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Abstract

In-situ soil moisture measurements play a key role for a variety of large-scale applications. A deep
understanding of their quality, especially in terms of spatial representativeness, is crucial for reliably
using them as reference data. �is study assesses random errors in the coarse-scale representation
of in-situ soil moisture measurements from more than 1400 globally distributed stations in the
International Soil Moisture Network (ISMN) using the triple collocation method. �e method was
applied on the original measurements as well as on soil moisture anomalies. Error estimates were
summarized for di�erent networks, depths, andmeasurement principles and furthermore related to
the respective climate class, soil type, average soil moisture condition, and soil moisture variability
to �nd possible relationships between measurement errors and local properties. �e average
network error varies from about 0.02 to 0.06 m3m−3 with generally increasing error variability
with increasing average error. Trends of (i) decreasing errors with increasing measurement depth
and of (ii) increasing errors with increasing average soil moisture conditions and soil moisture
variability were found for most networks and sensor types. �e errors when looking into anomalies
are in general lower than for absolute values. No statistically reliable trends for climate- and soil
texture classes were found. �e results highlight the necessity of developing a comprehensive
quality control process for in-situ measurements to reliably exploit existing data sets and to select
representative sites and sensors most appropriate for the requirements of a particular larger-scale
application.
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Kurzfassung

In-situ Bodenfeuchtemessungen spielen eine Schlüsselrolle für viele groß-maßstäbige
Anwendungen. Ein tiefgehendes Verständniss ihrer Qualität, vor allem bezogen auf ihre
räumliche Repräsentativität ist essentiell um sie als Referenzdaten verwenden zu können. Diese
Studie befasst sichmit der Schätzung zufälliger Fehler in der grob-maßstäbigen Representation von
in-situ Bodenfeuchtemessungen von über 1400 global verteilten Stationen des International Soil
Moisture Network (ISMN) unter der Verwendung der Triple Collocation Methode. Die Methode
wurde sowohl auf die absoluten Messwerte als auch auf Bodenfeuchteanomalien angewendet.
Die Fehler wurden für verschiedene Netzwerke, Messtiefen und Sensortypen zusammengefasst
und mit Klimaklassen, Bodentypen und Feuchtebedingungen in Verbindung gebracht. Der
durchschnittliche Messfehler pro Netzwerk variiert zwischen 0.02 to 0.06 m3m−3, mit einer
Tendenz zu steigender Fehlervariabilität mit steigendem mittleren Fehler. Trends für (i) geringere
Fehler für größere Messtiefen und (ii) steigende Fehler für steigende mittlere Bodenfeuchte
und -variabilität wurden für die meisten Netzwerke und Sensortypen gefunden. Fehler in den
Anomalien waren im Durchschnitt geringer als Fehler der Absolutwerte. Es gab keinen statistisch
vertrauenswürdigen Zusammenhang zwischen Fehlern und Klimaklassen bzw. Bodentypen. Diese
Ergebnisse zeigen die Wichtigkeit der Entwicklung einer umfassenden Qualitätskontrollmethodik
für in-situ Messungen, damit bestehende Datensätze zuverlässig verwendet und representative
Stationen bzw. Sensoren zur Verwendung in einer groß-maßstäbigen Anwendung ausgewählt
werden können
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Chapter 1

Introduction

�is thesis is based on the journal paper "Characterizing Coarse-Scale Representativeness of in
situ Soil Moisture Measurements from the International Soil Moisture Network" (Gruber et al.,
2013) and extends it with the theoretical background about the physical phenomena occurring in
an up-scaling process and its impact on the triple collocation.

A large number of local- to regional-scale meteorological and experimental networks measuring
soil moisture in-situ is available worldwide. Nevertheless, soil moisture is highly variable in space
and time and a globally representative in-situ network would require an extremely large number
of stations. �e high costs for operation and maintenance, together with the limited accessibility
of certain regions, make the setup of such an in-situ network �nancially infeasible. To �ll this
gap, remotely sensed data from optical and microwave instruments has been used to retrieve soil
moisture on a global scale (Chauhan et al., 2003; Njoku et al., 2003;Wagner et al., 1999). Several
missions such as the Soil Moisture and Ocean Salinity mission (SMOS; Kerr et al., 2010) or the
Soil Moisture Active Passive (SMAP; Entekhabi et al., 2010), especially dedicated to estimate soil
moisture with footprint sizes of several kilometers, have been launched recently or will be launched
in the near future. Satellite sensors provide data with a maximum temporal resolution of 1 to 3
days, which is not su�cient for a large variety of applications. Land surface models have been
implemented to �ll this temporal gap providing data in about the same spatial resolution of meters
to kilometers but several times a day.
Nevertheless, ground-based measurements are still crucial not only for studying the spatial and
temporal dynamics of soil moisture on a local scale (Brocca et al., 2010a, 2007, 2012; Mittelbach
et al., 2011; Robinson et al., 2008; Vereecken et al., 2010), but also for the calibration and validation
of coarse-scale data sets (Albergel et al., 2012; Parrens et al., 2011). In this context, in-situ data sets
are o�en seen as ground “truth,” which in fact is an inappropriate term since (i) in-situ sensors and
their deployment underlie inherent errors (Mittelbach et al., 2012; Plauborg et al., 2005;Walker et al.,
2004) and (ii) di�erences in the spatial scale, the represented depth, and the underlying physical
measurement principles of the sensors introduce systematic di�erences between the represented
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Chapter 1. Introduction

extent of the observation as well as the actual represented physical quantity (Brocca et al., 2007;
Famiglietti et al., 1999, 2008; Miralles et al., 2010). In-situ sensors typically represent only a few
centimeters of the soil and are usually placed in depths between the surface and 1 to 2m to represent
the plant root zone, whereas the penetration depth of satellite signals is about the size of the
wavelength, i.e., about 0 to 5 cm (Schmugge, 1983), covering an area from several square-meters
to several thousand square-kilometers. Vegetation coverage, topography, soil type, spatial weather
variability, and many other factors introduce subfootprint-scale soil moisture variations that may
cause di�erences between shallow spatial average surface soil moisture estimates from satellites or
models and in-situ measurements, depending on where the in-situ sensor is located within the
footprint. In fact, satellite and in-situ sensors will never look into the same soil sample and hence
do not measure the same water volume.
Nevertheless, Vachaud et al. (1985) introduced the temporal stability concept for soil moisture,
stating that even though soil moisture is highly variable in space and time, spatial �elds of soil
moisture exist, which persist in time. Single stations within those �elds can be used to represent
the areal mean soil moisture behavior over larger areas. Based on this temporal stability concept,
many other studies investigated the spatio-temporal variability of soil moisture over a large range of
scales to assess the feasibility of using point-scale in-situ measurements as a representation also for
larger-scale average soil moisture (Brocca et al., 2010a, 2007, 2012;Cosh et al., 2006; Famiglietti et al.,
1999, 2008;Martinez-Fernandez and Ceballos, 2003, 2005). �e main �ndings of these studies were
that (i) a limited number of sites distributed over an area of interest can be used to reliably represent
its average soil moisture behavior, (ii) the number of sites required to obtain a certain quality within
a given con�dence depends on the scale di�erence and the soil moisture conditions since spatio-
temporal variability increases with increasing scale and reaches a maximum under intermediate
wetness conditions, and (iii) almost all stations follow the temporal behavior of the areal mean
in terms of the correlation whereas only few stations are able to represent the areal mean absolute
soil moisture level. Di�erences in the latter mainly result from variations in vegetation, topography,
soil texture, and climate, and are o�en of a systematic nature. Hence, appropriate scaling techniques
can be used to remove such di�erences (Crow et al., 2012; Famiglietti et al., 2008; Kumar et al., 2012;
Reichle and Koster, 2004). Single point-scale in-situ measurements might then be properly used as
a reference for coarse-scale mean soil moisture (Albergel et al., 2012; Jackson et al., 2010). Further
studies investigated also the temporal stability of soil moisture in depth, indicating a correlation
of soil moisture along the soil pro�le (Martinez-Fernandez and Ceballos, 2003; Pachepsky et al.,
2005; Starks et al., 2006). In fact,Wagner et al. (1999) developed a method to estimate coarse-scale
pro�le soilmoisture using surface soilmoisture estimates from satellites. Various studies veri�ed the
usefulness of thismethod by comparing the estimated pro�le soil moisture to in-situmeasurements
in depth (Albergel et al., 2009, 2008;Brocca et al., 2010b). �eir results proved an existing correlation
for soil moisture along the pro�le.
Nevertheless, no single station can be entirely representative for larger areas or the entire

