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Abstract

The central focus of this thesis is the theoretical description of non-local electronic correlations

characterizing the physics of important classes of materials such as, for example, transition

metal oxides or rare earth compounds. From the theoretical side, in the last two decades, a

big step forward was achieved by the development of dynamical mean field theory (DMFT),

which accounts, non-perturbatively, for a relevant part of the electronic correlations, namely

the local ones. In that way, it was possible to theoretically understand several important

effects arising in correlated materials, as the Mott metal-insulator transition.

However, many fascinating phenomena such as, e.g., unconventional superconductivity or

quantum criticality, originate from (or are at least strongly affected by) non-local correla-

tions, which are not captured in the framework of DMFT. This thesis aims precisely at the

development and the application of novel methods for including non-local electronic correla-

tion effects at all length scales beyond DMFT. These extensions of DMFT are mostly based

on the calculations of two-particle local vertex quantities. Specifically, the Dynamical Ver-

tex Approximation (DΓA) requires as input the local irreducible vertex (Γ) of DMFT, and

we demonstrate its applicability by analyzing the anti-ferromagnetic phase-transition in the

Hubbard model.

Finally, a completely new method for considering non-local correlations, based on the gen-

erating functional for the one-particle irreducible vertex functions, is introduced. This novel

approach, including a larger number of Feynman diagrams, might further improve over the

DΓA, and, in perspective, lead to a unifying theoretical description of the non-local electronic

correlation effects beyond DMFT.
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Deutsche Kurzfassung

Die vorliegende Dissertation befasst sich mit der Entwicklung und Anwendung neuer quan-

tenfeldtheoretischer Methoden zur Behandlung nicht-lokaler elektronischer Korrelationen. In

den letzten Jahrzehnten haben korrelierte Materialien stetig an Bedeutung gewonnen. Dies

liegt einerseits an den faszinierenden physikalischen Effekten, die auf elektronischen Korrela-

tionen basieren, wie zum Beispiel Hochtemperatursupraleitung oder quantenkritisches Ver-

halten, andererseits aber auch an zahlreichen möglichen technologischen Anwendungen dieser

Stoffe. Die Entwicklung entsprechender Theorien zur Beschreibung elektronischer Korrela-

tionen stellt daher eine der wesentlichen Herausforderungen für die theoretische Festkörper-

physik dar.

Die Dynamik der Elektronen in einem Festkörper stellt ein kompliziertes quantenmecha-

nisches Vielteilchenproblem dar. Eine exakte Lösung dieses Problems, d.h. eine Berechnung

der entsprechenden Vielteilchenwellenfunktion für die ∼ 1023 Elektronen, ist selbst unter Ver-

nachlässigung der Bewegung der Atomkerne (Born-Oppenheimer-Näherung) nicht möglich.

Die wesentliche Schwierigkeit für die theoretische Behandlung liegt in der Coulomb Wechsel-

wirkung zwischen den Teilchen. Dadurch ist das Verhalten eines einzelnen Elektrons stark

von dem der anderen Elektronen abhängig. Die Eigenzustände derartiger Systeme, die man

auch als korreliert bezeichnet, können nicht durch eine einfache Slaterdeterminante dargestellt

werden. Daher sind fortgeschrittene Techniken zur Lösung dieses Vielteilchenproblems er-

forderlich. In dieser Dissertation werden neue Vielteilchenmethoden entwickelt, untersucht

und auf konkrete Probleme angewandt.

Die dynamische Molekularfeld-Theorie (DMFT) ist seit zwei Jahrzehnten eine der erfolgreich-

sten Methoden zur theoretischen Beschreibung von stark korrelierten Elektronen-Systemen.

Hierbei wird das Kristallgitter, in dem sich die Elektronen bewegen und miteinander wech-

selwirken, durch einen einzigen Gitterplatz, an dem die Teilchen interagieren, ersetzt. Der

Rest des Gitters wird durch ein System von nicht wechselwirkenden Teilchen beschrieben,

das an diesen Gitterplatz gekoppelt ist. Für dieses vereinfachte System ist es nun möglich

vii
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eine (numerische) Lösung zu finden. Auf diese Weise werden (rein) lokale Korrelationen,

d.h. Korrelationen zwischen Elektronen am selben Gitterplatz, sehr gut beschrieben. Ein

Teil dieser Dissertation ist der Anwendung von DMFT zur Beschreibung optischer Eigen-

schaften von zwei Materialien aus einer Klasse von Hochtemperatursupraleitern (Kupraten)

gewidmet.

Den vielleicht interessantesten physikalischen Phänomenen liegen allerdings oft (auch) nicht-

lokale Korrelationen zugrunde. Dazu zählen Magnetismus, (quanten)kritische Phänomene,

(schwache) Lokalisierung oder unkonventionelle Supraleitung. In dieser Arbeit sollen die

theoretischen Grundlagen für eine Beschreibung dieser Effekte auf dem Niveau einfacher

Modelle gelegt werden.

Kapitel 1 gibt eine kurze Einführung in die Physik stark korrelierter Elektronen-Systeme

sowie einen Überblick über die entsprechenden state-of-the-art Methoden für deren theo-

retische Behandlung. Danach werden in Kapitel 2 die grundlegenden quantenmechanischen

Modelle zur Analyse von Systemen stark wechselwirkender Teilchen vorgestellt. Des weiteren

werden die Green-Funktionen eingeführt, welche die wesentlichen Objekte für eine quanten-

feldtheoretische Beschreibung der elektronischen Struktur von Festkörpern beziehungsweise

der entsprechenden Modelle darstellen. Der Schwerpunkt liegt hierbei auf einer ausführlichen

Beschreibung von Zweiteilchen-Green-Funktionen, da diese in der Literatur bisher nur ver-

einzelt Beachtung gefunden haben.

In Kapitel 3 werden lokale elektronische Korrelationen diskutiert. Diese können mittels

DMFT theoretisch sowohl qualitativ als auch quantitativ sehr genau beschrieben werden.

Zur Demonstration der Leistungsfähigkeit dieser Theorie präsentieren wir eine DMFT Studie

des Hochtemperaturverhaltens der optischen Leitfähigkeit sowie des optischen spektralen

Gewichts zweier Hochtemperatursupraleiter aus der Materialfamilie der Kupraten. Der Ver-

gleich mit den entsprechenden experimentellen Daten ist ein gutes Beispiel für die Anwend-

barkeit von DMFT zur Beschreibung realer Materialien. Der Rest von Kapitel 3 ist der

systematischen Untersuchung von lokalen Zweiteilchen-Green-Funktionen in DMFT gewid-

met, die in der bisherigen Literatur kaum behandelt wurden. Dies liegt hauptsächlich an der

Komplexität dieser Objekte und weniger an ihrer Bedeutung für die Beschreibung korrelierter

Systeme: In der Tat stellen Zweiteilchen-Greenfunktionen nicht nur die Basis zur theoretis-

chen Berechnung experimentell messbarer Antwort-Funktionen dar, sondern sie sind auch

ein wesentliches Ingredienz für die Konstruktion (Feynman) diagrammatischer Erweiterun-

gen von DMFT, um über DMFT hinausgehende Korrelationen zu inkludieren.

Solche Erweiterungen von DMFT werden in Kapitel 4 ausführlich diskutiert. Das Ziel

ist hierbei neben den lokalen Korrelationen von DMFT vor allem auch nicht-lokale Kor-
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relationen auf allen Längenskalen zu berücksichtigen. Wie schon anfangs erwähnt, sind

diese für viele interessante Effekte in korrelierten Materialien verantwortlich. Nach einer

kurzen Erläuterung von Clustermethoden, die im wesentlichen kurzreichweitige Korrelatio-

nen beschreiben können, wird eine allgemeine Darstellung der Gemeinsamkeiten aller di-

agrammatischer Erweiterungen von DMFT zur Inklusion langreichweitiger Korrelationen

präsentiert. Das Hauptaugenmerk liegt hierbei auf der Dynamischen Vertex Approxima-

tion (DΓA), die auf der lokalen Näherung des vollständig irreduziblen Zweiteilchenvertex

beruht. Ihre Anwendbarkeit zur theoretischen Beschreibung nicht-lokaler Korrelationen wird

an der Berechnung der Einteilchen-Green-Funktionen für einen Benzen-Ring demonstriert.

Des weiteren wird eine vereinfachte Version von DΓA zur Analyse des kritischen Verhaltens

des drei-dimensionalen Hubbard Modells angewandt. Der letzte Abschnitt dieses Kapitels ist

einem neuen, vielversprechenden Ansatz zur Beschreibung nicht-lokaler Korrelationen gewid-

met, der auf dem einteilchenirreduziblen erzeugenden Funktional für die Green-Funktionen

beruht. Diese neue Methode erlaubt auch einen ersten, systematischen, Vergleich der beste-

henden diagrammatischen Methoden, der den Abschluß dieses Kapitels bildet.

Zuletzt wird in Kapitel 5 ein Überblick über die wesentlichen Inhalte und Resultate dieser

Arbeit gegeben. Ein Ausblick auf mögliche Erweiterungen der hier vorgestellten Theo-

rien sowie deren Anwendung auf ungelöste Probleme stark korrelierter Elektronen-Systeme

schließen die Dissertation ab.





List of Publications

• G. Rohringer, A. Toschi, H. Hafermann, K. Held, V. I. Anisimov, and A. A. Katanin,

One-particle irreducible functional approach: A route to diagrammatic extensions of

dynamical mean-field theory, Phys. Rev. B, 88, 115112 (2013).
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Chapter 1

Introduction and Scope

“Die einzige Regel, die ihr immer beherzigen müsst, lautet: Dort wo schon Einer steht kann

kein Zweiter stehen.” (“The only rule, which you have to take to your heart, ends in: No

second person can stand on the place, where already another person is standing”), Hermann

Schwab, pastor of St. Leopold, Klosterneuburg, 1962-1996.

This statement was one of the first instructions which I got from pastor Hermann Schwab

when I started my service as altar boy in St. Leopold almost 25 years ago. At that time, I

laughed about this ascertainment since it seemed self-evident to me. Only many years later I

understood that an intrinsic truth is inherent in this sentence, recognizing that it represents

a very basic example for what we call correlations: The behavior of one entity affects the

behavior of the other one(s). Indeed, correlations are present almost everywhere in everyday

life, in the overcrowded underground (where we can literally feel them), in the traffic jam

on our way into the weekend, and also in a game of chess where disregarding the correlation

effects between the pieces will result in a quick loss.

Let us stress that the origin of correlations is deeply rooted in the interaction between enti-

ties, but, at the same time, one should always keep in mind that the two concepts are not

equivalent. This is very well exemplified by the situation of a very long traffic jam: Here

is indeed no direct “interaction” between the first and the last car, which might be several

kilometers away from each other. However, the standstill of the first car clearly influences

the behavior of the last one, which, of course, has to stop as well, demonstrating that the

two vehicles are correlated.

On the other hand, it should be also emphasized that correlations coincide neither with

the concept of a fixed order in a system. Resorting once more to the example of cars on

a highway, one can define an “ordered state”, e.g., as the situation where all the cars are

1



2 CHAPTER 1. INTRODUCTION AND SCOPE

driving with exactly the same speed in queue. In absence of an external perturbation, such

as an accident, the single driver will not “feel” any correlation with the others: he will just

continue to keep his velocity and position in the chain. In fact, if all the other drivers also

follow this behavior, he can just consider them all together as some kind of “homogeneous

cloud”, which forces him to keep his velocity and position (relative to this field), while the

behavior of any other specific single car does not concern him, as long as the driver does not

cause a perturbation of this “cloud” by, e.g., a change in his speed. As we will see in the

following, the “ordered state” situation corresponds in a more scientific context to what we

call mean field theory, where the direct mutual interaction between two entities is replaced

by an interaction between one entity and a mean field formed by the other ones. It is clear

that this simplification allows for describing an ordered state within the assumption that no

fluctuations from the specific order considered takes place. This corresponds, however, to

the neglect of correlation effects, which can become crucial in many important situations.

As the title of the present thesis suggests, we are not interested here in correlations between

people or cars but rather in correlations between electrons in a solid. In order to formalize

better the physics we are concerned with, let us start by considering the general Hamiltonian

for a solid state system. Since our main focus is on the electronic behavior, we neglect the

dynamics of the atomic nuclei which constitute the crystal lattice of the system, so that their

presence will just generate the static periodic potential in which the electrons are bound.

This is tantamount to the so-called Born-Oppenheimer approximation [1] and corresponds

to the assumption of an infinite mass for the atomic nuclei1. We will furthermore neglect

any relativistic corrections since we will mostly focus on energies around 1 eV, much lower

than mec
2 ∼ 109 eV, the energy of the electron rest mass. Let us just remark that in specific

situations beyond the scope of this thesis, in particular for systems with partially filled f-

orbitals of heavy atoms, the treatment of spin-orbit coupling will become also important for

an accurate description of the electronic structure.

Within the framework of the Born-Oppenheimer approximation and by neglecting all rel-

ativistic effects, the Hamiltonian for describing the dynamics of the electrons in a solid is

written as:

Ĥ =
N∑

i=1

[
p̂i

2

2m
+ V (r̂i)

]

︸ ︷︷ ︸
Ĥ0

+
N∑

i=1

N∑

j=i+1

e2

|r̂i − r̂j|
︸ ︷︷ ︸

ĤI

, (1.1)

1The mass of a single proton or neutron in the nucleus is indeed about a factor 2000 larger than the
corresponding electron mass, justifying in most cases the Born-Oppenheimer assumption.
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where the lattice-periodic potential V (r̂), generated by the atomic nuclei, is given by:

V (r̂) = −
∑

l

Zle
2

|Rl − r̂| . (1.2)

Zl is the number of protons of the l-th nucleus at the position Rl. The Hamiltonian (1.1)

consists of a non-interacting part Ĥ0, which describes the kinetic energy of the electrons and

their interaction with the external potential generated by the atomic nuclei of the lattice,

and an interacting term ĤI corresponding to the Coulomb interaction among the electrons

themselves. Since this interaction contribution is far from being negligible, (strong) corre-

lation effects could be expected in all these systems. Interestingly, this is not the case for

most materials. Specifically, in compounds with partially filled bands exhibiting s- or p-

character, the electron-electron interaction is usually well screened, since these orbitals are

rather extended. Hence, the electrons belonging to these valence states can be considered “on

average” as pretty far away from each other In this situation, one can reasonably expect that

for such materials mean field theories, where the actual two-particle repulsion between the

electrons ĤI is replaced by an interaction between the single electron and an effective field

generated by the other electrons, will work quite well. In fact, it is known that the physics

of s- and p-electron systems can be understood qualitatively and quantitatively rather well

by methods where the electronic correlations beyond mean-field are either neglected or taken

into account only rudimentarily.

In this respect, one of the most widespread and successful approaches, aiming at a solution

of the Hamiltonian (1.1), is the density functional theory (DFT) [2]. It is based on the

Hohenberg-Kohn theorem [2] which states that all observables of the system described by

this Hamiltonian are uniquely determined by the corresponding ground-state density ρ0(r).

Hence, observables such as, e.g., the total energy E, can be considered as a functional of

this ground state density ρ0(r), i.e., E ≡ E[ρ(r)]. On the other hand, the so-called V -

representability theorem [3] states that there exists a unique non-interacting system (i.e.,

where ĤI ≡ 0) defined by the one-particle potential V0(r), which exhibits the same ground

state density. Such density ρ0(r) can be explicitly written in terms of these one-particle

eigenstates φi(r), i.e., ρ0(r) =
∑N

i=1|φi(r)|2. This way the auxiliary potential V0(r) can

be understood as a functional of ρ0(r), i.e., V0 = V0[ρ]. For this reason, given V0[ρ] the

ground-state density ρ0(r) can be obtained iteratively by an self-consistent solution of the

corresponding one-particle Schrödinger equation.

There are, however, two main obstacles in the DFT approach just described: (i) The func-
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tional V0[ρ] is not known for the interacting Hamiltonian (1.1). Hence, approximations for

it are needed. Usually, one performs such an approximation for a corresponding energy-

functional E0[ρ], the functional derivative of which yields V0[ρ] = δE0[ρ]/δρ. The most

common among these functionals is expressed in the so-called local density approximation

(LDA) [4, 5] where E0[ρ] is represented by just a local functional of the density ρ(r). Let us

stress that there is no systematic way for deriving these functionals. In fact, experience in

the calculation of real materials has shown, that different types of functionals are appropri-

ate for different classes of compounds [6–8]. (ii) The second problem of DFT is that it, in

principle, yields only the ground-state density of the system (and of course all observables

which can be calculated from it). However, no information about the energy-spectrum of the

Hamiltonian (1.1) should be extracted from this method. In fact, from the formal point of

view, one should keep in mind that the one-particle states of the auxiliary non-interacting

system do not represent one-particle levels of the real electrons: Because of the correlations

originated by the interaction term ĤI in Eq. (1.1), the system cannot be described by means

of a single Slater determinant of single-particle wave-functions. Nevertheless, in practice,

it turns out that for a large number of materials such a single-particle description holds,

and the energy-eigenvalues of the auxiliary non-interacting system can be indeed interpreted

as the band-structure of the compound, as it is confirmed experimentally by angle-resolved

photoemission spectroscopy (ARPES). However, in this respect, DFT does not constitute an

exact method, as it is for the calculation of the ground-state density, but rather corresponds

to a sort of static mean-field approximation. This explains why, eventually, DFT methods

work pretty well for systems where correlation effects are rather week due to the screening of

the strong Coulomb repulsion, as it is, precisely, the case for the above mentioned materials

with partially filled s- and p-orbitals. For the same reason, DFT typically fails in describing

the spectral properties of solids with partially filled d- and f -shells, even from a qualitative

point of view. For instance, for some compounds of this class, DFT predicts a metallic be-

havior with sizable spectral weight at the Fermi energy, while they are found to be insulating

in experiments. This observation indicates that correlation effects are rather strong in the

presence of d- or f -valence states. In fact, this is indeed expected for these systems, from a

general point of view, as it will be briefly recalled in the following.

In contrast to the above described s- and p-compounds, the valence orbitals of systems with

partially filled d- or f -shells are indeed rather narrow in space, especially for the case of

3d and 4f orbitals.2 Hence, the screening mechanism for the Coulomb repulsion between

2This latter “trend” can be understood as follows“: Differently from 3d and 4f orbitals the radial wave
functions of the 4d and 5f orbitals have a node. Consequently, electrons occupying 3d and 4f shells are much
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Figure 1.1: Periodic table. The elements which are mainly responsible for partially filled
d- and f- orbitals are red- and violet-rimmed, respectively.

two electrons residing in one of these orbitals becomes inefficient. Such a situation is often

encountered in the outer orbitals of transitions metal atoms (d-systems) or of lanthanide

and actinide elements (f -systems), which are marked by the red- and violet-rimmed boxes,

respectively, in the periodic table in Fig. 1.1. Typical examples for such compounds are

oxides of the transitions metals from the titanates to the cuprates or heavy fermion systems

such as Cerium.

While the high degree of correlation in these solids makes any kind of mean-field treatment

insufficient, even for a qualitative theoretical understanding, their physics is typically char-

acterized by fascinating and technologically relevant phenomena such as the Mott metal-

to-insulator transition (MIT) in V2O3 [10–16], high-temperature superconductivity in the

cuprates [17], giant magneto-resistance in the manganites [18, 19] or the volume collapse in

Ce [20, 21]. In this light, the mismatch between experimental data and theoretical predic-

tions based on DFT for d- and f -systems calls for many-body methods, which are capable

closer to the atomic nucleus with respect to 4d and 5f electrons, as one can also infer, more quantitatively,
from the ratios between the corresponding average radial location of the electrons in the respective shells,
i.e., 〈r̂〉3d/〈r̂〉4d ∼ 0.5 and 〈r̂〉4f/〈r̂〉5f ∼ 0.57 (in the hydrogen atom). For a more detailed explanation of this
point see Ref. [9].
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of taking into account the strong correlations among d-electrons and f -electrons. It should

be, however, stressed that the analytical and computational effort of many-body methods

applied to solid state systems is considerably larger than that of DFT. Hence, applying them

directly to the general solid state Hamiltonian (1.1) is in most cases too difficult. This calls

for simplified model Hamiltonians, built to capture the basic physics of the system under

considerations. Let us stress that, even within these simplified model Hamiltonians, the goal

of a complete theoretical understanding of all correlation effects is far from being achieved.

Against this background, the main scope of the present thesis is the application and the

further development of theoretical tools for improving the description of electronic correla-

tions for these basic model Hamiltonians, with the help of the most advanced techniques of

quantum field theory for non-relativistic systems.

The thesis is organized as follows: in chapter 2 we first explain how a simplified model can

be derived from the full Hamiltonian for electrons in a crystal as given in Eq. (1.1), by taking

into account only the most relevant degrees of freedom. This will lead us to the so-called

Hubbard model, which represents the perhaps most transparent model for describing corre-

lated electrons on a lattice, and the Anderson impurity model (AIM) as its local counterpart.

Then, we will recall the technique of the n-particle Green’s functions which constitute the

most important objects for a theoretical description of the dynamics of lattice electrons in

the framework of quantum field theory. Since a comprehensive discussion of the general

properties of these functions, at least beyond the more standard one-particle level, is still

lacking in the literature, we aim at filling this gap, by presenting a thorough analysis of all

symmetry features of the one- and more-particle Green’s functions and their interpretation

in terms of Feynman diagrams in the second part of this chapter. Specifically, the concept of

irreducibility of one- and two-particle Green’s functions will be highlighted, as it represents

the foundation of several of the most modern quantum field theoretical methods aiming at

an accurate description of correlations on all length scales in many electron systems. Finally,

we will give explicit expressions for the one- and the two-particle Green’s functions in the

extreme cases of a non-interacting system and a system without dispersion, i.e., the so-called

“atomic limit”.

Chapter 3 of the thesis is dedicated to the discussion of local correlations, i.e., correlations

of two-electrons on the same lattice site. In this respect the dynamical mean field theory

(DMFT) [22–25] represents a big step forward in the theoretical understanding as it is ca-

pable of treating the (purely) local part of the correlations, which is in many cases the most

important one, non-perturbatively. Therefore, at the beginning of this chapter we will intro-

duce DMFT and discuss its strengths and limitations. In order to exemplify its applicability



7

to the description of real correlated materials, we present a DMFT study of ours for the

hight-temperature behavior of the optical spectral weight in two Bi-based high-temperature

superconducting cuprate compounds. Thereafter, we turn to one of the main topics of this

thesis which is the analysis of (local) two-particle Green’s functions. This is very important

because it allows not only for the calculation of thermodynamic response functions of the

considered system at the DMFT level, but also constitutes the basic ingredient for several

diagrammatic extensions of DMFT, aiming at an inclusion of nonlocal correlations effects.

The final part of this section considers an attractive model for lattice electrons, analyzing it

in terms of an exact mapping on the corresponding repulsive case. This might be relevant

for the physics of ultra-cold atoms in optical lattices as well as for an effective low-energy

description of some characteristic features of the high-temperature superconducting cuprates.

In chapter 4, we discuss cases where DMFT provides a rather poor approximation, since

nonlocal correlations become important. This is the case for low-dimensional systems or

systems in the vicinity of second-order phase-transitions. Aiming at an accurate theoretical

description of such situations, we consider different extension of DMFT, which allow for a

treatment of spatial correlations beyond the local DMFT ones. Specifically we review the

dynamical vertex approximation (DΓA) [26–30] which is based on the locality of the fully

irreducible two-particle vertex function and demonstrate its applicability by studying a simple

nanoscopic system. Next, we introduce a simplified version of DΓA (i.e., ladder DΓA), which

takes into account ladder scattering processes in only one channel. We illustrate its ability

to capture nonlocal correlation effects by applying it to the problem of the critical behavior

of the half-filled three-dimensional single-band Hubbard model [31]. Thereafter, we turn to

extension of DMFT which are based on the functional integral technique [32,33] such as the

dual fermion (DF) approach [34,35], which we briefly review. Considering the limitations of

both, DΓA and DF in their present ladder implementation, we propose a new scheme, coined

one-particle irreducible approach (1PI) [36], which aims at unifying the existing methods and

allows for a discussion of differences and similarities in the currently adopted diagrammatic

approaches.

