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Kurzfassung

Die Alzheimer Krankheit – die Hauptursache von Demenz – ist eine neurode-
generative Erkrankung die gravierende soziale, gesellschaftliche und ökonomische
Folgen mit sich zieht. In dieser Dissertation werden Synchronitäts-Veränderun-
gen im Elektroenzephalogramm (EEG) von Alzheimer-Patienten untersucht. Syn-
chronität wird dabei mit verschiedenen Maßen, die auf die multivariate spektrale
Dichte des EEG basieren, untersucht. Ziel ist es die Möglichkeit aufzuzeigen,
Marker für EEG-Synchronität als Ergänzung zu bestehenden klinischen Diagnose-
und Prognose-Prozeduren zu verwenden.

Für diese Studie wurden 79 EEG-Aufnahmen von Alzheimer-Patienten aus der
PRODEM-AUSTRIA Datenbank verwendet. Die Aufnahmen unterliegen einem
klar definierten klinischen Paradigma das eine Ruhephase und ein kognitives Testver-
fahren beinhaltet. Der Krankheitsgrad wurde durch den neuropsychologischen
Mini-Mental State Examination Test Score quantifiziert. Alter, Geschlecht, Bil-
dungsgrad und Krankheits-Dauer wurden als Kovariable eingesetzt.

Die multivariate spektrale Dichte wurde mittels eines indirekten Schätzver-
fahrens ermittelt. Auf Basis dieses Schätzers wurden Kohärenzen, partielle Kohären-
zen, bivariate und bedingte Granger Kausalitäten, statische und dynamische kanon-
ische Korrelationen und Hauptkomponenten zur Analyse von EEG-Synchronität
berechnet. Die Maße wurden zwischen Einzelelektroden, zwischen Gruppen von
Elektroden und innerhalb dieser Gruppen ermittelt. Die Maß-Änderungen wurden
mit quadratischer Regression (p- und R2-Werte) bewertet.

Synchronität zwischen den Elektrodengruppen zeigte die meisten signifikanten
Änderungen. In der Ruhephase waren dynamische kanonische Korrelationen und
Granger Kausalitäten vielversprechend. Während des kognitiven Tests brachten
Kohärenzen und statische/dynamische kanonische Korrelationen hochsignifikante
Resultate, vor Allem zwischen linken temporalen und zentralen/parietalen Elek-
trodengruppen. Bei den meisten Maßen war ein Synchronitäts-Anstieg zu Be-
ginn der Krankheit evident. Dies könnte auf neuronale Kompensationsmechanis-
men zurückzuführen sein. Die Ausnahme bildeten Granger Kausalitäten, die eine
durchgehende Synchronitäts-Abnahme zeigten.

Insgesamt erwies sich die Analyse von EEG-Synchronität als vielversprechen-
der Ansatz zur Beschreibung des Grades der Alzheimer Krankheit. Longitudinale
Studien sind notwendig um zu entscheiden, ob EEG-Marker auch zur Prädik-
tion des Krankheits-Verlaufes einsetzbar sind. Eine Kombination von EEG-Maßen
mit anderen Markern, z.B. aus klinischen bildgebenden Verfahren, könnte das
Verständnis von funktionellen und strukturellen neuronalen Veränderungen, die
mit der Alzheimer Krankheit einhergehen, erweitern.
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Abstract

Alzheimer’s disease (AD) – the main cause of dementia – is a progressive neu-
rodegenerative disorder that entails severe social and economic consequences. In
this thesis, synchrony changes in the electroencephalogram (EEG) in the course
of AD are investigated with the objective of demonstrating the capability of EEG
markers to serve as supplements to existing clinical diagnostics. Thereby, EEG
synchrony is quantified by measures that are based on the multivariate spectral
density of the EEG.

For this study, 79 EEG recordings of ”probable” AD patients from the PRODEM-
AUSTRIA database were used. Samples were conducted according to a clini-
cally predefined paragidm including resting state and cognitive tasks. AD severity
was measured by the neuropsychological Mini-Mental State Examination (MMSE)
score. Age, sex, degree of education, and duration of AD were used as covariables.

The multivariate spectral density was estimated by an indirect estimation pro-
cedure. Based on the estimate, coherences, partial coherences, bivariate and con-
ditional Granger causalities, and both static and dynamic canonical correlations
and principal components were derived. The measures were analyzed between
single EEG channels, between groups of EEG channels, and within these groups.
Correlations between the measures and MMSE scores were assessed by a quadratic
regression model (p- and R2-values).

Synchrony between groups of EEG channels yielded the most significant changes.
In resting state, dynamic canonical correlations and Granger causalities were the
most promising measures. During the cognitive task, highly significant findings
for coherences and both static and dynamic canonical correlations were observed,
mainly in left hemispheric temporal and central/parietal channels. Most measures
showed an increase of synchrony for MMSE scores from 26 to 20; this phenomenon
may be attributed to compensatory mechanisms in the brain. Granger causali-
ties formed an exception, they revealed a decrease of synchrony with descending
MMSE scores.

The investigation of EEG synchrony changes in AD proved to be a promis-
ing approach for supplementary classification of AD severity. Longitudinal studies
need to determine as to whether EEG markers are also capable of predicting AD
progression. A combination of EEG measures with other markers for AD severity,
e.g. from clinical imaging procedures, could improve the understanding of func-
tional and structural neuronal changes that come along with AD.

Keywords: EEG Synchrony, Alzheimer’s Disease, Multivariate Spectral Density,
Coherence, Partial Coherence, Granger Causality, Canonical Correlation.
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CHAPTER 1

Introduction

The purpose of this chapter is to introduce the reader to the topic of this work. It
provides an overview of the issue of Alzheimer’s disease, of the electroencephalo-
gram (EEG) in clinical diagnosis, and of previous studies about changes in the
EEG in the course of Alzheimer’s disease. Afterwards, the research questions ad-
dressed in this study will be defined. Finally, an outline of the thesis structure will
conclude the introduction.

1.1 Alzheimer’s Disease

Dementia is a disorder of cognitive abilities that has increasing prevalence with
age. Among the causes of dementia, the most frequently occurring are vascular
dementia, frontotemporal dementia, dementia with Lewy bodies, and – the most
common cause – Alzheimer’s disease (AD). AD is estimated to account for 60-
80% of dementia cases; hybrid forms with other dementia types occur frequently
[1], [2]. AD is a progressive brain disorder that is associated with neuronal cell loss
and the development of neurofibrillary tangles and cortical amyloid plaques, e.g.
in the hippocampus [3]. Additionally, alterations in transmitter-specific markers
including forebrain cholinergic systems are prevalent in AD [4]. Cognitive deficits
include impairment of learning and memory, semantic difficulties, deficits in judge-
ment, abstract or logical reasoning, planning and organizing, and, in the late stage
of AD, impaired motor functions including chewing and swallowing. As from AD
diagnosis, the average survival time ranges from 5 to 8 years [5], [6]. Figure 1.1.1
illustrates the structural changes in the brain that occur in advanced AD.

In 2010, 112,600 individuals with any form of dementia were estimated to
live in Austria. This number was projected to increase to 262,300 by 2050. The
number of AD-caused dementia cases was estimated to increase from 74,300 to
182,700 over the same time period [1]. In Europe, 8.456 million individuals suffered
from any form of dementia in 2010. Among them, there were approximately
4.662 million AD cases. These incidence rates were estimated to increase to

1
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Figure 1.1.1: Cerebral slice of a healthy brain vs a brain in advanced AD: in AD, shrinkage is
especially severe in the hippocampus; ventricles (fluid-filled spaces within the brain) grow larger.
This image was taken from the site of the Alzheimer’s Association http://www.alz.org, accessed
2 Sept. 2013.

16.242 million and 11.184 million respectively by 2050 [7]. On a global scale, the
World Health Organization and the organization Alzheimer’s Disease International
projected the number of dementia cases to increase from 35.56 million in 2010 to
115.38 million by 2050 [8], [9]. Assuming a prevalence rate of 70% of AD-caused
dementia, the incidence rate of AD would increase from 24.890 million in 2010
to approximately 81 million by 2050. The projected progress of the numbers of
dementia and AD cases is illustrated in Figures 1.1.2a, 1.1.2b, and 1.1.2c.

Cognitive decline caused by AD entails both severe social and economic con-
sequences [8], [9]. An early diagnosis of the disease is the basis for medical
treatment, caregiving, and consultation [1], [10]. Up to this moment, there is
no definite in vivo diagnosis of AD; the disease is classified either as possible or
probable AD according to well-defined criteria [4]. In clinical practice, obligatory
screening for AD includes the assessment of the neurological, internistic and psy-
chiatric status, neuropsychological tests, a complete blood count, and cerebral
magnetic resonance imaging (MRI). Additionally, clinical studies suggest geno-
typing, liquor analysis, serology, imaging procedures such as positron emission
tomography (PET) and functional MRI, and, finally, the EEG as diagnostic sup-
plements [1]. The advantage of the EEG is that it is non-invasive, low-priced, and
easier accessible than procedures such as PET and functional MRI.
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Figure 1.1.2: Projected incidence rates of dementia (all forms) and of AD in Austria (top left)
[1], Europe (top right) [7], and worldwide (bottom) [8], [9].

1.2 Changes in the EEG of AD Patients

The EEG measures, usually with scalp electrodes, neuronal electrical activity.
There is a variety of clinical EEG applications including the detection of epilep-
tic seizures, monitoring of coma patients, and the study of sleep disorders. In
AD-related clinical practice, the EEG is – if at all – analyzed visually by medical
experts. However, several studies about changes in the EEG of AD patients and
the automated quantification of these changes have been published. Three major
alterations have been reported: EEG slowing, reduced EEG complexity, and – the
focus of this work – perturbations of EEG synchrony (cf. [5], [11] for recent re-
views).

Several studies have analyzed group differences of resting state EEG synchrony
between AD patients, subjects with mild cognitive impairment (MCI), and normal
elderly controls (NOLD): Pearson correlation coefficients were analyzed in [11],
coherences in [12], [13], [14], [15], [16]1, [17], [18], [19], [11], partial coherences in

1Here, the control group consists of patients suffering from depression.
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[11], Granger causalities and directed transfer functions in [11], [20], information-
theoretic measures such as mutual information in [21], [22], [11], phase synchrony
measures in [23], [24], [25], [26], [27], [28], [29], [11], and stochastic event syn-
chrony in [30], [11]. Most of these studies have suggested a decrease of resting
state EEG synchrony for AD patients as compared to the controls. Additionally,
some studies have investigated group differences of EEG synchrony during cog-
nitive tasks (coherences in [31], [32], [33], [34], [17], [35], and synchronization
likelihood in [24]) or during photic stimulation (coherences in [13], [36], [37]).
Especially during working memory tasks, increased EEG synchronies have been
reported for MCI subjects (and in few cases also for AD patients) as compared
to the controls (cf. e.g. [32], [33]). This phenomenon is often attributed to
compensatory mechanisms of the brain [38].

However, there have been only few studies that correlate EEG synchrony mea-
sures with AD severity as measured by neuropsychological tests. Studies inves-
tigating coherences have reported no significant correlations with the neuropsy-
chological test results, neither in resting state ([16], [36]) nor during a working
memory task ([36]). There have been several studies finding significant correla-
tions between neuropsychological test results and synchronization likelihood ([23],
[24], [39]), and between test results and global field synchronization ([28]).

1.3 Research Questions

The Austrian Alzheimer Society conducts the multi-centric study PRODEM-
AUSTRIA. Within the subproject ”Advanced” EEG in der Vorhersage des Ver-
laufs der Alzheimerdemenz (project no. 827462) that is funded by the Austrian
Research Promotion Agency FFG within the BRIDGE program, EEG samples of
AD patients are being recorded. The recordings follow a predefined paradigm –
including resting state with eyes closed and cognitive tasks – that has been devel-
oped by the clinical partners of the BRIDGE project. This thesis has been written
in the course of the author’s research activity at the AIT Austrian Institute of
Technology GmbH within this BRIDGE project. The EEG recordings of 79 prob-
able AD patients have been utilized.

The aim of this thesis is to examine whether changes of EEG synchrony cor-
relate with AD severity as measured by the neuropsychological Mini Mental State
Examination (MMSE) score [40]. Different measures for synchrony will be derived
from the multivariate spectral density, i.e. only first and second moments will be
considered. A major aspect will be the estimation procedure of the spectral density.

The main research hypotheses addressed in this thesis are the following:

• H1
0 : Synchronies between single EEG channels change in the course of AD.

• H2
0 : Synchronies between EEG channel groups change in the course of AD.
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• H3
0 : Synchronies within EEG channel groups change in the course of AD.

Although the applied methods originate from fields such as time series analysis
and stochastic processes, this work is mainly clinically motivated. A thorough
analysis of EEG synchrony may be valuable in clinical diagnosis and prediction
of AD. However, it is not the author’s intention to theorize about biophysical
mechanisms behind the measurements.

1.4 Thesis Outline

This thesis has been organized in the following way: Chapter 2 is concerned with
the materials and methods that were applied in this study. Hereby, the sample
data, the necessity of EEG preprocessing, and consecutive preprocessing steps will
be described. Then, stationary processes in both time and frequency domain, and
measures for EEG synchrony based on the multivariate spectral density will be
considered in a system theoretic framework. Statistical considerations of these
concepts will follow. Chapter 3 provides the results of the analyses. According to
the postulated null hypotheses, the findings will be divided into three categories:
results between single channels, between groups of channels, and within groups
of channels. Finally, Chapter 4 discusses the findings and provides concluding
remarks.





CHAPTER 2

Materials and Methods

This chapter is concerned with the description of the sample data, preprocess-
ing methods, time series and stochastic processes, the estimation of multivariate
spectral densities, and measures for synchrony based on the multivariate spectral
density. Both system theoretic and statistical considerations will be addressed.
Hereby, the deliberations on stationary processes in Sections 2.3 and 2.4 have
been inspired by [41]. Parts of the methods for analyzing changes in the EEG of
AD patients have already been demonstrated in [42].

2.1 Sample Data

In this study, EEG recordings from the PRODEM-AUSTRIA1 database of the
Austrian Alzheimer Society were used. More specifically, the EEG samples were
recorded at the Medical Universities of Graz, Innsbruck, Vienna, and the General
Hospital Linz, all complying with a homogeneous study protocol. The PRODEM
participants were enrolled according to the following criteria:

• Diagnosis of AD according to NINCDS-ADRDA criteria [4]

• Minimum age 40 years

• Family caregiving provided

• Understanding and written informed consent of each participant and care-
giver

The sample consists of EEG recordings from 79 subjects (50 female, 29 male)
diagnosed with probable AD. The age of the subjects at recording date ranges
from 52 to 88 years with mean 73.57 (σ = 9.22). The duration of AD ranges
from 2 to 120 months with mean 25.54 (σ = 22.08). For each subject, the de-
gree of education is classified on a scale from 1 to 6 with respect to the highest

1http://www.alzheimer.mcw-portal.com/index.php?id=27

7
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completed level of education; 1 stands for Volks/Hauptschule (primary school),
2 for Lehre (apprenticeship), 3 for AHS (grammar school), 4 for BHS (higher
vocational school), 5 for Lehrerbildungsanstalt (teacher training school), and 6
for Hochschule (tertiary institution). On this scale, the mean degree of education
is 2.37 (σ = 1.58). The empirical distributions of sex, age, duration of AD, and
degree of education are visualized as histogram plots in Figures 2.1.1a – 2.1.1d.
The dotted lines represent the respective mean values.
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Figure 2.1.1: Empirical distribution of demographic variables: histogram plots of sex (top left),
age (top right), duration of AD (bottom left), and degree of education (bottom right). Dotted
lines represent the respective arithmetic mean.

All subjects underwent neuropsychological assessments including MMSE, Clini-
cal Dementia Rating Scale (CDR) [43], Disability Assessment for Dementia (DAD)
[44], Neuropsychiatric Inventory (NPI) [45], Geriatric Depression Scale (GDS) [46],
and a neuropsychological test battery by the Consortium to Establish a Registry
for AD (CERAD) [47], [48]. In this study, the AD severity is quantified by MMSE
score, a clinically well-established evaluation criterion for cognitive impairment.
MMSE scores range, on an ordinal scale, from 30 to 0, where lower scores indi-
cate more severe cognitive impairment. The study subjects reached MMSE scores
between 26 and 15 with an average score of 22 (σ = 3.16). Figure 2.1.2 shows
the empirical distribution of MMSE scores. The aforementioned characteristics
age, sex, duration of AD, and degree of education will be applied as confounding
variables for the statistical analyses.
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Figure 2.1.2: Empirical distribution of MMSE scores: histogram plot where high MMSE scores
(left side of the abscissa) indicate less cognitive impairment, and low MMSE scores (right side of
the abscissa) indicate more severe cognitive impairment. The dotted line represents the arithmetic
mean.

There are various studies (e.g. [13]) on EEG dynamics of AD patients that
exclude subjects receiving central nervous system active medication including an-
tidementiva, antidepressants, and antipsychotics. The reason for that is the pos-
sibility of unknown influences of the medication on the EEG signals. However, in
order to base this work on a clinically realistic scenario and to ensure a sufficient
sample size, subjects receiving medication were not excluded, most of them being
administered several drugs in different doses.

Within the PRODEM-AUSTRIA study, the EEG samples are recorded and
digitalized using the NeuroSpeed software of the alpha-trace digitalEEG System2

with sampling rate 256 Hz. EEG amplifiers have an analog band-pass filter in the
range of 0.3–70 Hz, and a notch filter at 50 Hz. Nineteen gold cup electrodes are
positioned on the subjects’ scalps according to the international 10-20 system (cf.
[49]). The channel names and positions are illustrated in Figure 2.1.3. Connected
mastoids (i.e. parts of the temporal bones) are used as reference and the ground
electrode is located between channels Fz and Cz. Additionally, both horizontal
and vertical electroocculogram (EOG) channels and an electrocardiogram (ECG)
channel (wrist clip electrodes) are recorded. Impedances are kept below 10 kΩ.

In order to ensure the comparability of the EEG recordings, all PRODEM-
AUSTRIA data are conducted according to a clinically predefined paradigm. Ini-
tially, subjects are sitting in a resting but awake condition with eyes closed for
180 seconds. This is followed by a face-name encoding task with eyes opened.
Subjects are asked to

1. memorize faces and corresponding names shown on a computer screen (50
seconds).

2http://www.alphatrace.at
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Figure 2.1.3: Electrode names and positions on the surface of the scalp as seen from above: 19
channels distributed according to the international 10-20 system.

2. recall the names while only the faces are presented.

3. memorize, once more, the faces and names shown on the screen (50 sec-
onds).

These tasks have been selected for investigating AD-specific deficits including
episodic memory and processing of complex stimuli. Throughout this work, the
recording stages will be referred to as resting state and cognitive task.

2.2 EEG Preprocessing

EEG recordings are generally corrupted by electric signals other than brain signals.
These interfering signals are commonly referred to as artefacts. Depending on
their origin, artefacts are divided in two classes: those of physiological and those
of technical origin. Physiological sources include eye movements and blinking,
muscular activity, cardiac electric fields, and sweating. Technical interference is
caused by poor electrode contacts, spurious noise from electronic devices, and
induction from the mains supply at 50 Hz. Artefacts alter the EEG signals and
distort the results of quantitative analyses. Hence, several preprocessing steps
were applied in order to remove artefacts and to attain ”pure” neuronal signals.
A description of common artefacts will be provided in Section 2.2.1; the applied
preprocessing methods will be presented in Sections 2.2.2 and 2.2.3.

2.2.1 Description of Artefacts

Electric fields induced by eye movements and blinking – so-called eye artefacts –
corrupt the EEG signals in the frequency range below 10 Hz. Even with closed
eyes, certain eye movements are present. The corruption is most notable on frontal
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electrode positions but may affect central and even parietal electrodes as well. The
current generated by eye movements and blinking is captured by the EOG. Figure
2.2.1 shows a 14 second segment of an EEG signal in resting state with eyes opened
and the corresponding EOG and ECG signals at the bottom. From top to bottom,
the EEG channels are sorted from frontal to occipital positions; even numbers (e.g.
FP2, C4) correspond to the right brain hemisphere and odd numbers (e.g. T7,
O1) correspond to the left (cf. Figure 2.1.3). In this example, three eye artefacts
are visible at seconds 3, 7, and 12. The artefacts corrupt frontal and also central
EEG channels.
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Figure 2.2.1: EEG segment (14 sec.) containing artefacts originating from blinking at seconds 3,
7 and 12: each signal represents a channel from top = frontal to bottom = occipital; in addition,
at the very bottom, HEOG, VEOG and ECG channels are provided. Peaks in the VEOG channel
are induced by blinking. In this example, artefacts occur simultaneously to these peaks and affect
mostly frontal and EEG central channels.

Myogenic potentials from muscle activity corrupt EEG signals in frequency
ranges above 15 Hz. They are present when a subject is clenching the jaw mus-
cles, frowning, or talking. The EEG samples of this study are corrupted by muscle-
induced artefacts mainly in the fronto-temporal, temporal, and parieto-temporal
electrodes F7, F8, T7, T8, P7, and P8. Figure 2.2.2 shows high-frequency cor-
ruption originating from muscle tension on the EEG channels F8 and T8.

Cardiac electric fields that corrupt the EEG and EOG signals find expression
in sharp near-periodic waves. For most subjects, the heartbeat rate ranges from
60 to 150 beats per minute; thus, the main frequency is between 1 and 2.5 Hz.
However, the spiked form of the waves generates significant harmonics at integer
multiples of the main frequency. In case of referential EEG montages, the cardiac
artefacts, when being present, commonly occur in all EEG channels. In this study,
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Figure 2.2.2: EEG segment (14 sec.) containing artefacts originating from muscle tension: each
signal represents a channel from top = frontal to bottom = occipital; in addition, at the very
bottom, HEOG, VEOG and ECG channels are provided. In this example, the artefacts manifest
themselves as high-frequency signals that superimpose the EEG channels F8 and T8.

a parallel recorded ECG channel measuring the electric activity of the heart is
available. The cardiac artefacts coincide with the so-called QRS complexes, i.e.
the sharp peaks in the ECG signal. An example of cardiac artefacts corrupting
all EEG channels is provided in Figure 2.2.3. The artefacts appear as spikes that
occur synchronously in the EEG signals.

Electric fields originating from the activity of sweat glands on the scalp man-
ifest themselves as high amplitude waves with frequency below 1.5 Hz. Figure
2.2.4 gives an example for this type of artefact.

Irregular signals due to poor electrode contact distinguish from the rest of
the EEG signals either by sharp spikes or high amplitude waves due to abrupt
impedance changes. These phenomena commonly occur only on single affected
electrode channels and are thus easily detectable. In Figure 2.2.5, channel O1 is
subject to poor electrode contact between seconds 1 and 4 resulting in a high-
amplitude wave that differs in its morphology from the rest of the channel signals.

Spurious noise is generated by magnetic fields in the motor of electronic de-
vices, e.g. medical equipment. Depending on the device, the corresponding arte-
facts vary in morphology, duration, and repetition rate. The best way to avoid
these artefacts is to record the EEG in shielded rooms with no other electronic
devices nearby.

Induction from the mains supply is characterized by a low amplitude and main
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Figure 2.2.3: EEG segment (14 sec.) containing artefacts originating from cardiac activity:
each signal represents a channel from top = frontal to bottom = occipital; in addition, at the
very bottom, HEOG, VEOG and ECG channels are provided. In this example, artefacts manifest
themselves as sharp periodic peaks affecting all EEG channels.

frequency of 50 Hz3. In this study, analog notch filtering at 50 Hz was performed
during EEG recording.

2.2.2 Artefact Removal

At first, in order to remove artefacts from the EEG samples, a visual segment
selection was performed. All EEG segments corrupted by artefacts that were
not removable, e.g. artefacts from poor electrode contacts, were discarded from
further analyses. Minimum length of remaining EEG segments was 4 seconds, i.e.
1024 sample points per channel. In order to make the visual selection objective
and replicable, it was carried out according to predefined decision rules. Only
segments meeting at least one of the following criteria were discarded:

• Segments where the EOG signals were disturbed and/or did not correspond
to eye artefacts in the EEG signals

• Segments where the ECG signal was disturbed

• Segments corrupted by artefacts other than eye or cardiac artefacts in the
frequency range of 2 – 15 Hz

All further processing was conducted using the software MATLAB R© 7.11 (R2010b).

3In some countries the main frequency is 60 Hz, e.g. in North American countries, Brazil,
Colombia, Peru, Venezuela, Saudi Arabia, and South Korea.
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Figure 2.2.4: EEG segment (14 sec.) containing artefacts originating from sweat glands: each
signal represents a channel from top = frontal to bottom = occipital; in addition, at the very
bottom, HEOG, VEOG and ECG channels are provided. In this example, artefacts find expression
as low-frequency waves superimposing most EEG channels.

For removing slow variations or trends, the EEG, ECG, and EOG signals were
subject to digital high-pass filtering. A stable, direct-form finite impulse response
(FIR) filter with linear phase and filter order 340 was used for high-pass filtering
with border frequency 2 Hz. Thus, low-frequency artefacts, e.g. from sweating,
were removed. Naturally, this procedure implied that no EEG signal portions with
frequency below 2 Hz could be used for further analyses. Figures 2.2.6a and 2.2.6b
show the gain and phase of the applied high-pass filter.

The resulting high-pass filtered EEG signals were tested for cardiac artefacts.
The artefact detection was achieved both by visual inspection and by applying
an automated detection algorithm, the so-called energy interval histogram (EIH)
method (cf. [50] and [51]). This method relies on the assumptions that cardiac
artefacts have the shape of sharp spikes, that they occur near-periodically, and
that they are uncorrelated with the EEG signals. Each EEG segment was tagged
as corrupted or non-corrupted by cardiac artefacts.

A robust method for the removal of cardiac artefacts was proposed in [52]. This
method makes use of the ECG for identifying the position of the near-periodically
occurring spikes. Cardiac artefacts in the EEG signals are assumed to be syn-
chronous both in time and waveform to the ECG. By using this technique, the
artefacts were removed without altering the rest of the EEG signals.

The vertical and horizontal EOG signals were used for removing eye-artefacts
from the EEG. Since no dynamic relations between EOG and EEG were observed,
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Figure 2.2.5: EEG segment (14 sec.) containing artefacts originating from poor electrode
contact: each signal represents a channel from top = frontal to bottom = occipital; in addition,
at the very bottom, HEOG, VEOG and ECG channels are provided. In this example, the contact
disturbance affects the EEG channel O1 as high-amplitude wave from seconds 1.5 – 4.

static linear regression of each EEG signal on the EOG signals was applied. How-
ever, the EOG channels measure not only electric fields related to eye movements
but also fields from neuronal activity. In order to eliminate these high-frequency
signal components, the EOG signals were subject to prior low-pass filtering using
a stable FIR filter with linear phase, order 340, and corner-frequency 12 Hz.

Finally, in order to remove high-frequency artefacts, e.g. from muscle tension,
the EEG signals were subject to low-pass filtering at 15 Hz (linear, stable FIR
filter with order 340). All further computations were carried out on the artefact-
corrected and band-pass filtered (2–15 Hz) EEG segments.
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Figure 2.2.6: Gain and phase of high-pass FIR filter: stable, direct-form FIR filter with linear
phase, filter order 340 and border frequency 2 Hz



16

The processing steps for artefact removal are illustrated in Figures 2.2.7 –
2.2.11. Figure 2.2.7 shows an EEG segment that is corrupted by several types
of artefacts: low-frequency oscillations in frontal channels, cardiac artefacts in all
channels, eye artefacts in the frontal and central channels, and high-frequency
artefacts in frontal and occipital channels. In Figure 2.2.8, the high-pass filtered
EEG segment is shown; trends and low-frequency artefacts are thus removed.
The next preprocessing step is the removal of cardiac artefacts, the resulting EEG
segment can be seen in Figure 2.2.9; the sharp spikes from the electric heart
activity have disappeared. Figure 2.2.10 shows the EEG segment after removing
eye artefacts. Finally, the EEG segment was subject to low-pass filtering at border
frequency 15 Hz; the resulting signal is shown in Figure 2.2.11.
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Figure 2.2.7: EEG preprocessing steps: original EEG segment
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Figure 2.2.8: EEG preprocessing steps: high-pass filtering
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Figure 2.2.9: EEG preprocessing steps: removal of cardiac artefacts
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Figure 2.2.10: EEG preprocessing steps: removal of eye artefacts
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Figure 2.2.11: EEG preprocessing steps: low-pass filtering
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2.2.3 Segmentation

The methods used in this work rely on a certain invariance of the first and second
moments of the EEG signals with respect to time, the so-called wide-sense sta-
tionarity. A formal definition will follow in Section 2.3. However, brain dynamics
and consequently the EEG are in general non-stationary (cf. e.g. [53]). In order
to use methods that assume wide-sense stationarity, the EEG is divided in short
”quasi-stationary” segments. In scientific literature, two approaches for EEG seg-
mentation have been described: the first method is to search for structural breaks
in the EEG and, according to these breaks, to divide the EEG in stationary inter-
vals of different lengths (cf. e.g. [54], [55]). This approach is useful for finding
changes in the cognitive state of a subject or for detecting drug effects on the
EEG. In this work, the two different EEG stages – resting state and cognitive task
– are a priori known. Within these stages, the first and second moments do not
change abruptly but are rather subject to a drift with respect to time. Thus, the
second segmentation approach was applied: dividing the EEG in segments with
fixed duration of 4 seconds and overlap of 2 seconds. All further analyses were
carried out on the resulting 4 second EEG segments.

2.3 Stationary Processes in Time Domain

This section will be concerned with stationary processes in time domain. Section
2.3.1 will provide basic definitions that are useful in this context. In Section
2.3.2, the concept of hilbert spaces will be described. Finally, Section 2.3.3 will
be concerned with infinite autoregressive processes. Note that the concepts in
the following sections are only those that are useful for the further understanding
of this work; no claim to completeness is raised. For deeper insights about the
analysis of stationary processes in time domain, the reader is referred to e.g. [56],
[57], [58], and [59].

