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Abstract This thesis deals with a dynamic optimization model aiming at deconcen-

trating poverty. The core approach is moving poor families to middle-class areas,

which may induce middle-class �ight. A reasonable model formulation requires

that many di�erent parameters have to be taken into consideration. The problem

is analyzed by methods of optimal control theory using the MATLAB R© toolbox

OCMat developed by Dieter Grass from the research unit for Operations Research

and Control Systems at the Vienna University of Technology. The basic model

as described in previous work will be extended in order to see how the equilibria

and the optimal solutions depend on the model assumptions. Furthermore, the

case of a so-called DNSS curve will be analyzed.

Keywords Dynamic segregation · Nonlinear optimal control · OCMat Toolbox · Sen-
sitivity analysis · DNSS point
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CHAPTER 1
Introduction

This thesis is a continuation of the thesis by Reka Horvath (2011). In particular, the

�rst �ve chapters of this thesis heavily rely on the thesis by Horvath (2011) and mostly

are taken directly from there. The reason for repeating parts of her work is to make

my thesis understandable by itself.

This work deals with the problem faced by a social planner who wants to include

a stream of poor families into a middle-class area without evoking middle-class �ight.

Placing too many poor families in a short time would induce current residents to emi-

grate and even deter other a�uent residents from moving in. Both possibilities would

reduce the tax base of the community to which the poor families are relocated, and

that is counterproductive. But placing too few marginalized families squanders the

opportunity to use the resources of the community to help to assimilate poor families

into middle class.

This problem has very concrete, practical motivations. It has received considerable

attention in academic research including the analysis of group e�ects, social interac-

tions and networks, in particular with respect to the design of e�cient social policies.

However, this kind of problem has rarely been addressed with powerful analytic meth-

ods such as optimal control applied in the present work.

Social interactions are mathematically closely associated with non-linearities and mul-

tiple equilibria. The existence of multiple equilibria is related to the existence of

so-called Skiba or DNSS points. Multiplicity means that for given initial states there

exist multiple optimal solutions; thus the decision-maker is indi�erent about which op-

tion to choose, i.e., at such a threshold di�erent optimal paths exist. Small movements

away from the threshold typical resolve the indi�erence and lead to a unique optimal
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solution. Sethi (1977, 1979), Skiba (1978) and Dechert and Nishimura (1983) explored

these points of indi�erence for the �rst time when they considered a special class of

optimal control problems. In recognition of their studies these points of indi�erence

are denoted as DNSS (Dechert-Nishimura-Sethi-Skiba) or simply Skiba points.

The following work analyzes the strategy of a housing mobility program, which places

poor families into middle-class areas, by using methods of optimal control theory. The

underlying premise is that poor families can do better on a variety of social, health,

education, and economic indicators if they have the opportunity to choose good-quality

housing in more-a�uent destination communities. The fundamental management ques-

tion is, how best could such a strategy look like?

As mentioned above, this thesis is a continuation of a recent work from Reka Hor-

vath (2011) who wrote her diploma thesis on the same topic, analyzing a two-state

optimal control model. First of all, I will provide the same overview of the recent

problems of segregation in the USA that she provided. Then the formulation of the

mathematical model will be discussed, �rst with one variable and then in terms of

a two-state optimal control model. I will provide Reka Horvath's �ndings about the

two-state model and afterwards continue with extensions of the original model, which

is also described in Grass and Tragler (2010). The extensions will be named the �α

Model� and the �β Model� according to the new parameters introduced via the exten-

sions.
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CHAPTER 2
Policy Context: The USA in Words

and Figures

According to the United States Census Bureau (2011b) the number of inhabitants of

the US expands every twelve seconds by one person. It makes the United States to the

third largest country by population with about 308 million people.

This rather high number of people living in the U.S. is not so much caused by a

birthrate but rather by a large-scale immigration from many countries. The birthrate

is 30% under the world average, which is still higher than that of most of the European

countries. One person immigrates to the country every 43 seconds as per United States

Census Bureau (2011b), so the United States are one of the world's most ethnically

diverse and multicultural nations.

One of the key problems concerning this kind of expansion is the slow process of

assimilation of the immigrants. Social inhomogeneity accompanies unemployment and

delinquency and it breeds ethnical segregation followed by urban decay. The United

States Census Bureau estimates the number of illegal immigrants at about 11.2 million

in 2010. The population growth of Hispanic Americans provides the major demo-

graphic trend.

The Annual Estimates of the the United States Census Bureau (2011a) provides the

following composition of the US population in 2009:

• 79.6% White

• 12.9% African American

• 4.6% Asian American
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• 1.0% American Indian and Alaskan Native

• 0.2% Native Hawaiian and Other Paci�c Islander

• 1.7% Multiracial

Additionally this study assumes 15.4% of the whole population to be Hispanic, which

means 46.9 million people. Hence White Americans are the largest racial group, African

Americans are the nation's largest racial minority and Asian Americans are the coun-

try's second largest racial minority. Since 1998, China, India, and the Philippines have

been in the top four sending countries every year. According to the United States

Census Bureau, about 80% of Americans live in urban areas, including suburbs. The

�Population Estimates� of the Bureau (2009) specify nine cities with more than one

million residents. The biggest metropolises are New York, Los Angeles, Chicago and

Houston city with more than two million inhabitants. However, this expansion is

associated with large-scale unemployment, where according to the Bureau of Labor

Statistics (2011) the average rate amounts to 9.1%. Heavily a�ected are teenagers by

an unemployment of 25.4%, furthermore African Americans by 16.7% and Hispanics

by 13.3%, as per the Economic of Labor Statistics (August, 2011). By comparison, as

per Die Presse (August 31, 2011), the European Union records an unemployment of

10% with Austria's at 3.7%. The teenager-unemployment in Austria is added up to

7.8%.

According to DeNavas-Walt et al. (2008) the United States denotes the greatest income

inequality among developed nations. This report demonstrates also the varying level

of income in di�erent states. Maryland has the highest income added up to $68,080

and Mississippi the lowest one by $36,338. Furthermore it sheds light on the Ameri-

can poverty status. In 2008, 13.2% of all Americans lived in poverty, which included

more than 30 million people. The harmful e�ects of high-poverty areas are thought

to be especially severe for children whose behavior and prospects may be particularly

susceptible to a number of neighborhood characteristics, such as peer group in�uences,

school quality, and the availability of supervised after school activities.

One possibility to reduce destitution is deconcentration of poverty, e.g., via housing

mobility programs. By means of dynamic optimization models, this work examines the

problem faced by a social planner who wants to integrate poor families into middle-

class neighborhoods faced by segregation without inducing �middle-class-�ight�1.

1Middle-class-�ight is a demographic and sociological term denoting the trend when

middle-class people �ee desegregated communities due to anxiety of accustomed social

standards.
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However, one central question is whether �ight is driven more by the current in�ow

of poor immigrants or by their accumulation over time. On that point, there appears

to be some reasons to believe it is the current in�ow (Ellen, 2000). Charles T. Clot-

felter2 is of the opinion that the Brown v. Board of Education (1954)3 decision of the

Supreme Court - ordering the abrogation of racial segregation of public schools - was

and remains the major factor actuating the �ight of white Americans from mixed-race

communities (Clotfelter, 2004). It is worth to mention, however, that the complexity

of problems caused by racial segregation has been a frequently discussed subject at

least since the Declaration of Independence, July 4, 1776.

Already, 40 years ago Thomas Schelling4 has already analyzed this segregative be-

havior of communities (Schelling, 1971). He showed in his segregation model that a

small preference for one's neighbors to be of the same color could lead to total segrega-

tion. He used coins on graph paper to demonstrate his theory by placing pennies and

nickels in di�erent patterns on the �board� and then moving them one by one if they

were in an �unhappy� situation.

The rule, this model operates on, is that for every colored cell, if greater than 33% of

the adjacent cells are of a di�erent color, the cell moves to another randomly selected

cell. Furthermore, the systemic e�ects are found to be overwhelming: there is no sim-

ple correspondence of individual incentive to collective results. Schelling deduced an

�exaggerated separation and patterning result from the dynamics of movement. In-

ferences about individual motives can usually not be drawn from aggregate patterns�

(Schelling, 1971). It is still a powerful example of an �invisible-hand� explanation.

Over the past 10 years the US government has placed an increased emphasis on anti-

poverty programs via public housing developments. �The Moving to Opportunity for

Fair Housing� (MTO) program directed by HUD (U.S. Department of Housing and

Urban Development, 1999) is one of these experimental housing mobility programs

(Elhassan et al., 1999). According to the �Moving to Opportunity Interim Impacts

2Professor of Public Policy Studies and Professor of Economics and Law at Duke

University.
3Supreme Court of the United States: Full name of the case: Oliver Brown et al. v. Board

of Education of Topeka et al.
4Thomas Crombie Schelling (born April 14, 1921) is an American economist and Profes-

sor of Foreign A�airs, National Security, Nuclear Strategy, and Arms Control at the School

of Public Policy at University of Maryland, College Park. He received the Nobel Prize in

Economic Sciences 2005 �for having enhanced our understanding of con�ict and cooperation

through game-theory analysis�.
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Evaluation� Report, MTO was designed to answer questions about what happens when

very poor families have the chance to move out of subsidized housing in the poorest

neighborhoods of �ve very large American cities, namely Baltimore, Boston, Chicago,

Los Angeles, and New York. MTO was a demonstration program: its unique approach

combined tenant-based housing vouchers with location restrictions and housing coun-

seling.

The participant families had to live in public housing or private assisted housing in

areas of the central cities with very high poverty rates (40% or more), have very low

incomes, and have children under 18 years. The mean poverty rate of baseline locations

was, in fact, higher than 56%. The experimental Section 8 group was o�ered housing

vouchers that could only be used in low-poverty neighborhoods (where less than 10%

of the population was poor, base year 1990) and local counseling agencies helped to

�nd and lease units in qualifying neighborhoods.

The major questions were: What are the impacts of joining the MTO demonstra-

tion on household location and on the housing and neighborhood conditions of the

participants? What are the impacts of moving to a low-poverty neighborhood on the

employment, income, education, health, and social well-being of family members?

A summary assessment of the �ndings and the impact estimates suggest that: the

�ndings do provide convincing evidence that MTO had real e�ects on the lives of par-

ticipating families in the domain of housing conditions and assistance and on the char-

acteristics of the schools attended by their children; there is no convincing evidence of

e�ects on educational performance, employment and earnings, household income, food

security, or self-su�ciency.

However, the ability to measure those e�ects quantitatively is limited. There are a

number of reasons to expect that observing the MTO population over a longer period

of time may reveal signi�cant program impacts in domains with no mid-term e�ects.

There are strong theoretical reasons why it may take many years for the full e�ects

of neighborhood to manifest themselves. Developmental outcomes such as educational

performance almost certainly re�ect the cumulative experience of the child from an

early age. The analyses found at least modest evidence of increasingly favorable e�ects

over time (Elhassan et al., 1999).
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CHAPTER 3
The Model

Caulkins et al. (2005a,b) deal with a simpli�ed one-state model while Grass and Tra-

gler (2010) recently studied the full two-state model for the �rst time. The model

described in what follows is clearly stylized, and many considerations are left out in

order to frame an essential and transparent dynamic of the problem.

