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Zusammenfassung

Das Berechnen der sogenannten Quasispezies in Eigen’s Quasispeziesmodell ist gleich-
bedeutend mit der Berechnung des dominierenden Eigenvektors von sehr großen, stark
strukturierten Matrizen. Insbesondere wächst die Dimension dieser Matrizen exponenti-
ell mit dem für die Praxis entscheidenden Modellparameter. Daher leiden Standardme-
thoden am sogenannten

”
Fluch der Dimensionalität“ und können somit keine Ergebnisse

in praktisch relevanten Dimensionen liefern. Um dieses Problem zu umgehen, wurde ge-
zeigt, dass die auftretenden Matrizen eine Repräsentation als Kronecker-Produkt erlau-
ben, welche unmittelbar zu effizienten impliziten Matrix-Vektor Routinen führt. Darauf
aufbauend erweist sich die Potenzmethode als einfaches Werkzeug zur Berechnung des
dominanten Eigenvektors in praktisch relevanten Dimensionen. Der gravierende Nachteil
der Potenzmethode ist ihre langsame Konvergenz im Falle einer schlechten Separation
des dominierenden Eigenwerts. In dieser Arbeit zeigen wir, wie dieses Problem mittels
so genannter shift-and-invert Methoden auch im Falle einer schlechten Separation, wie
sie in der Praxis zu erwarten ist, effizient gelöst werden kann.

Shift-and-invert Methoden erfordern die Lösung eines linearen Gleichungssystems in
jedem Iterationsschritt. Grundsätzlich ist die iterative Lösung von linearen Gleichungs-
systemen ein bestens erforschtes Gebiet und jede Menge effiziente Ansätze, wie zum
Beispiel Krylow-Unterraum-Verfahren, sind bekannt. Das eigentliche Problem ist dies-
bezüglich die Bereitstellung eines Vorkonditionierers der eine Lösung in möglichst weni-
gen Iterationsschritten erlaubt. Standardverfahren zur Vorkonditionierung scheitern im
Kontext dieser Arbeit auf Grund der Größe und Struktur der betrachteten Matrizen.
Daher ist es das vorrangige Ziel dieser Arbeit effektive Vorkonditionierer für das be-
trachtete Problem zu entwickeln, die es schlussendlich ermöglichen auch Probleme mit
schlechter Separation des dominanten Eigenwerts effizient zu behandeln.

Im Zuge dessen erarbeiten wir Themen aus verschiedenen Bereichen: Hinsichtlich wohl
bekannter Resultate aus der Literatur erörtern wir Krylow-Unterraum-Verfahren sowie
die Theorie und Anwendungen des Kronecker-Produkts, jeweils im Lichte des betrachte-
ten Eigenwertproblems. Die zentralen neuartigen Resultate dieser Arbeit bestehen aus
einer umfassenden Theorie Hamming-Distanz-basierter Matrizen. Letztere sind Matri-
zen deren Eintrag (i, j) einzig von der Hamming-Distanz zwischen den Indizes i und j
(geeignet interpretiert als endliche Zeichenkette) abhängt. Diese neuartigen Resultate
beinhalten dabei unter anderem algebraische und algorithmische Aspekte, so wie die
Struktur dieser Klasse von Matrizen im Allgemeinen. Basierend auf den Resultaten zu
Hamming-Distanz-basierten Matrizen leiten wir effiziente Vorkonditionierer für das be-
trachtete Problem her. Zusätlich stellen wir Experimente der so erhaltenen numerischen
Lösungsverfahren dar, welche Verbesserungen der Gesamtlaufzeit von zumindest einer
Größenordnung aufzeigen.
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Abstract

Computing the so-called quasispecies in Eigen’s quasispecies model is tantamount to the
computation of the dominating eigenvector of a highly structured large scale matrix.
In particular, all of the involved matrices are data-sparse matrices whose dimension
grows exponentially with the practically important model parameter. As an immediate
consequence, standard solvers suffer from the curse of dimensionality and are incapable
of reaching practically relevant dimensions. In order to overcome this issue, it was
shown that the required matrices allow for a Kronecker product representation which
directly implies that highly efficient implicit matrix vector routines can be provided.
Based on such efficient matrix vector products, the power iteration serves as simple
tool to compute the dominating eigenvector also for problems at a relevant scale. The
severe drawback of the power iteration is its inferior convergence speed in case of a bad
separation of the dominating eigenvalue. In this thesis we show how to overcome this
issue by employing more subtle shift-and-invert methods in order to provide efficient
solvers also in case of a bad separation of the dominating eigenvalue—as it has to be
expected in practice.

Shift-and-invert methods require the solution of a linear system in every iteration.
The iterative solution of linear systems is in principle a well-developed subject and a
myriad of solvers, e. g., Krylov subspace methods, exist. The actual problem in this
context is to provide a good preconditioner such that only a considerably small number
of iterations are required. In particular, standard preconditioning approaches fail in
the context of the problems considered in this thesis due to the high dimensionality
and structure of the respective matrices. Therefore, the high level aim of this thesis
is to provide suitable preconditioners for the problem at hand, in order to allow for
an efficient computation of the quasispecies also in cases of a bad separation of the
dominating eigenvalue.

In the course of that, we elaborate on different fields: In terms of existing work
we discuss Krylov subspace methods and the theory and application of the Kronecker
product each with respect to the considered extreme scale eigenvalue problem. The
central novel results presented in this thesis consist of a comprehensive theory of Ham-
ming distance-based matrices, i. e., matrices whose (i, j)-th element solely depends on
the Hamming distance between the indices i and j (appropriately interpreted as finite
strings). These novel results cover among others algebraic and algorithmic aspects,
as well as the structure of this family of matrices in general. Based on the theory of
Hamming distance-based matrices, we eventually derive efficient preconditioners for the
problem at hand. Moreover, we provide experimental data of the resulting solvers which
depict overall performance gains by at least an order of magnitude.
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1. Introduction

Matrices consisting of a small number of nonzero elements only, i. e., less than O(n2)
nonzero elements, are commonly called sparse matrices . Such matrices naturally appear
in many application contexts, e. g., as a result of discretizations of partial differential
equations. In practice, sparse matrices can be in many ways efficiently represented by
storing their nonzero elements only (together with certain supplementary information
about their respective location). Based on such compact representations, it is a natural
aim to perform matrix computations involving sparse matrices in a way such that the
overall effort depends on the number of nonzero elements rather than on the matrix
dimension—as it is the case for standard routines. More generally, matrices which can
be parametrized by a subquadratic amount of data are called data-sparse. For instance,
Toeplitz matrices [Golub and Van Loan, 1996, § 4.7] are dense n × n matrices which
can be parametrized by 2n instead of n2 scalars. Such well-structured (dense) matrices
usually allow to exploit their data sparsity in terms of very efficient matrix operations.
In the case of an n × n Toeplitz matrix, the matrix vector product with an arbitrary
vector can be computed in O(n log n) time by employing the fast Fourier transform
[Golub and Van Loan, 1996, § 4.7.7].

This thesis is primarily motivated by a large scale eigenvalue problem involving data-
sparse matrices. In particular, these matrices also allow for designing a fast matrix
vector multiplication routine—even though they are not of a “standard type”. Hence,
the problem is in principle well suited for matrix-free iterative algorithms which solely
require a matrix vector multiplication routine to be available, instead of an explicit
representation of the matrix. Simple vector iterations for solving the considered problem
can easily be implemented. In contrast to that, things become more involved if more
efficient shift-and-invert solvers are considered, which require the solution of a linear
system in each iteration. Such solvers become a necessity in cases where the problem is
ill-conditioned. While iteratively solving a linear system is in principle also a standard
task, the computation of an appropriate preconditioner is an a priori difficult task,
since: (i) the system matrices are not explicitly available, (ii) the problem dimensions
are of an extreme scale, and (iii) most importantly, the computation and application
of the preconditioner itself is a nontrivial task raising substantial costs—yet, it should
provide benefits in terms of overall runtime. In order to design such preconditioners, we
introduce and analyze a class of well-structured data-sparse matrices which enables the
efficient computation and application of suitable preconditioners. Moreover, the results
regarding this class of matrices are not only important with respect to the design of
preconditioners, but also for substantial generalizations of the solvable instances of the
considered problem.

The following three sections further introduce the aspects and problems this thesis
addresses and moreover, Section 1.4 provides an overview of the main contributions and
outlines the remainder of the thesis.
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1. Introduction

1.1. The Curse of Dimensionality

Consider a finite set of letters A. Then there exist |A|d different strings of length d
which can be composed by the letters in A. This effect of an exponential growth
of possibilities with respect to the considered dimensionality is commonly known as
combinatorial explosion. Phenomena like the combinatorial explosion are what make
the computational treatment of real-world problems, e. g., in biology, often very difficult
or even infeasible. More generally, many fields refer to the curse of dimensionality—an
expression which was coined by Bellman [1961]—whenever significant obstacles occur
by raising the dimensionality of the considered problem. For instance, in statistics,
the convergence of an estimator to the true value of a smooth function exponentially
slows down with the dimension of the considered space, i. e., with increasing dimension,
exponentially more samples are required in general.

It is a misbelief that high-end (super)computers alone are sufficient to overcome the
curse of dimensionality. Today’s fastest supercomputers1 are (theoretically) able to
run about O(1018) floating-point operations per second, compared to about O(109)
floating-point operations per second for standard personal computers. That means, for
a problem whose complexity grows like O(2d), one can expect at most a gain of a factor
of two in terms of tractable problem dimension d—no matter which computer or im-
plementation is used! Thus, a substantial gain of the tractable problem dimension of a
problem with exponentially growing complexity cannot be achieved by simply employ-
ing larger and faster hardware. It are substantial theoretical improvements together
with efficient algorithms and their respective implementation which let supercomputers
eventually unfold their full potential and usefulness.

In order to scale applications to extreme dimensions it is a necessity to introduce struc-
ture into the problem such that the occurring objects are of a (data-)sparse nature. This
can, for instance, be achieved by model assumptions or by structured approximations
(see, e. g., Hackbusch and Khoromskij [2007] and references therein). It is obviously
an application dependent property whether or not the assumption of additional prob-
lem structure still leads to meaningful results. Throughout this thesis we consider a
particular problem stemming from biochemistry (see Section 1.3) which is known to
have a data-sparse representation and we show, by novel theoretical insights, that even
substantially more general problem formulations are efficiently realizable. Moreover,
we show how subtle numerical solvers can be adapted to the extreme scale problem at
hand.

1.2. Matrix-free Iterative Methods

Assume we want to solve a linear system Ax = b with an invertible matrix A ∈ Rn×n.
Traditional direct methods for solving such systems such as Gaussian elimination re-
quire to (repeatedly) access the elements of A in an order which depends on the par-
ticular algorithm. Moreover, a storage complexity of O(n2) elements is inevitable. In
case of (data-)sparse matrices either of these properties is inadmissible. First of all,
it is costly to explicitly refer to particular matrix elements in (data-)sparse matrices.

1See http://www.top500.org/list/2013/06/, Top 500 list of supercomputers, edition June 2013.
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1.2. Matrix-free Iterative Methods

Second, due to the sheer dimension (data-)sparse considered in practice show, it is ab-
solutely impossible to store a quadratic amount of data. Having said that, recall that
matrix vector products with (data-)sparse matrices can be performed very efficiently
without requiring an explicit representation of the respective matrix. Since (a reason-
able amount of) vectors can easily be stored also for huge dimensions it appears to be
natural to aim at designing algorithms which are based on the idea of simply keeping
several vectors and utilizing a matrix vector routine without explicitly referring to the
matrix. The following definition proved to be very useful in this context.

Definition 1.1. For a square matrix A ∈ Rn×n a vector r ∈ Rn and an integer d ∈ N
we call

Kd(A, r) := span{r, Ar,A2r, . . . , Ad−1r}
the Krylov subspace spanned by the matrix A and the vector r. In case there is no
ambiguity, we also simply refer by Kd to Kd(A, r). //

Obviously, Krylov subspaces are in compliance with the previously stated goals—yet,
it is not clear how to solve, e. g., linear systems utilizing such spaces. As a first step
recall the Cayley-Hamilton theorem [Havlicek, 2006, Theorem 8.6.5] which states that
for a matrix A ∈ Rn×n and its characteristic polynomial χ(z), it holds for the matrix
polynomial χ(A) that χ(A) = 0. As an immediate consequence of the Cayley-Hamilton
it can be deduced that A−1 can be expressed as linear combination of powers (with
exponent smaller than n) of A. Therefore, the solution of a linear system Ax = b is an
element of the space Kn(A, b). But how can it be found?

The major idea behind the class of so-called Krylov subspace methods is to iteratively
construct an approximate solution xk ∈ x0 + Kk(A, b) of Ax = b which satisfies the
so-called Galerkin condition b − Axk⊥Lk where Lk is an k-dimensional subspace de-
pendent on the particular algorithm. Hence, Krylov subspace methods are traditionally
projection methods . Two popular choices for the subspace Lk are given by Lk = Kk as
well as by Lk = AKk. The multitude of different Krylov subspaces arises in particular
from different choices of Lk.

The obvious basis of the Krylov subspace Kd given by Definition 1.1 is problematic
from a practical point of view, since Akb converges towards the dominating eigenvector
of A (cf. Section 2.3). Hence, the vectors given by this trivial choice for the basis of Kd
become almost linearly dependent for increasing dimension d. Consequently, a main in-
gredient of Krylov subspace methods is the construction of an orthogonal/orthonormal
basis of the Krylov subspace Kd. In the best case, such an orthogonal basis is con-
structed by the algorithm on-the-fly , i. e., without an explicit (re-)orthogonalization
procedure such as the Gram-Schmidt process [Havlicek, 2006, Theorem 11.5.7]. Two
fundamental procedures for the iterative computation of orthonormal Krylov subspace
basis are the Arnoldi iteration and the Lanczos iteration (see Algorithm 1.1), respec-
tively. While the latter is restricted to symmetric matrices, the Arnoldi iteration works
for general matrices as well. In both cases the iteration aborts in case the basis vectors
computed so far span an A-invariant subspace [Saad, 2003, Proposition 6.6]. The idea
behind the Arnoldi iteration is to repeatedly multiply the lastly obtained basis vector
vj by the matrix A and then run the (modified) Gram-Schmidt orthogonalization pro-
cedure on all basis vectors obtained so far, in order to obtain an extended orthonormal

3



1. Introduction

Algorithm 1.1 Arnoldi iteration vs. Lanczos iteration [Saad, 2003, Algorithm 6.2/6.15]

Input: Multiplication routine for computing v 7→ Av
Output: Orthonormal basis {v1, . . . , vj} of Kj(A, v1)

1: v1 ← normalized initial choice
2: for j ← 1, 2, . . . do
3: wj ← Avj
4: for i← 1, . . . , j do
5: hi,j ← (wj, vi)
6: wj ← wj − hi,jvi
7: end for
8: hj+1,j ← ‖wj‖
9: if hj+1,j = 0 then

10: Stop iteration
11: end if
12: vj+1 = wj/hj+1,j

13: end for

1: v1 ← normalized initial choice
2: β1 ← 0
3: v0 ← 0
4: for j ← 1, 2, . . . do
5: wj ← Avj − βjvj−1

6: αj ← (wj, vj)
7: wj ← wj − αjvj
8: βj+1 ← ‖wj‖
9: if βj+1 = 0 then

10: Stop iteration
11: end if
12: vj+1 ← wj/βj+1

13: end for

basis. Hence, the Arnoldi iteration is on the one hand very simple but on the other hand
it has the drawback that the entire set of basis vectors has to be kept throughout the
iteration. This property can raise severe storage problems in case many iterations are
required and the vector dimension is large. Note that the scalars hi,j computed by the
Arnoldi iteration define a matrix Hj of Hessenberg form which satisfies Hj = V T

j AVj
where Vj = [v1, . . . , vj]. By the assumption that A is symmetric it can easily be shown
that the matrix Hj computed by the Arnoldi iteration is tridiagonal [Saad, 2003, Theo-
rem 6.19]. This observation allows to implement the Arnoldi iteration based on a short
recurrence, i. e., without an explicit (re-)orthogonormalization step. The Lanczos iter-
ation is the result obtained by utilizing this simplification (see Algorithm 1.1). While
the Lanczos iteration is very elegant—theoretically, in exact arithmetic—its practical
implementation introduces subtle problems due to the limitations of floating point arith-
metic which introduce problems in the implicit orthogonalization of the computed basis
vectors [Cullum and Willoughby, 2002]. It is noteworthy that algorithms with short re-
currences are not only available for symmetric matrices. In particular, the more subtle
Lanczos biorthogonalization procedure [Saad, 2003, § 7.1] allows to extend the beneficial
properties of the Lanczos iteration to the asymmetric case. As the term “biorthogo-
nalization” suggests this procedure is based on the idea of simultaneously computing
an appropriate orthonormal basis of the Krylov subspaces with respect to A and AT,
respectively.

Based on basic orthogonalization procedures such as the Arnoldi and Lanczos itera-
tion it is easy to derive complete algorithms for solving linear systems and eigenvalue
problems, respectively [Saad, 2003, §§6, 7]. Later, in Chapter 2, we discuss a selection of
Krylov subspace methods for solving linear systems and eigenvalue problems more ex-
plicitly. More concretely, this selection consists only of Krylov subspaces methods with
short recurrences, i. e., methods closely related to the family of Lanczos iterations.
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1.3. Quasispecies Model

1.3. Quasispecies Model [Niederbrucker and Gansterer, 2011a, § 1]

Solving Eigen’s quasispecies model [Eigen, 1971] for the evolution of virus populations
involves the computation of the dominant eigenvector of a matrix whose dimension
grows exponentially with the chain length of the virus to be modeled. Most biologically
interesting chain lengths are well beyond the reach of general purpose solvers. Thus,
more specific solvers which exploit the properties of the problem under consideration
are required, in order to raise the tractable chain lengths to a biologically meaningful
scale.

1.3.1. Overview

Under some assumptions on the environment the evolution and the long-term behavior
of a virus population can be modeled by the quasispecies model [Eigen, 1971]. In
this model, each virus is represented by an RNA molecule and each RNA molecule is
represented as a string over a finite alphabet with a fixed length ν, the so-called chain
length. Unless otherwise stated, we consider a binary alphabet. The probability of
a single point mutation in an RNA sequence is modeled by the (uniform) error rate
p satisfying 0 < p ≤ 1/2. Given a fixed chain length ν, all N := 2ν possible RNA
sequences have to be considered, since any RNA molecule can potentially mutate into
any other one (although the overall probability for some of these mutations may be very
low).

Given that initially a single species exists, the goal is to study how this initial popula-
tion evolves over time by tracking the relative concentration of each species with respect
to the entire population. In the limit, the population converges to an equilibrium which
means that a stationary distribution of the relative concentrations is reached. The sta-
tionary distribution which is obtained by taking the limit over the time is the so-called
quasispecies [Eigen and Schuster, 1977]. The name “quasispecies” is motivated by the
fact that the quasispecies is not a particular species but an equilibrium distribution
which is reached in the model with respect to the used model parameters. The overall
goal is to numerically compute the relative concentrations of the quasispecies which
describes a stationary distribution in the model. More specifically, the computation of
these relative concentrations is tantamount to the numerical computation of the eigen-
vector corresponding to the largest eigenvalue of a nonnegative matrix W ∈ RN×N ,
which basically describes the constitution and the mutation probabilities of the N dif-
ferent RNA molecules with chain length ν (see Section 1.3.2). This eigenvector contains
the information about the relative concentrations within the quasispecies. Since the di-
mension N of this eigenvalue problem grows exponentially with the chain length ν of
the RNA molecules to be modeled, numerical solutions of the model based on general
purpose methods are restricted to very small chain lengths and most biologically inter-
esting cases are out of scope of standard methods, even on high-end machines. Hence,
more specific algorithmic approaches are required in order to utilize the problem struc-
ture such that the range of computationally tractable chain lengths can be substantially
increased.

5



1. Introduction

1.3.2. Model Definition and Biochemical Background

We briefly review the quasispecies model which leads to the large scale eigenvalue prob-
lem we are dealing with. For a more detailed discussion and further references we refer
to survey articles in the literature [Schuster, 2006, 2008, 2011].

As stated above, each RNA molecule is formally represented by a string over a binary
alphabet. In particular, by Xi with 1 ≤ i ≤ N we denote the RNA molecule and
the corresponding species which is represented by the binary encoding (b1, . . . , bν) of
length ν of the integer i− 1. The error-free sequence X1 associated with the integer 0
is called the master sequence. As a distance measure between species Xi and Xj we use
the Hamming distance dH(Xi, Xj) (cf. Chapter 4) which represents the minimal number
of elementwise mutations required to transform Xi into Xj.

Due to Eigen [1971] the non-linear system of ODEs

dxi
dt

=
N∑
j=1

fj · qi,j · xj(t)− xi(t) · Φ(t),

Φ(t) =
N∑
j=1

fj · xj(t),
N∑
j=1

xj(t) = 1,

(1.1)

with i = 1, . . . , N , models the evolution of RNA molecules. In this model xi denotes
the relative concentration of the molecular speciesXi. Initially, only the master sequence
exists, i. e., x1(0) = 1 and xi(0) = 0 for i 6= 1. Moreover, the positive fitness value
fi describes the constitution of the molecular species Xi and the (i, j)-th entry qi,j
of the mutation matrix Q represents the probability that sequence Xj mutates into
sequence Xi. Throughout the literature the so-called uniform error model is used,

qi,j := pdH(Xi,Xj) · (1− p)ν−dH(Xi,Xj). (1.2)

By definition, the mutation probabilities qi,j depend only on dH(Xi, Xj) and therefore,
the entire matrix Q contains only ν + 1 different values. It should be pointed out that
this standard model assumes that p is an average error rate over all possible mutations
since it does not depend on the position or on the overall number of the mutations.

According to Thompson and McBride [1974], the ODE system (1.1) can be straight-
forwardly transformed into a linear system with constant coefficients ż = Wz by a
suitable change of variables. In particular, W = QF where Q is defined by (1.2) and F ,
the so-called fitness landscape, is a diagonal matrix with the fitness values fi > 0 along
its diagonal. The search for the quasispecies then reduces to the computation of the
eigenvector corresponding to the dominating eigenvalue of W [Schuster, 2008]. In fact,
there are several mathematically equivalent formulations of the problem with slightly
differing structure:

QFxR = λxR, F
1
2QF

1
2xS = λxS, FQxL = λxL.

Since F is diagonal, their solutions can easily be transformed into each other:

xR = F−
1
2xS, xS = F−

1
2xL, xR = F−1xL.

6



1.3. Quasispecies Model

Note that in the special case where all values in F are equal, the problem reduces to
the computation of the dominating eigenvector of a bistochastic matrix, which is trivial
and leads to an eigenvector where all entries are equal. This is not at all surprising,
since for equally fit sequences we clearly expect the uniform distribution as result.

Since the variables xi in (1.1) represent relative concentrations, we are only interested
in solutions where all components of the computed eigenvector are nonnegative (nega-
tive concentrations do not have a physically meaningful interpretation). As a positive
matrix, W satisfies the conditions of the Perron-Frobenius theorem (cf. Appendix B)
and thus, the aforementioned nonnegativity property is guaranteed. Based on the com-
puted eigenvector with the relative concentrations for each sequence, one can compute
cumulative concentrations of so-called error classes . The error class Γk,i contains all
sequences j, which have a certain Hamming distance k from the fixed sequence i:

Γk,i := {j | 1 ≤ j ≤ N ∧ dH(Xi, Xj) = k} (1.3)

Since the error classes with respect to the master sequence are particularly relevant,
we define Γk := Γk,1. By definition the error class Γk contains

(
ν
k

)
sequences (see

Lemma 4.1). In the style of the definition of the error classes Γk we denote the ν + 1
different values of Q by QΓk

, i. e., QΓk
:= pk · (1− p)ν−k for 0 ≤ k ≤ ν. When the

meaning is clear from the context we also use just i instead of Xi for denoting the
binary string corresponding to the integer i.

After the dominating eigenvector of W has been computed, the cumulative concentra-
tions [Γk] :=

∑
j∈Γk

xj of the error classes Γk in the stationary distribution are obtained.
Plotting these cumulative concentrations for different error rates p leads to curves as the
ones shown in Figure 1.1. Such figures can be used to get a better understanding of how
a certain fitness landscape influences the evolution of the virus population. They would
be even more interesting at the level of granularity of single sequences but they are very
rare in the literature, due to the limitations in chain lengths which can be handled com-
putationally. Depending on the concrete fitness values, the error threshold phenomenon
may occur or not. If it occurs, there is an ordered stationary distribution of the con-
centrations up to a critical value pmax for the error rate p, where some sequences clearly
dominate, whereas others do not appear at all or only in very low concentrations. For
p > pmax, the structure of the population changes suddenly into a uniform stationary
distribution where all sequences occur in the same concentration, which is equivalent
to random replication. Note that in Figure 1.1 cumulative concentrations are shown
for the error classes. Although all sequences have the same concentration for p > pmax,
the cumulative concentrations of the error classes differ because their cardinality differs.
Typical values for pmax on certain fitness landscapes are in the range 0.01–0.1 [Schuster,
2008, 2011], depending on the concrete fitness values and the chain length. Such small
values for pmax are quite surprising since random replication as exact solution of the
ODE system (1.1) is obtained only for p = 0.5 [Schuster, 2008]. This sudden change
from an ordered distribution to random replication is of potential interest as a building
block for new antiviral strategies [Eigen, 2002] because the error rates of RNA viruses
are usually close to this critical value [Drake, 1993] and an increase of the error rate p
is possible by the use of pharmaceutical drugs.
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Figure 1.1.: A visualization of the error threshold phenomenon is shown on the left
for ν = 20 and the single peak fitness landscape with f1 = 2, fi = 1 for
all 1 < i ≤ N . An ordered stationary distribution results up to pmax ≈
0.035, and for p > pmax a sudden change to the uniform distribution of all
sequences occurs. Error classes with the same number of elements (i. e.,
Γk and Γν−k) are depicted in the same color. Therefore, their curves meet
when the uniform distribution is reached at the error threshold. On the
right, the behavior for ν = 20 and the so-called linear landscape defined
as fi = f1 − (f1 − fν) · dH(i, 1)/ν for all 1 ≤ i ≤ N with f1 = 2 and
fν = 1 are shown. For this landscape a smooth transition into the uniform
distribution is observed and the error threshold phenomenon does not occur
[Niederbrucker and Gansterer, 2011a, Figure 1].

1.3.3. Existing Approaches

Traditionally, computational investigations in the large body of literature about the
quasispecies model were limited to the case where the fitness landscape F is defined via
the Hamming distance fi,i := ϕ(dH(i, 1)) for some function ϕ : {0, . . . , ν} → R [Schus-
ter, 2011]. Practically, this means that all sequences with the same distance to the
master sequence are equally fit, which is often a rather unrealistic assumption. With
this simplifying assumption one expects that the problem reduces from an N ×N to a
(ν + 1)× (ν + 1) problem, since all sequences in the same error class Γk are considered
equivalent. For this special constellation efficient approximate schemes have been devel-
oped [Nowak and Schuster, 1989; Swetina and Schuster, 1982], and this is the way how
the quasispecies model and the error threshold phenomenon have usually been studied.