Finally, in chapter 5, we recapitulate the main results obtained in this thesis, and we try

to highlight the possible pathways for further theoretical developments of the methods and

of the physical understanding, which can be inspired by our findings.

Let us stress, at the end of this introduction, that several results of this thesis have already

been published in different peer-reviewed journals. An explicit Reference to the publica-

tion (a complete list of which is reported on page xi) will be given at the beginning of

the corresponding result section of the thesis. Furthermore, we will mark with different
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style/indentation when extended parts of the text have been taken from the publication with

only small changes.



Chapter 2

Quantum Field Theory description of

correlated electron systems

”
Mache die Dinge so einfach wie möglich - aber nicht einfacher.“(A. Einstein)

In this chapter, we introduce first the models for describing correlated electrons, which will

be used throughout the entire thesis: (i) the Hubbard Hamiltonian, as the simplest lattice

model for treating electronic correlations, and (ii) the Anderson impurity model (AIM) for

the description of the local correlations between electrons at a single lattice site. We will

then introduce the methods of quantum field theory (QFT) which provide the essential the-

oretical tools for analyzing these models. More specifically, the n-particle Green’s functions

and their representation in terms of Feynman diagrams constitute the central objects of our

theoretical description. In this framework, the various symmetry properties of the Hamil-

tonians under consideration will be discussed in great detail, since they lead to important

simplifications of the mathematical structure of the Green’s functions and allow for a better

understanding of their physical content. Finally, at the end of the chapter, exact analytic

solutions for the Green’s functions in the limiting cases of non-interacting and completely

localized (“atomic limit”) electrons will be presented, as these provide an important guidance

to the interpretation of the more complex theoretical calculations, discussed in the following

chapters.

Solving the Schrödinger equation for Hamiltonian (1.1) of the general solid stat problem,

9
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introduced in the previous chapter,

Ĥψ(r1, . . . , rN) = Eψ(r1, . . . , rN) (2.1)

is an unfeasible task if one considers the case of a macroscopic number of particles (N ∼ 1023).

Furthermore, even assuming that one could really calculate the many-particle wave function

ψ(r1, . . . , rN), which contains the complete information about the system under considera-

tion, this would not be a useful quantity to work with. Indeed, we are not interested to

determine the behavior of every single electron of our system but rather to obtain a descrip-

tion of our many body system, which can be compared with the experimental observations.

This specifically means that our theoretical approach should allow for the calculation of

the most important thermodynamic and spectral observables, such as the spectral function

A(ω,k), the optical conductivity σ(ω), the (dynamic) spin susceptibility χs(ω,q), the specific

heat, and so forth. These are determined by the response of the system to an excitation of

one or two particles rather than bey the configuration of each single particle in the system.

Therefore, a formalism which allows for adding and removing electrons to the many particle

state under consideration would be advantageous. Note that this situation is analogous to

relativistic quantum electrodynamics, where the (infinitely many) negative energy solutions

of the Dirac equation are assumed to be occupied, defining the vacuum state of the system,

while the interesting physics occurs when adding single electrons or positrons to this state.

Since the number of occupied states is infinite in the relativistic case, it is inevitable to re-

sort to the formalism of second quantization in order to get a consistent formulation of the

theory. In fact, in our (non-relativistic) situation the number of occupied states is still finite

though typically very large (∼ 1023). Hence, while a description within a first quantization

formalism would be still possible, it is much more convenient to adopt the technique of sec-

ond quantization also in this situation. Furthermore, this approach allows also for changing

the number of particles in the system as required by statistical mechanics calculations in

the grand canonical ensemble. The Hamiltonian (1.1) rewritten in second quantization reads

as [21]:

Ĥ =
∑

σ

∫
d3r ψ̂†

σ(r)

[
− ~2

2m
∆+ V (r)

]
ψ̂σ(r)− µ

N̂︷ ︸︸ ︷∑

σ

∫
d3r ψ̂†

σ(r)ψ̂σ(r)+

+
1

2

∑

σσ′

∫
d3rd3r′ ψ̂†

σ(r)ψ̂
†
σ′(r

′)
e2

|r− r′| ψ̂σ′(r
′)ψ̂σ(r),

(2.2)
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where the operator ψ̂
(†)
σ (r) (creates) annihilates an electron with spin σ at position r. Notice,

that we have added a contribution µN̂ in Eq. (2.2) containing the chemical potential µ and

the (particle-) number operator N̂ , which is necessary, when performing calculations in the

grand-canonical ensemble.

Instead of analyzing the N -particle wavefunction ψ(r1, . . . , rN) (which, as previously dis-

cussed, is not a useful object to work with), we will consider the n-particle Green’s function

Gn,σ1...σ2n(τ1, r1, . . . , τ2n, r2n) defined as

Gn,σ1...σ2n(τ1, r1, . . . , τ2n, r2n) =
〈
T
(
ψ̂†
σ1(τ1, r1) . . . ψ̂σ2n(τ2n, r2n)

)〉
, (2.3)

where an odd/even index always corresponds to a creation/annihilation operator ψ̂σ(τi, ri)/

ψ̂†
σ(τi, ri) which corresponds to the convention, where the creation and annihilation operators

appear in alternating order. T is the time-ordering operators which arranges the 2n creation

and annihilation operators according to their imaginary time argument starting from left with

the operator, which exhibits the largest imaginary time argument. In addition, due to the

fermionic nature of the operators ψ̂σ and ψ̂†
σ, a minus sign has to be added to the sequences

of operators which represent an odd permutation of the original order. Since we are only

dealing with systems in thermal equilibrium, we adopt the Matsubara formalism [33, 37, 38]

which considers the imaginary time variables τi ∈ [0, β] (β = 1
T
, T . . .temperature) and

the (imaginary) time dependent field operators ψ̂
(†)
σ (τi, ri) in the (Matsubara) Heisenberg

representation

ψ̂σ(τi, ri) = eτiĤψ̂σ(ri)e
−τiĤ, ψ̂†

σ(τi, ri) = eτiĤψ̂†
σ(ri)e

−τiĤ. (2.4)

We also recall that the averaging 〈. . .〉 in Eq. (2.3) is performed using the (equilibrium)

density operator for the grand canonical ensemble

〈. . .〉 = 1

Z
Tr
(
e−βĤ . . .

)
with Z = Tr

(
e−βĤ

)
. (2.5)

The calculation of n-particle Green’s functions for the lowest values of n = 1, 2 is the central

problem of quantum field theory in many-particle systems. The explicit expression for these

Green’s functions allows for an evaluation of the most important thermodynamic quantities

as well as for a calculation of expectation values for physical observables. In order to give

a physical illustration of the meaning of a Green’s function let us take a closer look at the
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easiest, one-particle, case:

G1,σ1σ2(τ1, r1, τ2, r2) =
〈
T
(
ψ̂†
σ1
(τ1, r1)ψ̂σ2(τ2, r2)

)〉
. (2.6)

Assuming that τ2 > τ1 one sees that the operator ψ̂†
σ1
(τ1, r1) adds an electron with spin σ1

at the (Matsubara) time τ1 and the position r1 to the system. This electron then propagates

through the system until it is annihilated at the (later) time τ2 and the position r2 by the

operator ψ̂σ2(τ2, r2). Analogously, the other time order τ2 < τ1 describes the propagation

of a hole from r2 to r1. Hence, the one-particle Green’s function describes the behavior of

the system when adding one particle or hole which acts as a probe for the interaction which

are present in the system. Analogously, one can interpret the two-particle Green’s functions

(for instance, as measuring the effect of a perturbation of and observable such as, e.g., the

density of the system) , which explains the dominant role of these quantities in the theoretical

many-particle physics.

Unfortunately, it is still far too difficult to calculate even the one-particle Green’s function

for the Hamiltonian (2.2) exactly. Besides the possibility of deriving approximate solutions

directly for Eq. (2.2) [see the discussion about density functional theory in Cap. 1], one

often tries first to find simpler basic models which, however, should still capture the most

important physical aspects of the original system (see next section). Furthermore, as we will

discuss explicitly in this chapter, the symmetries of the system often allow for important

simplifications in the calculations of the Green’s functions. Eventually, the calculation of the

Green’s functions, even for the simplified model, has to be performed in a given approxima-

tion scheme. For methods based on the QFT the application of (Feynman) diagrammatic

techniques is often helpful or necessary: It does not only allow for a systematic definition

of the approximation scheme, but it also leads to a deeper understanding of the physical

processes described by these functions.

2.1 Models

2.1.1 The Hubbard model

In this thesis we aim at developing theoretical tools for the description of systems with

partially filled d- or f -shells. Since, as we discussed in the introduction (Cap. 1), these

orbitals are very narrow, the Coulomb interaction between the electrons is not well screened,

differently from the case of s- or p-orbitals. Hence, a simple mean field treatment of the
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solid state Hamiltonian (2.2) will not yield satisfactory results. However, as we mentioned

above, a more precise treatment of (2.2), which takes into account the strong correlations

between the electrons, is presently not feasible, neither analytically nor numerically. This

observation calls for the construction of a simpler model which, nevertheless, contains the

most important physical aspects of the original one, i.e., the kinetic energy of the particles

and their interaction. One of the most simple models, which meets this claim, is the Hubbard

model. In this section, we will derive the corresponding Hubbard Hamiltonian, starting from

the full solid-state one in second quantization, Eq. (2.2), demonstrating the validness of such

a strongly simplified modeling for describing electrons in strongly correlated orbitals. The

derivation presented below is mainly based on [33].

In order to restrict the Hamiltonian (2.2) to the most important degrees of freedom, i.e., to

the energy regions crucial for the physics of the system (E ≈ EF), it is convenient to expand

first the creation and annihilation operators ψ̂†
σ(r) and ψ̂σ(r) in terms of eigenstates of the

non-interacting part Ĥ0 of the full solid state Hamiltonian, given in Eq. (1.1). We recall here

that, since the potential V̂ (r) is generated by the distribution of nuclear charges located at

the sites of a periodic lattice, it fulfills the periodicity condition

V̂ (r) = V̂ (r+R), (2.7)

where R is a lattice vector. Hence, according to the Bloch theorem [33, 39], the one-particle

eigenstates of Ĥ0 can be written as Bloch wave functions ψkn(r) where n is the band index

and k is a crystal momentum vector located in the first Brillouin zone. The corresponding

energies are given by εkn, and the wave function ψkn(r) can be written as:

ψkn(r) = eikrukn(r), (2.8)

where ukn(r) hast the symmetry of the lattice, i.e., ukn(r+R) = ukn(r) for an arbitrary lattice

vector R. Since the ψkn(r) are a complete set of eigenfunctions of a hermitian operator it is

possible to expand every wave function ψσ(r) or wave operator ψ̂σ(r) in terms of these basis

states:

ψ̂(†)
σ (r) =

V

(2π)3

∫

BZ

d3k
∑

n

ψ
(∗)
kn (r)â

(†)
knσ, (2.9)

where the operator â
(†)
knσ (creates) annihilates an electron with a crystal momentum k, a spin

σ and an energy εkn. V is here the volume of the unit cell and “BZ” denotes the first Brillouin
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zone. Considering that:

Ĥ0ψkn(r) =

(
− ~

2

2m
∆+ V̂ (r)

)
ψkn(r) = εknψkn(r) (2.10)

one can express the solid-state Hamiltonian (2.2) as

Ĥ =
V

(2π)3

∫

BZ

d3k
∑

nσ

(εkn − µ)â†knσâknσ + V̂ee (2.11)

where V̂ee denotes the interaction part of the Hamiltonian1.

One typically speaks of a nearly free electron system if the potential V̂ (r) is only weakly

depending on r, i.e., V̂ (r)∼ V0(= 0). In this case the corresponding Bloch wave functions

ψkn(r) become simple plane waves [ukn(r)=1] and the dispersion εkn is that of free electron

εkn=
(k+Gn)2

2m
where Gn is a reciprocal lattice vector (with k located within the first Brillouin

zone). In real systems, such a situation can be observed for the outermost electrons in the

elemental metals drawn from groups I-IV of the periodic table. For this specific case, the

(rather strong) Coulomb potential of the atomic nuclei is screened by the inner core electrons

leading to an almost free (itinerant) behavior of the valence electrons [39].

Since the Bloch wave-function ψkn(r) as well as the energies εkn are periodic functions of k,

i.e., u(k+G)n(r) = ukn(r) and ε(k+G)n = εkn with any reciprocal lattice vector G, one can

represent them in terms of a Fourier series:

ψkn(r) =
∑

R

eikRφn(r−R), φn(r−R) =
V

(2π)3

∫

BZ

d3k e−ikRψkn(r), (2.12)

where the sum on the right-hand side of the left equation runs over all lattice vectors R.

From a mathematical point of view Eq. (2.12) is just an orthogonal transformation between

two basis sets in the subspace of eigenfunctions of Ĥ0 corresponding to the band index n,

namely the Bloch basis {ψkn(r)} and the well-known Wannier basis {φn(r − R)} [39]. In

general the Wannier states are not eigenstates of the Hamiltonian Ĥ0, since they they can

be seen as a linear combination of of Bloch-eigenstates ψkn corresponding to different k and,

hence, to different eigenenergies εkn. Only in a situation of an almost completely flat band

εkn = εn, i.e., if the energy eigenvalue is independent of the crystal momentum k the Wannier

functions are eigenfunctions to the energy εn. Such a behavior can be observed for systems

1Let us recall that, for the non-interacting system in the ground state (V̂ee = 0, T = 0), all the levels
{knσ} with εkn ≤ εF =µ are occupied while the states with a higher energy are empty.
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with a rather large lattice constant and electrons which are tightly bound to the corresponding

atomic nuclei. In this case the potential V̂ (r) can be considered, to a first approximation,

as sum of the potentials of all atomic nuclei of the lattice which do not overlap. Hence,

an eigenfunction of the lattice system is just a linear combination of atomic wave functions

centered a the different lattice sites R. That means, that in such a situation, the Wannier

functions defined in Eq. (2.12) can be considered as atomic-like wave functions centered at

the various lattice sites R. Therefore, this so-called tight binding description works best for

systems with rather localized states, which is specifically the case of the partially filled d- or

f -shells in transition metals and rare earths, which we are interested in.

Hence, in our perspective, it is useful to adopt the tight binding representation, i.e., to rewrite

the full Hamiltonian (2.2) in terms of Wannier states. Therefore, similarly to Eq. (2.9), we

expand the wave-operator in terms of Wannier functions:

ψ̂(†)
σ (r) =

∑

Ri,n

φ(∗)
n (r−Ri)ĉ

(†)
inσ, (2.13)

where ĉ
(†)
inσ (creates) annihilates an electron in the Wannier state (or, in a shorter notation,

“orbital”) n at the lattice site Ri. Inserting this representation into Eq. (2.2) yields the solid

state Hamiltonian in the tight binding representation:

Ĥ =
∑

σ

∑

ij,mn

(−tmnij − µδijδmn)ĉ
†
imσ ĉjnσ +

∑

σσ′

∑

ijkl

∑

mnop

Umnop
ijkl ĉ†imσ ĉ

†
jnσ′ ĉkoσ′ ĉlpσ. (2.14)

The indices {i, j, k, l} correspond to lattice sites while the indices {m,n, o, p} label different

Wannier (orbital) states. The quantities tmnij and Umnop
ijkl are given by

tmnij = −
∫
d3r φ∗

m(r−Ri)

(
− ~2

2m
∆+ V̂ (r)

)
φn(r−Rj) = (2.15)

= −δmn
V

(2π)3

∫
d3k eik(Ri−Rj)εkn

Umnop
ijkl =

1

2

∫
d3r

∫
d3r′ φ∗

m(r−Ri)φ
∗
n(r

′ −Rj)
e2

|r− r′|φo(r
′ −Rk)φp(r−Rl). (2.16)

We note that up to now now no approximations have been used, i.e., the Hamiltonian (2.14)

is the exact solid-state Hamiltonian in second quantization written in the tight binding rep-

resentation, that means in the basis of the Wannier states. It includes all energy bands as

well as the full Coulomb interaction (Vee) between two electrons. In order to extract a more
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manageable model from Eq. (2.14), which nevertheless contains the essential physics we want

to describe, approximations have to be performed, as discussed in the following:

• In the present thesis we will restrict ourselves to the case of low-temperatures (T ≪ TF)

and, hence, low energy excitations around the Fermi level. Therefore, we will consider

only energy bands, whose one-particle energies εkn are located at the Fermi level. As a

further simplification, we assume that only one band crosses the Fermi level and all the

other ones are well separated and far away from this “target” band. Hence, from now

on we will drop all band indices assuming that we restrict ourselves to the one target

band n0 at the Fermi level.

• Since our main interest is focused on systems with partially filled d- and f -shells the

Wannier functions are very localized, i.e., the function φn(r −Ri) has a maximum at

r = Ri and decays rapidly with increasing distance |r −Ri| from the nucleus. In the

atomic limit where εkn = εn does not depend on k one has tij = εδij, meaning that

no inter-atomic transport is possible. Since the pure atomic limit, obviously, cannot

describe the most interesting phenomena of solid state physics, one should allow at least

for a weak hybridization of neighboring sites, e.g., we restrict tij to the nearest neighbor

hopping only [i.e., for each i the sum over j runs only over the nearest neighbors of i in

Eq. (2.14)]. For systems with translational invariance, the hopping term in Eq. (2.14)

can be parameterized by a single quantity: tij = t if i and j are nearest neighbors in

the lattice and tij = 0 otherwise.

• Finally, we want to simplify also the interaction part of the Hamiltonian (2.14). Since

we assume that our electrons are strongly localized, we will focus on contributions to

Uijkl where the indices are either equal or, at most, nearest neighbors, as it was the

case for tij .

– The direct terms Vij := Uijji with i 6= j: This contribution describes the essentially

classical (electrostatic) interaction between two charges sitting at the lattice sites

Ri and Rj. It takes the form

∑

σσ′

∑

i 6=j
Vijn̂iσn̂jσ′ , (2.17)

where n̂iσ = ĉ†iσ ĉiσ is the particle density at the lattice site i with spin σ. In certain

materials such a density-density-type interaction gets rather strong and leads to

instabilities in the charge distribution know as charge density waves [40].
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– exchange coupling contributions Uijij with i 6= j: One can express the correspond-

ing contribution in the Hamiltonian in terms of spin and charge operators

Ŝi =
(
ĉ†i↑ ĉ†i↓

) 1

2
σ

(
ĉi↑

ĉi↓

)
, n̂i =

∑

σ

n̂iσ =
∑

σ

ĉ†iσ ĉiσ, (2.18)

where σ denotes the vector of the three Pauli matrices [σ = (σx, σy, σz)]. A

straightforward calculation yields:

∑

σσ′

ĉ†iσĉ
†
jσ′ ĉiσ′ ĉjσ = −2

(
Ŝi · Ŝj +

1

4
n̂in̂j

)
, (2.19)

and, with the definition JFij = Uijij, the term corresponding to Uijij in Eq. (2.14)

can be rewritten as

∑

i 6=j

∑

σσ′

Uijij ĉ
†
iσ ĉ

†
jσ′ ĉiσ′ ĉjσ = −2

∑

i 6=j
JFij

(
Ŝi · Ŝj +

1

4
n̂in̂j

)
. (2.20)

For JFij > 0 (JFij < 0) such a contribution induces a ferromagnetic (antiferro-

magnetic) coupling between neighbor spins, since a parallel alignment leads to a

reduction of energy, as one can infer from Eq. (2.20). Hence, we observe that, an

effective magnetic interaction can originate in a quite general way from the purely

repulsive Coulomb repulsion.

– Local interaction term Uiiii: If the overlap between Wannier functions centered at

neighboring sites is very small, Vij and JFij (as well as all other matrix elements

Uijkl with at least two different indices) are exponentially suppressed. In such a

situation only the “on-site” part Uiiii of the Coulomb interaction, i.e., the so-called

Hubbard interaction U := 2Uiiii becomes the predominant interaction mechanism.

Extracting the corresponding term from Eq. (2.14) leads to:

∑

i

∑

σσ′

Uiiiiĉ
†
iσ ĉ

†
iσ′ ĉiσ′ ĉiσ =

∑

i

Uni↑ni↓. (2.21)

Taking into account only the local interaction part of the Hamiltonian (2.14) and restricting

oneself to the case of nearest neighbor hopping only, one arrives at the so-called Hubbard

model:

ĤHubbard ≡ Ĥ = −t
∑

〈ij〉,σ
ĉ†iσĉjσ + U

∑

i

n̂i↑n̂i↓ − µ(n̂↑ + n̂↓), (2.22)
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where 〈.〉 denotes a summation over nearest neighbors.

This single band Hubbard model (an its generalizations to multi-orbital systems and/or more

general hopping terms) is frequently used in solid state theory as the basic Hamiltonian to

describe strongly correlated systems. The reason for this is that it already includes the two

most important energy scales characterizing the physics of correlated electrons:

• The kinetic energy of the electrons which is given by the parameter t considering the

electronic hopping processes from one site to its nearest neighbors.

• The potential energy of the electrons due to the strong local electrostatic repulsion,

which originates from the Coulomb interaction between charged particles occupying

the same (narrow) orbital and is parameterized by U in Eq. (2.22)].

Hence, we can see, that the two important contributions appearing in the original lattice

model (1.1), namely the kinetic energy of an electron moving in the field generated by a

periodic potential (Ĥ0) and the Coulomb repulsion between two electrons (ĤI) are –to some

extent– captured by the corresponding contributions of the much simpler Hubbard model.

Before going in to discuss the quantum field theory methods need for treating the Hubbard

Hamiltonian, we recapitulate here the main approximations performed in our derivations:

• We restricted ourselves to only one band n0 at the Fermi level, assuming that all the

electrons in the other bands have energies far below or far above the Fermi energy.

However, we should not forget that these neglected electrons still have interactions

with the electrons in the target band at the Fermi level. Even though the effects of

these interactions are small in many cases, they are in generally not negligible. In

particular, it is not possible to calculate “ab-initio“ the interaction parameter U for a

given material just by applying the definition given in Eq. (2.16), since we are neglecting

the electrons in all the bands aside from the target band at the Fermi level. These

electrons, not explicitly present in the Hubbard model, screen the Coulomb interaction

in the target band and, hence, lead to a modification (in general a reduction) of the

Coulomb parameter with respect to the “bare“ quantity calculated in Eq. (2.16).

Since these screening effects are specific for each material and depend on the form of

the bands below and above the Fermi level as well as on their separation from the

target band one cannot construct the parameter U in general. While in the last years

quite accurate methods (e.g., the constrained RPA, or its locally unscreened variant,

see Refs. [21, 41]) for calculating U for the Hubbard model by partly including the

screening effects, starting from ab-initio density functional calculations of a specific
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compound, have been developed, in this thesis we will consider, generally, the Hubbard

U as a merely phenomenological parameter.

• We restricted ourselves to the purely local Coulomb interaction U between two

electrons at the same lattice site, neglecting all the other contributions originated from

the full Coulomb interaction, some of which have been explicitly discussed previously

in this section. While this approximation evidently considers the largest part of the

Coulomb interaction, the other contributions may not be negligible in every situation

[40]. This aspect will be, however, not explicitly considered in this thesis.

• We will almost always refer to rather localized situations, where we can restrict our

hopping terms tij to nearest neighbor hopping t only. However, such restriction

can be easily lifted by just including further hopping terms t′ (next-nearest-neighbor

hopping), t′′ (next-next-nearest-neighbor-hopping), etc. to the model. While in several

parts of the thesis we will stick to nearest-neighbor hopping only, we will also present

results taking into account further hopping contributions, e.g., in Sec. 3.1.1.