2.3.1 Foundations

For the remainder of this work, an EEG segment will be interpreted as an r-vector-
valued time series

x(t) =







x1(t)
...

xr(t)






∈ R

r×1, t = 1, . . . , T (2.3.1)

where the component xi(t), i = 1, . . . , r represents the ith electrode channel at
sampling time t. All considerations will be carried out only for real-valued time
series.

In this work, a time series is assumed to be generated by an underlying stochas-
tic model called stochastic process.
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Definition 2.3.1 (Stochastic Process). Starting from a probability space (Ω,A, P ),
consider random variables, i.e. measurable functions, x(t, ω) : Ω → R

r×1 with
ω ∈ Ω and t ∈ Z

4. A stochastic process is defined as a family of random variables
(x(t, ω)|t ∈ Z, ω ∈ Ω) on (Ω,A, P ).

The time series x(t) is interpreted as a realization of (x(t, ω)|t ∈ Z, ω ∈ Ω)
for fixed ω. As the parameter ω has no relevance for this work and t ∈ Z will
always be assumed, from now on the notation (x(t)) will be used instead of
(x(t, ω)|t ∈ Z, ω ∈ Ω).

The first two moments of (x(t)) are the mean µ(t) and autocovariance func-
tion γ(s, t).

Definition 2.3.2 (Mean). Let (x(t)) be a stochastic process with component-
wise expected absolute values E [|xi(t)|] < ∞ ∀i = 1, . . . , r, then the mean of the
process is defined as

µ(t) = E [x(t)] =







E [x1(t)]
...

E [xr(t)]






=







µ1(t)
...

µr(t)






∈ R

r×1, t ∈ Z. (2.3.2)

The element µi characterizes the level of the subprocess xi(t). In this work, zero
mean is assumed, i.e.

µi(t) = 0 ∀i = 1, . . . , r, t ∈ Z. (2.3.3)

This is no restriction for further analyses, as every stochastic process (x(t)) can
easily be replaced by its centered process (x(t)− µ(t)).

Definition 2.3.3 (Autocovariance Function). Let (x(t)) be a centered process
with E [x(t)⊺x(t)] < ∞, then the autocovariance function is defined as

γ(s, t) = E [x(s)x(t)⊺] =







E [x1(s)x1(t)] · · · E [x1(s)xr(t)]
...

. . .
...

E [xr(s)x1(t)] · · · E [xr(s)xr(t)]







=







γ11(s, t) · · · γ1r(s, t)
...

. . .
...

γr1(s, t) · · · γrr(s, t)






∈ R

r×r, s, t ∈ Z.

(2.3.4)

The element γij(s, t) describes the linear dependence between xi(s) and xj(t).
For s = t, the ith diagonal element γii(t, t) is the variance of xi(t) and will be
denoted by Var [xi(t)].

4Here, only the discrete-time case with equidistant time points will be considered.
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Consider the class of stochastic processes with invariant first and second mo-
ments with respect to time. As mentioned in Section 2.2.3, this property is called
wide-sense stationarity.

Definition 2.3.4 (Wide-Sense Stationary Process). An r-vector real valued stochas-
tic process (x(t)) is wide-sense stationary if

1. E [x(t)⊺x(t)] < ∞ ∀t ∈ Z

2. µ(t) = µ const. ∀t ∈ Z

3. γ(u, 0) = γ(t+ u, t) ∀t, u ∈ Z

As the autocovariance function of a stationary process only depends on the time
lag u, from now on it will be denoted by γ(u) instead of γ(u, 0) = γ(t + u, t).
Note that, for real-valued processes, γ(u)⊺ = γ(−u) and γ(0) ≥ 0. Although
other types of stationarity exist, this work is concerned with wide-sense stationar-
ity only; thus, the ”wide-sense” will be skipped from now on.

When addressing stationary processes, two types of stochastic convergence
will proof to be useful: convergence in mean square and almost sure convergence.

Definition 2.3.5 (Convergence in Mean Square). Consider the r vector-valued
random variables

x(n) =







x1(n)
...

xr(n)






, x =







x1
...
xr






∈ R

r×1, n ∈ N (2.3.5)

on a probability space (Ω,A, P ). The sequence (x(n)|n ∈ N) converges to x with
E
[

|xi|
2
]

< ∞ ∀i = 1, . . . , r in mean square if

lim
n→∞

E
[

|(xi(n)− xi)|
2
]

= 0 ∀i = 1, . . . , r (2.3.6)

In this work, unless stated differently, the limit of a sequence of random variables
is referring to the limit in mean square and is denoted by

l.i.m.
n→∞

x(n) = x (2.3.7)

Definition 2.3.6 (Almost Sure Convergence). The sequence (x(n)|n ∈ N) con-
verges to x (cf. Definition 2.3.5) almost surely if

P( lim
n→∞

xi(n) = xi) = 1 ∀i = 1, . . . , r. (2.3.8)

The almost sure convergence will be denoted by

lim
n→∞

x(n) = x a.s. (2.3.9)
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2.3.2 Hilbert Space

Stationary processes have an elegant geometric interpretation in Hilbert space. In
order to define Hilbert spaces, the concept of inner products is useful:

Definition 2.3.7 (Inner Product). Let H be a linear space, then the mapping
〈·, ·〉 : H×H → C is an inner product if

1. 〈a1x1 + a2x2, y〉 = a1 〈x1, y〉+ a2 〈x2, y〉 ∀a1, a2 ∈ C, x1, x2, y ∈ H

2. 〈x, y〉 = 〈y, x〉 ∀x, y ∈ H

3. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0.

By using inner products, it is possible to define geometrical concepts such as
length or angle.

Definition 2.3.8 (Hilbert Space). A linear space H with inner product is called
a Hilbert space if all sequences x(n) ∈ H satisfying lim

m,n→∞
‖x(n)− x(m)‖ = 0

converge to some element x ∈ H in the norm defined by ‖x‖ :=
√

〈x, x〉.

Let M be a subspace of the Hilbert space H that contains all its limits in mean
squares; M is then called a closed subspace of H. The orthogonal complement of
M, denoted by M

⊥, is defined as the set of elements x ∈ H with 〈x, y〉 = 0 ∀y ∈
M. M

⊥ is a closed subspace of H on its own [56]. Using this terminology, the
projection theorem (cf. e.g. [56]) will be useful in the course of this work.

Theorem 2.3.1 (Projection Theorem). Let M be a closed subspace of a Hilbert
space H with its orthogonal complement M⊥. For every x ∈ H

1. there exists a unique element x̂ ∈ M satisfying ‖x− x̂‖ = min
y∈M

‖x− y‖

and

2. ‖x− x̂‖ = min
y∈M

‖x− y‖ ⇔ (x− x̂) ∈ M
⊥.

x̂ is called orthogonal projection of x onto M.

Let L2(Ω,A, P ) denote the space of square-integrable random variables x :
Ω → R, i.e. E

[

‖x‖2
]

< ∞. The set of equivalence classes x = y a.s. for vari-
ables x, y ∈ L2 is denoted by L2(Ω,A, P ). L2 together with the inner product
〈x, y〉 = E [x⊺y] is a Hilbert space. The closed subspace Hx ⊂ L2 spanned by the
scalar process (x(t)) is a Hilbert space on its own and is called time domain of
the process. Its elements are all linear combinations of the x(t) and their limits in
mean square. In Hx, a scalar stationary process (x(t)) is represented by vectors
x(t) of equal length. The angle between x(t) and x(t − u) for fixed u ∈ Z is
constant ∀t ∈ Z.

On Hx, the scalar stationary process (x(t)) is associated with an unitary op-
erator z.
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Definition 2.3.9 (Unitary Operator). A bounded linear operator z : Hx → Hx is
called unitary if it is surjective and preserves the inner product

〈zx(t), zy(t)〉 = 〈x(t), y(t)〉 ∀x(t), y(t) ∈ Hx. (2.3.10)

There exists a unique unitary operator z : Hx → Hx such that (cf. e.g. [56])

zkx(t) = x(t− k) for k, t ∈ Z. (2.3.11)

Commonly, the operator z is referred to as backshift operator. The whole process
(x(t)) is generated by z:

x(t) = z−tx(0). (2.3.12)

The backshift operator z will turn out to be useful in the Sections 2.3.3 and 2.4.2.

2.3.3 Autoregressive Processes

A class of stochastic processes that is important for this work are infinite autore-
gressive processes, here denoted by AR(∞)-processes. Consider the linear system

∞
∑

j=0

A(j)x(t− j) = ǫ(t) (2.3.13)

where A(j) ∈ R
r×r with

∑∞
j=0 ‖A(j)‖ < ∞ and ǫ(t) is r-dimensional white noise,

i.e. E [ǫ(t)] = 0 and E [ǫ(s)ǫ(t)∗] = δstΣ – δst being the Kronecker delta – for
s, t ∈ Z. ǫ(t) is orthogonal on the past x(t− j), j > 0. A linear system satisfying
Equation (2.3.13) is called AR(∞)-system. Using the notation z for both the
backshift operator as defined in (2.3.10) and a complex variable, Equation (2.3.13)
can be restated as

a(z)x(t) = ǫ(t) (2.3.14)

where a(z) =
∑∞

j=0A(j)z
j exists in the usual sense inside and on the unit circle

[57]. If the stability condition

det a(z) 6= 0 for |z| ≤ 1 (2.3.15)

holds, a−1(z) can be expanded into a power series that converges inside a disc
containing the unit circle

a−1(z) =
∞
∑

j=0

K(j)zj (2.3.16)

where K(j) ∈ R
r×r with

∑∞
j=0 ‖K(j)‖ < ∞ (cf. [58]). An AR(∞)-process is

the unique stationary solution of the AR(∞)-system (2.3.13) and is given as

x(t) = k(z)ǫ(t) (2.3.17)

with k(z) = a−1(z) [60]. From (2.3.17), it is clear that every AR(∞)-process has
mean zero.
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2.4 Stationary Processes in Frequency Domain

Whereas Section 2.3 was concerned with stationary processes in time domain, the
focus of this section will be on the analysis of stationary processes in frequency
domain. First, the discrete time Fourier transform will be discussed in Section
2.4.1. Section 2.4.2 will then provide the spectral representation of a stationary
process. Finally, Section 2.4.3 will be concerned with the central concept of this
work, the multivariate spectral density. Further insights on stationary processes
in the frequency domain can be found in e.g. [56] and [60].

2.4.1 Discrete Time Fourier Transform

A central tool in the context of spectral representation is the discrete time Fourier
transform (DFT). Consider a matrix-valued sequence (a(k) ∈ R

m×n|k ∈ Z). The
DFT of (a(k)|k ∈ Z) is defined as

A(λ) =
∞
∑

k=−∞
e−iλka(k), λ ∈ R (2.4.1)

where i is the imaginary unit and λ is the frequency. Under the assumption
∞
∑

k=−∞
‖a(k)‖ < ∞ (2.4.2)

where ‖ · ‖ is a matrix norm, the partial sum

A(N)(λ) =

N
∑

k=−N

e−iλka(k), λ ∈ R, N ∈ N (2.4.3)

converges pointwise and uniformly

‖A(λ)−A(N)(λ)‖ = ‖
∑

|k|>N

e−iλka(k)‖ ≤

≤
∑

|k|>N

‖e−iλka(k)‖ ≤

≤
∑

|k|>N

‖a(k)‖ → 0 for N → ∞, λ ∈ R

(2.4.4)

and the sum in Equation (2.4.1) exists in the usual sense. The last inequal-
ity in (2.4.4) holds because ‖e−iλk‖ = 1, ∀λ ∈ R, ∀k ∈ Z. As e−iλk =
cos(λk) − i sin(λk) is a 2π-periodic function, i.e. e−iλk = e−i(λ+2π)k, it suf-
fices to consider the discrete time Fourier transform on [−π, π].

The inverse discrete time Fourier transform (IDFT) is defined as

a(k) =
1

2π

∫ π

−π

eiλkA(λ)dλ, k ∈ Z. (2.4.5)
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2.4.2 Spectral Representation of Stationary Processes

This section is concerned with the spectral representation of a stationary pro-
cess. Therefore, the concept of stochastic integration with respect to a process
of orthogonal increments is introduced.

Definition 2.4.1 (Process of Orthogonal Increments). Given a probability space
(Ω,A, P ), let (z(λ)|λ ∈ [−π, π]) with z(λ) : Ω → C

r×1 be an r-vector valued
stochastic process satisfying

1. E [z(λ)∗z(λ)] < ∞ ∀λ ∈ [−π, π]

2. E [zi(λ)] = 0 ∀λ ∈ [−π, π] , i = 1, . . . , r

3. E [(z(λ4)− z(λ3))(z(λ2)− z(λ1))
∗] = 0 ∀λ1 < λ2 ≤ λ3 < λ4

then (z(λ)|λ ∈ [−π, π]) is called a process of orthogonal increments. Additionally,
if (z(λ)|λ ∈ [−π, π]) satisfies

4. l.i.m.
ǫ↓0

z(λ+ ǫ) = z(λ)

it is a right-continuous process of orthogonal increments.

Now, consider a square-integrable deterministic function g : [−π, π] → C.
The sum

In(g) =
n−1
∑

i=0

g(λi)(z(λi+1)− z(λi))

with − π = λ0 < . . . < λn = π

(2.4.6)

weights g(λi) with the increment of the process (z(λ|λ ∈ [−π, π]) and is thus an
extension of a Riemann sum. The stochastic integral I(g) is defined as the limit
in mean squares of In(g)

I(g) =

∫ π

−π

g(λ)dz(λ) = l.i.m.
n→∞

In(g) (2.4.7)

I(g) is a random variable. As can be shown, its first and second moments are
defined as (cf. e.g. [56])

E [I(g)] =

∫ π

−π

g(λ)dE [z(λ)]

E [I(g)I(h)∗] =
∫ π

−π

g(λ)h(λ)dE [z(λ)z(λ)∗].
(2.4.8)

With these definitions, the spectral representation of a stationary process is
given by the following theorem (cf. e.g. [56]).
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Theorem 2.4.1 (Spectral Representation Theorem). Given a stationary process
(x(t)), there exists a right-continuous orthogonal increment process (z(λ|λ ∈
[−π, π]) with

x(t) =

∫ π

−π

eitλdz(λ) a.s. (2.4.9)

Theorem 2.4.1 states that every stationary process (x(t)) can be approximated
(in mean squares) by a sum of harmonic oscillations. The process (z(λ|λ ∈
[−π, π]) defines a right-continous, monotonically non-decreasing function F :
[−π, π] → C

r×r by

F (λ) = E [z(λ)z(λ)∗] . (2.4.10)

F is called the spectral distribution function of (x(t)). For a centered stationary
process, the spectral distribution function is in close relation to the autocovariance
function

γ(u) =

∫ π

−π

eiuλdF (λ) ∀u ∈ Z (2.4.11)

2.4.3 Multivariate Spectral Density

This section is concerned with the central concept of this work, the multivari-
ate spectral density. Let (x(t)) be an r-vector valued stationary process with
mean zero and spectral distribution function F . A function f : [−π, π] → C

r×r

satisfying

F (λ) =

∫ λ

−π

f(µ)dµ for λ ∈ [−π, π] (2.4.12)

is called multivariate spectral density. Assuming that the process memory is fading,
i.e.

∞
∑

u=−∞
‖γ(u)‖ < ∞, (2.4.13)

F is absolutely continuous and f exists and is given by (cf. e.g. [60])

f(λ) =
1

2π

∞
∑

u=−∞
γ(u)e−iλu for λ ∈ [−π, π] . (2.4.14)

The inverse relation is given by

γ(u) =

∫ π

−π

eiuλf(λ)dλ for u ∈ Z. (2.4.15)

From Equations (2.4.14) and (2.4.15), f and γ are in a one-to-one relation via
DFT and IDFT.
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The multivariate spectral density f is matrix-valued and can thus be written
as

f(λ) =







f11(λ) · · · f1r(λ)
...

. . .
...

fr1(λ) · · · frr(λ)






for λ ∈ [−π, π] (2.4.16)

where fii(λ) is the auto-spectral density of xi(t), and fij(λ) is the cross-spectral
density of xi(t) with xj(t) at frequency λ. f is Hermitian and non-negative defi-
nite; this implies that the auto-spectral density is real and non-negative5 [60]. As
for real-valued processes f(λ) = f⊺(−λ) holds, the spectral density will only be
considered on [0, π].

For the interpretation of the multivariate spectral density, consider Equation
(2.4.15) for the case u = 0

γ(0) =

∫ π

−π

f(λ)dλ. (2.4.17)

In [λ1, λ2], the area under f may thus be interpreted as the contribution of the
frequency-band [λ1, λ2] to the process (x(t)). The frequency bands corresponding
to the most important oscillations of the process are visible as peaks in f .

2.5 Dependence Measures Derived from the Multivari-
ate Spectral Density

This section will be concerned with measures for dependence based on the multi-
variate spectral density f .

2.5.1 Framework

For the remainder of this work, only real-valued AR(∞)-processes (2.3.13) with
full rank Σ and stability condition (2.3.15) will be considered. By imposing the
additional requirement

∞
∑

j=0

j
1

2 ‖A(j)‖ < ∞, (2.5.1)

the spectral density satisfies

cIr ≤ f(λ) ≤ cIr (2.5.2)

where c and c with 0 < c ≤ c < ∞ are finite positive constants, and Ir is the (r×
r)-dimensional unity matrix [58]. Under the imposed conditions, the multivariate
spectral density exists and has constant rank ∀λ. f(λ) can be factorized as

f(λ) = k(e−iλ)Σk∗(e−iλ) (2.5.3)

5These properties will be important for the spectral density estimators in Section 2.7.
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where k(e−iλ) = a(e−iλ)−1 as defined in Section 2.3.3 [59].

2.5.2 Coherence

The first measure for dependence derived from the cross-spectral density is the
(squared) coherence.

Consider the univariate subprocesses (xi(t)) and (xj(t)) with corresponding
auto-spectral densities fii and fjj and cross-spectral density fij . Let (zi(λ)|λ ∈
[−π, π]) and (zj(λ)|λ ∈ [−π, π]) be the corresponding univariate processes of
orthogonal increments. The cross-spectral density in [λ1, λ2] with −π ≤ λ1 ≤
λ2 ≤ π is

∫ λ2

λ1

fij(λ)dλ = E

[

(zi(λ2)− zi(λ1))
(

zj(λ2)− zj(λ1)
)]

. (2.5.4)

In imprecise terms, this may be written as

fij(λ)dλ = E

[

dzi(λ)dzj(λ)
]

. (2.5.5)

Accordingly, fij(λ) is interpreted as measure for the linear dependence of dzi and
dzj at frequency λ. With this, the coherence C2

ij between (xi(t)) and (xj(t)) at
frequency λ ∈ [−π, π] is defined as

C2
ij(λ) =

|E
[

dzi(λ)dzj(λ)
]

|2

E [|dzi(λ)|2]E [|dzj(λ)|2]
=

|fij(λ)|
2

fii(λ)fjj(λ)
. (2.5.6)

C2
ij is a symmetric measure satisfying

0 ≤ C2
ij(λ) ≤ 1 (2.5.7)

where C2
ij(λ) near 1 indicates strong linear dependence between dzi and dzj at

frequency λ [56]. Due to the symmetry of C2
ij , no direction of dependence can

be determined by this measure.

2.5.3 Partial Coherence

The coherence is defined by the matrix-entries fii, fjj and fij of f ; in this sense,
it is a bivariate measure that does not distinguish between direct and indirect
linear dependences. For measuring only direct linear dependences, the (squared)
partial coherence was used.

One way to define this measure is by making use of the Projection Theorem
(cf. Section 2.3.2). Let (xI(t)) with I = {1, . . . , r} \ {i, j} denote all subpro-
cesses of (x(t)) but (xi(t)) and (xj(t)). The components of xI(t) span a closed
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subspace M ⊂ Hx. By the Projection Theorem, the residuals ǫi(t) and ǫj(t) of
the orthogonal projections of xi(t) and xj(t) on M are defined in a unique way.
The respective auto-spectral density of ǫi and ǫj will be denoted by fǫiǫi and fǫjǫj ,
and the cross-spectral density between ǫi and ǫj by fǫiǫj . fǫiǫj (λ) measures the
linear dependence between xi and xj at frequency λ after removing the influence
of xI [61]. Analogously to the coherence, the partial coherence between xi and
xj at frequency λ given xI is defined as [60]

R2
ij|I(λ) =

|fǫiǫj (λ)|
2

fǫiǫi(λ)fǫjǫj (λ)
. (2.5.8)

There is another representation of R2
ij|I that may be obtained given f . As f(λ)

has full rank, its inverse g(λ) = f−1(λ) exists and R2
ij|I has the representation

[61]

R2
ij|I(λ) =

|gij(λ)|
2

gii(λ)gjj(λ)
. (2.5.9)

The partial coherence takes values between 0 and 1 as well.

2.5.4 Bivariate Granger Causality

Coherences and partial coherences are symmetric measures; however, not only lin-
ear dependence but also the direction of dependence is a point of interest in this
work. Granger introduced an asymmetric measure called Granger causality in [62].

Consider the bivariate AR(∞)-process

x(t) =

(

x1(t)
x2(t)

)

∈ R
2×1 (2.5.10)

with coefficients A(k) ∈ R
2×2, k ∈ N. If knowledge of the past (x2(t−u)|u ∈ N)

improves the prediction of x1(t), then x2 is said to be Granger causal for x1. In
order to define this concept more precisely, some additional notation needs to be
introduced: Let M{1} be the space spanned by (x1(t − u)|u ∈ N) and M{12}
be the space spanned by (x1(t − u)|u ∈ N) and (x2(t − u)|u ∈ N). Denote
the residual of the orthogonal projection of x1(t) on M{1} (M{12}) by ǫ1(t|M{1})
(ǫ1(t|M{12})) and the residual variance by σ2

1(t|M{1}) (σ
2
1(t|M{12})). Using this

notation, x2 is Granger causal for x1 if the past (x2(t − u)|u ∈ N) improve the
prediction, i.e. the variances of the respective prediction errors satisfy [63]

σ2
1(t|M{12}) < σ2

1(t|M{1}). (2.5.11)

If equality holds, x2 is said to be Granger noncausal for x1. This is equivalent to
[64]

A12(k) = 0 ∀k = 1, . . . ,∞. (2.5.12)

In this way, Granger (non-)causality is defined as asymmetric measure for depen-
dence that can be derived from the AR(∞)-representation of (x(t)).
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2.5.5 Conditional Granger Causality

Granger (non-)causality is a bivariate approach that only takes two univariate
subprocesses into account. Extending this approach to r vector valued processes
leads to the conditional Granger causality [63].

Let (x(t)) be an r vector valued AR(∞)-process with coefficients A(l) ∈
R
r×r, l ∈ N. Denote all subprocesses but (xj(t)) and (xk(t)) by (xI(t)) with

index set I = {1, . . . , r} \ {j, k}. Analogously to the bivariate case, let MI∪{j,k}
be the space spanned by (xi(t − u)|u ∈ N) with i ∈ I ∪ {j, k} and MI∪{j}
be the space spanned by (xi(t − u)|u ∈ N) with i ∈ I ∪ {j}. The prediction
error ǫj(t|MI∪{j,k}) (ǫj(t|MI∪{j})) resulting from the orthogonal projection of
the space spanned by xj(t) on MI∪{j,k} (MI∪{j}) has variance σ2

j (t|MI∪{j,k})
(σ2

j (t|MI∪{j})). With this, xk is conditionally Granger causal for xj given xI if

σ2
j (t|MI∪{j,k}) < σ2

j (t|MI∪{j}). (2.5.13)

Equality of the variances defines conditional Granger non-causality of xk for xj
given xI . This is equivalent to [64]

Ajk(l) = 0 ∀l = 1, . . . ,∞. (2.5.14)

In this way, conditional Granger (non-)causality is an asymmetric measure for
direct dependence that can be derived from the AR(∞)-representation of (x(t)).

2.5.6 Static Canonical Correlation Analysis

For the analysis of time static dependence between two multivariate time series,
Hotelling introduced the concept of static canonical correlation analysis in [65].

Take an (r + s) vector valued AR(∞)-process (x(t)) of the form

x(t) =

(

y(t)
z(t)

)

∈ R
(r+s)×1 (2.5.15)

with (y(t)) and (z(t)) being r- and s-vector valued subprocesses. For better
readability, the time index will be skipped: x := x(t), y := y(t), and z := z(t).
The ((r + s)× (r + s)) covariance matrix of x will be denoted by

γxx =

(

γyy γyz

γzy γzz

)

(2.5.16)

where γyy = E [yy⊺], γzz = E [zz⊺], and γyz = γ
⊺

zy = E [yz⊺]. Consider the
problem of determining matrices D ∈ R

q×r and E ∈ R
q×s, q = min (r, s) such

that

E [(Ez −Dy)⊺(Ez −Dy)] −→ min (2.5.17)
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with the normalization constraints EγzzE
⊺ = I and DγyyD

⊺ = I. The D and
E satisfying (2.5.17) are

D =







U
⊺

1
...
U

⊺

q






γ
− 1

2
yy , E =







V
⊺

1
...
V

⊺

q






γ
− 1

2
zz (2.5.18)

where Ui and Vi denote the respective i
th – according to size of the corresponding

eigenvalue – eigenvector of (cf. [60])

γ
− 1

2
yy γyzγ

−1
zz γzyγ

− 1

2
yy and γ

− 1

2
zz γzyγ

−1
yy γyzγ

− 1

2
zz . (2.5.19)

By setting

ai = γ
− 1

2
yy Ui

bi = γ
− 1

2
zz Vi

(2.5.20)

the ith static canonical correlation coefficient ρi is defined as correlation coefficient
between a

⊺

i y and b
⊺

i z

ρi =
a
⊺

i γyzbi

((a⊺i γyyai)(b
⊺

i γzzbi))
1

2

(2.5.21)

with ρi = 0 for i > q. Here, ρ21 ≥ . . . ≥ ρ2q are the q greatest eigenvalues of
both terms in (2.5.19) and correspond to the eigenvectors Ui and Vi [60]. The
Euklidean norm of the q greatest canonical correlation coefficients ρi was used as
symmetric measure for time static linear dependence between y(t) and z(t) as
defined in (2.5.15).

2.5.7 Dynamic Canonical Correlation Analysis

For the investigation of time dynamic dependence between two multivariate time
series, Brillinger introduced the concept of dynamic canonical correlation analysis
in [60].

Consider the (r+s)-vector valued AR(∞)-process (x(t)) with r- and s-vector
valued subprocesses (y(t)) and (z(t)). The multivariate spectral density of (x(t))
can be written as

fxx(λ) =

(

fyy(λ) fyz(λ)
fzy(λ) fzz(λ)

)

∈ C
(r+s)×(r+s) (2.5.22)

where fyy(λ) and fzz(λ) are the respective auto-spectral densities and fyz(λ) =
fzy(λ)

∗ is the cross-spectral density of (y(t)) and (z(t)) at frequency λ. Now,



CHAPTER 2. MATERIALS AND METHODS 31

consider the problem of determining a series of (q×r) matrices (b(u)) and a series
of (q × s) matrices (c(u)), u ∈ Z, q = min (r, s) that minimize

E

[(

∑

u

c(t− u)z −
∑

u

b(t− u)y

)

⊺
(

∑

u

c(t− u)z −
∑

u

b(t− u)y

)]

.

(2.5.23)
Brillinger shows that Equation (2.5.23) is minimized by

b(u) =
1

2π

∫ π

−π

B(λ)eiuλdλ

c(u) =
1

2π

∫ π

−π

C(λ)eiuλdλ

(2.5.24)

where B(λ) and C(λ) are given as

B(λ) =







U∗
1 (λ)
...

U∗
q (λ)






f
− 1

2
yy (λ), C(λ) =







V ∗
1 (λ)
...

V ∗
q (λ)






f
− 1

2
zz (λ). (2.5.25)

Here, Ui(λ) and Vi(λ) denote the respective ith eigenvector of

f
− 1

2
yy (λ)fyz(λ)f

−1
zz (λ)fzy(λ)f

− 1

2
yy (λ) (2.5.26)

and

f
− 1

2
zz (λ)fzy(λ)f

−1
yy (λ)fyz(λ)f

− 1

2
zz (λ). (2.5.27)

The root of the corresponding ith eigenvalue ρi(λ) is then called the ith dynamic
canonical correlation coefficient6. The Euklidean norm of (ρ1(λ), . . . , ρq(λ)) was
used as a time dynamic (frequency-wise) symmetric measure for linear dependence
between y(t) and z(t).

2.5.8 Static Principal Component Analysis

For analyzing time static dependences within a multivariate time series, Pearson
and Hotelling introduced – independently from each other – the static principal
component analysis (PCA) in [66] and [67].

Let (x(t)) be an r-vector valued AR(∞)-process with covariance matrix γ.
The time index will be skipped here: x := x(t). Consider the problem of finding
matrices B ∈ R

q×r and C ∈ R
r×q that minimize

E [(x− CBx)⊺(x− CBx)] (2.5.28)

with the constraint
Bi·C·i = 1 (2.5.29)

6Sometimes also referred to as ith canonical coherence.
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where Bi· is the ith row of B and C·i is the ith column of C. The B and C

satisfying (2.5.28) are

B =







V
⊺

1
...
V

⊺

q






, C =

(

V1, . . . , Vq

)

= B⊺ (2.5.30)

where Vi denotes the ith eigenvector of γ with corresponding eigenvalue µi. The
ith principal component (PC) of x is defined as

ζi = V
⊺

i x (2.5.31)

where the ζi satisfy

E [ζ⊺i ζj ] =

{

0, i 6= j

µi, i = j.
(2.5.32)

Thus, the PCs represent uncorrelated linear combinations of x; µi is the variance
of the ith PC. The sum of all µi equals the variance of x and, thus, the term

pi =
µi

∑

j µj
(2.5.33)

gives the percentage of variance that is described by ζi. When the subprocesses of
x show a rather homogeneous behavior, only few PCs suffice to describe most of
the process information. Here, p1 was used as measure for time static homogeneity.