In contrast to these approximation methods, the objective of the recent work of
Niederbrucker and Gansterer [2011a,b] is to deal with the general form of the problem
without any special assumptions, where prior to that, no fast solvers where available
[Schuster, 2011]. For the general problem without assumptions on the structure of the
fitness landscape Niederbrucker and Gansterer [2011a,b] employed a power iteration-
based approach (cf. Section 2.3) and introduced several novel fast matrix vector multi-
plication routines for the occurring matrices. Moreover, all matrix vector routines they
consider are of a matrix-free (implicit) nature in order to enable a substantial raise of
the computationally tractable chain lengths ν.
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1.3. Quasispecies Model

A first naive approach towards a fast implicit matrix vector routine was achieved
by introducing an implicit sparse matrix vector product (called Xmvp) [Niederbrucker
and Gansterer, 2011b] for the matrix W = QF arising in the quasispecies model. The
implicit sparsification is thereby based on the utilization of the binary bitwise XOR
operator and sparsifies the mutation matrix Q by taking into account only sequences
within a maximum Hamming distance of dmax

H . Thus, Xmvp(dmax
H ) is a parametrized

implicit matrix vector product where the parameter dmax
H controls the degree of sparsifi-

cation in the matrix. In particular, the parameter dmax
H controls runtime complexity (the

smaller the less; see Figure 1.2) and accuracy (the larger the better). Niederbrucker
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Figure 1.2.: Runtimes for executing Xmvp(dmax
H ) for different choices of dmax

H and in-
creasing chain length ν.

and Gansterer [2011b] showed that Xmvp(ν) is basically identical to the standard ma-
trix vector product (henceforth called Smvp), which does not take into account the
structure of W , and that Xmvp(dmax

H ) reduces the space complexity to Θ(N) as well

as the time complexity to Θ(N ·∑dmax
H
k=0

(
ν
k

)
) from Θ(N2) in both cases for Smvp. Fig-

ure 1.2 illustrates that based on the respective choice of dmax
H , the matrix vector routine

Xmvp(dmax
H ) has a time complexity in the range between O(N2) and O(N logN). This

illustrates that the sparsified XOR-based matrix vector product nicely reduces the mem-
ory requirements, but recall that the potential runtime reduction strongly depends on
the level of tolerable inaccuracy in the computed concentrations of the quasispecies.

A closer inspection of the underlying mutation model reveals that the mutation ma-
trix Q can be represented as a Kronecker product [Niederbrucker and Gansterer, 2011b].
This observation not only allows to understand the underlying structures much better
but moreover, also leads to very efficient computations. In particular, by utilizing the
Kronecker product representation of Q, the complexity of a matrix vector multiplication
drops to Θ(N logN), without any loss in accuracy. In the following, we refer by Fmmp
to this fully accurate fast matrix vector multiplication routine. The Kronecker product
does not only provide structure which can be algorithmically utilized, but it also enables
efficient implementations on parallel systems (see Section 3.2). Concretely, Fmmp has
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1. Introduction

been efficiently implemented on modern GPU hardware [Niederbrucker and Gansterer,
2011b]. Thus, besides the theoretical advances the Kronecker product representation
of Q yields, it also allows for further practical improvements in terms of efficient highly
parallelized implementations. Figure 1.3 concisely summarizes the speed-up the meth-
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Figure 1.3.: Speedup factors for solving the quasispecies model based on various com-
binations of algorithms and hardware over a power iteration based on
Xmvp(ν) running on a single CPU core. For a given algorithm, different
hardware platforms lead to (asymptotically) parallel speedup curves with
the same slope, whereas the curves for different algorithms have different
slopes [Niederbrucker and Gansterer, 2011a, Figure 4].

ods introduced by Niederbrucker and Gansterer [2011a,b] gain on a single-threaded
CPU as well on a multi-threaded GPU platform.

1.3.4. Open Problems

The aforementioned power iteration-based approaches are very simple and efficient in
cases the dominating eigenvalue of the matrix W is sufficiently well separated from the
other eigenvalues, since it converges linearly of the order O(λ2/λ1) where λ1, λ2 denote
the two largest (in magnitude) eigenvalues of W (see Section 2.3). On the other hand,
in cases of a bad separation the power iteration suffers from a very bad convergence
speed. In particular, the Perron-Frobenius theory (cf. Appendix B) solely guarantees
that λ1 > λ2. Thus, in practice, a well-behaved spectrum (with respect to the needs
of the power iteration) can not be guaranteed. Moreover, from an application point
of view interesting fitness landscapes have to be expected to lead to a bad separation.
With respect to this expectations we consider later in Chapter 5 also “synthetic” fit-
ness landscapes with very bad spectral properties, in order to fathom the abilities and
limitations of the employed algorithms.

In principle, applying a shift to the power iteration can lead to better convergence
properties. The problem of the simple power iteration is that the choice of this shift
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is limited by the constraint that the prior to applying the shift dominating eigenvalue
has to remain the dominating eigenvalue. Otherwise the dominating eigenvector—
our objective we want to compute—changes. Hence, the choice of the shift is very
limited. In contrast to that, shift-and-invert methods such as the inverse iteration or
the Rayleigh quotient iteration (see Section 2.3) allow (conceptually) for an “arbitrary
good” shift. This is due to the fact that such iterations run a power iteration on a
shifted and inverted variant of the input matrix. That means, such algorithms proceed
by solving linear systems of the form (A− µI)xk+1 = xk in each iteration. Thus, since
the eigenvalues of the inverse of a matrix A are the reciprocals of the eigenvalues of A,
the shift µ has to be chosen such that λ1 − µ is the smallest eigenvalue of A − µI, in
order that (λ1 − µ)−1 is the largest eigenvalue of (A− µI)−1.

A high level objective of this thesis is to extend the work of Niederbrucker and
Gansterer [2011a,b] to shift-and-invert methods. This aim raises the problem of solving
the shifted system efficiently in an iterative fashion, e. g., by Krylov subspace methods
which utilize the available efficient matrix vector routines. Since the efficiency of Krylov
subspace methods for linear systems heavily relies on the application of an appropriate
preconditioner, the design of efficient preconditioners is one of the central challenges in
this thesis. Due to the high dimensionality of the problems we consider, general purpose
preconditioning methods fail and we design—based on a rich theory about the occurring
structured matrices—efficient special purpose preconditioners. Clearly, in cases where
the power iteration converges due to good spectral properties fast, the more subtle
shift-and-invert methods can not be expected to yield performance improvements (due
to the costs the iterative solution of a linear system causes). Accordingly, for problems
with more difficult spectral properties we show in Chapter 5 that improvements of an
order of magnitude can be achieved.

1.4. Outline and Contributions

The central goal of this thesis is to provide a highly efficient solver for the extreme scale
eigenvalue problem occurring in the quasispecies model. Accordingly, the following
chapters are either concerned with reviewing existing methods with respect to this kind
of problem, or with providing novel results. It is noteworthy that the applicability of
these novel results usually reaches beyond the narrow focus of the quasispecies model.

Following the motivation for Krylov subspace methods in Section 1.2, we review in
Chapter 2 certain concrete methods for iteratively solving linear systems and eigenvalue
problems, respectively. In particular, this selection consists of the methods we utilize in
the experimental part of this thesis (see Chapter 5). Moreover, we give an introduction
to the concept of preconditioning. As mentioned earlier, almost all fast transforms,
i. e., dense matrix vector products with sub-quadratic complexity, are closely related
to the Kronecker product [Van Loan, 2000]. In Chapter 3, we shed light on the Kro-
necker product from several perspectives. Besides its basic properties, we particularly
focus on the rich structure the Kronecker product provides and how it enables to solve
many problems at the factor level instead of the level of the entire product. Moreover,
we discuss the important relationship between the Kronecker product and fast matrix
algorithms, as well as problems related to the approximation with Kronecker products.
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1. Introduction

The novel contributions of this thesis consist of Chapter 4 and Chapter 5. In Chap-
ter 4, we provide an in-depth analysis of so-called Hamming distance-based matrices.
This class of matrices is defined by the property that the (i, j)-th element of the matrix
solely depends on the Hamming distance between the indices i and j (appropriately
interpreted as finite strings). Conceptually, such matrices appear in the quasispecies
model in terms of the mutation matrix Q. Yet, so far, the explicit treatment of this
kind of matrices was bypassed by restricting the considered mutation models to certain
special cases in which the mutation matrix Q can, e. g., be represented in terms of a
Kronecker product. The treatment of Hamming distance-based matrices in Chapter 4 is
comprehensive in the sense that we consider the treatment of these matrices from a the-
oretical as well as from a computational (practical) point of view. Concretely, we give a
complete characterization of the structure of these matrices and generically show, e. g.,
how the eigenvalues and the elements of Hamming distance-based matrices are related
to each other. Moreover, we also provide results on the algebraic structure of the set of
all Hamming distance-based matrices, show how to perform common matrix operations
efficiently within this class of matrices and we analytically solve several approximation
problems regarding Hamming distance-based matrices.

In Chapter 5 we employ the results obtained and discussed in the chapters before in
order to provide efficient solvers. In particular, we utilize at several points the results
obtained in Chapter 4: (i) to generalize the instances of the quasispecies model which
can be computationally handled, (ii) to provide efficient matrix algorithms for being
applied in the respective Krylov subspace methods, and (iii) to efficiently compute
structured preconditioners which are additionally applied in order to improve the overall
performance. Moreover, we indicate other potential applications for preconditioners
based on Hamming distance-based matrices as well as the for the introduced theory of
Hamming distance-based matrices as such.

Finally, Chapter 6 summarizes and concludes the thesis. In order to complement the
main text, Appendix A consists of a collection of frequently used definitions and nota-
tions. Moreover, Appendix B contains supplementary material to the Perron-Frobenius
theory of nonnegative matrices, which is applied in the quasispecies model.

Summarizing, the contributions of this thesis are twofold and significantly differ in
their nature. On the one hand, from a high level point of view, we consider the itera-
tive solution of an extreme scale eigenvalue problem which provides a rich structure—a
problem from numerical analysis. On the other hand, the main theoretical contribu-
tions consist of the comprehensive analysis of the structure and properties of Hamming
distance-based matrices—certainly a piece of discrete mathematics. Altogether, we
show how a tandem of fast special purpose algorithms and appropriate implementa-
tions can lead to tremendous improvements over standard approaches which do not
target a specific problem.
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2. Matrix-free Iterative Methods:
Algorithms & Tools

Following the motivation and introduction of Krylov subspace methods in Section 1.2,
we give in the following a brief overview over particular Krylov subspace methods for
the fundamental tasks of solving linear systems and eigenvalue problems, respectively.
That means we consider matrix algorithms which solely rely on a routine for evaluating
matrix vector products with the input matrix, instead of an explicit representation of
the matrix itself. Details and further material can, e. g., be found in the textbooks of
Trefethen and Bau [1997], Golub and Van Loan [1996], and Saad [2003].

2.1. Linear Systems

The solution of linear systems Ax = b is one of the most fundamental operations in
computational science. Depending on the shape of the system matrix A and the avail-
able resources different approaches are used in practice. In case the problem dimensions
are reasonably small (with respect to the target system), direct solvers based on factor-
izations of A such as the LU decomposition or the QR decomposition can be employed.
Among other reasons, such approaches suffer in case of a sparse large scale matrix A
from the fact that decompositions of sparse matrices are in general dense. If direct
methods fail, iterative approaches such as Krylov subspace methods have to be used.
Needless to say, Krylov subspace methods are far from being the only kind of iterative
methods for the solution of linear systems. For instance, there exists a widely considered
type of methods which is based on stationary iterations [Saad, 2003, §4]. Such methods
are based on a linear iteration of the form xk+1 = Mxk +Nb, where the matrices M,N
have to be carefully chosen with respect to A. Accordingly, the exact solution in this
schemes is the stationary point of the iteration. Methods of this type are, e. g., the
Jacobi and Gauss-Seidl method as well as SSOR [Saad, 2003, § 4.1].

The introduction of Krylov subspace methods in Section 1.2 revealed that orthogo-
nality is a fundamental concept in the theory of Krylov subspace methods. At this point
it is important to keep in mind that in floating-point arithmetic rigorous orthogonal-
ity is (besides exceptions) impossible to achieve. Nevertheless, the basic theory always
assumes exact arithmetic. This includes especially all assertions involving assumptions
or conclusions about orthogonality properties. The assumption of exact arithmetic is
clearly handy for deriving theoretical results but one must not neglect the side effects
floating-point arithmetic causes. In general, it is a fairly delicate task to reason about
the effects of floating-point arithmetic on certain Krylov subspace methods. This is
particularly true for Lanczos-style methods where the (re-)orthogonalization happens
implicitly which makes it very sensitive to (small) perturbations with increasing number
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of iterations. For an extensive treatment of the subtleties of the Lanczos process see
Cullum and Willoughby [2002].

In iterative methods—especially with respect to floating-point arithmetic—it is often
a priori not clear when to stop. A very simple and popular a posteriori measure for the
quality of an iteratively computed approximate solution xj of a linear system Ax = b
is the residual rj := b − Axj. Intuitively it seems to be a good idea to aim in each
iteration for a residual rj whose norm ‖rj‖ is as small as possible. This is exactly the
idea of the GMRES algorithm [Saad and Schultz, 1986]. More concretely, the GMRES
algorithm is based on the Arnoldi iteration with the only difference that after each step
in the iteration the vector xj ∈ x0 +Kj(A, r0) is computed which minimizes the residual
norm ‖rj‖2. This is done by solving a certainly structured least squares problem. In
case of GMRES Lj = AKj and it can be shown that the Galerkin condtion with respect
to this particular choice of Lk is equivalent to the minimization of the residual norm
[Saad, 2003, Proposition 5.3]. As an Arnoldi-based method GMRES clearly also has the
practical disadvantage that the full Krylov subspace basis has to be kept in memory.

Under the assumption that A is symmetric and positive definite the less memory in-
tensive Conjugate Gradient (CG) method [Hestenes and Stiefel, 1952] can be employed.
As Algorithm 2.1 depicts, CG is based on a short recurrence and—not surprisingly—it
can be derived from the Lanczos iteration [Saad, 2003, § 6.7.1]. The assumption that A

Algorithm 2.1 Conjugate Gradient method [Trefethen and Bau, 1997, Algorithm 38.1]

Input: symmetric positive definite A ∈ Rn×n (i. e., a routine v 7→ Av), b ∈ Rn

Output: approximate solution xj ∈ Rn of Ax = b

1: x0 ← 0, r0 ← b
2: p0 ← r0

3: for j ← 1, 2, . . . do
4: αj ← (rj, rj)/(Apj, pj)
5: xj+1 ← xj + αjpj
6: rj+1 ← rj − αjApj
7: βj ← (rj+1, rj+1)/(rj, rj)
8: pj ← rj+1 + βjpj
9: end for

is positive definite allows to define the A-norm ‖x‖A :=
√

(Ax, x) (also called energy-
norm). Based on this norm, the aim of the CG algorithm is to minimize the A-norm
of the error ek = xk − x∗ in each iteration, where x∗ denotes the correct solution.
From a global point of view, the CG algorithm aims at minimizing the quadratic form
E(x) = (Ax, x)/2 − (b, x). In contrast to the simple steepest descent method which
goes in every iteration along the direction of the steepest descent (here ∇E(xk) = −rk),
the CG algorithm uses more cleverly chosen search directions (pj in Algorithm 2.1). In
particular, the search direction pj are pairwise A-conjugate (orthogonal with respect to
(·, ·)A) whereas the residuals rj are pairwise orthogonal, i. e., (pj, pi)A = (Apj, pi) = 0
and (rj, ri) = 0 for all i < j [Trefethen and Bau, 1997, Theorem 38.1]. Analogous to
GMRES where the residual norms converge monotonously, in case of CG it holds that
the errors ej converge monotonously, i. e., ‖ej‖A ≤ ‖ej−1‖A [Trefethen and Bau, 1997,
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Theorem 38.2]. Before we elaborate some more details on the convergence (speed) of
the CG algorithm we introduce its generalization beyond the case of symmetric positive
matrices.

The requirement of a symmetric positive definite matrix in CG is obviously a sub-
stantial restriction. Due to the connection of the CG method to the Lanczos iteration
it does not surprise that also a more general CG variant called BiCG exists, which
utilizes the idea of biorthogonalization. Besides that BiCG works for general matrices
A, it also allows for transpose-free implementations, which solely require the matrix
vector product with A (see Algorithm 2.2). Hence, BiCG has in theory very attractive
properties but in practice it often turns out that it suffers from a potentially irregu-
lar convergence and consequently, also from inaccuracies introduced by floating-point
arithmetic. Concerning this issues, a practically more robust variant of BiCG called
BiCGSTAB [van der Vorst, 1992]1 was introduced.

Algorithm 2.2 BiCG Stabilized [Saad, 2003, Algorithm 7.7]

Input: A ∈ Rn×n (i. e., a routine v 7→ Av), b ∈ Rn

Output: approximate solution xj ∈ Rn of Ax = b

1: x0 ← initial guess, r0 ← b− Ax0

2: r∗0 ← initial guess
3: p0 ← r0

4: for j ← 0, 1, . . . do
5: αj ← (rj, r

∗
0)/(Apj, r

∗
0)

6: sj ← rj − αjApj
7: ωj ← (Asj, sj)/(Asj, Asj)
8: xj+1 ← xj + αjpj + ωjsj
9: rj+1 ← sj − ωjAsj

10: βj ← (rj+1, r
∗
0)/(rj, r

∗
0) · αj/ωj

11: pj+1 ← rj+1 + βj(pj − ωjApj)
12: end for

In general, the convergence behavior of Krylov subspace methods is tightly coupled
to spectral properties of the respective input matrices. An important aspect one should
not neglect is that methods like CG can theoretically—in exact arithmetic—be viewed
as direct methods. In particular, for a symmetric positive definite n × n matrix CG
converges in exact arithmetic after at most n steps to the correct solution. Hence, under
the assumption of a matrix vector product with quadratic complexity CG is tantamount
to an O(n3) effort, in full analogy to factorization-based direct solvers. More generally,
the following assertion about the convergence of CG holds.

Theorem 2.1 ( Trefethen and Bau [1997], Theorem 38.4). If a symmetric positive
definite matrix A has k distinct eigenvalues, then CG converges in at most k steps.

The assertion of Theorem 2.1 nicely illustrates how Krylov subspace methods poten-
tially benefit from “good” spectral properties. While this is again a statement whose

1This paper was awarded to be the most cited paper in mathematics in the 90s [van der Vorst, 2004].

15



2. Matrix-free Iterative Methods: Algorithms & Tools

ultimate validity is only guaranteed in exact arithmetic, it can also be observed in
floating-point arithmetic that clusters of similar eigenvalues greatly enhance the con-
vergence speed of CG. As it can be expected, it is not only the structure of the spectrum
what matters, but also the range of eigenvalues, e. g., in terms of the condition number
with respect to the Euclidean norm κ2 = λmax/λmin.

Theorem 2.2 (Trefethen and Bau [1997], Theorem 38.5). In the CG algorithm, applied
to a symmetric positive definite matrix A, the errors ek satisfy

‖ek‖A
‖e0‖A

≤ 2

(√
κ2 − 1√
κ2 + 1

)k
.

If the goal is to solve a linear system Ax = b, it is usually not important if indeed
exactly the particular system given by A was solved—what matters is the computation
of the correct solution. Hence, any linear system equivalent to Ax = b might be con-
sidered. In particular, with respect to Theorem 2.1 and Theorem 2.2, it is clear how to
judge different equivalent systems good or bad. The aim to find an equivalent system
with particularly good (spectral) properties leads to the topic of preconditioning, which
we introduce next.

2.2. Preconditioning

Consider again a linear system Ax = b. As motivated before, we are interested in the
computation of a matrix P , the so-called preconditioner which allows to improve, e. g.,
the condition number of a particular linear system. This can be done, among others,
in the following two ways:

(i). Left preconditioning : Ax = b ⇔ PP−1Ax = b ⇔ P−1Ax = P−1b

(ii). Right preconditioning : Ax = b ⇔ AP−1Px = b ⇔ AP−1y = b, Px = y

Moreover, left and right preconditioning can obviously also be combined. Needless to
say, the choice of P is in most cases a trade off: On the one hand, P−1 should be a good
approximate of the inverse of A in order that P−1A is well-conditioned, i. e., P−1A ≈ I.
On the other hand, the computation as well as the application of P−1 should be as cheap
as possible to keep the additional costs raised by the preconditioning low. These goals
are particularly hard to achieve in the usual context of a (data-)sparse matrix A, since
the exact inverse of A will in general be a (less structured) dense matrix. Therefore, it
is challenging to find a good tradeoff between computational effort and approximation
quality, which is essential such that the properties of the preconditioned problem are
indeed (substantially) better than the properties of the original problem.

We saw already that Krylov subspace methods commonly only require a matrix vec-
tor multiplication routine to be available. Therefore, such methods are of a very generic
nature and specific properties of particular problems will usually not immediately lead
to good convergence properties. Hence, it can be seen as one of the aims of a good pre-
conditioner to utilize the available specific problem structure. Moreover, it is commonly
believed that the choice of an appropriate preconditioner is more important than the
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choice of the particular Krylov subspace method. Besides that preconditioners can be
used to incorporate knowledge about the problem, their application is usually motivated
by two aims: First and foremost, the major aim is to reduce the condition number to
a reasonably small value (cf. Theorem 2.2). Moreover, certain methods also strongly
benefit from a clustering of eigenvalues (cf. Theorem 2.1).

Out of the many kinds, we consider in the following two fairly generic types of precon-
ditioners. More specific methods, for instance those used for linear systems stemming
from the discretization of partial differential equations, are not included in this brief
overview (see, e. g., Saad [2003, §§ 9, 10]).

2.2.1. Incomplete Factorizations

Recall that common direct solvers for the solution of a linear system Ax = b are based
on computing factorizations of A, e. g., A = LU with and upper triangular matrix L and
a lower triangular matrix U . In particular, the major (i. e., cubic) effort of a direct solver
lies in the computation of the matrix factorization since the solution of a linear system
based on an available factorization can cheaply be computed in a quadratic amount
of time. Hence, it appears to be a reasonable way to define a preconditioner in terms
of a matrix factorization. In particular, the task is to find an efficiently computable
approximate factorization, e. g., LU ≈ A which is a good approximate of A in order to
obtain a well conditioned preconditioned system.

In case a sparse matrix A is given, its incomplete factorization has to be sparse as
well—yet, it should be a good approximation. This is a nontrivial problem, since fac-
torizations of sparse matrices are in most cases dense. A natural approach is to define
a sparsity pattern S (the set of elements which are guaranteed to be zero) and accord-
ingly, to compute an approximate factorization with this sparsity pattern. It turns out
that only for certain sparsity patterns according factorizations can be computed, i. e.,
in general there does not exist a factorization showing a particular pre-defined sparsity
pattern S. Nevertheless, certain classes of matrices permit sparse decompositions.

Definition 2.1 (M -matrix). A square matrix A ∈ Rn×n which satisfies

(i). ai,i > 0 for all 1 ≤ i ≤ n

(ii). ai,j ≤ 0 for all i 6= j with 1 ≤ i, j ≤ n

(iii). A is regular, i. e., A is invertible

(iv). A−1 is a non-negative matrix (cf. Definition B.1)

is said to be an M -matrix. //

Concretely, let A be an M -matrix and S be a given sparsity pattern which does not
include diagonal elements. Then there exists an incomplete factorization A ≈ LU with
the sparsity pattern S [Saad, 2003, Theorem 10.2]. The assumption of an M -matrix
is obviously fairly restrictive but on the other hand, it covers, e. g., several important
kinds of matrices stemming from the discretization of partial differential equations.
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For more general scenarios basically two branches of directions are known in the area
of incomplete factorizations. First, based on the previously introduced idea of comput-
ing a factorization based on a given sparsity pattern people considered generalizations
of this approach, where a certain level of additional nonzero entries (fill-in) is allowed
[Saad, 2003, §10.3.3] in order to obtain a sparse factorization. Needless to say, it is a
matter of the particular problem if the fill-in required for computing a factorization is
reasonably small or not. A counterpart to the aforementioned sparsity pattern driven
approaches are methods which in principle compute complete factorizations but drop
out values according to some strategy in order to eventually obtain a sparse factoriza-
tion. A straightforward approach is to simply specify a numerical threshold τ below
which elements are not kept in the factorization [Saad, 2003, §10.4]. While such sim-
ple strategies can prove very successful in certain cases it is again in general not clear
whether a particular threshold τ leads to a sufficient sparsification or not and second,
if the obtained factorization is still reasonably accurate with respect to the aim for a
good preconditioner.

Altogether, the idea behind preconditioners based on incomplete factorizations is
very simple and intuitive. Nevertheless, its practical implementation can raise subtle
problems depending on the respective matrices which are considered.

2.2.2. (Data-)Sparse Approximate Inverse

In the previous section we considered an indirect (factorization-based) approach towards
the approximate inversion of a matrix. It is even more natural to aim at computing an
approximate inverse directly. Once again, the underlying problem is that the inverse
A−1 of a sparse matrix A is in general a dense matrix.

As counterpart to the incomplete factorizations discussed in Section 2.2.1 one can
consider searching an approximate inverse Ã−1 of A with a particular predefined spar-
sity pattern. Grote and Huckle [1997] generically showed how to compute a so-called
sparse approximate inverse of a matrix, i. e., an approximate inverses with a predefined
sparsity pattern. More concretely, they suggest to search the matrix M which mini-
mizes ‖AM − I‖F, i. e., which approximates the inverse of A best with respect to the
Frobenius norm. This can be done efficiently by observing for matrices A,M ∈ Rm×m

the relationship

‖AM − I‖2
F =

m∑
i=1

‖(AM − I)ei‖2
2,

where ei denotes the i-th canonical basis vector, i. e., ei is zero except of the i-th entry,
which is one. This characterization shows that minimizing ‖AM − I‖F can be done
by columnwise minimizing ‖AM(:, i) − ei‖2 for all i, independently. Note that this
approach does not suffer from the problem of fill-in, as it is the case for incomplete
factorizations based on a predefined sparsity pattern. On the other hand, it is still
the size and structure of the provided sparsity pattern which determines the quality of
the approximation. So while Grote and Huckle [1997] provide a generic framework for
computing an (with respect to the Frobenius norm optimal) approximate inverse, it is
a tricky task to find for concrete matrices a (small) sparsity pattern which leads to a
good approximation.
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Of course the computation of an approximate inverse does not only make sense in the
context of sparse matrices but especially also in the case of data-sparse matrices. Due
to the rich structure of data-sparse matrices it is often possible to analytically compute
the best approximate inverse, i. e., the matrix M which minimizes ‖AM − I‖F . In
Section 3.3 we will for example see how to compute the best approximating Kronecker
product. Moreover, for highly structured matrices, such as Toeplitz matrices, a rich
preconditioning theory is available [Benedetto et al., 1993; Chan and Ng, 1993].

As elaborated in Section 1.3, we are confronted with data-sparse matrices in the
quasispecies model. Therefore, the idea of preconditioners based on a data-sparse ap-
proximate inverse fits very well in this context. In particular, our analytical treatment
of Hamming distance-based matrices also includes approximation results. Later, in
Chapter 5, we utilize these results in order to derive efficient preconditioners.

2.3. Eigenvalue Problems

So far we exclusively dealt with the iterative solution of linear systems. Not surprisingly,
one can in an analogous spirit also derive solvers for eigenvalue problems. For instance,
the Lanczos process (cf. Section 1.2) can also be turned into an efficient eigenvalue solver
[Cullum and Willoughby, 2002], with analogous pros and cons as the ones discussed
before in the case of linear systems. In this section we discuss methods which are suited
for the matrix-free computation of the extremal eigenpair of a given matrix. Moreover,
the related problem of computing the extremal singular value and its corresponding
singular vectors is discussed.

