able to say with near certainty that either X or Y regulates
Z, but we could not say which one. This may be acceptable on a small scale, but
would be di�cult in a gene expression time-series experiment with hundreds of
genes and thousands of putative interaction coe�cients and covariances. It could
be interesting to optimize the choice of a set of, for example, ten gene interac-
tions, with respect to the probability of at least one of them being veri�able in an
independent evaluation. But, this would be di�cult for experiments with large
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numbers of genes, and so typically only the individual variances are considered
when calculating the statistical signi�cance of the estimated interaction param-
eter values. Estimating, potentially, thousands of interaction parameters is very
di�cult in dynamic gene expression time-series analysis because, for example in
the basic linear model given in equation 2.1, there are generally many possible
values for the transition matrix, each of which could produce the data. In other
words, a given gene expression time-series could be reproduced by many di�erent
linear combinations of other [lagged] time-series. A particular case of this is when
two potentially regulating genes have highly correlated expression pro�les, which,
as we have shown above, can cause some di�culty in inference.

Here, we propose that clustering genes and inferring the dynamics of the clus-
ters can help avoid the case in which highly correlated gene pro�les inhibit interac-
tion inference. In our example, if genes X and Y have highly correlated expression
pro�les, then for weak priors the precision estimate in equation 2.6 is nearly sin-
gular, and thus by treating X and Y as two contributors to the same dynamic
quantity, we avoid this particular singularity problem altogether. Then, a stan-
dard method (DBN or similar) could more easily infer that both X and Y (as one
cluster) are likely regulators of Z. If, when creating a list of the most likely individ-
ual gene-gene interactions, we simply assign all the inferred interaction coe�cients
for a cluster to each of its members, we can obtain a ranking of interaction pairs
that is comparable to the ranking obtained from a standard DBN.

It may seem, at �rst, that passing along inferred interaction coe�cients to all
cluster members would create many false positives. However, if clusters include�
by de�nition�highly correlated expression pro�les, then if a cluster appears to
be a good potential regulator of a gene, all of the cluster's members must also
have pro�les that generally indicate potential regulation, and in the absence of
clustering, it would be di�cult to identify the best interaction parameters. This
is true whether or not any or all of the concerned genes are actually veri�able
regulators, and thus clustering together correlated expression pro�les�regardless
of the biological meaning of the clustered genes�could improve inference. For
instance, in our example, the presence of gene Y (if highly correlated with X)
adversely a�ects the identi�cation of X as a regulator of Z, a problem that can
be avoided if X and Y are treated as members of the same cluster. In a data set
with hundreds of genes, the chance of having at least one pair of highly correlated
expression pro�les is rather large. Of course, we must be careful in our construction
of clusters and their dynamics, but as we show, Bayesian inference provides the
means to select a number of clusters, to assign cluster membership, and to estimate
cluster interaction parameters in an optimal way. We describe this below.
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2.2.2 Model

Given K clusters and G genes, we assume that the cluster expressions Ft for time
points t ∈ {1, ..., T} follow the standard linear dynamics

Ft+1 = SFt + Sc + ε (2.8)

where Ft is a vector of length K, S is a K ×K transition matrix, Sc is a column
vector of length K, and ε is vector of Gaussian noise. The kth element of Ft, fkt,
is the expression of cluster k at time t. The vector Sc represents linear trends
in cluster expression levels over the time points, and its inclusion in the model
prevents such trends from being confused for interactions in similarly trending
clusters.

The expression of gene g at time t is given by µgt, and the membership of
gene g to cluster k is given by the kth element of the indicator vector ξg. Each
gene g belongs to exactly one cluster k, and so ξg contains a single 1 in in the
kth element and zeros elsewhere. The nth observation/replicate of µgt is xgtn. The
corresponding prior distributions are:

xgtn ∼ N (µgt, λ) (2.9)

µgt ∼ N (ξFt
′, ξgγ

′
t) (2.10)

Ft ∼ N (SFt−1 + Sc,Σ) (2.11)

where the λ is a technical precision (inverse of variance) representing the measure-
ment errors, assumed to be independent, γt is a vector of precisions of length K,
and Σ is a K × K precision matrix which we require to be diagonal, as in Beal
et al. [2005], so that in the posterior distribution estimates, the rows of S are
independent. We also formulate our other prior distributions as in Beal et al.
[2005]: for the elements of F1, S, and Sc, we use zero-mean normal distribution
priors whose precisions we iteratively update to maximize the marginal likelihood
estimate (discussed below). Likewise, for the hyper-parameters of the gamma dis-
tribution priors we assume for the elements of the precisions λ, γt, and Σ. For ξg,
we use a uniform prior distribution over the K possible clusters.

For multiple time-course data sets from the same gene regulatory network,
as we have in the DREAM4 Challenge data sets we use in this paper, we infer
all of the parameters separately for each of the series, except for the dynamics
parameters S and Sc and the membership indicator vectors ξg, which are shared
and inferred simultaneously for all time-series from the given network.
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2.2.3 Inference

To estimate the parameters of our model, we use a variational Bayesian algorithm
analagous to those described in Beal [2003] and Winn [2003], which has been
previously used to �t a DBN to gene expression time-series in Beal et al. [2005], as
well as a Gaussian mixture model for gene clustering in Teschendor� et al. [2005].

In short, the algorithm used in this paper estimates the posterior parameter
distribution P (θ | D) given the data D using a factorable distribution Q(θ) =
Q(θ1)Q(θ2) . . . Q(θn) whose factors can be iteratively updated so that with each
update, Q(θ) becomes a better approximation for P (θ | D), as measured by
the Kullback-Leibler divergence between the two. We have chosen conjugate prior
distributions for each of the parameters we estimate, and therefore the posterior
distribution estimate Q(θi) for each parameter is of the same form as its prior,
and the parameters of these distributions are updated iteratively according to
variational Bayesian inference, as in equations 2.6 and 2.7.

We �t the model using 10 starts with randomized initial parameter values, and
with a range of cluster numbers less than or equal to the number of genes in the
data set (in the case of the DREAM4 data, k ∈ {5, 6, . . . , 10}) and then accept the
model that has the highest estimated marginal likelihood. Accepting the model
with the maximum marginal likelihood is simpler than combining all models based
on their likelihoods, when in fact it is rare for a second, di�erent model to have a
likelihood close enough (i.e. a log likelihood within 3 or 4) to the best model for
it to make a signi�cant impact on the interaction rankings.

We are concerned primarily with the transition matrix S and the membership
indicators ξg; using posterior estimates for these, we can rank directed gene-gene
interactions by their statistical strength. Speci�cally, for each directed cluster
pair interaction i → j (i 6= j), we calculate the posterior mean estimate for
element (i, j) of S divided by its posterior standard deviation, assign this value to
all possible directed pairs within the two clusters, and we rank by largest absolute
value.

The Octave code implementing this algorithm�available at:
http://code.google.com/p/bacon-for-genetic-networks�takes approx-
imately 40 minutes on a single core of a 1.2 GHz processor for a single random
start and a given number of clusters. Multiple starts and di�erent numbers of
clusters can be run in parallel; see the code for more details.

2.2.4 Data

We used the DREAM4 In Silico Network Challenge data sets to evaluate the
performance of our model. See Prill et al. [2011, 2010]; Marbach et al. [2010, 2009]
for more details on the DREAM challenges. We utilized only the 10-gene time-
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series data, which consists of �ve simulated networks. For each of the networks,
there are �ve time-series experiments, each with 20 time points. No simulated
technical replicates were included, but random noise was added. The list of actual,
�gold standard�, interactions was provided after the o�cial challenges ended.

2.3 Results

For each of the �ve data sets, each corresponding to a single gene regulatory
network, we inferred the network using all available time-series (�ve each) and
used the inferred interactions and the known gold standard to calculate the area
under the receiver operating characteristic (AUROC) curve and the area under
precision-recall (AUPR) curve, as in Penfold and Wild [2011]. Table 2.1 gives
the AUROC and AUPR for BACON both with and without clustering, as well
as the corresponding scores from the G1DBN and VBSSM models, as reported
in Penfold and Wild [2011]. BACON gives an AUROC score better than both
G1DBN and VBSSM in two out of �ve data sets� likewise for the AUPR scores�
and is comparable to the other two algorithms in the remaining data sets. Given
that BACON without clustering compares favorably with other algorithms, and
that BACON with clustering gives the exact same results as BACON without
clustering (the inferred number of clusters in each case was 10, the number of
genes), we conclude that both versions of BACON give satisfactory results for
these data sets.

Algorithm Data set 1 Data set 2 Data set 3 Data set 4 Data set 5
AUROC BACON 0.82 0.67 0.72 0.81 0.88

BACON (no clustering) 0.82 0.67 0.72 0.81 0.88
G1DBN 0.73 0.64 0.68 0.85 0.92
VBSSM 0.73 0.66 0.77 0.80 0.84

AUPR BACON 0.42 0.36 0.51 0.49 0.57
BACON (no clustering) 0.42 0.36 0.51 0.49 0.57
G1DBN 0.37 0.34 0.45 0.69 0.77
VBSSM 0.38 0.41 0.49 0.46 0.64

Table 2.1: Algorithm results comparison for the DREAM4 networks. The area under
the receiver operating characteristic (AUROC) curve and area under precision-recall (AUPR)
curve for each of the �ve data sets. Here, we included BACON without clustering in order to
establish that the plain DBN algorithm is generally as good as the other two DBN algorithms.
The scores for G1DBN and VBSSM were taken from Penfold and Wild [2011]. The best score
for each data set is shown in bold.

However, the DREAM4 time-series data are not typical; a single time-series
with 20 time points is somewhat uncommon in practice (most experiments have 10
or fewer time points), and �ve independent time-series for the same gene network
would be extremely rare. Thus, we subsequently consider each of the time-series
individually, in order to see if an even more under-determined problem (only 20
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data points for each of the 10 genes instead of 100) favors the model version with
clsutering. We show in Table 2.2 the AUROC and AUPR of the 25 individual
time-series (�ve from each of �ve data sets) for the BACON model both with and
without clustering.

Time-series Data set 1 Data set 2 Data set 3 Data set 4 Data set 5
AUROC 1 0.68 (0.71) 0.61 (0.61) 0.64 (0.64) 0.62 (0.62) 0.57 (0.57)

2 0.75 (0.66) 0.70 (0.70) 0.68 (0.66) 0.77 (0.77) 0.64 (0.64)
3 0.67 (0.61) 0.62 (0.62) 0.65 (0.60) 0.60 (0.58) 0.65 (0.65)
4 0.61 (0.53) 0.66 (0.66) 0.59 (0.59) 0.60 (0.60) 0.74 (0.66)
5 0.66 (0.63) 0.64 (0.64) 0.59 (0.59) 0.76 (0.76) 0.78 (0.78)

AUPR 1 0.24 (0.39) 0.24 (0.24) 0.32 (0.32) 0.19 (0.19) 0.23 (0.23)
2 0.42 (0.27) 0.34 (0.34) 0.28 (0.30) 0.26 (0.26) 0.32 (0.32)
3 0.30 (0.19) 0.21 (0.21) 0.24 (0.19) 0.15 (0.16) 0.24 (0.24)
4 0.24 (0.16) 0.38 (0.38) 0.21 (0.21) 0.24 (0.18) 0.27 (0.23)
5 0.22 (0.19) 0.20 (0.20) 0.17 (0.17) 0.34 (0.34) 0.33 (0.33)

Table 2.2: Results of BACON on individual DREAM4 time series. For each of �ve
individual time-series in each of the �ve data sets, the area under the receiver operating charac-
teristic (AUROC) curve and area under precision-recall (AUPR) curve. For each time series, we
give two of each score, one for BACON with clustering and one for BACON without clustering
(in parentheses). The higher of the two scores appears in bold. If the two scores are identical,
neither is in bold.

In many cases, the with-clustering and without-clustering scores were
identical�i.e. 10 clusters is optimal�but in several other cases, fewer clusters
gave a higher marginal likelihood score, and the corresponding AUROC and AUPR
were indeed better, more often than not. Speci�cally, for 15 of the 25 time-series,
BACON with clustering performed identically to the version without, but in seven
cases, the version with clustering gave higher scores for both AUROC and AUPR.
In only one case, the without-clustering version outperformed the with-clustering
version in both AUROC and AUPR. These tallies are summarized in Table 2.3.
Clearly, for smaller data sets such as a single time series, there is some bene�t to
be had from clustering the genes, when compared to non-clustering DBNs.

Higher AUPR

with clustering equal without
with clustering 7 0 2

Higher AUROC equal 0 15 0
without 0 0 1

Table 2.3: Results comparison: with vs without clustering. Among the �ve individual
time-series in each of the �ve data sets (25 total time series), here we give a tally of how many
times BACON with clustering outperformed BACON without clustering, or vice versa, or if the
AUROC and AUPR scores are equal.
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2.4 Discussion

Inferring gene regulatory networks from expression data is not usually easy, but
it is common and often useful. Because of the under-determined nature of the
problem�there are more parameters than data points�some reduction of the
parameter set is often necessary in order to reach any meaningful conclusion at
all. Sometimes, we can accomplish this through heuristic methods and decisions
about which data are more important prior to the main statistical analysis. Other
times, this is not desirable. In this paper, we present a probabilistic model of
time-series gene expression with an integrated, theoretically sound method of pa-
rameter space reduction. We have described its implemetation and use, including
a simple analytically-tractable example in which clustering is advantageous to net-
work inference even if no �true� cluster exists, and if we are not at all concerned
with cluster membership.

Many of the expectations we had for the Bayesian model turned out to be
true. In particular, we expected the model to favor clustering mainly in data sets
with few samples; in fact, the model preferred (via the likelihood function) not
to cluster when we included all data for each network (100 samples, 20 from each
of �ve time-series), but elected to cluster for 10 of the 25 separate time series
(20 samples each). Likewise, because of the under-determined nature of network
inference, we also expected the clustering model to perform better than a model
without clustering if there are fewer samples. This also proved true; of the 10
time-series for which the model's marginal likelihood was highest for less than 10
clusters, seven were indeed better than without clustering (when comparing both
AUROC and AUPR scores), and only one proved worse.

We believe that probabilistic clustering could be very useful in gene network
inference, though there are disadvantages. For one, the computational time is
generally much higher when clustering. This is due to the need to do model
�ts for a range of possible cluster numbers. For the purposes of this paper, in
addition to doing the 10 random starts for the non-clustering model version, we
do 10 random starts for the cluster quantities we wish to consider. Of course, the
algorithm is much faster for smaller cluster numbers, as the size of the parameter
of primary interest, the interaction/transition matrix, varies with the square of
the number of clusters. It would likely be bene�cial, in the case of very large data
sets, to use a sequential or iterative search over the number of clusters, rather
than use the exhaustive search method as we have here, but we leave that for a
future publication.

In summary, we have shown that there are bene�ts to be had by clustering
genes as part of a network inference algorithm. The potential for signi�cant cor-
relation among genes is high in typical time-series data sets, particularly those
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with few samples. The algorithm we have presented here, which we call BAyesian
Clustering Over Networks (BACON ), can help avoid the negative consequences
of inter-gene correlation for the purposes of network inference. In our tests, the
algorithm outperformed its non-clustering version in 7 out of 25 time-series from
the DREAM4 Challenge, underperforming only once, and most often electing to
disregard clusters when the data did not support it. Therefore, we feel that there
are signi�cant bene�ts of using probabilistic clustering to aid in the inference of
gene regulatory networks.

Source code (GNU Octave), more information about the software for BAyesian
Clustering Over Networks, (BACON ) and sample data can be found at:
https://github.com/briangodsey/bacon-for-gene-networks.
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Abstract: MicroRNAs (miRs) are known to play an important role in mRNA
regulation, often by binding to complementary sequences in �target� mRNAs. Re-
cently, several methods have been developed by which existing sequence-based
target predictions can be combined with miR and mRNA expression data to infer
true miR-mRNA targeting relationships. It has been shown that the combination
of these two approaches gives more reliable results than either by itself. While
a few such algorithms give excellent results, none fully addresses expression data
sets with a natural ordering of the samples. If the samples in an experiment can
be ordered or partially ordered by their expected similarity to one another, such as
for time-series or studies of development processes, stages, or types, (e.g. cell type,
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disease, growth, aging), there are unique opportunities to infer miR-mRNA inter-
actions that may be speci�c to the underlying processes, and existing methods do
not exploit this. We propose an algorithm which speci�cally addresses [partially]
ordered expression data and takes advantage of sample similarities based on the
ordering structure. This is done within a Bayesian framework which speci�es pos-
terior distributions and therefore statistical signi�cance for each model parameter
and latent variable. We apply our model to a previously published expression
data set of paired miR and mRNA arrays in �ve partially ordered conditions,
with biological replicates, related to multiple myeloma, and we show how consid-
ering potential orderings can improve the inference of miR-mRNA interactions, as
measured by existing knowledge about the involved transcripts.