2



Chapter 1. Introduction

pro�le range because of the heterogeneity in soil properties, topography, and weather behavior.
Nonsystematic di�erences caused by the limited spatial representativeness of single points (referred
to as scaling errors) are preserved and must be considered when comparing soil moisture data sets
across scales (Crow et al., 2012;Miralles et al., 2010). Beside those systematic di�erences and random
errors, every in-situ sensor underlies inherent errors such as sensor noise, miscalibration, or a bad
deployment.
From the previous it becomes clear that the use of in-situ measurements for evaluating satellite or
modelled data requires a detailed knowledge of their quality. One should be aware that the term
quality for in-situ data describes several properties, whose importance varies with the application.
Four di�erent properties should be distinguished: (i) the capability of an in-situ sensor to measure
absolute soil moisture levels, (ii) the capability of capturing the temporal dynamics (drying and
wetting events), (iii) the spatial representativeness of a single station for a certain area, and (iv)
the inherent sensor reliability (e.g., the probability for sensor-dropouts or outliers, sensor dri�s, or
random noise). Di�erent approaches are available for assessing one or more of these properties.
Common metrics are the correlation coe�cient, which assesses the temporal relationship between
two data sets, and the bias and Root-Mean-Square-Di�erence (RMSD) for quantifying relative
measurement di�erences. �ose metrics can be applied on the soil moisture measurements
directly or on soil moisture anomalies, which are usually de�ned as the di�erence between actual
measurements and a long-term climatology (Albergel et al., 2012; Dorigo et al., 2010). Looking into
the directmeasurements addresses the sensor’s capability ofmeasuring absolute soilmoisture levels,
whereas anomalies can be used to assess the capability for capturing drying and wetting events.
Using a high spatial sensor density allows the assessment of the spatial representativeness of in-situ
sensors when comparing the respective measurements with the areal average. All the mentioned
metrics require reliable reference data sets, which are usually manually collected gravimetric
samples or high quality sensor measurements taken under laboratory conditions with prepared
soil samples or under �eld conditions (Mittelbach et al., 2012; Cataldo et al., 2009; Plauborg et al.,
2005).
A new approach of assessing the occurrence of measurement outliers without the need of any
reference data was introduced by Dorigo et al. (2013), who used spectrum-based analysis to �nd
and �ag spikes, jumps, saturated responses, missing precipitation responses, and sensor drop-outs.
One possible method for quantifying measurement errors without relying on the quality of
reference data sets might be the so-called triple collocationmethod. �is is a method for estimating
the random errors of three collocated data sets which can be assumed to represent the same
physical parameter while simultaneously solving for systematic di�erences. �e method assumes
independent (uncorrelated) error structures, which means that the errors must not have the same
origin. �is is given when using e.g., any combination of in-situ measurements, active or passive
satellite observations, and land surface model estimates, provided that the model is not driven
by one of the others. Several studies highlighted the high potential of the triple collocation in

3
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becoming a standard procedure in a comprehensive satellite validation process (Dorigo et al., 2010;
Miralles et al., 2010; Scipal et al., 2008; Sto�elen, 1998). Nevertheless, studies also showed that
the result is highly sensitive to its input con�guration, including di�erent scales and represented
physical quantities of the sources, the use of absolute values or anomalies, the time span under
observation, and the available number of measurement triplets (Loew and Schlenz, 2011; Zwieback
et al., 2012, 2013). As mentioned, large-scale di�erences between the input data sets introduce
errors caused by the spatio-temporal variability of soil moisture, leading to a mismatch in the
spatial representativeness. �ese errors are re�ected in the triple collocation result and can take
a high fraction of the overall error, leading to an overestimation of the actual inherent sensor
error (Miralles et al., 2010). �e only way to remove these scaling errors is the assessment of the
spatial representativeness, which requires a high spatial sensor density. Unfortunately, only few
available in-situ networks provide such a density. �emain objective of this study is to use the triple
collocation to characterize the random errors of globally available in-situ measurements in their
purpose of representing footprint-scale (∼0.25○) soil moisture. It should be emphasized that, in the
context of this study, the term random error describes not only the inherent random sensor noise
but also the non-systematic part in the scaling process, caused by the spatio-temporal variability of
soil moisture (i.e., the scaling error), which is most likely dominating the overall error estimate. A
second objective of this study is to investigate possible relationships between random error levels
and site-speci�c properties which are expected to have a large impact on in-situ measurements or
soil moisture variability. �ese properties are (i) sensor types, (ii) observation depths, (iii) climate
regions, and (iv) soil types. �e data sets used for this study are drawn from the International Soil
Moisture Network (ISMN).
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Chapter 2

Theoretical background

2.1 Scaling considerations

As described in Chapter 1, systematic and random di�erences are introduced by the di�erent
geophysical phenomena a�ecting spatio-temporal soil moisture variability at di�erent scales, i.e.,
soil properties, topography, vegetation and weather variability (Figure 2.1). �e question arises how
these systematic and random di�erences, referred to as scaling errors, add to actual measurement
errors and how and if they can be separated from the latter in a validation process. In the following,
these questions will be discussed on the example of in-situ measurements that should be upscaled
to match the spatial scale of satellite measurements (in the following referred to as �eld scale).
Estimates of the true state of soilmoisture at the respective scale are derived by applying an empirical
or analytical model on the actual sensor readings. �e model describes the relationship between
the observed sensor quantity and soil moisture:

Θ̂point = F̂insitu(Û) = Finsitu(Θpoint) + εinsitu

Θ̂ f ield = F̂satel l ite(σ̂0/T̂b) = Fsatel l ite(Θ f ield) + εsatel l ite
(2.1)

Θpoint and Θ f ield are the true states of point-scale and �eld-scale soil moisture, Θ̂point and Θ̂ f ield

their respective in-situ and satellite basedmeasurements. F̂insitu and F̂satel l ite are themodels applied
on the actual measured sensor raw data (e.g., the voltage Û from the in-situ sensor or backscatter
σ̂0 or brightness temperature T̂b from the satellite antenna) to derive the respective soil moisture
states. �e imperfectness of everymodel and the fact that the sensor observes not soilmoisture itself
but a quantity related to it introduces systematic and random errors in the estimates of the "truth".
Finsitu/satel l ite(Θpoint/ f ield) and εinsitu/satel l ite express the true relationship (including systematic
and random errors) between the soil moisture estimates at the respective scales and the true values.
�e hats always refer to estimated or measured quantities.
Since soil moisture at the point scale and at the �eld scale are physically two di�erent water volumes
with only a small intersection one must take their systematic di�erence (e.g., a rainfall event that
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Chapter 2. �eoretical background

Figure 2.1: Sources of spatio-temporal soil moisture variability at di�erent scales (Crow et al., 2012).

a�ects the entire point, but only a small area of the �eld) and the random di�erences caused by the
limited spatial representativeness (e.g., a rainfall event in the �eld that does not cover the point)
into account when comparing estimates of both against each other.
�e true scaling parameters will always remain, like every true state of any geophysical parameter,
unknown. Nevertheless, as mentioned in Chapter 1, an upscaling function can be statistically
derived and applied on the point measurements to minimize systematic di�erences between the
point-scale and the �eld-scale soil moisture estimates. However, this scaling function will be just
an approximation of the true scaling parameters and will thus introduce additional error terms:

Θ f ield = F↑(Θpoint) + εs

Θpoint = F↓(Θ f ield) + εs

F̂↑(Θpoint) = F∗↑ (Θ f ield) + εs + εs,F̂↑

(2.2)

F↑ and F↓ refer to the true up- and downscaling functions, respectively, εs to the true upscaling
error (i.e., representativeness error), F̂↑ to the derived upscaling function, and F∗↑ and εs,F̂↑ to the
systematic and random errors introduced when applying the estimated scaling function on the
true point-scale soil moisture to estimate true �eld-scale soil moisture. Since the true soil moisture
state at the point is unknown the estimated function has to be applied on the point-scale estimates
measured in-situ:

Θ̂ f ield ,up = F̂↑(Θ̂point) = F̂↑(Finsitu(Θpoint) + εinsitu)

= F̂↑(Finsitu(F↓(Θ f ield) + εinsitu)) + εs + εs,F̂↑
(2.3)

�at is, the upscaled point measurements contain 5 errors with respect to the true �eld-scale soil
moisture:

6
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• the true systematic scaling error minimized through the estimated scaling function, i.e. the
systematic deviation of the derived- from the true scaling function (F̂↑(F↓(Θ f ield))

• the upscaled systematic deviation of the point measurement from the true point-scale soil
moisture state (F̂↑(Finsitu(Θpoint)))

• the true random scaling error (εs)

• an additionally introduced random error caused by the imperfectness of the derived scaling
function (εs,F̂↑)

• the upscaled true random in-situ measurement error of the point measurement (F̂↑(εinsitu))

It is common practice that upscaled in-situ measurements are used for validating �eld-scale
satellite observations. Under the assumption that errors of in-situ sensors are signi�cantly lower
than errors of the satellite, point measurements are o�en used as a reference to describe systematic
and random errors of the �eld-scale soil moisture estimates, i.e., the satellite measurements (e.g.,
through the RMSD and/or the bias). From the previous it is clear that such an approach is unlikely
valid since (i) scaling errors are introduced in the upscaling process and (ii) this upscaling process
also in�ates the actual in-situ sensor errors. It should be emphasized that this study addresses
large-scale applications and not applications in which satellites should derive point-scale soil
moisture.
�e remaining questions are: (i) How big are the scaling errors compared to actual sensor errors,
(ii) is it possible to separate these two types of errors, and (iii) can point-scale measurements be
used for validating �eld-scale satellite observations given considerable scaling errors.
�e separation of scaling and sensor errors is only possible when having both a good approximation
of the actual sensor error and a good approximation of large-scale �eld soil moisture. First can
be achieved with a good accuracy using �eld- and/or laboratory calibrations (Mittelbach et al.,
2012). Second is a very challenging task given the huge size of satellite footprints and the high
spatio-temporal dynamics of soil moisture (e.g., Brocca et al., 2007, 2010a, 2012). Unfortunately,
only few high-density networks capable of approximating true �eld-scale soil moisture exist
worldwide (see Chapter 3.1).
�is study aims to estimate the coarse-scale representativeness of in-situ sensors on a global
scale. �e term representativeness refers to both upscaling errors themselves and the upscaled
in-situ measurement errors, since these are, as described above, inseparable for in-situ networks
with a low spatial station density. In the following section, the triple collocation method will be
introduced as a method capable of estimating the random errors of in-situ networks with respect to
a coarser scale, i.e. their spatial representativeness, without relying on a error-free reference data set.