2.3.1. Extremal Eigenpairs

The quasispecies model motivates the investigation of the problem of computing the
eigenvector corresponding to the largest eigenvalue in magnitude of a particular matrix
(cf. Section 1.3). Therefore, we focus in this brief overview of iterative methods for
eigenvalue problems on methods which have a natural focus on this particular task.
Moreover, we make throughout this section the following assumptions in order to com-
pute the dominating eigenpair of a matrix A: We are given a matrix vector multiplica-
tion routine for computing v 7→ Av. Moreover, A ∈ Rn×n is a square real matrix and by
λi with 1 ≤ i ≤ n, we denote its eigenvalues ordered by absolute value. Additionally,
we assume that |λ1| > |λi| for all i > 1. Thus, the problem of finding the dominating
eigenpair of a matrix A is always well defined. In case of the quasispecies model the
gap |λ1| > |λi| is guaranteed by the Perron-Frobenius theory (see Appendix B).

In Section 1.2 we motivated the need for the computation of an orthogonal Krylov
subspace basis by the fact that Akr “converges” with increasing k. Now we can turn this
“problem” into something positive, by deriving a very simple, yet in certain cases very
efficient method for computing the dominating eigenpair of a matrix. Algorithm 2.3
depicts the power iteration which simply repeatedly applies the input matrix A. Addi-
tionally, in every iteration the newly obtained vector is normalized in order to enable
convergence and avoid numerical problems. It can be shown that the convergence of
the power iteration is closely related to the ratio λ2/λ1. Concretely, the eigenvector
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Algorithm 2.3 Power Iteration [Trefethen and Bau, 1997, Algorithm 27.1]

Input: A ∈ Rn×n (i. e., a routine v 7→ Av)
Output: approximation of dominating eigenpair λj, bj

1: b0 ← normalized initial guess
2: for j ← 1, 2, . . . do
3: bj ← Abk−1

4: bj ← bj/‖bj‖
5: λj ← (bj, bj−1) . λj is the Rayleigh quotient

(Abj−1, bj−1)

(bj−1, bj−1)

6: end for

approximation converges linearly with rate λ2/λ1 whereas the eigenvalue approxima-
tion converges quadratically with rate λ2/λ1 [Trefethen and Bau, 1997, Theorem 27.1].
Therefore, in case the ratio λ2/λ1 is close to one, the convergence of the power iteration
is clearly inferior. Since the shifted matrix A− µI has the same eigenvectors as A and
the eigenvalues of A−µI are given by λi−µ, a well chosen shift can lead to an improved
ratio of the two dominating eigenvalues (λk−µ)/(λ1−µ). The problem is of course that
the choice of potential shifts is limited by the constraint that λ1 − µ has to remain the
largest eigenvalue in magnitude. Thus, in this simple form shifts are of limited success.

Recall that the eigenvalues of the inverse of a matrix A are given by the reciprocals
of the eigenvalues of A. Hence, if µ is a reasonably good approximation of the extremal
eigenvalue λ1 of A, then λ1−µ will be the smallest eigenvalue of the matrix A−µI and
consequently, the dominating eigenvalue of (A − µI)−1. This observation immediately
leads to the inverse iteration as depicted in Algorithm 2.4. The analysis of the inverse

Algorithm 2.4 Inverse Iteration [Trefethen and Bau, 1997, Algorithm 27.2]

Input: A ∈ Rn×n (i. e., a routine v 7→ Av), µ ∈ R
Output: approximation of dominating eigenpair λj, bj

1: b0 ← normalized initial guess for the dominating eigenvector
2: for k ← 1, 2, . . . do
3: Solve (A− µI)bj = bj−1

4: bj ← bj/‖bj‖
5: λj ← (bj, bj−1) . λj is the Rayleigh quotient

(Abj−1, bj−1)

(bj−1, bj−1)

6: end for

iteration can be done along the lines of the analysis of the power iteration. More
precisely, the convergence of the inverse iteration relies on the quantity (λ1−µ)/(λk−µ)
where k is the index which maximizes λl − µ over all l 6= 1. Analogously to the power
iteration the eigenvector approximation converges linearly with rate (λ1 − µ)/(λk − µ)
and the eigenvalue approximation converges quadratically with rate (λ1 − µ)/(λk − µ)
[Trefethen and Bau, 1997, Theorem 27.2]. Therefore, the better the shift µ is chosen
the faster the inverse iteration converges. From a practical point of view, it is not
immediately clear how to choose the shift (well). This problem can be solved, e. g., by
a priori knowledge about the spectrum or by running a few steps of the power iteration
in order to get a first approximation of the dominating eigenvalue.
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A seemingly big obstacle of shift-and-invert methods as the inverse iteration is given
by the fact that with a more accurate shift the shifted system becomes (almost) singu-
lar. Contrasting with this expectation, it turns out that this pitfall is not a problem
[Trefethen and Bau, 1997, Exercise 27.5]. The open question in the inverse iteration is
if and how a “good” shift can improve the convergence speed. It turns out that a clever
(adaptive) choice of the shift indeed leads to a substantial improvement. A variant of
the inverse iteration with adaptive shifts is given by the Rayleigh quotient iteration
(see Algorithm 2.5). It turns out that the simple tweak of choosing the current shift

Algorithm 2.5 Rayleigh Quotient Iteration [Trefethen and Bau, 1997, Algorithm
27.3]

Input: A ∈ Rn×n (i. e., a routine v 7→ Av)
Output: approximation of dominating eigenpair λj, bj

1: b0 ← normalized initial guess for the dominating eigenvector
2: µ0 ← initial guess for the dominating eigenvalue
3: for j ← 1, 2, . . . do
4: Solve (A− µjIn)bj = bj−1

5: bj ← bj/‖bj‖
6: λj ← (bj, bj−1) . λj is the Rayleigh quotient

(Abj−1, bj−1)

(bj−1, bj−1)

7: µj ← λj
8: end for

as the lastly obtained eigenvalue approximation leads to substantial improvements. In
particular, it can be shown that for a symmetric matrix the eigenvector as well as the
eigenvalue approximation converge cubically, whenever the Rayleigh quotient iteration
converges [Trefethen and Bau, 1997, Theorem 27.3]. Note that this impressive gain in
the provable convergence speed is what requires the symmetry of A—the Rayleigh as
such works also for asymmetric matrices.

2.3.2. Singular Value Decomposition

One of the most influential tools in the theory and application of (numerical) linear
algebra is the singular value decomposition (SVD), which is in the case of real matrices
characterized as follows.

Theorem 2.3 (Golub and Van Loan [1996, Theorem 2.5.2]). Let A ∈ Rm×n be a real
matrix. Then there exist orthogonal matrices U ∈ Rm×m and V ∈ Rn×n as well as
a diagonal matrix Σ ∈ Rm×n such that A = UΣV T. Moreover, σ1 ≥ σ2 ≥ · · · ≥
σmin(m,n) ≥ 0 holds for the diagonal elements of Σ.

Let A = UΣV T be the SVD of a matrix A. Then the diagonal elements of Σ are
called singular values of A. Likewise, we call the columns of U and V , the left and
right singular vectors of A, respectively. The nonzero singular values of a matrix A
are closely related to the eigenvalues of A by the fact that they are the square roots
of the eigenvalues of the matrices AAT and ATA, respectively [Trefethen and Bau,
1997, Theorem 5.4]. Hence, in case of a symmetric matrix its singular values are the
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absolute values of its eigenvalues. Accordingly, it can be found that the left singular
vectors are the eigenvectors of AAT, whereas the right singular vectors are given by
the eigenvectors of ATA. One of the most illustrative applications of the SVD is the
low-rank approximation of a matrix.

Example 2.1 (Rank-k approximation). Any matrix A can be expressed as sum of
rank-1 matrices in terms of the SVD of A. Let A = UΣV T be the SVD of A and
r its rank, then A =

∑r
i=1 σiU(:, i)V (:, i)T. Moreover, recall the assumption that the

singular values are ordered, i. e., Σ = diag(σ1, . . . , σr, 0, . . . , 0) and σ1 ≥ σ2 ≥ · · · ≥ σr.
Then

∑k
i=1 σiU(:, i)V (i, :)T is the best rank-k approximation of A with respect to ‖ · ‖2

and ‖ · ‖F [Golub and Van Loan, 1996, Theorem 2.5.3]. //

We will later use this result about optimal rank-k approximation in the course of the
derivation and computation of preconditioners. For the multitude of further important
applications of the SVD see, e. g., the textbooks of Golub and Van Loan [1996] and
Trefethen and Bau [1997] where they appear over and over. As one might expect, also
the direct computation of the SVD is tantamount to a cubic effort [Trefethen and Bau,
1997, § 31], in full analogy to other dense matrix decompositions.

Consider the problem of computing the best rank-1 approximation of matrix A. By
Example 2.1 we know that this problem can easily be solved once we have the dominat-
ing singular value with its corresponding vectors at hand. It turns out that once more
the Lanczos process can be applied. Algorithm 2.6 depicts the so-called SVD Lanczos
process [Golub and Van Loan, 1996] which allows to efficiently compute the dominating
singular value together with its associated singular vectors. The simple idea behind
the Lanczos SVD process is to derive—via the Lanczos process—a very small matrix B
(i. e., a square matrix whose dimensionality is given by the number of executed Lanczos
steps) of which it can be shown that its dominating singular value(s) and vector(s)
accurately approximate those of A. Based on the SVD of the (very small) matrix B the
dominating singular value and its associated singular vectors are eventually obtained.
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Algorithm 2.6 SVD Lanczos [Golub and Van Loan, 1996, pp. 495–496]

Input: A ∈ Rm×n (i. e., routines v 7→ Av, v 7→ ATv), maximal iterations jmax

Output: approximation of the largest singular value/vectors σ ∈ R, u ∈ Rm,
v ∈ Rn

1: v1 ← initial guess
2: p0 ← v1, β1 ← 0, j ← 0, u0 = 0
3: while βj 6= 0 and j ≤ jmax do
4: vj+1 ← pj/βj
5: j ← j + 1
6: rj ← Avj − βj−1uj−1

7: αj ← ‖rj‖2

8: uj ← rj/αj
9: pj ← ATuj − αjvj

10: βj ← ‖pj‖2

11: end while

12: B ←


α1 β1 0 0

0 α2
. . . 0

0 0
. . . βj−1

0 0 0 αj

 ∈ Rj×j

13: Compute the dominating singular value σB and corresponding vectors uB, vB of B
14: σ ← σB
15: u← (u1, u2, . . . , uj)uB . (u1, u2, . . . , uj) is a m× j matrix
16: v ← (v1, v2, . . . , vj)vB . (v1, v2, . . . , vj) is a n× j matrix
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Definition 3.1. For matrices A ∈ Rm1×n1 and B ∈ Rm2×n2 we define the Kronecker
product (or tensor product) of A and B as the m1m2 × n1n2 block matrix

A⊗B :=

 a1,1B · · · a1,n1B
...

. . .
...

am1,1B · · · am1,n1B

 .

//

In this chapter we review the most important properties of the Kronecker product
and show how to utilize it as a “language” for describing and manipulating efficient al-
gorithms on an abstract level. Moreover, we discuss how to approximate given matrices
by Kronecker products of matrices and show up relations to low rank approximation
problems and the singular value decomposition. Whenever (full) proofs are omitted
these can be found in the literature (see, e. g., Steeb [1997]).

3.1. Basic Properties

Proposition 3.1. Let A ∈ Rm1×n1, B ∈ Rm2×n2 and C ∈ Rm3×n3 be arbitrary real
matrices and α ∈ R a real constant. Then the following properties hold.

(i). Im ⊗ In = Imn
(ii). (αA)⊗B = α(A⊗B) = A⊗ (αB)

(iii). (A⊗B)T = AT ⊗BT

(iv). A⊗ (B ⊗ C) = (A⊗B)⊗ C

Proof. The validity of (i)–(iii) follows immediately from Definition 3.1. For the asso-
ciativity of ⊗ consider the following block representation of (A⊗B)⊗ C.

(A⊗B)⊗ C =

=



a1,1b1,1C · · · a1,1b1,n2C
...

. . .
...

a1,1bm2,1C · · · a1,1bm2,n2C (a1,2B)⊗ C · · · (a1,n1B)⊗ C
(a2,1B)⊗ C (a2,2B)⊗ C · · · (a2,n1B)⊗ C

...
...

. . .
...

(am1,1B)⊗ C (am1,2B)⊗ C · · · (am1,n1B)⊗ C


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=

 (a1,1B)⊗ C · · · (a1,n1B)⊗ C
...

. . .
...

(am1,1B)⊗ C · · · (am1,n1B)⊗ C


(ii)
=

 a1,1(B ⊗ C) · · · a1,n1(B ⊗ C)
...

. . .
...

am1,1(B ⊗ C) · · · am1,n1(B ⊗ C)

 = A⊗ (B ⊗ C).

Since the Kronecker product is associative the expression A1 ⊗ A2 ⊗ . . . ⊗ An is
unambiguous. Thus, we will henceforth use

⊗n
i=1Ai as abbreviation for A1⊗A2⊗ . . .⊗

An. Due to its inherently asymmetric definition, it is not surprising that the Kronecker
product is not commutative as the following example confirms.

Example 3.1.

(
1 2
3 4

)
⊗ I3 =


1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2
3 0 0 4 0 0
0 3 0 0 4 0
0 0 3 0 0 4

 6=


1 2 0 0 0 0
3 4 0 0 0 0
0 0 1 2 0 0
0 0 3 4 0 0
0 0 0 0 1 2
0 0 0 0 3 4

 = I3 ⊗
(

1 2
3 4

)

Nevertheless, this counterexample gives already some evidence that A⊗ B and B ⊗ A
are closely related. Indeed, we will see that A⊗B = P (B⊗A)Q for certain permutation
matrices P and Q. //

Definition 3.2 (Perfect Shuffle). For positive integers p, q and n = pq, we define the
perfect shuffle matrix Sp,q ∈ Rn×n as block matrix1

Sp,q :=


In(1 :q :n, :)
In(2 :q :n, :)

...
In(q :q :n, :)

 ,

consisting of q blocks In(i :q :n, :) ∈ Rp×n. //

Since Sp,q contains exactly one entry 1 in each row and column, perfect shuffles are
permutation matrices. Therefore, all matrices Sp,q are orthogonal, i. e., Sp,qST

p,q = In.
Moreover, the transpose of a perfect shuffle is a perfect shuffle as well.

Example 3.2. Let p = 3 and q = 2, then Sp,q and Sq,p are each others transpose.

S3,2 =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 =


1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1



T

= ST
2,3

//

1We use colon notation for submatrix specification (cf. Notation A.4)

26



3.1. Basic Properties

Lemma 3.2. Let p, q ∈ N be arbitrary integers. Then the identity Sp,q = ST
q,p holds.

Proof. The claim directly follows from the column-based equivalent of the row-based
definition of Sp,q in Definition 3.2, i. e.,

Sp,q =


In(1 :q :n, :)
In(2 :q :n, :)

...
In(q :q :n, :)

 = (In(:, 1:p :n), In(:, 2:p :n), . . . , In(:, p :p :n)) = ST
q,p.

The name perfect shuffle is motivated by the operation of Sp,q on vectors. Suppose
we are given a deck of n = pq cards represented by an n-dimensional vector x, then
y = Sp,qx can be imagined as follows. The deck of n cards is first split up into p piles of
height q and then we successively take one card from each pile to obtain y. The matrix
vector multiplication yT = xTSp,q can be interpreted analogously.

Example 3.3. Consider the perfect shuffle S3,2 and an arbitrary vector x ∈ R6. Then,

y = S3,2x =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




x1

x2

x3

x4

x5

x6


“split”
=⇒ x1 x3 x5

x2 x4 x6

‘take”
=⇒ y =


x1

x3

x5

x2

x4

x6

 .

//

Perfect shuffle permutations allow to relate the columnwise vectorization vec(A) of a
matrix A with the vectorization of its transpose as well as they relate A⊗B to B ⊗A.

Proposition 3.3. Let A ∈ Rm1×n1 and B ∈ Rm2×n2

(i). vec(A) = Sm1,n1 · vec(AT)

(ii). A⊗B = ST
m1,m2

· (B ⊗ A) · Sn1,n2

Example 3.4. Let A be an arbitrary 3× 2 matrix. Then one can directly confirm that

vec(A) =


a1,1

a2,1

a3,1

a1,2

a2,2

a3,2

 =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




a1,1

a1,2

a2,1

a2,2

a3,1

a3,2

 = S3,2 · vec(AT).

Moreover, recall the counterexample for the commutativity of the Kronecker product
given in Example 3.1. According to Proposition 3.3 these two matrices are related in
the form (

1 2
3 4

)
⊗ I3 = S3,2 ·

[
I3 ⊗

(
1 2
3 4

)]
· S2,3.

27



3. The Kronecker Product

This claim is verified by the following step-by-step computation (cf. Notation A.2).
1 2 0 0 0 0
3 4 0 0 0 0
0 0 1 2 0 0
0 0 3 4 0 0
0 0 0 0 1 2
0 0 0 0 3 4




1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




1 2 0 0 0 0
0 0 1 2 0 0
0 0 0 0 1 2
3 4 0 0 0 0
0 0 3 4 0 0
0 0 0 0 3 4




1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2
3 0 0 4 0 0
0 3 0 0 4 0
0 0 3 0 0 4


In the following we give a proof for the general assertions given in Proposition 3.3. //

Proof of Proposition 3.3. Claim (i) follows directly from the interpretation of the ma-
trix vector multiplication with a perfect shuffle matrix since

Sm1,n1 · vec(AT) = Sm1,n1 ·

 A(1, :)T

...
A(m1, :)

T

 =

 A(:, 1)
...

A(:, n1)

 = vec(A)

For claim (ii), first note how ST
m1,m2

= Sm2,m1 operates on the columns of B ⊗ A:

Sm2,m1 · (B ⊗ A) = Sm2,m1 ·

 b1,1A . . . b1,n2A
...

. . .
...

bm2,1A . . . bm2,n2A

 =

 B ⊗ A(1, :)
...

B ⊗ A(m1, :)


Moreover, the blocks B ⊗ A(i, :) explicitly read as

B ⊗ A(i, :) =

 b1,1A(i, :) . . . b1,n2A(i, :)
...

. . .
...

bm2,1A(i, :) . . . bm2,n2A(i, :)


Therefore, further multiplying by Sn1,n2 leads to B ⊗ A(1, :)

...
B ⊗ A(m1, :)

 · Sn1,n2 =

 Ba1,1 . . . Ba1,n1

...
. . .

...
Bam1,1 . . . Bam1,n1


=

 a1,1B . . . a1,n1B
...

. . .
...

am1,1B . . . am1,n1B

 = A⊗B.

Thus, we proved the claim A⊗B = ST
m1,m2

· (B ⊗ A) · Sn1,n2
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3.1. Basic Properties

A key property of the Kronecker product is that the product A⊗B inherits most of
the structure of its factors A and B. Concretely, if A and B have the property X then
usually also A ⊗ B has the property X. In particular, if A and B are non-negative,
symmetric, triangular , orthogonal , stochastic or diagonal matrices, their product A⊗B
inherits the respective properties.

Theorem 3.4 (Mixed Product Property). Let A,B,C and D be arbitrary matrices
such that AC and BD are defined, then

(A⊗B)(C ⊗D) = AC ⊗BD. (3.1)

Proof. Assume that A ∈ Rm1×p, C ∈ Rp×n1 as well as B ∈ Rm2×q, D ∈ Rq×n2 , i. e., the
products AC and BD are defined. Then the property is straightforwardly verified.

(A⊗B)(C ⊗D) =

 a1,1B . . . a1,pB
...

. . .
...

am1,1B . . . am1,pB


 c1,1D . . . c1,n1D

...
. . .

...
cp,1D . . . cp,n1D


=

 (
∑p

k=1 a1,kck,1)BD . . . (
∑p

k=1 a1,kck,n1)BD
...

. . .
...

(
∑p

k=1 am1,kck,1)BD . . . (
∑p

k=1 am1,kck,n1)BD


=

 [AC]1,1BD . . . [AC]1,n1
BD

...
. . .

...
[AC]1,1BD . . . [AC]m1,n1

BD

 = AC ⊗BD

In fact, the mixed product property states that for many computations it suffices
to perform the respective computations on the individual factors instead of the entire
Kronecker product. The following corollary states several useful properties of this kind.

Corollary 3.5. Computations on Kronecker products usually require only independent
computations on its factors. For example the following properties hold.

(i). Let A and B be regular matrices, then (A⊗B)−1 = A−1 ⊗B−1.

(ii). Let A = QARA and B = QBRB be the QR decompositions of A and B, respec-
tively. Then A⊗B = (QA ⊗QB)(RA ⊗RB) is the QR decomposition of A⊗B.

(iii). Let A = LAUA and B = LBUB be the LU decompositions of A and B, respectively.
Then A⊗B = (LA ⊗ LB)(UA ⊗ UB) is the LU decomposition of A⊗B.

(iv). Let A = UAΣAV
T
A and B = UBΣBV

T
B be the SVDs of A and B, respectively. Then

A⊗B = (UA ⊗ UB)(ΣA ⊗ ΣB)(V T
A ⊗ V T

B ) is the SVD of A⊗B.

Proof. By the mixed product property and the fact that the Kronecker product of
orthogonal/triangular/diagonal matrices is orthogonal/triangular/diagonal.
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3. The Kronecker Product

Example 3.5. Given matrices B, C and X such that CXBT is defined. Then the
matrix equation Y = CXBT is equivalent to the linear system vec(Y ) = (B⊗C)vec(X).
Consider the case B ∈ R2×2, C ∈ R2×3 and X ∈ R3×2. Moreover, let x1 and x2 denote
the first and second column of X, respectively, i. e., x1 = X(:, 1), x2 = X(:, 2) and
X = (x1, x2). For this case, the stated equivalence is verified as follows.

Y = CXBT = C · (x1, x2) ·BT = (Cx1, Cx2) ·
(
b1,1 b2,1

b1,2 b2,2

)
= (C(b1,1x1 + b1,2x2), C(b2,1x1 + b2,2x2))

(B ⊗ C)vec(X) =

(
b1,1C b1,2C
b2,1C b2,2C

)(
x1

x2

)
=

(
C(b1,1x1 + b1,2x2)
C(b2,1x1 + b2,2x2)

)
= vec(Y )

Assume that B and C are square matrices of dimension n. In case we ignore the
structure of B ⊗ C ∈ Rn2×n2

, solving the n2-dimensional linear system vec(Y ) =
(B ⊗ C)vec(X) is tantamount to O(n6) arithmetic operations. Contrary to that, by
computing the LU decompositions of B and C independently to obtain a LU decom-
position of B ⊗ C (cf. Corollary 3.5), this system can be solved by O(n3) arithmetic
operations only. //

Corollary 3.6. The mixed property allows for the following two natural generalizations.

(i). Let Ai, Bi be matrices such that the products Ai ·Bi are defined, then(
n⊗
i=1

Ai

)
·
(

n⊗
i=1

Bi

)
=

n⊗
i=1

(Ai ·Bi)

(ii). Let Ai, Bi be matrices such that the products
∏n

i=1Ai and
∏n

i=1Bi are defined,
then

n∏
i=1

(Ai ⊗Bi) =

(
n∏
i=1

Ai

)
⊗
(

n∏
i=1

Bi

)

Proof. By induction and the mixed product property.

Example 3.6. In order to illustrate the two generalizations of the mixed product prop-
erty from Corollary 3.6, consider matrices Ai, Bi with 1 ≤ i ≤ 3. First, assume that all
products AiBi exist. Then, by the mixed product property and associativity of ⊗,

(A1 ⊗ A2 ⊗ A3)(B1 ⊗B2 ⊗B3) = ((A1 ⊗ A2)⊗ A3)((B1 ⊗B2)⊗B3)

= ((A1 ⊗ A2)(B1 ⊗B2))⊗ (A3B3)

= (A1B1)⊗ (A2B2)⊗ (A3B3)

Similarly, by assuming that all products
∏k

i=1Ai and
∏k

i=1Bi exist, we see that

(A1 ⊗B1)⊗ (A2 ⊗B2)⊗ (A3 ⊗B3) = (A1A2 ⊗B1B2)(A3B3) = (A1A2A3)⊗ (B1B2B3).

//
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3.2. Kronecker Products and Fast Algorithms

The definition of the Kronecker product clearly also covers vectors. Assume we are
given matrices Ai and vectors xi such that Aixi is defined. Then we get by Corollary 3.6
that y = (

⊗n
i=1Ai)(

⊗n
i=1 xi) =

⊗n
i=1(Aixi). Thus, the following theorem does not

surprise.

Theorem 3.7. Let A and B be square matrices and let (λi, vi) and (µj, wi) be the
eigenpairs of A and B, respectively. Then the eigenpairs of A⊗B are given by (λiµi, vi⊗
wi) for all i and j. Analogous results also hold for the singular values and vectors of
A⊗B. Moreover, all results extend accordingly to products of the form

⊗n
i=1 Ai.

Corollary 3.8. Let Ai ∈ Rni×ni be square matrices and Bi arbitrary matrices, then

(i). tr(
⊗k

i=1 Ai) =
∏k

i=1 tr(Ai)

(ii). det(
⊗k

i=1Ai) =
∏k

i=1 det(Ai)
ni

(iii). rank(
⊗k

i=1Bi) =
∏k

i=1 rank(Bi)

3.2. Kronecker Products and Fast Algorithms

In general, computing a matrix vector product y = Mx for a dense square matrix
M ∈ Rn×n requires Θ(n2) floating point operations. However, for certain specially
structured matrices it is possible to break this barrier and to provide, e. g., algorithms
requiring only Θ(n log n) floating point operations. Matrix vector products with a
subquadratic complexity are often called fast transforms. For instance, Cooley and
Tukey [1965] showed in their seminal paper that the computation of the discrete Fourier
transformation of a signal of length n = 2k requires only Θ(n log2 n) instead of Θ(n2)
arithmetic operations. Today, we are aware of many fast transforms and almost all of
them are tightly related to the Kronecker product [Van Loan, 2000].

Modern computing architecture became highly complex and diverse, since every sin-
gle processor provides several levels of parallelism. While it gets more and more difficult
to produce hand-written code which fully utilizes the theoretical potential of the com-
puting hardware, automated program generators like Fftw [Frigo and Johnson, 2005]
or Spiral [Püschel et al., 2005] proved to be successful in producing highly efficient
code for computing fast transforms on given target platforms. A main ingredient in the
automated search for efficient codes in systems like Spiral is the Kronecker product
formalism. The appropriate representation of algorithms in terms of Kronecker prod-
ucts allows to discover many theoretically equivalent variants of an algorithm, in order
to search for the most efficient implementation on a certain platform.

Traditional concepts for speeding up computations are vectorization and threading .
By vectorization we mean that a single instruction is performed on a vector of operands
instead of a single operand. Contrary, by threading we mean that several instructions
are performed independently in parallel. Both of these concepts can be found in the
Kronecker formalism as well as the following definitions show.
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3. The Kronecker Product

Definition 3.3 (Parallel Kronecker Product). Let A ∈ Rm×n be an arbitrary matrix.
Then,

Ik ⊗ A = diag(A,A, . . . , A︸ ︷︷ ︸
k times

),

is called the parallel Kronecker product . //

Definition 3.4 (Vector Kronecker Product). Let A ∈ Rm×n be an arbitrary matrix.
Then,

A⊗ Ik =

 a1,1Ik . . . a1,nIk
...