3.1 Introduction

MicroRNAs (miRs) are short RNA sequences which are known to a�ect expression
of messenger RNA (mRNA), often by binding to complementary sequences and
either inhibiting translation or directing cleavage of that mRNA. A large database
of miR information and annotation can be found at www.mirbase.org [Kozomara
and Gri�ths-Jones 2011; Gri�ths-Jones et al. 2008, 2006]. While much research
has been performed on miR-mRNA interactions, it continues to be di�cult to infer
such interactions in large numbers. Typically, these interactions are validated one
at a time, though high-throughput methods have recently been developed in an
attempt to speed up the process of miR target discovery. We discuss these methods
in the following paragraphs.

Recently, some of the most successful attempts to identify likely target pairs in-
clude the integration of expression data�most often microarrays�with sequence-
based target prediction algorithms that consider the binding a�nities between a
particular miR and a complementary or near-complementary section of an mRNA
sequence. Each data source by itself is prone to error�expression data are noisy,
correlation does not imply causation, and prediction algorithms are rife with �false�
positives. But, the combination of information from two very di�erent sources had
led to vast improvements in the ability to identify likely candidate target pairs. A
nice review of the topic can be found in Muniategui et al. [2013].

Most algorithms that combine target predictions with expression data require
such data for both miRs and mRNA, but even when miR expression data are
unavailable, it is possible to infer miR activity and e�ective regulation under
various experimental conditions using gene expression data and calculated binding
strengths from target prediction algorithms. [Cheng and Li 2008]

When miR expression data is available, GenMiR++ [Huang et al. 2007b],
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one of the �rst algorithms to combine sequence-based prediction and expression
data for both miR and mRNA to infer interactions, uses variational Bayesian
methods to infer negative (down-regulating) interactions in expression data, given
an n×m binary matrix where a 1 in entry (i, j) indicates that miR i is predicted
to target mRNA j. This algorithm was later updated, to become, eventually,
GenMiR3 [Huang et al. 2008], with the most prominent update being that the
newer algorithm is able consider sequence-based information (not just presence
or absence on a list of predictions) in determining the strength and likelihood of
targeting interactions.

TaLasso [Muniategui et al. 2012] is another prominent algorithm that com-
bines the presence of an miR-mRNA pair in a targeting prediction database with
expression data. It uses LASSO regression, restricted to non-positive interactions,
and includes tuning parameters to adjust the sensitivity/sparseness of the solution.
TaLasso has been shown to outperform GenMiR++ in some cases. Muniategui
et al. [2012, 2013]

Another Bayesian model proposed by Stingo, et al [Stingo et al. 2010], uses
a Markov chain Monte Carlo (MCMC) algorithm to �t the model and estimate
parameter values, using a model formulation that is similar to that of GenMiR++
and GenMiR3. It restricts interactions to be non-positive using a combination
of binomial and gamma distributions, like both GenMiR algorithms, and can
include sequence-based algorithms and scores, as GenMiR3 does. In addition, a
�time-variant� version of the model is presented, in which targeting parameters
are allowed to vary over time in a time-series data set.

In some cases, a basic Pearson correlation is used to rank putative targets,
possibly in combination with prediction algorithms. [Jayaswal et al. 2009; Mu-
niategui et al. 2013] Spearman correlation and other varieties of regression have
been proposed for the same task, but none have performed as well as GenMiR or
TaLasso [Muniategui et al. 2013].

In this paper, we propose a Bayesian model for inferring miR-mRNA targeting
interactions based on target prediction algorithms and expression data, which we
�t using variational Bayesian methods like the GenMiR algorithms, and which
can utilize any sequence-based (or other external) information like GenMiR3 and
the Bayesian model from Stingo, et al.

However, in contrast to one or more of the aforementioned algorithms, our
model:

1. considers both positive and negative interactions between miR and mRNA.

2. uses a normal distribution to characterize interaction strength.

3. optimizes the weights/coe�cients placed on sequence/prediction information
via the same variational Bayesian algorithm that estimates the rest of the
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model parameters.

4. accounts for data replicates, biological or technical, and propagates uncer-
tainty throughout the model parameter estimates.

5. can consider a partial ordering of the samples.

With respect to these points, we enumerate how the three algorithms
described�GenMiR3, TaLasso, and the Stingo model�di�er from our model:

1. All three algorithms consider only negative interactions, but we chose to
consider both positive and negative interactions since some positive indirect
e�ects may, in some cases, better explain changes in expression values than
negative e�ects only. [Vasudevan et al. 2007; Jopling et al. 2006] We still
have the option, when searching for direct miR targets, to consider only the
inferred negative interactions; we explore this option in the Results section.

2. We chose to use a normal distribution to characterize the interaction coe�-
cients where GenMiR3 and the Stingo model have used combined binomial
and gamma distributions. The binomial-gamma combination more strongly
enforces sparseness in interactions, but considers only negative interactions,
as mentioned. TaLasso is non-Bayesian and provides no distribution for
these coe�cients.

3. Both our model and the Stingo model estimate the in�uence of external
target prediction information in the same manner as other parameters (vari-
ational Bayes and MCMC, respectively) while GenMiR3 uses the [non-
Bayesian] conjugate-gradient method to optimize the weights placed on the
target prediction information. TaLasso doesn't consider such information.

4. Based on their descriptions and implementations, none of the algorithms ex-
plicitly account for technical/replicate variance or otherwise allow for group-
ing of samples without taking their average value before starting the algo-
rithm.

5. With the exception of the Stingo model, which in its �time-variant�version
allows some interaction parameters to change over time, none of the models
considers an ordering of the expression samples.

In the following sections, we specify our model and demonstrate its ability to
reliably infer miR-mRNA interactions in an expression data set of samples taken
from multiple myeloma patients in di�erent stages of the disease. We use the
miRWalk [Dweep et al. 2011] database of validated targets and compare our results
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with those obtained from TaLasso, as well as Pearson correlation, as a benchmark.
Throughout, we illustrate how the natural partial ordering of the data can be used
to improve interaction inference, particularly if we are concerned mainly with
interactions speci�c to the progression of multiple myeloma development.

3.2 Methods

We have developed a Bayesian model of miR-mRNA interactions for matched
expression data (i.e. we have both miR and mRNA expression data for each
biological sample) that was designed speci�cally for partially ordered samples,
where �partially ordered� refers to the case where every sample can be said to be
�before� or �after� at least one other sample in the data set. The partial ordering
could indeed be a time-course experiment (which is usually fully ordered, linearly
in time) or it could comprise multiple branches of experimental development, such
as a disease study wherein healthy and diseased samples�possibly originally all
starting from the same healthy population�are collected over time, or in stages.

We have developed a model for partially ordered samples because prior work
in using expression data to infer miR-mRNA targeting interactions has focused
on methods that do not depend on the order of the samples, the most common
of which is Pearson correlation. We �nd it both theoretically and practically
desireable to consider an ordering of samples because in most cases we expect that
samples whose sources are more similar�in this case by disease type or stage�
should also have the most similar expression values. If we consider such a natural
ordering, we should be more likely to infer signi�cant targeting interactions that
occur from one stage to the next but whose expression levels are not necessarily
the most correlated throughout the entire data set.

Let us consider a simple example of how using an ordering of data can help
infer interaction coe�cients. Assume a fully-ordered data set of n stages S =
{s1, . . . , sn}, and we have [correctly] inferred the mean log expression values xs
and ys in stage s for a single miR x and mRNA y, which are perfectly negatively
correlated and where each has been normalized to have mean zero and standard
deviation of one. A simple model formulation for each ys, without considering the
ordering, could be

P (ys | β, λ, x1, . . . , xn) = N (βxs, λ) (3.1)

for interaction coe�cient β and precision (inverse variance) λ. If we use a non-
informative but improper uniform prior distribution for β�P (β) = lim

θ→0
N (0, θ)�

then the variational Bayesian estimates for µβ and κβ are
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µ̂β =
∑

s∈{1,...,n}

ys
xs

(3.2)

κ̂β = λ
∑

s∈{1,...,n}

x2
s (3.3)

and likewise if we consider the ordering of samples such that for s 6= 1,

P (ys | λ, x1, . . . , xn, β) = N (ys−1 + β(xs − xs−1), λ) (3.4)

the corresponding estimates are

µ̂β =
∑

s∈{2,...,n}

ys − ys−1

xs − xs−1

(3.5)

κ̂β = λ
∑

s∈{2,...,n}

(xs − xs−1)2 (3.6)

= λ
∑

s∈{1,...,n}

x2
s (3.7)

+ λ
∑

s∈{2,...,n−1}

x2
s (3.8)

− 2λ
∑

s∈{2,...,n}

xsxs−1 (3.9)

With the assumed perfect negative correlation and unit standard deviation, both
estimates (3.2) and (3.5) for µ̂β give a [correct] value of −1. Also, equation (3.3)
is the same as line (3.7); therefore lines (3.8) and (3.9) give the adjustments to the
estimated precision of β in the ordered model version as compared to the standard
version. If the sum of these is positive, the estimate for β given by the ordered
model has a higher precision and thus is more statisically signi�cant. This occurs,
for example, in the simple case where n = 4, 〈xs〉 = 〈x1, x2, x3, x4〉 = 〈−1, 1, 1,−1〉
and 〈ys〉 = 〈1,−1,−1, 1〉, where the ordered precision estimate is 8λ while the
unordered one is 4λ. In contrast, if we take a di�erent ordering of the same paired
data, 〈xs〉 = 〈1, 1,−1,−1〉 and 〈ys〉 = 〈−1,−1, 1, 1〉, both versions of the model
give a precision estimate of 4λ. If one thinks sequentially about the data, it seems
that in the former example, the miR and mRNA make two simultaneous but
opposing expression changes, one between stages 1 and 2 and another between
stages 3 and 4. In the latter example, only one such simultaneous change is
made. In many cases of miR-mRNA interaction inference, it would be desireable
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to make a distinction between these two cases, particularly in experiments designed
to measure stage-by-stage development of a process, where we might expect the
expression levels of an miR to rise for some speci�c period of the process and then
fall again.

We can also generalize a bit from these simple examples. Since the summation
in (3.8) is an approximation of the variance of the {xs} (without the �rst and last
stages), which we have normalized to 1, and the summation in (3.9) is the [lag
1] autocorrelation of the {xs}, generally speaking, the ordered model gives higher
precision for interaction coe�cients when the autocorrelation of the normalized
expression data is less than 0.5. This is not an exact rule since (3.8) does not
include the �rst or last stages, but we can see that it does not take an unreasonable
amount of expression variation between adjacent stages for the ordered model
to give higher statistical signi�cance for interaction coe�cients, when such an
ordering exists.

In addition the possibility of higher statistical signi�cance in highly varying
miR, considering the order of samples in an experiment allows us to detect pos-
itive or negative trends in expression value with respect to the process being
investigated�a feature that may prove useful in identifying the main drivers of a
developmental process such as disease, growth, aging, etc. The model also includes
scores from existing prediction algorithms for miR-mRNA targeting to better de-
termine the existence of a targeting interaction. In this paper, we have used data
(including prediction scores) from the TargetScan [Lewis et al. 2005; Friedman
et al. 2009; Grimson et al. 2007; Garcia et al. 2011] and miRanda [John et al.
2004; Enright et al. 2003] databases, but any exogenous, quantitative information
about the putative target pair could be included.

Below, we de�ne and �t our model to a previously published multiple myeloma
data set using variational Bayesian methods. Then, we check our results against
the MiRWalk [Dweep et al. 2011] database of experimentally-validated targeting
interactions, as well as against rankings of predicted target pairs by most negative
Pearson correlation coe�cient.

3.2.1 Data

We demonstrate our model using the multiple myeloma data set from Lionetti
et al. [2009], which can be downloaded from GEO [Barrett et al. 2009], accession
number GSE17498. In this data set, there are both miR (Agilent-019118 Human
miRNA Microarray 2.0) and mRNA (A�ymetrix Human Genome U133A Array)
expression values for samples from 36 patients, 34 of whom have been diagnosed
with multiple myeloma (MM) and 2 of whom have been diagnosed with plasma
cell leukemia (PCL). Unfortunately, from healthy donors there is only miR ex-
pression data and no mRNA data, so we cannot include healthy samples in our
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study. However, the diseased samples can be arranged into four Durie-Salmon
stages: IA, IIA, IIIA, and IIIB, which gives an obvious ordering for our non-PCL
samples. Because PCL is a condition related closely to, but not necessarily de-
veloping directly from (or progressing to) MM, we treat it as a separate branch
of the partial ordering, as described in the subsequent section. However, within
our partial-ordering framework it is necessary to specify some relation to other
samples, and thus we assume that PCL follows the healthiest, most normal MM
stage�in the absence of truly healthy samples�Durie-Salmon IA.

3.2.2 Partial ordering

GO

prior

IA

IIA PCL

IIIA

IIIB

IO

prior

O O O O
IA

O O O O
IIA

O O O O
PCL
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Figure 3.1: Partial orderings. The graphs above show the three di�erent partial orderings of
the data that we explore in this paper. Arrows give the direction of the ordering, where sample
A can be said to precede sample B (i.e. A < B) if in the graph an arrow points from A to B. G-O
refers to the grouped-ordered model version, in which samples of the same Durie-Salmon stage
are grouped together as replicates. I-O is the individual-ordered model version, where the groups
of smaller circles represent that di�erent samples are not grouped as replicates, but the ordering
of Durie-Salmon stages is the same as in the G-O ordering (i.e. A < B if and only if the stage
of A precedes the stage of B in the G-O ordering). And, I-R is the individual-reference model
version, where the samples are again not grouped as replicates, but each of the Durie-Salmon
stage IA samples precedes each sample of every other stage. In each partial ordering, there is a
prior distribution over the samples which are not preceded by any other samples.

In our analyses, we compare three di�erent partial orderings, which we show
in Figure 3.1. The �rst is the natural ordering: the Durie-Salmon stages in order,
plus PCL as a separate branch o� of the initial stage, stage IA. This ordering
treats patients with the same disease type and stage as replicates, and should
give results that are speci�c to the disease itself since it e�ectively ignores the
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di�erences between individuals with the same disease type. We call this ordering
the grouped-ordered (G-O) ordering.

The second partial ordering is the same as the �rst, but with the individuals
separated. We call this the individual-ordered (I-O) ordering. In this version of
the model, each individual comes after all of the individuals of the prior Durie-
Salmon stage, and again the PCL samples are after all of the IA samples. This
arrangement places less focus on the disease itself but allows the model to infer
miR-mRNA interactions based on variations between individuals of the same type.

The third partial ordering considers the stage IA samples to be references,
while all other samples come directly after them. Individuals are still considered
separately. Hence, this is called the individual-reference (I-R) ordering. This
reference-based design largely ignores the natural ordering of the data and focuses
on di�erences between individuals. Comparing the results from this ordering with
the results from the other orderings could indicate some of the advantages (and
disadvantages) of considering the natural ordering of these samples.

3.2.3 Pre-processing

Prior to the main analysis, we performed quantile normalization across all arrays of
the data set using the limma package for R [Smyth and Speed 2003; R Development
Core Team 2009]. We then performed a probewise ANOVA to test for di�erential
expression across the stages IA, IIA, IIIA, IIIB, and PCL (using individuals within
a stage as replicates) and removed those probes/probesets (for both miR and
mRNA) whose (unadjusted) p-value from the ANOVA F-test was greater than or
equal to 0.05, as well as those miRs and mRNAs not involved in any predicted
targeting interactions, leaving 28 miRs and 367 mRNAs as possible candidates for
targeting interaction. Lastly, we re-scaled the data so that each probe/set�across
all samples�had a mean of zero and a standard deviation of one.