7
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2.2 The triple collocation

2.2.1 Mathematical model

�is chapter addresses the issue of using upscaled in-situ soil moisturemeasurements for validating
satellite observations. �erefore the Mean-Square-Di�erence (MSD) will be introduced �rst and
then extended to the triple collocation.
As described in Section 2.1, the upscaling process corrects for systematic scaling errors with a
remaining part due to the unknown true relationship between soil moisture at the respective scales.
However, for this study we assume the statistical relationship to be su�ciently described by the
methods described in Chapter 4.1. However, deviations from this assumption will lead to an
overestimation of the random up-scaling errors, i.e., the representativeness errors. An estimation
of the impact on this e�ect requires further research but is not part of this study.
Given the previously described assumption the upscaled in-situ measurements can be expressed in
the following way:

Θ̂∗ins = Θ f ield + ε∗ins (2.4)

Θ̂∗ins refers to upscaled in-situ measurements, Θ f ield to the true soil moisture at �eld scale, and
ε∗ins to the upscaling error plus the upscaled sensor error. Assuming further that systematic model
errors of the satellite retrieval are negligible, one can describe its relation to the true �eld-scale soil
moisture as the following:

Θ̂sat = Θ f ield + εsat (2.5)

Θ̂sat refers to satellite measurements and εsat to the random satellite measurement error.
Calculating the average of squared di�erences of collocated upscaled in-situ measurements and
satellite observations leads to the MSD or, more common when taking the square root, to the
Root-Mean-Square-Di�erence (RMSD). �is is an o�en used validation metric and represents the
following (given the previously described assumptions):

⟨(Θ̂∗ins − Θ̂sat)
2
⟩ = ε∗2ins − 2ε

∗
insεsat + ε2sat (2.6)

�eGaussian brackets indicate an averaging over all collocatedmeasurements. FromEquation (2.6)
it becomes clear that even if the in-situ sensor would measure true point-scale soil moisture, the
random part of the upscaling error, i.e. the representativeness error, might signi�cantly in�ate the
MSD compared to the actual satellite error.
Let us now consider a third data set (e.g., a land surface model), also scaled to the satellite
observations:

Θ̂∗mod = Θ f ield + ε∗mod (2.7)
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Θ̂∗mod refers to rescaled modelled soil moisture estimates and ε∗mod to the rescaling error plus the
rescaled randommodel error. Cross-multiplying now the di�erences between three collocated data
sets instead of using squared di�erences of two data sets leads to the core equations of the triple
collocation:

⟨(Θ̂∗ins − Θ̂sat)(Θ̂∗ins − Θ̂
∗
mod)⟩ = ⟨ε∗2ins − ε∗insεsat − ε∗insε

∗
mod + εsatε∗mod⟩

⟨(Θ̂sat − Θ̂∗ins)(Θ̂sat − Θ̂∗mod)⟩ = ⟨ε2sat − εsatε∗ins − εsatε∗mod + ε∗insε
∗
mod⟩

⟨(Θ̂∗mod − Θ̂
∗
ins)(Θ̂

∗
mod − Θ̂sat)⟩ = ⟨ε∗2mod − ε∗modε∗ins − ε∗modεsat + ε∗insεsat⟩

(2.8)

Given the errors are Gaussian and that a su�cient number of measurements are averaged we get
following relationships:

⟨εi2⟩ = Var(εi)

⟨εiε j⟩ = Cov(εiε j) , i ≠ j
(2.9)

Var(εi) and Cov(εiε j) are the error variances and -covariances, respectively. If the errors are
uncorrelated, Equation (2.8) reduces to the following:

⟨(Θ̂∗ins − Θ̂sat)(Θ̂∗ins − Θ̂
∗
mod)⟩ = ê∗ins

⟨(Θ̂sat − Θ̂∗ins)(Θ̂sat − Θ̂∗mod)⟩ = êsat

⟨(Θ̂∗mod − Θ̂
∗
ins)(Θ̂

∗
mod − Θ̂sat)⟩ = ê∗mod

êi = ⟨ε2i ⟩

(2.10)

êi are the �nally obtained error estimates, representing the average random errors of the individual
data sets independent of each other.

2.2.2 Underlying assumptions

In the derivation of the triple collocation several very important assumptions were made:

1 All three data sets are somehow representative for a same water volume

2 �e rescaling of two data sets to one randomly chosen reference, in this case the satellite data
set, removes the systematic scale di�erences between them

3 �e errors of the three data sets are not correlated with each other

4 A su�cient number of temporally collocated triplets are available so that error covariances
vanish end the mean data set errors remain a�er the averaging.

9
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If Assumption 1 is not ful�lled, true soil moisture Θ f ield would not vanish in Equation (2.8)
and the errors were signi�cantly in�ated. Usually the relationship between the three data sets
is evaluated using their temporal correlation. �e most common approach is to calculate the
correlation signi�cance based on the Student’s t test. In this study a probability threshold of 0.05
is used. However, this might not always be appropriate because for a very large number of triplets
almost every correlation level is considered as being signi�cant. Conversely, in very dry areas such
as deserts, a very high noise level might overlay the actual soil moisture signal leading to very
low correlations. Such areas would be �ltered according to the t-test. Nevertheless it would be
of high interest to use the triple collocation there to estimate the actual noise level. �e feasibility
of applying the triple collocation over such areas is still a research topic but not part of this study.
Assumption 2 is only ful�lled if the statistic relationship across the scales is well described in the
rescaling model. In some regions, the high complexity of spatio-temporal soil moisture variability
across scales might require also the correction for higher-order statistical moments when using
data sets with a large scale di�erence. If this is not done su�ciently the random error estimate
are arti�cially in�ated. �e rescaling methods used in this study are discussed in Section 4.1.
Furthermore, the rescaling also scales the random error estimates into the data space of the chosen
reference. �is is indicated with the asterisks in the error terms e∗ins and e

∗
mod in Equation (2.10).

Since the scaling coe�cients are known the estimated errors could be transformed back, but for a
meaningful inter-comparison they are usually kept in the samedata space. Note that thus the quality
of the chosen reference does not have an impact on the error estimates of the individual data sets
but only on the dynamic range in which they are expressed. Hence, the choice of the reference also
does not in�uence the relative contribution of scaling errors to the triple collocation error estimates,
which will be discussed in Section 2.2.3. In the derivation of the method, the satellite data set was
chosen as a reference to emphasize the upscaling process. Since soil moisture dynamics are highly
varying globally and across scales, the in-situ measurements were used as a reference in this study
in order to characterize the errors with respect to their local dynamics.
If Assumption 3 is not ful�lled, the co-variance terms in Equation (2.8) would not vanish and
signi�cantly in�ate or de�ate the actual error estimates. �is could be the case when using for
instance land surface models driven with the same input data sets or two frequency channels of one
satellite. However, the data sets of this study use di�erent physical measurement principles and are
not driven by each other. Hence, zero error cross-correlation can be assumed.
Assumption 4 is also required for the error co-variance terms to vanish due to their Gaussian
distribution and for the errors to represent the actual average of the entire data set. Figure 2.2 shows
the relationship between the number of available measurement triplets, the average error level, and
the error estimation stability, based on a simulation of Zwieback et al. (2012). �e limited number
of triplets introduces a noise in the estimate.
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Figure 2.2:Relationship between the number of availablemeasurement triplets, the average error level,
and the error estimation stability of the triple collocation (Zwieback et al., 2012).

2.2.3 Impact of random scaling errors

As discussed above, the RMSD is a composite of the random errors of both data sets and the
representativeness error. �e triple collocation estimates the random errors of the data sets
independent of the choice of a reference. �e remaining question is to which data set the
representativeness errors are attributed. In this study two coarse-scale and one in-situ data set
are used. Soil moisture variations visible in two data sets are attributed to the third data set as
representativeness errors (Sto�elen, 1998). Hence, soil moisture variations in the satellite and the
model footprint not e�ecting the in-situ site will be considered as random errors in the in-situ
data set. �at is, the triple collocation can be used to estimate the representativeness errors of
in-situ stations. Figure 2.3 shows a very good agreement between estimated errors using the triple
collocation and the actual representativeness errors (in the �gure referred as upscaling errors) based
on a study ofMiralles et al. (2010). �e actual upscaling error was estimated using a high-density
network. �is behaviour of the triple collocation forms the basis of this study, in which the it will
be used to estimate errors in the coarse-scale representation of more than 1400 globally distributed
in-situ stations. �e used data sets and the implementation of the triple collocation method will be
discussed in the following chapters.
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Figure 2.3: Relationship between estimated and actual representativeness errors (Crow et al., 2012).
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Chapter 3

Data Sets

Random errors of the ISMN are assessed using the triple collocation method, which requires two
additional data sources with independent error structures. A blended active and passive remotely
sensed data set and the ERA-Interim reanalysis data set were used for this purpose as they have
the biggest temporal overlap with the available in-situ measurements. �e global Koeppen–Geiger
map was used to relate the stations to climate classes. Soil texture information was drawn from the
Harmonized World Soil Database (HWSD).

