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Kurzfassung

Diese Dissertation verbindet Methoden der Grundlagenforschung in der Mathematik
mit der anwendungsorientierten Forschung auf dem Gebiet der Laserphysik. Dement-
sprechend ist diese Arbeit in zwei Teile gegliedert.

Im Mittelpunkt steht die numerische Analyse der Helmholtz-Gleichung mit ausstrah-
lenden Randbedingungen, die für die Modellierung von Phänomenen wie akustische oder
elektromagnetische stehende Wellen im freien Raum verwendet wird. Als geeignetes Ver-
fahren zur numerischen Berechnung und Simulation dieses Problems wird hier die Finite-
Elemente-Methode (FEM) eingesetzt. Dieses Verfahren leidet jedoch bei hohen Wellen-
zahlen unter numerischen Dispersionsfehlern. Im Rahmen der mathematischen Grundla-
genforschung liegt daher ein besonderer Augenmerk auf der expliziten Abhängigkeit der
Konvergenz hinsichtlich der Wellenzahl sowie der Diskretisierungsparameter. Grundle-
gende Untersuchungen über Regularitätseigenschaften, geometrische Aspekte sowie eine
Konvergenz-Analyse in Bezug auf unterschiedliche Normen werden daher im Detail im
ersten Teil beschrieben.

Darüber hinaus wird die numerische Untersuchung erweitert/angewendet auf das Ge-
biet der Laserphysik. Während Laserlicht eine Form von räumlich und zeitlich kohärenten,
elektromagnetischen Wellen darstellt, müssen jedoch zusätzliche Effekte, die von der In-
teraktion mit dem Verstärkungsmaterial kommen, berücksichtigt werden. Die wesentli-
chen Merkmale eines Lasers werden somit durch ein gekoppeltes System nichtlinearer
Helmholtz-Gleichungen beschrieben. Hier lag der Fokus darauf eine effiziente und flexible
Lösungsmethode zu finden, um eine breite Palette von experimentellen Anwendungen
simulieren zu können. Zu diesem Zweck wurde die Finite-Elemente-Methode erneut für
die Diskretisierung verwendet. Darüber hinaus wurde eine stabile und effiziente Itera-
tionsstrategie erarbeitet, die sich im Wesentlichen auf die Lösung eines Systems von
nichtlinearen elliptischen PDEs und die Berechnung eines nichtlinearen Eigenwertpro-
blems reduziert. Das nicht-lineare System wird durch eine stabilisierte Form mit der
Newton-Methode gelöst. Für die Berechnung des nichtlinearen Eigenwertproblem erwies
sich die Konturintegralmethode als zweckdienlich und den Anforderungen aus der Physik
am Besten genügend.
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Abstract

This thesis forms a bridge between basic research in mathematics and applied research
in the field of laser physics, structured accordingly in two parts.

The central focus is the numerical analysis of the Helmholtz equation with radiat-
ing boundary condition which is used for modeling of phenomena such as acoustic or
electromagnetic standing waves in free space. As a convenient method for the numer-
ical calculations and simulation of this problem, the finite element method (FEM) is
used. This method suffers, however, from numerical dispersion errors when increasing
the wave number. The explicit dependence on the wave number and the discretization
parameters is therefore under a particular focus in the context of basic research. Basic
investigations concerning regularity properties, geometric aspects, as well as a conver-
gence analysis with respect to different norms are therefore discussed in detail in the
first part.

In addition to that, the numerical study is extended/applied to the field of laser
physics. While laser light constitutes a form of spatially and temporally coherent elec-
tromagnetic waves, major effects coming from the interaction with the gain material,
however, have to be taken into account. The significant characteristics of a laser are
thus described by a coupled system of nonlinear Helmholtz-type equations. Here, the
focus was to find an efficient and flexible solution method in order to be able to simu-
late a wide range of experimental applications. To this end, the finite element method
has again been used for the discretization. Furthermore, a stable and efficient iteration
strategy has been built up which essentially reduces to the solution of a set of nonlinear
elliptic PDEs and the computation of a nonlinear eigenvalue problem. The non-linear
system is solved by a stabilized form with the Newton method. For the calculation of
the nonlinear eigenvalue problem the contour integral method was proved to be useful,
satisfying the requirements from physics.
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Jüngel and Anton Arnold. Academic life would not have been so much fun as it was
without you.

At last I want to give many many thanks to my big big family for their endless support
through these last years and their unbreakable faith in my abilities.

Financial support under the graduate school “PDE-Tech” of the Vienna University of
Technology and by the Vienna Science and Technology Fund (WWTF) through Project
No. MA09-030 “Light coupling to light: nonlinear interactions in semiconductor micro-

7



lasers” is gratefully acknowledged.

8



Contents

1. Introduction 11
1.1. Motivation and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2. Objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I. High order FEM for the linear Helmholtz model 19

2. The model problem 21
2.1. The Helmholtz equation with radiating boundary condition . . . . . . . . 21

2.2. Truncation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3. The Helmholtz equation with Robin boundary condition . . . . . . . . . . 27

3. Regularity analysis 31
3.1. Geometric assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2. Polynomial wellposedness . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3. Frequency splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4. Regularity by decomposition (for polygons) . . . . . . . . . . . . . . . . . 37

3.5. Additional regularity properties . . . . . . . . . . . . . . . . . . . . . . . . 43

4. Numerical approximation 49
4.1. Galerkin discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2. High-order finite element methods . . . . . . . . . . . . . . . . . . . . . . 50

4.3. Spectral element methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5. Convergence analysis 55
5.1. Quasi-optimality and adjoint approximability . . . . . . . . . . . . . . . . 55

5.2. hp-Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3. h-Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6. Dispersion analysis 69
6.1. Numerical pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2. The optimally blended FE-SE scheme . . . . . . . . . . . . . . . . . . . . 70

6.3. “Phase shift”-explicit convergence theory . . . . . . . . . . . . . . . . . . 71

6.4. Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9



Contents

II. Application to a nonlinear Helmholtz model in laser physics 93

7. The Steady-state Ab-initio Laser Theory 95
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2. Mathematical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.3. The FEM discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8. The nonlinear SALT-Algorithm 105
8.1. The consecutive pump algorithm . . . . . . . . . . . . . . . . . . . . . . . 105
8.2. The instant pump algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9. Solving the nonlinear system 111
9.1. Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.2. Stability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.3. The explicit Jacobi matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

10.Solving the nonlinear eigenvalue problems 119
10.1. The cubic EVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
10.2. The rational EVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
10.3. Contour integral eigensolver . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.Numerical results 125
11.1. Qualitative assessment of the solution method . . . . . . . . . . . . . . . . 125
11.2. Physical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

12.Outlook 139

Bibliography 140

Curriculum vitae 148

10



1. Introduction

1.1. Motivation and overview

1.1.1. Physical motivation

One of the most notable and challenging phenomena in science is the propagation of
waves. Many important examples from acoustics, electrodynamics, radar/sonar detec-
tion or even medical imaging involve time-harmonic waves also known as stationary or
standing waves. The underlying equation to describe these is the Helmholtz equation
named after Hermann von Helmholtz, a German polymath of the 19th century [82].
The range of applications of this equation is also reflected on the mathematical level.
In fact, this equation can be derived as a specialized case from some major equations
in physics. The classical straightforward motivation arises when the boundary value
problem governed by the wave equation

∂2w

∂t2
−∆w = g

has a time periodic inhomogeneity g(x, t) = f(x)eikt and the solution gets the form
w(x, t) = u(x)eikt so that the (complex) amplitude u solves the Helmholtz equation

−∆u− k2u = f.

Likewise the Helmholtz equation can be derived from the stationary Schrödinger equa-
tion with free potential or from the time-harmonic Maxwell equations in a charge-free
space. The latter describes a wide range of harmonic electromagnetic waves covering the
spectrum from gamma rays to X-rays, visible light, microwaves, radio waves and long
waves.

Of particular interest in this work is the application to laser light. In that case the
propagation of the electromagnetic field is still given by the classic Maxwell equation,
but in addition quantum mechanical effects have to be taken into account to describe
the interaction of the field with the gain medium. To be more precise we assume that
the gain medium can be modeled by an ensemble of identical two-level atoms such that
the dynamical properties can be described by the Bloch equations. Together they lead
to the Maxwell-Bloch (MB) equations which form the center of the semi-classical laser
theory [54]. The MB equations are a set of time-dependent coupled nonlinear equations
and are typically difficult to solve analytically. For the case of steady-state lasing a much
more efficient theory for solving multi-periodic solutions of the MB equations was found
in 2006 in the form of the steady-state ab-initio lasing theory (SALT) [45, 96, 98]. In
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1. Introduction

one dimension (as well as for transverse magnetic modes in two dimensions) the result-
ing equations are a set of Helmholtz equations with an additional nonlinear coupling
term. The study of such a nonlinear problem mostly relies on properties of a linearized
problem. However an extension of the results of the linear Helmholtz equation to the
SALT equations has not been accomplished yet in a rigorous way. For the transition
from linear to nonlinear problems we refer to [18].

1.1.2. Challenges in numerics and numerical analysis

For both, linear and nonlinear problems, numerical challenges occur on two levels. The
first one is to find an appropriate discretization, here by using the finite element method,
and the second one is to use a reliable method for the solution of the resulting system of
linear or nonlinear algebraic equations. Hereby the study of linear problems is also help-
ful in the nonlinear case as it often gives a first insight for the nonlinear ones. Moreover,
many iterative solution methods for the nonlinear problems are generally based upon
the corresponding linearized problems. In fact, the linearization of the SALT equations
take the form of a set of Helmholtz equations which are well understood from a mathe-
matical/analytical point of view.

The linear Helmholtz equation is a basic equation for treating wave propagation prob-
lems in a time-harmonic setting. In many high frequency situations with a large wave
number k the solution u is highly oscillatory. Then the conditions of the discretization
for a numerical computation are stringent due to the requirement to resolve the oscil-
latory nature of the solution. The general “rule of thumb” for the classic discretization
which is mostly used in engineering claims the condition hk ∼ 1 to be satisfied in order to
obtain a feasible resolution. This can be motivated as follows: The number of resolution
points per wave length is obviously related to the discrete mesh by nres = λ/h with λ
being the wave length and h the mesh size. Furthermore the wave length is related to
the wave number by λ = 2π/k. Hence we have hk = 2π/nres. The minimal resolution of
a wave requires at least nres = 2 point per wave length (as stated by Nyquist [79]), thus
hk = 2π/2 ∼ 3. A trustworthy resolution would be obtained by nres = 10 which means
hk ∼ 0.6. For higher dimensions the minimal resolution would require fine meshes with
at least N = kd degrees of freedom, where d is the spatial dimension. At least this is
true for the standard interpolation. But more striking/obtrusive is that the classical
discretization of the Helmholtz equation suffers strongly from dispersion errors, i.e. the
exact wave number differs from the discrete wave number.

On the level of numerical analysis, it is clearly of interest to provide an error analysis
which is explicit in the discretization parameters as well as in the wave number k. We
focus here on the finite element method [19, 22, 28, 33], more specifically on the the hp-
version of finite element methods (hp-FEM) as it turns out that high order methods
provide a significantly better convergence behavior for large wave numbers and better
numerical dispersion properties.

In principle one can follow two different strategies to understand the convergence
behavior of (FEM-)discretizations.

12



1.1. Motivation and overview

One common way is to decompose the FEM-error into the interpolation error and the
so called pollution error (the error between the interpolant of the exact solution and the
FEM-solution)

‖u− uFEM‖ ≤ ‖u− uI‖+ ‖uI − uFEM‖.
In fact, for the classical discretizations of the Helmholtz equation it is the pollution
error that dominates the error in a large regime of mesh sizes h. This pollution effect
refers to the fact that this part of the error is of non-local nature (see [58, Remark
4.5]). Furthermore this behavior appears numerically when increasing the wave number
k with a constant number of degrees of freedom. Then the numerical solution becomes
less and less accurate. While the interpolation error obeys the rule of thumb mentioned
above, the pollution error is small, if additionally by hk2 is small. The main reason
for the pollution error is that the finite element solution suffers from dispersion errors.
The analysis of these dispersion errors, being of a global nature, is not easy. A classical
approach is to study (infinite) translation invariant meshes so that tools from Fourier
analysis can be used [3, 34, 58]. This analysis reveals for the Galerkin method that its
solutions feature a phase lead. A similar observation concerning the dispersion error
has been made for spectral methods [4], producing a phase lag instead. The recent
proposal of [5] shows in particular that a suitable combination of the Galerkin FEM and
the spectral element method (SEM) can lead to new methods with significantly reduced
dispersion errors.

Another strategy with the aim to be applicable for general, not necessarily translation
invariant meshes, originates from the question under which condition the approximation
error is quasi-optimal, i.e. it is asymptotically as good as the best approximation up to
a constant factor

‖u− uFEM‖ ≤ C inf
v
‖u− v‖.

It is now of interest how C depends on discretization parameters and the wave number k.
This technique reduces the error analysis essentially to two separate questions, namely,
the best approximation and the stability, which in the present case, can be obtained
in terms of the adjoint solution operator of the Helmholtz problem [84, 87]; this is due
to the fact that the Helmholtz problems can be treated as a coercive problem with an
additional compact perturbation. Throughout this approach the regularity theory for
the Helmholtz problem (and its adjoint problem) becomes a crucial ingredient to yield
optimal error estimates, explicit in the wave number and the discretization parameters.
A k-explicit convergence analysis based on this approach has been discussed by J. M.
Melenk and S. Sauter in free space [69] and on analytic, bounded domains as well as for
convex polygons [72], giving rise to the resolution conditions

hk

p
≤ c1 and p ≥ c2 log(k),

where c1 sufficiently small and c2 sufficiently large and additional mesh refinements for
non-smooth geometries (e.g. polygons). For these problem classes the two mentioned
articles [69, 72] gave a rigorous proof of the observation that high order methods are
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1. Introduction

superior to low order methods.

Another numerical challenge comes from the fact that many physical examples take
place in free space. However, numerical computations can only be provided for bounded
domains. Thus it is a major task to find appropriate methods for the approximation on
an unbounded domain, including a proper translation of the radiation conditions onto
the artificial boundary. This topic is not part of the main focus of this work, but for
completeness some options are given in condensed form.

The good properties of the high order methods for the Helmholtz problems strongly
suggest to apply them to nonlinear problems as those appearing in the SALT. So far,
the relevant system of PDEs there has been solved using the corresponding integral
formulation with a finite difference discretization [45, 96, 98]. A solution strategy based
on PDE methods was still pending until this work. Roughly speaking, the nonlinear
problem is computed with the Newton method while the initial data is obtained by solv-
ing the SALT equations as a nonlinear eigenvalue problem (NEVP). Thus, besides the
discretization error from the FEM approximation, it is also the accuracy of the Newton
solver as well as the eigenvalue solver that have an impact on the quality of the solution.

The Newton method has been studied by a large number of authors and is now well
understood, converging quadratically if started with an initial guess close to the real so-
lution. Several Newton variants have been derived and proved to be numerically stable.
One of the most common schemes is the Newton-Raphson method that we are using
here for vector-valued functions.

However, there is more of an issue when it comes to choice of the eigensolver, espe-
cially for eigenvalue problems which are nonlinear in the eigenvalue. The interest in an
efficient solver for such NEVPs has increased dramatically in the recent years. At the
same time, the currently available solution packages are not as numerous and as devel-
oped as for the linear case. A major class of NEVPs are those where the eigenvalues
appear polynomially. The classical approach for solving such eigenvalue problems is to
reduce the problem to a generalized linear eigenvalue problem. In the context of eigen-
value problems this practice is known by the term of linearization. Generally, for linear
problems one distinguishes between solvers for small, densely populated matrices and
large, sparse matrices; FEM matrices belong to the latter. There exists a large number
of linearization techniques depending on the properties of the original matrices (real
valued, complex valued, symmetric, Hermitian, invertible, etc.) However, this practice
becomes easily inconvenient as it increases the problem size in dependence on the poly-
nomial degree and is mostly not able to preserve the sparsity of the original matrices
(here the FEM-matrices) to sufficient extent. In addition, often only a particular part
of the spectrum is of interest. All these aspects should be reflected and exploited in the
choice of the right eigensolver.
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1.2. Objectives and contributions

1.2. Objectives and contributions

As part of the PhD program “PDEtech” the objective of this thesis was to develop
scientific principles of applied mathematics and to investigate applications in an inter-
disciplinary environment. The latter came to an expression in the field of laser physics
as part of the WWTF-project “Light coupling to light” .

The central focus of this dissertation, under the guidance of Prof. Melenk, deals with
the numerical and analytic treatment of the Helmholtz equation which describes time-
harmonic wave phenomena such as those found in acoustics and electromagnetics. For
the numerical simulation of these elliptic partial differential equation the finite element
method (FEM) of higher order is used for the discretization. In order to ensure the
quality of that method we provide the numerical analysis in terms of an a priori conver-
gence analysis. In this context, this work extends in particular on the results made by
J. M. Melenk and S. Sauter in [69,72]. There, the analysis was performed in the H1-like
norm ‖ · ‖H for the free space, analytic domains and convex polygons. We were able
to extend these results for arbitrary polygons which have been published by the author
and J. M. Melenk in [40]. In addition, for the case of analytic domains, we focused on
weaker norms, namely the convergence in the L2- and the H−1-norm (published in [39]).
While the asymptotic convergence rates are, of course, the ones to be expected, the
novel aspect of [?] over [40, 68, 69, 72] is that we obtain better estimates in the wave
number k. Indeed, we obtain an a priori bound that is better by a factor k than what a
straightforward application of [40,68,69,72] would yield. In addition, the analytic results
are corroborated and illustrated with numerical calculations in 1D with Matlab and in
2D with the hp-FEM code Netgen/Ngsolve by J. Schöberl, [88,89]. As an additional
aspect, we looked at the convergence with respect to the above mentioned dispersion er-
rors. There, we restricted ourselves to the case of one dimension on translation invariant
meshes. In that case, the discrete formulation of the Green’s function and powerful tools
such as Fourier techniques are available to understand and analyze the discretizations
and to design new schemes with good dispersion properties. While the recent proposal
of [5] concentrates on the presentation of a constructive numerical scheme and the dis-
persion analysis, we directly focus on the numerical error analysis in dependence of the
dispersion error. For a 1D model problem on regular grids, we provide an actual error
analysis for the lowest order discretization and show that the greatly reduced dispersion
error of the method [5] leads to a gain in accuracy by a factor k as compared with the
Galerkin FEM. Again, these results have been highlighted with computational examples
made with Matlab. This topic was also published by the author and J. M. Melenk
in [39].

In further cooperation with Prof. Rotter and his group from the Institute for Theo-
retical Physics it was our intention to realize an implementation of a 1D-FEM code for
use in laser physics. In particular, it was our aim to establish an algorithm that covers
a wide range of experimental settings, from standard configurations like the 1D slab
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1. Introduction

cavity to more elaborate configurations from micro-disk lasers, photonic crystal lasers
and random lasers including an active control of the pump spatial distribution. The
underlying model is described by a set of non-linear Helmholtz-type PDEs with radi-
ating boundary conditions. We were able to implement an efficient and stable Newton
solver by exploiting the analytic expression of the corresponding Jacobi matrix. The
corresponding nonlinear eigenvalue problem that has to be solved is computed using the
contour integral method. All in all, we have created a feasible solution strategy that has
a high degree of flexibility and can be expanded to higher dimensions in a reasonable
way. The obtained results are collected in [38].

1.3. Outline

The remainder of this thesis is organized in two parts.

The first part focuses on the linear Helmholtz equation and is divided into five chapters.

In Chapter 2, we first introduce the Helmholtz model in free space with radiating
boundary conditions as it is the origin of many applications in physics. Since numerical
computations can only be established for bounded domains, we review how to truncate
the free space and briefly motivate some ways how the boundary conditions at infinity
can be transferred to the artificial boundary. Then we focus on the Helmholtz problem
on bounded domains with the Robin boundary condition and formulate some properties
and results which are mandatory for a unique solvability.

Chapter 3 is dedicated to the regularity theory of the Helmholtz problem. We in-
troduce some geometric assumptions for analytic and polygonal domains as well as the
proper function spaces. Furthermore, we discuss the concept of polynomial wellposed-
ness and review some properties for the high and low frequency filtered data. Finally we
present a refined regularity theory for arbitrary polygons by decomposition which gener-
alized the results of [72] as mentioned above. The chapter ends with the description of a
few more regularity properties by exploiting additional regularity of the source function.

Chapter 4 gives an introduction to the requirements for numerical approximation.
First we briefly review the concept of Galerkin discretization. Then we give some de-
tails on the high order finite element method, including properties of the triangulation,
the finite element space and the quadrature rules. In addition, we briefly describe the
spectral element method.

In Chapter 5, we concentrate on the convergence analysis based on the regularity
theory given in Chapter 3. Therefore we review the development of quasi-optimality
which reduces the error analysis to the task of finding estimates for the best approxi-
mation and the adjoint approximability. These are handled in detail for domains with
analytic boundaries. Then quasi-optimality is summed up for polygons too and the
hp-convergence is discussed for polygons, retrieving the exponential rate of convergence
on geometrically refined triangulations. For smooth domains with analytic boundaries
the convergence theory is depicted in several norms for problems with data of higher
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1.3. Outline

regularity. In addition, we consider the h-convergence for the latter setting, highlighting
the poor convergence rate of low order methods for high wave numbers.

In Chapter 6 we focus on the convergence analysis with respect to the dispersion.
We recall the dispersive nature of the Galerkin finite element method as well as of the
spectral element method and study a suitable combination of both which leads to a
significant reduction in the dispersion error. For this blended method, which was in-
troduced in [5], we present an error analysis that takes into account the dispersion rate
explicitly. Finally, the theoretical results are confirmed with some numerical examples.

The second part of this thesis is dedicated to the application in laser physics, orga-
nized in six chapters.

In Chapter 7, we start with some background information on the physical mechanism
of lasers and introduce the describing model of the steady-state ab-initio laser theory in
a mathematical setting.

In Chapter 8, we present the direct solution strategy of the coupled system of the
nonlinear SALT equations introduced in Chapter 7. In particular, we describe two
different ways of solving these equations. The first algorithm serves for the solution of
the SALT equations when one is interested in the ‘evolution’ of the solutions, as the
external pump is modulated. The other algorithm is used to solve the SALT equations
when one is only interested in the solutions for a given pumping strength and can also
be used to accelerate the process.

Chapter 9 concentrates on the properties of the Newton solver for the solution of the
nonlinear model. First the standard Newton scheme is described in a formal way and
then extended by some additional stability constraints. In addition, the Jacobian matrix
is used explicitly and derived in all details.

Chapter 10 focuses on the computation of the nonlinear eigenvalue problem. Under
the wide and versatile range of this topic three different solution methods are discussed.
The first solution method is a standard technique for polynomial eigenvalue problems
known as the first companion linearization. The second approach is a technique that is
specialized on the solution of rational eigenvalue problems. The third and most suitable
solver for our problem presented here is the contour integral method, [16].

In Chapter 11, many different numerical computations are presented in order to illus-
trate the reliability of our new direct SALT solver. Therefore we first tested the accuracy
of all relevant components of our solver, i.e. the eigensolver, the Newton solver and the
convergence rate of the FEM discretization for that nonlinear case. At last we sum up
a few cases of applications that represent the versatility of our direct solver.

In Chapter 12, we give a brief outlook on extensions that might be of broader interest
and other interesting questions that have not been answered so far.
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Part I.

High order FEM for the linear
Helmholtz model
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2. The model problem

2.1. The Helmholtz equation with radiating boundary condition

The mathematical description of propagating waves is often governed by the linear time-
dependent wave equation

∂2w

∂t2
− 1

c2
∆w = g,

where w = w(x, t), g = g(x, t) are real-valued functions of space and time and c describes
the wave speed (e.g. speed of light). In the case of time-harmonic electromagnetic waves,
the solution as well as the data on the right hand side (rhs) are assumed to be of the form
w(t, x) = <(u(x)e−iωt) resp. g = e−iωtf where ω is the angular frequency and u(x), f(x)
are the complex amplitude of the unknown wave function resp. source function. The
resulting equation for the unknown variable u is then the Helmholtz equation

−∆u− k2u = f,

where k is the wave number, related to the wave length by k = ω/c = 2π/λ. In order to
solve this equation uniquely, we need to specify a boundary condition at infinity. Typ-
ically this condition describes some radiating propagation. Here we postulate strictly
outgoing behavior. The mathematical expression for this far-field condition is best de-
scribed by the Sommerfeld condition

∂|x|u− iku = o(‖x‖ d−1
2 ), ‖x‖ → ∞.

In consequence, we formulate the Helmholtz problem in the full space:

Definition 2.1.1. The Helmholtz problem in the full space Rd, d = 1, 2, 3, with Som-
merfeld condition is given by

−∆u− k2u = f in Rd

limr→∞ r
d−1
2 (∂ru− iku) = 0

(2.1)

Here, ∂r denotes the derivative in radial direction r := x/‖x‖. Additionally, we assume
f to have local support, i.e. there exists a d-ball BR := {x ∈ Rd| ‖x‖ < R} that satisfies
supp(f) ⊂ BR and denote by

SRd
k : f 7→ u (2.2)

the solution operator of (2.1).
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2. The model problem

In terms of operator theory, the solution operator SRd
k is also known as the Newton

potential and for f ∈ L2(Rd) with compact support the solution can be expressed in
terms of the Green’s function Gk by

u(x) = SRd
k (f) = Gk ? f =

∫
Rd
Gk(x− y)f(y)dy ∀x ∈ Rd (2.3)

where the Green’s function satisfies the fundamental problem

−∆Gk(x− y)− k2Gk(x− y) = δ(x− y) ∀x, y ∈ Rd
lim|x−y|→∞Gk(x− y) = 0.

(2.4)

In particular, the Green’s function can be given explicitly by Gk(z) = gk(‖z‖), where

gk(z) :=


− eikz

2ik d = 1
i
4H

(1)
0 (kz) d = 2

eikz

4πz d = 3.

(2.5)

and H
(1)
0 denotes the first kind Hankel function of order zero [1].

In order to study the solutions of the model problem (2.1) we have to analyze some

mapping properties of the solution operator SRd
k . To that end, the following decompo-

sition result is known:

Lemma 2.1.2 ( [69, Lemma 3.5]). For every f ∈ L2(Rd) with supp(f) ⊂⊂ BR there
holds

k−1‖SRd
k (f)‖H2(BR) + ‖SRd

k (f)‖H1(BR) + k‖SRd
k (f)‖L2(BR) ≤ CR‖f‖L2(Rd).

Here, the Sobolev spaces Hs are defined in a standard way [2, 95].
In order to treat the unbounded problem (2.1) numerically, we have to truncate the full

space to a bounded domain Ω ⊂ Rd. Studying such truncated boundary value problems,
we will have to make use of the restriction u|∂Ω as an element of a Sobolev space on ∂Ω.
Therefore we require the following result [51,66]:

Lemma 2.1.3 (trace operator). Let Ω be a bounded Lipschitz domain and 1/2 < s <
3/2. Then there exists a unique bounded linear trace mapping γ0 : Hs(Ω)→ Hs−1/2(∂Ω)
defined by γ0(u) := u|∂Ω such that

‖γ0u‖Hs−1/2(∂Ω) ≤ Ctr‖u‖Hs(Ω). (2.6)

The operator γ0 is then called the trace operator and it holds in particular for s = 1

‖γ0u‖H1/2(∂Ω) ≤ Ctr‖u‖H1(Ω) (2.7)

‖γ0u‖L2(∂Ω) ≤ Ctr‖u‖1/2L2(Ω)
‖u‖1/2

H1(Ω)
(2.8)
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2.2. Truncation methods

In addition, we will require the co-normal derivative of the restriction u|Ω:

Lemma 2.1.4 (co-normal trace operator). Let Ω ⊂ Rd be a Lipschitz domain and let
n be the unit exterior normal vector. For u ∈ C∞(Ω̄) define γ1(u) := n · ∇u. This map
u 7→ γ1(u) can be extended to a linear, continuous mapping γ1 : H1

∆(Ω) → H−1/2(∂Ω)
on H1

∆(Ω) := {u ∈ H1(Ω) | ∆u ∈ L2(Ω)} and

‖γ1u‖H−1/2(∂Ω) ≤ C‖u‖H1(Ω). (2.9)

With this notation the normal derivative can be written as ∂nu := γ1(u).

2.2. Truncation methods

By reducing the free space problem (2.1) to a bounded domain Ω we have to supply in
addition some artificial boundary conditions at Γ := ∂Ω which account for the far field
behaviour. Several truncation methods are discussed inter alia in [58] and references
therein. In the following we give a short overview of some of theses truncation methods.
The presentation here is strongly influenced by the review of this topic in [76].

Domain decomposition and DtN operator

The bounded domain Ω might, in practice, be chosen in dependence of the local source
support. Here, we assume Ω to be a d-ball of radius a defined by Ba := {x ∈ Rd : ‖x‖ ≤
a} such that suppf ⊂ Ω and denote the complement of Ω by Ω+ := Rd\Ω, see Figure 2.1.
Then (2.1) can be formulated in an equivalent way as the following transmission problem

−
(
∆ + k2

)
ui = f in Ω

−
(
∆ + k2

)
ue = 0 in Ω+

ui = ue, ∂nui = ∂nue on Γ

limr→∞ r
d−1
2 (∂rue − ikue) = 0

(2.10)

Here, ui := u
∣∣
Ω

is a function on the bounded domain Ω, whereas ue := u
∣∣
Ω+ is defined on

the exterior domain Ω+ such that u = ui +ue and n denotes the normal vector pointing
into Ω+.

According to this domain decomposition we can split the problem (2.10) formally into
the following two problems:

−
(
∆− k2

)
ue = 0 in Ω+

ue = u0 on Γ

limr→∞ r
d−1
2 (∂rue − ikue) = 0

(2.11)

and
−
(
∆− k2

)
ui = f in Ω

∂nui = u′0 on Γ
(2.12)

Both problems are coupled by the interface conditions ui = ue, ∂nui = ∂nue which is
reflected in the relationship between the boundary data u0, u

′
0. This relation is described
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2. The model problem

ΓΩ+

Ω

suppf

Figure 2.1.: Domain decomposition

by the Dirichtlet-to-Neumann (DtN) operator Tk : H1/2(Γ)→ H−1/2(Γ), u0 7→ u′0 which
will be discussed in the following.

In the one dimensional case the solution of (2.11) has the form ue(r) = u0e
ik(r−a).

Additionally, we see that the outgoing radiation is already attained at finite a ≤ R <∞
and the DtN operator in 1D is thus given by

Tkf := ikf. (2.13)

In this case the boundary condition of the interior problem (2.12) is equivalent to the
Robin boundary condition

∂nu(x)− iku(x) = 0 ∀x ∈ Γ. (2.14)

In higher dimensions (d = 2, 3) the exterior domain can be expressed in terms of
polar coordinates by Ω+ = [a,∞) × Sd−1, where Sd−1 := {x ∈ Rd : ‖x‖ = 1} is the
(d − 1)-sphere with radius 1. Then we can rewrite the Helmholtz equation in spherical
coordinates as

∂2
ru+

d− 1

r
∂ru+

1

r2
∆Sd−1u+ k2u = 0 (2.15)

where the spherical Laplace operator ∆Sd−1 is defined recursively by

∆Sd−1 := sin2−d(θd−1)
∂

∂θd−1

(
sind−2(θd−1)

∂

∂θd−1

)
+ sin−2(θd−1)∆Sd−2

for θ̂ := (θ1, . . . , θd−1) ∈ [0, 2π]d−1. Using the method of separation of variables we
assume the solutions to be of the form u(r, θ̂) = v(r)w(θ̂). Then equation (2.15) is
equivalent to the pair of ordinary differential equations:

r2∂2
rv + (d− 1)r∂rv + (k2r2 + α)v = 0 on [a,∞)

∆Sd−1w + αw = 0 on Sd−1 (2.16)

The second equation in (2.16) provides the eigensolutions of the spherical Laplace equa-
tion for d = 2, 3. These lead to the ”exponential“ Harmonics Φn (d = 2) respectively the
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2.2. Truncation methods

spherical Harmonics Y m
n (d = 3) as eigenfunctions. A detailed derivation is available in

literature [30,58,78]. In consequence, the second equation has the form of the (spherical)
Bessel equation. A solution to this equation is inter alia based on the (spherical) Hankel
functions Hn(r) := r1−d/2Hn−1+d/2(r) [76].