3.2.4 Target prediction algorithms

For these analyses, we included miR-mRNA target prediction data from both Tar-
getScan [Lewis et al. 2005; Friedman et al. 2009; Grimson et al. 2007; Garcia et al.
2011] and MiRanda [John et al. 2004; Enright et al. 2003]. For each of these,
we downloaded from the corresponding web site a table of predicted miR-mRNA
interactions and the targeting scores calculated by the respective algorithms. Tar-
getScan includes a context+ score and MiRanda includes a mirSVR score. [Betel
et al. 2010] In our model, described below, we consider the predicted interactions
and these prediction scores.
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3.2.5 Model

Let us de�ne a stage as a set of expression levels s that are, for each probe/set, to
be considered replicates of each other. We assume a partial ordering O on the set
of stages S such that each stage s0 has a set of parent stages ρs0 = {s ∈ S : s <
s0 inO}. The set of parent stages for s0 can be de�ned as ρs0 = {“prior”} if s0 has
no parents and is therefore an initial stage in O (the existence of at least one initial
stage is guaranteed by the acyclic property of partial orderings). Furthermore, let
us de�ne a �development� parameter δρ,s, which intuitively represents a kind of
distance from a parent ρ to its child s, and which we include in the equations
below. Likewise, let τi be the �trend� of probe/set i in either the positive or
negative direction with respect to the ordering O, and let Λi be the precision
(inverse of variance) parameter of the expression of probe/set i thoughout all
stages.

miR parameters

Then, we assume the log expression value υi,s of each miR i in stage s, to be
normally distributed with mean

µi,s =

∑
ρ∈ρs

1
δρ,s

(υi,ρ + δρ,sτi)∑
ρ∈ρs

1
δρ,s

(3.10)

and precision

λi,s =

∑
ρ∈ρs

(
1
δρ,s

)2

∑
ρ∈ρs

1
δρ,s

Λi (3.11)

Thus, the prior mean µi,s is the weighted sum of the parents' expression values with
the developmental trend added (the trend τi multiplied by the development fac-
tor δρ,s). The weights in the weighted sum are the inverses of the developments δρ,s.
Likewise, the prior precision is the weighted average of inverse developments mul-
tiplied by the probe's stage-wise precision parameter Λi. This formulation gives
two parents equal weight in the prior distribution of a common child s if their
development parameters to that child, δρ,s, are equal. Also, as δρ,s increases for
one parent to the child, the in�uence of its expression value on the child's prior
distribution diminishes to zero.

Note that in the formula for the stage's prior precision λi,s, the probewise
precision Λi is moderated by δρ,s, in that a parent stage ρs that is more similar
to its child s�if it has a smaller value δρ,s�carries more weight and increases
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the precision in the prior distribution of the probes in stage s. This allows for
varying developmental distances between stages, where larger δρ,s imply that all
probes experience lower precision (more random noise) between stages ρ and s,
and vice-versa for smaller δρ,s.

mRNA parameters

The distributions we have assumed for mRNA expression are identical to those of
the miR, except that the developmental trend component (the product δρ,sτi) is
exchanged for an interaction component with the miR expressions υi,s. Let υs be
the vector of all miR expression values in the stage s, and let ηj be the vector of
interaction coe�cients between υs and mRNA expression level ωj,s, then ηj •(υs−
υρ)�where • is the standard vector dot product�expresses the total interaction
e�ect of all miRs on the mRNA j from stage ρ to stage s.

Speci�cally, we assume the log expression value ωj,s of each mRNA j in stage s,
to be normally distributed with mean

µj,s =

∑
ρ∈ρs

1
∆ρ,s

(ωj,ρ + ηj • (υs − υρ))∑
ρ∈ρs

1
∆ρ,s

(3.12)

and precision

λj,s =

∑
ρ∈ρs

(
1

∆ρ,s

)2

∑
ρ∈ρs

1
∆ρ,s

Λj (3.13)

where the ∆ρ,s are analagous to, but distinct from, the δρ,s we used in the miR
distributions. Likewise, the Λj are analagous to the Λi from the miR distributions,
but are inferred separately for each mRNA j, as they are for each miR i.

Technical and replicate variance

We assume two technical precisions (inverse variances) in our model. One precision
corresponds to an expression set (i.e. the precision/variance between microarrays
from the same stage) and one corresponds to replicates within one expression set
(i.e. multiple spots for the same probe/set or transcript within a microarray).

For the miR and mRNA expression levels, υi and ωj, above, we assume that
the expression levels εi,s and εj,s each probe i (miR) or probeset j (mRNA) in an
expression set m from stage s is normally distributed as

εi,m,s ∼ N (υi,s, κmiR) (3.14)
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or

εj,m,s ∼ N (ωi,s, κmRNA) (3.15)

where the second parameter κ[] in the normal distribution N () is a precision, not
a variance or standard deviation.

Furthermore, within each expression set m, we assume that the expression
data xi,m,n,s (miR) and yj,m,n,s (mRNA) for within-set replicate n and stage s are
normally distributed as

xi,m,n,s ∼ N (εi,m,s, κ
′
miR) (3.16)

or

yj,m,n,s ∼ N (εj,m,s, κ
′
mRNA) (3.17)

for the two second-level technical precisions κ′[].

Interaction parameters

Each element ηi,j of the vector of interaction coe�cients ηj metioned above is also
normally distributed as

ηi,j ∼ N (β • P , ϕ) (3.18)

where P is the vector of �xed parameters from target prediction algorithms, β is
a vector of estimated coe�cients, and ϕ is again a precision. Note that there is
no restriction of the interaction coe�cients ηi,j to only negative values, as in some
models, as we choose to allow for all regulatory e�ects, positive or negative, direct
or indirect.

If one of the included algorithms predicts that miR i targets mRNA j, we in-
clude the vector 〈1, αi,j〉 where αi,j is the prediction score from the algorithm.
We concatenate the vectors from multiple prediction algorithms such that, if
a pair {i, j} is predicted by more than one algorithm, the vector P is of the
form 〈1, αi,j, 1, α′i,j〉. In this way, the coe�cients of β that correspond to a 1 in P
determine the e�ect that inclusion on a particular list of predicted targets has on
the expression data (indirectly through estimation of ηi,j), while the coe�cients
corresponding to algorithm scores may further re�ne the value of the algorithm
in this model. (Also, an algorithm score of zero does not necessarily indicate zero
chance of targeting, and thus if we include the scores, we must also include a
constant.)
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Prior distributions

We chose conjugate prior distributions for each model parameter that required a
prior. Thus, we use vaguely informative normal distributions on the parameters
υi,0, ωj,0, and τi . Speci�cally, they all follow the distribution N (0, 10−10). Simi-
larly, the prior distribution for β is the equivalent multivariate normal with zero
mean and precision matrix 10−10I, where I is the identity matrix of the appropriate
size. We use vaguely informative gamma prior distributions on the parameters Λi,
Λj, κmiR, κmRNA, κ

′
miR, κ

′
mRNA, and ϕ.

The development parameters δρ,s and ∆ρ,s are special cases. Foremost, they
have no obvious conjugate priors, and as we have de�ned this model, their optimal
values are not unique since, for example, doubling the estimated values for δρ,s
and ∆ρ,s along with the τi would give an identical likelihood, if priors are ignored.
However, we are not concerned with the speci�c values of these parameters; we
need only their values relative to each other. Thus, in order to obtain unique
optimal values, we specify a gamma prior on the δρ,s and ∆ρ,s with shape and rate
(i.e. inverse-scale) set equal to 1.

3.2.6 Fitting the model using variational Bayesian methods

To estimate the parameters of our model, we use variational Bayesian meth-
ods. These methods are closely related to expectation-maximization algorithms
[Welling and Kurihara 2006] and have been used previously in discovering miR-
mRNA target pairs [Huang et al. 2007b,a, 2008] as well as other analyses of gene
expression data. [Beal et al. 2005; Teschendor� et al. 2005]

In short, variational Bayesian methods �nd a probability distribution
∏

iQ(θi)
(factorizable over all parameters) that is increasingly similar (via iterative updates)
to the desired posterior distribution P (θ | X) for model parameters θi ∈ θ
and data X, through use of the Kullback-Leibler divergence as a measure of
dissimilarity. As part of the calculations, one also obtains a lower bound L(Q) to
the evidence P (X), which can be helpful in judging the goodness of �t of alterative
model formulations. For a thorough explanation of variational Bayesian methods,
see Winn [2003] or Beal [2003].

The result of variational Bayesian calculations is, like with most Bayesian
methods, a set of estimated posterior probability distributions over the model pa-
rameters. Unlike Markov chain Monte Carlo and related methods, we need not
worry much about convergence of the estimated parameter distributions, since, if
implemented properly, a variational Bayesian algorithm guarantees an improve-
ment in every iterative update. Of course, calculations can be quite slow when
compared to non-Bayesian methods.

All parameters were estimated using variational Bayesian (VB) methods, with
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the exception of the δρ,s and ∆ρ,s, since they have no simple conjugate distri-
butions. Speci�cally, we treat the δρ,s and ∆ρ,s as �xed values while iteratively
updating the other parameters, and then we update these by maximizing the lower
bound L(Q) over their possible value range. More speci�cally, after �rst initial-
izing the variables to reasonable values, the algorithm sequentially updates the
posterior distribution estimate for each variable (excepting δρ,s and ∆ρ,s) and that
posterior estimate (of the same form as the conjugate prior) is utilized in all sub-
sequent steps. After all such posterior estimates have been updated, δρ,s and ∆ρ,s

are optimized by �nding the maximum likelihood estimates. Then, once again, the
posterior distribution estimates are updated for all other parameters, and so on.
This process is repeated until the parameter values change very little with each
subsequent iteration and thus it becomes no longer bene�cial to continue updates.
We found that 200 such iterations gave su�cient results.

This algorithm was coded in the R [R Development Core Team 2009] statistical
programming language.

3.3 Results

We applied our model to the multiple myeloma data set from Lionetti et al. [2009]
in three di�erent con�gurations based on our choice of partial orderings (shown
in Figure 3.1). For these analyses, we consider only those interactions which were
predicted by at least one prediction algorithm (TargetScan or miRanda), but we
would like to note that this is not necessary in our framework. We have limited
the set of candidate interactions in this way because the high number of possible
parameters in the model (all possible interactions) can be signi�cantly reduced by
considering only predicted interactions. Furthermore, target predictions are known
to have signi�cant signi�cant sensitivity [Sethupathy et al. 2006], when compared
to validated targets, even if they have unknown speci�city since a complete list of
true targets does not exist. Thus, we attempt to rank only the 1754 interactions
predicted between the 28 miRs and 367 mRNAs, ensuring that our top candidate
interactions have been predicted as well as supported by expression data.

Below, we evaluate the results and compare them with the interactions rankings
one obtains from TaLasso as well as by ranking by Pearson correlation coe�cient,
as a simple benchmark. For this, we consider both the strongest absolute value
correlations as well as the strongest negative correlation, as much evidence indi-
cates that miR-mRNA interactions are predominantly negative, and thus ranking
by most negative correlation generally improves results. [Muniategui et al. 2013]
In each of the rankings based on our model, all of the top 900+ inferred interac-
tions were negative; thus, restricting only to negative interactions has no e�ect on
these results.
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First, we checked the miRWalk database for target pairs that have been ex-
perimentally validated and we looked at their ranking according to each of the
methods. Second, we looked for enrichment of KEGG pathway [Kanehisa et al.
2008] annotation among mRNAs involved in the top 100 targeting interactions on
our lists. To do this, we used the �singular annotations� from the GeneCoDis web
tool. [Carmona-Saez et al. 2007; Nogales-Cadenas et al. 2009] Then, we exam-
ined more closely speci�c target pairs near the very top of our rankings. Lastly,
we looked at the miRs with the strongest trends through the stages of multiple
myeloma according to the G-O ordering, which we hypothesize indicates a high
likelihood of playing a role in the development of the disease.

3.3.1 Interaction validation by miRWalk

Among our data set, only �ve putative miR-mRNA targeting interactions have
been validated, according to the validation database miRWalk [Dweep et al. 2011],
though 13 more target pairs have been validated despite not being predicted by
either TargetScan or miRanda. This may indicate that heavily favoring predicted
pairs over non-predicted pairs detracts from the results more than expected. How-
ever, since one of our main goals here was to combine prediction data and expres-
sion data, we do not address the issue here.

All �ve of the validated, predicted target pairs involve the well-studied miR-17.
These �ve interactions appear at positions 63, 229, 234, 273, and 612 on our inter-
action ranking based on the G-O ordering from Figure 3.1. This is considerably
better than in the ranking by absolute value Pearson correlation (341, 402, 819,
877, and 893) and also by most negative Pearson correlation (162, 195, 468, 568,
and 604). The TaLasso results gave rankings for only four of these �ve validated
target pairs, as the TargetScan-predicted pair {hsa-miR-17, PKD1} seems to be
missing; perhaps the results list was truncated or the pair was missing from the
built-in list of predictions. However, the remaining four interactions are ranked
311, 351, 846, and 952, which is comparable to Pearson correlation.

If we divide our ranking positions, in increasing order, by the rankings by corre-
lation (e.g. we divide 63 by 341, 229 by 402, and so on), we �nd that our rankings
are, on average, 0.41 times those by absolute value correlation and 0.71 those by
negative correlation. Repeating this using the four rankings from TaLasso and the
top four from our model gives 0.35. This can be interpreted as an estimate of the
relative number of target pairs that would need to be experimentally tested based
on each ranking in order to arrive at the same number of positive validations, and
from now on we will refer to this statistic as the �average relative rank statistic�. If
we consider our ranking using the partial ordering I-O from Figure 3.1, we obtain
average relative rank statistics of 0.39 and 0.56 when compared to rankings by ab-
solute value correlation and negative correlation, respectively. Partial ordering I-R
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gives average relative rank statistics nearly identical to these.
Though there are too few existing validations for us to draw strong conclusions,

the fact that the rankings of these by our model are much closer to the top of the
list than those by the correlation (negative or absolute value) indicates that there
is at least some advantage to our partially ordered model.

3.3.2 KEGG pathway enrichment

We show in Table 3.1 all of the KEGG pathways that are enriched (FDR corrected
p < 0.05) in the top-100 list for at least one of the four models (including ranking
by negative correlation among predicted target pairs). There are considerably
more pathways with enrichment among the lists generated by our model than by
negative Pearson correlation. Speci�cally, six types of cancer appear in the lists
for our models, while there are none for the correlation list. This is promising,
as this data set comes from a cancer study, speci�cally of multiple myeloma. In
total, among the 41 genes involved in the top 100 interactions inferred by the G-O
ordering, there were 13 enriched pathways, and only two among the 56 genes in
the top 100 interactions according to ranking by negative correlation.

Amongst the three partial orderings we have considered here, there is
marginally more pathway enrichment and fewer genes involved in the top 100
targeting interactions for the G-O ordering, though both the I-O and I-R order-
ings both give much more enrichment than the rankings by TaLasso and negative
correlation.

3.3.3 Top candidate interactions

Ultimately, our goal with this analysis is to enable the identi�cation of the most
promising candidates for further biological investigation. In Figure 3.2 we show
the top ten interactions inferred by the model using the G-O ordering. The three
strongest inferred interactions involve the NR3C1 glucocorticoid receptor, which
�rst appears in the 109th interaction on a ranking of interactions by negative cor-
relation. Myeloma patients with low expression of this receptor respond poorly
to standard treatment with dexamethasone and have a poor overall prognosis,
making this molecule an intrinsically interesting candidate for further investiga-
tion. [Heuck et al. 2012] Two of the miRs inferred as targeting this gene, miR-18a
and miR-18b (part of the 5th and 6th ranked interactions by negative correla-
tion), share a seed sequence, and are associated with the miR-17∼92 cluster�a
downstream target of the c-myc oncogene. [O'Donnell et al. 2005] This cluster
is well-known to play a role in cancer development as well as normal lymphoid
development, and has recently been associated with tumorgenicity in multiple
myeloma. [Chen et al. 2011] The next strongest inferred interaction involves the
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G-O I-O I-R TaLasso Neg.Cor

Number of unique genes in the top 100 interactions 41 58 53 85 56

05200 :Pathways in cancer 3
05215 :Prostate cancer 2 3 3
05219 :Bladder cancer 2 2 2
05222 :Small cell lung cancer 2 2
05216 :Thyroid cancer 2
05214 :Glioma 2 2
05218 :Melanoma 2 2
05016 :Huntington's disease 3 4 3
05014 :Amyotrophic lateral sclerosis (ALS) 2 2 2
05010 :Alzheimer's disease 3
04976 :Bile secretion 2
04730 :Long-term depression 2
04115 :p53 signaling pathway 2 3 4
04210 :Apoptosis 2 2 2
04010 :MAPK signaling pathway 3 3
04722 :Neurotrophin signaling pathway 2
04110 :Cell cycle 2
04120 :Ubiquitin mediated proteolysis 2 4
04622 :RIG-I-like receptor signaling pathway 2 2
04144 :Endocytosis 4
04914 :Progesterone-mediated oocyte maturation 3
04114 :Oocyte meiosis 3
04142 :Lysosome 3
03060 :Protein export 3
04141 :Protein processing in endoplasmic reticulum 4

Table 3.1: Enriched KEGG pathways among genes in the top 100 interactions.