. . .
...

am,1Ik . . . am,nIk


is called the vector Kronecker product . //

These names can be made clear by investigating the matrix vector product with the
parallel and vector Kronecker product, respectively. In case of a parallel Kronecker
Product y = (Ik ⊗ A)x, the input vector x is split up in k parts where each of those
parts gets independently (“in parallel”), multiplied . In case of the vector Kronecker
product, the computation of y = (A⊗Ik)x is tantamount to computing the usual matrix
vector product with A but with k-dimensional variables instead of scalars. Moreover,
the parallel and the vector Kronecker product can also be interpreted as “hidden”
matrix-matrix multiplications. Consider a matrix A ∈ Rn×n with n = rc and a vector
x ∈ Rn. Then we observe the equivalences

y = (Ic ⊗ A)x ≡ yr×c = Axr×c

y = (A⊗ Ir)x ≡ yr×c = xr×cA
T

The following example illustrates these representations as matrix products more con-
cretely.

Example 3.7. Let the matrix A ∈ R2×2 and the vector x ∈ R6 be arbitrary. Then,

y = (I3 ⊗ A)x =

 A 0 0
0 A 0
0 0 A

 x(1 :2)
x(3 :4)
x(5 :6)

 =

 Ax(1 :2)
Ax(3 :4)
Ax(5 :6)

 ,

and moreover, as a matrix matrix product we get

y2×3 = (Ax(1 :2), Ax(3 :4), Ax(5 :6)) = A (x(1 :2), x(3 :4), x(5 :6)) = Ax2×3.

Analogously, we observe for

y = (A⊗ I3)x =

(
a1,1I3 a1,2I3

a2,1I3 a2,2I3

)(
x(1 :3)
x(4 :6)

)
=

(
a1,1x(1 :3) + a1,2x(4 :6)
a2,1x(1 :3) + a2,2x(4 :6)

)
the matrix matrix product

y3×2 = (a1,1x(1 :3) + a1,2x(4 :6), a2,1x(1 :3) + a2,2x(4 :6))

= (x(1 :3), x(4 :6))

(
a1,1 a2,1

a1,2 a2,2

)
= x3×2A

T

//
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3.2. Kronecker Products and Fast Algorithms

In order to see the expresivness of the Kronecker product formalism we will investigate
in the following a simply structured linear transform.

Definition 3.5. Consider the following recursively defined matrices H2k ,

H2 =

(
1 1
1 −1

)
, H2k =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
= H2 ⊗H2k−1 =

k⊗
i=1

H2,

The matrices H2k are called Walsh matrices and are a special form of Hadamard ma-
trices. In general, a matrix Hn ∈ {1,−1}n×n is said to be a Hadamard matrix if its
columns are pairwise orthogonal. //

Example 3.8. The linear transform y = H2kx based on the Walsh matrices is called
Fast Walsh-Hadamard Transform (Fwht) . The Fwht can be efficiently computed in
subquadratic time, e. g., in the following two ways:

(i). Recursive computation of H2kx

H2k ·x =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
·
(
x1

x2

)
=

(
x̄1 + x̄2

x̄1 − x̄2

)
,

x̄1 = H2k−1 · x1

x̄2 = H2k−1 · x2
(3.2)

(ii). Iterative computation of H2kx

H2k · x =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
·
(
x1

x2

)
=

(
H2k−1(x1 + x2)
H2k−1(x1 − x2)

)
(3.3)

Note that here “recursive computation” and “iterative computation” are supposed to
be interpreted from a programmers point of view, i. e., the algorithm defined in (3.2)
allows for a natural recursive implementation whereas the algorithm defined by (3.3)
allows for a natural iterative implementation using two nested loops.

As an immediate consequence of the Master theorem [Cormen et al., 2001, p. 73],
both of these computations involve only Θ(k2k) arithmetic operations. //

While Example 3.8 outlines how the matrix vector product with a Kronecker product
of matrices can be computed efficiently, it does not yet reveal the full potential of the
Kronecker product formalism as a “language” for describing algorithms. Observe, that
by the mixed product property the matrix H2k can also be factorized as

H2k = (H2 ⊗ I2k−1)(I2 ⊗H2k−1). (3.4)

Thus, by the interpretation of the parallel and vector Kronecker product the computa-
tion of (H2 ⊗ I2k−1)(I2 ⊗H2k−1)x reads as follows. First, we compute the parallel Kro-
necker product (x̄1, x̄2)T = (I2 ⊗H2k−1)(x1, x2)T, i. e., x̄1 = H2k−1x1 and x̄2 = H2k−1x2

are computed independently in parallel. Second, we compute the vector Kronecker
product (H2⊗I2k−1)(x̄1, x̄2)T, i. e., we compute the matrix vector product with H2 with
2k−1-dimensional vectors instead of scalars. Therefore, we observe that (3.4) is a “ de-
scription” of the recursion (3.2) in the Kronecker product formalism. Moreover, by the
generalized mixed product property, we obtain the factorization

H2k =
k∏
i=1

(I2i−1 ⊗H2 ⊗ I2k−i) . (3.5)
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3. The Kronecker Product

The validity of this factorization can be immediately verified by noting that

I2i−1 ⊗H2 ⊗ I2k−i = I2 ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
i−1 times

⊗H2 ⊗ I2 ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
k−i times

As it is easily verified, (3.5) “describes” the iterative algorithm (3.3): The first part,
H2 ⊗ I2k−i means that H2 is applied to vectors of length 2k−i and overall, this vector
operation gets applied to 2i−1 vectors in parallel. In general, for k = k1 + k2 + · · ·+ kp
we obtain the factorization

H2k =

p∏
i=1

(I2k1+k2+...ki−1 ⊗H2ki ⊗ I2ki+1+···+kp ) . (3.6)

which is analogously to the previous factorization verified by representing the respective
identity matrices as Kronecker products of smaller identity matrices. The factorization
(3.6) clearly subsumes the previous two special cases. By considering p = 2, k1 = 1 and
k2 = k−1 we get (3.4) and by p = k and ki = 1 we get (3.5). Thus, the factorization (3.6)
leads to a wide variety of—in terms of the result—equivalent potential implementations
of the matrix vector product H2kx. For a more comprehensive discussion on how to
find the best performing of these implementations see Johnson and Püschel [2000].

For the sake of simplicity we considered the Fwht as an introductory example to
the way how the Kronecker product of formalism is applied in the context of high
performance computing. In more complicated fast transforms like the Fast Fourier
Transform (Fft) also certain permutation matrices are needed in order to describe
the different variants of a certain algorithm. The fruitful relationship between the
Kronecker product formalism and fast linear transforms was not utilized for a long
time, in particular Cooley and Tukey [1965] did not expose this framework. While early
work [Drubin, 1971] outlined already the connection between the Kronecker product
formalism and the Fft, many seemingly independent algorithms for computing the
Fft where developed. Long time after the first Fft algorithms where known, e. g.,
Van Loan [1992] elaborated in detail how the Kronecker product formalism can be used
to unify the manifold of known approaches towards computing the Fft.

3.3. Approximation with Kronecker Products

As we discussed previously in Example 3.5 we can efficiently solve systems of the shape
(B ⊗ C)x = d by an effort of the order of solving B and C, respectively. Consider we
are given a matrix A and know matrices B and C such that A ≈ B ⊗ C. Then B ⊗ C
has a certain potential for being a good preconditioner for A, e. g., due to the moderate
costs of solving (B ⊗C)x = d. To successfully utilize this potential we have to provide
efficient routines for approximating given matrices in an appropriate norm.

3.3.1. The Nearest Kronecker Product Problem

Problem 3.1. Given an arbitrary matrix A ∈ Rm1m2×n1n2 , find two matrices B ∈
Rm1×n1 and C ∈ Rm2×n2 such that ‖A−B ⊗ C‖F is minimal. //
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3.3. Approximation with Kronecker Products

Van Loan and Pitsianis [1993] gave a closed form solution for Problem 3.1 in terms
of the singular value decomposition of a reordering of A, which we are going to present
below. The principal concept of the approach of Van Loan and Pitsianis [1993] is best
understood by an example.

Example 3.9. Given A ∈ R4×4, we want to find B,C ∈ R2×2 such that ‖A−B⊗C‖F
is minimal. Explicitly, this problem reads as∥∥∥∥∥∥∥∥


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

−


b1,1 · c1,1 b1,1 · c1,2 b1,2 · c1,1 b1,2 · c1,2

b1,1 · c2,1 b1,1 · c2,2 b1,2 · c2,1 b1,2 · c2,2

b2,1 · c1,1 b2,1 · c1,2 b2,2 · c1,1 b2,2 · c1,2

b2,1 · c2,1 b2,1 · c2,2 b2,2 · c2,1 b2,2 · c2,2


∥∥∥∥∥∥∥∥
F

→ min .

In Example 3.5 we saw the connection between a Kronecker product B ⊗ C and the
dyadic product vec(B)vec(C)T obtained by the vectorization operator. By considering
a certain reordering R(A) of A and vec(B)vec(C)T instead of B ⊗ C, we obtain the
following characterization of the minimization problem under investigation.

‖A−B ⊗ C‖F = ‖R(A)− vec(B)vec(C)T‖F

=

∥∥∥∥∥∥∥∥


a1,1 a2,1 a1,2 a2,2

a3,1 a4,1 a3,2 a4,2

a1,3 a2,3 a1,4 a2,4

a3,3 a4,3 a3,4 a4,4

−


b1,1

b2,1

b1,2

b2,2

( c1,1, c2,1, c1,2, c2,2

)∥∥∥∥∥∥∥∥
F

Thus, minimizing ‖A−B⊗C‖F is equivalent to finding the best rank-1 approximation of
the reordering R(A) of A. Since computing low rank approximations of a given matrix
is a well-known problem for which a closed form solution exists (see Section 2.3.2), also
the problem of finding an optimal approximate B ⊗ C can be efficiently solved. //

In the following we always assume that we want to approximate an m× n matrix A
with m = m1m2 and n = n1n2 by the Kronecker product of an m1 × n1 matrix B with
an m2 × n2 matrix C. Moreover, we interpret A as block matrix consisting of m2 × n2

blocks. Under these assumptions the rearrangement operator from Example 3.9 is in
general defined as follows.

Definition 3.6. Let A ∈ Rm1m2×n1n2 be an arbitrary matrix and let Ai,j denote its
(i, j)-th m2 × n2 block. Then, we define the reordering R(A) of A by

R(A) =

 A1
...

An1

 , Ai =

 vec(A1,i)
T

...
vec(Am1,i)

T

 .

//

We want to minimize ‖A−B⊗C‖F , which is defined on the level of individual entries.
Due to the structure of this problem a “blocked” formulation of this target norm seems
to be appropriate. Concretely, observe that by definition of the Kronecker product,

‖A−B ⊗ C‖F =

m1∑
i=1

n1∑
j=1

‖Ai,j − bi,jC‖F .
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3. The Kronecker Product

Moreover, note the following relationship between the vectorization operator and the
norms ‖ · ‖F and ‖ · ‖2: Let M1 and M2 be arbitrary matrices of the same dimension,
then ‖M1 −M2‖2

F = ‖vec(M1)− vec(M2)‖2
2. These simple observations are sufficient to

prove the following identity.

Lemma 3.9. For matrices A ∈ Rm1m2×n1n2, B ∈ Rm1×n1 and C ∈ Rm2×n2 it holds that

‖A−B ⊗ C‖F = ‖R(A)− vec(B)vec(C)T‖F .

Proof. By the previous observation it follows that

‖A−B ⊗ C‖2
F =

m1∑
i=1

n1∑
j=1

‖Ai,j − bi,jC‖2
F =

n1∑
j=1

m1∑
i=1

‖vec(Ai,j)− bi,jvec(C)‖2
F

=

n1∑
j=1

m1∑
i=1

‖vec(Ai,j)
T − bi,jvec(C)T‖2

2

=

n1∑
j=1

‖vec(Aj)−B(:, j)vec(C)T‖2
2

= ‖R(A)− vec(B)vec(C)T‖2
F

Recall that a matrix A can be expressed as sum of rank-1 matrices in terms of the
SVD UΣV T of A (cf. Section 2.3.2). In particular,

∑k
i=1 σiU(:, i)V (i, :)T is the best

rank-k approximation of a matrix A with respect to ‖ · ‖2 and ‖ · ‖F . Thus, the nearest
Kronecker product problem can be solved as follows.

Theorem 3.10. Let the matrix A ∈ Rm1m2×n1n2 be arbitrary and R(A) = UΣV T the
SVD of its reordering R(A). Then, the matrices B and C defined as vec(B) = σ1U(:, 1)
and vec(C) = V (:, 1) minimize ‖A−B ⊗ C‖F .

The SVD does not only lead to the optimal solution of the nearest Kronecker prod-
uct problem but also gives us information on the quality of the approximation. This
connection can be easily seen by noting that for an m× n matrix A, it holds that

‖A‖F =
√
σ2

1 + σ2
2 + · · ·+ σ2

min(m,n).

Thus, ‖A − B ⊗ C‖2
F = ‖A‖2

F − σ2
1, where σ1 denotes the dominating singular value

of R(A), i. e., the quality of the approximation relies on size of the singular values of
R(A). Moreover, it is not needed to compute the full SVD of R(A), since specialized
methods for computing the dominating singular vectors exist [Van Loan and Pitsianis,
1993].

3.3.2. Related Problems

The Kronecker product of two matrices preserves most of the structure inherent into
the respective factors (cf. Section 3.1). Thus, it is not surprising that in case we want
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to approximate a certainly structured matrix A by the product B ⊗ C, we can choose
the optimal B and C similarly structured. In particular, this is true for non-negative
and symmetric positive definite matrices [Van Loan and Pitsianis, 1993].

A noteworthy byproduct of the presented SVD solution of the nearest Kronecker
product problem is that we can efficiently solve the problem of finding the best approx-
imating sum of k Kronecker products, i. e., we can find matrices Bi, Ci, such that∥∥∥∥∥A−

k∑
i=1

(Bi ⊗ Ci)
∥∥∥∥∥
F

→ min .

In full analogy to the case k = 1, the optimal matrices Bi and Ci are determined by
the respective i-th singular vectors of R(A).

The nearest Kronecker product problem has also several natural generalizations. For
instance, in the spirit of sparse approximate inverse preconditioners (cf. Section 2.2.2),
the following problem is of interest.

Problem 3.2. Given an arbitrary matrix A ∈ Rn1n2×n1n2 , find two matrices B ∈ Rn1×n1

and C ∈ Rn2×n2 such that ‖A(B ⊗ C)− In1n2‖F is minimal. //

In contrast to Problem 3.1, Problem 3.2 does not have a closed form solution. Thus,
it can only be approached as structured least squares problem. Moreover, both Prob-
lem 3.1 and Problem 3.2 have natural multi-factor analogues where an approximation
of the form

⊗p
i=1Bi is sought. Neither of these problems can be solved efficiently [Van

Loan, 2000].
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4. Matrices & Hamming Distance

Definition 4.1. Let A1, A2, . . . , An be non-empty sets and x, y ∈ A1 × A2 × · · · × An,
i. e., x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) with xi, yi ∈ Ai. Then, we define by

dH(x, y) =
n∑
i=1

δ(xi, yi), δ(u, v) =

{
1 u = v

0 u 6= v

the Hamming distance on the set A1 × A2 × · · · × An. //

Note that the Hamming distance dH(·, ·) is a metric on A1×A2× · · ·×An [cf. Ham-
ming, 1950, § 5]. This follows directly from the definition since the Hamming distance
is an extension of the discrete metric (δ(·, ·) in Definition 4.1) to multi-dimensional sets.

Suppose we are given finite sets A1, A2, . . . , An. If H is an arbitrary matrix of dimen-
sion |A1| · |A2| · . . . · |An|, we can interpret the row and column indices of H as elements
of A1 ×A2 × · · · ×An, i. e., as finite “strings”. In this section we investigate structured
matrices H with the characteristic property that each entry hi,j of H solely depends on
the Hamming distance between its indices (appropriately interpreted as strings). We
will give a complete characterization of this kind of matrices, analyze their algebraic
properties and derive efficient algorithms for operating with them. Moreover, we will
show how to solve several approximation problems with connections to preconditioning
within this class of matrices.

4.1. Prerequisites

In this section we develop all necessary definitions and discuss the problems we investi-
gate later on. First of all, we formally introduce the aforementioned class of structured
matrices we investigate throughout this chapter.

Definition 4.2. Let Ω = A1 ×A2 × · · · ×An be an arbitrary signature with finite sets
A1, . . . , An. Then we call each element s ∈ Ω a string . Moreover, we call dim(Ω) = n
its dimension and |Ω| = |A1| · |A2| · . . . · |An| is the number of strings over Ω. //

If A is an arbitrary finite set with |A| elements, we can always identify A with the
set Z|A| = {0, 1, . . . , |A| − 1} by a natural bijection between A and Z|A|. Therefore,
we will henceforth consider without loss of generality only signatures of the form Ω =
Zb1 × Zb2 × · · · × Zbn with bi ∈ N. Thus, we can interpret each string over Ω also as a
number in a mixed radix numeral system where the numerical base at the i-th position
is given by bi. It is well-known how to convert numbers from an arbitrary mixed radix
numeral system to integers. Concretely, for Ω = Zb1 × Zb2 × · · · × Zbn this is done by
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4. Matrices & Hamming Distance

the mapping.

ιΩ : Ω→ Z|Ω|, (z1, z2, . . . , zn) 7→ zn +
n−1∑
i=1

(
zn−i ·

n∏
j=n−i+1

bj

)

Let A be a matrix of dimension n and let n = b1 · b2 · . . . · bk be a factorization of n.
Then, since ιΩ is a bijection, we can interpret by ι−1(i− 1) each row and column index
of A as a string over Zb1 × Zb2 × · · · × Zbn .

Example 4.1. Let Ω = Zn2 , then we get for ω = (ω1, ω2, . . . , ωn) ∈ Ω the mapping

ιΩ(ω) = ιΩ((ω1, ω2, . . . , ωn)) =
n−1∑
i=0

ωn−i · 2i

In particular, ιΩ is the usual conversion between binary numbers and integers. //

Accordingly, we henceforth use for a fixed signature Ω and indices 1 ≤ i, j ≤ |Ω|,
the abbreviation dH(i, j) := dH(ι−1

Ω (i − 1), ι−1
Ω (j − 1)). Thus, we interpret dH(·, ·) as a

function dH : {1, 2, . . . , |Ω|}2 → Zdim(Ω)+1 instead of a function dH : Ω× Ω→ Zdim(Ω)+1.

Definition 4.3 (Hamming distance-based matrices). For an arbitrary finite signature
Ω, we define the set of Hamming distance-based (dH-based) matrices over Ω by

H(Ω) :=
{
H ∈ R|Ω|×|Ω| | ∃ϕ : Zdim(Ω)+1 → R with hi,j = ϕ(dH(i, j))

}
Therefore, H(Ω) contains all matrices whose (i, j)-th entry solely depends on the Ham-
ming distance between i and j, i. e., it solely depends on the Hamming distance between
the strings ι−1

Ω (i − 1) and ι−1
Ω (j − 1). For a matrix H ∈ H(Ω) we call the function ϕ

which determines the entries of H its associated function. Furthermore, we define
H(∅) := R. //

Example 4.2. Consider arbitrary matrices H ∈ H(Z2) and G ∈ H(Z2
2). Then we

observe the following generic structure in the matrices H and G

H =

(
a b
b a

)
 

0 1
0 a b
1 b a

G =


c d d e
d c e d
d e c d
e d d c

 
00 01 10 11

00 c d d e
01 d c e d
10 d e c d
11 e d d c

Moreover, we can observe how the ordering of the integers determines the rich structure
of the matrices H and G. //

Definition 4.4 (Hamming distance-based vector). For an arbitrary finite signature Ω,
we say that a vector x ∈ R|Ω| is dH-based, if there exists a matrix H ∈ H(Ω) such that
x is the first column of H, i. e., x = H(:, 1). In particular, it holds that xi = ϕ(dH(i, 1))
where ϕ denotes the associated function of H. //
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We first derive an auxiliary result on the number of elements with a certain fixed
Hamming distance in dH-based vectors for the case of signatures Ω = Znc .

Lemma 4.1. Consider natural numbers c, n ∈ N with c > 1 and let x ∈ R|Ω| be a
dH-based vector over Ω = Znc with associated function ϕx. Then, for 0 ≤ k ≤ c, the
value ϕx(k) appears

(
n
k

)
(c− 1)k times in x. Moreover, this implies that

n∑
k=0

(
n

k

)
(c− 1)k = cn. (4.1)

Proof. We give a combinatorial proof of

|{i | 1 ≤ i ≤ cn ∧ dH(i, 1) = k}| =
(
n

k

)
(c− 1)k,

where dH(·, ·) has to be interpreted with respect to Ω = Znc . Recall that the Hamming
distance dH(·, ·) measures the number of different elements between the strings ι−1(i−1)
and ι−1(0). That means in case of dH(i, 1) = k, exactly

(
n
k

)
different patterns of equal

elements (i. e., zeros) can occur. This follows from the interpretation of the binomial
coefficient

(
n
k

)
as the number of distinct binary strings of length n with k bits set to

one. Since the Hamming distance only counts different elements, we additionally have
to account for the different possible entries in the non-equal places. The fact that they
can be filled arbitrary from the set {1, . . . , c − 1}k, leads to the additional factor of
|{1, . . . , c − 1}k| = (c − 1)k. The validity of (4.1) follows immediately, since for every
1 ≤ i ≤ cn there exists exactly one 0 ≤ k ≤ n such that dH(i, 1) = k.

While Definition 4.3 and Example 4.2 indicate that all matrices H ∈ H(Ω) are well-
structured, it is not clear whether or not H(Ω) itself carries some (algebraic) structure.
Clearly, the usual matrix operations are well defined on H(Ω), since all matrices in
H(Ω) are square. Moreover, H(Ω) always contains the zero matrix and the identity
matrix of the according dimension.

Problem 4.1. Let H(Ω) be the set of all dH-based matrices over the signature Ω. Does
H(Ω) carry an algebraic structure? //

Later on, we prove for fixed signatures Ω = Znc , that H(Ω) equipped with the usual
matrix operations is a commutative ring with identity. Thus, (H(Ω),+) is an abelian
group, (H(Ω), ·) is a commutative semigroup and the multiplication distributes over
the addition. Contrary, for more general signatures, we will see that H(Ω) is not closed
under multiplication. At least the additive structure of H(Ω) can be easily understood
as the following lemma shows.

Lemma 4.2. Let Ω be an arbitrary signature. Then for all H,G ∈ H(Ω) it follows that
H +G = G+H and H +G,−H ∈ H(Ω).

Proof. Let ϕH and ϕG denote the associated functions of H and G, respectively. Then
ϕH+G := ϕH + ϕG is the associated function of H +G, i. e., H +G ∈ H(Ω). Moreover,
the commutativity of + in H(Ω) follows from the commutativity of + in R. Accordingly
the associated function of −H is given by −ϕH and therefore we conclude also −H ∈
H(Ω).
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4. Matrices & Hamming Distance

From a computational point of view, structured matrices raise the question whether
or not the complexity of certain operations can be (substantially) reduced by exploiting
the available structure. By definition, each H ∈ H(Ω) has only dim(H(Ω)) + 1 =
O(log(|Ω|)) degrees of freedom. Therefore, the construction of efficient algorithms for
these structured matrices seems to be feasible. On the other hand, the structure of the
matrices in H(Ω) does not allow for an immediate derivation of fast algorithms since
the blocks of the matrices in H(Ω) are, except of the principal structure, not directly
related (cf. Example 4.2).

Problem 4.2. Let Ω be an arbitrary signature and H,G ∈ H(Ω). Which effort does it
take to compute H +G, H ·G, H−1 and Hx, respectively? //

Regarding the O(log(|Ω|)) degrees of freedom in the matrices H ∈ H(Ω), one would
expect that matrix matrix operations in H(Ω) are of a polylogarithmic complexity in |Ω|,
i. e., O(p(log(|Ω|))) where p(·) is a polynomial function. Accordingly, the complexity of
the matrix vector multiplication Hx should be bounded by O(|Ω| log(|Ω|)). In the fol-
lowing, we construct algorithms which provably meet all the aforementioned complexity
bounds.

For the sake of clarity we will first investigate the aforementioned problems for the
special signature Ω = Zn2 , i. e., the binary strings of length n. Concretely, we develop
first all ideas and results for this special case and show subsequently how to extend the
results to arbitrary finite signatures.

4.2. Binary Alphabets

In this section we consider for arbitrary n ∈ N signatures of the form Ω = Zn2 . For a
concise notation we define Bn := H(Zn2 ). In particular, we also define B0 := R. First,
we give general insights into the structure of the matrices in Bn (cf. Example 4.2).

Lemma 4.3. Let n ∈ N, then B ∈ Bn if and only if the following two conditions hold.

(i). B ∈ R2n×2n is block-symmetric in the sense that

B =

(
C D
D C

)
, C,D ∈ Bn−1

(ii). Let ϕB, ϕC and ϕD denote the function associated with B, C and D, respectively.
Then, it holds for all 0 ≤ d < n that

ϕC(d) = ϕB(d), ϕD(d) = ϕB(d+ 1) (4.2)

Proof. First, assume that B ∈ Bn. Since B ∈ Bn is a 2n × 2n matrix, we can always
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4.2. Binary Alphabets

split B up into four blocks.

B =

(
C D′

D C ′

)
 

00 . . . 0 · · · 01 . . . 1 10 . . . 0 · · · 11 . . . 1
00 . . . 0 c1,1 . . . c1,2n−1 d′1,1 . . . d′1,2n−1

...
...

. . .
...

...
. . .

...
01 . . . 1 c2n−1,1 · · · c2n−1,2n−1 d′2n−1,1 · · · d′2n−1,2n−1

10 . . . 0 d1,1 . . . d1,2n−1 c′1,1 . . . c′1,2n−1

...
...

. . .
...

...
. . .

...
11 . . . 1 d2n−1,1 · · · d2n−1,2n−1 c′2n−1,1 · · · c′2n−1,2n−1

The equalities C = C ′ and D = D′ as well as the relationship between C and D follow
directly from the (decimal) ordering of the binary numbers: If 0 ≤ i < 2n−1 then ι−1(i) =
(0, b2, . . . , bn) and ι−1(i+ 2n−1) = (1, b2, . . . , bn). That means we get for 1 ≤ i, j ≤ 2n−1

that dH(i+2n−1, j) = dH(i, j+2n−1) = dH(i, j)+1 and dH(i+2n−1, j+2n−1) = dH(i, j).
Thus, we deduce by

ci,j = ϕC(dH(i, j)) = ϕB(dH(i, j))

c′i,j = ϕC′(dH(i, j)) = ϕB(dH(i+ 2n−1, j + 2n−1)) = ϕB(dH(i, j))

di,j = ϕD(dH(i, j)) = ϕB(dH(i+ 2n−1, j)) = ϕB(dH(i, j) + 1)

d′i,j = ϕD′(dH(i, j)) = ϕB(dH(i, j + 2n−1)) = ϕB(dH(i, j) + 1)

all claims.
In case conditions (i) and (ii) hold, B ∈ Bn follows immediately.

In order to understand the algebraic structure of Bn and to be able to derive efficient
algorithms for operating with the matrices in Bn we will investigate the structure of the
eigenvalues and eigenvectors of these matrices. As the next section shows the spectral
properties of the matrices in Bn can be generically analyzed.

4.2.1. Algebraic Properties

Definition 4.5. Recall the Walsh matrices H2n from Definition 3.5. We denote by
Wn := 2−n/2H2n the normalized Walsh matrices. //

Note that the normalized Walsh matrices Wn are symmetric orthogonal matrices,
which directly follows from the generalized mixed product property of the Kronecker
product since

W1W
T
1 = (2−1/2H2)(2−1/2H2) =

1

2

(
1 1
1 −1

)(
1 1
1 −1

)
=

1

2

(
2 0
0 2

)
= I2

and Wn = 2−n/2H2n =
⊗n

i=1(2−1/2H2).