Up to now we did not talk explicitly about the specific lattice we are considering. In principle,

the above-mentioned approximations can be applied to all Bravais lattices in one, two or three

dimensions. As we will mainly perform model calculations, we will restrict ourselves to the

typical case of a simple cubic lattice in two or three dimension. Nevertheless, we want to

stress that the methods described in this thesis can be applied to any general type of lattice

symmetry.

Turning to the solution of the Hubbard model, it is important to recall, that despite its

apparent simplicity, its Green’s functions cannot be calculated exactly, neither analytically

nor numerically. The difficulties originate from the following issues:

• An analytical solution is prevented by the fact the two parts of the Hamiltonian of

Eq. (2.22) are diagonal in two different bases. The hopping term (t) is diagonal in

momentum space [see Eq. (2.11)] as it is usually the case for the kinetic energy contri-

bution to the Hamiltonian. On the other hand, the interaction term (U) is diagonal in

real space, since the Hubbard interaction between two electrons is active only if both

particles are located at the same lattice site i [see Eq. (2.21)]. From a more physical

point of view, one can say that the first term of the Hubbard model tends evidently

to delocalize the electrons, i.e., to make them itinerant, while the second contribution

gives rise to a localization of the particles. Especially if t and U are of the same order
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Figure 2.1: a) Local correlations at one lattice site; b) Non-local correlations due to a local
interaction.

of magnitude this competition between itinerancy and localization has rendered hith-

erto an analytical solution of the Hamiltonian in Eq. (2.22) in arbitrary dimensions

impossible.

• For a numerical solution of the system one has to restrict oneself to a finite lattice and

represent the Hamiltonian as a matrix in a specific basis, e.g., the local basis where the

interaction is diagonal. However, since one has four possible states [{|0〉, |↑〉, |↓〉, |↑↓〉}
corresponding to an unoccupied, singly occupied with an ↑- or ↓-electron or doubly

occupied state] at each lattice site, the Hilbert space of the system grows as 4N, where

N is the number of lattice sites. Hence, even for a lattice with N = 1000 sites, which is

rather small compared to the corresponding number in a realistic crystal (N ∼ 1023), the

dimension of the Hilbert space is ≈ 10600 which makes a numerical solution evidently

impossible. Therefore, one has to stick to rather small systems of (at best) 100 sites,

the numerical solution of which suffers from (not always controllable) finite size effects.

The state of affairs discussed above calls for an approximation of the theoretical treatment

of the Hubbard Hamiltonian, aiming at preserving its physical content as best as possible.

A reasonable simplification for the Hubbard model can be found by analyzing the different

“types“ of correlations which occur in this system. (i) Local correlations describe the cor-

relations between (two) electrons at the same lattice site while the rest of the lattice acts

just as a “reservoir” where particles can be taken out or put in without any restrictions.

This situation is illustrated in Fig. 2.1a: In order to single out the local correlations one

assumes that the hopping of an electron from/to at least one of the sites in the gray shaded

area to/from the site in the center is always possible, irrespective of the occupation of the

neighboring sites. Hence, the fluctuations of the number and the spin of the electron(s) at
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the lattice site in the center are only determined by the interaction between the particles

at this site. Such local correlations are predominant in several physical cases and will be

discussed in detail in Cap. 3. (ii) Despite the locality of the electron-electron interaction also

non-local correlations can become important, as in the situation illustrated schematically in

Fig. 2.1b. Whether an electron can hop unhindered away from the second site in this figure

depends on the occupation of the neighboring sites. If this is already occupied, one has to pay

an energy U if a second electron moves to this place which makes such an hopping process

more unlikely compared to the transfer of the particle to an empty site (hopping to the left

in Fig. 2.1b). It is obvious that such an effect becomes only important in the cases, where

the number of nearest neighbors in the lattice is small, i.e., if for low-dimensional systems.

Other situations where non-local correlations play a crucial role for the physics of the system

and methods how to treat them are discussed in Cap. 4.

Neglecting non-local correlations at all might lead to reasonable simplifications for the Hub-

bard Hamiltonian in many situations. Hence, a corresponding model for the description of

the local correlations in the lattice is presented in the next section.

2.1.2 The Anderson Impurity model (AIM)

The AIM describes a non-interacting bath of conduction electrons which hybridize with an

interacting impurity. The corresponding Hamiltonian reads:

Ĥ =
∑

ℓσ

εℓâ
†
ℓσâℓσ +

∑

ℓσ

Vℓ(ĉ
†
σâℓσ + â†ℓσ ĉσ) + Un̂↑n̂↓ − µ(n̂↑ + n̂↓), (2.23)

where â†ℓσ(âℓσ) creates (annihilates) an electron with spin σ at the bath-level of energy εℓ,

ĉ†σ(ĉσ) creates (annihilates) an electron at the impurity site (n̂σ = ĉ†σ ĉσ), Vℓ parameterizes

the hybridization between the bath and the impurity, and U is the on-site repulsion between

two electrons at the impurity.

The AIM is analogous to a lattice model with only one interacting site embedded in a non-

interacting electronic bath represented by the rest of the lattice [42]. In this respect the AIM

is equivalent to Fig. 2.1a, and, hence, constitutes a crucial ingredient for the description of

the purely local correlations in the lattice system. A method, whose implementation relies

on this observation is the dynamical mean field theory (DMFT) which will be discussed in

chapter 3.

The AIM has, however, its own physical importance [42]. It was originally introduced by P.

W. Anderson [43] in order to describe local magnetic moments (represented by the impurity)
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in metals (modeled by the non-interacting electron bath). In order to get a better under-

standing of the physical phenomena which are described by the AIM, we present a short

discussion of the physics of local moments in this section. However, the reader should keep

in mind that this topic is not in the scope of the present work, for which the AIM is used as

an auxiliary system for describing the purely local part of the correlations in the Hubbard

model.

Let us first focus on the case U = µ = 0, i.e., the situation where a non-interacting impurity

hybridizes with a band εℓ of conduction electrons. In the limit where the hybridization

vanishes, Vℓ = 0, the impurity density of states, A(ω) (which is, of course, independent

from the spin), is given by just a delta peak at the Fermi level (µ = 0), i.e., A(ω) = δ(ω).

If we assume to start with one, e.g., ↑-electron at the impurity, this singly occupied state

exhibits an infinite lifetime, i.e., the system has a net magnetic moment. Switching on the

hybridization Vℓ leads to a broadening of the peak as2:

A(ω) =
1

π

Im∆

ω2 + [Im∆]2
, (2.24)

where ∆ denotes the hybridization function, which will be calculated explicitly in Sec. 2.2.7.1

[see Eq. (2.210)]. The localized magnetic state has now a finite life-time proportional to the

inverse of Im∆. Hence, the magnetic moment will disappear for large enough values of this

quantity.

Let us now turn to the interacting AIM U 6= 0. Starting from the case of a free impurity

Vℓ = 0, i.e, from the so-called “atomic limit” where no hybridization of the impurity with the

bath exists (see also Sec. 2.2.7.2) , it is straightforward to obtain a criterion for the existence

of a local magnetic moment. In fact, in this situation one has to consider four possible states:

(i) The impurity is empty; (ii) and (iii) The impurity is occupied by one electron with spin

σ; (iv) The impurity is occupied by two electrons with opposite spins (double occupation).

According to the Hamiltonian in Eq. (2.23), the corresponding energies of these four states

are 0 for the empty impurity, −µ for the singly occupied impurity, and U − 2µ for double

occupation. The system exhibits a non-zero magnetic moment when a single electron with

spin σ resides at the impurity. Hence, in order to turn this singly occupied state into the

2Let us not that, in principle, for any non-interacting system one would always find a δ-like contribution to
the density of states for each eigenstate of the system. However, the aℓ and c do not represent an eigenbasis
of the Hamiltonian (2.23), and, hence, the corresponding density of states for the impurity is a Lorentzian
rather than a δ-like peak.
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ground state of the system, one has to impose the following condition on the parameters:

0 ≤ µ ≤ U. (2.25)

For µ ≪ 0 the ground state is that with no electrons at the impurity, i.e., at low temperatures

it is almost always empty, while for µ≫ U it is occupied by two electrons. These situations

correspond both to non-magnetic ground states.

In a more general situation with ∆ 6= 0, such a non-magnetic ground state can be observed

for µ . ∆ or µ & U − ∆, i.e., if the empty or the doubly occupied state is near the

Fermi surface. In the latter cases charge fluctuations become more important than spin

fluctuations and the number of electrons at the impurity is not an integer number. The

fluctuating magnetic moment disappears, it is dissolved in the in the metallic host and one

speaks of an intermediate valence or mixed valence of the impurity atom.

On the contrary, for the formation of a local magnetic moment in the interacting AIM, one

has to impose the following condition on its parameters:

0 ≪ µ±∆ ≪ U. (2.26)

Within this condition, the impurity is almost always singly occupied and has a localized

magnetic moment, although its orientation in obviously not fixed. In this regime, the charge

fluctuations are suppressed and, hence, the AIM can be mapped onto the so-called Kondo

model. This model describes the interaction of conduction electrons in a metallic host with

the spin of the impurity site, with an antiferromagnetic Heisenberg coupling of the type

J
(
Ŝ · ŝℓ

)
, where Ŝ represents the spin operator for the localized state at the impurity and

ŝℓ is the spin operator of the conduction electrons. Historically, the Kondo Hamiltonian was

first used by J. Kondo in order to explain the minimum occurring in the electrical resistivity

as a function of temperature in a metal with magnetic impurities [42].

2.2 Green’s functions and Symmetries

In this section we introduce the formalism for the one- and the two-particle Green’s functions

for the models described in the previous section 2.1 and discuss some of their general prop-

erties. As already said, the knowledge of these Green’s functions allows for the calculation of

physical, (e.g., spectral, mechanical, thermodynamical,etc.) properties of the system under

consideration. Specifically, from one-particle Green’s function of a lattice model, one can
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extract the spectral function A(ω,k), which is directly measured in (angle resolved) photo-

emission spectroscopy (ARPES) experiments. It corresponds to the spectrum of one-particle

excitations in the system under considerations and can also describe the renormalization of

specific physical properties, such as the electronic mass, due to the interaction between the

particles. More generally, the knowledge of the one-particle Green’s function is sufficient for

the calculation of the expectation value of any one-particle observable, such as the density

or the spin, of the correlated system.

As a matter of fact, also two-particle Green’s functions contain quite valuable information.

They allow for calculating the linear response of the system to a small external perturbation

such as, e.g., an electric field [optical conductivity σ(ω))], a magnetic field [spin susceptibility

χs(ω,q)], pressure (compressibility), etc. In particular, we will consider the local two-particle

Green’s functions (i.e., those for the AIM), because they do not only allow for the calculation

of the local response functions, but are a crucial ingredient for any two-particle analysis in the

DMFT framework. More specifically, they are a necessary input for calculating frequency-

and momentum-dependent response functions in the framework of DMFT, as we will see in

Cap. 3. Furthermore, the local vertex functions, which can be extracted from the local two-

particle Green’s functions, constitute the basic brick for the different diagrammatic extensions

of the dynamical mean field theory aiming at the inclusion of nonlocal correlations beyond

DMFT. Such nonlocal correlations are important, e.g., for describing a system close to a

second order phase-transition as it will be discussed Cap. 4.

Despite its importance, a thorough and systematic analysis of the local two-particle Green’s

functions has been addressed only sporadically in the textbooks [38, 44] and the previous

literature [45–47]. Hence, mostly following the detailed analysis of our recent work [48], we

will present a systematic analysis of n-particle Green’s functions and their general properties

(symmetries) in the framework of a unifying derivation and formalism, with a special focus

on the one- and the two-particle cases. This will provide for a deeper understanding of the

general structure and, as a consequence, also the physical content of the Green’s functions.

Furthermore, we will show how the symmetries of the system lead to a reduction of the

complexity or, more precisely, to a decrease of the number of arguments of the Green’s

functions. Such simplification is obviously of crucial importance for all numerical algorithms,

especially those performed at the two-particle level, since the corresponding numerical effort

pushes the actual computer and memory resources to its limit. Finally, the symmetries of

the system also often serve as a consistency check for Green’s functions calculated by means

of approximated methods, and, hence, provide a test for these approximations.

We can start from the definition of the n-particle Green’s function already given in Eq. (2.3),
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and here reported, for convenience, in its most general form:

Gn,i1...i2n(τ1, . . . , τ2n) =
〈
T
[
ĉ†i1(τ1)ĉi2(τ2) . . . ĉ

†
i2n−1

(τ2n−1)ĉi2n(τ2n)
]〉

=

=
1

Z
Tr
(
e−βĤT

[
ĉ†i1(τ1)ĉi2(τ2) . . . ĉ

†
i2n−1

(τ2n−1)ĉi2n(τ2n)
])
,

(2.27)

where

Z = Tr
(
e−βĤ

)
and ĉ

(†)
ij
(τ) = eτĤĉ(†)ij e

−τĤ. (2.28)

analogously to Eqs. (2.3), (2.4) and (2.5) for the solid state Hamiltonian (2.2). T is the

time-ordering operator which in the case of fermions has the property:

T
[
ĉ
(†)
ij
(τj)ĉ

(†)
ik
(τk)

]
= ĉ

(†)
ij
(τj)ĉ

(†)
ik
(τk)θ(τj − τk)− ĉ

(†)
ik
(τk)ĉ

(†)
ij
(τj)θ(τk − τj). (2.29)

That means T sorts the 2n fermionic creation and annihilation operators according to their

imaginary time argument (starting with the largest on the left-hand side) and attributes a

minus sign to contributions, which constitute an odd permutation of the original sequence

of the operators given in the definition of the Green’s function in Eq. (2.27). The indices

ij represent the set of all degrees of freedom of the system such as space coordinate/lattice

site/momentum, orbital, spin, etc., i.e., ij=̂(rj/Rj/kj, lj , σj, . . .). For instance, specializing

ij=̂(rj, σj) [or ij=̂(kj , σj) after a Fourier transform] one recovers the specific definition of the

n-particle Green’s function for the solid state Hamiltonian as given in Eq. (2.3). For the

Hubbard model ij has to be chosen as ij=̂(Rj, σj) [or ij=̂(kj, σj) after a Fourier transform]

while for the AIM we are typically only interested in the Green’s function for the correlated

impurity site (in which case all operators ĉ
(†)
ij

refer to the impurity site), ij=̂σj .

2.2.1 General properties of the Green’s functions

In this section we recapitulate very basic and general properties for the n-particle Green’s

functions of a system of interacting fermions, which are not based on any specific symmetry

of the underlying model. The boundary conditions discussed in Sec. 2.2.1.1 follow mainly

from the cyclic property of the trace appearing in the definition of the Green’s functions

[Eq. (2.27)], while the crossing symmetry discussed in Sec. 2.2.1.2 is a consequence of

the indistinguishability of identical fermionic particles. Finally, we will shortly analyze the

behavior of the Green’s functions under the operation of complex conjugation in Sec. 2.2.1.3.
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2.2.1.1 Boundary conditions

We recall here the boundary conditions for the n-particle Green’s functions with respect to

their imaginary-time arguments: In contrast to the case of real times, one has to restrict

the domain of definition for the imaginary times τi in the n-particle Green’s function, Eq.

(2.27), to a certain interval, the size of which is determined by the inverse temperature β.

This can be easily seen when explicitly performing the trace in Eq. (2.27) by summing over a

complete Eigenbasis |n〉 of the Hamiltonian Ĥ. Assuming without loss of generality (w.l.o.g.)

that τ1 is the largest and τ2n is the smallest imaginary time argument of the n-particle Green’s

functions one gets the so-called Lehmann representation [38]:

Gn,i1...i2n(τ1, . . . , τ2n) =
1

Z

∑

m

e−(β+τ2n−τ1)Em〈m|ĉ†i1e−τ1Ĥ . . . eτ2nĤĉi2n |m〉, (2.30)

where Em is the m-th eigenvalue of the Hamiltonian Ĥ and |m〉 the corresponding eigenstate.

For an infinitely large system the number of states |m〉 is also infinite and the spectrum of Ĥ
is unbounded, i.e., the eigenenergies Em become arbitrarily large. Hence, in order to make

the (infinite) sum over m in Eq. (2.30) converging, one has to ensure that the contribution

e−(β+τ2n−τ1)Em leads to an exponential suppression of the corresponding matrix-element in

the sum rather than an (exponential) enhancement. This requires that

β + τ2n − τ1 > 0. (2.31)

Taking into account that τ1 was assumed to be the largest and τ2n the smallest imaginary

time argument of the n-particle Green’s function, one obtains

τ2n + β > τ1 > . . . > τi . . . > τ2n, (2.32)

i.e., all time arguments have to be located within an interval of the length β. Fig. 2.2

illustrates this state of affairs exemplarily for the one-particle Green’s function G1,i1i2(τ1, τ2)

where the gray shaded area between the two solid diagonal lines represents the domain of

definition for G1,i1i2(τ1, τ2) in the (τ1, τ2) plane.

Further restrictions (or, more precisely, simplifications) for the n-particle Green’s functions

can be achieved by considering the cyclic property of the trace, appearing in Eq. (2.27).

Assuming again that τ1 is the largest and τ2n the smallest imaginary time argument and using



2.2. GREEN’S FUNCTIONS AND SYMMETRIES 27

τ2

τ1

τ2 = τ1 − β

τ2 = τ1

τ2 = τ1 + β

β

β

β

β

Figure 2.2: Domain of definition for G1,i1i2(τ1, τ2). The figure is readapted from Ref. [48].

definition (2.28) for the time-dependent creation and annihilation operators one obtains:

Tr
[
e−βĤeτ1Ĥĉ†i1e

−τ1Ĥĉi2(τ2) . . . ĉ
†
i2n−1

(τ2n−1)e
τ2nĤĉi2ne

−τ2nĤ
]
=

=Tr
[
e−βĤĉi2(τ2) . . . ĉ

†
i2n−1

(τ2n−1)e
τ2nĤĉi2ne

−τ2nĤe(τ1−β)Ĥĉ†i1e
−(τ1−β)Ĥ

]
=

=Tr
[
e−βĤe(τ2n+β)Ĥĉi2ne

−(τ2n+β)Ĥeτ1Ĥĉ†i1e
−τ1Ĥĉi2(τ2) . . . ĉ

†
i2n−1

(τ2n−1)
]
.

(2.33)

One the other hand, the very same term as in the second [third] line of Eq. (2.33) appears

also in the definition of the time-ordered product in Eq. (2.27), when one performs the

transformation τ1 → τ1 − β [τ2n → τ2n + β]. However, one gets a different sign compared to

Eq. (2.33), since the transfer of the operator ĉ†i1(τ1) [ĉi2n(τ2n)]from the first [last] to the last

[first] position of the trace involves 2n−1, i.e., an odd number, of commutations of fermionic

operators. Hence, one obtains the following identities for the n-particle Green’s function,

known as the Kubo-Martin-Schwinger (KMS) boundary conditions [49, 50]:

Gn,i1...i2n(τ1, . . . , τ2n) = −Gn,i1...i2n(τ1 − β, . . . , τ2n) (2.34a)

Gn,i1...i2n(τ1, . . . , τ2n) = −Gn,i1...i2n(τ1, . . . , τ2n + β). (2.34b)

Note that these relations only holds if τ1 [τ2n] is the largest [smallest] time argument. Oth-

erwise, the transformation τ1 → τ1 − β [τ2n → τ2n + β] would lead to a set of imaginary
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times τ1, . . . , τ2n which does not fulfill the necessary condition (2.32) and, hence, is not lo-

cated within the domain of definition of the n-particle Green’s function. The horizontal and

the vertical arrows, respectively, in Fig. 2.2 illustrate such allowed transformations of the

imaginary time arguments for the one-particle Green’s function (the transformation should

not lead to a (τ1, τ2)-point outside the gray-shaded stripe).

By implication of Eqs. (2.34) all imaginary time arguments can be restricted to the interval

[0, β]. Indeed, the value of Gn for all other combinations of time arguments [that are allowed

according to Eq. (2.32)] can be constructed by repeated application of Eq. (2.34a) [Eq.

(2.34b)] for the respectively largest [smallest] time argument. Eventually, the anti-periodicity

condition Eq. (2.34) allows us to express the n-particle Green’s function as Fourier expansion:

Gn,i1...i2n(τ1, . . . , τ2n) =
1

β2n

∑

{νi}
ei(ν1τ1+...−ν2nτ2n)G̃n,i1...i2n(ν1, . . . , ν2n), (2.35a)

G̃n,i1...i2n(ν1, . . . , ν2n) =

∫ β

0

dτ1 . . .

∫ β

0

dτ2n e
−i(ν1τ1+...−ν2nτ2n)Gn,i1...i2n(τ1, . . . , τ2n), (2.35b)

where νi=
π
β
(2ni + 1) are fermionic Matsubara frequencies. Note that the (discrete) Fourier

representation Eq. (2.35a) extends the n-particle Green’s functions “antiperiodically” from

the regime defined by Eq. (2.32) to the entire τ -space, i.e., to the R2n, circumventing any

restrictions as imposed by Eq. (2.32)3.

2.2.1.2 Crossing symmetry

The crossing symmetry is a manifestation of the Fermi-Dirac statistics, and, hence, of the

Pauli principle, for indistinguishable fermions. Therefore, strictly speaking, the designation

of this property as “symmetry” is in some sense misleading, since it is not connected to

the invariance of the Hamiltonian with regard to any (unitary) transformation. Its origin is

rather founded in the time-ordering of the creation and annihilation fermionic operators in

Eq. (2.27). According to the definition of the time-ordered product in Eq. (2.29), the order

of the fermionic operators chosen for the definition of the Green’s function plays no role,

except for an overall sign. Specifically, exchanging two creation or annihilation operators

within the time-ordered product in Eq. (2.27) does not change the Green’s function except

3This, of course, would not have been the only choice. One could, e.g., put Gn to 0 for all combinations
of τi not fulfilling condition (2.32).
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for an additional minus sign:

Gn,i1...ij ...ik ...i2n(τ1, . . . , τj , . . . , τk, . . . τ2n) = −Gn,i1...ik...ij ...i2n(τ1, . . . , τk, . . . , τj , . . . τ2n). (2.36)

We want to stress that the numbers j and k, indicating the position of the corresponding

operators in the trace, must have the same parity, i.e., both have to be even or odd integer

numbers. The latter case corresponds to an exchange of two ĉ† operators, i.e., to exchanging

two outgoing electrons, while the first possibility represents the commutation of two ĉ oper-

ators, i.e., the permutation of two incoming electrons. A different parity of j and k would

correspond to exchanging a creation with an annihilation operator, leading to a sequence of

such operators, which is not captured by the definition of Gn in Eq. (2.27)4. Hence, such

permutations are not applicable for the formulation of the crossing symmetry. As an obvious

corollary, there is no crossing relation for the one-particle Green’s function, while for the

two-particle case one obtains:

G2,i1i2i3i4(τ1, τ2, τ3, τ4) =

= −G2,i3i2i1i4(τ3, τ2, τ1, τ4) = −G2,i1i4i3i2(τ1, τ4, τ3, τ2) = G2,i3i4i1i2(τ3, τ4, τ1, τ2),

(2.37)

which allows for important simplifications when working with two-particle Green’s functions.

Let us finally note that relations analogous to Eqs. (2.36) and (2.37) can be obviously also

formulated in Fourier space [see Eq. (2.35b)].

2.2.1.3 Complex conjugation

For the complex conjugation of the n-particle Green’s function we consider the general rela-

tion 〈m|A1 . . . An|m〉∗ = 〈m|A†
n . . . A

†
1|m〉 for the complex conjugation of a matrix element of

a product of operators and apply it to the definition of the Green’s function in Eq. (2.27).