The top row gives the number of unique genes present in the top 100 miR-mRNA interactions
according to each model; the remaining rows give, per column, the number of these genes
annotated by KEGG pathway terms with signi�cant enrichment (FDR corrected p < 0.05) for
for at least one of the models proposed. A blank entry indicates that the particular pathway
was not signi�cantly enriched in the model. The column G-O refers to the grouped-ordered
model version, I-O is the individual-ordered model version, and I-R is the individual-reference
model version, while Neg.Cor is the ranking by most negative Pearson correlation (between miR
and mRNA expression pro�les) among the predicted target pairs. The horizontal lines separate
general categories of KEGG pathways, namely cancer-related pathways, other disease-related
pathways, and then remaining pathways found to be enriched by at least one of the models.

gene UBE2D3, (targeted by miR-891b) which is a ubiquitin-conjugating enzyme
known to be involved in p53 ubiquitination. [Tokumoto et al. 2011] The next
ranked interaction on our list involves the p53 tumor-suppressor (TP53)�an ex-
tremely important gene in most, if not all, cancer types�inferred to be targeted
by miR-let-7e. Unlike in many cancers, at diagnosis in multiple myeloma, p53 is
rarely seen to be mutated or deleted. As it is not changed at the genomic level, it
is therefore quite plausible that p53 may be manipulated at the level of transla-
tion by miR in this disease, making this pair an intriguing candidate interaction
as well.
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hsa−miR−609 hsa−miR−18b hsa−miR−18a hsa−miR−891b hsa−let−7e hsa−miR−125a−5p hsa−miR−335 hsa−miR−193a−3p hsa−miR−20b

NR3C1 UBE2D3 TP53 SEC14L1 NECAB3 CPNE1 YWHAZ PCBP2

Figure 3.2: The top 10 interactions according to the G-O ordering. In the above
diagram, we show the miRs (top row) and genes (bottom row) involved in the 10 most signi�cant
targeting interactions based on the G-O ordering from Figure 3.1. In each case, the inferred
interaction is negative, meaning that the miR inhibits the expression of the corresponding gene.
A red line from an miR to an mRNA indicates that the interaction was predicted by TargetScan
and a blue line indicates that the interaction was predicted by miRanda.

3.3.4 Inferred miR regulators in multiple myeloma develop-

ment

The inclusion of trend parameter τi for each miR in our model allows us to identify
miRs whose expression levels increase or decrease signi�cantly over the progression
of stages with respect to the partial ordering. Table 3.2 shows the miRs with a
corresponding trend parameter τi estimate whose posterior mean is more than
three standard deviations (based on the posterior precision estimate) from zero,
in either direction, positive or negative.

Top candidates from the table include miR-18a and miR-18b, which, as dis-
cussed above, are well-known to play a role in cancer development. Both of these
showed increased expression in advanced stages of multiple myeloma. Another
candidate is miR-194, which has been shown to be p53-dependent and a positive
regulator of this well-known tumor-supressor, creating a positive feedback loop.
Furthermore, down-regulation of miR-194 has been demonstrated to play a key
role in multiple myeloma development through its modulation of p53 signaling.
[Pichiorri et al. 2010] Our model inferred a signi�cant positive trend for miR-194,
which might be contrary to this prior expectation of down-regulation, but in any
case adds to the evidence that miR-194 is involved�perhaps in a complex way�in
the development of multiple myeloma.
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trending miR direction z-score

miR-18b + 3.88

miR-367 - 3.80

miR-18a + 3.61

miR-194 + 3.57

miR-133b + 3.54

miR-92a + 3.38

miR-554 - 3.24

miR-551a + 3.23

Table 3.2: miRs with a signi�cant estimate for the trend parameter. Shown are the
most signi�cant trend parameter estimates (τi). A �+� in the table denotes that the expression
of the miR increased throughout the progression of the partial ordering by disease stage (G-O),
and tended to be higher during later stages. Likewise, a �-� denotes that the expression of that
miR tended to be higher in early stages and lower in later stages.

3.4 Discussion

Combining miR-mRNA target prediction algorithms with expression data has
proven to be one of the best strategies for high-throughput target pair inference.
However, the exact way in which do this has been the subject of some discus-
sion. Though many methods have addressed speci�c issues in target inference,
and others have attempted a more general approach, none has fully addressed
ordered and partially ordered data sets. We tried three di�erent partial orderings
in our model, as shown in Figure 3.1. They performed similarly to each other,
but not quite the same, supporting the conclusion that the ordering does make a
di�erence, and thus should be carefully considered before analysis. Grouping and
ordering samples by disease stage seems to have enriched, if only slightly, the top
target interactions according to our KEGG anaylsis.

As illustrated in the Methods section, the order of samples (if one exists) can
a�ect the strength of inference of correlated miR and mRNA expression patterns,
and in fact this additional statistical power can be seen in a very simple example.
The model that we present in this paper addresses partially ordered data sets
by assuming that closely related samples (with respect to the ordering) should
be more similar than less closely related samples. This assumption allows the
model to outperform TaLasso and Pearson correlation (i.e. ranking of target
pairs by most negative correlation) by a noticeable margin, aided by the Bayesian
framework that inherently places more weight on measurements and variables
that have high certainty or precision. Our model's rankings of the few previously
experimentally validated target pairs were signi�cantly better in our model, and
KEGG pathways were signi�cantly more enriched, particularly for cancer-related
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pathways, which we would expect from this data set.
Both the mRNA targets and targeting miRs from our top-ranked interactions

have been previously implicated in multiple myeloma development, suggesting that
our analysis has successfully identi�ed biologically-relevant pairs from this data
set. Furthermore, some of the miRs that we have identi�ed as having a signi�cant
trend through the ordering of the stages have been veri�ed by literature as key
players in both cancer and, more speci�cally, multiple myeloma. The remaining
un-veri�ed top interactions and trending miRs may be good candidates for further
investigation.

Interestingly, though we didn't limit our interactions to be non-positive, vir-
tually all of the top 1000 interactions were negative. This is likely an e�ect of
utilizing the the prediction algorithms in the prior distributions for the interac-
tion parameters, since our model estimates coe�cients for the inclusion in (and
targeting score of) each included prediction algorithm. It is well known that miRs
typically down-regulate target mRNAs, and though there have been some reports
of up-regulation, we would expect the estimated coe�cients for predicted targets
would lead to a negative prior distribution (see equation 3.18) on the majority of
interactions, if not all of them.

One potential weakness of our model�which is shared by virtually all recent
models of miR-mRNA targeting�is that we attempt to explain all changes in
mRNA expression using miR targeting interaction coe�cients. This assumption
that miR targeting should account for all gene expression changes is patently
untrue. There are other direct processes�involving transcription factors, for
instance�as well as indirect processes that can a�ect mRNA expression. Though
it would be quite cumbersome in both data and calculation, an expanded model
taking into account other potential in�uences could prove very useful in inferring
true interactions between the various nucleic acids, proteins, etc.

Lastly, though much literature has been published on the topic, we have a lot to
learn about high-throughput inference of miR-mRNA target pairs. Experimental
validations are so sparse that it is impossible to prove conclusively which prediction
or inference techniques routinely give the best results, and in which cases each is
most appropriate. Perhaps in the near future we will see a vast increase in the
number of targets being validated, possibly through cooperation or organization
between research groups to create more complete databases (both of positive and
negative results) with which we can compare inference approaches to further re�ne
our methods and in turn more e�ciently focus our experimental e�orts into the
most promising areas.
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Abstract: MicroRNAs (miRs) are known to interfere with mRNA expression, and
much work has been put into predicting and inferring miR-mRNA interactions.
Both sequence-based interaction predictions as well as interaction inference based
on expression data have been proven somewhat successful; furthermore, models
that combine the two methods have had even more success. In this paper, I further
re�ne and enrich the methods of miR-mRNA interaction discovery by integrating
a Bayesian clustering algorithm into a model of prediction-enhanced miR-mRNA
target inference, creating an algorithm called PEACOAT, which is written in the
R language. I show that PEACOAT improves the inference of miR-mRNA target
interactions using both simulated data and a data set of microarrays from samples
of multiple myeloma patients. In simulated networks of 25 miRs and mRNAs, our
methods using clustering can improve inference in roughly two-thirds of cases, and
in the multiple myeloma data set, KEGG pathway enrichment was found to be
more signi�cant with clustering than without. Our �ndings are consistent with
previous work in clustering of non-miR genetic networks and indicate that there
could be a signi�cant advantage to clustering of miR and mRNA expression data
as a part of interaction inference.

54
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4.1 Introduction

It is known that microRNAs (miRs) can interfere with mRNA expression, poten-
tially regulating a large number of critical biological processes; for comprehensive
information and speci�c examples of ways that miRs a�ect biological processes,
visit mirbase.org. [Kozomara and Gri�ths-Jones 2011; Gri�ths-Jones et al.
2008, 2006] Though many miR-mRNA interactions have been investigated and
validated, the vast majority of such interactions is yet undiscovered. [Gäken et al.
2012] Therefore, considering the potential importance and lack of knowledge about
miR interference, much e�ort has been put into both predicting interactions based
on the short (≈22nt) sequence length of miRs as well as inferring interactions from
expression data; an overview can be found in Muniategui et al. [2013]. Though the
former approach addresses issues particular to short sequences, the latter approach
is closely related to other interaction models, particularly genetic interaction mod-
els, for which there exists even more research and literature than for miR-mRNA
interaction models. A recent review enumerates many state-of-the-art methods for
genetic interaction modeling: Penfold and Wild [2011]. The primary di�erence be-
tween miR-mRNA interaction models and the canonical genetic interaction models
is that, in genetic models, the set of potential regulators and the set of potential
regulatees are one and the same, whereas in miR-mRNA models it is assumed that
some miRs regulate some mRNAs, and no other interactions exist. Despite this
notable di�erence, when designing models of miR-mRNA interactions, there is a
lot to be learned from genetic interaction models of varying types.

Two prominent miR-mRNA interaction models, TaLasso [Muniategui et al.
2012] and GenMir [Huang et al. 2007b], utilize Lasso regression and Bayesian
networks, respectively, both of which are also used in genetic interaction models
[Beal et al. 2005; Lèbre 2009; Gustafsson et al. 2005; Fujita et al. 2007]. One
popular method of inferring genetic interactions, the Dynamic Bayesian Network
(DBN), applies only to time-series expression data, but has proven to be quite
useful in inferring interactions. [Beal et al. 2005; Lèbre 2009] It has been shown
in Godsey et al. [2012] that aspects of a DBN can be applied to miR-mRNA
interaction models if paired expression data (i.e. miR and mRNA expression data
from the same biological samples or groups) are available, given a partial ordering
of samples or groups. The requirement of a partial ordering is much more �exible
than in a traditional DBN, which requires a total ordering, and in addition often
requires the size of each step (i.e. time elapsed) between stages to be equal. The
model from Godsey et al. [2012] requires neither total ordering nor equal step size,
a �exibility which is enabled by the mutual exclusivity of the regulator set from
the regulatee set.

Another notable notion from genetic interaction models that has yet to be fully
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utilized in miR-mRNA interaction models is the idea of a regulatory cluster, and
likewise a regulated cluster. Though miR clusters and clusters of miR-regulated
mRNAs have indeed been investigated [Tanzer and Stadler 2004; Wang et al.
2009], the idea has not been incorporated into probabilistic models using paired
expression data.

I have recently shown that, in genetic DBN models, clustering of genes by
their expression pro�les improves interaction inference by reducing the interac-
tion parameter space as well as the uncertainty arising from highly correlated
potential regulators. Godsey [2013b] To summarize, it is di�cult to determine
the true regulator if two (or more) potential regulators are highly correlated, and
this high inferential uncertainty can cause both potential regulators (together with
their common regulatee) to fall far down the list of top-ranked inferred interac-
tions; thus, it is better to group highly correlated regulators together and allow
all members of the group to maintain a top ranking than to allow competition
to diminish the inferred contribution of all members. In this paper, I expand
upon this idea and adapt it for miR-mRNA interaction models. More speci�cally,
clustering components are included in a new, updated version of the sequential
miR-mRNA interaction model presented in Godsey et al. [2012]. The resulting
model and algorithm are called PEACOAT : a Prediction-Enhanced Algorithm for
Clustered, Ordered Assessment of Targeting in miR-mRNA interactions. PEA-
COAT not only o�ers the ability to infer miR-mRNA interactions as well as cluster
miRs and/or mRNAs, but can also incorporate arbitrarily many miR-mRNA tar-
get predictions and prediction scores, and it allows the user to place an arbitrarily
high or low amount of weight on such prediction information.

PEACOAT is tested on simulated networks of di�erent sizes, and both with
and without the use of prediction information. It is shown that clustering is
frequently advantageous in the inference of true miR-mRNA interactions, and
that the inclusion of helpful prediction information is likewise advantageous. The
paper analyzes when and how to use clustering and predictions, and then applies
what is learned to a data set of miR and mRNA expression from multiple myeloma
patients, comparing the results to those of the sequential model from Godsey et al.
[2012] and TaLasso.

4.2 Methods

This paper describes a new Bayesian model of miR-mRNA interaction that adds
substantial capabilities to a simpler model presented in Godsey et al. [2012]. That
model was speci�cally designed to infer miR-mRNA interactions in partially or-
dered expression data, while making use of target prediction databases/algorithms.
Here, an improved version of this model is presented and, in addition, it is com-



CHAPTER 4. miR TARGETING WITH CLUSTERS 57

bined it with a Bayesian clustering model, allowing us to reduce the dimension
of the interaction space without reducing the data set in a manner that has been
shown in genetic interaction models to infer interactions more reliably when cor-
relation between interacting elements might be high Godsey [2013b].

Therefore, while this model requires paired miR-mRNA expression data and
a partial ordering of samples or groups of samples, the partial ordering can be
made to resemble a reference design, or indeed any other design of choice, as long
as every sample is designated to precede or follow at least one other sample in
the partial ordering. However, this model's strengths lie in inferring interactions
in inherently partially ordered data (e.g. development stages, time series, etc.)
where correlation between regulatory actors (i.e. miRs) is often high.

4.2.1 Model speci�cations

In short, the model is formulated as in Godsey et al. [2012], with two notable
modi�cations as well as the incorporation of clustering. The �rst exception is
the speci�ed partial ordering of sample stages only to the mRNA and not to the
miR expression values. Instead of prior distributions based on a stage's speci�ed
parent stage(s), it is assumed that the miR expression values in each stage are
normally distributed from the same prior distribution. This gives a lower prob-
abilistic penalty to large changes in expression between consecutive stages and
better enables proper �tting of miR parameters across all stages. The second
notable change from the model in Godsey et al. [2012] is that the two model
precisions within the interaction parameters are tied together so that we may a
priori specify the level of in�uence the target predictions have on the inferred
interactions, when compared to the in�uence of the expression data. The model
in Godsey et al. [2012] typically, through optimization of parameters and priors,
placed high emphasis on the target predictions, but this is not always desireable
and the new model includes a �xed parameter allowing the adjustment of this
in�uence; more details can be found below.

miR and mRNA expression parameters

For a set of partially-ordered stages such that each stage s0 has a set of parent
stages ρs0 = {s ∈ S : s < s0} according to the partial ordering, and given that
there are NmiR total miRs, Nm total mRNAs, KmiR miR clusters, and Km mRNA
clusters, each miR cluster expression value FmiR

k,s , for cluster k and stage s, follows
the distribution

FmiR
k,s ∼ N (0, λF ) (4.1)
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where λF is a scalar precision. By not considering the partial ordering among the
stages for miR expression, both the development and trend parameters included
in Godsey et al. [2012] cannot be included, but we are left with a slightly simpler,
more focused model.

The cluster expression values Fm
k,s for mRNA cluster k and stage s are modeled

in the same manner as individual mRNA expression was in Godsey et al. [2012].
That is, given a scalar development parameter ∆ρ,s (intuitively a distance) from a
parent stage ρ to its child s, the Fm

k,s are assumed to be normally distributed with
mean

µk,s =

∑
ρ∈ρs

1
∆ρ,s

(
Fm
k,ρ + ηk • (FmiRs − FmiRρ )

)
∑
ρ∈ρs

1
∆ρ,s

(4.2)

and precision

λk,s =

∑
ρ∈ρs

(
1

∆ρ,s

)2

∑
ρ∈ρs

1
∆ρ,s

Λk (4.3)

where the vector ηk contains interaction coe�cients between mRNA cluster k and
all miR clusters, the vector FmiRs contains the values FmiR

s,l for all miR clusters l,
and Λk is a precision parameter of the expression of cluster k.

For each miR or mRNA i, it is assumed that i belongs to exactly one cluster
k (either a miR cluster or an mRNA cluster), and that its expression ωΞ

i,s�where
Ξ is either �miR� or �m� (short for mRNA)�is normally distributed about the
cluster expression FΞ

k,s, as in

ωΞ
i,s ∼ N (FΞ

k,s, γk,s) (4.4)

It is also assumed that the mean expression εΞ
i,s,m of miR or mRNA i from a given

expression set m (e.g. the mean of repeated spots on microarray m) in stage s is
normally distributed as

εΞ
i,s,m ∼ N (ωΞ

i,s, κΞ) (4.5)

Furthermore, within each expression set m, it is assumed that the expression
data xΞ

i,s,m,n for within-set replicate n (e.g. the nth replicate spot on a microarray)
and stage s are normally distributed as

xΞ
i,s,m,n ∼ N (εΞ

i,s,m, κ
′
Ξ) (4.6)
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where again Ξ is either �miR� or �m� (�mRNA�).