Lemma 4.4. Let B ∈ Bn be arbitrary. Then, the normalized Walsh matrices Wn

diagonalize B, i. e., the matrix Λ = WnBWn is diagonal.
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Proof. We proceed by induction over n. For n = 0 the claim trivially holds. If n > 0,
we can split B up into four equally-sized blocks which leads to a block-symmetric
representation of B (cf. Lemma 4.3). Assume the theorem holds for n− 1, then

Λ = WnBWn

=
1√
2

(
Wn−1 Wn−1

Wn−1 −Wn−1

)
·
(
C D
D C

)
· 1√

2

(
Wn−1 Wn−1

Wn−1 −Wn−1

)
=

1

2

(
Wn−1(C +D) Wn−1(D + C)
Wn−1(C −D) Wn−1(D − C)

)
·
(
Wn−1 Wn−1

Wn−1 −Wn−1

)
=

(
Wn−1(C +D)Wn−1 0

0 Wn−1(C −D)Wn−1

)
(4.3)

By Lemma 4.2 both C +D and C −D are elements of Bn−1 and therefore, they are by
the induction hypothesis diagonalized by Wn−1. Hence, Λ = WnBWn is also diagonal.
In particular, we observe the relationship

Λ =

(
Wn−1CWn−1 +Wn−1DWn−1 0

0 Wn−1CWn−1 −Wn−1DWn−1

)
=

(
ΛC + ΛD 0

0 ΛC − ΛD

)
=

(
ΛC+D 0

0 ΛC−D

)
(4.4)

In other words, Lemma 4.4 shows that all matricesB ∈ Bn have the same eigenvectors.
Concretely, the eigenvectors are given by the columns of the normalized Walsh matrices
Wn. The proof of Lemma 4.4 also exposes how the eigenvalues of a matrix B ∈ Bn
recursively evolve from the eigenvalues of its blocks. As the next example indicates,
this recursive process also produces a well structured output.

Example 4.3. Let A3 ∈ B3 be arbitrary, i. e., A3 is induced by the function ϕ with
ϕ(0) = a, ϕ(1) = b, ϕ(2) = c and ϕ(3) = d. Moreover, let A2 ∈ B2 be the left upper
4× 4 block of A3 and let A1 ∈ B1 be the left upper 2× 2 block of A2. Then we observe
the following behavior for the eigenvalues

diag(W1A1W1)T = diag(W1

(
a b
b a

)
W1)T =

(
a+ b
a− b

)

By the recursive relationship of the eigenvalues of A2 (see (4.4)), we get

diag(W2A2W2)T = diag(W2


a b b c
b a c b
b c a b
c b b a

W2)T =


(a+ b) + (b+ c)
(a− b) + (b− c)
(a+ b)− (b+ c)
(a− b)− (b− c)

 =


a+ 2b+ c
a− c
a− c

a− 2b+ c


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Utilizing the recursive relationship (4.4) again, leads to the eigenvalues of A3

diag(W3A3W3)T =



(a+ 2b+ c) + (b+ 2c+ d)
(a− c) + (b− d)
(a− c) + (b− d)

(a− 2b+ c) + (b− 2c+ d)
(a+ 2b+ c)− (b+ 2c+ d)

(a− c)− (b− d)
(a− c)− (b− d)

(a− 2b+ c)− (b− 2c+ d)


=



a+ 3b+ 3c+ d
a+ b− c− d
a+ b− c− d
a− b− c+ d
a+ b− c− d
a− b− c+ d
a− b− c+ d
a− 3b+ 3c− d


In this example we see that the diagonal matrix containing the eigenvalues of a dH-based
matrix is also well structured. In particular, we observe that its diagonal is a dH-based
vector. //

Lemma 4.5. Let (x, y) be a pair of vectors x, y ∈ Rn which satisfy for all 1 ≤ i < n
the property xi +xi+1 = yi− yi+1. Then it holds for the vectors u = y+x and v = y−x
that u(2 : n) = v(1 : (n− 1)).

Proof. By definition of u and v, we get

u = y + x = (y1 + x1, y2 + x2, . . . , yn + xn )

v = y − x = (y1 − x1, . . . , yn−1 − xn−1, yn − xn)

Thus, the claim follows, since yi+1 + xi+1 = yi − xi holds by assumption.

Lemma 4.6. Consider the matrices A(n) ∈ R(n+1)×(n+1) which are recursively defined
by

A(0) := 1, A(n) :=

(
A(n−1) 0
A(n−1)(n, :) 0

)
+

(
0 A(n−1)

0 −A(n−1)(n, :)

)
. (4.5)

Then A(n) can also be decomposed in the form

A(n) =

(
A(n−1)(1, :) 0
A(n−1) 0

)
+

(
0 A(n−1)(1, :)
0 −A(n−1)

)
. (4.6)

Example 4.4. For 0 ≤ n ≤ 3, consider the matrices A(n) defined in Lemma 4.6.

A(0) = 1

A(1) (4.5),(4.6)
=

(
1 1
1 −1

)

A(2) (4.5)
=

1 1 + 1 1
1 −1 + 1 −1
1 −1− 1 1

 =

1 2 1
1 0 −1
1 −2 1

 (4.6)
=

1 1 + 1 1
1 1− 1 −1
1 −1− 1 1



A(3) (4.5)
=


1 2 + 1 1 + 2 1
1 0 + 1 −1 + 0 −1
1 −2 + 1 1− 2 1
1 −2− 1 1 + 2 −1

 =


1 3 3 1
1 1 −1 −1
1 −1 −1 1
1 −3 3 −1

 (4.6)
=


1 2 + 1 1 + 2 1
1 2− 1 1− 2 −1
1 0− 1 −1− 0 1
1 −2− 1 1 + 2 −1


Note, the first (last) row of A(n) contains the (alternating) binomial coefficients

(
n
i

)
. //
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Proof of Lemma 4.6. Explicitly, the assertion of the lemma states that for all pairs of
neighboring columns of A(n), i. e., all pairs {A(n)(:, j), A(n)(:, j+ 1)} with 2 ≤ j < n− 1,
it holds that A(n)(2 :n, j) + A(n)(2 :n, j + 1) = A(n)(1 :n− 1, j) − A(n)(1 :n− 1, j + 1)
(cf. Example 4.4). Thus, in order to proof this lemma we have to inductively show
that all neighboring columns of A(n) satisfy the assumptions of Lemma 4.5. Obviously
(see Example 4.4), the two columns of A(1) satisfy the assumptions of Lemma 4.5.
Therefore, for the inductive step, assume that all neighboring columns of A(n−1) satisfy
the assumptions of Lemma 4.5. For short, we consider all pairs {x, y} with x = A(n)(:, j),
y = A(n)(:, j + 1) and 1 ≤ j ≤ n. We have to prove that xi + xi+1 = yi − yi+1 for all

1 ≤ i ≤ n. First, we compute for 1 ≤ i < n by using the conventions a
(n−1)
i,0 = a

(n−1)
i,n+1 = 0

that

xi + xi+1 = (a
(n−1)
i,j + a

(n−1)
i,j−1 ) + (a

(n−1)
i+1,j + a

(n−1)
i+1,j−1)

= (a
(n−1)
i,j + a

(n−1)
i+1,j ) + (a

(n−1)
i,j−1 + a

(n−1)
i+1,j−1)

i.h.
= (a

(n−1)
i,j+1 − a(n−1)

i+1,j+1) + (a
(n−1)
i,j − a(n−1)

i+1,j )

= (a
(n−1)
i,j+1 + a

(n−1)
i,j )− (a

(n−1)
i+1,j+1 + a

(n−1)
i+1,j ) = yi − yi+1

Similarly, we compute for the case i = n that

xn + xn+1 = (a
(n−1)
n,j + a

(n−1)
n,j−1) + (a

(n−1)
n,j − a(n−1)

n,j−1)

= a
(n−1)
n,j + a

(n−1)
n,j

= (a
(n−1)
n,j+1 + a

(n−1)
n,j )− (a

(n−1)
n,j+1 − a(n−1)

n,j ) = yn − yn+1

Therefore, all pairs of neighboring columns of A(n) satisfy the assumptions of Lemma 4.5,
which completes the proof.

Theorem 4.7. Let B ∈ Bn, n ≥ 0, be arbitrary and ϕB its associated function. Then
B has at most n+ 1 different eigenvalues λ0, λ1, . . . , λn and the multiplicity of λi is

(
n
i

)
.

Moreover, the eigenvalues λi are given by

(λ0, λ1, . . . , λn)T = A(n) (ϕB(0), ϕB(1), . . . , ϕB(n))T (4.7)

with the matrices A(n) ∈ R(n+1)×(n+1) defined in (4.5).

Proof. We prove the validity of (4.7) inductively. The base case n = 0 is trivial. Assume
that the claim holds for n and let B ∈ Bn+1. Recall how the matrix of eigenvalues
ΛB = Wn+1BWn+1 is structured (cf. (4.3) and (4.4)). By Lemma 4.3, we know that
ΛC = WnCWn and ΛD = WnDWn are related as given in (4.2) and thus, together with
the induction hypothesis we get for λCdH(i,1) = [ΛC ]i,i and λDdH(i,1) = [ΛD]i,i the formula

(λC0 , . . . , λ
C
n )T = A(n)(ϕB(0), . . . , ϕB(n))T

(λD0 , . . . , λ
D
n )T = A(n)(ϕB(1), . . . , ϕB(n+ 1))T

In order to prove the validity of (4.7) for n + 1 we have to show for λ+ = diag(ΛC+D)
and λ− = diag(ΛC−D) with

(λ+
0 , λ

+
1 , . . . , λ

+
n ) = A(n)(ϕB(0) + ϕB(1), . . . , ϕB(n) + ϕB(n+ 1))T

(λ−1 , . . . , λ
−
n , λ

−
n+1) = A(n)(ϕB(0)− ϕB(1), . . . , ϕB(n)− ϕB(n+ 1))T

46



4.2. Binary Alphabets

that λ+
i = λ−i for all 1 ≤ i ≤ n. These equalities are an immediate consequence from

the structure of A(n+1) (cf. Lemma 4.6): On the one hand it follows by (4.5) that

A(n)(ϕB(0) + ϕB(1), . . . , ϕB(n) + ϕB(n+ 1))T = A(n)(ϕB(0 :n) + ϕB(1 :n+ 1))

= A(n)ϕB(0 :n) + A(n)ϕB(1 :n+ 1)

= A(n+1)(1 :n, :)ϕB(0 : (n+ 1)).

On the other hand, analogously, it follows by (4.6) that

A(n)(ϕB(0)− ϕB(1), . . . , ϕB(n)− ϕB(n+ 1))T = A(n+1)(2 : (n+ 1), :)ϕB(0 : (n+ 1)).

Thus, the claimed equality holds since

(λ+
1 , . . . , λ

+
n ) = (λ−1 , . . . , λ

−
n ) = A(n+1)(2 :n, :)ϕB(0 : (n+ 1))

Therefore, we have shown that λ+
i = λ−i for all 1 ≤ i ≤ n, which implies for the

eigenvalues λBdH(i,1) = [ΛB]i,i of B that

λB = (λ+
0 , λ

±
1 , . . . , λ

±
n , λ

−
n+1) = A(n+1)(ϕB(0), ϕB(1), . . . , ϕB(n+ 1))T.

This completes the inductive step as well as the proof of (4.7). Moreover, the claim on
the multiplicity follows directly from Lemma 4.1 since diag(λB) is a dH-based vector.

Note that Theorem 4.7 only reveals how to compute the eigenvalues of a given matrix
B ∈ Bn and how they are structured. On the other hand, it does not show that for
arbitrary real numbers λ0, λ1, . . . , λn, we can find a matrix in Bn with these eigenvalues.
Therefore, we investigate if for an arbitrary dH-based vector λ ∈ R2n , it holds for
Λ = diag(λ) that WnΛWn ∈ Bn.

Example 4.5. Recall the factorization 2W2 = H4 = (H2 ⊗ I2)(I2 ⊗H2) (cf. (3.5)) and
let Λ be a diagonal matrix with Λi,i = 2dH(i,1). We want to show that B = W2ΛWT

2 is
a dH-based matrix, i. e., B ∈ B2. First we compute M = (I2 ⊗H2)Λ(I2 ⊗H2)

M =


1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 4




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1




1 2 0 0
1 −2 0 0
0 0 2 4
0 0 2 −4




3 −1 0 0
−1 3 0 0

0 0 6 −2
0 0 −2 6


As a second step we compute 4B = H4ΛHT

4 = (H2 ⊗ I2)M(H2 ⊗ I2)

4B =


3 −1 0 0
−1 3 0 0

0 0 6 −2
0 0 −2 6




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1




3 −1 6 −2
−1 3 −2 6

3 −1 −6 2
−1 3 2 −6




9 −3 −3 1
−3 9 1 −3
−3 1 9 −3

1 −3 −3 9


Thus, B ∈ B2 with ϕB(0) = 9/4, ϕB(1) = −3/4 and ϕB(2) = 1/4. //
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Theorem 4.8. Let λ0, λ1, . . . , λn ∈ R be arbitrary reals and Λ ∈ R2n×2n a diagonal
matrix with Λi,i = λdH(i,1), i. e., diag(Λ) is a dH-based vector. Then, B = WnΛWn ∈ Bn
and the values of the associated function ϕB of B are given by

(ϕB(0), ϕB(1), . . . , ϕB(n))T = Ã(n) (λ0, λ1, . . . , λn)T ,

with Ã(n) := 2−nA(n) and A(n) defined in (4.5).

Proof. First we define a truncated version of the factorization (3.5) of Wn.

W j
n := 2−j/2

n∏
i=n−j+1

(I2i−1 ⊗H2 ⊗ I2n−i) = I2n−j ⊗H2j (4.8)

Note that W n
n = Wn and additionally we define W 0

n := I2n . As Kronecker product
of symmetric matrices W j

n is symmetric. Nevertheless, in light of (4.8), we distinguish
in this proof between W j

n and (W j
n)T, since the transposition reverses the order in the

product.
In the following, we prove by induction over j that for all 0 ≤ j ≤ n it holds that

W j
nΛ(W j

n)T is a 2n×2n block diagonal matrix with 2j×2j blocks Bj
i ∈ Bj, 1 ≤ i ≤ 2n−j

on its diagonal, i. e.,

W j
nΛ(W j

n)T =


Bj

1

Bj
2

. . .

Bj
2n−j

 , Bj
i ∈ Bj (4.9)

Moreover, with d = dH(i, 1), the function associated with Bj
i is given by(

ϕBj
i
(0), ϕBj

i
(1), . . . , ϕBj

i
(j)
)T

= Ã(j) (λd, λd+1, . . . , λd+j)
T . (4.10)

For j = 0, the validity of (4.9) and (4.10) follows immediately by the assumptions on
Λ. For the induction step assume that the claim holds for j < n. Then we get for j + 1

W j+1
n Λ(W j+1

n )T =
1

2
(I2n−j ⊗H2 ⊗ I2j)W

j
nΛ(W j

n)T (I2n−j ⊗H2 ⊗ I2j)

By definition of the Kronecker product, I2n−j ⊗H2 ⊗ I2j is a block diagonal matrix,

I2n−j ⊗H2 ⊗ I2j =


I2j I2j

I2j −I2j

. . .

I2j I2j

I2j −I2j


Therefore, block-wise multiplication leads to

W j+1
n Λ(W j+1

n )T =

B
j+1
1

. . .

Bj+1
2n−j−1

 , Bj+1
i =

1

2

(
Bj

2i−1 +Bj
2i Bj

2i−1 −Bj
2i

Bj
2i−1 −Bj

2i Bj
2i−1 +Bj

2i

)
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To complete the inductive step we have to show that Bj+1
i fulfills (4.10). First observe

that dH(2i− 1, 1) + 1 = dH(2i, 1), since 2i− 2 is even and 2i− 1 is odd, i. e.,

ι−1(2i− 2) = (b1, . . . , bj, 0), ι−1(2i− 1) = (b1, . . . , bj, 1)

Therefore, by the induction hypothesis, and d = dH(i, 1) we get the following overlap-
ping conditions for the associated function ϕBj+1

i
of Bj+1

i .

(ϕBj+1
i

(0), ϕBj+1
i

(1), . . . , ϕBj+1
i

(j)) =
1

2
Ã(j)(λd + λd+1, . . . , λd+j + λd+j+1)T

(ϕBj+1
i

(1), . . . , ϕBj+1
i

(j), ϕBj+1
i

(j + 1)) =
1

2
Ã(j)(λd − λd+1, . . . , λd+j − λd+j+1)T

By Lemma 4.6 all overlapping elements are indeed equal which leads to

(ϕBj+1
i

(0), . . . , ϕBj+1
i

(n+ 1)) = Ã(j+1)(λd, . . . , λd+j+1)T

This completes the inductive step as well as the entire proof.

The two previous theorems show that for every matrix B ∈ Bn its eigenvalues and
its associated function are linearly related through the matrices A(n). In particular,
Theorem 4.7 and Theorem 4.8 together imply that Ã(n)A(n) = 2−nA(n)A(n) = In+1.

Example 4.6. Recall the matrix B from Example 4.5 with eigenvalues λ = (1, 2, 4)
and associated function φ = ϕB((0, 1, 2)) = (9/4,−3/4, 1/4). We explicitly check that
A(2) and Ã(2) (cf. Example 4.4) relate those two vectors as shown in Theorem 4.7 and
Theorem 4.8.

λ = A(2)φ =

1 2 1
1 0 −1
1 −2 1

 9/4
−3/4

1/4

 =

9/4− 6/4 + 1/4
9/4− 1/4

9/4 + 6/4 + 1/4

 =

1
2
4


φ = Ã(2)λ =

1

4

1 2 1
1 0 −1
1 −2 1

1
2
4

 =
1

4

1 + 4 + 4
1− 4

1− 4 + 4

 =

 9/4
−3/4
1/4


//

Corollary 4.9. The set Bn is closed under multiplication and the multiplication in Bn
is commutative.

Proof. By Theorem 4.7, we can find for all matrices B,C ∈ Bn diagonal matrices ΛB,ΛC

whose diagonal is a dH-based vector such that B = WnΛBWn and C = WnΛCWn.
Hence, the commutativity follows directly by the orthogonality of Wn.

B · C = WnΛBWnWnΛCWn = WnΛBΛCWn = WnΛCΛBWn = C ·B

Moreover, since the diagonal of ΛBΛC is also a dH-based vector, we know by Theorem 4.8
that B · C ∈ Bn.

Theorem 4.10. With the usual matrix addition and multiplication (Bn,+, ·) is a com-
mutative ring with identity. In particular, the zero matrix is the additive identity and
I2n is the multiplicative identity of (Bn,+, ·).
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Proof. The zero matrix and I2n are certainly elements of Bn with associated functions
ϕ0 ≡ 0 and ϕI2n (0) = 1, ϕI2n (d) = 0 for all 1 ≤ d ≤ n. Moreover, by Lemma 4.2 we
know that (Bn,+) is an abelian group and by Corollary 4.9 we know that (Bn, ·) is a
commutative semigroup. That the multiplication distributes over the addition can be
straightforwardly seen, since for arbitrary B,C,D ∈ Bn we conclude

B(C +D) = WnΛBWn(WnΛCWn +WnΛDWn)

= WnΛBWn(Wn(ΛC + ΛD)Wn)

= Wn(ΛB(ΛC + ΛD))Wn

= Wn(ΛBΛC + ΛBΛD)Wn

= Wn(ΛBΛC)Wn +Wn(ΛBΛD)Wn = BC +BD

Therefore, (Bn,+, ·) is a commutative ring with identity.

4.2.2. Fast Algorithms

We saw in Lemma 4.4 that the matrices H ∈ Bn can be diagonalized in the form
Λ = WnHWn, where the diagonal of Λ was shown to be a dH-based vector in Theo-
rem 4.7. Thus, from a computational point of view, a matrix H ∈ Bn is most efficiently
represented by a (n+ 1)-dimensional vector containing all its distinct eigenvalues. This
representation can be obtained in Θ(n2) time via Theorem 4.7 and straightforwardly
leads to efficient operations within Bn.

Corollary 4.11. Let H,G ∈ Bn be given and let λH , λG ∈ Rn+1 denote the vectors
containing the eigenvalues of H and G, respectively. Then,

(i). λH+G = λH + λG contains the eigenvalues of H +G,

(ii). λH·G = (λH(0)λG(0), . . . , λH(n)λG(n)) contains the eigenvalues of H ·G,

(iii). if H is regular, λH−1 = (λH(0)−1, . . . , λH(n)−1) contains the eigenvalues of H−1.

Therefore, the operations H +G, H ·G and H−1 can be computed in Θ(n) time.

Corollary 4.11 does not surprise since all the involved objects are similarly structured.
In the light of (matrix-free) iterative methods a particularly interesting question is
whether or not the matrix vector product Hv with a matrix H ∈ Bn and an arbitrary
vector v ∈ R2n can be efficiently evaluated. By utilizing results from Kronecker product
theory (cf. Chapter 3) we show that the matrix vector product Hv with H ∈ Bn can be
computed in Θ(n2n) time.

First, we investigate how to efficiently create dH-based vectors out of their associated
function. The principal problem in the algorithmic treatment of dH-based vectors is
that the direct evaluation of the Hamming distance dH(i, 1) is a costly operation since it
requires to extract the binary representation of the natural number i. Thus, analogously
to the theoretical investigations in Section 4.2.1, we aim at avoiding this operation. As
a prerequisite, we study the following connection between the Kronecker product and
dH-based matrices.
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Lemma 4.12. Let a, b ∈ R and n ∈ N. Then for all matrices

Kn =
n⊗
i=1

(
a b
b a

)
, Vn =

n⊗
i=1

(
a 0
0 b

)
,

it holds that Kn ∈ Bn with associated function ϕKn(d) = an−d ·bd. Moreover, diag(Vn) =
Kn(:, 1) is a dH-based vector with associated function ϕKn.

Proof. We proceed by induction on n. For n = 1, we immediately see that K1 ∈ B1.
Assume that Kn ∈ Bn. The matrix Kn+1 is by definition a (symmetric) 2n × 2n block
matrix with diagonal blocks C = aKn and off-diagonal blocks D = bKn, where C,D ∈
Bn by the assumption that Kn ∈ Bn. Thus, according to Lemma 4.3, we have to show
that for all 0 < d < n, it holds that ϕC(d+ 1) = ϕD(d). This can be seen by induction,
since

ϕC(d+ 1) = a(an−(d+1) · b(d+1)) = an−d · b(d+1) = b(an−d · bd) = ϕD(d).

Moreover, due to ϕC(d) = a(n+1)−d ·bd and ϕD(n) = bn+1 we conclude that the associated
function of Kn+1 is given by ϕKn+1(d) = a(n+1)−d ·bd, which completes the inductive step.
The second claim trivially holds for n = 1. Moreover, if we assume that diag(Vn) =
Kn(:, 1), then we see due to

Kn+1 =

(
aKn bKn

bKn aKn

)
, Vn+1 =

(
aVn 0
0 bVn

)
that also Vn+1 = Kn+1(:, 1) holds, which completes the proof.

Example 4.7. With the definitions from Lemma 4.12 and a = 1, b = 2 we see that

diag(V1) = (1, 2)T, diag(V2) = (1, 2, 2, 4)T, diag(V3) = (1, 2, 2, 4, 2, 4, 4, 8)T.

This follows directly from the Kronecker product representation of Vi, which leads per
definition to diag(Vi+1) = (1 · diag(Vi), 2 · diag(Vi)). By applying element-wise the
function x 7→ ϕ(log2(x)) on the elements of diag(Vi), we finally obtain a dH-based
vector with associated function ϕ, e. g.,

(1, 2)T 7→ (ϕ(0), ϕ(1))T, (1, 2, 2, 4)T 7→ (ϕ(0), ϕ(1), ϕ(1), ϕ(2))T.

Therefore, we can see that the efficient treatment of dH-based vectors relies on the
efficient treatment of the diagonal matrices Vi. //

The method to create dH-based vectors sketched in Example 4.7 obviously does not
require any direct evaluation of dH(·, ·). Straightforward algorithms (i. e., algorithms
based on computing Vi as indicated in Lemma 4.12) for creating a dH-based vector h ∈
R2n require Θ(n2n) arithmetic operations. On the other hand, the recursive construction
in Example 4.7 is of a particularly simple form, which can be utilized in order to create
dH-based vectors even in linear time with respect to the vector dimension dim(h) = 2n.
We propose Algorithm 4.1 as a linear time algorithm for creating dH-based vectors.
Algorithm 4.1 proceeds in two steps: First an auxiliary vector h with h(i) = dH(i, 1) is
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Algorithm 4.1 Linear time creation of a dH-based vector.

Input: n ∈ N and ϕ : Zn+1 → R
Output: h ∈ R2n with h(i) = ϕ(dH(i, 1)).

1: h(1)← 0, p← 1
2: for i← 1 to n do
3: h((p+ 1):2p)← h(1 :p) + 1 . 1 denotes the vector of all ones, 1 = (1, 1, . . . , 1)
4: p← 2p
5: end for
6: h(1 :p) = ϕ(h(1 :p))

computed (lines 1–5). This is done analogously to Example 4.7 by iteratively combining
the vector computed so far (h(1 :p)) by a copy of itself which is additionally shifted by
the vector 1 = (1, 1, . . . , 1). In particular (cf. Example 4.7), this auxiliary vector evolves
as follows.

(0)→ (0, 1)→ (0, 1, 1, 2)→ (0, 1, 1, 2, 1, 2, 2, 3)→ . . .

Afterwards, the function ϕ is straightforwardly applied (line 6). This simple algorithm
is of the desired linear time complexity.

Theorem 4.13. For given n ∈ N and a function ϕ : Zn+1 → R, Algorithm 4.1 creates
a dH-based vector h ∈ R2n, with associated function ϕ, in Θ(2n) time.

Proof. The correctness of Algorithm 4.1 follows immediately from the considerations
above. For the complexity, first note that the application of ϕ (line 6) is trivially of
complexity Θ(2n). In the loop (lines 2–5) we see that in iteration i exactly 2i−1 values
are read and written, respectively. Thus, in total,

∑n
i=1 2i−1 = 2n − 1 = Θ(2n) values

are read and written, which proves the claim.

The existence of an efficient routine for creating a dH-based vector h from its asso-
ciated function ϕh clearly also implies a fast routine for evaluating the matrix vector
product diag(h)v with an arbitrary vector v of the according dimension.

Corollary 4.14. Let the associated function of a dH-based vector h ∈ R2n be given
and v ∈ R2n be an arbitrary vector. Then the matrix vector product diag(h)v can be
computed in Θ(2n) time.

Proof. Use Algorithm 4.1 and apply h(i) 7→ ϕ(h(i)) · v(i) instead of h(i) 7→ ϕ(h(i)) in
line 6 of the algorithm.

In Example 3.8 we have discussed how to efficiently evaluate the matrix vector product
with the Walsh matrices H2n . For the sake of completeness a concrete implementation
of the iterative algorithm (cf. (3.3)) for computing the matrix vector product with the
normalized Walsh matrices Wn (cf. Definition 4.5) is given in Algorithm 4.2.

A more detailed discussion of the properties of (a slight generalization of) Algo-
rithm 4.2 and its parallelization was given by Niederbrucker and Gansterer [2011a].
We conclude this section by the desired result on the efficiency of the matrix vector
multiplication Hv with H ∈ Bn.
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Algorithm 4.2 Efficient computation of the matrix vector product Wnv

Input: v ∈ R2n

Output: Wnv

1: for i← 1 to 2n−1 by 2i do
2: for j ← 1 to 2n by 2i do
3: t1 ← v(j :j + i)/

√
2

4: t2 ← v(j :j + 2i)/
√

2
5: v(j :j + i)← t1 + t2
6: v(j :j + 2i)← t1 − t2
7: end for
8: end for

Corollary 4.15. Let v ∈ R2n be an arbitrary vector and H = WnΛWn ∈ Bn. Then, the
matrix vector product Hv can be computed in Θ(n2n) time by computing Wn(Λ(Wnv)).