2.5.9 Dynamic Principal Component Analysis

For the investigation of time dynamic dependences within a multivariate time se-
ries, Brillinger introduced the dynamic PCA in [60].

Let (x(t)) be an r-vector valued AR(∞)-process with multivariate spectral
density f . Consider the problem of finding series of (q × r) matrices (b(u)) and
(r × q) matrices (c(u)), u ∈ Z that minimize

E

[(

x(t)−
∑

u

c(t− u)ζ(u)

)

⊺
(

x(t)−
∑

u

c(t− u)ζ(u)

)]

(2.5.34)

where
ζ(t) =

∑

u

b(t− u)x(u). (2.5.35)

The term (2.5.34) is minimal for

b(u) =
1

2π

∫ π

−π

B(λ)eiuλdλ (2.5.36)

c(u) =
1

2π

∫ π

−π

C(λ)eiuλdλ (2.5.37)
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where

B(λ) =







V ∗
1 (λ)
...

V ∗
q (λ)






, C(λ) =

(

V1(λ), . . . , Vq(λ)
)

= B∗. (2.5.38)

where Vi(λ) is the ith eigenvector of f(λ) with corresponding eigenvalue µi(λ).
The ith component of ζ(t) (cf. Equation (2.5.35)) has the representation

ζi(t) =

∫ π

−π

Vi(λ)
∗eiλtdz(λ) (2.5.39)

where (z(λ)|λ ∈ [−π, π]) is the corresponding process of orthogonal increments.
ζi(t) is called the ith PC series of x(t) and has multivariate spectral density







µ1(λ) 0
. . .

0 µq(λ)






for λ ∈ [−π, π] . (2.5.40)

Analogously to the time static case, the term

pi(λ) =
µi(λ)

∑

j µj(λ)
(2.5.41)

gives the percentage of variance that is described by the ith PC at frequency λ.
Here, p1 was used as measure for time dynamic homogeneity.

2.6 Estimating the First and Second Moments

Whereas the previous Sections 2.3, 2.4 and 2.5 were concerned with structure
theoretic considerations, the focus of the following Sections 2.6, 2.7 and 2.8 will
be on statistical considerations. The data will be assumed to be a realization of
an AR(∞)-process that satisfies the conditions listed in Section 2.5.1. At first,
estimates for the mean µ and autocovariance function γ will be considered.

2.6.1 Mean

Consider a scalar process (x(t)) with realization x(0), . . . , x(T − 1). The mean of
the process was estimated by the sample mean

x(T ) =
1

T

T−1
∑

t=0

x(t). (2.6.1)

x(T ) is an unbiased estimate since

E [x(T )] = E

[(

1

T

T−1
∑

t=0

x(t)

)]

=
1

T

T−1
∑

t=0

E [x(t)] = 0. (2.6.2)
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Note that, for an r-vector valued process, the estimation is done component-wise;
thus the employment of the scalar case is reasonable.

Under the conditions of this work, x(T ) satisfies both (cf. e.g. [56])

lim
T→∞

E

[

|(x(T ))|2
]

= 0 (2.6.3)

lim
T→∞

TE
[

|(x(T ))|2
]

=
∞
∑

u=−∞
γ(u). (2.6.4)

The first part states that the estimate x(T ) converges in mean square to µ = 0
and is thus weakly consistent. From the second part, the spectral density holds

f(0) =
1

2π

∞
∑

u=−∞
γ(u) =

1

2π
lim
T→∞

TE
[

|(x(T ))|2
]

. (2.6.5)

Thus, f(0) is a measure of the quality of the estimate x(T ).

2.6.2 Autocovariance Function

Consider the r-vector valued process (x(t)) with realization x(0), . . . ,x(T−1). In
this study, the autocovariance function γ was estimated by the sample covariance

γ̂(u, T ) =







1
T

∑T−u−1
t=0 (x(t+ u)− x(T )) (x(t)− x(T ))⊺ for T > u ≥ 0

γ̂⊺(−u, T ) for − T < u < 0
0 else

(2.6.6)
where x(T ) is the vector of sample means of univariate subprocesses. γ̂ is a biased
estimate for γ. However, since x(T ) converges component-wise in mean square
to 0, γ̂ is asymptotically unbiased

lim
T→∞

E [γ̂(u, T )] = γ(u). (2.6.7)

Consistency of γ̂(u, T ) may be investigated by introducing an artificial sta-
tionary process (y(t)) where

y(t) = x(t+ s)x(t)⊺. (2.6.8)

If ∞
∑

u=−∞
|E [(y(u)− E [y(u)]) (y(0)− E [y(0)])]| < ∞ (2.6.9)

holds, then lim
T→∞

γ̂(u, T ) = γ(u) a.s. Thus, γ̂(u, T ) is a consistent estimate

provided that the fourth moments of (x(t)) exist and are stationary.
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Additionally, the matrix with the sample covariances as block entries

Γ̂(T ) =







γ̂(0, T ) · · · γ̂(−T + 1, T )
...

. . .
...

γ̂(T − 1, T ) · · · γ̂(0, T )






for T ≥ 1 (2.6.10)

is non-negative definite7 [56]. Note that, for large u, the sum in (2.6.6) has only
few summands. In this case, γ̂(u, T ) does not necessarily have full rank and is,
for large u, not a proper estimate for γ(u).

2.7 Estimating the Multivariate Spectral Density

This section will be concerned with non-parametric estimates for the multivari-
ate spectral density f . Several types of estimates, both their finite-sample and
asymptotic properties, and their implementation will be considered. An estimate
f̂ qualifies as ”good” if it is – at least asymptotically – unbiased and consistent,
and if it preserves the properties of being Hermitian, positive semi-definite, and
of full rank. The last property is important for the calculation of the partial co-
herence and the dynamic canonical correlation analysis via the inverse spectral
density (cf. Sections 2.5.3 and 2.5.7). For literature on spectral estimation, the
reader is referred to [60], [56], and [68], where the latter offers an approach that
is mathematically less precise but rather descriptive.

2.7.1 Periodogram

At this point, recall the definition of the multivariate spectral density from Section
2.4.3

f(λ) =
1

2π

∞
∑

u=−∞
γ(u)e−iλu for λ ∈ [−π, π] . (2.7.1)

As a first estimate, the periodogram – originally introduced by Schuster in 1898
(cf. [69]) – will be considered. Let (x(t)) be an r-vector valued AR(∞)-process
with a realization x(0), . . . ,x(T − 1). For λ 6≡ 0(mod 2π), the periodogram is
defined as

I(λ, T ) =
1

2πT

(

T−1
∑

t=0

x(t)e−iλt

)(

T−1
∑

t=0

x(t)e−iλt

)∗

. (2.7.2)

For λ ≡ 0(mod 2π), the periodogram is given as

I(λ, T ) =
T

2π
x(T )x⊺(T ). (2.7.3)

7This is not the case when the factor 1

T
in (2.6.6) is replaced by e.g. 1

T−s
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For Fourier frequencies λj =
2πj
T

6≡ 0(mod 2π), the periodogram takes the form

I(λj , T ) =
1

2π

∑

|u|<T

γ̂(u, T )e−iλju (2.7.4)

where γ̂(u, T ) is the estimate for the autocovariance function as defined in Equa-
tion (2.6.6). The restriction to Fourier frequencies simplifies the computation of
I(λ, T ) as the vectors 1√

T

(

eiλj0, . . . , eiλj(T−1)
)⊺

form an orthonormal basis of

C
T . For T → ∞, every frequency λ may be approximated arbitrary close by a

Fourier frequency. By comparing Equations (2.7.1) and (2.7.4), the periodogram
seems to be a reasonable estimate for f .

The expected value of the periodogram at Fourier frequency λ 6≡ 0(mod 2π)
is

E [I(λ, T )] =
1

2π

∑

|u|<T

(

1−
|u|

T

)

γ(u)e−iλu

=

∫ π

−π

f(ω)gF (λ− ω, T )dω

(2.7.5)

where

gF (ω, T ) =

{

T
2π for ω = 0

1
2πT

∣

∣

∣

1−eiωT

1−eiω

∣

∣

∣

2
else

(2.7.6)

is called Fejér kernel [60]. gF (ω, T ) is a symmetric and non-negative function
that is zero for Fourier frequencies ω = λ 6≡ 0(mod 2π). Furthermore, the Fejér
kernel satisfies

∫ π

−π

gF (ω, T )dω = 1. (2.7.7)

For λ ≡ 0(mod 2π), the expected value of the periodogram is

E [I(λ, T )] =
T

2π
E [x(T )x⊺(T )] (2.7.8)

and, thus, depends on the variance of the sample mean (cf. also Equation (2.6.5)).

The periodogram is an asymptotically unbiased estimator for the spectral den-
sity (cf. [56])

lim
T→∞

E [I(λ, T )] = f(λ). (2.7.9)

Alternatively, the asymptotic unbiasedness can be cf.n by considering the asymp-
totic behavior of the Fejér kernel: gF (ω, T ), ω 6= 0 tends to 0 as T → ∞. Given
the additional assumption

∞
∑

u=−∞
|u| ‖γ(u)‖ < ∞, (2.7.10)
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the bias of the periodogram is of order O(T−1) (uniform in λ) [60].

Now, let us turn to the second moments of the periodogram. Let λj and λk

be Fourier frequencies, then (cf. [56])

E [I(λj , T )I
∗(λk, T )] = (2.7.11)

=











f(λj)f
∗(λj) + f∗(λj)f(λj) +O(T− 1

2 ) for λj = λk ≡ 0(mod 2π)

f(λj)f
∗(λj) +O(T− 1

2 ) for λj = λk 6≡ 0(mod 2π)
O(T−1) for λj 6= λk.

Thus, the periodogram is not a consistent estimator with standard deviation of the
same magnitude as the spectral density. The inconsistency arises from γ̂(u, T )
being a poor estimate for γ(u) when u is close to T as, in this case, γ̂(u, T )
is determined by only few summands. Additionally, the periodogram ordinates
are, for Fourier frequencies λj 6= λk, asymptotically independent [56]. These
properties result in the periodogram being a highly ”irregular” function even when
the spectral density is rather smooth [60].

2.7.2 Direct Spectral Estimates

Despite the non-consistency of the periodogram, it can serve as basis for the
construction of consistent estimates. Due to the asymptotically uncorrelated peri-
odogram ordinates, averaging over neighboring frequencies cf.ms to be a reason-
able measure for lowering the variance of the estimate. This approach is referred
to as direct spectral estimation [68].

Formally, a direct spectral estimate is defined by

f̂(λ, T ) =

m(T )
∑

u=−m(T )

w(u, T )I(λ−
2πu

T
, T ) (2.7.12)

where m(T ) is an integer defining the number of periodogram values used for
smoothing and w(u, T ) are filter weights satisfying

w(u, T ) = w(−u, T ) (2.7.13)

w(u, T ) ≥ 0. (2.7.14)

By the non-negativity of w(u, T ), f̂(λ, T ) is positive semi-definite. For the compu-
tation of the marginal values of f̂(λ, T ), the periodogram is periodically extended
outside the interval (−π, π].

The expected value of f̂(λ, T ) is

E

[

f̂(λ, T )
]

=

∫ π

−π

f(ω)g(λ− ω, T )dω (2.7.15)
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where

g(ω, T ) =

m(T )
∑

u=−m(T )

w(u, T )gF (ω −
2πu

T
, T ) (2.7.16)

with gF (ω) being the Fejér kernel (cf. Equation (2.7.6)) [56]. The functions
g(ω, T ) are called spectral windows8.

Using Equation (2.7.12), the expected value of f̂(λ, T ) has the representation

E

[

f̂(λ, T )
]

=

m(T )
∑

u=−m(T )

w(u, T )E

[

I(λ−
2πu

T
, T )

]

(2.7.17)

and, as the periodogram is asymptotically unbiased,

lim
T→∞

E

[

f̂(λ, T )
]

=

m(T )
∑

u=−m(T )

w(u, T )f(λ) (2.7.18)

holds. By imposing the conditions

m(T )
∑

u=−m(T )

w(u, T ) = 1 (2.7.19)

lim
T→∞

m(T )

T
= 0, (2.7.20)

f̂(λ, T ) is an asymptotically unbiased estimate for the spectral density.

The second moments of f̂(λ, T ) depend on the filter weights w(u, T ) as well.
Let λj and λk be Fourier frequencies, then

lim
T→∞

E

[

f̂(λj , T )f̂(λk, T )
∗
]

∑m(T )
u=−m(T )w

2(u, T )
=

=







f(λj)f
∗(λj) + f∗(λj)f(λj) for λj = λk ≡ 0(mod 2π)

f(λj)f
∗(λj) for λj = λk 6≡ 0(mod 2π)

0 for λj 6= λk

(2.7.21)

holds. Thus, under the condition

m(T )
∑

u=−m(T )

w2(u, T ) → 0 for T,m(T ) → ∞ (2.7.22)

the smoothed periodogram is a consistent estimate for the spectral density [56].

8Note, that the Fejér kernel is a spectral window itself.
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2.7.3 Indirect Spectral Estimates

The one-to-one relation between spectral density and autocovariance function sug-
gests that a tapering of the autocovariance may lead to a consistent estimate as
well. Hereby, γ̂(u, T ) is down-weighted for large u in order to reduce the variance
of the estimate. This approach is called indirect spectral estimation [68].

Formally, an indirect spectral estimate is defined as

f̃(λ, T ) =
1

2π

n(T )
∑

u=−n(T )

l(u, T )γ̂(u, T )e−iλu (2.7.23)

where l(u, T ) is a weight-function called lagwindow that satisfies

l(u, T ) = l(−u, T ) (2.7.24)

l(u, T ) ≥ 0 for |u| < n(T ) ≤ T (2.7.25)

l(u, T ) = 0 for |u| ≥ n(T ). (2.7.26)

The parameter n(T ) is called truncation point and defines the number of lags
included in the spectral estimate. Alternatively, f̃(λ, T ) may be written as

f̃(λ, T ) =

∫ π

−π

I(λ− ω, T )L(ω, T )dω (2.7.27)

with

L(ω, T ) =
1

2π

∑

|u|<T

l(u, T )e−iωu. (2.7.28)

The expected value of the estimate is

E

[

f̃(λ, T )
]

=

∫ π

−π

f(ω)g(λ− ω, T )dω +O(
lnT

T
) (2.7.29)

with spectral window

g(λ, T ) =

∫ π

−π

gF (ω, T )L(λ− ω, T )dω (2.7.30)

where gF (ω) is the Fejér kernel [68].

With T tending towards ∞,

E

[

f̃(λ, T )
]

→ f(λ)

∫ π

−π

L(ω, T )dω. (2.7.31)

Thus, by imposing the condition
∫ π

−π

L(ω, T )dω = 1, (2.7.32)
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or, equivalently,
l(0, T ) = 1 (2.7.33)

the indirect estimate is asymptotically unbiased.

The second moments of f̃(λ, T ) depend on L(ω, T ). Let λj and λk be Fourier
frequencies, then

lim
T→∞

E

[

f̃(λj , T )f̃(λk, T )
∗
]

∫ π

−π
L2(ω, T )dω

=

=







f(λj)f
∗(λj) + f∗(λj)f(λj) for λj = λk ≡ 0(mod 2π)

f(λj)f
∗(λj) for λj = λk 6≡ 0(mod 2π)

0 for λj 6= λk

(2.7.34)

holds. By imposing the condition
∫ π

−π

L2(ω, T )dω → 0 for T → ∞, (2.7.35)

the indirect spectral estimate is a consistent estimate for the spectral density.

2.7.4 Implementation

The focus of this section will be on the implementation of the spectral estimates
on real (EEG) data. Several issues of spectral estimation procedures will be ad-
dressed.

Resolution (Narrow Band Bias)

From Equations (2.7.15) and (2.7.29), two sources for the finite sample bias of
the presented estimation procedures become apparent. The first source affects the
frequency resolution of the estimates and is referred to as narrow band bias. For
the understanding of this type of bias, consider the shape of spectral windows as
defined in Equations (2.7.16) and (2.7.30). These spectral windows have a main
lobe and several declining side lobes. The width of the main lobe is measured by
the respective bandwidth

Bd =
1

T
∑

uw
2(u, T )

(2.7.36)

for direct spectral estimates, and

Bi =
1

∫ π

−π
L2(ω, T )dω

(2.7.37)

for indirect spectral estimates. Two peaks in the spectral density with frequency-
distance smaller than B cannot be distinguished from each other. For this reason,
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a small bandwidth would be desirable; however, by decreasing the bandwidth, the
variance of the estimate increases (cf. Equations (2.7.21) and (2.7.34)). This
issue is called the uncertainty relation of spectral estimation.

Leakage (Broad Band Bias)

The second source of finite sample bias originates from the sidelobes of the spectral
windows. Peaks in the spectral density coinciding with a sidelobe of the spectral
window distort the estimate on other frequencies and, thus, increase the bias of the
estimate. This phenomenon is known as leakage effect. The origin of the leakage
effect is the finite length of the sample data. A finite realization can be treated as
the element-wise multiplication of an infinite realization with a rectangular data
window

h(t) =

{

1 for t = 0, . . . , T − 1
0 else

(2.7.38)

By chosing another data window with lower sidelobes of the corresponding spec-
tral window, the leakage effect can be reduced. This procedure is referred to as
data tapering and was originally described by Tukey in [70]. Examples for taper
functions will be provided in Section 2.7.4.

Another way to reduce the leakage is to prewhiten the data. Thereby, a linear
transformation is applied on the data with the aim of simulating a realization of
a white noise process. In this way, the spectral density has no significant peaks
and the leakage effect can be reduced. The estimated spectral density is then
recolored, i.e. retransformed to correspond to the original data. This approach is
preferable in (semi-) parametric estimation procedures and will not be considered
any further in this work.

Window Closing

For both direct and indirect spectral estimation, the desired smoothness of the
estimate has to be defined. This is done by choosing m(T ) (cf. Section 2.7.2) or
n(T ) (cf. Section 2.7.3). As the chosen values have an impact on the bandwidth
– and therefore on the narrow band bias – and on the second moments of the
estimates, a proper choice is crucial for the quality of the estimation. A common
procedure is window closing : different values for the respective m(T ) or n(T )
are applied in order to study the behavior of the estimate. Values causing a high
bandwidth provide information about the basic trend of the estimate, whereas
those causing a low bandwith are used for the identification and localization of
spectral peaks. Figure 2.7.1 illustrates the window closing for a 4 second (1024
sample points) EEG segment in resting state on channel CZ. The EEG signal is
shown in Figure 2.7.1a. Indirect spectral estimation was performed with truncation
points 1024, 896, 768, 640, 512, 384, 256, 128 and 64. The corresponding spectral
estimates are shown in Figure 2.7.1b.
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(a) EEG signal, 4 sec., resting state, Channel CZ
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(b) Indirect spectral estimates with different truncation points

Figure 2.7.1: Window closing

Window/Taper Functions

There is a broad range of functions that are designed for data tapering to re-
duce the leakage effect of spectral estimation and as window functions for direct
and indirect spectral estimation to construct consistent estimates. Although the
same functions may be applied for both tapering and windowing, the functions
have to meet different requirements for the respective application. In case of
tapering, a small bandwidth and low, rapidly decreasing sidelobes are desirable.
For windowing, on the other hand, additional restrictions are required in order
to design consistent estimates and to preserve properties such as the positive
semi-definiteness of the estimate. Here, several examples for these functions are
provided. For the sake of readability, the functions will be referred to as window
functions although they are used for tapering as well. A selection of commonly
used window functions can be found in the Signal Processing Toolbox in MAT-
LAB. The MATLAB functions wintool and wvtool provide means for the design,
analysis and visualization of window functions both in time and frequency domain.

Applying no window function is equivalent to applying the rectangular window
h(t) as defined in Equation (2.7.38). As pointed out earlier, this window is not
ideal in terms of both bandwidth and height of sidelobes of the corresponding
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spectral window. Figure 2.7.2a shows the rectangular window and Figure 2.7.2b
shows the corresponding spectral window for T = 1024. The MATLAB function
used for generating this window is rectwin.
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(a) Rectangular window (T = 1024)
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Figure 2.7.2: Rectangular window and corresponding spectral window

For T odd, the triangular window is defined as

h(t) =

{ 2t
T+1 for 0 ≤ t ≤ T−1

2

2− 2t
T+1 for T+1

2 ≤ t ≤ T − 1
(2.7.39)

and, for T even

h(t) =

{

2t+1
T

for 0 ≤ t ≤ T
2 − 1

2− 2t+1
T

for T
2 ≤ t ≤ T − 1.

(2.7.40)

Figures 2.7.3a and 2.7.3b show the triangular window and the corresponding spec-
tral window for T = 1024. The MATLAB function used for generating this window
is triang.
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(a) Triangular window (T = 1024)
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Figure 2.7.3: Triangular window and corresponding spectral window

A widely used window function is the Hann window that is named after the
Austrian meteorologist J. von Hann (cf. [71]). It is defined as

h(t) =
1

2
−

1

2
cos

(

2πt

T − 1

)

. (2.7.41)

The Hann window is designed to have strongly decreasing sidelobes. Figures
2.7.4a and 2.7.4b show the Hann window and the corresponding spectral window
for T = 1024. The MATLAB function used for generating this window is hann.



44

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

Samples

A
m

pl
itu

de

(a) Hann window (T = 1024)
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Figure 2.7.4: Hann window and corresponding spectral window

In order to minimize the sidelobes closest to the main lobe, the US mathe-
matician R. W. Hamming proposed the Hamming window (cf. [71])

h(t) = 0.54− 0.46 cos

(

2πt

T − 1

)

. (2.7.42)

It is similar to the Hann window but with slightly modified parameters 0.54 and
0.46 instead of two times 0.5. This modification leads to lower first sidelobes,
but the decrease of height is slower than for the Hann window. Figures 2.7.5a
and 2.7.5b show the Hamming window and the corresponding spectral window for
T = 1024. The MATLAB function used for generating this window is hamming.
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(a) Hamming window (T = 1024)
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Figure 2.7.5: Hamming window and corresponding spectral window

Finally, the Parzen window – named after the US statistician E. Parzen – is
defined as (cf. [72])

h(t) =

{

1− 6
∣

∣

2t
T

∣

∣

2
+ 6

∣

∣

2t
T

∣

∣

3
0 ≤ |t| ≤ T

4

2
(

1−
∣

∣

2t
T

∣

∣

)3 T
4 ≤ |t| ≤ T

2 .
(2.7.43)

Although there are better window functions in terms of bandwidth and leakage
reduction, the Parzen window preserves, in contrast to the Hann and Hamming
window, the positive semi-definiteness of the estimate. It is a well-established
window function, especially when used as lag window [68]. Figures 2.7.6a and
2.7.6b show the Parzen window and the corresponding spectral window for T =
1024. The MATLAB function used for generating this window is parzenwin.
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(a) Parzen window (T = 1024)
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Figure 2.7.6: Parzen window and corresponding spectral window

2.7.5 Spectral Estimation in this Study

For the analyses of EEG synchrony in AD, an indirect spectral estimate was used
for estimating the multivariate spectral density. As mentioned in Sections 2.1 and
2.2.3, analyses were carried out on 4 second EEG segments with an overlap of 2
seconds. At first, the mean of each channel was estimated according to Equa-
tion (2.6.1) with the MATLAB function mean and subtracted from each channel.
Then, for reducing the leakage effect, the data were channelwise pre-tapered with
a Hamming window by using the MATLAB function hamming (cf. Section 2.7.4).
The autocovariance function was then estimated according to Equation (2.6.6)
with the MATLAB function xcov. The Parzen window was applied as lag win-
dow. By window closing, the truncation point n(T ) = 255 corresponding to 1
second was determined. Higher lags and the corresponding inaccuracy of estima-
tion were avoided and a satisfying degree of smoothness of the spectral estimate
was achieved. The DFT was applied on the windowed autocovariance function by
making use of the MATLAB functions fft and ifft. The resulting estimate is
Hermitian, positive semi-definite, and has full rank.

The most important lines of MATLAB source code for this estimation proce-
dure are the following:

1 % Zero mean EEG segment X with dimensions samples x channels

2 [nX,r] = size(X);

3

4 % Sampling rate

5 fs = 256;

6

7 % Taper the data with a Hamming window for leakage reduction

8 taper = hamming(nX)*ones(1,r);

9 X = X.*taper;

10

11 % Autocovariance function of X

12 C = xcov(X);

13 [nC,m] = size(C);

14

15 % Apply lag window with truncation point 256 samples (maximum lag 255)



46

16 u = -255:255;

17 nLags = length(u);

18 lagwin = parzenwin(nLags);

19 lagwin = [zeros((nC-nLags)/2,1); lagwin; zeros((nC-nLags)/2,1)];

20 lagwin = lagwin*ones(1,m);

21 C = C.*lagwin;

22

23 % Calculate DFT of windowed autocovariance function

24 S1 = fft(C(nX:end,:));

25 S2 = nX*ifft(C(nX:-1:1,:))-ones(nX,1)*C(nX,:);

26 S = S1 + S2;

27 S(:,1:r+1:end) = 2*real(S1(:,1:r+1:end))-ones(nX,1)*C(nX,1:r+1:end);

28 S = S/(2*pi*nX*fs);

29

30 % Spectral density in [0,pi]

31 S = S(1:nX/2+1,:);

32

33 % Reshape spectral density S

34 tmpS = cell(length(f),1);

35 for k = 1:length(f)

36 tmpS(k,1) = {reshape(S(k,:),r,r)’};

37 end

38 S = tmpS;

39

40 % Corresponding vector of positive Fourier frequencies

41 f = linspace(0,fs/2,nX/2+1);

2.8 Implementation of the Dependence Measures

This section will be concerned with the implementation of the dependence mea-
sures defined in Section 2.5. Starting point is a 4 second EEG segment with
corresponding estimates for the mean x(T ), autocovariance function γ̂(u, T ), and
multivariate spectral density f̃(λ, T ) as described in the previous sections.

2.8.1 Coherence

An estimate for the coherence (cf. Equation (2.5.6)) between the univariate
samples xi(0), . . . , xi(T − 1) and xj(0), . . . , xj(T − 1) was derived by

Ĉ2
ij(λ, T ) =

|f̃ij(λ, T )|
2

f̃ii(λ, T )f̃jj(λ, T )
. (2.8.1)

Hence, the estimation is straightforward. For a discussion of the asymptotic prop-
erties of the empirical coherence Ĉ2

ij , the reader is referred to [60] and [56].
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Given the MATLAB source code for the spectral estimation, the most relevant
code lines for the calculation of the empirical coherence between channel i and j

at frequency λ are as follows:

1 % Find index of Fourier frequency lambda

2 [~,fIdx] = max(f==lambda);

3

4 % Calculate coherence between channels i and j at lambda

5 Cij = S{fIdx}(i,j) / sqrt(S{fIdx}(i,i)*S{fIdx}(j,j));

6 Cij = abs(Cij)^2;

2.8.2 Partial Coherence

The empirical partial coherence was estimated by

R̂2
ij(λ, T ) =

|ĝij(λ, T )|
2

ĝii(λ, T )ĝjj(λ, T )
. (2.8.2)

where ĝij(λ, T ) is the (i, j)-element of ĝ(λ, T ) = f̃−1(λ, T ) at frequency λ. As
f̃−1 has full rank, its inverse ĝ exists. The estimate is the finite sample analog
of the corresponding population definition (2.5.9) [60]. Dahlhaus describes the
distribution of R̂2

ij in [73] and applies the estimate on air pollution data in [61];

Brillinger addresses the bias and asymptotic properties of R̂2
ij in [60].

Given the MATLAB source code for the spectral estimation, the crucial code
lines for the calculation of the empirical partial coherence are the following:

1 % Find index of Fourier frequency lambda

2 [~,fIdx] = max(f==lambda);

3

4 % Invert spectral density at lambda

5 iS{fIdx} = S{fIdx}\eye(r);

6

7 % Calculate partial coherence between channels i and j at lambda

8 Rij = iS{fIdx}(i,j) / sqrt(iS{fIdx}(i,i)*iS{fIdx}(j,j));

9 Rij = abs(Rij)^2;

2.8.3 Bivariate Granger Causality

For the calculation of the empirical bivariate Granger causality, a bivariate au-
toregressive model was estimated at first. This was done by using the empiri-
cal autocovariance function γ̂(u, T ) and the Yule-Walker equations that connect
γ̂(u, T ) with the AR model coefficients Â(k) ∈ R

2×2, k = 1, . . . , p by least squares
estimation

Âp = Γ̂
−1
p γ̂p (2.8.3)
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with

Γ̂p =







γ̂(0, p) · · · γ̂(−p+ 1, p)
...

. . .
...

γ̂(p− 1, p) · · · γ̂(0, p)






, γ̂p =







γ̂(1, p)
...

γ̂(p, p)






, Âp =







Â(1)
...

Â(p)






.

(2.8.4)
The model order p was decided by Akaike’s AIC criterion (cf. [74]). Anal-
ogously to Equation (2.5.12), Granger non-causality of the univariate sample
x2(0), . . . , x2(T − 1) for the univariate x1(0), . . . , x1(T − 1) was defined by

Â12(k) = 0 ∀k = 1, . . . , p. (2.8.5)

In order to compare the ”degree” of Granger (non-)causality, the Euklidean norm
of the elements Â12(k) for k = 1, . . . , p was used as measure of synchrony. A
value close to 0 indicates a low degree of Granger causality, whereas high values
– this measure has no upper bound – indicate a high degree of Granger causality.
Eichler describes test statistics for bivariate Granger non-causality in [64].