This straightforwardly leads to the identity:

G∗
n,i1...i2n

(τ1, . . . , τ2n) = Gn,i2n...i1(−τ2n, . . . ,−τ1), (2.38)

4 Remember that the creation and annihilation operators in the definition of the n-particle Green’s function
have to appear in alternating order where the first one is a creation operator. An exchange of a creation with
an annihilation operator would lead to a sequence which is not conform with this requirement and, hence,
does not match the definition of the n-particle Green’s function in Eq. (2.27).
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where we again used the cyclic property of the trace. Performing a Fourier transform of Eq.

(2.38) yields

G∗
n,i1...i2n

(ν1, . . . , ν2n) = Gn,i2n...i1(−ν2n, . . . ,−ν1), (2.39)

providing an additional useful exact (and general) relation for the n-particle Green’s function.

2.2.2 Symmetries

In this section we will analyze the impact of symmetries of the system on the Green’s func-

tions. Though the main focus here and in the following chapters is on the Hubbard model and

the AIM, most of the results reported in this section hold also in more general situations, e.g.,

for the full solid state Hamiltonian (2.2). As already discussed, in the AIM the interesting

information is provided by the (local) impurity Green’s functions, i.e., the operators ĉ(†) in

definition (2.27) correspond exclusively to creation and annihilation operators for electrons

at the impurity site, while for the Hubbard model one has to calculate in principle Green’s

functions among different sites. Hence, for the two models under consideration the general

index ij , introduced at the beginning of Sec. 2.2 will correspond to the following two sets of

quantum numbers, respectively:

• AIM: ij=̂σj ,

• Hubbard model: ij=̂(Rj, σj) or ij=̂(kj , σj),

where Rj denotes a lattice vector and kj is a momentum vector located in the first Brillouin

zone.

From a formal point of view the main difference between the two models are the spatial de-

grees of freedom (lattice site Ri and momentum k, respectively) present in the (translational

invariant) Hubbard model, but missing in the AIM. On the other hand, due to the same

(spatially local) nature of the electronic interaction, both models share significant similari-

ties with respect to symmetries concerning their time- and spin-degrees of freedom. Hence,

in order to avoid redundancy by presenting almost equivalent derivations for both models,

we perform most of the calculations for the local AIM only, i.e., we consider ij=̂σj , for the

general index ij in Eq. (2.27). The Hubbard model will be treated explicitly exclusively in

situations where a symmetry directly concerns the spatial degrees of freedom, as it is the

case, e.g., for the lattice translational invariance, the point group symmetry of the lattice, or

the space inversion symmetry.

Let us now discuss the general method which will be used for analyzing most of the symmetry

properties of the n-particle Green’s functions. For this purpose, it proves convenient to adopt



2.2. GREEN’S FUNCTIONS AND SYMMETRIES 31

an (admittedly) unusual notation where Gn is (re)defined as an explicit “function” of the

creation and annihilation operators and the Hamiltonian, i.e.,

Gn(ĉ
†, ĉ, Ĥ) :=Gn,i1...i2n(τ1, . . . , τ2n) =

=
〈
T
[
ĉ†i1(τ1)ĉi2(τ2) . . . ĉ

†
i2n−1

(τ2n−1)ĉi2n(τ2n)
]〉
.

(2.40)

Note that, for the sake of a better readability, we use the same symbol Gn for this new

expression. In the next step we consider a similarity transformation, represented by an

invertible operator Û (e.g., the spin rotation operator), which transforms the creation and

annihilation operators according to [51]:

ĉ′†ij = Û−1ĉ†ij Û ĉ′ij = Û−1ĉij Û . (2.41)

We can then define the “transformed” Green’s function G′
n, i.e., the Green’s function written

in terms of the transformed fermionic operators [c′†, c′ instead of c†, c in Eq. (2.40)], as:

G′
n,i1...i2n

(τ1, . . . , τ2n) :=Gn(ĉ
′†, ĉ′, Ĥ) =

=
〈
T
[
ĉ′†i1(τ1)ĉ

′
i2(τ2) . . . ĉ

′†
i2n−1

(τ2n−1)ĉ
′
i2n(τ2n)

]〉
.

(2.42)

Physically G′
n corresponds to the Green’s function Gn transformed with the active (similarity)

transformation Û . Considering that

ĉ
′(†)
ij

(τ) = eτĤĉ′(†)ij
e−τĤ, (2.43)

the transformed Green’s function can be written schematically as

G′
n,i1...i2n(τ1, . . . , τ2n) =

〈
. . . eτjĤ Û−1ĉ

(†)
ij
Û

︸ ︷︷ ︸
ĉ
′(†)
ij

e−τjĤeτkĤ Û−1ĉ
(†)
ik
Û

︸ ︷︷ ︸
ĉ
′(†)
ik

e−τkĤ . . .
〉
. (2.44)

According to the associative law one can interpret this matrix element also in a different way:

G′
n,i1...i2n

(τ1, . . . , τ2n) =
〈
. . . eτjĤÛ−1ĉ

(†)
ij

e−τjĤ′
eτkĤ′

︷ ︸︸ ︷
Ûe−τjĤeτkĤÛ−1 ĉ

(†)
ik
Û e−τkĤ . . .

〉
, (2.45)

where Ĥ′ is defined as:

Ĥ′ = ÛĤÛ−1. (2.46)
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Figure 2.3: a) illustrates the change of the value of H under an (active) rotation of its
argument, i.e., the coordinate vector r0. (b) After rotating the frame of reference (together
with the vector r0!) the system is described by the Hamiltonian function H ′ instead of H .
Evaluating this new function for the original coordinate vector r0 yields the same result
as the evaluation of H for the rotated vector r′0 in a). Note that the coordinates of the
vector r0 in the last panel are the same as in the first one. However, in the last panel they
are given with respect to the rotated frame of reference.

This holds for left- and the rightmost operators inside the matrix element as well, due to the

cyclic property of the trace:

〈
e−βĤeτ1Ĥ Û−1ĉ†i1Û︸ ︷︷ ︸

. . . Û−1ĉi2nÛ︸ ︷︷ ︸ e−τ2nĤ
〉
=
〈︷ ︸︸ ︷
Ûe−τ2nĤe−βĤeτ1ĤÛ−1 ĉ†i1Û . . . Û−1ĉi2n

〉
,

(2.47)

where we assumed w.l.o.g. that τ1 is the largest and τ2n is the smallest time argument. The

above considerations can be more concisely expressed, eventually, by means of the following

relation5:

Gn(ĉ
′†, ĉ′, Ĥ) = Gn(ĉ

†, ĉ, Ĥ′). (2.48)

This equation has a simple interpretation (consider, e.g., a spin rotation for Û): The left-

hand side describes the Green’s function for creation and annihilation operators which are

transformed with an active transformation Û , but expressed in the old reference system (see

example below). The right-hand side represents the same transformation but for the reference

system which means that now the Hamiltonian has to be transformed with the corresponding

passive (or inverse) transformation. In this sense Eq. (2.48) is just an expression of the

obvious fact that the description of similarity transformations in terms of active and passive

ones must coincide.

Let us illustrate the arguments discussed in the last paragraph for a simple classical model

defined in R2 by the Hamiltonian function H(r), r ∈ R2. As similarity transformation we

5We recall that the partition function Z is invariant under any similarity transformation of the Hamiltonian
due to the cyclic property of the trace.
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consider rotations Û = D̂(ϕ) about the z axis through an angle ϕ. In Fig. 2.3a we actively

rotate the vector r0 onto a new vector r′0 = D̂r0. Hence, the value of the Hamiltonian function

H changes from H(r0) to H(r′0) when transforming the vector r0, which corresponds to the

active transformation of the operators ĉ and ĉ† discussed above [see Eq. (2.41)]. On the other

hand, one can rotate the coordinate system (CS) through the angle ϕ as it is illustrated in

Fig. 2.3b. The coordinates of a point with respect to the original coordinate system can be

obtained from the coordinates of the same physical point with respect to the new reference

system by means of the transformation D̂, i.e., r = D̂r′. Therefore, the Hamiltonian in the

rotated frame of reference is given by H ′ = H ◦ D̂. Inserting now the original coordinate

vector r0 into the new function H ′, as it is illustrated in Fig. 2.3b, one retains the same

result as for the direct transformation of the vector r0, i.e., H
′(r0) = H(D̂r0).

Coming back to our specific purpose, we recall that Û can be coined a symmetry of the system

if it commutes with Ĥ, and, hence, the transformed Hamiltonian is equal to the original one:

[Û , Ĥ] = 0 =⇒ Ĥ′ = Ĥ. (2.49)

Therefore, according to Eq. (2.48), in this case the transformed Green’s function G′
n will

coincide with the original one:

G′
n,i1...i2n

(τ1, . . . , τ2n) = Gn,i1...i2n(τ1, . . . , τ2n). (2.50)

This equation constitutes the basis for deriving formally all symmetry properties of the

Green’s functions, which will be discussed in the following subsections.

2.2.2.1 Time and Space translation symmetry

If the Hamiltonian Ĥ is time-independent (as it is the case for both the Hubbard model and

the AIM) the Green’s functions do not depend explicitly on the 2n times τ1 . . . τ2n but only

on time differences, e.g., of the form τi − τ2n. For proving this statement, we consider the

time translational operator T̂τ for the similarity transformation Û discussed above [see, e.g.,

Eq. (2.41)]:

Û = T̂τ := e−τĤ. (2.51)



34 CHAPTER 2. QUANTUM FIELD THEORY

The corresponding transformed creation and annihilation operators [see Eq. (2.41)] are given

by

ĉ′†σ (τ) = eτĤĉ†σe
−τĤ ĉ′σ(τ) = eτĤĉσe

−τĤ. (2.52)

For the specific choice τ = −τ2n the transformed Green’s function, i.e., the Green’s function

for the transformed operators as given in Eq. (2.42), reads

G′
n,σ1...σ2n(τ1, . . . , τ2n) =

〈
e−βĤe(τ1−τ2n)Ĥĉ†σ1 e

−(τ1−τ2n)Ĥ e(τ2−τ2n)Ĥĉσ2e
−(τ2−τ2n)Ĥ . . .

. . . e(τ2n−1−τ2n)Ĥĉ†σ2n−1
e−(τ2n−1−τ2n)Ĥĉσ2n

〉
,
(2.53)

where we assume w.l.o.g. that τ1 > τ2 > . . . > τ2n−1 > τ2n. Since the time translation

operator T̂τ commutes with our (time-independent) Hamiltonian and, hence, can be classified

as a “symmetry” of the system, the transformed Green’s function must coincide with the

original one [see Eq. (2.50)]. This observation can be expressed by the following equation:

Gn,σ1...σ2n(τ1, .., τ2n) = Gn,σ1...σ2n(τ1 − τ2n, .., τ2n−1 − τ2n, 0). (2.54)

Together with the antiperiodicity of Gn [Eqs. (2.34)], the time translational invariance [Eq.

(2.54)] leads to a useful simplification of the Fourier transform of Gn [see Eq. (2.35b)]:

G̃n,σ1...σ2n(ν1, . . . , ν2n) =

∫ β

0

dτ1 . . .

∫ β

0

dτ2n e
−i(ν1τ1+...−ν2nτ2n)Gn,σ1...σ2n(τ1, . . . , τ2n) =

=

∫ β

0

dτ1 . . .

∫ β

0

dτ2n e
−i(ν1τ1+...−ν2nτ2n)Gn,σ1...σ2n(τ1 − τ2n, . . . , τ2n−1 − τ2n, 0).

(2.55)

Hence, by means of the transformation τi = τ ′i+τ2n, i = 1, . . . , 2n−1, one introduces new time

variables τ ′i , the integration over which has to be performed in the interval [−τ2n, β − τ2n].

However, as discussed at the end of Sec. 2.2.1.1, Gn,σ1...σ2n(. . . , τi, . . .) is an antiperiodic

function with with respect to τi with period β6. Accordingly, an integral of this function

over any interval of the length β is equal to the integral from 0 to β. Finally, one can

perform the integration on the remaining time τ2n, which appears now in the phase factor

6Consequently, the combination e±iνiτiGn,σ1...σ2n
(. . . , τi, . . .) is periodic in τi (with periodicity β) since

e±iνiβ = −1 for all fermionic Matsubara frequencies νi.
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e−i(ν1−ν2+...+ν2n−1−ν2n)τ2n only, yielding the (energy) conservation relation:

∫ β

0

dτ2n e
−i(ν1−ν2+...+ν2n−1−ν2n)τ2n = βδ(ν1−ν2+...+ν2n−1−ν2n)0. (2.56)

Relabeling all integration variables back to τi one obtains:

G̃n,σ1...σ2n(ν1, . . . , ν2n) =

∫ β

0

dτ1 . . .

∫ β

0

dτ2n−1

(∫ β

0

dτ2n e
−i(ν1−ν2+...+ν2n−1−ν2n)τ2n

)
×

× e−i(ν1τ1−...+ν2n−1τ2n−1)Gn,σ1...σ2n(τ1, . . . , τ2n−1, 0)

= βδ(ν1−ν2+...+ν2n−1)ν2nGn,σ1...σ2n(ν1, . . . , ν2n−1),

(2.57)

where the 2n− 1 frequency Green’s function Gn,σ1...σ2n(ν1, . . . , ν2n−1) is defined as:

Gn,σ1...σ2n(ν1, . . . , ν2n−1) =

∫ β

0

dτ1 . . .

∫ β

0

dτ2n−1 e
−i(ν1τ1−...+ν2n−1τ2n−1)Gn,σ1...σ2n(τ1, . . . , τ2n−1, 0).

(2.58)

The discussion above shows, that in Fourier space it is sufficient to consider the Green’s func-

tion Gn which depends only on 2n− 1 rather than on 2n frequencies. Physically, this repre-

sents simply a direct manifestation of the energy conservation, due to the time-translational

invariance of the system.

Since the Hamiltonian of the Hubbard model is also time independent, the very same relations

derived above for the AIM, are also applicable to the frequency dependence ofGn. In addition,

in the Hubbard model case, one has typically an analogue symmetry for the spatial degrees

of freedom, i.e., the lattice translational invariance: The system is invariant under a shift by

a lattice vector R. The corresponding operator Û = T̂R can be defined for any lattice vector

R via its action on the creation and annihilation operators:

ĉ′†Ri
(R) = T̂ −1

R ĉ†Ri
T̂R = ĉ†Ri+R ĉ′Ri

(R) = T̂ −1
R ĉRi

T̂R = ĉRi+R. (2.59)

Setting R = R2n, it is straightforward to derive a relation analogous to Eq. (2.54), but for

the lattice vectors Ri instead of the times τi:

Gn,R1...R2n = Gn,(R1−R2n)...(R2n−1−R2n)R0
, (2.60)

where R0 denotes the origin of the coordinate system, e.g., R0 = (0, 0, 0)T in the three-

dimensional case. Note that, for the sake of readability, we have suppressed the spin indices
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σi and the time arguments τi in Eq. (2.60) since there is no difference between the Hubbard

model and the AIM regarding these degrees of freedom.

Performing the Fourier transform with respect to the Ri one obtains:

G̃n,k1...k2n =
∑

R1...R2n

ei(k1R1−k2R2+...+k2n−1R2n−1−k2nR2n)Gn,R1...R2n =

=
(2π)d

V
δ(k1 − k2 + . . .+ k2n−1 − k2n)Gn,k1,...,k2n−1 ,

(2.61)

where the (simplified) 2n− 1-momenta Green’s function Gn,k1...k2n−1 is defined as:

Gn,k1,...,k2n−1 =
∑

R1...R2n−1

ei(k1R1−k2R2+...−k2n−1R2n−1)Gn,R1...R2n−1R0 , (2.62)

and V is the volume of the unit cell of the underlying lattice, e.g., V = ad for the Hubbard

model on a d-dimensional cubic lattice with lattice constant a.

Physically the δ-function in Eq. (2.61) corresponds to the momentum originated by the

space-translational invariance of the system.

2.2.2.2 SU(2) symmetry

A further simplification concerning the spin dependence of the n-particle Green’s functions

can be achieved by taking into account the SU(2) symmetry of the Hamiltonian. Formally a

system is SU(2) symmetric, if the Hamiltonian commutes with all generators of this group,

i.e., the spin operators in the three spatial dimensions:

[Ĥ, Ŝi] = 0, for i = x, y, z. (2.63)

The spin operators Ŝi are defined as the total spin of the system in the 3 directions, the

general i-component of which reads:

Ŝi =
∑

j

Ŝi,j =
∑

j

1

2

∑

σσ′

ĉ†jσ′σ
σ′σ
i ĉjσ, (2.64)
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where the sum over j indicates a sum over all lattice sites in the Hubbard model and over

the bath sites and the impurity in the AIM, respectively, and σσ
′σ
i denotes the Pauli matrices

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
. (2.65)

It is a straightforward task to show that both Hamiltonians under consideration (Hubbard

and AIM) fulfill Eq. (2.63) in their paramagnetic phase7. Turning to the discussion of the

effects of the SU(2) symmetry on the Green’s functions, similarly to the analysis of the time

translation invariance, we will present the following derivations only for the AIM since the

generalization to the lattice system is trivial.

A first consequence of the SU(2) symmetry is that the total spin of the n-particle Green’s

function is conserved. While this assertion holds for any arbitrary direction we will discuss

it w.l.o.g. only for the z-component of the spin, i.e., for the component pointing in the

direction of the quantization axis. For this specific choice the property of spin conservation

of the n-particle Green’s function can be expressed as:

Sz of the outgoing particles︷ ︸︸ ︷
σ1 + σ3 + . . .+ σ2n−1 =

Sz of the incoming particles︷ ︸︸ ︷
σ2 + σ4 + . . .+ σ2n , (2.66)

where the numerical index 1, 2, . . . , 2n classifies the position of the spin in the trace [see Eq.

(2.27)]. This means that the total spin (in z-direction) of he incoming particles (corresponding

to the annihilation operators ĉσ2i) must coincide with the total spin of the outgoing ones

(represented by the creation operators ĉ†σ2i−1
, i = 1 . . . n). One can prove this statement by

the following argument.

Since Ŝz is an hermitian operators we can divide the entire Hilbert space into orthogonal sub-

spaces defined by the corresponding eigenvalues Sz. Hence, the n-particle Green’s function,

as defined in Eq. (2.27), can be represented as:

Gn,σ1...σ2n(τ1, . . . , τ2n) =
1

Z

∑

Sz

∑

α

〈Sz, α|e−βĤeτ1Ĥĉ†σ1e−τ1Ĥ . . . eτ2nĤĉj2nσ2ne−τ2nĤ|Sz, α〉,

(2.67)

where
∑

α denotes the trace over all states |Sz, α〉 in the subspace defined by the value of Sz.

7Adding, e.g., a magnetic field to the Hamiltonian would break this symmetry and, hence, the following
analysis does not hold in such a case.
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Since [Ĥ, Ŝz] = 0, an operator of the form eγĤ, γ ∈ C, cannot change the value of Sz, i.e.,

eγĤ|Sz, α〉 = |Sz, α′〉. (2.68)

On the other hand the commutation relations between the creation and annihilation opera-

tors, respectively, and Ŝz read:

[Ŝz, ĉ†jσ] = σĉ†jσ, [Ŝz, ĉjσ] = −σĉjσ, (2.69)

where σ = ±1
2
corresponds to spin-↑ and spin-↓, respectively. From Eq. (2.69) immediately

follows that

ĉ†jσ|Sz, α〉 = |Sz + σ, α′〉 and ĉjσ|Sz, α〉 = |Sz − σ, α′〉. (2.70)

Eqs. (2.68) and (2.70) allow us to calculate the matrix-element 〈Sz, α|. . .|Sz, α〉 in Eq. (2.67):

〈Sz, α|e−βĤeτ1Ĥĉ†j1σ1e−τ1Ĥ . . . eτ2nĤĉj2nσ2ne−τ2nĤ|Sz, α〉 =
= 〈Sz, α|Sz + σ1 − σ2 + . . .+ σ2n−1 − σ2n, α

′〉 = CSz,αα′δ(σ1−σ2+...+σ2n−1−σ2n)0,

(2.71)

where CSz,αα′ is some constant depending on Sz, α and α′. The last equality, which follows

from the fact that states corresponding to different Sz are orthogonal, represents exactly the

requirement of spin conservation (along an arbitrary z-axis) which was postulated at the

beginning of this paragraph in Eq. (2.66).

The spin conservation leads to a further, significant, simplification of the n-particle Green’s

functions. In fact, Eq. (2.66) allows for an even stronger restriction of (spin) variables than

the corresponding decimation of frequency and momentum arguments due to time/space

translational invariance, as a consequence of the discrete and bounded nature of the spin

degrees of freedom (σ = ±1
2
).

Specifically, the one-particle Green’s functions depends only on one spin variable, which

allows for the simplified definition:

G1,σ1(ν1) := δσ1σ2G1,σ1σ2(ν1), (2.72)

i.e., only the diagonal part in spin space (σ1 = σ2) contributes.

The situation, obviously, is a bit more involved for the two-particle Green’s functions. Here,
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among the 24=16 possible combinations of spins only the following 2×3=6 remain,

σ1 = σ2 = σ3 = σ4, (σ1 = σ2) 6= (σ3 = σ4), (σ1 = σ4) 6= (σ2 = σ3), (2.73)

with σ1 =↑ or σ1 =↓, because for all the others the two-particle Green’s functions vanish

due to Eqs. (2.66) and (2.71), respectively. This observation suggests to adopt the following

definitions at the two-particle level:

G2,σσ′(ν1, ν2, ν3) := G2,σσσ′σ′(ν1, ν2, ν3) G2,σσ′(ν1, ν2, ν3) := G2,σσ′σσ′(ν1, ν2, ν3), (2.74)

which cover all six cases mentioned above since for σ = σ′ the two definitions in Eqs. (2.74) of

course coincide. Moreover, considering the crossing symmetry relation (2.37), one can easily

show that G2,σσ′ and G2,σσ′ are, in general, related in the following way:

G2,σσ′(ν1, ν2, ν3) = −G2,σσ′(ν1, ν4, ν3), (2.75)

where ν4=ν1−ν2+ν3 is determined by energy conservation. Note that for σ=σ′, Eq. (2.75)

represents a constraint for the frequency arguments rather than for the spin.

As a next step, we have to analyze how the n-particle Green’s functions behave under a

rotation, i.e., under a generic SU(2) transformation. To this end, we consider the operator

Û = D̂ which performs such an active rotation of a (many-particle) state vector |{niσ}〉
through an angle ϕ about an axis the direction of which is defined by a unit vector n:

Û = D̂(n, ϕ) = e−iϕn·Ŝ , n ∈ R
3, ‖n‖2=1 and ϕ ∈ [0, 2π), (2.76)

where ‖·‖2 denotes the Euclidean norm in R3. For our purposes it turns out convenient to

introduce the “Pauli-spinors”

ĉ :=

(
ĉ↑

ĉ↓

)
ĉ† :=

(
ĉ†↑
ĉ†↓

)
, (2.77)

containing the two spin components of an annihilation and a creation operator at the impurity

site. Performing the transformation (i.e., in this case the rotation), given in Eq. (2.41), for

the “spinor” yields:

ĉ′†(n, ϕ) = eiϕn·Ŝ ĉ†e−iϕn·Ŝ ĉ′(n, ϕ) = eiϕn·Ŝ ĉe−iϕn·Ŝ . (2.78)
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In order to calculate ĉ′(†)(n, ϕ), we differentiate Eqs. (2.78) with respect to ϕ which yields

the following ordinary differential equation for ĉ′(†)(n, ϕ):

d

dϕ
ĉ′(†)(n, ϕ) = ieiϕn·Ŝ [n · Ŝ, ĉ(†)]e−iϕn·Ŝ = (+)−

1

2
in · σ(T)ĉ′(†)(n, ϕ), (2.79)

with the initial value

ĉ′(†)(n, 0) = ĉ(†). (2.80)

σ(T) = (σ
(T)
x , σ

(T)
y , σ

(T)
z ) denotes the vector of the (transposed) Pauli matrices. Note, that

n · σ(T) is the scalar product of two vectors in R3, while the components of σ(T) are two-

dimensional matrices acting on the spinors ĉ(†).

