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Abstract 

Molecular interactions between odorants and odorant binding proteins (OBPs) are of major 

importance for understanding the principles of selectivity of OBPs towards the wide range of 

semiochemicals. It is largely unknown on a structural basis, how an OBP binds and 

discriminates between odorant molecules. Here we examine this aspect in greater detail by 

comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the 

protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of 

structurally analogous odorants featuring an aromatic phenol group with different side chains 

were assessed based on changes of the thermal stability of the protein upon odorant binding 

monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants 

show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the 

mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 

stability is very sensitive to the position and type of functional groups in the odorant. 
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Introduction  

 

Odorant binding proteins (OBPs) attracted increasing attention in recent years due to their 

potential application as biosensing elements for the fabrication of odorant sensors based on 

the olfactory system [1-4]. Applications are diverse and include disease diagnostics [5], food 

safety [6], and environmental monitoring [7]. These biomimetic sensor platforms potentially 

provide higher sensitivity combined with lower detection limits and faster response time 

compared to odorant sensors based on metal oxides and conducting polymers [8-10]. 

OBPs are abundant small proteins (~13-16 kDa) found in the olfactory epithelium of 

vertebrates and the sensillar lymph of insects [11]. The functional role of OBPs in olfaction is 

not fully resolved yet. However, high concentrations (10 mM) of OBPs in olfactory dendrites 

and the relatively high number of OBPs in the genome indicate important contributions 

[12,13]. A meanwhile widely accepted hypothesis describes OBPs as a carrier for 

hydrophobic odorant molecules through the sensillar lymph to the membrane which holds the 

odorant receptor cells [12,14]. 

The focus of this work is OBP14 of the honey bee (Apis mellifera L.). Investigation of the 

olfactory system in honey bees is of particular interest due to the high complexity of the 

chemical language used by these social insects to communicate among the members of the 

bee hive [15]. The genome of the honey bee comprises 21 OBPs [16], 13 of which are 

classified as classic OBPs (OBP1-13) and seven as C-minus OBPs with four Cys residues 

(OBP15-21). OBP14, also a member of the C-minus class, is unique, featuring five cysteines. 

It has been identified in different tissues of adult bees, as well as in larvae [17]. OBP14 

exhibits 119 amino acid residues with a molecular weight of 13.5 kDa [18]. Typical for insect 

OBPs, its three dimensional structure predominantly consists of -helical domains arranged in 

a very compact and stable structure, as depicted in Fig. 1A. Featuring five cysteines, OBP14 
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exhibits two disulfide bonds between residues 17(1)-49(3) and 88(5)-106(6) as well as 

an unpaired cysteine at position 47(3) [18]. For investigation of the functional implications 

arising from structural differences between classic and C-minus OBPs, a double mutant 

Q44C-H97C of OBP14 was employed in this study, which comprises the third disulfide bond 

present in classical OBPs (see Fig. 1B) [18].  

Ligand-binding characteristics and affinities of a wide range of odorants to OBPs of various 

species have been the subject of intensive research [19-21]. Typically, fluorescence binding 

studies are employed to indirectly determine the affinity of an odorant relative to a 

fluorescence reporter molecule [17,18,22,23]. Most recently, our lab presented a method of 

estimating odorant affinities to OBPs by monitoring the changes of thermal stability of the 

protein upon odorant binding by circular dichroism (CD) spectroscopy. This approach has 

been successfully applied to OBP14 and has been validated by infrared (IR) spectroscopy 

[24]. By evaluation of the different transition temperatures of geraniol and eugenol, it was 

possible to distinguish between the affinities of the two ligands. CD is a convenient method 

for studying the structure of proteins in solution and is particularly applicable to monitor 

dynamic changes in the secondary structure triggered by an external perturbation such as a 

temperature increase [25].  