Finally, the following statement is known from Colton & Kress:

Proposition 2.2.1. [30, Thm. 2.14] Let u be a solution of (2.11). Then u has an
expansion with respect to the spherical wave functions of the form

u(r, ϕ̂) =



∞∑
n=−∞

1

H|n|(ak)
(u0,Φn)L2(Γ)H|n|(kr)Φn(θ̂), d = 2

∞∑
n=0

1

hn(ak)

n∑
m=−n

(u0, Y
m
n )L2(Γ)hn(kr)Y m

n (θ̂), d = 3

(2.17)

As a consequence of the previous result in Proposition 2.2.1 we can write the DtN
operator in an explicit way:

Definition 2.2.2 (DtN operator). The Γ be a d-sphere with radius a and f ∈ H1/2(Γ)
a function on Γ. Then the Dirichlet-to-Neumann operator Tk : H1/2(Γ) → H−1/2(Γ) is
given by

Tkf :=



∞∑
n=−∞

kH ′|n|(ak)

H|n|(ak)
(f,Φn)L2(Γ)Φn(ϕ̂), d = 2

∞∑
n=0

kh′n(ak)

hn(ak)

n∑
m=−n

(f, Y m
n )L2(Γ)Y

m
n (ϕ̂), d = 3.

(2.18)

This operator links the interior to the exterior problem. However in both cases
(d = 2, 3) the operator is non-local and consists of infinite sums, and thus is not numer-
ically feasible.

Also truncating the sum in the exact DtN-operator in order to receive a good ap-
proximation on the artificial boundary leads to a non-local operator and therefore the
existing solution theory is not applicable.

Localized boundary conditions

One possibility to approximate the DtN operator by some local boundary conditions is
done by Feng [41]. Let us here concentrate on the two dimensional case, which is also
generalizable to three dimensions, but becomes much more technical. Here, the Hankel
functions are first replaced by its asymptotic expansion for large arguments [1]

Hn(kr) −→
(

2

kπr

)1/2

ei(kr−
π
2

(n+ 1
2

)). (2.19)
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2. The model problem

Then the m-th truncation leads to the following absorbing boundary condition (ABC)
of m-th order:

Tmk f := −ik
m∑
p=0

(
i

2ka

)p
ap

(
− ∂2

∂ϕ2

)
(2.20)

with the coefficients ap(n
2) defined recursively in [41]. For both cases (d = 2, 3), the

absorbing boundary condition of 0th order leads again to the same approximation of the
DtN -operator already obtained in the one dimensional case

T 0
k f := ikf. (2.21)

Again this approximation leads to some Robin-type boundary conditions of the form (2.14).
These boundary conditions involve only partial differential operators. This leads to

a compact support of the approximate DtN operator and thus is to be considered as a
local ABC in contrast to, for instance, the exact DtN operator which is of integral form
and thus considered to be of non-local.

Other approximation methods have been discussed by various authors [13,37]. But as
far as they lead to a localized structure, this has to be realized by additional degrees of
freedom.

Further approximation methods

Another possibility is to treat the exterior problem via boundary integral equations meth-
ods, which reduce the problem in Ω+ to equations on the bounded surface Γ. This method
is based on the representation formula

u(x) = −
∫

Γ
Gk(x− y)γ1u(y)dsy +

∫
Γ
γ1Gk(x− y)γ0u(y)dsy

with Gk being the Green’s function as introduced in Section 2.1. Applying the trace
mappings γ0, γ1 (as introduced in Section 2.1) yields the so-called Calderón system(

γ0u
γ1u

)
=

(
1
2 −Kk Vk
Wk

1
2 +K ′k

)(
γ0u
γ1u

)
. (2.22)

This provides further representations of the DtN mapping by means of boundary inte-
gral operators Kk,K

′
k,Wk,W

′
k. For a detailed definition see [26, 85, 93]. Based on the

Calderon system (2.22) various stable realizations of the DtN operator have been studied
in the literature, e.g. [36, 56].

In contrast, the infinite element method [8,23,47] is built on the representation ansatz
u(x) =

∑
cnbn(x) with basis functions set up via tensor product elements bn(x) =

b1n(r)⊗ b2n(θ̂). Here, the radial components are described by functions of infinite support
based on the Atkinson-Wilcox expansion

u(x) ∼ eikr

r

∞∑
n=0

un(θ̂)

rn
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2.3. The Helmholtz equation with Robin boundary condition

which forces outgoing radiation in the far field [58].
An alternative approach to express the outgoing radiation behaviour is based on the

corresponding definition in the frequency space, namely the radial component of the
Laplace transformation (in radial direction) has to lie in the Hardy space H−(R). This
property is called pole condition as it refers to the singularities of the Laplace trans-
formation. Further transmission onto the complex unit disk and a proper separation
technique lead again to a localized boundary structure. A detailed introduction to this
topic is available in the dissertation of Lothar Nannen [76] and the works [57,77].

A final concept mentioned here is the perfectly matched layer (PML) method. There,
an artificial layer is set up around the inner domain (domain of interest). Inside this
layer the partial differential operator is modified by a complex scaling in radial direction.
This causes an exponential damping of the outgoing wave such that the solution in the
interior is not disturbed by any reflections of this artificial boundary. This approach
goes back to the work of J. Berenger [14], which has been discussed for the Helmholtz
problem among others in the works [15,21,55,99].

2.3. The Helmholtz equation with Robin boundary condition

Corresponding to the discussions in Section 2.2 we introduce the model problem which
represents the mathematical foundation for the rest of this work.

Definition 2.3.1. Let Ω ⊂ Rd be a bounded Lipschitz domain. Then the Helmholtz
problem with Robin boundary condition is given by

−∆u− k2u = f in Ω
∂νu− iku = g on ∂Ω

(2.23)

where k ≥ k0 > 0, ν being the unit exterior normal vector on the boundary ∂Ω pointing
out of Ω. Further we denote by

Sk : (f, g) 7→ u (2.24)

the solution operator of (2.23).

Following the discussion of linear elliptic partial differential equations (PDEs) in [18]
a “classical solution” u0 ∈ C2(Ω), where C2 denotes the space of 2-times continuously
differentiable functions, does not always exist, if we only think, for example, of a piece-
wise continuous right-hand side f ∈ Cpw(Ω). Even for a continuous right-hand side f ∈
Ccomp(Ω) with compact support this is not always the case [53]. For compact supported,
integrable right-hand sides f ∈ L2

comp(Ω) the straightforward way to solve (2.23) by
determinating u0 ∈ H2

loc(Ω) is still too restrictive. From the calculus of variations it
is known that the condition u′0 ∈ L2 is often sufficient for the problem (2.23) to be
well-posed. This motivates to search for solutions of (2.23) in the weak sense:

Definition 2.3.2. Let Ω ⊂ Rd be a bounded Lipschitz domain. Then a weak solution
u ∈ H1(Ω) of the Helmholtz problem (2.23) has to satisfy

B(u, v) = l(v) ∀v ∈ H1(Ω), (2.25)
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2. The model problem

where, for f ∈ L2(Ω) and g ∈ L2(∂Ω), B and l are given by

B(u, v) :=

∫
Ω

(∇u · ∇v − k2uv)− ik
∫
∂Ω
uv, l(v) :=

∫
Ω
fv̄ +

∫
∂Ω
gv̄. (2.26)

In this context we employ the space H1(Ω) with the norm

‖u‖2H := k2‖u‖2L2(Ω) + ‖∇u‖2L2(Ω). (2.27)

Based on this k-weighted norm continuity of the bilinear form B can be shown as
follows:

Lemma 2.3.3. The bilinear form B(·, ·) as defined in (2.26) is continuous resp. bounded.
That is, there exists CB > 0 independent of k such that

|B(u, v)| ≤ CB‖u‖H‖v‖H ∀u, v ∈ H1(Ω). (2.28)

Proof. By using the multiplicative trace inequality (2.8) we can estimate

|B(u, v)| ≤ |u|H1(Ω)|v|H1(Ω) + k2‖u‖L2(Ω)‖v‖L2(Ω) + k‖u‖L2(∂Ω)‖v‖L2(∂Ω)

≤
(
|u|H1(Ω) + k‖u‖L2(Ω)

) (
|v|H1(Ω) + k‖v‖L2(Ω)

)
+C2

trk
1/2‖u‖1/2

L2(Ω)
‖u‖1/2H k1/2‖v‖1/2

L2(Ω)
‖v‖1/2H

≤ CB‖u‖H‖v‖H

as we do estimate k‖u‖L2(Ω) ≤ ‖u‖H and ‖u‖H1(Ω) ≤ ‖u‖H.

The next essential property of bilinear forms is the coercivity resp. ellipticity:

Definition 2.3.4 (Coercivity and ellipticity). (i) Let B(·, ·) be a bilinear form on H1(Ω).
It is called coercive, if it is bounded and there exists a constant Cc > 0 such that

B(u, u) > Cc‖u‖2H ∀u ∈ H1(Ω).

(ii) A bounded bilinear form B(·, ·) on H1(Ω) is called elliptic, if there exist constants
Cg ∈ R and α > 0 such that

B(u, u) ≥ α‖u‖2H − Cg‖u‖2L2(Ω) ∀u ∈ H1(Ω).

This inequality is also known as the G̊arding inequality.

The bilinear form in (2.26) is not coercive, but satisfies a G̊arding inequality as it
holds

ReB(u, u) + 2k2(u, u)L2(Ω) = ‖u‖2H. (2.29)

Additionally, uniqueness of the solution of (2.25) can be shown via the unique con-
tinuation principle for elliptic problems (see, e.g., [63, Chap. 4.3]). This can be best
illustrated by the following example in one dimension:
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2.3. The Helmholtz equation with Robin boundary condition

Example 2.3.5. We consider the one-dimensional Helmholtz problem

u′′(x) + k2u(x) = f on Ω = [a, b], u′(x)− iku(x) = 0 for x ∈ {a, b}.

As the weak formulation satisfies the G̊arding inequality (with γ > k2 and α = min{1, γ−
k2}), we know that the induced operator of the corresponding bilinear form is of the form
“coercive + compact perturbation”. Based on the fact that H1(Ω) ⊂⊂ L2(Ω) we could
then get from the Riesz theory [62] the existence, if the homogeneous equation has only
the trivial solution u ≡ 0. Thus, testing the homogeneous weak formulation

−
∫

Ω
u′v′ + k2

∫
Ω
uv + ik(u(b)v(b)− u(a)v(a)) = 0 ∀v ∈ H1(Ω)

with v = u and considering the imaginary part, leads to u(a) = u(b) = 0 for any solution
u ∈ H1(Ω) of (2.23). Consequently, the trivial extension ũ to R satisfies ũ ∈ H1(Ω̃) for
any Ω̃ ⊂ R with Ω ⊂ Ω̃ and (k2, ũ) ∈ R×H1(Ω̃) satisfies the eigenvalue problem

−
∫

Ω̃
ũ′v′ = k2

∫
Ω̃
ũv ∀v ∈ H1(Ω̃).

By choosing Ω̃ := [−cR, cR] with c > 1 and applying integration by substitution for
uc(x) := ũ(x/c), this would then lead to uncountably many eigenpairs ((k/c)2, uc) ∈
R×H1([−R,R]) for the Laplace operator on [−R,R]. However, there exist only countably
many eigenvalues of the Laplace operator on a bounded domain. As k > 0, this implies
that uc ≡ 0, which in turn yields u ≡ 0.

The previous result is directly generalizable to higher dimensions. Consequently, we
can obtain unique solvability using the classical Riesz-Fredholm theory. To this end the
following result is known from [70]:

Proposition 2.3.6. [70, Prop. 8.1.3] Let Ω be a bounded Lipschitz domain. Then
there is a constant C(Ω, k) > 0 such that for every f ∈ H1(Ω)′, g ∈ H−1/2(∂Ω) a
unique solution u of the problem exists and depends continuously on the data such that

‖u‖H ≤ C(Ω, k)
(
‖f‖H1(Ω)′ + ‖g‖H−1/2(∂Ω)

)
.

The regularity result based on the Fredholm alternative as stated in Prop. 2.3.6 does
not give any indication of how the solution operator depends on the wavenumber k. Yet,
it is of interest to know how k influences the regularity behavior of the solution operator.
It turns out that both the geometry and the type of boundary conditions have a strong
impact. The following chapter will treat this aspects in more detail and provide a refined
regularity analysis which is explicit in the wave number k.
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3. Regularity analysis

3.1. Geometric assumptions

For the Helmholtz problem in one dimension the domain Ω is in fact an interval and the
integral acting on the boundary is reduced to the evaluation at the two end points of Ω.

For the model in higher dimensions we need to say a few more words concerning the
geometry of the domain. Most commonly the boundary can be seen as the graph of a
function φ : Rd−1 → R or as a sub-manifold embedded in Rd.

According to the discussions in [51] we say that the boundary is analytic, if for every
x ∈ Γ in a neighborhood U ⊂ Rd there exists an analytic, bijective mapping ϕ from U
onto U(ϕ) ⊂ Rd such that Γ := {y ∈ Ω|ϕd(y) = 0} where ϕd is the d-th component of
ϕ. Note that this excludes e.g. domains with a cut. For bounded domains with analytic
boundary, it is known that the classic shift theorem holds [42].

However in the context of numerical applications the domain is rather a triangulation
of a (curvilinear) polygon. For our purposes, we consider a (curvilinear) polygon as
sub-manifold with corners Aj , j = 1, . . . , J and assume that it is defined piece-wise. We
denote by Γj the (curvilinear) edge which has the endpoint Aj , and ωj are the interior
angles at Aj . In that case the standard shift theorem fails and singularities appear at
corners. To that end, we define the H1/2-Sobolev space on the boundary ∂Ω of a polygon
edge-wise by

H1/2
pw (∂Ω) := {g ∈ L2(∂Ω) : g|Γi ∈ H1/2(Γi)} (3.1)

and illustrate this issue in more detail by recalling the following result harking back to
the work by Kondratiev and Grisvard [51]:

Lemma 3.1.1. Let Ω ⊂ Rd be a polygon with vertices Aj, j = 1, . . . , J , and interior
angles ωj, j = 1, . . . , J . Define for each vertex Aj the singularity function Sj by

Sj(rj , ϕj) = r
π/ωj
j cos

(
π

ωj
ϕj

)
, (3.2)

where (rj , ϕj) are polar coordinates centered at the vertex Aj such that the edges of Ω
meeting at Aj correspond to ϕj = 0 and ϕj = ωj. Then every solution u of

−∆u = f in Ω, ∂nu = g on ∂Ω,

can be written as u = u0 +
∑J

j=1 a
∆
j (f, g)Sj with the a priori bounds

‖u0‖H2(Ω) +

J∑
j=1

|a∆
j (f, g)| ≤ C

[
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

+ ‖u‖H1(Ω)

]
. (3.3)
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The a∆
j are linear functionals, and a∆

j = 0 for convex corners Aj (i.e., if ωj < π).

Proof. This classical result is comprehensively treated in [51] or [31]. A sketch of the
proof for the homogeneous Dirichlet problem is given in [83].

The lack of smoothness of these boundaries influences the regularity properties of
solutions of elliptic equations near these points of non-smoothness. One way to describe
the regularity of this solutions is to replace the standard Sobolev spaces with weighted
Sobolev spaces. In order to embed the solution of our model problem into the right
function space we require the countably normed spaces introduced in [67]. These function
spaces are defined with the aid of weight functions Φ

p,
−→
β ,k

that we now define. For

β ∈ [0, 1), n ∈ N0, and k > 0 we set

Φn,β,k(x) = min

1,
|x|

min
{

1, |n|+1
k+1

}

n+β

.

For given
−→
β ∈ [0, 1)J , we define

Φ
n,
−→
β ,k

(x) =

J∏
j=1

Φn,βj ,k(x−Aj). (3.4)

In order to cover the case of polygons as well as domains with analytic boundary by the
same notation, we define Φ

n,
−→
β ,k
≡ 1, if Ω has an analytic boundary.

Furthermore it can be shown that the singularity functions (3.2) weighted by theses
functions (3.4) are analytic:

Lemma 3.1.2. Let βi ∈ [0, 1) satisfy βi > 1− π
ωi

. Then the singularity functions Si of
(3.2) satisfy ‖Si‖H1(Ω) ≤ C and

‖Φ
n,
−→
β ,k
∇n+2Si‖L2(Ω) ≤ Ck−(2−βi)γn max{n, k}n+2 ∀ ∈ N0

for some C, γ > 0 independent of k.

Proof. Follows from a direct calculation. For details see [40].

3.2. Polynomial wellposedness

An important ingredient of the regularity and stability theory will be the concept of
polynomial well-posedness by which we mean polynomial-in-k-bounds for the norm of
the solution operator. To be more precise, this means that we assume that there exists
a constant Csol(k) which is polynomially bounded, i.e.

Csol(k) ≤ C̃solkθ (3.5)
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3.2. Polynomial wellposedness

such that for all f ∈ L2(Ω) and g ∈ L2(∂Ω) the solution u of (2.23) satisfies

‖u‖H ≤ Csol(k)
[
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

]
. (3.6)

For star-shaped domains Ω, [70] (for d = 2) and [32] (for d = 3) established the
k-explicit stability bound

k−1‖u‖H2(Ω) + ‖u‖H ≤ C
[
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

]
(3.7)

for a C > 0 that is independent of k. This shows polynomial wellposedness with θ = 0.

For general Lipschitz domains polynomial wellposedness can be shown with a rate of
θ = 5/2 as follows:

Theorem 3.2.1. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded Lipschitz domain. Then there
exists C > 0 (independent of k) such that for f ∈ L2(Ω) and g ∈ L2(∂Ω) the solution
u ∈ H1(Ω) of (2.23) satisfies

‖u‖H ≤ C
[
k2‖g‖L2(∂Ω) + k5/2‖f‖L2(Ω)

]
. (3.8)

Proof. We first consider the full space problem by extending the homogeneous right-
hand side f in the standard way. A particular solution of the equation (2.1) is given
by the Newton potential u0 := Gk ? f with the Green’s function Gk as introduced in
Section 2.1. Then u0 ∈ H2

loc(Rd) and by the analysis of the Newton potential given
in [69, Lemma 3.5] we have

k−1‖u0‖H2(Ω) + ‖u0‖H1(Ω) + k‖u0‖L2(Ω) ≤ C‖f‖L2(Ω). (3.9)

The difference ũ := u− u0 then satisfies

−∆ũ− k2ũ = 0 in Ω, (3.10a)

∂nũ− ikũ = g − (∂nu0 − iku0) =: g̃. (3.10b)

Then we have

‖ũ‖L2(∂Ω) ≤ k−1‖g‖L2(∂Ω) (3.11)

which can be seen by selecting v = ũ in the weak formulation (2.25) and then applying
the Cauchy-Schwarz inequality to the imaginary part

k‖ũ‖2L2(∂Ω) = Im

∫
∂Ω
g̃ũ ≤ ‖g̃‖L2(∂Ω)‖ũ‖L2(∂Ω).

Next we have with the multiplicative trace inequality (2.8)

‖g̃‖L2(∂Ω) ≤ C
[
‖g‖L2(∂Ω) + ‖u0‖1/2H2(Ω)

‖u0‖1/2H1(Ω)
+ k‖u0‖1/2H1(Ω)

‖u0‖1/2L2(Ω)

]
≤ C

[
‖g‖L2(∂Ω) + k1/2‖f‖L2(Ω)

]
. (3.12)
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3. Regularity analysis

To get bounds on ũ, we employ (3.11) and (3.12) to conclude

‖ũ‖L2(∂Ω) ≤ Ck−1‖g̃‖L2(∂Ω) ≤ C
[
k−1‖g‖L2(∂Ω) + k−1/2‖f‖L2(Ω)

]
, (3.13)

‖∂nũ‖L2(∂Ω) ≤ C
[
‖g̃‖L2(∂Ω) + k‖ũ‖L2(∂Ω)

]
≤ C

[
‖g‖L2(∂Ω) + k1/2‖f‖L2(Ω)

]
. (3.14)

By the use of the results on layer potentials for the Helmholtz equation from [71] and
the generous estimate ‖∂nũ‖H−1(∂Ω) ≤ C‖∂nũ‖L2(∂Ω) we get

‖ũ‖H1(Ω) + k‖ũ‖L2(Ω) ≤ C
[
k2‖g‖L2(∂Ω) + k5/2‖f‖L2(Ω)

]
. (3.15)

Combining (3.9), (3.15) provides the statement for u = ũ+ u0.

Remark 3.2.2. The arguments in the proof show us that it is not the geometry but the
type of boundary conditions in our model problem (2.23), namely, the Robin boundary
conditions that makes it polynomially well-posed.

While (3.11) resp. (3.7) do not make minimal assumptions on the regularity of f and
g they can be used to show that the sesquilinear form B of (2.25) satisfies an inf-sup
condition with an inf-sup constant γ = O(k−(θ+1)). This again makes it possible to
obtain regularity estimates for f ∈ H1(Ω)′ and g ∈ H−1/2(∂Ω):

Theorem 3.2.3. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded Lipschitz domain. Then there
exists C > 0 (independent of k) such that the sesquilinear form B of (2.26) satisfies

inf
06=u∈H1(Ω)

sup
0 6=v∈H1(Ω)

ReB(u, v)

‖u‖H‖v‖H
≥ Ck−7/2. (3.16)

Furthermore, for every f ∈ (H1(Ω))′ and g ∈ H−1/2(∂Ω) the problem (2.25) is uniquely
solvable, and its solution u ∈ H1(Ω) satisfies the a priori bound

‖u‖H ≤ Ck7/2
[
‖f‖(H1(Ω))′ + ‖g‖H−1/2(∂Ω)

]
. (3.17)

If Ω is convex or if Ω is star-shaped and has a smooth boundary, then the following,
sharper estimate holds:

inf
0 6=u∈H1(Ω)

sup
06=v∈H1(Ω)

ReB(u, v)

‖u‖H‖v‖H
≥ Ck−1. (3.18)

Proof. The proof relies on standard arguments for sesquilinear forms satisfying a G̊arding
inequality. Given u ∈ H1(Ω) we define z ∈ H1(Ω) as the solution of

2k2(·, u)L2(Ω) = B(·, z).

Theorem 3.2.1 implies ‖z‖H ≤ Ck9/2‖u‖L2(Ω), and v = u+ z satisfies

ReB(u, v) = ReB(u, u) + ReB(u, z) = ‖u‖2H − 2k2‖u‖2L2(Ω) + ReB(u, z) = ‖u‖2H.
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3.3. Frequency splitting

Thus

ReB(u, v) = ‖u‖2H,
‖v‖H = ‖u+ z‖H ≤ ‖u‖H + ‖z‖H ≤ ‖u‖H + Ck9/2‖u‖L2(Ω) ≤ Ck7/2‖u‖H.

Therefore,

ReB(u, v) = ‖u‖2H ≥ ‖u‖H
1

Ck7/2
‖v‖H,

which concludes the proof of (3.16). Example 2.3.5 provides unique solvability for (2.23)
so that (3.16) gives the a priori estimate (3.17). Finally, (3.18) is shown by the same
arguments using (3.7).

3.3. Frequency splitting

As the behavior of the Helmholtz operator changes essentially for high wave numbers
it seems reasonable to treat the low and highly oscillatory contribution separately. To
begin with we employ this frequency spitting to the inhomogeneous data f and g.

In order to perform a splitting in the Fourier space for functions f ∈ L2(Ω) we intro-
duce the following lifting operator by [92]:

Proposition 3.3.1 (Extension operator of Stein). Let Ω ⊂ Rd be a Lipschitz domain,
m ∈ N0 and p ∈ [1,∞]. Then there exists a bounded linear extension operator E :
Wm,p(Ω) → Wm,p(Rd), i.e. Eu|Ω = u for all u ∈ Wm,p(Ω) and there exists a constant
C ≥ 0 such that for all u ∈Wm,p(Ω)

‖Eu‖Wm,p(Ω) ≤ C‖u‖Wm,p(Rd).

With the help of this extension operator we can apply the Fourier transformation and
define (similar to [69, 72]) the low and high frequency filter LΩ,ηf : L2(Ω)→ L2(Ω) and
HΩ,ηf : L2(Ω)→ L2(Ω) by

LΩ,ηf := F−1(χBdηk(0)F(EΩf))
∣∣
Ω
, (3.19)

HΩ,ηf := F−1(χRd\Bdηk(0)F(EΩf))
∣∣
Ω
, (3.20)

where χω is the characteristic function of a set ω and Bd
ηk(0) the d-ball with radius ηk

centered at the origin 0.
For the case of polygons in 2D with boundary functions g ∈ L2

pw(∂Ω) we define
L∂Ω,ηg : L2(∂Ω)→ L2(∂Ω) and H∂Ω,η : L2(∂Ω)→ L2(∂Ω) in an edgewise fashion:

Le,ηg := F−1(χBd−1
ηk (0)F(Eeg))

∣∣
e
, (3.21)

He,ηg := F−1(χRd−1\Bd−1
ηk (0)F(Eeg))

∣∣
e
, (3.22)
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3. Regularity analysis

where Ee : L2(e)→ L2(R) is the extension operator of Stein for an edge e ⊂ ∂Ω.
Of course it holds LΩ,η +HΩ,η = Id on L2(Ω) and we have

‖LΩ,ηf‖L2(Ω) + ‖HΩ,ηf‖L2(Ω) ≤ C‖f‖L2(Ω) ∀f ∈ L2(Ω),

where C > 0 depends solely on Ω [72].

Next, we review some properties for the low and high frequency part of the splitting
from [69,72]. Here, the implied constants in the estimates are independent of f, g and n.

Lemma 3.3.2. Let f ∈ L2(Ω), g ∈ L2(∂Ω). Then the following estimates hold for all
n ∈ N0:

‖∇nLΩ,ηf‖L2(Ω) . (ηk)n‖f‖L2(Ω)

‖∇nL∂Ω,ηg‖L2(∂Ω) .


(ηk)n−3/2‖g‖L2(∂Ω), n ≥ 3/2, if ∂Ω is smooth

(ηk)n−2‖g‖
H

1/2
pw (∂Ω)

, if ∂Ω is a polygon

Proof. [72, Lemma 4.3]

Remark 3.3.3. Since it holds supp(L̂Ω,ηf) ⊂ Bηk(0), this implies that LΩ,ηf resp.
LΩ,ηg are analytic.

Lemma 3.3.4. Let f ∈ Hs(Ω) for s ∈ {0, 1} and g ∈ H1/2
pw (∂Ω). Then the following

estimates hold:

‖HΩ,ηf‖L2(Ω) . (ηk)−s‖f‖Hs(Ω)

‖H∂Ω,ηg‖L2(∂Ω) .


(ηk)−s‖g‖Hs(∂Ω), if ∂Ω is smooth

(ηk)−1/2‖g‖
H

1/2
pw (∂Ω)

, if ∂Ω is a polygon

Proof. [72, Lemma 4.2]

The operators HΩ,η and H∂Ω,η have furthermore approximation properties if the func-
tion they are applied to has some Sobolev regularity. We illustrate this for the operator
H∂Ω,η:

Lemma 3.3.5. Let Ω ⊂ R2 be a polygon. Then there exists C > 0 independent of k and

η > 1 such that for all g ∈ H1/2
pw (∂Ω)

k1/2(1 + η1/2)‖H∂Ω,ηg‖L2(∂Ω) + ‖H∂Ω,ηg‖H1/2
pw (∂Ω)

≤ C‖g‖
H

1/2
pw (∂Ω)

.
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3.4. Regularity by decomposition (for polygons)

Proof. We only show the estimate for ‖H∂Ω,ηg‖L2(∂Ω). We consider first the case of an
interval I ⊂ R. We define HI,ηg by HI,ηg = F−1χR\Bηk(0)FEIg, where χR\Bηk(0) is the
characteristic function for R \ (−ηk, ηk) and EI is the Stein extension operator for the
interval I. Since, according to Parseval, F is an isometry on L2(R) we have

‖HI,ηg‖2L2(I) ≤ ‖HI,ηg‖2L2(R) =

∫
R\Bηk(0)

|FEIg|2 dξ

=

∫
R\Bηk(0)

(1 + |ξ|2)1/2

(1 + |ξ|2)1/2
|FEIg|2 dξ ≤

1

(1 + (ηk)2)1/2

∫
R

(1 + |ξ|2)1/2|FEIg|2 dξ.

The last integral can be bounded by C‖EIg‖2H1/2(R)
. The stability properties of the

extension operator EI then imply furthermore ‖EIg‖H1/2(R) ≤ C‖g‖H1/2(I). In total, we
arrive at

‖HI,ηg‖L2(I) ≤ C
1

(1 + (ηk)2)1/4
‖g‖H1/2(I) ≤ Ck−1/2(1 + η)−1/2‖g‖H1/2(I),

where, in the last estimate, the constant C depends additionally on k0. From this
estimate, we obtain the desired bound for ‖H∂Ω,ηg‖L2(∂Ω) by identifying each edge of Ω
with an interval.

To simplify notation we drop the indices of the frequency splitting operators through-
out the remaining of this chapter and just write L and H for the low and high frequency
filters. If these operators are acting on a function f defined on the domain Ω, then they
have to be understood as Lf = LΩ,ηf and Hf = HΩ,ηf . Accordingly, in the case of a
function g defined on the boundary ∂Ω we use Lf = L∂Ω,ηf and Hf = H∂Ω,ηf .

3.4. Regularity by decomposition (for polygons)

In order to make use of the frequency splitting we decompose the solution of the model
problem (2.23) to obtain a refined regularity result formulated in Theorem 3.4.6. An
illustration of that decomposition scheme can be seen in Figure 3.1. According to this
scheme a sketch of the proof is as follows:

First we split off the Helmholtz problem according to the low frequency filtered data
(Lf, Lg). As the low frequency filtered data is (piecewise) analytic, the corresponding
solution of the Helmholtz operator uA := Sk(Lf, Lg) where Sk is the operator defined in
(2.24), is again analytic on Ω (Lemma 3.4.1). Concerning the high frequency filtered data
(Hf,Hg) the Helmholtz operator −∆−k2 acts very similarly to the modified Helmholtz
operator −∆ + k2. However, the latter is positive definite and thus much easier to an-
alyze. In detail, Hf and Hg are treated separately. The high frequency inhomogeneity
Hf is handled by the full space model of the modified operator (3.26). For Hf ∈ L2

the concerning solution S+
Rd(Hf) is then H2-regular as the classic shift theorem applies

(Lemma 3.4.3). However, we are actually interested in the solution restricted to Ω. The
resulting boundary data has to be included in a subsequent decomposition step. Thus, we
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3. Regularity analysis

consider next the modified homogeneous model on Ω where the boundary data contains
Hg and corresponding boundary data of the modified full space model. The concerning
solution can again be split into an H2-regular part and an analytic part emerging from
potential corners in the geometry. This is shown in Lemma 3.4.4, motivated by the dis-
cussions in Section 3.1. The remaining problem has the same structure as the original
model problem recouping the alterations of the modified problems by a correction term
on its right-hand-side. To this end it can be shown that the resulting inhomogeneity f̃
results from a contraction of the initial boundary data (f, g), see Lemma 3.4.5. This is
a crucial component for the refined regularity theory as it allows to employ a geometric
series argument in order to get to the main result stated in Theorem 3.4.6. This state-
ment and the preliminary work have been published in [40], while here they have been
organized a little differently.

−∆u− k2u = Lf +Hf in Ω

∂nu− iku = Lg +Hg on ∂Ω

q

−∆uA − k2uA = Lf in Ω

∂nuA − ikuA = Lg on ∂Ω

+

−∆u1+k2u1 = Hf in R2

+

−∆u2+k2u2 = 0

∂nu2 − iku2 = Hg − ∂nu1 + iku1 =: h

+

−∆ũ− k2ũ = 2k2(u1 + u2) =: f̃

∂nũ− ikũ = 0

Figure 3.1.: Decomposition scheme, u = u1|Ω + uA + u2 + ũ

3.4.1. The Helmholtz problem with analytic data

First we consider the Helmholtz problem for (piecewise) analytic data. This case has
been studied extensively by J. M. Melenk in [67]. We repeat here the corresponding
statement without proof:

Lemma 3.4.1 ( [72, Lemma 4.12], analytic regularity of S(f, g)). Let Ω be a polygon. Let
f be analytic on Ω and g ∈ L2(∂Ω) be piecewise analytic and satisfy for some constants
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3.4. Regularity by decomposition (for polygons)

C̃f , C̃g, γf , γg > 0

‖∇nf‖L2(Ω) ≤ C̃fγ
n
f max{n, k}n ∀n ∈ N0 (3.23a)

‖∇nT g‖L2(e) ≤ C̃gγ
n
g max{n, k}n ∀n ∈ N0 ∀e ∈ E , (3.23b)

where E denotes the set of edges of Ω and ∇T tangential differentiation. Then there exist−→
β ∈ [0, 1)J (depending only on Ω) and constants C, γ > 0 (depending only on Ω and
γf , γg) such that the following is true for the constant Csol(k) of (3.6):

‖u‖H ≤ Csol(k)(C̃f + C̃g) (3.24)

‖φ
n,
−→
β ,k
∇n+2u‖L2(Ω) ≤ CCsol(k)k−1(C̃f + C̃g)γ

n max{n, k}n+2 ∀n ∈ N0.(3.25)

Remark 3.4.2. (i) We remark that the L2-estimate is not sharp with respect to the
wave number k. The constant Csol(k) from our stability assumption (3.6) is motivated
by the estimates available for the star-shaped case, but could clearly be replaced with other
assumptions.
(ii) The low frequency filtered data (Lf, Lg) satisfy the requirements of Lemma 3.4.1
given their properties in Lemma 3.3.2.

