
Towards an Alternative Approach
for Combining Ontology Matchers

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering / Internet Computing

eingereicht von

Simon Steyskal
Matrikelnummer 0828067

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Priv.-Doz. Dipl.-Ing. Dr. Axel Polleres

Wien, 14.09.2013
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Towards an Alternative Approach
for Combining Ontology Matchers

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering / Internet Computing

by

Simon Steyskal
Registration Number 0828067

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Priv.-Doz. Dipl.-Ing. Dr. Axel Polleres

Vienna, 14.09.2013
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Simon Steyskal
Anton Baumgartnerstraße 44 B3/106, 1230 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die
verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die
Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen -, die anderen
Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf je-
den Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Acknowledgements

For the work of this master’s thesis I had the pleasure to be employed at Siemens
AG - Corporate Technology as research scientist. I would like to thank Axel Polleres,
my supervisor, for making this possible and for always motivating me during my
work. Thanks to the whole Siemens CT RTC BAM CON-AT staff for a wonderful
time at Siemens and especially to Herwig Schreiner and Gottfried Schenner for many
interesting discussions and feedback regarding my thesis.

Of course I also want to thank all of my friends which supported me during my
study and gave me a great time over the last years and my father Peter, who financially
supported me during this time.

Furthermore I want to thank my mother Siegrid and sister Sarah for their believe in
me, their continuous support and for the uncountable hours of dog sitting they spent,
without my study would not have been possible at all.

Finally I want to mention my two dogs Faby and Pino which are two of the most
important things of my life.

iii

Abstract

The existence of a standardized ontology alignment format promoted by the Ontology
Alignment Evaluation Initiative (OAEI) potentially enables different ontology match-
ers to be combined and used together, exploiting their respective strengths in a com-
bined matching approach. In the present thesis, we present a novel architecture for
combining off-the-shelf ontology matchers based on iterative calls and exchanging in-
formation in the form of reference alignments. Unfortunately though, only a few of
the matchers contesting in the past years’ OAEI campaigns actually allow the provi-
sion of reference alignments in the standard OAEI alignment format to support such
a combined mapping process. We bypass this lacking functionality by introducing an
alternative approach for aligning results of different ontology matchers using simple
URI replacement to “emulate” reference alignments in the aligned ontologies. While
some matchers still consider classes and properties in ontologies aligned in such fash-
ion as different, we experimentally prove that our iterative approach benefits from
this emulation, achieving the best results in terms of F-measure on parts of the OAEI
benchmark suite, compared to the single results of the competing matchers as well as
their combined results. The new combined matcher – Mix’n’Match – integrates dif-
ferent matchers in a multi-threaded architecture and provides an anytime behavior in
the sense that it can be stopped anytime with the best combined mappings found so
far.

v

Kurzfassung

Das standardisierte Ontology Alignment Format der Ontology Alignment Evaluati-
on Initiative (OAEI) erlaubt es, verschiedene Ontology Matcher zu kombinieren, um
deren Stärken auszunutzen und Schwächen kompensieren zu können.

In der vorliegenden Diplomarbeit präsentieren wir einen neuen Ansatz, um ver-
schiedene, existierende Ontology Matcher zu kombinieren. Dafür werden iterative
Aufrufe dieser Matcher getätigt und zusätzlich Wissen in Form von Reference Ali-
gnments ausgetauscht. Da jedoch nur eine kleine Teilmenge der verfügbaren Matcher
Reference Alignments direkt untersfützt, stellen wir einen alternativen Ansatz für den
Import und die Verwendung von zusätzlichem Wissen in Form von Reference Ali-
gnments vor: Basierend auf der Ersetzung von URIs von Entitäten, für welche ein Ali-
gnment gefunden wurde, ist es möglich Reference Alignments zu ’emulieren’. Obwohl
einige Matcher Entitäten mit der selben URI nicht als vollkommen ident betrachten,
zeigen wir empirisch, dass unser interativer Ansatz der Matcher-Ausführung dennoch
von solchen Ersetzungen profitiert, wobei wir in Teilen der OAEI Benchmark Tracks
die besten Resultate im Vegleich mit bestehenden Ontologie-mapping Tools erreichen.

Der resultierende neue Ontology Matcher Mix’n’Match integriert verschiedene On-
tology Matcher in einer multi-threaded Architektur und bietet zudem die Möglichkeit
den mappingprozess jederzeit - mit den besten zurzeit gefundenen Ergebnissen - zu
beenden.

vii

Widmung

Für meinen Großvater, Karl Weichinger, welcher den Abschluss meines Studiums leider nicht
mehr miterleben durfte.

Opa, ich möchte dir auf diesem Wege ganz besonders dafür danken, dass du in allen Lebenslagen
zu mir gehalten und mir im Laufe der Jahre unsagbar viel beigebracht hast. Du warst für uns
alle eine Bereicherung und hast uns immer gezeigt, dass man seine Familie wertschätzen soll
und sie viel wichtiger als alles Materielle auf dieser Welt ist. Ich weiß, du wärst sicher sehr
stolz auf uns gewesen und obwohl du bei meinem Abschluss nun nicht mehr dabei sein kannst,
bin ich mir sicher, dass du - wo auch immer du gerade bist - über uns wachst.

DANKE

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 2
1.4 Structure of the Work . 4
1.5 Impact of this Thesis . 4

2 Preliminaries 5
2.1 Ontologies . 5
2.2 Resource Description Framework (RDF) 7
2.3 RDF Schema (RDFS) . 10
2.4 Web Ontology Language (OWL) . 12
2.5 Unified Modeling Language (UML) . 16

3 Ontology Alignment 21
3.1 The Alignment Process . 21
3.2 Alignment Format . 22
3.3 Matching Techniques . 27

4 Selected Ontology Matchers 39
4.1 Anchor-Flood . 40
4.2 AROMA . 41
4.3 Eff2Match . 42
4.4 Hertuda . 44
4.5 HotMatch . 45
4.6 LogMap2 . 47

5 Mix’n’Match: An Approach for Combining Ontology Matchers 49
5.1 Initial Matching & Round Matching . 50
5.2 Alignment Selection . 53
5.3 Enriching Ontologies with Additional Knowledge 57
5.4 Anytime Behavior in Mix’n’Match . 62

xi

6 Empirical Evaluation of Mix’n’Match 65
6.1 Preliminaries . 65
6.2 Ontology Alignment Evaluation Initiative (OAEI) 67

7 Ontology Matching in an Industrial Environment 85
7.1 Transforming Object-Oriented Models into Ontologies 85
7.2 Aligning Transformed Object-Oriented Models with Mix’n’Match 89

8 Summary & Conclusions 93
8.1 Related Work . 94
8.2 Further Work . 94

Bibliography 99

xii

List of Figures

1.1 Ontology matching process as defined in [31, 32] 3

2.1 The Semantic Web stack [9] . 6
2.2 Simple RDF graph . 7
2.3 An RDF graph describing an animal domain. 8
2.4 Small sample ontology using RDFS features 11
2.5 The OWL sub-language hierarchy as indicated in [59] 13
2.6 Sample ontology, which uses selected OWL features 14
2.7 Diagrams of UML divided into structural and behavioral diagrams [41] . . 16
2.8 A sample UML class diagram . 17
2.9 A UML object diagram as instantiation of a UML class diagram 19

3.1 Illustration of the different supported arity types [32] 26
3.2 Different kinds of matching techniques [32] 29
3.3 Splitting meta-data into meta and data . 31
3.4 Normalizing words into one consistent form 31
3.5 Splitting words based on language specific rules 31
3.6 Eliminating stop words it, is, and . 32
3.7 ant and aunt may have a high string similarity but describe different concepts 32
3.8 The acronym NASA and its expanded form have a very small string simi-

larity but the same meaning . 32
3.9 strong and solid both describe the same ability 32
3.10 The properties of both classes are similar, resulting in a possible mapping

between both concepts. 33
3.11 The relational structure of both classes are similar, resulting in a possible

mapping between both concepts. 33
3.12 Two classes sharing the exact same set of individuals are considered to be

similar . 34
3.13 Using string similarity between elements of individuals to align classes. . . 35
3.14 Finding mappings using domain specific background knowledge. 36
3.15 Finding inconsistencies using reasoning techniques. 37

4.1 Anchor-Floods internal mapping process [46] 40

xiii

4.2 Eff2Matchs algorithm flow [14] . 43
4.3 Hertudas mapping algorithm composition [48] 44
4.4 Hotmatchs mapping algorithm composition [17] 45
4.5 LogMap2s mapping workflow [51] . 47

5.1 Framework of Mix’n’Match . 49
5.2 Running the individual ontology matchers sequentially. 50
5.3 Using a parallel execution approach. 51
5.4 Transferring the matchers into the cloud and running them in a distributed

manner. 52
5.5 Accepting only those alignments, which were found by the majority of the

ontology matchers. 53
5.6 Weighting ontology matchers based on their individual performance. . . . 54
5.7 Training a machine learning classifier which selects alignments. 55
5.8 Involving domain experts into the selection process. 56
5.9 Mappings used to exemplify the enrichment strategies. 57
5.10 Stating the equality between entities via OWL axioms in one ontology. . . . 58
5.11 Replacing the URIs of equal entities by a normalized one. 60
5.12 Adding annotations to matched entities, referring to their counterpart. . . . 61
5.13 Exemplary illustration of anytime behavior in Mix’n’Match 63

6.1 Mapping relations between the ontologies within the Benchmark track . . . 68
6.2 Mapping the base ontology with onto301 . 70
6.3 Mapping the base ontology with onto302 . 70
6.4 Mapping the base ontology with onto303 . 71
6.5 Mapping the base ontology with onto304 . 71
6.6 Comparing evaluation results of different alignment acceptance thresholds

(overall) . 72
6.7 Mapping relations between the ontologies within the Conference track . . . 73
6.8 Intermediate F-measure values retrieved by mapping cmt against all other

ontologies . 75
6.9 Intermediate F-measure values retrieved by mapping conference against all

other ontologies . 76
6.10 Intermediate F-measure values retrieved by mapping confOf against all

other ontologies . 76
6.11 Intermediate F-measure values retrieved by mapping edas against all other

ontologies . 77
6.12 Intermediate F-measure values retrieved by mapping ekaw against all other

ontologies . 77
6.13 Intermediate F-measure values retrieved by mapping iasted against all other

ontologies . 78

xiv

6.14 Intermediate F-measure values retrieved by mapping sigkdd against all other
ontologies . 78

6.15 Comparing evaluation results of different alignment acceptance thresholds
(overall) . 79

6.16 Mapping relations between the ontologies within the Anatomy track 80
6.17 Increasing F-measure value in each mapping iteration. (anatomy track) . . 83
6.18 Comparing evaluation results of different alignment acceptance thresholds

(overall) . 84

7.1 Class definitions and subclass relations are transformed into OWL classes
and rdfs:subClassOf relations . 86

7.2 Class attributes are transformed into datatype properties with respective
value ranges . 87

7.3 Relations between classes are transformed into object properties 88
7.5 Instances of objects are represented as triples using the previous defined

entities . 88
7.4 Enumerations are split into an object property, an OWL class and individuals 89
7.6 Mapping relations between the configurator ontologies 90
7.7 Mapping results achieved by aligning the railway ontologies 91

xv

List of Tables

2.1 The RDF triples encoded within the RDF graph shown in Figure 2.3 8

3.1 List of state-of-the-art matchers and their used techniques 30

4.1 List of used off-the-shelf ontology matchers and their used techniques . . . 39
4.2 Matching techniques implemented in Anchor-Flood 40
4.3 Matching techniques implemented in AROMA 41
4.4 Matching techniques implemented in Eff2Match 42
4.5 Matching techniques implemented in Hertuda 44
4.6 Matching techniques implemented in HotMatch 45
4.7 Matching techniques implemented in LogMap2 47

6.1 System specifications of the evaluation machine 65
6.2 Characteristics of used datasets . 67
6.3 Number of entities in the Benchmark ontologies 68
6.4 Aggregated results of the Benchmark Track ranked by F-Measure 69
6.5 Detailed mapping results of Mix’n’Match for the Benchmark track 69
6.6 Comparing evaluation results of different alignment acceptance thresholds

(detailed) . 72
6.7 Number of entities in the Conference ontologies 73
6.8 Aggregated results of the conference track ranked by F-Measure 74
6.9 Detailed mapping results for the Conference track of Mix’n’Match 75
6.10 Comparing evaluation results of different alignment acceptance thresholds

(detailed) . 80
6.11 Number of entities in the Anatomy ontologies 81
6.12 Results of the anatomy track ranked by F-Measure 81
6.13 Increasing F-Measure value after each mapping round 82

7.1 Characteristics of the real-world dataset . 89
7.2 Number of entities in the railway ontologies 90

xvi

CHAPTER 1
Introduction

1.1 Motivation

Mapping between the internal models of software systems is a complicated and te-
dious task in almost all data and system integration scenarios, keeping computer sci-
entists busy for the last decades with still no “silver bullet” in sight.

Application domains range from:

database integration: classical database integration scenarios for (mostly) relational
databases, where particular problems involve translating and transferring data [24]
in migrating or merging between different data bases and merging several database
schemata into a global schema [3].

P2P communication: use cases enabling agent and service communication on the Web
or in P2P networks [34] (e.g. for mediator systems)

schema mapping: mapping of object-oriented models from different software systems
(on an abstract level, this use case is notably also mentioned in [70] already)

Particularly, the latter use case is important for infrastructure providers like Siemens;
throughout the life-cycle of products (ranging from e.g. engines, turbines, to trains or
complex health-care equipment) we use various software tools related to configuration
such as sales configurators, product configurators used during production/manufac-
turing and separate tools again for software configuration of electronic parts in end
customer deployments, each tool with its own underlying internal model. These tools
use internal, partially overlapping representations (mostly object-oriented models) of
the final products and its parts, which need to be transferred from one configuration
step to the next, thus requiring alignment of the underlying models.

1

In quest for the said “silver bullet” [35] to solve such alignment problems, ontolo-
gies and ontology mapping [12, 32, 52] seem to be a good starting point particularly
for aligning object-oriented models, since ontologies can represent (and be extracted
from) object-oriented models fairly naturally, where the hope is that the increasing
number of off-the-shelf ontology mapping tools can be used “out of the box” to pro-
pose reference alignments that can be tailored in a semi-automatic process.

1.2 Problem Statement

In the past decade, the field of ontology mapping has matured with many different
ontology matchers having participated in the last years’ OAEI 1 campaigns, expos-
ing different strengths and weaknesses. The different tracks provided by the OAEI
target different mapping problems and since every mapping tool has its specific spe-
cial techniques and features, good performance in a specific sub-track often comes in
hand with a bad performance in another one. So, intuitively, combining the results of
a heterogeneous set of ontology matchers, taking the “best off-the-shelf matcher for
the problem at hand” seems to be a promising approach for a “universal matcher”
without the need for designing a new matcher from scratch.

Unfortunately, (i) neither deciding which matchers suit best for a set of given on-
tologies, nor (ii) using ontology matchers in a semi-automatic human-guided mapping
process, nor (iii) combining their alignment results efficiently is trivial. For (i), select-
ing the most suitable matcher(s) requires some preparatory work like interviews or
tests [62] or background knowledge in terms of training sets for learning a classi-
fier [28, 29].

On the other hand, for an interactive mapping process, one needs to be able to
guide a matcher by providing (or confirming) reference alignments, either provided
by a domain expert directly or iteratively added by confirming mapping results from
an ontology matcher to be used as reference for supporting another call of the same
or another ontology matcher.

1.3 Aim of the Work

Aim of this master thesis is the evaluation of different current state-of-the-art ontology
matchers and the development of a proof of concept implementation to evaluate the
feasibility of an approach, which should be able to combine off-the-shelf ontology
matchers in an iterative manner by reusing gathered knowledge.

Our idea is strongly inspired by the definition of ontology mapping shown in Fig-
ure 1.1: that is, ontology mapping can be summarized as a process which computes
alignments A’ for a pair of input ontologies O1 and O2. There are three more com-

1http://oaei.ontologymapping.org/

2

ponents which can extend this basic definition of the mapping process: (i) input or
reference alignments which support the mapping process with initial knowledge about
the mapping domain; (ii) resources either some sort of background knowledge, e.g.
in terms of dictionaries, and (iii) parameters, e.g. for narrowing the results by using
specific weights or thresholds.

Figure 1.1: Ontology matching process as defined in [31, 32]

In this thesis we will particularly focus on the usage of reference alignments stem-
ming from (combined) mapping results from different matchers as well as weighting
parameters (for deciding which combined alignments to approve) to support our iter-
ative mapping process. As for reference alignments, the existence of a standardized
ontology alignment format promoted by the Ontology Alignment Evaluation Initiative
(OAEI) should enable the usage of off-the shelf ontology matchers in this process that
support the said alignment format.

Our hypothesis is that it should be possible to reuse gathered knowledge in an
iterative fashion in terms of found alignments and then enrich the to be matched on-
tologies with this additional knowledge. It should be possible to develop a combined
ontology matcher, which performs better on average than a single matcher on a num-
ber of heterogeneous ontology mapping problems (from the OAEI campaign), without
the need to choose a single matcher, but by iteratively combining results of different
matchers, and feeding them as support into subsequent runs of those matchers.

The big advantage of such an approach of altering the ontologies instead of try-
ing to change the mapping process itself, is the flexibility in choosing off-the-shelf
ontology matchers for the combined matching approach. They do not have to fulfill
specific criteria like the possibility to use background knowledge or parameters for the
mapping process.