Proof. In case the matrix of eigenvalues Λ is unknown, the eigenvalues of H can be
computed as a first step in Θ(n2) time according to Theorem 4.7. Furthermore, the
multiplication with Λ can be carried out in linear time according to Corollary 4.14.
Moreover, the matrix vector products with Wn can be efficiently computed with Algo-
rithm 4.2.

Summarizing, we have seen in this section how the structure inherent in the matrices
H ∈ Bn can be utilized to derive fast algorithms. In particular, the complexity of the
basic matrix operations in Bn solely depends on the (n+ 1) degrees of freedom and not
on the actual matrix dimension 2n.

4.2.3. Approximation

So far we have analyzed the structure of the matrices in Bn in detail and shown how
to exploit their rich structure in order to derive efficient algorithms. Based on these
insights, we will show in this section how to solve several approximation problems within
Bn. First, we consider a basic matrix approximation problem.

Problem 4.3 (Matrix approximation). Given an arbitrary matrix A ∈ R2n×2n . Find
the best approximating dH-based matrix H ∈ Bn which minimizes ‖A−H‖F. //

By definition of the set Bn (cf. Definition 4.3) the n + 1 individual entries are inde-
pendent of each other. Thus, one would expect that the solution of Problem 4.3 can be
computed in terms of n+ 1 (simple) independent problems. This is indeed the case, as
the following theorem shows.

Theorem 4.16. Given an arbitrary matrix A ∈ R2n×2n. Then the matrix H∗ with
associated function ϕH∗,

ϕH∗(k) =
∑

i,j : dH(i,j)=d

ai,j

(
n

d

)−1

2−n

minimizes ‖A−H‖F for H ∈ Bn.
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Proof. We aim at minimizing the function

‖A−H‖2
F =

2n∑
i=1

2n∑
j=1

(ai,j − hi,j)2.

Note that ‖A − H‖2
F is in fact a function Rn+1 → R, since the matrices H ∈ Bn have

only n + 1 degrees of freedom hd, where hd = hi,j for all i, j with dH(i, j) = d. The
critical points fulfill ∇‖A−H‖F = 0. Thus, we get for each degree of freedom 0 ≤ d ≤ n
an equation

∂‖A−H‖2
F

∂hd
=

∑
i,j : dH(i,j)=d

−2(ai,j − hi,j) = 0

Since these n+ 1 equations are independent we get by using hd = hi,j in the sum

hd =
∑

i,j : dH(i,j)=d

ai,j

(
n

d

)−1

2−n (4.11)

Therefore, the associated function of the critical point is given by ϕ(d) = hd where hd
can be computed by (4.11). Moreover, the computed critical point is indeed a minimum
since the Hessian matrix of ‖A − H‖F is a diagonal matrix with positive entries and
thus, positive definite.

A particular interesting approximation problem is the computation of so-called ap-
proximate inverses , e. g., due to their potential for being a reasonable preconditioner
[cf. Grote and Huckle, 1997].

Problem 4.4 (Approximate Inverse). Given an arbitrary matrix A ∈ R2n×2n . Find a
dH-based matrix H ∈ Bn which minimizes ‖AH − I2n‖F. //

Grote and Huckle [1997] showed how to compute sparse approximate inverses , i. e.,
approximate inverses with a predefined sparsity pattern. This can be done efficiently
by observing for matrices A,M ∈ Rm×m the relationship

‖AM − Im‖2
F =

m∑
i=1

‖(AM − Im)ei‖2
2,

where ei denotes the i-th canonical basis vector, i. e., ei is zero except of the i-th entry,
which is one. This characterization shows that minimizing ‖AM−Im‖F can be done by
columnwise minimizing ‖AM(:, i)−ei‖2 for all i, independently. On the other hand, this
fact reveals that this approach due to Grote and Huckle [1997] is only suited for finding
certainly structured (sparse) matrices with independent entries. Thus, Problem 4.4 can
not be solved in this way, since the entries of the matrices H ∈ Bn are not independent.

A particularly simple kind of sparse matrices are diagonal matrices. Thus, consider
the problem of finding for a given matrix A ∈ Rm×m a diagonal matrix D ∈ Rm×m such
that ‖AD − Im‖F is minimal. By the considerations above we have to find for each
column 1 ≤ i ≤ m a value D(i, i) such that

‖AD(:, i)− ei‖2
2 = (A(i, i)D(i, i)− 1)2 +

∑
j 6=i

(A(j, i)D(i, i)− 0)2 (4.12)
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is minimal. Hence, by setting the derivative of (4.12) (with respect to D(i, i)) to zero
we obtain the critical point

D(i, i) =
A(i, i)∑n
i=1 A(i, i)2

.

This critical point is indeed a minimum and leads to the desired diagonal matrix since
the second derivative of (4.12) is positive.

We can proceed analogously in the case that the diagonal of D is constrained to be
a dH-based vector which leads to the following theorem.

Theorem 4.17. Let A ∈ Rm×m with m = 2n be arbitrary. Then minimizing ‖AH −
Im‖F with H ∈ Bn is equivalent to minimizing ‖ÃΛ − Im‖F, where Λ is the matrix of
eigenvalues of H. Moreover, the n + 1 eigenvalues of the matrix H∗ which minimizes
‖AH − Im‖F over Bn are for 0 ≤ d ≤ n given by

λd =

∑
i : dH(i,1)=d Ã(i, i)∑

i : dH(i,1)=d

∑m
j=1 Ã(i, j)2

, with Ã := WnAWn.

Hence, by Theorem 4.8, H∗ can be explicitly computed.

Proof. Because of H ∈ Bn we know that H = WnΛWn. Hence, because WnWn = Im
and because ‖ · ‖F is invariant with respect to orthogonal transformations [Golub and
Van Loan, 1996, § 2.5.2], it follows that

‖AH − Im‖F =‖AWnΛWn − Im‖F = ‖Wn(WnAWnΛ− Im)Wn‖F

=‖WnAWnΛ− Im‖F = ‖ÃΛ− Im‖F

Since Λ is supposed to be diagonal, the problem ‖ÃΛ − Im‖F can easily be solved.
Analogously to (4.12) we obtain for each degree of freedom in Λ, i. e., λd = Λ(i, i) with
d = dH(i, 1) that∑

i : dH(i,1)=d

‖ÃΛ(:, i)− ei‖2
2 =

∑
i : dH(i,1)=d

(
(Ã(i, i)λd − 1)2 +

∑
j 6=i

Ã(j, i)2λ2
d

)
.

Therefore, the claim follows by differentiating with respect to λd and reordering.

While Problem 4.3 and Problem 4.4 are common problems which can be studied
for many classes of matrices we study in the following a more specific approximation
problem which has an interesting connection to the nearest Kronecker product problem
(see Section 3.3).

Problem 4.5. Given an arbitrary matrix A ∈ R2n×2n . Find a dH-based matrix H ∈ Bn
and a non-negative diagonal matrix D such that ‖A−HD‖F is minimal. //

As in the case of the nearest Kronecker product problem (cf. Problem 3.1) we will see
that applying a particular reordering CR to A and HD transforms Problem 4.5 into a
more accessible problem which can be efficiently solved. First, consider the following
instructive example (cf. Example 3.9), before we give the precise definition of CR in
Definition 4.6.
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Example 4.8. Given A ∈ R4×4, we want to find a dH-based matrix H ∈ B2 and a
diagonal matrix D ∈ R4×4 such that ‖A −HD‖F is minimal. Explicitly, this problem
reads as∥∥∥∥∥∥∥∥


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

−

h1 h2 h2 h3

h2 h1 h3 h2

h2 h3 h1 h2

h3 h2 h2 h1



d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4


∥∥∥∥∥∥∥∥

F

→ min .

Since the diagonal matrix D scales the columns of H, we can reorder the elements within
the individual columns of H and A, respectively. Therefore, we consider a (column)
reordering CR which reorders H and A such that CR(H) consists of “constant rows”.∥∥∥∥∥∥∥∥


a1,1 a2,2 a3,3 a4,4

a2,1 a1,2 a1,3 a2,4

a3,1 a4,2 a4,3 a3,4

a4,1 a3,2 a2,3 a1,4

−

h1 h1 h1 h1

h2 h2 h2 h2

h2 h2 h2 h2

h3 h3 h3 h3



d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4


∥∥∥∥∥∥∥∥

F

→ min (4.13)

In the form of (4.13), Problem 4.5 is a structured rank-1 approximation problem: Find
a dH-based vector h ∈ R4 and a vector d ∈ R4 such that ‖CR(A) − hdT‖F is minimal.
We can further reduce the problem to a classical rank-1 approximation problem by
combining the equal rows of the reordering CR(H) of H. In the special case at hand
we obtain the rank-1 approximation problem∥∥∥∥∥∥

 a1,1 a2,2 a3,3 a4,4
a2,1+a3,1

2

a1,2+a4,2
2

a1,3+a4,3
2

a2,4+a3,4
2

a4,1 a3,2 a2,3 a1,4

−
h1

h2

h3

(d1, d2, d3, d4

)∥∥∥∥∥∥
F

→ min . (4.14)

That the problems (4.13) and (4.14) are indeed equivalent is a non-trivial fact which
we show more generally in Lemma 4.18. //

At the first sight (see (4.13)) the reordering CR seems to be somewhat irregular.
Moreover, the characterization based on the operation of CR on matrices H ∈ Bn
(cf. Example 4.8) shows that it is not unique. Following an idea by Niederbrucker and
Gansterer [2011b] we obtain the following closed form definition.

Definition 4.6. For a matrix A ∈ R2n×2n its reordering CR(A) is element-wise defined
as CR(A)(i, j) := A((i− 1)⊕ (j − 1) + 1, j), where ⊕ denotes the bit-wise XOR of two
integers. That means i ⊕ j is the integer whose binary representation is the result of
applying XOR element-wise on the binary representations of i and j, respectively. //

Since we will not use the explicit definition of CR in the following, we refer for the cor-
rectness and derivation of this abstract representation to Niederbrucker and Gansterer
[2011b]. Note that Niederbrucker and Gansterer [2011b] do not explicitly construct
CR as reordering but implicitly in terms of a (sparse) matrix vector multiplication
routine. Moreover, since CR solely reorders entries within their respective columns, it
immediately follows that for matrices A,H,D as defined in Problem 4.5 it holds that
indeed

‖A−HD‖F = ‖CR(A)− CR(HD)‖F = ‖CR(A)− CR(H)D‖F.

See also Example 4.8 for an illustration of this property.
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Definition 4.7. For given integers k, n ∈ N with 0 ≤ k ≤ n we define βnk as

βnk :=
k∑
i=0

(
n

i

)
Thus, for k > 0, this means that βnk − βnk−1 =

(
n
k

)
. //

Using Definition 4.7 we can formalize the last transformation step (4.14) we pursued
in Example 4.8. In general, a dH-based vector h ∈ R2n contains (at most) n + 1
distinct values given by its associated function ϕh. By definition (see also Lemma 4.1)
the value ϕh(k) appears

(
n
k

)
times in h. Therefore, we consider the reordering h̄ of h

whose elements are increasingly sorted with respect to ϕ−1
h (cf. (4.13)). That means

h̄(1) = ϕh(0) and h̄((βnk−1 + 1):βnk ) = ϕh(k) for 0 < k ≤ n.

Lemma 4.18. For a matrix A ∈ Rm×m with m = 2n consider the following two prob-
lems.

(i). Find a dH-based vector h ∈ Rm and a vector d ∈ Rm such that ‖A − hdT‖F is
minimal.

(ii). Find vectors h̄ ∈ Rm+1 and d̄ ∈ Rm such that ‖Ā− h̄d̄T‖F is minimal, where

Ā ∈ R(n+1)×2n , Ā(k, :) :=

{
A(1, :) k = 1

1
βn
k−βn

k−1

∑βn
k
i=βn

k−1+1A(i, :) k > 1
(4.15)

Then the problems (i) and (ii) are equivalent. Concretley, for the respective optimal
solutions (h∗, d∗) and (h̄∗, d̄∗) it holds that d̄∗ = d∗ and that the associated function of
h∗ is given by ϕ∗h(k) = h̄∗k.

Proof. The target function in problem (i) can be explicitly written as

‖A− hdT‖2
F =

n∑
k=0

m∑
j=1

∑
i : dH(i,1)=k

(A(i, j)− hkd(j))2

where hl = h(i) for all i with dH(i, 1) = l. Next, we derive the equation system a critical
point as to fulfill. For the variables hl with 0 ≤ l ≤ n we get

0 =
∂

∂hl

 n∑
k=0

m∑
j=1

∑
i : dH(i,1)=k

(A(i, j)− hkd(j))2


⇔ 0 =

m∑
j=1

∑
i : dH(i,1)=l

−2(A(i, j)− hld(j))d(j)

⇔ hl

(
n

l

) m∑
j=1

d(j)2 =
m∑
j=1

∑
i : dH(i,1)=l

A(i, j)d(j)

⇔ hl =

∑m
j=1 d(j)

(∑
i : dH(i,1)=k A(i, j)

(
n
k

)−1
)

∑m
j=1 d(j)2

⇔ hl =

∑m
j=1 d(j)Ā(l + 1, j)∑m

j=1 d(j)2
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Analogously, we obtain for all d(l) with 1 ≤ l ≤ m,

∂

∂d(l)

 n∑
k=0

m∑
j=1

∑
i : dH(i,1)=k

(A(i, j)− hkd(j))2

 = 0⇔ d(l) =

∑n
k=0 h(k)Ā(k + 1, l)∑n

k=0 h(k)2
.

By identifying hl = h̄(l + 1) in problem (ii) we obtain similarly

0 =
∂

∂hl

(
n∑
k=0

m∑
j=0

(Ā(k + 1, j)− hkd(j))2

)

⇔ 0 =
m∑
j=0

−2(Ā(l + 1, j)− hld(j))d(j)

⇔ hl =

∑m
j=0 d(j)Ā(l + 1, j)∑m

j=0 d(j)2

as well as

∂

∂d(l)

(
n∑
k=0

m∑
j=0

(Ā(k + 1, j)− hkd(j))2

)
= 0 ⇐⇒ d(l) =

∑n
k=0 hkĀ(k + 1, l)∑n

k=0 h
2
k

In the notation used above, problem (i) and (ii) have identical critical points, which
proofs the claimed equivalence.

Corollary 4.19. For a given matrix A ∈ Rm with m = 2n, the solution of Problem 4.5
is given by the solution of the rank-1 approximation problem ‖CR(A) − hdT‖F → min
where CR(A) is the reduced form of CR(A) according to (4.15), h ∈ Rn+1 and d ∈ Rm.
In particular, the associated function of the optimal H is given by ϕH(x) = h(x + 1)
and the optimal D is given as D = diag(d).

Proof. This follows immediately by the fact that ‖A−HD‖F = ‖CR(A)−CR(H)D‖F

(because CR reorders elements within their column only) and Lemma 4.18.

Since the solution of Problem 4.5 relies on solving a certain rank-1 approximation
problem similarly to the nearest Kronecker product problem (Problem 3.1), the same
conditions on its efficiency apply. Concretely, efficient routines for the matrix vector
products with CR(A) and its transpose are required. We will see in the concrete ap-
plication in which we consider Problem 4.5 that the required matrix vector products
can be performed in linear time only, which allows to solve this approximation problem
efficiently.

4.3. Arbitrary Alphabets

In the previous Section 4.2 we studied the special case Bn = H(Zn2 ) into great detail.
In principle, most of the presented results can be analogously derived for H(Ω) with
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arbitrary signature Ω = Zan × Zan−1 × · · · × Za11. We refrain in the following from
developing all results from Section 4.2 in the case of an arbitrary signature. Instead,
we provide all major insights such that further details can easily be derived. In partic-
ular, we provide a full characterization of the spectral properties of the matrices H(Ω),
which is the essential ingredient in the analysis of dH-based matrices (cf. Section 4.2).
Moreover, we will also see that the more general setting discussed in this section does
surprisingly not cause problems from a computational point of view, i. e., we can still
provide highly efficient matrix operations. First, we exemplify how dH-based matrices
are structured beyond the case of Bn.

Example 4.9. Consider matrices H ∈ H(Z4) and G ∈ H(Z3 × Z2). Concretely, this
means that we interpret the row/column indices of H as strings of length one over
the alphabet Z4. Moreover, the row/column indices of G are interpreted as strings of
length two, where the alphabets for the individual elements are given by Z3 and Z2,
respectively. In particular, the matrices H and G can be imagined as follows (see also
Example 4.2).

H =


a b b b
b a b b
b b a b
b b b a

 
0 1 2 3

0 a b b b
1 b a b b
2 b b a b
3 b b b a

G =


c d d e d e
d c e d e d
d e c d d e
e d d c e d
d e d e c d
e d e d d c

 
00 01 10 11 20 21

00 c d d e d e
01 d c e d e d
10 d e c d d e
11 e d d c e d
20 d e d e c d
21 e d e d d c

For understanding the structure inherent in H and G recall that the Hamming distance
dH(s1, s2) simply counts the number of different elements between the strings s1 and s2

(cf. Definition 4.1). These examples also suggest that for Ω = Zan × Zan−1 × · · · × Za1
the matrices H ∈ H(Ω) consist only of n+ 1 values (degrees of freedom) as in the case
of Bn, i. e., the function ϕH associated with H ∈ H(Ω) is a function ϕH : Zn+1 → R. //

Lemma 4.20 (cf. Lemma 4.3). Let Ω = Zan×Zan−1×· · ·×Za1 and m = a1 ·a2 · . . . ·an.
Then, H ∈ H(Ω) ⊂ Rm×m if and only if the following two conditions hold.

1We use this “reversed” notation throughout this section for the sake of a concise formal presentation.
In particular, this notation is motivated by the fact that (mixed radix) numbers “grow to the left”
with increasing value.
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(i). The matrix H ∈ Rm×m is an an × an block matrix with blocks of size m/an,

H =


C D · · · D

D C
. . .

...
...

. . . . . . D
D · · · D C

 , C,D ∈ H
(
Zan−1 × Zan−2 × · · ·Za1

)
. (4.16)

(ii). Let ϕH , ϕC and ϕD denote the function associated with H, C and D, respectively.
Then, ϕC(d) = ϕH(d) and ϕD(d) = ϕH(d+ 1) holds for all 0 ≤ d < n.

Proof. Use the same proof as for Lemma 4.3 by interpreting the column/row indices as
mixed radix numbers instead of binary numbers. See also Example 4.2 and Example 4.9
for concrete examples.

In the case of H(Zn2 ) the one dimensional base case H(Z2) could easily be understood.
Since the properties of the matrices H(Zn) with general n ∈ N are less immediate, we
first investigate the structures behind these matrices.

4.3.1. The Matrices H(Zn)

Our ultimate goal is a characterization of the eigenvectors and eigenvalues of the ma-
trices H(Ω) with an arbitrary signature Ω. As a prerequisite we characterize the eigen-
vectors and eigenvalues of the matrices H(Zn).

Definition 4.8. For n ∈ N we define a matrix Vn ∈ Rn×n by

[Vn]i,j :=



1√
n

j = 1
1√
j(j−1)

j > 1 ∧ i < j

− j−1√
j(j−1)

j > 1 ∧ i = j

0 j > 1 ∧ i > j

Note that this definition leads for n = 2 to V2 = W1, i. e., V2 is equal to the normalized
Walsh matrix W1 (cf. Definition 4.5). //

Example 4.10. First, we explicitly depict Vn according to Definition 4.8 for n ∈
{2, 3, 4}.

V2 =

(
1√
2

1√
2

1√
2
− 1√

2

)
, V3 =


1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6

 , V4 =


1√
4

1√
2

1√
6

1√
12

1√
4
− 1√

2
1√
6

1√
12

1√
4

0 − 2√
6

1√
12

1√
4

0 0 − 3√
12


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Second, for H ∈ H(Z4) we compute that HV4 = V4Λ with a diagonal matrix Λ.
1√
4

1√
2

1√
6

1√
12

1√
4
− 1√

2
1√
6

1√
12

1√
4

0 − 2√
6

1√
12

1√
4

0 0 − 3√
12



a b b b
b a b a
b b a b
b b b a




1√
4

1√
2

1√
6

1√
12

1√
4
− 1√

2
1√
6

1√
12

1√
4

0 − 2√
6

1√
12

1√
4

0 0 − 3√
12




a+ 3b 0 . . . 0

0 a− b . . . 0
...

. . . . . . 0
0 . . . 0 a− b


(4.17)

The following lemma reveals for any n ∈ N that the matrices Vn are orthogonal and
that they diagonalize the matrices H(Zn). //

Lemma 4.21. For any n ∈ N, the matrix Vn is orthogonal and it diagonalizes all
matrices H ∈ H(Zn), i. e., V T

n HVn = Λ with a diagonal matrix Λ ∈ Rn×n. Moreover,
Λ(1, 1) = ϕH(0) + (n− 1)ϕH(1) and Λ(i, i) = ϕH(0)− ϕH(1) for 1 < i ≤ n.

Proof. We proof the orthogonality of Vn by induction on n. Since V2 is the normalized
Walsh matrix W1 (see Definition 4.5), we know that V2 is orthogonal. Now assume
that Vn−1 is orthogonal. By Definition 4.8 (see also Example 4.10) we see that Vn
evolves out of Vn−1 by: (1) changing the first column from (1/

√
n− 1, . . . , 1/

√
n− 1)T

to (1/
√
n, . . . , 1/

√
n)T, (2) appending the row (1/

√
n, 0, . . . , 0,−(n − 1)/

√
n(n− 1)),

and (3) appending the column (1/
√
n(n− 1), . . . , 1/

√
n(n− 1),−(n−1)/

√
n(n− 1))T.

First, we obtain for the n-th row and column of the product VnV
T
n that

1√
n

. . . 1√
n

1√
n

∗ . . . ∗ 0
...

. . .
...

...
∗ . . . ∗ 0
1√

n(n−1)
. . . 1√

n(n−1)
− n−1√

n(n−1)




1√
n
∗ . . . ∗ 1√

n(n−1)

...
...

. . .
...

...
1√
n
∗ . . . ∗ 1√

n(n−1)
1√
n

0 · · · 0 − n−1√
n(n−1)




∗ . . . ∗ 0

...
. . .

...
...

∗ . . . ∗ 0

0 · · · 0 1



(4.18)

since 1/n − (n − 1)/(n(n − 1)) = 0. Moreover, note that the block of Vn we sketched
by ∗ in (4.18) is equal to Vn−1(:, 2:n− 1). Thus, since Vn−1 is orthogonal and its first
column is given by (1/

√
n− 1, . . . , 1/

√
n− 1)T we see that the matrix product Vn−1(:

, 2:n− 1)Vn−1(:, 2:n− 1)T = In−1 − 1/(n − 1), where 1/(n − 1) denotes the constant
matrix with entry 1/(n−1). Therefore, because (1/

√
n)2 +(1/

√
n(n− 1))2 = 1/(n−1),

the orthogonality of the matrix Vn is proved (cf. (4.18)).
For the second property, V T

n HVn = Λ, we prove HVn = VnΛ in compliance with
Example 4.10 where the case n = 4 is depicted. We simply study how H operates on
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the columns of Vn. For the first column Vn(:, 1) = (1/
√
n, . . . , 1/

√
n)T the claim holds

trivially with Λ(1, 1) = ϕH(0) + (n − 1)ϕH(1). For all other columns 1 < i ≤ n we
see by Definition 4.8 (see also Example 4.10) that the columns sum up to zero. This
shows for v = HVn(:, i) that v(j) = 0 for all j > i since all non-zero values of Vn(:, i)
get multiplied by the same constant (cf. (4.17)). For the same reason, in the case j = i,
it holds that v(i) = −(i − 1)/

√
i(i− 1)(ϕH(0) − ϕH(1)). Moreover, in the case j < i

we obtain

v(i) =
1√

i(i− 1)
ϕH(0) + (i− 2)

1√
i(i− 1)

ϕH(1)− (i− 1)√
i(i− 1)

ϕH(1)

=
1√

i(i− 1)
(ϕH(0)− ϕH(1))

Thus, v = Vn(:, i)(ϕH(0) − ϕH(1)) and therefore, by setting Λ(i, i) = ϕH(0) − ϕH(1),
we end up with the claimed representation, which completes the proof.

Note that the choice of Vn is (besides of the first column) by no means unique since
the vectors {Vn(:, i) | 1 < i ≤ n} span an (n− 1)-dimensional eigenspace. On the other
hand, we will see that the particular choice of Vn we made in Definition 4.8 is beneficial
from a computational point of view. Concretely, Section 4.3.3 will reveal that the matrix
vector product Vnv with v ∈ Rn can be computed in Θ(n) time.

4.3.2. Algebraic Properties

Based on the preceding results, it seems likely that all matrices H ∈ H(Ω) have also
the same eigenvectors in case of an arbitrary signature Ω = Zan × Zan−1 × · · · × Za1 .
We show in this section that this is indeed the case. Moreover, we will see that in case
Ω = Znc the eigenvalues show an analogous structure to the binary case, whereas the
general case Ω = Zan × Zan−1 × · · · × Za1 leads to less structure in the eigenvalues.

Corollary 4.22. Let H ∈ Rnk×nk be an n× n block matrix of the form

H =


ΛC ΛD · · · ΛD

ΛD ΛC
. . .

...
...

. . . . . . ΛD

ΛD · · · ΛD ΛC


with diagonal matrices ΛC ,ΛD ∈ Rk×k. Then it holds that

(Vn ⊗ Ik)TH(Vn ⊗ Ik) = diag(ΛC + (n− 1)ΛD,ΛC − ΛD, . . . ,ΛC − ΛD) = Λ. (4.19)

In other words, H is diagonalized by Vn ⊗ Ik.

Proof. Recall that the vector Kronecker product Vn ⊗ Ik (cf. Definition 3.4) “vector-
izes” scalar computations. Here this means that we are exactly in the situation of
Lemma 4.21, except of the fact that H is composed by diagonal blocks instead of
scalars. Thus, since the multiplication of diagonal matrices is commutative, the validity
of the claim follows directly by (the proof of) Lemma 4.21.
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Theorem 4.23. Let Ω = Zan × Zan−1 × · · · × Za1 be an arbitrary signature. Then the

matrix VΩ :=
⊗n−1

i=0 Van−i
diagonalizes all matrices H ∈ H(Ω), i. e., Λ = V T

Ω HVΩ is a
diagonal matrix and the columns of VΩ are the eigenvectors of all H ∈ H(VΩ).

Proof. We define Ωk := Zak×Zak−1
×· · ·×Za1 for all 1 ≤ k ≤ n and inductively show that

VΩk
diagonalizes all matrices H ∈ H(Ωk). The base case k = 1 is covered by Lemma 4.21

since Ω1 = Za1 . Assume that the claim holds for k. Then VΩk+1
= Vak+1

⊗ VΩk
and we

can decompose VΩk+1
in the form VΩk+1

= (Iak+1
⊗VΩk

)(Vak+1
⊗I|Ωk|). Consequently, we

compute V T
Ω HVΩ in two steps. First, we compute H̃ = (Iak+1

⊗VΩk
)TH(Iak+1

⊗VΩk
) and

subsequently, we compute Λ = (Vak+1
⊗I|Ωk|)H̃(Vak+1

⊗I|Ωk|). According to Lemma 4.20
the matrices H ∈ VΩk+1

are block matrices with blocks C,D ∈ H(VΩk
).