3.4.2. The modified full space Helmholtz problem

In order to circumvent the fact that the solution operator Sk(f, g) is indefinite we consider
the modified problem

−∆u+ k2u = f in R2 (3.26)

and denote the corresponding solution operator by S+
R2 : f 7→ u. Accordingly, we denote

with ‖ · ‖H, here in this subsection, the weighted H1-norm (2.27) on the entire space R2.

Lemma 3.4.3 (properties of S+
R2). There exists C > 0 such that for every η > 1

and every f ∈ L2(R2) whose Fourier transform Ff(ξ) := 1√
2π

∫
e−iξ·xf(x)dx satisfies

suppFf ⊂ R2 \Bηk(0), the solution u = S+
R2f of (3.26) satisfies

‖u‖H ≤ k−1 1√
1 + η2

‖f‖L2(R2) and ‖u‖H2(R2) ≤ C‖f‖L2(R2).

Proof. By using Parseval’s theorem, Cauchy-Schwarz inequality and the notation f̂ =
Ff and û = Fu for the Fourier transforms we get

‖u‖2H = (f, u)L2(R2) = (f̂ , û)L2(R2)

=
(

(|ξ|2 + k2)−1f̂ , (|ξ|2 + k2)û
)
L2

≤ ‖(|ξ|2 + k2)−1f̂‖L2‖(|ξ|2 + k2)û‖L2

=

√∫
R2\Bηk(0)

(|ξ|2 + k2)−1|f̂ |2 dξ‖u‖H
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3. Regularity analysis

where, in the last step, we used the support properties of f̂ . Applying again Parseval’s
theorem, we get

‖u‖H ≤ ((ηk)2 + k2)−1/2‖f‖L2(R2) ≤ k−1(1 + η)−1/2‖f‖L2(R2).

The estimate for ‖u‖H2(R2) now follows from f ∈ L2(R2) and the standard interior
regularity for the Laplacian:

‖u‖H2 ≤ ‖f‖L2 + k2‖u‖L2 ≤ Ck‖u‖H ≤ C(1 + η)−1/2‖f‖L2 .

3.4.3. The modified Helmholtz problem on a bounded domain

Next we discuss the modified Helmholtz problem on a bounded domain defined by

−∆u+ k2u = f in Ω (3.27)

∂nu− iku = g on ∂Ω (3.28)

and denote the corresponding solution operator by S+
Ω : (f, g) 7→ u.

Lemma 3.4.4 (properties of S+
Ω ). Let Ω ⊂ R2 be a polygon and f ∈ L2(Ω), g ∈

H
1/2
pw (∂Ω). Then the solution u := S+

Ω (f, g) satisfies

‖u‖H ≤ k−1/2‖g‖L2(∂Ω) + k−1‖f‖L2(Ω). (3.29)

Furthermore, there exists C > 0 independent of k and the data f, g and there exists a
decomposition u = uH2 +

∑J
i=1 a

+
i (f, g)Si for some linear functionals a+

i with

‖uH2‖H2(Ω) +

J∑
i=1

|a+
i (f, g)| ≤ C

[
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

+ k1/2‖g‖L2(∂Ω)

]
. (3.30)

Proof. The estimate (3.29) for ‖u‖H follows by Lax-Milgram – see [69, Lemma 4.6] for
details. Since u satisfies

−∆u = f − k2u in Ω, ∂nu = g + iku on ∂Ω,

the standard regularity theory for the Laplacian (see Lemma 3.1.1) permits us to de-
compose u = uH2 +

∑J
i=1 a

∆
i (f−k2u, g+ iku)Si. The continuity of the linear functionals

a∆
i reads

J∑
i=1

|a∆
i (f − k2u, g + iku)| ≤ C

[
‖f − k2u‖L2(Ω) + ‖g + iku‖

H
1/2
pw (∂Ω)

]
.

Since (f, g) 7→ S+
Ω (f, g) is linear, the map (f, g) 7→ a+

i (f, g) := a∆
i (f − k2u, g + iku) is

linear, and (3.29), (3.3) give the desired estimates for uH2 and a+
i (f, g).
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3.4.4. The remainder problem

In conclusion to the previous regularity the results we consider the following remaining
problem which is of the same structure as original model problem (2.23) with homoge-
neous boundary condition

−∆u− k2u = f̃ in Ω
∂nu− iku = 0 on ∂Ω

(3.31)

and the specific right hand side

f̃ := 2k2
(
S+
Rd(Hf)

∣∣
Ω

+ S+
Ω

(
0, Hg − ∂nS+

Rd(Hf)
∣∣
∂Ω
− ikS+

Rd(Hf)
∣∣
∂Ω

))
.

The following result builds the key argument to the proof of Theorem 3.4.6:

Lemma 3.4.5 (contraction lemma). Let Ω ⊂ R2 be a polygon. Fix q ∈ (0, 1). Then one

can find
−→
β ∈ [0, 1)J (depending solely on Ω) and constants C, γ > 0 independent of k

such that for every f ∈ L2(Ω) and every g ∈ H1/2
pw (∂Ω), the solution u of (2.23) can be

decomposed as u = uH2 +
∑J

i=1 ai(f, g)Si+uA+r, where uH2 ∈ H2(Ω), the ai are linear
functionals, and uA ∈ C∞(Ω). These functions satisfy

k‖uH2‖H + ‖uH2‖H2(Ω) +
J∑
i=1

|ai(f, g)| ≤ C
[
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

]
,

‖uA‖H ≤ CCsol(k)
[
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

]
,

‖Φ
n,
−→
β ,k
∇n+2uA‖L2(Ω) ≤ CCsol(k)k−1γn max{n, k}n+2

[
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

]
for all n ∈ N0. Finally, the remainder ũ satisfies

−∆ũ− k2ũ = f̃ in Ω, ∂nũ− ikũ = g̃ on ∂Ω

for some f̃ ∈ L2(Ω) and g̃ ∈ H1/2
pw (∂Ω) with

‖f̃‖L2(Ω) + ‖g̃‖
H

1/2
pw (∂Ω)

≤ q
(
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

)
.

Proof. We start by decomposing (f, g) = (LΩ,ηf, L∂Ω,ηg) + (HΩ,ηf,H∂Ω,ηg) with a pa-
rameter η > 1 that will be selected below. We set

uA := Sk(LΩ,ηf, L∂Ω,ηg), u1 := S+
R2(HΩ,ηf)|Ω,

where we tacitly extended HΩ,ηf (which is only defined on Ω) by zero outside Ω. First
we can retrieve the desired estimates for uA from Lemma 3.4.1 and the analyticity of
the low frequency data in Lemma 3.3.2. For u1 we get by Lemma 3.4.3 and the estimate
for Hf in Lemma 3.3.4 the a priori estimates

‖u1‖H ≤ Ck−1(1 + η2)−1/2‖HΩ,ηf‖L2(Ω) ≤ Ck−1(1 + η)−1‖f‖L2(Ω),

‖u1‖H2(Ω) ≤ C‖HΩ,ηf‖L2(Ω) ≤ C‖f‖L2(Ω).

41



3. Regularity analysis

The trace inequality (2.7) and the multiplicative trace inequalities (2.8) imply for g1 :=
∂nu1 − iku1:

k1/2(1 + η)1/2‖g1‖L2(∂Ω) + ‖g1‖H1/2
pw (∂Ω)

≤ C‖f‖L2(Ω).

For g2 := H∂Ω,ηg − g1 we then get from Lemma 3.3.5 and the triangle inequality

k1/2(1 + η)1/2‖g2‖L2(∂Ω) + ‖g2‖H1/2
pw (∂Ω)

≤ C
[
‖g‖

H
1/2
pw (∂Ω)

+ ‖f‖L2(Ω)

]
.

Next we apply Lemma 3.4.4 to u2 := S+
Ω (0, g2) which yields

‖u2‖H ≤ Ck−1/2‖g2‖L2(∂Ω) ≤ Ck−1(1 + η)−1/2
[
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

]
.

Furthermore we can write u2 = uH2 +
∑J

i=1 a
+
i (0, g2)Si, with

‖uH2‖H2(Ω) +

J∑
i=1

|a+
i (0, g2)| ≤ C

[
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

]
.

We then define ai(f, g) := a+
i (0, g2) and note that (f, g) 7→ ai(f, g) is linear by linearity

of the maps a+
i and (f, g) 7→ g2. The above shows that uH2 and the ai satisfy the

required estimates. Finally, the function ũ := u− (uA + u1 + u2) satisfies

−∆ũ− k2ũ = 2k2(u1 + u2) =: f̃ , ∂nũ− ikũ = 0 =: g̃,

together with

‖f̃‖L2(Ω) ≤ 2k2
(
‖u1‖L2(Ω) + ‖u2‖L2(Ω)

)
≤ C(1 + η)−1/2

[
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

]
.

Hence, selecting η > 1 sufficiently large so that for the chosen q ∈ (0, 1) we have C(1 +
η)−1/2 ≤ q which allows us to conclude the proof.

Theorem 3.4.6 (main result). Let Ω ⊂ R2 be a polygon with vertices Aj, j = 1, . . . , J .
Then there exist constants C, γ > 0, β ∈ [0, 1)J such that for every f ∈ L2(Ω) and

g ∈ H1/2
pw (∂Ω) the solution u of (2.23) can be decomposed as u = uH2 + uA with

k‖uH2‖H + ‖uH2‖H2(Ω) ≤ CCf,g

‖uA‖H1(Ω) ≤ (Csol(k) + 1)Cf,g

k‖uA‖L2(Ω) ≤ (Csol(k) + k)Cf,g

‖Φ
n,
−→
β ,k
∇n+2uA‖L2(Ω) ≤ C(Csol(k) + 1)k−1 max{n, k}n+2γnCf,g ∀n ∈ N0

with Cf,g := ‖f‖L2(Ω) + ‖g‖
H

1/2
pw (∂Ω)

and Csol(k) introduced in (3.6).
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3.5. Additional regularity properties

Proof. We repeat here in extracts the proof given in [40]. According to Lemma 3.4.5 we
can rewrite the solution as

Sk(f, g) = uH2 +
J∑
i=1

ai(f, g)Si + uA + S(f̃ , g̃).

From there we have the desired estimates for uH2 , ai(f, g), and uA. Previously, it was
shown that for our chosen q ∈ (0, 1), we have

‖f̃‖L2(Ω) + ‖g̃‖
H

1/2
pw (∂Ω)

≤ q
[
‖f‖L2(Ω) + ‖g‖

H
1/2
pw (∂Ω)

]
.

By repeated execution of this decomposition scheme to the remainder term S(f̃ , g̃) a
geometric series argument can be employed such that the solution can be rewritten as

u = Sk(f, g) = uH2 +
J∑
i=1

ãi(f, g)Si + ũA,

where uH2 ∈ H2(Ω), ũA ∈ C∞(Ω), and the coefficients ãi are in fact linear functionals of
the data (f, g). In addition, we have with the abbreviation Cf,g := ‖f‖L2(Ω)+‖g‖H1/2

pw (∂Ω)

the estimates

‖ũA‖H ≤ CCf,g

‖Φ
n,
−→
β ,k
∇n+2ũA‖L2(Ω) ≤ CCsol(k)k−1Cf,gγ

n max{n, k}n+2 ∀n ∈ N0,

and

k‖uH2‖H + ‖uH2‖H2(Ω) +
J∑
i=1

|ãi(f, g)| ≤ CCf,g.

Finally, Lemma 3.1.2 allows us to absorb the contribution
∑J

i=1 ãi(f, g)Si in the analytic

part by setting uA := ũA +
∑J

i=1 ãi(f, g)Si. In view of βi < 1, we have 2 − βi ≥ 1 and
arrive at

‖uA‖H1(Ω) ≤ C(Csol(k) + 1)Cf,g,

k‖uA‖L2(Ω) ≤ CCf,g(Csol(k) + k),

‖Φ
n,
−→
β ,k
∇n+2uA‖L2(Ω) ≤ CCf,g

[
Csol(k)k−1 + k−1

]
max{n, k}n+2 ∀n ∈ N0,

which concludes the argument.

3.5. Additional regularity properties

The results of this section have been published in [40]. The statements here explore
whether additional regularity can be used to improve the k-dependence of the solution.
Indeed, it turns out that f ∈ H1 in conjunction with g = 0 provides an improvement.
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3. Regularity analysis

Prelude: the 1D situation

Several of the regularity issues for (2.23) can be already be seen in 1D. Therefor we
consider the following situation studied already in [58–60]:

− u′′ − k2u = f in I = (0, 1), u(0) = 0, u′(1)− iku(1) = g ∈ C. (3.32)

The Green’s function is known explicitly, namely,

G(x, y) =
1

k

{
sin(kx)eiky 0 ≤ x ≤ y ≤ 1

sin(ky)eikx 0 ≤ y ≤ x ≤ 1
(3.33)

so that the solution can be written as

u(x) =

∫ 1

0
G(x, y)f(y) dy + g

sin kx

k(cos k − i sin k)
(3.34)

One has the stability estimate (see, e.g., [58, Thm. 4.4])

‖u‖H ≤ C
[
‖f‖L2(I) + |g|

]
. (3.35)

For smooth f , the solution formula (3.34) is an oscillatory integral (for large k) so that
integration by parts is expected to give an additional power of k−1. The following lemma
asserts the validity of this expectation. Instead of working with the solution formula, we
prove it using arguments that will also be used in the multi-d case:

Lemma 3.5.1. The solution u of (3.32) satisfies, for a constant C independent of k, f ,
and g,

‖u‖H ≤ C
[
k−1‖f‖H1(I) + |g|

]
. (3.36)

Proof. We may restrict our attention to the case g = 0. Define the function u0(x) :=
−k−2f(x) + k−2f(0) cos kx. Then ‖u0‖H ≤ Ck−1‖f‖H1(I). The difference δ := u − u0

satisfies

−δ′′ − k2δ = −k−2f ′′,

δ(0) = 0

δ′(1)− ikδ(1) = −(−k−2f ′(1)− k−1f(0) sin k) + ik(−k−2f(1) + k−2f(0) cos k).

Applying now the stability estimate (3.35) and the Sobolev embedding theorem gives

‖δ‖H ≤ C
[
k−2‖f ′′‖L2(I) + k−2|f ′(1)|+ k−1|f(1)|+ k−1|f(0)|

]
≤ C

[
k−2‖f ′′‖L2(I) + k−1‖f‖H1(I)

]
.

Hence, we have obtained

‖u‖H ≤ ‖u0‖H + ‖δ‖H ≤ C
[
k−2‖f‖H2(I) + k−1‖f‖H1(I)

]
.

The term k−2‖f‖H2(I) can be reduced to a term of the form k−1‖f‖H1(I) by interpolation
arguments as worked out in the proof of Lemma 3.5.4 below.

44



3.5. Additional regularity properties

Remark 3.5.2. We note that the term involving |g| in (3.36) is not improved by a factor
k−1 as compared with (3.35). Inspection of the solution formula (3.34) shows that its
k-dependence is sharp. Thus, better estimates (with respect to k) can only be expected
for the case of homogeneous boundary conditions.

Concerning the regularity of the solution u of (3.32) we have:

Proposition 3.5.3. Let s ∈ N0. Then there exist constants C, λ > 0 such that the
following is true. For every f ∈ Hs(I) and g ∈ C the solution u of (3.32) can be written
as u = uHs+2 + uA where uHs+2 ∈ Hs+2(I) and uA is analytic. Additionally,

ks+2‖uHs+2‖L2(I) + ‖uHs+2‖Hs+2(I) ≤ C‖f‖Hs(I),

‖uA‖H ≤ C
[
‖f‖L2(I) + |g|

]
‖u(n+2)
A ‖L2(I) ≤ Cλnk−1 max{k, n}n+2

[
‖f‖L2(I) + |g|

]
∀n ∈ N0.

Proof. Follows by arguing as in the proof of [68, Thm. 4.5] and the appropriate modifi-
cations for the Dirichlet boundary conditions at x = 0 ( [68, Thm. 4.5]) considers (2.23)
with Robin boundary conditions).

Regularity in higher dimensions

As in the 1D situation, it is possible to obtain a better k-dependence by exploiting addi-
tional regularity of the data f . The following result shows this for the multi-dimensional
case:

Lemma 3.5.4. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded Lipschitz domain. Let Csol(k) be
given by (3.6). Let g = 0. Then there exists C > 0 independent of f and k such that

‖u‖H ≤ Ck−1(1 + Csol(k))‖f‖H1(Ω).

Proof. Assume first f ∈ H2(Ω). Define the function u0 := −k−2f . Then ‖u0‖H ≤
Ck−1‖f‖L2(Ω) + k−2‖f‖H1(Ω). Consequently, the function δ := u− u0 satisfies

−∆δ − k2δ = f − (−∆u0 − k2u0) = +k−2∆f in Ω,

∂nδ − ikδ = 0− (∂nu0 − iku0).

By stability and generous trace estimates we have

‖δ‖H ≤ Csol(k)
[
k−2‖∆f‖L2(Ω) + k−2‖∂nf‖L2(∂Ω) + k−1‖f‖L2(∂Ω)

]
≤ CCsol(k)

[
k−2‖f‖H2(Ω) + k−1‖f‖H1(Ω)

]
and conclude from the triangle inequality ‖u‖H ≤ ‖u0‖H + ‖δ‖H

‖u‖H ≤ C
[
k−2‖f‖H + Csol(k)(k−2‖f‖H2(Ω) + k−1‖f‖H1(Ω))

]
. (3.37)
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3. Regularity analysis

In order to lower the regularity requirement for f from H2 to H1, we employ an
interpolation argument [22, 95]. Recognizing that H1(Ω) is the interpolation space
H1(Ω) = (L2(Ω), H2(Ω))1/2,2, we can write, for every t > 0, the function f ∈ H1(Ω) as

f = (f − fH2) + fH2 ,

where fH2 ∈ H2(Ω) and the following estimates are true (see [20] for details):

‖f − fH2‖L2(Ω) + t‖fH2‖H2(Ω) ≤ Ct1/2‖f‖H1(Ω),

‖fH2‖H1(Ω) ≤ C‖f‖H1(Ω).

Selecting t = k−2, we arrive at

‖f − fH2‖L2(Ω) ≤ k−1‖f‖H1(Ω), ‖fH2‖H1(Ω) + k−1‖fH2‖H2(Ω) ≤ C‖f‖H1(Ω),

We write u = u1 + u2, where u1 and u2 solve{
−∆u1 − k2u1 = f − fH2 in Ω
∂nu1 − iku1 = 0 on ∂Ω

{
−∆u2 − k2u2 = fH2 in Ω
∂nu2 − iku2 = 0 on ∂Ω

We conclude from (3.6) for u1 and from (3.37) for u2 that

‖u‖H ≤ ‖u1‖H + ‖u2‖H
≤ Csol(k)‖f − fH2‖L2(Ω) + C

[
k−2‖fH2‖H + Csol(k)(k−2‖fH2‖H2(Ω) + k−1‖fH2‖H1(Ω))

]
≤ C(1 + Csol(k))k−1‖f‖H1(Ω).

With similar arguments as is Section 3.4 the following refined regularity result has
been presented in [68]:

Proposition 3.5.5 ( [68, Thm. 4.5]). Let Ω ∈ Rd, d ∈ {2, 3} be a bounded Lipschitz
domain. Assume additionally that Ω has an analytic boundary. Let Csol(k) be given by
(3.6). Fix s ∈ N0. Then there exist constants C, λ > 0 independent of k ≥ k0 > 0 such
that for every f ∈ Hs(Ω) and g ∈ Hs+1/2(∂Ω) the solution u = S(f, g) of the Helmholtz
problem (2.23) can be written as u = uHs+2 + uA, where, for all n ∈ N0,

‖uA‖H,Ω ≤ CCsol(k)
(
‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)
(3.38)

‖∇n+2uA‖L2(Ω) ≤ Cλnk−1Csol(k) max{n, k}n+2
(
‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)
(3.39)

‖uHs+2‖Hs+2(Ω) + ks+2‖uHs+2‖L2(Ω) ≤ C
(
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

)
. (3.40)

As we have seen in the 1D case, it is possible to improve the estimates by one power of k
for the special case of homogeneous boundary conditions and some additional regularity
of the right-hand side f . This extends to the multi-dimensional case:
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3.5. Additional regularity properties

Theorem 3.5.6. Let Ω ∈ Rd, d ∈ {2, 3} be a bounded Lipschitz domain. Assume
additionally that Ω has an analytic boundary. Fix s ∈ N. Then there exist constants C,
λ > 0 independent of k ≥ k0 > 0 such that for every f ∈ Hs(Ω) the solution u of (2.23)
with g = 0 can be written as u = uHs+2 + uA, where, for all n ∈ N0,

‖uA‖H,Ω ≤ Ck−1(1 + Csol(k))‖f‖H1(Ω) (3.41)

‖∇n+2uA‖L2(Ω) ≤ Cλnk−2(1 + Csol(k)) max{n, k}n+2‖f‖H1(Ω) (3.42)

‖uHs+2‖Hs+2(Ω) + ks+2‖uHs+2‖L2(Ω) ≤ C‖f‖Hs(Ω). (3.43)

Proof. We decompose the data f : Using the operators LΩ and HΩ of [72, (4.1b)], we
can write

f = LΩf +HΩf =: fL + fH ,

where, by [72, Lemma 4.2, Lemma 4.3], we have for some C, η > 0 independent of k the
bounds

‖fH‖Hs1 (Ω) ≤ Cks1−s2‖f‖Hs2 (Ω), 0 ≤ s1 ≤ s2 ≤ s,
‖∇pfL‖L2(Ω) ≤ C(ηk)p‖f‖L2(Ω) ∀p ∈ N0,

‖∇pfL‖L2(Ω) ≤ C(ηk)p−s‖f‖Hs(Ω) ∀p ≥ s.

We denote by uL and uH the solutions to (2.23) with right-hand sides fL and fH ,
respectively. For uH , we have fH ∈ Hs(Ω) together with ‖fH‖L2(Ω) ≤ Ck−1‖f‖H1(Ω).
By Proposition 3.5.5, we may write uH = uHs+2 + ũA with

ks+2‖uHs+2‖L2(Ω) + ‖uHs+2‖Hs+2(Ω) ≤ C‖fH‖Hs(Ω) ≤ C‖f‖Hs(Ω)

‖ũA‖H ≤ Csol(k)‖fH‖L2(Ω)

‖∇nũA‖L2(Ω) ≤ Cλpk−1Csol(k) max{k, n}p‖fH‖L2(Ω) ∀n ∈ N0

recalling that ‖fH‖L2(Ω) ≤ Ck−1‖f‖H1(Ω), we see that uHs+2 and ũA have the desired
properties. We now turn to uL. Since fL and ∂Ω are analytic, the solution uL is analytic.
For bounds on the derivatives of uL, we first note that Lemma 3.5.4 yields

‖uL‖H ≤ Ck−1(1 + Csol(k))‖fL‖H1(Ω). (3.44)

For higher order derivatives, we proceed as in the proof of [69, Lemma 4.13]: Upon
setting ε := 1/k, we observe that uL satisfies

−ε2∆uL − uL = ε2fL in Ω, ε2∂nuL − iεuL = 0 on ∂Ω

with fL satisfying the estimates above. Hence, the equation satisfied by uL has the
same structure as in the proof of [72, Lemma 4.13] making [67, Prop. 5.4.5, Rem. 5.4.6]
applicable. The result is then

‖∇n+2uL‖L2(Ω) ≤ CKn+2 max{n, k}n+2
[
k−2‖fL‖L2(Ω) + k−1‖uL‖H

]
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for a K > 0 independent of k and n. Inserting now the estimate (3.44) for uL yields

‖∇n+2uL‖L2(Ω) ≤ CKn+2 max{n, k}n+2k−2
{
‖fL‖L2(Ω) + (1 + Csol(k))‖f‖H1(Ω)

}
.

Using ‖fL‖L2(Ω) ≤ C‖f‖L2(Ω) and setting uA := ũA + uL finishes the proof.
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4. Numerical approximation

4.1. Galerkin discretisation

From [40, Section 4] we repeat here the discussion on abstract stability. For the generic
Galerkin discretization we consider a sequence (VN )N∈N ⊂ H1(Ω) of finite dimensional
subspaces. Furthermore, we assume that (VN )N∈N is dense in H1(Ω) in the sense that
for every v ∈ H1(Ω) we have limN→∞ infvN∈VN ‖v − vN‖H1(Ω) = 0. The conforming
Galerkin approximation of (2.25) reads then:

Find uN ∈ VN : B(uN , v) = l(v) ∀v ∈ VN . (4.1)

Since the sesquilinear form B satisfies a G̊arding inequality, the general functional ana-
lytic argument show that asymptotically the inf-sup condition holds on the discrete level
and, the discrete problem (4.1) has a unique solution uN . In addition, quasi-optimality
holds (see, e.g., [86, Thm. 4.2.9], [87]). More precisely, there exists N0 > 0 and C > 0
such that for all N ≥ N0

‖u− uN‖H1(Ω) ≤ C inf
v∈VN

‖u− v‖H1(Ω). (4.2)

However this asymptotic convergence result does not indicate how C and N0 depend
on discretization parameters of the approximation space and the wave number k. An
alternative to such a general convergence analysis faces convergence estimates based on
approximation properties of the finite element space that have to be fulfilled. In partic-
ular, it is of interest to get a quasi-optimality result which gives an explicit indication
(in particular explicit in k) on how to choose an appropriate discretization space. A
convergence analysis based on the concept used by Schatz [87] has been developed by
Melenk/Sauter [69,72,84] and will be discussed in detail in Section 5.1.

The problem (4.1) is solved by the Galerkin method as follows: Let {ϕn}Nn=1 be a
basis of the approximation space VN where the number of degrees of freedom N is the
dimension of VN . While the choice of the basis is immaterial from a theoretical point
of view, it is crucial from the point of view of numerics. Inserting the approximation
ansatz

uN (x) =
N∑
n=1

unϕn(x)

into the Galerkin approximation (4.1) and extracting sums out of the integrals leads to
a linear system of equations. The resulting finite element scheme can the be written in
matrix form as

Find u ∈ CN : Bu = l,
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where u := (u1, . . . , uN ) is the unknown coefficient vector of uN , B = [B(ϕi, ϕj)]i,j is

a N × N -matrix and l = [(l, ϕi)]
N
i=1. Consequently, we can observe that the choice of

basis functions is essential in order to retrieve convenient numerical properties of the
matrix B.

A typical example of the Galerkin method is the Galerkin finite element method where
the domain is divided into elements and the basis functions are of local character and
specified in each element. This method will be discussed in detail in the following.

4.2. High-order finite element methods

We review from [69] and [72] the conforming mesh and the high-order basis function and
adopt the notations from [29] for our high-order finite element method.

As a first step within the process of the finite element method the domain Ω ⊂ Rd, d ∈
{1, 2, 3} has to be discretisized by a triangulation Th which has to satisfy the following
properties:

• Ω̄ =
⋃
K∈Th K

• K closed and K 6= ∅ ∀K ∈ Th
• ∀K ∈ Th : K is a Lipschitz domain.

• For each pair K1,K2 ∈ Th with K1 6= K2 it holds K̊1 ∩ K̊2 = ∅

• Each element K can be prescribed from the reference element

K̂ := {x ∈ Rd≥0 :

d∑
i=1

xi ≤ 1}

and an associated bijective element mapping FK : K̂ → K such that K = FK(K̂).

• The vertices, edges and faces of each element K are thus the images of vertices,
edges and faces of the reference element K̂ and the element maps FK induce the
same parametrization on a common edge or face of two adjoining elements.

• For each pair K1,K2 ∈ Th with K1 6= K2 it holds

K1 ∩K2 =


∅ for d ∈ {1, 2, 3}
exactly one common vertex for d ∈ {2, 3}
exactly one common edge for d ∈ {2, 3}
exactly one common face for d = 3.

Other types of reference elements and different strategies of mesh constructions can
be seen in [67]. Up to now we considered Lipschitz domains with analytic as well as
piecewise (curvi-)linear boundary. To this end we adopt the assumptions made in [72]
and [69]:
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4.2. High-order finite element methods

Assumption 4.2.1 (Triangulation for domains with analytic boundary). We present
here a patch-wise construction for a triangulation in order to preserve the approximation
properties of any finite element method. This approach has been studied inter alia in
[67, 75].

1. Let T̃macro be a coarse triangulation of the smooth domain Ω consisting of curvilin-
ear triangles resp. tetrahedral elements of mesh size O(1) and call these elements
”patches”. For example, this mesh can be constructed by the method of Dubois [35]
or Gordon and Hall [49], furnished with the element maps

Fmacro,K = F̃macro,K ◦ F0,K : K̂ → Kmacro → K̃macro.

2. The finite element mesh with step size h is generated by a standard refinement to
Nloc elements on each patch leading to the triangulation

T̃h = {K̃ := F̃macro,K ◦ FK,i(K̂), i = 1, . . . , Nloc,K ∈ Tmacro}.

Each element mapping can be written as FK̃ = DK̃◦MK̃ : K̂ → K → K̃, where MK̃
is an affine mapping and DK̃ is an h-independent analytic map which corresponds
to the metric distortion at the possibly curved boundary. The maps DK̃ and MK̃
satisfy for constants Caffine, Cmetric, γ > 0 independent of h:

‖M ′
K̃
‖L∞(K̂) ≤ Caffineh, ‖(M ′

K̃
)−1‖L∞(K̂) ≤ Caffineh

−1 (4.3)

‖(D′
K̃

)−1‖L∞(K) ≤ Cmetric, ‖∇nDK̃‖L∞(K) ≤ Cmetricγ
nn! ∀n ∈ N0 (4.4)

In the case of polygonal domains the regularity analysis suggests that near corners
the solution can be better approximated on geometric refined meshes. Therefore, the
triangulation away from corners is assembled as in the case of a smooth domain while
in an O(h)-neighbourhood of the vertices the mesh is refined geometrically.

Assumption 4.2.2 (Triangulation for polygonal domains). We denote again the vertices
of the polygon Ω by Aj , j = 1, . . . , J and the ball with radius ch centered at Aj by Bch(Aj)
where c is independent of h. Further let L ∈ N, σ ∈ (0, 1) be constants independent of h.

1. The restriction of Th to Ω\(⋃J
j=1Bch(Aj)) consists of regular elements with mesh

size h. Each element K here can be obtained by an affine mapping FK : K̂ → K
such that FK(K̂) = K. In particular, the element map has the form FK(x) =
AKx+dK where AK ∈ Rd×d is an affine scaling and rotation operator and dK ∈ Rd
a vector of displacement.

2. For each vertex Aj, the restriction of Th to Bch(Aj) ∩ Ω is geometrically refined
toward Aj by a grading factor σ ∈ (0, 1) and L + 1 ∈ N layers of geometric
refinements. Here, for each element K with dist(K,Aj) > 0 it holds

C−1dist(K,Aj) ≤ diam(K) ≤ Cdist(K,Aj)
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4. Numerical approximation

and if dist(K,Aj) = 0, then

diam(K) ≤ CσLh.

Each element map can be written as FK = s−1
K ◦MK , where MK : K̂ → K is an

affine element mapping and sK is an affine stretching map sK : K̃ → K defined
by sK(x) := diam(K)x. The resulting element map is an analytic diffeomorphism
from K̂ to the stretched element K̃ and satisfy for some constants C, γ > 0:

‖∇n(s−1
K ◦MK)‖L∞(K̂) ≤ Cγnn! ∀n ∈ N0 (4.5)

‖
((
s−1
K ◦MK

)′)−1
‖L∞(K̂) ≤ C. (4.6)

For piece-wise smooth Lipschitz domains such as curvilinear polygons, a more ad-
vanced strategy by combining both assumptions would be needed.

Once the appropriate triangulation Th is build up, we defined the H1-conforming
finite-element spaces by

Sp,1(Th) := {u ∈ H1(Ω) | ∀K ∈ Th : u|K ◦ FK ∈ Pp} (4.7)

for some p ∈ N. This space of piecewise polynomials has finite dimension and thus we
can imply that there exists at least one basis {ϕn}Nn=1 where the dimension N is called
degree of freedom. In particular, the basis functions are induced, via the element maps,
by the shape function of the reference element K̂ which span the approximation space
Sp,1(K̂).

For our numerical computations in 1D we choose the following shape functions base
on Legendre polynomials on K̂ = [−1, 1]:

N0(ξ) =
1− ξ

2
, N1(ξ) =

1 + ξ

2
,

Ni(ξ) =
1√

4i− 2

[
Li(ξ)− Li−2(ξ)

]
, 2 ≤ i ≤ p.

(4.8)

A detailed definition of the Legendre polynomials can be found in [1]. For our 2D-
computations we use the high order FEM software package Netgen/Ngsolve by J. Schöberl
[88, 89]. For a discussion of the shape functions in higher dimensions see [33,91].