The solution of Eq. (2.79) is given by

ĉ′(†)(n, ϕ) = e
(+)− iϕ

2
n·σ(T)

ĉ(†) =
[
cos
(ϕ
2

)
1(+)− i sin

(ϕ
2

)
n · σ(T)

]
ĉ(†). (2.81)

Since D̂ commutes with the Hamiltonian the Green’s function should not change under such

a rotation, as it was shown in Eqs. (2.49) and (2.50) for a general symmetry transformation.

That means that the rotated Green’s G′
n functions [see Eq. (2.42)]:

G′
n,σ1...σ2n

(τ1, . . . , τ2n) =
〈
T
[
ĉ′†σ1(τ1)ĉ

′
σ2
(τ2) . . . ĉ

′†
σ2n−1

(τ2n−1)ĉ
′
σ2n

(τ2n)
]〉
, (2.82)

should coincide with the original one (G′
n = Gn). In order to calculate the rotated Green’s

function G′
n, we can insert the relation obtained in Eq. (2.81) for ĉ

′(†)
σ into Eq. (2.82). While

in principle this could be done for the general case of a generic n and ϕ, it is much more

convenient to evaluate Eq. (2.81) for specific values of n and ϕ.8 In particular, we can

choose the SU(2) transformation D̂ to be a rotation about the y-axis, i.e., n = (0, 1, 0)T

which yields9: (
ĉ
′(†)
↑
ĉ
′(†)
↓

)
=

(
cos(ϕ

2
) − sin(ϕ

2
)

sin(ϕ
2
) cos(ϕ

2
)

)(
ĉ
(†)
↑
ĉ
(†)
↓

)
, (2.83)

For the rotation angle ϕ we consider the following two specific cases:

• ϕ=π : Physically this choice of ϕ corresponds to a rotation of the spins by 180 degrees,

8We note that all relevant rotational symmetry relations for the one- and two-particle Green’s functions can
be obtained without such a restriction, but a general treatment would not provide any additional information.

9We omit the arguments n and ϕ of ĉ
(†)
σ for the sake of a better readability.
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i.e., to a spin-flip process, which can be directly obtained from Eq. (2.83):

ĉ′(†)σ = −2σĉ
(†)
(−σ), (2σ = ±1). (2.84)

Inserting this into Eq. (2.82) and considering that G′
n =Gn shows, that the Green’s

functions do not change by flipping all spins:

G′
n,σ1...σ2n(τ1, . . . , τ2n) = Gn,(−σ1)...(−σ2n)(τ1, . . . , τ2n) = Gn,σ1...σ2n(τ1, . . . , τ2n), (2.85)

where we considered that
∏2n

i=1(2σi) ≡ +1 due to spin conservation [Eq. (2.66)]. Ac-

cordingly, the one-particle Green’s function G1,σ1(ν1) does not exhibit any spin depen-

dence at all and, hence, can be redefined as:

G1(ν1) := G1,↑(ν1) = G1,↓(ν1). (2.86)

For the two-particle Green’s function, in turn, a rotation of all spins through an angle

π gives rise to the relations:

G2,↑↑(ν1, ν2, ν3) = G2,↓↓(ν1, ν2, ν3) G2,↑↓(ν1, ν2, ν3) = G2,↓↑(ν1, ν2, ν3). (2.87)

Hence, taking into account the crossing relation (2.75), from the six possible spin com-

binations for the two-particle Green’s function considered in Eq. (2.73) only two are

really relevant, namely G2,↑↑ and G2,↑↓. All the others either lead to vanishing contri-

butions or can be obtained from the latter ones by means of the crossing or the SU(2)

symmetry relations.

• ϕ= π

2
: Physically this choice of ϕ corresponds to rotate the spins by 90 degrees, i.e., to

transform a spin in z-direction into a spin in x-direction, which can be directly inferred

from Eq. (2.83):

ĉ′(†)σ =
1√
2

(
ĉ(†)σ − 2σĉ

(†)
(−σ)

)
, (2σ = ±1). (2.88)

For this transformation a general discussion in terms of the n-particle Green’s function

is not possible because one has to take into account concretely its spin dependence, i.e.,

one has to consider each spin combination separately. Hence, we focus on the one- and

the two-particle cases which are relevant for this thesis.

For the one-particle Green’s function this transformation does not provide any new

information.This was, however, to be expected from Eq. (2.86) since the one-particle
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Green’s function does not depend on the direction of the spin at all.

For the two-particle Green’s functions, on the contrary, the SU(2) rotation through π
2

yields a relations between G2,↑↑ and G2,↑↓. In fact, inserting Eq. (2.88) into Eq. (2.82)

and considering G′
n=Gn, spin conservation [Eq. (2.66)], the invariance under spin flips

[Eq. (2.87)] as well as the crossing relation [Eq. (2.75)] yields:

G2,↑↑(ν1, ν2, ν3) = G2,↑↓(ν1, ν2, ν3) +G2,↑↓(ν1, ν2, ν3) =

= G2,↑↓(ν1, ν2, ν3)−G2,↑↓(ν1, ν4, ν3),
(2.89)

where ν4=ν1−ν2+ν3 (energy conservation). Hence, in the SU(2) symmetric case only

one of the six spin combinations, for which the two-particle Green’s function does not

vanish [as discussed in Eq. (2.73)] is independent, namely G2,↑↓ while all the others

can be derived from the latter. In particular, G2,↑↑ can be calculated from G2,↑↓ by

means of Eq. (2.89), while on the other hand, the knowledge of G2,↑↑ is not sufficient

for determining G2,↑↓. In fact, the latter case, i.e., when only G2,↑↑ is known, Eq. (2.89)

provides just a constraint on G2,↑↓.10

2.2.2.3 Time and Space Reversal Symmetry

In classical physics a system is said to be invariant under time reversal if the Hamiltonian

function H does not change under the transformation p → −p. As a consequence, if a

trajectory x(t) is a solution of the equation of motion, x(−t), i.e., the reversed motion, is

also a solution.

In standard quantum mechanics the time-reversal operator T̂ is an anti-unitary operator. For

spinless particles or a system without spin-dependent interactions it is simply represented by

complex conjugation of the wave function11:

T̂ ψ(x) = Kψ(x) := ψ∗(x), (2.90)

10Physically, this observation can be understood in the following way: As it will be discussed in Sec.
2.2.4 the two-particle Green’s function is connected to the scattering amplitude between two electrons. No
restriction exist for scattering events between one ↑-electron and one ↓-electron. However, if two ↑-electrons
are involved, the Pauli principle does not allow for scattering processes where both particles occupy the
same quantum state, as it is, e.g., the case for the (lowest order) constant U contribution to the scattering
amplitude. Hence, the scattering events contained in G2,↑↑ represent just a subset of all possible scattering
events contained in G2,↑↓ (or G2,↑↓).

11We recall that, if the systems exhibits any spin-dependent interactions, such as, e.g., spin-orbit coupling
σ · L̂ or the coupling to a magnetic field σ · B, the time reversal operator reads as T̂ = σ2 ⊗ K where K
denotes the complex conjugation.
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where K denotes the complex conjugation. Therefore, the system is invariant under time

reversal, if the (time-independent) Hamiltonian is a real function of the momentum operator

p̂ and the position operator x̂. This is, in fact, usually the case for systems without spin-

orbit coupling and without interaction with a magnetic field, i.e., for Hamiltonians of the

form Ĥ = p̂2

2m
+ V (x̂) with a real potential V . In such a case, all eigenfunctions ψ(x)=〈x|ψ〉

in space representation can be chosen to be real, i.e., ψ(x) = ψ∗(x).

An analogous situation occurs, obviously, also in the framework of quantum field theory.

In the occupation number basis |{nj}〉
[
{nj}=̂{n1, . . . , nj, . . .}, nj = 0, 1 for fermions

]
, the

matrix elements of a creation or annihilation operator ĉ
(†)
i for an arbitrary state i is purely

real:

〈{n′
j}|ĉ†i |{nj}〉 = (1− ni)δn′

i(ni+1) 〈{n′
j}|ĉi|{nj}〉 = niδn′

i(ni−1), (2.91)

or equal 0 if the occupation of all states j 6= i is not the same for |{n}〉 and |{n′}〉, i.e.,
n′
j 6= nj for at least one j 6= i. Furthermore, under our assumption that the Hamiltonian Ĥ

is a real function of the creation and annihilation operators ĉ†i and ĉi, its representation in

the occupation number basis will be evidently a purely real matrix:

〈{n′
j}|Ĥ|{nj}〉∗ = 〈{n′

j}|Ĥ|{nj}〉, (2.92)

which also holds for any operator eαĤ, α ∈ R (e.g., α = β,±τ). If one performs, then, the

trace in the definition of the Green’s function [Eq. (2.27)] by summing over the occupation

number basis, each single contribution is just a matrix element of a product of operators ĉ
(†)
i

and eαĤ. Hence, according to Eqs. (2.91) and (2.92) all these matrix elements are purely

real and thus the same holds for the specific case of Gn as a function of imaginary times12:

G∗
n,σ1...σ2n(τ1, . . . , τ2n) = Gn,σ1...σ2n(τ1, . . . , τ2n). (2.93)

Eq. (2.93) obviously holds for systems where the Hamiltonian is a real function of the creation

and annihilation operators such as the AIM and the single-band Hubbard model. On the

contrary, this condition will be violated by Hamiltonian contributions like the spin-orbit

coupling (which nevertheless preserves the time reversal invariance of the system) or by the

coupling to an external magnetic field (which breaks explicitly the time reversal symmetry).

Eventually, combining the expression for the complex conjugation of the Green’s function

12This property could be also proven by resorting to the functional integral representation of the Green’s
function [52].
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derived in Sec. 2.2.1.3 [Eq. (2.38)] with Eq. (2.93), leads to the following relation for the

Green’s function of a the AIM:

Gn,σ1...σ2n(τ1, . . . , τ2n) = Gn,σ2n...σ1(−τ2n, . . . ,−τ1) = Gn,σ2n...σ1(β − τ2n, . . . , β − τ1), (2.94)

where the last equality follows from anti-periodic nature of the imaginary times Green’s

function [see Eqs. (2.34)]. Performing the Fourier transform according to Eq. (2.58) yields:

Gn,σ1...σ2n(ν1, . . . , ν2n−1) = Gn,σ2n...σ1(ν2n, . . . , ν2), (2.95)

where ν2n=ν1−ν2. . .+ν2n−1 is determined by the requirement of energy conservation. For the

one-particle Green’s function Eq. (2.95) reduces to the trivial relation G1(ν1) = G1(ν1) since

it depends only on one frequency, while for the two-particle Green’s function, Eq. (2.95)

gives rise to further simplifying restrictions on its frequency dependence.

Applying the discussion above to the Hubbard model leads to a relation analogous to Eqs.

(2.94) and (2.95), for the AIM, which reads ,in terms of the space coordinates, as:

Gn,R1...R2n = Gn,R2n...R1, (2.96)

where we have suppressed the time- and the spin dependence of the Green’s function since

it exactly coincides with that of the AIM discussed above. When performing the Fourier

transform as defined in Eqs. (2.61) and (2.62) one gets the relation

Gn,k1...k2n−1 = Gn,(−k2n)...(−k2), (2.97)

where k2n=k1−k2+. . .+k2n−1 is given by the requirement of momentum conservation. Eq.

(2.97) exhibits, hence, a similar behavior for the momenta ki as Eq. (2.95) does for the

frequencies. The only difference is, however, that the momenta are reversed, i.e., k → −k,

as it is expected under time reversal. We note, furthermore, that if the system, on the other

hand, features additionally space inversion symmetry as well, i.e., the Hamiltonian does not

change under the transformation R → −R, which is the case for our Hubbard Hamiltonian,

then also the momenta exhibit exactly the same behavior as the frequencies under time and

space inversion, i.e.,

Gn,k1...k2n−1 = Gn,k2n...k2 , (2.98)

where k2n = k1 − k2 + . . .+ k2n−1 (momentum conservation).



2.2. GREEN’S FUNCTIONS AND SYMMETRIES 45

2.2.2.4 Point group symmetry of the lattice

This section concerns obviously only the Hubbard model (there does not exist a lattice for

the AIM). The point group of a lattice consists of all rotations under which the lattice is

mapped on itself. A classification of the 7 possible crystal systems and the 14 Bravais lattices

can be found in the literature [39] but it is not relevant for the results presented in the next

chapters. We will restrict ourselves here to the specific case, considered in this thesis, namely

the simple cubic lattice. One element of the point group of a simple cubic lattice was already

discussed in the last section, that is the inversion of the lattice. This symmetry reduces the

number of non-equivalent k points by a factor of two. In addition one has to consider all

possible rotations that leave the lattice invariant. In d dimension this leads to a reduction of

the full Brillouin zone [−π
a
, π
a
]d by a factor of 2dd! corresponding to the d possible reflections

ki → −ki and the d! permutations of the of the d momentum arguments. Hence, for the

two-dimensional case the size of such a “irreducible Brillouin zone” is just 1
4
times the size

of the full Brillouin zone, while for three dimensions the point group symmetries lead to a

reduction by a factor of 1
48
.

2.2.2.5 Particle-Hole symmetry

In addition to general symmetry properties, it is also interesting to discuss explicitly the

specific case in which the Hubbard model and the AIM exhibit a further symmetry, which

is called particle-hole symmetry. As the name says, the corresponding unitary symmetry

operator exchanges creation and annihilation operators, i.e., “particles” and “holes”. The

situation is completely analog to the particle-antiparticle symmetry of the relativistic quan-

tum electrodynamics. In fact, the particle-hole transformation operator corresponds in some

sense to the charge conjugation transformation between electrons and positrons know from

relativistic quantum field theory. Intuitively, one would expect that exchanging particles and

holes can represent a symmetry for the Hubbard model and the AIM only for specific subsets

of parameters defining these models. More precisely, the Hubbard Hamiltonian must exhibit

(i) a symmetric density of states (DOS), which is the case of a bipartite lattice (such as the

simple cubic lattice) with only nearest neighbor hopping. Furthermore, (ii) the system has

to be half-filled, i.e., there is one electron per lattice site, which corresponds to the choice

µ = U
2
for the chemical potential. For a more detailed discussion of the particle-hole sym-

metry of the Hubbard model we refer to the literature [53–55] and to the end of this section.

Analogously, for the AIM a particle-hole symmetry transformation can be also defined, if the

AIM exhibits (i) a symmetric bath and (ii) is half filled, i.e., there has to be one electron at
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the impurity site. As for the Hubbard model, the latter condition can be fulfilled by choosing

µ = U
2
. The validity of these conditions can be easily proved as follows , starting from the

general definition of the AIM:

Ĥ =
∑

ℓσ

εℓâ
†
ℓσâℓσ +

∑

ℓσ

Vℓ(ĉ
†
σâℓσ + â†ℓσ ĉσ) + Un̂↑n̂↓ − µ(n̂↑ + n̂↓),

where the sum over ℓ (bath sites) ranges from 2 to N and ℓ = 1 denotes the impurity (i.e.,

â
(†)
1σ = ĉ

(†)
2σ ). The particle-hole transformation we are considering for the AIM is defined by

the unitary operator Û = Ŵ :

Ŵ = (â†N↑ − âN↑) . . . (â
†
2↑ − â2↑)(ĉ

†
↑ + ĉ↑)(â

†
N↓ − âN↓) . . . (â

†
2↓ − â2↓)(ĉ

†
↓ + ĉ↓). (2.99)

Calculating the action of this transformation on the creation and annihilation operators

yields:

Ŵ†ĉ†σŴ = −ĉσ Ŵ†ĉσŴ = −ĉ†σ (2.100a)

Ŵ†â†ℓσŴ = âℓσ Ŵ†âℓσŴ = â†ℓσ. (2.100b)

Hence, the annihilation and creation operators are interchanged under the transformation

Ŵ, justifying the denotation of Ŵ as “particle-hole” transformation.

Eqs. (2.100) give rise to the following transformation of the AIM Hamiltonian:

Ŵ†ĤŴ =
∑

ℓσ

(−εℓ)â†ℓσâℓσ +
∑

ℓσ

Vℓ(ĉ
†
σâℓσ + â†ℓσ ĉσ) + Un̂↑n̂↓+

− (U − µ)(n̂↑ + n̂↓) + 2
∑

ℓ

εℓ + U − 2µ.
(2.101)

Comparing this expression with the original Hamiltonian in Eq. (2.23) or at the beginning

of this section shows that, indeed, Ŵ does not represent a symmetry for a generic AIM: The

sign of the energy levels εℓ of the bath as well as chemical potential [µ → (U−µ)] are changed
under the transformation13. However, Ŵ constitutes nevertheless a symmetry for a certain

subclass of AIMs defined by specific constraints on its parameters which will be discussed in

the following:

• εℓ=−εℓ+N
2
for ℓ=2 . . . N

2
, which means that the bath levels are distributed symmetri-

cally around 0 (here N
2
denotes just the integer part of the division).

13The additional constant term 2
∑

ℓ εℓ + U − 2µ can be of course neglected.
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• Vℓ = Vℓ+N
2
for ℓ = 2 . . . N

2
, i.e., the hybridization between the bath and the impurity

should be the same for the positive and the corresponding negative bath energies.

In fact, it is clear that with the restrictions on the parameters εℓ and Vℓ stated above the

negative energy sector of the bath becomes completely equivalent to the positive one. At

this stage, if we are interested only to the impurity Green’s functions, we can perform the

index transformation ℓ↔ (ℓ+ N
2
) which changes the minus sign in front of εℓ in Eq. (2.101)

back into a plus sign as in the original Hamiltonian (2.23). The original Hamiltonian in Eq.

(2.101) is finally retrieved simply by choosing µ = U
2
, as mentioned above.

Next, we calculate the (particle-hole) transformed n-particle Green’s function

G′
n,σ1...σ2n

(τ1, . . . , τ2n) =
〈
T
[
ĉ′†σ1(τ1)ĉ

′
σ2
(τ2) . . . ĉ

′†
σ2n−1

(τ2n−1)ĉ
′
σ2n

(τ2n)
]〉
, (2.102)

where

ĉ′†σ = Ŵ†ĉ†σŴ = −ĉσ, ĉ′σ = Ŵ†ĉσŴ = −ĉ†σ. (2.103)

Restricting oneself to AIMs with an symmetric bath as described above, Ŵ represents a

symmetry of the system. Hence, the transformed Green’s function must coincide with the

original one, i.e.,

G′
n,σ1...σ2n(τ1, . . . , τ2n) = Gn,σ1...σ2n(τ1, . . . , τ2n). (2.104)

Inserting the transformed creation and annihilation operators Eq. (2.103) into the definition

of the transformed Green’s function Eq. (2.102) leads to

G′
n,σ1...σ2n(τ1, . . . , τ2n) =

〈
T
[
ĉσ1(τ1)ĉ

†
σ2(τ2) . . . ĉσ2n−1(τ2n−1)ĉ

†
σ2n(τ2n)

]〉
. (2.105)

This expression does not match any longer the definition of the n-particle Green’s function

in Eq. (2.27), but we can use the crossing symmetry to invert the order of the creation

and annihilation operators in Eq. (2.105) to restore the correct sequence according to the

definition of the n-particle Green’s function. It is easy to prove that one obtains an additional

factor (−1)n due to the anti-commutative nature of fermionic operators14. Hence, since Ŵ
constitutes a symmetry of the Hamiltonian, one has G′

n = Gn [Eq. (2.50)], yielding the

14In order to invert the order of 2n operators one needs (2n−1)+(2n−2)+ . . .+2+1 =2n2−n exchanges

of fermionic operators which leads to a factor (−1)2n
2−n = (−1)n.
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following relation for the n-particle Green’s function:

Gn,σ1...σ2n(τ1, . . . , τ2n) = (−1)nGn,σ2n...σ1(τ2n, . . . , τ1). (2.106)

Next, we recall the formula for the complex conjugation of the Green’s function [Eq. (2.38)]

G∗
n,σ1...σ2n

(τ1, . . . , τ2n) = Gn,σ2n...σ1(−τ2n, . . . ,−τ1),

and combine it with Eq. (2.106) which gives rise to the following relation for the n-particle

Green’s function in the particle-hole symmetric case:

G∗
n,σ1...σ2n(τ1, . . . , τ2n) = (−1)nGn,σ1...σ2n(−τ1, . . . ,−τ2n). (2.107)

Transforming Eq. (2.107) to Fourier space leads to

G∗
n,σ1...σ2n

(ν1, . . . , ν2n−1) = (−1)nGn,σ1...σ2n(ν1, . . . , ν2n−1), (2.108)

which states that the local Green’s function is a purely real or a purely imaginary function

depending on whether n is an even or an odd number. Specifically, the one-particle Green’s

function exhibits solely an imaginary part, i.e.,

G∗
1(ν1) = −G1(ν1), (2.109)

while the two-particle Green’s function is purely real:

G∗
2,σσ′(ν1, ν2, ν3) = G2,σσ′(ν1, ν2, ν3). (2.110)

Taking into account also the time reversal symmetry of the system [Eq. (2.93)], i.e., that the

Green’s functions Gn in Eq. (2.107) are purely real at the imaginary time axis, leads to a

further relation which reads as:

Gn,σ1...σ2n(τ1, . . . , τ2n) = (−1)nGn,σ1...σ2n(−τ1, . . . ,−τ2n), (2.111)

the Fourier representation of which is given by

Gn,σ1...σ2n(ν1, . . . , ν2n−1) = (−1)nGn,σ1...σ2n(−ν1, . . . ,−ν2n−1). (2.112)
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Eq. (2.111) is related to another important property of the one-particle Green’s function

in the time space. The local electronic density of the system, i.e., the average number of

electrons at the impurity site (n), can be calculated from this Green’s function as:

lim
τ→0+

G1(τ, 0) = 〈n̂σ〉 =
〈n̂〉
2

=
n

2
lim
τ→0+

G1(−τ, 0) =
〈n̂〉
2

− 1 =
n

2
− 1. (2.113)

According to Eq. (2.107), G1(−τ, 0) = −G1(τ, 0), which implies that

n

2
= −

(n
2
− 1
)

=⇒ n = 1. (2.114)

This equation shows that for the specific restrictions on the parameters εℓ, Vℓ and µ of the

AIM, made in this section, the system is indeed half-filled, i.e., there is on average one electron

at the impurity (n=1).

For the Hubbard model on a simple (hyper)cubic lattice some additional consideration has

to be done. The particle-hole transformation corresponding to Eq. (2.103) reads in this case

as

ĉ′†Ri
= Ŵ†

Hĉ
†
Ri
ŴH = e±iΠRi ĉRi

, ĉ′Ri
= Ŵ†

HĉRi
ŴH = e±iΠRi ĉ†Ri

, (2.115)

where ŴH denotes the particle-hole transformation for the Hubbard model and Π refers to

the (total antiferromagnetic) vector Π = (π, . . . , π)T in d dimensions with the lattice constant

a= 1 for the underlying (hyper)cubic lattice. The additional factor e±iΠRi in Eq. (2.115)

is a manifestation of the bipartite nature of a simple cubic lattice, allowing for a division

into two sub-lattices A and B, whereupon (w.l.o.g.) e+iΠRi =±1 depending on whether Ri

is located in sub-lattice A or B. Hence, for the Green’s function of the Hubbard model we

obtain a relation analogous to Eq. (2.107):

G∗
n,R1...R2n

= (−1)nGn,R1...R2n

2n∏

i=1

eiΠRi , (2.116)

where we again suppress the spin and time arguments, since they are exactly the same as in

Eq. (2.107) for the AIM. Performing the Fourier transform of Eq. (2.116) leads to:

G∗
n,k1...k2n−1

= (−1)nGn,(Π−k1)...(Π−k2n−1). (2.117)

Hence, in the case of a particle-hole symmetry of the underlying Hubbard model, the momentum-
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dependent Green’s functions are purely real or purely imaginary only for some specific k

vectors15. These k vectors are either given by the requirement that π − ki = ki, which

means that ki =
π
2
or –due to the point group symmetry of the lattice– by the constraint

±ki = π ± kP (i) where P (i) denotes an arbitrary permutation of the d coordinates. The

latter condition defines some high-symmetry points, lines or planes in the d-dimensional k

space. For instance, in the specific case of a simple square lattice in d= 2 dimensions one

has ±kx = π ± ky. This defines a square centered in the origin rotated through 45 degrees

about the z-axis (with corners at (±π, 0)and(0,±π)], which coincides exactly with the non-

interacting Fermi-surface for the half filled two-dimensional Hubbard model. Hence, in the

d=2 case with particle-hole symmetry, the one-particle Green’s function is purely imaginary

for all k points on the corresponding Fermi surface according to Eq. (2.116). On the con-

trary in d=3, even when the model is particle-hole symmetric, the set of k vectors, where the

one-particle Green’s function is purely imaginary, does not cover the entire two-dimensional

Fermi-surface, but only some specific one-dimensional subset of it.