3.1 In-situ soil moisture measurements

�e ISMN (http://www.ipf.tuwien.ac.at/insitu) is a centralized data hosting facility. It
collects soil moisture ground measurements and, if available, ancillary measurements such as
precipitation, soil temperature, air temperature, snow depth, and snow water equivalent from
operational and experimental networks worldwide (Dorigo et al., 2011a,b). As there are no standard
methods yet for collecting soil moisture data in-situ, the data sets are usually highly di�erent in
terms of sensor installation depths and placement, temporal sampling, used units, and data formats.
�e ISMN harmonizes incoming data sets in terms of units, sampling interval, data format, and
metadata and makes them available to users costfree from a single web portal. Initiated by the
European Space Agency (ESA) in 2010 and operated by the Vienna University of Technology
(TU Wien), it has evolved as one of the most important in-situ soil moisture data platforms for
satellite and land surface model validation (e.g., Albergel et al., 2012; Liu et al., 2012). Providing
networks operate one or more geographically distributed stations which typically place a variety
of sensors to cover di�erent depths but also to increase the measurement reliability by making
redundant measurements with equal sensors in the same depths close to each other. Currently
(October 2012), the ISMN holds the measurements of over 6100 soil moisture sensors, provided
by 35 di�erent networks, which operate together more than 1400 stations. Data providers are
listed in the Acknowledgments. Figure 3.1 illustrates the global station distribution. Most of them
are located in Northern America and Eurasia and spread over a variety of climate regions, land
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cover types, and soil textures. �e temporal coverage of each network is shown in Figure 3.2.
Data sets cover a time period from 1952 (historical data sets) to now, while six networks with
together more than 200 stations are operating in near real time (NRT). A large variety of sensor
types are used, placed at di�erent depths, and representing di�erent depth intervals. Table 3.1
gives an overview of the used sensors and depth placements for each network. Available sensors
make use of di�erentmeasurement principles such as time domain re�ectometry (TDR), frequency
domain re�ectometry (FDR), capacitance probes, impedance probes, neutron probes, cosmic ray
probes, and gravimetric measurements, all of which results in di�erent sampling intervals and data
accuracy (Mittelbach et al., 2011, 2012; Plauborg et al., 2005;Walker et al., 2004). For this study, the
sensor types were summarized into �ve groups a�er similar properties: gravimetric, capacitance,
TDR/FDR, impedance, cosmic ray, and neutron probes.
Only data sets that achieve the statistical requirements of the triple collocation were used (See
Methodology). All available sensor depths were used to investigate the error dependency on the
measurement depth. Soil texture and climate region analysis were based on surface measurements
only, i.e., on measurements of which the start of the measurement interval lies between 0 and 10
cm.

Figure 3.1: Station distribution of the International SoilMoisture Network (ISNM;October 2012). Pins
represent single stations, colors represent di�erent networks.
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Figure 3.2: Temporal coverage of the International Soil Moisture Network (ISMN) networks, Water
Cycle Multi-Mission Observation Strategy (WACMOS) and ERA-Interim.
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Table 3.1: Overview of the number of stations, the used sensors, the total observed depth range, and
the number of sensor placements in di�erent depths for each network, respectively. [*]�e Cosmic Ray
Probe sensing depth depends on the apparent water content.

Network Stations Sensors Depth covered # depth placements

AACES 49 �etaProbe ML2X 0.00–0.25 3
AMMA 7 CS616 0.05–1.20 13
ARM 25 SMP1 0.03–1.75 10

Water Matric Potential Sensor 229L
CALABRIA 5 �etaProbe ML2X 0.30–0.90 3
CAMPANIA 2 �etaProbe ML2X 0.30–0.30 1
CHINA 40 Coring device/auger 0.00–1.00 11
COSMOS 67 Cosmic-ray Probe [*] -
FLUXNET-AMERIFLUX 2 Moisture Point PRB-K 0.00– 0.50 8

�etaProbe ML2X
FMI 1 �etaProbe ML2X 0.02–0.10 2
HOBE 30 Decagon 5TE 0.00–0.55 3
HSC_SEMACHEON 1 Hydraprobe Analog (CR800) 0.00–0.10 1
HYDROL-NET_PERUGIOA 1 TDR TRASE-BE 0.05–0.35 4
HYU_CHEONGMICHEON 1 Hydraprobe T1000A 0.00–0.10 1
ICN 19 Stevens Hydra Probe 0.00–2.00 11

Troxler Neutron Surface Probe
Troxler Neutron Depth Probe

IIT_KANPUR 1 Water Scout SM100 0.10–0.80 4
IOWA 6 N.S. 0.00–2.59 12
MAQU 20 ECH20 EC-TM 0.05–0.05 1
METEROBS 1 EnviroSCAN 0.10–0.50 5
MOL-RAO 2 TRIME-EZ 0.08–1.50 9
MONGOLIA 44 Coring device/auger 0.00–1.00 10
OZNET 38 CS615 0.00–0.90 7

CS616
EnviroSCAN
Stevens Hydra Probe

REMEDHUS 23 Stevens Hydra Probe 0.00–0.05 1
RUSWET-AGRO 156 Gravimetric 0.00–1.00 2
RUSWET-GRASS 122 Gravimetric 0.00–1.00 2
RUSWET-VALDAI 3 Gravimetric 0.00–1.00 3
SASMAS 14 CS616 0.00–0.30 2

Stevens Hydra Probe
SCAN 182 Hydraprobe Analog (2.5 Volt) 0.03–2.03 24

Hydraprobe Analog (5.0 Volt)
Hydraprobe Digital Sdi-12 (2.5 Volt)
N.S.

SMOSMANIA 21 �etaProbe ML2X 0.05–0.30 4
SNOTEL 374 Hydraprobe Analog (2.5 Volt) 0.00–1.02 16

Hydraprobe Analog (5.0 Volt)
Hydraprobe Digital Sdi-12 (2.5 Volt)
N.S.

SWEX_POLAND 6 D-LOG-mpts 0.00–1.00 10
PR2- Pro�le Probe

UDC_SMOS 11 EC-ET 0.00–0.40 5
EC5
IMKO TDR

UMBRIA 7 EnviroSCAN 0.05–0.45 3
�etaProbe ML2X

UMSUOL 1 TDR 100 0.10–1.80 7
USCRN 114 Stevens Hydraprobe II Sdi-12 0.05–1.00 5
USDA-ARS 4 Hydraprobe Analog (2.5 Volt) 0.00–0.05 1
VAS 2 Stevens Hydra Probe 0.00–0.05 1

�etaProbe ML2X
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3.2 Remotely Sensed Soil Moisture

�e satellite data set used in this study was the data set created within the Water Cycle Multi-
Mission Observation Strategy project (WACMOS; http://www.esa-soilmoisture-cci.org),
released in June 2012 within the framework of the Climate Change Initiative (CCI). It is the �rst
available long-term remotely sensed soil moisture product covering a 32 year period from 1978 to
2010, providing data in 0.25○ spatial resolution and was generated by merging active and passive
soil moisture estimates from various satellite missions (Liu et al., 2011, 2012). Merging di�erent
instruments from various satellites based on their temporal availability causes an increase of data
quality with time. �e temporal resolution is approximately 1–3 days.

3.3 Modelled soil moisture

ERA-Interim is a global atmospheric reanalysis data set combined with an ocean and land surface
model produced by the EuropeanCentre forMedium-rangeWeather Forecasts (ECMWF;Dee et al.,
2011). It covers a time period from 1979 to June 2012 and provides data in a spatial resolution of
(∼0.7○) at the equator. Soil moisture estimates are provided for four di�erent layers (0–7, 7–28,
28–100, and 100–255 cm) four times each day (0:00, 6:00, 12:00, and 18:00) for two di�erent land
surface schemes (TESSEL and HTESSEL; Balsamo et al., 2009). �e HTESSEL scheme was used in
this study because it provides a more realistic representation of the soil than the TESSEL scheme by
distinguishing between six di�erent soil types around the globe instead of just one. ERA-Interim
also provides soil temperature estimates for the respective layers and an estimate of snow height.
�ese were used to mask soil moisture measurements for which the temperature is below 0○C and
for which the snow cover estimate is greater than zero, as both satellites and most of the in-situ
sensors are making use of electromagnetic properties of the soil, which signi�cantly change when
the soil is frozen (Ulaby et al., 1982).