At last it remains to specify the quadrature scheme in order to compute the coeffi-
cients of the FEM-matrix B and the load vector l as emphasized in Section 4.1. For
our one dimensional computations we use the Legendre-Gauss quadrature where the i-th
Gauss node ξi is the i-th root of Legendre polynomial Lp and its weights are given by
ωi = 2

(1−ξ2i )[L′p(ξi)]2
. This integration scheme is exact for polynomials of a degree smaller

than or equal 2p+ 1.
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4.3. Spectral element methods

In order to clarify terminology we speak of hp-FEM when both the size of elements
as well as the degree of polynomials varies over the domain. In h-FEM the degree of
polynomials of the basis is fixed while the discretization of the geometry is refined. In
p-FEM the degree of polynomials increases while the size of elements is fixed.

4.3. Spectral element methods

The spectral elements method (SEM), proposed by Patera in 1984 [81], is similar to the
p-version of FEM except that it uses different integration points. It combines the ad-
vantages of spectral methods [24,50] with the geometrical flexibility of the finite element
methods. In one dimension, a typical choice of basis functions would be the high-order
Lagrange interpolation polynomials (nodal functions) associated with the local Gauss-
Lobatto integration points defined per element. However, for our purpose, we stick to
the integrated Legendre polynomials (4.8) together with Gauss-Lobatto quadrature. The
main difference to the p-FEM is thus the number and location of the integration nodes
on each element. Here, the node points are located at the p+1 Gauss-Lobatto-Legendre
(GLL) points which are the p + 1 zeros of (1 − ξ2)L′p(ξ) = 0 and the same p + 1-point

GLL quadrature is employed together with the weights ωi = 2
p(p−1)[Lp−1(ξi)]2

.

Comparing the FEM- and SEM-matrix with basis functions ϕi, ϕj ∈ Pp, the matrix
coefficients consist of integrals over polynomials πij = ϕiϕj ∈ P2p. We already mentioned
that the FEM-coefficients are evaluated exactly as the Legendre-Gauß quadrature is even
exact for polynomials with a degree up to 2p+1. However, the Gauß-Lobatto quadrature
is only exact for polynomials of a degree smaller than or equal 2p− 1.

53





5. Convergence analysis

5.1. Quasi-optimality and adjoint approximability

5.1.1. Abstract Results

Based on the discussion in Section 4.1 we aim to provide convergence estimates for
finite element spaces which have to fulfill certain approximation properties. To this end
investigations in previous works [9,12,69,70,72,84,87] employed an analytical tool related
to a ”dual regularity theory”. Based on the concept used in [87] and the gerneralisation
of the theory in [70] developed in [84] leads to the following result:

Lemma 5.1.1 ( [69, Thm. 3.2]). Let Ω ⊂ Rd be a bounded Lipschitz domain and B be
defined in (2.26). Denote by S? : L2(Ω)→ H1(Ω) the solution operator for the problem

Find u? ∈ H1(Ω) s.t. B(v, u?) = (v, f)L2(Ω) ∀v ∈ H1(Ω). (5.1)

Define the adjoint approximation property η(VN ) by

η(VN ) := sup
f∈L2(Ω)

inf
v∈VN

‖S?(f)− v‖H
‖f‖L2(Ω)

.

If, for the continuity constant CB of (2.28), the space VN satisfies

2CBkη(VN ) ≤ 1, (5.2)

then the solution uN of (4.1) exists and satisfies

‖u− uN‖H ≤ 2 inf
v∈VN

‖u− v‖H. (5.3)

Remark 5.1.2. From the proof of quasi-optimality in Lemma 5.1.1 we get as a side
result the L2-estimate

‖u− uN‖L2 ≤ η(VN )‖u− uN‖H. (5.4)

This can be shown via duality techniques. Denote e = u−uN and ψ = S?e. Now let ψN
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5. Convergence analysis

be the best approximation of ψ, then it follows

‖e‖2L2 = (e, e)L2 = B(e, ψ) = B(e, ψ − ψN )

. ‖e‖H‖ψ − ψN‖H

. ‖e‖H inf
v∈VN

‖ψ − v‖H

. ‖e‖H inf
v∈VN

‖ψ−v‖H
‖e‖L2

‖e‖L2

. ‖e‖Hη(VN )‖e‖L2 .

Thus it remains to focus on estimates for the adjoint approximability that are explicit
in the discretization parameters and the wave number. In particular this means we need

to get regularity estimates for the solution operator S?. In fact, we have S?f = S(f, 0),
where an overbar denote complex conjugation. Thus, the regularity theory of Chapter 3
is applicable. The remaining results, here in Chapter 5, are presented by the author and
J. M. Melenk in [40] and [39].

Based on the additional considerations in Section 3.5, we obtain the following state-
ment:

Lemma 5.1.3. Define

ηH
1

N := sup
f∈H1(Ω)
f 6=0

inf
v∈VN

‖S∗f − v‖H
‖f‖H1(Ω)

, η
H1

0
N := sup

f∈H1
0 (Ω)

f 6=0

inf
v∈VN

‖S∗f − v‖H
‖f‖H1(Ω)

. (5.5)

If the solvability condition (5.2) is satisfied, then the Galerkin error u− uN satisfies

‖u− uN‖(H1(Ω))′ ≤ 2C2
c η

H1

N inf
v∈VN

‖u− v‖H

‖u− uN‖H−1(Ω) ≤ 2C2
c η

H1
0

N inf
v∈VN

‖u− v‖H.

Proof. We will just prove the estimate for ‖u − uN‖(H1(Ω))′ using a duality argument
and Galerkin orthogonality: For arbitrary v ∈ H1(Ω) and wN ∈ VN we have∣∣(u− uN , v)L2(Ω)

∣∣ = |B(u− uN , S∗v)| = |B(u− uN , S∗v − wN )| ≤ Cc‖u− uN‖H‖S∗v − wN‖H.

Since wN is arbitrary, we can conclude∣∣(u− uN , v)L2(Ω)

∣∣ ≤ Cc‖u− uN‖H‖v‖H1(Ω)η
H1

N .

Dividing by ‖v‖H1(Ω), taking the supremum over v ∈ H1(Ω), and inserting the best
approximation result (5.3) yields the claimed bound.
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5.1. Quasi-optimality and adjoint approximability

Lemma 5.1.1 resp. Lemma 5.1.3 decomposes the error analysis of the Galerkin dis-
cretization into two separate tasks. On one hand, we are interested in finding bounds
for the adjoint approximability η and on the other hand, we need estimates of the best
approximation infv∈VN ‖u− v‖. Through this approach, we will obtain estimates for the
FEM-error that are explicit in the wave number and the discretization parameters.

5.1.2. Approximability (for smooth domains)

We study the adjoint approximablity according to hp-finite element spaces VN = Sp,1(T )
where T satisfies the geometric assumptions in Section 4.2. Further we restrict ourselves
here to the case of domains with analytic boundary. The regularity assertions of Propo-
sition 3.5.5 and Theorem 3.5.6 allow us to estimate the quantities ηL

2

N as well as ηH
1

N and

η
H1

0
N of (5.5):

Theorem 5.1.4. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded Lipschitz domain with an analytic
boundary. Then there exist constants C, σ > 0 independent of h, k, and p such that

ηL
2

N ≤ C

[
h

p
+ Csol(k)k−1

{(
h

h+ σ

)p
+ k

(
kh

σp

)p}]
, (5.6)

η
H1

0
N ≤ ηH1

N ≤ C

[(
h

p

)min{2,p}
+ (1 + Csol(k))k−2

{(
h

h+ σ

)p
+ k

(
kh

σp

)p}]
.(5.7)

Proof. The estimate (5.6) has already been shown in [72, Prop. 5.3]; it follows from the
approximation properties of VN in combination with the regularity assertion in Propo-
sition 3.5.5. The first bound in (5.7) follows directly from the definition. For the second

estimate in (5.7), let f ∈ H1(Ω) be arbitrary. Then u := S∗f = S(f, 0) can, according
to Theorem 3.5.6 with s = 1, be written as

u = uH3 + uA,

where the contributions uH3 and uA have the regularity properties stated there. There-
fore, we get

inf
v∈VN

‖uH3 − v‖H ≤ C

(
h

p

)min{2,p}
‖f‖H1(Ω),

inf
v∈VN

‖uA − v‖H ≤ Ck−2(1 + Csol(k))‖f‖H1(Ω)

[(
h

h+ σ

)p
+ k

(
hk

σp

)p]
.

The result now follows.

Remark 5.1.5. As mentioned in Section 3.2, for our model problem (2.23), the constant
Csol(k) satisfies here the polynomial bound (3.5) with θ = 5/2. Hence, the crucial
condition (5.2) is satisfied if, for a sufficiently small c1 and a sufficiently large c2, the
following two conditions are satisfied:

kh

p
≤ c1 and p ≥ c2 log k. (5.8)
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5. Convergence analysis

5.1.3. Best Approximation (for smooth domains)

By the use of the regularity statements in Section 3.5 we can give the following estimate
for the best approximation:

Theorem 5.1.6. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded Lipschitz domain with an analytic
boundary. Let u be the solution of (2.23), then we have:

(i) If s ∈ N0 and f ∈ Hs(Ω) and g ∈ Hs+1/2(∂Ω), then

inf
v∈VN

‖u− v‖H ≤ C

(
h

p

)min{s+1,p} [
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

]
+ Csol(k)k−1

{(
h

h+ σ

)p
+ k

(
kh

σp

)p}[
‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

]
.

(ii) If s ∈ N and f ∈ Hs(Ω) and g = 0, then

inf
v∈VN

‖u− v‖H ≤ C

(
h

p

)min{s+1,p}
‖f‖Hs(Ω)

+ (1 + Csol(k))k−2

{(
h

h+ σ

)p
+ k

(
kh

σp

)p}
‖f‖H1(Ω).

Proof. (i) follows from Proposition 3.5.5 and the approximation properties of VN . The
estimate in (ii) is shown similarly, but we are able to exploit the improved k-dependence
of Theorem 3.5.6.

5.1.4. Quasi-optimality on polygons

The estimates of Theorem 3.4.6 suggest that the effect of the corner singularities is
essentially restricted to an O(1/k)-neighborhood of the vertices. This motivates us to
consider meshes that are refined in a small neighborhood of the vertices as described in
Section 4.2. Then we can show that stability of the hp-FEM is ensured if the mesh size h
and the polynomial degree p satisfy the scale resolution condition (5.8) and, additionally,
L = O(p) layers of geometric refinement are used near the vertices:

Theorem 5.1.7. Let T geoh,L denote the geometric meshes on the polygon Ω ⊂ R2 satisfying
Assumption 4.2.2. Fix c3 > 0. Then there are constants c1, c2 > 0 depending solely on
Ω and the shape-regularity of the mesh T geoh,L such that the following is true: If h, p, and
L satisfy the conditions

kh

p
≤ c1 and p ≥ c2 log k and L ≥ c3p (5.9)

then the hp-FEM based on the space Sp(T geoh,L ) has a unique solution uN ∈ Sp(T geoh,L ) and

‖u− uN‖H ≤ 2 inf
v∈Sp(T geoh,L )

‖u− v‖H (5.10)
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5.2. hp-Convergence

Proof. By Lemma 5.1.1, we have to estimate kη(VN ) with VN = Sp(T geoh,L ). Recalling the

definition of η(VN ) we let f ∈ L2(Ω) and observe that we can decompose S?f = uH2+uA,
where uH2 and uA satisfy the bounds

‖uH2‖H2(Ω) ≤ C‖f‖L2(Ω),

‖Φ
n,
−→
β ,k
∇n+2uA‖L2(Ω) ≤ C(Csol(k) + 1)k−1γn max{k, n}n+2‖f‖L2(Ω) ∀n ∈ N0.

Piecewise polynomial approximation on T geoh,L as discussed in [69, Prop. 5.6] gives under
the assumptions kh/p ≤ C and L ≥ c3p: (inspection of the proof of [69, Prop. 5.6] shows
that only bounds on the derivatives of order ≥ 2 are needed):

inf
v∈VN

‖uH2 − v‖H ≤ C
h

p
‖f‖L2(Ω),

inf
v∈VN

‖uA − v‖H ≤ C

[
(kh)1−βmaxeckh−bp +

(
kh

σ0p

)p]
(Csol(k) + 1)‖f‖L2(Ω),

where βmax = maxj=1,...,J βj < 1, and C, c, b > 0 are constants independent of h, p, and
k. From this, we can easily infer

kη(VN ) ≤ C
{
kh

p
+ k(Csol(k) + 1)

[
(kh)1−βmaxeckh−bp +

(
kh

σ0p

)p]}
.

Noting that Theorem 3.2.1 gives Csol(k) = O(k5/2), and selecting c1 sufficiently small as
well as c2 sufficient large allows us to make kη(VN ) so small that the condition (5.2) in
Lemma 5.1.1 is satisfied.

5.2. hp-Convergence

For the numerical analysis of the hp-FEM the convergence of the error is examined in
dependence of both the mesh size h and the polynomial degree p.

5.2.1. Exponential convergence on polygons

Corollary 5.2.1 (exponential convergence on geometric meshes). Let f be analytic on Ω
and g be piecewise analytic, i.e., f , g satisfy (3.23). Given c3 > 0, there exist c1, c2 > 0
such that under the scale resolution conditions (5.9) of Theorem 5.1.7, the finite-element
approximation uN ∈ Sp(T geoh,L ) exists, and there are constants C, b > 0 independent of k
such that the error u− uN satisfies

‖u− uN‖H ≤ Ce−bp.

Proof. In view of Theorem 5.1.7, estimating ‖u− uN‖H is purely a question of approx-
imability for c1 sufficiently small and c2 sufficiently large. Lemma 3.4.1 gives that the
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5. Convergence analysis

solution u = S(f, g) satisfies the bounds given there and, as in the proof of Theorem 5.1.7,
we conclude from [69, Prop. 5.6](more precisely, this follows from its proof)

inf
v∈VN

‖uA − v‖H ≤ C

[
(kh)1−βmaxeckh−bp +

(
kh

σ0p

)p]
(Csol(k) + 1)(C̃f + C̃g).

Theorem 3.2.1 asserts Csol(k) = O(k5/2), which implies the result by suitably adjusting
c1 and c2 if necessary.

5.2.2. Convergence on smooth domains with higher regularity data

We are now in the position to formulate some a priori error estimates. For the reader’s
convenience we introduce the following shorthand notation:

ε(h, p, k) :=

(
h

h+ σ

)p
+ k

(
kh

σp

)p
(5.11)

Corollary 5.2.2. Assume the hypotheses of Theorem 5.1.6. Assume in addition that h
and p are such that condition (5.2) is satisfied.

(i) If s ∈ N0, f ∈ Hs(Ω) and g ∈ Hs+1/2(∂Ω), then with Cf,g := ‖f‖Hs(Ω) +
‖g‖Hs+1/2(∂Ω)

‖u− uN‖H ≤ CCf,g

{(
h

p

)min{s+1,p}
+ k−1Csol(k)ε(h, p, k)

}
,

‖u− uN‖L2(Ω) ≤ C

{(
h

p

)
+ k−1Csol(k)ε(h, p, k)

}
‖u− uN‖H,

‖u− uN‖H−1(Ω) ≤ C

{(
h

p

)min{2,p}
+ k−2(1 + Csol(k))ε(h, p, k)

}
‖u− uN‖H.

(ii) If s ∈ N and f ∈ Hs(Ω) and g = 0, then

‖u− uN‖H ≤ CCf

{(
h

p

)min{s+1,p}
+ k−2(1 + Csol(k))ε(h, p, k)

}
,

‖u− uN‖L2(Ω) ≤ C

{(
h

p

)
+ k−2(1 + Csol(k))ε(h, p, k)

}
‖u− uN‖H,

‖u− uN‖H−1(Ω) ≤ C

{(
h

p

)min{2,p}
+ k−2(1 + Csol(k))ε(h, p, k)

}
‖u− uN‖H.

Proof. Follows by combining the results on the adjoint approximability and the best
approximation in Section 5.1.2 and 5.1.3, respectively.
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5.3. h-Convergence

The above considerations are formulated in a general hp-setting. We will now present
some numerical examples for the h-FEM which feature a more pronounced k-dependence.
In this case, we can simplify

ε(h, p, k) ≤ Cpkp+1hp.

The next corollary follows from Corollary 5.2.2 by fixing p. Additionally, we assume
explicitly the condition (3.5) in order to make the k-dependence more visible:

Corollary 5.3.1. Assume the hypotheses of Corollary 5.2.2 and (3.5). Fix p ∈ N. Then:

(i) If s ∈ N0, f ∈ Hs(Ω), and g ∈ Hs+1/2(∂Ω), then with Cf,g = ‖f‖Hs(Ω) +
‖g‖Hs+1/2(∂Ω)

‖u− uN‖H ≤ CCf,g

[
hmin{s+1,p} + kθ(kh)p

]
,

‖u− uN‖L2(Ω) ≤ CCf,g

[
hmin{s+1,p} + kθ(kh)p

]
h
[
1 + kθ+1(kh)p−1

]
,

‖u− uN‖H−1(Ω) ≤ CCf,g

[
hmin{s+1,p} + kθ(kh)p

]{h2(1 + kθ+1(kh)p−2) if p ≥ 2

hkθ if p = 1.

(ii) If s ∈ N and f ∈ Hs(Ω) and g = 0, then with Cf = ‖f‖Hs(Ω)

‖u− uN‖H ≤ CCf

[
hmin{s+1,p} + kθ−1(kh)p

]
,

‖u− uN‖L2(Ω) ≤ CCf

[
hmin{s+1,p} + kθ−1(kh)p

]
h
[
1 + kθ+1(kh)p−1

]
,

‖u− uN‖H−1(Ω) ≤ CCf,g

[
hmin{s+1,p} + kθ−1(kh)p

]{h2(1 + kθ+1(kh)p−2) if p ≥ 2

hkθ if p = 1.

Remark 5.3.2. A different way of phrasing the L2(Ω)-convergence result is as follows:
If Ω has an analytic boundary and we assume that the exact solution u ∈ Hm+1(Ω) of
(2.23) satisfies

|u|Hj(Ω) ∼ kj , j = 0, . . . ,m+ 1,

and the solvability condition (5.2) is satisfied, then

‖u− uN‖L2(Ω) ≤ Cm
(hk
p

)m+1{
1 +

[
1 +

k

σ

(hk
σp

)p−1](
Csol(k) + 1

)}
. (5.12)

This follows by combining the estimate for ηL
2

N with the a priori bound infv∈VN ‖u−v‖H ≤
Chm‖u‖Hm+1(Ω) ≤ Ck(kh)m. The estimate (5.12) illustrates the special nature of the
case p = 1 when it comes to the k-dependence.
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5.4. Numerical examples

5.4.1. Examples for polygons

All calculations reported in this section are performed with the hp-FEM code net-
gen/ngsolve by J. Schöberl, [88, 89].
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Figure 5.1.: Top: h-FEM with p = 1 (left) and p = 2 (right) as described in Exam-
ple 5.4.1. Bottom left: h-FEM with p = 3 as described in Example 5.4.1. Bottom right:
Illustration of the solution on the unit square.

Example 5.4.1. We consider the model problem (2.23) with f = 0 on the unit square
Ω = [0, 1]2. The boundary data g is chosen such that the exact solution is a plane wave
ei(k1x+k2y), where k1 = −k2 = 1√

2
k and k ∈ {4, 40, 100, 400}. For fixed p ∈ {1, 2, 3},

we show in Fig. 5.1 the performance of the h-FEM for p ∈ {1, 2, 3} on quasi-uniform
meshes by displaying the relative error in the H1-seminorm versus the number of degrees
of freedom per wavelength Nλ := 2π

k

√
N/|Ω|. The dotted lines indicate the asymptotic

rate of convergence for the h-FEM. We observe that higher order methods are less prone
to numerical pollution of the FEM scheme. We note that the meshes are quasi-uniform,
i.e., no geometric mesh refinement near the vertices is performed in contrast to the
requirements of Theorem 5.1.7.

Example 5.4.2. On the L-shaped domain Ω = [−1, 1]2 \ (0, 1) × (−1, 0) we consider
the same problem as in Example 5.4.1. Furthermore, we consider two kinds of meshes,
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5.4. Numerical examples

namely, quasi-uniform meshes Th with mesh size h such that kh ≈ 4 and meshes T geo
that are geometrically refined near the origin. The meshes T geo are derived from the
quasi-uniform mesh Th by introducing a geometric grading on the elements abutting the
origin; the grading factor is σ = 0.125 and the number of refinement levels is L = 10.
Fig. 5.2 shows the relative errors in the H1-seminorm for the p-version of the FEM
where for fixed mesh the approximation order p ranges from 1 to 10. It is particularly
noteworthy that the refinement near the origin has hardly any effect on the convergence
behavior of the FEM; this is quite in contrast to the stability result Theorem 5.1.7, which
requires geometric refinement near all vertices of Ω.
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Figure 5.2.: Top: p-FEM for plane wave solution as described in Example 5.4.2 for a
quasiuniform mesh Th (left) with kh ≈ 4 and the geometric mesh T geo (right) obtained
from T by strong geometric refinement near origin. Bottom: Illustration of the uniform
(left) and the geometric (right) mesh, generated by Netgen.

Example 5.4.3. On the sector Ω = B1(0) \ (0, 1) × (−1, 0) with Γ being the union of
the two edges meeting at (0, 0), we consider the problem

−∆u− k2u = 0 in Ω, ∂nu = 0 on Γ, ∂nu− iku = g on ∂Ω \ Γ, (5.13)

The data g are selected such that the exact solution is u = J2/3(kr) cos 2
3ϕ, where (r, ϕ)

denote polar coordinates and Jα is a first kind Bessel function and k ∈ {10, 100, 1000}.
Our calculations are p-FEMs with p ∈ {1, . . . , 10} on a geometrically refined mesh Th
as depicted in Figure 5.3. This mesh is a standard one in hp-FEM for elliptic problems,
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5. Convergence analysis

whose key features are described, for example, in [52, 90]. The results are displayed in
Figure 5.3 and show the very fast convergence of the p-FEM on graded meshes.
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Figure 5.3.: Left: p-FEM for singular solution on a graded mesh as described in Exam-
ple 5.4.3. Right: Illustration of the solution generated with Netgen.

5.4.2. Examples for smooth domains in 2D

The following three two-dimensional examples consider

−∆u− |k|2u = 0 in Ω,
∂nu− i|k|u = g on ∂Ω,

where g is chosen such that the exact solution u is given by u(x) = eix ·k = ei(k1x+k2y)

with k1 = −k2 = k/
√

2 and k ranges from 4 to 80. The first geometry studied in Exam-
ple 5.4.4 is convex so that the stability bound (3.5) is true with θ = 0; the geometries in
Examples 5.4.5, 5.4.6 are non-convex so that only the bound with θ = 5/2 is available.
The estimate (3.5) with θ = 5/2 is likely to be pessmistic. Indeed, the numerical results
for all three geometries are very similar, and we do not observe a stronger pollution effect
in Examples 5.4.5, 5.4.6 than in Example 5.4.4. All three examples are computed with
the hp-FEM software package Netgen/Ngsolve by J. Schoeberl [88, 89]. The curved
geometry is resolved using high order approximations as provided by Netgen/Ngsolve.

Example 5.4.4. The domain consists of the square [−1, 1]2 with two semicircular caps
attached, i.e., Ω = [−1, 1]2 ∪ {(x, y)|(x ± 1)2 + y2 ≤ 1} (see Fig. 5.4, (a)), and k ∈
{4, 20, 80}. For fixed p = 1, 2 we present in Fig. 5.5 the absolute error in L2 as well as in
the H1-seminorm versus the number of degrees of freedom per wavelength. We observe
the same marked difference between the cases p = 1 and p = 2 that we have seen already
emphasized by Remark 5.3.2. and which is explained by Corollary 5.3.1.

Example 5.4.5. The model problem remains the same as in Example 5.4.4. Only the
geometry is modified to a non-convex domain, see Fig. 5.4, (b). The domain Ω is a
subset of [−2, 0.5] × [−0.5, 2], thus diam Ω . 3.5. The h-FEM with k = {4, 20, 80} and
p = 1, 2 is presented in Fig. 5.6.
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5.4. Numerical examples

Example 5.4.6. We consider the same problem as in Example 5.4.4 on a non-simply
connected domain, see Fig. 5.4, (c). The h-FEM has been computed for k = {8, 20, 80}
and p = 1, 2 is shown in Fig. 5.7.

(a) Example 5.4.4 (b) Example 5.4.5 (c) Exam-
ple 5.4.6

Figure 5.4.: Domain geometries of the concerning examples
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Figure 5.5.: (cf. Example 5.4.4) h-FEM with p = 1 and p = 2 for the smooth convex
domain, see Fig. 5.4(a). Top: L2-error. Bottom: H1-seminorm error.
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Figure 5.6.: (cf. Example 5.4.5) h-FEM with p = 1 and p = 2 for the non-convex domain,
see Fig. 5.4(b). Top: L2-error. Bottom: H1-seminorm error.
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Figure 5.7.: (cf. Example 5.4.6) h-FEM with p = 1 and p = 2 for the domain with a
hole, see Fig. 5.4(c). Top: L2-error. Bottom: H1-seminorm error.
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6.1. Numerical pollution

Differently to the approach in of Chapter 5 we can also carry out an error analysis which
focuses on the dispersive behavior of the finite element method. From the discussion
on quasi-optimality (Section 4.1, equation (4.2)) we see that the accuracy of the FEM-
solution depends on the approximability of the finite element space up to a constant
factor which might depend inter alia on the wave number k. This approximability is
measured in terms of the minimal error which is only related to the original function space
and the according finite element space. If the minimum is reached (uniquely) then this
function is called the best approximation. Furthermore the error of best approximation
is, by definition, smaller than or equal to the interpolation error.

Then the error of the FEM solution can basically be related to the well known error
of interpolation [22] by

‖u− uN‖ ≤ ‖u− uI‖+ ‖uI − uN‖. (6.1)

The first term on the right hand side is considered to be the natural error (interpolation
error, locally determined), while the second term can be interpreted as the numerical
pollution error related to the computational scheme; this contribution of the FEM-error
is of non-local character. This effect comes essentially from the numerical dispersion,
that is the wave number of the FEM solution is different from the wave number of the
exact solution.

In order to illustrate the dispersion effect in a more explicit way we consider the
homogeneous Helmholtz problem with the Robin boundary condition in one dimension.
There the exact solution on the unbounded domain R is u(x) = eikx. Considering the
low order FEM discretization with P = 1 and uniform mesh size h the resulting FEM
matrix can be expressed by

B = tridiag(R(h, k), 2S(h, k), R(h, k))

with R,S being some algebraic functions of h and k. A detailed definition can be found
in [58]. Imaging an infinite regular grid the linear system reads line by line:

R(h, k)uj−1 + 2S(h, k)uj +R(h, k)uj+1 = 0, j ∈ Z

With the ansatz uN := eik̃x̃(in analogy to the exact solution) where x̃j := jh and k̃ the
corresponding discrete wave number, this leads to

R(h, k)eik̃h(j−1) + 2S(h, k)eik̃hj +R(h, k)eik̃h(j+1) = 0.
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6. Dispersion analysis

Using the notation λ := eik̃h transforms the previous equation into a quadratic equation
with solutions

λ1,2 = − S(h,k)
R(h,k) ±

√
S2(h,k)
R2(h,k)

− 1

=

e±ik̃h = cos(hk̃) ± i sin(hk̃)

Note that we assume k̃ to be real valued for a proper description of propagating waves.

In consequence λ1,2 are complex which means that
∣∣∣ S(h,k)
R(h,k)

∣∣∣ < 1 has to hold. Identifying

the real and imaginary part gives then k̃ = 1
h arccos(− S(h,k)

R(h,k)), thus via Taylor expansion
we find that

k̃ = k(1 +O(hk)2).

For high-order FEM, the matrix can again be transformed to a tridiagonal matrix via
condensation. The general dispersion relation can be written as [5]

k̃ = k(1 +O(hk)2p), p ≥ 1.

Hence the error of the FEM solution is mainly subject to a phase shift in the corre-
sponding discrete wave number k̃. As the polynomial interpolant is obviously in phase
with the exact solution the pollution term results from the evaluation of the second term
on the right hand side in (6.1). This dispersive character is thus a global property. In
1D this can be avoided with a special FEM, however it can be shown that this effect is
inevitable in higher dimensions [10].

6.2. The optimally blended FE-SE scheme

A more detailed investigation of the dispersive behavior of the finite element approxima-
tion shows that this computational scheme provides a phase lead for the corresponding
discrete wave number. In contrast, spectral element methods as introduced in Section 4.3
exhibits a phase lag. This motivates to design a new scheme that exploits the different
dispersive behaviors of two distinct schemes in order to minimize the numerical pollu-
tion. This idea is worked out in [5] by blending the finite element method with the
spectral element method giving the two terms the relative weight 1 : p. That is, the
bilinear form of the so-called “optimally blended scheme” is given by

BFE−SE(u, v) =
1

p+ 1
BFEM (u, v) +

(
1− 1

p+ 1

)
BSEM (u, v),

where p is the polynomial degree employed and BFEM (·, ·) and BSEM (·, ·) are bilinear
forms of the Galerkin method and the spectral element method respectively. Seeking a
solution in Sp,1(Th) the coefficients of the bilinearform consists of integrals of polynomi-
als with maximal degree 2p. In comparison, using p quadrature nodes, BFEM is thus
evaluated exactly as the Gauß-Legendre quadrature is exact for polynomials with degree
small than or equal to 2p+ 1, while BSEM with the Gauß-Lobatto rule is only exact for
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6.3. “Phase shift”-explicit convergence theory

polynomials with degree small than or equal to 2p− 1.

Published in [39], we show in Theorem 6.3.1 below that estimates for the dispersion
error translate into actually error bounds. We will do this specifically for the lowest order
case p = 1 and errors in the L2-norm for the model problem (3.32), since the lowest order
case is particularly striking in that the difference between the Galerkin method and the
optimally blended method is most pronounced in this case. To that end, we introduce
the following general notation for the discrete formulation of the Helmholtz problem:
Find uαh ∈ VN such that

Bα
h (uαh , v) = l(v) :=

∫
I
fϕ ∀ϕ ∈ VN , (6.2)

where VN ⊂ {v ∈ H1(I) | v(0) = 0} consists of the classical piecewise linear functions on
a regular mesh of mesh size h. Here, the parameter α indicates the dispersion order of
the approximation scheme providing the following property of the discrete wave number
k̃:

|k̃ − k| = kO(hk)2α, α ≥ 1 (6.3)

This assumption covers the classical Galerkin method with α = 1 (this case has been
analyzed previously in [58, Sec. 4.6.4]) and the optimally blended scheme with α = 2.
Moreover it was shown in [3–5] that

|k − k̃| = kO((kh)2p) for the FEM and SEM approximation with α = p,

|k − k̃| = kO((kh)2p+2) for the optimally blended FE-SE method and α = p+ 1.

Thus one can see that this method leads to a better accuracy of additional two orders
compared to FEM or SEM approximation.

6.3. “Phase shift”-explicit convergence theory

6.3.1. Setting and main result

As Ainsworth and Wajid [5] restrict their work to present a constructive numerical
scheme and the dispersion analysis, we focus on the numerical error analysis in de-
pendence on the dispersion rate. In order to point this out we consider the following
Helmholtz model in one dimension:

−∆u− k2u = f in Ω = (0, 1)
u(0) = 0

u′(1)− iku(1) = 0.
(6.4)

For f ∈ L2(Ω) the solution can be written in the form

u(x) =

∫
Ω
Gk(x, y)f(y)dy
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with the Green’s function Gk introduced in Section 2.1. Likewise the discrete Green’s
function as described, for example, in [58], is given in terms of the discrete wavenumber
k̃(α) by

Gαh(x, y) =
1

h sin(hk̃)

{
sin(k̃x)

(
A sin(k̃y) + cos(k̃y)

)
0 ≤ x ≤ y ≤ 1

sin(k̃y)
(
A sin(k̃x) + cos(k̃x)

)
0 ≤ y ≤ x ≤ 1

with

A := A(k, k̃) =
(hk)2 sin(k̃) cos(k̃) + i

√
12
√

12− (hk)2

12− (hk)2 cos2(k̃)
.

Then the discrete solution uαh can be expressed by

uαh(xi) = h
∑
j

Gαh(xi, xj)rh(xj).

Here, the nodes xi = ih, i = 0, . . . , N , represent the mesh, and the functions ϕi, i =
0, . . . , N are the classical hat functions associated with the nodes xi. Furthermore the
discrete right-hand side is defined by the scalar product of the data f and the nodal
shape functions, i.e.:

rh(xj) = h

∫
Ω
f(y)ϕj(y)dy.

In particular we can see via Taylor expansion at hk = 0 that A = i + O(hk)2 and note

that α̃i := A(k, k̃) sin(k̃xi) + cos(k̃xi) = eik̃xi +O(hk)2.

Then we can state the following result:

Theorem 6.3.1. Let u be the exact solution of the 1D-Helmholtz problem (3.32) with
g = 0. Let uαh be the piecewise linear function solving (6.2). Then, for sufficiently smooth
f and kh = O(1) the error u− uαh can be estimated by

‖u− uαh‖L2 . h2
(
1 + k(hk)2(α−1)

)
Cf ,

where Cf depends only on the data f .