2.2.2.6 The SU(2)P [and SO(4)] symmetry of the half-filled AIM

In this section we will discuss a symmetry which originates from combining the SU(2) and

the particle-hole invariance of the (half-filled) system. To this end, we constrain the particle-

hole transformation Ŵ , discussed in Sec. 2.2.2.5 [Eq. (2.99)] to one spin species, e.g., the ↓-
electrons, while the ↑-electrons are now untouched by the transformation. The corresponding

operator Ŵp reads as

Ŵp = (â†N↓ − âN↓) . . . (â
†
2↓ − â2↓)(ĉ

†
↓ + ĉ↓). (2.118)

For the AIM, one can show that, under the same constraints on the bath parameters εℓ and

Vℓ and the chemical potential µ, which are described in Sec. 2.2.2.5 ( page 47) for the (full)

particle-hole transformation16, the transformation Ŵp provides a mapping of the half-filled

repulsive Hubbard model (U > 0) onto the attractive one (−U < 0), i.e,

Ĥ′ = Ŵ†
pĤ(U)Ŵp = Ĥ(−U), (2.119)

where Ĥ(U) and Ĥ(−U) denote the Hamiltonians exhibiting a positive (repulsive) and the

corresponding negative (attractive) value of U , respectively. Hence, the partial particle hole

15For the local Green’s functions instead, the same conditions of the AIM are valid.
16εℓ = −εℓ+N

2
, Vℓ = Vℓ+N

2
, and µ = U

2 .
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transformation Ŵp itself does not represent a symmetry of the AIM but maps its repulsive

version (U > 0, µ = U
2
) onto its attractive version (−U, µ = −U

2
) and vice versa. This

mapping between the repulsive and the attractive system will be discussed in more detail

later in Sec. 2.2.5, where also a more precise derivation of Eq. (2.119) will be provided. In

the present section, however, we will focus on a different aspect of the transformation Ŵp.

Though Ŵp does not represent a symmetry of the system itself, it gives rise to an additional

symmetry which is connected with the rotational invariance of the spin degrees of freedom.

In fact, considering the rotation operator D̂ in Eq. (2.76), one can define a, corresponding,

new transformation D̂p as:

D̂p = Ŵ†
pD̂Ŵp. (2.120)

It is obvious that D̂p constitutes a symmetry of the transformed Hamiltonian Ĥ′ = Ŵ†
pĤ(U)Ŵp =

Ĥ(−U) since [D̂, Ĥ] = 0, i.e.,

[D̂p, Ĥ′] = [Ŵ†
pD̂Ŵp, Ŵ†

pĤŴp] = Ŵ†
p [D̂, Ĥ]Ŵp ≡ 0. (2.121)

Furthermore, it is convenient to split the Hamiltonian Ĥ of the AIM, defined in Eq. (2.23),

into a non-interacting and an interacting part:

Ĥ = Ĥ0 + UĤI, (2.122)

where the two contributions Ĥ0 and ĤI are defined as:

Ĥ0 =
∑

ℓσ

εℓâ
†
ℓσâℓσ +

∑

ℓσ

Vℓ(ĉ
†
σâℓσ + â†ℓσ ĉσ), ĤI =

(
n̂↑ −

1

2

)(
n̂↓ −

1

2

)
. (2.123)

Note that the term µ(n̂↑ + n̂↓) with µ = U
2
has been explicitly included in the definition of

ĤI.

Eq. (2.119) implies that:

Ĥ′
0 = Ŵ†

pĤ0Ŵp = Ĥ0, Ĥ′
I = Ŵ†

pĤIŴp = −ĤI, (2.124)

which means that only the sign of the interacting part ĤI changes under the transformation

Ŵp while Ĥ0 is invariant. Taking furthermore into account that both parts of the Hamiltonian

Ĥ commute with the SU(2) (rotation) transformation D̂ separately, i.e.,

[D̂, Ĥ0] = 0, [D̂, ĤI] = 0, (2.125)
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it is obvious that they also commute with the new transformation D̂p. Hence, we come to the

conclusion that not only D̂ but also D̂p constitutes a symmetry of the particle-hole symmetric

system which can be expressed as:

[D̂p, Ĥ] = 0. (2.126)

According to the definition of the rotation operator D̂ in Eq. (2.76), one can construct the

transformed rotation operator D̂p by means of the transformed generators Ŝp:

Ŝp = Ŵ†
pŜŴp, (2.127)

where Ŝ denotes the vector of spin operators as defined in Eq. (2.63). The calculation of the

so-called “pseudospin” operators [53, 55] Ŝp is now straightforward and yields:

Ŝp,x = −1

2

(
ĉ†↑ĉ

†
↓ + ĉ↓ĉ↑

)
, (2.128a)

Ŝp,y = − 1

2i

(
ĉ†↑ĉ

†
↓ − ĉ↓ĉ↑

)
, (2.128b)

Ŝp,z =
1

2

(
ĉ†↑ĉ↑ + ĉ†↓ĉ↓ − 1

)
. (2.128c)

Note that in Eqs. (2.128) only the symmetry operators at the impurity are stated while for a

complete definition of Ŝ a sum over the corresponding operators for the bath sites is needed

as well [see also the definition of the spin operators in Eq. (2.63)]. However, the latter differ

from the one for impurity, given in Eqs. (2.128), only by the sign in front of the first two

equations [Eqs. (2.128a) and (2.128b)]. The generators of the pseudospin rotation can be

interpreted physically as follows: Ŝp,z represents simply the (charge) density operator of the

system (or, more precisely, the deviation of the density from its half-filling value 1). The x-

and y-component of the pseudospin Ŝp,x and Ŝp,x, instead, correspond to local Cooper pair

operators, describing the superconducting order parameter of the system. In this respect, the

equivalence of all three components of the pseudospin in the local AIM, is a manifestation of

the equivalence of the density and the superconducting fluctuations in the half-filled system,

as it will be discussed in more detail at the end of this section [see, e.g., Eq. (2.139)].

It is now straightforward to show that these new “pseudospin” operators Ŝp,i commute with

the spin operators Ŝj. Furthermore, the unitary transformation Ŵp preserves the commutator

algebra of the SU(2) symmetry group leading to two independent SU(2) groups [SU(2)S for
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the spin and SU(2)P for the pseudospin], whose entire algebra is defined as follows:

[Ŝi, Ŝj ] = iεijkŜk, [Ŝp,i, Ŝp,j] = iεijkŜp,k, [Ŝi, Ŝp,j] = 0. (2.129)

Combining the two SU(2) symmetry groups leads to17 SO(4)⋍SU(2)S×SU(2)P/Z2, explaining

why the particle-hole symmetric AIM can by considered as SO(4) symmetric.

Below the impact of a pseudospin rotation D̂p on the Green’s functions will be analyzed.

Since the pseudospin operator is obtained from the spin operator just by the transformation

Eq. (2.120), the corresponding calculations are completely equivalent to those concerning

the usual spin. In fact, considering the discussion in Sec. 2.2.2.2 in the paragraph below Eq.

(2.78), one can obtain the analogous results for the pseudospin by transforming the spinors

and operators by means of the partial particle-hole transformation Ŵp. To this end, we define

the following (pseudo)spinors:

ĉp :=

(
−ĉ↑
ĉ†↓

)
= Ŵ†

p ĉŴp, ĉ†p :=

(
−ĉ†↑
ĉ↓

)
= Ŵ†

p ĉ
†Ŵp, (2.130)

where ĉ and ĉ† have been specified in Eq. (2.77). For constructing the pseudospin rotation

operator D̂p, one can proceed in completely the same as for the spin rotation operator in

Sec. 2.2.2.2, paragraph between Eqs. (2.78) and (2.83). Indeed, considering a pseudospin

rotation about the y-axis through an angle ϕ for the operators ĉp and ĉ†p yields:

(
−ĉ′↑
ĉ′†↓

)
=

(
cos(ϕ

2
) − sin(ϕ

2
)

sin(ϕ
2
) cos(ϕ

2
)

)(
−ĉ↑
ĉ†↓

)
,

(
−ĉ′†↑
ĉ′↓

)
=

(
cos(ϕ

2
) − sin(ϕ

2
)

sin(ϕ
2
) cos(ϕ

2
)

)(
−ĉ†↑
ĉ↓

)
, (2.131)

for the transformed (pseudo)spinor ĉ
′(†)
p . Eq. (2.131) can be simply obtained from the

corresponding equation for the spin rotation (2.83) by applying Ŵ†
p and Ŵp to the creation

and annihilation operators [see Eq. (2.130)] in the latter relation.

Since D̂p represents a symmetry of the system, as usual, the following relation holds for the

Green’s function18:

G′
n,σ1...σ2n

(τ1, . . . , τ2n) = Gn(ĉ
′†, ĉ′, Ĥ) = Gn,σ1...σ2n(τ1, . . . , τ2n). (2.132)

17Z2 is the cyclic group of degree 2. A representation is, e.g., the set {1,−1}with the ordinary multiplication
as group operation [56, 57].

18The following discussion about the impact of the symmetry transformation D̂p on the Green’s functions

follows the same steps as the corresponding analysis for the SU(2) symmetry operators D̂ in Sec. 2.2.2.2.
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Similarly as for the spin rotation, we will consider two values of the angle ϕ:

• ϕ=π : Physically this choice of ϕ corresponds to transform the creation into annihila-

tion operators and vice versa, plus an additional spin flip, as it can be directly obtained

from Eqs. (2.131):

ĉ′†σ = 2σĉ(−σ), ĉ′σ = 2σĉ†(−σ), (2.133)

where 2σ = ±1. Inserting these expressions into the Green’s function G′
n and re-doing

the spin flips by means of SU(2) symmetry, one retrieves exactly the same expression

as for the (full) particle hole transformation already discussed in Sec. 2.2.2.5 [see in

particular Eq. (2.103)]. Hence, we refer to this section for the investigation of the

pseudospin rotation through π.

• ϕ= π

2
: This choice of ϕ corresponds to the following transformation of the creation

and annihilation operators [see Eq. (2.131)]:

ĉ′σ =
1√
2

(
ĉσ + 2σĉ†(−σ)

)
, ĉ′†σ =

1√
2

(
ĉ†σ + 2σĉ(−σ)

)
, (2σ = ±1). (2.134)

For this transformation we restrict ourselves to the most relevant case of the two-

particle Green’s function. Inserting Eq. (2.134) into Eq. (2.132), and considering spin

conservation [Eq. (2.66)], the invariance under spin flips [Eq. (2.87)], the crossing

relation [Eq. (2.75)], time reversal invariance [Eq. (2.94)] as well as the particle hole

symmetry [Eq. (2.108)] yields:

G2,↑↑(τ1, τ2, τ3, τ4) = G2,↑↓(τ1, τ4, τ2, τ3)−G2,↑↓(τ1, τ2, τ4, τ3), (2.135)

or after a Fourier transform

G2,↑↑(ν1, ν2, ν3) = G2,↑↓(ν1, ν4,−ν2)−G2,↑↓(ν1, ν2,−ν4) (2.136)

where ν4=ν1−ν2+ν3 is defined by the requirement of energy conservation.

A similar derivation can be given also for the Hubbard Hamiltonian. However, since for

the partial particle-hole transformation of lattice systems also the phase factors eiΠRi occur

[compare with Eq. (2.115) for the (full) particle-hole transformation], the generalization of

the above AIM results to the Hubbard Hamiltonian is more involved than for the symmetries
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in the previous sections. As the related equations are not relevant for this thesis we will avoid

such complications here.

Let us finally investigate, instead, the impact of the SU(2)P symmetry on important physical

quantities, such as the dynamic (one-frequency) local susceptibilities. These objects represent

the time/frequency dependent autocorrelation functions for a selected physical observable Â

and read as:

χÂ(ω) =
1

2

∫ β

0

dτ eiωτχÂ(τ) =
1

2

∫ β

0

dτ eiωτ
〈(
Â(τ)− 〈Â〉

)(
Â(0)− 〈Â〉

)〉

=
1

2

∫ β

0

dτ eiωτ
〈
Â(τ)Â(0)

〉
− 1

2
βδω0〈Â〉2,

(2.137)

where 〈. . .〉 and Â(τ) are defined analogously to Eqs. (2.27) and (2.28) for the Green’s

functions. χÂ(τ) describes the tendency of the system to “remember” the initial value of the

observable Â after a certain time τ . If, e.g., Â = Ŝi is the spin in i-direction, χŜi
(τ) indicates

whether the system exhibits locally a stable magnetic moment or not, corresponding to a

constant or a decreasing behavior of the local susceptibility with respect to τ .

Let us now consider the susceptibilities for the generators Ŝi and Ŝp,i of the SU(2)S spin and

the SU(2)P pseudospin group, respectively. It is easy to show that all the expectation values

of these operators vanish in the half-filled case and, hence, one has to consider only the first

contribution in the second line of Eq. (2.137)19. It is well known that in the SU(2)S symmetric

case considered here the susceptibilities for each of the three spin directions Ŝi, i = x, y, z

coincide, i.e.,

χŜx
(ω) = χŜy

(ω) = χŜz
(ω) =: χm(ω). (2.138)

This equation should also hold for the pseudospins Ŝp,i which is obviously the case for

χŜp,x
(ω) = χŜp,y

(ω). However, the equation χŜp,x
(ω) = χŜp,z

(ω) leads to a relation between

the so-called charge susceptibility χd(ω) = χŜp,z
(ω) and the particle-particle susceptibility

χpp(ω) = χŜp,x
(ω) which measures the formation of electron (Cooper) pairs at the impurity,

and, hence, constitutes a hallmark of superconductivity. Therefore, one expects that the

following relation holds:

χd(ω) ≡ χpp(ω), (2.139)

which can be explicitly proven by means of Eq. (2.135) when restricting the time arguments

19For Ŝp,z = n̂− 1 consider that 〈n̂〉 = 1 since we are at half filling.
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of the Green’s functions entering this equation in the following way (τ1 = τ):

lim
τ4→0

lim
τ3→τ4+

lim
τ2→τ−

G2,↑↑(τ, τ2, τ3, τ4) = lim
τ4→0

lim
τ3→τ4+

lim
τ2→τ−

[G2,↑↓(τ, τ4, τ2, τ3)−G2,↑↓(τ, τ2, τ4, τ3)] .

(2.140)

Resorting to the definition of the Green’s function in τ space one has

〈n̂↑(τ)n̂↑(0)〉 = 〈ĉ†↑ĉ†↓(τ)ĉ↓ĉ↑(0)〉 − 〈n̂↑(τ)n̂↓(0)〉+
〈n̂〉
2
, (2.141)

which coincides exactly with Eq. (2.139) after performing the Fourier transform with respect

to τ .

2.2.3 Definitions and Symmetry relations: An overview

This section is devoted to provide a concise list of the definitions of all relevant one- and

two-particle quantities specifically used in this thesis as well as a compact summary of their

symmetry properties. For this reason, here, we will present the final equations only (making

reference to the more general results of the previous section).

The one-particle Green’s function is defined as

G1,i1i2(τ1, τ2) =
〈
T
[
ĉ†i1(τ1)ĉi2(τ2)

]〉
. (2.142)

For the Hubbard model ij = (Rj, σj) while for the AIM ij = σj . Performing the Fourier

transform under consideration of all symmetries, i.e., omitting all the unnecessary indices,

leads to the definition

G(ν,k) =
∑

Ri

∫ β

0

dτ e−i(ντ−kRi)G1,(Riσ)(R0σ)(τ, 0), (2.143)

where R0 denotes the origin of the of the lattice, i.e., R0 = (0, 0, 0)T in the three-dimensional

case. The corresponding definition for the AIM can be easily obtained from Eq. (2.143)

by “deleting” all spatial degrees of freedom, i.e., Ri and/or k, in this and the following

equation(s). The properties of the one-particle Green’s function can be summarized as

follows:

• G∗(ν,k) = G(−ν,k): general rule for complex conjugation [Eq. (2.39 in Sec. 2.2.1.3].

• G(ν,−k) = G(ν,k): space reversal symmetry [Eqs. (2.97) and (2.98) in Sec. 2.2.2.3].
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• G∗(ν,k) = −G(ν,Π − k), where Π = (π, . . . , π)T: particle-hole symmetry if µ = U
2

[Eqs. (2.109) and (2.117) in Sec. 2.2.2.5].

Note that the boundary conditions, the time- and space-translation invariance as well as

the SU(2) [and the SU(2)P] symmetry are already implicitly included in the definition of

the one-particle Green’s function by considering it as function of only one frequency and

momentum without any spin dependence. While, as mentioned in Sec. 2.2.1.2, there is no

crossing symmetry in the one-particle case, the time reversal symmetry only yields the trivial

relation G(ν,k) = G(ν,k).

For the two-particle Green’s function we restrict ourselves for the sake of simplicity to

the AIM (or, equivalently, to the local Green’s function of the Hubbard model), for which

numerical results are discussed in the next chapter. However, the generalization to the non-

local degrees of freedom of the Hubbard model is, in most of the cases, straightforward. Let

us recall first the most general definition of the two-particle Green’s function:

G2,σ1σ2σ3σ4(τ1, τ2, τ3, τ4) =
〈
T
[
ĉ†σ1(τ1)ĉσ2(τ2)ĉ

†
σ3
(τ3)ĉσ4(τ4)

]〉
. (2.144)

Usually one does not work with the two-particle Green’s function directly but considers,

as we will also do in the next chapters, the following combination of one- and two-particle

Green’s functions:

χσ1σ2σ3σ4(τ1, τ2, τ3, τ4) := G2,σ1σ2σ3σ4(τ1, τ2, τ3, τ4)−G1,σ1σ2(τ1, τ2)G1,σ3σ4(τ3, τ4), (2.145)

which is coined generalized susceptibility20. Its one-particle (“bubble”) contribution [second

term on the right-hand side of Eq. (2.145)] is referred to as bare susceptibility

χ0,σ1σ2σ3σ4(τ1, τ2, τ3, τ4) = −G1,σ1σ4(τ1, τ4)G1,σ3σ2(τ3, τ2), (2.146)

which describes the independent propagation of one particle/hole. This means that Eq.

(2.145) can be rewritten as:

χσ1σ2σ3σ4(τ1, τ2, τ3, τ4) = G2,σ1σ2σ3σ4(τ1, τ2, τ3, τ4) + χ0,σ1σ4σ3σ2(τ1, τ4, τ3, τ2). (2.147)

Taking into account the time translation invariance of the system we can set τ4 = 0 and

20Physical susceptibilities, depending on just one time/frequency arguments, as defined in Eq. (2.137),
can be obtained from the corresponding generalized susceptibilities by taking the limits τ2 → τ1−, τ4 → τ3−
and, finally, τ4 → 0.
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consider susceptibilities depending only on three times [see Eq. (2.54) in Sec. 2.2.2.1]. Fur-

thermore, the restrictions on the spin degrees of freedom imposed by the SU(2) symmetry

[Eq. (2.73) and below in Sec. 2.2.2.2] suggest to replace the four-spin object by a quantity

depending on two spins only. Hence, it proves convenient to introduce the following defini-

tions, as it was done for the two-particle Green’s function G2 [Eq. (2.74) in Sec. 2.2.2.2],

also for the susceptibilities:

χσσ′(τ1, τ2, τ3) := χσσσ′σ′(τ1, τ2, τ3, 0) (2.148a)

χσσ′(τ1, τ2, τ3) := χσσ′σ′σ(τ1, τ2, τ3, 0). (2.148b)

While for σ = σ′ both definitions of course coincide, χσσ′ is equal to the two-particle Green’s

functionG2,σσ′ in the other case (σ 6= σ′), since the term which should be subtracted according

to Eq. (2.145) vanishes (G1,σσ′ = 0 for σ 6= σ′). However, using the crossing symmetry [Eqs.

(2.37) in Sec. 2.2.1.2] one can show that the quantity defined in Eq. (2.148b) can be derived

from the one in Eq. (2.148a) by means of a permutation of the time or - in Fourier space

- frequency arguments as shown in in Sec. 2.2.2.2, Eq. (2.75). Hence, we will consider

explicitly Eq. (2.148a) only, making reference to Eq. (2.148b) just in some specific cases.

After taking the Fourier transform, the generalized susceptibility χ depends only on three

fermionic Matsubara frequencies ν1, ν2 and ν3 (ν4 = ν1 − ν2 + ν3 in the four-frequency object

G̃2) as a consequence of time-translation symmetry [Eq. (2.58) in Sec. 2.2.2.1]. Here,

it is convenient to introduce the two following frequency conventions, which are known as

particle-hole (ph) and particle-particle (pp) notation, respectively:

ph : ν1 = ν pp : ν1 = ν (2.149a)
ν2 = ν + ω ν2 = ω − ν ′ (2.149b)
ν3 = ν ′ + ω ν3 = ω − ν (2.149c)
ν4 = ν ′ ν4 = ν ′, (2.149d)

where ν = π
β
(2n+1) and ν ′ = π

β
(2n′+1) are fermionic Matsubara frequencies and ω = π

β
(2m)

is a bosonic Matsubara frequency. Taking into account that that the creation/annihilation

operators are connected with outgoing/incoming electrons and incoming/outgoing holes, re-

spectively, the choice of the frequency convention has a clear physical motivation in both

cases:

• In the ph-case one considers the scattering process of an electron with energy ν + ω

and a hole with energy −ν, i.e., the transferred energy of this process is ω.
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ω

ν

(ν + ω)

ν ′

(ν ′ + ω)

• In the pp-case we look at the scattering of two electrons with energies ν ′ and ω − ν ′.

Again the transferred energy of this process is ω.