3

1.4 Structure of the Work

The present thesis is structured as follows: we start with an introduction into Se-
mantic Web technologies in Chapter 2 and explain the ontology alignment process,
alignment formats and common ontology matching techniques in Chapter 3 . Then
we continue with an overview about current state-of-the-art ontology matchers which
were used for our combined matching approach in Chapter 4 . Our main contribu-
tion the Mix’n’Match approach for combining ontology matchers is presented in Chapter 5.
Chapter 6 contains detailed evaluation results for Mix’n’Match compared to the on-
tology matchers presented in 4 based on public available datasets. In Chapter 7 we
explain the transformation of UML class diagrams into ontologies and present map-
ping results received by mapping ontologies, which were generated from UML class
diagrams. We conclude our thesis and discuss ideas for future improvements and
related work in Chapter 8 .

1.5 Impact of this Thesis

A preliminary version of Mix’n’Match was published as a short paper in the 12th
International Conference on Ontologies, Databases, and Applications of Semantics
(ODBASE 2013)2 [79].
Better evaluation results produced by an improved version of Mix’n’Match, which is
based on the present thesis, including: (i) a new streamlined architecture by using
multi-threading for matcher execution instead of running ontology matchers sequen-
tially in each iteration, as well as (ii) anytime behavior for time consuming mapping
tasks not yet tackled in [79] was accepted for the poster session on the Ontology map-
ping workshop of the 12th International Semantic Web Conference (ISWC 2013)3.

2http://www.onthemove-conferences.org/index.php/odbase13
3http://oaei.ontologymapping.org/2013/

4

CHAPTER 2
Preliminaries

2.1 Ontologies

There exist many similar definitions for the term ontology and probably one of the
most cited ones was presented by Gruber in 1993:

An ontology is an explicit specification of a conceptualization. [43]

So basically, ontologies are generic conceptual models of a domain of interest. A
more formal definition of an ontology is shown underneath:

Definition 1. We consider an ontology as a triple:

O = 〈C, I, P〉

C - Set of Classes Classes or concepts are abstract representations of objects. They
can be subsumed by other classes and inherit their properties. Furthermore - if
not stated otherwise - a class can inherit from more than one superclass.

I - Set of Individuals Individuals are specific representations of objects and usually
describe a very concrete type of concepts. The choice whether an object should
be modeled as individual or as a class is often not very easy to make and heavily
relies on the modeling domain. For example an object Integer can either be
considered as a subclass of the concept Datatype having an individual called
„1“, or modeled as as individual of the concept Datatype in the absence of
more specific objects like „1“.

P - Set of Properties P contains all properties which define data values for specific
attributes (names, ids, . . .) and relations, which describe possibilities to relate
entities in ontologies with each other (subclass, equivalence relations, . . .).

5

In contrast to other structures which aim for storing data in a defined way, like re-
lational databases, ontologies enable the possibility to store semantics of data, together
with specific rules which describe the schema. The possibility to infer new knowledge
based on the available data as well as to be able to detect semantic conflicts between
the entities of an ontology are additional benefits for using ontologies over common
databases to represent and store data.

To understand the principles behind the Semantic Web, some of its major tech-
nologies and standards are described in the following chapter and some of them are
represented in the Semantic Web Stack in Figure 2.1.

Figure 2.1: The Semantic Web stack [9]

Built upon the URI/IRI layer, all higher layers in the Semantic Web Stack can uniquely
identify their defined resources by URIs (Uniform Resource Identifier) and IRIs (Inter-
nationalized Resource Identifier) which are common resource identifiers in the World
Wide Web.

The next layers are XML (eXtensible Markup Language) and RDF (Resource De-
scription Framework), which describe the basic language of the Semantic Web and
using RDF, which is based on the XML format, enables the possibility to describe
resources both in a human-readable and machine-processable way, which will be de-
scribed together with its most common formats in Section 2.2.1.2.

There currently exist two extensions for RDF, namely (i) RDF Schema 2.3 and (ii) the
Web Ontology Language 2.4.2.4. Only by the use of these extensions it is possible to de-
fine and model ontologies, since RDF does not provide the possibilities for describing
properties or complex relations between resources [32].

6

In the following sections, we will describe selected parts of the Semantic Web stack
in more detail.

2.2 Resource Description Framework (RDF)

Figure 2.2: Simple RDF graph

The Resource Description Framework (RDF) [47] became a W3C recommendation
in 1999 [55] and was revised several times until it became its last W3C recommendation
in 2004 [4]. It is a framework for describing and representing information about re-
sources in the World Wide Web and is both human-readable and machine-processable,
which enables the possibility to easily exchange information among different applica-
tions using RDF triples, but still be easy to read.

In RDF everything is a resource, uniquely identified by its URI and all data is
represented as (subject - predicate - object) triples, where subjects and predicates are
URIs and objects can either be literals (strings, integers, . . .) or URIs as shown in
Figure 2.2.

Furthermore subjects or objects can be represented using blank nodes, those blank
nodes do not have a corresponding URI which could identify them and are usually
used to express anonymous resources (e.g. »Pino has a friend who is 24 years old«
where a blank node would represent the anonymous friend of Pino.)

Since one RDF triple usually does not describe a resource entirely, more triples are
defined and combined in an RDF Graph. Such an RDF Graph connects those triples
by a simple AND operator and can therefore easily be merged with other RDF Graphs
without losing entailment information, relying on RDFs monotonicity of semantic ex-
tensions [47].

2.2.1 RDF Serialization Formats

There exist several formats for representing and serializing RDF data such as Tur-
tle(N3) [5, 6] and RDF/XML [4]. In this section we will briefly explain each format
and give an example serialization of a small sample triple set which is depicted in
Figure 2.3.

7

Figure 2.3: An RDF graph describing an animal domain.

subject predicate object

anim:Lion rdf:type anim:Animal
anim:Lion anim:age 10
anim:Lion anim:name Clarence
anim:Lion anim:isVeg false

Table 2.1: The RDF triples encoded within the RDF graph shown in Figure 2.3

2.2.1.1 Turtle and N3

The Terse RDF Triple Language, or Turtle, is a very lightweight and easy readable subset
of the Notation3 serialization format for RDF and became a W3C Candidate Recom-
mendation in February 2013.1.

It is commonly used for representing ontologies since it perfectly illustrates the
nature of RDF to model data as triples. The simplest statement using Turtle consists
of a subject, predicate and object which are separated using whitespaces and
terminated by a dot. Furthermore it is possible to omit the leading subject, if several
triples only vary in their predicates and objects but have the same subject, by termi-
nating each triple(but not the last one) with a semicolon instead of a dot. Listing 2.1
shows the representation of a sample ontology using Turtle.

All examples within this thesis are serialized using the Turtle format.

Listing 2.1: Turtle representation of the RDF graph in Figure 2.3

@p r e f i x : <ht tp :// ontology . org/onto1 . owl#> .
@p r e f i x rdf : <ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns#> .
@p r e f i x anim : <http ://www. example . org/animal_onto#> .
@base <http ://www. w3 . org /2002/07/owl#> .

1http://www.w3.org/TR/turtle/

8

<http ://www. example . org/animal_onto/Lion>
rdf : type <http ://www. example . org/animal_onto/Animal >;
anim : name " Clarence " ;
anim : isVeg " f a l s e " ;
anim : age " 10 " .

2.2.1.2 RDF/XML

RDF/XML is the most common format for representing ontologies and natively sup-
ported by all RDF parsers. Unlike Turtle it is a XML-based serialization of RDF, which
inevitably leads to a larger overhead when representing RDF triples. It was introduced
together with the RDF specification in 1999 and became a W3C Recommendation in
February 2004.2 As shown in Listing 2.2, RDF/XML serializations tend to be verbose
and more difficulty readable by humans. An approach to make RDF/XML more con-
cise was proposed by Brickley in 2002 and is called „Striped RDF/XML Syntax“ [10].
The striped RDF/XML syntax introduces XML elements for nodes and arcs of an RDF
graph and provides the possibility to group triples as shown in Listing 2.3.

Listing 2.2: RDF/XML description of the RDF graph in Figure 2.3

<?xml vers ion=" 1 . 0 " ?>

<rdf : RDF xmlns=" ht tp :// ontology . org/onto1 . owl# "
xml : base=" ht tp :// ontology . org/onto1 . owl "
xmlns : rdf=" ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns# "
xmlns : anim=" http ://www. example . org/animal_onto # ">

<rdf : Descr ip t ion rdf : about=" ht tp ://www. example . org/
animal_onto/Lion ">
<rdf : type rdf : resource=" ht tp ://www. example . org/

animal_onto/Animal "/>
</rdf : Descr ipt ion >

<rdf : Descr ip t ion rdf : about=" ht tp ://www. example . org/
animal_onto/Lion ">
<anim : name>Clarence </anim : name>

</rdf : Descr ipt ion >
. . . .

</rdf : RDF>

2http://www.w3.org/TR/REC-rdf-syntax/

9

Listing 2.3: Striped RDF/XML description of the RDF graph in Figure 2.3

<?xml vers ion=" 1 . 0 " ?>
<rdf : RDF xmlns=" ht tp :// ontology . org/onto1 . owl# "

xml : base=" ht tp :// ontology . org/onto1 . owl "
xmlns : rdf=" ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns# "
xmlns : anim=" http ://www. example . org/animal_onto # ">

<anim : Animal rdf : about=" ht tp ://www. example . org/animal_onto/
Lion ">

<anim : name>Clarence </anim : name>
<anim : age >10</anim : age>
<anim : isVeg > f a l s e </anim : isVeg >

</anim : Animal>
</rdf : RDF>

2.3 RDF Schema (RDFS)

Although RDF provides the basic elements and tools for describing web resources, it
does not offer the possibility to describe relations or constraints between entities and
therefore is not able to describe ontologies. This lack of functionality included the
development of RDF Schema (RDFS), which is a semantic extension to the basic RDF
specification and provides the capability to describe properties and relations among
resources and therefore offers basic elements for ontology description.

RDFS was firstly published in 1998 and became a W3C recommendation in 2004 [11].

RDFS now divides resources into two groups:

Classes: The first group of resources is called classes. Those classes are usually iden-
tified by URIs and described using RDF properties, a member of a specific class
is called its instance, which is denoted by the rdf:type property. A class can have
a set of instances of itself, which is called its class extension. Furthermore classes
can share the same set of instances although they might be different classes (e.g.
Alice defines dogs as animals and Bob defines them as carnivores, it is possible
for those two classes to have the same instances but of course, different proper-
ties).

RDFS introduces subclass relations among classes, namely if there exists a class
A which is a subclass of a class B, then all instances of A will also be instances
of B and vice versa, if a class B is a superclass of a class A, then all instances
of A are also instances of B. The rdfs:subClassOf property may be used to

10

represent this subclass relation.

A small sample ontology using RDFS features and describes a teacher/pupil
domain is shown in Figure 2.4.

Figure 2.4: Small sample ontology using RDFS features

Important Classes:

rdfs:Resource: Everything described in RDF is a resource and instance of the
class rdfs:Resource. rdfs:Resource is an instance of rdfs:Class
and all other classes are its subclasses.

rdfs:Class: rdfs:Class is an instance of rdfs:Class and is the class of re-
sources that are RDF classes. (cf. :Teacher)

rdfs:Literal: As mentioned earlier, an object of an RDF triple might be a literal.
Those literals are instances of the class rdfs:Literal and divided into
typed literals, which are instances of its respective datatype class, and plain
literals.

rdfs:Datatype: This class describes the class of datatypes and all instances of it
are related to a datatype described in the RDF Concepts specification ci-
terdf2. It is both an instance and a subclass of rdfs:Class and each in-
stance of rdfs:Datatype is a subclass of the rdfs:Literal.

rdf:Property: rdf:Property is the class of RDF properties and an instance of
rdfs:Class. (cf. :teaches)

11

Properties: The second group of resources are properties which are defined by [54] as
relations between subject resources and object resources.

Like the subclass relation, RDFS also introduces the concept of subproperties. If
a property A is a subproperty of a property B, then all resources which are con-
nected by A are also connected by B and vice versa. This subproperty relation
indicated by the rdfs:subPropertyOf property.

Important Properties:

rdfs:domain This property states that any resource which has a given prop-
erty must be an instance of the class referenced by rdfs:domain. (cf.
:teaches and :Teacher)

rdfs:range rdfs:range is used to state that the values of a given property are
instances of the class referenced by rdfs:range. (cf. :teaches and :
Pupil)

rdf:type An important property which states that a resource is an instance of a
class.

rdfs:subClassOf & rdfs:subPropertyOf As mentioned above, these properties
are used to state the subclass and subproperty relations among classes and
properties. Both are instances of rdf:Property. (cf. :Teacher and :
Pupil are subclasses of :Person)

rdfs:label & rdfs:comment These properties are instances of rdf:Property
and may be used to provide a human-readable description of the resource
itself as well as its name.

2.4 Web Ontology Language (OWL)

Although RDFS allows the representation of simple ontologies by using properties,
which describe the hierarchical relation among entities, it lacks in the support of defin-
ing more sophisticated entity relations (e.g. disjointness), cardinality (e.g. exactly one),
equality (e.g. equivalences between classes/properties/instances) and characteristics
of properties (e.g. symmetry). For that purpose the Web Ontology Language (OWL),
which was firstly published in 2002 and became a W3C recommendation in 2004 [59],
was developed. Since 2012 an extension to OWL, called OWL 2, is available as W3C
recommendation [42].

In general OWL is used to describe complex ontologies and furthermore introduce
the possibility to automatically process the content in the given ontology by using the
previous mentioned constructs which were not available in RDFS.

12

2.4.1 OWL Sub-languages

Figure 2.5: The OWL sub-language hierarchy as indicated in [59]

In order to sufficiently fulfill the different requirements of ontologies and especially
avoid an unnecessary increase of complexity of those ontologies, three different sub-
languages of OWL were developed, namely: OWL Lite, OWL DL and OWL Full. Each
of these sub-languages is a subset of the more complex one as indicated in Figure 2.5.
As a result, following validity conclusions hold [59]:

OWL EL/QL/RL: These three profiles introduce restrictions on OWL in order to allow
more efficient reasoning. OWL EL provides the expressiveness of large-scale
ontologies but only needs polynomial time for selected reasoning problems such
as classification and instance checking. OWL QL is used to implement sound and
complete query answering on top of relational databases and OWL RL provides
the possibility to run rule-based reasoning algorithms in polynomial time.

OWL DL: Increasing the expressiveness of OWL EL/QL/RL but still be computational
complete and decidable, leads to OWL DL, which is translatable into the expres-
sive Description Logic SROIQ [2] . Although it includes all language concepts of
OWL, they can only be used under special conditions (e.g. a class cannot be an
instance of another class, but of course be its subclass).

OWL Full: Losing the restriction of using OWL language constructs only under cer-
tain conditions and therefore retrieving the most expressiveness and syntactic
freedom for defining OWL ontologies, unfortunately comes in hand with the
loss of computational guarantees. As indicated in [59] it is very unlikely, that
any reasoning software will be able to support complete reasoning for every
feature of OWL Full.

Remark: Although every ontology expressed in OWL is a valid RDF document, not
every RDF document is a valid OWL ontology. Only OWL Full is a complete extension
of RDF, whereas OWL DL and the profiles OWL EL/QL/RL are restricted extensions
of RDF. When migrating from an RDF document to an OWL DL/EL/QL/RL ontology,
those restrictions must be fulfilled.

13

2.4.2 OWL Features

OWL introduces many new features for describing information and knowledge about
a domain and is even more expressive than RDFS. We will now introduce some of this
features in more detail based on a sample ontology, illustrated in Figure 2.6.3

Figure 2.6: Sample ontology, which uses selected OWL features

2.4.2.1 Properties

owl:DatatypeProperty Datatype properties link individuals to data values. (cf. :id,
:email)

owl:ObjectProperty Object properties are used to define relations between classes (i.e.
link individuals to individuals). (cf. :isTakenBy, :takes)

owl:FunctionalProperty If a property is defined as owl:FunctionalProperty it
can have only one unique value for each instance of this property. (cf. :
isTaughtBy; a :Lecture can only be held by one :Professor)

3Note that the following list is only a small subset of the features OWL provides and only contains
those features of OWL, which we use in the present thesis.

14

2.4.2.2 Relations between Entities

owl:equivalentClass This property is used to define the similarity between two classes.
(cf. :Lecture and :LVA)

owl:equivalentProperty This property is used to define the similarity between two
properties. (cf. :name is equivalent to the property foaf:name, defined in the
FOAF ontology4)

owl:sameAs This property is used to define the similarity between two instances. (cf.
the two lecture types :PR and :PPR are equivalent)

owl:inverseOf Using owl:inverseOf offers the possibility to state an inverse simi-
larity between two properties. (cf. :isTakenBy and :takes)

owl:disjointWith Using owl:disjointWith offers the possibility to state that two
entities are disjoint. (cf. an instantiation of :Professor cannot be a :Student
too)

2.4.2.3 Boolean Connectives and Enumeration

owl:unionOf This property links a class to a union of class descriptions. (cf. :grading-
Basis, its rdfs:range is a blank node, which is defined as union of :Test and
:Project)

owl:oneOf This property is used to define enumerations within ontologies. (cf. :
LectureType contains one of the listed individuals)

2.4.2.4 Restrictions

owl:Restriction Restrictions are subclasses of owl:Class and are used to define
value constraints for specific properties. (cf. a :Student must take at least
one :Lecture)

owl:onProperty The owl:onProperty property defines the specific property for which
the restriction holds. (the above mentioned restriction is defined for the property
:takes)

owl:(min|max)Cardinality One example of a restriction mentioned above are cardi-
nality constraints. Whereas owl:minCardinality and owl:maxCardinality
define lower and upper bounds for cardinalities, the owl:Cardinality prop-
erty is used to define a precise value for the cardinality. (owl:minCardinality
1 is used to state, that a :Student must take at least one :Lecture)

4http://xmlns.com/foaf/spec/

15

2.5 Unified Modeling Language (UML)

The Unified Modeling Language [36] is a modeling language, which defines a (i) nota-
tion for graphically representing software systems and (ii) a meta-model which defines
this notation. It is a permanently evolving standard and currently available in Version
2.4.15, which was released in August 2011 by the Object Management Group (OMG)6.