Interaction parameters

For miR cluster l and mRNA cluster k, each element ηk,l of the vector of interaction
coe�cients ηk mentioned above is normally distributed according to

ηk,l ∼ N

( ∑
i∈l,j∈k

Θi,j, ϕ

)
(4.7)

for miRs i and mRNAs j, so that the cluster interaction parameter ηk,l is assumed
to be the sum of all individual miR-mRNA interaction parameters Θi,j such that
miR i is in miR cluster l and mRNA j is in mRNA cluster k. These individual miR-
mRNA interaction parameters Θi,j are assumed to be distributed as in Godsey
et al. [2012], but with the addition of the prediction weight value Υ ∈ (0,∞),
which is multiplied by the same precision parameter ϕ as above, as in

Θi,j ∼ N (β • P i,j,Υϕ) (4.8)

allowing arbitrary weight to be placed on the targeting predictions relative to the
ηk,l. The vector P i,j contains �xed parameters concerning miR i and mRNA j
from target prediction algorithms, and β is a vector of estimated coe�cients.

Prior distributions

Conjugate prior distributions are chosen, where possible. Thus, normal prior dis-
tributions on the parameters FmiR

i,s and Fm
i,0 were chosen, as well as gamma prior

distributions on Λj, γk,s, κmiR, κmRNA, κ
′
miR, κ

′
mRNA, and ϕ. The prior distri-

bution for β is the equivalent multivariate normal with zero mean and precision
matrix 10−10I, where I is the identity matrix of the appropriate size. The model �t-
ting begins with vaguely informative priors and then iteratively updates the prior
distributions to maximize the marginal likelihood, as in Godsey et al. [2012] and
Beal et al. [2005]. The development parameters ∆ρ,s are again treated as �xed,
though as in Godsey et al. [2012] the parameters are typically updated (unless
stated otherwise) to maximize the marginal likelihood.

4.2.2 Fitting the model using variational Bayes methods

Variational Bayesian methods are used to estimate the parameters of our model,
as in Godsey et al. [2012]. Our methods of model �tting (though not necessarily
the model itself) are very similar to those of Huang et al. [2007b,a, 2008] in dis-
covering miR-mRNA target pairs as well as other analyses of gene expression data
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in Beal et al. [2005] and Teschendor� et al. [2005]. For a thorough explanation
of variational Bayesian methods, see Winn [2003] or Beal [2003]. This algorithm
was coded in the R [R Development Core Team 2009] statistical programming
language.

4.2.3 Target prediction algorithms

This paper analyzes miR-mRNA target prediction data from both TargetScan
[Lewis et al. 2005; Friedman et al. 2009; Grimson et al. 2007; Garcia et al. 2011]
and MiRanda [John et al. 2004; Enright et al. 2003]. For each of these, a table
of predicted miR-mRNA interactions and the targeting scores calculated by the
respective algorithms was downloaded. TargetScan includes a context+ score and
MiRanda includes a mirSVR score. [Betel et al. 2010]

If one of the included algorithms predicts that miR i targets mRNA j, the vec-
tor 〈1, αi,j〉 is used, where αi,j is the prediction score from the algorithm. The vec-
tors from multiple prediction algorithms are concatenated such that, if a pair {i, j}
is predicted by more than one algorithm, the prediction parameter vector P i,j is
of the form 〈1, αi,j, 1, α′i,j〉.

4.2.4 Simulations

Data were simulated in order to evaluate the performance of the model under
di�erent conditions. Since there is no gold standard data set including all true-
positive and true-negative miR-mRNA interactions, the simulated data sets are
used as a substitute in which it is known whether a true interaction exists in each
case.

The simulated networks consist of miR and mRNA expression data for each
of eight ordered stages/samples. For each of the eight stages, there are three
replicates for each mRNA type. To do this it is assumed that, for any given
miR-mRNA pair, there is a 10% chance that the pair is predicted by our �ctional
targeting database. Then, it is assumed that the predicted pairs have a higher
probability of being true target pairs: each predicted pair has a 50% chance of
being a true target pair while non-predicted pairs have a 10% chance. The choice
of each pair as true, according to these probabilities, is independent, and each
true target pair is assigned a random negative interaction coe�cient by taking the
negation of a random draw from a gamma distribution with shape=rate=1. These
are treated as the true interactions.

The miR expression data are then simulated through a random walk process
starting at t = 0 and ending at t = 8, with each subsequent step, starting at
position 0, chosen by the standard normal distribution. The data from points
t = 1 through t = 8 are then used as simulated miR data. From these simulated
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miR expression values, the true interaction matrix is used to generate mRNA
expression data for the same eight time points. Finally, the three �technical�
replicates of each of the eight time points are created and independent Gaussian
noise, with variance 0.1, is added to each data point; this is the �nal data set.

4.2.5 Multiple myeloma data

The model is demonstated using the multiple myeloma data set from Lionetti
et al. [2009], which can be downloaded from GEO [Barrett et al. 2009], accession
number GSE17498. In this data set, there are both miR and mRNA expression
values for samples from 36 patients, 34 of whom have been diagnosed with multiple
myeloma (MM) and 2 of whom have been diagnosed with plasma cell leukemia
(PCL). Unfortunately, from healthy donors there is only miR expression data and
no mRNA data, so healthy samples cannot be included in our study. However, the
diseased samples can be arranged into four Durie-Salmon stages: IA, IIA, IIIA,
and IIIB, which gives an obvious ordering for our non-PCL samples.

As in Godsey et al. [2012], prior to the main analysis, quantile normaliza-
tion was performed across all arrays of the data set using the limma pack-
age for R. [Smyth and Speed 2003; R Development Core Team 2009] I then
performed a probewise ANOVA to test for di�erential expression across the
stages IA, IIA, IIIA, IIIB, and PCL (using individuals within a stage as repli-
cates) and removed those probes/probesets (for both miR and mRNA) whose
(unadjusted) p-value from the ANOVA F-test was greater than or equal to 0.05,
as well as those miRs and mRNAs not involved in any predicted targeting in-
teractions, leaving 28 miRs and 367 mRNAs as possible candidates for targeting
interaction. Lastly, the data were re-scaled so that each probe/set�across all
samples�had a mean of zero and a standard deviation of one.

4.3 Results

Below, details are given for the performace of PEACOAT on simulated data sets
as well as a microarray data set of multiple myeloma samples.

4.3.1 Simulations

Five simulated networks are evaluated, with 10 miRs and 10 mRNAs, as well as
5 networks with 25 miRs and 25 mRNAs. When inferring interactions for the
simulations, all development parameters ∆ρ,s are left at a �xed at a value of 1,
and they are not updated. This saves a considerable amount of time without
materially a�ecting the integrity of the simulation results. The prediction weight
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parameters are set to Υ = 1. For each simulated network and model con�guration
mentioned, a range of are tried, and for each of these 5 models were �t, each
starting from di�erent random parameter values.

In order to evaluate the performance of the model in inferring predictions,
the AUROC statistic (area under the receiver operator characteristic) was used.
Given a ranked list of interactions by statistical signi�cance and a cut-o� point
on that list, The receiver operating characteristic (ROC) is the true positive rate
(proportion of true interactions appearing above the cut-o�) divided by the false
positive rate (proportion of false interactions appearing above the cut-o�). The
AUROC is the area under the curve generated by calculating the ROC for all
possible cut-o� points. In general, it is a good measure of whether or not the
items at or near the top of the list are true or not, and thus provides a general
idea of the veri�ability in practice of miR-mRNA interactions with the highest
statistical signi�cance.

Table 4.1 show the AUROC scores for PEACOAT over a range of cluster
numbers on the 5 simulated networks with 10 miRs and 10 genes. For each network
and number of clusters the AUROC shown is that of the inferred model with
the highest likelihood score among the �ve model �ts with random parameter
initializations. For all networks, the highest AUROC is obtained by having fewer
than 10 clusters, leading us to believe that clustering aids in interaction inference;
however, the best number of clusters di�ers between networks, and, as shown in
the table, setting the number of clusters to 7 is the only choice that out-performs
10 clusters (i.e. no clustering) in most cases.

The simulated networks with 25 miRs and genes, on the other hand, are best
inferred using 11-15 clusters. As shown in Table 4.2, using a number of clusters
in the range of 11-15 out-performed the no-clustering model 60-80% of the time,
depending on the exact number of clusters. Furthermore, a randomly selected
model within this range (instead of choosing the most likely of the 5 randomly
initialized models for each cluster number), has a 68% chance of out-performing
the no-clustering model. That implies that, when given a choice between �tting a
model without clustering and �tting one with clustering, it is advantageous, more
often than not, to choose to cluster, given the manner by which our simulated
data were generated.

4.3.2 Multiple myeloma data

Given that the multiple myeloma data set, after pre-processing, contains 28 miRs,
PEACOAT was �t to the data using a number of clusters from the optimal range
from the simulated networks of size 25. Since 28 is slighly larger than 25, 15 clus-
ters was chosen as an appropriate number. The greatly increased computational
time on this larger data set prevents us from trying more model �ts and cluster
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Number of clusters: 3 4 5 6 7 8 9 10
Network 1: 0.677 0.637 0.664 0.667 0.711 0.732 0.671 0.712
Network 2: 0.487 0.545 0.482 0.608 0.558 0.515 0.507 0.532
Network 3: 0.416 0.450 0.486 0.498 0.581 0.531 0.550 0.537
Network 4: 0.634 0.518 0.651 0.647 0.655 0.592 0.580 0.652
Network 5: 0.588 0.682 0.825 0.825 0.723 0.819 0.779 0.732
% better than no clustering:
each best model (of 5): 0% 20% 20% 40% 60% 40% 40% 0%
all models (5 models × 5 data sets): 12% 36% 20% 44% 56% 32% 40% 0%

Table 4.1: Size 10 network AUROC scores. For each of 5 simulated data sets, the table
shows the AUROC from the highest-likelihood inferred network (of 5) from each of a range of
cluster numbers. The best score for each network is shown in bold. The bottom two rows give
(1) the percentage of data sets for which the best model for the particular number of clusters
out-performed the best no-clustering (i.e. 10 cluster) model, and (2) the percentage of the all
models �t for the particular number of clusters that out-performed the best no-clustering model.

Number of clusters: 11 13 15 17 19 21 23 25
Network 1: 0.709 0.674 0.628 0.565 0.590 0.596 0.598 0.609
Network 2: 0.530 0.614 0.593 0.524 0.603 0.603 0.639 0.601
Network 3: 0.591 0.606 0.639 0.557 0.624 0.546 0.570 0.588
Network 4: 0.538 0.506 0.521 0.559 0.611 0.593 0.612 0.617
Network 5: 0.632 0.634 0.641 0.632 0.603 0.568 0.574 0.520
% better than no clustering:
each best model (of 5): 60% 80% 60% 20% 60% 40% 40% 0%
all models (5 models × 5 data sets): 68% 68% 68% 40% 44% 28% 28% 0%

Table 4.2: Size 25 network AUROC scores. For each of 5 simulated data sets, the table
shows the AUROC from the highest-likelihood inferred network (of 5) from each of a range of
cluster numbers. The best score for each network is shown in bold. The bottom two rows give
(1) the percentage of data sets for which the best model for the particular number of clusters
out-performed the best no-clustering (i.e. 25 cluster) model, and (2) the percentage of the all
models �t for the particular number of clusters that out-performed the best no-clustering model.
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numbers. The results using 15 clusters were compared to the results from the
unclustered individual-ordered (I-O ; where samples are ordered by developmental
stage and samples from the same stage are not treated as replicates) model from
Godsey et al. [2012] in order to show that PEACOAT with clustering can improve
the accuracy of predicted interactions.

Table 4.3 shows the KEGG pathway terms [Kanehisa et al. 2008] that are en-
riched within the set of unique genes appearing in the top 100 ranked interactions.
Enrichment was calculated using the GeneCoDis tool. [Carmona-Saez et al. 2007;
Nogales-Cadenas et al. 2009]

I-O model TaLasso PEACOAT

Number of unique genes in the top 100 interactions 54 84 25
05215 :Prostate cancer 3 (0.000511) 2 (0.002343)
05214 :Glioma 2 (0.005557) 2 (0.001211)
05218 :Melanoma 2 (0.006818) 2 (0.001498)
05219 :Bladder cancer 2 (0.002509)
05016 :Huntington's disease 4 (0.000296)
04115 :p53 signaling pathway 3 (0.000239) 2 (0.001408)
05010 :Alzheimer's disease 3 (0.003057)
05014 :Amyotrophic lateral sclerosis (ALS) 2 (0.003820)
04622 :RIG-I-like receptor signaling pathway 2 (0.007008)
04976 :Bile secretion 2 (0.007008)
04210 :Apoptosis 2 (0.010362)
04120 :Ubiquitin mediated proteolysis 4 (0.0005292)
04960 :Aldosterone-regulated sodium reabsorption 2 (0.000539)
04722 :Neurotrophin signaling pathway 2 (0.004585)
05160 :Hepatitis C 2 (0.005331)

Table 4.3: Enriched KEGG pathways among genes in the top 100 interactions.

The top row gives the number of unique genes present in the top 100 miR-mRNA interactions
according to each model; the remaining rows give, per column, the number of these genes
annotated by KEGG pathway terms with signi�cant enrichment (FDR corrected p < 0.05) for
each of the models. The [uncorrected] hypergeometric p-value is given in parentheses. A blank
entry indicates that the particular pathway was not signi�cantly enriched in the model. Cancer-
related KEGG pathways are shown at the top of the table, with other enriched pathways below.

Though fewer KEGG pathways were found to be signi�cantly enriched by
PEACOAT (7 pathways) than by the I-O model (11 pathways), the main concern
is cancer-related pathways, of which the two models indicated 3 and 4 pathways,
respectively. Of note is that PEACOAT found 3 pathways to be signi�cant among
only 25 genes. More importantly, the enrichment p-values for these three pathways
are more signi�cant than all but one of the 4 pathways found signi�cant by the
I-O model, indicating that a researcher is more likely to �nd a gene related to one
of these pathways by independently verifying some genes from the list generated
by PEACOAT than by the non-clustering model. This is true admittedly only by
a narrow margin, but nonetheless provides further evidence of the usefulness of
clustering within a miR-mRNA targeting model.
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4.4 Discussion

The results given in this paper have shown that there are signi�cant advantages to
using clustering within a miR-mRNA interaction model. Our algorithm, which ex-
pands upon a previous algorithm incorporating both expression data and sequence-
based predictions, performs best when clustering is enabled, as shown with both
simulated and biological data. Since the algorithm fully integrates a version of a
dynamic Bayesian network with a clustering model, the clusters and miR-mRNA
interactions can be inferred simultaneously via an interative variational Bayesian
algorithm.

First, the results showed that, given our simulated data with 10 miRs and 10
mRNAs, the optimal number of clusters was typically 7, but varied from 5 to 8.
For the 10-miR networks, choosing 7 clusters gave better results than no-clustering
in the majority of cases. One might expect that choosing 8 or 9 clusters would
also give better results, since 7 clusters was better than 10 (i.e. no clustering),
but this was not the case. Most likely, this is the result of two factors: (1) there
is some randomness in the results, particularly when there are only �ve networks
that were tested, and (2) choosing 10 clusters by design disables the clustering
algorithm and removes an entire layer of inference that could potentially cause
a lot of uncertainty in results. That is, when clustering is disabled, the cluster
membership variables are �xed to exact values, and this absolute certainty can
make the interaction inference algorithm converge much more quickly. This is
something that could be tested rigorously in the future.

For the simulated networks of 25 miRs and 25 mRNAs, clustering proved much
more valuable. The optimal number of clusters, depending on speci�c network,
ranged from 11 all the way to 25, but choosing a number of clusters between 11
and 15 gave better results than a no-clustering model 68% of the time. This is
strong evidence that clustering improves inference, particularly when few samples
are present (in this case, 8 time points).

Lastly, when applied to a multiple myeloma data set, PEACOAT inferred 3
cancer-related KEGG pathways that were signi�cantly enriched among the top 100
interactions. The level of signi�cance of these enriched pathways was better than
the top three cancer-related pathways from the non-clustering model upon which
PEACOAT was based. If the simulated data proved that PEACOAT could infer
true interactions more strongly with clustering than without, then these results
demonstrate that the algorithm is a step forward in miR-mRNA target inference
from real expression data.

It is commonly acknowledged that some genes work together as groups or mod-
ules within certain processes to accomplish a task, and that these genes are often
co-expressed or at least highly correlated under certain circumstances. There is
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no reason to believe that miRs behave otherwise. Admitting that miRs sometimes
form functional or de-facto clusters gives extra statistical power to network infer-
ence tasks. In a linear model such as PEACOAT as well as the most commonly
used network inference tools, causality cannot be determined if two potential reg-
ulators are highly correlated, and only clustering can avoid the adverse e�ects that
such uncertainty causes.