The MATLAB source code for the AR model and the calculation of the degree
of bivariate Granger causality – with auxiliary MATLAB functions MARyulewalker
and MARpolynomcoeffnorm – is as follows:

1 % Zero mean EEG segment X with dimensions samples x channels

2 [nX,r] = size(X);

3

4 % Multivariate AR model using AIC criterion and Yule-Walker equations

5 m_vec = ones(1,nX);

6 idx = 0;

7 min_trigger = 0;

8 while min_trigger == 0

9 idx = idx+1;

10 % Yule-Walker equations

11 [~, Sigma] = MARyulewalker(X,idx);

12 % AIC criterion

13 m_vec(idx) = 2*log(det(Sigma)) + 2*r^2*idx/nX;

14 if idx > 1 && m_vec(idx) > m_vec(idx-1)

15 min_trigger = 1;

16 m = idx-1;

17 end

18 end

19

20 % Calculate AR(m)-model coefficients

21 [ A, Sigma ] = MARyulewalker( X, m );

22

23 % Calculate Euklidean norm of AR(m)-model coefficients

24 [ PolyNorm ] = MARpolynomcoeffnorm( A, m );

25
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26 % Granger causality between channel i and j

27 i = 1;

28 j = 2;

29 GCij = PolyNorm(j,i);

30

31

32 function [ A, Sigma ] = MARyulewalker( X, m )

33

34 % Zero mean EEG segment X with dimensions samples x channels

35 [nX,r] = size(X);

36

37 % Normalized autocovariance function with maximum lag m

38 C = xcov(X,m,’coeff’);

39 g = reshape(C’,nX,nX*(2*m+1))’;

40

41 % Matrix of autocovariance functions with all lags

42 Gamma_m = zeros(m*nX,m*nX);

43 k = m*nX+1;

44 for ordIdx = 0:m-1

45 Gamma_m(:,ordIdx*nX+1:ordIdx*nX+nX) = g(k:k+m*nX-1,:);

46 k = k-nX;

47 end

48

49 % Vector of autocovariance functions with all lags

50 gam_m = g((m+1)*nX+1:end,:);

51

52 % Yule-Walker equations

53 invGamma_m = Gamma_m\eye(m*nX);

54 A = invGamma_m*gam_m;

55 Sigma = g(m*nX+1:m*nX+nX,:) - A’*gam_m;

56

57 end

58

59

60 function [ PolyNorm ] = MARpolynomcoeffnorm( A, m )

61

62 % Size of AR(m)-model coefficients

63 nA = size(A,2);

64

65 % Sum of squares of AR(m)-model coefficients

66 PolyNorm = zeros(nA);

67 for ordIdx = 1:m

68 PolyNorm = PolyNorm + abs(A((ordIdx-1)*nA+1:(ordIdx-1)*nA+nA,1:nA)).^2;

69 end

70

71 % Squareroot of sum of squares

72 PolyNorm = sqrt(PolyNorm);

73

74 end
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2.8.4 Conditional Granger Causality

The empirical conditional Granger causality was constructed analogously to the
bivariate case described in Section 2.8.3. A multivariate AR model was estimated
by using the Yule-Walker equations and the AIC criterion. Here, the AR model
coefficients Â(k), k = 1, . . . , p are elements of Rr×r. Granger non-causality of
xj(0), . . . , xj(T − 1) for xi(0), . . . , xi(T − 1) was defined as

Âij(k) = 0 ∀k = 1, . . . , p. (2.8.6)

By using the Euklidean norm of the elements Âij(k), a directed measure for syn-
chrony between channels i and j given all other channels was derived.

The MATLAB source code for the calculation of the degree of conditional
Granger causality was provided in Section 2.8.3, only with r=19 being the number
of channels instead of r=2.

2.8.5 Static Canonical Correlation Analysis

The estimate for the static canonical correlation between y(0), . . . , y(T − 1) ∈
R
r×1 and z(0), . . . , z(T − 1) ∈ R

s×1 is based on the empirical autocovariance
function of x(t) = (y(t)⊺, z(t)⊺)⊺ ∈ R

(r+s)×1, i.e.

γ̂xx(0, T ) =

(

γ̂yy(0, T ) γ̂yz(0, T )
γ̂zy(0, T ) γ̂zz(0, T )

)

(2.8.7)

where γ̂yy and γ̂zz are the respective empirical autocovariance functions of y(t)
and z(t), and γ̂yz = γ̂

⊺

zy is the empirical crosscovariance function between y(t)
and z(t). In accordance with Equations (2.5.18) - (2.5.21), the ith empirical static
canonical correlation coefficient was defined as

ρ̂i =
â
⊺

i γ̂yzbi

((â⊺i γ̂yyâi)(b̂
⊺

i γ̂zz b̂i))
1

2

(2.8.8)

where

âi = γ̂
− 1

2
yy Ûi

b̂i = γ̂
− 1

2
zz V̂i

(2.8.9)

with Ûi and V̂i denoting the respective ith eigenvector of

γ̂
− 1

2
yy γ̂yzγ̂

−1
zz γ̂zyγ̂

− 1

2
yy and γ̂

− 1

2
zz γ̂zyγ̂

−1
yy γ̂yzγ̂

− 1

2
zz . (2.8.10)

Brillinger gives a detailed description of the asymptotic properties of ρ̂i in chapter
10 of [60]. The Euklidean norm of the coefficients ρ̂i was used as measure for the
dependence between the channel groups.
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The MATLAB source code for the calculation of the empirical static canonical
correlation coefficients is as follows:

1 % Zero mean channel groups Y and Z with dimensions (samples x channels)

2 [nY,r] = size(Y);

3 [nZ,s] = size(Z);

4

5 % Calculate Euklidean norm of canonical correlation coefficients

6 [~,~,rho] = canoncorr(Y,Z);

7 CC = sqrt(sum(rho.^2));

2.8.6 Dynamic Canonical Correlation Analysis

The estimate for the dynamic canonical correlation coefficient between y(0), . . . , y(T−
1) ∈ R

r×1 and z(0), . . . , z(T −1) ∈ R
s×1 is the finite sample analog of the corre-

sponding population fomulae (2.5.24) - (2.5.27). Following these equations, the
estimation procedure is straightforward by applying the estimate f̃(λ, T ) for the
multivariate spectral density. Brillinger describes the asymptotic distribution of
the empirical dynamic canonical correlation coefficients in chapter 10 of [60].

The MATLAB source code for the calculation of the empirical dynamic canon-
ical correlation coefficients between the two channel groups Y and Z at frequency
λ, given the spectral density S and vector of Fourier frequencies f, is as follows:

1 % Find index of Fourier frequency lambda

2 [~,fIdx] = max(f==lambda);

3

4 % Length of channel indices of Y and Z

5 nY = length(idxY);

6 nZ = length(idxZ);

7

8 % Auto- and cross-spectral densities of Y and Z

9 Syy = S{fIdx}(idxY,idxY);

10 Szz = S{fIdx}(idxZ,idxZ);

11 Syz = S{fIdx}(idxY,idxZ);

12 Szy = S{fIdx}(idxZ,idxY);

13

14 % Calculate dynamic canonical correlation coefficients

15 rho = real(sqrt(eig(sqrtm(Syy)\Syz/Szz*Szy/sqrtm(Syy))));

16 rho = sort(rho, ’descend’);

17 rho = rho(1:min(nY,nZ));

18

19 % Calculate Euklidean norm of canonical correlation coefficients

20 CC = sqrt(sum(rho.^2));
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2.8.7 Static Principal Component Analysis

The empirical static PCs of a finite sample x(0), . . . , x(T −1) ∈ R
r×1 are defined

– skipping the time index as in Section 2.5.8 – as

ζ̂i = V̂
⊺

i x (2.8.11)

where V̂i denotes the ith eigenvector of γ̂ with corresponding eigenvalue µ̂i. The
term

p̂1 =
µ̂1

∑

j µ̂j
(2.8.12)

gives the percentage of variance that is described by the first PC and is used as
measure for homogeneity within the sample x(t). The asymptotic properties of
p̂1 are discussed in chapter 9 of [60].

The MATLAB source code for the calculation of the empirical static PCs is as
follows:

1 % Autocovariance function of X (samples x channels)

2 C = xcov(X);

3

4 % PCA

5 [~,~,p] = pcacov(C);

6

7 % Percentage of var described by first PC

8 p(1) = p(1)./100;

2.8.8 Dynamic Principal Component Analysis

Following Equations (2.5.36) - (2.5.41), the calculation of the empirical dynamic
PCs is straightforward with the estimate f̃ being on hand. For the frequency λ,
the term

p̂1(λ) =
µ̂1(λ)

∑

j µ̂j(λ)
(2.8.13)

with µ̂i(λ) being the ith eigenvalue of f̃(λ, T ) gives the percentage of variance
that is described by the first PC. p̂1 is used as frequency-wise measure for homo-
geneity within a realization x(t). Brillinger explains the asymptotics of dynamic
PCA in chapter 9 of [60].

Given the spectral density S and vector of Fourier frequencies f, the MATLAB
source code for the calculation of the empirical dynamic PCs at λ is as follows:
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1 % Find index of Fourier frequency lambda

2 [~,fIdx] = max(f==lambda);

3

4 % PCA of spectral density at frequency lambda

5 [~,~,p] = pcacov(S{fIdx});

6

7 % Percentage of var described by first PC

8 p(1) = p(1)./100;

2.9 Analyzing EEG Synchrony

Coherences, partial coherences, dynamic canonical correlations and dynamic PCA
were calculated frequency-wise and averaged within predefined frequency bands,
the δ-, θ-, α-, β0-band, and for the whole band-pass filtered signal (here referred
to as ”total”). The applied border-frequencies are given in Table 2.9.1. Hereby,
the respective lower frequency border was included in the frequency band, whereas
the upper border was excluded from it.

Table 2.9.1: Frequency bands names and borders

Frequency Band Frequency Borders

δ-band 2 - 4 Hz

θ-band 4 - 8 Hz

α-band 8 - 13 Hz

β0-band 13 - 15 Hz

total 2 - 15 Hz

Dividing the frequency domain in frequency bands is common practice in EEG
analysis; however, frequency borders vary in literature and the transition frequen-
cies between the four frequency bands may differ from the transition frequencies
used here by ± 1 Hz. The lower frequency border of the δ-band is often defined
as 0 or 0.5 Hz. The upper β-border is usually defined in a range of 20 to 30
Hz; here, the border of 15 Hz was chosen in order to make sure that no artefacts
deteriorate the analyses in the β-band (cf. Sections 2.2.1 and 2.2.2). Due to
the comparatively low upper frequency border, the band is referred to as β0-band
instead of β-band. Bivariate and conditional Granger causalities, static canonical
correlations, and static PCA were computed for the whole band-pass filtered (2-15
Hz) EEG signals.

Synchrony was investigated in three different ways: between single EEG chan-
nels, between groups of EEG channels, and within groups of EEG channels. For
the investigation between channel pairs, ten far intrahemispheric (FP1-P3, FP2-
P4, FP1-O1, FP2-O2, F3-P3, F4-P4, F3-O1, F4-O2, C3-O1, C4-O2), seven far
interhemispheric (F3-F4, F7-F8, C3-C4, T7-T8, P3-P4, P7-P8, O1-O2), ten local
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anterior (FP1-F7, FP1-F3, FP2-F4, FP2-F8, F7-T7, F7-C3, F3-C3, F4-C4, F8-
C4, F8-T8), and ten local posterior channel pairs (C3-P7, C3-P3, C4-P4, C4-P8,
P7-P3, P4-P8, P7-O1, P3-O1, P4-O2, P8-O2) were defined. These channel pairs
are shown in Figures 2.9.1a - 2.9.1d. For these channel pairs, coherences, partial
coherences, bivariate and conditional Granger causalities were calculated.

For the analysis of synchrony between and within EEG channel groups, the
following two channel partitions were defined: the first partition consists of the
channel groups (cf. also [38]) Anterior (FP1, FP2, F3, F4), Central (FZ, C3, CZ,
C4, PZ), Posterior (P3, P4, O1, O2), Temporal Left (F7, T7, P7), and Temporal
Right (F8, T8, P8). The second partition consists of the channel groups Left
(FP1, F7, F3, T7, C3, P7, P3, O1) and Right (FP2, F4, F8, C4, T8, P4, P8,
O2). The partitions are illustrated in Figures 2.9.2a and 2.9.2b. For each chan-
nel group, (static) PCA was performed. Between the respective first and second
PCs of channel groups, coherences, partial coherences, bivariate and conditional
Granger causalities were investigated. Static and dynamic canonical correlation
analyses were performed both between the respective first and second PCs of the
channel groups and – in a multivariate way – directly between the groups of EEG
channels.

Finally, as a measure for the degree of local synchrony, the amount of variance
explained by the first static and dynamic PCs in relation to the total variance was
considered for each channel group.

For both resting state and during cognitive task, synchronies were analyzed
versus MMSE via quadratic least squares regression. Quadratic regression was
chosen in order to capture compensating mechanisms at the initial stage of AD.
As covariables, the subjects’ age, sex, degree of eduction, and the duration of
AD were taken into account; hereby, age and duration of AD were introduced via
both linear and quadratic terms. The statistical significance and the goodness
of fit were evaluated by Fisher’s F-test and by the coefficients of determination.
The regression and regression diagnostics were implemented using the MATLAB
function regstats.
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(a) Far intrahemispheric (b) Far interhemispheric

(c) Local anterior (d) Local posterior

Figure 2.9.1: Electrode pairs: each channel pair connected with a line was investigated. Channel
pairs were divided into far intrahemispheric, far interhemispheric, local anterior and local posterior
pairs.

(a) Partition 1 (b) Partition 2

Figure 2.9.2: Division of channels into partition 1 (anterior (yellow), central (red), posterior
(grey), temporal left (blue), temporal right (green)) and partition 2 (left (blue), right (green))





CHAPTER 3

Results

This chapter is concerned with the results of measuring EEG synchrony versus
MMSE scores. First, let us recall the research hypotheses:

• H1
0 : Synchronies between single EEG channels change in the course of AD.

• H2
0 : Synchronies between EEG channel groups change in the course of AD.

• H3
0 : Synchronies within EEG channel groups change in the course of AD.

In accordance with these hypotheses, the results will be divided into the three
Section 3.1, 3.2, and 3.3. Due to the multitude of findings, the main results will
be summarized at the respective beginning of each section. This will be followed
by a detailed listing of all results, both in textual and tabular form. Provided that
only the most significant results are matter of interest, the reader is free to skip
these detailed listings and proceed to the main results of the next section. In the
tables, the dependence measures will be abbreviated as follows: coherence (Coh),
partial coherence (pCoh), bivariate Granger causality (bGC), conditional Granger
causality (cGC), static canonical correlations (statCC), dynamic caonical correla-
tions (dynCC), static PCA (statPCA), and dynamic PCA (dynPCA). Throughout
this chapter, the terms significant and highly significant will be used for the F-test
results of quadratic regression on the levels p = 0.05 and p = 0.01 respectively. In
the tables, significance is indicated by ”*” and high significance by ”**”. Besides,
values of the coefficients of determination will be provided and the shape of the
fitted quadratic regression will be addressed. For the Granger causality measures,
the direction of dependence will be indicated by ”→”, e.g. P4 → FP2 and Central
→ Temporal Left.

3.1 Synchrony Between Single EEG Channels

In this section, the findings for synchrony between single EEG channels will be
presented. Coherences and partial coherences were estimated in the δ-, θ-, α- and
β0-frequency band. For the whole bandpass-filtered (2–15 Hz) signal, coherences,
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partial coherences, bivariate and conditional Granger causalities were investigated.
In Section 3.1.1, the main findings will be summarized, whereas Sections 3.1.2 and
3.1.3 will provide a detailed listing of the results for resting state and cognitive
task.

3.1.1 Main Results

Resting state analyses revealed significant changes of coherences in 18 EEG chan-
nel pairs. However, for the majority (i.e. 14) of channel pairs, the changes were
significant only in a single frequency band. Highly significant changes were ob-
served at four channel pairs: C4-O2 in the β0-frequency band (R2 = 0.184),
FP2-F8 in the δ-frequency band (R2 = 0.161), C4-P8 in the β0-frequency band
(R2 = 0.166), and P4-C4 in the β0-frequency band (R2 = 0.179). For par-
tial coherences, the most significant findings were obtained between F7-T7 in
the δ- (R2 = 0.203), θ-frequency band (R2 = 0.223), and for the whole sig-
nal (R2 = 0.166), and between C3-P7 in the δ- (R2 = 0.236), θ-frequency
band (R2 = 0.229), and for the whole signal (R2 = 0.205). In addition, highly
significant changes were observed between FP1-O1 in θ (R2 = 0.204) and β0
(R2 = 0.222), FP1-P3 in δ (R2 = 0.239), F3-O1 in θ (R2 = 0.183) and for the
whole signal (R2 = 0.181), T7-T8 in θ (R2 = 0.236), P7-P8 in δ (R2 = 0.187)
and β0 (R2 = 0.147), and O1-O2 in the α-frequency band (R2 = 0.155).
Figure 3.1.1 shows the estimated partial coherences between C3-P7 in the δ-
frequency band as scatterdiagram versus MMSE scores. The quadratic regression
(p < 0.001, R2 = 0.236) is characterized by an increase of partial coherences for
MMSE scores between 26 and 19, and a decrease from 19 downwards.
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Figure 3.1.1: Example for synchrony changes between single channels in resting state: partial
coherences between C3-P7 in the δ-frequency band versus MMSE scores. Low MMSE scores
(right side of the abscissa) indicate a more severe severity of AD. A quadratic regression was
fitted to the data with p < 0.001 and R2

= 0.236.

The bivariate Granger causality measure yielded highly significant findings
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between P4 → FP2 (R2 = 0.195), FP1 → F3 (R2 = 0.200), and F7 → T7
(R2 = 0.146). Additionally, significant changes were observed in 5 channel pairs,
all of them only in one direction. The analysis of the conditional Granger causality
measure revealed no highly significant changes. Significance was observed in 5
channel pairs different from those of bivariate Granger causalities. Table 3.1.1
provides an overview of the significant test results for each measure, frequency
band, and channel pair in resting state.



Table 3.1.1: Overview of the significant synchrony changes measured between single EEG channels in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively.
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During the cognitive task, significant changes of coherences were observed
mainly in local posterior channel pairs: P7-O1 in β0 (R2 = 0.188), C4-P8 in δ

(R2 = 0.148), θ (R2 = 0.225) and for the whole signal (R2 = 0.178), P3-C3 in θ

(R2 = 0.171), P3-P7 in δ (R2 = 0.171), α (R2 = 0.183), β0 (R2 = 0.215) and
for the whole signal (R2 = 0.194), and P4-P8 in δ (R2 = 0.149), θ (R2 = 0.250),
α (R2 = 0.161) and for the whole signal (R2 = 0.161). Besides, highly signifi-
cant results in β0 (R2 = 0.152) were observed between the far interhemispheric
channels O1-O2. Figure 3.1.2 shows the estimated coherences between P4-P8
in the θ-frequency band as scatterdiagram versus MMSE scores. The quadratic
regression (p < 0.001, R2 = 0.250) is characterized by an increase of coherences
for MMSE scores between 26 and 20, and a decrease from 20 downwards.
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Figure 3.1.2: Example for synchrony changes between single channels during the cognitive task:
coherences between P4-P8 in the θ-frequency band versus MMSE scores. Low MMSE scores
(right side of the abscissa) indicate a higher degree of severity of AD. A quadratic regression was
fitted to the data with p < 0.001 and R2

= 0.250.

For partial coherences, the most significant findings were observed between
O1-O2 in α (R2 = 0.168) and in β0 (R2 = 0.203), F7-T7 in θ (R2 = 0.199) and
for the whole signal (R2 = 0.157), and F8-T8 in δ (R2 = 0.149), α (R2 = 0.155)
and for the whole signal (R2 = 0.153). In addition, highly significant test results
were obtained between F3-P3 in α (R2 = 0.212), F4-P4 in θ (R2 = 0.151), and
T7-T8 in β0 (R2 = 0.147). As opposed to coherences, no significant findings
were observed for partial coherences in the local posterior channel pairs. The
bivariate Granger causality measure yielded high significance between C3 → O1
(R2 = 0.158), and between both F7 → T7 (R2 = 0.225) and T7 → F7 (R2 =
0.228). In the latter channel pair, highly significant results were observed for the
conditional Granger causality measure as well (R2 = 0.168). Furthermore, high
significance was obtained between F7 → F8 (R2 = 0.173). Table 3.1.2 provides
an overview of the significant test results for each measure, frequency band, and
channel pair during the cognitive task.



Table 3.1.2: Overview of the significant synchrony changes measured between single EEG channels during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively.
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3.1.2 Detailed Results: Resting State

In this section, all resting state results for synchrony between single EEG channels
will be presented. The findings will be divided into far intrahemispheric, far inter-
hemispheric, local anterior, and local posterior channel pairs (cf. Figures 2.9.1a -
2.9.1d).

Far Intrahemispheric

At first, let us consider the far intrahemispheric channel pairs (cf. Figure 2.9.1a).
In the δ-frequency band, coherences yielded statistically significant results only in
C4-O2 (R2 = 0.107). For partial coherence, significant changes were observed
between FP1-O1 (R2 = 0.121), and C4-O2 (R2 = 0.094). High significance was
obtained between FP1-P3 (R2 = 0.239). The resting state findings for the far
intrahemispheric channel pairs in the δ-band are illustrated in Table 3.1.3.

Table 3.1.3: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far intrahemispheric channel
pairs in the δ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

δ-band
Coh. pCoh.

p R
2 p R

2

FP1-O1 0.904 0.003 0.020* 0.121

FP2-O2 0.169 0.057 0.402 0.029

FP1-P3 0.952 0.002 <0.001** 0.239

FP2-P4 0.911 0.003 0.447 0.026

F3-O1 0.223 0.048 0.083 0.078

F4-O2 0.102 0.072 0.055 0.091

F3-P3 0.532 0.020 0.099 0.073

F4-P4 0.543 0.020 0.098 0.073

C3-O1 0.191 0.053 0.063 0.087

C4-O2 0.031* 0.107 0.049* 0.094

In the θ-frequency band, changes of coherence were significant only between
FP1-O1 (R2 = 0.132). Analyzing partial coherence resulted in significant findings
between F3-P3 (R2 = 0.108), and F4-P4 (R2 = 0.121); between FP1-O1 (R2 =
0.204) and F3-O1 (R2 = 0.183), high significance was observed. Table 3.1.4
provides the resting state results for the far intrahemispheric channel pairs in the
θ-frequency band.

In the α-frequency band, coherences yielded significant results between F3-O1
(R2 = 0.127) and C4-O2 (R2 = 0.110). No significant results were found for
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Table 3.1.4: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far intrahemispheric channel
pairs in the θ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

θ-band
Coh. pCoh.

p R
2 p R

2

FP1-O1 0.013* 0.132 0.001** 0.204

FP2-O2 0.163 0.058 0.856 0.005

FP1-P3 0.998 <0.001 0.186 0.054

FP2-P4 0.881 0.004 0.826 0.006

F3-O1 0.410 0.029 0.002** 0.183

F4-O2 0.402 0.029 0.164 0.058

F3-P3 0.624 0.015 0.030* 0.108

F4-P4 0.434 0.027 0.020* 0.121

C3-O1 0.361 0.033 0.130 0.065

C4-O2 0.132 0.064 0.746 0.010

partial coherences. In Table 3.1.5, the resting state findings for the far intrahemi-
spheric channel pairs in the α-frequency band are shown.

Table 3.1.5: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far intrahemispheric channel
pairs in the α-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

α-band
Coh. pCoh.

p R
2 p R

2

FP1-O1 0.101 0.072 0.863 0.005

FP2-O2 0.367 0.032 0.143 0.062

FP1-P3 0.149 0.060 0.148 0.061

FP2-P4 0.212 0.050 0.434 0.027

F3-O1 0.016* 0.127 0.345 0.034

F4-O2 0.082 0.079 0.789 0.008

F3-P3 0.591 0.017 0.540 0.020

F4-P4 0.283 0.041 0.107 0.071

C3-O1 0.213 0.049 0.387 0.031

C4-O2 0.028* 0.110 0.644 0.014

In the β0-frequency band, coherences yielded significant results between FP2-
P4 (R2 = 0.130) and F4-P4 (R2 = 0.103). For channel pair C4-O2, high signifi-
cance was observed (R2 = 0.184). Changes of partial coherences were significant
between FP2-O2 (R2 = 0.127) and F4-O2 (R2 = 0.107). In addition, high sig-
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nificance between FP1-O1 was observed (R2 = 0.222). Table 3.1.6 provides the
resting state results for the far intrahemispheric channel pairs in the β0-frequency
band.

Table 3.1.6: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far intrahemispheric channel
pairs in the β0-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

β0-band
Coh. pCoh.

p R
2 p R

2

FP1-O1 0.975 0.001 <0.001** 0.222

FP2-O2 0.598 0.017 0.016* 0.127

FP1-P3 0.771 0.008 0.084 0.078

FP2-P4 0.014* 0.130 0.158 0.059

F3-O1 0.755 0.009 0.848 0.005

F4-O2 0.166 0.057 0.032* 0.107

F3-P3 0.877 0.004 0.966 0.001

F4-P4 0.036* 0.103 0.093 0.075

C3-O1 0.372 0.032 0.088 0.077

C4-O2 0.002** 0.184 0.059 0.089

The analysis on the whole signal revealed significant changes of coherences
between C4-O2 (R2 = 0.129), and of partial coherences between F4-P4 (R2 =
0.108). Partial coherences yielded high significance between F3-O1 (R2 = 0.181).
The bivariate Granger causality yielded significant results between FP1 → P3
(R2 = 0.095), F3 → O1 (R2 = 0.102), and C4 → O2 (R2 = 0.100). For FP2 →
P4, high sigificance was reached (R2 = 0.195). Changes of conditional Granger
causalities were significant between C3 → O1 (R2 = 0.117). Table 3.1.7 provides
the resting state results for the far intrahemispheric channel pairs on the whole
signal.
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Table 3.1.7: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far intrahemispheric channel
pairs on the whole EEG signals in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively. For directed measures, the first line per channel pair indicates the first direction
of dependence (e.g. from FP1 → O1), and the second line indicates the second direction of
dependence (e.g. from O1 → FP1).

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

FP1-O1 0.154 0.060 0.296 0.039
0.239 0.046 0.050 0.094

0.626 0.015 0.739 0.010

FP2-O2 0.567 0.018 0.359 0.033
0.685 0.012 0.098 0.073

0.554 0.019 0.190 0.053

FP1-P3 0.765 0.009 0.190 0.053
0.788 0.008 0.230 0.047

0.048* 0.095 0.450 0.026

FP2-P4 0.578 0.018 0.848 0.005
0.323 0.036 0.074 0.082

0.001** 0.195 0.559 0.019

F3-O1 0.070 0.084 0.002** 0.181
0.037* 0.102 0.101 0.072

0.918 0.003 0.502 0.022

F4-O2 0.056 0.090 0.313 0.037
0.425 0.028 0.145 0.061

0.861 0.005 0.221 0.048

F3-P3 0.662 0.013 0.143 0.062
0.532 0.021 0.244 0.045

0.857 0.005 0.225 0.048

F4-P4 0.246 0.045 0.031* 0.108
0.315 0.037 0.113 0.069

0.436 0.027 0.261 0.043

C3-O1 0.332 0.036 0.285 0.040
0.581 0.018 0.022* 0.117

0.335 0.035 0.645 0.014

C4-O2 0.015* 0.129 0.923 0.003
0.041* 0.100 0.099 0.073

0.154 0.060 0.124 0.066



CHAPTER 3. RESULTS 67

Far Interhemispheric

Now, let us consider the far interhemispheric channel pairs (cf. Figure 2.9.1b).
P7-P8 showed significant results in the δ-frequency band for coherences (R2 =
0.139), and highly significant results for partial coherences (R2 = 0.187). Coher-
ences yielded no further significant findings, whereas partial coherences yielded
significance between T7-T8 (R2 = 0.107), C3-C4 (R2 = 0.141), and P3-P4
(R2 = 0.114). Table 3.1.8 provides the resting state results for the far interhemi-
spheric channel pairs in the δ-frequency band.

Table 3.1.8: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far interhemispheric channel
pairs in the δ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

δ-band
Coh. pCoh.

p R
2 p R

2

F7-F8 0.051 0.093 0.100 0.073

F3-F4 0.550 0.019 0.368 0.032

T7-T8 0.514 0.022 0.031* 0.107

C3-C4 0.432 0.027 0.010* 0.141

P7-P8 0.010* 0.139 0.002** 0.187

P3-P4 0.053 0.092 0.025* 0.114

O1-O2 0.145 0.061 0.102 0.072

In the θ-frequency band, changes of coherences were significant between F7-F8
(R2 = 0.100), and P3-P4 (R2 = 0.108). The estimated partial coherences showed
significant findings between P7-P8 (R2 = 0.126), and O1-O2 (R2 = 0.098), and
highly significant results between T7-T8 (R2 = 0.236). Table 3.1.9 provides the
resting state results for the far interhemispheric channel pairs in the θ-frequency
band.

The analysis in the α-frequency band revealed significant results for coherences
between P3-P4 (R2 = 0.107), and O1-O2 (R2 = 0.099). For the latter channel
pair, changes of partial coherences were highly significant (R2 = 0.155). Table
3.1.10 provides the resting state results for the far interhemispheric channel pairs
in the α-frequency band.