One of the main factors of the health of a given neighborhood is considered to be

the number of middle-class families who live there at time t, denoted by the state

variable X(t). The second state variable Y (t) represents the number of poor families

in the town. With this additional second state variable one can model explicitly the

social advancement of marginal families placed by a formal public program into the

middle class, with other words the gradual process by which a family remaining in the

neighborhood moves up the socio-economic ladder over time. The key policy variable

is the rate at which poor families are situated in the neighborhood, denoted by the

control variable u(t)1.

The number of middle-class families, X, changes over time because of to three main

in�uences. First, there are the underlying natural or �uncontrolled� dynamics that

would be the case even if there were no external interventions (i.e., u ≡ 0). In many

ways, housing markets act like other economic markets. So prices adjust to balance

supply and demand and the population develops to some optimal city size (Henderson,

1974), so the housing stock is �xed at a size that would in case of normal circum-

stances support some given population (without loss of generality normalized to be

unity, X = 1). If the resident population was growing beyond this given normal level

(X > 1), residents would then �ow to less congested middle-class neighborhoods. On

1Note that the time argument t will mostly be omitted in the following.
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the contrary, if the population falls below that level (X < 1), local prices would decline,

by this attracting immigration from other, comparable middle-class neighborhoods2.

To describe this natural adjustment process, the logistic growth curve will be adopted.

The second factor in�uencing the number of middle-class families is �middle-class �ight�

which is created by the placement of poor families in the neighborhood. The complex-

ity of the incitement of middle-class �ight is enormous. Flight may be provoked not

only by immigration into the residential neighborhood but rather by immigration of

children into the school district (e.g., Clotfelter, 2001; Fairlie, 2002). Some subgroups

appear more likely to �ee than others. For instance, Ellen (2000) explains that home-

owners are more likely to leave than are renters. Ellen (2000) also argues that families

with children are more likely to �ee than families without children as they are more

concerned about social issues. This comes especially into pratice if the children attend

public schools. Furthermore she explains, �whites do not appear to care very much

about the proportion of a neighborhood that is African-American, whites do tend to

avoid neighborhoods in which the proportion of families who are African-American is

increasing (independent of the current size of the minority population)�. This is similar

to the �nding of Betts and Fairlie (2003) in the context of native-born and immigrant

population that �for every four immigrants who arrive in public high schools, it is es-

timated that one native student switches to a private school�. The answer to a central

question whether �ight is driven more by the current in�ow of poor immigrants or by

their accumulation over time3 seems to be: the current in�ow. So the middle-class

�ight is assumed to depend primarily as the �ow u of marginal families to the stock of

current, established families.

The third and �nal factor in�uencing changes in the stock of middle-class residents

is the social advancement of poor families, which is the rate at which incoming fam-

ilies are �assimilated�. The hope is that immersion in a middle-class neighborhood

will improve outcomes, including labor market participations and income and educa-

tional outcomes for the children, which translate into social opportunity and higher

incomes over time. However, in accordance with Mayer and Jencks (1989), there is a

possibility that a�uent neighbors provoke resentment among the poor over their rel-

ative deprivation. A satisfying short-term result such as improving social welfare of

the neighborhood is almost impractical. Rather, the work is aimed at the long-term

2If the population base of the whole city is changing, i.e., if it is booming or eroding, the

neighborhood's normal population density would accordingly change. This analysis assumes

the normal population to be constant over time.
3Understood relative to the size of the stock of middle-class families.
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bene�ts as mentioned above.

Summing up the e�ects in�uencing the population system, Figure 3.1 illustrates the

dynamics of the model.

Figure 3.1: Placing the poor to the middle-class neighborhood

After all these observations we get the following dynamic optimization problem with

two state variables:

max
u(·)≥0

∫ ∞
0

e−rt
[
ρXX(t) + ρY Y (t) + σ(u(t)− cu(t)2)

]
dt

s.t. Ẋ = own dynamics −middle-class �ight + social advancement

Ẏ = own dynamics − social advancement + u,

where r is the time discount rate, which is non-negative. ρX values the presence of

established families and ρY the one of marginal families.

Now we take a look at di�erent cases that might occur. If we have ρX = 0, we have

the case that the decision-maker is only concerned about placing as many families as

possible. If ρX > 0, the decision-maker also values directly the presence of established

families. So this is in a bit more complex. A reason for the decision maker valuing

those families can be the fact that they pay taxes. Here we assume that ρX > ρY . If

we leave this out we can actually get very interesting insights but we won't focus on

that for the moment.

We �nd a weight σ for the control terms in the objective function. By doing this
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we can easily put more or less emphasis on the contributions from the control variable

u relative to those from the state variables X and Y . So there is always a relation

between the control variable and the state variables. Here we have quadratic control

costs where c is the cost coe�cient. Now we have to think about the parameter c and

�gure out what value makes sense for it. What sometimes we do in Mathematics is

leaving out some terms temporarily in order to try out what kind of parameters might

�t. Obviously, this is easier if the term is not too complex. This is the reason why

we leave out the terms ρXX(t) + ρY Y (t) for the moment, so we focus only on the

instantaneous part of the objective function, which is σ(u(t) − cu(t)2). In that case

we put the total emphasis on the control. We ask ourselves when these control terms

are maximized. The answer is, when u = 1
2c
. If we have c = 2 we get u = 0.25 as the

optimal level of the control. That means that we would place one poor family per four

middle-class families per year. Placing one poor family per two middle-class families

would be far too aggressive and result in less bene�ts. The only fact that we also

have to consider is that all these judgements are most probably tempered by long-run

considerations including assimilation and middle-class �ight. For further details see

Caulkins et al. (2005a,b)

Now we want to explain the own dynamics. We use a very common way that is

often mentioned in mathematics which is the logistic growth:

own dynamics = aX(1−X).

X represents the relative size of the population, and a (b, respectively, for the growth

of Y ) describes the speed with which the equilibrium population is approached.

The middle-class �ight looks as follows:

βf
( u
X

)
X,

where β is the extent of middle-class �ight. Betts and Fairlie (2003) mentioned that one

native-born person moved out of the school district for every four immigrants entering

(β = 0.25). The assumption that �ight by facing lower-class could possibly be stronger

than �ight from immigrants suggests even larger values of β. Ellen (2000) argues that

a �ight coe�cient in the range of 0.9 − 1.575 is reasonable. Taking all this research

into consideration, Caulkins et al. (2005a,b) set β = 0.5 as base case value. For the

increasing function f() we set

f
( u
X

)
=

u

X
.

The social advancement term is proportional to Y with the proportionality factor γ,
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which is the rate of assimilation of poor families into middle-class. The social ad-

vancement term is an increasing function of the proportion of those neighbors who are

middle-class. One of the important requirements of moving to opportunity programs is

that marginal families learn from their more a�uent neighbors and adopt the �success-

ful� practices. Through this they also achieve middle-class status. So we can explain

the social advancement term as follows:

social advancement = γY g(X, Y ),

with g() increasing in X. g() can for instance have the following form:

g(X, Y ) =

(
kX

kX + Y

)e

,

where e > 0. k is the extent to which the neighborhood was integrated. k = 1 stands for

random mixing. In this case the proportion of middle-class people to whom a marginal

family is exposed equals the proportion of middle class families in the town. If k < 1,

the proportion of middle-class families seen is less than their factual proportion of the

population of the town.

Together, all these re�ections suggest the following formulation of the model:

max
u(·)≥0

∫ ∞
0

e−rt
[
ρXX(t) + ρY Y (t) + σ(u(t)− cu(t)2)

]
dt (3.1)

subject to the dynamic state equations

Ẋ(t) = aX(t)(1−X(t))− βu(t) + γY (t)

(
kX(t)

kX(t) + Y (t)

)e

(3.2)

Ẏ (t) = bY (t)(d− Y (t))− γY (t)

(
kX(t)

kX(t) + Y (t)

)e

+ u(t) (3.3)

with base case parameters presented in Table 3.1.
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Table 3.1: Base case model parameters.

Parameter Value Description
r 0.05 discount rate
ρX 0.02 objective function coe�cient on X
ρY 0.01 objective function coe�cient on Y
σ 0.01 weight on objective function control terms
c 2 program cost coe�cient
a 2 maximal growth rate at X = 0
b 2 maximal growth rate at Y = 0
d 1 carrying capacity of Y
β 0.5 �ight coe�cient
γ 0.45 assimilation coe�cient
k 1 social integration coe�cient
e 1 exponent in the social advancement term

20



CHAPTER 4
The MATLAB-Toolbox: OCMat

The OCMat Toolbox initiated by Dieter Grass enables an appropriate analysis of op-

timal control problems using the MATLAB R© language1. OCMat is mostly used for

analysing discounted, autonomous, in�nite time horizon models but is also provides

extensions to non-autonomous, �nite time horizon problems. The numerical method of

the toolbox used to solve optimal control problems is based on Pontryagin's Maximum

Principle, which establishes the corresponding canonical system. Essentially, solving

optimal control problems is translated to the problem of analyzing the canonical sys-

tem, together with the condition for the initial state and some transversality condition.

In addition to the idea of formulating discounted, autonomous, in�nite time horizon

optimal control models as BVPs, the occurrence of limit sets (equilibria, limit cycles)

of the canonical system as long-run optimal solution was the key argument for Dieter

Grass to use a continuation method to anaylze those BVPs. In general, continuation

means continuing an already detected solution while varying a model-speci�c parame-

ter value. Of course, in the context of a BVP the interest is in the majority of cases

not only in continuing a solution for varying model parameters but also in the con-

tinuation of a solution along varying initial conditions x(0) = x0. Limit sets serve

as the �rst �trivial� solution of an optimal control problem and can be continued in

order to derive optimal solutions for arbitrary initial states. The existence of these solu-

tions generated by every continuation step is founded by the implicit function theorem.

One can sum up the main ideas used in OCMat as follows:

• transforming the optimal control problem to a boundary value problem;

1MATLAB is a registered trademark of The MathWorks Inc.
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• using the technique of continuing an already established solution, which is given

by an equilibrium or limit set and

• formulating a so-called asymptotic boundary condition.

More precisely, to introduce the BVP approach, D. Grass starts with the reformulation

of an optimal control problem, where it is assumed that the stable manifold of the

equilibrium (x̂, λ̂) is of dimension n and is the long-run optimal solution. Then, given

an initial state x(0) = x0 ∈ Rn, a trajectory (x(·), λ(·)) has to be found, which satis�es
the ODEs of the canonical system and converges to the equilibrium (x̂, λ̂) (Grass et

al., 2008, p352). Using the de�nition of a local stable manifold this can be formulated

so that for some T

(x(T ), λ(T )) ∈ W S
loc(x̂, λ̂),

or approximating W S
loc(x̂, λ̂) by its linearization ES(x̂, λ̂),

(x(T ), λ(T )) ∈ ES(x̂, λ̂),

which provides the terminal condition. Furthermore, the in�nite time horizon is re-

placed by some �nite horizon T . Thus the problem is reduced to a BVP, where initial

condition x(0) = x0 and the terminal condition from above is given.