3.4 Koeppen-Geiger Climate Classification

�e Koeppen–Geiger classi�cation divides the globe into climate regions based on their
temperature and precipitation regime. �e updated world map from Peel et al. (2007)
was used for this study (http://www.hydrol-earth-syst-sci.net/11/1633/2007/
hess-11-1633-2007-supplement.zip, accessed 25 July 2011). It contains a static map on a 0.1
degree grid based on long-term in-situ observations between 1951 and 2000.
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3.5 Harmonized World Soil Database

�eHarmonizedWorld Soil Database (HWSD; http://webarchive.iiasa.ac.at/Research/
LUC/External-World-soil-database/HTML/) is a merged and harmonized product from
various soil information sources providing information about soil properties such as material
fractions, bulk density, or texture classes on a 1-km grid (Nachtergaele and Batjes, 2012). For this
study, only the USDA soil texture classi�cation is used, which for two layers (topsoil: 0–30 cm,
subsoil: 30–100 cm) classi�es the soil in the dominant fraction of clay, silt, and sand.

18

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/


Chapter 4

Methodology

4.1 Implementation of the Triple Collocation

Varying input settings have a high impact on the reliability of the result as well as on its actual
meaning (Dorigo et al., 2010; Zwieback et al., 2012). Applied to the original soil moisture values, the
result provides information about the ability of measuring absolute soil moisture whereas the use
of soil moisture anomalies gives information about the capability of catching drying and wetting
events, e.g., through precipitation (Dorigo et al., 2010). In this study, the triple collocation was
applied on both original values and anomalies. As discussed in Section 2.2, the choice of the
rescaling method may signi�cantly change the result if the data sets are di�erent in their statistical
properties. �e choice of an inappropriate rescaling technique will arti�cially in�ate the error
estimates in addition to the inherent errors caused by a mismatch in the spatial representativeness.
Furthermore, the choice of the reference data set in the triple collocation determines the data space
in which the errors are expressed. According to Section 2.2.2, the in-situmeasurements were always
used as a reference in order to characterize the errors with respect to their local dynamics. As
discussed in Section 2.2.2, a su�cient number of triplets is required to obtain stable error estimates.
For this study we decided that at least 100 triplets must be available.

4.1.1 Rescaling of original estimates

Kumar et al. (2012) found that slight non-linearities exist between soilmoisture data sources, leading
to improved scaling results for cumulative distribution function (CDF)-matching techniques
compared to linear approaches. �e CDF-method matches the cumulated distribution function of
the data sets and hence corrects for non-linearities by correcting theoretically all higher statistical
moments (Reichle and Koster, 2004). Depending on the implementation, mainly mean, standard
deviation, skewness, and kurtosis are a�ected. We choose to apply it when using absolute soil
moisture measurements as a stepwise linear scaling between a set of percentiles of the data (Liu
et al., 2011).
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4.1.2 Anomalies

Anomalies usually are the di�erence between actual measurements and the long-term climatology.
However, if data sets do not have a su�cient temporal coverage, climatologies cannot be computed
reliably. Another way of calculating anomalies is to use a moving average window to create a
baseline for the subtraction (e.g., Albergel et al., 2012), as shown in Equation (4.1):

ΘA(t) = Θ(t) −Θ(W) (4.1)

ΘA is the soil moisture anomaly, Θ the observed absolute soil moisture, t the time of acquisition,
and W the length of the moving window. An appropriate window length allows for removing
systematic di�erences between di�erent data sources which would be interpreted as random errors,
while preserving the response of the individual data sets to short-term drying and wetting events
(e.g., the seasonal vegetation growing cycles strongly e�ect satellite observations, but not in-situ
measurements). We chose a window length of 5 weeks (t ± 17d) according to Albergel et al. (2012).
�e anomaly is only computed when at least �ve measurements are available within the respective
window, even though most in-situ stations provide an hourly measurement rate.
�e anomalies of remotely sensed and ERA-Interim soil moisture were scaled to those of the in-
situ sensors using a normalization approach that matches the mean and the standard deviation as
shown in Equation (4.2) (Dorigo et al., 2010):

Θ∗A,S(t) = ΘA,R +

¿

Á
ÁÀ

Var(ΘA,R)

Var(ΘA,S)
[ΘA,S(t) −ΘA,S] (4.2)

ΘA,S(t) is the anomaly at the time t, ΘA,R the reference anomaly data set, Var() refers to the
variance, and the overline to the mean value. Θ∗A,S(t) is the rescaled measurement at the time
t.

4.1.3 Spatial and temporal collocation

�e spatial collocation was performed by using the in-situ stations as a reference and searching the
respective satellite and ERA-Interim ground point closest to the station.
In-situ sensors cover a varying depth-range, whereas the ERA-Interim data set represents four �xed
layers (see ERA-Interim). Since the in-situ measurements sometimes overlap with more than one
ERA-Interim layer, a depth-collocation was performed by assigning the sensor depth to the ERA-
Interim layer that covers the start of itsmeasurement interval (e.g., the 0–7 cm layer of ERA-Interim
is used when the sensor is placed in 5–10 cm). �e same depth collocation was done for the two
layers of the Harmonized World Soil Database.

20



Chapter 4. Methodology

Figure 4.1: Distribution of available measurements within the original Koeppen–Geiger classes (le�)
and the summarized classes (right).

For the temporal collocation, the data source with the lowest measuring frequency, which was the
remote sensing data set, was taken as a reference to search for the closest valid measurement of the
other sources with a maximum di�erence of ±3h.

4.2 Analysis

4.2.1 Sensor quality on a network, depth and sensor type level

�e aim is to evaluate (i) whether the error estimates (including both, measurement errors and
representativeness errors) change with sensor positioning or for di�erent sensor types, (ii) whether
some measurements show di�erent error levels when looking into anomalies instead of absolute
values, and (iii) whether there are networks that provide more reliable measurements than others.
�e error estimates were therefore grouped with respect to the networks, the observation depths
(the four ERA-Interim depth intervals were used to summarize the in-situ measurement depths as
described in Section 4.1.3 and the usedmeasurement techniques. Standard statistics (median, inter-
quartile-range, and outliers) were computed for the comparison and the estimated errors of the
absolute soil moisture measurements were plotted against the estimated errors of the anomalies.

4.2.2 Climate class analysis

�e error estimates of the entire ISMN were grouped a�er the Koeppen–Geiger climate classes to
evaluate a possible impact of the climate conditions on the measurement quality. We assumed
that even though daily temperature �uctuations are known to cause variations in the sensor
readings (Dorigo et al., 2013), an in�uence would be mainly driven by precipitation rather than
by temperature regimes. Hence, we summarized climate classes with similar or equal precipitation
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Table 4.1: Koeppen–Geiger climate classes summarized by similar or equal precipitation regimes.

Summarized classes Original classes

Aw Aw (Tropical–Savannah) BWx BWh (Arid–Desert–Hot)
BWk (Arid–Desert–Cold)
BSx BSh (Arid–Steppe–Hot)

BSk (Arid–Steppe–Cold)
Csx/Dsx Csa (Temperate–Dry Summer–Hot Summer)

Csb (Temperate–Dry Summer–Warm Summer)
Dsa (Cold–Dry Summer–Hot Summer)
Dsb (Cold–Dry Summer–Warm Summer)

Dwx Dwa (Cold–Dry Winter–Hot Summer)
Dwc (Cold–Dry Winter–Cold Summer)

Cfx/Dfx Cfa (Temperate–Without dry season–Hot Summer)
Cfb (Temperate–Without dry season–Warm Summer)
Dfa (Cold–Without dry season–Hot Summer)
Dfb (Cold–Without dry season–Warm Summer)
Dfc (Cold–Without dry season–Cold Summer)

ETH ETH (Polar–Tundra–High Elevation)

patterns to increase the statistical signi�cance. �e grouping is shown in Table 4.1. �e distribution
of available measurements within the climate classes is shown in Figure 4.1. �e estimated errors
within the classes were furthermore compared to the median soil moisture state of the entire
measurement period. We decided to consider only surface measurements for this analysis, i.e.,
measurements of which the start of the depth interval lies between 0 and 10 cm, since we assumed
that the biggest impact, if apparent, will be at the surface. Besides, the majority of sensors in the
ISMN are placed close to the surface, so the surface measurements allow for the most meaningful
inter-comparison because possible impacts of the depth mismatch between in-situ sensors and the
satellite signal are reduced.

4.2.3 Soil texture analysis

In-situ sensors are placed over a large variety of soil types, which on the one hand in�uence soil
moisture storage and redistribution properties (e.g., in�ltration and evaporation rates or total water
storage volume), and on the other hand show di�erent responses to the physical measurement
principle of the sensors. To evaluate a possible in�uence of the soil type on the measurement
quality, we grouped the error estimates with respect to the USDA soil texture classes according to
three dominant soil constituent types: Clay, silt, and sand (Table 4.2). �e distribution of available
measurements within the texture classes is shown in Figure 4.2. �e estimated errors were again
compared to the median soil moisture of the entire period. Only surface measurements were
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Figure 4.2:Distribution of available measurements within the original USDA soil texture classes (le�)
and the summarized classes (right).

considered for this analysis for the same reasons as for the climate class analysis.
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Table 4.2: USDA soil texture classes summarized by dominant soil types.