H̃ = (Iak+1
⊗ VΩk

)TH(Iak+1
⊗ VΩk

) = (Iak+1
⊗ V T

Ωk
)H(Iak+1

⊗ VΩk
)

=


V T

Ωk
0 · · · 0

0 V T
Ωk

. . .
...

...
. . . . . . 0

0 · · · 0 V T
Ωk



C D · · · D

D C
. . .

...
...

. . . . . . D
D · · · D C



VΩk

0 · · · 0

0 VΩk

. . .
...

...
. . . . . . 0

0 · · · 0 VΩk



=


V T

Ωk
CVΩk

V T
Ωk
DVΩk

· · · V T
Ωk
DVΩk

V T
Ωk
DVΩk

V T
Ωk
CVΩk

. . .
...

...
. . . . . . V T

Ωk
DVΩk

V T
Ωk
DVΩk

· · · V T
Ωk
DVΩk

V T
Ωk
CVΩk

 =


ΛC ΛD · · · ΛD

ΛD ΛC
. . .

...
...

. . . . . . ΛD

ΛD · · · ΛD ΛC


Since ΛC = V T

Ωk
CVΩk

and ΛD = V T
Ωk
DVΩk

are diagonal matrices (by the induction

hypothesis), we can apply Corollary 4.22 to compute Λ = (Vak+1
⊗I|Ωk|)H̃(Vak+1

⊗I|Ωk|).
This completes the inductive step as well as the entire proof.

Therefore, for arbitrary signature Ω, all matrices H ∈ H(Ω) have the same eigen-
vectors given by the columns of VΩ. The corresponding eigenvalues can be explicitly
computed by the recursive relationship given in (4.19). In the binary case we have shown
that the diagonal of the matrix of eigenvalues is a dH-based vector (cf. Theorem 4.7).
This property does not generalize to arbitrary signatures Ω—as the following example
indicates.

Example 4.11. Consider H ∈ H(Ω) with Ω = Z3×Z2, i. e., the associated function ϕH
is given by ϕH(0) = c, ϕH(1) = d and ϕH(2) = e. This means (cf. Example 4.3) that
the eigenvalues of the two distinct 2× 2 blocks C,D of H (cf. Lemma 4.3) are given by
(c+ d, c− d) and (d+ e, d− e), respectively. Thus, by the recursive relationship (4.19),
we obtain

diag(V T
Ω HVΩ)T =


(c+ d) + 2(d+ e)
(c− d) + 2(d− e)
(c+ d)− (d+ e)
(c− d)− (d− e)
(c+ d)− (d+ e)
(c− d)− (d− e)

 =


c+ 3d+ 2e
c+ d− 2e
c− e
c+ e
c− e
c+ e

 6=


c̃

d̃

d̃
ẽ

d̃
ẽ


for d 6= e.

Thus, the diagonal of the matrix of eigenvalues is in general not a dH-based vector. //
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An immediate consequence of the missing structure in the matrix of eigenvalues of the
matrices H ∈ H(Ω) is that the set H(Ω) is in general not closed under multiplication.

Example 4.12. Consider Ω = Z3 × Z2 and let G ∈ H(Ω) (cf. Example 4.9). Then
G ·G is in general not an element of H(Ω). It suffices to show that G ·G(:, 1) is not a
dH-based vector. Concretely, we obtain

G ·G(:, 1) =


c d d e d e
d c e d e d
d e c d d e
e d d c e d
d e d e c d
e d e d d c




c
d
d
e
d
e

 =


c2 + 3d2 + 2e2

2cd+ 4de
2cd+ d2 + 2de+ e2

2d2 + 2ce+ 2de
2cd+ d2 + 2de+ e2

2d2 + 2ce+ 2de

 6=


c̃

d̃

d̃
ẽ

d̃
ẽ


for d 6= e.

Thus, the set H(Ω) is in general not closed under multiplication. //

In the remainder of this section we consider signatures of the form Ω = Znc with
arbitrary c, n ∈ N. For signatures of this particular shape, almost all of the results we
obtained for the binary case Ω = Zn2 in Section 4.2.1 can be naturally generalized.

Lemma 4.24 (cf. Lemma 4.5). Let c ∈ N be fixed and (x, y) be a pair of vectors x, y ∈
Rn which satisfy for all 1 ≤ i < n the property xi + cxi+1 = yi − yi+1. Then it holds for
the vectors u = y + cx and v = y − x that u(2 : n) = v(1 : (n− 1)).

Proof. By definition of u and v, we get

u = y + cx = (y1 + cx1, y2 + cx2, . . . , yn + cxn )

v = y − x = (y1 − x1 , . . . , yn−1 − xn−1, yn − xn)

Thus, the claim follows, since yi+1 + cxi+1 = yi − xi holds by assumption.

Lemma 4.25 (cf. Lemma 4.6). Consider for c ∈ N the matrices A
(n)
c ∈ R(n+1)×(n+1)

which are recursively defined by

A(0)
c := 1, A(n)

c :=

(
A

(n−1)
c 0

A
(n−1)
c (n, :) 0

)
+

(
0 cA

(n−1)
c

0 −A(n−1)
c (n, :)

)
. (4.20)

Then A
(n)
c can also be decomposed in the form

A(n)
c =

(
A

(n−1)
c (1, :) 0

A
(n−1)
c 0

)
+

(
0 cA

(n−1)
c (1, :)

0 −A(n−1)
c

)
. (4.21)

Proof. Use the proof of Lemma 4.6 with Lemma 4.24 instead of Lemma 4.5.

The next example indicates that the case Ω = Znc indeed provides structure in the
eigenvalues, similar to the binary case Ω = Zn2 .
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Example 4.13. Consider H ∈ H(Ω) with Ω = Z2
3, i. e., the associated function ϕH

is given by ϕH(0) = a, ϕH(1) = b and ϕH(2) = c. This means (cf. Example 4.3) that
the eigenvalues of the two distinct 3 × 3 blocks C,D of H (cf. Lemma 4.3) are given
by (a + 2b, a − b, a − b) and (b + 2c, b − c, b − c), respectively. Thus, by the recursive
relationship (4.19), we obtain

diag(V T
Ω HVΩ)T =



(a+ 2b) + 2(b+ 2c)
(a− b) + 2(b− c)
(a− b) + 2(b− c)
(a+ 2b)− (b+ 2c)
(a− b)− (b− c)
(a− b)− (b− c)
(a+ 2b)− (b+ 2c)
(a− b)− (b− c)
(a− b)− (b− c)


=



a+ 4b+ 4c
a+ b− 2c
a+ b− 2c
a+ b− 2c
a− 2b+ c
a− 2b+ c
a+ b− 2c
a− 2b+ c
a− 2b+ c


=



ã

b̃

b̃

b̃
c̃
c̃

b̃
c̃
c̃


.

The following theorem generalizes Theorem 4.7 and shows that diag(V T
Ω HVΩ) is for all

Ω = Znc and H ∈ H(Ω) a dH-based vector. //

Theorem 4.26 (cf. Theorem 4.7). Let H ∈ H(Znc ) with c, n ∈ N and ϕH its associ-
ated function. Then H has at most n + 1 different eigenvalues λ0, λ1, . . . , λn and the
multiplicity of λi is

(
n
i

)
(c− 1)i. Moreover, the eigenvalues λi are given by

(λ0, λ1, . . . , λn)T = A(n)
c (ϕH(0), ϕH(1), . . . , ϕH(n))T (4.22)

with the matrices A
(n)
c ∈ R(n+1)×(n+1) defined in (4.20).

Proof. Use the proof of Theorem 4.7 with Lemma 4.25 instead of Lemma 4.6.

While Theorem 4.26 shows that the associated function of a matrix H ∈ H(Znc )
can be arbitrarily chosen, the following example reveals that, in contrast to the binary
case, the eigenvalues cannot be arbitrarily chosen in case of signatures Ω = Znc . More
specifically, Theorem 4.8 cannot be generalized to the case H(Znc ).

Example 4.14. Consider Λ = diag(2, 1, 1) and Ω = Z3, then V T
Ω ΛVΩ /∈ H(Ω). First,

note that we can decompose VΩ in the form

VΩ =


1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6

 =

1 1 1
1 −1 1
1 0 −2




1√
3

0 0

0 1√
2

0

0 0 1√
6

 = ṼΩD

Next, we compute ṼΩ

T
ΛṼΩ (in order to obtain V T

Ω ΛVΩ = DṼΩ

T
ΛṼΩD)

ṼΩ

T
ΛṼΩ =

2 1 1
2 −1 0
2 1 −2

1 1 1
1 −1 1
1 0 −2

 =

4 1 1
1 3 1
1 1 7

 .

Thus, V T
Ω ΛVΩ /∈ H(Ω) is not an element of H(Ω), because its (off-)diagonal elements

are not equal (cf. Lemma 4.20). //
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As Example 4.14 depicts, we cannot generalize Theorem 4.8 in order to obtain a linear
mapping between the eigenvalues of a matrix H ∈ H(Znc ) and its associated functions.
On the other hand, the set H(Znc ) is still closed under multiplication.

Lemma 4.27. Let c, n ∈ N be arbitrary, Ω = Znc , H ∈ H(Ω) a dH-based matrix and
x ∈ R|Ω| a dH-based vector (with respect to Ω). Then y = Hx is also a dH-based vector.

Proof. We define for 0 ≤ k ≤ n the set Γk := {i | 1 ≤ i ≤ |Ω| ∧ dH(i, 1) = k}. Moreover,
we denote by ϕH and ϕx the function associated with H and x, respectively. With this
notation we obtain for y = Hx the element-wise formula

y(i) =

|Ω|∑
k=1

H(i, k)x(k) =
n∑
k=0

ϕx(k) ·
(∑
j∈Γk

H(i, j)

)
.

In order to complete the proof, we have to show that∑
j∈Γk

H(i, j) =
∑
j∈Γk

ϕH(dH(i, j)) (4.23)

solely depends on dH(i, 1) and not on the particular value of i.
Recall that the set Γk contains all indices whose string representation with respect

to Ω contains exactly n − k zeros. Therefore, the set Γk is invariant under “digit-
permutations”, i. e., permutations which shuffles the elements in the string representa-
tion of j ∈ Γk. Similarly, the set Γk is closed under shifts with a fixed element, i. e., let
s ∈ Γk be fixed then j + s ∈ Γk for all j ∈ Γk, where the addition has to be understood
element-wise and modulo c. By definition, the string representations of arbitrary indices
1 ≤ i, i′ ≤ |Ω| with dH(i, 1) = dH(i′, 1) also contain the same number of zeros. Thus, we
can for given indices i, i′ with dH(i, 1) = dH(i′, 1) = k always find a digit-permutation
π and a shift s ∈ Γk such that dH(i, j) = dH(i′, π(j) + s) for all j ∈ Γk. Therefore, since
Γk is closed under digit-permutations and shifts, the expression (4.23) is indeed solely
dependent on dH(i, 1) and not on the particular value of i.

Corollary 4.28. Let c, n ∈ N be arbitrary, then H(Znc ) is closed under multiplication.

Proof. We proceed by induction on n. The base case n = 0, i. e., Z0
c = R is trivial.

Assume that the claim holds for n. Then, by Lemma 4.20, we conclude that for all
H,G ∈ H(Zn+1

c )

H ·G =


C D · · · D

D C
. . .

...
...

. . . . . . D
D · · · D C



C ′ D′ · · · D′

D′ C ′
. . .

...
...

. . . . . . D′

D′ · · · D′ C ′

 =


E F · · · F

F E
. . .

...
...

. . . . . . F
F · · · F E


with C,D,C ′, D′ ∈ H(Znc ), E = CC ′ + (c− 1)DD′ and F = CD′ + C ′D + (c− 2)DD′.
This means H ·G fulfills property (i) in Lemma 4.20. Property (ii) of the latter follows
directly from Lemma 4.27, since the first column of a dH-based matrix fully determines
its associated function as well as the associated functiions of its sub-blocks. Thus, by
Lemma 4.20, the product H ·G is an element of H(Zn+1

c ) for all H,G ∈ H(Zn+1
c ).
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Theorem 4.29 (cf. Theorem 4.10). Let Ω = Znc with c, n ∈ N. With the usual matrix
addition and multiplication (H(Ω) ,+, ·) is a commutative ring with identity. In par-
ticular, the zero matrix is the additive identity and I|Ω| is the multiplicative identity of
(H(Ω) ,+, ·).

Proof. Use the proof of Theorem 4.10, where the fact that H(Ω) is closed under multi-
plication follows by Corollary 4.28.

We refrain in the following from generalizing the approximation results stated in Sec-
tion 4.2.3. The solutions to Problem 4.3 and Problem 4.5 can be straightforwardly
generalized to arbitrary signatures, whereas this does not seem to be possible for Prob-
lem 4.4, since its solution (cf. Theorem 4.17) required Theorem 4.8 which does not hold
for more general signatures. Moreover, we will solely consider the binary case in our
practical considerations in Chapter 5.

4.3.3. Fast Algorithms

In principle we can straightforwardly employ the same strategies to obtain fast algo-
rithms as in the binary case (cf. Section 4.2.2). The crucial property which is not yet
clear for matrices H ∈ H(Ω) is how to efficiently compute the matrix vector products
with their respective matrix of eigenvectors VΩ. As a prerequisite, we study how to
efficiently compute Vnv with v ∈ Rn (cf. Definition 4.8).

For a fast matrix vector product with Vn it is important to understand how its rows
are structured (see also Example 4.10). In particular, we can express each row Vn(i, :)
with 2 ≤ i ≤ n in terms of the first row Vn(1, :) by

Vn(i, :) = (Vn(1, 1), 0, . . . , 0︸ ︷︷ ︸
i−2 times

,−(i− 1)Vn(1, i), Vn(1, (i+ 1):n)).

Thus, the product Vn(i, :)v consists of three parts

Vn(i, :)x = Vn(1, 1)v(1)− (i− 1)Vn(1, i)v(i) + Vn(1, (i+ 1):n)v((i+ 1):n).

By precomputing s(i) = Vn(1, (i+ 1):n)v((i+ 1):n), this formula can be evaluated in
constant time and therefore, the whole matrix vector product can be computed in linear
time. Algorithm 4.3 gives complete algorithm for efficiently computing Vnv (in place)
using the aforementioned ideas.

By having Algorithm 4.3 for efficiently computing Vnv at hand, the derivation of a
fast routine for computing VΩv is straightforward. In particular, we exploit the Kro-
necker product representation of VΩ in order to derive a fast algorithm (cf. Section 3.2).
Consider signatures of the form Ωn = Zan × Zan−1 × · · · × Za1 , then we again use the
idea of factorizing VΩn to obtain

VΩn = (Ian ⊗ VΩn−1)(Van ⊗ I|Ωn−1|)

By the occurring parallel and vector Kronecker products (cf. Definition 3.3 and Defini-
tion 3.4) an algorithm for computing VΩv consists of the following two steps:
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Algorithm 4.3 Linear time computation of the matrix vector product Vnv
Input: v ∈ Rn

Output: Vnv (in v)

1: s(1)← Vn(1, 1) · v(1)
2: for i← 2 to n do
3: s(i)← s(i− 1) + Vn(1, i) · v(i)
4: end for
5: for i← 1 to n do
6: v(i)← s(1)− (i− 1) · Vn(1, i) · v(i) + (s(n)− s(i))
7: end for

(i). We compute (Van ⊗ I|Ωn−1|)v, which means that we perform the multiplication
with Van in a vectorized fashion with vectors of length |Ωn−1| instead of scalars.
Nevertheless, we can employ Algorithm 4.3 (in a vectorized form).

(ii). The parallel Kronecker product (Ian ⊗VΩn−1) simply states that we have to apply
VΩn−1 on the an blocks of size |Ωn−1| of the vector obtained in step (i).

This recursion obviously stops after n steps and can be naturally implemented in an
iterative fashion (cf. Section 3.2). In particular, Algorithm 4.4 depicts a complete im-
plementation of the sketched Kronecker product driven algorithm.

Algorithm 4.4 Efficient computation of the matrix vector product VΩv

Input: Ω = Zan × Zan−1 × . . .Za1 , v ∈ R|Ω|
Output: VΩv (in v)

1: b← |Ω|
2: for i← n down to 1 do
3: b← b/ai
4: for j ← 1 to |Ω| by bai do
5: s(1, :)← Vn(1, 1) · v(j : (j + b)) . s ∈ Rai×b

6: for i← 2 to ai do
7: s(i, :)← s(i− 1) + Vn(1, i) · v((j + (i− 1)b) : (j + ib))
8: end for
9: for i← 1 to ai do

10: v((j + (i− 1)b) : (j + ib))← s(1, :) + (s(n, :)− s(i, :))
11: − (i− 1) · Vn(1, i) · v((j + (i− 1)b) : (j + ib))
12: end for
13: end for
14: end for

Theorem 4.30. Let Ω = Zan × Zan−1 × . . .Za1 and v ∈ R|Ω| be arbitrary. Then,
Algorithm 4.4 computes the matrix vector product VΩv in Θ(n|Ω|) time.

Proof. The for-loop ranging from lines 4–13 iterates |Ω|/(bai) times. Moreover, its
body has an effort of Θ(bai), since simple vector operations with vectors of size b are
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performed. Thus, this loop contributes—independent of the outer index i—an effort of
Θ(|Ω|). Therefore, the overall complexity is Θ(n|Ω|).

Theorem 4.30 particularly emphasizes, that the concrete shape of the signature Ω
does not lead to problems from a computational point of view. Contrary, consider
signatures Ω = Znc , then n|Ω| = logc(|Ω|)|Ω|, i. e., the algorithms become more efficient
with larger alphabets. The correctness follows immediately by the considerations above.
Moreover, note that lines 5–11 represent a vectorized version of Algorithm 4.3.
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5. Applications of Hamming
Distance-based Matrices

In the following sections we consider several applications of the results on dH-based
matrices we developed in Chapter 4. First and foremost we apply these results in several
ways to the quasispecies model. In particular, we utilize dH-based matrices in order
to generalize the computationally tractable model assumptions and to design efficient
preconditioners. Moreover, we also refer to applications beyond the quasispecies model.
All experimental results in this chapter where obtained with Matlab 7.11.0 (R2010b).

5.1. Generalizations in the Quasispecies Model

Recall (cf. Section 1.3) that computing the quasispecies requires the computation of
the dominating eigenvector of a matrix W = QF ∈ RN×N , where N = 2ν . The ma-
trix Q describes thereby the underlying mutation model, whereas F consists of the
fitness values describing the constitution of the different species. In general, the under-
lying ODE model (see (1.1)) poses the requirements that F is a diagonal matrix with
strictly positive diagonal elements, whereas the matrix Q ≥ 0 has to be nonnegative
and column-stochastic, i. e., all columns of Q have to sum up to one. In contrast to
this mathematical requirements for Q, commonly the so-called uniform error rate model
[Eigen, 1971] is used as a mutation model. In this model a uniform mutation error rate
0 ≤ p < 1 is assumed, which leads to a matrix Q ∈ RN×N with elements

qi,j = (1− p)dH(i,j) · pν−dH(i,j). (5.1)

Besides that this model is used throughout the theoretical literature (see Schuster [2008,
2011] and the references therein), all efficient computations are limited to this case,
since the uniform error rate model is the only known model which leads to a Kronecker
product representation of Q and consequently, to efficient solvers [Niederbrucker and
Gansterer, 2011a].

Clearly, there is a huge gap between the model requirement that Q is column stochas-
tic and the special case that Q is given by (5.1). The only practically motivated re-
striction we have to bear in mind is that the mutation error rate is modeled to be
independent from the particular position a mutation takes place in the RNA sequence.
Consequently, aiming at a simple Kronecker product representation of Q always ends up
in the uniform error rate model. In contrast to that, as a substantial generalization, one
can assume that the mutation matrix Q is an arbitrary dH-based matrix, which leads
to a fairly general modeling of the mutation process with all of the required properties.
As the results in Section 4.2.2 and Section 4.3.3 depict, dH-based matrices allow de-
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spite their generality efficient algorithms of the same complexity as Kronecker product
representations of Q allow.

Example 5.1. We consider two potential mutation matrices Q1 and Q2 in the case of
a chain length of ν = 2. The matrix Q1 is based on the uniform error rate model with
p = 0.01 and Q2 ∈ H(Z2

2) is a particular example of a dH-based matrix which does not
allow for a simple Kronecker product representation.

Q1 =


0.81 0.09 0.09 0.01
0.09 0.81 0.01 0.09
0.09 0.01 0.81 0.09
0.01 0.09 0.09 0.81

 =
2⊗
i=1

(
0.9 0.1
0.1 0.9

)

Q2 =


0.90 0.04 0.04 0.01
0.04 0.90 0.01 0.04
0.04 0.01 0.90 0.04
0.01 0.04 0.04 0.90

 6= 2⊗
i=1

(
1− p p
p 1− p

)

Another example of a mutation model which can be expressed in term of dH-based ma-
trices would be to choose the mutation error rate exponentially decaying, i. e., choosing
the associated function of Q as ϕQ(d) = e−d/c where c is a normalization constant. //

Generally, it can be easily seen from the structure of dH-based matrices (cf. Lemma 4.3
and Lemma 4.20) that they have constant column sums. This means, up to nor-
malization any Hamming distance-based matrix, i. e., any model function of the form
ϕ(dH(i, j)), can be used within the quasispecies model. A particularly useful applica-
tion of this observation is that we can also approximate a given matrix of mutation
probabilities.

Example 5.2. Assume we are given an arbitrary column stochastic mutation matrix Q
obtained, e. g., by practical observations or expert knowledge. Then Theorem 4.16
allows to approximate Q by a dH-based matrix Q̃ in order to enable the investigation
of (an approximation) of Q within the quasispecies model.

Q =


0.460 0.210 0.263 0.112
0.214 0.362 0.082 0.241
0.256 0.159 0.416 0.303
0.070 0.270 0.240 0.344

 , Q̃ =


0.3955 0.2496 0.2496 0.1058
0.2496 0.3955 0.1058 0.2496
0.2496 0.1058 0.3955 0.2496
0.1058 0.2496 0.2496 0.3955


It is important to note that for an arbitrary column stochastic matrix the optimal so-
lution of the approximation problem considered in Theorem 4.16 is a column stochastic
matrix as well, which straightforwardly follows from its definition. //

Another aspect the results from Chapter 4 allow to generalize is that we can not only
consider binary alphabets but also larger alphabets, e. g., the usual four letter RNA
alphabet [Schuster, 2011]. Even more generally, certainly constraint sequences where
different elements of the sequences are taken from different alphabets can be considered.
This might be of interest whenever for certain positions in the RNA sequence additional
a priori knowledge is available.

Summarizing, for relatively low costs compared to the existing methods we can cover
substantially more general scenarios by applying dH-based matrices. In particular, this
holds in terms of the mutation model as well as in terms of the manageable alphabets.
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Figure 5.1.: Iterations required to approximate the dominating eigenvector up to ε =
10−12 with the power method for different landscapes (choices of fN).

5.2. Preconditioning and Shift-and-Invert Methods

As we have seen in Section 2.3, with an efficient matrix vector multiplication routine at
hand, it is very easy to compute the dominating eigenpair of a matrix via the power it-
eration. The crucial aspect in this context is that the eigenvector approximate delivered
by the power iteration converges linearly with rate λ2/λ1 where λ1 and λ2 denote as
before the two largest eigenvalues (in magnitude) of the respective matrix. This means
that the convergence behavior of the power iteration depends in a particularly simple
way on the spectral properties of the input matrix.

In case of the matrix W = QF occurring in the quasispecies model, the spectral
properties are mostly determined by the fitness landscape F . In case of the com-
monly considered single peak fitness landscape [Schuster, 2011] (see also Figure 1.1),
the master sequence has a somewhat dominating eigenvalue which also leads to a well-
separated dominating eigenvalue [Niederbrucker and Gansterer, 2011a]. On the other
hand, other—especially practically relevant—fitness landscapes will in general not show
a good separation of the dominating eigenvalue. Since the spectrum of W cannot be
easily determined also the choice of the landscapes we consider requires attention.

In order to illustrate the effects of a badly separated spectrum we consider the follow-
ing model landscape: Irrespective of the particular problem dimension N we consider
a “double peak landscape”, where f1 = 4, fN = 4− ε and for all 1 < i < N the fitness
value fi is drawn uniformly form the unit interval [0, 1]. In principle, the idea behind
this double peak fitness landscape is to introduce a certain symmetry into the problem
which leads to two (almost) equally strong regimes and therefore, also to a bad separa-
tion of the dominating eigenvalue. Figure 5.1 shows how certain choices of fN influence
the separation of the dominating eigenvalue. We can see that the number of iterations
required to converge differs by several orders of magnitude. Therefore, also the time to
converge increases by several orders of magnitude. In the following, we show how to
solve also such more subtle problems with bad separation, by utilizing shift-and-invert
methods, i. e., inverse iteration and Rayleigh quotient iteration (see Section 2.3).
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5. Applications of Hamming Distance-based Matrices

5.2.1. Design of Preconditioners

Shift-and-invert methods require the solution of a linear system in each iteration. More-
over, the desired fast convergence of the eigenvalue iteration requires well chosen shifts,
which eventually lead to ill-conditioned systems. While this problem is by far not as
critical as it seems to be at a first glance [Trefethen and Bau, 1997, Exercise 27.5], the
employed iterative solvers still greatly benefit from an appropriate preconditioning.

In its usual form the eigenvalue problem at hand involves a matrix W = QF with
a dH-based matrix Q and a diagonal matrix F . For every dH-based matrix H it holds
by definition that H − µI is also a dH-based matrix. This motivates that a good
approximation of QF −µI could potentially be given in terms of a product HD with a
dH-based matrix H and a diagonal matrix D. Moreover, Corollary 4.19 shows how to
determine H and D optimally in order to minimize ‖(QF − µI)−HD‖F. Besides the
hope for a reasonable approximation quality, it is clear that the intended preconditioner
HD can be efficiently inverted since H is a dH-based matrix (cf. Corollary 4.11) and D
a diagonal matrix. The remaining problem is the concrete computation of H and D
which requires the solution of a large rank-1 approximation problem involving a subtle
reordering CR(QF − µI) of the matrix QF−µI. Later, in Section 5.2.2 we will see that
due to the specific structure of Q and F , this particular rank-1 approximation can be
solved surprisingly efficient by employing the SVD Lanczos process (cf. Section 2.3.2).

Earlier in Section 1.3 we have seen that we can easily consider different formulations
of the eigenvalue problem at hand, where the particular choice of the problem formu-
lation results in different properties, e. g., symmetry vs. no symmetry. As the next
lemma shows, finding a preconditioner for the case W = QF is sufficient to obtain also
analogous preconditioners in case of other problem formulations.

Lemma 5.1. Let W = QF be given from the quasispecies model, µ a real shift and
PR be a preconditioner targeting QF − µI. Moreover, let PS := F

1
2P−1

R F−
1
2 and PL :=

FP−1
R F−1. Then the matrices

P−1
R (QF − µI), P−1

S (F
1
2QF

1
2 − µI), P−1

L (FQ− µI) (5.2)

are all similar, i. e., the matrices in (5.2) have the same set of eigenvalue and hence,
also the same condition number with respect to the Euclidean norm.

Proof. We have to show that all of the matrices in (5.2) can be written in the form
M(P−1

R (QF − µI))M−1, where M can be an arbitrary invertible matrix. In particular
it follows straightforwardly that

P−1
S (F

1
2QF

1
2 − µI) = F

1
2P−1F−

1
2 (F

1
2QF

1
2 − µI) = F

1
2 (P−1

R (QF − µI))F− 1
2 ,

P−1
L (FQ− µI) = FP−1F−1(FQ− µI) = F (P−1

R (QF − µI))F−1,

which proves the similarity of the matrices in (5.2).