As mentioned above, UML has its prime use-case in representing software sys-
tems, especially those originated from object-oriented programming and due the large
variety of different diagram types provided by UML, which are mainly divided into
structural and behavioral ones as shown in Figure 2.7, UML is capable of specifying
all aspects of systems with respective diagrams.

Figure 2.7: Diagrams of UML divided into structural and behavioral diagrams [41]

For the topic of the present thesis, especially the class and object diagrams are of
particular interest and will be described in detail in the following subsections.

2.5.1 Class Diagram

When using object-oriented methods for designing and developing software systems,
the usage of class diagrams has become somehow mandatory in order to be able to
describe the various relationships and objects within such a system appropriately. A
sample UML class diagram is depicted in Figure 2.8 and consists of following ele-
ments:

5http://www.omg.org/spec/UML/2.4.1/
6http://www.omg.org/

16

Figure 2.8: A sample UML class diagram

Class: The most important element of class diagrams is the class itself, which de-
scribes objects together with their abilities. Its respective notation is a rectangle,
split into 3 sections, which contain the name of the class, its attributes and its
methods. (cf. Person and Student)

Association: Associations represent bidirectional relationships between instances of
classes or generally speaking the conceptual relationships between classes. Fur-
thermore each association has two roles, depending on the direction of the asso-
ciation, which can be explicitly named by a label. Multiplicities which are added
to every role define how many objects are involved in the given relationship and
are usually represented as pair of min and max values. (cf. takes and isTakenBy)

Attribute: As already mentioned in the description of classes, attributes are proper-
ties of classes. They have to consist of a name and a type and can be extended
by default values, visibility definitions and multiplicities which indicate the oc-
currences of those attributes within classes, similar to the multiplicities used for
associations (default is 1). (cf. matr:integer and name:string)

Generalization: The concept of generalization defines the inheritance of properties
from one class to another class. Such an generalization relationship is repre-
sented as a line between one source class (specialization class) to the target class
(general class), having an empty arrowhead on the target side. Unless otherwise

17

indicated, all attributes and methods of the target class are available in the source
class but not vice versa. (cf. Person and Student, Professor)

Aggregation: As a specific type of association, an aggregation represents a part-of
relationship between two classes. Its notation is a line between a source and a
target class, having an empty diamond on the source side, which indicates that
the source class is part of the target class. As mentioned in [36] there exists
no single accepted definition of the difference between aggregations and asso-
ciations, which makes it difficult to decide whether an association should be
modeled as aggregation or not.

Composition: Similar to aggregations, compositions define a part-of relationship be-
tween classes but in addition declare the respective target class as owner of the
source class. This means that even if a class is part of many other classes, its
instances can only have one owner. For example, a PC can be located in any
room, but one specific PC can be located in only one room at a time. Regarding
the notation of compositions, it is similar to those of aggregations, but instead of
an empty diamond on the source side, a composite relation is modeled with a
filled diamond.

Multiple classification: As an extension to single classification, which defines the re-
lation between a class and its object, multiple classification allows the definition
of more than one class an object may belongs to, but without defining exactly to
which class it belongs. Furthermore it allows the representation of complete sets
and disjointness, e.g. every person must be either a man or a female but cannot
be none or both of them.

Association class: In order to be able to define additional properties for relationships
between classes, association classes are used and added to their respective asso-
ciation.

Other elements: Note that we only explained the most common and used elements
of UML class diagrams. There are many other elements of UML class diagrams
such as constraints, abstract classes, parametrized classes, etc. which also help
to describe the behavior and implementation of classes within an object-oriented
environment.

2.5.2 Object Diagram

A UML object diagram is a concrete representation of its related class diagram, where
all attributes have specific values and all relations between classes are represented as
relations between their objects. Since object diagrams serve as an instantiation of their
respective class diagram, all multiplicities of relations are omitted and replaced by
concrete implementations of the respective relationships.

18

Figure 2.9: A UML object diagram as instantiation of a UML class diagram

19

CHAPTER 3
Ontology Alignment

As already discussed in Section 1.1, ontology mapping or alignment is a very promis-
ing approach for finding similarities and mappings between different data models.
Finding such similarities is crucial for integration tasks since heterogeneity of data
models cannot be avoided [32].

Heterogeneity is primarily caused by the fact that different modeling experts have
different ways of expressing their knowledge, use different tools for creating their
models and often work on different levels of detail.

In this chapter we will first discuss the ontology alignment process in more detail,
afterwards we introduce the standard OAEI format to represent mappings between
entities in ontologies and then explain some common matching techniques used by
existing matchers.

3.1 The Alignment Process

In order to define ontology alignment, or more precisely the ontology alignment pro-
cess, we rely on the definition presented in [31, 32]: basically ontology alignment or
ontology mapping can be summarized as a process which computes a set of alignments
A’ for a pair of input ontologies O1 and O2. A’ consists of alignments A, which define
mappings between entities defined in the matched ontologies and can have various
types of cardinalities, e.g. 1:1, 1:n, n:m. Extending the definition presented in [77]:

Definition 2. We define an alignment A as a quintuple

A = 〈id, e1, e2, r, c〉

such that:

21

id represents an unique identifier for the respective mapping

e1,e2 where e1, e2 ∈ (C ∪ I ∪ P ∪ R); represent the aligned entities in both ontologies

r is the relation of the alignment, which can either be equivalence(=), generalization
(w), subsumption and supersumption (v, w) or disjointness (⊥) 1

c where c ∈ [0, 1]; this value represents the confidence of the respective matcher in
its found alignment. The higher the value, the higher the matchers trust in its
found alignment.

As shown in Figure 1.1, there are three more components which can extend this
basic definition of the mapping process:

(i) input or reference alignments which support the mapping process with initial
knowledge about the mapping domain and are usually provided by a human domain
expert;

(ii) resources either some sort of background knowledge, e.g. in terms of dictio-
naries, and

(iii) parameters, e.g. for narrowing the results by using specific weights, thresholds
or values for used matching techniques.

3.2 Alignment Format

Ontology alignment is usually used to find mappings and mappings between entities
of ontologies. In order to be able to use such alignments in a wider context, e.g. for
creating an integrated data model combining information and knowledge used in both
ontologies, using a standardized alignment format is necessary.

For this purpose, several alignment formats for representing mappings and making
them interchangeable between different tools were proposed over the last years such
as SBO [57,78], SWRL [49], SKOS [44,60], OWL [83] and the OAEI Alignment Format [30,
34].

In this section we will focus on the alignment format proposed by the OAEI and
explain its structure and capabilities in more detail.

3.2.1 OAEI Alignment Format

As mentioned above, the alignment format proposed by the OAEI is one of the most
common formats for representing alignments between ontologies. It aims at being a
simple, easy producible and extensive alignment representation, which is capable of
handling complex alignment definitions. Furthermore it supports additional mapping
relations different to equivalence.

1How to translate this relations in RDF, is shown in Section 3.2

22

An alignment file consists of a description of metadata about the included map-
pings, followed by the mappings itself and is encoded using the striped RDF/XML
syntax [10].

Listing 3.1 represents a sample alignment file in the RDF representation of OAEI
alignment format, which consists exemplarily of three mappings between two sample
ontologies.

Listing 3.1: Sample alignment file
<?xml vers ion=" 1 . 0 " encoding=" utf−8" ?>
<rdf : RDF xmlns=" ht tp :// example . org/alignment "

xmlns : rdf=" ht tp ://www. w3 . org/1999/02/22− rdf−syntax−ns# "
xmlns : onto1=" ht tp :// ontologymatch . org/onto1 . rdf "
xmlns : onto2=" ht tp :// ontologymatch . org/onto2 . rdf "
xmlns : xsd=" ht tp ://www. w3 . org /2001/XMLSchema# ">

<Alignment>
<xml>yes </xml>
< l e v e l >0</ l e v e l >
<type >11</type >
<onto1 >

<Ontology rdf : about=" ht tp :// ontologymatch . org/onto1 . rdf " />
</onto1 >
<onto2 >

<Ontology rdf : about=" ht tp :// ontologymatch . org/onto2 . rdf " />
</onto2 >

<map>
<Cell >

< e n t i t y 1 rdf : resource=" onto1 #TechRepo "/>
< e n t i t y 2 rdf : resource=" onto2 # TechnicalReport "/>
<measure rdf : datatype=" xsd : f l o a t " >0.513 </measure>
< r e l a t i o n >=</ r e l a t i o n >

</Cell >
</map>
<map>

<Cell >
< e n t i t y 1 rdf : resource=" onto1 # PhdThesis "/>
< e n t i t y 2 rdf : resource=" onto2 #PHDThesis "/>
<measure rdf : datatype=" xsd : f l o a t " >0.763 </measure>
< r e l a t i o n >=</ r e l a t i o n >

</Cell >
</map>

23

<map>
<Cell >

< e n t i t y 1 rdf : resource=" onto1 # note "/>
< e n t i t y 2 rdf : resource=" onto2 # note "/>
<measure rdf : datatype=" xsd : f l o a t " >1.0</measure>
< r e l a t i o n >=</ r e l a t i o n >

</Cell >
</map>

</Alignment>
</rdf : RDF>

As shown in the listing above, an RDF document, which contains information
about an alignment set and is described using the OAEI alignment format, consists of
a root class Alignment and its respective properties.

3.2.1.1 The Alignment Class

In the following, we will describe the important properties of the Alignment class in
more detail.

level Depends on the expressiveness of contained mappings.
Level 0: In that case, all entities contained in the alignments can be identified by
their URIs. The mappings are defined language independently and can contain
alignments between classes, properties and individuals, which is exemplified in
Listing 3.2. Furthermore complex mappings are allowed, if the complex terms
are identified by an URI.
Level 1: Loosing the restrictions from previous alignment level but keeping its
language independence, this level allows the mapping of pairs of sets of entities
shown in Listing 3.3.
Level 2: The last alignment level allows the definition of more general mappings.
Unfortunately this level is no longer language independent, since the complex
mapping expressions are not necessarily identified by an URI. Such an example
mapping is depicted in Listing 3.4 using OWL as expressing language and de-
scribes the fact that a Writer in the second ontology is someone that hasWritten
something in the first one. [32].

Listing 3.2: Level 0 mapping
<Cell >

< e n t i t y 1 rdf : resource="&onto1 ; # Writer "/>
< e n t i t y 2 rdf : resource="&onto2 ; # Writer "/>
<measure rdf : datatype="&xsd ; f l o a t " >1.0</measure>
< r e l a t i o n >=</ r e l a t i o n >

</Cell >

24

Listing 3.3: Level 1 mapping

<Cell >
< e n t i t y 1 rdf : resource="&onto1 ; # Writer "/>
<e n t i t y 2 >

<owl : unionOf rdf : parseType=" C o l l e c t i o n ">
<owl : Class rdf : about="&onto2 ; # WriterA " />
<owl : Class rdf : about="&onto2 ; # WriterB " />

</owl : unionOf>
</e n t i t y 2 >
<measure rdf : datatype="&xsd ; f l o a t " >0.6364 </measure>
< r e l a t i o n >=</ r e l a t i o n >

</Cell >

Listing 3.4: Level 2 complex mapping

<Cell >
< e n t i t y 1 rdf : resource="&onto1 ; # Writer "/>
<e n t i t y 2 >

<owl : R e s t r i c t i o n >
<owl : onProperty rdf : resource="&onto2 ; # hasWritten "/>
<owl : minCardinal i ty

rdf : datatype="&xsd ; nonNegativeInteger " >1</owl :
minCardinality >

</owl : R e s t r i c t i o n >
</e n t i t y 2 >
<measure rdf : datatype="&xsd ; f l o a t " >0.575 </measure>
< r e l a t i o n >& l t ; </ r e l a t i o n >

</Cell >

In our approach we currently only cover level 0 alignments!

type This property defines the possible cardinalities of the alignments. Different to
the common notations like 1:1 (one-to-one), 1:n (one-to-many), and n:m (many-
to-many), the multiplicities used in the OAEI alignment format state if the map-
pings are total (+), injective (?), both injective and total (1) or nothing (*), each
for both sides of the mappings. That results in a large amount of possible com-
binations ?:?, ?:1, 1:?, 1:1, ?:+, +:?, 1:+, +:1, +:+, ?:*, *:?, 1:*, *:1, +:*, *:+, *:*.

Definition 3 (total mapping - +). Considering two ontologies O1 and O2. Map-
pings are declared as total, if every entity of O1 can be mapped to at least one
entity of O2.

25

Definition 4 (injective mapping - ?). Considering two ontologies O1 and O2.
Mappings are declared as injective, if an entity of O1 can be mapped to at at most
one entity of O2.

Definition 5 (total and injective mapping - 1). Considering two ontologies O1

and O2. Mappings are declared as total and injective, if every entity of O1 can be
mapped to at most one entity of O2.

Definition 6 (unknown mapping - *). Considering two ontologies O1 and O2.
Mappings are declared as unknown, if there does not exist any restrictions of
mapping entities of O1 to entities of O2.

For the sake of simplicity we declare our produced alignment set as type *:*!

Figure 3.1: Illustration of the different supported arity types [32]

map Map contains information about particular alignments, which are described us-
ing the Cell class.

3.2.1.2 Cell Class

As mentioned above, the class Cell contains information about particular alignments
(cf. Listings 3.2 to 3.4).

entity1 Definition or reference to the first matched entity.

entity2 Definition or reference to the second matched entity.

measure Displays the confidence of the matcher which produced the alignments, that
this alignment holds and is usually a float value between 0 and 1.

relation Current state-of-the-art ontology matchers only produce equivalence map-
pings between entities [31] primarily based on the fact that evaluation cam-
paigns like the OAEI only consider those in their reference alignments, since
generating a complete set of reference alignments containing all kinds of re-
lations between entities is a tremendous effort and would bias the evaluation
results if single matchers does not consider specific relation types. Besides com-
mon equivalence relations, the OAEI alignment allows to define all the basic

26

alignment relations mentioned in 2 with the following extensions, disjunction
and HasInstance, InstanceOf [38]. Since this alignment format is based on the
Alignment API, all available relations are additionally accessible through a fully
qualified class name of the relation implementation (e.g. = is equivalent to
fr.inrialpes.exmo.align.impl.rel.EquivRelation).

3.3 Matching Techniques

Since detecting alignments between ontologies manually is a very tedious, ineffective
and error-prone task, especially if the ontologies contain a large amount of entities,
several different mapping strategies have been explored over the last years. They can
basically be divided into four main method categories [32]:

terminological/lexical: Terminological or lexical matching techniques (using for in-
stance string-mapping, string-similarity, or thesauri to match entity names) de-
tect mappings based on similarities in entity names or entity descriptions (e.g.
labels, comments). They are one of the most common and most researched
matching techniques in terms of schema mapping. Lexical matching techniques
perform well on many typical use cases and the majority of ontology mapping
tools make use of them since they are mostly easy to implement.

structural: Like terminological techniques, this family of matching techniques is very
common in the domain of ontology matchers. They try to align entities, based
on their structural similarities (analyzing e.g. the taxonomy graph implied by a
subclass hierarchy, etc.).

semantic: We call matching techniques semantic-based if they are using reasoning
techniques to interpret complex OWL axioms and prevent logically inconsistent
alignments to get accepted. Or if they use other approaches to measure the
semantic equality of entities like background information or generic/domain
specific rules.

extensional: This category of matching techniques use individuals of concepts to
align ontologies. By using the knowledge of already matched properties of sets
of individuals, they aim to find possible similarities between concepts.

As addition to the above mentioned techniques, machine-learning based Mapping
strategies [25,27] can be used to decide whether or not a matching technique performs
well on specific datasets. Such strategies train classifiers for deciding whether align-
ments from specific strategies get accepted or not based on available training sets. The
necessity of available and representative training sets is one of the drawbacks of that

27

approach. Among the matchers competing in recent OAEI contests only one state-of-
the-art ontology matcher (YAM++) uses machine-learning for its mapping tasks [64].

28

Figure 3.2: Different kinds of matching techniques [32]

29

In Figure 3.2, a schematic overview of the above mentioned basic matching tech-
niques is illustrated which are broken down into more elementary matching tech-
niques [32] and can be read in a top-down or bottom-up fashion.

top-down: When reading the classification from the top, the techniques are divided
by the way of processing the input data. Element-level techniques take entities
one-by-one analyzing their attributes and try to find similarities based on in-
dividual abilities. Structure-level techniques on the other hand, find mappings
based on the relations between entities. Both divide their input data into syntac-
tic techniques which are based on static rules and into external techniques which
use e.g. external resources for supporting the mapping process. Structural tech-
niques furthermore can use semantic techniques which try to exploit semantic
relations between entities to find similarities.

bottom-up: Starting from the bottom, the techniques are divided into the four basic
mapping categories, mentioned before. Table 3.1 illustrates which techniques are
used in some state-of-the-art ontology matchers.