In the β0-frequency band, the channel pair O1-O2 yielded significant results for
both coherences (R2 = 0.123) and partial coherences (R2 = 0.137). Additionally,
significance was obtained for partial coherences between C3-C4 (R2 = 0.103), and
high significance between P7-P8 (R2 = 0.147). Table 3.1.11 provides the resting
state results for the far interhemispheric channel pairs in the β0-frequency band.
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Table 3.1.9: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far interhemispheric channel
pairs in the θ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

θ-band
Coh. pCoh.

p R
2 p R

2

F7-F8 0.040* 0.100 0.089 0.076

F3-F4 0.896 0.004 0.460 0.025

T7-T8 0.356 0.033 <0.001** 0.236

C3-C4 0.488 0.023 0.111 0.070

P7-P8 0.794 0.008 0.017* 0.126

P3-P4 0.031* 0.108 0.094 0.075

O1-O2 0.101 0.072 0.043* 0.098

Table 3.1.10: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far interhemispheric channel
pairs in the α-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

α-band
Coh. pCoh.

p R
2 p R

2

F7-F8 0.997 <0.001 0.209 0.050

F3-F4 0.513 0.022 0.176 0.055

T7-T8 0.166 0.057 0.255 0.044

C3-C4 0.276 0.041 0.292 0.040

P7-P8 0.121 0.067 0.313 0.037

P3-P4 0.031* 0.107 0.247 0.045

O1-O2 0.041* 0.099 0.006** 0.155

Table 3.1.11: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far interhemispheric channel
pairs in the β0-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

β0-band
Coh. pCoh.

p R
2 p R

2

F7-F8 0.614 0.016 0.100 0.073

F3-F4 0.525 0.021 0.390 0.030

T7-T8 0.996 <0.001 0.114 0.069

C3-C4 0.669 0.013 0.036* 0.103

P7-P8 0.256 0.044 0.008** 0.147

P3-P4 0.149 0.060 0.293 0.039

O1-O2 0.018* 0.123 0.011* 0.137



CHAPTER 3. RESULTS 69

The analysis of far interhemispheric channel pairs on the whole EEG signals
showed significant changes of coherences between P3-P4 (R2 = 0.120), and O1-
O2 (R2 = 0.099). Partial coherences yielded significant findings between T7-
T8 (R2 = 0.127), C3-C4 (R2 = 0.108), and O1-O2 (R2 = 0.104). No high
significance was observed. Bivariate Granger causalities yielded significant results
between F4 → F3 (R2 = 0.106), and P4 → P3 (R2 = 0.138). None of the
channel pairs showed significant changes in the reverse direction. For conditional
Granger causalities, changes were significant between F7 → F8 (R2 = 0.126),
and T7 → T8 (R2 = 0.110). Table 3.1.12 provides the resting state results for
the far interhemispheric channel pairs on the whole EEG signals.

Table 3.1.12: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far interhemispheric channel
pairs on the whole EEG signals in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively. For directed measures, the first line per channel pair indicates the first direction
of dependence (e.g. from F7 → F8), and the second line indicates the second direction of
dependence (e.g. from F8 → F7).

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

F7-F8 0.396 0.030 0.105 0.071
0.213 0.049 0.017* 0.126

0.942 0.002 0.515 0.022

F3-F4 0.883 0.004 0.245 0.045
0.201 0.051 0.191 0.053

0.032* 0.106 0.229 0.047

T7-T8 0.252 0.044 0.016* 0.127
0.405 0.029 0.029* 0.110

0.379 0.031 0.762 0.009

C3-C4 0.343 0.034 0.030* 0.108
0.547 0.020 0.050 0.094

0.425 0.028 0.373 0.032

P7-P8 0.143 0.062 0.567 0.018
0.422 0.028 0.744 0.010

0.370 0.032 0.059 0.089

P3-P4 0.020* 0.120 0.094 0.075
0.533 0.020 0.085 0.078

0.011* 0.138 0.505 0.022

O1-O2 0.042* 0.099 0.035* 0.104
0.217 0.049 0.201 0.051

0.086 0.077 0.068 0.084
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Local Anterior

Now, let us consider the local anterior channel pairs (cf. Figure 2.9.1c). The
analysis of coherences in the δ-frequency band yielded significant findings between
FP1-F7 (R2 = 0.100), and FP1-F3 (R2 = 0.115), and highly significant findings
between FP2-F8 (R2 = 0.161). For partial coherences, changes were highly
significant between F7-T7 (R2 = 0.203). Table 3.1.13 provides the resting state
results for the local anterior channel pairs in the δ-frequency band.

Table 3.1.13: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local anterior channel pairs in
the δ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

δ-band
Coh. pCoh.

p R
2 p R

2

FP1-F7 0.040* 0.100 0.063 0.086

FP2-F8 0.005** 0.161 0.261 0.043

FP1-F3 0.024* 0.115 0.834 0.006

FP2-F4 0.155 0.059 0.342 0.035

F7-C3 0.244 0.045 0.446 0.026

F8-C4 0.388 0.031 0.940 0.002

F7-T7 0.594 0.017 0.001** 0.203

F8-T8 0.950 0.002 0.358 0.033

F3-C3 0.756 0.009 0.639 0.015

F4-C4 0.963 0.001 0.163 0.058

In the θ-frequency band, no significant changes of coherences were observed.
Partial coherences yielded highly significance between F7-T7 (R2 = 0.223). Table
3.1.14 provides the resting state results for the local anterior channel pairs in the
θ-frequency band.

In the α-frequency band, no significant changes of coherences were observed.
Partial coherences yielded significant findings between F7-T7 (R2 = 0.104). Table
3.1.15 provides the resting state results for the local anterior channel pairs in the
α-frequency band.

The analysis in the β0-frequency band showed no significant findings for neither
coherences nor partial coherences. Table 3.1.16 provides the resting state results
for the local anterior channel pairs in the β0-frequency band.

Coherences yielded no significant results between local anterior channels on
the whole EEG signals. For F7-T7, changes of partial coherences were highly
significant (R2 = 0.166). Also bivariate Granger causalities yielded high signifi-
cance between F7 → T7 (R2 = 0.146). Additionally, changes of bivariate Granger
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Table 3.1.14: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local anterior channel pairs in
the θ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

θ-band
Coh. pCoh.

p R
2 p R

2

FP1-F7 0.121 0.067 0.359 0.033

FP2-F8 0.053 0.092 0.813 0.007

FP1-F3 0.189 0.053 0.754 0.009

FP2-F4 0.386 0.031 0.110 0.070

F7-C3 0.829 0.006 0.917 0.003

F8-C4 0.467 0.025 0.525 0.021

F7-T7 0.638 0.015 <0.001** 0.223

F8-T8 0.714 0.011 0.313 0.037

F3-C3 0.816 0.007 0.876 0.004

F4-C4 0.915 0.003 0.151 0.060

Table 3.1.15: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local anterior channel pairs in
the α-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

α-band
Coh. pCoh.

p R
2 p R

2

FP1-F7 0.927 0.002 0.263 0.043

FP2-F8 0.817 0.007 0.457 0.025

FP1-F3 0.589 0.017 0.649 0.014

FP2-F4 0.767 0.009 0.241 0.046

F7-C3 0.488 0.023 0.986 <0.001

F8-C4 0.488 0.023 0.338 0.035

F7-T7 0.328 0.036 0.035* 0.104

F8-T8 0.565 0.019 0.765 0.009

F3-C3 0.639 0.015 0.957 0.001

F4-C4 0.929 0.002 0.383 0.031

causalities were highly significant between FP1 → F3 (R2 = 0.200), and signif-
icant between F3 → FP1 (R2 = 0.110). Conditional Granger causalities yielded
significant findings between FP2 → F4 (R2 = 0.109). Table 3.1.17 provides the
resting state results for the local anterior channel pairs on the whole EEG signals.
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Table 3.1.16: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local anterior channel pairs in
the β0-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

β0-band
Coh. pCoh.

p R
2 p R

2

FP1-F7 0.938 0.002 0.484 0.024

FP2-F8 0.829 0.006 0.347 0.034

FP1-F3 0.688 0.012 0.344 0.034

FP2-F4 0.281 0.041 0.228 0.047

F7-C3 0.792 0.008 0.356 0.033

F8-C4 0.967 0.001 0.060 0.088

F7-T7 0.120 0.067 0.457 0.025

F8-T8 0.891 0.004 0.912 0.003

F3-C3 0.623 0.015 0.766 0.009

F4-C4 0.327 0.036 0.414 0.028

Table 3.1.17: Significance p and coefficient of determination R2 as determined by Fisher’s
F-test for a least squares quadratic regression model: measures between local anterior channel
pairs in the total frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively. For directed measures, the first line per channel pair indicates the first direction
of dependence (e.g. from FP7 → F7), and the second line indicates the second direction of
dependence (e.g. from F7 → FP7).

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

FP1-F7 0.461 0.025 0.224 0.048
0.475 0.024 0.147 0.061

0.073 0.082 0.105 0.071

FP2-F8 0.340 0.035 0.455 0.025
0.717 0.011 0.096 0.074

0.302 0.038 0.351 0.034

FP1-F3 0.322 0.036 0.688 0.012
0.001** 0.200 0.050 0.093

0.028* 0.110 0.262 0.043

FP2-F4 0.421 0.028 0.223 0.048
0.873 0.004 0.030* 0.109

0.853 0.005 0.244 0.045

F7-C3 0.583 0.018 0.921 0.003
0.678 0.013 0.089 0.076

0.217 0.049 0.471 0.024

F8-C4 0.555 0.019 0.291 0.040
0.494 0.023 0.054 0.091

0.942 0.002 0.122 0.067

F7-T7 0.301 0.039 0.004** 0.166
0.008** 0.146 0.114 0.069

0.954 0.002 0.296 0.039

F8-T8 0.712 0.011 0.562 0.019
0.897 0.004 0.257 0.044

0.922 0.003 0.144 0.062

F3-C3 0.733 0.010 0.962 0.001
0.995 <0.001 0.362 0.033

0.319 0.037 0.123 0.066

F4-C4 0.841 0.006 0.275 0.041
0.751 0.009 0.112 0.069

0.747 0.010 0.088 0.077



CHAPTER 3. RESULTS 73

Local Posterior

The resting state analysis of local posterior channel pairs (cf. Figure 2.9.1d) in
the δ-frequency band showed significant changes of coherences between C3-P7
(R2 = 0.115), C4-P8 (R2 = 0.104), and P3-P7 (R2 = 0.118). Partial coherences
yielded significant results between C4-P8 (R2 = 0.117), P3-C3 (R2 = 0.117), and
P4-P8 (R2 = 0.140), and highly significant results between C3-P7 (R2 = 0.236).
Table 3.1.18 provides the resting state results for the local posterior channel pairs
in the δ-frequency band.

Table 3.1.18: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local posterior channel pairs in
the δ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

δ-band
Coh. pCoh.

p R
2 p R

2

P7-O1 0.069 0.084 0.266 0.042

P8-O2 0.751 0.009 0.296 0.039

P3-O1 0.602 0.016 0.645 0.014

P4-O2 0.113 0.069 0.774 0.008

C3-P7 0.024* 0.115 <0.001** 0.236

C4-P8 0.035* 0.104 0.022* 0.117

P3-C3 0.102 0.072 0.022* 0.117

P4-C4 0.077 0.081 0.072 0.083

P3-P7 0.022* 0.118 0.430 0.027

P4-P8 0.360 0.033 0.010* 0.140

In the θ-frequency band, coherences yielded significant results only between
C4-P8 (R2 = 0.101), whereas partial coherences yielded significance between P3-
C3 (R2 = 0.108), and high significance between C3-P7 (R2 = 0.229). Table
3.1.19 provides the resting state results for the local posterior channel pairs in the
θ-frequency band.

In the α-frequency band, changes of coherences were significant only between
C4-P8 (R2 = 0.102). No significant changes of partial coherences were observed.
Table 3.1.20 provides the resting state results for the local posterior channel pairs
in the α-frequency band.

In the β0-frequency band, the analysis of coherences showed significant findings
between P4-O2 (R2 = 0.131) and P4-P8 (R2 = 0.123), and in highly significant
findings between C4-P8 (R2 = 0.166) and P4-C4 (R2 = 0.179). For partial
coherences, the quadratic regression was significant between P3-P7 (R2 = 0.120).
Table 3.1.21 provides the resting state results for the local posterior channel pairs
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Table 3.1.19: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local posterior channel pairs in
the θ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

θ-band
Coh. pCoh.

p R
2 p R

2

P7-O1 0.143 0.062 0.339 0.035

P8-O2 0.450 0.026 0.314 0.037

P3-O1 0.408 0.029 0.964 0.001

P4-O2 0.155 0.059 0.783 0.008

C3-P7 0.150 0.060 <0.001** 0.229

C4-P8 0.039* 0.101 0.351 0.034

P3-C3 0.179 0.055 0.030* 0.108

P4-C4 0.354 0.033 0.212 0.050

P3-P7 0.062 0.087 0.333 0.035

P4-P8 0.094 0.075 0.118 0.068

Table 3.1.20: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local posterior channel pairs in
the α-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

α-band
Coh. pCoh.

p R
2 p R

2

P7-O1 0.424 0.028 0.808 0.007

P8-O2 0.225 0.048 0.589 0.017

P3-O1 0.080 0.080 0.192 0.053

P4-O2 0.118 0.068 0.411 0.029

C3-P7 0.715 0.011 0.191 0.053

C4-P8 0.037* 0.102 0.084 0.078

P3-C3 0.641 0.014 0.467 0.025

P4-C4 0.170 0.057 0.460 0.025

P3-P7 0.429 0.027 0.082 0.079

P4-P8 0.144 0.061 0.212 0.050

in the β0-frequency band.

On the whole EEG signals, both coherences and partial coherences yielded sig-
nificant changes between C4-P8 (R2 = 0.135 and R2 = 0.098). Additionally, high
significance was observed for partial coherences between C3-P7 (R2 = 0.205).
The analysis of conditional Granger causalities revealed significant changes be-
tween P3 → O1 (R2 = 0.102). Table 3.1.22 provides the resting state results for
the local posterior channel pairs on the whole EEG signals.
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Table 3.1.21: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local posterior channel pairs in
the β0-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

β0-band
Coh. pCoh.

p R
2 p R

2

P7-O1 0.779 0.008 0.748 0.009

P8-O2 0.146 0.061 0.545 0.020

P3-O1 0.230 0.047 0.080 0.080

P4-O2 0.014* 0.131 0.122 0.067

C3-P7 0.498 0.023 0.142 0.062

C4-P8 0.004** 0.166 0.241 0.046

P3-C3 0.125 0.066 0.334 0.035

P4-C4 0.002** 0.179 0.170 0.056

P3-P7 0.210 0.050 0.020* 0.120

P4-P8 0.018* 0.123 0.176 0.055

Table 3.1.22: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between local posterior channel
pairs in the total frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively. For directed measures, the first line per channel pair indicates the first direction
of dependence (e.g. from P7 → O1), and the second line indicates the second direction of
dependence (e.g. from O1 → P7).

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

P7-O1 0.260 0.043 0.594 0.017
0.592 0.017 0.097 0.074

0.635 0.015 0.264 0.043

P8-O2 0.327 0.036 0.486 0.023
0.733 0.010 0.108 0.070

0.737 0.010 0.857 0.005

P3-O1 0.280 0.041 0.487 0.023
0.140 0.062 0.037* 0.102

0.084 0.078 0.461 0.025

P4-O2 0.125 0.066 0.515 0.021
0.133 0.064 0.187 0.054

0.909 0.003 0.135 0.064

C3-P7 0.274 0.042 0.001** 0.205
0.489 0.023 0.072 0.082

0.150 0.060 0.603 0.016

C4-P8 0.012* 0.135 0.043* 0.098
0.166 0.057 0.394 0.030

0.144 0.062 0.051 0.093

P3-C3 0.240 0.046 0.120 0.067
0.582 0.018 0.422 0.028

0.611 0.016 0.061 0.088

P4-C4 0.103 0.072 0.257 0.044
0.424 0.028 0.124 0.066

0.551 0.019 0.055 0.091

P3-P7 0.125 0.066 0.131 0.065
0.286 0.040 0.111 0.069

0.169 0.057 0.256 0.044

P4-P8 0.072 0.083 0.124 0.066
0.877 0.004 0.901 0.003

0.295 0.039 0.097 0.074
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3.1.3 Detailed Results: Cognitive Task

This section will provide all findings of channel pair analyses during the cognitive
task. As in the previous section, the results will be divided into far intrahemi-
spheric, far interhemispheric, local anterior, and local posterior pairs (cf. Figures
2.9.1a - 2.9.1d).

Far Intrahemispheric

First, let us consider the far intrahemispheric channel pairs. In the δ-frequency
band, only coherences between C4-O2 (R2 = 0.135) showed significant test re-
sults. Table 3.1.23 provides the cognitive task results for all far intrahemisperic
channel pairs in the δ-frequency band.

Table 3.1.23: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far intrahemispheric channel
pairs in the δ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

δ-band
Coh. pCoh.

p R
2 p R

2

FP1-O1 0.503 0.023 0.414 0.029

FP2-O2 0.578 0.018 0.824 0.007

FP1-P3 0.865 0.005 0.050 0.097

FP2-P4 0.755 0.009 0.106 0.073

F3-O1 0.607 0.017 0.051 0.096

F4-O2 0.054 0.094 0.372 0.033

F3-P3 0.760 0.009 0.158 0.061

F4-P4 0.192 0.054 0.052 0.095

C3-O1 0.108 0.073 0.704 0.012

C4-O2 0.014* 0.135 0.113 0.071

The analysis in the θ-frequency band showed significant changes of coherences
between C4-O2 (R2 = 0.109), and highly significant changes of partial coherences
between F4-P4 (R2 = 0.151). Table 3.1.24 provides the cognitive task results for
all far intrahemisperic channel pairs in the θ-frequency band.

In the α-frequency band, the quadratic regression model was significant for
coherences between F4-O2 (R2 = 0.105), and C4-O2 (R2 = 0.127). For partial
coherences, high significance was obtained between F3-P3 (R2 = 0.212). Table
3.1.25 provides the cognitive task results for all far intrahemisperic channel pairs
in the α-frequency band.
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Table 3.1.24: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far intrahemispheric channel
pairs in the θ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

θ-band
Coh. pCoh.

p R
2 p R

2

FP1-O1 0.618 0.016 0.838 0.006

FP2-O2 0.665 0.014 0.394 0.031

FP1-P3 0.264 0.044 0.068 0.087

FP2-P4 0.864 0.005 0.937 0.002

F3-O1 0.731 0.011 0.263 0.044

F4-O2 0.297 0.040 0.216 0.051

F3-P3 0.226 0.049 0.110 0.072

F4-P4 0.088 0.079 0.008** 0.151

C3-O1 0.175 0.057 0.560 0.019

C4-O2 0.033* 0.109 0.208 0.052

Table 3.1.25: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far intrahemispheric channel
pairs in the α-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

α-band
Coh. pCoh.

p R
2 p R

2

FP1-O1 0.515 0.022 0.293 0.041

FP2-O2 0.251 0.046 0.109 0.072

FP1-P3 0.768 0.009 0.613 0.016

FP2-P4 0.714 0.011 0.061 0.090

F3-O1 0.273 0.043 0.067 0.088

F4-O2 0.038* 0.105 0.821 0.007

F3-P3 0.562 0.019 0.001** 0.212

F4-P4 0.206 0.052 0.398 0.031

C3-O1 0.177 0.057 0.770 0.009

C4-O2 0.018* 0.127 0.761 0.009

Significant changes of coherences between C4-O2 (R2 = 0.107) were observed
in the β0-frequency band. None of the other channel pairs showed significant test
results, neither for coherences nor for partial coherences. Table 3.1.26 provides the
cognitive task results for all far intrahemisperic channel pairs in the β0-frequency
band.

On the whole EEG signals, significant changes of coherences were observed be-
tween C4-O2 (R2 = 0.128). Partial coherences yielded significant results between
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Table 3.1.26: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far intrahemispheric channel
pairs in the β0-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

β0-band
Coh. pCoh.

p R
2 p R

2

FP1-O1 0.622 0.016 0.472 0.025

FP2-O2 0.291 0.041 0.115 0.071

FP1-P3 0.351 0.035 0.357 0.034

FP2-P4 0.249 0.046 0.345 0.035

F3-O1 0.217 0.050 0.918 0.003

F4-O2 0.185 0.056 0.896 0.004

F3-P3 0.715 0.011 0.434 0.028

F4-P4 0.052 0.095 0.917 0.003

C3-O1 0.125 0.068 0.833 0.006

C4-O2 0.035* 0.107 0.198 0.053

F3-O1 (R2 = 0.117), F3-P3 (R2 = 0.146), and F4-P4 (R2 = 0.111). Considering
bivariate Granger causalities, the quadratic regression was significant between FP1
→ P3 (R2 = 0.098) and P3 → F3 (R2 = 0.107), and highly significant between
C3 → O1 (R2 = 0.158). Conditional Granger causalities yielded no significant
findings. Table 3.1.27 provides the cognitive task results for all far intrahemisperic
channel pairs on the whole EEG signals.
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Table 3.1.27: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far intrahemispheric channel
pairs on the whole EEG signals during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively. For directed measures, the first line per channel pair indicates the first
direction of dependence (e.g. from FP1 → O1), and the second line indicates the second direction
of dependence (e.g. from O1 → FP1).

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

FP1-O1 0.375 0.033 0.763 0.009
0.260 0.045 0.479 0.025

0.724 0.011 0.800 0.008

FP2-O2 0.165 0.059 0.139 0.065
0.277 0.043 0.552 0.020

0.265 0.044 0.592 0.018

FP1-P3 0.476 0.025 0.245 0.047
0.047* 0.098 0.914 0.003

0.712 0.011 0.537 0.021

FP2-P4 0.833 0.006 0.204 0.053
0.754 0.010 0.542 0.021

0.072 0.085 0.446 0.027

F3-O1 0.226 0.049 0.026* 0.117
0.406 0.030 0.301 0.040

0.824 0.007 0.879 0.004

F4-O2 0.058 0.092 0.221 0.050
0.375 0.033 0.562 0.019

0.202 0.053 0.234 0.048

F3-P3 0.546 0.020 0.010* 0.146
0.065 0.088 0.777 0.008

0.036* 0.107 0.316 0.038

F4-P4 0.079 0.082 0.031* 0.111
0.952 0.002 0.919 0.003

0.196 0.054 0.385 0.032

C3-O1 0.130 0.067 0.822 0.007
0.006** 0.158 0.138 0.065

0.705 0.012 0.963 0.001

C4-O2 0.018* 0.128 0.316 0.038
0.238 0.047 0.516 0.022

0.531 0.021 0.676 0.013
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Far Interhemispheric

Now, consider the far interhemispheric channel pairs (cf. Figure 2.9.1b). In the
δ-frequency band, no significant changes were observed. Table 3.1.28 provides the
cognitive task results for all far interhemispheric channel pairs in the δ-frequency
band.

Table 3.1.28: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far interhemispheric channel
pairs in the δ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

δ-band
Coh. pCoh.

p R
2 p R

2

F7-F8 0.533 0.021 0.042* 0.102

F3-F4 0.448 0.027 0.326 0.037

T7-T8 0.636 0.015 0.103 0.074

C3-C4 0.955 0.002 0.935 0.002

P7-P8 0.079 0.082 0.420 0.029

P3-P4 0.278 0.042 0.557 0.020

O1-O2 0.183 0.056 0.238 0.048

In the θ-frequency band, coherences yielded significant findings between P3-
P4 (R2 = 0.141), and O1-O2 (R2 = 0.127). The analysis of partial coher-
ences showed significant results between T7-T8 (R2 = 0.098), and O1-O2 (R2 =
0.106). Table 3.1.29 provides the cognitive task results for all far interhemisperic
channel pairs in the θ-frequency band.

Table 3.1.29: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far interhemispheric channel
pairs in the θ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

θ-band
Coh. pCoh.

p R
2 p R

2

F7-F8 0.229 0.049 0.287 0.041

F3-F4 0.862 0.005 0.694 0.012

T7-T8 0.921 0.003 0.048* 0.098

C3-C4 0.507 0.023 0.952 0.002

P7-P8 0.373 0.033 0.516 0.022

P3-P4 0.011* 0.141 0.333 0.037

O1-O2 0.018* 0.127 0.036* 0.106

In the α-frequency band, significant changes of coherences (R2 = 0.140)
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and highly significant changes of partial coherences (R2 = 0.168) were observed
between O1-O2. Table 3.1.30 provides the cognitive task results for all far inter-
hemisperic channel pairs in the α-frequency band.

Table 3.1.30: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far interhemispheric channel
pairs in the α-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

α-band
Coh. pCoh.

p R
2 p R

2

F7-F8 0.258 0.045 0.682 0.013

F3-F4 0.650 0.014 0.315 0.038

T7-T8 0.851 0.005 0.175 0.057

C3-C4 0.888 0.004 0.559 0.020

P7-P8 0.418 0.029 0.437 0.028

P3-P4 0.294 0.041 0.660 0.014

O1-O2 0.012* 0.140 0.004** 0.168

In the β0-frequency band, both coherences and partial coherences yielded
highly significant results between O1-O2 (R2 = 0.152 and R2 = 0.203). Ad-
ditionally, highly significant changes of partial coherences were observed between
T7-T8 (R2 = 0.147). Table 3.1.31 provides the cognitive task results for all far
interhemisperic channel pairs in the β0-frequency band.

Table 3.1.31: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far interhemispheric channel
pairs in the β0-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

β0-band
Coh. pCoh.

p R
2 p R

2

F7-F8 0.666 0.014 0.264 0.044

F3-F4 0.144 0.064 0.548 0.020

T7-T8 0.371 0.033 0.009** 0.147

C3-C4 0.897 0.004 0.291 0.041

P7-P8 0.584 0.018 0.253 0.045

P3-P4 0.323 0.038 0.121 0.069

O1-O2 0.008** 0.152 0.001** 0.203

On the whole EEG signals, significant changes of both coherences and par-
tial coherences were observed between O1-O2 (R2 = 0.142 and R2 = 0.139).
Whereas bivariate Granger causalities yielded no significant results, conditional
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Granger caualities showed highly significant test results between F7 → F8 (R2 =
0.173), and significant results between C3 → C4 (R2 = 0.100). Table 3.1.32
provides the cognitive task results for all far interhemisperic channel pairs on the
whole EEG signals.

Table 3.1.32: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between far interhemispheric channel
pairs on the whole EEG signals during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively. For directed measures, the first line per channel pair indicates the first
direction of dependence (e.g. from F7 → F8), and the second line indicates the second direction
of dependence (e.g. from F8 → F7).

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

F7-F8 0.256 0.045 0.287 0.041
0.774 0.009 0.004** 0.173

0.857 0.005 0.604 0.017

F3-F4 0.741 0.010 0.752 0.010
0.639 0.015 0.113 0.071

0.238 0.047 0.892 0.004

T7-T8 0.740 0.010 0.178 0.057
0.034 0.108 0.128 0.067

0.262 0.044 0.416 0.029

C3-C4 0.904 0.003 0.996 <0.001
0.569 0.019 0.045* 0.100

0.891 0.004 0.632 0.015

P7-P8 0.265 0.044 0.642 0.015
0.527 0.021 0.089 0.079

0.691 0.012 0.170 0.058

P3-P4 0.091 0.078 0.619 0.016
0.066 0.088 0.459 0.026

0.104 0.074 0.744 0.010

O1-O2 0.011* 0.142 0.012* 0.139
0.052 0.096 0.693 0.012

0.687 0.013 0.605 0.017
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Local Anterior

Next, let us consider the local anterior channel pairs (cf. Figure 2.9.1c). In
the δ-frequency band, no significant changes of coherences were observed. Partial
coherences yielded significance between F7-T7 (R2 = 0.132), and high significance
between F8-T8 (R2 = 0.149). Table 3.1.33 provides the cognitive task results for
all local anterior channel pairs in the δ-frequency band.

Table 3.1.33: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local anterior channel pairs in
the δ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

δ-band
Coh. pCoh.

p R
2 p R

2

FP1-F7 0.174 0.057 0.784 0.008

FP2-F8 0.947 0.002 0.653 0.014

FP1-F3 0.115 0.071 0.317 0.038

FP2-F4 0.381 0.032 0.155 0.061

F7-C3 0.143 0.064 0.820 0.007

F8-C4 0.074 0.084 0.321 0.038

F7-T7 0.692 0.012 0.016* 0.132

F8-T8 0.543 0.020 0.009** 0.149

F3-C3 0.545 0.020 0.532 0.021

F4-C4 0.420 0.029 0.066 0.088

In the θ-frequency band, changes of coherences were significant between FP1-
F7 (R2 = 0.140). Partial coherences yielded significant results between FP2-F4
(R2 = 0.101) and F8-T8 (R2 = 0.128), and highly significant results between
F7-T7 (R2 = 0.199). Table 3.1.34 provides the cognitive task results for all local
anterior channel pairs in the θ-frequency band.

In the α-frequency band, significant changes of coherences were found between
between FP1-F7 (R2 = 0.102). Partial coherences yielded significant results be-
tween FP2-F4 (R2 = 0.098) and F7-T7 (p = 0.019, R2 = 0.126), and highly
significant results between F8-T8 (R2 = 0.155). Table 3.1.35 provides the cogni-
tive task results for all local anterior channel pairs in the α-frequency band.

In the β0-band, coherences yielded significant findings only between F4-C4
(R2 = 0.106). For partial coherences, no significant changes were observed.
Table 3.1.36 provides the cognitive task results for all local anterior channel pairs
in the β0-frequency band.