Increased protein stability upon ligand binding has been observed for a wide variety of 

biological systems [26-28]. Weak non-covalent forces such as hydrogen bonds as well as 

electrostatic, hydrophobic and aromatic interactions have been recognized to play a 

significant role in increasing the structural stability of the protein-ligand complexes [29-31] 

In this work, we systematically analyze and evaluate structural parameters that influence an 

odorant’s affinity to OBP14. So far, this has only been accomplished for odorant receptors 

[32,33]. However, with the growing interest in OBPs and their crucial role in olfaction, 

structural properties of their binding cavity are the consequential target of future 
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investigations. To address this question, we employed CD spectroscopy to compare the effect 

of ligand binding on the thermal stability of wild-type and mutant OBP14 and correlate the 

increase of stability with odorant affinity. The tested odorants include eugenol and its 

structural analogues, which belong to the family of phenyl propanoids, a group of compounds 

known for their role as semiochemicals for many insects [34]. Comparison of the wild-type 

and a mutant form of OBP14 reveals the impact of protein flexibility on the OBP’s ability to 

adapt its binding cavity to fit different odorants with varying functional groups. 

 

 

Materials and methods 

Materials. Eugenol (4-Prop-2-enyl-2-methoxyphenol, 99%), Methyl eugenol (4-Allyl-1,2-

dimethoxybenzene, 98%), 4-Vinylguaiacol (2-Methoxy-4-vinylphenol, 98%), Homovanillic 

acid (2-(4-Hydroxy-3-methoxy-phenyl)acetic acid, 98%), Coniferyl aldehyde (3-(4-hydroxy-

3-methoxyphenyl)prop-2-enal, 98%), Coniferyl alcohol (4-(3-hydroxy-1-propenyl)-2-

methoxyphenol, 98 %), Isoeugenol (2-methoxy-4-(prop-1-en-1-yl)phenol, 98%), 

Dihydroeugenol (2-Methoxy-4-propylphenol, 99%), 3,4-Dimethoxystyrene (techn.) were 

provided by Sigma-Aldrich (Steinheim, Germany).  

 

Expression and purification of OBP14. Expression of recombinant proteins was done as 

described in Spinelli et al. [18]. Bacterial expression was performed along with established 

protocols [17,35] and purification was accomplished using conventional chromatographic 

techniques [36,37]. The purity of the protein was checked by SDS-PAGE.  
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Circular Dichroism. Far UV (260-195 nm) CD measurements were carried out using an 

Applied Photophysics Chirascan plus spectrophotometer (Leatherhead, Surrey, United 

Kingdom) equipped with a temperature control unit (Quantum TC125) in a 1 mm quartz cell 

at 1 nm resolution. Protein solutions (0.5 mg/mL; 41.8 µM) were prepared in phosphate 

buffer (140 mM NaCl, 3 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 8). For static 

measurements, ten spectra with the acquisition time of 0.5 s were taken at room temperature 

and the results were averaged. For measurement of OBP14 in the presence of odorants, the 

protein was incubated in solution with 200 µM odorant for 1 h. For temperature-controlled 

experiments, two acquisition techniques were employed. In spectra-kinetic mode, spectra 

were taken in the range of 20-90 °C (T=5 °C) with an acquisition time of 0.2 s after an 

equilibration time of 45 s at each temperature step. In the kinetic mode, the ellipticity was 

recorded at a fixed wavelength of 222 nm with an acquisition time of 0.5 s. 

 

MD simulations. MD simulations were performed using the GROMOS11 package for 

biomolecular simulations [38] and the GROMOS forcefield 54A8 [39] starting from the 

native and mutant OBP14 crystal structures (PDB ID: 3S0A and 3S0G) [18].Three 50-ns 

simulations each were performed at 300, 340, 360, 370 and 400 K. Detailed simulation 

settings are provided in the Supporting Information. 

 

Results and discussion 

Thermal stability of wild-type and mutant OBP14 

 

Circular dichroism measurements of wild-type and mutant OBP14 at room temperature are 

shown in Fig. S1. The negative peak at 208 nm and the negative shoulder at 222 nm are a 
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clear indication for the high -helical content of the proteins [40,41]. This secondary structure 

assignment is in agreement with X-ray diffraction and IR-spectroscopy [24]. 

Effects of the additional disulfide bond introduced to the protein on thermal stability of 

OBP14 were investigated by acquiring CD spectra while increasing the temperature between 

20 and 90 °C in 5°C steps. Thermal denaturation of the proteins was followed by evaluation 

of the CD signal at 222 nm, which has been reported to be particularly sensitive to changes of 

the secondary structure [25,42]. Fig. S2 shows the ellipticity at 222 nm plotted versus 

temperature. The data points were fitted with a Boltzmann function for sigmoidal line shapes. 