This short summary of the principles of OCMat presents its key aspects, which serve

as the basis for a better understanding of the present work. However, the capacity of

the toolbox extends the facility of analyzing two-stage optimal control models quickly,

reliably and hence very e�ciently, and it also enables the calculation of other problem

classes, such as multi-stage models and di�erential games.

For further information see the OCMat webpage http://orcos.tuwien.ac.at/research/

ocmat_software, which also provides the slides from lectures by Dieter Grass and an

OCMat Manual by Dieter Grass and Andrea Seidl. Further details can be found in

Grass et. al (2008, Chapter 8).

The next chapter describes the analysis of the underlying discounted, autonomous

optimal control model with a speci�c focus on using OCMat.
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CHAPTER 5
Analysis of the Dynamical System

As this thesis is a continuation of a recent work from Reka Horvath (2011), I will shortly

describe her analysis and afterwards continue with modi�cations of the model. The

analysis of the underlying system happens in the usual manner for an optimal dynamic

control problem with application of Pontryagin's Maximum Principle. It means in its

simplest form that the solution of the control problem is delivered from the solution

of the so-called canonical system provided by the maximum principle. OCMat is used

for the numerical analysis of the system of nonlinear ODEs.

Before the analysis of an optimal control problem with OCMat can be started, some

preparing steps have to be done. In particular, a �le describing the state dynamics,

objective function, and - possibly - control constraint has to be created and initialised.

The initialising process consists of two steps: after the creation of the �le, MATLAB

�les containing default information of the model and MATLAB �les necessary for the

computation have to be generated. For our model, the content of the �le has to have

the form:

statedynamics=sym('[a*x1*(1-x1)-beta*u1+gamma*x2*(k*x1/

(k*x1+x2))^e;b*x2*(d-x2)-gamma*x2*(k*x1/(k*x1+x2))^e+u1]');

objectivefunction=sym('sigma*(u1-c*u1^2)+rhox*x1+rhoy*x2');

controlconstraint=sym('[u1-lb]');

where the name of the �le is used as the models' name (e.g., BaseCaseModel.m.)

controlconstraint=sym('[u1-lb]')means the control constraint is u > 0. The �le

also includes the parameter values. It has to be introduced by the comment %General:

%General
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r=0.05;

a=2;

b=2;

c=2;

beta=0.5;

gamma=0.45;

e=1;

rhox=0.02;

rhoy=0.01;

d=1;

k=1;

lb=0;

sigma=0.01;

The next step is the initialization of the �le by

initocmat('BaseCaseModel');

m=ocmodel('BaseCaseModel');

files4model(m);

moveocmatfiles(m);

initocmat derives and stores important information from the ocmodel; ocmodel con-

structs an ocmodel. The constructor loads the data previously stored during the ini-

tialization process. files4model creates �les for the numerical analysis and

moveocmatfiles moves the model �les from the standard output directory to the stan-

dard model directory.

The �rst step of the analysis is to locate the steady states of the canonical system.

These are the intersections of the state- and costate-isoclines. For that purpose, com-

mand calcep(m) is used, with which one can calculate the equilibria analytically, if

the system is not too complex. The toolbox also provides the possibility to solve the

equations numerically: rand(4,10) means in this special case that for the calculation

of the equilibrium consisting of four entries (i.e., two states- and two corresponding

costate-values: X, Y, λ1, λ2) the numerical calculation starts at ten random initial val-

ues. The toolbox checks if some solutions are admissible, i.e., they satisfy possible con-

straints and are actually zeros of the dynamics, with b=isadmissible(m,ocEP,opt).

Negativity of state values is checked with b=isnegativestate(m,ocEP). Also repeti-

tive equilibria can be removed by ocEP=uniqueoc(ocEP,opt). With ocEP{:} the user
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gets the calculated set (X̂, Ŷ , λ̂1, λ̂2). Summing up all these possibilities, the following

compound command can be called for calculating the equilibria of the canonical system:

ocEP=calcep(m,rand(4,10),opt);b=isadmissible(m,ocEP,opt);ocEP(~b)=[];

b=isnegativestate(m,ocEP);ocEP(b==1)=[];ocEP=uniqueoc(ocEP,opt);ocEP{:}

In her further analysis Reka Horvath (2011) comes to the conclusion that the under-

lying model with base case parameter values exhibits four candidates for an optimal

solution by solving the canonical system, but only one of them serves as an equilibrium

in the optimal system. That means, the system has one unique optimal steady state

solution (X̂, Ŷ ), namely X̂ = 1.0485, Ŷ = 1.0141, λ̂1 = 0.009113 and λ̂2 = 0.0049762.

The optimal level of middle-class as well as the optimal level of poor families are slightly

above the corresponding carrying capacities (= 1), with X̂ being insigni�cantly greater

than Ŷ and û being some 4% above 0.25 (cf. Grass and Tragler, 2010).
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CHAPTER 6
The α Model: Rich People Becoming

Poor

The �rst modi�cation that I analyzed in the course of analyzing the two-state optimal

control model was the question on what happens if rich people living in the middle-class

area become "poor" in the course of time. So they lose their status of middle-class,

which in�uences the optimal steady state solution that was mentioned above.

Modelling this case looks as follows: we have to subtract the term αX(t) from the

Ẋ equation and add this factor to the Ẏ equation. Of course the extent of α plays an

important role in this model, that is the reason why I called it the �α� Model. Putting

these changes of the model together, we get the following new model:

max
u(·)≥0

∫ ∞
0

e−rt
[
ρXX(t) + ρY Y (t) + σ(u(t)− cu(t)2)

]
dt (6.1)

subject to the dynamic state equations

Ẋ(t) = aX(t)(1−X(t))− βu(t) + γY (t)

(
kX(t)

kX(t) + Y (t)

)e

− αX(t), (6.2)

Ẏ (t) = bY (t)(d− Y (t))− γY (t)

(
kX(t)

kX(t) + Y (t)

)e

+ u(t) + αX(t). (6.3)

In order to know if we can actually work with this model, we �rst set α = 0 in order

to check if we receive the same equilibra as in the original model. So we create the �le

NewModel.m and carry out the same initialisation process as before in order to receive

the equilibria using the command calcep. Doing this we realise that in the case of

α = 0 we get the same equilibria and thus the same optimal steady state solution as

before, namely X̂ = 1.0485, Ŷ = 1.0141, λ̂1 = 0.009113 and λ̂2 = 0.0049762. We call
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the equilibria of this model ocEPn and the above equilibrium can be recalled by typing

ocEPn{1}.

6.1 Continuing the Equilibria with Matcont

The next step is to change the parameter α in order to see how this in�uences the

values of X and Y and especially the optimal solution (X̂, Ŷ , λ̂1, λ̂2). Before having a

look at speci�c values of α and analyzing those in more detail we want to check what

happens with X and Y if α becomes bigger and bigger. So we want to continue the

original equilibria. This happens the easiest by using the toolbox Matcont which is

also a Matlab toolbox that can be used together with OCMat.

Continuing the equilibria happens with the following command:

[b1,b2,b3]=contep(n,ocEPn{1},'alpha',opt) where n stands for NewModel.m. Be-

fore we do this we need to check if α is increasing or decreasing. This happens with

the command opt.MATCONT.Backward=1 or opt.MATCONT.Backward=[]. One cannot

say which of these commands is responsible for increasing α. This has to be checked

manually by the user. b1 stands for the equibrium which is continued. After doing

this we receive 300 equilibria. This number can also be edited but 300 is the standard

amount delivered by the program.

Now that we have continued the original equilibrium we can have a look at the bifur-

cation diagrams. We �rst take a look at the two-dimensional diagrams before putting

them together in a three-dimensional version.

If we want to see how X̂ develops if we increase α we need to type the command

plot(b1(end,:),b1(1,:)). We will have α on the x-axis and X̂ on the y-axis. So

in the command that we used above b1(end,:) stands for the parameter α which is

being increased and b1(1,:) stands for X̂.

Then we will also have a look at the diagram where Ŷ is continued. We use a very simi-

lar command: plot(b1(end,:),b1(2,:)) as the only di�erence we have is exchanging

X̂ by Ŷ .
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Figure 6.1: Continuing X̂ by increasing α

Figure 6.2: Continuing Ŷ by increasing α

In addition to the two diagrams we have created so far we will now have a look at the

three-dimesional digram where we see the development of X̂ and Ŷ at the same time.

We have to use the command plot3(b1(1,:),b1(2,:),b1(end,:)). So we have X̂

on the x-axis, Ŷ on the y-axis, and α on the z-axis.
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Figure 6.3: Continuing X̂ and Ŷ by increasing α

Now we would also like to have a bifurcation diagram where X̂, Ŷ and the corre-

sponding control û are displayed at the same time, all depending on α. First of all we

need to get hold of the control û. We do this by de�ning the function controlalpha:

function out = controlalpha(m,b,arcid)

out=[];

for ii=1:size(b,2)

m=changeparameter(m,'alpha',b(end,ii));

out(:,end+1)=control(m,b(1:4,ii),arcid);

end

This function delivers us the control values of the whole path. So now we have all the

inputs that we need for the bifurcation diagram. But �rst we will have a look at the

bifurcation diagram that shows us only the relation of the control û and the parameter

α.

out = controlalpha(n,b1,1)

plot(b1(end,:),out)
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Figure 6.4: Continuing û by increasing α

Since we cannot have a four-dimensional diagram we will go back to the two-dimensional

version and have all three graphs for X̂, Ŷ and û in one diagram by using the command

hold all. So we type the following commands to receive the diagram:

plot(b1(end,:),out)

hold all

plot(b1(end,:),b1(1,:))

hold all

plot(b1(end,:),b1(2,:))

hold all

plot(b1(end,:),out)
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Figure 6.5: Continuing X̂, Ŷ and û by increasing α

6.2 Changing the Parameter α

In the beginning of the chapter we described a modi�cation of the original model that

introduced a new parameter: α. First we examined if the model deliveres the same

results by setting α = 0. Afterwards we had a closer look at the parameter α and

continued the equilibrium by increasing α. Now we will go one step further and take a

closer look at particular values of α.

First we need to choose values of α that might be interesting. I have put further

analysis of some speci�c parameter values in the Appendix. First of all we have to

make sure that we �nd ourselves in the admissible area, where X̂, Ŷ and û are non-

negative. Taking a closer look at Figure 6.1, we see that X̂ becomes negative for values

of α high enough. In Figure 6.2 we see that Ŷ is positive throughout, but then Figure

6.4 shows us that there is an interval, in which û is negative. To �nd the exact values

we use the command c1 to have a closer look at the continued equilibrium. There we

see that X̂ becomes negative starting from index number 45. We type the command

out to take a look at the values for û and see that û is negative from index 25 until

index 44. This additional restriction means that we can only consider the �rst 24 equi-
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libria. Fortunately the maximum of the graph of Figure 6.2 lies in that area, so we

will �rst take a look at this value. Unfortunately the minimum lies outside that area

so any analysis on that does not make sense. To have another interesting comparison

afterwards we will also have a look at parameters of α where Ŷ has the same value.