Summarized classes Original classes

Clay clay (heavy)
silty clay
clay
sandy clay

Sand sand
loamy sand

Loam sandy loam
sandy clay loam
clay loam
silty clay loam
loam
silt loam
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Results and Discussion

5.1 Errors on a network, depth, and sensor type level

Figure 5.1 shows statistics of error estimates of absolute soil moisture measurements for each
network and measurement depth. �e average error of the networks varies from about 0.02 to
0.06 m3m−3. In addition, the error variability (in terms of the interquartile range; IQR) changes
signi�cantly between the networks from about 0.01 to 0.05 m3m−3 with a pattern of increasing
variabilitywith increasing average error. A clear decrease in themeasurement errorswith increasing
measurement depth can be seen for all networks except for the deepest layers of SCAN and
SNOTEL. AMMA, ARM, and HOBE show a rather stable behavior. One reason for the observed
error decreasewith increasingmeasurement depth could be that themagnitude of daily temperature
�uctuations, which are known to have an impact on the sensor readings (Dorigo et al., 2013) also
decreases in deeper layers. Another possible explanation is the smoothing e�ect on the signal due to
the decrease of temporal variability of soil moisture in deeper layers. Localized weather phenomena
that e�ect the spatio-temporal variability and hence the spatial representativeness might also have
a lower impact on deeper layers. Figure 5.2 shows the same statistics for di�erent sensor types
and measurement depths, again for absolute soil moisture measurements. All sensor types show a
decrease of the errors with increasing depth, except for TDR/FDR and impedance probes placed in
the deepest layer. �at is, sensors placed in deeper layers might better represent coarse-scale soil
moisture variations than shallow sensors. Note that the varying amount of measurements available
to calculate the statistics for a certain network, depth or sensor type makes the statistics less robost
(e.g., for AMMA, COSMOS, HYDROL-NET_PERUGIA, ICN, MOL-RAO, UMBRIA, UMSUOL,
or cosmic ray and deep layer capacitance sensors) and might give a wrong impression of error
variability under certain conditions. Several networks listed in Table 3.1 are not shown in the results
because they either didn’t ful�l the statistical requirements of the triple collocation method (i.e.,
were not signi�cantly correlated with the satellite or the model) or had a too limited or no temporal
overlap with the satellite and model data (i.e., less than 100 collocated measurement triplets).
No error estimates for neutron probes and gravimetric measurements are shown for the same
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Figure 5.1:Box–Whiskers plot for the triple collocation result summarizing di�erent observation depths
of each network. �e box represents the upper and lower quartile together with the median; the
whisker length is 1.5 times the interquartile range drawn from the respective quartile. Red crosses
indicate outliers exceeding the whiskers. Values in brackets show the average number of triplets used
for the error estimate/the total number of error estimates used to calculate the statistic in the respective
column.

reason. Above described patterns are similarwhenusing anomalies instead of absolute soilmoisture
measurements. Figure 5.3 shows the error estimates for original values against error estimates for
anomalies for all available measurements. One can see that, in general, errors of anomalies are
lower than for absolute values with an increasing discrepancy for increasing errors. A trend for
decreasing errors with increasing depth is again visible except for very deep measurements, which
might be caused by the signi�cantly lower number of error estimates in those depths. Soil moisture
anomalies typically show a lower dynamic range than absolute soil moisture values, especially when
calculating them as the di�erence from the moving-average baseline like it was done in this study.
Hence, the data space in which the triple collocation expresses the errors show a lower dynamic
range, which could support the impression of lower error estimates for anomalies. It is thus hard to
distinguish whether soil moisture anomalies between the point scale and the coarse scale are closer
related than absolute soil moisture values, or whether the di�erent error levels are caused by the
properties of the triple collocation. Also the dynamic range of absolute soil moisturemeasurements
varies between the di�erent networks and stations because of the di�erent climate, soil, and terrain
properties. Figure 5.4 shows the relationship between error estimates and the dynamic range of
the measurements (expressed as the di�erence between the highest and the lowest measurement)
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Figure 5.2: Box–whiskers plot for the triple collocation result summarizing di�erent sensor types and
depths. �e box represents the upper and lower quartile together with the median; the whisker length
is 1.5 times the interquartile range drawn from the respective quartile. Red crosses indicate outliers
exceeding the whiskers. Values in brackets show the average number of triplets used for the error
estimate/the total number of error estimates used to calculate the statistic in the respective column.
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Figure 5.3: Estimated errors in the original measurements against estimated errors in anomalies
summarized for di�erent measurement depths. �e dashed lines are the regression lines.

of all sensors of all used stations. One can see a clear trend of increasing error with increasing
measurement variability. Again the two possible reasons for this are (i) that soilmoisture at di�erent
scales is closer relatedwhen there is a lower overall soilmoisture variability, i.e., pointmeasurements
aremore representative under these conditions, and (ii) that the triple collocation arti�cially de�ates
errors with a low dynamic range.

5.2 Climate class analysis

Figure 5.5 shows the errors of measurements within di�erent climate classes related to the median
soil moisture at the respective site. One can see a clear trend of increasing errors for wetter average
conditions in cold arid steppe regions. A similar trend can be seen for temperate and cold regions

28



Chapter 5. Results and Discussion

Figure 5.4: Error levels of absolute values against the soil moisture variability expressed as the
di�erence between the highest and the lowest measurement. �e dashed line is the regression line.

with dry summer as well as for arid desert regions, but very few data points are available to make
this statement statistically reliable. �is behavior is consistent with studies investigating inherent
sensor errors (e.g.,Mittelbach et al., 2011). Temperate and cold regions without a dry season appear
to show two interfering phenomena pronounced as an apparent cross in the scatterplot: One trend
for increasing errors with increasing average soil moisture and also a second trend for decreasing
errors with increasing average soil moisture. Connecting the climate region to the soil type could
not explain this behavior (not shown). A possible reason for the convex upward relationship
between average soil moisture conditions and error levels is the spatio-temporal variability of soil
moisture that reaches a maximum under intermediate wetness conditions (e.g., Brocca et al., 2012).
Accordingly, sensors placed in such areas should be less representative for coarse-scale soilmoisture
than sensors placed in dry or wet areas. �e interfering error peaks for very low and very high
average soil moisture levels could not be explained and should be investigated in further studies.
Too few or too randomly spread data points are available to see any pattern for tropical savannah,
polar tundra and cold regions with dry winter. No signi�cant di�erences in error budgets and hence
the coarse-scale representativeness of the sensors are visible between particular climate regions. �e
impression of slightly lower errors in tropical savannah and arid desert regions might be caused by
the lack of measurements in these regions.
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Figure 5.5: Errors in absolute values against the average soil moisture condition for summarized
climate classes. Colors indicate the detailed classes according to the Koeppen-Geiger classi�cation.
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5.3 Soil texture analysis

Figure 5.6 shows the errors of measurements within di�erent soil types related to the median soil
moisture at the respective site. Again, a slight trend of increasing errors with increasing average
soil moisture conditions is visible but not as pronounced as for di�erent climate regions. �e same
interfering trend of increasing errors with decreasing average soil moisture might be apparent in
clay and loambut also less pronounced than for the climate classes. Sensors placed in sand appear to
have slightly lower errors, but again statistically not signi�cant. �is could mean that soil moisture
in sandy soils distributes more homogeneously over larger areas what makes single sensors placed
in such soils more representative. �e general reliability of the soil texture analysis is hampered
by three facts: (i) the HWSD only represents dominant soil types in two coarse layers, (ii) the soil
texture at the sites might signi�cantly di�er from the coarse-scale average soil texture provided
from the HWSD, and (iii) several soil texture borders are following country borders instead of
natural landscape features, questioning the reliability of the data sources. Site-speci�c soil texture
information from the data providers would help to overcome this issue, but it is only available for
very few networks.
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Figure 5.6: Errors in absolute values against the average soil moisture condition for summarized
soil types. Colors indicate the detailed classes according to the USDA soil texture classi�cation. �e
summarized class "loam" is splitted into two plots (right) for the visual separation of the contributing
original classes.
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Conclusion and Outlook