ω

ν

(ω − ν)(ω − ν ′)

ν ′

Hence, we define the Fourier transform of the generalized susceptibility in a twofold way,

adopting the two frequency conventions discussed above:

χνν
′ω

σσ′ := χνν
′ω

ph,σσ′ := χ
(
νσ, (ν ′ + ω)σ′
︸ ︷︷ ︸
outgoing electrons

;ν ′σ′, (ν + ω)σ︸ ︷︷ ︸
incoming electrons

)
:=

:=

∫ β

0

dτ1dτ2dτ3 χσσ′(τ1, τ2, τ3)e
−iντ1ei(ν+ω)τ2e−i(ν

′+ω)τ3 ,

(2.150a)

χνν
′ω

pp,σσ′ := χ
(
νσ, (ω − ν)σ′
︸ ︷︷ ︸
outgoing electrons

; (ω − ν ′)σ, ν ′σ′
︸ ︷︷ ︸
incoming electrons

)
:=

:=

∫ β

0

dτ1dτ2dτ3 χσσ′(τ1, τ2, τ3)e
−iντ1ei(ω−ν

′)τ2e−i(ω−ν)τ3 ,

(2.150b)

Since in the full two-particle Green’s function both particle-hole and particle-particle scat-

tering processes are simultaneously included, it is possible to express χpp in terms of χph and

vice versa:

χνν
′ω

pp,σσ = χ
νν′(ω−ν−ν′)
ph,σσ′ χνν

′ω
ph,σσ = χ

νν′(ω+ν+ν′)
pp,σσ′ . (2.151)
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Symmetry Relation in ph-notation Reference

Crossing
symmetry χνν

′ω
σσ′

− δσσ′χ
ν(ν+ω)(ν′−ν)
0 = −χν(ν+ω)(ν′−ν)σσ′ + χνν

′ω
0

Sec. 2.2.1.2, Eq. 2.37

Complex
conjugation (χνν

′ω
σσ′ )

∗ = χ
(−ν′)(−ν)(−ω)
σ′σ

SU(2)
= χ

(−ν′)(−ν)(−ω)
σσ′

Sec. 2.2.1.3, Eq. 2.39

SU(2)
symmetry

χνν
′ω

σσ′ = χνν
′ω

(−σ)(−σ′) = χνν
′ω

σ′σ

χνν
′ω

σσ = χνν
′ω

σ(−σ) − χ
ν(ν+ω)(ν′−ν)
σ(−σ) + χνν

′ω
0

Sec. 2.2.2.2, Eqs. 2.87,
2.89

Time reversal
symmetry χνν

′ω
σσ′ = χν

′νω
σ′σ

SU(2)
= χνν

′ω
σσ′

Sec. 2.2.2.3, Eq. 2.95

Particle-hole
symmetry(
µ = U

2
only

)
(
χνν

′ω
σσ′
)∗

= χνν
′ω

σσ′
Sec. 2.2.2.5, Eqs.

2.108-2.110

SU(2)P
symmetry(
µ = U

2
only

) χνν
′ω

σσ = χ
ν(−ν′−ω)(ν′−ν)
σ(−σ) − χ

ν(−ν′−ω)ω
σ(−σ) + χνν

′ω
0 Sec. 2.2.2.6, Eq. 2.136

Table 2.1: Summary of the symmetry relations for the susceptibilities in ph-notation.

In reason of this, we will focus mainly on χ ≡ χph and consider explicitly χpp in specific cases

only.

The corresponding susceptibility χ0 does not exhibit any spin dependence at all, since it

is just the product of two one-particle Green’s functions. Indeed, performing the Fourier

transform of Eq. (2.146), we obtain

χ̃0(ν1, ν2, ν3, ν4) = −β2G(ν1)G(ν2)δν1ν4δν2ν3 =: χ0(ν1, ν2, ν3)βδν1ν4. (2.152)

Using the frequency conventions introduced above for the susceptibilities we arrive at the
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following definitions:

χνν
′ω

0 := χνν
′ω

0,ph := −βG(ν)G(ν + ω)δνν′ χνν
′ω

0,pp := −βG(ν)G(ω − ν)δνν′ . (2.153)

Eventually, for the sake of conciseness, we have summarized in Tab. 2.1 the most impor-

tant symmetry-properties of the generalized susceptibilities discussed in this chapter for the

ph-notation, reporting also the reference to the corresponding sections, where they are de-

rived and discussed in more detail. Note that the boundary conditions, the time-translation

invariance as well as (partially) also the SU(2) symmetry are already intrinsically included

in the definition of the generalized susceptibility by considering it as a function of only

three frequencies and two spins. Finally, we note here that, by means of Eqs. (2.151) and

(2.153), it is straightforward to derive relations analogue to the ones given in Tab. 2.1 also

in particle-particle notation. The corresponding results can be found in Appendix A.

Let us finally illustrate how the physical susceptibilities χσσ′(ω) and χpp,σσ′(ω), can be ob-

tained from the generalized ones. As already discussed at the end of Sec. 2.2.2.5 (see, in

particular, page 55), these one-frequency objects describe the (linear) response of a system

to an external perturbation. Specifically, these response functions can be calculated from the

corresponding generalized susceptibilities by a summation over all the fermionic variables, as

follows:

χσσ′(ω) =
1

β2

∑

νν′

χνν
′ω

σσ′ , χpp,σσ′(ω) =
1

β2

∑

νν′

χνν
′ω

pp,σσ′. (2.154)

The corresponding density, magnetic and particle-particle susceptibilities, considered in Sec.

2.2.2.5, page 55, are then defined as χd(ω) = χ↑↑(ω) + χ↑↓(ω), χm(ω) = χ↑↑(ω)− χ↑↓(ω) and

χpp(ω) = χpp,↑↓(ω). Let us remark that, analogously to Eq. (2.154), also the bare response

function χ0,(pp)(ω) can be defined as the ν, ν ′-sum of the corresponding bare susceptibility

χνν
′ω

0,(pp).

2.2.4 Green’s functions and Feynman diagrams

In this section we will use the technique of Feynman diagrams [32,33,38], i.e., a diagrammatic

representation of the perturbative expansion around the non-interacting case U = 0, to gain

further insight into the structure of the one- and the two-particle Green’s functions. This

will allow for a deeper understanding of the physical content of the Green’s functions and

will prove also important for the development of new approximation schemes, well beyond
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UG0(ν)

Figure 2.4: Diagrammatic elements for the AIM. The corresponding diagrammatic elements
for the Hubbard model can be obtained by simply replacing the local non-interacting
Green’s function G0(ν) with the corresponding (k dependent) non-interacting Green’s
function of the lattice model G0(ν,k).

perturbation theory, for the calculation of the Green’s functions in the intermediate-to-strong

interaction case. The basic elements of the diagrammatic technique are depicted in Fig. 2.4

for the impurity (local) Green’s function of the AIM. G0(ν) denotes the bare one-particle

impurity Green’s function, i.e., the local Green’s function for the non-interacting system

(U = 0) while the interaction, which is given just by a purely local repulsion U in the case

of the Hubbard model and the AIM, is represented by a dot which connects four Green’s

function lines corresponding to the two incoming and two outgoing fermions, respectively.

We recall, that energy (=frequency), momentum and spin have to be conserved at each

vertex, i.e., the sum of these quantities for the incoming particles must coincide with the

sum for the outgoing ones. Furthermore, if both incoming particles exhibit the same spin the

corresponding contribution of the diagram on the right-hand side of Fig. 2.4 vanishes due to

the specific structure of the interaction term21.

Let us stress that, because of the local nature of the electronic interaction, the diagram-

matic structure of the AIM and the Hubbard model exhibit important similarities. Hence,

in order to avoid redundancy by presenting almost “equivalent” diagrams and equations for

both models, we introduce the following unifying notation for the time/space and the fre-

quency/momentum arguments, respectively: All results, obtained for the (purely local!) AIM

hold also for the Hubbard model when replacing the (imaginary) time τ with the four-vector

(τ,Ri), where Ri is a lattice vector, or accordingly in Fourier space, replacing the (Matsub-

ara) frequency ν with (ν,k), where k is a momentum vector located in the first Brillouin

zone. For time integrations and frequency summations, respectively, one has to consider the

21The interaction term is given for both models by Un̂↑n̂↓, i.e., the interaction takes place only for particles
with opposite spins. This is obviously a direct consequence of the “local” nature of the interaction and of
the Pauli principle.
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reducible

Q

b)

Σ = + + . . .
c)

irreducible
a)

Figure 2.5: a) Irreducible diagram for the one-particle Green’s function; b) Reducible
diagram: the diagram falls apart if one cuts the red dashed line; c) Summing up irreducible
diagrams (without external legs), yields the so-called self-energy.

generalizations

∫ β

0

dτ e−iντ =⇒
∑

Ri

∫ β

0

dτ e−i(ντ−kRi) and
1

β

∑

ν

=⇒ 1

β

∑

ν

1

VBZ

∫

BZ

ddk, (2.155)

where BZ denotes the first Brillouin zone and VBZ its volume (e.g., VBZ = 1
(2π)d

for the simple

cubic lattice in d dimensions with the lattice constant a = 1 which will be mainly considered

in this thesis). Derivations and equations, where the differences between the Hubbard model

and the AIM cannot be taken into account by a mere replacement of a frequency variable

by a four-vector containing frequency and momentum will be accentuated explicitly in this

section.

2.2.4.1 One-particle Green’s functions

Since the diagrammatic techniques for treating the one-particle Green’s function can be

found in the textbooks [32, 33, 38], we just summarize the most important features here.

The set of all Feynman diagrams for the one-particle Green’s function can be divided into

two classes according to the topological structure of the diagrams. A diagram is called

one-particle irreducible if it cannot be split into two sub-diagrams by cutting one internal

Green’s function line G0 (Fig. 2.5a) otherwise it is coined reducible (Fig. 2.5b). Summing

up all irreducible diagrams as depicted in Fig. 2.5c and amputating the external legs yields

the so-called self-energy of the system. All reducible diagrams in turn can be constructed

by connecting an arbitrary number of irreducible diagrams with G0 lines. Summing up all
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= + + . . .Σ(ν)
G(ν) G0(ν)

Figure 2.6: Diagrammatic representation of the Dyson equation.

contributions (reducible and irreducible) one obtains the Dyson equation:

G(ν) = G0(ν) +G0(ν)Σ(ν)G0(ν) + . . . =
1

[G0(ν)]−1 − Σ(ν)
, (2.156)

which is illustrated diagrammatically in Fig. 2.6). A continuous line denotes the full inter-

acting Green’s function G(ν) of the system.

We can now introduce corrections to the bare Green’s functions G0 which constitute self-

energy diagrams such as the one depicted in Fig. 2.5a. Summing up all such contributions

one can replace the bare Green’s function G0 by the full interacting one G as it is shown in

Fig. 2.7a. Hence, it is possible to construct all Feynman diagrams for the self-energy also

in terms of the full, instead of the non-interacting, Green’s function. However, in order to

avoid double-counting, when working with the full G, one has to restrict oneself to a subset

of diagrams coined skeleton diagrams. They are characterized by the fact that their internal

Green’s function lines do not contain any self-energy insertions (see, e.g., Fig. 2.7b). This is

necessary since the full Green’s function already takes into account all possible one-particle

self-energy corrections and, hence, a diagram as depicted in Fig. 2.7c would lead to a double

counting of such terms.

2.2.4.2 Two-particle Green’s function

The two-particle Green’s function will be discussed exclusively in terms of skeleton diagrams,

i.e., all the lines represent full interacting Green’s functions G.

For a non-interacting system (U = 0), the Wick’s theorem [38] states that the two-particle

Green’s functions can be represented as a sum of products of one-particle Green’s functions,

i.e.,

G
(U=0)
2,σσ′ (ν, ν + ω, ν ′ + ω) = βG0(ν)G0(ν

′)δω0 − βG0(ν)G0(ν + ω)δνν′δσσ′ . (2.157)

For the calculation of the susceptibility one has to subtract the first summand on the right-
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+ + + . . . =

a)

b) c)skeleton non-skeleton

Figure 2.7: a) Dressing the internal lines of a self-energy diagram; b) A skeleton diagram;
c) A non-skeleton diagram where one of the internal Green’s functions is dressed by a
self-energy correction.

χνν
′ω

σσ′ =

G(ν + ω)

−−βδνν ′δσσ′

G(ν)

G(ν + ω) G(ν ′ + ω)

F νν ′ω
σσ′

G(ν) G(ν ′)

Figure 2.8: Diagrammatic representation of χνν
′ω

σσ′ . The figure is readapted from Ref. [48].

hand side of Eq. (2.157) which yields:

χνν
′ω

(U=0),σσ′ = −βG0(ν)G0(ν + ω)δνν′δσσ′ = χνν
′ω

0 δσσ′ , (2.158)

justifying the denomination of a product of Green’s functions as χ0. For the interacting

case (U 6= 0), in addition to the dressing of the bare Green’s function G0 by the self-energy

(see Fig. 2.6, G0 → G) in Eqs. (2.157) and (2.158), another important term arises. This

describes the scattering processes between two particles or a particle and a hole, respectively.

Hence, one will naturally decompose the susceptibility χ into two parts, which are shown

diagrammatically in Fig. 2.8 and analytically read as:

χνν
′ω

σσ′ = −βG(ν)G(ν + ω)δνν′δσσ′ −G(ν)G(ν + ω)F νν′ω
σσ′ G(ν

′)G(ν ′ + ω). (2.159)
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One can see that in addition to the so-called unconnected part of the generalized suscepti-

bility, already present in Eq. (2.158) for the non-interacting case U = 0, a vertex part, i.e., a

term containing the so-called full vertex function F , occurs in Eq. (2.159) for the generalized

susceptibility at U 6= 0. Since this contribution to the susceptibility does not decompose into

a product of two one-particle Green’s functions, we refer to it as connected part. In the Fermi

liquid regime, where one-particle excitations are unambiguously defined, the vertex function

F can be interpreted physically as scattering amplitude between two quasi-particles [38].

Considering the definition of the bare susceptibility [Eq. (2.153)] we can express the full

generalized susceptibility χ as:

χνν
′ω

σσ′ = χνν
′ω

0 δσσ′ −
1

β2

∑

ν1ν2

χνν1ω0 F ν1ν2ω
σσ′ χν2ν

′ω
0 . (2.160)

For the other spin combination (↑↓), the almost same definition holds, differing from the ↑↓
susceptibility only with respect to the factor δσσ′ in χ0:

χνν
′ω

σσ′ = χνν
′ω

0 − 1

β2

∑

ν1ν2

χνν1ω0 F ν1ν2ω

σσ′
χν2ν

′ω
0 . (2.161)

Analogous definitions can be introduced for the particle-particle notation.

“Topological” structure of the diagrams for the vertex function F

In the following we will discuss the “topological” structures of diagrams for the full vertex

function F . Let us recall that F represents the connected part of the generalized susceptibility

without the outer legs, i.e., the four (one-particle) Green’s functions which constitute the two

incoming and the two outgoing particles have been singled out as one can see in Eq. (2.159).

If we consider one-particle irreducibility, as we did for the self-energy in a previous paragraph

(see Fig. 2.5), it turns out that all contributions to F exhibit this property, i.e., the two-

particle vertex function does not contain any one-particle reducible diagram. This state of

affairs is illustrated in Figs. 2.9a,b where such, hypothetical, one-particle reducible diagrams

for the two-particle vertex function are drawn. However, one sees immediately that diagrams

as depicted in Fig. 2.9a are forbidden due to a violation of particle conservations at the red

vertices, while the diagram shown in Fig. 2.9b contains spurious non-skeleton contributions

(red box) and, hence, is not included in the diagrammatic technique22. Let us stress that

22The one-particle reducible part of the latter diagram represents, in fact, an outer leg of F which is
amputated.
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F
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3

4

1
Σ

Q

a) b)

1

2 3 4 5

6
Q

F F

c)

Figure 2.9: a) Hypothetical one-particle reducible diagram for F : This diagram vanishes
due to a violation of particle conservation at the red vertices. b) Hypothetical one-particle
reducible diagram for F : This diagram does not contribute since the Green’s function
inside the red box contains a self-energy correction which is not allowed for skeleton
diagrams. c) One-particle reducible contribution to the three-particle vertex function.
The numbers 1 . . . 6 denote the incoming/outgoing particles.

A

1

2

B

3

4
a

b

Q
Q

.

Figure 2.10: Schematic representation of a generic particle-hole reducible diagram con-
tributing to the (full) scattering amplitude F . The figure is readapted from Ref. [48].

the nonexistence of one-particle reducible diagrams is an intrinsic characteristic of the two-

particle vertex functions. Indeed, for three- and more-particle vertices such diagrams appear

as it is illustrated in Fig. 2.9c.
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Parquet equation

Since the property of one-particle irreducibility does not play any discriminating role for two-

particle vertex functions (differently from the one-particle case) if we aim at a classification

of these two-particle diagrams, we should turn to the concept of two-particle irreducibility.

This leads to a classification of diagrams with respect to the way they can be split into two

parts by cutting two internal Green’s function lines.

• Fully irreducible: These diagrams of F cannot be split into two parts by cutting two

internal Green’s function lines. They correspond somehow to the self-energy diagrams

at the one-particle level, which are one-particle irreducible.

• Reducible: A diagram of F is reducible if it can be split into two parts by cutting

two internal Green’s function lines. However, at the two-particle level the concept of

reducibility is “richer” than at the one-particle level. In fact, there are more possibilities

of cutting lines than in the one-particle case, and, therefore, the notion of reducibility

always refers to one of these possibilities, i.e., to a specific channel. The channel

specifies, in which way two of the four outer legs of a given diagram can be separated

from the other two. Labeling the outer legs with 1, 2, 3, 4, where 1 and 3 denote

outgoing particles while 2 and 4 refer to the incoming ones, it is clear that three

different possibilities exist: Diagrams where (1 3) can be separated from (2 4) are

coined particle-particle (pp) reducible, while the other two cases, i.e., (1 2) from (3 4)

and (1 4) from (2 3), are referred to as particle-hole longitudinal (ph) and particle-hole

transversal (ph) reducible diagrams, respectively. An example for a diagram which is

reducible in the longitudinal particle-hole channel is shown in Fig. 2.10 where (1 2)

can be separated from (3 4) by cutting the internal lines a and b.

It should be stressed that each diagram is either fully irreducible or reducible in exactly

one channel, i.e., no diagrams that are reducible in two or more channels can exist. This

can be easily seen by the following argument: Consider a diagram that is reducible in the

longitudinal particle-hole channel (ph) as that shown in Fig. 2.10. It is clear that the

subdiagram A can be separated from B by cutting the Green’s function lines a and b. Let

us assume that the diagram is reducible in the (1 4)-(2 3) channel [=transversal particle-hole

channel (ph)] as well, i.e., it can be split into two parts, one containing the outer legs 1

and 4 the other one containing 2 and 3, by cutting two internal lines. This would be only

possible if the subdiagrams A and B could be split into two parts by cutting only one internal

line. But this is impossible since it would lead to subdiagrams with three outer legs, which
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F = Λ + Φpp + Φph + Φph

all diagrams, e.g.:

2 3

1 4

,

1

2 3

4

,

1

2 3

4

,

1

2 3

4

all diagrams fully irreducible
reducible in particle-particle

channel 13-24

reducible in particle-hole

channel 12-34

reducible in particle-hole

channel 14-23

Figure 2.11: Diagrammatic illustration of the parquet decomposition of the full vertex
function F . For each of the four contributions (fully irreducible, reducible in channel ph,
ph and pp) one low-order diagram is shown. The figure is reproduced from Ref. [48].

violates particle conservation as it was already discussed previously in the paragraph about

one-particle reducibility (see Fig. 2.9a). Therefore, it is proven that each diagram is either

fully irreducible or reducible in –at most– one channel (i.e., in the ph, ph, or pp channel).

As a consequence one can decompose the complete vertex function F into four parts: a fully

two-particle irreducible one (Λ) and the (two-particle) reducible contributions (Φr) in the

three different channels:

F = Λ +Φpp +Φph +Φph. (2.162)

which has been written in a schematic notation, omitting spin and frequency arguments.

This equation (2.162), which expresses the decomposition of F , is called parquet equation.

It is schematically illustrated in Fig. 2.11 with one low-order diagram shown for each of the

contributions. The parquet equation is the two-particle analogon of the classification of the

one-particle diagrams as reducible and irreducible ones (defining the self-energy). Hence, in

principle it represents just a “classification” scheme of all connected (two-particle) diagrams,

which are divided this way into four classes.

Bethe-Salpeter equations

While one can easily calculate the full vertex function F from the generalized susceptibility

χ by means of Eq. (2.160), in order to work with the parquet equation, one needs additional

relations connecting F and the reducible vertices Φr. This can be achieved by defining new

quantities Γr:

F = Φr + Γr, r = pp, ph, ph. (2.163)

Since F contains all diagrams and Φr contains all the diagrams which are reducible in the

given channel r, Γr is the set of all diagrams, which are irreducible in the respective channel.
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Since each diagram is either fully irreducible or reducible in a given channel, we have that

Γr = Λ+Φj1 +Φj2, j1, j2 6= r. In this way the diagram depicted in Fig. 2.10 belongs to Γph
and Γpp since it is reducible in the longitudinal particle-hole (ph) channel.

The Γr vertices, in turn, can be calculated from F by means of an integral equation, the so

called Bethe-Salpeter-equation:

F = Γr +

∫
Γr(GG)rF ⇐⇒ Φr =

∫
Γr(GG)rF, (2.164)

where the integral symbol denotes an integration/summation over all internal degrees of

freedom (e.g., frequencies, spin, momentum, . . .). (GG)r denotes the product of two one-

particle Green’s function with corresponding frequency arguments according to the respective

channel r.

The interpretation of Eq. (2.164) is very simple: F is the sum of all diagrams which are

irreducible in the given channel r (Γr) and the diagrams that are reducible in this channel

(Φr). The reducible diagrams, in turn, can be represented in terms of the irreducible ones

Γr and the set of all diagrams F : Connecting these two building blocks with two Green’s

function lines one obtains diagrams that are reducible in the channel r as it is illustrated for

r = ph in Fig. 2.12a. We should note here, that when considering an arbitrary (ph) reducible

diagram, its splitting into two subdiagrams can be realized in different ways (Figs. 2.12b

and c for a specific case). However, the Bethe-Salpeter requirement that the left subdiagram

belongs to the irreducible vertex Γr guarantees the uniqueness of the division (Fig. 2.12c).

This way, taking one of the building blocks irreducible avoids any possible double counting

of diagrams.

Let us also stress that a decomposition of the vertex F according to Eqs. (2.163) and (2.164)

is in any case not unique, in the sense that it can obviously be performed independently for

all three channels.

Symmetries of F , Γr and Λ

The symmetry properties of the full vertex F almost coincide with that for the generalized

susceptibility23. In fact, combining the decomposition of the generalized susceptibilities as

given in Eqs. (2.160) and (2.161) with the symmetry relations for χ reported in Tab. 2.1

yields analogous equations for F which are summarized in Tab. 2.2. As it was the case for χ

23Since F can be obtained from χ by subtracting all unconnected contributions χ0 and amputating the
outer legs G, one can obtain the symmetry relations for F by substituting it for χ in Tab. 2.1 and removing
all χ0’s from the equations.
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Figure 2.12: DiagramsD ∈ Φph which are reducible in the longitudinal particle-hole channel
[ph, Γ ≡ Γph]: a) Each diagram which is constructed according to Eq. (2.164) is reducible
in the ph channel. b) Splitting of a ph reducible diagram into two parts A and B (red
boxes) both of which are not irreducible in the ph channel. c) Splitting of a ph reducible
diagram into two parts (green boxes) one of which (A) is irreducible in the ph channel.

the time translation symmetry as well as partly the SU(2) symmetry are already taken into

account by defining the vertex as a function of only three frequencies and two spin variables,

and, hence, they do not give rise to any further constraints on F . For the symmetry relations

of the vertex function F in particle-particle (pp) notation we refer the reader to Appendix

A.

The irreducible vertex functions Γr exhibit the same symmetry properties as the full vertex

F except for the crossing symmetry24. This can be easily understood by a closer inspection of

the last two diagrams (ph and ph) in Fig. 2.11: Exchanging, e.g., the two incoming electrons

(2 and 4) transforms the ph diagram (third diagram in Fig. 2.11) into the corresponding

ph diagram (fourth diagrams in Fig. 2.11) and vice versa. Hence, the crossing symmetry

does not represent a constraint for Γph and Γph, respectively, but rather yields the following

relation between these two channels:

Γνν
′ω

ph,σσ′ = −Γ
ν(ν+ω)(ν′−ν)
ph,σσ′

. (2.165)

At the same time, the particle-particle channel Γpp is not connected to any other channel and,

hence, fulfills a crossing relation on its own which is completely equivalent to the crossing

relation of the full vertex function F in particle-particle notation (see Tab. A.2 in Appendix

24Therefore, a list of all symmetries for Γr can be simply obtained by replacing F with Γr in Tabs. 2.2
and A.2, respectively, except for the crossing symmetry
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Symmetry Relation in ph-notation Reference

Crossing
symmetry F νν′ω

σσ′
= −F ν(ν+ω)(ν′−ν)

σσ′
Sec. 2.2.1.2, Eq. 2.37

Complex
conjugation (F νν′ω

σσ′ )∗ = F
(−ν′)(−ν)(−ω)
σ′σ

SU(2)
= F

(−ν′)(−ν)(−ω)
σσ′

Sec. 2.2.1.3, Eq. 2.39

SU(2)
symmetry

F νν′ω
σσ′ = F νν′ω

(−σ)(−σ′) = F νν′ω
σ′σ

F νν′ω
σσ = F νν′ω

σ(−σ) + F νν′ω
σ(−σ) = F νν′ω

σ(−σ) − F
ν(ν+ω)(ν′−ν)
σ(−σ)

Sec. 2.2.2.2, Eqs. 2.87,
2.89

Time reversal
symmetry F νν′ω

σσ′ = F ν′νω
σ′σ

SU(2)
= F ν′νω

σσ′
Sec. 2.2.2.3, Eq. 2.95

Particle-hole
symmetry(
µ = U

2
only

)
(
F νν′ω
σσ′

)∗
= F νν′ω

σσ′
Sec. 2.2.2.5, Eqs.