You can imagine this by a horizontal line crossing the graph at two di�erent points.

Maximum Value of Ŷ

First of all we have to �nd the maximum value of Ŷ . We do this by typing the following

command:

find(b1(2,:)==max(b1(2,:)))

This command goes through the whole Ŷ graph and �nds the maximum value, which is

at position 19. By typing the command b1(:,19) we get the equilibrium (X̂, Ŷ , λ̂1, λ̂2)

with maximum value for Ŷ :

ans =

0.5643

1.2212

0.0195

0.0037

1.0931

The last line delivers us the value of α at which Ŷ has its maximum value. So we

can continue our analysis by using the common procedure from before. First of all we

change the parameter of NewModel.m from α = 0 to α = 1.0931 by using the following

command:

n=changeparameter(n,'alpha',1.0931)

Let's have a look at the parameters of the model, considering the change that has just

been made:
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Table 6.1: α Model parameters.

Parameter Value Description
r 0.05 discount rate
ρX 0.02 objective function coe�cient on X
ρY 0.01 objective function coe�cient on Y
σ 0.01 weight on objective function control terms
c 2 program cost coe�cient
a 2 maximal growth rate at X = 0
b 2 maximal growth rate at Y = 0
d 1 carrying capacity of Y
α 1.0931 rich to poor coe�cient
β 0.5 �ight coe�cient
γ 0.45 assimilation coe�cient
k 1 social integration coe�cient
e 1 exponent in the social advancement term

Although we already received the equibrium we will try calculating it with the original

procedure:

ocEPn=calcep(n,rand(4,10),opt); c=isadmissible(n,ocEPn,opt);ocEPn(~c)=[];

c=isnegativestate(n,ocEPn);ocEPn(c==1)=[]; ocEPn=uniqueoc(ocEPn,opt); ocEPn{:}

which indeed delivers us the above solution:

ans =

dynprimitive object:

Coordinates:

0.5643

1.2212

0.0195

0.0037

Arc identifier: 1

Linearization: [4x4 double]

We can always retrieve this equilibrium by typing ocEPn{1}.

Let us also take a look at the stability of this equilibrium. By typing eig(ocEPn{1})

we get the eigenvalues of the above solution. These are

ans =
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-3.0406

-1.2822

1.3322

3.0906

This exhibits a two-dimensional stable manifold because the number of eigenvalues ξ

satisfying Reξ < 0 is two. We had the same case in the original model analyzed by

Reka Horvath (2011).

Now we want to receive a phase diagram. We will start from four di�erent points

that will all lead to the equilibrium. I will take the same starting points as Gernot

Tragler and Dieter Grass used in their paper �Optimal Dynamic Management of the

Population Mix� (2010), which are

(X̂/2, Ŷ /2) = (0.2822, 0.6106)

(2X̂, 2Ŷ ) = (1.1286, 2.4424)

(X̂/2, 2Ŷ ) = (0.2822, 2.4424)

(2X̂, Ŷ /2) = (1.1286, 0.6106)

Now we have to start a continuation process from the state of one of the above points

towards the equilibrium of the maximal value of Ŷ and vice versa by using:

initStruct1=initoccont('extremal',n,'initpoint',[1 2],[0.2822;0.6106],

ocEPn{1},'IntegrationTime',500);

The next step is solving the BVP. The toolbox does this buy using the following

command:

[soln solnn]=occont(n,initStruct1,opt);

Matlab is not able to compute the full path, therefore we have to split it into two parts.

So we type the following command:

initStruct1=initoccont('extremal',n,'initpoint',[1 2],[0.2822;0.6106],

solnn,'IntegrationTime',500);

And then we use again the command occont.

[solna solnna]=occont(n,initStruct1,opt);

For the second and the fourth point there is no need to split the path into two parts.

Only the third time requires the same procedure. So we type the following commands:
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initStruct2=initoccont('extremal',n,'initpoint',[1 2],[1.1286;2.4424],

ocEPn{1},'IntegrationTime',500);

[soln1 solnn1]=occont(n,initStruct2,opt);

initStruct3=initoccont('extremal',n,'initpoint',[1 2],[0.2822;2.4424],

ocEPn{1},'IntegrationTime',500);

[soln2 solnn2]=occont(n,initStruct3,opt);

initStruct3=initoccont('extremal',n,'initpoint',[1 2],[0.2822;2.4424],

solnn2,'IntegrationTime',500);

[soln2a solnn2a]=occont(n,initStruct3,opt);

initStruct4=initoccont('extremal',n,'initpoint',[1 2],[1.1286;0.6106],

ocEPn{1},'IntegrationTime',500);

[soln3 solnn3]=occont(n,initStruct4,opt);

Now we want to have a phase diagram with all four paths. By using the command

hold all we manage to have di�erent graphs in one diagram. So we type the following

commands, one by one:

plot(solna.dynVar(1,:),solna.dynVar(2,:))

hold all

plot(solna.dynVar(5,:),solna.dynVar(6,:))

hold all

plot(soln1.dynVar(1,:),soln1.dynVar(2,:))

hold all

plot(soln2a.dynVar(1,:),soln2a.dynVar(2,:))

hold all

plot(soln2a.dynVar(5,:),soln2a.dynVar(6,:))

hold all

plot(soln3.dynVar(1,:),soln3.dynVar(2,:))

After typing all these commands we get the phase diagram as depicted in Figure 6.6.
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Figure 6.6: Phase diagram for the maximum value of Ŷ

Two Equal Values of Ŷ

As we said before we also want to have a look at two di�erent parameter values of

α that give us the same value of Ŷ . So we take a closer look at the output which

is delivered by b1(2,:). We �nd out that there are similar values for instance at the

position 15 and 24 of the path, which deliver Ŷ = 1.2002, 1.1986 for α = 0.7264, 1.5604,

respectively.

Now we want to receive the phase portraits. We start with α = 0.7264. By typing

b1(:,15) we get the complete equilibrium including α in the last line.

ans =

0.7223

1.2002

0.0148

0.0038

0.7264

Now we can continue our analysis by using the common procedure from before. First

of all we change the parameter α of NewModel.m from by using the following command:
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n=changeparameter(n,'alpha',0.7264)

Table 6.2 summarizes the parameter values of the model, considering the change that

has just been made. Now we will try calculating the above equilibrium with the original

Table 6.2: α Model parameters.

Parameter Value Description
r 0.05 discount rate
ρX 0.02 objective function coe�cient on X
ρY 0.01 objective function coe�cient on Y
σ 0.01 weight on objective function control terms
c 2 program cost coe�cient
a 2 maximal growth rate at X = 0
b 2 maximal growth rate at Y = 0
d 1 carrying capacity of Y
α 0.7264 rich to poor coe�cient
β 0.5 �ight coe�cient
γ 0.45 assimilation coe�cient
k 1 social integration coe�cient
e 1 exponent in the social advancement term

procedure:

ocEPn=calcep(n,rand(4,10),opt); c=isadmissible(n,ocEPn,opt);ocEPn(~c)=[];

c=isnegativestate(n,ocEPn);ocEPn(c==1)=[]; ocEPn=uniqueoc(ocEPn,opt); ocEPn{:}

which indeed delivers us the above solution:

ans =

dynprimitive object:

Coordinates:

0.72232

1.2002

0.014808

0.0037542

Arc identifier: 1

Linearization: [4x4 double]

We can always retrieve this equilibrium by typing ocEPn{1}.
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Let us also take a look at the stability of this equilibrium. By typing eig(ocEPn{1})

we get the eigenvalues of the above solution. These are

ans =

-2.9785

-1.5082

1.5582

3.0285

This exhibits again a two-dimensional stable manifold because the number of eigenval-

ues ξ satisfying Reξ < 0 is two. We had the same case in the previous modi�cation.

Now we want to receive a phase diagram. We will start from four di�erent points

that will all lead to the equilibrium. We'll take the same kind of points as above which

are

(X̂/2, Ŷ /2) = (0.3612, 0.6001)

(2X̂, 2Ŷ ) = (1.4446, 2.4004)

(X̂/2, 2Ŷ ) = (0.3612, 2.4004)

(2X̂, Ŷ /2) = (1.4446, 0.6001)

Now we have to start a continuation process from each of the above points towards the

equilibrium and vice versa by using:

initStruct1=initoccont('extremal',n,'initpoint',[1 2],[0.3612;0.6001],

ocEPn{1},'IntegrationTime',500);

The next step is solving the BVP: The toolbox does this buy using the following

command:

[soln solnn]=occont(n,initStruct1,opt);

We go through the same procedure for the other three points, so we type the following

commands one after the other:

initStruct2=initoccont('extremal',n,'initpoint',[1 2],[1.4446;2.4004],

ocEPn{1},'IntegrationTime',500);

[soln1 solnn1]=occont(n,initStruct2,opt);

initStruct3=initoccont('extremal',n,'initpoint',[1 2],[0.3612;2.4004],

39



ocEPn{1},'IntegrationTime',500);

[soln2 solnn2]=occont(n,initStruct3,opt);

initStruct4=initoccont('extremal',n,'initpoint',[1 2],[1.4446,0.6001],

ocEPn{1},'IntegrationTime',500);

[soln3 solnn3]=occont(n,initStruct4,opt);

Now we want to have a phase diagram with all four paths. By using the command

hold all we manage to have di�erent graphs in one diagram. So we type the following

commands, one by one:

plot(soln.dynVar(1,:),soln.dynVar(2,:))

hold all

plot(soln1.dynVar(1,:),soln1.dynVar(2,:))

hold all

plot(soln2.dynVar(1,:),soln2.dynVar(2,:))

hold all

plot(soln3.dynVar(1,:),soln3.dynVar(2,:))

After typing all these commands we get the phase diagram that we intended to create

(see Figure 6.7).

Now we will go through the same procedure for α = 1.5604, which delivers us

Ŷ = 1.1986, which is very similar to the previous value of Ŷ at 1.2002. By typing

b1(:,24) we get the complete equilibrium including α in the last line.

ans =

0.3888

1.1986

0.0274

0.0037

1.5604

Now we can continue our analysis by using the common procedure from before. First

of all we change the parameter α of NewModel.m from by using the following command:

n=changeparameter(n,'alpha',1.5604)
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Figure 6.7: Phase diagram for α = 0.7264

We �nd the parameter values of the model in Table 6.3, considering the change that

has just been made.

Table 6.3: Modi�ed α Model parameters.

Parameter Value Description
r 0.05 discount rate
ρX 0.02 objective function coe�cient on X
ρY 0.01 objective function coe�cient on Y
σ 0.01 weight on objective function control terms
c 2 program cost coe�cient
a 2 maximal growth rate at X = 0
b 2 maximal growth rate at Y = 0
d 1 carrying capacity of Y
α 1.5604 rich to poor coe�cient
β 0.5 �ight coe�cient
γ 0.45 assimilation coe�cient
k 1 social integration coe�cient
e 1 exponent in the social advancement term

Again we will go through the calculation process in order to receive the equilibrium

through the original procedure, too.

ocEPn=calcep(n,rand(4,10),opt); c=isadmissible(n,ocEPn,opt);ocEPn(~c)=[];

c=isnegativestate(n,ocEPn);ocEPn(c==1)=[]; ocEPn=uniqueoc(ocEPn,opt);
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ocEPn{:}

which indeed delivers us the above solution:

ans =

dynprimitive object:

Coordinates:

0.38878

1.1986

0.027368

0.0037401

Arc identifier: 1

Linearization: [4x4 double]

We can always retrieve this equilibrium by typing ocEPn{1}.