The results have shown using simulated data that algorithms with clustering
can outperform algorithms with no clustering with regards to the task of miR-
mRNA network inference, particularly when more miRs are included as potential
regulators. On biological data, PEACOAT found more highly enriched gene func-
tion than non-clustering algorithms. Collectively, these results suggest, �rst of
all, that the clustering of miRs is potentially a critical part of faithfully inferring
miR-mRNA network interactions, and second of all that PEACOAT is a valuable
and signi�cant step in the right direction.

PEACOAT represents the state of the art in miR-mRNA interaction inference,
incorporating both expression data and sequence-based target prediction, plus an
integrated clustering algorithm that infers cluster members concurrently with the
interactions themselves.

Source code for PEACOAT, in the R language, is freely available from the
author at https://github.com/briangodsey/peacoat.
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Abstract: Though athletics statistics are abundant, it is a di�cult task to quan-
titatively compare performances from di�erent events of track, �eld, and road
running in a meaningful way. There are several commonly-used methods, but
each has its limitations. Some methods, for example, are valid only for running
events, or are unable to compare men's performances to women's, while others
are based largely on world records and are thus unsuitable for comparing world
records to one other. The most versatile and widely-used statistic is a set of scor-
ing tables compiled by the IAAF, which are updated and published every few
years. Unfortunately, these methods are not fully disclosed. In this paper, we
propose a straight-forward, objective, model-based algorithm for assigning scores
to athletic performances for the express purpose of comparing marks between dif-
ferent events. Speci�cally, the main score we propose is based on the expected
number of athletes who perform better than a given mark within a calendar year.
Computing this naturally interpretable statistic requires only a list of the top per-
formances in each event and is not overly dependent on a small number of marks,
such as the world records. We found that this statistic could predict the quality of
future performances better than the IAAF scoring tables, and is thus better suited
for comparing performances from di�erent events. In addition, the probabilistic
model used to generate the performance scores allows for multiple interpretations
which can be adapted for various purposes, such as calculating the expected top
mark in a given event or calculating the probability of a world record being broken
within a certain time period. In this paper, we give the details of the model and
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the scores, a comparison with the IAAF scoring tables, and a demonstration of
how we can calculate expectations of what might happen in the coming Olympic
year. Our conclusion is that a probabilistic model such as the one presented here
is a more informative and more versatile choice than the standard methods for
comparing athletic performances.

5.1 Introduction

Quantitatively comparing performances from di�erent athletic events and speci-
fying how much more impressive one performance is than another are not simple
tasks. There are a few good models that are valid for running events, particularly
longer distances, namely those by McMillan [2011], Cameron [1998], Riegel [1977],
and Daniels and Gilbert [1979]. These models rely on physiological measurements
such as speed and running economy to compare performances at di�erent race
distances, either for men or for women, but not between them.

Purdy Points [Gardner and Purdy 1970] have long been used to compare marks
from di�erent events in both track and �eld, but these scores are based mainly
on the world records of each event at a particular date in the past, which leads
to two main disadvantages: (1) it is impossible to compare world records to each
other if the model is based on them, and (2) basing the model on such a small
data set leads to much uncertainty and variation in the scores as the records and
model evolve over time. In other words, if a particular world record is �weak� in
some sense, Purdy points will likely unfairly assign a higher score to performances
in that event when compared to others.

Currently, the most popular method for comparing performances across all
events in track and �eld as well as road running is to consult the IAAF scoring
tables. [Spiriev and Spiriev 2011] These tables are updated every few years using
methods that are not fully disclosed, with the last two updates occurring in 2008
and 2011. The IAAF is the main o�cial governing body for international athletics,
and they also publish the o�cial scoring tables for �combined events competitions�
such as the heptathlon and decathlon. These �combined events� consist of seven
women's and ten men's events, respectively, and which are contested at most
major international athletics competitions, and the winner is declared to be the
competitor with the highest point total from all of the events. These combined
events scoring tables were intended to assign a similar amount of points to a
performances that are �similar in quality and di�culty�. [International Association
of Athletics Federations 2001] All point values P in these tables can be calculated
using a formula of the form P = a(M−b)c, whereM is the measured performance
(use M = −T for running times T , where a lower performance is better) and a, b,
and c are constants estimated by undisclosed methods. [International Association
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of Athletics Federations 2001] The combined events tables are not the same as
the general IAAF scoring tables, but it may be deduced that both sets of tables
are produced using similar methods. Which data are used and how exactly the
constants are estimated is not clear.

In this publication, we introduce a method of scoring athletic performances
based on the idea that a good performance is a rare or improbable performance.
Two very common reasons why one might think that an athletic performance is
good are:

1. A performance is good if few athletes improve upon it, or

2. A performance is good if it is close to or improves upon the [previous] best
performance.

The �rst reason is important because it puts emphasis on what has actually
happened. In other words, if an athlete is in the top ten in the world in her
event, she is likely better than an athlete who is ranked 50th or 100th. On the
other hand, the second reason is important because it focuses more on what is
possible. Sometimes in sport, a revolution occurs, whether in training, technique,
equipment, or facilities, and performances improve dramatically. Certain events in
history cause people to re-think what they thought was good�Bob Beamon's 1968
Olympic long jump in Mexico City, Paula Radcli�e's 2003 London Marathon, and
more recently Usain Bolt's 2009 World Championship 100m run in Berlin come
to mind. In some of these cases, but not in others, what we once thought was
unthinkable becomes commonplace. In 1996, many people thought that Michael
Johnson's 200m world record would last an eternity�it was revolutionary�but
now it is only fourth on the all-time list. The men's marathon record has dropped
tremendously in recent years, carried in part by Haile Gebreselassie and Paul
Tergat, who accomplished the same feat for the 10,000m run in the 1990s. The
point is only that a superb, dominating performance might be one of the greatest
feats ever witnessed, but it also might be an inevitability. Usain Bolt's 9.58s
mark in the Berlin 100m dash in 2009 is certainly impressive, but we saw three
men running 9.72s or faster in the 100m dash in 2008, all under the world record
from 2007; so how impressive was 9.58s really? Is it a statistical outlier, or is it
the expected result of a general increase in performance level which by chance had
not yet produced the outstanding performance that was bound to happen? These
are some questions this paper was intended to answer.

The methods introduced here utilize a large amount of historical data to esti-
mate directly the improbability of athletic performances. Using a data set consist-
ing of the top n performances of all time�where n is generally well over 100 and
can be di�erent for each event�we estimate a log-normal distribution for each
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event, allowing us to calculate directly both the probability that a speci�c mark is
exceeded as well as the expected number of such performances within a given time
period. We use this model to predict the number and quality of top performances
in the subsequent years, for data up until the year 2000 and also 2008, and we
show that our scoring tables based on data prior to 2008 correlate more highly
with actual data than do the 2008 IAAF scoring tables. Lastly, we look ahead
to the coming year and the 2012 Olympic Games in London, and we determine
which world records are most in danger of being broken and which are most likely
to last a while longer.

5.2 Methods

In general, we estimate a log-normal distribution for each athletic event k using
a list of the best nk marks from that event. Equivalently, we assume that the
natural logarithms of performances from each event are normally distributed. We
use this second formulation throughout this paper.

A list of best marks represents only one tail of the distribution, and so for
simplicity we convert marks so that we perform all calculations on the lower tail.
For running events, a lower time is better, and thus we take only the natural
logarithm of the times, in seconds, before �tting a normal distribution to the
data. For throwing and jumping events, a higher mark is better, so we assume
that the inverse (negative) of the natural logarithm is normally distributed. This
does not cause any adverse consequences as long as we again take the inverse
before converting back to an actual mark, typically in centimeters (cm).

Figure 5.1 illustrates how a normal distribution can be �t to a list of top [log-
]performances, represented by a histogram. Since we are working exclusively with
the tail of the distribution, the parameters must be estimated from the shape of
the tail.

In our �rst set of analyses, we �t the model to the data as it would have been
at the beginning of 2000, and we test its predictive ability for the subsequent
years. Below, we elaborate on exactly how we calculate these predictions and
their comparison with actual outcomes.

In the second set of analyses, we �t the model to the data as it would have
been at the beginning of 2008, and we test its predictive ability for the following
four years. Then we generate a set of scoring tables analogous to the IAAF scoring
tables and we compare some predictions that could be made from the tables to
those of the IAAF scoring tables. Granted, the IAAF may not have intended for
such speci�c predictions to be made, but we try to be as fair as possible based
on what it might mean for one athletic performance to be �better� than another.
We think that, generally, performances that are given equal scores should, in any
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Figure 5.1: Illustration of model �t. Both panels in this �gure show a histogram of log-
performances for the men's 400m dash (all data until the present day) as well as the �tted normal
distribution curve that is re-scaled to match the histogram. The left panel gives a wider view,
while the right panel shows in more detail the area of the graph which contains performances
appearing on the list of top marks.

given year, (1) have approximately the same number of marks exceed them, (2)
should have the same chance of being broken, and (3) should have a comparable
relative margin (in percent) between itself and the best mark of the year.

We then give the results of a third set of analyses that uses data through
October 1st, 2011, including predictions about the numbers of top performances
that will occur in the coming years as well as what we expect the top mark to be
in each event and the probabilities of new world records being set.

5.2.1 Data

An ideal data set would consist of a complete list of every performance by an
elite athlete in the modern era of athletics. Such a list, as far as we can tell,
does not exist. We do have, however, lists of the best performances ever. The
lists compiled by www.alltime-athletics.com [Larsson 2011] include all of the
top performances of all time�list lengths ranging from a few hundred to several
thousand, depending on the event. We have data for all track and �eld events con-
tested in the modern Olympic Games for men and women, except the heptathlon
and decathlon, plus the marathon, half marathon, one mile run and 3000m run.
We assume that these lists are complete, in the sense that each list is indeed the
best nk performances for event k, with no missing marks.

For the three time periods we consider�to which we will refer by year, 2000,
2008, and 2012�we do two sets of analyses, one using all data prior to that year,
and the other using data from only the prior 5 years.
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The performance lists for performances prior to the present day (1 Octo-
ber 2011) have lengths between 215 and 9672, with a median of 1596.5. For
the �ve years prior to the present day, list lengths range from 10 to 4630, with
a median of 275. The women's one mile run is the shortest list, and the second
shortest list has 51 entries.

The performance lists for performances prior to 2008 have lengths between 205
and 5547, with a median of 1273. Using �ve years of data prior to 2008 gives a
range of list lengths from 18 to 4235, with a median of 298.5. The list of length 18
belongs to the women's one mile run, and the next shortest is the women's shot
put, with 38 entries. These are special cases where either the event is rarely
contested (one mile run) or has a dearth of recent top performances (shot put).
All other lists include at least 68 performances.

The performance lists for performances prior to 2000 have lengths between 63
and 3761, with a median of 790. For the �ve years prior to 2000, list lengths range
from 52 to 1288, with a median of 252.5.

5.2.2 The model

A normal (or log-normal) distribution takes two parameters: mean µ and vari-
ance σ2. Given these parameters, we can calculate the probability pa that a
particular performance in event k exceeds a speci�ed mark a using the formula:

pa =

a∫
−∞

N(x | µk, σ2
k)dx (5.1)

where a is a speci�ed performance (natural logarithm of a mark, inverted for
events in which greater marks are better) and N(x | µk, σ2

k) is the normal dis-
tribution probability density function (pdf). Equation 5.1 is equivalent to the
cumulative distribution function (cdf) of the normal distribution with mean µk
and variance σ2

k, which we call F (a | µk, σ2
k). If we accurately estimate µk and σ

2
k,

then pa is easy to compute.
We can use F (a | µk, σ2

k) to formulate the pdf of a normal distribution truncated
at ck as:

pk(x | µk, σ2
k) =

{
N(x|µk,σ2

k)

F (ck|µk,σ2
k)

for x ≤ ck

0 elsewhere
(5.2)

Bayes' Theorem then gives the un-normalized posterior density for the model
parameters:
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`(µk, σ
2
k | Xk) =

∏
x∈Xk

N(x | µk, σ2
k)p(µk)p(σ

2
k)

F (ck | µk, σ2
k)

(5.3)

where Xk is the set of performances on the list for event k, and p(µk) and p(σ
2
k)

are the prior probability distributions of µk and σ
2
k, respectively.

5.2.3 Development of an empirical prior

In general, we would like to use non-informative prior distributions for our model
parameters µk and σ2

k, but when �rst �tting our model to the data, it quickly
became clear that there was much uncertainty about the total population size Nk

for each event k. So, we used an empirical Bayes approach to estimate reasonable
prior expectations for the Nk in order to reduce this uncertainty.

That is, the posterior densities suggested that when using non- or weakly-
informative priors for each event, many {µk, σ2

k} pairs were nearly equally likely,
and they gave a wide range of values forNk, as calculated according to the following
relation:

F (wk | µk, σ2
k) =

nk
Nk

(5.4)

where, nk is the [constant] length of the list of best performances for event k,
and wk is the worst mark on that list. Equation 5.4 is inherently true, as it says
only that the cumulative density through the region for which we have data�i.e.
the tail�is equal to the size of the data set, nk, divided by the size of the largest
possible data set, Nk.

In order to reduce this uncertainty over the Nk and ensure that the estimated
population sizes for di�erent events were similar, we re-parametrized the model,
using equation 5.4, to use Nk as a parameter instead of σ2

k. Then, we assume
a log-normal prior distribution for the Nk, with parameters µN and σ2

N , as well
as a uniform prior distribution over all real numbers for the µk, which is non-
informative and improper.

We would, ideally, optimize the parameters µN and σ2
N of the prior for Nk, as

suggested by Mackay [1999], iteratively as we �t the model, but since the model
is �t independently for each event and because calculation takes a considerable
amount of time, we are not able to use many iterations. We chose to approximate
two such iterations, where in the �rst iteration we �t all models using a very
weakly-informative prior for Nk (i.e. µN = 10, 000 and σ2

N = e20), and then, in the
second iteration, we re-�t the models with updated parameters µN and σ2

N , which
were optimized based on point estimates for the Nk. Speci�cally, we calculate from
the �rst-iteration posterior distributions, for each k, the expected value of Nk,
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E[Nk], and then using these estimates to update µN and σ2
N according to the

following:

µN = median({log(E[Nk]) : for all k}) (5.5)

σ2
N = min

K⊂{all k}
var({log(E[Nk]) : k ∈ K}) (5.6)

where the subset K comprises 75% of the set of all events. Thus, both prior
distribution parameters µN and σ2

N are robust to some outlying Nk, which we
encountered in a few cases, particularly in events for which we have little data, as
well as with data from the sprints, high jump, and pole vault, because those data
are more discrete than others, as many competitors share the same mark. We
chose the value 75% somewhat arbitrarily, but it ensures that most of the data
are used while allowing for inaccurate values due, for example, to small or highly
discrete data sets. Updating the prior distribution for the Nk only once in this
manner gives a compromise between non-informative and fully optimized priors,
while improving convergence and sharing some information between models for
di�erent events.

While we do not expect the population sizes from di�erent events to be
identical�there are many reasons why there could be more participants or perfor-
mances in one event than another�we do not expect them to be vastly di�erent,
either. For example, there are more marathon times posted each year than in any
other event, though admittedly most are not elite times. Also, the one mile run
and the 1500m run are very similar in distance, yet each year there are far more
1500m races than mile races. Sprinters tend to run more races each year than long
distance runners, as well. On the other hand, we expect the population sizes to
be relatively similar, perhaps within an order of magnitude of each other, simply
because�among other reasons�awards, medals, and championships are generally
identical in nature and quantity for most events, and identical incentive leads us
to believe that population sizes would be approximately equal. We have tried to
address this in choosing our prior distributions.

5.2.4 Fitting the model to the data

To �t the model (5.3) for each event, we use Markov chain Monte Carlo (MCMC)
methods as implemented in themcmc package [Geyer. 2010] of the R programming
language [R Development Core Team 2009], which is a version of the Metropolis-
Hastings algorithm. [Hastings 1970] We use a �burn in� period of 1,000 steps, after
which we test the sample acceptance rate, requiring it to be between 0.2 and 0.4 (we
found that this range generally gives good convergence), and if unacceptable we
re-do the burn-in with an adjusted sample step size. This process is automated.
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Following burn-in, we use a subsequent 1,000 batches of 50 steps each with 10
random parameter initializations to determine the joint distribution of µk and σ

2
k�

and/or Nk�for each k.
Convergence of the MCMC sampling was assessed visually using various plots

as well as using the multivariate diagnostic of Gelman and Rubin [1992] as im-
plemented in the coda [Plummer et al. 2006] package in R. [R Development Core
Team 2009]

5.2.5 Some meaningful statistics

The value of pa as calculated in equation 5.1 can be interpreted as the probability
that in a given performance a speci�ed member of the total elite athlete population
for the given event performs better than the mark a. This is a natural measure
of performance quality, but it is not easy to test its accuracy using real data.
Therefore, in this section we give some other statistics based on the model that
may be better at describing the performances we witness during an athletic season.
They are based on the ideas stated in the introduction to this paper, that we can
measure the rarity�and quality�of a performance by the number of marks that
improve upon it or by comparing it with a reference performance. Unless stated
otherwise, the statistics below are estimated using 1000 samples of the parameter
values.