Ontology terminological structure semantic instance/extensional
Matcher based based based based

Anchor-Flood 3 3 7 7

Aroma 3 3 3 7

AUTOMSv2 3 3 7 7

Eff2Match 3 3 3 7

FalconAO 3 3 3 7

Hertuda 3 7 7 7

HotMatch 3 3 3 7

Lily 3 3 3 7

LogMap2 3 3 3 3

YAM++ 3 3 3 7

Table 3.1: List of state-of-the-art matchers and their used techniques

3.3.1 Terminological Techniques

The simplest family of matching techniques are the terminological ones. These tech-
niques aim to tackle the terminological heterogeneity among different entities and try
to find mappings between them even if they are expressed using different languages
or if synonyms, homonyms and acronyms were used.

terminological techniques can be divided into string-based techniques which use
available lexical information of entities defined in the ontology to match concepts by
string comparison using distance metrics like Jaro-Winkler [84], Levenshtein [56] and

30

Jaccard; and language-based ones which try to improve the quality of terminological
matchers by preprocessing the available lexical information using techniques, such as:

- tokenization: breaking a single string up into words (cf. Figure 3.3)

Figure 3.3: Splitting meta-data into meta and data

- lemmatization: reducing different forms of words to a single canonical form (cf.
Figure 3.4)

Figure 3.4: Normalizing words into one consistent form

- morphology: uses rules that hold in a certain language to break down complex
words (cf. Figure 3.5)

Figure 3.5: Splitting words based on language specific rules

- word elimination: redundant words that add little or no semantics, often called
„stop words“, are filtered out in the comparison process (cf. Figure 3.6)

31

Figure 3.6: Eliminating stop words it, is, and

Unfortunately basic terminological techniques have problems, when dealing with
special linguistic characteristics like homonyms, acronyms or synonyms.

homonyms Homonyms are words having the same spelling and/or same pronuncia-
tion but different meanings (cf. Figure 3.7)

Figure 3.7: ant and aunt may have a high string similarity but describe different
concepts

acronyms Acronyms are abbreviations of phrases or words, forming a new word (cf.
Figure 3.8)

Figure 3.8: The acronym NASA and its expanded form have a very small string
similarity but the same meaning

synonyms Synonyms are words having the same meaning (cf. Figure 3.9)

Figure 3.9: strong and solid both describe the same ability

To be able to deal with these phenomena, additional external linguistic resources
like WordNet [61] or other thesauri have to be used to support the mapping process.

32

3.3.2 Structural Techniques

Following the definition of Euzenat [32], structural techniques can be split into two
types of matching approaches, namely:

internal structure approach: Such an approach uses e.g. the set of properties of classes
to find similarities between them. If the datatype, range and/or cardinalities of
those properties correspond, it is more likely that the respective attached classes
will correspond too as shown in Figure 3.10.

Figure 3.10: The properties of both classes are similar, resulting in a possible mapping
between both concepts.

relational structure approach: By representing the ontology as a graph it is possi-
ble to find mappings between concepts by comparing their relations, which are
represented as edges, to other concepts. Relying on such a relational structure
approach, concepts which have a similar relative position in an ontology, e.g. by
comparing their subClassOf edges, are considered to be similar. An example is
shown in Figure 3.11

Figure 3.11: The relational structure of both classes are similar, resulting in a possible
mapping between both concepts.

33

Structural techniques are often built upon other mapping strategies like termino-
logical ones, since structure-based techniques require previously deduced mappings
to derive additional relations between entities which is exemplified in Figure 3.10, the
initial mappings between the properties in this example might have been achieved by
using string similarity measures.

3.3.3 Extensional Techniques

The approaches within this category use knowledge about the sets of individuals that
belong to concepts and relations for aligning ontologies. Individuals or extensional in-
formation depend on the conceptual part of the ontology and can be used to precisely
match classes since they are less prone to variations of respective ontologies [32].

If the to be matched ontologies have similar extension information, i.e. individuals
which are used in both ontologies, the usage of instance-based matching techniques
offers an easy way to find similarities between classes. An example of a possible map-
ping between two classes which share the exact same set of individuals and therefore
can be considered to be similar, is illustrated in Figure 3.12.

But even if classes do not share a complete set of individuals with each other,
instance-based matching techniques can be used to define an initial set of alignment
anchors, which propose possible alignments to other mapping strategies.

Figure 3.12: Two classes sharing the exact same set of individuals are considered to
be similar

According to the matching technique classification shown in Figure 3.2, extensional
techniques can be divided into:

Data analysis and statistical techniques: These techniques require a sample of a pop-
ulation (individuals) in order to be able to find regularities and discrepancies
between them [32]. If such coherences were found, respective distances between
those datasets can be computed e.g. using the Jaccard distance.

34

Language-based techniques: Once again, by identifying the structure of individuals
of classes and extracting the literals of specific properties and comparing them
with language-based techniques, additional similarities between properties and
classes can be derived.

Figure 3.13: Using string similarity between elements of individuals to align classes.

Although instance-based matching techniques offer promising results, especially
when used as support for other mapping strategies, they are often omitted as addi-
tional mapping strategy since extensional information is often!vote 1 not or just barely
available and similarities between concepts detected by instance-based methods are
only described by the degree of their relatedness to each other instead of a concrete
relation definition [75]. In the present of a large set of extensional knowledge,

3.3.4 Semantic-based Techniques

The use of semantic-based matching techniques distinguishes ontology mapping from
conceptual schema mapping, since semantic methods take advantage of the model
theoretic semantics encoded in the ontologies. These semantics provide rules for in-
terpreting the ontologies and furthermore provide the possibility to derive additional
knowledge (relations, rules) between concepts in the ontologies [32].

These techniques can either use domain specific data like upper level or domain
specific ontologies (WordNet [61, 69], SUMO [66], FMA [73]) or model-based tech-
niques like reasoners (Pellet [68], FaCT++ [82], HermiT [76], ELK [53], TrOWL [81])
for refining alignment results or deducing new relations between entities of the on-
tologies.

35

We leave the domain of animals for a moment to illustrate the importance of
semantic-based matching techniques for enhancing alignment results, which is de-
picted in Figure 3.14.

Figure 3.14: Finding mappings using domain specific background knowledge.

In this example, four classes from anatomy related ontologies, one describing the
human anatomy and one describing the mouse anatomy, should be matched. Unfor-
tunately in both ontologies there only exist class definitions and there obviously exists
no string similarity between their entity names. In this particular case some matching
techniques, e.g. terminological ones, would not be able to find any mappings between
those classes.

But since semantic-based matching techniques allow the usage of external knowl-
edge bases for supporting the mapping process, a domain related repository like the
unified medical language system (UMLS) [7] can be used to detect similarities between
those classes. A matching technique could exemplarily query that repository for the
available entity names and check whether they describe the same anatomy part or not.

36

Figure 3.15: Finding inconsistencies using reasoning techniques.

Another example of using semantic-based techniques for refining alignment results
is shown in Figure 3.15. An alignment between the classes A1 and A2 as well as one
between C1 and B2 were proposed by a matching technique. Unfortunately both sim-
ilarities cannot coexist since A1 is a subclass of B1 and A2 is a subclass of B2, together
with the disjointness between B1 and C1 it is not possible, that both similarities are
valid at the same time without producing inconsistency within the ontologies. Such
inconsistencies can easily detected using OWL reasoners.

Furthermore it is possible to use OWL reasoners for detecting instance alignments
between two ontologies. Considering the triples shown in the two tables underneath
and knowing that :supervisedBy is considered as owl:FunctionalProperty
and is the owl:inverseOf :supervises, together with the instance alignment :
s1 owl:sameAs :s2 an OWL reasoner could infer that the triple :p1 owl:sameAs
:p2 holds, too.

Triples in O1

subject predicate object

:p1 rdf:type :Professor
:s1 rdf:type :Student
:s1 :supervisedBy :p1

Triples in O2

subject predicate object

:p2 :supervises :s2

Approaches for distributed or „loosely-coupled“ reasoning of ontologies along
with mappings are mentioned in [86]. Here, mappings are described in the form

37

of e.g. so-called bridge rules, rather than as native OWL axioms.

38

CHAPTER 4
Selected Ontology Matchers

In the present chapter we will briefly discuss several existing off-the-shelf ontology
matchers, which we will subsequently combine. The six used ontology matchers are
listed in Table 4.1 together with their implemented matching techniques.

We have chosen those six matchers primarily to ensure a heterogeneous set of
ontology matchers but also for the sake of simplicity in terms of integrating them into
one single ontology matcher, since many off-the-shelf matchers use the same internal
Java libraries but often in different versions. Loading the same library several times,
each time in another version into the build path of our project was unfortunately not
realizable.

Ontology terminological structure semantic instance
Matcher based based based based

Anchor-Flood 3 3 7 7

Aroma 3 3 3 7

Eff2Match 3 3 3 7

Hertuda 3 7 7 7

HotMatch 3 3 3 7

LogMap2 3 3 3 3

Table 4.1: List of used off-the-shelf ontology matchers and their used techniques

39

4.1 Anchor-Flood

Ontology terminological structure semantic instance
Matcher based based based based

Anchor-Flood 3 3 7 7

Table 4.2: Matching techniques implemented in Anchor-Flood

4.1.1 Matcher Description

Figure 4.1: Anchor-Floods internal mapping process [46]

The mapping process of Anchor-Flood [46] as depicted in Figure 4.1, starts with an
alignment (also called anchor) taken from an alignment set A and inspect its neighbor-
hood (sub-/superconcepts, siblings and properties) for possible additional alignments.
Since the size of such neighborhood adversely affects the runtime of Anchor-Flood, it
is regulated by taking semantic similarity, retrieved by semantic matching techniques
in terms of intrinsic information content, into account. The local alignment process it-
self is based on structural [8,39,40] and terminological [33,80,84] matching techniques.

If additional alignments were found, they get included into anchor set A and serve
as future anchors for further processing. If no further anchors were left, the mapping
process stops and returns the final set of alignments.

Although Anchor-Floods last participation in the OAEI campaign was in 2009, we
used it for our matching approach due to its fast runtime and overall mapping perfor-

40

mance1.

4.2 AROMA

Ontology terminological structure semantic instance
Matcher based based based based

Aroma 3 3 3 7

Table 4.3: Matching techniques implemented in AROMA

4.2.1 Matcher Description

In contrast to the majority of current state-of-the-art ontology matchers, AROMA [18]
tries to find subsumption relations in addition to equivalence between entities (classes
or properties) of two ontologies. Its approach relies on the assumption that:

An entity A will be more specific than or equivalent to an entity B if the vocabulary (i.e.
terms and also data) used to describe A, its descendants, and its instances tends to be included
in that of B. [18]

AROMAs Mapping process is divided into two main steps:

Term or datasets extraction. In this step, AROMA creates sets of relevant terms and
data values for each entity in the to be matched ontologies by extracting the
vocabulary of entities from their labels, individual values and comments.

Discovery of subsumption relations. In the second step, AROMA tries to discover
subsumption relations by evaluating association rules between their respective
relevant term- or datasets.

1http://oaei.ontologymapping.org/2009/results/

41

4.3 Eff2Match

Ontology terminological structure semantic instance
Matcher based based based based

Eff2Match 3 3 3 7

Table 4.4: Matching techniques implemented in Eff2Match

4.3.1 Matcher Description

Eff2Match [14] (Effective and Efficient ontology matcher) was developed by the Nanyang
Technological University2 and uses dynamic candidate reduction techniques for in-
creasing efficiency as well as providing a high scalability. Eff2Match can be divided
into four main stages which are depicted in Figure 4.2 and explained in the following:

Anchor Generation. In this stage, initial anchors are generated by using a string map-
ping technique. Names and labels of entities in the target ontology get normal-
ized by removing delimiters and lower case conversion and afterwards popu-
lated into a hash table to be able to easily map them to their corresponding
entities.

Candidate Generation. All entities which have not been matched in the previous
stage are now enumerated using a Vector Space Model (VSM) [74] approach.
More precisely, for each concept, VSM vectors for names, labels and comments
get created in the concept itself and its ancestors and descendants. For the prop-
erties, these vectors get created in the property itself, as well as in its domain
and range concepts.

Anchor Expansion. In this stage, additional entity mappings are detected by com-
paring source entities with their previous generated candidate entities by using
terminological-based matching techniques.

Iterative Boosting. In the last step of the mapping process, an iterative boosting pro-
cess is used to detect additional mappings using the anchor set Aexp by iteratively
mapping concepts which have not already been matched with their respective
candidates.

2http://ntu.edu.sg

42

Figure 4.2: Eff2Matchs algorithm flow [14]

43

4.4 Hertuda

Ontology terminological structure semantic instance
Matcher based based based based

Hertuda 3 7 7 7

Table 4.5: Matching techniques implemented in Hertuda

4.4.1 Matcher Description

Figure 4.3: Hertudas mapping algorithm composition [48]

Hertuda [48] was developed by the Knowledge Engineering Group of Darmstadt
University3 and relies on a simple element based matcher with string comparison as
shown in Figure 4.3. It only computes homogeneous mappings, i.e. class to class,
datatype property to datatype property and object property to object property.

It iterates over all entities in the to be matched ontologies and compares them with
each other using string comparison. This is done by extracting the URI, label and
comment of each entity, comparing them with the respective opposite of other entities,
calculating their similarities and only accepting an alignment if it exceeds a previous
defined confidence threshold.

Before comparing the different elements of entities, Hertuda performs a prepro-
cessing step. It tokenizes all elements, i.e. splits all terms with underscores, hyphens
or which are written in camel case into two tokens and converts them into lower
case. Therefore has_Name, has name, has-Name and hasName all result into the
same tokens, fhasg and fnameg. For calculating the similarities a similarity matrix is
computed. Unfortunately this approach of excessively iterating over all entities, leads
to an enormous runtime increase and internal memory load if large ontologies were
matched.

3http://www.ke.tu-darmstadt.de/

44

4.5 HotMatch

Ontology terminological structure semantic instance
Matcher based based based based

HotMatch 3 3 3 7

Table 4.6: Matching techniques implemented in HotMatch

4.5.1 Matcher Description

Figure 4.4: Hotmatchs mapping algorithm composition [17]

Like Hertuda, Hotmatch [17] was developed by the Knowledge Engineering Group
of Darmstadt University. It basically consists of several mapping algorithms, which
are executed sequentially during a mapping task and followed by some filters which
aim to refine the mapping results and reduce the number of false-positive mappings.

In the following we will briefly describe the different mapping algorithms and
filters of Hotmatch (cf. Figure 4.4).

ElementStringMatcher is exactly the same mapping algorithm as implemented in
Hertuda. A string-based, element-level matcher which iterates over entities of
ontologies and computes similarities of their URIs, labels and comments.

DomainRange Matcher is similar to the previous graph-based matcher, but instead of
using class mappings as input, it uses property alignments. For every property
mapping found by previous mapping algorithms, the property’s domain and
range are also mapped, inheriting the property mapping’s confidence value.

FlowerMatcher is combining the previous mentioned approaches and extends them
to the neighborhood of classes, i.e. their sub-/superclasses and properties, to
determine similarity between classes.

GraphbasedUseClassMatcher is a graph-based matcher and tries to find alignments
between properties. Therefore it takes class mappings found by previous algo-
rithms as input and iterates over all properties, checking whether their domains

45

and ranges are equals or not. If so, the confidence of the new mapping between
the two properties is the mean value between the confidence of the respective
domain and range mappings.

OriginalHostsFilter ensures that only mappings which directly align entities of the
two ontologies were accepted for the final alignment set.

DatatypeRangeFilter removes datatype property mappings, where the matched datatype
properties have different datatypes.

CardinalityFilter enforces 1-to-1 alignments by removing multiple mappings of the
same entity, only keeping the alignment with the highest confidence value.

ConfidenceFilter discards all alignments which are not able to exceed a specific con-
fidence value threshold.

46

4.6 LogMap2

Ontology terminological structure semantic instance
Matcher based based based based

LogMap2 3 3 3 3

Table 4.7: Matching techniques implemented in LogMap2

4.6.1 Matcher Description

We now provide an overview of the main steps performed by LogMap2 [51], which are
schematically represented in Figure 4.5

Figure 4.5: LogMap2s mapping workflow [51]

Lexical indexation. LogMap2 tries to index labels, as well as their lexical variations,
of classes in both ontologies and therefore allows the enrichment of those indices
by using a external lexicon like WordNet.

Structural indexation. An interval labeling schema [1, 13, 63] is used by LogMap2 to
represent the extended class hierarchy of both input ontologies. The extended
hierarchies are computed by either using structural heuristics or a DL reasoner.

Computation of initial anchor mappings. By intersecting the lexical indices of both
input ontologies, LogMap2 computes an initial set of anchor mappings, which
serve as start for additional alignments.

47

Mapping repair and discovery. This step represents the major part of LogMap2’s map-
ping process and consists of an iterative process which combines repair and dis-
covery algorithms. For the repair part, LogMap2 uses a reasoning algorithm
to detect unsatisfiable classes regarding the two input ontologies and mappings
found so far and tries to repair them by using a greedy diagnosis algorithm [51].
In the discovery step, LogMap2 relies on the principle of locality, i.e. if there ex-
ists an alignment between two classes C1 and C2, then the classes semantically
related to C1 and those of C2 are very likely to be mapped too.