�is study investigated the quality of in-situ measurements of the ISMN for representing soil
moisture at footprint scales on a global basis using random error estimates of the triple collocation
method. �ese errors re�ect the actual inherent sensor measurement error, i.e., sensor noise
and malfunctions, overlaid with external errors, which are (i) systematic di�erences between
the statistical properties of the di�erent data sources that cannot be removed with the CDF-
matching and are hence interpreted as random errors, and (ii) scaling errors caused by the spatio-
temporal variability of soil moisture, i.e., the limited spatial representativeness of the in-situ sensors
(horizontally but also in depth) when comparing it with larger-scale satellite and model data.
Systematic di�erences between the in-situ measurements and the "true" soil moisture state (e.g.,
through miscalibration) cannot be resolved and might lead to an additional scaling of the error
estimates. Besides, harmed assumptions in the triple collocation (e.g., too few data triplets or non-
gaussianity of the data sets) might additionally in�ate the error estimate. Since many studies show
that one single sensor might not be su�cient to represent larger-scale soil moisture, it is very likely
that both external error sources dominate the overall error estimate and that the triple collocation
result thus mainly re�ects the spatial representativeness of the sensors as a function of the spatio-
temporal variability of soil moisture. �is cannot be proven globally because of the limited station
density within the ISMN, leaving space for future studies to investigate the capabilities of the triple
collocation method for the characterization of in-situ measurement quality.
A high variation in average error levels of particular networks and sensor types as well as in
error variability within those was found. A global trend for decreasing errors with increasing
measurement depth and for increasing errors with increasing average soil moisture conditions
was observed, independent of the soil type and climate region. An interfering trend of decreasing
errors with increasing average soil moisture conditions, which could only be partly explained with
the spatio-temporal variability of soil moisture, is visible in data sets within temperate and cold
regions without clear dry seasons, but less pronounced in clay and loam. Almost all sensors show
lower errors when looking into anomalies instead of absolute soil moisture, which is mainly caused
by the lower dynamic range of anomalies. A clear relationship between the dynamic range and
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error levels was also found for absolute soil moisture measurements. Moreover, 35.8% of the in-
situ data sets exceed the current satellite mission accuracy requirement of 0.04 m3m−3 in terms
of the triple collocation error estimate for absolute soil moisture values. In-situ measurements
are o�en considered as the "true" reference for this requirement, but also for a large variety of
other applications and must therefore achieve signi�cantly lower error levels. �e limited spatial
representativeness of single in-situ stations for larger-scale soil moisture levels and the limited
knowledge about inherent sensor errors question the meaning of a single number for a direct
comparison between in-situ sensors and satellite instruments. Almost all stations out of more than
1400 show considerable errors that should be taken into account in most applications, making the
development of a standard procedure for a comprehensive quality assessment an essential task,
including the development of procedures to reliably select representative existing or future sites for
the in-situ – satellite inter-comparison.
�is study investigated the results of the triple collocation, which is just one approach for estimating
random errors and should be seen only complementary to other tools such as correlation,
RMSD, and bias analysis or the assessment of spatial representativeness, since all these methods
characterize di�erent quality properties. �e requirements on these properties highly vary with
application and not a single sensor or site is capable to ful�l all of them. Detailed knowledge
about the requirements of the particular application is crucial to support the comprehensive quality
assessment by allowing the best possible selection of existing sites, but also by supporting the
selection of representative locations and the best �tting sensor type for the setup of new sites. Finally,
it helps to avoid misinterpretations of results based on in-situ data under the assumption that they
are error-free.

34



Bibliography

Albergel, C., C. Ruediger, T. Pellarin, J. Calvet, N. Fritz, F. Froissard, D. Suquia, A. Petitpa, B. Piguet,
and E. Martin (2008), From near-surface to root-zone soil moisture using an exponential �lter:
an assessment of the method based on in-situ observations and model simulations., Hydrology
and earth system sciences., 12(6), p. 1323–1337. 2

Albergel, C., C. Ruediger, D. Carrer, J.-C. Calvet, N. Fritz, V. Naeimi, Z. Bartalis, and S. Hasenauer
(2009), An evaluation of ascat surface soil moisture products with in-situ observations in
southwestern france, Hydrol. Earth Syst. Sci., 13(2), p. 115–124. 2

Albergel, C., P. de Rosnay, C. Gruhier, J. Munoz-Sabater, S. Hasenauer, L. Isaksen, Y. Kerr, and
W. Wagner (2012), Evaluation of remotely sensed and modelled soil moisture products using
global ground-based in situ observations, Remote Sensing of Environment, 118(0), p. 215–226,
doi:10.1016/j.rse.2011.11.017. 1, 2, 3, 13, 20

Balsamo, G., F. Pappenberger, E. Dutra, P. Viterbo, and B. van den Hurk (2009), A revised land
hydrology in the ecmwf model: a step towards daily water �ux prediction in a fully-closed water
cycle, Hydrol. Process., 25(7), p. 1046–1054. 17

Brocca, L., R. Morbidelli, F. Melone, and T. Moramarco (2007), Soil moisture spatial variability in
experimental areas of central italy, Journal of Hydrology, 333, p. 356–373, doi:10.1016/j.jhydrol.
2006.09.004. 1, 2, 7

Brocca, L., F. Melone, T. Moramarco, and R. Morbidelli (2010a), Spatial-temporal variability of soil
moisture and its estimation across scales,Water Resour. Res., 46(2), p. W02,516. 1, 2, 7

Brocca, L., F. Melone, T. Moramarco, W. Wagner, and S. Hasenauer (2010b), Ascat soil wetness
index validation through in situ and modeled soil moisture data in central italy, Remote Sensing
of Environment, 114(11), p. 2745–2755. 2

Brocca, L., S. Hasenauer, T. Lacava, F. Melone, T. Moramarco, W. Wagner, W. Dorigo, P. Matgen,
J. Martinez-Fernandez, P. Llorens, J. Latron, C. Martin, and M. Bittelli (2011), Soil moisture
estimation through ascat and amsr-e sensors: An intercomparison and validation study across
europe, Remote Sensing of Environment, 115(12), p. 3390–3408. vii

35



Bibliography

Brocca, L., T. Tullo, F. Melone, T. Moramarco, and R. Morbidelli (2012), Catchment scale soil
moisture spatial-temporal variability, Journal of Hydrology, 422-423(0), p. 63–75. 1, 2, 7, 29

Cataldo, A., G. Cannazza, E. De Benedetto, L. Tarricone, and M. Cipressa (2009), Metrological
assessment of tdr performance for moisture evaluation in granular materials, Measurement,
42(2), p. 254–263, doi:10.1016/j.measurement.2008.06.006. 3

Chauhan, N. S., S. Miller, and P. Ardanuy (2003), Spaceborne soil moisture estimation at high
resolution: a microwave-optical/ir synergistic approach, International Journal of Remote Sensing,
24(22), p. 4599–4622, doi:10.1080/0143116031000156837. 1

Cosh, M. H., T. J. Jackson, P. Starks, and G. Heathman (2006), Temporal stability of surface soil
moisture in the little washita river watershed and its applications in satellite soil moisture product
validation, Journal of Hydrology, 323(1–4), p. 168–177. 2

Crow,W. T., A. A. Berg, M. H. Cosh, A. Loew, B. P. Mohanty, R. Panciera, P. de Rosnay, D. Ryu, and
J. P. Walker (2012), Upscaling sparse ground-based soil moisture observations for the validation
of coarse-resolution satellite soil moisture products, Rev. Geophys., 50(2), p. RG2002. 2, 3, 6, 12

Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A.
Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot,
N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy,
H. Hersbach, E. V. Holm, L. Isaksen, P. Kallberg, M. Koehler, M. Matricardi, A. P. McNally, B. M.
Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-N. �epaut,
and F. Vitart (2011), �e era-interim reanalysis: con�guration and performance of the data
assimilation system, Q.J.R. Meteorol. Soc., 137(656), p. 553–597. 17

Dorigo, W., P. van Oevelen, W. Wagner, M. Drusch, S. Mecklenburg, A. Robock, and T. Jackson
(2011a), A new international network for in situ soil moisture data, Eos Transactions AGU, 92(17),
p. 141–142. 13

Dorigo, W., A. Xaver, M. Vreugdenhil, A. Gruber, H. A, A. Sanchis-Dufau, D. Zamojski, C. Cordes,
W.Wagner, and M. Drusch (2013), Global automated quality control of in situ soil moisture data
from the international soil moisture network, Vadose Zone Journal, 12(3). 3, 21, 25

Dorigo,W.A., K. Scipal, R.M. Parinussa, Y. Y. Liu,W.Wagner, R. A.M. de Jeu, andV.Naeimi (2010),
Error characterisation of global active and passive microwave soil moisture datasets, Hydrol.
Earth Syst. Sci., 14(12), p. 2605–2616. 3, 4, 19, 20

Dorigo, W. A., W. Wagner, R. Hohensinn, S. Hahn, C. Paulik, A. Xaver, A. Gruber, M. Drusch,
S. Mecklenburg, P. van Oevelen, A. Robock, and T. Jackson (2011b), �e international soil
moisture network: a data hosting facility for global in situ soil moisture measurements, Hydrol.
Earth Syst. Sci., 15(5), p. 1675–1698. 13

36



Bibliography

Entekhabi, D., E. Njoku, P. O’Neill, K. Kellogg, W. Crow, W. Edelstein, J. Entin, S. Goodman,
T. Jackson, J. Johnson, J. Kimball, J. Piepmeier, R. Koster, N. Martin, K. McDonald,
M. Moghaddam, S. Moran, R. Reichle, J. Shi, M. Spencer, S. �urman, L. Tsang, and J. Van Zyl
(2010), �e soil moisture active passive (smap) mission, Proceedings of the IEEE, 98(5), p. 704–
716. 1

Famiglietti, J., J. Devereaux, C. Laymon, T. Tsegaye, P. Houser, T. Jackson, S. Graham, M. Rodell,
and P. v. Oevelen (1999), Ground-based investigation of soil moisture variability within remote
sensing footprints during the southern great plains 1997 (sgp97) hydrology experiment, Water
Resources Management (1999), 35(6), p. 1839–1851. 2

Famiglietti, J. S., D. Ryu, A. A. Berg, M. Rodell, and T. J. Jackson (2008), Field observations of soil
moisture variability across scales,Water Resour. Res., 44(1), p. W01,423. 2

Gruber, A., W. Dorigo, S. Zwieback, A. Xaver, and W. Wagner (2013), Characterizing coarse-scale
representativeness of in situ soil moisture measurements from the international soil moisture
network, Vadose Zone Journal, 12(2). vii, 1