Expected number of performances improving upon a speci�ed mark

If we �t the model to tm years of data, then for any point estimates of µk, σk,
and Nk (and hence the cdf F (a | µk, σ2

k)) for each event k, the expected number
of performances during one calendar year that are better than a is:

Ak(a | µk, Nk) =
Nk

tm
F (a | µk, Nk) (5.7)

using the re-parametrized version of the cdf function F (with µk and Nk as given
parameters instead of µk and σ2

k). We can use our previously-obtained samples
from the posterior distributions of the parameters to e�ciently �nd the posterior
expected value n̂k(a) of Ak(a | µk, Nk):

n̂k(a) =

∫∫
Ak(a | µk, Nk)p(µk, Nk | Xk) dµk dNk (5.8)

This expected number of marks can be compared with data from future athletics
seasons (i.e. data not included when �tting the models).
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Probability of a record being broken

If we �t the model to tm years of data, then for any point estimates of µk, σ
2
k,

and Nk for each event k, the probability that the best performance over tf calendar
years is better than a performance a is:

Bk(a | µk, Nk) = 1− [1− F (a | µk, Nk)]
tfNk
tm (5.9)

We can compute the posterior expectation of Bk(a | µk, Nk) as we did in equa-
tion 5.8:

p̂k(a) =

∫∫
Bk(a | µk, Nk)p(µk, Nk | Xk) dµk dNk (5.10)

This estimated probability p̂k(a) of a mark a being broken by anyone during the
given year can be useful for comparing the very best performances�as we do in the
Results section�but is less suitable for comparing lesser marks. This is because
the probability of a lesser mark being broken in the course of a year is very high,
and quickly approaches 1 as the quality of the mark a decreases.

Expected best performance

Equation 5.10 gives the estimated probability that a particular mark will be bro-
ken in a given calendar year. In other words, it is the estimated cdf of the best
performance for the year. Therefore, the probability density of the best perfor-
mance y1 during that year is the derivative of p̂k(a) from equation 5.10, and the
expected best performance is:

ŷ1 =

∞∫
−∞

y1

(
d

dy1

p̂k(y1)

)
dy1 (5.11)

The quantity ŷ1 is the expectation of an order statistic on normally distributed
data, for which there is no closed-form expression. Furthermore, we have calcu-
lated the values of the function p̂k(a) using numerical integration over the pos-
terior parameter distributions, so the calculation of ŷ1 is not straight-forward.
However, the high-density region of the derivative of p̂k(y1)�i.e. the pdf of the
year's best performance�is unimodal and in a predictable location, namely close
to other years' best performances. Thus, to calculate ŷ1, we �rst estimate the
derivative of p̂k(y1) by estimating p̂k(y1) for a large number of values of y1 (us-
ing samples {µk, Nk} from the parameter posterior distributions) and calculating
the estimated di�erentials ∆p̂k(y1) between adjacent values of y1. Then, we use
the estimates ∆p̂k(y1)/∆y1 in place of the derivative to perform the integral in
equation 5.11 numerically. Because the density function for y1�the derivative
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of p̂k(y1)�is unimodal and has high density only in a predictable location, this
numerical integration is quick, easy, and accurate.

Proposed formula for performance scoring

We propose a formula for scoring that is analogous to the IAAF scoring tables.
For this, we choose to de�ne the quality of an elite performance mainly using n̂k(a)
above, i.e. the expected number of performances exceeding a given reference mark.
That is, two elite-level marks may be considered equal if we expect them to be
exceeded by the same number of individual performances during a calendar year.
The statistic n̂k(a) is itself valid only for the highest levels of competition�those
represented on the lists of top performances that we have�but we would like our
scoring formula to be valid for most events also at sub-elite levels. To do this, we
took a particular value for n̂k(a)�we chose 0.125 because it was close to most of
the current world records�and we de�ned the corresponding mark a0 to be equal
to 1300 points, which is approximately equivalent to most world records on the
IAAF scoring tables. We then de�ne the score Sa of any mark a to be

Sa =

{
1300 log2(a0) + 1− log2(a) for times

1300 log2(a0)− 1 + log2(a) for distances
(5.12)

A problem that we encountered here is that a good mark in the one mile run is
far more rare than than a comparable mark in the 1500m run, since the mile is run
less often. Because the training and ability to run the two events are practically
identical, we can assume that the athletes are interchangeable, and so, to remedy
the discrepancy between the population sizes Nk for the two events, we set the
population size Nk for the mile equal to that of the population size for the 1500m,
for both men and women. This is a somewhat arbitrary choice, but the mile is not
contested at the major championships and is thus rather dissimilar to the other
events; rather than throwing it out entirely, we found that borrowing the Nk from
the 1500m run produced satisfactory results.

5.2.6 Correlation with future performances

For each of the above-mentioned statistics, we would like to compare our predic-
tions with those of other scoring methods. However, the other scoring methods
give only a relative score, and no predictions. Thus, to compare our methods to the
others, we must use a relative measure. Given a list of performances, one for each
athletic event, we assign scores to each mark and then calculate the Pearson corre-
lation coe�cient between the scores and some future outcome, either the number of
better performances for each event or the improvement in performance over some
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reference mark. For the purposes of comparing with the IAAF scoring tables, we
de�ne �improvement in performance� of a new mark anew over an old mark aold
to be − log(anew/aold). This gives a measure of the relative improvement, which
could be negative if the new mark is worse than the old mark. As above, we use
the inverse of this score for events in which a higher mark is better. The expected
relative improvement is another estimate of the quality of a given performance.
Below, we use as reference performances aold the 10th, 25th, 50th, and 100th best
all-time performances prior to the analysis year (2000, 2008, or 2012).

For example, for the year 2000 analysis, we calculate the expected best per-
formance x1 over the next two years (2000-2001) and we let this be anew while
the 10th, 25th, 50th, and 100th best performances prior to 2000 are each used
as aold. This gives four di�erent versions of the expected improvement score for
each athletic event for each analysis year, for which we can then calculate a Pear-
son correlation with actual performances in those subsequent years. If an aold for
a particular event is weaker than that of other events, we expect to see a larger
improvement in subsequent years, and likewise a smaller improvement for stronger
reference performances aold.

Below, we list many such correlations for our scoring methods, and we compare
them with correlations for the IAAF scoring tables.

5.3 Results

In this section, we give three sets of results: one for data preceding 2000, which we
compare with later performances; one for data preceding 2008, which we compare
with later performances as well as to the 2008 IAAF scoring tables; and one for
data up to the present day (1 October 2011), which we use to make predictions
for the coming years.

5.3.1 Convergence

For the three time periods, 2000, 2008, and 2012, and for each of these using all
prior data and then only �ve years of data (thus, six cases in total), the MCMC
sampling converged usually without using the empirical prior on the total popu-
lation size. The slowest convergence in general occurred when using �ve years of
data prior to 2008. Only 37 out of 48 events had Gelman-Rubin diagnostic statis-
tics less than 1.1. When using the empirical prior, the Gelman-Rubin diagnostic
was less than 1.1 for every event in every case, and in each case was less than 1.05
for at least 43 of the 48 events.

Population sizes varied between the events, and the use of the empirical prior
on Nk improved convergence and moderated unreasonable population sizes. For
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example, for all data preceding 2008, the median population size was 19,028, and
the robust standard deviation (using 75% of the events) of log(Nk) was 2.93.
The smallest (unrestricted) estimated population size was 510.4 for the women's
mile run, and the largest was 2.71 × 1016 for men's pole vault. Large population
sizes such as that of the men's pole vault are clearly too large, and thus using
the empirical prior makes intuitive sense as well as improves convergence. The
estimated population size for men's pole vault when using the empirical prior was
still 38.0 million (3.8×107), and that of the women's mile run was 1309.9, so some
�exibility in the choice of population sizes was preserved.

A set of selected posterior expectations of parameter values are shown in ta-
ble 5.1. Fans of track and �eld will notice that the marks eµk are rather mediocre
for elite athletes, and those events with larger estimated population sizes have less
impressive values for eµk , which makes sense intuitively. Assuming that the very
best athletes are always participating in their respective events, a larger popu-
lation size indicates that there are more less-talented athletes participating and
making the average performance weaker.

Event eµk−2σk eµk eµk+2σk E[Nk]
mens100m 10.55 11.28 12.05 1371048
mens200m 21.76 23.66 25.72 1543952
mens1500m 3:32.22 3:38.78 3:45.55 2469
mensMarathon 2:05:55.76 2:11:13.44 2:16:44.49 1284
mensHJ 2.00 2.11 2.22 695184
mensLJ 6.30 6.96 7.68 326672
womens100m 11.33 12.01 12.73 83707
womens200m 23.32 24.75 26.27 146548
womens1500m 3:59.52 4:05.33 4:11.29 625
womensMarathon 2:22:38.28 2:29:23.24 2:36:27.37 823
womensHJ 1.69 1.82 1.96 11229
womensLJ 5.53 6.00 6.51 174252

Table 5.1: Examples of �tted distributions. Shown here are a few summaries of selected
�tted distributions. In the rightmost four columns, we give the log-normal equivalent of a normal
distribution's (1) mean minus two standard deviations (i.e. eµk−2σk), (2) the mean, and (3) mean
plus two standard deviations, as well as (4) the posterior expectation of the total population
size. Running times are given in hours:minutes:seconds, where applicable, distances and heights
are given in meters, and population sizes are the number of performances in the �ve-year period
2007-2011.

5.3.2 Predictions made prior to 2000

We used data from before 2000 to predict both the number of performances ex-
ceeding and the expected improvement over four di�erent reference marks in each
event, namely the 10th, 25th, 50th, and 100th best ever marks in each event at the



CHAPTER 5. COMPARING ATHLETIC PERFORMANCES 80

end of 1999. The Pearson correlations of our predictions with the actual outcomes
in the subsequent 12 years can be seen in tables 5.2 and 5.3.

years using all prior data using 5 years of prior data

10th 25th 50th 100th 10th 25th 50th 100th
2000-2001 -0.185 -0.139 -0.118 0.090 0.226 0.414 0.498 0.612
2000-2003 -0.198 -0.095 -0.100 0.062 0.163 0.380 0.463 0.581
2000-2005 -0.175 -0.082 -0.094 0.050 0.139 0.352 0.423 0.572
2000-2007 -0.164 -0.082 -0.096 0.049 0.124 0.331 0.397 0.554
2000-2009 -0.161 -0.085 -0.097 0.051 0.117 0.323 0.388 0.548
2000-2011 -0.158 -0.085 -0.097 0.049 0.116 0.319 0.382 0.552

Table 5.2: Correlations, 2000 number of better performances. Given in the table are
the Pearson correlation coe�cients between the predicted and actual number of performances
exceeding a reference mark, based on the year 2000. The reference marks (the columns) are
the 10th, 25th, 50th, and 100th best prior mark in each event.

years using all prior data using 5 years of prior data

10th 25th 50th 100th 10th 25th 50th 100th
2000-2001 -0.274 0.343 0.583 0.562 0.765 0.832 0.877 0.864
2000-2003 0.049 0.484 0.641 0.609 0.696 0.783 0.837 0.839
2000-2005 0.176 0.512 0.644 0.607 0.674 0.769 0.822 0.807
2000-2007 0.248 0.538 0.659 0.624 0.699 0.785 0.834 0.824
2000-2009 0.261 0.519 0.637 0.592 0.698 0.777 0.824 0.808
2000-2011 0.302 0.545 0.656 0.617 0.731 0.804 0.845 0.835

Table 5.3: Correlations, 2000 performance improvement. Given in the table are
the Pearson correlation coe�cients between the predicted and actual performance improve-
ment over the reference mark, based on the year 2000. The reference marks (the columns)
are the 10th, 25th, 50th, and 100th best prior mark in each event.

We can see in table 5.2 that the predicted number of better performances
correlates much more highly with the actual outcomes when we used only the
previous �ve years of data. In fact, the predictions using all data had very poor
correlation (Pearson) with the actual outcomes, but the same is not true of the
predicted performance improvement. The predicted improvements were signi�-
cantly correlated with the actual improvements both when we used all data and
when we used only the previous �ve years of data, though the latter still gives
better results. We suspect that that the total number of athletes participating in
the various events has changed more dramatically over time than has the quality
of the very best performers, making our predictions of best performances�and
the associated improvement score over the reference marks�more accurate than
our predictions of numbers of athletes exceeding the same reference mark.

Table 5.4 gives the Pearson correlation of the predicted probabilities of a world
record being set with the actual outcome (1 for a world record, 0 for none) over a
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given time period. Again, there is signi�cant correlation between the predictions
and the outcomes, and the predictions based on �ve years of data were generally
better than those based on all data. Also, the correlations generally increased when
more years were considered; this is likely due to the rarity of records, whereby the
calculated probability of a world record occurring in the next 12 years will be more
accurate than the probability for only one or two years. Based on only �ve years
of data, we achieved Pearson correlation coe�cients of approximately 0.7 for time
periods of length 6-12 years.

years all data 5 years

2000-2001 0.144 0.324

2000-2003 0.289 0.443

2000-2005 0.467 0.712

2000-2007 0.442 0.706

2000-2009 0.383 0.675

2000-2011 0.344 0.678

Table 5.4: Correlations, 2000 world records. Given are the Pearson correlation coe�cients
between the predicted probability of a world record being set and the actual occurrence (vector
of zeros and ones), based on the year 2000.

5.3.3 Predictions made prior to 2008

In general, the predictions we made based on data prior to 2008 were much better
than those from 2000. This could be due to a number of factors, such as the much
larger data set, the increased modernization of training and competition, or the
likely decrease in the use of performance-enhancing drugs. However, the predic-
tions made using only �ve years of prior data were again considerably better than
those using all prior data. In fact, our predictions of both the number of perfor-
mances exceeding and the relative improvement over the 100th best performances
of all time have Pearson correlations greater than 0.83 with the actual outcomes
in the 2008 athletics season as well as for all seasons through 2011. Tables 5.5
and 5.6 show the details of the correlation coe�cients.

Table 5.7 shows the Pearson correlation between predicted probabilities of
world record being set and the actual outcomes. For the period 2008-2011, the
predicted probabilities had a correlation coe�cient of 0.48 with the actual out-
comes, which is slightly higher than the corresponding correlation coe�cient from
the four-year period beginning in 2000, as shown in table 5.4. Thus, our predic-
tions from the beginning of the year 2008 are better in nearly every case than
those from the year 2000.
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year(s) using all prior data using 5 years of prior data

10th 25th 50th 100th 10th 25th 50th 100th

2008 0.322 0.330 0.294 0.193 0.561 0.765 0.774 0.841

2008-2009 0.329 0.298 0.298 0.197 0.672 0.752 0.784 0.834

2008-2010 0.333 0.299 0.331 0.206 0.602 0.728 0.783 0.831

2008-2011 0.321 0.308 0.345 0.210 0.605 0.751 0.806 0.847

Table 5.5: Correlations, 2008 number of better performances. Given in the table are
the Pearson correlation coe�cients between the predicted and actual number of performances
exceeding a reference mark, based on the year 2008. The reference marks (the columns) are
the 10th, 25th, 50th, and 100th best prior mark in each event.

year(s) using all prior data using 5 years of prior data

10th 25th 50th 100th 10th 25th 50th 100th

2008 0.188 0.129 0.249 0.286 0.825 0.821 0.830 0.835

2008-2009 0.110 0.064 0.191 0.260 0.847 0.842 0.849 0.851

2008-2010 0.038 0.042 0.181 0.260 0.846 0.841 0.849 0.853

2008-2011 0.030 0.068 0.214 0.298 0.837 0.836 0.847 0.853

Table 5.6: Correlations, 2008 performance improvement. Given in the table are
the Pearson correlation coe�cients between the predicted and actual performance improve-
ment over the reference mark, based on the year 2008. The reference marks (the columns)
are the 10th, 25th, 50th, and 100th best prior mark in each event.

year(s) all data 5 years

2008 0.225 0.338

2008-2009 0.363 0.497

2008-2010 0.278 0.491

2008-2011 0.257 0.484

Table 5.7: Correlations, 2008 world records Given are the Pearson correlation coe�cients
between the predicted probability of a world record being set and the actual occurrence (vector
of zeros and ones), based on the year 2008.