If no further knowledge was created in the discovery part, the process stops and
returns a set of alignments which are very likely to be clean, i.e. do not produce
unsatisfiable assumptions.

48

CHAPTER 5
Mix’n’Match: An Approach for
Combining Ontology Matchers

In this chapter, we present our combined approach to ontology mapping, which we
call Mix’n’Match. Our goal is an approach that combines existing off-the-shelf ontol-
ogy matchers with all their strengths and weaknesses in a unified manner. Instead
of finding the one “best off-the-shelf matcher for the problem at hand” we aim at
combining matcher results of different matchers.

Intuitively, the idea of Mix’n’Match is very simple: starting from an empty set of
alignments, we aim at iteratively supporting in each round, matchers with the com-
bined results of other matchers found in previous rounds, somehow aggregating the
results of a heterogeneous set of ontology matchers.

A schematic overview of the overall Mix’n’Match framework is shown in Figure 5.1.

Figure 5.1: Framework of Mix’n’Match

49

In the following we will describe each component of our framework in more detail,
discuss alternative solution approaches and explain why we have decided to imple-
ment specific strategies. In the end of this chapter we will discuss the advantages of
an anytime behavior for our matching approach and illustrate its feasibility based on
a motivating example.

5.1 Initial Matching & Round Matching

The core idea of our matching approach is the iterative execution of several off-
the-shelf ontology matchers and the aggregation of their mapping results. Since
Mix’n’Match is not restricted to a specific amount of ontology matchers, it can ba-
sically be extended by an arbitrary amount of individual ontology matchers in order
to produce even more accurate alignment results. The downside of this feature is
the increasing runtime which is necessary in order to complete the mapping task, the
more matchers are used.

In this section we will describe three different matcher execution approaches and
discuss their advantages and disadvantages in more detail.

5.1.1 Running Ontology Matchers in a Sequential Way

Figure 5.2: Running the individual ontology matchers sequentially.

Our first approach, which we have implemented, was the sequential execution of the
ontology matchers and is illustrated in Figure 5.2. In this simple execution strategy
an ontology matcher starts its mapping process if the previous one has finished its
mapping task.

Advantages: It is a very simple and easy to implement execution approach and on-
tology matchers which need to access external resources like WordNet do not

50

interfere each other.1

Disadvantages: It is the most time consuming execution approach discussed in this
thesis, since the overall runtime is basically an aggregate of every individual on-
tology matcher runtime. Furthermore the single off-the-shelf ontology matchers
are independent in their mapping task so they would not have to wait on each
others results, making a sequential execution of matchers even more unfeasible.

5.1.2 Parallel Execution of Ontology Matchers

Figure 5.3: Using a parallel execution approach.

The current implemented ontology matcher execution approach within Mix’n’Match
is a parallel one as depicted in Figure 5.3. In this execution strategy the individual
matchers are started simultaneously using multi-threading.

Advantages: In contrast to the sequential execution approach, this strategy needs way
less time to complete its overall mapping task, primarily because the single on-
tology matchers won’t have to wait on each others completion to start their map-
ping process.

Disadvantages: It is not as easy to implement like the previous approach and heav-
ily relies on the characteristics of the evaluation machine (the more cores the
more parallel threads). Another drawback of this approach, which we have dis-
covered during our evaluations, is the interference among individual matchers

1Interfering in terms of overwriting temporary changes performed in the external resource

51

when using external resources. If two or more matchers use the same external
resource (e.g. WordNet) they sometimes crash due the simultaneously access on
that particular external resource based on our implementation strategy.

Although we had to remove some matchers from our matching approach, caused
by this type of errors, we have chosen this execution approach over the sequential
one due its significant runtime decrease.

5.1.3 Performing a Distributed Execution of Ontology Matchers

Figure 5.4: Transferring the matchers into the cloud and running them in a distributed
manner.

This last execution strategy is probably the most promising one and could finally solve
the runtime problems of Mix’n’Match, because even with the multi-threading approach
proposed above we were not able to decrease the runtime of our approach to that of
the slowest used off-the-shelf ontology matcher (cf. Figure 5.4). In future versions of
Mix’n’Match, we will evaluate this strategy in more detail.

Advantages: As mentioned above, the hypothesis is that we would be able to decrease
the runtime of Mix’n’Match to that of the slowest used off-the-shelf matcher by
using a distributed execution approach. Furthermore we could solve the inter-
ference issues mentioned above as well as some build-path library dependency
issues, which are caused by the usage of different versions of the same library by
some ontology matchers since every matcher would run in its own environment
not being able to interfere with any others resources but its own.

52

Disadvantages: A possible disadvantage of this approach is the exploration of a suit-
able distribution solution. Strategies like Map&Reduce [19], which we thought
of in an early brainstorming phase simply does not fit our needs.

5.2 Alignment Selection

In each round we need to decide which alignments to keep and which ones to ignore
from the union of new alignments found by all considered matchers. This decision
is very crucial since we encode accepted alignments into the ontologies as additional
knowledge and rerun the whole mapping process again. If we could not ensure a
high precision of the accepted alignments, we would encode wrong knowledge into
the ontologies, which would probably lead to even more wrong new alignments.

In this section we will describe four different alignment selection methods and
discuss their strengths, weaknesses and our choice in more detail.

5.2.1 Performing a Majority Vote for Selecting Alignments

Figure 5.5: Accepting only those alignments, which were found by the majority of
the ontology matchers.

An interestingly easy but effective selection approach is a majority vote (cf. Fig-
ure 5.5). Using such a voting strategy for alignment selection means, that only those
alignments were accepted which were found by a specific number (i.e. the majority) of
the used off-the-shelf ontology matchers. Other thresholds rather than using the ma-
jority of ontology matchers, i.e., accepting mappings confirmed by a certain number n
of matchers are also feasible and have to be evaluated for the specific mapping task at
hand. We have used specifically n = m/2 (where m is the amount of matchers in the

53

matcher portfolio) and n = 1 (i.e. accept all mappings found by any matcher), for fur-
ther Details see Section 6.2 below. This strategy is currently responsible for selecting
alignments in Mix’n’Match.

Advantages: The probably biggest advantage of this approach, besides its simplic-
ity, is the high precision of the accepted alignments. The more heterogeneous
matchers are used within the mapping process, the smaller are the odds that
alignments found by the majority of those matchers are wrong. Additionally
this approach can be executed in a complete unsupervised way, offering the pos-
sibility to run a completely automatic mapping process. Furthermore the results
of single off-the-shelf matchers which produce very bad results on specific types
of datasets are not taken into account, but . . .

Disadvantages: . . . this holds for the results of single outstanding ontology matchers,
which find alignments no other matcher was able to detect, too. Additionally the
high precision of the found alignments mentioned above, usually comes in hand
with a small recall of those mappings which we partially are able to increase
with our iterative execution approach.

5.2.2 Using a Weighted Majority Vote Approach

Figure 5.6: Weighting ontology matchers based on their individual performance.

To tackle one of the major disadvantages of the simple majority vote approach
mentioned above, a weighted majority vote strategy could be used(cf. Figure 5.6).
Using this strategy, single matchers get weighted based on background knowledge

54

(i.e. their performance on specific mapping tasks) and therefore have different impact
on the mapping scenario at hand. Possible strategies of such weighting approaches
are proposed in [45] and [15].

Advantages: Like the normal majority vote, this adapted version could produce a very
highly precise alignment set and additionally could be able to take the results of
single outstanding ontology matchers into account.

Disadvantages: Nevertheless such a weighting of ontology matchers based on the
characteristics of the to be matched datasets requires some background knowl-
edge, which is usually not able to be gathered in a fully automatic and unsu-
pervised way. In order to preserve these abilities the authors of [45] and [15]
have proposed some solution strategies which have to be evaluated and tested
in future versions of Mix’n’Match.

5.2.3 Train a Machine Learning Classifier for Alignment Selection

Figure 5.7: Training a machine learning classifier which selects alignments.

Another promising strategy for selecting alignments is using machine learning, as
proposed in [25, 26, 28, 29] and exemplified in Figure 5.7. Where the idea is to train a
classifier, which then has to decide whether or not an alignment of a specific matcher
gets accepted or not.

Advantages: In difference to the weighted majority vote approach, it could be possi-
ble to train some sort of universal classifier which is able to classify alignments
of any kind of datasets. This could lead to better results than the previous ap-
proaches, if suitable training data is available.

Disadvantages: Of course the necessity of a sufficiently dimensioned set of training
data makes it difficult to run this selection approach in a completely automatic
way. Furthermore the selection of an accurate feature set is crucial and difficult
since it has to fit the characteristics of the to be matched ontologies as shown in
[28], where other features than just the confidence value like in [27, 58], were
chosen and produced way better results.

55

5.2.4 Involving Users to Support the Selection Process

Figure 5.8: Involving domain experts into the selection process.

This strategy is probably the most accurate and precise one among all discussed
approaches (cf. Figure 5.8). The main working principle is simple, it collects all align-
ments produced by the individual ontology matchers and then let a human domain
expert decide whether or not an alignment gets accepted.

Some research was dedicated to involving users into the mapping process but
mostly focused on design-time matcher interaction [23, 67].

Advantages: As mentioned above, on the one hand this approach - under the as-
sumption that a human domain expert knows exactly which alignments are true
- would produce the alignment set with the highest precision, . . .

Disadvantages: . . . but on the other hand is unfeasible for large ontology tasks, where
an user would have to check thousands of alignments. Additionally the imple-
mentation and representation of such an user interaction module is quite difficult
and requires a lot of experience in user interaction design.

Generally speaking, this approach might be an effective extension to other selection
approaches, where alignments which barely won’t be accepted get passed to the user
for further processing as already implemented in [51], but should not be used as only
selection approach where alignments get passed to without being filtered.

56

5.3 Enriching Ontologies with Additional Knowledge

Figure 5.9: Mappings used to exemplify the enrichment strategies.

In order to be able to use additional knowledge in terms of input alignments for
our mapping process, all used ontology matchers would have to support the import of
such input alignments, which was unfortunately only supported by Anchor-Flood [46].
Therefore we needed to find another way to “inject” alignments in a non-obtrusive
way2 into the mapping process.

5.3.1 Native OWL Axioms

Adding support for reference alignments (without touching the matchers’ source code)
was not straightforward. Our first idea was to add reference alignments explic-
itly in the form of OWL equivalences into the ontologies, using properties owl:
equivalentClass (for mapping concepts), owl:equivalentProperty (for map-
ping properties), or owl:sameAs (for mapping individuals).

An example implementation of the mappings depicted in Figure 5.9 is shown in
Listing 1 and respectively Figure 5.10 where the two equivalence properties are already
included into O1.

2In order to keep our framework general and extensible, we do not want to modify the code of the
ontology matchers or interfere in some other tool-specific way with the matchers used in our framework.

57

Figure 5.10: Stating the equality between entities via OWL axioms in one ontology.

Example 1. Implementing this strategy would mean to simply add to both ontologies
O1 and O2 e.g. the following OWL statement after the first mapping round (and
hoping it would be considered for subsequent reruns of the considered matchers):

. . .
@p r e f i x : <ht tp :// ontology . org/onto1/> .
@p r e f i x onto2 : <http :// ontology . org/onto2/> .
. . .
: Teacher a owl : Class ;

owl : equiva lentClass onto2 : P ro f es so r .

: name a owl : DatatypeProperty ;
r d f s : domain : Teacher ; r d f s : range xsd : s t r i n g .
owl : equivalentProperty onto2 : name .

onto2 : name a owl : DatatypeProperty .

onto2 : Pr o f es sor a owl : Class .
. . .

Advantages: Using OWL axioms for stating the equality between entities is the most

58

simple and obvious approach and furthermore supports the definition of one-to-
many and many-to-many alignments as well as complex mappings.

Disadvantages: However, this approach to “emulating” reference alignments proved
unsatisfactory, since we would be referring in O1 to entities from O2 and vice
versa.

Firstly, such referring would need additional definitions (owl:Class, owl:
DatatypeProperty, or owl:ObjectProperty of the referred entities in the
respective other ontology of all aligned entities, since otherwise the such en-
riched ontology would no longer satisfy the syntactic restrictions of OWL DL:
obviously, this is inconvenient, because it would lead to significant overhead
essentially redefining already existing entities.

Secondly, even if we would have redefined the equal entities, further map-
ping rounds would always align the duplicate entities as preliminary tests have
shown.

59

5.3.2 URI Replacement

Figure 5.11: Replacing the URIs of equal entities by a normalized one.

Somewhat surprisingly, an alternative, much simpler approach to emulating ref-
erence alignments proved to be much more effective than adding OWL equivalence
axioms: instead of “axiomatizing” alignments using OWL, we just created for each
reference alignment a combined new URI for the matched entities, which was then
replaced within both O1 and O2 as illustrated in Figure 5.11 and Listing 5.1.

Example 2. Based on a possible found alignment in the previous round we modify
both ontologies by replacing the URIs of the two classes Teacher and Professor as well
as the two properties name and name, assuming alignments between these entities were
found, by unified ones. <http://example.org/MixMatch/Teacher__Professor> and
<http://example.org/MixMatch/name__name>, cf. Listing 5.1

Listing 5.1: Ontology O1 after enrichment

. . .
@p r e f i x : <ht tp :// ontology . org/onto1/> .
@p r e f i x mm: <http :// example . org/MixMatch/> .
. . .

mm: Teacher__Professor a owl : Class .

mm: name__name a owl : DatatypeProperty ;
r d f s : domain mm: Teacher_Professor ; r d f s : range xsd : s t r i n g .

. . .

Advantages: This approach is quite easy to realize and produces the smallest over-
head of all proposed enrichment methods since it does not add additional axioms
to the ontologies. Additionally, by replacing the URIs from matched entities by
an unified one, it states them as equal in the sense of URIs as global identifiers
in the World Wide Web.

60

Disadvantages: Because this strategy directly replaces the URIs of two matched enti-
ties it is restricted to one-to-one mappings and not able to detect one-to-many or
many-to-many alignments. We will discuss a possible solution approach for this
drawback in Chapter 8.

Nevertheless many matchers seem to ignore URIs as unique identifiers of entities,
i.e. they still would consider the class <http://ontology.org/onto1/Teacher> mentioned in
ontology O1 different from the same class mentioned in O2 in the input. In fact, only
YAM++ seems to recognize URIs as really unique: we verified this experimentally by
normalizing the URIs of completely unrelated entities; if the matchers produced align-
ments of those entities and omitted probably correct ones in favor of these incorrect
alignments, then we considered this matcher as treating URIs as really unique.

But despite the above-mentioned fact that most matchers seem to ignore URIs as
unique identifiers of entities, our experiments showed that URI replacement was ef-
fective in boosting the confidence in such asserted alignments in almost all considered
matchers.3

5.3.3 Entity Annotations

Figure 5.12: Adding annotations to matched entities, referring to their counterpart.

3Deliberately leaving out internal details of the respective matchers, we may only conjecture here
that other features like string-mapping were triggered after reference alignments being “asserted” by
URI replacement, which consequently lead to further new alignments being found in subsequent calls.

61

Using this strategy, we would simply add several annotations in the form of rdfs:
label, rdfs:comment and rdfs:seeAlso tags to the matched entities and refer to
their corresponding counterpart which is exemplified in Figure 5.12 and Listing 5.2

Example 3. Based on a possible found alignment in the previous round we modify
both ontologies by adding annotations to all entities to whom alignments were found,
referring to their mapping counterparts.

Listing 5.2: Ontology O1 after enrichment
. . .

@p r e f i x : <ht tp :// ontology . org/onto1/> .
. . .
: Teacher a owl : Class ;

r d f s : l a b e l " onto2 : Pr o f es sor " ;
r d f s : comment " onto2 : Pr o f es sor " ;
r d f s : seeAlso " onto2 : Pr o f es sor " .

: name a owl : DatatypeProperty ;
r d f s : domain : Teacher ; r d f s : range xsd : s t r i n g ;
r d f s : l a b e l " onto2 : name" ;
r d f s : comment " onto2 : name" ;
r d f s : seeAlso " onto2 : name" .

. . .

Advantages: Once again, this approach is quite easy to implement and understand
and since it just uses annotations for referring to the matched counterparts there
is no necessity for redefining matched entities like when using OWL equality
axioms.

Disadvantages: This strategy of using annotations for encoding alignments into the
ontologies heavily relies on the nature of the used ontology matchers. If those
matchers do not take annotations into consideration for their mapping task, this
approach is completely useless.

We assume that this strategy could primarily be used as addition to other en-
richment strategies, since it is completely independent from any other approach but
useless if the majority of matchers does not consider annotations in their mapping
process.

5.4 Anytime Behavior in Mix’n’Match

Based on the nature of our matching approach of running several off-the-shelf match-
ers in an iterative way, Mix’n’Matchs runtime performance is quite bad in comparison

62

to other state of the art ontology matchers, especially by mapping large ontologies (cf.
Evaluation Chapter 6). Its performance becomes even worse, the more matchers are
called and executed in its iterative process.

To overcome this issue or at least to reduce its impact on the mapping results, we
implemented the possibility to interrupt the mapping process at any time and still
being able to provide mapping results. This behavior is called Anytime Behavior and
was initially used in the domain of search algorithms to offer them the capability to
trade runtime for quality of results [20, 85].