The points of inflection, i.e., the temperature of maximum change for wild-type and mutant 

OBP14 are 56.6 and 64.9 °C, respectively. The transition temperature of wild-type OBP14 

agrees well with the one reported for OBP14 (55.3 °C) in a previous study [24]. As expected, 

the transition temperature is higher for mutant OBP14 due to the introduced third disulfide 

bond that confers additional constraints in flexibility to the structure, thus preventing thermal 

denaturation [43]. MD simulations confirm a higher stability of the mutant as observed by the 

secondary structure content and atom-positional root-mean-square deviations from the X-ray 

structures (Fig. S3). Stabilization of proteins by disulfide bonds has been attributed to a 

decrease of conformational entropy [44]. Disulfide bonds form a covalent link between 

secondary structure elements and consequently increase protein thermostability by preventing 

the formation of incorrectly folded structures [45]. Consequently, an increase of thermal 

stability has been observed for many biological systems [46-48], most notably it was found 

that removal of a native disulfide bond in porcine OBP results in a decrease of the transition 

temperature of more than 30 °C [49]. 
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Effect of functional group variation on odorant affinity 

 

Odorant binding does not affect the structure of OBPs to a degree that can be monitored 

with instrumental techniques that detect alterations in the overall secondary structure, such as 

IR or CD spectroscopy [24,50,51]. Thus, changes in thermal stability of the protein upon 

odorant binding were assessed to estimate odorant affinities.  

Effects on thermal stability of wild-type and mutant OBP14 due to odorant binding were 

studied by acquiring CD spectra while increasing the temperature between 20 and 90 °C in 

5°C steps (exemplary spectra shown in Figs. S4-5). Control measurements of the buffer and 

odorant solutions without protein do not show any changes with increasing temperatures (Fig. 

S6). Thermal denaturation of the protein was evaluated by plotting the CD signal at 222 nm 

versus temperature. Fig. 2 shows the transition curves of the (A) wild-type and (B) mutant 

OBP14 in absence and presence of the investigated odorants. By applying a Boltzmann fit for 

sigmoidal lineshapes, the points of inflection were determined (temperatures indicated by 

arrows). The results are collected in Table S1. In Fig. 3, the change in transition temperature 

of the protein-ligand complex is shown relative to the transition temperature of the proteins in 

absence of odorants. 

Consistent with earlier studies, the extent of temperature increase due to ligand binding is 

correlated with the affinity of the examined odorants [24,51]. 

In this study, odorants with a phenolic ring structure were systematically investigated, with 

a methoxy group as the R3 substituent and variations at the R1 and R4 substituents on the 

benzene ring. Changes of the transition temperature due to ligand binding as represented in 

Fig. 3 allow identifying trends of odorant affinity associated with the different side groups 

that will be discussed in the following part. For the wild-type protein, eugenol (1), isoeugenol 

(3) and 4-vinylguaiacol (4) exhibit the highest observed affinities as measured by the 
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increasing thermal stability due to odorant binding. The high affinity of this odorant to wild-

type OBP14 has been confirmed with a graphene-based FET sensor [4] in our lab as well as 

with fluorescence binding studies [17,18]. Out of the odorants listed above, eugenol shows a 

comparable affinity to mutant OBP14. Common structural features of these odorants are the 

hydroxyl group as R4 and a hydrophobic chain as R1. Strong hydrogen bonds between the 

hydroxyl group and adjacent amino acid residues in a particularly favorable tetrahedral 

geometry have been identified to play an important role in this strong binding [18].  

Compared to odorants 1 and 4, in methyl eugenol (2) and 3,4-dimethoxystyrene (5) the  

hydroxyl group is exchanged with a methoxy group, while exhibiting the same functional 

group as R1. Thus, the influence of the hydroxyl group on the affinity is directly 

experimentally observable. In the presence of the methoxy group, affinities to the wild-type 

protein decrease drastically with an additional decline for mutant OBP14. These results 

confirm the importance of the hydroxyl group to the protein-ligand interaction, as explained 

above.   

For further investigations, the functionalities of the R1 group were varied. Compounds 4 

and 5 have a vinyl side chain, whereas odorants 1 and 2 exhibit an allyl side group. 