Proof. Let uI ∈ S1,p(T ) be the linear interpolation of the solution u and apply the
triangle inequality:

‖u− uαh‖L2 ≤ ‖u− uI‖L2 + ‖uI − uαh‖L2

From approximation theory we know

‖u− uI‖L2 ≤ Ch2
(
‖f‖∞ + ‖f ′‖∞

)
. h2Cf .

Hence it remains to estimate

‖uI − uαh‖2L2 =
∫

Ω |(uI − uαh)(x)|2dx ≤ h∑i |u(xi)− uαh(xi)|2
≤ h

∑
i

∣∣∣ ∫ΩG(xi, y)f(y)dy − h∑j G
α
h(xi, xj)rh(xj)

∣∣2
≤ h

∑
i

∣∣∣Ai +Bi

∣∣∣2 (6.5)
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with

Ai :=

∫ xi

0
G(xi, y)f(y)dy −

(
h

i−1∑
j=0

Gαh(xi, xj)rh(xj) +
h

2
Gαh(xi, xi)rh(xi)

)
and

Bi :=

∫ 1

xi

G(xi, y)f(y)dy −
(
h

N∑
j=i+1

Gαh(xi, xj)rh(xj) +
h

2
Gαh(xi, xi)rh(xi)

)
.

Under the assumption that kh (and thus k̃h) is small the following estimate holds

|Ai +Bi| .
{ 1

k2
(hk)2

(
1 +O(hk)2

)
+ ε

1

k

(
1 +O(hk)2

)}(
‖f‖∞ + ‖f ′‖∞

)
where ε = (hk)2α, k̃ = k(1 + ε) and α ≥ 1. These estimates will be discussed in more
detail in Section 6.3.2. Hence

‖uI−uh‖L2 .

√
h
∑
i

|Ai +Bi|2 .
{ 1

k2
(hk)2

(
1+O(hk)2

)
+ε

1

k

(
1+O(hk)2

)}(
‖f‖∞+‖f ′‖∞

)
and

‖u− uh‖L2 .
(
h2 + k−1ε

)
Cf . h2

(
1 + k(hk)2(α−1)

)
Cf .

Remark 6.3.2. We assume that the solution behaves like ‖u‖L2 ∼ k−2 (as can be
acertained for smooth f using the solution formula). For the case of α = 1, which
represents the FEM approximation for the discrete wave number k̃, it follows:

‖u− uh‖L2 . kh2Cf

which leads us to the estimate

‖u− uh‖L2

‖u‖L2

. k(hk)2. (6.6)

This means that the convergence of the relative error of the FEM approximation is ex-
plicitly dependent on the wave number. And the case α = 2 representing the optimally
blended scheme gives

‖uI − uh‖L2 . h2(1 + k(hk)2)Cf .

Thus in this case we arrive at

‖u− uh‖L2

‖u‖L2

. (hk)2 (6.7)

which shows that the convergence of the relative error of the optimally blended scheme
is independent of the wave number.

The statements in Theorem 6.3.1 and the auxiliary results in the following Section
have been published in [39].
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6.3.2. Auxiliary results

As discussed in Theorem 6.3.1 we need to estimate the pollution error epoll = uI −uαh in
the L2-norm. This will be done in (6.3.2). In particular from (6.5) we have to estimate

‖uI − uαh‖2L2 . h
∑
i

|Ai +Bi|2.

Our strategy now is to estimate both terms Ai and Bi by the same expression (indepen-
dent of i). The basic mechanism to obtain additional powers of k−1 on the continuous
level is an integration by parts. On the discrete level, this role is taken by the summation
by parts formula:

N∑
j=0

xjyj = yN

N∑
j=0

xj −
N−1∑
j=0

j∑
l=0

xl
(
yj+1 − yj

)
(6.8)

and we will also require the identity

j∑
l=0

sin k̃xl =
sin jk̃h

2 sin( j+1
2 k̃h)

sin k̃h
2

=
cos k̃h2 − cos(j + 1

2)k̃h

2 sin k̃h
2

. (6.9)

In addition we will use the abbreviation

α̃i := A(k, k̃) sin(k̃xi) + cos(k̃xi). (6.10)

Estimations of the right hand side

We start by studying the discrete right-hand side defined by

rh(xj) = h

∫
Ω
f(y)ϕj(y)dy

which has the following properties:

Lemma 6.3.3. With the abbreviation xj+1/2 := (j + 1/2)h, we have

(i) rh(0) = 0

(ii) rh(xN ) = h2

2 f(xN )− h3

6 f
′(xN ) +O(h4‖f ′′‖∞)

(iii) rh(xj) = h2f(xj) +O(h4‖f ′′‖∞), for 0 < i < N

(iv) rh(x1)− rh(0) = rh(x1)

(v) rh(xN )− rh(xN−1) = −h2

2 f(xN−1/2) + f ′(xN−1/2)7h3

12 +O(h4‖f ′′‖∞)

(vi) rh(xj+1)−rh(xj) = h3f ′(xj+1/2)+ h5

8 f
′′′(xj+1/2)+O(h6‖f (4)‖∞) for 0 < j < N−2
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Proof. In more detail, we have due to the Dirichlet boundary conditions on the left
boundary that rh(0) = 0. Further we can calculate

rh(N) = h

∫ 1

0
f(y)ϕN (y)dy = h

∫ xN

xN−1

f(y)
y − xN−1

h
dy

=

∫ xN

xN−1

(
f(xN ) + f ′(xN )(y − xN ) + f ′′(xN )

(y − xN )2

2
+O((y − xN )3)

)
(y − xN−1)dy

= f(xN )

∫ xN

xN−1

(y − xN−1)dy + f ′(xN )

∫ xN

xN−1

(y − xN )(y − xN−1)dy

+ f ′′(xN )

∫ xN

xN−1

(y − xN )2

2
(y − xN−1) +

∫ xN

xN−1

O((y − xN )3)(y − xN−1)dy

= f(xN )
h2

2
− h3

6
f ′(xN ) +O(h4)

and

rh(j) = h

∫ 1

0
f(y)ϕi(y)dy = h

∫ xj

xj−1

f(y)
y − xj−1

h
dy + h

∫ xj+1

xj

f(y)
xi+1 − y

h
dy

=

∫ xj

xj−1

(
f(xj) + f ′(xj)(y − xj) + f ′′(xj)

(y − xj)2

2
+O((y − xj)3)

)
(y − xj−1)dy

+

∫ xj+1

xj

(
f(xj) + f ′(xj)(y − xj) + f ′′(xj)

(y − xj)2

2
+O((y − xj)3)

)
(xj+1 − y)dy

= f(xj)
(∫ xj

xj−1

(y − xj−1)dy +

∫ xj+1

xj

(xj+1 − y)dy
)

+ f ′(xj)
(∫ xj

xj−1

(y − xj)(y − xj−1)dy +

∫ xj+1

xj

(y − xj)(xj+1 − y)dy
)

+ f ′′(xj)/2
(∫ xj

xj−1

(y − xj)2(y − xj−1)dy +

∫ xj+1

xj

(y − xj)2(xj+1 − y)dy
)

+ . . .

= f(xj)h
2 +O(h4),

for 0 < i < N . Property (iv) follows obviously from (i). Next,

rh(xN )− rh(xN−1) =

= h

∫ 1

0
f(y)ϕN (y)dy − h

∫ 1

0
f(y)ϕN−1(y)dy

= −h
∫ xN−1

xN−2

f(y)ϕN−1(y)dy + h

∫ xN

xN−1

f(y)
(
ϕN (y)− ϕN−1(y)

)
dy

= −
∫ xN−1

xN−2

(
f(xN−1/2) + f ′(xN−1/2)(y − xN−1/2) +O((y − xN−1/2)2)

)
(y − xN−2)dy

+

∫ xN

xN−1

(
f(xN−1/2) + f ′(xN−1/2)(y − xN−1/2) +O((y − xN−1/2)2)

)
(2y − (xN + xN−1))dy
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= f(xN−1/2)
(
−
∫ xN−1

xN−2

(y − xN−2)dy +

∫ xN

xN−1

(2y − (xN + xN−1))dy
)

+ f ′(xN−1/2)
(
−
∫ xN−1

xN−2

(y − xN−1/2)(y − xN−2)dy

+

∫ xN

xN−1

(y − xN−1/2)(2y − (xN + xN−1))dy
)

+
(∫ xN−1

xN−2

O((y − xN−1/2)2)(y − xN−2)dy

+

∫ xN

xN−1

O((y − xN−1/2)2)(2y − (xN + xN−1))dy
)

= −f(xN−1/2)
h2

2
+ f ′(xN−1/2)

7h3

12
+O(h4).

Finally

rh(xj+1)− rh(xj) =

= h

∫ 1

0
f(y)ϕj+1(y)dy − h

∫ 1

0
f(y)ϕj(y)dy = h

∫ 1

0
f(y) (ϕj+1(y)− ϕj(y)) dy

= h

∫ 1

0

(
f(xj+1/2) + f ′(xj+1/2)(y − xj+1/2) + f ′′(xj+1/2)

(y − xj+1/2)2

2

+ f ′′′(xj+1/2)
(y − xj+1/2)3

6
+O((y − xj+1/2)4)

)(
ϕj+1(y)− ϕj(y)

)
dy

= hf(xj+1/2)

∫ 1

0
ϕj+1(y)− ϕj(y)dy

+ hf ′(xj+1/2)

∫ 1

0
(y − xj+1/2)(ϕj+1(y)− ϕj(y))dy

+ hf ′′(xj+1/2)

∫ 1

0

(y − xj+1/2)2

2
(ϕj+1(y)− ϕj(y))dy

+ hf ′′′(xj+1/2)

∫ 1

0

(y − xj+1/2)3

6
(ϕj+1(y)− ϕj(y))dy

+ h

∫ 1

0
O((y − xj+1/2)4)(ϕj+1(y)− ϕj(y))dy

= h3f ′(xj+1/2) +
h5

8
f ′′′(xj+1/2) + h

∫ 1

0
O((y − xj+1/2)4)(ϕj+1(y)− ϕj(y))dy

= h3f ′(xj+1/2) +
h5

8
f ′′′(xj+1/2) +O(h6)

for 0 < j < N − 2.

Estimations of the term Ai

In order to estimate the term Ai, we will need the following result:
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Lemma 6.3.4.

i−1∑
j=0

sin(k̃xj)rh(xj) +
1

2
sin(k̃xi)rh(xi) =

=
h2 cos(hk̃2 )

2 sin(hk̃2 )

[
f(0) + cos(k̃xi)f(xi) +O(h2‖f ′′‖∞)

]
+

h2

2 sin(hk̃2 )

i−1∑
j=0

cos(k̃xj+1/2)
(
hf ′(xj+1/2) +O(h3‖f ′′′‖∞)

)
Proof. The essential ingredient of the proof is a summation by parts given by (6.8).
Together with (6.9) we get

i−1∑
j=0

sin(k̃xj)rh(xj) +
1

2
sin(k̃xi)rh(xi) =

=

 i−1∑
j=0

sin(k̃xj)

 rh(xi−1)−
i−2∑
j=0

(
j∑
l=0

sin(k̃xl)

)(
rh(xj+1)− rh(xj)

)
+

1

2
sin(k̃xi)rh(xi)

=
1

2 sin(hk̃2 )

(
cos(

hk̃

2
)− cos(k̃xi −

hk̃

2
)
)
rh(xi−1)

− 1

2 sin(hk̃2 )

i−2∑
j=0

(
cos(

hk̃

2
)− cos(k̃xj +

hk̃

2
)
)(
rh(xj+1)− rh(xj)

)
+

1

2
sin(k̃xi)rh(xi)

=
1

2 sin(hk̃2 )

[(
cos(

hk̃

2
)− cos(k̃xi −

hk̃

2
)
)
rh(xi−1)− cos(

hk̃

2
)
i−2∑
j=0

(
rh(xj+1)− rh(xj)

)
+

i−2∑
j=0

cos(k̃xj +
hk̃

2
)
(
rh(xj+1)− rh(xj)

)
+ sin(

hk̃

2
) sin(k̃xi)rh(xi)

]
=

1

2 sin(hk̃2 )

[(
cos(

hk̃

2
)− cos(k̃xi −

hk̃

2
)
)
rh(xi−1)− cos(

hk̃

2
)
(
rh(xi−1)− rh(0)

)
+

i−1∑
j=1

cos(k̃xj +
hk̃

2
)
(
rh(xj+1)− rh(xj)

)
− cos(k̃xi −

hk̃

2
)
(
rh(xi)− rh(xi−1)

)
+ cos(

hk̃

2
)
(
rh(x1)− rh(0) + sin(

hk̃

2
) sin(k̃xi)rh(xi)

]
=

cos(hk̃2 )

2 sin(hk̃2 )
rh(x1) +

cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)rh(xi) +

1

2 sin(hk̃2 )

i−1∑
j=1

cos(k̃xj +
hk̃

2
)
(
rh(xj+1)− rh(xj)

)
Then, after applying the properties of the discrete right-hand side given in Lemma 6.3.3,
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we get

i−1∑
j=0

sin(k̃xj)rh(xj) +
1

2
sin(k̃xi)rh(xi) =

=
h2 cos(hk̃2 )

2 sin(hk̃2 )

(
f(x1) +O(h2‖f ′′‖∞)

)
+
h2 cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)

(
f(xi) +O(h2‖f ′′‖∞)

)
+

1

2 sin(hk̃2 )

i−1∑
j=1

cos(k̃xj +
hk̃

2
)
(
h3f ′(xj+1/2) +O(h5‖f ′′′‖∞)

)
=
h2 cos(hk̃2 )

2 sin(hk̃2 )

(
f(x1) +O(h2‖f ′′‖∞)− hf ′(x1/2) +O(h3‖f ′′′‖∞)

)
+
h2 cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)

(
f(xi) +O(h2‖f ′′‖∞)

)
+

h2

2 sin(hk̃2 )

i−1∑
j=0

cos(k̃xj +
hk̃

2
)
(
hf ′(xj+1/2) +O(h3‖f ′′′‖∞)

)
=
h2 cos(hk̃2 )

2 sin(hk̃2 )

(
f(0) + hf ′(0) +O(h2‖f ′′‖∞)− h(f ′(0) +

h

2
f ′′(0) +O(h2‖f ′′′‖∞)

)
+
h2 cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)

(
f(xi) +O(h2‖f ′′‖∞)

)
+

h2

2 sin(hk̃2 )

i−1∑
j=0

cos(k̃xj +
hk̃

2
)
(
hf ′(xj+1/2) +O(h3‖f ′′′‖∞)

)
=
h2 cos(hk̃2 )

2 sin(hk̃2 )

(
f(0) +O(h2‖f ′′‖∞)

)
+
h2 cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)

(
f(xi) +O(h2‖f ′′‖∞)

)
+

h2

2 sin(hk̃2 )

i−1∑
j=0

cos(k̃xj +
hk̃

2
)
(
hf ′(xj+1/2) +O(h3‖f ′′′‖∞)

)

Using Lemma 6.3.4, we obtain with the definition of α̃i in (6.10):

Ai :=

∫ xi

0
G(xi, y)f(y)dy −

(
h
i−1∑
j=0

Gαh(xi, xj)rh(xj) +
1

2
hGαh(xi, xi)rh(xi)

)
=

1

k
eikxi

∫ xi

0
sin(ky)f(y)dy

−
(
h

1

h sin(hk̃)
α̃i

i−1∑
j=0

sin(k̃xj)rh(xj) +
h

2h sin(hk̃)
α̃i sin(k̃xi)rh(xi)

)
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=
1

k
eikxi

[
− 1

k
cos(ky)f(y)

∣∣∣xi
0

+
1

k

∫ xi

0
cos(ky)f ′(y)dy

]
− α̃i

sin(hk̃)

[ i−1∑
j=0

sin(k̃xj)rh(xj) +
1

2
sin(k̃xi)rh(xi)

]
=

1

k2
eikxi

[
f(0)− cos(kxi)f(xi) +

∫ xi

0
cos(ky)f ′(y)dy

]
− α̃i

sin(hk̃)

[h2 cos(hk̃2 )

2 sin(hk̃2 )
{f(0) + cos(k̃xi)f(xi) +O(h2‖f ′′‖∞)}+

h2

2 sin(hk̃2 )

i−1∑
j=0

cos(k̃xj+1/2)
{
hf ′(xj+1/2) +O(h3‖f ′′′‖∞)

}]
=

1

k2
eikxif(0)− h2

4 sin2(hk̃2 )
α̃i
(
f(0) +O(h2‖f ′′‖∞)

)
} a©

−
[ 1

k2
eikxi cos(kxi)f(xi)−

h2

4 sin2(hk̃2 )
α̃i cos(k̃xi)

(
f(xi) +O(h2‖f ′′‖∞)

)]
} b©

+
1

k2
eikxi

∫ xi

0
cos(ky)f ′(y)dy − h2

2 sin(hk̃) sin(hk̃2 )
α̃ih

i−1∑
j=0

cos(k̃xj +
hk̃

2
)
(
f ′(xj+1/2) +O(h2‖f ′′′‖∞)

)
} c©

Next, we aim to estimate each of the terms a©, b©, and c©. Therefore we will need the
following two lemmata:

Lemma 6.3.5. As kh→ 0 (and thus ε→ 0) we have (uniformly in xi, xj ∈ [0, 1])

eik̃x − eikx = O(kε) (6.11)

eik̃x cos(k̃y)− eikx cos(ky) = O(kε) (6.12)

(hk)2

4 sin2(hk̃2 )
ei(k̃−k)xi = (1 +O((kh)2) +O(ε))(1 +O(kε)). (6.13)

Proof. We start with the proof of (6.11):

eik̃x − eikx = eikx
(
ei(k̃−k)x − 1

)
= eikx

(
eikεx − 1

)
= O(kε), ∀ε→ 0. (6.14)

(If kε is small, then the statement is shown by Taylor expansion; if kε is not small, then
eikεx − 1 is O(1) since k, ε, x are real).

Next, we observe that (6.14) implies

cos(kx)− cos(k̃x) =
1

2

(
eikx − eik̃x + e−ikx − eik̃x

)
= O(kε). (6.15)

The bounds (6.12) is shown similarly using (6.11), (6.15):

eik̃x cos(ky)− eik̃x cos(k̃y) =
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= eik̃x
[
cos(ky)− ei(k̃−k)x

(
cos(k̃y)− cos(ky) + cos(ky)

)]
= eik̃x [cos(ky)− (1 +O(kε))(cos(ky) +O(kε))]

= O(kε).

(Here, we ignore the term O(k2ε2) that would formally arise since if kε = O(1), then
the left-hand side is also O(1)).

Next, we show (6.13):

(hk)2

4 sin2(hk̃2 )
ei(k̃−k)xi =

=

(
k

k̃

)2 (hk̃)2

4 sin2(hk̃2 )
ei(k̃−k)xi =

(
1

1 + ε

)2 (hk̃)2

4 sin2(hk̃2 )
eiεkxi

= (1 +O(ε))
(

1 +O(hk̃)2
)

(1 +O(kε))

=
(
1 +O((kh)2) +O(ε)

)
(1 +O(kε)).

Lemma 6.3.6. As kh→ 0 (and thus ε→ 0) we have (uniformly in x, y ∈ [0, 1])

1

k2

∣∣∣∣∣eikxi − (kh)2

4 sin2(hk̃2 )
α̃i

∣∣∣∣∣ = O(h2) +O(k−1ε) (6.16)

1

k2

∣∣∣∣∣eikxi cos(kxj)−
(kh)2

4 sin2(hk̃2 )
α̃i cos(k̃xj)

∣∣∣∣∣ = O(h2) +O(k−1ε) (6.17)

Proof. In view of (6.10) and (6.13) we get that (as kh→ 0)∣∣∣ 1

k2
eikxi − (kh)2

4 sin2(hk̃2 )
α̃i

∣∣∣ =

=
1

k2

∣∣∣1− (hk)2

4 sin2(hk̃2 )
ei(k̃−k)xi(1 +O(kh)2)

∣∣∣
=

1

k2

∣∣∣1− (hk)2

4 sin2(hk̃2 )
ei(k̃−k)xi

∣∣∣+O(h2)

= k−2
{
O((kh)2) +O(ε) + (1 +O((kh)2) +O(ε))O(kε) + k2O(ε2)

}
+O(h2)

= k−2
{
O((kh)2) +O(kε)

}
+O(h2) = O(h2) +O(k−1ε)

We finally show (6.17):

1

k2

∣∣∣∣∣eikxi cos(kxj)−
(kh)2

4 sin2(hk̃2 )
α̃i cos(k̃xj)

∣∣∣∣∣ =
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=
1

k2

∣∣∣∣∣eikxi cos(kxj)−
(kh)2

4 sin2(hk̃2 )
(eik̃xj +O(kh)2) cos(k̃xj)

∣∣∣∣∣
=

1

k2

∣∣∣∣∣eikxi cos(kxj)−
(kh)2

4 sin2(hk̃2 )
eik̃xj cos(k̃xj)

∣∣∣∣∣+O(h2)

= O(h2) +O(k−1ε).

With these estimates, we can analyze a©, b©, c©. From (6.16) we get

a© :=
1

k2
eikxif(0)− h2

4 sin(hk̃2 )2
α̃i
(
f(0) +O(h2‖f ′′‖∞)

)
=

1

k2

(
eikxi − (kh)2

4 sin(hk̃2 )2
α̃i

)
f(0) +

1

k2

(kh)2

4 sin2(hk̃/2)
O(h2‖f ′′‖∞)

. (h2 + k−1ε)‖f‖∞ + h2k−2‖f ′′‖∞.

Similarly we get with (6.17):

b© := − 1

k2
eikxi cos(kxi)f(xi) +

h2

4 sin
(
hk̃
2

)2 α̃i cos(k̃xi)
[
f(xi) +O(h2‖f ′′‖∞)

]
=

[
− 1

k2
eikxi cos(kxi) +

h2

4 sin
(
hk̃
2

)2 α̃i cos(k̃xi)

]
f(xi) +O(k−2h2‖f ′′‖∞)

. (h2 + k−1ε)‖f‖∞ + k−2h2‖f ′′‖∞.

For the third term, c©, we start with the observation

1

2 sin(hk̃) sin(hk̃2 )
=

1

4 sin2(hk̃2 )

1

cos(hk̃2 )
=

1

4 sin2(hk̃2 )
(1 +O(kh)2), kh→ 0. (6.18)

and use the midpoint rule to discretize the integral:

1

k2
eikxi

∫ xi

0
cos(ky)f ′(y) dy =

1

k2
eikxih

i−1∑
j=0

cos(kxj+1/2)f ′(xj+1/2)+k−2h2O(k2‖f ′‖∞+k‖f ′′‖∞+‖f ′′′‖∞)

(6.19)
Using (6.18) and (6.19), (6.17) we get thus:

c© :=
1

k2
eikxi

∫ xi

0
cos(ky)f ′(y)dy −

( 1

2 sin(hk̃) sin(hk̃2 )
α̃i

i−1∑
j=0

cos(k̃xj+1/2)
(
h3f ′(xj+1/2) +O(

h5

8
‖f ′′′‖∞)

)

=
1

k2
eikxih

i−1∑
j=0

cos(kxj+1/2)f ′(xj+1/2) + h2O(‖f ′‖∞ + k−1‖f ′′‖∞ + k−2‖f ′′′‖∞)
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− h2

2 sin(hk̃) sin(hk̃2 )
α̃ih

i−1∑
j=0

cos(k̃xj+1/2)
(
f ′(xj+1/2) +O(

h2

8
‖f ′′′‖∞))

)
=

1

k2
eikxih

i−1∑
j=0

cos(kxj+1/2)f ′(xj+1/2)− h2

2 sin(hk̃) sin(hk̃2 )
α̃ih

i−1∑
j=0

cos(k̃xj+1/2)f ′(xj+1/2)

+ h2O(‖f ′‖∞ + k−1‖f ′′‖∞ + k−2‖f ′′′‖∞)

= h

i−1∑
j=0

[ 1

k2
eikxi cos(kxj+1/2)− h2

4 sin2(hk̃2 )
(1 +O(kh)2)α̃i cos(k̃xj+1/2)

]
f ′(xj+1/2)

+ h2O(‖f ′‖∞ + k−1‖f ′′‖∞ + k−2‖f ′′′‖∞)

. (h2 + k−1ε)‖f ′‖∞ + h2k−1‖f ′′‖∞ + h2k−2‖f ′′′‖∞
In summary, this leads us to

Ai = a©+ b©+ c© .
(
h2 +k−1ε

)(
‖f‖∞+‖f ′‖∞

)
+k−1h2‖f ′′‖∞+k−2h2‖f ′′′‖∞

)
(6.20)

Estimation of the term Bi

For the second term Bi we will need

Lemma 6.3.7. For kh→ 0 (and thus k̃h→ 0) we have

N∑
j=i+1

eik̃xjrh(xj) +
1

2
eik̃xirh(xi) =

= −h
2(1 + eik̃h)

2(1− eik̃h)
eik̃
(
f(1) +O(h2‖f ′′‖∞)

)
+
h2(1 + eik̃h)

2(1− eik̃h)
eik̃xi

(
f(xi) +O(h2‖f ′′‖∞)

)
+

h2e
ik̃h
2

(1− eik̃h)
h

N−1∑
j=i

eik̃xj+1/2
(
f ′(xj+1/2) +O(h2‖f ′′′‖∞)

)
N∑

j=i+1

sin(k̃xj)rh(xj) +
1

2
sin(k̃xi)rh(xi) =

= −h
2 cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xN )f(1) +O(h3‖f ′‖∞ + k̃−1h3‖f ′′‖∞)

+
h2 cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)

(
f(xi) +O(h2‖f ′′‖∞)

)
+

h2

2 sin(hk̃2 )
h
N−1∑
j=i

cos(k̃xj+1/2)
(
f ′(xj+1/2) +O(h2‖f ′′′‖∞)

)
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Proof. These two identities are again shown via summation by parts:

N∑
j=i+1

eik̃xjrh(xj) +
1

2
eik̃xirh(xi) =

=

 N∑
j=i+1

eik̃xj

 rh(xN )−
N−1∑
j=i+1

(
j∑

l=i+1

eik̃xl

)(
rh(xj+1)− rh(xj)

)
+

1

2
eik̃xirh(xi)

=
eik̃xi+1 − eik̃xN+1

1− eik̃h
rh(xN )−

N−1∑
j=i+1

eik̃xi+1 − eik̃xj+1

1− eik̃h
(
rh(xj+1)− rh(xj)

)
+

1

2
eik̃xirh(xi)

=
1

(1− eik̃h)

[
(eik̃xi+1 − eik̃xN+1)rh(xN )− eik̃xi+1

N−1∑
j=i+1

(
rh(xj+1)− rh(xj)

)
+

N−1∑
j=i+1

eik̃xj+1
(
rh(xj+1)− rh(xj)

)
+

1

2
(1− eik̃h)eik̃xirh(xi)

]
=

1

(1− eik̃h)

[
(eik̃xi+1 − eik̃xN+1)rh(xN )− eik̃xi+1

(
rh(xN )− rh(xi+1)

)
+
N−1∑
j=i

eik̃xj+1
(
rh(xj+1)− rh(xj)

)
− eik̃xi+1

(
rh(xi+1)− rh(xi)

)
+

1

2
(1− eik̃h)eik̃xirh(xi)

]
=

1

(1− eik̃h)

[
−eik̃xN+1rh(xN ) + eik̃xi+1rh(xi) +

1

2
(1− eik̃h)eik̃xirh(xi)

+

N−2∑
j=i

eik̃xj+1
(
rh(xj+1)− rh(xj)

)
+ eik̃xN

(
rh(xN )− rh(xN−1)

)]
=

1

(1− eik̃h)

[
eik̃
((
rh(xN )− rh(xN−1)

)
− eik̃hrh(xN )

)
+

1

2
(1 + eik̃h)eik̃xirh(xi)

+

N−2∑
j=i

eik̃xj+1
(
rh(xj+1)− rh(xj)

)]
Applying the properties of rh shown in Lemma 6.3.3 produces

N∑
j=i+1

eik̃xjrh(xj) +
1

2
eik̃xirh(xi) =

=
1

(1− eik̃h)

[
eik̃
((
− f(xN−1/2)

h2

2
+ f ′(xN−1/2)

7h3

12
+O(h4‖f ′′‖∞)

)
− eik̃h

(h2

2
f(xN )− h3

6
f ′(xN ) +O(h4‖f ′′‖∞)

))
+

1

2
(1 + eik̃h)eik̃xi

(
f(xi)h

2 +O(h4‖f ′′‖∞)
)

+
N−1∑
j=i

eik̃xj+1
(
h3f ′(xj+1/2) +O(h5‖f ′′′‖∞)

)
− eik̃

(
h3f ′(xN−1/2) +O(h5‖f ′′′‖∞)

)]

83



6. Dispersion analysis

=
eik̃

(1− eik̃h)

[
− h2

2

(
f(xN )− h

2
f ′(xN )

)
+

7h3

12

(
f ′(xN )

)
+O(h4‖f ′′‖∞)

− eik̃h
(h2

2
f(xN )− h3

6
f ′(xN )

)
− h3

(
f ′(xN )

)
+O(h4‖f ′′′‖∞)

]
+

1 + eik̃h

2(1− eik̃h)
eik̃xi

(
f(xi)h

2 +O(h4‖f ′′‖∞)
)

+
1

(1− eik̃h)

N−1∑
j=i

eik̃xj+1
(
h3f ′(xj+1/2) +O(h5‖f ′′′‖∞)

)
=

eik̃

(1− eik̃h)

[
− h2

2
(1 + eik̃h)f(xN )− h3

6
(1− eik̃h)f ′(xN ) +O(h4‖f ′′‖∞)

]
+

1 + eik̃h

2(1− eik̃h)
eik̃xi

(
f(xi)h

2 +O(h4‖f ′′‖∞)
)

+
1

(1− eik̃h)

N−1∑
j=i

eik̃xj+1
(
h3f ′(xj+1/2) +O(h5‖f ′′′‖∞)

)
= −h

2(1 + eik̃h)

2(1− eik̃h)
eik̃
(
f(1) +O(h2‖f ′′‖∞)

)
− h3

6
f ′(1)eik̃ +

h2(1 + eik̃h)

2(1− eik̃h)
eik̃xi

(
f(xi) +O(h2‖f ′′‖∞)

)
+

e
ik̃h
2

(1− eik̃h)

N−1∑
j=i

eik̃xj+1/2
(
h3f ′(xj+1/2) +O(h5‖f ′′′‖∞)

)
= −h

2(1 + eik̃h)

2(1− eik̃h)
eik̃
(
f(1) +O(h2‖f ′′‖∞)

)
+
h2(1 + eik̃h)

2(1− eik̃h)
eik̃xi

(
f(xi) +O(h2‖f ′′‖∞)

)
+

h2e
ik̃h
2

(1− eik̃h)
h

N−1∑
j=i

eik̃xj+1/2
(
f ′(xj+1/2) +O(h2‖f ′′‖∞)

)
For the second identity of the lemma, we calculate with the summation by parts formula
(6.8) and the trigonometric identity (6.9):

N∑
j=i+1

sin(k̃xj)rh(xj) +
1

2
sin(k̃xi)rh(xi) =

=

 N∑
j=i+1

sin(k̃xj)

 rh(xN )−
N−1∑
j=i+1

(
j∑

l=i+1

sin(k̃xl)

)(
rh(xj+1)− rh(xj)

)
+

1

2
sin(k̃xi)rh(xi)

=
1

2 sin(hk̃2 )

(
cos(k̃xi+1/2)− cos(k̃xN+1/2)

)
rh(xN )

− 1

2 sin(hk̃2 )

N−1∑
j=i+1

(
cos(k̃xi+1/2)− cos(k̃xj+1/2)

)(
rh(xj+1)− rh(xj)

)
+

1

2
sin(k̃xi)rh(xi)

=
1

2 sin(hk̃2 )

[(
cos(k̃xi+1/2)− cos(k̃xN+1/2)

)
rh(xN )− cos(k̃xi+1/2)

N−1∑
j=i+1

(
rh(xj+1)− rh(xj)

)
+

N−1∑
j=i+1

cos(k̃xj+1/2)
(
rh(xj+1)− rh(xj)

)
+ sin(

hk̃

2
) sin(k̃xi)rh(xi)

]
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=
1

2 sin(hk̃2 )

[(
cos(k̃xi+1/2)− cos(k̃xN+1/2)

)
rh(xN )− cos(k̃xi+1/2)

(
rh(xN )− rh(xi+1)

)
+
N−2∑
j=i

cos(k̃xj+1/2)
(
rh(xj+1)− rh(xj)

)
− cos(k̃xi+1/2)

(
rh(xi+1)− rh(xi)

)
+ cos(k̃xN−1/2)

(
rh(xN )− rh(xN−1)

)
+ sin(

hk̃

2
) sin(k̃xi)rh(xi)

]
=

1

2 sin(hk̃2 )