Although this strategy sounds quite simple, it had to be harmonized with our ma-
jority vote alignment selection approach, which we realized by storing all intermediate
mapping results of all matchers and keeping track of the number of ontology matchers
which have found these alignments over the last mapping rounds.

An example scenario which illustrates the feasibility of this approach is illustrated
in Figure 5.13.

Figure 5.13: Exemplary illustration of anytime behavior in Mix’n’Match

Four out of six matchers had already finished their mapping tasks and added their
votes to the intermediate mapping results4 at the time the interruption took place,
which results in the acceptance of alignments B,D and E since they now fulfill the
necessary majority constraint. If we would not consider these intermediate round re-

4Of course they only voted for those alignments, which they have not already voted for.

63

sults, alignments B and D were not accepted for the final alignment set, although they
would have passed the majority vote after the current mapping round had finished.

64

CHAPTER 6
Empirical Evaluation of

Mix’n’Match

In the following chapter we will discuss results gathered by evaluating our approach
on various OAEI evaluation tracks in comparison to selected ontology matchers and
show that we were either able to outperform them in terms of F-measure or at least be
competitive with the respective top-performing ontology matchers.

6.1 Preliminaries

6.1.1 Evaluation System

The system specifications of the machine that has been used to perform evaluations
are listed in Table 6.1. Note that this machine has specifications similar to those of a
common workstation and was not optimized for evaluation purpose.

System Specifications

Processor Core 2 Duo E6850
Processor Details 3.00 GHz (4 MB L2, 1333 MHz FSB)
RAM 4 GB
Operating System Windows 7 64 Bit

Table 6.1: System specifications of the evaluation machine

6.1.2 Evaluation Approach

For our evaluations we ran each ontology matcher independently through Eclipse on
the respective datasets and gathered their runtime as well as calculated the precision,

65

recall and F-measure values of their produced alignments by using provided reference
alignments.

In order to be able to understand these evaluation metrics, we briefly discuss them
in the next section.

6.1.3 Precision, Recall and F-Measure

We have measured the performance of each ontology matcher by the precision, recall
and F-measure value of its produced alignments. These metrics are common for infor-
mation retrieval tasks and were firstly mentioned in [71] before they got adapted for
ontology mapping tasks in [22].

Basically they are measuring the completeness and correctness of produced align-
ments by comparing them with a set of available reference alignments.

6.1.3.1 Precision

Precision measures the ratio of correctly found alignments (true positives) over the to-
tal number of produced alignments (true positives and false positives). An alignment
set with a high precision will most likely does not contain all available alignments,
leading to a lower recall.

Definition 7 (Precision). Given a reference alignment R, the precision of some alignment A
is given by

Pre(A, R) =
|R ∩ A|

A

6.1.3.2 Recall

Recall measures the ratio of correctly found alignments (true positives) over the total
number of available alignments (true positives and false negatives). An alignment set
with a high recall will most likely contain many false alignments, leading to a lower
precision.

Definition 8 (Recall). Given a reference alignment R, the recall of some alignment A is given
by

Rec(A, R) =
|R ∩ A|

A

6.1.3.3 F-Measure

Unfortunately solely relying on recall and precision for comparing ontology match-
ers has its drawbacks. Maybe an ontology matcher which performs well in terms of
precision has a very low recall and another one has a very low precision but high
recall.

66

In order to be able to compare such systems by their precision and recall values
and moreover be able to adjust parameters which affect the results in a way that both
values are optimal, a combined metric of precision and recall called F-measure can be
used.

Definition 9 (F-Measure). Given a reference alignment R, precision and recall, the F-measure
of some alignment A is given by

F(A, R) =
2× Pre(A, R)× Rec(A, R)

Pre(A, R) + Rec(A, R)

The more general definition of F-measure takes an additional parameter α into
account which offers the possibility to weight precision and recall and therefore align
their importance accordingly. For our evaluations we set α to 0.5, i.e. weighting
precision and recall equally; in that case the F-measure value represents the harmonic
mean of precision and recall.

6.2 Ontology Alignment Evaluation Initiative (OAEI)

Within this section, we will evaluate our approach on three different datasets provided
by the OAEI and compare its results with those produced by the off-the-shelf ontology
matchers used within Mix’n’Match.

6.2.1 Datasets

Dataset Characteristics

Dataset Formalism Relations Language Number of Ontologies

Benchmark OWL-DL = EN 5
Conference OWL-DL =, <= EN 7
Anatomy OWL = EN 2

Table 6.2: Characteristics of used datasets

The main characteristics of the three datasets used for evaluation are summarized in
Table 6.2. The column „Formalism“ indicates the complexity of ontologies, „Relations“
lists the possible relations between entities in the ontologies, „Language“ states the
language in which the ontology was written and „Number of Ontologies“ shown the
number of ontologies within the dataset. These datasets consist themselves of several
ontologies which have to be matched either against each other or against one base
ontology. The characteristics of the ontologies within each dataset are described in the
following.

67

6.2.2 Benchmark Dataset

The Benchmark dataset1 was one of the first datasets used by the OAEI for evalu-
ating ontology matchers and describes the domain of bibliographic references. The
mapping relations are depicted in Figure 6.1 one base ontology (onto.rdf) is matched
against four real-world bibliographic ontologies, namely BibTeX/MIT(onto301.rdf),
BibTeX/UMBC(onto302.rdf), the Karlsruhe bibliographic ontology (onto303.rdf) and
the INRIA bibliographic ontology (onto304.rdf). All five ontologies contain at most
166 entities (cf. Table 6.3), which is a quite small number compared to other bench-
marks and therefore results in a relatively short mapping time.

Figure 6.1: Mapping relations between the ontologies within the Benchmark track

Size of Benchmark Ontologies

Ontology Number of Number of Number of Number of
Name Classes Properties Individuals Entities

onto.rdf 37 72 57 166
onto301.rdf 15 40 0 55
onto302.rdf 16 31 0 47
onto303.rdf 56 72 0 128
onto304.rdf 41 51 1 93

Table 6.3: Number of entities in the Benchmark ontologies

6.2.2.1 Evaluation Results

In this track, Mix’n’Match was able to outperform all used matchers although it needed
significantly more time than any other matcher to complete its mapping task (cf. Ta-
ble 6.4 for overall results and Table 6.5 for detailed results). This enormous runtime is
explained due to the fact that it iteratively executes its included off-the-shelf matchers

1http://oaei.ontologymapping.org/2012/benchmarks/index.html

68

and therefore accumulates their runtimes. A solution for this issue may be to run those
matchers in a distributed manner, as sketched in Section 5.1.3.

Benchmark

Matcher Precision Recall F-Measure Time

Mix’n’Match 90,90% 78,81% 84,42% 196486 ms
Anchor-Flood 89,24% 78,51% 83,53% 1360 ms
Eff2Match 87,65% 75,47% 81,11% 34657 ms
Hertuda 75,13% 55,66% 63,94% 1077 ms
HotMatch 82,46% 45,54% 58,67% 4921 ms
Aroma= 59,06% 50,15% 54,24% 1723 ms
LogMap2 84,26% 31,44% 45,79% 5141 ms

Table 6.4: Aggregated results of the Benchmark Track ranked by F-Measure

Ontologies Precision Recall F-Measure

onto.rdf

onto301.rdf 91,84% 77,59% 84,11%
onto302.rdf 87,50% 59,57% 70,89%
onto303.rdf 86,96% 83,33% 85,11%
onto304.rdf 97,30% 94,74% 96,00%

Table 6.5: Detailed mapping results of Mix’n’Match for the Benchmark track

In the Figures 6.2 to 6.5, we illustrate the progress of precision, recall and F-
measure over the different mapping rounds. Based on the small size of the ontologies
within this track, only a small amount of mapping iterations are necessary to complete
the mapping tasks

69

Figure 6.2: Mapping the base ontology with onto301

Figure 6.3: Mapping the base ontology with onto302

70

Figure 6.4: Mapping the base ontology with onto303

Figure 6.5: Mapping the base ontology with onto304

71

6.2.2.2 Comparison of Different Alignment Acceptance Thresholds

We also have investigated different alignment acceptance thresholds (cf. Section5.2.1)
for the alignment selection. As we have expected, the recall value increased while the
precision value decreased. But since there was a stronger decrease of precision than
increase of recall, the overall F-measure value decreased too as depicted in Figure 6.6
and Table 6.6.

Figure 6.6: Comparing evaluation results of different alignment acceptance thresholds
(overall)

Matched Precision Recall F-Measure
Ontologies Majority All Majority All Majority All

onto.rdf

onto301.rdf 91,84% 78,33% 77,59% 81,03% 84,11% 79,66%
onto302.rdf 87,50% 65,95% 59,57% 65,95% 70,89% 65,95%
onto303.rdf 86,96% 67,80% 83,33% 83,33% 85,11% 74,77%
onto304.rdf 97,30% 90,00% 94,74% 94,74% 96,00% 92,31%

Table 6.6: Comparing evaluation results of different alignment acceptance thresholds
(detailed)

72

6.2.3 Conference Dataset

The Conference track2 initially contains 16 ontologies from the same domain (confer-
ence organization), whereas only seven of them where used for our evaluations. This
was mainly due to the fact, that publicly available reference alignments were only
provided for those seven ontologies. Like the Benchmark track, the ontologies in this
track only contain a small number of entities 6.7 and are used in real-world scenarios,
but instead of mapping all ontologies against one base ontology, in this mapping task
all ontologies were matched against each other as shown in Figure 6.9. Unlike the
Benchmark and Anatomy tracks, this track also contains one-to-many mappings (cf.
Section 3.2).

Figure 6.7: Mapping relations between the ontologies within the Conference track

Size of Conference Ontologies

Ontology Number of Number of Number of Number of
Name Classes Properties Individuals Entities

cmt.owl 36 59 0 95
conference.owl 60 64 0 124

edas.owl 104 50 114 268
ekaw.owl 74 33 0 107

confOf.owl 38 36 0 74
iasted.owl 140 41 4 185
sigkdd.owl 51 28 0 79

Table 6.7: Number of entities in the Conference ontologies

2http://oaei.ontologymapping.org/2012/conference/index.html

73

6.2.3.1 Evaluation Results

As stated in Table 6.8 the overall F-measure values of the alignment results, produced
by mapping the conference track, range between 35% to 67% and are worse than those
retrieved by mapping the Benchmark or the Anatomy track (cf. Table 6.9 for detailed
results). This is probably caused by the large majority of <1:n> mappings, which
are defined in the reference alignments and the small amount of ontology matchers
supporting the detection of such <1:n> mappings. Due to the current implementation
of Mix’n’Matchs URI replacement approach, it likewise only supports the detection of
<1:1> mappings, but since it was nearly able to outperform a matcher which supports
the detection <1:n> mappings, we are very confident to produce even better results,
after we have improved our URI replacement strategy.

Conference

Matcher Precision Recall F-Measure Time

LogMap2 78,81% 57,91% 66,76% 22072 ms
Mix’n’Match 71,40% 58,44% 64,27% 648403 ms
Hertuda 72,62% 51,01% 59,92% 1953 ms
HotMatch 69,66% 51,60% 59,29% 8994 ms
Anchor-Flood 45,16% 57,73% 50,68% 2451 ms
Eff2Match 34,43% 64,59% 44,91% 90649 ms
Aroma 30,85% 45,97% 36,92% 5667 ms

Table 6.8: Aggregated results of the conference track ranked by F-Measure

As mentioned above, Mix’n’Match was able to retrieve the second highest F-Measure
value of all used matchers. Nevertheless LogMap2 retrieved better results, but since
our approach is primarily based on using majority vote for choosing alignments, sin-
gle outstanding3 ontology matchers don’t significantly affect the results if we consider
their alignments for Mix’n’Match.

We have illustrated the progress of precision, recall and F-measure over the dif-
ferent mapping rounds for this track too, which is depicted in Figures 6.8 to 6.14.
Since the ontologies within this track contain roughly as many entities as the ones
within the Benchmark track, only a small amount of mapping iterations are necessary
to complete the mapping tasks.

3outstanding in terms of very good or very bad results

74

Ontologies Precision Recall F-Measure

cmt

conference 41,67% 33,33% 37,04%
confOf 71,43% 31,25% 43,48%

edas 88,89% 61,54% 72,73%
ekaw 85,71% 54,55% 66,67%
iasted 57,14% 100,00% 72,73%
sigkdd 81,82% 75,00% 78,26%

conference

confOf 69,23% 60,00% 64,29%
edas 47,37% 52,94% 50,00%
ekaw 58,82% 40,00% 47,62%
iasted 71,43% 35,71% 47,62%
sigkdd 72,73% 53,33% 61,54%

confOf

edas 56,52% 68,42% 61,90%
ekaw 72,22% 65,00% 68,42%
iasted 66,67% 66,67% 66,67%
sigkdd 100,00% 57,14% 72,73%

edas
ekaw 76,47% 56,52% 65,00%
iasted 72,73% 42,11% 53,33%
sigkdd 87,50% 46,67% 60,87%

ekaw
iasted 63,64% 70,00% 66,67%
sigkdd 87,50% 63,64% 73,68%

iasted sigkdd 70,00% 93,33% 80,00%

Table 6.9: Detailed mapping results for the Conference track of Mix’n’Match

Figure 6.8: Intermediate F-measure values retrieved by mapping cmt against all other
ontologies

75

Figure 6.9: Intermediate F-measure values retrieved by mapping conference against all
other ontologies

Figure 6.10: Intermediate F-measure values retrieved by mapping confOf against all
other ontologies

76

Figure 6.11: Intermediate F-measure values retrieved by mapping edas against all other
ontologies

Figure 6.12: Intermediate F-measure values retrieved by mapping ekaw against all
other ontologies

77

Figure 6.13: Intermediate F-measure values retrieved by mapping iasted against all
other ontologies

Figure 6.14: Intermediate F-measure values retrieved by mapping sigkdd against all
other ontologies

78

6.2.3.2 Comparison of Different Alignment Acceptance Thresholds

By mapping the Conference track, we observed an even higher decrease of precision by
accepting all alignments, in contrast to the decrease measured for the previous track.
Once again, the increase of recall was not able to compensate the loss of precision,
which is depicted in Figure 6.15 and Table 6.10.

Figure 6.15: Comparing evaluation results of different alignment acceptance thresh-
olds (overall)

79

Matched Precision Recall F-Measure
Ontologies Majority All Majority All Majority All

cmt

conference 41,67% 17,14% 33,33% 40,00% 37,04% 24,00%
confOf 71,43% 33,33% 31,25% 31,25% 43,48% 32,26%

edas 88,89% 29,41% 61,54% 76,92 72,73% 42,55%
ekaw 85,71% 16,13% 54,55% 45,45% 66,67% 23,81%
iasted 57,14% 11,11% 100,00% 100,00% 72,73% 20,00%
sigkdd 81,82% 37,50% 75,00% 75,00% 78,26% 50,00%

conference

confOf 69,23% 24,45% 60,00% 73,34% 64,29% 36,67%
edas 47,37% 22,92% 52,94% 64,71% 50,00% 33,85%
ekaw 58,82% 28,30% 40,00% 60,00% 47,62% 38,46%
iasted 71,43% 15,38% 35,71% 57,14% 47,62% 24,24%
sigkdd 72,73% 29,73% 53,33% 73,34% 61,54% 42,31%

confOf

edas 56,52% 28,00% 68,42% 73,68% 61,90% 40,58%
ekaw 72,22% 44,12% 65,00% 75,00% 68,42% 55,56%
iasted 66,67% 09,84% 66,67% 66,67% 66,67% 17,14%
sigkdd 100,00% 13,89% 57,14% 71,43% 72,73% 23,26%

edas
ekaw 76,47% 31,38% 56,52% 69,57% 65,00% 43,24%
iasted 72,73% 15,79% 42,11% 63,16% 53,33% 25,26%
sigkdd 87,50% 28,57% 46,67% 66,67% 60,87% 40,40%

ekaw
iasted 63,64% 17,39% 70,00% 80,00% 66,67% 28,57%
sigkdd 87,50% 30,43% 63,64% 63,64% 73,68% 41,18%

iasted sigkdd 70,00% 25,45% 93,33% 93,33% 80,00% 40,00%

Table 6.10: Comparing evaluation results of different alignment acceptance thresholds
(detailed)

6.2.4 Anatomy Dataset

Figure 6.16: Mapping relations between the ontologies within the Anatomy track

The previous two datasets only contain quite small ontologies, therefore we extended
our evaluation portfolio by the Anatomy track4 which contains two very large ontolo-
gies 6.11 which shall be matched against each other 6.16. The aim of this track is to

4http://oaei.ontologymapping.org/2012/anatomy/index.html

80

find mappings between an adult mouse anatomy ontology and an ontology which is
part of the NCI Thesaurus5 describing the human anatomy.

Size of Anatomy Ontologies

Ontology Number of Number of Number of Number of
Name Classes Properties Individuals Entities

mouse.owl 2744 3 0 2747
human.owl 3304 2 0 3306

Table 6.11: Number of entities in the Anatomy ontologies

6.2.4.1 Evaluation Results

As Table 6.12 shows, Mix’n’Match again achieved the highest F-measure in the anatomy
track. More remarkably, in Figure 6.17 we can observe the increasing F-Measure value
of iterative mapping in this track. This promising results show, that (i) our approach
finds additional alignments in each mapping round; (ii) was able to outperform the
individual matchers used for the mapping process and (iii) since Mix’n’Match has usu-
ally a quite bad runtime performance (1400142 ms for mapping the anatomy track) but
supports anytime behavior, it would have also been possible to abort the mapping pro-
cess at any intermediate time receiving already found alignments. Since the increase
of the F-Measure value slows down in later mapping rounds we would have been
able to receive a value between 83,87%-85,95% if we would have aborted the mapping
process after the half of the actually needed mapping time.