On the whole EEG signals, coherences yielded significant results between FP1-
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Table 3.1.34: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local anterior channel pairs in
the θ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

θ-band
Coh. pCoh.

p R
2 p R

2

FP1-F7 0.012* 0.140 0.204 0.052

FP2-F8 0.734 0.010 0.851 0.005

FP1-F3 0.067 0.087 0.160 0.060

FP2-F4 0.634 0.015 0.043* 0.101

F7-C3 0.649 0.015 0.835 0.006

F8-C4 0.471 0.025 0.487 0.024

F7-T7 0.508 0.023 0.001** 0.199

F8-T8 0.734 0.010 0.018* 0.128

F3-C3 0.878 0.004 0.230 0.049

F4-C4 0.571 0.019 0.116 0.070

Table 3.1.35: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local anterior channel pairs in
the α-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

α-band
Coh. pCoh.

p R
2 p R

2

FP1-F7 0.043* 0.102 0.142 0.064

FP2-F8 0.703 0.012 0.572 0.019

FP1-F3 0.106 0.073 0.139 0.065

FP2-F4 0.766 0.009 0.048* 0.098

F7-C3 0.502 0.023 0.620 0.016

F8-C4 0.852 0.005 0.377 0.033

F7-T7 0.079 0.083 0.019* 0.126

F8-T8 0.085 0.080 0.007** 0.155

F3-C3 0.150 0.062 0.264 0.044

F4-C4 0.203 0.053 0.202 0.053

F7 (R2 = 0.103). Changes of partial coherences were significant between FP2-F4
(R2 = 0.103), and highly significant between F7-T7 (R2 = 0.147) and F8-T8
(R2 = 0.153). Bivariate Granger causalities yielded significant results between
FP1 → F7 (R2 = 0.111), F3 → FP1 (R2 = 0.134), and F3 → C4 (R2 = 0.130).
Between both F7 → T7 and T7 → F7, highly significant changes of bivariate
Granger causalities were obtained (R2 = 0.225 and R2 = 0.228). Conditional
Granger causalities yielded highly significant findings between T7 → F7 as well
(R2 = 0.168). Table 3.1.37 provides the cognitive task results for all local anterior
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Table 3.1.36: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local anterior channel pairs in
the β0-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

β0-band
Coh. pCoh.

p R
2 p R

2

FP1-F7 0.395 0.031 0.327 0.037

FP2-F8 0.844 0.006 0.887 0.004

FP1-F3 0.136 0.065 0.446 0.027

FP2-F4 0.207 0.052 0.234 0.048

F7-C3 0.467 0.025 0.355 0.035

F8-C4 0.202 0.053 0.530 0.021

F7-T7 0.214 0.051 0.727 0.011

F8-T8 0.104 0.074 0.132 0.066

F3-C3 0.316 0.038 0.733 0.010

F4-C4 0.037* 0.106 0.152 0.062

channel pairs on the whole EEG signals.
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Table 3.1.37: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local anterior channel pairs on
the whole EEG signals during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively. For directed measures, the first line per channel pair indicates the first direction
of dependence (e.g. from FP1 → F7), and the second line indicates the second direction of
dependence (e.g. from F7 → FP1).

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

FP1-F7 0.040* 0.103 0.220 0.050
0.031* 0.111 0.538 0.021

0.770 0.009 0.219 0.050

FP2-F8 0.797 0.008 0.910 0.003
0.462 0.026 0.229 0.049

0.186 0.055 0.467 0.025

FP1-F3 0.096 0.076 0.132 0.066
0.583 0.018 0.626 0.016

0.015* 0.134 0.478 0.025

FP2-F4 0.763 0.009 0.040* 0.103
0.831 0.006 0.406 0.030

0.554 0.020 0.208 0.052

F7-C3 0.691 0.012 0.771 0.009
0.780 0.008 0.710 0.012

0.745 0.010 0.118 0.070

F8-C4 0.836 0.006 0.438 0.028
0.062 0.090 0.192 0.054

0.876 0.004 0.071 0.086

F7-T7 0.182 0.056 0.009** 0.147
0.001** 0.225 0.123 0.069

<0.001** 0.228 0.004** 0.168

F8-T8 0.325 0.037 0.007** 0.153
0.455 0.026 0.894 0.004

0.222 0.050 0.261 0.044

F3-C3 0.599 0.017 0.348 0.035
0.310 0.039 0.971 0.001

0.663 0.014 0.066 0.088

F4-C4 0.238 0.048 0.110 0.072
0.017* 0.130 0.579 0.018

0.182 0.056 0.272 0.043
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Local Posterior

Now, consider the local posterior channel pairs (cf. Figure 2.9.1d). In the δ-
frequency band, changes of coherences were significant between P7-O1 (R2 =
0.125), C3-P7 (R2 = 0.124), and P4-C4 (R2 = 0.124), and highly significant
between C4-P8 (R2 = 0.148), P3-P7 (R2 = 0.171), and P4-P8 (R2 = 0.149).
Partial coherences yielded significant results between P4-C4 (R2 = 0.110), P3-P7
(R2 = 0.128), and P4-P8 (R2 = 0.129). Table 3.1.38 provides the cognitive task
results for all local posterior channel pairs in the δ-frequency band.

Table 3.1.38: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local posterior channel pairs
in the δ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

δ-band
Coh. pCoh.

p R
2 p R

2

P7-O1 0.020* 0.125 0.415 0.029

P8-O2 0.233 0.048 0.226 0.049

P3-O1 0.144 0.064 0.394 0.031

P4-O2 0.054 0.094 0.162 0.060

C3-P7 0.020* 0.124 0.418 0.029

C4-P8 0.009** 0.148 0.736 0.010

P3-C3 0.084 0.081 0.314 0.038

P4-C4 0.020* 0.124 0.032* 0.110

P3-P7 0.004** 0.171 0.017* 0.128

P4-P8 0.008** 0.149 0.017* 0.129

In the θ-frequency band, significant changes of coherences were observed be-
tween C3-P7 (R2 = 0.129), P4-C4 (R2 = 0.118), and P3-P7 (R2 = 0.134); high
significances were obtained between C4-P8 (R2 = 0.225), P3-C3 (R2 = 0.171),
and P4-P8 (R2 = 0.250). Partial coherences yielded significant findings between
C3-P7 (R2 = 0.104), P3-P7 (R2 = 0.099), and P4-P8 (R2 = 0.110). Table
3.1.39 provides the cognitive task results for all local posterior channel pairs in
the θ-frequency band.

The analysis of coherences in the α-frequency band yielded significant findings
between C4-P8 (R2 = 0.110), and highly significant findings between the parietal
channels P3-P7 (R2 = 0.183) and P4-P8 (R2 = 0.161). Changes of partial
coherences were significant between P4-P8 as well (R2 = 0.115). Table 3.1.40
provides the cognitive task results for all local posterior channel pairs in the α-
frequency band.

In the β0-frequency band, quadratic regressions of coherences were significant
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Table 3.1.39: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local posterior channel pairs
in the θ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

θ-band
Coh. pCoh.

p R
2 p R

2

P7-O1 0.235 0.048 0.744 0.010

P8-O2 0.229 0.049 0.163 0.060

P3-O1 0.959 0.001 0.133 0.066

P4-O2 0.107 0.073 0.556 0.020

C3-P7 0.017* 0.129 0.039* 0.104

C4-P8 0.001** 0.225 0.033* 0.109

P3-C3 0.004** 0.171 0.172 0.058

P4-C4 0.025* 0.118 0.145 0.063

P3-P7 0.014* 0.134 0.046* 0.099

P4-P8 <0.001** 0.250 0.032* 0.110

Table 3.1.40: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local posterior channel pairs in
the α-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

α-band
Coh. pCoh.

p R
2 p R

2

P7-O1 0.068 0.087 0.926 0.003

P8-O2 0.111 0.072 0.419 0.029

P3-O1 0.312 0.039 0.162 0.060

P4-O2 0.052 0.095 0.926 0.003

C3-P7 0.050 0.096 0.284 0.042

C4-P8 0.032* 0.110 0.650 0.014

P3-C3 0.068 0.087 0.148 0.063

P4-C4 0.234 0.048 0.502 0.023

P3-P7 0.003** 0.183 0.056 0.093

P4-P8 0.006** 0.161 0.028* 0.115

between P8-O2 (R2 = 0.100), P4-O2 (R2 = 0.135), C3-P7 (R2 = 0.110), C4-P8
(R2 = 0.100), and P4-P8 (R2 = 0.113), and highly significant between P7-O1
(R2 = 0.188) and P3-P7 (R2 = 0.215). Partial coherences yielded significant
findings only between P4-P8 (R2 = 0.101). Table 3.1.41 provides the cognitive
task results for all local posterior channel pairs in the β0-frequency band.

Finally, for the whole EEG signals, significant changes of coherences were
observed between P7-O1 (R2 = 0.104), C3-P7 (R2 = 0.131), and P3-C3 (R2 =
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Table 3.1.41: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between local posterior channel pairs in
the β0-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

β0-band
Coh. pCoh.

p R
2 p R

2

P7-O1 0.002** 0.188 0.798 0.008

P8-O2 0.045* 0.100 0.404 0.030

P3-O1 0.079 0.082 0.715 0.011

P4-O2 0.014* 0.135 0.884 0.004

C3-P7 0.032* 0.110 0.393 0.031

C4-P8 0.044* 0.100 0.420 0.029

P3-C3 0.107 0.073 0.341 0.036

P4-C4 0.132 0.066 0.482 0.024

P3-P7 0.001** 0.215 0.107 0.073

P4-P8 0.030* 0.113 0.043* 0.101

0.124); high significance was obtained between C4-P8 (R2 = 0.178), P3-P7 (R2 =
0.194), and P4-P8 (R2 = 0.198). Between the channels P3-P7 and P4-P8, partial
coherences yielded significant results as well (R2 = 0.104 and R2 = 0.120). For
bivariate Granger causalities, significant changes were obtained between O2 → P8
(R2 = 0.115), and O1 → P3 (R2 = 0.108). For conditional Granger causalities,
significant findings were observed only between C3 → P7 (R2 = 0.099). Table
3.1.42 provides the cognitive task results for all local posterior channel pairs on
the whole EEG signals.



90

Table 3.1.42: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between local posterior channel
pairs on the whole EEG signals during the cognitive task; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively. For directed measures, the first line per channel pair indicates the first
direction of dependence (e.g. from P7 → O1), and the second line indicates the second direction
of dependence (e.g. from O1 → P7).

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

P7-O1 0.039* 0.104 0.954 0.002
0.180 0.057 0.789 0.008

0.519 0.022 0.055 0.093

P8-O2 0.160 0.060 0.418 0.029
0.616 0.016 0.313 0.039

0.027* 0.115 0.377 0.032

P3-O1 0.346 0.035 0.223 0.050
0.724 0.011 0.152 0.062

0.034* 0.108 0.378 0.032

P4-O2 0.068 0.087 0.802 0.007
0.780 0.008 0.595 0.017

0.724 0.011 0.880 0.004

C3-P7 0.016* 0.131 0.101 0.075
0.189 0.055 0.046* 0.099

0.979 0.001 0.257 0.045

C4-P8 0.003** 0.178 0.387 0.032
0.322 0.038 0.496 0.023

0.371 0.033 0.071 0.086

P3-C3 0.020* 0.124 0.178 0.057
0.814 0.007 0.550 0.020

0.117 0.070 0.731 0.011

P4-C4 0.057 0.093 0.262 0.044
0.743 0.010 0.480 0.025

0.800 0.008 0.419 0.029

P3-P7 0.002** 0.194 0.039* 0.104
0.533 0.021 0.166 0.059

0.849 0.006 0.806 0.007

P4-P8 0.001** 0.198 0.023* 0.120
0.365 0.034 0.321 0.038

0.170 0.058 0.647 0.015
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3.2 Synchrony Between Groups of EEG Channels

This section will provide the results for synchrony between the following channel
groups (cf. Figures 2.9.2a and 2.9.2b): Anterior (A.)1, Central (C.), Posterior
(P.), Temporal Left (T.L.), Temporal Right (T.R.), Left (L.) and Right (R.). In
the δ-, θ-, α-, and β0-frequency band, coherences and partial coherences were
estimated between the respective first and second PCs of each group; dynamic
canonical correlations (dynCC) were estimated between the PCS and between
the groups in these frequency bands. For the whole bandpass-filtered signals,
coherences, partial coherences, bivariate and conditional Granger causalities were
estimated between the respective first and second PCs; in addition, static (statCC)
and dynamic canonical correlations were computed. Section 3.2.1 will summarize
the main findings. In Sections 3.2.2 and 3.2.3, the listing of all resting state and
cognitive task results will be provided.

3.2.1 Main Results

In resting state, significant changes of coherences between the 1st PCs of Central-
Posterior (R2 = 0.094) were observed in the δ-frequency band. For coher-
ences between the 2nd PCs, test results were most significant between Central-
Temporal Left in δ (R2 = 0.229) and between Central-Temporal Right in δ as
well (R2 = 0.185). For partial coherences between the 1st PCs, the highest sig-
nificances were observed between Anterior-Posterior in δ (R2 = 0.202) and θ

(R2 = 0.176), Central-Posterior in δ (R2 = 0.211) and θ (R2 = 0.161), and
Anterior-Temporal Left in α (R2 = 0.143). For partial coherences between the
2nd PCs, the group combinations Posterior-Temporal Left in δ (R2 = 0.142)
and θ (R2 = 0.187), and Posterior-Temporal Right in θ (R2 = 0.182) showed
highly significant findings. Whereas static canonical correlations yielded highly
significant test results only between Left-Right (R2 = 0.145), dynamic canoni-
cal correlations resulted in significant findings in both lower frequency bands δ

and θ between all channel groups. In δ, high significance was observed between
Anterior-Temporal Right (R2 = 0.161), Central-Posterior (R2 = 0.159), Central-
Temporal Left (R2 = 0.163), Central-Temporal Right (R2 = 0.201), Posterior-
Temporal Right (R2 = 0.159), and Temporal Left-Temporal Right (R2 = 0.143).
In θ, high significance was obtained between Anterior-Posterior (R2 = 0.180),
Anterior-Temporal Left (R2 = 0.185), Anterior-Temporal Right (R2 = 0.149),
Central-Posterior (R2 = 0.193), Central-Temporal Left (R2 = 0.231), Central-
Temporal Right (R2 = 0.194), Posterior-Temporal Left (R2 = 0.252), Posterior-
Temporal Right (R2 = 0.235), Temporal Left-Temporal Right (R2 = 0.171),
and Left-Right (R2 = 0.268). Additionally, for the whole signal, highly signif-
icant results were obtained between Posterior-Temporal Left (R2 = 0.181) and
Posterior-Temporal Right (R2 = 0.156). Figure 3.2.1 shows the values of the

1The abbreviations in brackets will be used in the tables.
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dynamic canonical correlation measure between Posterior-Temporal Left in the θ-
frequency band as scatterdiagram versus MMSE scores. The quadratic regression
(p < 0.001, R2 = 0.252) is characterized by an increase of partial coherences for
MMSE scores between 26 and 19, and a decrease from 19 downwards.
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Figure 3.2.1: Example for changes of synchrony between groups of channels in resting state:
dynamic canonical correlations in the θ-frequency band for Posterior-Temporal Left versus
MMSE scores. Low MMSE scores (right side of the abscissa) indicate more severe a higher
degree of severity of AD. A quadratic regression was fitted to the data with p < 0.001 and
R2

= 0.252.

Bivariate Granger causalities between the 1st PCs yielded high significance
only between Temporal Left → Posterior (R2 = 0.247). None of the group
combinations showed highly significant test results between the 2nd PCs. Con-
ditional Granger causalities between the 1st PCs yielded highly significant find-
ings between all groups, for all of them at least in one direction: Anterior →
Central (R2 = 0.206), Central → Anterior (R2 = 0.152), Anterior → Poste-
rior (R2 = 0.264), Anterior → Temporal Left (R2 = 0.201), Temporal Left →
Anterior (R2 = 0.208), Anterior → Temporal Right (R2 = 0.168), Central →
Posterior (R2 = 0.408), Posterior → Central (R2 = 0.190), Central → Temporal
Left (R2 = 0.214), Temporal Left → Central (R2 = 0.213), Central → Tempo-
ral Right (R2 = 0.169), Temporal Right → Central (R2 = 0.148), Posterior →
Temporal Left (R2 = 0.167), Temporal Left → Posterior (R2 = 0.271), Temporal
Right → Posterior (R2 = 0.245), Temporal Left → Temporal Right (R2 = 0.196),
and Temporal Right → Temporal Left (R2 = 0.175). In Figure 3.2.2, the values
of the conditional Granger causality measure between the 1st PCs of Central →
Posterior are shown as scatterdiagram versus MMSE scores. The quadratic re-
gression (p < 0.001, R2 = 0.408) is characterized by a decrease of conditional
Granger causalities for MMSE scores between 26 and 18, and a slight increase
from 18 downwards.



CHAPTER 3. RESULTS 93

161820222426
20

40

60

80

100

120

140

MMSE

cG
C

Figure 3.2.2: Example for changes of synchrony between channel groups in resting state:
conditional Granger causalities between the 1

st PCs of Central → Posterior versus MMSE
scores. Low MMSE scores (right side of the abscissa) indicate a higher degree of severity of AD.
A quadratic regression was fitted to the data with p < 0.001 and R2

= 0.408.

Between the 2nd PCs, conditional Granger causalities yielded highly signifi-
cant results between all groups, each in both directions (denoted by ”↔”): An-
terior ↔ Central (R2 = 0.205, 0.356), Anterior ↔ Posterior (R2 = 0.201, 0.313),
Anterior ↔ Temporal Left (R2 = 0.262, 0.313), Anterior ↔ Temporal Right
(R2 = 0.253, 0.353), Central ↔ Posterior (R2 = 0.245, 0.271), Central ↔ Tem-
poral Left (R2 = 0.319, 0.252), Central ↔ Temporal Right (R2 = 0.293, 0.303),
Posterior ↔ Temporal Left (R2 = 0.291, 0.173), Posterior ↔ Temporal Right
(R2 = 0.304, 0.286), and Temporal Left ↔ Temporal Right (R2 = 0.322, 0.344).
Figure 3.2.3 displays the values of the conditional Granger causality measure be-
tween the 2nd PCs of Central → Temporal Left as scatterdiagram versus MMSE
scores. In this example, the quadratic regression (p < 0.001, R2 = 0.319) is
characterized by a decrease of conditional Granger causalities for MMSE scores
between 26 and 17, and a slight increase from 17 downwards.

Table 3.2.1 provides an overview of the significant test results for each measure,
frequency band, and channel group combination in resting state. The table shows
significances for the measures both between the 1st and 2nd PCs, and, for canonical
coherences, between the channel groups (i.e. multivariate). Those parts of the
table with no outcome are grey-colored; canonical correlations, for example, were
not calculated between the 1st and 2nd PCs of each group, but only as multivariate
measure.
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Figure 3.2.3: Example for changes of synchrony between channel groups in resting state:
conditional Granger causalities between the 2

nd PCs of Central → Temporal Left versus
MMSE scores. Low MMSE scores (right side of the abscissa) indicate a higher degree of severity
of AD. A quadratic regression was fitted to the data with p < 0.001 and R2

= 0.319.



Table 3.2.1: Overview of the significances derived for a least squares quadratic regression model of synchrony measures between channel groups in resting state; ”*” and ”**”
indicate p < 0.05 and p < 0.01 respectively.
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Coh
δ * * ** ** *

θ * * * *

α

β0 *

total

pCoh
δ ** ** * * * **

θ ** ** ** **

α * **

β0 * *

total * * * *

statCC * * * **

dynCC
δ * * * ** ** ** ** * ** ** *

θ * ** ** ** ** ** ** ** ** ** **

α

β0 * * *

total * * * ** ** *

bGC
*

** *

cGC
** ** ** ** ** ** ** ** * ** ** ** ** ** ** ** ** ** ** **

** * ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **
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During the cognitive task, highly significant changes of coherences were found
between the 2nd PCs of Posterior-Temporal Left in θ (R2 = 0.249), and of
Central-Temporal Left in all frequency bands: δ (R2 = 0.413), θ (R2 = 0.362),
α (R2 = 0.365), β0 (R2 = 0.216), and for the whole signal (R2 = 0.401).
Figure 3.2.4 shows the estimated coherences between the 2nd PCs of Central-
Temporal Left in the δ-frequency band as scatterdiagram versus MMSE scores.
The quadratic regression model (p < 0.001, R2 = 0.413) is characterized by an
increase of coherences for MMSE scores between 26 and 20, and a decrease from
20 downwards.
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Figure 3.2.4: Example for changes of synchrony between channel groups during the cognitive
task: coherences between the 2

nd PCs of Central-Temporal Left in the δ-frequency band
versus MMSE scores. Low MMSE scores (right side of the abscissa) indicate a higher degree of
severity of AD. A quadratic regression was fitted to the data with p < 0.001 and R2

= 0.413.

In contrast to coherences, only partial coherences between the 1st PCs yielded
highly significant results: between Anterior-Posterior in θ (R2 = 0.156), Central-
Posterior in δ (R2 = 0.190) and θ (R2 = 0.165), and Temporal Left-Temporal
Right in θ (R2 = 0.254). Changes of static canonical correlations were highly sig-
nificant in the following 8 group combinations: Anterior-Posterior (R2 = 0.197),
Anterior-Temporal Left (R2 = 0.207), Central-Posterior (R2 = 0.196), Central-
Temporal Left (R2 = 0.405), Central-Temporal Right (R2 = 0.201), Posterior-
Temporal Left (R2 = 0.294), Posterior-Temporal Right (R2 = 0.302), and Left-
Right (R2 = 0.165). Figure 3.2.5 shows the values of the static canonical cor-
relation measure between Central-Temporal Left as scatterdiagram versus MMSE
scores. The quadratic regression model (p < 0.001, R2 = 0.405) is characterized
by an increase of the canonical correlation measure for MMSE scores between 26
and 20, and a decrease from 20 downwards.

The analysis of dynamic canonical correlations yielded highly significant re-
sults in channel group combinations but Anterior-Central and Temporal Left-
Temporal Right: Anterior-Posterior in θ (R2 = 0.226) and for the whole signal



CHAPTER 3. RESULTS 97

161820222426
0.8

0.9

1

1.1

1.2

1.3

MMSE

st
at

C
C

Figure 3.2.5: Example for changes of synchrony between channel groups during the cognitive
task: static canonical correlations between Central-Temporal Left versus MMSE scores. Low
MMSE scores (right side of the abscissa) indicate a higher degree of severity of AD. A quadratic
regression was fitted to the scatterplot with p < 0.001 and R2

= 0.405.

(R2 = 0.162), Anterior-Temporal Left in θ (R2 = 0.278) and for the whole signal
(R2 = 0.199), Anterior-Temporal Right in θ (R2 = 0.169), Central-Posterior in
θ (R2 = 0.222) and for the whole signal (R2 = 0.147), Central-Temporal Left
in all frequency bands δ (R2 = 0.173), θ (R2 = 0.390), α (R2 = 0.195), β0
(R2 = 0.152) and for the whole signal (R2 = 0.294), Central-Temporal Right
in δ (R2 = 0.172), θ (R2 = 0.222), α (R2 = 0.164) and for the whole signal
(R2 = 0.206), Posterior-Temporal Left in θ (R2 = 0.266), α (R2 = 0.252), β0
(R2 = 0.263) and for the whole signal (R2 = 0.278), Posterior-Temporal Right
in θ (R2 = 0.234), β0 (R2 = 0.212) and for the whole signal (R2 = 0.210),
and Left-Right in θ (R2 = 0.291). In Figure 3.2.6, the values of the dynamic
canonical correlation measure between Central-Temporal Left in the θ-frequency
band are shown as scatterdiagram versus MMSE scores. The quadratic regres-
sion model (p < 0.001, R2 = 0.390) is characterized by an increase of dynamic
canonical correlations for MMSE scores between 26 and 19, and a decrease from
19 downwards.

Between the 1st PCs, changes of the bivariate Granger causality measure were
highly significant only between Central → Posterior (R2 = 0.162). Between
the 2nd PCs, high significance was observed between Central → Temporal Left
(R2 = 0.151) and between Temporal Right → Central (R2 = 0.155). For con-
ditional Granger causalities between the 1st PCs, highly significant results were
obtained between Temporal Left → Anterior (R2 = 0.171), Anterior → Temporal
Right (R2 = 0.276), Central → Temporal Right (R2 = 0.197), and Temporal Left
→ Temporal Right (R2 = 0.185). Between the 2nd PCs, high significance was
observed between Anterior → Posterior (R2 = 0.206), Temporal Right → Central
(R2 = 0.181), Temporal Right → Posterior (R2 = 0.263), and Temporal Right
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Figure 3.2.6: Example for changes of synchrony between channel groups during the cognitive
task: dynamic canonical correlations between Central-Temporal Left in the θ-frequency band
versus MMSE scores. Low MMSE scores (right side of the abscissa) indicate a higher degree
of severity of AD. A quadratic regression was fitted to the scatterplot with p < 0.001 and
R2

= 0.390.

→ Temporal Left (R2 = 0.248).

Table 3.2.2 provides the significant findings for each measure, frequency band,
and channel group combination during the cognitive task. The table shows sig-
nificances for the measures both between the 1st and 2nd PCs, and, for canonical
coherences, between the channel groups (i.e. multivariate). Those parts of the
table with no outcome are grey-colored (cf. Table 3.2.1).



Table 3.2.2: Overview of the significances derived for a least squares quadratic regression model of synchrony measures between channel groups during the cognitive task; ”*”
and ”**” indicate p < 0.05 and p < 0.01 respectively.
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3.2.2 Detailed Results: Resting State

Here, the listing of all results from analyzing EEG synchrony between channel
groups in resting state will be provided. Starting with the δ-frequency band,
coherences yielded significant results between the respective first PCs of Central-
Posterior (R2 = 0.094). Changes of partial coherences were significant between
the first PCs of Central-Temporal Right (R2 = 0.097), and highly significant
between the first PCs of Anterior-Posterior (R2 = 0.202) and Central-Posterior
(R2 = 0.211). Table 3.2.3 provides the resting state results between the respective
first PCs of channel groups in the δ-frequency band.

Table 3.2.3: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between the respective first PCs of
channel groups in the δ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

δ-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.670 0.013 0.088 0.077

A.-P. 0.321 0.037 0.001** 0.202

A.-T.L. 0.659 0.014 0.318 0.037

A.-T.R. 0.405 0.029 0.082 0.079

C.-P. 0.049* 0.094 0.001** 0.211

C.-T.L. 0.297 0.039 0.285 0.040

C.-T.R. 0.833 0.006 0.044* 0.097

P.-T.L. 0.107 0.071 0.228 0.047

P.-T.R. 0.515 0.022 0.043* 0.098

T.L.-T.R. 0.329 0.036 0.333 0.035

For the respective second PCs, changes of coherences were significant between
Anterior-Temporal Right (R2 = 0.095), Posterior-Temporal Left (R2 = 0.107),
and highly significant between Central-Temporal Left (R2 = 0.229) and Central-
Temporal Right (R2 = 0.185). Partial coherences yielded significant findings be-
tween Central-Temporal Left (R2 = 0.098), and highly significant findings between
Posterior-Temporal Left (R2 = 0.142). Table 3.2.4 provides the resting state re-
sults between the respective second PCs of channel groups in the δ-frequency
band.

In the δ-frequency band, the analysis of dynamic canonical correlations be-
tween the channel groups resulted in significant findings between five group com-
binations, and in highly significant findings between the remaining six group com-
binations. The changes of the dynamic canonical correlation measure between
the PCs of each channel group yielded highly significant results between Anterior-
Temporal Right (R2 = 0.195), Central-Temporal Left (R2 = 0.168), and Central-
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Table 3.2.4: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between the respective second PCs of
channel groups in the δ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

δ-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.187 0.053 0.377 0.032

A.-P. 0.076 0.081 0.239 0.046

A.-T.L. 0.138 0.063 0.581 0.018

A.-T.R. 0.047* 0.095 0.555 0.019

C.-P. 0.759 0.009 0.584 0.018

C.-T.L. <0.001** 0.229 0.043* 0.098

C.-T.R. 0.002** 0.185 0.146 0.061

P.-T.L. 0.032* 0.107 0.009** 0.142

P.-T.R. 0.270 0.042 0.084 0.078

T.L.-T.R. 0.130 0.065 0.484 0.023

Temporal Right (R2 = 0.171). Table 3.2.5 provides all resting state results be-
tween the channel groups in the δ-frequency band.

Table 3.2.5: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between channel groups in the
δ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

δ-band
dynCC (betw. groups) dynCC (betw. PCs)
p R

2 p R
2

A.-C. 0.023* 0.117 0.019* 0.123

A.-P. 0.047* 0.095 0.095 0.074

A.-T.L. 0.018* 0.124 0.012* 0.134

A.-T.R. 0.005** 0.161 0.001** 0.195

C.-P. 0.005** 0.159 0.026* 0.113

C.-T.L. 0.004** 0.163 0.004** 0.168

C.-T.R. 0.001** 0.201 0.003** 0.171

P.-T.L. 0.026* 0.113 0.096 0.074

P.-T.R. 0.005** 0.159 0.266 0.042

T.L.-T.R. 0.009** 0.143 0.010* 0.140

L.-R. 0.041* 0.099 0.017* 0.124

Between the respective first PCs in the θ-frequency band, no significant changes
of coherences were observed. Partial coherences yielded highly significant results
between Anterior-Posterior (R2 = 0.176) and Central-Posterior (R2 = 0.161).
Table 3.2.6 provides the resting state results between the respective first PCs of
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channel groups in the θ-frequency band.