[(
cos(k̃xN−1/2)− cos(k̃xN+1/2)

)
rh(xN )− cos(k̃xN−1/2)rh(xN−1)

)
+
N−2∑
j=i

cos(k̃xj+1/2)
(
rh(xj+1)− rh(xj)

)
+
(

cos(k̃xi+1/2) + sin(
hk̃

2
) sin(k̃xi)

)
rh(xi)

]

= sin(k̃xN )rh(xN )− 1

2 sin(hk̃2 )
cos(k̃xN−1/2)rh(xN−1) +

cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)rh(xi)

+
1

2 sin(hk̃2 )

N−2∑
j=i

cos(k̃xj+1/2)
(
rh(xj+1)− rh(xj)

)
= sin(k̃xN )

(h2

2
f(xN )− h3

6
f ′(xN ) +O(h4‖f ′′‖∞)

)
− 1

2 sin(hk̃2 )
cos(k̃xN−1/2)

(
h2f(xN−1) +O(h4‖f ′′‖∞)

)
+

cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)

(
h2f(xi) +O(h4‖f ′′‖∞)

)
+

1

2 sin(hk̃2 )

N−1∑
j=i

cos(k̃xj+1/2)
(
h3f ′(xj+1/2) +O(h5‖f ′′′‖∞)

)
− 1

2 sin(hk̃2 )
cos(k̃xN−1/2)

(
h3f ′(xN−1/2) +O(h5‖f ′′′‖∞)

)
= sin(k̃xN )

(h2

2
f(xN )− h3

6
f ′(xN ) +O(h4‖f ′′‖∞)

)
− 1

2 sin(hk̃2 )
cos(k̃xN−1/2)

(
h2(f(xN )− hf ′(xN ) +O(h2‖f ′′‖∞)) +O(h4‖f ′′‖∞)

)
+

cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)

(
h2f(xi) +O(h4‖f ′′‖∞)

)
+

1

2 sin(hk̃2 )

N−1∑
j=i

cos(k̃xj+1/2)
(
h3f ′(xj+1/2) +O(h5‖f ′′′‖∞)

)
− 1

2 sin(hk̃2 )
cos(k̃xN−1/2)

(
h3(f ′(xN )− h

2
f ′′(xN ) +O(h2‖f ′′′‖∞))) +O(h5‖f ′′′‖∞)

)
= −h

2 cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xN )f(xN )− h3

6
f ′(1) sin(k̃) + sin(k̃)O(k̃−1h3‖f ′′‖∞)

+
h2 cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)

(
f(xi) +O(h2‖f ′′‖∞)

)
+

1

2 sin(hk̃2 )

N−1∑
j=i

cos(k̃xj+1/2)
(
h3f ′(xj+1/2) +O(h5‖f ′′′‖∞)

)
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= −h
2 cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xN )f(xN ) +O(h3‖f ′‖∞ + k̃−1h3‖f ′′‖∞) +

h2 cos(hk̃2 )

2 sin(hk̃2 )
cos(k̃xi)

(
f(xi) +O(h2‖f ′′‖∞)

)
+

h2

2 sin(hk̃2 )
h
N−1∑
j=i

cos(k̃xj+1/2)
(
f ′(xj+1/2) +O(h2‖f ′′′‖∞)

)

Thus, using the structure of α̃j given in (6.10) and Lemma 6.3.7 we receive

Bi :=

∫ 1

xi

G(xi, y)f(y)dy −
(
h

N∑
j=i+1

Gαh(xi, xj)rh(xj) +
h

2
Gαh(xi, xi)rh(xi)

)

=
1

k
sin(kxi)

∫ 1

xi

eikyf(y)dy −
( h

h sin(hk̃)
sin(k̃xi)

N∑
j=i+1

α̃jrh(xj) +
h

2h sin(hk̃)
sin(k̃xi)α̃irh(xi)

)
=

1

k
sin(kxi)

[ 1

ik
eikyf(y)

∣∣∣1
xi
− 1

ik

∫ 1

xi

eikyf ′(y)dy
]

− 1

sin(hk̃)
sin(k̃xi)

[ N∑
j=i+1

(
eik̃xj + sin(k̃xj)(A(k, k̃)− i)

)
rh(xj)

+
1

2

(
eik̃xi + sin(k̃xi)(A(k, k̃)− i)

)
rh(xi)

]
=

1

ik2
sin(kxi)

[
eikf(1)− eikxif(xi)−

∫ 1

xi

eikyf ′(y)dy
]

− 1

sin(hk̃)
sin(k̃xi)

[ N∑
j=i+1

eik̃xjrh(xj) +
1

2
eik̃xirh(xi) +

( N∑
j=i+1

sin(k̃xj)rh(xj) +
1

2
sin(k̃xi)rh(xi)

)
(A(k, k̃)− i)

]
=

1

ik2
sin(kxi)

[
eikf(1)− eikxif(xi)−

∫ 1

xi

eikyf ′(y)dy
]

− 1

sin(hk̃)
sin(k̃xi)

(
− h2(1 + eik̃h)

2(1− eik̃h)

(
eik̃f(1)− eik̃xif(xi) +O(h2‖f ′′‖∞)

)
+

h2e
ik̃h
2

(1− eik̃h)
h

N−1∑
j=i

eik̃xj+1/2
(
f ′(xj+1/2) +O(h2‖f ′′‖∞)

))

− 1

sin(hk̃)
sin(k̃xi)(A(k, k̃)− i)

{
−h

2 cos(hk̃2 )

2 sin(hk̃2 )

(
cos(k̃)f(1)− cos(k̃xi)f(xi)

)
+O(h3‖f ′‖∞ + k̃−1h3‖f ′′‖∞)
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+
h2

2 sin(hk̃2 )
h

N−1∑
j=i

cos(k̃xj+1/2)
(
f ′(xj+1/2) +O(h2‖f ′′′‖∞)

)}
=

{ 1

ik2
sin(kxi)e

ikf(1) +
h2(1 + eik̃h)

2 sin(hk̃)(1− eik̃h)
sin(k̃xi)e

ik̃f(1)
}

d©

+
{ h2

4 sin2( k̃h2 )
sin(k̃xi) cos(k̃)f(1)(A(k, k̃)− i)

− 1

ik2
sin(kxi)e

ikxif(xi)−
h2(1 + eik̃h)

2 sin(hk̃)(1− eik̃h)
sin(k̃xi)e

ik̃xif(xi)
}

e©
{
− h2

4 sin2( k̃h2 )
sin(k̃xi) cos(k̃xi)f(xi)(A(k, k̃)− i)

− 1

ik2
sin(kxi)

∫ 1

xi

eikyf ′(y)dy − h2e
ik̃h
2

sin(hk̃)(1− eik̃h)
sin(k̃xi)

h
N−1∑
j=i

eik̃xj+1/2
(
f ′(xj+1/2) +O(h2‖f ′′′‖∞)

)
+

h2

2 sin(hk̃2 )
h
N−1∑
j=i

cos(k̃xj+1/2)
(
f ′(xj+1/2) +O(h2‖f ′′′‖∞)

)
(A(k, k̃)− i)

}
f©

In order to simplify these three terms, we need a lemma:

Lemma 6.3.8. For kh→ 0 (and thus k̃h→ 0)

A(k, k̃)− i = O((kh)2) (6.21)

1

ik2
sin(kxi)e

ik +
h2(1 + eik̃h)

2 sin(hk̃)(1− eik̃h)
sin(k̃xi)e

ik̃ = O(kε) +O(h2) (6.22)

1

ik2
sin(kxi)e

iky +
h2eik̃h/2

sin(hk̃)(1− eihk̃)
sin(k̃xi)e

ik̃y = O(h2) +O(k−1ε). (6.23)

Proof. (6.21) follows from the definition of A(k, k̃) and a straight forward Taylor expan-
sion.

For (6.22), we first note that the estimate is trivial if kε = O(1) (and kh is small). We
may therefore assume that additionally kε is small. With k̃ = k(1 + ε) we then have

1

ik2
sin(kxi)e

ik +
h2(1 + eik̃h)

2 sin(hk̃)(1− eik̃h)
sin(k̃xi)e

ik̃ =

1

ik2
eik

(
sin(kxi) + i

(kh)2(1 + eikh(1+ε))

2 sin(kh(1 + ε))(1− eikh(1+ε))
sin(k(1 + ε)xi)e

ikε)

)
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We set δ = kh and perform a Taylor expansions (assuming δ and ε to be small) to get

(kh)2(1 + eikh(1+ε))

2 sin(kh(1 + ε))(1− eikh(1+ε))
=

δ2(2 + iδ(1 + ε) +O(δ2))

2(δ(1 + ε) +O(δ3))(1− (1 + iδ(1 + ε)− 1
2(δ(1 + ε))2 +O(δ3))

=
1 + iδ(1+ε)

2 +O(δ2)

(1 + ε+O(δ2))(−i(1 + ε) + 1
2δ(1 + ε)2 +O(δ2))

=
1

−i(1 + ε)

1 + iδ(1+ε)
2 +O(δ2)

(1 + ε+O(δ2))(1 + i1
2δ(1 + ε) +O(δ2))

=
1

−i(1 + ε)2
(1 +O(δ2)) =

1

−i
(1 +O(δ2) +O(ε))

Therefore, we get

1

ik2
eik

(
sin(kxi) + i

(kh)2(1 + eikh(1+ε))

2 sin(kh(1 + ε))(1− eikh(1+ε))
sin(k(1 + ε)xi)e

ikε)

)
=

1

ik2
eik
(

sin(kxi)− (1 +O(δ2) +O(ε)) sin(kxi(1 + ε))eikε
)

=
1

ik2
eik
(
sin(kxi)− (1 +O(δ2) +O(ε))(sin(kxi) +O(kε))(1 +O(kε))

)
k−2

(
O(δ2) +O(kε)

)
Recalling that δ = kh finishes the proof of (6.22).

We now show (6.23). Taylor expansion gives (for small δ and ε)

δ2eiδ(1+ε)/2

sin(δ(1 + ε))(1− eiδ(1+ε))
= −1 +O(δ2) +O(ε)

Hence, we get with the notation δ = kh

1

ik2
sin(kxi)e

iky +
h2eik̃h/2

sin(hk̃)(1− eihk̃)
sin(k̃xi)e

ik̃y

=
1

ik2
eiky

(
sin(kxi) + (−1 +O(δ2) +O(ε)) sin(k(1 + ε)xi)e

ikεy
)

=
1

ik2
eiky

(
sin(kxi) + (−1 +O(δ2) +O(ε))(sin(kxi) +O(kε))(1 +O(kε))

)
= k−2

(
O(δ2) +O(kε)

)
,

which concludes the proof of (6.23).

With Lemma 6.3.8 in hand, we can bounds the terms d©, e©, and f©.

From (6.22), we get

| d©| ≤ C|f(1)|
(
h2 + k−1ε

)
.
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Combining (6.21) and (6.22) yields

| e©| ≤ C|f(xi)|
(
h2 + k−1ε

)
+ Ch2|f(1)|.

The term f© consists of three terms

f© = f©1 + f©2 + f©3.

The terms f©1 and f©2 can be estimated using (6.21) by

| f©1|+ | f©3| ≤ Ch2|f(xi)|+ Ch2
(
‖f ′‖∞ + h2‖f ′′′‖∞

)
.

The term f©2 requires more care. Discretizing the integral in the term f©2 with the
midpoint rule we get

− 1

ik2
sin(kxi)

∫ 1

xi

eikyf ′(y) dy = − 1

ik2
sin(kxi)h

N−1∑
j=i

eikxj+1/2f ′(xj+1/2)+h2O(k2‖f ′‖∞+k‖f ′′‖∞+‖f ′′′‖∞).

(6.24)
With the aid of (6.23) and (6.24) we get for c©:

f© := − 1

ik2
sin(kxi)

∫ 1

xi

eikyf ′(y)dy − h2e
ik̃h
2

sin(hk̃)(1− eik̃h)
sin(k̃xi)h

N−1∑
j=i

eik̃xj+1/2
(
f ′(xj+1/2) +O(h2‖f ′′′‖∞)

)
= − 1

ik2
sin(kxi)h

N∑
j=i

eikxj+1/2f ′(xj+1/2) + k−2h2O(k2‖f ′‖∞ + k‖f ′′‖∞ + ‖f ′′′‖∞)

− h2e
ik̃h
2

sin(hk̃)(1− eik̃h)
sin(k̃xi)h

N−1∑
j=i

eik̃xj+1/2
(
f ′(xj+1/2) +O(h2‖f ′′′‖∞)

)
= −h

N−1∑
j=i

[ 1

ik2
sin(kxi)e

ikxj+1/2 +
h2e

ik̃h
2

sin(hk̃)(1− eik̃h)
sin(k̃xi)e

ik̃xj+1/2

]
f ′(xj+1/2)

+k−2h2O(k2‖f ′‖∞ + k‖f ′′‖∞ + ‖f ′′′‖∞)

= (O(h2) +O(k−1ε))‖f ′‖∞ + k−2h2O(k2‖f ′‖∞ + k‖f ′′‖∞ + ‖f ′′′‖∞).

This leads us to

Bi = d©+ e©+ f© .
(
h2 + k−1ε

)(
‖f‖∞+ ‖f ′‖∞

)
+h2(k−1‖f ′′‖∞+ k−2‖f ′′′‖∞). (6.25)

The final estimate

Combining (6.20) and (6.25) we arrive at

‖epoll‖L2 .

√
h
∑
i

|Ai +Bi|2 .
(
h2+k−1ε

)(
‖f‖∞+‖f ′‖∞

)
+h2k−1‖f ′′‖∞+h2k−2‖f ′′′‖∞,

leading to the required estimate used in the proof of Theorem 6.3.1.
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Figure 6.1.: (cf. Example 6.4.1) h-method for the 1D blended SEM-FEM on uniform
and randomly perturbed meshes (mesh points of regular mesh perturbed by n% for
n ∈ {0, 10, 20, 30, 40, 50}).

6.4. Numerical examples

In addition we implemented the blended spectral-low order finite element scheme for a
1D-Helmholtz problem whose results were published by the author and J. M. Melenk
in [39]. In contrast to numerical computations described in Section 5.4 this leads to a
distinct improvement in the L2-error, see Fig. 6.1. In particular we run the scheme on
regular mesh as well as on irregular meshes with random perturbations from 10-50%.
Thus from the picture in Fig. 6.1 we can infer that the statement in Section 6.3 can’t
be extended from regular meshes to arbitrary meshes.

The observation of Remark 6.3.2 is illustrated in the following numerical example.

Example 6.4.1. We consider (3.32) with f = 1 and g = 0. The exact solution u is
given by

u(x) =
1

k2
(eikx − ieik sin(kx)− 1). (6.26)

The top leftmost plot in Fig. 6.1 shows the performance of the optimally blended scheme.
The relative error in L2 is plotted versus the number of degrees of freedom per wavelength
Nλ. We note the good agreement with the a priori estimate (6.7). The remaining
plots in Fig. 6.1 show the performance of the optimally blended scheme on non-uniform
meshes. The mesh points of a regular mesh were randomly perturbed by n percent,
where n ∈ {10, 20, 30, 40, 50}. Although the favorable properties of the optimally blended
scheme are not proved under these circumstances, the numerical results indicate a certain
robustness of the method under mesh perturbation.
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Figure 6.2.: (cf. Example 6.4.2) Galerkin FEM and optimally blended scheme for non-
smooth right-hand side. top: p = 1 (left: Galerkin, right: optimally blended), bottom:
p = 2 (left: Galerkin, right: optimally blended).

Example 6.4.2. We consider (3.32) with f = xα and g = 0. For the case α = −1/2 we
present the relative error in L2 versus the number of degrees of freedom per wavelength
Nλ. We compare, for p = 1 and p = 2 the Galerkin method with the optimally blended
scheme. Fig. 6.2. We remark in passing that the L2-norm of the exact solution is
observed numerically to scale like O(k−3/2). Although this examples is not covered by
Theorem 6.3.1, the optimally blended scheme is, in particular for the lowest order case,
superior to the Galerkin method.
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Part II.

Application to a nonlinear Helmholtz
model in laser physics
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7. The Steady-state Ab-initio Laser Theory

7.1. Introduction

7.1.1. Laser terminology

To begin with, we introduce and clarify some physical terms. For that purpose we start
by briefly motivating a classical laser setting and the origin of laser light as a special
case of electromagnetic waves [54]. Furthermore, we introduce the concept of active and
inactive modes. Then we go into more detail of the properties of the cavity, the gain
medium and the type of energy pumping. It is only the knowledge of these features that
is required as input, as suggested by the term ab initio in the name SALT, which makes
this theory so reliable and efficient.

Multimode lasers and nonlinear interaction

A basic laser consists of a gain medium with properties that allow it to amplify light,
an optical resonator (cavity), typically a confining mirror arrangement around the gain
medium, and an external energy pump source, see Figure 7.1.

The laser process is induced by excitation of the atoms of the gain material which
initially only leads to spontaneous emission of electromagnetic radiation. From a

quantum mechanical point of view this

P
u
m
p

Gain medium

Figure 7.1.: Schematic illustration of a laser

means that an electron absorbs the in-
duced energy and jumps from one en-
ergy level to a higher one and returns
back (randomly) to the original energy
level, emitting a photon of the corre-
sponding energy difference. The estab-
lishment of a population inversion be-
tween two energy levels (i.e. the popu-
lation of electrons in the upper level is
higher as in the lower one) by increasing
the external pump leads to a stimulated
emission of photons such that the power of the incoming radiation is amplified.

In the presence of perfectly reflecting mirrors, this procedure results in a discrete set of
infinitely many eigenstates which are coherent in space and time. These resonances are
harmonic in time with real-valued frequencies. In order to couple out these modes, at
least one mirror has to be partially transparent. This again induces an energy loss of the
system which manifests itself in complex-valued frequencies with a negative imaginary
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7. The Steady-state Ab-initio Laser Theory

part and thus make these resonances decaying. However, applying an external energy
pump, the loss and the gain of the system are balanced with some modes experiencing
a positive shift in the imaginary direction. For a sufficiently large pump strength, the
negative imaginary part in theses frequencies vanishes again and an equilibrium value of
laser power is produced.

These out coupled resonances with real-valued frequencies are referred to as the laser
modes that contribute to the overall laser output and will be denoted by Ψµ. In the
further course of this work, we will also refer to these modes as the active laser modes
or simply active modes. This is in contrast to the inactive modes which correspond to
the resonances with frequencies that have an negative imaginary part, as they can be
understood, under sufficient excitation, as possible candidates for active laser modes.

In the further course of amplification, the population inversion is naturally saturated
when the density of atoms in the ground level is depleted. This effect, called spatial
hole burning, causes a distortion of the gain shape and prevents the lasing modes of
experiencing an “overload”. That is, instead of the lasing modes to explode in a non-
physical way, exhibited by getting frequencies with an additional positive imaginary
part, their frequencies stay real-valued and the modes remain stable.

As several modes share the same amplification in the gain medium this leads in addi-
tion to cross-saturation effects. The effect of self- and cross-saturation manifests itself
in a nonlinear coupling between the laser modes. In general, the mode with the highest
power will saturate the gain, while any other mode might even experience a negative
amplification, which causes its power to fade away. However, through an elaborate ma-
nipulation of loss and gain by changing the material properties or the pump distribution,
many other phenomena can occur.

The cavity and pump configuration

Beside the discussed basic laser set-up a vast number of more elaborate laser processes
have been achieved without a feedback mechanism as realized by standard mirrors.
Modern laser cavities of that kind include dielectric micro-disk or micro-sphere lasers.
In these cases the difference between the index of refraction of the cavity medium and
the surrounding medium is very big which leads to an extremely high internal reflection
of the cavity. This index of refraction enters the describing model as a function n(x)
which governs essentially the passive contribution of the dielectric function ε(x) in the
system. From a mathematical point of view we should mention here that this function
might be piece-wise constant/continuous in space and thus one has to pay attention to
the discretization for our numerical computations. In general we assume here that this
is a real function which only varies in space. However, it might also be complex valued
when the material has some inherent absorption properties.

So far, it seems that the laser output energy is composed of an infinite number of laser
modes. But in fact, the range of frequencies is restricted by the gain curve Γ of the
lasing medium. The explicit shape of this distribution is assumed to be of Lorentz-type,
centered at the atomic transition frequency ka of the active medium and a width at the
half maximum which is twice the decay rate γ⊥. This feature leads to a “favouring” of
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laser modes with frequencies that lie near the maximum of that gain curve.
As emphasized before, sufficiently many atoms have to be excited in order to obtain

laser action. To do that the atoms have to be pumped energetically from an external
energy source. Many different ways of pumping a laser can be realized in practice. In
particular there are no limitations to the design of the pump configuration with respect
to space or pump amplitude. This motivates us to describe the pump configuration as a
pump trajectory D0(x, d) in dependence of the space variable x and a pump parameter
d, similarly as it has been done in [65]. In previous works [45,96,98], pump configurations
were considered with a global parametrization D0(x, d) = dF (x) where F (x) is a fixed
pump profile that gets amplified via the global pump parameter d. The simplest case
is F (x) ≡ 1 which describes uniform pumping of the cavity. But even more elaborate
configurations where different areas are pumped differently, for instance having two
spatially separated cavities which are pumped differently as it has been done in [65], lie
within the scope of our new solution method.

7.1.2. The model problem

From Maxwell-Bloch to SALT equations

The origin of the SALT equations are the Maxwell-Bloch (MB) equations which are at
the heart of semi-classical laser theory [45, 96, 98]. There the gain medium is treated
as an ensemble of two-level atoms embedded in a host medium. In particular they are
prescribed by three time-dependent equations which are nonlinearly coupled. In the
rotating wave approximation (RWA) they are given by

∇2E+ − 1
c2
εc(x)Ë+ = 1

ε0c2
P̈+, (7.1)

Ṗ+ = −i(ka − iγ⊥)P+ + g2

i~E
+D, (7.2)

Ḋ = γ‖(D0 −D)− 2
i~ [E+(P+)∗ − P+(E+)∗], (7.3)

where E+(x, t) and P+(x, t) are the positive frequency components of the electric field
and the polarization and D(x, t) is the population inversion. They include further phys-
ical parameters as the relaxation rates of the polarization and inversion γ⊥ and γ‖
respectively, the transition frequency of the two level atoms ka, the so called dipole ma-
trix element g, the dielectric function of the passive resonator denoted by εc(x) and the
pump with D0. Note that this formulation describes the SALT model in one dimension
as well as for TM modes in two dimensions. The key assumption of the SALT is that
both the electric field as well as the polarization are assumed to be multi-periodic in
time, i.e.,

E+(x, t) =

M∑
µ=1

Ψµ(x, t)e−ikµt (7.4)

P+(x, t) =
M∑
µ=1

pµ(x, t)e−ikµt. (7.5)
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Here, Ψµ and kµ are the a priori unknown laser modes and their corresponding real
frequencies, and M is the number of active laser modes, which is self-consistently deter-
mined at each pump step when solving the SALT equations. Furthermore, the stationary
inversion approximation (SIA) is required in the case of multi-mode lasing and states
that the condition γ‖ � |kµ−kν | must be satisfied [46]. This condition is always fulfilled
in the case of single mode lasing and models multi-mode lasing for lasers which exhibits
no chaotic or pulsed, but only time-harmonic behaviour [80].

By inserting the ansatz Eq. (7.5) into the MB equations, making use of the stationary
inversion approximation (Ḋ = 0) and taking the Fourier transformation we can formu-
late the SALT equations as a system of nonlinear Helmholtz-type equations:

Find (Ψµ, kµ), µ = 1, . . . ,M such that[
∆ + k2

µεµ
(
x, {Ψν , kν}Mν=1

) ]
Ψµ(x) = 0

limr→∞ r
d−1
2 (∂rΨµ − ikΨµ) = 0

=(kµ) = 0

(7.6)

A detailed derivation has been done to a various extent in [44, 45, 64]. The nonlinear
contribution in (7.6) can be split into a passive non-interacting part and a complex
valued coupling term:

εµ (x, {Ψν , kν}) = εc(x) + εµg (x, {Ψν , kν}) ,

where εc(x) : Rd → C is a piece-wise continuous, possibly complex valued function,
representing the dielectric function of the cavity. This function can basically be related
to the index of refraction by εc = n2 inside the cavity. Outside the cavity, the dielectric
function is assumed to be equal to 1, representing the air or a vacuum as surrounding
medium. The interaction term explicitly depends on the wave number kµ and has the
form

εµg (x, {Ψν , kν}) =
γ⊥

kµ − ka + iγ⊥
D (x, {Ψν , kν}) . (7.7)

Here, D (x, {Ψν , kν}) originates from the characteristics of the population inversion. It
induces the nonlinear interaction between the laser modes given by

D (x, {Ψν , kν}) = D0(x, d)
[
1 +

M∑
ν=1

Γ(kν)|Ψν(x)|2
]−1

. (7.8)

Next to the modal interaction, this comprises the external pump D0(x, d) ≥ 0. For
convenience we will use the notation γ(kµ) := γ⊥

kµ−ka+iγ⊥
with γ⊥ > 0 being the gain

width and ka > 0 being the frequency at the center of the gain curve Γ imposed by the
cavity. The non-linearity also includes the Lorentzian gain curve Γ(kν) evaluated at kν
and satisfies the property Γ(k) = |γ(k)|2.
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Previous solution method

So far the SALT equation (7.6) has only been solved in its integral form

Ψµ(x) = −γ(kµ)k2
µ

∫
C
D(x′)G(x,x′; kµ)Ψµ(x′)dx′, (7.9)

which can be obtained using similar arguments as in Section 2.1. Then both the Green’s
function G and the modes Ψµ were expanded in terms of constant flux (CF) states [44]
or alternatively by the threshold constant flux (TCF) states. Here, we just recall the
approach using the TCF states. Within that approach, the external pump is assumed to
be of the form D = D0f(x). Then the TCF states are defined by the eigenvalue problem[

∇2 + k2(εc(x) + ηn(k)f(x))
]
ψn(x; k) = 0

lim
r→∞

r
d−1
2 (∂rψn(x; k)− ikψn(x; k)) = 0,

where ηn(k) are the parametrized eigenvalues and un the corresponding parametrized
eigenstates. The domain of the cavity is given by the support of the pump function
f(x). Note that the eigenstates and their respective eigenvalues both depend on the
real-valued frequency k, which is considered as an input parameter to the CF states.
Consequently, these states always fulfill the SALT conditions. Using these states the
expansion of laser modes reads

Ψµ(x) =
∑
n

aµnψn(x; kµ).

Substituting the Green’s function by its spectral representation

G(x,x′; k) = − 1

k2

∑
i

ψi(x; k)ψi(x
′; k)

ηi
.

in equation (7.9), the SALT equations (7.6) can be rewritten in terms of the expansion
coefficients aµn and basis states ψµn(x) = ψn(x; kµ) as

aµn =
γ(kµ)

ηµn

∑
n′

∫
C

f(x′, d)ψµn(x′)ψµn′(x
′)

1 + h(x′)
aµn′dx′, (7.10)

where h(x′) =
∑N

ν=1 Γν |
∑

n a
ν
nψn(x′; kν)|2 contains the spatial hole burning term of

equation (7.8).

Using this approach the TCF basis is ideal for studying laser systems close above
threshold. The advantage of the parametrization is, that the basis set is independent of
the actual gain curve of the system and can be used to easily extract general information
about a laser system as used, e.g. by the single pole approximation of the SALT [44] or
to make a general statement about the threshold of a coupled laser system [65]. However,
the parametrized basis is of disadvantage with regard to its size when used in an actual
numeric simulation.
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7.2. Mathematical framework

In this section we want to put the system of PDEs as introduced in the previous section
into a rigorous mathematical framework. For that purpose we denote the unknown wave
functions by u1, . . . , uM and assume them to lie all in the same function space which we
denote by V (= H1(Ω)). Then we can rewrite the governing equations in an abstract
form as

L1(u1, . . . , uM ) = 0,

...

LM (u1, . . . , uM ) = 0,

where Lµ is the differential operator defining the µth differential equation in (7.6).

For the corresponding weak form there are basically two equivalent ways of description.
One approach treats each equation independently as a scalar equation while the other
recognizes the total system as one vector-valued equation in a global divergence form.

In the first case, one multiplies each equation by a test function v ∈ V and integrates
over the domain: ∫

Ω
L1(u1, . . . , uM )vdx = 0,

...∫
Ω
LM (u1, . . . , uM )vdx = 0 ,

(7.11)

The the second approach uses the following description in terms of a vector-valued
function

u = (u1, . . . , uM ) ∈ V := V × · · · × V .
Then the governing system of differential equations can then be written as

LLL(u) = 0,

where

LLL(u) = (L1(u), . . . ,LM (u)) .

The corresponding weak formulation is obtained by taking the inner product of the
vector of equations and a test function vector v ∈ V:∫

Ω
LLL(u) · v = 0 ∀v ∈ V. (7.12)

Note that (7.12) is one scalar equation. In order to generate the M independent varia-
tional equations one has to choose M linearly independent test function vectors v ∈ V. In
particular, v = (0, . . . , 0, v(i), 0, . . . , 0) recovers the ith variational form

∫
Ω L(i)v(i)dx = 0
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in (7.11) for i = 1, . . . ,M .

For a closer inspection we have to extend to the function space V = H1(Ω,CM ) :=(
H1(Ω)

)M
, provided with the inner product

(u,v) := (u,v)H1(Ω,RM ) =

M∑
i=1

∑
|α|≤1

(∂αui, ∂αvi)L2(Ω)

and the norm

‖u‖H1(Ω) := ‖u‖H1(Ω,RM ) =

 M∑
i=1

∑
|α|≤1

‖∂αui‖2L2(Ω)

1/2

(7.13)

A detailed structure of the quasi-linear system in divergence form can be written as

LLL(u) = −Div A(Du) + b(x,u) (7.14)

where Du denotes the Jacobian matrix of the map u : Rd ⊃ Ω→ CM×d defined by

Du := (Du)iα = Dαu
i(x) = ∂ui(x)/∂xα, i = 1, . . . ,M, α = 1, . . . , d

and A : CM×d → CM×d defined element-wise by

Aiα(ξiβ) =
M∑
j=1

d∑
β=1

Ai,jα,βξ
j
β and Ai,jα,β := δi,jδα,β.

Note that A is completely linear and decoupled. Furthermore, the elliptic system is
in fact semi-linear as it is only linear in the second (leading) order term. However, the
system is coupled non-linearly through the lower order term bfb in (7.14).

Two major techniques for the solvability of such semi-linear systems are the variational
method and the monotone operator method [27]. The special case of a system with two
equations written as

~∆u +Ku +Q(u) = 0

with u = (u1, u2), ~∆ =

(
∆ 0
0 ∆

)
,K =

(
k11 k12

k21 k22

)
and Q =

(
q1(u) 0

0 q2(u)

)
where q1, q2 being bounded, has also been investigated by Zuluaga [103] including some
bifurcation analysis at resonance. However, the investigation of systems is rather poorly
developed compared to the analysis of one equation. The single equation for one
unknown function is basically of Landesman-Lazer type, see Zeidler, [102, §29.9] and
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7. The Steady-state Ab-initio Laser Theory

more generally [101, §7.16]. A detailed examination has been done by Ambrosetti and
Mancini [6] of the nonlinear elliptic equation

∆u+ λu+
u

1 + u2
= g

for smooth right hand sides g ∈ H1
0 (Ω). Further analysis of bifurcation on a multi-

parameter system of elliptic equations

−∆u = λu+ Υ(u, λ)

with Dirichlet boundary conditions and Υ(u, λ) = o(‖u‖) locally uniform in λ, has been
done by Gawrycka, Rybick in [43]. For solvability results of the semi-linear equation one
usually aims to exploit the results on linear elliptic PDEs. This requires to have the
corresponding linear differential equation under functional-analytic control and provides
us with a legitimate nexus to Part I of this work.

7.3. The FEM discretization

Next we used the high order FEM as introduced in Section 4.2 for numerical computa-
tions. To this end, we repeat the weak formulation of the coupled system of nonlinear
PDEs from Section 7.1:

Find (uµ, kµ) ∈ V × R, µ = 1, . . . ,M such that

−
∫

Ω
∇uµ∇vµ + ikµ

∫
∂Ω
uµvµ + k2

µ

∫
Ω
εc(x)uµvµ

+ k2
µγ(kµ)

∫
Ω

D0(x, d)

1 +
∑

ν Γ(kν)|uν(x)|2uµvµ = 0

(7.15)

for arbitrary vµ ∈ V and M the number of active modes at pump strength d. Note
that we discuss here the discretization scheme using the “Robin-notation” from the
one dimensional case. This is basically also applicable in higher dimensions, better
approximation schemes have been discussed in Section 2.2.

To complete the discretization, we recall some notations from Section 4.2:
Let Ωh :=

⋃
K∈Th K be the polygonal approximation of the cavity domain Ω, constructed

by partition Th of finitely many closed triangles K. Further let VN be a finite dimensional
subspace of the function space V and {ϕi}Nn=1 a basis of VN and replace the exact solution
uµ ∈ V in (7.15) by the discrete approximation

uµN :=
∑
i

uµi ϕi ∈ Vh.