5.3.4 Comparison with IAAF scoring tables

The scoring tables we have constructed based on the model described in this paper
are designed to be analogous to the IAAF scoring tables [Spiriev 2008; Spiriev and
Spiriev 2011], ranging from a score of zero for a relatively poor performance to
approximately 1300 points for the current world records. A subset of scores from
our tables can be found in table 5.8; a full table can be found in the supplementary
materials. (Note: for the �ve years preceding 2012, there were only 10 marks in
the data set for the women's one-mile run; though parameter convergence was
achieved, the scores assigned were clearly not in line with the women's 1500m
performances. We include the women's one-mile run in the scoring tables for
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completeness, but we discourage their use in performance comparison.) Thus, the
two sets of tables have both been made mainly to compare elite-level performances,
though they both are applicable to the performances of even recreational athletes.
In previous sections, we tested the predictive ability of the model and the various
statistics we calculate from it; in this section, we do the same tests on the predictive
ability of the scoring tables constructed in this paper�using data prior to 2008�
and we compare the results to those of the 2008 IAAF scoring tables, which to
the best of our knowledge were constructed based on the same available data.

points 800 900 1000 1100 1200 1300 1400
mens100m 12.50 11.85 11.24 10.66 10.10 9.58 9.08
mens200m 25.12 23.82 22.58 21.41 20.30 19.24 18.24
mens400m 56.85 53.89 51.10 48.44 45.93 43.54 41.28
mens800m 2:11.64 2:04.81 1:58.33 1:52.18 1:46.36 1:40.84 1:35.60
mens1500m 4:30.89 4:16.82 4:03.49 3:50.84 3:38.86 3:27.49 3:16.72
mens3000m 9:35.72 9:05.83 8:37.48 8:10.62 7:45.14 7:20.99 6:58.09
mens5000m 16:26.21 15:35 14:46.45 14:00.43 13:16.79 12:35.42 11:56.20
mens10000m 33:54.31 32:08.69 30:28.54 28:53.60 27:23.59 25:58.25 24:37.34
mensHalfMara. 1:15:34.51 1:11:39.07 1:07:55.85 1:04:24.22 1:01:03.58 57:53.36 54:53.01
mensMarathon 2:40:02.90 2:31:44.29 2:23:51.58 2:16:23.40 2:09:18.50 2:02:35.66 1:56:13.74
womens100m 13.80 13.09 12.41 11.76 11.15 10.57 10.02
womens200m 28.29 26.82 25.43 24.11 22.86 21.67 20.54
womens400m 1:03.38 1:00.09 56.97 54.01 51.21 48.55 46.03
womens800m 2:29.47 2:21.71 2:14.35 2:07.37 2:00.76 1:54.49 1:48.55
womens1500m 5:08.60 4:52.57 4:37.38 4:22.98 4:09.32 3:56.38 3:44.11
womens3000m 10:56.41 10:22.33 9:50.01 9:19.38 8:50.34 8:22.80 7:56.69
womens5000m 18:13.36 17:16.59 16:22.77 15:31.74 14:43.36 13:57.49 13:14.01
womens10000m 38:35.22 36:35.01 34:41.04 32:52.98 31:10.54 29:33.42 28:01.34
womensHalfMara. 1:25:54.31 1:21:26.69 1:17:12.96 1:13:12.40 1:09:24.34 1:05:48.11 1:02:23.12
womensMarathon 3:01:13.87 2:51:49.27 2:42:53.98 2:34:26.49 2:26:25.36 2:18:49.20 2:11:36.73

Table 5.8: Subset of scoring tables. A sample of scores from the scoring tables based on
our model, using �ve years of data prior to 2012. Here, we show only running events, but scores
for other events can be found in the full table.

Table 5.9 gives the Pearson correlations of the reference performance scores
(as assigned by the sets of scoring tables to the same reference performances
we used in previous analyses) with the number of marks exceeding the reference
performances in subsequent years. Similarly, table 5.10 gives the correlations of
the same scores with the relative improvements over the reference performances.
Note that these correlations should be negative because a higher score indicates
a better performance, which should then see fewer better performances and less
improvement in the subsequent years.

The scoring tables constructed in this paper using �ve years of data (but not
those using all data) are more predictive of future performances than the IAAF
tables. For example, using the 10th best all-time performance (as of 2008) as a
reference, the scores assigned by the 2008 IAAF tables have a Pearson correlation
coe�cient of -0.22 with the numbers of better performances from 2008 to 2011,
compared to -0.43 for our tables. Likewise, the relative improvements over this
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year(s) IAAF scoring tables our tables, all data our tables, 5 years
10th 25th 50th 100th 10th 25th 50th 100th 10th 25th 50th 100th

2008 -0.23 -0.34 -0.37 -0.51 -0.14 -0.27 -0.21 -0.29 -0.42 -0.54 -0.52 -0.64
2008-2009 -0.24 -0.31 -0.37 -0.47 -0.18 -0.24 -0.25 -0.28 -0.46 -0.51 -0.54 -0.62
2008-2010 -0.20 -0.29 -0.35 -0.45 -0.12 -0.20 -0.24 -0.26 -0.39 -0.49 -0.54 -0.60
2008-2011 -0.22 -0.30 -0.36 -0.47 -0.14 -0.22 -0.26 -0.27 -0.43 -0.52 -0.57 -0.62

Table 5.9: Correlations, scoring tables with number of better performances. Shown
are the Pearson correlation coe�cients between the points assigned by scoring tables and the ac-
tual number of better performances, based on the year 2008. The reference marks (the columns)
are the 10th, 25th, 50th, and 100th best prior mark in each event. More negative correlations
are better.

year(s) IAAF scoring tables our tables, all data our tables, 5 years
10th 25th 50th 100th 10th 25th 50th 100th 10th 25th 50th 100th

2008 -0.65 -0.66 -0.68 -0.69 0.02 -0.06 -0.18 -0.28 -0.77 -0.77 -0.78 -0.80
2008-2009 -0.68 -0.69 -0.71 -0.72 0.06 -0.02 -0.14 -0.24 -0.78 -0.78 -0.79 -0.80
2008-2010 -0.68 -0.68 -0.71 -0.71 0.07 -0.01 -0.14 -0.24 -0.79 -0.79 -0.80 -0.81
2008-2011 -0.69 -0.69 -0.71 -0.72 0.05 -0.04 -0.18 -0.28 -0.80 -0.80 -0.81 -0.83

Table 5.10: Correlations, scoring tables with performance improvement. Shown are
the Pearson correlation coe�cients between the points assigned by scoring tables and the actual
performance improvements over the reference mark, based on the year 2008. The reference marks
(the columns) are the 10th, 25th, 50th, and 100th best prior mark in each event. More negative
correlations are better.

same reference performance during the same time period had a correlation coef-
�cient of -0.69 with the IAAF scores and -0.80 with our scores. Our scores were
more predictive in all cases that we tested. See tables 5.9 and 5.10 for more details.

5.3.5 Predictions for 2012 and beyond

Heading into 2012, an Olympic year, it is interesting to examine the predictions
we might make. Most interesting, we feel, is the probability that a new world
record is set. Thus, we have compiled in table 5.11 all of the current world records
and we have sorted them by probability of being broken in 2012.

The probabilities range from less than 1/100, 000 for women's discus to almost
certain (0.95) for women's steeplechase. Most of the world records (26 out of 48)
have less than a 10% chance of being broken, a quarter (12) have less than a 1%
chance, and only two�women's steeplechase and men's 110m hurdles�are likely
to get broken. In both of these events, the world record was set recently, in 2008 in
both cases, and there are many other recent marks that come close to the record.
In particular, there are nine women's steeplechase performances from the past �ve
years that are within ten seconds of the world record, including the record itself.
There are seven marks (including the record) in the men's 110m hurdles from the
past �ve �ve years that are within 0.05s of the world record. This suggests that
in both of these events, with so many recent marks that are close to the record, it
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Event WR Mark Athlete Date Prob of WR in 2012
womensDisc 76.8 Gabriele Reinsch 09.07.1988 7.44x10−06

womens1500m 3:50.46 Qu Yunxia 11.09.1993 9.24x10−05

mensHJ 2.45 Javier Sotomayor 27.07.1993 7.09x10−04

womensLJ 7.52 Galina Chistyakova 11.06.1988 8.56x10−04

womens3000m 8:06.11 Wang Junxia 13.09.1993 1.62x10−03

mensHammer 86.74 Yuriy Syedikh 30.08.1986 1.86x10−03

womensMarathon 2:15:25 Paula Radcli�e 13.04.2003 2.52x10−03

mensJav 98.48 Jan Zelezny 25.05.1996 5.11x10−03

womens400m 47.60 Marita Koch 06.10.1985 5.14x10−03

mens1mile 3:43.13 Hicham El Guerrouj 07.07.1999 5.28x10−03

womensShot 22.63 Natalya Lisovskaya 07.06.1987 8.20x10−03

mensPV 6.14 Sergey Bubka 31.07.1994 9.53x10−03

womens200m 21.34 Florence Gri�th-Joyner 29.09.1988 1.14x10−02

mensLJ 8.95 Mike Powell 30.08.1991 1.49x10−02

mens400mH 46.78 Kevin Young 06.08.1992 1.62x10−02

mens1500m 3:26.00 Hicham El Guerrouj 14.07.1998 2.08x10−02

womens800m 1:53.28 Jarmila Kratochvilova 26.07.1983 2.11x10−02

mens400m 43.18 Michael Johnson 26.08.1999 2.28x10−02

mens4x400m 2:54.29 United States 22.08.1993 2.35x10−02

mensShot 23.12 Randy Barnes 20.05.1990 2.86x10−02

mensDisc 74.08 Jurgen Schult 06.06.1986 3.13x10−02

womens100mH 12.21 Yordanka Donkova 20.08.1988 3.17x10−02

mensTJ 18.29 Jonathan Edwards 07.08.1995 3.84x10−02

womens100m 10.49 Florence Gri�th-Joyner 16.07.1988 3.92x10−02

womensPV 5.06 Yelena Isinbayeva 28.08.2009 6.62x10−02

mens200m 19.19 Usain Bolt 20.08.2009 8.60x10−02

mens3000m 7:20.67 Daniel Komen 01.09.1996 1.08x10−01

womens10000m 29:31.78 Wang Junxia 08.09.1993 1.14x10−01

mens100m 9.58 Usain Bolt 16.08.2009 1.23x10−01

womensHalfMara. 65:50 Mary Keitany 18.02.2011 1.32x10−01

mens4x100m 37.04 Jamaica 04.09.2011 1.42x10−01

womens4x100m 41.37 German Democratic Republic 06.10.1985 1.43x10−01

womens1mile 4:12.56 Svetlana Masterkova 14.08.1996 1.51x10−01

womens4x400m 3:15.17 Soviet Union 01.10.1988 1.54x10−01

mens800m 1:41.01 David Rudisha 29.08.2010 1.61x10−01

mens5000m 12:37.35 Kenenisa Bekele 31.05.2004 1.84x10−01

mens3000mSC 7:53.63 Saif Saeed Shaheen 03.09.2004 2.35x10−01

womensTJ 15.50 Inessa Kravets 10.08.1995 2.40x10−01

womensHJ 2.09 Stefka Kostadinova 30.08.1987 2.91x10−01

womens400mH 52.34 Yuliya Pechonkina 08.08.2003 3.32x10−01

mens10000m 26:17.53 Kenenisa Bekele 26.08.2005 3.82x10−01

womensJav 72.28 Barbora Spotakova 13.09.2008 3.84x10−01

mensMarathon 2:03:38 Patrick Makau 25.09.2011 3.91x10−01

mensHalfMara. 58:23 Zersenay Tadese 21.03.2010 3.96x10−01

womensHammer 79.42 Betty Heidler 21.05.2011 4.72x10−01

womens5000m 14:11.15 Tirunesh Dibaba 06.06.2008 4.76x10−01

mens110mH 12.87 Dayron Robles 12.06.2008 6.62x10−01

womens3000mSC 8:58.81 Gulnara Galkina 17.08.2008 9.52x10−01

Table 5.11: World record probabilities, 2012. Shown is a list of the current world records
for all athletic events considered in this paper, sorted by the probability of being broken in 2012.

is more likely than not that a record will be set in 2012.
On the other end of the spectrum, those records least likely to get broken are

some of the older records, with only 6 of the 25 toughest (according to table 5.11)
records occurring in the past 15 years, whereas 17 of the 25 weakest records have
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occurred in the past 15 years. In the women's discus, where the record is least
likely to get broken, no one has produced a mark in the top 100 in nearly 20 years.
The women's 1500m run, which has the second toughest record, has seen no time
within �ve seconds of the record in over ten years.

Notably, two events, the one mile run and the 3000m run (non-Olympic events),
are contested less frequently than the rest, and therefore the probabilities of their
records being broken are lower than if they were contested more often. For in-
stance, the men's one mile world record is obviously�to any track and �eld fan�
easier for a well-trained athlete to break than the 1500m world record, but the
probability of the mile record actually being broken is lower since there are far
fewer attempts.

5.4 Discussion

This paper has been an attempt to rigorously quantify what it means for an athletic
performance to be �good�, and, alternatively, what it means for a performance to
be better than another performance, particularly if the two performances are in
di�erent events. We use primarily two alternative reasons why an observer of track
and �eld might believe that a performance is good, restated from the introduction:

1. A performance is good if few athletes improve upon it, or

2. A performance is good if it is close to or improves upon the [previous] best
performance.

In the introduction, we suggested that the 9.58s 100m dash that Usain Bolt
ran in the 2009 World Champtionships might be one of the greatest athletics feats
ever. But, we can see in table 5.11 that there are many records that are less
likely to be broken next year than Usain Bolt's 9.58s. In fact, his own 200m world
record (19.19) is one of them. On the other hand, of the world records that were
set since the year 2000 (18 of them), these are the third and fourth least likely
to be broken, so perhaps they are so impressive because they are among the best
records of recent memory.

In addition to calculating probabilities of world records, we also calculated
expected number of performances improving upon a given mark, expected best
performances, and a set of scoring tables intended to be analagous to the IAAF
scoring tables. Our results, particularly tables 5.9 and 5.10, show that our model
can predict the levels of future performances with considerable success, and better
than the most common method of performance scoring, the IAAF scoring tables.
Given a set of performances or records, we can predict which ones will be broken,
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how many times, and by how much, and these predictions have a Pearson correla-
tion coe�cient of over 0.8 in many cases with actual future outcomes. Our scoring
tables, which are derived from the expected number of annual performances ex-
ceeding a given mark, outperformed the IAAF scoring tables for two di�erent
prediction types, each with four sets of reference marks and four time periods,
giving 32 cases wherein our predictions correlated more highly in every case.

The keys to the success, we believe, are the large amount of data used in model
�tting and the probabilistic approach. Past scoring methods typically have used
a �xed number of top performances�in some cases very few�such as the top ten
or one hundred within a particular time period; we wanted to avoid this restric-
tion and use all available data to compute actual probabilities. In general, more
data is better, though admittedly there were some outlying circumstances in the
past when, for example, performance enhancing drugs have been used without
detection, or marks were set under other questionable circumstances. One glaring
example of this is the fact that no woman has produced a top-100 mark in the shot
put or the discus in the past ten years. Likely because of these questionable per-
formances, we have found that the most accurate way to predict the performances
of the next year is by �tting the model only to recent data. Another example of a
negative shift in performance is the recent switch to all-women road races, partic-
ularly in the marathon. Paula Radcli�e's marathon world record is one of the best
marks in athletics, but it was set with men running alongside the women. It has
been ruled (by the IAAF) that mixed-sex races are no longer eligible for women's
records, but it seems that previous marks will be allowed to stand. Though not
previously considered cheating, male pacers can help women signi�cantly, and in
their absence we have indeed seen a drop in the quality of women's marathon
times, as most major marathons have in the past few years switched to separate
men's and women's races. These shifts in performance level are a problem we
might address in future research. It is reasonable to assume that performance lev-
els improve over time due to improved training and technique, and any large-scale
decline is the result of a reduction in the prevalence of performance enhancing
drugs or other forms of performance aid or cheating. There are a number of
ways we might detect and remove�or otherwise take into account�these ques-
tionable performances, possibly using robust statistics or parameter optimization
techniques. In addition, other probability distributions might also be considered
if they seem to �t the data.

In a more general sense, it would likely help the predictive ability of the model
if time were included as a contributing variable. Modeling general performance
changes over time would give us further abilities to discuss and describe the history
of athletics, such as in detecting or predicting eras of great improvement or change
and also in modeling the maturity of a event, in the sense that, for example, the
women's steeplechase isn't quite mature yet since it has been an Olympic event
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since only 2008 and its records still fall quite often.
Lastly, the type of analysis demonstrated in this paper need not be limited to

athletics. Any standardized competition with a large number of performances that
are either normally or log-normally distributed can be modeled in this way. Swim-
ming and rowing come to mind, though those are more dependent on technology
than athletics and thus may be more di�cult to model. All in all, a probabilistic
approach to studying sports performances seems to be a practical and valuable
tool in examining the history and predicting the future of sport.
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