Due to the similarity of the different problem formulations, we consider in the fol-
lowing experiments only the standard formulation W = QF . Moreover, the different
formulations also showed experimentally the expected analogous results. Before we
study the behavior of the derived preconditioners in practice, we first investigate their
computation via the SVD Lanczos process.
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5.2.2. SVD Lanczos

As we have seen in Example 2.1, the best rank-1 approximation of a matrix is given
by its dominating singular vectors. In order to avoid the huge effort of computing the
singular vectors via the SVD we pointed out the SVD Lanczos as an efficient alternative.
First an foremost this method requires a fast matrix vector multiplication routine for
the considered matrix and its transpose. At the first glance it seems to be an involved
problem to provide such an efficient routine due to the subtle structure of the reordering
CR (see Definition 4.6). But as the following example depicts, this reordering matches
well with the structure inherent in the matrices considered in the quasispecies model.

Example 5.3. Consider a chain length of ν = 2 but an otherwise arbitrary mutation
matrix Q and fitness landscape F . Then the shifted matrix QF − µI is structured like

QF − µI =


q1,1f1 − µ q1,2f2 q1,3f3 q1,4f4

q2,1f1 q2,2f2 − µ q2,3f3 q2,4f4

q3,1f1 q3,2f2 q3,3f3 − µ q3,4f4

q4,1f1 q4,2f2 q4,3f3 q4,4f4 − µ



=


ϕ(0)f1 − µ ϕ(1)f2 ϕ(1)f3 ϕ(2)f4

ϕ(1)f1 ϕ(0)f2 − µ ϕ(2)f3 ϕ(1)f4

ϕ(1)f1 ϕ(2)f2 ϕ(0)f3 − µ ϕ(1)f4

ϕ(2)f1 ϕ(1)f2 ϕ(1)f3 ϕ(0)f4 − µ

 ,

where ϕ denotes the associated function of the dH-based matrix Q. Applying the column
reordering CR (see Definition 4.6) to the matrix QF − µI leads to

CR(QF − µI) =


ϕ(0)f1 − µ ϕ(0)f2 − µ ϕ(0)f3 − µ ϕ(0)f4 − µ
ϕ(1)f1 ϕ(1)f2 ϕ(1)f3 ϕ(1)f4

ϕ(1)f1 ϕ(1)f2 ϕ(1)f3 ϕ(1)f4

ϕ(2)f1 ϕ(2)f2 ϕ(2)f3 ϕ(2)f4

 .

Moreover the condensed reordering CR (see (4.15)) is given by

CR(QF − µI)x =

ϕ(0)f1 − µ ϕ(0)f2 − µ ϕ(0)f3 − µ ϕ(0)f4 − µ
ϕ(1)f1 ϕ(1)f2 ϕ(1)f3 ϕ(1)f4

ϕ(2)f1 ϕ(2)f2 ϕ(2)f3 ϕ(2)f4



x1

x2

x3

x4


= (ϕ(0), ϕ(1), ϕ(2))T ·

4∑
i=1

fixi − (µ, 0, 0)T ·
4∑
i=1

xi.

These considerations exemplify a particularly good match between the structure of
QF − µI and the reordering CR. //

By generalizing the representation we derived in Example 5.3 for ν = 2, we obtain
for general chain length ν the formula

CR(QF − µI)x = (ϕ(0), ϕ(1), . . . , ϕ(ν))T ·
N∑
i=1

fixi − (µ, 0 . . . , 0)T ·
N∑
i=1

xi.
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Therefore, the matrix vector product required for the SVD Lanczos process can be
computed in Θ(N) time. Analogously, a linear time matrix vector routine can be
derived for the transpose of CR(QF − µI).

So far we know that a single iteration within the SVD Lanczos process can be effi-
ciently implemented. The more subtle issue is to determine how many iterations are
required in order to obtain a reasonable accurate approximation. In principle, the SVD
Lanczos has (in exact arithmetic) an exact stopping criterion, whereas in practice less
stringent criteria are required (cf. Algorithm 2.6). In particular, we use a pre-determined
number of maximal iteration jmax. In the absence of theoretical results, we depict in
Figure 5.2 the approximation accuracy obtained by different choices of jmax (averaged
over 10 experiments per parameter constellation).
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Figure 5.2.: Accuracy of the SVD Lanczos process for different numbers of maximal
iterations jmax, compared to the “correct” results obtained via the SVD.

As it can be seen in Figure 5.2, highly accurate results can be obtained with surpris-
ingly little iterations. Following the results of Figure 5.2, we consider in all following
experiments jmax = 3. Complementary to the previously shown accuracy results, Fig-
ure 5.3 shows a performance comparison between computing the dominating singular
vectors via the SVD and the SVD Lanczos process for different choices of jmax (averaged
over 10 experiments per parameter constellation). As expected, the SVD Lanczos pro-
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Figure 5.3.: Performance of the SVD Lanczos process for different number of iterations
jmax compared to the performance of the dominating singular value/vectors
via the SVD.

cess shows a superior performance and scaling behavior. Additionally, its effort decently
scales with the maximal number of iterations jmax. Moreover, Figure 5.3 shows that the
setup costs of the intended preconditioner are very low even for large chain lengths.

Summarizing, so far we obtained a structured preconditioner which can be efficiently
inverted and we exemplified that its computation is very cheap. The missing property
for being a “good” preconditioner is a (substantial) reduction of the number of iterations
required to converge within a certain target accuracy.

5.2.3. Application to Shift-and-Invert Methods

In Section 2.3 we saw that the inverse iteration as well as the Rayleigh quotient iteration
can be used to efficiently compute the dominating eigenpair of a matrix whose dominat-
ing eigenvalue is not well separated. Since the costs of iteratively solving a linear system
in each iteration raises substantial costs, these methods only provide benefits over the
simple power iteration in case the latter requires very large amounts of iterations. As we
saw in Figure 5.1, certain landscapes easily lead to thousands of iterations and hence,
power iteration-based approaches are very slow in these cases.

As a first step, we consider the effect of the previously introduced preconditioner
detached from a particular shift-and-invert solver. Concretely, suppose we are given
W = QF where F represents a double peak landscape with f1 = fN = 4 and let λ1

denote its dominating eigenvalue. Then we investigate the solution of (W−1.001λ1)x =
b, where the right hand side b is randomly chosen from the uniform distribution in
[0, 1]N . Figure 5.4 depicts the number of BiCGSTAB iterations required to converge
with and without preconditioning. We see that despite the overall number of required
iterations is relatively small, still a considerable effect of the preconditioning is visible.
Obviously, the results in Figure 5.4 are of a theoretical nature since only the number
of required iterations is compared, whereas the overhead caused by the preconditioning
is hidden. Hence, what really matters is overall execution time. Consequently, we
show in Figure 5.5 the overall runtimes corresponding to the experiments shown in
Figure 5.4. Moreover, we depict the ratio between the computation of the preconditioner
and the overall time required to solve the system. The efficient implementation of the

77



5. Applications of Hamming Distance-based Matrices

2 4 6 8 10 12 14 16

5

10

Chain length ν

It
er
a
ti
o
n
s
re
q
u
ir
ed

to
co
n
ve
rg
e BiCGSTAB Preconditioned BiCGSTAB

Figure 5.4.: Comparison between BiCGSTAB with and without preconditioning. We
compare the number of iterations required to reach a target accuracy of
ε = 10−12

preconditioner pointed out in Figure 5.5 can be obtained as follows: First, recall that
in the standard case we apply a preconditioner HD with a dH-based matrix H and a
diagonal matrix D to the matrix QF − µI. Then we obtain by the eigendecomposition
H = WνΛWν (cf. Lemma 4.4) that

D−1H−1(QF − µI) = D−1WνΛ
−1
H Wν(WνΛ

−1
Q WνF − µI) (5.3)

= D−1WνΛ
−1
H (Λ−1

Q WνF − µWν). (5.4)
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Figure 5.5.: Overall performance gains of preconditioned BiCGSTAB over BICGSTAB
without preconditioning. Besides a straightforward implementation of the
preconditioner we also consider a slightly more efficient implementation
which requires only three instead of four O(N logN) operations.

The computationally dominating part in the application of the preconditioner are
the matrix vector products with Wν , since all other matrices are diagonal. Therefore,
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applying the preconditioner in the form of (5.4) is advantageous over (5.3) because it
saves one multiplication with Wν .

What is left over is to depict the advantages of shift-and-invert methods over the
power iteration in case of ill-conditioned problems. In particular, we compare these
methods again in the case of a double peak landscape, i. e, a bad separation of the dom-
inating eigenvalue. Finally, Figure 5.6 illustrates the performance gains with respect
to the power iteration. In any case we see a substantial performance gain and observe
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Figure 5.6.: Overall performance gain of different shift-and-invert methods compared to
the power iteration. In case of the inverse iteration the shift is chosen as a
coarse approximation of λ1 computed via power iteration (the time spent
with this initial step is taken into account).

that the Rayleigh quotient iteration utilizing a preconditioned solver performs best. In
particular, all of the methods deliver performance gains of at least an order of mag-
nitude. Beyond that, Figure 5.6 even indicates a growth of the gains with increasing
chain length ν.

5.3. Further Applications

In the following, we consider three prototypical applications of the results about dH-
based matrices (cf. Chapter 4), which reach beyond the scope of the quasispecies model.

The Hamming distance is a widely applied distance measure between strings. Due to
the string representation of the genetic code, the Hamming distance naturally appears
at several places in (computational) biology. In particular, He, Petoukhov, and Ricci
[2004] as well as He and Petoukhov [2010] derived matrix representations of the genetic
code which are very closely related to what we called dH-based matrices throughout
this thesis. In many cases the matrices they consider are even dH-based matrices.
Moreover, they investigate (in terms of concrete examples) the structure and properties
of these matrices. While their work has in general a lack of mathematical rigor and
generality, it provides a variety of applications of the results we obtained in Chapter 4.
More specifically, our results from Chapter 4 can be used to generalize and extend the
observations for specific matrices which have been made by He, Petoukhov, and Ricci
[2004] as well as He and Petoukhov [2010].
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We have seen theoretically (cf. Section 4.2.3) as well as empirically (cf. Section 5.2)
that several approximation problems involving dH-based matrices can be efficiently
solved. Therefore, due to the fact that they are easy to invert, dH-based matrices have
a certain potential for being a reasonable preconditioner for different classes of (data-
sparse) matrices. For instance the classes of Toeplitz or block Toeplitz matrices are
due to their constant diagonals closely related to dH-base matrices and consequently,
positive preconditioning effects can be anticipated. Due to their inherent “Kronecker
structure”, dH-based matrices can also be beneficial in the context of shifted Kronecker
product systems [Moravitz Martin and Van Loan, 2007].

Last but not least we, consider the convergence analysis of distributed algorithms as a
potential field of application. So-called gossip algorithms are very simple methods which
allow—solely through nearest neighbor communication—to compute global quantities
such as an average over a distributed network. The rigorous convergence analysis of
these algorithms requires to investigate matrices with the same sparsity pattern as
the adjacency matrix of the graph which models the underlying network [Boyd et al.,
2006]. Beyond that, information about the particular convergence rate which can be
expected is given by certain spectral information [Boyd et al., 2006]. Because (the
adjacency matrices of) several common network topologies, e. g., hypercubes, are dH-
based matrices, our results on the structure and computation of the eigenvalues of
dH-based matrices can lead to more detailed insights into the convergence behavior of
this kind of distributed algorithms.
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6. Summary & Conclusions

We considered the problem of solving the eigenvalue problem occurring in the quasis-
pecies model as a motivation throughout this thesis. More concretely, the objective
was to compute the dominating eigenvector of certain structured large scale matrices.
The treatment of the intended huge problem dimensions was only possible because the
involved matrices are of a data-sparse nature. Our central aim was to extend prior
work whose success is limited to matrices with a good separation of the dominating
eigenvalue to the case of a bad separation—as it has to be expected in practice. In
principle, we considered to employ shift-and-invert methods, which raise the need for
solving a linear system in every iteration.

In order to meet the aforementioned goals we introduced the family of so-called
Hamming distance-based matrices whose elements are characterized by the property
that the (i, j)-th element solely depends on the Hamming distance between the indices
i and j (appropriately interpreted as finite strings). We elaborated in great detail
on these type of data-sparse matrices and developed a deep understanding of their
structure. Moreover, we developed results on algebraic and algorithmic aspects as well as
on the analytical solution of several approximation problems. Our interest in Hamming
distance-based matrices was twofold: On the one hand, they allowed to substantially
generalize the computationally tractable model assumptions in the quasispecies model.
On the other hand, more importantly, results on the analytical solution of certain
approximation problems involving Hamming distance-based matrices led to the design
of an effective preconditioner for the problems at hand.

In particular, we showed that we can solve this approximation problem involving
Hamming-distance-based matrices by reducing it to the problem of rank-1 approxima-
tion. Solving rank-1 approximation at a large scale is in principle a tricky problem but
by employing the Lanczos SVD process it turned out that the particular rank-1 approx-
imation problem we considered can be efficiently solved at an extreme dimensions as
well. Notably, the (relative) overall effort for computing the resulting preconditioner
even decreases with increasing dimension. Altogether, we observed for the resulting
shift-and-invert solvers an overall performance gain of at least an order of magnitude
compared to existing approaches.

Concluding, we saw that a comprehensive theory about the family of Hamming
distance-based matrices allowed us to efficiently solve a large scale eigenvalue prob-
lem even in more general settings than it was previously the case. In the course of
that, we could also derive an efficient data-sparse preconditioner for the linear systems
occurring in the inner iteration of the employed shift-and-invert methods. Together, all
these efforts led to substantial performance gains in the case of ill-conditioned problems.
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A. Notation and Conventions

Notation A.1 (Matrices). For a matrix A ∈ Rm×n we denote its entries by ai,j, i. e.,

A =

 a1,1 · · · a1,n
...

. . .
...

am,1 · · · am,n

 , ai,j ∈ R.

Moreover, we also use [A]i,j = ai,j to index the (i, j)-th entry of A. By tr(A), rank(A)
and det(A), we denote the trace, rank and determinant of A, respectively. Moreover,
in case A is a block matrix, we denote by Ai,j its blocks, i. e.,

A =

 A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

 , Ai,j ∈ Rmi×nj .

//

Notation A.2 (Explicit Matrix Multiplication). In case we explicitly compute a matrix
product P = A ·B · C with three (or more) factors we use schemes of the form

P = A ·B · C =
B C

A A ·B A ·B · C
for the sake of a compact and easily readable exposition. //

Notation A.3 (Diagonal Matrices). Let A ∈ Rn×n be a square matrix, then diag(A)
denotes the vector formed by the entries on the main diagonal of A, i. e., diag(A) =
(a1,1, a2,2, . . . , an,n). Conversely, if v ∈ Rn is a column or row vector, then

diag(v) = diag(v1, v2, . . . , vn) =


v1 0 · · · 0

0 v2 0
...

...
. . . . . . 0

0 · · · 0 vn

 .

Moreover, if Bi ∈ Rmi×ni are matrices, then diag(B1, B2, . . . , Bn) denotes the block
diagonal matrix with the blocks Bi on its diagonal. By In ∈ Rn×n we denote the
identity matrix in Rn×n, i. e., In = diag(1, 1, . . . , 1). //

Notation A.4 (Submatrix Specification). For a matrix A ∈ Rm×n, and index sets
u ⊆ {1, . . . ,m} and v ⊆ {1, . . . , n}, we denote by A(u, v) the submatrix of A formed by
picking the rows u and columns v of A, i. e.,

A =


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

 , A({1, 4}, {2, 3}) =

(
a1,2 a1,3

a4,2 a4,3

)
.
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A. Notation and Conventions

We further use the colon notation to abbreviate index sets with consecutive indices.
Concretely, for integers i and j, we denote the set {i, i + 1, . . . , j − 1, j} by i :j. More
generally, i :k :j denotes the set {i, i + k, . . . , j − k, j}. To select all rows or columns
from a matrix A we use A(:, v) and A(u, :), respectively. //

Notation A.5 (Matrices vs. Vectors). Let A be an arbitrary m × n matrix, then the
vectorization of A is the column vector obtained by concatenating the columns of A.

vec(A) =


A(:, 1)
A(:, 2)

...
A(:, n)


The natural inverse to the vectorization of a matrix is to construct a matrix out of a

vector. Given a vector x ∈ Rrc we will denote by xr×c the matrix

xr×c =

 x1 xr+1 · · · x(c−1)r+1
...

...
. . .

...
xr x2r · · · xcr


//

Definition A.1 (Frobenius Norm). Let A ∈ Rm×n, then its Frobenius norm, ‖A‖F , is
defined as

‖A‖F =

√√√√ m∑
i=1

m∑
j=1

a2
i,j.

//

Notation A.6 (Asymptotics). Let f(n) and g(n) be arbitrary functions in n ∈ N.
Then we define the following asymptotic notations.

(i). Upper bound : f(n) = O(g(n)), i. e., there exists an c > 0 such that there exists
an n0 ≥ 0 such that |f(n)| ≤ c|g(n)| for all n ≥ n0.

(ii). Lower bound : f(n) = Ω(g(n)), i. e., g(n) = O(f(n)).

(iii). Tight bound : f(n) = Θ(g(n)), i. e., f(n) = O(g(n)) and g(n) = O(f(n)).

//

84



B. Perron-Frobenius Theory

Definition B.1. We call a real matrix A positive (A > 0), if ai,j > 0 for all i, j.
Likewise, we call A nonnegative (A ≥ 0) if ai,j ≥ 0 for all i, j. The same notation
applies to vectors as well. //

The Perron-Frobenius theory is a particularly elegant piece of linear algebra which
reveals, e. g., how the nonnegativity (positivity) of a matrix is reflected in its eigenvalues
and eigenvectors, respectively. To indicate how well the Perron-Frobenius theory can be
utilized in application contexts, we consider the convergence analysis of finite Markov
chains as a running example throughout this appendix.

Example B.1 (Markov chain). A finite discrete-time Markov chain is a mathematical
model consisting of a finite amount of states, where the current state can change at
each discrete point of time. In particular, we consider so-called homogenous Markov
chains, where at each point of time the probability for a state transition from state i to
state j is given by 0 ≤ pj,i ≤ 1. Thus, the transition probabilities can be conveniently
represented by a matrix P . In order to obtain a sound model, the transition matrix P
has to be column-stochastic, i. e., each column of P sums up to one (is a stochastic
vector). In particular, this means that for every node the sum over its (outgoing)
transition probabilities equals to one.

Consider we are given a stochastic vector s whose elements si represent the probability
that the Markov chain is initially in state i. Then the probability distribution of being
in a certain state after k time steps is given by the vector P ks, since a column-stochastic
matrix times a stochastic vector is a stochastic vector. The following three question
are of tremendous interest: Does the Markov chain converge, i. e., exists a stationary
distribution π = limk→∞ P ks? How does the stationary distribution π look? Does π
dependent on the initial distribution s or not? As we will see, these question can easily
be answered by utilizing results from the Perron-Frobenius theory. //

Historically, the Perron-Frobenius theory originates in investigations of positive matri-
ces [Frobenius, 1908; Perron, 1907], which where later extended to nonnegative matrices
[Frobenius, 1912]. In the following, we give a brief overview of the most fundamental
notions and results of the Perron-Frobenius theory. A more detailed exposition can be
found, e. g., in the textbooks of Meyer [2000, § 8] and Seneta [2006, § 1].

The core of the Perron-Frobenius theory is what is today commonly known as Perron-
Frobenius theorem. Several version of this theorem exist which slightly differ in their
assumptions and conclusions. First, we consider the Perron-Frobenius theorem for
positive matrices.

Theorem B.1 (Perron-Frobenius, [Meyer, 2000, p. 667]). Let A ∈ Rn×n be a positive
matrix, then the following assertions hold.
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(i). There exists a positive real eigenvalue λ of A such that λ > |µ| for all other
eigenvalues µ 6= λ of A.

(ii). The eigenvalue λ is a simple root of the characteristic polynomial of A.

(iii). There is a strictly positive left eigenvector u > 0 with uTA = λuT and a strictly
positive right eigenvector v with Av = λv associated with λ.

(iv). Except for u and v all other eigenvectors of A contain at least one negative entry.

(v). Let u and v be normalized such that uTv = 1, then

lim
k→∞

Ak/λk = vuT. (B.1)

Example B.2 (Markov chain, continued). In case we assume a positive transition
matrix P (which means that any state change can happen with a certain probability),
Theorem B.1 straightforwardly delivers answers to all questions questions we raised in
Example B.1. Concretely, since P is column stochastic, its left eigenvector is given by
the constant vector 1, with corresponding eigenvalue one. Thus, the spectral radius
of P is one and limk→∞Ak = v1T, i. e., the Markov chain converges. Moreover, since
v1Ts = v for all stochastic vectors s, we see that the stationary distribution π = v and
that π is independent of the initial distribution.

In the following we will investigate up to which extent Theorem B.1 can be general-
ized to nonnegative matrices. To illustrate the differences between certainly structured
matrices, we consider the following four nonnegative transition matrices P1–P4.

P1 P2 P3 P4

Matrix

(
1/2 1/2
1/2 1/2

) (
0 1/2
1 1/2

) (
0 1
1 0

) (
1 1/2
0 1/2

)
Induced graph

Eigenvalues {1, 0} {1,−1/2} {1,−1} {1, 1/2}

Eigenvectors

(
1
1

)
,

(
−1
1

) (
1/2
1

)
,

(
−1
1

) (
1
1

)
,

(
−1
1

) (
1
0

)
,

(
−1
1

)
Obviously, (some of) the conclusion of Theorem B.1 do not hold in case of P3 and P4. //

Nonnegative matrices can certainly be represented as limits of positive matrices.
Thus, it does not surprise that for a nonnegative matrix A ∈ Rn×n with spectral radius
ρ(A) ≥ 0, the real value λ = ρ(A) is an eigenvalue of A and its corresponding eigenvector
is nonnegative [Meyer, 2000, p. 670]. Moreover, a variational characterization of the
spectral radius ρ(A) of a square matrix A ≥ 0 is given by the so-called Collatz-Wielandt
formula [Meyer, 2000, pp. 669–670]

ρ(A) = max
x≥0
x 6=0

min
1≤i≤n
xi 6=0

[Ax]i
xi

= min
x>0

max
1≤i≤n

[Ax]i
xi

.
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On the other hand, from an application point of view, it seems to be reasonable that
Theorem B.1 can be extended to certain classes of nonnegative matrices. Consider, e. g.,
a Markov chain with nonnegative transition matrix (cf. Example B.2). In case that it is
possible to reach from each state (after a finite amount of transitions) every other state,
one would expect that the stationary distribution should show a nonzero (potentially
small) probability for every state. In the following, we make these considerations precise,
which leads to the notion of irreducible matrices . Interestingly, its indeed only the
pattern of nonzero values what matters in order to generalize the Perron-Frobenius
theorem to nonnegative matrices and not the overall number of nonzero entries or their
concrete values (cf. Example B.2).

We give in the following two equivalent characterization of irreducible matrices. A
matrix A ∈ Rn×n is called reducible, if there exists a permutation matrix P such that

PTAP =

(
B C
0 D

)
,

with square matrices B and D. Consequently, a matrix is called irreducible if it is not
reducible. A more insightful characterization can be given by utilizing notions form
graph theory. Recall that a (directed) graph G = (V , E) with n = |V| nodes is fully
determined by its adjacency matrix A ∈ {0, 1}n×n, i. e., Ai,j = 1, if and only if there is a
directed edge between node i and node j. Therefore, given a matrix A ∈ Rn×n, we can
define its induced graph by the adjacency matrix AG with AGi,j = 1, if and only if Ai,j 6= 0

and AGi,j = 0 otherwise. Now a matrix A ∈ Rn×n is irreducible, if and only if its induced
graph is strongly connected [Meyer, 2000, p. 671], i. e., there exists a directed path from
every node to any other node. For nonnegative irreducible matrices Theorem B.1 can
be generalized as follows.

Theorem B.2 (Perron-Frobenius, [Meyer, 2000, p. 673]). Let A ∈ Rn×n be a nonnega-
tive irreducible matrix and let λ = ρ(A) denote its spectral radius. Then the following
assertions hold.

(i). The spectral radius λ > 0 and λ is an eigenvalue of A.

(ii). The eigenvalue λ is a simple root of the characteristic polynomial of A.

(iii). There is a strictly positive left eigenvector u > 0 with uTA = λuT and a strictly
positive right eigenvector v with Av = λv associated with λ.

(iv). Except for u and v all other eigenvectors of A contain at least one negative entry.

(v). If A has h eigenvalues on its spectral circle, then they are for 1 ≤ i ≤ h given by
λi = λω(i−1), where ω = e2πi/h is a h-th root of unity.

Thus, we observe two major difference between Theorem B.1 and Theorem B.2. First,
there can exist several eigenvalues on the spectral circle in case of an irreducible matrix
which are structured according to assertion (v) in Theorem B.2. Moreover, the conver-
gence property (v) in Theorem B.1 is missing, which can indeed not be generalized to
irreducible matrices, as the following example illustrates.
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Example B.3 (Markov chain, continued). Consider the matrix P3 from Example B.2.
The graph induce by P3 is obviously strongly connected. Thus, P3 is irreducible. On the
other hand, note that limk→∞ P k

3 does not exist, since for j ∈ N we see that P 2j
3 = P3 and

P 2j+1
3 = I2. Therefore, even though irreducible matrices preserve almost all properties

of positive matrices, e. g., the positive eigenpair, they are not suited for deriving a
convergence result of the kind we require here. //

As the previous example illustrates, the notion of irreducibility is not yet fully sat-
isfactory in certain application contexts. To generalize Theorem B.1 in its entirety to
nonnegative matrices, the notion of primitive matrices plays an important role.

Definition B.2. We call a square nonnegative matrix A ∈ Rn×n primitive, if there
exists a constant k ∈ N such that Ak is a primitive matrix, i. e., Ak > 0. //

Corollary B.3 (Meyer [2000, p. 674]). Theorem B.1 holds also in case we assume A to
be primitive instead of strictly positive.

It is noteworthy that this for applications very important generalization was already
stated in the pioneering work of Perron [1907, p. 262]. The question which is left open
is how the notions of irreducibility and primitivity are related to each other. We refrain
here from a detailed discussion and instead, we give a very simple criterion to detect
the primitivity of an irreducible matrix.

Lemma B.4 (Meyer [2000, p. 678]). Let A be a nonnegative irreducible matrix with at
least one positive diagonal element, then A is primitive.

Example B.4 (Markov chain, continued). By the considerations above, the transition
matrices given in Example B.2 can easily be categorized (and analyzed). In partic-
ular, P1 is positive, P2 is primitive, P3 is irreducible and P4 is (only) nonnegative.
Accordingly, either Theorem B.1 (P1, P2), Theorem B.2 (P3) or neither of them (P4)
applies. //

Summarizing, we have seen that the Perron-Frobenius theorem provides several in-
sights into the structure of the eigenvalues and eigenvectors of positive and nonnegative
matrices, respectively. A particularly interesting variant of the theorem is the one for
primitive matrices (cf. Corollary B.3), which allows for the same conclusion as the vari-
ant for positive matrices. The generalization of the Perron-Frobenius theorem to classes
of nonnegative matrices required assumptions on the pattern of nonzero entries, which
lead to the property of a matrix to be irreducible. In many applications this property,
i. e., the strong connectivity of the induced graph, is given in a natural way and its
verification is fairly straightforward. Moreover, the primitivity of an irreducible matrix
is simply verified by the existence of a nonzero diagonal element.
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