Details on the choice of the domain triangulation and the basis function were discussed in
Section 4.2. In addition, we denote the complex coefficient vector as uµ :=

(
uµ1 , . . . , u

µ
M

)
and X := (X1, . . . , XM ) , Xµ := (uµ, kµ). Then, by extracting sums out of the integrals
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7.3. The FEM discretization

and assembling the contributions for all elements we arrive at the following finite element
scheme in matrix form:

Find Xµ ∈ CN × R, µ = 1, . . . ,M such that

Fµ(X) :=
[
− L + ikµR + k2

µM
εc + k2

µγ(kµ)Q(X)
]
uµ = 0. (7.16)

Here, the sparse N ×N -matrices L,R,Mεc ,Q(X) are the stiffness matrix

L :=

(∫
Ω
∇ϕi · ∇ϕjdx

)
i,j

corresponding to the Laplacian term, the mass matrix

Mεc :=

(∫
Ω
εc(x)ϕiϕjdx

)
i,j

containing the passive dielectric function, the matrix

R :=

(∫
∂Ω
ϕiϕjdσx

)
i,j

which only involves the boundary elements and reflects the outgoing boundary condition,
and the nonlinear contribution

Q(X) :=

(∫
Ω

D0(x, d)ϕi(x)ϕj(x)

1 +
∑

ν Γ(kν)|∑l b
ν
l ϕl(x)|2dx

)
i,j

which accounts for the nonlinear coupling including the spatial hole burning effect.

.
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8. The nonlinear SALT-Algorithm

In this chapter, we describe the direct solution approach of the coupled system of the
nonlinear SALT equations introduced in Chapter 7. In particular, we present two dif-
ferent concepts of a direct solution method for the SALT equations.

Following the idea of a pump trajectory, it is possible to use our new solution method
as a path-following algorithm which can be understood as intuitively as a real-life ex-
perimental set-up where scientists increase the pump strength systematically in order
to amplify the laser emission. The algorithm solves directly the nonlinear system (7.6)
while successively increasing the pump parameter. In this manner we directly track the
whole laser mode information according to the imposed pump history.

In addition, we present a further solution method to compute the SALT solutions for
one single pump strength independent of any foregoing pump configuration. In principle
this uses the same algorithmic components as used in the algorithm that follows the
pump trajectory.

For both concepts we will see that the solution is essentially reduced to the solution
of a coupled system of nonlinear PDEs via Newton method and the computation of a
nonlinear eigenvalue problem.

8.1. The consecutive pump algorithm

Following the concept of a pump trajectory as discussed in Section 7.1, we construct
a path-following algorithm which computes directly all laser modes and frequencies at
each pump step. In this manner, our algorithm simulates the process of multi-mode
lasing for a general pump configuration with pump parameter d.

We start with d = 0 and increase successively the pump parameter as the experimen-
talists would do when amplifying the laser cavity. The pump strength is thus below
the first threshold where the laser/first mode starts to emit/activate and no nonlinear
interaction takes place. Thereby, the system is reduced then to a single equation which
obviously has no solution (Ψ, k) with =(k) = 0 as requested in the SALT equations.
Nevertheless, in order to find the first pump threshold d1 and the corresponding solution
(Ψ1, k1)(d1) we solve the resulting equation as a rational eigenvalue problem

Td,0(k)Ψ(x) := ∆ψ(x) + k2
(
εc(x) + γ(k)D0(x, d)

)
Ψ(x) = 0 + b.c. (8.1)

for 0 ≤ d ≤ d1. So far the system has initially only eigenpairs (Ψn, kn) with =(kn) < 0,
but for each pump step the eigenvalues in the negative imaginary plane will travel towards
the real axis, see Fig. 8.1. Thus at d = d1 the first laser mode activates and nonlinear
interaction sets in.
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Figure 8.1.: Trajectories of the eigenvalues in the complex plane with a uniformly in-
creasing pump strength d ∈ [0, 0.267] for a 1D slab cavity laser of length one. The gain
medium has a spatially uniform index of refraction n = 1.2 and the gain paramters
ka = 10 and γ⊥ = 4.

As soon as the first threshold pump strength d1 and the corresponding solution
(Ψ1, k1)(d1) are determined we continue to increase the pump parameter and solve the
nonlinear problem

Fd,1(Ψ, k) = ∆Ψ(x) + k2
(
εc(x) +

γ(k)D0(x, d)

1 + Γ(k)|Ψ(x)|2
)
Ψ(x) = 0 + b.c. (8.2)

for d1 < d < d2 with d2 being the pump strength where the second laser mode
activates. We solve this problem via the Newton scheme where the Jacobian is known
analytically and use the solution of the previous pump step as initial guess.

In order to verify if a new laser mode activates we additionally need to check the
other eigenpairs of that system at pump strength d. Therefore we insert the previously
computed solution (Ψ∗1, k

∗
1)(d) into the denominator in (8.2) which turns the nonlinear

problem again into a rational eigenvalue problem

Td,1(k)Ψ(x) := ∆ψ(x) + k2
(
εc(x) + γ(k)

D0(x, d)

1 + Γ(k∗1)|Ψ∗1(x)|2
)

Ψ(x) = 0 + b.c.

As soon as the imaginary part of one of the eigenvalues becomes positive, we know that
a new laser mode must have become active. Thus from the next pump step on we have
to solve the system with an additional mode and the size of the nonlinear problem is
increased by one.

This procedure can now be continued with the increasing pump strength such that
for dM−1 ≤ d ≤ dM we search for X := {(Ψµ, kµ)}Mµ=1 satisfying the nonlinear coupled
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8.2. The instant pump algorithm

system:

Fd,M (X) := (F1(X), . . . , FM (X)) = 0 + b.c. (8.3)

with

Fd,µ(X) = ∆Ψµ(x) + k2
µ

(
εx(x) +

γ(kµ)D0(x, d)

1 +
∑M

ν=1 Γ(kν)|Ψν(x)|2
)
Ψµ(x)

for µ = 1, . . . ,M and M being the number of active modes. The corresponding rational
eigenvalue problem is of the form

Td,M (k)Ψ(x) := ∆ψ(x) + k2
(
εc(x) +

γ(k)D0(x, d)

1 +
∑M

ν=1 Γ(k∗ν)|Ψ∗ν(x)|2
)
Ψ(x) = 0 + b.c. (8.4)

Thus within each pump step along the pump trajectory we have to compute a rational
EVP and after the first pump threshold we can solve the coupled system of nonlinear
equations directly. For the computation of the nonlinear problem we use the Newton
iteration and choose the previously computed solution as the initial guess for the next
pump step. In case of the activation of an additional mode, detected during the compu-
tation of the EVP, we append the eigenfunction of the corresponding eigenvalue with the
detected sign change in the imaginary part and join only the real part of this eigenvalue.

A schematic structure of this solution algorithm can be seen in Algorithm ??:
For some laser configurations there might exist a specific pump configuration which
causes the laser modes to shut down again [65]. Even this phenomenon can be handled
by our solution method without any notable effort. In a situation when the laser mode
turns off again, the Newton solver of the current number of active modes M will not
converge as we suppress the zero solution for stability reasons, see Section 9. Thus by
detecting the mode with minimal intensity (which is close to zero) and omitting it, the
procedure can be continued for the M−1 remaining modes. Thus we reduce the number
of active modes, but the solution strategy remains the same.

In summary, our problem reduces essentially to the solution of a coupled system of
nonlinear PDEs via Newton’s method and the computation of a rational eigenvalue prob-
lem which will be discussed in more detail in Section 9 and Section 10 respectively.

8.2. The instant pump algorithm

In contrast to the consecutive pump algorithm it is possible to speed up the calculations
(of the direct solver) when the laser information is only requested at a specific pump.
This means that we are also able to solve the SALT system for a single pump strength
independently of any foregoing pump configuration. We will see that this method uses
in principle the same algorithmic components as within the algorithm that follows suc-
cessively the pump trajectory.
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We start again by solving the linear problem (8.1) for the distinct pump d∗ as a
nonlinear EVP of the form

T0(k)Ψ(x) := ∆Ψ(x) + k2
(
εc(x) + k2γ(k)D0(x, d∗)

)
Ψ(x) = 0 + b.c. (8.5)

In case of d∗ being bigger than the first threshold pump this provides non-physical
solutions with eigenfrequencies with positive imaginary part. In order to find the right
number of active modes we continue by solving the nonlinear SALT system for a single
lasing mode

F1(X) := ∆Ψ + k2
(
εc(x) + k2γ(k)D0(x, d∗)

1 + Γ(k)|Ψ|2
)
Ψ(x) = 0 + b.c. (8.6)

via the Newton scheme and use the laser mode of the resonance with the highest positive
imaginary part and the corresponding real part of this eigenfrequency as initial data.
Following the same argumentation as in Sec. 8.1, we insert then the solution {Ψ∗, k∗}
of (8.6) into the denominator of the same equation and solve again the resulting EVP

T1(k)Ψ(x) := ∆Ψ(x) + k2
(
εc(x) +

γ(k)D0(x, d∗)

1 + Γ(k∗)|Ψ∗|2
)
Ψ(x) = 0.

The SALT solution {u∗, k∗} solves again this EVP, but further non-physical resonances
might still exist. In that case we extend the SALT system for an additional lasing mode
and use again the resonance with the highest positive imaginary part as initial data. This
procedure continues until no solution with eigenfrequencies with positive imaginary part
remains.

In order to get a better insight of how the solution strategy for an instant pump
proceeds we illustrate this with the following example:
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8.2. The instant pump algorithm

Example 8.2.1. We consider a 1D model of a slab cavity Ω = [0, 1] with per-
fect mirror on the left side, that is Ψ(0) = 0, and open boundary on the right
side, i.e. Ψ′(1)− ikΨ(1) = 0. Furthermore, we choose ε(x) ≡ 1.2, ka = 10, γ⊥ = 4 and
D0(x, d) ≡ 1.

For solving the eigenvalue problem we use here the contour integral method which we
will explain in detail in Section 10.3. Thus initially solving the EVP T0(k)u = 0 pro-

duces 8 nonphysical eigenvalues in the posi-
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Figure 8.2.: Fast solution algorithm

tive imaginary half-plane, see Figure 8.2(a).
Again we consider the corresponding eigen-
values as possible candidates for active las-
ing modes satisfying the SALT equations. In
particular the mode to the eigenvalue with
the highest imaginary part is most likely a
mode that is lasing within the fully interact-
ing regime.

Without knowing the final number of ac-
tive modes at the desired pump d we start
with “testing” for one laser mode and solve
the nonlinear system (which is in this case
only a single equation) by using the mode
with the highest imaginary part and the cor-
responding real part of that frequency as ini-
tial guess. If the nonlinear iteration con-
verges, we have found an active mode with
a frequency that is “forced” to be real. We
then have to include this particular mode
into the coupling term in order to check the
remaining eigenvalues. As the inclusion of
the current data into the nonlinear term re-
duces the pump within the system, all other
eigenvalues have to move downwards in the
complex plane. This can be seen in Fig-
ure 8.2(b).

While some eigenvalues have been sup-
pressed such that they already lie far below
the real axis, there are still two eigenvalues
above the real axis. Thus there is obviously more than one mode active at that specific
pump strength. Hence we choose again the mode with the highest imaginary part as the
additional initial guess and solve the SALT equations, but this time for two modes. Fi-
nally the Newton solver converges again providing two laser modes of purely real valued
frequencies. Verifying again the remaining inactive modes by solving the corresponding
nonlinear EVP shows that we have found a correct solution for the SALT system at the
pump d, see Figure 8.2(c).
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8. The nonlinear SALT-Algorithm

Of course one could start with any other non-physical mode from Figure 8.2(a) and test
all possible combinations of initial guesses. We have experienced that either a different
combination does not converge at all or it finds the same final pair of active laser modes
at the end. However, a rigorous mathematical investigation of the subject of multiple
combinations of active modes solving the SALT equations for the same distinct pump
hasn’t been carried out yet.

A scheme of this instant pump algorithm can be seen in Algorithm 8.1 below:

Algorithm 8.1 Scheme of the instant pump algorithm

Input: Laser geometry, FEM parameter, gain profile, pump strength d∗

Solve EVP T0(k)U = 0
Determine M+, the number of eigenvalues with pos. imaginary part
Determine initial data (U1, k1)
Initialize number of active modes M0 = 0
while M+ > 0 do

M0 = M0 + 1
Solve Newton F (X) = 0, F = (F1, . . . , FM0), X = (U,~k);
Solve EVP TM0(k)U = 0
Determine M+, number of eigenvalues with pos. imaginary part
Determine initial data (UM0 , kM0) and append to X

end while
Output: X = (U,~k),M0

110



9. Solving the nonlinear system

In this chapter we concentrate on the computation of the fully nonlinear SALT equations.
A straight forward approach to solve the nonlinear system is to apply a Newton scheme
and search for all modes and frequencies {uµ, kµ} simultaneously.

9.1. Newton’s method

As emphasized in the two previous sections, one of the crucial steps in the computations
is the direct solution of the coupled system of nonlinear equations in (7.6). Following
the discussions in Section 7.3 the discretized system can be written as a set of algebraic
equations,

F ({bµ, kµ}) = 0, (9.1)

where µ ranges from 1 to M , the number of currently active laser modes. Since we
have to solve the system of equations, Eq. (9.1) has to be understood as an M -tuple
F ({bµ, kµ}) =

(
F1({bµ, kµ}), . . . , FM ({bµ, kµ})

)
.

Assuming that we have an appropriate initial guess X0, this problem is solved by using
the Newton scheme

Xn+1 = Xn − J(Xn)−1F (Xn) . (9.2)

From equations (9.1) rand (7.16) we observe that F : CN×M × RM → CN×M and
Fµ : CN × R→ CN . Thus our discrete system is so far under-determined. Formally we
would have to add a supplementary condition f(X) = 0 with f : CN×M ×RM → RM in
order to establish an appropriate linearization scheme. This leads then to a completed
nonlinear system F̃ (X) =

(
F (X), f(X)

)
= 0 where F̃ : CN×M × RM → CN×M × RM .

In effect the solutions of (7.6) are phase invariant. Thus one has to fix the phase of the
problem in order to obtain a well determined system such that the Newton scheme can
be applied and the Jacobian becomes invertible. The concrete treatment of this subject
will be discussed in Section 9.2. The Jacobian J(X) in (9.2) is computed explicitly by
“symbolic differentiation” and discussed in detail in Section 9.3.

9.2. Stability conditions

As mentioned in the previous section, we observe that the solutions of (7.6) are phase
invariant. In order to fix this lack of uniqueness for our Newton scheme, we have to
stipulate further phase conditions. That is, we choose for each coefficient vector uµ
of the initial data X0 = (U,~k) one index n∗µ such that u∗µ := uµn∗µ 6= 0 and rotate the

initial coefficient vectors by the phase angle α∗µ := Φ(u∗µ) to ũµ := e−iα
∗
µuµ such that the

111



9. Solving the nonlinear system

corresponding coefficient becomes real, i.e. =(u∗µ) = 0. Here, Φ : C → [−π, π),Φ(z) :=
=(log(z)) returns the phase angle in radians to each point in the complex plane. In order
to keep these phase conditions during Newton’s iterations, we append the M additional
equations

fµ(X) := =(u∗µ) = 0

where fµ : CN × R → R. In consequence, this modification turns our Newton iteration
into a feasible procedure.

Additionally, one can see that the trivial zero solution always satisfies the system.
This causes a second issue at the points when a new lasing mode appears. At that
moment, its amplitude is small and difficult to distinguish from the trivial zero solution.
Therefore, we have to exclude the trivial solution for further stability of the Newton
scheme. In our scheme we scale the modified initial coefficient vectors by a factor sµ to
ûµ := ũµ/sµ such that the n∗µ-th entry of ûµ is normalized to one, i.e. û∗µ = 1. However
these scaling factors have to be determined as M additional unknown variables. This
extends the overall unknown variable to X̂ := (X, s) with s = (s1, . . . , sM ). Keeping
these conditions as M further equations

gµ(X̂) := <(uµn∗)− 1

during Newton’s iteration causes then the resulting solution never to attain the trivial
zero solution. In summary, our stable Newton problem reads:

Find X̂µ := (Xµ, sµ) ∈ CN × R× R, 1 ≤ µ ≤M such that

F̂ (X̂) :=
(
F̂1(X̂), . . . , F̂N (X̂)

)
= 0

with

Fµ(X̂) :=
(
Fµ(X̂), fµ(X̂), gµ(X̂)

)
(9.3)

for 1 ≤ µ ≤M .

Note that from the point of view of implementation the FEM structure remains the
same in all linear components of

Fµ(X̂) =
[
− L + ikµR + k2

µM
εc + k2

µγ(kµ)Q̂(X̂)
]
uµ

as the additional unknown variables sµ only enter in the nonlinear term by

Q̂(X̂) :=
(∫

Ω

F (x)

1 +
∑

ν s
2
νΓ(kν)|∑l u

ν
l ϕl(x)|2ϕi(x)ϕj(x)dx

)
i,j
.

The schematic structure of the stabilized Newton scheme which fixes one specific phase
and extracts the auxiliary unknowns sµ during the iteration process can be seen in
Algorithm 9.1.
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Algorithm 9.1 Stable Newton scheme

Input: X0 = (U,~k) where U = (u1, . . . ,uM )>,uµ = (uµ1 , . . . , u
µ
N ),~k = (k1, . . . , kM )

for µ = 1, . . . ,M do
Choose index n∗µ ∈ {1, . . . , N} such that u∗µ := uµn∗µ 6= 0

Determine [ϕµ, sµ] = cat2pol(u∗µ)
Transform uµ = 1/sµe

iϕµuµ
end for
Y0 := (X0, ~s) where ~s := (s1, . . . , sM )
err := ‖F̂ (Y0)‖, tol := 10−14

Y = Y0

while err ≥ tol do
Compute Ĵ(Y ), F̂ (Y )
Solve Ĵ(Y )x = F̂ (Y )
Y = Y − x
err = ‖F̂ (Y )‖

end while
for µ = 1, . . . ,M do

Back transform uµ = sµuµ
end for

Output: X = (U,~k)

9.3. The explicit Jacobi matrix

As one can see from previous discussions in Section 7.3, 9.1 and 9.2, the stabilized
nonlinear function F̂ defined on the discrete FEM space produces a squared Jacobi ma-
trix J of large extent. For efficiency reasons, it is thus recommendable to understand
and exploit the underlying sparsity structure. Assembling the Jacobian matrix through
its explicitly analytic expression becomes much more efficient than computing the Jaco-
bian matrix by numerical perturbation. Furthermore the implementation of the analytic
Jacobian is also much easier as commonly thought.

In order to derive the Jacobi matrix explicitly, we should first mention that it is
convenient to reconsider the complex-valued coefficients in C as a real-valued vector uµj =

(vµj , w
µ
j ) in R2. To this end, we introduce the notation uµ := vµ + iwµ. Consequently

(7.16) has to be split into its real and imaginary contribution. Therefore we note first

γ(k) =
γ⊥

k − ka + iγ⊥
=

γ⊥(k − ka)
(k − ka)2 + γ2

⊥
− i γ2

⊥
(k − ka)2 + γ2

⊥
=
k − ka
γ⊥

Γ(k)− iΓ(k).

Then we get

Fµ(X̂) =
[
− L + ikµR + k2

µM
εc + k2

µγ(kµ)Q(X̂)
]
(vµ + iwµ)

=
[
− L + ikµR + k2

µM
εc + k2

µ

(kµ − ka
γ⊥

Γ(kµ)− iΓ(kµ)
)
Q(X̂)

]
vµ
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+ i
[
− L + ikµR + k2

µM
εc + k2

µ

(kµ − ka
γ⊥

Γ(kµ)− iΓ(kµ)
)
Q(X̂)

]
wµ

= −Lvµ − kµRwµ + k2
µM

εcvµ + k2
µΓ(kµ)

(kµ − ka
γ⊥

Q(X̂)vµ + Q(X̂)wµ

)
+

+ i
(
− Lwµ + kµRvµ + k2

µM
εcwµ + k2

µΓ(kµ)
(kµ − ka

γ⊥
Q(X̂)wµ −Q(X̂)vµ

))
=: F<µ (X̂) + iF=µ (X̂)

Thus, identifiying the complex plane C with R2, (7.16) can also be written in the
matrix form as( −L + k2

µM
εc −kµR

kµR −L + k2
µM

εc

)(
vµ
wµ

)
+k2

µΓ(kµ)

(
kµ−ka
γ⊥

Q Q

−Q
kµ−ka
γ⊥

Q

)(
vµ
wµ

)
= 0

We mentioned before that Mεc might be a complex matrix in case of εc being a
complex-valued function. Then we also have to split Mεc = <(Mεc) + i=(Mεc) and the
first matrix has to be rearranged to( −L + k2

µ<(Mεc) −kµR− k2
µ=(Mεc)

kµR + k2
µ=(Mεc) −L + k2

µ<(Mεc)

)
.

This leads to the following real-valued formulation of the discrete nonlinear problem
(9.1):

F (X̂) =

(
F<1 (X̂), . . . , F<M (X̂)

F=1 (X̂), . . . , F=M (X̂)

)
= 0 (9.4)

For the corresponding symbolic derivation of the Jacobi matrix we use again the
following common notation:

X̂ = (X̂1, . . . , X̂M ), X̂µ = (vµ,wµ, kµ, sµ), µ = 1, . . . ,M

and

F (X̂) =
(
F1

(
X̂
)
, . . . , FM

(
X̂
))

, J(X̂) =

(
∂Fµ(X̂)

∂X̂ν

)M
µ,ν=1

and each Jacobi block has the structure

∂Fµ(X̂)

∂X̂ν

=



∂F<µ
∂vν

∂F<µ
∂wν

∂F<µ
∂kν

∂F<µ
∂sν

∂F=µ
∂vν

∂F=µ
∂wν

∂F=µ
∂kν

∂F=µ
∂sν

∂fµ
∂vν

0 0 0

0
∂gµ
∂wν

0 0


(X̂).
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Thus the Jacobi matrix doesn’t seem to be that sparse in the first instance. However we
have

∂fµ
∂vν

,
∂gµ
∂wν

= (0, . . . , 0, δµν , 0, . . . , 0)

Then we consider first the case of µ = ν and get in detail:

∂F<µ
∂vµ

= − L + k2
µM

εc + k2
µΓ(kµ)

(kµ − ka
γ⊥

( ∂

∂vµ

[
Q(X)

]
vµ + Q(X)

)
+

∂

∂vµ

[
Q(X)

]
wµ

)

∂F<µ
∂wµ

= − kµR + k2
µΓ(kµ)

(kµ − ka
γ⊥

∂

∂wµ

[
Q(X)

]
vµ +

∂

∂wµ

[
Q(X)

]
wµ + Q(X)

)

∂F<µ
∂kµ

= −Rwµ + 2kµM
εcvµ +

( ∂

∂kµ

[
k2
µ

kµ − ka
γ⊥

Γ(kµ)Q(X)vµ
]

+
∂

∂kµ

[
k2
µΓ(kµ)Q(X)wµ

])

= −Rwµ + 2kµM
εcvµ +

(
k2
µ

kµ − ka
γ⊥

Γ(kµ)
∂

∂kµ

[
Q(X)

]
vµ +

∂

∂kµ

[
k2
µ

kµ − ka
γ⊥

Γ(kµ)
]
Q(X)vµ

+ k2
µΓ(kµ)

∂

∂kµ

[
Q(X)

]
wµ +

∂

∂kµ

[
k2
µΓ(kµ)

]
Q(X)wµ

)

∂F<µ
∂sµ

= k2
µ

kµ − ka
γ⊥

Γ(kµ)
∂

∂sµ

[
Q(X)vµ + k2

µΓ(kµ)
∂

∂sµ
Q(X)wµ

and

∂F=µ
∂vµ

= kµR + k2
µΓ(kµ)

(kµ − ka
γ⊥

∂

∂vµ

[
Q(X)

]
wµ −

( ∂

∂vµ

[
Q(X)

]
vµ + Q(X)

))

∂F=µ
∂wµ

= − L + k2
µM

εc + k2
µΓ(kµ)

(kµ − ka
γ⊥

( ∂

∂wµ

[
Q(X)

]
wµ + Q(X)

)
− ∂

∂wµ

[
Q(X)

]
vµ

)

∂F=µ
∂kµ

= Rvµ + 2kµM
εcwµ +

( ∂

∂kµ

[
k2
µ

kµ − ka
γ⊥

Γ(kµ)Q(X)wµ

]
+

∂

∂kµ

[
k2
µΓ(kµ)Q(X)vµ

])

= Rvµ + 2kµM
εcwµ +

(
k2
µ

kµ − ka
γ⊥

Γ(kµ)
∂

∂kµ

[
Q(X)

]
wµ +

∂

∂kµ

[
k2
µ

kµ − ka
γ⊥

Γ(kµ)
]
Q(X)wµ
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9. Solving the nonlinear system

+ k2
µΓ(kµ)

∂

∂kµ

[
Q(X)

]
vµ +

∂

∂kµ

[
k2
µΓ(kµ)

]
Q(X)vµ

)

∂F=µ
∂sµ

= k2
µ

kµ − ka
γ⊥

Γ(kµ)
∂

∂kµ
Q(X)wµ + k2

µΓ(kµ)
∂

∂sµ
Q(X)vµ

with

∂

∂kµ

[
k2kµ − ka

γ⊥
Γ(kµ)

]
=

1

γ⊥

{
(3k2

µ − 2kakµ)Γ(kµ) + (k3
µ − kak2

µ)Γ′(kµ)
}

,

∂

∂kµ

[
k2
µΓ(kµ)

]
=
{

2kµΓ(kµ) + k2
µΓ′(kµ)

}
and

Γ′(k) = −γ2
⊥

2(k − ka)
((k − ka)2 + γ2

⊥)2
= − 2(k − ka)

(k − ka)2 + γ2
⊥

Γ(k).

In the case of µ 6= ν, the off-diagonal terms in J(X) are not zero, due to the coupling
term in 9.3:

∂F<µ
∂vν

= k2
µΓ(kµ)

(kµ − ka
γ⊥

∂

∂vν

[
Q(X)

]
vµ +

∂

∂vν

[
Q(X)

]
wµ

)
∂F<µ
∂wν

= k2
µΓ(kµ)

(kµ − ka
γ⊥

∂

∂wν

[
Q(X)

]
vµ +

∂

∂wν

[
Q(X)

]
wµ

)
∂F<µ
∂kν

= k2
µΓ(kµ)

(kµ − ka
γ⊥

∂

∂kν

[
Q(X)

]
vµ +

∂

∂kν

[
Q(X)

]
wµ

)
∂F<µ
∂sν

= k2
µΓ(kµ)

(kµ − ka
γ⊥

∂

∂sν

[
Q(X)

]
vµ +

∂

∂sν

[
Q(X)

]
wµ

)
and

∂F=µ
∂vν

= k2
µΓ(kµ)

(kµ − ka
γ⊥

∂

∂vν

[
Q(X)

]
wµ −

∂

∂vν

[
Q(X)

]
vµ
)
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9.3. The explicit Jacobi matrix

∂F=µ
∂wν

= k2
µΓ(kµ)

(kµ − ka
γ⊥

∂

∂wν

[
Q(X)

]
wµ −

∂

∂wν

[
Q(X)

]
vµ
)

∂F=µ
∂kν

= k2
µΓ(kµ)

(kµ − ka
γ⊥

∂

∂kν

[
Q(X)

]
wµ −

∂

∂kν

[
Q(X)

]
vµ
)

∂F=µ
∂sν

= k2
µΓ(kµ)

(kµ − ka
γ⊥

∂

∂sν

[
Q(X)

]
wµ −

∂

∂sν

[
Q(X)

]
vµ
)

Thus it remains to consider derivatives of the nonlinear coupling term:

Q(X) =
(∫

Ω

D0(x)

1 +
∑

ν s
2
νΓ(kν)

[(∑
l v
ν
l ϕl(x)

)2
+
(∑

l w
ν
l ϕl(x)

)2]ϕi(x)ϕj(x)dx
)
i,j
.

To this end, the differentiation in the direction of the vector ~v = (v1, . . . , vM ) can be
understood as Q~v(X) =

[
Qv1(X), . . . ,QvN (X)

]
. Thus for ~v = vµ,wµ, µ = 1, . . . ,M

each derivative has the form

Qvµm
(X) =

∂

∂vµm

(∫
Ω

D0(x)

1 +
∑

ν s
2
νΓ(kν)

[(∑
l v
ν
l ϕl(x)

)2
+
(∑

l w
ν
l ϕl(x)

)2]ϕi(x)ϕj(x)dx
)
i,j

=
(∫

Ω

∂

∂vµm

[ D0(x)

1 +
∑

ν s
2
νΓ(kν)

[(∑
l v
ν
l ϕl(x)

)2
+
(∑

l w
ν
l ϕl(x)

)2]]ϕi(x)ϕj(x)dx
)
i,j

=
(∫

Ω

[ −2D0(x)s2
µΓ(kµ)

(∑
l v
µ
l ϕl(x)

)
ϕm(x)(

1 +
∑

ν s
2
νΓ(kν)

[(∑
l v
ν
l ϕl(x)

)2
+
(∑

l w
ν
l ϕl(x)

)2])2

]
ϕi(x)ϕj(x)dx

)
i,j

and

Qwµm
(X) =

(∫
Ω

[ −2D0(x)s2
µΓ(kµ)

(∑
l w

µ
l ϕl(x)

)
ϕm(x)(

1 +
∑

ν s
2
νΓ(kν)

[(∑
l v
ν
l ϕl(x)

)2
+
(∑

l w
ν
l ϕl(x)

)2])2

]
ϕi(x)ϕj(x)dx

)
i,j

Nevertheless we can observe that derivatives of Q with respect to the vectorial vari-
ables vµ,wµ always appear with multiplicative combination of vν .wν . This leads to
some simplifications within the context of assembling. Again we have to differentiate
between µ = ν and µ 6= ν. For µ = ν we have:
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9. Solving the nonlinear system

Qvµ(X)vµ =
(∫

Ω

−2s2
µΓ(kµ)

(∑
l v
µ
l ϕl(x)

)2(
1 +

∑
ν s

2
νΓ(kν)|∑l u

ν
l ϕl(x)|2

)2D0(x)ϕi(x)ϕj(x)dx
)
i,j

Qvµ(X)wµ =
(∫

Ω

−2s2
µΓ(kµ)

(∑
l v
µ
l ϕl(x)

)(∑
l w

µ
l ϕl(x)

)(∑
ν 1 + s2

νΓ(kν)|∑l u
ν
l ϕl(x)|2

)2 D0(x)ϕi(x)ϕj(x)dx
)
i,j

Qwµ(X)wµ =
(∫

Ω

−2s2
µΓ(kµ)

(∑
l w

µ
l ϕl(x)

)2(
1 +

∑
ν s

2
νΓ(kν)|∑l u

ν
l ϕl(x)|2

)2D0(x)ϕi(x)ϕj(x)dx
)
i,j

Qwµ(X)vµ = Qvµ(X)wµ

and for µ 6= ν with v := vµ,wµ, w := vν ,wν :

Qv(X)w =
(∫

Ω

−2s2
µΓ(kµ)

(∑
l vlϕl(x)

)(∑
l wlϕl(x)

)(
1 +

∑
ν s

2
νΓ(kν)|∑l u

ν
l ϕl(x)|2

)2 D0(x)ϕi(x)ϕj(x)dx
)
i,j

Finally, differentiation with respect to kµ and sµ leads to

Qkµ(X) =
∂

∂kµ

(∫
Ω

D0(x)

1 +
∑

ν s
2
νΓ(kν)|∑l u

ν
l ϕl(x)|2ϕi(x)ϕj(x)dx

)
i,j

=
(∫

Ω

∂

∂kµ

[ 1

1 +
∑

ν s
2
νΓ(kν)|∑l u

ν
l ϕl(x)|2

]
D0(x)ϕi(x)ϕj(x)dx

)
i,j

=
(∫

Ω

−s2
µΓ′(kµ)|∑l u

ν
l ϕl(x)|2(

1 +
∑

ν s
2
νΓ(kν)|∑l u

µ
l ϕl(x)|2

)2D0(x)ϕi(x)ϕj(x)dx
)
i,j

Qsµ(X) =
∂

∂sµ

(∫
Ω

D0(x)

1 +
∑

ν s
2
νΓ(kν)|∑l u

ν
l ϕl(x)|2ϕi(x)ϕj(x)dx

)
i,j

=
(∫

Ω

∂

∂sµ

[ 1

1 +
∑

ν s
2
νΓ(kν)|∑l u

ν
l ϕl(x)|2

]
D0(x)ϕi(x)ϕj(x)dx

)
i,j

=
(∫

Ω

−2sµΓ(kµ)|∑l u
ν
l ϕl(x)|2(

1 +
∑

ν s
2
νΓ(kν)|∑l u

µ
l ϕl(x)|2

)2D0(x)ϕi(x)ϕj(x)dx
)
i,j
.
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10. Solving the nonlinear eigenvalue
problems

The interest in nonlinear EVP has increased remarkably in recent years. However, com-
pared to linear eigenvalue problems, the robust numerical solution of nonlinear eigenvalue
problems is still much more difficult and there are essentially no equivalent packages that
reach the standard of those for linear problems. In particular, such eigenvalue problems
arising typically from applications in physics and other sciences bear some specific struc-
tures which should be reflected in the numerical solution method.