Anatomy

Matcher Precision Recall F-Measure Time

Mix’n’Match 94,29% 82,85% 88,2% 1400142 ms
Logmap2 91,38% 84,63% 87,88% 16274 ms
Eff2Match 87,97% 82,98% 85,4% 85504 ms
Aroma 86,4% 68,73% 76,56% 18371 ms
AnchorFlood 87,93% 67,28% 76,23% 7073 ms

Table 6.12: Results of the anatomy track ranked by F-Measure

While we could did evaluate the effectiveness of iterative mapping described in
Section 5.4 in detail, due to a lack of respective benchmarks, we have at least tried
to test it within a motivating scenario. We have used two large ontologies from the
anatomy track, where mapping takes considerable time each round, such that we can

5http://ncit.nci.nih.gov/

81

illustrate the effect of gathering intermediate results between mapping rounds in a
reproducible fashion.

In Table 6.13 and Figure 6.17 the progression of precision, recall and F-measure
value per mapping round, during the mapping of two anatomy ontologies, is shown.
We were able to obtain a final F-measure value of 88,20% after approximately 23 min-
utes of mapping.

Anatomy (mouse.owl - human.owl)

mapping Precision Recall F-Measure Relative Increase
Round of F-Measure

Round 0 99,42% 56,53% 72,08%

Round 0-5
+11,79%

Round 1 99,34% 59,83% 74,68%
Round 2 99,35% 60,36% 75,09%
Round 3 99,35% 60,49% 75,19%
Round 4 98,75% 72,69% 83,74%

Round 5 98,75% 72,89% 83,87%
Round 6 97,81% 76,65% 85,95%

Round 7 97,82% 76,85% 86,07%

Round 6-11
+2,25%

Round 8 95,46% 81,79% 88,10%
Round 9 94,57% 82,72% 88,25%

Round 10 94,29% 82,78% 88,16%
Round 11 94,29% 82,85% 88,20%

Table 6.13: Increasing F-Measure value after each mapping round

If we would have terminated the mapping task during the 5th mapping round, we
would have obtained a final F-measure value between 83,87%-85,95%, which is quite
close to the final results but only needed half of the mapping time. We have observed
that the increase of F-measure value slows down in later mapping rounds, probably
based on the fact that in those rounds most of the mappings have already been found
and only few undetected ones were added to the final set (cf. the increase between
round 0 to round 5 (+11,79%) and the increase between round 6 to round 11 (+2,25%)).

82

Figure 6.17: Increasing F-measure value in each mapping iteration. (anatomy track)

Although we have implemented the possibility to interrupt Mix’n’Matchs Mapping
task at any time, we did not have defined specific constraints for the execution of such
an interruption. Possible approaches to start such a termination could be for example
an user interaction or a previously defined time out.

6.2.4.2 Comparison of Different Alignment Acceptance Thresholds

As we have shown for the other two tracks, Figure 6.18 indicates the differences be-
tween the two alignment acceptance thresholds. Although we would be able to in-
crease the recall by 8%, when accepting all alignments found during mapping rounds,
the precision would decrease about 24%. Nevertheless it depends on the mapping
scenario and on real-world use cases, whether recall might have a higher weight than
precision and therefore would make accepting all alignments more feasible or not.

83

Figure 6.18: Comparing evaluation results of different alignment acceptance thresh-
olds (overall)

6.2.5 Evaluation Conclusion

As illustrated in the present chapter, Mix’n’Match was able to retrieve very promising
results on a selection of OAEI benchmark tracks. We were able to outperform state-of-
the-art ontology matchers in two of three tested tracks and were only beaten by one
matcher in the other one. Nevertheless, these evaluation results also have shown some
drawbacks of our approach especially for handling <1:n> or <n:m> mapping relations
(cf. results for the Conference track 6.9).

84

CHAPTER 7
Ontology Matching in an Industrial

Environment

As a practical use case where we deployed our approach, in this chapter we will de-
scribe the transformation of object-oriented models, available as UML class diagrams,
into ontologies by providing transformation strategies from each relevant component
of UML class diagrams into its counterpart in terms of ontology elements. Afterwards
we will elaborate the mapping results of Mix’n’Match on aligning such ontologies.

7.1 Transforming Object-Oriented Models into Ontologies

We are creating a new ontology as representation of a given object-oriented model
from scratch, therefore we can define simple mapping relations between the model
and the ontology. Each class in the object-oriented model corresponds to an OWL
class, an attribute of a class corresponds to an OWL datatype property and an OWL
object property defines a relation between classes in the given model.

In the following we will illustrate this transformations on short examples based on
a sample transformation from the UML diagram given in Figure 2.8 into an ontology.

85

7.1.0.1 Classes and Subclasses

Figure 7.1: Class definitions and subclass relations are transformed into OWL classes
and rdfs:subClassOf relations

Classes and subclass relations are transformed straight forward, i.e. for every class
and its respective subclass in the object-oriented model, classes and subclass relations
in the ontology are created.

7.1.0.2 Attributes and Value Ranges

When translating datatype attributes of classes into their ontology element counter-
part, it is important to maintain their value ranges and datatypes. Each datatype
attribute gets transformed into an owl:DatatypeProperty with its rdfs:domain set to the
class owning that attribute and a rdfs:range set to the respective datatype of this at-
tribute. For any constraints which might hold for a particular attribute (uniqueness,
minimum/maximum value, . . .) the rdfs:range is set to a blank node which encodes the
necessary restrictions. Such a sample transformation is illustrated in Figure 7.2.

86

Figure 7.2: Class attributes are transformed into datatype properties with respective
value ranges

7.1.0.3 Associations and Cardinalities

Another very important step of transforming UML class diagrams into ontologies,
is the translation of associations between classes into owl:ObjectProperties. Every bi-
directional association between two classes is split into two uni-directional ones and
an owl:ObjectProperty is created for each of this associations, having its rdfs:domain set
to the source of the association and its rdfs:range set to the target class. In case any
cardinality constraints were defined in the UML class diagram for a specific associa-
tion, a respective owl:Restriction on the source and target class of the association are
generated as depicted in Figure 7.3.

7.1.0.4 Enumeration

Enumerations are used to restrict the value of a specific attribute to a defined set of
possible values. In Figure 7.4 we have illustrated a possible transformation strategy
consisting of two major steps: (i) an owl:Class (:LectureType) is created and is defined
by the owl:oneOf element, containing a list of objects that are its instances. A class
defined by the owl:oneOf element contains exactly the enumerated elements, no more,
no less and (ii) the introduction of an owl:ObjectProperty, which represents the fact, that
a :Lecture has a specific :LectureType.

87

Figure 7.3: Relations between classes are transformed into object properties

7.1.0.5 Instances

Figure 7.5: Instances of objects are represented as triples using the previous defined
entities

The creation of instances is straight forward. For every object which is an instantiation
of a class in the UML class diagram, an individual of the respective owl:Class is created,

88

Figure 7.4: Enumerations are split into an object property, an OWL class and individ-
uals

having the same values for its attributes as the corresponding UML object.

7.2 Aligning Transformed Object-Oriented Models with
Mix’n’Match

In this section we will evaluate Mix’n’Match on a highly industry related dataset, con-
sisting of three object-oriented data models which were translated into ontologies.

We have practically deployed the mapping from UML models to OWL to differ-
ent software systems used for configuration within Siemens in the Railway domain.
While we cannot share the underlying data models and extracted ontologies, the main
characteristics of these ontologies, extracted from two different systems, are shown in
Table 7.1. These datasets consist themselves of several ontologies which have to be
matched against each other. The characteristics of the ontologies within each dataset
are described in the following.

Dataset Characteristics

Dataset Formalism Relations Language Number of Ontologies

Railway OWL =, <=, != EN, DE 2

Table 7.1: Characteristics of the real-world dataset

89

Size of Railway Ontologies

Ontology Number of Number of Number of Number of
Name Classes Properties Individuals Entities

circeSW.owl 144 872 1886 166
circeZI.owl 97 567 399 55

Table 7.2: Number of entities in the railway ontologies

Figure 7.6: Mapping relations between the configurator ontologies

7.2.1 Evaluation Results

Due to the absence of reference alignments, we were not able to compute evaluation
results like we have done for the OAEI datasets. Instead we have measured the amount
of found class, property and instance alignments produced by Mix’n’Match and how
these numbers differ from those obtained by other ontology matchers. As indicated
in Figure 7.7, Mix’n’Match was able to detect 62 class and 171 property alignments but
unfortunately no instance mappings. This is most likely caused by the majority vote,
which was responsible for selecting alignments, since only one matcher (LogMap2)
was able to find alignments between instances.

Although our approach was not able to find as many class and property mappings
as e.g. AnchorFlood or Aroma, a manually investigation of Mix’n’Matchs produced
alignments showed, that its set of property alignments does not contain any (or at
least only very few) wrong mappings. Regarding class alignments, Mix’n’Match is not
able to detect complex mapping relations like subsumption, yet. This issue will be
targeted in future versions of Mix’n’Match.

90

Figure 7.7: Mapping results achieved by aligning the railway ontologies

91

CHAPTER 8
Summary & Conclusions

In this master thesis we have presented an approach for combining off-the-shelf ontol-
ogy matchers, using their combined alignment results for an iterative mapping pro-
cess.

Such an approach of reusing already approved alignments as input for a new map-
ping task needs the support of using input alignments as additional resource for the
mapping process, which is only sparsely supported by current matchers, we have
shown that it is possible - to some extent - to simulate such input alignments by
simply replacing the URIs of matched entities in the to be matched ontologies and
then rerun the whole mapping process again. In each round we chose the alignments
found by a majority of matchers as input alignments for the next rounds. Although
we discovered that not all ontology matchers consider entities with the exact same
URI as 100% identical, probably since string similarity measures seem to be part of
nearly every investigated ontology matcher, URI replacement helped to exceed some
internal confidence plateaus of found alignments and therefore accept them as correct
alignments in our framework.

Furthermore we have discussed the advantages and disadvantages of several matcher
execution, alignment selection and ontology enrichment approaches and explained why we
have chosen specific strategies over others.

We have developed an architecture implementing the approach that parallelizes the
iterative runs of single matchers by using multi-threading and stores found alignments
in a manner that allows to stop the iterative mapping process at any time with the best
alignments approved by a majority of matchers from a configurable portfolio of off-
the-shelf matchers.

Overall, the results we could obtain with the Mix’n’Match framework, which we
have implemented upon these insights and verified experimentally, are encouraging
and leave various promising roads for investigations in future work.

93

8.1 Related Work

The approach of using an iterative process which reruns matching techniques until no
further alignment pairs were found is not new per se. Tools like Anchor-Flood [46]
or ASMOV [50] are based on similar frameworks but in contrast to our approach
neither of them use off-the-shelf matchers for retrieving and combining alignments,
but they combine several matching techniques in one tool. The benefit of combining
whole matchers out of the box as in Mix’n’Match, instead of specifically implemented
matching techniques is obvious: on the one hand we can highly increase the flexibility
of Mix’n’Match since new single off-the-shelf matcher can easily be integrated into
or segregated from the mapping process and on the other hand since mapping tools
evolve over time and perform better and better by themselves, Mix’n’Match should
also benefit from this evolution based on its framework.

Instead of combining ontology matchers in iterative mapping steps, some ap-
proaches only focus on the combination of alignment sets of in a one-shot process.
However, as such approaches do not rerun the mapping process with the gathered
additional knowledge again, we believe that they do not fully exploit the combined
potential, which is somewhat confirmed by our evaluation results that needed sev-
eral iterations to obtain a fixpoint. We note though that even one-shot combinations
receive very good results especially when previously trained using machine learning
techniques for the combination of the alignments [26, 28, 29, 58]. While we focused
on unguided combination so far, a combination of machine-learning techniques for
results aggregation and our iterative approach is on our agenda.

Furthermore there exist several alternatives to a simple majority vote for combin-
ing the results of different ontology matching techniques which could be fairly easily
adopted to work with our approach like in [45] where the authors propose an au-
tomated approach for weighting individual ontology matchers based on their impor-
tance on different mapping tasks or in [15] were an automatic alignment evaluation
by using quality measures is described.

In [16] the authors provide an approach for automatically configuring the pa-
rameters of off-the-shelf matchers and therefore optimize their performance; together
with the approach proposed in [65] where unsupervised learning techniques are used
to find similarity parameters, these approaches could be used to improve the perfor-
mance and flexibility of Mix’n’Match.

8.2 Further Work

Several topics will be part of future investigations like using other combination ap-
proaches than majority vote or the distributed execution of the used ontology match-
ers. As alternative combination approach, an advanced machine learning technique
like discussed in [28] could be used. Therefore we conjecture that we could increase

94

the recall of the reference alignments generated in each round and also remove the
common drawbacks of majority votes like ignoring single good results. Furthermore
a self-learning classifier could be developed to ensure the full automation of such an
approach.

8.2.1 Beyond Direct Mappings

Direct <1:1> mappings between two entities (atomic concepts or properties) of an on-
tology are the simplest way to define similarities and are supported by every ontology
matcher so far. But beyond direct mapping, more complex mappings, the necessity
of which was stated in [77], are not supported by the majority of current ontology
matchers although several patterns for detecting complex mappings and strategies for
the respective matching techniques [21, 72] were proposed.

The approach presented in this thesis only considers direct <1:1> mappings be-
tween entities of ontologies; we believe the approach could be extended to support
more complex mappings in terms of <1:n> and <n:m> mappings as follows: by chang-
ing the approach of naïve URI replacement for matched concepts, instead of directly
replacing the URIs of these concepts, we could enrich the matched ontologies by a
new introduced entities which will be equivalent to the union of the aligned concepts.

This workaround has to be done since combining mappings directly in a transitive
fashion would result in non-conservative extensions [37] of the base ontologies, i.e.
unexpected consequences could arise when using the modified ontology in place of
the original one. We will illustrate this with a short example.

Listing 8.1: Ontology O1 before mapping

. . .
@p r e f i x : <ht tp :// ontology . org/onto1/> .
. . .
: Teacher a owl : Class .
. . .

Listing 8.2: Ontology O2 before mapping

. . .
@p r e f i x : <ht tp :// ontology . org/onto2/> .
. . .
: A s s o c i a t e P r o f e s s o r a owl : Class .
: F u l l P r o f e s s o r a owl : Class .
. . .

95

Listing 8.3: Alignments after first round

. . .
<map>

<Cell >
< e n t i t y 1 rdf : resource=" ht tp :// ontology . org/onto1/Teacher "/>
< e n t i t y 2 rdf : resource=" ht tp :// ontology . org/onto2/

A s s o c i a t e P r o f e s s o r "/>
<measure rdf : datatype=" xsd : f l o a t " >0.6</measure>
< r e l a t i o n >=</ r e l a t i o n >

</Cell >
</map>

<map>
<Cell >

< e n t i t y 1 rdf : resource=" ht tp :// ontology . org/onto1/Teacher "/>
< e n t i t y 2 rdf : resource=" ht tp :// ontology . org/onto2/

F u l l P r o f e s s o r "/>
<measure rdf : datatype=" xsd : f l o a t " >0.6</measure>
< r e l a t i o n >=</ r e l a t i o n >

</Cell >
</map>
. . .

Example 4. A possible example is shown in Listings 8.1 to 8.5; We assume here that
ontology O2(cf. Listing 8.2) consists of two concepts, namely FullProfessor and Asso-
ciateProfessor and O1(cf. Listing 8.1) of one Teacher concept. Now, matchers may find
similarities (i.e., alignments) between both, Teacher <-> AssociateProfessor and Teacher
<-> FullProfessor as indicated in Listing 8.3. Unfortunately our initial approach would
not be able to process these mappings, since it would only normalize the URIs from
concepts in one alignment per entity found in each iteration step, say – as in our con-
crete current implementation – the last one, i.e. Teacher <-> FullProfessor: that behavior
was implemented to ensure that the modified ontology is still a conservative extension
from the unmodified one if competing alignments exists. We mean here competing in
terms of URI replacement: normalizing URIs of entities within an ontology to the
same URI might have unwanted side effects such as equating entities within a single
ontology that were kept separate in the original design, which seems suspicious, thus
not “conservative”. A possible solution for keeping the integrity of the ontologies and
implementing all found alignments is presented in the Listings 8.4+8.5. .

96

Listing 8.4: Ontology O1 after enrichment

. . .
@p r e f i x : <ht tp :// ontology . org/onto1/> .
@p r e f i x mm: <http :// example . org/MixMatch/> .
. . .

mm: T e a c h e r _ _ A s s o c i a t e P r o f e s s o r F u l l P r o f e s s o r rdf : type owl : Class ;
owl : equiva lentClass [rdf : type owl : Class ;

owl : unionOf (: Teacher)
] .

. . .

Listing 8.5: Ontology O2 after enrichment

. . .
@p r e f i x : <ht tp :// ontology . org/onto2/> .
@p r e f i x mm: <http :// example . org/MixMatch/> .
. . .

mm: T e a c h e r _ _ A s s o c i a t e P r o f e s s o r F u l l P r o f e s s o r rdf : type owl : Class ;
owl : equiva lentClass [rdf : type owl : Class ;

owl : unionOf (: A s s o c i a t e P r o f e s s o r
: F u l l P r o f e s s o r)

] .
. . .