Let us also take a look at the stability of this equilibrium. By typing eig(ocEPn{1})

we get the eigenvalues of the above solution. These are

ans =

-2.9387

-1.1401

1.1901

2.9887

This exhibits again a two-dimensional stable manifold because the number of eigen-

values ξ satisfying Reξ < 0 is two. We had the same case in the previous modi�cations.

Now we want to receive a phase diagram. We will start from four di�erent points

that will all lead to the equilibrium. We'll take the same kind of points as above,

which are

(X̂/2, Ŷ /2) = (0.1944, 0.5993)

(2X̂, 2Ŷ ) = (0.7776, 2.3972)

(X̂/2, 2Ŷ ) = (0.1944, 2.3972)

(2X̂, Ŷ /2) = (0.7776, 0.5993)

Now we go through our continuation processes from before and solve the corresponding
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BVPs. As in the case of the maximum value of Ŷ we have to split the �rst and the

third path into two parts in order to get the complete phase diagram. So we type the

following commands:

initStruct1=initoccont('extremal',n,'initpoint',[1 2],[0.1944;0.5993],

ocEPn{1},'IntegrationTime',500);

[soln solnn]=occont(n,initStruct1,opt);

initStruct1=initoccont('extremal',n,'initpoint',[1 2],[0.1944;0.5993],

solnn,'IntegrationTime',500);

[solna solnna]=occont(n,initStruct1,opt);

initStruct2=initoccont('extremal',n,'initpoint',[1 2],[0.7776;2.3972],

ocEPn{1},'IntegrationTime',500);

[soln1 solnn1]=occont(n,initStruct2,opt);

initStruct3=initoccont('extremal',n,'initpoint',[1 2],[0.1944;2.3972],

ocEPn{1},'IntegrationTime',500);

[soln2 solnn2]=occont(n,initStruct3,opt);

initStruct3=initoccont('extremal',n,'initpoint',[1 2],[0.1944;2.3972],

solnn2,'IntegrationTime',500);

[soln2a solnn2a]=occont(n,initStruct3,opt);

initStruct4=initoccont('extremal',n,'initpoint',[1 2],[0.7776,0.5993],

ocEPn{1},'IntegrationTime',500);

[soln3 solnn3]=occont(n,initStruct4,opt);

Now we want to have a phase diagram with all four paths. By using the command

hold all we manage to have di�erent graphs in one diagram. So we type the following

commands, one by one:

plot(solna.dynVar(1,:),solna.dynVar(2,:))

hold all
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plot(soln.dynVar(5,:),soln.dynVar(6,:))

hold all

plot(soln1.dynVar(1,:),soln1.dynVar(2,:))

hold all

plot(soln2a.dynVar(1,:),soln2a.dynVar(2,:))

hold all

plot(soln2.dynVar(5,:),soln2.dynVar(6,:))

hold all

plot(soln3.dynVar(1,:),soln3.dynVar(2,:))

After typing all these commands we get the phase diagram that we intended to create

as displayed in Figure 6.8.

Figure 6.8: Phase diagram for α = 1.5604

6.3 Time Paths

Now we will go one step further and compute time paths. We will look at cases,

where Ŷ has almost the same value, namely Ŷ = 1.2002, 1.1986 for α = 0.7264, 1.5604,

respectively. Taking into account the fact that we previously used four di�erent starting

points to create the phase potraits, we will now display the solutions as time paths. So
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we will get four di�erent diagrams for each value of α, corresponding to the di�erent

starting points.

α = 0.7264

As we have previously mentioned, the equilibrium that we get when setting α = 0.7264

is

ans =

0.7223

1.2002

0.0148

0.0038

Now we will take a look at two di�erent diagrams, considering the following starting

points:

(X̂/2, Ŷ /2)

(2X̂, 2Ŷ )

(X̂/2, 2Ŷ )

(2X̂, Ŷ /2)

We will have t on the x-axis and X̂, Ŷ , û on the y-axis. We will again use the command

hold all in order to make sure that we have all three graphs in one diagram, starting

at t = 0. For (X̂/2, Ŷ /2) we have the following commands:

plot(soln.t*soln.timeintervals,soln.dynVar(1,:))

hold all

plot(soln.t*soln.timeintervals,soln.dynVar(2,:))

hold all

plot(soln.t.*soln.timeintervals,control(n,soln))

We go through the same procedure for the remaining three points and receive the

following diagrams, displayed in Figures 6.9-6.12.
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Figure 6.9: α = 0.7264, starting point: (X̂/2, Ŷ /2); X(t) and Y (t) are
increasing. u(t) is also slightly increasing. Y (t) is always above X(t),
u(t) is a lot lower.

Figure 6.10: α = 0.7264, starting point: (2X̂, 2Ŷ ); X(t) and Y (t) are
decreasing, u(t) is also slightly decreasing. Y (t) is always above X(t),
they develop proportionally to each other. u(t) is a lot lower.
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Figure 6.11: α = 0.7264, starting point: (X̂/2, 2Ŷ ); Y (t) is decreasing
but stays above X(t) and u(t), which are increasing.

Figure 6.12: α = 0.7264, starting point: (2X̂, Ŷ /2); Y (t) is increasing,
X(t) and u(t) are decreasing. In the beginning, X(t) is above Y (t),
but then they switch so that Y (t) is above X(t). u(t) is a lot lower.
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α = 1.5604

The equilibrium that we get when setting α = 1.5604 is

ans =

0.3888

1.1986

0.0274

0.0037

We will only consider the starting points (2X̂, 2Ŷ ) and (2X̂, Ŷ /2) as the command

occont does not compute su�cient solution paths in the other two cases. We will go

through the same procedure as before in order to receive the time paths. We will have

t on the x-axis and X̂, Ŷ , û on the y-axis. Repeating the same procedure as in the

previous section we get the following two diagrams in Figures 6.13 and 6.14.
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Figure 6.13: α = 1.5604, starting point: (2X̂, 2Ŷ ); This �gure is similar
to Figure 6.10. Y (t) is decreasing, X(t) and u(t) are slightly decreas-
ing. Y (t) is a lot higher than X(t) and u(t).
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Figure 6.14: α = 1.5604, starting point: (2X̂, Ŷ /2); This �gure is sim-
ilar to Figure 6.12. In the beginning, X is higher than Y , but then
they switch and Y becomes a lot bigger than X because Y is increasing
whereas X and u are decreasing.
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CHAPTER 7
The β Model

In the previous chapter we introduced a parameter α for modelling the case in which

rich people living in the middle-class area become "poor" in the course of time. So we

subtracted the term αX(t) from the Ẋ equation and added this term to the Ẏ equation.

Now we go back to the original model but implement a di�erent modi�cation. This

time there is only a change in the Ẋ equation. We substitute the variable β by β1 and

subtract another term β2Y . So the new model which we will call BetaModel.m looks

as follows:

max
u(·)≥0

∫ ∞
0

e−rt
[
ρXX(t) + ρY Y (t) + σ(u(t)− cu(t)2)

]
dt (7.1)

subject to the dynamic state equations

Ẋ(t) = aX(t)(1−X(t))− β1u(t)− β2Y + γY (t)

(
kX(t)

kX(t) + Y (t)

)e

, (7.2)

Ẏ (t) = bY (t)(d− Y (t))− γY (t)

(
kX(t)

kX(t) + Y (t)

)e

+ u(t). (7.3)

Here we will have another restriction, namely that

β1 + β2 = 0.5.

In order to make sure that this restriction is ful�lled at all times we make another

change in the model, namely change β1 back to β and put (0.5−β) instead of β2. This

makes our further work a lot easier.

This modi�cation takes into account the debate, whether middle-class �ight is induced

by the �ow of immigrants or the stock of poor people in the neighbourhood. Varying

β between 0.5 and 0 means putting di�erent emphasis on these mechanisms.
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As we are dealing with a new model we have to go through the initialisation pro-

cess again. And then we check the case β = 0.5 to make sure that we get the same

results as in the original case. Now we can concentrate on the cases where we have

di�erent values for β and see how the optimal solution changes. We will also examine

the other equilibria.

7.1 Continuing the Equilibria with Matcont

The next step is to change the parameter β in order to see how this in�uences the

values of X and Y and especially the optimal solution (X̂, Ŷ , λ̂1, λ̂2). Before having a

look at speci�c values of β and analysing those in more detail we want to check what

happens with X̂ and Ŷ if β becomes bigger and bigger. So we want to continue the

original equilibria. We will follow the same procedure as in the previous chapter by

using the toolbox Matcont.

Continuing the equilibria happens with the following command:

[c1,c2,c3]=contep(o,ocEPo{1},'beta',opt)

where o stands for BetaModel.m. Before we do this we need to check if β is becom-

ing bigger or smaller. This happens with the command opt.MATCONT.Backward=1 or

opt.MATCONT.Backward=[]. c1 stands for the equibrium which is continued. After

doing this we receive 300 equilibra.

Now that we have continued the original equilibrium we can have a look at the bifur-

cation diagrams. We �rst take a look at the two-dimensional diagrams before putting

them together in a three-dimensional version.

If we want to see how X̂ develops if we increase β we need to type the command

plot(c1(end,:),c1(1,:)). We �nd the diagram in Figure 7.1 and also another di-

agram in Figure 7.2 where β lies between the reasonable values 0 and 0.5. We will

have β on the x-axis and X̂ on the y-axis. So in the command that we used above

c1(end,:) stands for the parameter β which is being increased and c1(1,:) stands

for X̂.

As a next step we will have a look at the diagram where Ŷ is continued. We use

a very similar command: plot(c1(end,:),c1(2,:)) as the only di�erence we have is

exchanging X̂ by Ŷ (Figure 7.3). We will also take a look at the diagram where β is

limited between 0 and 0.5 (Figure 7.4).
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Figure 7.1: Continuing X̂ by increasing β

Figure 7.2: Continuing X̂ by increasing β
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Figure 7.3: Continuing Ŷ by increasing β

Figure 7.4: Continuing Ŷ by increasing β
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In addition to the diagrams we have created so far we will now have a look at the

three-dimesional digram where we see the development of X̂ and Ŷ at the same time.

We have to use the command plot3(c1(1,:),c1(2,:),c1(end,:)). So we have X̂

on the x-axis, Ŷ on the y-axis and β on the z-axis (Figure 7.5). And as a last diagram

we will again look at the case where β lies between 0 and 0.5 (Figure 7.6).