Particularly intriguing is the case of isoeugenol (3), which is a structural isomer of eugenol 

with the double bond in R1 shifted from the second to the first carbon of the side chain. This 

means, the two molecules have the same size, but the location of the double bond is different. 

As shown in Fig. 3, for wild-type OBP the transition temperatures of odorants 3 and 4 

featuring a vinylic side chain is comparable with eugenol, which is otherwise structurally 

analogous. For the mutant protein however, the transition temperatures of these odorants are 

significantly decreased. A possible explanation for the lower odorant affinity of mutant 

OBP14 is the constricted flexibility introduced by the additional disulfide bond. Whereas the 

more flexible wild-type protein can adjust the shape of its binding cavity to form hydrophobic 
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interactions with the vinylic double bond, this adaptation is not possible for the mutant due to 

conformational restrictions. It has been reported that the binding cavity of OBP14 changes its 

size up to 20 % upon odorant binding [18], and that a certain degree of conformational 

flexibility is required for OBPs to properly interact with odorants [52]. The equivalently low 

change in transition temperatures of odorants 2 and 5 for both wild-type and mutant OBP14 

may be explained by the dominating influence of the methoxy group as discussed above. 

In homovanillic acid (6), coniferyl aldehyde (7) and coniferyl alcohol (8), the position 1 of 

the benzene ring possesses polar and charged groups in contrast to odorants 1-5 that feature 

hydrophobic side chains at this position. Evidently, a hydrophilic group is unfavourable at this 

site for both wild-type and mutant OBP14, because the affinities are significantly lower for 

these odorants (Fig. 3). This finding is experimental proof for the hypothesis stated in an 

earlier study that these polar groups have a negative effect on the interaction with the 

hydrophobic binding pocket of OBP14, despite the evidently similar structures of the involved 

odorants [17]. 

In summary, we have systematically investigated the affinities of phenolic odorants with 

varying side chains to wild-type and mutant OBP14 of the honey bee. CD measurements at 

elevated temperatures of the proteins in absence of odorants revealed a higher thermal 

stability of the mutant exhibiting an additional disulfide bond not present in the wild-type C-

minus OBP14. This finding was corroborated by molecular dynamics simulations. Relative 

affinities of odorants have been estimated due to the extent of increased thermal stability of 

the protein-odorant complex. Our results indicate that eugenol exhibits the highest affinity to 

both, wild-type and mutant OBP14. Replacing the hydroxyl group with a methoxy group at 

position 4 of the benzene ring causes a decreased affinity to both forms of OBP14, whereas 

exchange of the allylic group with a vinylic side chain at the R1 substituent leads to an 

exclusive decline of affinities to mutant OBP14. Differences in odorant affinity between the 
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wild-type and mutant are attributed to lower flexibility of the mutant due to the additional 

disulfide bond. Odorants featuring a polar or charged group at the R1 position show very low 

affinities to both types of OBP14.  

In our lab, studies of odorant affinities to wild-type OBP14 utilizing a graphene-based FET 

sensor confirmed the high affinity of eugenol [4]. However, in that investigation also odorants 

with a polar side chain show medium to high affinity. In the future, we intend to employ 

molecular dynamics simulations to explain this variance and to further explore the molecular 

basis of odorant affinities to OBPs. 
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Fig. 1. Three dimensional model of (A) wild-type OBP14 and (B) mutant OBP14 featuring an 

additional disulfide bond between 3 and 6. OBP14 natively possesses two disulfide bonds 

between 1-3 and 5-6, respectively, thus being classified as a C-minus OBP. 
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Fig. 2. Ellipticity at a wavelength of 222 nm of (A) wild-type and (B) mutant OBP14 in the 

absence and presence of odorants (data points). Lines indicate a Boltzmann fit for sigmoidal 

line shapes. 
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Fig. 3. Change in transition temperatures of the protein-odorant complexes of wild-type 

(black) and mutant (red) OBP14 relative to the transition temperature of the proteins in 

absence of odorants. Error bars indicate the standard deviation. Substituent R3 contains a 

methoxy group for all odorants. At R4, there is either a hydroxyl group or a methoxy group, 

whereas the R1 position varies between hydrophobic and hydrophilic side groups. 

 

 