In the particular case of our SALT algorithm, it is necessary, as mentioned in Chap-
ter 8, to solve additionally a nonlinear eigenvalue problem of the form

ψ′′(x) + k2
(
εc(x) + γ(k) D0(x,d)

1+
∑
ν Γ(k∗ν)|ψ∗ν(x)|2

)
ψ(x) = 0 in Ω = [0, R]

ψ(0) = 0
ψ′(R)− ikψ(R) = 0

(10.1)

in order to verify a new mode activation. Based on a discretization via finite element
methods this leads to the following eigenvalue problem:

T(k)u :=
[
− L + ikR + k2Mεc +

γ⊥k
2

k − ηQ
]
u = 0 (10.2)

where η := ka − iγ⊥ ∈ C. Note that all matrices here are large sparse matrices; so
appropriate solution methods are needed.

10.1. The cubic EVP

A brute-force approach to solve the problem (10.1) resp. (10.2) can be done by multi-
plication with the denominator k − η. This leads to a polynomial EVP of order 3:[

k3C3 + k2C2 + kC1 + C0

]
u = 0

where

C3 := Mεc , C2 := γ⊥Q− ηMεc + iR,C1 := −L + iηR and C0 := ηL.

The standard solution method for polynomial EVPs is to apply linearization tech-
niques which transform the problem into an equivalent first-order equation of the gen-
eralized form Au−λBu = 0. In particular, the reduction of the degree of the EVP with
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10. Solving the nonlinear eigenvalue problems

N ×N matrices is coped with by extending to matrices of the GEP to the size pN × pN
where here p = 3. A commonly used linearization is the so-called first companion form
which is obtained by introducing the new vector v = (k2u, ku, u) such that C2 C1 C0

−Id 0 0
0 −Id 0

+ k

 C3 0 0
0 Id 0
0 0 Id

 v = 0.

The standard way of solving such a generalized EVP is via the QZ algorithm which is
based on the computation of the generalized Schur decomposition [74]. In the case of
the sparse large-scale GEP iterative projection methods onto Krylov subspaces such as
the Lanczos (for symmetric matrices) and Arnoldi method are the most conventional
algorithms to use. Both compute the smallest eigenvalues and can also be extended
with the Shift-and-Invert scheme in order to compute eigenvalues close to a specific shift
parameter.

Note that this kind of linearization is obviously not the only way to linearize the
polynomial EVP; there exist other strategies which might be able to maintain some of
the original structure such as symmetry for instance [48].

Despite the fact that this approach is very straightforward to implement, it is clearly
not recommendable for sparse large scale problems as in our case. Furthermore, as the
original EVP was rational in k we did not only have to enlarge the degree, but the
problem has also been changed by multiplication with the denominator k− η generating
spurious eigensolutions at the pole η = ka − iγ⊥ which again becomes noticeable in
the numerical performance. Thus it would be better to look for other solution methods
which exploit the rational structure and handle sparse large scale problems in a more
efficient way.

10.2. The rational EVP

Another possibility proposed by Bai and Su [94] which exploits more the underlying
structure of rational EVPs is to reformulate the original EVP (10.1) as a proper rational
EVP [

k2R2 + kR1 + R0 +
1

k − η R̃
]
u = 0

with
R2 := Mεc ,R1 := γ⊥Q + iR,R0 := −L + γ⊥ηQ and R̃ := γ⊥η

2Q.

This approach is developed for problems with nonsingular leading matrix, here R2, and a
low-rank matrix R̃. In this case, we assume that there exists a factorization R̃ = VWT

where V,W ∈ CN×r and r < N the rank of R̃. Then again the problem can be converted
into a generalized EVP by the linearization v = (ku, u, y) and y = (k − η)−1WTu such
that  R1 R0 V

Id 0 0
0 WT ηId

 v = k

 −R2 0 0
0 Id 0
0 0 Id

 v
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10.3. Contour integral eigensolver

Again this linearization scheme is not the only possibility and, similar to linearizations
for polynomial EVPs, different methods preserving inter alia symmetry can be applied.

This method brings an improvement in the problem size to (2N+r)×(2N+r) instead
of 3N × 3N for the standard linearization technique discussed in the previous section.
However, applying the same generic solution algorithms, this still generates spurious
numerical solutions for k = η.

Besides, reconsider that the original need to compute the NEVP was to check acti-
vation of new laser modes which have real-valued frequencies. Thus, to start with, we
are only interested in eigenvalues near the real axis. Furthermore, it appears from the
underlying physics that amplification is experienced mostly for modes with frequencies
near the peak of the gain curve Γ. Thus we can further confine our domain of interest
to a vicinity of ka. However, we can also observe that the pole η on which the EVP
is not well defined is (always) located near this region of interest as η = ka − iγ⊥. In
order to avoid this singularity, our domain of interest has to be bounded away from
{z ∈ C|=(z) > −γ⊥}. Hence we end up with a quite narrow domain in the complex
plane that is centered at ka and contains the interval [ka − γ⊥, ka + γ⊥].

A promising method for this purpose is the contour integral method, which was pre-
sented recently in [16] and [7] and which we will discuss in more detail in the following
Section.

10.3. Contour integral eigensolver

As motivated in the previous section our aim is to find eigenvalues of (10.1) or (10.2) in
a bounded domain Λ ⊂ C with a smooth boundary defined by the contour C := ∂Λ.

To this end let us assume that the eigenvalues of interest are all simple. Furthermore,
we can easily see that the operator-valued function T : C→ CN×N is meromorphic with
a pole η. Hence, by choosing Λ ⊂ C such that η /∈ Λ the following theorem can be
applied:

Theorem 10.3.1 ( [73, Thm. 1.5.4]). Let T : Λ → CN×N be holomorphic on Λ with
simple eigenvalues λ1, . . . , λn such that T (λn)vn = 0 and TH(λn)wn = 0. Then T−1 is
meromorphic on Λ\{λ1, . . . , λn} and there is a neighborhood U of C in Λ such that

T−1(z) =
∑ 1

z − λn
vnw

H
n +R(z), ∀z ∈ U\{λ1, . . . , λn}, and R(z) holomorph at Λ.

By use of the residue theorem we can additionally conclude

1

2πi

∫
C
f(z)T−1(z)dz =

∑
n

f(λn)vnw
H
n

where C is the closed contour of Λ. This motivates to compute the contour integrals

A0 :=
1

2πi

∮
C

T−1(k)dk =
∑
n

vnw
H
n = VWH
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10. Solving the nonlinear eigenvalue problems

A1 :=
1

2πi

∮
C
kT−1(k)dk =

∑
n

knvnw
H
n = VKWH ,

where K is a diagonal matrix with the diagonal entries corresponding to all the poles of
the inverse matrix T−1 inside the contour C which in turn are the eigenvalues of T.

Before we explain how the sought matrix K is computed from theses two matrices
A0 and A1, we discuss the realization of the contour integration which is obtained by
numerical quadrature. Very fast (i.e., exponential) convergence is achieved with the
trapezoidal rule, [61, Thm. 9.28], if the contour is an analytic curve such as a circle or
an ellipse. Moreover, for a discretization of the contour with q quadrature points this
would require q times the inversion of the operator matrix T (k) ∈ CN×N . Of course
this would become numerically extremely expensive for our large-scale FEM-matrices
and may even be unfeasible given that the inverses become fully populated. This can
be remedied by an approximation scheme that exploits the fact that the rank of the
matrices A0 and A1 is given by the number of eigenvalues inside the contour and is
thus very small compared to N . Thus we merely multiply T (z)−1 by a random matrix
M ∈ CN×l where l� N , but l not smaller than the expected number of eigenvalues that
are inside the contour. This means it is sufficient to evaluate T−1M at each quadrature
point on the contour which reduces the computational cost to the solution of l linear
systems for each quadrature point.

To obtain the matrix K, we first compute the (reduced) singular value decomposition
(SVD) of

A0M = V0Σ0W
H
0

where we assume that the dimension l is exactly the number of eigenvalues inside the
contour; if l is larger, the SVD of A0M has to be replaced with a rank-revealing variant.
Then we can deduce by formally introducing S := VH

0 V and substituting V = V0S into

V0Σ0W
H
0 = A0M = VWHM = V0SWHM

which again leads to the expression

WHM = S−1Σ0W
H
0

such that we obtain

A1M = VKWHM = V0SKS−1Σ0W
H
0 .

Thus by
SKS−1 = VH

0 A1MW0Σ
−1
0

we can see that K is similar to

B := VH
0 A1MW0Σ

−1
0

and therefore their eigenvalues are the same, so that the desired eigenvalues kn can be
obtained from the reduced eigenvalue problem

Bxn = knxn.
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10.3. Contour integral eigensolver

The original eigenvectors can then be obtained by vn = V0xn. Note that the size of the
matrix B is just as big/small as the rank of Σ0 which again equals the number of all
eigenvalues inside the contour. Thus the EVP is reduced to an essentially smaller one
(dense, l× l) while the computational effort is mainly shifted to the solution q× l sparse
linear systems, where q is the number of quadrature points for the contour integration,
which are perfectly parallelizable.

So far, we mentioned that an integration via trapezoidal rule leads to exponential
convergence in the case of ellipsoidal contours. For more sophisticated contours which
are no longer analytic but only piece-wise analytic the trapezoidal rule is still applicable,
but loses the feature of exponential convergence. However, this can be overcome by other
exponentially convergent schemes such as Gaussian or Clenshaw-Curtis quadrature.

For a better understanding in terms of implementation, we repeat here the algorithmic
scheme that was published in [16]:

Algorithm 10.1 Contour integral solver

Input: SALT operator T, number of quadrature points q, projection parameter l
Choose random matrix M ∈ CN×l
Determine the quadrature points zj and the derivatives of the parametrization at the
quadrature points z′j for j = 1, . . . , q
Assemble contour integrals via trapezoidal rule:

A0 = 1
q

∑
(T(zj)\M) z′j , A1 = 1

q

∑
(T(zj)\M) zjz

′
j

Compute SVD of A0 = VΣWH , where
V ∈ CN×l,W ∈ Cl×l,VHV = WHW = Il,Σ =diag(σ1, . . . , σl).

Reduce matrices, if necessary: For tolrank small find 0 < m ≤ l such that
σ1 ≥ . . . ≥ σm > tolrank > σm+1 ≈ . . . ≈ σl ≈ 0

if l = m then
Increase l and restart computations

else
V = V(:, 1 : m),W = W(:, 1 : m) and Σ =diag(σ1, . . . , σk)

end if
Compute B := VHA1MWΣ−1 ∈ Cm×m
Solve EVP Bx = kx
Transform vn = Vxn

Output: (vn, kn), n = 1, . . . , l
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11. Numerical results

Finally we want to collect all different kinds of numerical computations that have been
done in order to investigate the reliability of our new direct SALT solver. Then we will
also give a few examples that apply to specific models in laser theory.

11.1. Qualitative assessment of the solution method

The main question is whether the convergence rates of the FEM approach for this specific
case of a nonlinear system remain the same as stated in Part I for the linear Helmholtz
equation. As one of the crucial components of our solver is the contour integral method,
we will first examine its reliability.

11.1.1. Examination of the contour integral method

Solving the nonlinear eigenvalue problem is numerically the most expensive part; there-
fore we start with examining the numerical behavior of the contour integral method.
For this purpose, we consider the example of a 1D-slab cavity Ω = [0, 1] with Dirichlet
boundary on the left and Robin boundary condition at the right side. The ab initio
parameters of the cavity material are as follows: the index of refraction is constant with
n ≡ 3, while the gain curve is centered at ka = 5 with a half width at half maximum of
γ⊥ = 0.4 and we search for eigenvalues of the linearized SALT-operators with the pump
strength D0 = 1.5. In compliance with the parameters n, γ⊥, ka, the SALT-matrix

T(k) = −L + ikR− k2Mε + k2γ(k)MD (11.1)

is set up and the EVP is solved under variations of the contour as explained in the
Section 10.3 on the contour integral method

Degree of freedom vs. quadrature points

In a first simple test case, we consider here the residual error by varying the quadrature
points (qpts) regarding an elliptical contour for the SALT-matrix with different numbers
of degrees of freedom (ndof). The computation of the contour integral is done using the
trapezoidal rule as suggested in [16]. In view of the FEM analysis in Section 11.1.3, we
have also applied the Gauss quadrature rule which will be necessary when using more
complex contours, in particular composite contours of piece-wise analytic arcs.

125



11. Numerical results

Example 11.1.1. We consider a laser setting as described above and search for eigen-
values inside the contour

C := {(ka + α cos(t), β sin(t)), t ∈ [0, 2π]}

where α = 3γ⊥, β = 0.5γ⊥. We assemble the SALT-matrix (11.1) with the FEM-
parameters p = 3, h = 0.266 · 2−l, l ∈ {3, 6, 9} leading to ndof = {12, 117, 957} and test
the algorithm for qpts = {10, 20, 50, 100, 125, 150, 300} quadrature points. The geometric
parameters are chosen such that there is only one eigenvalue inside the contour. The
residuum is depicted in the L2 norm.
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Figure 11.1.: (cf. Example 11.1.1) Top: Residual error vs. number of quadrature points
using the trapezoidal rule (left) and the Gaussian quadrature rule (right). Different
colors correspond to different numbers of degrees of freedom (NDOF), see legend at the
bottom left. Bottom, right: Complex frequency domain bounded by the closed contour C
(solid black line), the eigenvalue inside the contour is marked with × and the Lorentzian
curve is plotted to illustrate the gain inside the domain.

We see that in the case of a periodic parametrized contour (as an ellipse) the trape-
zoidal rule leads to a better convergence rate as the Gauss quadrature rule and the
quality of the solutions are barely influenced by the number of degrees of freedom.

Position vs. quadrature points

From the calculations of the preceding example, we see that there is only one eigenvalue
at k∗ = 4.77+0.174i inside the contour. Based on the error analysis as discussed in [16],
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11.1. Qualitative assessment of the solution method

we now introduce here a test series of calculations in which we vary the distance of the
eigenvalue to the contour. We center the elliptical contour in the point k∗ and investigate
the convergence behavior when the ellipse is shifted horizontally or vertically until the
eigenvalue is very close to the contour.

Example 11.1.2. The laser setting remains the same as in Example 11.1.1 while we
search for eigenvalues inside the contour which is shifted along the imaginary direction,
centered close to the present eigenvalue in the beginning and then moved upward until
the eigenvalue lies close to the contour:

Cn := {(a0 + α cos(t), bn + β sin(t), t ∈ [0, 2π]}

where β = γ⊥/2, α = γ⊥, a0 = 4.799 and bn = 0.147 + βn
6 , n = 1, 2, 3, 4, 5, 6, again tested

for q = {10, 20, 50, 100} quadrature points.
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Figure 11.2.: (cf. Example 11.1.2) Top: Residual error vs. number of quadrature points
using the trapezoidal rule (left) and the Gaussian quadrature rule (right). Different
colors correspond to different contours Cn, see legend at the bottom left. Bottom, right:
Complex frequency domain bounded by the closed contours Cn and the eigenvalue inside
the contour is marked with ×.

Example 11.1.3. Again we consider the same model as in Example 11.1.2, but search
for eigenvalues inside the contour which shifted along the real direction, again centered
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close to the present eigenvalue in the beginning and then moved sideward until the
eigenvalue also lies close to the contour:

Cn := {(an + α cos(t), b0 + β sin(t), t ∈ [0, 2π]}

where β = γ⊥/2, α = γ⊥, b0 = 0.174 and an = 4.799 + αn
6 , n = 1, 2, 3, 4, 5, 6, again tested

for q = {10, 20, 50, 100, 125, 150, 300} quadrature points.
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Figure 11.3.: (cf. Example 11.1.3) Top: Residual error vs. number of quadrature points
using the trapezoidal rule (left) and the Gaussian quadrature rule (right). Different
colors correspond to different contours Cn, see legend at the bottom left. Bottom, right:
Complex frequency domain bounded by the closed contours Cn and the eigenvalue inside
the contour is marked with ×.

We see again that the trapezoidal rule provides a better convergence behavior than
Gauss quadrature rule. If the eigenvalues come close the contour (especially on the
side where the quadrature points are plied/accumulated), we see that the exponential
behavior is disturbed.

Contour vs. quadrature points

As a final test series we focus on more complex contours and investigate the convergence
behavior using the Gaussian quadrature rule. This is also of interest as we have to apply
the CIM on such degenerate ellipses for the FEM convergence analysis.
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11.1. Qualitative assessment of the solution method

The contours have to be bounded from below (see Section 10.3). However by varying
the a priori parameters, for instance a higher pump strength D, the initial nonphysical
eigenvalues of the corresponding SALT-matrix may lie further up in the imaginary half
plane such that the contour has to be extended on that side. The desired domain is
thus bounded by the composition of a flat lower elliptic arc and a much more extended
elliptic arc on the upper side.
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Figure 11.4.: (cf. Example 11.1.4) Top: Residual error vs. number of quadrature points
using the trapezoidal rule (left) and the Gaussian quadrature rule (right). Different colors
correspond to different contours C0 ∪ Cn, see legend at the bottom left. Bottom, right:
Complex frequency domain bounded by the closed contours C0 ∪ Cn and the eigenvalue
inside the contour is marked with ×.

Example 11.1.4. Considering the same model as in Example 11.1.1, we search for
eigenvalues inside the contour which is split into a lower and upper arc C = C0 ∪Cn with

C0 := {(ka + α cos(t), β sin(t)), t ∈ [0, π]}

and

Cn := {(ka + α cos(t), cnβ sin(t)), t ∈ [π, 2π]}

where β = 0.5γ⊥, α = 2γ⊥ and cn ∈ {1, 4, 10, 40, 100}, again tested for
q = {10, 20, 50, 100, 125, 150} quadrature point on each arc of the composed contours.
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We see in this case that the Gaussian quadrature preserves the exponential conver-
gence rate. In contrast, the trapezoidal rule completely fails for contours with such a
composition of non-periodic closed parametrizations.

11.1.2. Newton solver

In addition we have observed numerically that the stabilized Newton solver always con-
verges rapidly while computing the SALT system along a given pump trajectory. One of
the quantities that is of interest is the emitting laser intensity of each mode. The devel-
opment of the intensities with increasing pump strength and the convergence behavior
of the Newton method are summarized in the next example.

Example 11.1.5. We consider a 1D-slab cavity Ω = [0, 1] with Dirichlet boundary
on the left and Robin boundary condition at the right side. The material properties
are described by a uniform index of refraction of n = 2 and a gain curve with a half
width at half maximum of γ⊥ = 3 and a center at ka = 10. The FEM-parameters are
p = 6, h = 2−4, Ndof = 96. Then we computed the SALT solutions along a spatially
uniform pump trajectory D0(x, d) = d, d ∈ [0, 2]. Figure ?? shows the ’evolution’ of the
intensities of the laser modes with respect to the increasing pump strength. The first
mode (red line) activates at d ∼ 0.24, the second mode (green line) at d ∼ 0.38 and the
third more (blue line) at d ∼ 1.32.
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Figure 11.5.: (cf. Example 11.1.5) In the figure above, we have plotted the modal inten-
sity (left y-axis) and the number of Newton steps (right y-axis). The dual y-axis shows
the agreement of a slight increase in the Newton steps with the activation of new lasing
modes.

This solution strategy provides a fast convergence for the Newton scheme with less
that five iterations per pump step. It is only slightly more expensive when a new laser
mode activates.
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11.1. Qualitative assessment of the solution method

11.1.3. FEM computations

In analogy to the numerical analysis in Chapter 5, we will now study the behavior
of the FEM solutions for the nonlinear Helmholtz problem. The question is whether
the convergence rates transfer from the linear case to the SALT model. However, this
is highly plausible, since the leading order differential operator is linear and the non-
linearity appears the the lower order term and is fairly mild. We want to investigate
the convergence behavior for h- and p-refinements. To this end, we consider again the
model as introduced in Section 11.1.1 with the a priori estimates n = 3, γ⊥ = 0.5, but
vary the parameter ka in order to illustrate the rate of change with respect to the wave
number kµ.

For all convergence diagrams in this section the asymptotic convergence rate, that we
expect from the analytic error analysis, is indicated by a black dashed line.

h-FEM

Recall that for the h-version, the polynomial degree is kept constant and fixed while the
mesh width is decreased. To show the lower rate of convergence for the low-order FEM,
we perform the calculations for p = 1, 2. The error is generated on the respective grid
by the L2-difference with the solution for p = 6.

Example 11.1.6. We consider a 1D-slab cavity Ω = [0, 1] with Dirichlet boundary on
the left and Robin boundary condition at the right side. The pump strength is D = 1.5
with a constant index of refraction n = 3 and γ⊥ = 0.5. Further we calculate the L2-error
for ka ∈ {5, 20, 100}. The mesh width of the initial grid is chosen such that hkan = 1.5
and the refinement is done by bi-sectioning. We observe that the higher order method is
less prone to pollution, similar to the linear cases discussed in the Sections 5.4 and 6.4.
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Figure 11.6.: (cf. Example 11.1.6) h-FEM convergence plot with fixed polynomial degree
p = 1 (left) and p = 2 (right)
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p-FEM

For the p-version the polynomial degree is increased on a fixed mesh. The error here is
generated by computing the L2-difference with the solution for p = 12.

Example 11.1.7. We consider a 1D-slab cavity Ω = [0, 1] with Dirichlet boundary on
the left and Robin boundary condition at the right side. The pump strength is D = 1.5
with a constant index of refraction n = 3 and γ⊥ = 0.5. Again we calculate the L2-error
for ka ∈ {5, 20, 100} and the mesh width of the grid is chosen such that hkan = 1.5. We
can see that we obtain a good convergence of the p-FEM as well.
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Figure 11.7.: (cf. Example 11.1.7) p-FEM on a fixed uniform mesh

Examination of the nonlinearity

Next we want to focus on the impact of the nonlinear term. For this, we consider the
quality of the FEM approximation for several different pump strengths on two distinct
laser configurations. The first has a higher index of refraction causing the spatial hole
burning effect in the nonlinear term to be less infecting while in the second laser setup
the index of refraction is quite close to 1 and thus the nonlinear interaction is more
pronounced. The SALT problem is solved for D(x, d) ≡ d with d ∈ {1, 2, 4, 6}.

Example 11.1.8. We consider a 1D-slab cavity Ω = [0, 1] with Dirichlet boundary
on the left and Robin boundary condition at the right side, with a constant index of
refraction n = 3 and a gain curve centered at ka = 8.42 and a half width at half maximum
of γ⊥ = 2.35.

Example 11.1.9. We consider a 1D-slab cavity Ω = [0, 1] with Dirichlet boundary
on the left and Robin boundary condition at the right side, with a constant index of
refraction n = 1.01 and a gain curve centered at ka = 25 and a half width at half
maximum of γ⊥ = 7.5.
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Figure 11.8.: (cf. Example 11.1.8) h-FEM convergence plot with fixed polynomial degree
p = 1 (left) and p = 2 (right) for different pump strengths d
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Figure 11.9.: (cf. Example 11.1.9) h-FEM convergence plot with fixed polynomial degree
p = 1 (left) and p = 2 (right) for different pump strengths d

In both configurations we see that the method converges at the expected rate. How-
ever, a slight dependence with respect to the pumping strength can be observed. This
holds in particular for the second case where the nonlinear term is dominant.

11.2. Physical applications

At last we want to sum up a few cases of applications that have been developed in joint
work with Matthias Liertzer from the group of Prof. Stefan Rotter at the Institute for
theoretical physics. With these examples we intend to highlight the flexibility and the
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11. Numerical results

vast range of applications that can be handled with our new solution method.

11.2.1. Comparison with the CF-states method

We demonstrate here the accuracy of the presented solution method. Compared to the
integral method as discussed in Section 7.1.2 one of the advantages of our new solution
method is the accuracy of solutions far above the threshold. In this regime the accuracy
of the integral method may depend strongly on the size of the TCF state basis NTCF.
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Figure 11.10.: (cf. Example 11.2.1) Comparison of our new solution method with the
CF method for different number of basis functions

Example 11.2.1. We consider a 1D-slab cavity Ω = [0, 1] with Dirichlet boundary
on the left and Robin boundary condition at the right side, with a constant index of
refraction n = 1.2 and a gain curve centered at ka = 10 and a half width at half
maximum of γ⊥ = 4. Then we computed the SALT solutions along a spatially uniform
pump trajectory D0(x, d) = d, d ∈ [0, 6]. Figure 11.10 shows the comparison of the direct
SALT solver (solid lines) to the solution of the integral formalism with 30 (long dashed),
20 (dashed) and 15 (dash-dotted) CF-basis functions.

One can see that for a larger basis the solution converges towards the solution of the
direct solver. Thus our new solution method leads to accurate solutions in the regime
far above threshold which can only be achieved by the CF method with a much larger
number of TCF states.

11.2.2. Two cavity laser

As one prototypical example for a pump profile where the spatial profile of the pump
varies as a function of the pump parameter d we consider a setup as it has been used
in [65]. There, the authors have shown that a spatially varying pump function with
a spatial shape that depends on a pump parameter d, can strongly influence the laser
output in a counter-intuitive way.
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11.2. Physical applications

Example 11.2.2. We consider a laser system consisting of two coupled one-dimensional
ridge cavities Ω1 = [0, 1] and Ω2 = [1.1, 2.1]. The index of refraction of the cavity material
in both cavities is n ≡ 3 + 0.13i, while in between it holds n ≡ 1. The gain parameters
are ka = 9.46, γ⊥ = 0.4. For the pump function the trajectory is shown in Fig. 11.11(a).
In more detail it is defined as follows: For values of the pump parameter between 0
and 1 only the left cavity of the system is pumped from 0 to a certain pump strength
dmax = 1.2, which brings the laser just above threshold. In the range of d = [1, 2] the
pump in the left cavity is kept constant while the pump in the right cavity is linearly
increased from 0 to the same pump strength as already present in the left cavity.
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Figure 11.11.: (cf. Example 11.2.2):(a) Pump trajectory, (b) Modal intensity versus
pump strength, (c) Detail of figure (d), (d) Trajectory of the SALT eigenvalues with
increasing pump strength.

Since the overall pump strength in the cavity steadily increases, one would expect
that the overall intensity of the laser should also increase but instead the laser in the
simulations shuts down (see Fig. 11.11(b)). In [65] the authors attributed this shutdown
behavior to an occurrence of an exceptional point in the eigenvalues of the threshold
constant flux states basis when parametrized over both the outside frequency k and the
pump parameter d. In the direct solver there no longer exists such a two dimensional
parameter space since the frequency k can no longer be freely adjusted outside the cavity.
Instead, the frequency k is already obtained simultaneously with the corresponding lasing
mode. Therefore, the shutdown behavior manifests itself as an avoided crossing of the
eigenvalues in the complex plane as depicted in Fig. 11.11(d). Here, the solid lines
represent the solutions of the full SALT while the dashed lines show the movement of
the complex eigenvalues while neglecting spatial hole burning.

In fact two avoided crossings are visible in this plot. The first one occurs in the range
between d = 0 (marked as circles in Fig. 11.11(d)) and d = 1 (marked as squares). There
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the green and red mode first attract each other and then undergo an avoided crossing
where the red mode moves towards the real axis while the green mode stays far below in
the negative imaginary half plane. When the system is above threshold and the pump
parameter d = 1 is reached,the pump in the second cavity is increased which leads to the
green mode moving rapidly towards the red one, which is currently lasing. This results
in the second avoided crossing in which the red mode moves down, leaves the real axis
and thus the laser stops lasing. Note that only the second avoided crossing can be seen
in an actual laser. Towards the end of the pumping process the modes again move away
from each other and separately cross the real axis resulting in two active lasing modes.

In addition to the avoided crossings the effect of spatial hole burning is clearly observ-
able in the inset of Fig. 11.11(c). First of all we can observe that the SALT solutions
(solid lines) never cross into the positive imaginary half plane. Furthermore, the spa-
tial hole burning of the red mode after the second turn-on point clearly influences the
movement of the inactive mode even below threshold.

11.2.3. Random laser

Another final example in order to demonstrate the flexibility of our direct solver is the
setting of a random laser [25]. Instead of an optical cavity, these lasers only consist
a scattering random medium. The necessary electromagnetic feedback to initiate the
lasing process is provided by multiple scattering inside the gain medium. The example
of an one dimensional random laser we consider here is similar to those studied in [11,17].

Example 11.2.3. We consider a 1D-slab cavity with open Robin boundary conditions on
both sides. The random structure of the medium is established by a spatially modulated
index n(x) which is described by a staircase function alternating between the values
n1 = 1.2 and n2 = 1 within 40 random layers (see Figure 11.12(f)). The gain curve
of the material is centered at ka = 45.25 with a half width at half maximum γ⊥ = 1.
Starting our calculations from no pump, we also applied a spatially modulated pump
profile which is increased gradually until the local maximum of d = 2 is reached (see
Figure 11.12(e)).

Random lasers are typically highly multimode lasers consisting of many overlapping
modes. However, the detailed characteristics of a random laser are difficult to determine
and thus remain a challenging field for the photonic community. Classical laser models
that assume a constant index of refraction and a normal cavity, do not work for random
lasers. In addition, we do not have very much control over random laser (by definition).
Therefore it is important to have a model that works for random lasers. The authors
in [100] have shown that the SALT is able to treat multimode random lasers rigorously.
Providing results on lasing spectra, internal fields and output intensities, this theory
gives us the possibility to obtain a better understanding on when, how and what such
lasers emit.

In Figure 11.12(a) we observe the complex nonmonotonic behavior of the intensities
associated to each active lasing mode. This behavior stands in contrast to the linear
increase found in conventional lasers [97].
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11.2. Physical applications

Figure 11.12(b) shows the trajectories of the associated lasing frequencies which all lie
within the essential range of the gain curve (dashed line). Together they reveal the
strong spatial hole-burning interaction in this system. For example, the linear increase
of the intensity of the first lasing mode (red line) is damped as soon as the second mode
(green line) activates. In the frequency domain we see that the associated trajectories
on the real axis move towards each other. As soon as the third lasing mode (blue line)
activates, both modes even experience a loss of intensity. The associated trajectory of
the third mode on the real axis also move towards the center of the gain curve and
interacts so strongly that the second mode is driven to zero and the trajectory turns
back into the negative imaginary half plane. This in turn allows the activation of a
fourth mode (yellow line), also reducing significantly the intensity of the third mode.
Furthermore, the lasing modes in random lasers have a much more complex structure
compared to those in classical slab cavities (where modes are basically a superposition
of sine- and cosine-shaped curves). This can be seen in Figures 11.12(c) and (d) which
shows the laser modes at d = 2. This also affects the manner of mode competition
through the gain medium. In summary, it is very convenient so see that our algorithm
provides comprehensive solutions of high quality.
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Figure 11.12.: (cf. Example 11.2.3) Comprehensive visual output provided by our FEM-
SALT code
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12. Outlook

We have established an efficient and reliable solution method for computing the proper-
ties of a laser governed by the SALT equations. In contrast to previous methods which
solved the corresponding integral formulation, our own approach was based on a direct
solution of the relevant system of nonlinear PDEs. The implementation has been carried
out with Matlab for one dimensional laser devices. However, the method itself was de-
signed such that it scales well to higher dimensions. Furthermore, this solution strategy
remains valid independently of the choice of the underlying discretization scheme. In
fact, an implementation for 2D and 3D, based on the hp-FEM code Netgen/Ngsolve
by J. Schöberl as well as an FDFD code by S. Johnson from MIT, are presently in
preparation. Of course, in this context, the parallelization of the codes will also play an
important role for an efficient computation. Such a parallelization will, in particular,
be useful for the FEM assembling as well as even for the implementation of the contour
integral method, which so far constitutes the computational bottleneck of our solution
method. With these amendments our algorithm has the potential to be widely applicable
to many different types of lasers.

From a mathematical point of view, to the author, there remains another very inter-
esting consideration which is left to be done. Obviously, the number of active modes
depends directly on the strength of the pump. While the trivial zero solution always
solves the SALT equations for every pump, additional modes can appear or vanish by
varying the pump. These thresholds could thus be understood as bifurcation points
with respect to the pump. More precisely, in the spirit of directly solving the PDE
system of the SALT, the plan could be to search for parameter dependent eigenpairs
(d, knd ,Ψ

n
d ) ∈ R+ × R+ ×H1

0 (Ω) bifurcating from the trivial solution (0, 0, 0). Based on
the existing results mentioned in Section 7.2, a deeper examination of the stability and
the bifurcating properties might thus deliver a closer connection between the amount of
pump energy and the number of active modes. These findings could then again have an
impact on the numerical implementation as well as on the physical understanding of the
SALT equations.
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