Figure 7.5: Continuing X̂ and Ŷ by increasing β
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Figure 7.6: Continuing X̂ and Ŷ by increasing β

As in the previous chapter we will now also create a bifurcation diagrams where X̂, Ŷ

and the control û are displayed at the same time, all depending on β. First of all we

need to get hold of the control û. We do this by re-using the function controlalpha

from before:

out = controlalpha(n,c1,1)

This function delivers us the control values of the whole path. So now we have all the

inputs that we need for the joint bifurcation diagram. But �rst we will have a look

at the phase potrait that shows us the relation of the control û and the parameter β

(Figure 7.7).

plot(c1(end,:),out)
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Figure 7.7: Continuing û by increasing β

Since we cannot have a four-dimensional diagram we will go back to the two-dimensional

version and have all three graphs for X̂, Ŷ and û in one diagram by using the command

hold all (Figure 7.8).

plot(c1(end,:),out)

hold all

plot(c1(end,:),c1(1,:))

hold all

plot(c1(end,:),c1(2,:))

hold all

plot(c1(end,:),out)
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Figure 7.8: Continuing X̂, Ŷ and û by increasing β

We see some interesting �ndings that will be helpful for our further analysis of speci�c

values of β. To be more precise we take a look at the actual values of X̂, Ŷ and û

by typing c1 and out. There we see that Ŷ becomes negative starting from index

52. X̂ is always positive but û is negative in the interval between index 13 and 55.

This means that we should only consider the �rst 12 indices, which �t our original

restriction, namely that β lies between 0 and 0.5. If we only consider the admissible

area, the two diagrams in Figures 7.7. and 7.8 should look as the ones in Figures 7.9

and 7.10, respectively.
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Figure 7.9: Continuing û by increasing β

Figure 7.10: Continuing X̂, Ŷ and û by increasing β
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The Case β1 = 0.49, β2 = 0.01

In the following sections we will actually work with the original parameters β1 and β2
that we introduced �rst as we are controlling the ristriction β1 + β2 = 0.5 manually.

As we are not sure how the model will react if we introduce β2, we will start from a

very small value, i.e. β2 = 0.01. As mentioned above we have the restriction that β1
and β2 together should be equal to 0.5. Therefore in this case β1 equals 0.49.

So now we will continue with our usual analysis. First of all we need to calculate

the equilibria. Again we will use the command calcep.

ocEPo=calcep(o,rand(4,10),opt); d=isadmissible(o,ocEPo,opt);ocEPo(~d)=[];

d=isnegativestate(o,ocEPo);ocEPo(d==1)=[]; ocEPo=uniqueoc(ocEPo,opt);

ocEPo{:}

We retrieve four equilibra:

ans =

dynprimitive object:

Coordinates:

0.1084

1.1771

-0.0098349

0.0036453

Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

1.0448

1.0144

0.0091797

0.0049342
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Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

0.49103

1.4116

-0.083257

0.0022374

Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

1

-3.7082e-010

0.0097561

-0.0095285

Arc identifier: 2

Linearization: [4x4 double]

If we have a look at the second equilibrium we easily realise that this equilibrium is

quite similar to the optimal solution of the original model, which was X̂ = 1.0485,

Ŷ = 1.0141, λ̂1 = 0.009113 and λ̂2 = 0.0049762. If we take a look at the corresponding

equilibrium in our current model we see that X̂ and λ̂2 have decreased whereas Ŷ and

λ̂1 have increased. But as we already mentioned when we analysed the α model, it is

only an assumption that ocEPo{2} is the optimal solution, so we still need to prove

that this statement is actually correct. As before we will use two di�erent ways of
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proving it. To analyse the �rst and the second equilibrium, we can start a continuation

process from the state of the second into the �rst equilibrium and vice versa by using:

initStruct2=initoccont('extremal',o,'initpoint',[1 2],ocEPo{1}.dynVar(1:2,1),

ocEPo{2},'IntegrationTime',500);

In the underlying case, the above initialized continuation is successful, i.e., the �rst

equilibrium can be excluded.

Now we will proceed with calculating the Hamiltonian function. But before doing

that we have to solve the BVP. The toolbox solves by

[solo solno]=occont(o,initStruct2,opt);

To retrieve a result (already stored in o ) one can use ocEPo=equilibrium(o) for re-

trieving the elements of the �elds of the equilibrium and ocExn=extremalsol(o) for

retrieving the elements of the �eld corresponding to the stable path. They are stored

in ocResults among other calculated elements. Note that one can check all the stored

calculations made before by calling o.ocResults.

Now that we have calculated the BVP we can go back to the Hamiltonian. The next

task is to compare the Hamiltionian of the �rst equilibrium with the Hamiltonian of

the BVP. For the �rst Hamiltonian we use the command hamiltonian(o,ocEPo{1})

and get the following result

ans =

0.0143 0.0143

For the second Hamiltonian we use the command hamiltonian(o,solo) and get the

following results

ans =

Columns 1 through 10

0.0318 0.0318 0.0318 0.0319 0.0320 0.0320 0.0321

0.0321 0.0322 0.0322

Columns 11 through 20
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0.0322 0.0322 0.0322 0.0323 0.0323 0.0323 0.0323

0.0323 0.0323 0.0323

Columns 21 through 30

0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323

0.0323 0.0323 0.0323

Columns 31 through 39

0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323

0.0323 0.0323

As we see, the �rst Hamiltonian is clearly smaller than the second one. The rule is

that if the command hamiltonian(o,ocEPo{1}) delivers a smaller result than the

command hamiltonian(o,solo) we know that the �rst equilibrium is not an optimal

solution. Thus we stick with the assumption that the second equilibrium compared to

the �rst equilibrium is the optimal solution.

Now we go through the same procedure using the third and fourth equlibrium. So

we re-use the commands from above and eventually get the same results, namely that

the second equilibrium is indeed the optimal solution.

The next step is having a look at the phase diagram of the optimal solution (Fig-

ure 7.11). We will have X on the x-axis and Y on the y-axis and use the same starting

points as in the precious chapter, which are

(X̂/2, Ŷ /2) = (0.5224, 0.5072)

(2X̂, 2Ŷ ) = (2.0896, 2.0288)

(X̂/2, 2Ŷ ) = (0.5224, 2.0288)

(2X̂, Ŷ /2) = (2.0896, 0.5072).
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Figure 7.11: β1 = 0.49, β2 = 0.01, X in relation to Y

The Case β1 = 0.25, β2 = 0.25

As we have seen, there were no big changes for the previous case. Now we will have a

look at the case where β1 equals β2. Thus both have to take the value 0.25. So let us

start right away with calculating the equilibria:

ocEPo=calcep(o,rand(4,10),opt); d=isadmissible(o,ocEPo,opt);ocEPo(~d)=[];

d=isnegativestate(o,ocEPo);ocEPo(d==1)=[]; ocEPo=uniqueoc(ocEPo,opt); ocEPo{:}

We get the following results:

ans =

dynprimitive object:

Coordinates:

0.94577

1.0243

0.011423

0.0037001
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Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

0.51229

1.3967

-0.12397

0.010077

Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

1

-1.4467e-008

0.0097561

-0.0079671

Arc identifier: 2

Linearization: [4x4 double]

Again it is easy to see that the �rst equibrium is very similar to the optimal solu-

tion of the previous model which was X̂ = 1.0448, Ŷ = 1.0144, λ̂1 = 0.0091797 and

λ̂2 = 0.0049342. We have the same development as in the previous model because X̂

and λ̂2 have decreased whereas Ŷ and λ̂1 have increased.

Now we will proceed with proving that ocEPo{1} indeed is the optimal solution. As

before we will use two di�erent ways of proving it. To analyse the �rst and the second
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equilibrium, we can start a continuation process from the state of the second into the

�rst equilibrium and vice versa by using:

initStruct2=initoccont('extremal',o,'initpoint',[1 2],ocEPo{2}.dynVar(1:2,1),

ocEPo{1},'IntegrationTime',500);

In the underlying case, the above initialized continuation is successful, i.e., the sec-

ond equilibrium can be excluded.

Now we will proceed with calculating the Hamiltonian function. But before doing

that we have to solve the BVP. The toolbox solves by

[solo solno]=occont(o,initStruct2,opt);

For the �rst Hamiltonian we use the command hamiltonian(o,ocEPo{2}) and get the

following result

ans =

0.0044 0.0044

For the second Hamiltonian we use the command hamiltonian(o,solo) and get the

following results

ans =

Columns 1 through 10

0.0301 0.0301 0.0301 0.0301 0.0301 0.0302 0.0302

0.0302 0.0302 0.0303

Columns 11 through 20

0.0303 0.0303 0.0303 0.0303 0.0304 0.0304 0.0304

0.0304 0.0304 0.0304

Columns 21 through 30

0.0304 0.0304 0.0304 0.0304 0.0304 0.0304 0.0304

0.0304 0.0304 0.0304
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Columns 31 through 35

0.0304 0.0304 0.0304 0.0304 0.0304

As we see, the �rst Hamiltonian is clearly smaller than the second one. The rule is

that if the command hamiltonian(o,ocEPo{2}) delivers a smaller result than the

command hamiltonian(o,solo) we know that the second equilibrium is not an opti-

mal solution. Thus we know for sure that the �rst equilibrium in comparison with the

second equilibrium is the optimal solution.

Now we go through the same procedure using the third equilibrium. So we re-use

the commands from above and eventually get the same results, namely that the �rst

equilibrium is indeed the optimal solution.

The next step is having a look at the phase diagram of the optimal solution (Fig-

ure 7.12). We will have X on the x-axis and Y on the y-axis. This time we have the

following starting points:

(X̂/2, Ŷ /2) = (0.4729, 0.5121)

(2X̂, 2Ŷ ) = (1.8915, 2.0486)

(X̂/2, 2Ŷ ) = (0.4729, 2.0486)

(2X̂, Ŷ /2) = (1.8915, 0.5121).

The Case β1 = 0, β2 = 0.5

If we compare the current model with the original model, we would have to choose

β1 = 0.5 and β2 = 0. Now we will have a look at the opposite case where β1 = 0 and

β2 = 0.5. This means that the term β1u disappears completely.

Again we start by calculating the equilibra:

ocEPo=calcep(o,rand(4,10),opt); d=isadmissible(o,ocEPo,opt);ocEPo(~d)=[];

d=isnegativestate(o,ocEPo);ocEPo(d==1)=[]; ocEPo=uniqueoc(ocEPo,opt); ocEPo{:}

We get the following results:

ans =
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Figure 7.12: β1 = 0.25, β2 = 0.25, X in relation to Y

dynprimitive object:

Coordinates:

0.53132

1.3384

-0.22382

0.033076

Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

0.8046
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1.0366

0.017616

0.0011857

Arc identifier: 1

Linearization: [4x4 double]

This time the second equilibrium is fairly similar to the optimal solution of the previous

model which was X̂ = 0.94577, Ŷ = 1.0243, λ̂1 = 0.011423 and λ̂2 = 0.0037001. We

have the same development as in the previous model because X̂ and λ̂2 have decreased

whereas Ŷ and λ̂1 have increased.

Now we will proceed with proving that ocEPo{2} indeed is the optimal solution. As

before we will use two di�erent ways of proving it. To analyse the �rst and the second

equilibrium, we can start a continuation process from the state of the �rst into the

second equilibrium and vice versa by using:

initStruct2=initoccont('extremal',o,'initpoint',[1 2],ocEPo{1}.dynVar(1:2,1),

ocEPo{2},'IntegrationTime',500);

In the underlying case, the above initialised continuation is successful, i.e., the sec-

ond equilibrium can be excluded.