Table 3.2.6: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between the respective first PCs of
channel groups in the θ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

θ-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.984 0.001 0.140 0.062

A.-P. 0.812 0.007 0.003** 0.176

A.-T.L. 0.459 0.025 0.115 0.068

A.-T.R. 0.658 0.014 0.187 0.053

C.-P. 0.234 0.046 0.005** 0.161

C.-T.L. 0.744 0.010 0.293 0.039

C.-T.R. 0.412 0.029 0.070 0.083

P.-T.L. 0.397 0.030 0.635 0.015

P.-T.R. 0.476 0.024 0.085 0.078

T.L.-T.R. 0.283 0.041 0.538 0.020

Coherences yielded significant test results between the respective second PCs
of Central-Temporal Left (R2 = 0.137), Central-Temporal Right (R2 = 0.101),
Posterior-Temporal Left (R2 = 0.099), and Posterior-Temporal Right (R2 =
0.134). Between the latter two group combinations, highly significant changes
of partial coherences were observed as well (R2 = 0.187 and R2 = 0.182). Ta-
ble 3.2.7 provides the resting state results between the respective second PCs of
channel groups in the θ-frequency band.

In the θ-frequency band, dynamic canonical correlations yielded significant
changes between Anterior-Central, and highly significant changes between the
remaining channel combinations. In contrast, dynamic canonical correlations be-
tween the PCs showed highly significant changes only between Temporal Left-
Temporal Right (R2 = 0.196). Table 3.2.8 provides the resting state results
between the channel groups in the θ-frequency band.

In the α-frequency band, no significant changes of coherences between the
respective first PCs of channel groups were observed. Partial coherence yielded
significant findings between Anterior-Posterior (R2 = 0.096), and highly signifi-
cant findings between Anterior-Temporal Left (R2 = 0.143). Table 3.2.9 provides
the resting state results between the respective first PCs of channel groups in the
α-frequency band.

Neither coherences nor partial coherences yielded statistically significant find-
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Table 3.2.7: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between the respective second PCs of
channel groups in the θ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

θ-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.219 0.049 0.341 0.035

A.-P. 0.235 0.046 0.163 0.058

A.-T.L. 0.650 0.014 0.531 0.021

A.-T.R. 0.340 0.035 0.127 0.065

C.-P. 0.642 0.014 0.645 0.014

C.-T.L. 0.011* 0.137 0.097 0.074

C.-T.R. 0.039* 0.101 0.054 0.091

P.-T.L. 0.041* 0.099 0.002** 0.187

P.-T.R. 0.012* 0.134 0.002** 0.182

T.L.-T.R. 0.535 0.020 0.168 0.057

Table 3.2.8: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between channel groups in the
θ-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

θ-band
dynCC (betw. groups) dynCC (betw. PCs)
p R

2 p R
2

A.-C. 0.024* 0.115 0.054 0.091

A.-P. 0.002** 0.180 0.441 0.027

A.-T.L. 0.002** 0.185 0.012* 0.135

A.-T.R. 0.007** 0.149 0.070 0.083

C.-P. 0.001** 0.193 0.143 0.062

C.-T.L. <0.001** 0.231 0.085 0.077

C.-T.R. 0.001** 0.194 0.159 0.058

P.-T.L. <0.001** 0.252 0.028* 0.110

P.-T.R. <0.001** 0.235 0.100 0.073

T.L.-T.R. 0.003** 0.171 0.001** 0.196

L.-R. <0.001** 0.268 0.145 0.061

ings between the respective second PCs of channel groups in the α-frequency
band. Table 3.2.10 provides all resting state results between the respective sec-
ond PCs of channel groups in the α-frequency band.

The analysis of dynamic canonical correlations in the α-frequency band did not
result in significant findings as well, neither between channel groups nor between
the respective PCs. Table 3.2.11 provides the resting state results between the
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Table 3.2.9: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between the respective first PCs of
channel groups in the α-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

α-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.767 0.009 0.604 0.016

A.-P. 0.097 0.074 0.046* 0.096

A.-T.L. 0.753 0.009 0.009** 0.143

A.-T.R. 0.397 0.030 0.151 0.060

C.-P. 0.185 0.054 0.271 0.042

C.-T.L. 0.922 0.003 0.388 0.031

C.-T.R. 0.089 0.076 0.383 0.031

P.-T.L. 0.095 0.074 0.891 0.004

P.-T.R. 0.515 0.022 0.113 0.069

T.L.-T.R. 0.160 0.058 0.440 0.027

Table 3.2.10: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between the respective second PCs of
channel groups in the α-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

α-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.765 0.009 0.660 0.014

A.-P. 0.638 0.015 0.232 0.047

A.-T.L. 0.068 0.084 0.982 0.001

A.-T.R. 0.992 <0.001 0.516 0.021

C.-P. 0.933 0.002 0.727 0.010

C.-T.L. 0.444 0.026 0.813 0.007

C.-T.R. 0.410 0.029 0.735 0.010

P.-T.L. 0.967 0.001 0.233 0.047

P.-T.R. 0.199 0.052 0.098 0.073

T.L.-T.R. 0.687 0.012 0.336 0.035

channel groups in the α-frequency band.

In the β0-frequency band, between none of respective first PCs of channel
groups, significant test results were observed, neither for coherences nor for partial
coherences. Table 3.2.12 provides the resting state results between the respective
first PCs of channel groups in the β0-frequency band.

For the second PCs, coherences yielded significant results between Anterior-



CHAPTER 3. RESULTS 105

Table 3.2.11: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between channel groups in the
α-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

α-band
dynCC (betw. groups) dynCC (betw. PCs)
p R

2 p R
2

A.-C. 0.909 0.003 0.791 0.008

A.-P. 0.524 0.021 0.173 0.056

A.-T.L. 0.703 0.011 0.397 0.030

A.-T.R. 0.460 0.025 0.788 0.008

C.-P. 0.099 0.073 0.458 0.025

C.-T.L. 0.298 0.039 0.627 0.015

C.-T.R. 0.094 0.074 0.611 0.016

P.-T.L. 0.054 0.091 0.446 0.026

P.-T.R. 0.289 0.040 0.999 <0.001

T.L.-T.R. 0.194 0.052 0.987 <0.001

L.-R. 0.177 0.055 0.533 0.02

Table 3.2.12: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between the respective first PCs of
channel groups in the β0-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

β0-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.125 0.066 0.345 0.034

A.-P. 0.359 0.033 0.469 0.025

A.-T.L. 0.402 0.029 0.060 0.088

A.-T.R. 0.445 0.026 0.223 0.048

C.-P. 0.052 0.092 0.137 0.063

C.-T.L. 0.638 0.015 0.414 0.029

C.-T.R. 0.136 0.063 0.243 0.045

P.-T.L. 0.386 0.031 0.528 0.021

P.-T.R. 0.899 0.003 0.086 0.077

T.L.-T.R. 0.996 <0.001 0.093 0.075

Temporal Right (R2 = 0.118), and partial coherences between Anterior-Posterior
(R2 = 0.117) and Anterior-Temporal Right (R2 = 0.121). Table 3.2.13 provides
the resting state results between the respective second PCs of channel groups in
the β0-frequency band.

For dynamic canonical correlations in the β0-frequency band, significant changes
were observed between Central-Posterior (R2 = 0.109), Central Temporal Right
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Table 3.2.13: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between the respective second PCs of
channel groups in the β0-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

β0-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.134 0.064 0.171 0.056

A.-P. 0.133 0.064 0.022* 0.117

A.-T.L. 0.581 0.018 0.368 0.032

A.-T.R. 0.022* 0.118 0.020* 0.121

C.-P. 0.964 0.001 0.738 0.010

C.-T.L. 0.388 0.031 0.839 0.006

C.-T.R. 0.235 0.046 0.549 0.019

P.-T.L. 0.784 0.008 0.261 0.043

P.-T.R. 0.292 0.040 0.805 0.007

T.L.-T.R. 0.165 0.057 0.322 0.036

(R2 = 0.111), and Posterior Temporal Left (R2 = 0.100). Table 3.2.14 provides
the resting state results between the channel groups in the β0-frequency band.

Table 3.2.14: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between channel groups in the
β0-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

β0-band
dynCC (betw. groups) dynCC (betw. PCs)
p R

2 p R
2

A.-C. 0.800 0.007 0.108 0.07

A.-P. 0.364 0.033 0.121 0.067

A.-T.L. 0.862 0.005 0.163 0.058

A.-T.R. 0.640 0.015 0.700 0.012

C.-P. 0.030* 0.109 0.389 0.03

C.-T.L. 0.522 0.021 0.135 0.064

C.-T.R. 0.027* 0.111 0.289 0.04

P.-T.L. 0.040* 0.100 0.074 0.082

P.-T.R. 0.394 0.030 0.932 0.002

T.L.-T.R. 0.187 0.053 0.814 0.007

L.-R. 0.205 0.051 0.690 0.012

On the whole EEG signals, the analysis of coherences between the respective
first PCs resulted in no significant results. For partial coherences, significance was
obeserved between Anterior-Posterior (R2 = 0.136), and Anterior-Temporal Left
(R2 = 0.108). Changes of bivariate Granger causalities were significant between
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Anterior → Temporal Left (R2 = 0.121), highly significant between Temporal
Left → Posterior (R2 = 0.247). Changes of conditional Granger causalities were
(mostly highly) significant for all group combinations. Table 3.2.15 provides the
resting state results between the respective first PCs of channel groups in the total
frequency band.

Table 3.2.15: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between the respective first PCs of
channel groups on the whole EEG signals in resting state; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

A.-C. 0.829 0.006 0.399 0.030
0.757 0.009 0.001** 0.206

0.071 0.083 0.007** 0.152

A.-P. 0.241 0.046 0.012* 0.136
0.191 0.053 <0.001** 0.264

0.135 0.064 0.036* 0.103

A.-T.L. 0.650 0.014 0.031* 0.108
0.020* 0.121 0.001** 0.201

0.256 0.044 0.001** 0.208

A.-T.R. 0.480 0.024 0.118 0.068
0.447 0.026 0.004** 0.168

0.068 0.084 0.050 0.093

C.-P. 0.103 0.072 0.078 0.080
0.416 0.028 <0.001** 0.408

0.626 0.015 0.002** 0.190

C.-T.L. 0.862 0.005 0.689 0.012
0.286 0.040 0.001** 0.214

0.157 0.059 0.001** 0.213

C.-T.R. 0.177 0.055 0.073 0.082
0.504 0.022 0.004** 0.169

0.301 0.039 0.008** 0.148

P.-T.L. 0.191 0.053 0.808 0.007
0.095 0.074 0.004** 0.167

<0.001** 0.247 <0.001** 0.271

P.-T.R. 0.527 0.021 0.071 0.083
0.933 0.002 0.036* 0.103

0.677 0.013 <0.001** 0.245

T.L.-T.R. 0.303 0.038 0.334 0.035
0.419 0.028 0.001** 0.196

0.174 0.056 0.003** 0.175

For the second PCs, significant changes of partial coherences were observed
between Posterior-Temporal Left (R2 = 0.104) and Posterior-Temporal Right
(R2 = 0.105), and of bivariate Granger causalities between Temporal Right →
Temporal Left (R2 = 0.095). Conditional Granger causalities yielded high signif-
icance for all group combinations in both directions (several R2 > 0.3). Table
3.2.16 provides the resting state results between the respective second PCs of
channel groups in the total frequency band.

Both static and dynamic canonical correlations (between channel groups)
yielded significant findings between Central-Temporal Left (p = 0.013, R2 = 0.133
and p = 0.021, R2 = 0.119), Posterior-Temporal Left (p = 0.026, R2 = 0.113
and p = 0.002, R2 = 0.181), Posterior-Temporal Right (p = 0.012, R2 = 0.135
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Table 3.2.16: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between the respective second PCs of
channel groups on the whole EEG signals in resting state; ”*” and ”**” indicate p < 0.05 and
p < 0.01 respectively

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

A.-C. 0.359 0.033 0.415 0.028
0.419 0.028 0.001** 0.205

0.448 0.026 <0.001** 0.356

A.-P. 0.251 0.044 0.129 0.065
0.224 0.048 0.001** 0.201

0.317 0.037 <0.001** 0.313

A.-T.L. 0.922 0.003 0.696 0.012
0.051 0.093 <0.001** 0.262

0.479 0.024 <0.001** 0.313

A.-T.R. 0.214 0.049 0.193 0.053
0.528 0.021 <0.001** 0.253

0.524 0.021 <0.001** 0.353

C.-P. 0.942 0.002 0.726 0.010
0.239 0.046 <0.001** 0.245

0.202 0.051 <0.001** 0.271

C.-T.L. 0.063 0.087 0.361 0.033
0.880 0.004 <0.001** 0.319

0.205 0.051 <0.001** 0.252

C.-T.R. 0.097 0.074 0.240 0.046
0.179 0.055 <0.001** 0.293

0.128 0.065 <0.001** 0.303

P.-T.L. 0.405 0.029 0.035* 0.104
0.138 0.063 <0.001** 0.291

0.840 0.006 0.003** 0.173

P.-T.R. 0.133 0.064 0.034* 0.105
0.706 0.011 <0.001** 0.304

0.586 0.017 <0.001** 0.286

T.L.-T.R. 0.389 0.030 0.267 0.042
0.086 0.077 <0.001** 0.322

0.047* 0.095 <0.001** 0.344

and p = 0.006, R2 = 0.156), and Left-Right (p = 0.008, R2 = 0.145 and
p = 0.011, R2 = 0.137). In addition, significant changes of dynamic canonical
correlations were observed between Central-Posterior (R2 = 0.140), and Central-
Temporal Right (R2 = 0.134). For static canonical correlations between PCs,
changes were significant between Central-Temporal Left (R2 = 0.133), Posterior-
Temporal Left (R2 = 0.113), and Posterior-Temporal Right (R2 = 0.135). Table
3.2.17 provides the resting state results between the channel groups on the whole
EEG signals.
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Table 3.2.17: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between channel groups on the whole
EEG signals in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

total
statCC (groups) statCC (PCs) dynCC (groups) dynCC (PCs)
p R

2 p R
2 p R

2 p R
2

A.-C. 0.171 0.056 0.191 0.053 0.373 0.032 0.154 0.059

A.-P. 0.312 0.037 0.491 0.023 0.215 0.049 0.324 0.036

A.-T.L. 0.077 0.081 0.076 0.081 0.132 0.064 0.061 0.087

A.-T.R. 0.120 0.067 0.222 0.048 0.209 0.050 0.255 0.044

C.-P. 0.061 0.088 0.206 0.050 0.010* 0.140 0.319 0.037

C.-T.L. 0.013* 0.289 0.040* 0.133 0.021* 0.119 0.164 0.058

C.-T.R. 0.062 0.087 0.475 0.024 0.012* 0.134 0.397 0.030

P.-T.L. 0.026* 0.464 0.025* 0.113 0.002** 0.181 0.111 0.07

P.-T.R. 0.012* 0.723 0.011* 0.135 0.006** 0.156 0.620 0.016

TL-TR 0.106 0.071 0.137 0.063 0.120 0.067 0.189 0.053

L.-R. 0.008** 0.145 0.167 0.057 0.011* 0.137 0.233 0.047
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3.2.3 Detailed Results: Cognitive Task

In this section, the listing of all results from analyzing EEG synchrony between
channel groups during the cognitive task will be provided. In the δ-frequency
band, changes of partial coherences were significant between the respective first
PCs of Central-Temporal Right (R2 = 0.139) and Temporal Left-Temporal Right
(R2 = 0.109), and highly significant between Central-Posterior (R2 = 0.190).
No significant changes of coherences were observed. Table 3.2.18 provides the
cognitive task results between the respective first PCs of channel groups in the
δ-frequency band.

Table 3.2.18: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between the respective first PCs of
channel groups in the δ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05

and p < 0.01 respectively

δ-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.533 0.021 0.903 0.003

A.-P. 0.789 0.008 0.164 0.060

A.-T.L. 0.574 0.019 0.214 0.051

A.-T.R. 0.981 0.001 0.909 0.003

C.-P. 0.082 0.081 0.002** 0.190

C.-T.L. 0.472 0.025 0.167 0.059

C.-T.R. 0.224 0.049 0.012* 0.139

P.-T.L. 0.321 0.038 0.590 0.018

P.-T.R. 0.984 0.001 0.153 0.062

T.L.-T.R. 0.917 0.003 0.033* 0.109

For the second PCs, coherences yielded significant findings between Posterior-
Temporal Right (R2 = 0.107), and highly significant findings between Central-
Temporal Left (R2 = 0.413). No significances were observed for partial coher-
ences. Table 3.2.19 provides the cognitive task results between the respective
second PCs of channel groups in the δ-frequency band.

Dynamic canonical correlations (between channel groups) yielded significant
test results between Anterior-Central (R2 = 0.105), Anterior-Temporal Right
(R2 = 0.110), Central-Posterior (R2 = 0.104), Posterior-Temporal Right (, R2 =
0.131), and Temporal Left-Temporal Right (R2 = 0.098), and highly significant
results between Central-Temporal Left (R2 = 0.173), and Central-Temporal Right
(R2 = 0.172). Significant changes of dynamic canonical correlations between
the PCs were observed between Anterior-Temporal Right (R2 = 0.130), Central-
Temporal Left (R2 = 0.110), and Central Temporal Right (R2 = 0.126). Table
3.2.20 provides the cognitive task results between the channel groups in the δ-
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Table 3.2.19: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between the respective second PCs of
channel groups in the δ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05

and p < 0.01 respectively

δ-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.089 0.079 0.922 0.003

A.-P. 0.712 0.011 0.969 0.001

A.-T.L. 0.129 0.067 0.216 0.051

A.-T.R. 0.640 0.015 0.585 0.018

C.-P. 0.980 0.001 0.309 0.039

C.-T.L. <0.001** 0.413 0.072 0.085

C.-T.R. 0.138 0.065 0.748 0.010

P.-T.L. 0.530 0.021 0.214 0.051

P.-T.R. 0.035* 0.107 0.675 0.013

T.L.-T.R. 0.796 0.008 0.299 0.040

frequency band.

Table 3.2.20: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between channel groups in the
δ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

δ-band
dynCC (betw. groups) dynCC (betw. PCs)
p R

2 p R
2

A.-C. 0.038* 0.105 0.332 0.037

A.-P. 0.094 0.077 0.768 0.009

A.-T.L. 0.057 0.093 0.097 0.076

A.-T.R. 0.033* 0.110 0.017* 0.130

C.-P. 0.040* 0.104 0.595 0.017

C.-T.L. 0.004** 0.173 0.032* 0.110

C.-T.R. 0.004** 0.172 0.019* 0.126

P.-T.L. 0.077 0.083 0.993 0.001

P.-T.R. 0.016* 0.131 0.267 0.044

T.L.-T.R. 0.048* 0.098 0.198 0.053

L.-R. 0.242 0.047 0.087 0.079

In the θ-frequency band, changes of coherences were significant between the re-
spective first PCs of (R2 = 0.117). Partial coherences yielded high significance be-
tween Central-Posterior (R2 = 0.165), Anterior-Posterior (R2 = 0.156), and Tem-
poral Left-Temporal Right (R2 = 0.254); additionally, significant changes were
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observed between Anterior-Temporal Left (R2 = 0.109) and Central-Temporal
Right (R2 = 0.113). Table 3.2.21 provides the cognitive task results between the
respective first PCs of channel groups in the θ-frequency band.

Table 3.2.21: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between the respective first PCs of
channel groups in the θ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05

and p < 0.01 respectively

θ-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.845 0.006 0.517 0.022

A.-P. 0.574 0.019 0.007** 0.156

A.-T.L. 0.281 0.042 0.034* 0.109

A.-T.R. 0.446 0.027 0.990 <0.001

C.-P. 0.026* 0.117 0.005** 0.165

C.-T.L. 0.599 0.017 0.076 0.084

C.-T.R. 0.143 0.064 0.029* 0.113

P.-T.L. 0.533 0.021 0.767 0.009

P.-T.R. 0.957 0.001 0.118 0.070

T.L.-T.R. 0.265 0.044 <0.001** 0.254

For the second PCs, highly significant results were observed for coherences be-
tween Central-Temporal Left (R2 = 0.362) and between Posterior-Temporal Left
(R2 = 0.249). Partial coherences yielded significant findings between Posterior-
Temporal Left as well (p = 0.029, R2 = 0.113). Table 3.2.22 provides the cog-
nitive task results between the respective second PCs of channel groups in the
θ-frequency band.

The analysis of dynamic canonical correlations (between channel groups) in
the θ-frequency band resulted in highly significant findings for all but two group
combinations, and significant findings for the remaining two combinations. The
highest value R2 = 0.390 was observed between Central-Temporal Left. Dynamic
canonical correlations between the PCs yielded high significance between Temporal
Left and Temporal Right (R2 = 0.153), and significance for seven further group
combinations. Table 3.2.23 provides the cognitive task results between the channel
groups in the θ-frequency band.

In the α-frequency band, neither coherences nor partial coherences yielded
significant findings between the first PCs of channel groups. Table 3.2.24 provides
the cognitive task results between the respective first PCs of channel groups in
the α-frequency band.
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Table 3.2.22: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between the respective second PCs of
channel groups in the θ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05

and p < 0.01 respectively

θ-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.360 0.034 0.643 0.015

A.-P. 0.309 0.039 0.725 0.011

A.-T.L. 0.504 0.023 0.748 0.010

A.-T.R. 0.197 0.054 0.216 0.051

C.-P. 0.121 0.069 0.176 0.057

C.-T.L. <0.001** 0.362 0.100 0.075

C.-T.R. 0.174 0.058 0.923 0.003

P.-T.L. <0.001** 0.249 0.029* 0.113

P.-T.R. 0.278 0.043 0.394 0.031

T.L.-T.R. 0.633 0.015 0.228 0.049

Table 3.2.23: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between channel groups in the
θ-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

θ-band
dynCC (betw. groups) dynCC (betw. PCs)
p R

2 p R
2

A.-C. 0.032* 0.110 0.284 0.042

A.-P. 0.001** 0.226 0.661 0.014

A.-T.L. <0.001** 0.278 0.015* 0.133

A.-T.R. 0.004** 0.169 0.029* 0.113

C.-P. 0.001** 0.222 0.125 0.068

C.-T.L. <0.001** 0.390 0.013* 0.138

C.-T.R. 0.001** 0.222 0.015* 0.134

P.-T.L. <0.001** 0.266 0.038* 0.105

P.-T.R. <0.001** 0.234 0.028* 0.114

T.L.-T.R. 0.013* 0.138 0.008** 0.153

L.-R. <0.001** 0.291 0.036* 0.106

For the second PCs of the channel groups, the quadratic regression of co-
herences was highly significant between Central-Temporal Left (R2 = 0.365).
For partial coherences, it was significant between Central-Temporal Left as well
(R2 = 0.105). Additionally, coherences yielded significance between Central-
Temporal Right (R2 = 0.142). Table 3.2.25 provides the cognitive task results
between the respective second PCs of channel groups in the α-frequency band.
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Table 3.2.24: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between the respective first PCs
of channel groups in the α-frequency band during the cognitive task; ”*” and ”**” indicate
p < 0.05 and p < 0.01 respectively

α-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.891 0.004 0.709 0.012

A.-P. 0.440 0.027 0.098 0.076

A.-T.L. 0.235 0.048 0.068 0.087

A.-T.R. 0.325 0.037 0.755 0.009

C.-P. 0.177 0.057 0.603 0.017

C.-T.L. 0.729 0.011 0.361 0.034

C.-T.R. 0.293 0.041 0.491 0.024

P.-T.L. 0.760 0.009 0.422 0.029

P.-T.R. 0.704 0.012 0.526 0.022

T.L.-T.R. 0.550 0.020 0.234 0.048

Table 3.2.25: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between the respective second PCs
of channel groups in the α-frequency band during the cognitive task; ”*” and ”**” indicate
p < 0.05 and p < 0.01 respectively

α-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.467 0.025 0.747 0.010

A.-P. 0.106 0.073 0.485 0.024

A.-T.L. 0.406 0.030 0.467 0.025

A.-T.R. 0.115 0.071 0.312 0.039

C.-P. 0.746 0.010 0.898 0.004

C.-T.L. <0.001** 0.365 0.038* 0.105

C.-T.R. 0.011* 0.142 0.405 0.030

P.-T.L. 0.559 0.020 0.808 0.007

P.-T.R. 0.567 0.019 0.566 0.019

T.L.-T.R. 0.174 0.058 0.133 0.066

The analysis of dynamic canonical correlations (between channel groups) re-
sulted in significant findings between Anterior-Temporal Left (R2 = 0.140), Posterior-
Temporal Right (R2 = 0.140) and Left-Right (R2 = 0.105), and in highly sig-
nificant findings between Central-Temporal Left (R2 = 0.195), Central-Temporal
Right (R2 = 0.164) and Posterior-Temporal Left (R2 = 0.252). Changes of
dynamic canonical correlations between the PCs were highly significant between
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Central-Temporal Left (R2 = 0.254). Table 3.2.26 provides the cognitive task
results between the channel groups in the α-frequency band.

Table 3.2.26: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between channel groups in the
α-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

α-band
dynCC (betw. groups) dynCC (betw. PCs)
p R

2 p R
2

A.-C. 0.132 0.066 0.260 0.045

A.-P. 0.092 0.078 0.370 0.033

A.-T.L. 0.012* 0.140 0.072 0.085

A.-T.R. 0.356 0.034 0.110 0.072

C.-P. 0.065 0.088 0.433 0.028

C.-T.L. 0.002** 0.195 <0.001** 0.254

C.-T.R. 0.005** 0.164 0.038* 0.105

P.-T.L. <0.001** 0.252 0.107 0.073

P.-T.R. 0.012* 0.140 0.213 0.051

T.L.-T.R. 0.098 0.076 0.035* 0.108

L.-R. 0.037* 0.105 0.057 0.093

In the β0-frequency band, neither coherences nor partial coherences between
the respective first PCs of channel groups yielded significant results. Table 3.2.27
provides all cognitive task results between the respective first PCs of channel
groups in the β0-frequency band.

For the second PCs, changes of coherences were observed to be highly sig-
nificant between Central-Temporal Left (R2 = 0.216). Significant results were
obtained for coherences between Temporal Left-Temporal Right (R2 = 0.137),
and for partial coherences between Anterior-Temporal Right (R2 = 0.100) and
Central-Temporal Right (R2 = 0.121). Table 3.2.28 provides the cognitive task
results between the respective second PCs of channel groups in the β0-frequency
band.

Dynamic canonical correlations (between channel groups) yielded significance
between Anterior-Posterior (R2 = 0.108), Anterior-Temporal Right (R2 = 0.102),
Central-Posterior (R2 = 0.121) and Central-Temporal Right (R2 = 0.114), and
high significance between Central-Temporal Left (R2 = 0.152), Posterior-Temporal
Left (R2 = 0.263) and Posterior-Temporal Right (R2 = 0.212). Changes of dy-
namic canonical correlations between the PCs were highly significant between
Central-Temporal Left (R2 = 0.203). Table 3.2.29 provides the cognitive task
results between the channel groups in the β0-frequency band.
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Table 3.2.27: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between the respective first PCs
of channel groups in the β0-frequency band during the cognitive task; ”*” and ”**” indicate
p < 0.05 and p < 0.01 respectively

β0-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.416 0.029 0.376 0.033

A.-P. 0.467 0.025 0.518 0.022

A.-T.L. 0.142 0.064 0.414 0.029

A.-T.R. 0.226 0.049 0.522 0.022

C.-P. 0.311 0.039 0.205 0.052

C.-T.L. 0.163 0.060 0.338 0.036

C.-T.R. 0.073 0.085 0.939 0.002

P.-T.L. 0.741 0.010 0.825 0.007

P.-T.R. 0.300 0.040 0.757 0.009

T.L.-T.R. 0.487 0.024 0.786 0.008

Table 3.2.28: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between the respective second PCs
of channel groups in the β0-frequency band during the cognitive task; ”*” and ”**” indicate
p < 0.05 and p < 0.01 respectively

β0-band
Coh. pCoh.

p R
2 p R

2

A.-C. 0.293 0.041 0.289 0.041

A.-P. 0.772 0.009 0.498 0.023

A.-T.L. 0.087 0.079 0.147 0.063

A.-T.R. 0.057 0.093 0.045* 0.100

C.-P. 0.879 0.004 0.742 0.010

C.-T.L. 0.001** 0.216 0.063 0.089

C.-T.R. 0.032 0.110 0.022* 0.121

P.-T.L. 0.574 0.019 0.433 0.028

P.-T.R. 0.676 0.013 0.280 0.042

T.L.-T.R. 0.013* 0.137 0.328 0.037

On the whole EEG signals, changes of partial coherences were significant
between Anterior-Posterior (R2 = 0.119) and Temporal Left-Temporal Right
(R2 = 0.116). Bivariate Granger causalities yielded significant findings between
Anterior → Posterior (R2 = 0.099), Temporal Right → Central (R2 = 0.104) and
Posterior → Temporal Left (R2 = 0.136), and highly significant findings between
Central → Posterior (R2 = 0.162). Changes of conditional Granger causalities
were significant between Central → Anterior (R2 = 0.129), Posterior → Anterior
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Table 3.2.29: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between channel groups in the
β0-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

β0-band
dynCC (betw. groups) dynCC (betw. PCs)
p R

2 p R
2

A.-C. 0.099 0.075 0.206 0.052

A.-P. 0.034* 0.108 0.197 0.054

A.-T.L. 0.089 0.079 0.042* 0.102

A.-T.R. 0.042* 0.102 0.196 0.054

C.-P. 0.022* 0.121 0.487 0.024

C.-T.L. 0.008** 0.152 0.001** 0.203

C.-T.R. 0.028* 0.114 0.017* 0.129

P.-T.L. <0.001** 0.263 0.157 0.061

P.-T.R. 0.001** 0.212 0.106 0.073

T.L.-T.R. 0.178 0.057 0.047* 0.099

L.-R. 0.080 0.082 0.037* 0.106

(R2 = 0.112), Temporal Left → Posterior (R2 = 0.109) and Posterior → Tempo-
ral Right (R2 = 0.117), and highly significant between Temporal Left → Anterior
(R2 = 0.171), Anterior → Temporal Right (R2 = 0.276), Central → Temporal
Right (R2 = 0.197) and Temporal Left → Temporal Right (R2 = 0.185). Ta-
ble 3.2.30 provides the cognitive task results between the respective first PCs of
channel groups in the total frequency band.