Here, we use unions of classes instead of replacing URIs directly, that is, in List-
ing 8.5 we in fact introduce a new local concept, which is equal to the union of the
matched ones. Nevertheless the impact and applicability of this more general ap-
proach, which allows <n:m> alignments to be “emulated” by enrichment, has to be in-
vestigated in future research; similar considerations as for using owl:equivalentClass
mentioned in Chapter 5 above may arise, in that such modeled “enriched alignments”
would not necessarily considered properly by many matchers.

8.2.2 Distributed Computation

As already discussed in Chapter 5, another very important part of future investiga-
tions will be the usage of distributed computation techniques for the mapping process
and combination of matchers as shown in Figure 5.4. Since Mix’n’Match relies on
the results received by other ontology mapping tools, the respective time necessary
for Mix’n’Match to complete its alignment process is much higher than that of its
used mapping tools, even by using a local multi-threading approach for the matcher
execution instead of calling them sequentially. Nevertheless the runtime of the multi-
threaded approach was quite better than the one produced by the sequential one.

97

It seems an obvious and promising extension to embed our approach in distributed
computation concepts like cloud computing, were we would be able to outsource
the individual ontology matchers into separate cloud processes and therefore avoid
integrating issues like concurrent libraries in the build path as well as may be able to
further decrease the runtime of Mix’n’Match.

98

Bibliography

[1] Rakesh Agrawal, Alexander Borgida, and HV Jagadish. Efficient management of
transitive relationships in large data and knowledge bases, volume 18. ACM, 1989.

[2] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

[3] Carlo Batini, Maurizio Lenzerini, and Shamkant B. Navathe. A comparative
analysis of methodologies for database schema integration. ACM Comput. Surv.,
18(4):323–364, 1986.

[4] Dave Beckett and Brian McBride. Rdf/xml syntax specification (revised). W3C
recommendation, 10, 2004.

[5] David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers. Tur-
tle – Terse RDF Triple Language. W3C Candidate Recommendation, February
2013. http://www.w3.org/TR/2013/CR-turtle-20130219/.

[6] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable rdf syntax. W3C
Team Submission (January 2008) http://www. w3. org/TeamSubmission, (3), 1998.

[7] Olivier Bodenreider. The unified medical language system (umls): integrating
biomedical terminology. Nucleic acids research, 32(suppl 1):D267–D270, 2004.

[8] Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic coordination: a
new approach and an application. In The Semantic Web-ISWC 2003, pages 130–145.
Springer, 2003.

[9] Steve Bratt. Semantic web, and other technologies to watch. W3C, 2007. http:
//www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#%2824%29.

[10] Dan Brickley. RDF: Understanding the Striped RDF/XML Syntax, 2002. http:
//www.w3.org/2001/10/stripes/.

99

http://www.w3.org/TR/2013/CR-turtle-20130219/
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#%2824%29
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#%2824%29
http://www.w3.org/2001/10/stripes/
http://www.w3.org/2001/10/stripes/

[11] Dan Brickley and Ramanathan V Guha. Rdf vocabulary description language 1.0:
Rdf schema. W3C Recommendation, February 2004. http://www.w3.org/TR/
rdf-schema/.

[12] Namyoun Choi, Il-Yeol Song, and Hyoil Han. A survey on ontology mapping.
SIGMOD Record, 35(3):34–41, 2006.

[13] Vassilis Christophides, Dimitris Plexousakis, Michel Scholl, and Sotirios Tour-
tounis. On labeling schemes for the semantic web. In Proceedings of the 12th
international conference on World Wide Web, pages 544–555. ACM, 2003.

[14] Watson Wei Khong Chua and Jung-Jae Kim. Eff2match results for oaei 2010. In
OM, volume 689 of CEUR Workshop Proceedings. CEUR-WS.org, 2010.

[15] Isabel F Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Efficient selection
of mappings and automatic quality-driven combination of matching methods. In
ISWC International Workshop on Ontology Matching (OM) CEUR Workshop Proceed-
ings, volume 551, pages 49–60. Citeseer, 2009.

[16] Isabel F Cruz, Alessio Fabiani, Federico Caimi, Cosmin Stroe, and Matteo Pal-
monari. Automatic configuration selection using ontology matching task profil-
ing. In The Semantic Web: Research and Applications, pages 179–194. Springer, 2012.

[17] Thanh Tung Dang et al. Hotmatch results for oeai 2012. In Seventh International
Workshop on Ontology Matching (OM 2012), 2012.

[18] Jérôme David, Fabrice Guillet, and Henri Briand. Matching directories and owl
ontologies with aroma. In Proceedings of the 15th ACM international conference on
Information and knowledge management, CIKM ’06, pages 830–831, New York, NY,
USA, 2006. ACM.

[19] J Dean and S Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun ACM, 51:107–113, 2008.

[20] Thomas L Dean and Mark S Boddy. An analysis of time-dependent planning. In
AAAI, volume 88, pages 49–54, 1988.

[21] Robin Dhamankar, Yoonkyong Lee, Anhai Doan, Alon Halevy, and Pedro Domin-
gos. imap: discovering complex semantic matches between database schemas. In
in: Proceedings of the 2004 ACM SIGMOD International Conference on Management of
Data, ACM. Press, 2004.

[22] Hong-Hai Do, Sergey Melnik, and Erhard Rahm. Comparison of schema match-
ing evaluations. In Web, Web-Services, and Database Systems, pages 221–237.
Springer, 2003.

100

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/

[23] Hong-Hai Do and Erhard Rahm. Matching large schemas: Approaches and eval-
uation. Information Systems, 32(6):857–885, 2007.

[24] Anhai Doan and Alon Y. Halevy. Semantic integration research in the database
community: A brief survey. AI Magazine, 26(1):83–94, 2005.

[25] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and Alon
Halevy. Learning to match ontologies on the semantic web. The VLDB Jour-
nal—The International Journal on Very Large Data Bases, 12(4):303–319, 2003.

[26] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and Alon Y.
Halevy. Learning to match ontologies on the semantic web. VLDB J., 12(4):303–
319, 2003.

[27] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Ontology
matching: A machine learning approach. In Handbook on ontologies, pages 385–
403. Springer, 2004.

[28] Kai Eckert, Christian Meilicke, and Heiner Stuckenschmidt. Improving ontology
matching using meta-level learning. In Proceedings of the 6th European Semantic Web
Conference on The Semantic Web: Research and Applications, ESWC 2009 Heraklion,
pages 158–172, Berlin, Heidelberg, 2009. Springer-Verlag.

[29] Marc Ehrig, York Sure, and Staab Steffen. Bootstrapping ontology alignment
methods with apfel. In Proceedings of the 4th International Semantic Web Conference
(ISWC). Springer, November 6-10 2005.

[30] Jérôme Euzenat. Towards composing and benchmarking ontology alignments. In
Proc. ISWC-2003 workshop on semantic information integration, Sanibel Island (FL US),
pages 165–166. Citeseer, 2003.

[31] Jérôme Euzenat, Christian Meilicke, Heiner Stuckenschmidt, Pavel Shvaiko, and
Cássia Trojahn dos Santos. Ontology alignment evaluation initiative: Six years
of experience. In Journal of Data Semantics XV, volume 6720 of Lecture Notes in
Computer Science, pages 158–192. Springer, Berlin, Heidelberg, 2011.

[32] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer, 2007.

[33] Jerome Euzenat and Petko Valtchev. Similarity-based ontology alignment in owl-
lite. In ECAI 2004: 16th European Conference on Artificial Intelligence, August 22-
27, 2004, Valencia, Spain: Including Prestigious Applicants [sic] of Intelligent Systems
(PAIS 2004): Proceedings, volume 110, page 333. IOS Press, 2004.

[34] Jérôme Euzenat et al. State of the art on ontology alignment. Knowledge Web
Deliverable D2.2.3, 2:2–3, 2004.

101

[35] Dieter Fensel. Ontologies:: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer, 2001.

[36] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guange. Addison-Wesley Professional, 2004.

[37] Silvio Ghilardi, Carsten Lutz, and Frank Wolter. Did i damage my ontology? a
case for conservative extensions in description logics. In In Proc. of KR2006, pages
187–197. AAAI Press, 2006.

[38] Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. 2003.

[39] Fausto Giunchiglia and Pavel Shvaiko. Semantic matching. 2003.

[40] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-Match: an algorithm
and an implementation of semantic matching. Springer, 2004.

[41] Object Management Group. Unified Modeling Language 2.0 Superstructure Spec-
ification. http://www.omg.org/spec/UML/2.0/Superstructure/PDF/,
2005. [Online; accessed 19-September-2013].

[42] OWL Working Group. Owl 2 web ontology language. W3C recommendation, (2012-
12), 2012.

[43] Thomas R Gruber et al. A translation approach to portable ontology specifica-
tions. Knowledge acquisition, 5(2):199–220, 1993.

[44] SKOS Core Guide, Eds A Miles, and D Brickley W3C. Skos core guide. Work,
501:34049.

[45] Marko Gulić, Ivan Magdalenić, and Boris Vrdoljak. Automated weighted aggre-
gation in an ontology matching system. International Journal of Metadata, Semantics
and Ontologies, 7(1):55–64, 2012.

[46] Md. Seddiqui Hanif and Masaki Aono. An efficient and scalable algorithm for
segmented alignment of ontologies of arbitrary size. J. Web Sem., 7(4):344–356,
2009.

[47] Patrick Hayes and Brian McBride. Rdf semantics. W3C Recommendation, Febru-
ary 2004. http://www.w3.org/TR/rdf-mt/.

[48] Sven Hertling. Hertuda results for oeai 2012. In Seventh International Workshop on
Ontology Matching (OM 2012), 2012.

[49] Ian Horrocks, Peter F Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof,
Mike Dean, et al. Swrl: A semantic web rule language combining owl and ruleml.
W3C Member submission, 21:79, 2004.

102

http://www.omg.org/spec/UML/2.0/Superstructure/PDF/
http://www.w3.org/TR/rdf-mt/

[50] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka. Ontology
Matching with Semantic Verification. Web Semantics, 7(3):235–251, September
2009.

[51] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Yujiao Zhou. Logmap 2.0:
towards logic-based, scalable and interactive ontology matching. In Proceedings
of the 4th International Workshop on Semantic Web Applications and Tools for the Life
Sciences, SWAT4LS ’11, pages 45–46, New York, NY, USA, 2012. ACM.

[52] Yannis Kalfoglou and W. Marco Schorlemmer. Ontology mapping: the state of
the art. Knowledge Eng. Review, 18(1):1–31, 2003.

[53] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. Elk reasoner: Archi-
tecture and evaluation. In Proc. of the OWL Reasoner Evaluation Workshop (ORE’12),
volume 858, 2012.

[54] Graham Klyne, Jeremy J Carroll, and Brian McBride. Resource description frame-
work (rdf): Concepts and abstract syntax. W3C recommendation, 10, 2004.

[55] Ora Lassila and Ralph R Swick. Resource description framework (rdf) model and
syntax specification. 1999.

[56] Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. In Soviet physics doklady, volume 10, page 707, 1966.

[57] Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. Mafra—a map-
ping framework for distributed ontologies. In Knowledge engineering and knowledge
management: ontologies and the semantic web, pages 235–250. Springer, 2002.

[58] Paulo Maio, Nuno Bettencourt, Nuno Silva, and João Rocha. Evaluating a confi-
dence value for ontology alignment. In Proceedings of the 2nd International Workshop
on Ontology Matching (OM-2007) Busan, Korea, November 11, 2007, volume 304 of
CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[59] Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language
overview. W3C recommendation, 10(2004-03):10, 2004.

[60] Alistair Miles and Dan Brickley. Skos core vocabulary specification. W3C working
draft, 2, 2005.

[61] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[62] Malgorzata Mochol and Anja Jentzsch. Towards a rule-based matcher selection.
In Proceedings of the 16th international conference on Knowledge Engineering: Practice
and Patterns, volume 5268 of Lecture Notes in Computer Science, pages 109–119.
Springer, 2008.

103

[63] Victoria Nebot and Rafael Berlanga. Efficient retrieval of ontology fragments
using an interval labeling scheme. Information Sciences, 179(24):4151–4173, 2009.

[64] Duy Hoa Ngo and Zohra Bellahsene. YAM++ : (not) Yet Another Matcher for
Ontology Matching Task. In Bases de Données Avancées, page 5, France, 2012.

[65] Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta. Unsupervised learning of
link discovery configuration. In The Semantic Web: Research and Applications, pages
119–133. Springer, 2012.

[66] Ian Niles and Adam Pease. Towards a standard upper ontology. In Proceedings of
the international conference on Formal Ontology in Information Systems-Volume 2001,
pages 2–9. ACM, 2001.

[67] Natalya F Noy and Mark A Musen. The prompt suite: interactive tools for on-
tology merging and mapping. International Journal of Human-Computer Studies,
59(6):983–1024, 2003.

[68] Bijan Parsia and Evren Sirin. Pellet: An owl dl reasoner. In Third International
Semantic Web Conference-Poster, page 18, 2004.

[69] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet:: Similarity:
measuring the relatedness of concepts. In Demonstration Papers at HLT-NAACL
2004, pages 38–41. Association for Computational Linguistics, 2004.

[70] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, 10:334–350, 2001.

[71] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton, MA,
USA, 2nd edition, 1979.

[72] Dominique Ritze, Christian Meilicke, Ondrej Svab-Zamazal, and Heiner Stucken-
schmidt. A pattern-based ontology matching approach for detecting complex cor-
respondences. In Fourth International Workshop on Ontology Matching (OM-2009),
volume 551 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[73] Cornelius Rosse and José LV Mejino Jr. A reference ontology for biomedical
informatics: the foundational model of anatomy. Journal of biomedical informatics,
36(6):478–500, 2003.

[74] Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for
automatic indexing. Communications of the ACM, 18(11):613–620, 1975.

[75] Balthasar Schopman, Shenghui Wang, Antoine Isaac, and Stefan Schlobach.
Instance-based ontology matching by instance enrichment. Journal on Data Se-
mantics, 1(4):219–236, 2012.

104

[76] Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A highly-efficient owl rea-
soner. In OWLED, volume 432, 2008.

[77] P. Shvaiko and J. Euzenat. Ontology matching: State of the art and future chal-
lenges. Knowledge and Data Engineering, IEEE Transactions on, 25(1):158–176, 2013.

[78] Nuno Silva and Joao Rocha. Multidimensional service-oriented ontology map-
ping. International journal of Web engineering and technology, 2(1):50–80, 2005.

[79] Simon Steyskal and Axel Polleres. Mix’n’match: An alternative approach for
combining ontology matchers. In Proceedings of the 12th International Conference on
Ontologies, DataBases, and Applications of Semantics (ODBASE 2013), Graz, Austria,
September 2013.

[80] Giorgos Stoilos, Giorgos Stamou, and Stefanos Kollias. A string metric for ontol-
ogy alignment. In The Semantic Web–ISWC 2005, pages 624–637. Springer, 2005.

[81] Edward Thomas, Jeff Z Pan, and Yuan Ren. Trowl: Tractable owl 2 reasoning
infrastructure. In The Semantic Web: Research and Applications, pages 431–435.
Springer, 2010.

[82] Dmitry Tsarkov and Ian Horrocks. Fact++ description logic reasoner: System
description. In Automated reasoning, pages 292–297. Springer, 2006.

[83] Mike Uschold. Achieving semantic interoperability using rdf and owl -
v4, 2005. http://lists.w3.org/Archives/Public/public-swbp-wg/
2005Sep/att-0027/SemanticII-v4.htm.

[84] William E Winkler. The state of record linkage and current research problems. In
Statistical Research Division, US Census Bureau. Citeseer, 1999.

[85] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI magazine,
17(3):73, 1996.

[86] Antoine Zimmermann, Ratnesh Sahay, Ronan Fox, and Axel Polleres. Hetero-
geneity and context in semantic-web-enabled hcls systems. In On the Move to
Meaningful Internet Systems: OTM 2009, pages 1165–1182. Springer, 2009.

105

http://lists.w3.org/Archives/Public/public-swbp-wg/2005Sep/att-0027/SemanticII-v4.htm
http://lists.w3.org/Archives/Public/public-swbp-wg/2005Sep/att-0027/SemanticII-v4.htm

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Structure of the Work
	Impact of this Thesis

	Preliminaries
	Ontologies
	Resource Description Framework (RDF)
	RDF Schema (RDFS)
	Web Ontology Language (OWL)
	Unified Modeling Language (UML)

	Ontology Alignment
	The Alignment Process
	Alignment Format
	Matching Techniques

	Selected Ontology Matchers
	Anchor-Flood
	AROMA
	Eff2Match
	Hertuda
	HotMatch
	LogMap2

	Mix'n'Match: An Approach for Combining Ontology Matchers
	Initial Matching & Round Matching
	Alignment Selection
	Enriching Ontologies with Additional Knowledge
	Anytime Behavior in Mix'n'Match

	Empirical Evaluation of Mix'n'Match
	Preliminaries
	Ontology Alignment Evaluation Initiative (OAEI)

	Ontology Matching in an Industrial Environment
	Transforming Object-Oriented Models into Ontologies
	Aligning Transformed Object-Oriented Models with Mix'n'Match

	Summary & Conclusions
	Related Work
	Further Work

	Bibliography