Now we will proceed with calculating the Hamiltonian function. But before doing

that we have to solve the BVP. The toolbox solves by

[solo solno]=occont(o,initStruct2,opt);

For the �rst Hamiltonian we use the command hamiltonian(o,ocEPo{1}) and get the

following result

ans =

0.0116 0.0116

For the second Hamiltonian we use the command hamiltonian(o,solo) and get the

following results

ans =
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Columns 1 through 10

0.0273 0.0273 0.0273 0.0273 0.0274 0.0274 0.0274

0.0274 0.0275 0.0275

Columns 11 through 20

0.0275 0.0275 0.0276 0.0276 0.0276 0.0276 0.0276

0.0277 0.0277 0.0277

Columns 21 through 30

0.0277 0.0277 0.0277 0.0277 0.0277 0.0277 0.0277

0.0277 0.0277 0.0277

Columns 31 through 40

0.0277 0.0277 0.0277 0.0277 0.0277 0.0277 0.0277

0.0277 0.0277 0.0277

Columns 41 through 45

0.0277 0.0277 0.0277 0.0277 0.0277

As we see, the �rst Hamiltonian is clearly smaller than the second one. Thus we know

for sure that the second equilibrium in comparison with the �rst equilibrium is the

optimal solution.

The next step is having a look at the phase diagram of the optimal solution (Fig-

ure 7.13). We will have X on the x-axis and Y on the y-axis and use the following

starting points:

(X̂/2, Ŷ /2) = (0.4023, 0.5183)

(2X̂, 2Ŷ ) = (1.6092, 2.0732)

(X̂/2, 2Ŷ ) = (0.4023, 2.0732)

(2X̂, Ŷ /2) = (1.6092, 0.5183).
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Figure 7.13: β1 = 0, β2 = 0.5, X in relation to Y

7.2 DNSS Curve

As mentioned in the Introduction, multiple equilibria are related to the existence of

so-called Skiba or DNSS points. As we have seen in the analysis above, there are no

multiple optimal solutions in the β Model. However, we can change the parameters in

order to see if we can modify the existing model in such a way so that we �nd a DNSS

point. We will do so by changing the parameter ρX . The reason why we chose ρX is

that X seems to be of big importance for the model. The optimal solution always has

a big value of X̂. So we take away the emphasis of the variable X in order to see if we

have multiple optimal solutions afterwards.

ρX has already a rather small value of 0.02 in base case. After trying di�erent values

by making β smaller and smaller, I found out that there are some interesting changes

for ρX = 0.0005. In the following I will describe how it is possible to �nd a DNSS point

and �nally get a diagram with a DNSS curve.

First of all we set ρX = 0.0005 by the known command

o=changeparameter(o,'rhox',0.0005)
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So now we have the parameters for the current model as given in Table 7.1.

Table 7.1: β Model parameters.

Parameter Value Description
r 0.05 discount rate
ρX 0.0005 objective function coe�cient on X
ρY 0.01 objective function coe�cient on Y
σ 0.01 weight on objective function control terms
c 2 program cost coe�cient
a 2 maximal growth rate at X = 0
b 2 maximal growth rate at Y = 0
d 1 carrying capacity of Y
β 0.5 �ight coe�cient
γ 0.45 assimilation coe�cient
k 1 social integration coe�cient
e 1 exponent in the social advancement term

The next step is calculating the equilibria. This happens just as in the previous sections

by using the command calcep.

ocEPo=calcep(o,rand(4,10),opt); d=isadmissible(o,ocEPo,opt);ocEPo(~d)=[];

d=isnegativestate(o,ocEPo);ocEPo(d==1)=[]; ocEPo=uniqueoc(ocEPo,opt);

ocEPo{:}

We receive the following equilibra:

ans =

dynprimitive object:

Coordinates:

0.18089

1.122

0.00050916

0.0038786

Arc identifier: 1

Linearization: [4x4 double]

ans =
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dynprimitive object:

Coordinates:

0.9295

1.0619

-2.0909e-005

0.0041755

Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

0.54914

1.3985

-0.12641

0.010077

Arc identifier: 1

Linearization: [4x4 double]

Before continuing our analysis we will check the stability of the �rst and the second

equlibrium by typing eig(ocEPo{1}) and eig(ocEP{2}). We get the following results:

ans =

2.0731

2.6860

-2.6360

-2.0231

ans =

-2.0416
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-2.3747

2.0916

2.4247

In both cases the equilibria exhibit again two-dimensional stable manifolds because

the number of eigenvalues ξ satisfying Reξ < 0 is two. We had the same cases in the

previous modi�cations.

Now we will �rst start a continuation process from the �rst into the second equilibrium

and then do the same vice-versa.

initStruct=initoccont('extremal',o,'initpoint',[1 2],ocEPo{1}.

dynVar(1:2,1),ocEPo{2},'IntegrationTime',500);

As this continuation process works out we will now solve the BVP problem by typing

the command [solo solno]=occont(o,initStruct,opt);. The toolbox does not

manage to �nish the calculation, this is always a sign for possible DNSS points. We

stop the calculation and store the results with the command o=store(o). Then we go

through the same process for the other direction.

initStruct=initoccont('extremal',o,'initpoint',[1 2],ocEPo{2}.

dynVar(1:2,1),ocEPo{1},'IntegrationTime',500);

[solo solno]=occont(o,initStruct,opt);

Again the toolbox does not manage to �nish the calculation, so we stop it again and

store the results.

Now we want to �nd out if there are DNSS points, so we type the command

pt=finddnss(o,1,2). And we get the following result:

pt =

0.2669

1.1151

So we can continue our analysis as there is indeed a DNSS point. In order to make

it easier to work with the results in the following we save them in ocEx by typing

ocEx=extremalsol(o).

Now we start a continuation process from the DNSS point to the �rst and the second
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equilibrium and solve the corresponding BVPs. It is important to remember storing

all the results.

initStruct=initoccont('extremal',o,'initpoint',[1 2],pt,ocEx{1},

'IntegrationTime',500);

[solo solno]=occont(o,initStruct,opt);

o=store(o)

initStruct=initoccont('extremal',o,'initpoint',[1 2],pt,ocEx{2},

'IntegrationTime',500);

[solo solno]=occont(o,initStruct,opt);

o=store(o)

We save again all the results and then put the two solution paths together.

ocEx=extremalsol(o)

indiff=[ocEx{3} ocEx{4}]

Then we need one more path where we �x one of the coordinates, that should be close

to the DNSS point. Here we choose the second coordinate and set it equal to 1.12.

Then we solve the BVP again and store the results.

initStruct1=initoccont('dnss',o,'initpoint',2,1.12,indiff)

[solo solno]=occalc(o,initStruct1,opt);

o=store(o)

For the purpose of receiving the diagram (Figure 7.14), we need to save the two paths

separately. Then we start the continuation processes from the DNSS point to di�erent

points in order to get the indi�erence curve. Here we chose Y = 0, 2.

sol1=solo(1).octrajectory

sol2=solo(2).octrajectory

initStruct1=initoccont('dnss',o,'initpoint',2,0,solo)

75



[solo1 solno1]=occont(o,initStruct1,opt);

o=store(o)

initStruct1=initoccont('dnss',o,'initpoint',2,2,solo)

[solo1 solno1]=occont(o,initStruct1,opt);

o=store(o)

dnss=o.ocResults.DNSSCurve

plot(sol1.dynVar(1,:),sol1.dynVar(2,:),'r')

hold all

plot(sol2.dynVar(1,:),sol2.dynVar(2,:),'k')

hold all

plot(dnss{3}.dynVar(1,:),dnss{3}.dynVar(2,:),'b')

hold all

plot(dnss{4}.dynVar(1,:),dnss{4}.dynVar(2,:),'b')

Time Paths

Another interesting result are diagrams where the control u is displayed as function of

time t. For this purpose we type the following commands:

plot(sol1.t.*sol1.timeintervals,control(o,sol1),'r')

plot(sol2.t.*sol2.timeintervals,control(o,sol2),'k')

So we get two diagrams that show the control u of the two solution paths, leading to

the two optimal solutions that we have found. As we see below, they are quite di�erent

from each other. The �rst one (Figure 7.15), belonging to the �rst equilibrium needs

very high u in the beginning. In the diagram it looks like u is varying a lot but in fact

it stays between 0.35 and 0.36 at all times. u is �rst decreasing very fast, then increas-

ing again a bit and �nally becoming almost completely constant after approximately

t = 3.5.

The diagram of the second equilibrium qualitively looks the same (Figure 7.16). u
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Figure 7.14: DNSS curve for ρX = 0.0005

is also very high in the beginning, starting at approximately u = 1.15, and decreasing

fast as in the �rst diagram. On the other hand it is not increasing again and stays very

low. Again u stays almost constant after t = 3.5 but it is a lot lower (around 0.2).
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Figure 7.15: Displaying the control u over time towards the �rst equi-
librium
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Figure 7.16: Displaying the control u over time towards the second
equilibrium
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CHAPTER 8
Summary and Conclusions

A central question that the reader may ask now is what kind of impact the modi�-

cations of the basic model actually have. Regarding the optimal solution there have

not been any signi�cant changes. The original idea was modifying the model that we

already had which was analyzed by Reka Horvath (2011) to see how the equilibria

develop, and if multiple optimal solutions appear. This has not happened. Of course

the equilibria all develop into various directions, but after all the optimal solution is

always the one which is the most similar to the optimal solution of the basic model.

Regarding the α Model it has been interesting to see that we can �nd two di�er-

ent values of α, which both deliver the same value for Ŷ . When we looked at the time

paths we also saw that the two diagrams we created for the second value of α were

similar to the corresponding diagrams for the �rst value of α. It is quite likely that the

other two diagrams would also have been similar.

In the cases of the maximum value of α and also in the case α = 1.5604, we always

had troubles calculating the solution path when the initial state X̂/2 was involved. As

we said in the previous chapter, X seems to be of big importance for the model. This

could also explain why the calculations become more complicated for smaller values of

X.

Regarding the β Model, it was interesting to see that there are no big changes at

all if β is kept between 0 and 0.5. The most interesting result in that chapter was

creating a DNSS curve by modifying the parameters even more. By changing the pa-

rameter ρX we �nally managed to �nd multiple optimal solutions that allowed us to

continue our analysis in order to create a DNSS curve. As mentioned in that chapter

we saw that the time paths were qualitatively the same.
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7.9 Continuing û by increasing β . . . . . . . . . . . . . . . . . . . . . . . . . 59
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APPENDIX A
Appendix: Further Analysis of the α

Model

A.1 The Case α = 0.2

As there were no big changes in the model for α = 0.1, I decided to take a look at the

case α = 0.2. First we will examine to which extent the equlibria change and then take

a closer look at them to see which one is the optimal solution.

So �rst of all we need to change the parameter. We do this by using the following

command: n=changeparameter(n,'alpha',0.2). We can always check the parame-

ters by using the command showparameter(n). So in our case we have the parameters

as displayed in Table A.1.