Jackson, T., M. Cosh, R. Bindlish, P. Starks, D. Bosch, M. Seyfried, D. Goodrich, M. Moran, and
J. Du (2010), Validation of advanced microwave scanning radiometer soil moisture products,
Geoscience and Remote Sensing, IEEE Transactions on, 48(12), p. 4256–4272. viii, 2

Kerr, Y., P. Waldteufel, J.-P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M. Escorihuela, J. Font,
N. Reul, C. Gruhier, S. Juglea, M. Drinkwater, A. Hahne, M. Martin-Neira, and S. Mecklenburg
(2010), �e smos mission: New tool for monitoring key elements o�he global water cycle,
Proceedings of the IEEE, 98(5), p. 666–687. 1

Kumar, S. V., R. H. Reichle, K. W. Harrison, C. D. Peters-Lidard, S. Yatheendradas, and J. A.
Santanello (2012), A comparison of methods for a priori bias correction in soil moisture data
assimilation,Water Resour. Res., 48(3), p. W03,515. 2, 19

Liu, Y., W. Dorigo, R. Parinussa, R. de Jeu, W.Wagner, M.McCabe, J. Evans, and A. van Dijk (2012),
Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote
Sensing of Environment, 123(0), p. 280–297, doi:10.1016/j.rse.2012.03.014. 13, 17

Liu, Y. Y., R. M. Parinussa, W. A. Dorigo, R. A. M. De Jeu, W. Wagner, A. I. J. M. van Dijk, M. F.
McCabe, and J. P. Evans (2011), Developing an improved soilmoisture dataset by blending passive
and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15(2), p. 425–436. 17, 19

Loew, A., and F. Schlenz (2011), A dynamic approach for evaluating coarse scale satellite soil
moisture products, Hydrol. Earth Syst. Sci., 15(1), p. 75–90. 4

37



Bibliography

Marczewski, W., J. Slominski, E. Slominska, B. Usowicz, J. Usowicz, S. Romanov, O. Maryskevych,
J. Nastula, and J. Zawadzki (2010), Strategies for validating and directions for employing smos
data, in the cal-val project swex (3275) for wetlands,Hydrol. Earth Syst. Sci. Discuss., 7(5), p. 7007–
7057. vii

Martinez-Fernandez, J., and A. Ceballos (2003), Temporal stability of soil moisture in a large-�eld
experiment in spain, Soil Sci. Soc. Am. J., 67(6), p. 1647–1656, doi:10.2136/sssaj2003.1647. 2

Martinez-Fernandez, J., and A. Ceballos (2005), Mean soil moisture estimation using temporal
stability analysis, Journal of Hydrology, 312, p. 28–38. 2

Miralles, D. G., W. T. Crow, and M. H. Cosh (2010), Estimating spatial sampling errors in
coarse-scale soil moisture estimates derived from point-scale observations, J. Hydrometeor, 11(6),
p. 1423–1429, doi:10.1175/2010JHM1285.1. 2, 3, 4, 11

Mittelbach, H., F. Casini, I. Lehner, A. J. Teuling, and S. I. Seneviratne (2011), Soil moisture
monitoring for climate research: Evaluation of a low-cost sensor in the framework of the swiss
soil moisture experiment (swisssmex) campaign, J. Geophys. Res., 116(D5), p. D05,111. 1, 14, 29

Mittelbach, H., I. Lehner, and S. I. Seneviratne (2012), Comparison of four soil moisture sensor
types under �eld conditions in switzerland, Journal of Hydrology, 430-431(0), p. 39–49, doi:10.
1016/j.jhydrol.2012.01.041. 1, 3, 7, 14

Nachtergaele, F., and N. Batjes (2012), Harmonized world soil database, FAO. 18

Njoku, E., T. Jackson, V. Lakshmi, T. Chan, and S. Nghiem (2003), Soil moisture retrieval from
amsr-e, Geoscience and Remote Sensing, IEEE Transactions on, 41(2), p. 215–229. 1

Pachepsky, Y. A., A. K. Guber, and D. Jacques (2005), Temporal persistence in vertical distributions
of soil moisture contents, Soil Sci. Soc. Am. J., 69(2), p. 347–352, doi:10.2136/sssaj2005.0347. 2

Parrens, M., E. Zakharova, S. Lafont, J.-C. Calvet, Y. Kerr, W. Wagner, and J.-P. Wigneron (2011),
Comparing soil moisture retrievals from smos and ascat over france, Hydrol. Earth Syst. Sci.
Discuss., 8(5), p. 8565–8607. 1

Peel, M. C., B. L. Finlayson, and T. A. McMahon (2007), Updated world map of the koeppen-geiger
climate classi�cation, Hydrol. Earth Syst. Sci., 11(5), p. 1633–1644. 17

Plauborg, F., B. V. Iversen, and P. E. Larke (2005), In situ comparison of three dielectric soilmoisture
sensors in drip irrigated sandy soils,Vadose Zone Journal, 4(4), p. 1037–1047, doi:10.2136/vzj2004.
0138. 1, 3, 14

Reichle, R. H., and R. D. Koster (2004), Bias reduction in short records of satellite soil moisture,
Geophys. Res. Lett., 31(19), p. L19,501. 2, 19

38



Bibliography

Robinson, D. A., C. S. Campbell, J. W. Hopmans, B. K. Hornbuckle, S. B. Jones, R. Knight,
F. Ogden, J. Selker, and O. Wendroth (2008), Soil moisture measurement for ecological and
hydrological watershed-scale observatories: A review, Vadose Zone Journal, 7(1), p. 358–389, doi:
10.2136/vzj2007.0143. 1

Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and
A. Namkhai (2000), �e global soil moisture data bank, Bull. Amer. Meteor. Soc., 81(6), p. 1281–
1299, doi:10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2. vii

Schmugge, T. J. (1983), Remote sensing of soil moisture: Recent advances, Geoscience and Remote
Sensing, IEEE Transactions on, GE-21(3), p. 336–344. 2

Scipal, K., T. Holmes, R. de Jeu, V. Naeimi, and W. Wagner (2008), A possible solution for the
problem of estimating the error structure of global soil moisture data sets, Geophys. Res. Lett.,
35(24), p. L24,403. 4

Starks, P. J., G. C. Heathman, T. J. Jackson, and M. H. Cosh (2006), Temporal stability of soil
moisture pro�le, Journal of Hydrology, 324, p. 400–411. 2

Sto�elen, A. (1998), Toward the true near-surface wind speed: Errormodeling and calibration using
triple collocation, J. Geophys. Res., 103(C4), p. 7755–7766. 4, 11

Su, Z., J. Wen, L. Dente, R. van der Velde, L. Wang, Y. Ma, K. Yang, and Z. Hu (2011), �e tibetan
plateau observatory of plateau scale soilmoisture and soil temperature (tibet-obs) for quantifying
uncertainties in coarse resolution satellite and model products, Hydrol. Earth Syst. Sci., 15(7),
p. 2303–2316. vii

Ulaby, F., M. M.K., and A. Fung (1982),Microwave remote sensing, active and passive: Radar remote
sensing and surface scattering and emission theory., vol. II, Artech House Publishers. 17

Vachaud, G., A. Passerat De Silans, P. Balabanis, and M. Vauclin (1985), Temporal stability of
spatially measured soil water probability density function, Soil Sci. Soc. Am. J., 49(4), p. 822–828,
doi:10.2136/sssaj1985.03615995004900040006x. 2

Vereecken, H., S. Kollet, and C. Simmer (2010), Patterns in soil-vegetation-atmosphere systems:
Monitoring, modeling, and data assimilation, Vadose Zone Journal, 9(4), p. 821–827, doi:10.2136/
vzj2010.0122. 1

Wagner, W., G. Lemoine, and H. Rott (1999), A method for estimating soil moisture from ers
scatterometer and soil data, Remote Sensing of Environment, 70(2), p. 191–207, doi:10.1016/
S0034-4257(99)00036-X. 1, 2

39



Bibliography

Walker, J. P., G. R. Willgoose, and J. D. Kalma (2004), In situ measurement of soil moisture: a
comparison of techniques, Journal of Hydrology, 293, p. 85–99, doi:10.1016/j.jhydrol.2004.01.008.
1, 14

Zwieback, S., K. Scipal, W. Dorigo, and W. Wagner (2012), Structural and statistical properties of
the collocation technique for error characterization, Nonlin. Processes Geophys., 19(1), p. 69–80.
4, 10, 11, 19

Zwieback, S., W. Dorigo, and W. Wagner (2013), Estimation of the temporal autocorrelation
structure by the collocation technique with emphasis on soil moisture studies, Hydrological
Sciences Journal, in press. 4

40


	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Theoretical background
	Scaling considerations
	The triple collocation
	Mathematical model
	Underlying assumptions
	Impact of random scaling errors


	Data Sets
	In-situ soil moisture measurements
	Remotely Sensed Soil Moisture
	Modelled soil moisture
	Koeppen-Geiger Climate Classification
	Harmonized World Soil Database

	Methodology
	Implementation of the Triple Collocation
	Rescaling of original estimates
	Anomalies
	Spatial and temporal collocation

	Analysis
	Sensor quality on a network, depth and sensor type level
	Climate class analysis
	Soil texture analysis


	Results and Discussion
	Errors on a network, depth, and sensor type level
	Climate class analysis
	Soil texture analysis

	Conclusion and Outlook
	Bibliography