For the second PCs, changes of coherences were significant between Central-
Temporal Right (R2 = 0.107), and highly significant between Central-Temporal
Left (R2 = 0.401). For the latter group combination, partial coherences yielded
significant results as well (R2 = 0.101). The analysis of bivariate Granger causal-
ities showed significant findings between Central → Posterior (R2 = 0.116), and
highly significant findings between Central → Temporal Left (R2 = 0.151), and
Temporal Right → Central (R2 = 0.155). For conditional Granger causalities, sig-
nificance was observed all but two group combinations; high significance between
Anterior → Posterior (R2 = 0.206), Temporal Right → Central (R2 = 0.181),
Temporal Right → Posterior (R2 = 0.263), and Temporal Right → Temporal
Left (R2 = 0.248). Table 3.2.31 provides the cognitive task results between the
respective second PCs of channel groups in the total frequency band.

Finally, both static and dynamic canonical correlations showed significant
changes for all group combinations but Anterior-Temporal Right and Anterior-
Central respectively. Between Central-Temporal Left, a coefficient of determina-
tion R2 = 0.405 was derived. Changes of both static and dynamic canonical corre-
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Table 3.2.30: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between the respective first PCs
of channel groups on the whole EEG signals during the cognitive task; ”*” and ”**” indicate
p < 0.05 and p < 0.01 respectively

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

A.-C. 0.973 0.001 0.852 0.005
0.307 0.039 0.287 0.041

0.830 0.006 0.017* 0.129

A.-P. 0.452 0.027 0.024* 0.119
0.046* 0.099 0.470 0.025

0.340 0.036 0.031* 0.112

A.-T.L. 0.236 0.048 0.071 0.086
0.584 0.018 0.248 0.046

0.835 0.006 0.004** 0.171

A.-T.R. 0.405 0.030 0.943 0.002
0.876 0.004 <0.001** 0.276

0.879 0.004 0.294 0.041

C.-P. 0.060 0.091 0.071 0.086
0.005** 0.162 0.217 0.051

0.090 0.078 0.225 0.049

C.-T.L. 0.902 0.003 0.102 0.075
0.136 0.065 0.419 0.029

0.177 0.057 0.134 0.066

C.-T.R. 0.198 0.053 0.085 0.080
0.831 0.006 0.002** 0.197

0.039* 0.104 0.508 0.023

P.-T.L. 0.626 0.016 0.658 0.014
0.013* 0.136 0.280 0.042

0.920 0.003 0.033* 0.109

P.-T.R. 0.746 0.010 0.320 0.038
0.074 0.084 0.025* 0.117

0.368 0.033 0.493 0.024

T.L.-T.R. 0.407 0.030 0.027* 0.116
0.459 0.026 0.002** 0.185

0.786 0.008 0.495 0.024

lations were highly significant between Central-Temporal Left as well (R2 = 0.179
and R2 = 0.232). Table 3.2.32 provides the cognitive task results between the
channel groups on the whole EEG signals.
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Table 3.2.31: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures between the respective second PCs
of channel groups on the whole EEG signals during the cognitive task; ”*” and ”**” indicate
p < 0.05 and p < 0.01 respectively

total
Coh. pCoh. bGC cGC

p R
2 p R

2 p R
2 p R

2

A.-C. 0.317 0.038 0.721 0.011
0.340 0.036 0.047* 0.099

0.892 0.004 0.024* 0.119

A.-P. 0.333 0.037 0.726 0.011
0.854 0.005 0.001** 0.206

0.577 0.018 0.019* 0.126

A.-T.L. 0.310 0.039 0.529 0.021
0.674 0.013 0.079 0.082

0.579 0.018 0.107 0.073

A.-T.R. 0.116 0.070 0.192 0.054
0.540 0.021 0.034* 0.109

0.381 0.032 0.075 0.084

C.-P. 0.584 0.018 0.735 0.010
0.027* 0.116 0.017* 0.129

0.271 0.043 0.013* 0.137

C.-T.L. <0.001** 0.401 0.043* 0.101
0.008** 0.151 0.203 0.053

0.937 0.002 0.014* 0.134

C.-T.R. 0.035* 0.107 0.759 0.009
0.358 0.034 0.075 0.084

0.007** 0.155 0.003** 0.181

P.-T.L. 0.056 0.093 0.382 0.032
0.483 0.024 0.145 0.063

0.197 0.054 0.094 0.077

P.-T.R. 0.415 0.029 0.539 0.021
0.283 0.042 0.148 0.063

0.188 0.055 <0.001** 0.263

T.L.-T.R. 0.381 0.032 0.152 0.062
0.075 0.084 0.056 0.093

0.637 0.015 <0.001** 0.248

Table 3.2.32: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures between channel groups on the whole
EEG signals during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

total
statCC (groups) statCC (PCs) dynCC (groups) dynCC (PCs)
p R

2 p R
2 p R

2 p R
2

A.-C. 0.034* 0.108 0.152 0.062 0.060 0.091 0.290 0.041

A.-P. 0.002** 0.197 0.199 0.053 0.005** 0.162 0.488 0.024

A.-T.L. 0.001** 0.207 0.046* 0.099 0.001** 0.199 0.032* 0.110

A.-T.R. 0.125 0.068 0.367 0.033 0.061 0.090 0.040* 0.103

C.-P. 0.002** 0.196 0.266 0.044 0.009** 0.147 0.340 0.036

C.-T.L. <0.001** 0.405 0.003** 0.179 <0.001** 0.294 <0.001** 0.232

C.-T.R. 0.001** 0.201 0.085 0.080 0.001** 0.206 0.012* 0.139

P.-T.L. <0.001** 0.294 0.084 0.081 <0.001** 0.278 0.122 0.069

P.-T.R. <0.001** 0.302 0.015* 0.133 0.001** 0.210 0.140 0.064

TL-TR 0.011* 0.141 0.03* 0.112 0.022* 0.121 0.013* 0.136

L.-R. 0.005** 0.165 0.089 0.079 0.010* 0.146 0.036* 0.107
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3.3 Synchrony Within Groups of EEG Channels

This section will provide the results for synchrony between the following channel
groups (cf. Figures 2.9.2a and 2.9.2b): Anterior (A.)2, Central (C.), Posterior (P.),
Temporal Left (T.L.), Temporal Right (T.R.), Left (L.), Right (R.) and All. In the
δ-, θ-, α-, and β0-frequency bands, the information explained by the respective
first dynamic PC was investigated. For the whole signal, the information content
of the respective first static and dynamic PCs was estimated. Section 3.3.1 will
summarize the findings, whereas Sections 3.3.2 and 3.3.3 will present the listing
of all results.

3.3.1 Main Results

In resting state, no highly significant changes were observed, neither of the static
nor the dynamic PCA measure. Occasionally, the latter yielded significant findings
in Anterior in δ, Posterior in θ and for the whole signal, in Temporal Right in β0,
and in Right in β0. Table 3.3.1 provides an overview of the significant test results
for each measure, frequency band, and channel group in resting state.

Table 3.3.1: Overview of the significances derived for a least squares quadratic regression model
of synchrony measures within channel groups in resting state; ”*” and ”**” indicate p < 0.05

and p < 0.01 respectively.

REC Ant. Cent. Post. Temp.L. Temp.R. L. R. All

dynPCA
δ *

θ *

α

β0 * *

total *

statPCA

During the cognitive task, highly significant changes were observed only in
the β0-frequency band for the dynamic PCA measure in Temporal Right (R2 =
0.208), Right (R2 = 0.160), and All (R2 = 0.159). Figure 3.3.1 displays the
values of the dynamic PCA measure in Temporal Right in the β0-frequency band
as scatterdiagram versus MMSE scores. The quadratic regression model (p =
0.001, R2 = 0.208) is characterized by an increase for MMSE scores between 26
and 20, and a decrease from 20 downwards.

Table 3.3.2 provides an overview of the significant test results for each measure,
frequency band, and channel group during the cognitive task.

2The abbreviations in brackets will be used in the tables.



CHAPTER 3. RESULTS 121

161820222426
0.6

0.7

0.8

0.9

MMSE

β 0−
dy

nP
C

A

Figure 3.3.1: Example for changes of synchrony within channel groups during the cognitive
task: dynamic PCA in Temporal Right in the β0-frequency band versus MMSE scores. Low
MMSE scores (right side of the abscissa) indicate a higher degree of severity of AD. A quadratic
regression was fitted to the scatterplot with p = 0.001 and R2

= 0.208.

Table 3.3.2: Overview of the significances derived for a least squares quadratic regression model
of synchrony measures within channel groups during the cognitive state; ”*” and ”**” indicate
p < 0.05 and p < 0.01 respectively.

FN Ant. Cent. Post. Temp.L. Temp.R. L. R. All

dynPCA
δ

θ

α

β0 ** * ** **

total

statPCA *
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3.3.2 Detailed Results: Resting State

Here, the listing of all results from analyzing EEG synchrony within channel groups
in resting state will be provided, starting with the δ-frequency band. Quadratic
regression of the variance explained by the first dynamic PC was significant only
in Anterior (R2 = 0.111). Table 3.3.3 provides the resting state results within
channel groups in the δ-frequency band.

Table 3.3.3: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures within channel groups in the δ-frequency
band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

δ-band
dynPCA

p R
2

A. 0.028* 0.111

C. 0.594 0.017

P. 0.087 0.077

T.L. 0.510 0.022

T.R. 0.886 0.004

L. 0.832 0.006

R. 0.561 0.019

All 0.435 0.027

In the θ-frequency band, changes of the dynamic PCA measure yielded signif-
icant test results only in Posterior (R2 = 0.101). Table 3.3.4 provides the resting
state results within channel groups in the θ-frequency band.

Table 3.3.4: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures within channel groups in the θ-frequency
band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

θ-band
dynPCA

p R
2

A. 0.295 0.039

C. 0.841 0.006

P. 0.039* 0.101

T.L. 0.775 0.008

T.R. 0.962 0.001

L. 0.967 0.001

R. 0.882 0.004

All 0.736 0.010

In the α-frequency band, no statistically significant findings could be observed.
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Table 3.3.5 provides the resting state results within channel groups in the α-
frequency band.

Table 3.3.5: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures within channel groups in the α-frequency
band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

α-band
dynPCA

p R
2

A. 0.901 0.003

C. 0.441 0.026

P. 0.075 0.081

T.L. 0.786 0.008

T.R. 0.700 0.012

L. 0.305 0.038

R. 0.380 0.031

All 0.387 0.031

In the β0-frequency band, the analysis revealed significant findings in Temporal
Right (R2 = 0.100), and Right (R2 = 0.128). Table 3.3.6 provides the resting
state results within channel groups in the β0-frequency band.

Table 3.3.6: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures within channel groups in the
β0-frequency band in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

β0-band
dynPCA

p R
2

A. 0.881 0.004

C. 0.209 0.050

P. 0.088 0.077

T.L. 0.209 0.050

T.R. 0.041* 0.100

L. 0.228 0.047

R. 0.015* 0.128

All 0.099 0.073

On the whole EEG signals, changes of the static PCA measure were significant
in none of the channel groups. For dynamic PCs, significant results were obtained
only in Posterior (R2 = 0.101). Table 3.3.7 provides the resting state findings
within channel groups in the total frequency band.
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Table 3.3.7: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures within channel groups on the whole
EEG signals in resting state; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

total
statPCA dynPCA

p R
2 p R

2

A. 0.674 0.013 0.629 0.015

C. 0.528 0.021 0.521 0.021

P. 0.086 0.077 0.038* 0.101

T.L. 0.969 0.001 0.923 0.003

T.R. 0.931 0.002 0.622 0.015

L. 0.659 0.014 0.843 0.006

R. 0.628 0.015 0.355 0.033

All 0.522 0.021 0.448 0.026
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3.3.3 Detailed Results: Cognitive Task

Here, finally, the listing of all results from analyzing EEG synchrony within channel
groups during the cognitive task will be provided. In the δ-frequency band, no
significance was found. Table 3.3.8 provides the cognitive task results within
channel groups in the δ-frequency band.

Table 3.3.8: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures within channel groups in the δ-frequency
band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

δ-band
dynPCA

p R
2

A. 0.159 0.061

C. 0.674 0.013

P. 0.098 0.076

T.L. 0.916 0.003

T.R. 0.616 0.016

L. 0.866 0.005

R. 0.213 0.051

All 0.563 0.019

Also in the θ-frequency band, none of the channel groups showed significant
test results. Table 3.3.9 provides the cognitive task results within channel groups
in the θ-frequency band.

Table 3.3.9: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures within channel groups in the θ-frequency
band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

θ-band
dynPCA

p R
2

A. 0.375 0.033

C. 0.748 0.010

P. 0.056 0.093

T.L. 0.306 0.039

T.R. 0.554 0.020

L. 0.530 0.021

R. 0.229 0.049

All 0.320 0.038

In the α-frequency band, no significant changes of synchrony were found as
well. Table 3.3.10 provides the cognitive task results within channel groups in the
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α-frequency band.

Table 3.3.10: Significance p and coefficient of determination R2 as determined by Fisher’s F-test
for a least squares quadratic regression model: measures within channel groups in the α-frequency
band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

α-band
dynPCA

p R
2

A. 0.667 0.014

C. 0.257 0.045

P. 0.112 0.071

T.L. 0.245 0.047

T.R. 0.082 0.081

L. 0.159 0.060

R. 0.438 0.028

All 0.143 0.064

In the β0-frequency band, the dynamic PCA measure yielded significant find-
ings in Left (R2 = 0.118), and highly significant findings in Temporal Right
(R2 = 0.208), Right (R2 = 0.160), and All (R2 = 0.159). Table 3.3.11 provides
the cognitive task results within channel groups in the β0-frequency band.

Table 3.3.11: Significance p and coefficient of determination R2 as determined by Fisher’s
F-test for a least squares quadratic regression model: measures within channel groups in the
β0-frequency band during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01

respectively

β0-band
dynPCA

p R
2

A. 0.148 0.063

C. 0.103 0.074

P. 0.075 0.084

T.L. 0.068 0.087

T.R. 0.001** 0.208

L. 0.024* 0.118

R. 0.006** 0.160

All 0.006** 0.159

Finally, the analysis on the whole EEG signals indicated significant changes of
the amount of variance explained by the first static PC in Posterior (R2 = 0.117).
No significant changes of the dynamic PCA measure could be observed. Table
3.3.12 provides the cognitive task results within channel groups on the whole EEG
signal.
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Table 3.3.12: Significance p and coefficient of determination R2 as determined by Fisher’s F-
test for a least squares quadratic regression model: measures within channel groups on the whole
EEG signals during the cognitive task; ”*” and ”**” indicate p < 0.05 and p < 0.01 respectively

total
statPCA dynPCA

p R
2 p R

2

A. 0.397 0.031 0.571 0.019

C. 0.621 0.016 0.299 0.040

P. 0.025* 0.117 0.055 0.094

T.L. 0.110 0.072 0.170 0.058

T.R. 0.146 0.063 0.116 0.070

L. 0.823 0.007 0.135 0.066

R. 0.874 0.005 0.270 0.043

All 0.763 0.009 0.106 0.073





CHAPTER 4

Discussion and Conclusion

This chapter will provide a summary of the findings and discuss them in light
of the research questions. Then, the findings will be compared to the scientific
status quo. Comments and critical thoughts about the applied methods will follow.
Finally, suggestions for further research will conclude this work. Throughout this
chapter, the terms significant and highly significant will be used for the F-test
results of quadratic regression on the levels p = 0.05 and p = 0.01 respectively.

4.1 Discussion

H
1

0
: Synchronies between single EEG channels change in the course of AD.

The resting state analysis of EEG synchrony between single electrode channels
showed only scattered significances. The most promising results were observed
for partial coherences in left-hemispheric electrode channel pairs FP1-O1, F3-O1,
F7-T7, and C3-P7. During the cognitive task, coherences yielded the most signif-
icant results, especially in local posterior channel pairs C4-P8, P3-P7, and P4-P8.
For the channel pair F7-T7, partial coherences, bivariate and conditional Granger
causalities showed highly significant results. However, the number of promising
findings between channel pairs is small; thus, the observed, mostly isolated cor-
relations of the mentioned synchrony measures with the MMSE should not be
overrated as they could be attributed to random multiple testing errors.

H
2

0
: Synchronies between EEG channel groups change in the course of AD.

Dividing the channels into groups yielded higher significances than the investi-
gation of channel pairs. In resting state, dynamic canonical correlations showed
constantly significant results in the δ- and θ-frequency band with R2 > 0.20.
Additionally, the changes of conditional Granger causalities were highly significant
for all group combinations with most R2 larger than 0.25. During the cognitive
task, coherences between the 2nd PCs of the Central and Temporal Left channel
groups yielded highly significant results in all frequency bands with relatively high
R2 > 0.35. For these group combinations, both static (R2 = 0.405) and dynamic
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canonical correlations (especially in θ with R2 = 0.390) showed high significances
as well; highly significant changes of these two measures were observed for most
group combinations. In general, canonical correlations between the channel groups
were more significant than between the PCs. Partial coherences and the Granger
measures showed only scattered significances. However, dynamic canonical cor-
relations and conditional Granger causalities in resting state, and coherences and
static/dynamic canonical correlations during the cognitive task turned out to be
promising measures for EEG synchrony changes.

H
3

0
: Synchronies within EEG channel groups change in the course of AD.

In resting state, the investigation of EEG synchrony within the predefined chan-
nel groups yielded no highly significant results. Neither for the dynamic PCA
measure in the different frequency bands nor for the static PCA measure results
supporting H

3

0
were observed. During the cognitive task, analyses showed high

significances for the dynamic PCA measure in the channel groups Temporal Right
(R2 = 0.208), Right (R2 = 0.160), and All (R2 = 0.159) in the β0-frequency
band. The applied measures do not definitely support H 3

0
; however, an investiga-

tion of higher frequencies and other PCs than the first may be expedient in this
matter.

There is only a small number of studies that are directly comparable to this
work as most works perform group comparisons (e.g. NOLD/MCI/AD) instead of
correlating EEG synchrony markers with AD severity. However, a major share of
these group comparisons suggested a decrease of EEG synchrony in resting state
(e.g. [11], [12], [13], [14], [16], [18], [20], [22], [23], [24], [26]), and an increase
during cognitive tasks for MCI and in few cases also for AD patients as compared
to controls (e.g. [32], [33]). This increase was attributed to compensatory mech-
anisms in the brain (cf. [38]). These synchrony changes were mostly reported
for the left hemisphere, often between Temporal and Parietal, or Temporal and
Central electrode channels. The mainly applied synchrony measures were coher-
ences and, in more recent studies, nonlinear measures originating from information
theory. Studies that are directly comparable to this work reported no significant
correlations between the degree of AD and coherences, neither in resting state
([16], [36]) nor during a working memory task ([36]). However, significant cor-
relations were observed between the degree of AD and synchronization likelihood
([23], [24], [39]), and global field synchronization ([28]), respectively.

In this work, an increase of synchrony in the initial stages and a decrease in
the later stages of AD was observed for severel measures both in resting state and
during a cognitive task. This increase of EEG synchrony may be attributed to the
same compensatory mechanisms in the brain that have been reported in the for-
mer mentioned group comparison studies. This phenomenon was more prominent
during the cognitive task than in resting state. In the latter, a decrease of Granger
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causalities between channel groups was observed also in the initial stage of AD.
Whereas no significant correlations between AD severity and coherences have been
reported in e.g. [16] and [36], coherences yielded highly significant results during
the cognitive task in this study. This may be due to the applied quadratic re-
gression model that allowed to model increases at the initial stage of AD as well.
The most significant changes of coherences were observed between Central and
Temporal Left channel groups, and Central and Posterior groups. These findings
correspond to the majority of mentioned group studies. Altogether, the investiga-
tion between channel groups showed by far more significant results than between
single channels. The accumulation of severel channels resulted in a more stable
analysis of synchrony, maybe because single EEG channels can easily be disturbed.

Applying different measures for synchrony proved to be justified; some of the
measures described synchrony changes in one of the EEG stages better than in
the other, or could emphasize the compensatory mechanisms in the brain. Also,
by using both time-static and -dynamic measures, valuable information could be
gained. In resting state, the investigation of dynamic canonical correlations yielded
additional information as compared to the static analysis. Synchrony changes were
significant only in the low frequency bands δ and θ. During the cognitive task,
the information gain from using the dynamic measure was neglectable. This may
suggest that the neuronal transmission during a cognitive task happens at high
speed and, thus, measuring time-dynamic changes cannot provide additional in-
sights.

In the following paragraphs, critical thoughts on the applied methods will
follow, starting with the sample data. The EEG samples from the PRODEM-
AUSTRIA database were all conducted in a uniform setting and according to a
clinically predefined paradigm. Clinical assessments included neuropsychological
tests and the enrollment of demographic parameters sex, age, degree of educa-
tion, and duration of AD. These properties, together with the integration of both
resting state and a cognitive task, make high quality data of these samples. The
sample consisting of 79 EEG datasets from probable AD patients is, compared to
scientific literature, among the largest; a comparable or higher number was applied
only in [22] (103 AD patients, 124 controls), [20] (73 AD patients, 69 subjects
with MCI, 64 controls) and [39] (109 AD patients, 88 subjects with MCI, 69 con-
trols). The small sample size used in various studies is often owed to the limited
accessibility to clinical databases; however, access to high quality databases such
as the PRODEM-AUSTRIA database is of decisive importance for these types of
studies.

In this study, MMSE scores were used for quantifying the severity of AD. This
neuropsychological test score is applied in most studies that are comparable to this
work (e.g. [16], [23]). However, different testing scores such as CDR, NPI, DAD,
or CERAD could serve as alternative quantifications of AD severity (cf. e.g. [28]).
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For capturing the EEG synchrony changes as compared with MMSE, a quadratic
least squares regression was applied. The usage of the quadratic form is, to the
best of the author’s knowledge, a novelty in this field. It allows to capture non-
monotonical synchrony changes such as those from compensatory mechanisms in
the brain. The demographic variables sex, age, degree of education, and dura-
tion of AD were used as covariables. From the directly comparable studies listed
above, [16] and [24] include the covariable age in the analysis. However, there are
studies that have observed significant correlations between one or more of the four
covariables and AD (e.g. [28]); thus, including them in the analyses is reasonable.

A crucial step in automated EEG analysis is the preprocessing procedure for
minimizing deteriorations due to artefacts. Eliminating low-frequency artefacts by
high-pass filtering is common practice in EEG analysis. The border frequency of 2
Hz was empirically determined. EEG recordings that contain cardiac artefacts are
often discarded from further analyses; here, in order to maintain a large sample
size, algorithms for the detection and elimination of cardiac artefacts (cf. [52])
were applied and verified by visual examination. There is a broad range of al-
ternative algorithms for the removal of cardiac artefacts, both relying solely on
the EEG (e.g. [75], [76]) and relying on a simultaneously recorded ECG channel
(e.g. [77], [78]). For the removal of eye artefacts, the simultaneously recorded
EOG channels were utilized. The removal of high-frequency oscillations from the
EOGs by low-pass filtering was empirically developed and fine-tuned. A static
regression of each EEG channel on the EOG channels is straight-forward. Other
procedures – often in the absence of additional EOG channels – such as blind
source separation have been applied in several studies (e.g. [76]). In the final
preprocessing step, the EEG data were low-pass filtered. Most studies investigate
the signals up to 20 or 30 Hz; however, in order to minimize interfering muscular
artefacts without discarding EEG channels, a border frequency of 15 Hz was deter-
mined by comparing the spectra of channels with and without muscular artefacts.
Thus, all further analyses were limited to the band-pass filtered signal (2 – 15 Hz).

As the EEG is a non-stationary signal, analyses were carried out on quasi-
stationary EEG segments. The EEG recordings were divided in segments of equal
length of 4 seconds with an overlap of 2 seconds. Alternatively, adaptive seg-
mentation procedures have been described in scientific literature (e.g. [54], [55]).
However, these procedures require structural breaks in the data, e.g. when the
patient is opening the eyes. Within the EEG stages resting state and cognitive
task, no severe structural breaks were observed and, thus, the uniform-length seg-
ments applied. The EEG synchrony measures were calculated for each segment
and averaged over all segments corresponding to resting state and cognitive task
respectively.

In this work, an indirect spectral estimation procedure with a Parzen window
function was applied. Comparable studies have often used the periodogram and
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direct approaches like the Welch method (e.g. [17]). For averaging of measures
in frequency bands, both estimates are consistent. For analyses and automated
detection of characteristic single EEG frequencies such as the individual alpha
frequency, the presented indirect approach is better suited than the periodogram
due to its ”irregular” shape (cf. Section 2.7.1).

Dividing the frequency domain in frequency bands is common practice in EEG
analysis; however, frequency borders vary in literature and the transition frequen-
cies between the four frequency bands may differ from the transition frequencies
used here by ± 1 Hz. The lower frequency border of the δ-band is often defined
as 0 or 0.5 Hz. The upper β-border is usually defined in a range of 20 to 30
Hz; here, the border of 15 Hz was chosen in order to make sure that no artefacts
deteriorate the analyses. An alternative to fixed frequency bands would be an
individualization by means of the individual position of peaks such as the individ-
ual alpha frequency and the transition frequencies between these peaks. As these
peaks and the transition between them vary widely amongst different subjects,
electrode channels, and cognitive phases, an individualization of frequency bands
is a non-trivial task that would have complicated the analyses.

The channel pairs in the four categories far intra- and interhemispheric, and
local anterior and posterior were defined from medical experts with the aim to
cover all major neuronal connections that may be affected by AD. Additional
channel pairs are conceivable. The clustering of EEG channels in channel groups
was partly done according to [38] and was inspired by the brain’s lobe structure.
This approach allows to quantify EEG synchrony more robustly than between EEG
channel pairs as single EEG channels are much more prone to interferences.

All measures for EEG synchrony were derived from the spectral density and,
thus, only the first and second moments were utilized. Due to the complexity
of neuronal processes, recent studies have considered nonlinear measures such as
mutual information or synrchonization likelihood (cf. e.g. [39]). The application
of these nonlinear measures could provide additional aspects on the changes of
EEG synchrony. For several of the applied measures, minor modifications are con-
ceivable: for the investigation of Granger causalities, the Euklidean norm of the
matrix-entries of the AR coefficients was used. Another norm such as the Man-
hattan norm could be applied instead. The same applies to the Euklidean norm of
canonical correlation coefficients. Here, the maximum norm could be an alterna-
tive. Whereas the estimation of EEG synchrony measures between single channels
is straightforward, estimating them between groups of channels can be done in
different ways. Here, the measures were calculated between the respective first
and second PCs of each group. Interestingly, synchrony between the second PCs
yielded the highest significances, most of them in the left hemisphere. Synchrony
changes between the first PCs were mostly significant between Anterior-Central
and Central-Posterior. Thus, the first and the second PCs may describe different
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neuronal patterns that change with the severity of AD. The usage of more than
the first two PCs was ruled out due to the small amount of variance explained
by other than the first two PCs. Another possibility would be to use a differ-
ent factor model instead of PCA. An alternative approach would be to calculate
the measures between each channel from one group and each channel from an-
other group, and to average over all these channel pairs (e.g. [38]). The same
considerations apply to the measurement of EEG synchrony within channel groups.

For diagnostic purposes, a steep incline or decline of the synchrony measures
with decreasing MMSE would be preferable. The only measures that showed a
rather monotonous decrease with decreasing MMSE were Granger causalities. For
the remaining synchrony measures, diagnostic ambiguity arises due to the initial
increase for MMSE scores between 26 and 20/19, and the decrease from 20/19
downwards. However, especially during the cognitive task, a steep initial incline
of e.g. coherences was observed. Thus, the synchrony measures could provide
valuable information for characterizing the AD severity in an initial stage of AD.

4.2 Conclusion

In conclusion, this study indicates that several of the applied synchrony measures
relate to AD severity as measured by MMSE score. This relation was observed to
be more significant between the EEG channel groups than between single channels.
The accumulation of channels allowed a more stable analysis of synchrony, maybe
because single EEG channels are more easily disturbed. The most prominent sig-
nificant results were observed in the EEG of the left hemisphere, especially between
temporal and central, temporal and parietal, and central and parietal regions. In
the resting state EEG, dynamic canonical correlations and Granger causalities re-
lated to MMSE scores most significantly. During the cognitive task, coherences
and both static and dynamic canonical correlations showed the highest signifi-
cances. Thus, the different measures – although closely related to each other –
seem to capture different aspects of EEG synchrony. Synchrony changes were
observed to be most prominent during the cognitive task and, thus, the clinical
recording paradigma yielded a valuable information gain. The usage of the demo-
graphic features age, sex, degree of education, and duration of AD as covariables
improved the analysis in terms of significance. Another key aspect of this study
is the utilization of a quadratic regression model instead of common linear regres-
sion. The non-monotonicity allowed to model ambiguous trends of EEG synchrony
that cannot be characterized by a linear model. As a matter of fact, all synchrony
measures but Granger causalities displayed an increase of EEG synchrony in the
initial stage (MMSE > 20) of AD and a decrease in later stages. This effect
was most prominent during the cognitive task and may be owed to compensatory
mechanisms in the brain. Although this phenomenon causes diagnostic ambiguity,
its analysis may provide supplementary information for understanding the neuronal
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changes in AD.

Future studies should combine the presented EEG synchrony measures with
others from e.g. information theory in order to capture additional aspects of EEG
synchrony. As EEG slowing and reduced EEG complexity are associated with AD as
well, the application of measures for these phenomena should be another approach.
Longitudinal studies need to determine as to whether the EEG measures are also
capable of predicting AD progression. A combination of EEG measures with other
markers for AD severity, e.g. from clinical imaging procedures, could improve the
understanding of functional and structural neuronal changes that come along with
AD.
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