After de�ning the new model we initialise it and follow the same prodecure as in the

original model. So �rst of all we need to �nd the equilibria of the model. As in the

original model we get the solutions by using the following commands:

ocEPn=calcep(n,rand(4,10),opt); c=isadmissible(n,ocEPn,opt);ocEPn(~c)=[];

c=isnegativestate(n,ocEPn);ocEPn(c==1)=[]; ocEPn=uniqueoc(ocEPn,opt);

ocEPn{:}

We receive these equilibria:

ans =

dynprimitive object:
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Table A.1: α Model parameters.

Parameter Value Description
r 0.05 discount rate
ρX 0.02 objective function coe�cient on X
ρY 0.01 objective function coe�cient on Y
σ 0.01 weight on objective function control terms
c 2 program cost coe�cient
a 2 maximal growth rate at X = 0
b 2 maximal growth rate at Y = 0
d 1 carrying capacity of Y
α 0.2 rich to poor coe�cient
β 0.5 �ight coe�cient
γ 0.45 assimilation coe�cient
k 1 social integration coe�cient
e 1 exponent in the social advancement term

Coordinates:

0.95952

1.0886

0.010363

0.0044036

Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

0.42477

1.3771

-0.063272

0.0023492

Arc identifier: 1

Linearization: [4x4 double]
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ans =

dynprimitive object:

Coordinates:

0.12448

1.1935

-0.011971

0.0035192

Arc identifier: 1

Linearization: [4x4 double]

As we can easily see, the �rst equilibrium is similar to the optimal solution that we

had in the original model, which was X̂ = 1.0485, Ŷ = 1.0141, λ̂1 = 0.009113 and

λ̂2 = 0.0049762. X̂ and λ̂2 have decreased whereas Ŷ and λ̂1 have increased. Now

we suspect again that the �rst equilibrium is the optimal solution, but in order to be

sure we have two di�erent ways of proving it. To analyse the �rst and the second

equilibrium, we can start a continuation process from the state of the �rst equilibrium

into the second equilibrium and vice versa by using:

initStruct1=initoccont('extremal',n,'initpoint',[1 2],ocEPn{2}.

dynVar(1:2,1),ocEPn{1},'IntegrationTime',500);

If the continuation processes is successful, the corresponding path is superior and the

minor stable path can be excluded. In the underlying case, the above initialized con-

tinuation is successful, i.e., the second equilibrium can be excluded.

As mentioned above we will also prove in another way that the second equilibrium can

be excluded. For this we use the Hamiltonian function. But before doing that we have

to solve the BVP. The toolbox solves by

[soln solnn]=occont(n,initStruct1,opt);

To retrieve a result (already stored in n ) one can use ocEPn=equilibrium(n) for re-

trieving the elements of the �elds of the equilibrium and ocExn=extremalsol(n) for

retrieving the elements of the �eld corresponding to the stable path. They are stored

in ocResults among other calculated elements. Note that one can check all the stored

calculations made before by calling n.ocResults.

Now that we have calculated the BVP we can go back to the Hamiltonian. The next
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task is to compare the Hamiltionian of the second equilibrium with the Hamiltonian of

the BVP. For the �rst Hamiltonian we use the command hamiltonian(n,ocEPn{2})

and get the following result

ans =

0.0091 0.0091

For the second Hamiltonian we use the command hamiltonian(n,soln)and get the

following results

ans =

Columns 1 through 10

0.0310 0.0310 0.0310 0.0310 0.0311 0.0311 0.0311

0.0312 0.0312 0.0312

Columns 11 through 20

0.0312 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313

0.0313 0.0313 0.0313

Columns 21 through 30

0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313

0.0313 0.0313 0.0313

Columns 31 through 40

0.0313 0.0313 0.0313 0.0313 0.0313 0.0313 0.0313

0.0313 0.0313 0.0313

Column 41

0.0313

As we see the �rst Hamiltonian is clearly smaller than the second one. The rule is that

if the command hamiltonian(n,ocEPn{2})delivers a smaller result than the command

hamiltonian(n,soln) we know that the second equilibrium is not an optimal solution.
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Thus we stick with the suspection that the �rst equilibrium is the optimal solution.

Now we go through the same procedure using the third equlibrium. So we re-use

the commands from above and eventually get the same results, namely that the �rst

equilibrium is indeed the optimal solution (Figure A.1).

The next step is having a look at the phase diagram of the optimal solution (Fig-

ure A.1). We will have X on the x-axis and Y on the y-axis and use the following

starting points:

(X̂/2, Ŷ /2) = (0.4798, 0.5443)

(2X̂, 2Ŷ ) = (1.9190, 2.1772)

(X̂/2, 2Ŷ ) = (0.4798, 2.1772)

(2X̂, Ŷ /2) = (1.9190, 0.5443)

Figure A.1: X in relation to Y
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A.2 The Case α = 0.5

After having analyzed the case α = 0.2, we will now examine the case where α equals

0.5 and see how and if the equilibria change. Furthermore we will �nd out which of

the delivered equilibria is the optimal solution.

Again the �rst step is to change the parameter, which we do by using the following

command: n=changeparameter(n,'alpha',0.5). We can always check the parame-

ters by using the command showparameter(n). So in our case we have the parameters

from Table A.2. After de�ning the new model we initialise it and follow the same

Table A.2: α Model parameters.

Parameter Value Description
r 0.05 discount rate
ρX 0.02 objective function coe�cient on X
ρY 0.01 objective function coe�cient on Y
σ 0.01 weight on objective function control terms
c 2 program cost coe�cient
a 2 maximal growth rate at X = 0
b 2 maximal growth rate at Y = 0
d 1 carrying capacity of Y
α 0.5 rich to poor coe�cient
β 0.5 �ight coe�cient
γ 0.45 assimilation coe�cient
k 1 social integration coe�cient
e 1 exponent in the social advancement term

prodecure as before. So �rst of all we need to �nd the equilibria of the model. As in

the original model, we get the solutions by using the following commands:

ocEPn=calcep(n,rand(4,10),opt); c=isadmissible(n,ocEPn,opt);ocEPn(~c)=[];

c=isnegativestate(n,ocEPn);ocEPn(c==1)=[]; ocEPn=uniqueoc(ocEPn,opt);

ocEPn{:}

We receive these equilibria:

ans =

dynprimitive object:

Coordinates:

0.82399

1.1653
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0.012628

0.0039357

Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

0.19633

1.2447

-0.020523

0.0032359

Arc identifier: 1

Linearization: [4x4 double]

ans =

dynprimitive object:

Coordinates:

0.28352

1.2986

-0.033235

0.0029212

Arc identifier: 1

Linearization: [4x4 double]

Again we suspect the �rst equilibrium to be the optimal solution of the model because

of its similarity to the previous optimal solution and the optimal solution of the original

model. As a reminder, the optimal solution of the α = 0.2 model was X̂ = 0.95952,

Ŷ = 1.0886, λ̂1 = 0.010363 and λ̂2 = 0.0044036. So again we �nd that X̂ and λ̂2 have

93



decreased whereas Ŷ and λ̂1 have increased. Of course we have to prove again that

the �rst equilibrium is indeed the optimal solution. We follow the same procedure as

above and use two di�erent ways of proving it. To analyze the �rst and the second

equilibrium, we can start a continuation process from the state of the �rst equilibrium

into the second equilibrium and vice versa by using:

initStruct1=initoccont('extremal',n,'initpoint',[1 2],ocEPn{2}.

dynVar(1:2,1),ocEPn{1},'IntegrationTime',500);

If the continuation processes is successful, the corresponding path is superior and the

minor stable path can be excluded. In the underlying case, the above initialized con-

tinuation is successful, i.e., the second equilibrium can be excluded.

As mentioned above we will also prove in another way that the second equlibrium

can be excluded. For this we use the Hamiltonian function. But before doing that we

have to solve the BVP. The toolbox solves by

[soln solnn]=occont(n,initStruct1,opt);

To retrieve a result (already stored in n) one can use ocEPn=equilibrium(n) for re-

trieving the elements of the �elds of the equilibrium and ocExn=extremalsol(n) for

retrieving the elements of the �eld corresponding to the stable path. They are stored

in ocResults among other calculated elements. Note that one can check all the stored

calculations made before by calling n.ocResults.

Now that we have calculated the BVP we can go back to the Hamiltonian. The next

task is to compare the Hamiltionian of the second equilibrium with the Hamiltonian of

the BVP. For the �rst Hamiltonian we use the command hamiltonian(n,ocEPn{2})

and get the following result

ans =

0.0153 0.0153

For the second Hamiltonian we use the command hamiltonian(n,soln) and get the

following results

ans =

Columns 1 through 10
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0.0289 0.0289 0.0290 0.0290 0.0291 0.0291 0.0291

0.0292 0.0292 0.0292

Columns 11 through 20

0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293

0.0293 0.0293 0.0293

Columns 21 through 30

0.0293 0.0293 0.0293 0.0293 0.0293 0.0293 0.0293

0.0293 0.0293 0.0293

Columns 31 through 36

0.0293 0.0293 0.0293 0.0293 0.0293 0.0293

As we see, the �rst Hamiltonian is clearly smaller than the second one. The rule is

that if the command hamiltonian(n,ocEPn{2}) delivers a smaller result than the

command hamiltonian(n,soln) we know that the second equilibrium is not an opti-

mal solution. Thus we know for sure that the �rst equilibrium compared to the second

equilibrium is the optimal solution.

Now we go through the same procedure using the third equlibrium. So we re-use

the commands from above and eventually get the same results, namely that the �rst

equilibrium is indeed the optimal solution.

The next step is having a look at the phase diagram of the optimal solution (Fig-

ure A.2). We will have X on the x-axis and Y on the y-axis and use the following

starting points::

(X̂/2, Ŷ /2) = (0.4120, 0.5827)

(2X̂, 2Ŷ ) = (1.6480, 2.3306)

(X̂/2, 2Ŷ ) = (0.4120, 2.3306)

(2X̂, Ŷ /2) = (1.6480, 0.5827)
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Figure A.2: X in relation to Y

A.3 The Case α = 1

There is an interesting development if we continue to increase α, namely that Matlab

delivers only one equilibrium starting from the value 0.6 for α. Luckily, that equilibium

is exactly the one that �ts with the optimal solution of the previous cases. This time

I took a bigger step and had a look at the case α = 1. Therefore the only equilbrium

and thus the optimal solution looks as follows:

ans =

dynprimitive object:

Coordinates:

0.60318

1.2197

0.018174

0.0036587

Arc identifier: 1

Linearization: [4x4 double]
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So again we �nd that X̂ and λ̂2 have decreased whereas Ŷ and λ̂1 have increased. As

this is our only equilibrium, there is no need to continue with further analysis. So we

take a look at the phase diagram, which shows us how X and Y develop in relation to

each other (Figure A.3). We use the following starting points::

(X̂/2, Ŷ /2) = (0.3016, 0.6099)

(2X̂, 2Ŷ ) = (1.2064, 2.4394)

(X̂/2, 2Ŷ ) = (0.3016, 2.4394)

(2X̂, Ŷ /2) = (1.2064, 0.6099)

Figure A.3: X in relation to Y
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