2.108-2.110

SU(2)P
symmetry(
µ = U

2
only

) F νν′ω
σσ = F

ν(−ν′−ω)(ν′−ν)
σ(−σ) − F

ν(−ν′−ω)ω
σ(−σ) Sec. 2.2.2.6, Eq. 2.136

Table 2.2: Summary of the symmetry relations for for the vertex function F in ph-notation.

A):

Γνν
′ω

pp,σσ′ = −Γν(ω−ν
′)ω

pp,σσ . (2.166)

Note that we adopt here the “natural” notation for the irreducible vertices, i.e, the particle-

hole notation for Γph and Γph and the particle-particle notation for Γpp.

Finally, when considering the fully irreducible vertex Λ, we observe that, as F , by definition it

cannot be divided into different channels. Consequently, it fulfills exactly the same symmetry

relations as given in Tabs. 2.2 and A.2 for F , i.e., replacing F with Λ in these tables yields

the symmetry relations for the fully irreducible vertex.
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Spin diagonalization

In the SU(2)-symmetric case it is sufficient to consider three spin combinations for the gen-

eralized susceptibilities and the vertex functions, i.e., ↑↑, ↑↓, and ↑↓ [see Eqs. (2.73) and

(2.74)]. As we have discussed before, at the level of the full vertex F or the fully irreducible

vertex Λ, the ↑↓ vertex can be expressed through the ↑↓ vertex by means of the crossing sym-

metry. However, since at the level of the irreducible vertices Γr the corresponding crossing

relation connects two different channels [ph and ph, see Eq. (2.165)], it is convenient to treat

for the moment Γr,↑↓ as independent quantity. This way, we have three spin combinations

for each of the three channels, which would lead to nine different Γ’s. However, considering

the crossing- and the SU(2)-symmetry, it turns out that only three of them are independent,

i.e., one for each channel. In practice, we will follow the usual choice [44–46] of considering

four irreducible vertex functions, i.e., two for the ph- and two for the pp-case, respectively,

which allows for a more “symmetric” formalism:

Γνν
′ω

d = Γνν
′ω

ph,↑↑ + Γνν
′ω

ph,↑↓ (2.167a)

Γνν
′ω

m = Γνν
′ω

ph,↑↑ − Γνν
′ω

ph,↑↓ (2.167b)

Γνν
′ω

s = Γνν
′ω

pp,↑↓ − Γνν
′ω

pp,↑↓ (2.167c)

Γνν
′ω

t = Γνν
′ω

pp,↑↓ + Γνν
′ω

pp,↑↓. (2.167d)

Let us stress again that, in principle, in the pp-case it would be sufficient to consider only

Γpp,↑↓ rather than Γs and Γt. In fact, taking into account the crossing relation (2.166) one

gets

Γνν
′ω

s = Γνν
′ω

pp,↑↓ + Γ
ν(ω−ν′)ω
pp,↑↓ , Γνν

′ω
t = Γνν

′ω
pp,↑↓ − Γ

ν(ω−ν′)ω
pp,↑↓ , (2.168)

which means that Γs and Γt are just the symmetric and the antisymmetric part of the vertex

function Γpp,↑↓ with respect to the frequency argument ν ′. It is also useful to rewrite Γs and

Γt by means of the SU(2) symmetry relations given in Tab. A.2:

Γνν
′ω

s = Γνν
′ω

pp,↑↓ + Γ
ν(ω−ν′)ω
pp,↑↓ = 2Γνν

′ω
pp,↑↓ − Γνν

′ω
pp,↑↑ (2.169a)

Γνν
′ω

t = Γνν
′ω

pp,↑↓ − Γ
ν(ω−ν′)ω
pp,↑↓ = Γνν

′ω
pp,↑↑. (2.169b)

For convenience, we will use the same definitions at the level of F and Λ as well. However,

exploiting all symmetry relations of Tab. 2.2 shows that only F↑↓ (Λ↑↓) is an independent

function while all the others can be represented in terms of the latter.
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Within this four-channel formalism we can now easily derive the Bethe-Salpeter equations for

the four vertex functions defined in Eqs. (2.167), explicitly including their spin and frequency

dependence. It turns out that the Bethe-Salpeter equations couple the ↑↑ and the ↑↓ vertex

functions. However, resorting to the definitions in Eqs. (2.167) leads to a decoupling, i.e.,

one obtains one independent Bethe-Salpeter equation for each of the four vertex functions

Γd, Γm, Γs and Γt. For the –rather lengthy– calculations of the Γr and the Λr, r = d,m, s, t,

we refer to Appendices B and C.

2.2.5 Mapping onto the attractive model

If the particle-hole transformation Ŵ , discussed in Sec. 2.2.2.5 [Eq. (2.99)], is done for

one spin species only it is called partial particle hole transformation Ŵp. It was already

introduced in Sec. 2.2.2.6 where the pseudospin symmetry of the particle-hole symmetric

AIM was discussed. While in this part of the thesis Ŵp just served as a kind of auxiliary

quantity, used to establish the connection between the SU(2) spin and the SU(2)P pseudospin

symmetry of the particle-hole symmetric AIM, this section is devoted to the analysis of Ŵp

itself. Though the basic definitions and results for the symmetry operation Ŵp have already

been given in Sec. 2.2.2.6, we will recall some of them in following for convenience.

A partial particle-hole transformation provides a mapping of the half-filled repulsive Hubbard

model (U > 0) onto the attractive one (−U < 0) as it is discussed exhaustively in the

literature [54, 58–67] for the Hubbard Hamiltonian. In this section we will consider the

corresponding transformation for the AIM, similar as it was done in the case of the (full)

particle-hole transformation in Sec. 2.2.2.5.

Let us recall the partial particle-hole transformation for the ↓-electrons, defined in Eq.

(2.118):

Ŵp = (â†N↓ − âN↓) . . . (â
†
2↓ − â2↓)(ĉ

†
↓ + ĉ↓).

The action of this transformation on the creation and annihilation operators is given by

Ŵ†
p(ĉ

†
↓, ĉ↓)Ŵp = (−1)(N−1)(ĉ↓, ĉ

†
↓)

Ŵ†
p(ĉ

†
↑, ĉ↑)Ŵp = (−1)N(ĉ†↑, ĉ↑)

(2.170a)

Ŵ†
p(â

†
ℓ↓, âℓ↓)Ŵp = (−1)N(âℓ↓, â

†
ℓ↓)

Ŵ†
p(â

†
ℓ↑, âℓ↑)Ŵp = (−1)N(â†ℓ↑, âℓ↑).

(2.170b)

Indeed one can see, that under Ŵp the interchange of creation and annihilation operators
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takes place only for σ =↓ while the ↑ operators are not modified by the transformation [except

for a phase factor (−1)N]. Hence, the name “partial” particle hole transformation for the

unitary operator Ŵp is well justified.

Using Eqs. (2.170) it is straightforward to derive the behavior of the AIM Hamiltonian under

the transformation Ŵp:

Ŵ†
pĤŴp =

∑

ℓ

[
εℓâ

†
ℓ↑âℓ↑ − εℓâ

†
ℓ↓âℓ↓

]
+
∑

ℓσ

Vℓ(ĉ
†
σâℓσ + â†ℓσ ĉσ)−

− Un̂↑n̂↓ − [(µ− U)n̂↑ − µn̂↓) +
N∑

ℓ=2

εℓ − µ.

(2.171)

Next, we proceed by imposing the same constraints on the parameters of the AIM as we

did for the particle-hole transformation in Sec. 2.2.2.5 on page 47: (i) We assume that the

bath levels are distributed symmetrically around 0, i.e., εℓ=−εℓ+N
2
for ℓ=2 . . . N

2
; (ii) The

hybridization between the bath and the impurity should be the same for the positive and

the corresponding negative bath energy, which means that Vℓ=Vℓ+N
2
for ℓ=2 . . . N

2
. (iii) The

chemical potential µ is chosen as µ = U
2
. According to this restrictions on εℓ, Vℓ and µ, it is

clear that the positive and the negative energy sector of the bath are completely equivalent

which suggests to perform the index transformation ℓ ↔ (ℓ + N
2
) in Eq. (2.171), but now

for the ↓ spins only. Thus the minus sign in front of εℓâ
†
ℓ↓âℓ↓ changes back into the plus sign

as in the original Hamiltonian. Therefore, considering that µ = U
2
, one “retrieves” almost

the original AIM Hamiltonian, whit the only, crucial, difference, that the sign of U in the

interacting part of the Hamiltonian has changed. Hence, when considering the particle-hole

symmetric constraints on εℓ, Vℓ and µ, one can express the transformed Hamiltonian as in

Eq. (2.119):

Ĥ′ = Ŵ†
pĤ(U)Ŵp = Ĥ(−U),

where Ĥ(U) and Ĥ(−U) denote the Hamiltonians exhibiting a positive and the corresponding

negative value of U , respectively. Hence, the partial particle hole transformation Ŵp does

not represent a symmetry of the AIM but, indeed, maps its repulsive version (U > 0, µ = U
2
)

onto the attractive one (−U, µ = −U
2
) and vice versa.

The transformation Ŵp allows us to establish some useful and interesting relations between

the Green’s functions for the repulsive and the attractive AIM. For this purpose, it turns out

convenient to extend the notation of the Green’s functions by adding a superscript U or (−U)
that indicates whether the calculations have been done for the repulsive or the corresponding
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attractive system. As usual, we start from the definition of the transformed Green’s function

G′
n,σ1...σ2n

(τ1, . . . , τ2n) =
〈
T
[
ĉ′†σ1(τ1)ĉ

′
σ2
(τ2) . . . ĉ

′†
σ2n−1

(τ2n−1)ĉ
′
σ2n

(τ2n)
]〉
, (2.172)

where

ĉ′†σ = Ŵ†
p ĉ

†
σŴp ĉ′σ = Ŵ†

p ĉσŴp. (2.173)

Note that in this case the transformed Green’s function G′
n does not coincide with the original

one Gn since Ŵp does not constitute a symmetry of the system. Instead, we can use the

general identity, Eq. (2.48), derived at the beginning of Sec. 2.2.2:

G′
n = Gn(ĉ

′†, ĉ′, Ĥ) = Gn(ĉ
†, ĉ, Ĥ′), (2.174)

in order to obtain relations between the Green’s functions for the attractive and the repulsive

AIM [Ĥ=̂Ĥ(U) and Ĥ′=̂Ĥ(−U)].
Let us first stick to the case where all spins are pointing in the same direction, i.e., σ1 =

σ2 = . . . = σ2n. Due to the SU(2) symmetry of the system we can restrict ourselves to

↑-spins, w.l.o.g. Since the ↑-spin operators ĉ
(†)
↑ are unaffected by the partial particle-hole

transformation, the transformed Green’s functions G′
n is equal to the original one (and not,

as for a symmetry, to the one containing the transformed Hamiltonian!). Hence, according

to Eq. (2.174) the Green’s functions with all spins pointing in the same direction exactly

coincide for the repulsive and the attractive Hubbard model:

G′
n,σ...σ(τ1, . . . , τ2n) = GU

n,σ...σ(τ1, . . . , τ2n) = G(−U)
n,σ...σ(τ1, . . . , τ2n), (2.175)

which obviously also holds in frequency space.

For the following analysis of other spin combinations, we restrict ourselves to the one- and the

two-particle Green’s functions since the effects of the transformation Ŵp depend strongly on

their spin structures which becomes increasingly involved for more-particle Green’s functions

(despite, of course, the case discussed above, where all spins point in the same direction).

Since in the one-particle case all spins have to point in the same direction, Eq. (2.175)

immediately tells us that the one-particle Green’s function does not change when going from

U to (−U), i.e,
GU(ν) = G(−U)(ν). (2.176)
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For the two-particle case Eq. (2.175) states that GU
2,σσ and G

(−U)
2,σσ coincide. However, an

interesting non-trivial relation can be obtained from the transformation of G2,↑↓. Considering

Eq. (2.172) for this case one gets

G′
2,↑↓(τ1, τ2, τ3, τ4) =

〈
T
[
ĉ′†↑ (τ1)ĉ

′
↑(τ2)ĉ

′†
↓ (τ3)ĉ

′
↓(τ4)

]〉
=
〈
T
[
ĉ†↑(τ1)ĉ↑(τ2)ĉ↓(τ3)ĉ

†
↓(τ4)

]〉
.

(2.177)

Interchanging the last two-operators, which yields an additional minus sign according to the

crossing symmetry, restores the correct order of creation and annihilation operators that

matches the definition of the Green’s functions in Eq. (2.27). This gives rise to the relation:

−GU
2,↑↓(τ1, τ2, τ4, τ3) = G

(−U)
2,↑↓ (τ1, τ2, τ3, τ4), (2.178)

and after a Fourier transform:

−GU
2,↑↓(ν1, ν2,−ν4) = G

(−U)
2,↑↓ (ν1, ν2, ν3), (2.179)

where ν4 = ν1 − ν2 + ν3 is given by the requirement of energy conservation.

For the derivation of the corresponding relation for the Hubbard model, we refer the reader to

the discussion of the (full) particle-hole transformation for the lattice system in Sec. 2.2.2.5,

page 49. Similarly as for the full particle-hole transformation ŴH, the partial particle-hole

transformation ŴH,p for the Hubbard Hamiltonian reads as:

ĉ′†Ri,↑ = Ŵ†
H,pĉ

†
Ri,↑ŴH,p = ĉ†Ri,↑, ĉ′†Ri,↓ = Ŵ†

H,pĉ
†
Ri,↓ŴH,p = eiΠRi ĉRi,↓, (2.180)

ĉ′Ri,↑ = ŴH,pĉRi,↑ŴH,p = ĉRi,↑, ĉ′Ri,↓ = Ŵ†
H,pĉRi,↓ŴH,p = eiΠRi ĉ†Ri,↓, (2.181)

where Π = (π, . . . , π)T. As in Eqs. (2.116) and (2.117) the additional factor eiΠRi gives rise

to the transformation k → Π−k of the momentum arguments of the Green’s function. Note,

however, that this transformation affects only the k vectors which correspond to ↓-creation
and annihilation operators, since the corresponding ↑-operators remain unchanged by the

transformation ŴH,p. Hence, formulating Eq. (2.179) for the Hubbard model yields:

−GU
n,k1k2(Π−k4),↑↓ = G

(−U)
n,k1k2k3,↑↓, (2.182)

where k4 = k1−k2+k3 is given by momentum conservation and the suppressed frequency ar-

guments are completely the same as in the corresponding equation for the AIM [Eq. (2.179)].

Returning to the AIM, we can use the relations connecting the two-particle Green’s function
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and the generalized susceptibilities (2.147) as well as the definition of frequencies in Eqs.

(2.149) in order to express Eq. (2.179) in terms of the χ’s:

χνν
′ω

U,↑↓ − χ
ν(ν+ω)(ν′−ν)
0 = −χν(−ν′−ω)ω(−U),pp,↑↓ + χ

ν(ν+ω)(−ν−ν′−ω)
0 . (2.183)

Applying the SU(2) symmetry relation given in Tab. 2.1 for rewriting the left-hand side of

this equation yields:

− χ
ν(ν+ω)(ν′−ν)
U,m = −χν(−ν′−ω)ω(−U),pp,↑↓ + χ

ν(ν+ω)(−ν−ν′−ω)
0 . (2.184)

Performing the frequency transformation ν ′ → ν − ω and ω → ν ′ − ν and transforming the

right-hand side to the particle-particle notation gives:

χ
νν′(−ω)
U,m = χ

ν(ω−ν′)ω
(−U),pp,↑↓ − χνν

′ω
0,pp . (2.185)

This equation can be interpreted as follows: The inversion χ
νν′(−ω)
U,m yields, via the Bethe-

Salpeter equation, the irreducible vertex Γ
νν′(−ω)
m , as discussed in Appendix. B.3. The in-

version of the quantity on the right-hand side of Eq. (2.185), instead, gives the irreducible

↑↓-vertex in the particle-particle channel, i.e., Γ
ν(ω−ν′)ω
(−U),pp,↑↓ (see Eq. B.26). Hence, we obtain

the relation:

Γ
νν′(−ω)
U,m = Γ

ν(ω−ν′)ω
(−U),pp,↑↓, (2.186)

If one performs the sum over ν and ν ′ in Eq. (2.185) in order to obtain the physical (one-

frequency) susceptibilities, one observes that the magnetic (spin) fluctuations for the repulsive

model are mapped on fluctuations of an electron-pair for the attractive case. This is consistent

with the well-known fact that for a lattice model the antiferromagnetic instability for U > 0

corresponds to the superconducting instability in the attractive situation.

The relation between the vertex function irreducible in the magnetic channel for the repulsive

model and the vertex function irreducible in the particle-particle ↑↓ channel in the attractive

case, stated in Eq. (2.186), can be understood also from a diagrammatic point of view. To

this end, we consider in Fig. 2.13a an arbitrary ↑↓-diagram (for the attractive model) which

is reducible in the particle-particle channel, i.e., it contributes to Φ
νν′ω
(−U),pp,↑↓. When applying

the partial particle-hole transformation to this diagram, the ↓ Green’s functions (plotted in

red) are reversed and, accordingly, the corresponding frequency arguments have to change

their sign, which yields the diagram depicted in Fig. 2.13b. The latter represents a diagram

for the repulsive system which is reducible in the transverse (vertical) particle-hole channel,
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A

ν ′ ↓

(ω − ν ′) ↑

B

(ω − ν) ↓

ν ↑

↓

↑

−U A

(−ν ′) ↓

(ω − ν ′) ↑

B

(−ω + ν) ↓

ν ↑

↓

↑

+U

a) b)

Figure 2.13: a) Example of a reducible diagram in the particle-particle ↑↓ channel; b)
Example of a reducible diagram in the transverse ↑↓ particle-hole channel; −U denotes
the attractive and +U the repulsive model. The figure is reproduced from Ref. [48].

i.e., it belongs to Φ
ν(ν−ω)(ω−ν−ν′)
U,ph,↑↓ . Considering, moreover, that the exchange of two fermions

leads to an additional minus-sign, one obtains the following relation between the pp- and the

(transverse) ph-reducible diagrams:

Φνν
′ω

(−U),pp,↑↓ = −Φ
ν(ν−ω)(ω−ν−ν′)
U,ph,↑↓, . (2.187)

Applying the SU(2) symmetry to this equation yields:

Φνν
′ω

(−U),pp,↑↓ = Φ
ν(ω−ν′)(−ω)
U,m,↑↓ , (2.188)

which evidently holds for the Γ’s as well, and, in fact, is equivalent to Eq. (2.186) after the

frequency transformation ν ′ → ω − ν ′.

2.2.6 The equation of motion

This section will be devoted to the so-called Schwinger-Dyson equation (or equation of mo-

tion) for the Green’s function and the electronic self-energy. We start by recalling that,

for an interacting system, the Green’s functions for different numbers of particles are not

independent but connected via exact analytical expressions, called equations of motion [38].

These relations can be readily obtained by differentiating the n-particle Green’s function,

as defined in Eq. (2.27) in its most general form, with respect to one of its imaginary time

arguments. Without loss of generality we consider always the derivative with respect to the
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first imaginary time τ1 connected with the first creation operator in Eq. (2.27):

d

dτ1
Gn,i1...i2n(τ1, . . . , τ2n). (2.189)

According to the definition of the time-ordered product of operators in Eq. (2.29) the n-

particle Green’s function exhibits in general products of the form ĉ†i1(τ1)θ(τ1 − τj)θ(τk − τ1)

unless τ1 is the smallest or largest imaginary time argument25 in Eq. (2.27). Keeping this in

mind, one has to apply the product rule for differentiation in Eq. (2.189). Since d
dτ1
θ(τ1−τj) =

δ(τ1 − τj) and d
dτ1
θ(τk − τ1) = −δ(τk − τ1), it is obvious that the contributions where the

differentiation acts on the step-function leads again to a n-particle Green’s functions albeit

with one of the 2n − 1 times τ2 . . . τ2n being equal to τ1. The other term, d
dτ
ĉ†i1(τ1), can be

expressed, instead, by means of the Heisenberg equation of motion [38] for operators:

d

dτ
ĉ†i1(τ1) = [Ĥ, ĉ†i1(τ1)] = [Ĥ, ĉ†i1 ](τ1), (2.190)

For the sake of clarity, when evaluating the time derivative of Gn, let us consider our general

lattice Hamiltonian in a tight binding representation, such as that of Eq. (2.14). For conve-

nience, we will also represent here the site-, orbital- and spin arguments of the creation and

annihilation operators in Eq. (2.14) by a single multi-index [see the discussion below Eq.

(2.29)], i.e.,:

Ĥ =
∑

ij

(−tij − µδij)ĉ
†
i ĉj +

∑

ijkl

Uijklĉ
†
i ĉ

†
j ĉkĉk. (2.191)

Considering the general rule for evaluating commutators of products of operators:

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂ = Â{B̂, Ĉ} − {Â, Ĉ}B̂, (2.192)

we obtain for Eq. (2.190):

d

dτ
ĉ†i1(τ1) =

∑

j

(−tji1 − δji1µ)ĉ
†
j(τ1) +

∑

ijk

(Uijki1 − Uiji1k)ĉ
†
i(τ1)ĉ

†
j(τ1)ĉk(τ1). (2.193)

For the non-interacting system (Uijkl ≡ 0) the operator d
dτ
ĉ†i1(τ1) is replaced by single creation

operator ĉ†j(τ1) in the trace in Eq. (2.27), which yields again a n-particle Green’s function.

Hence, in this case the time derivative with respect to its first imaginary time argument yields

a closed a differential equation for the n-particle Green’s function. This observation will be

25In that case one has ĉ†i1(τ1)θ(τk − τ1) and ĉ
†
i1
(τ1)θ(τ1 − τj), respectively.



2.2. GREEN’S FUNCTIONS AND SYMMETRIES 81

ν ↑(ν + ω) ↑

F νν
′ω↑↓(ν ′ + ω)↓

ν ′ ↓

ν ↑
+

ν ↑ ν ↑

ν ′ ↓
=ν ↑ ν ↑

Σ(ν)

Figure 2.14: Schwinger-Dyson equation of motion. The solid lines represent full interacting
Green’s functions. The figure is reproduced from Ref. [48].

used in the next section (Sec. 2.2.7) for deriving the non-interacting one-particle Green’s

function of the AIM.

On the contrary, for the interacting system, a further contribution appears in Eq. (2.193),

where d
dτ
ĉ†i1(τ1) is replaced by a product of one creation and an additional pair of creation and

annihilation operators, giving rise to a (n+1)-particle Green’s function on the right-hand side

of the equation for d
dτ1
Gn,i1...i2n(τ1, . . . , τ2n). Hence, in the interacting case the equation of

motion couples the n-particle Green’s function to the (n+1)-particle Green’s function yielding

an infinite chain of equations which is analogous to the so-called BBGKY (Bogoliubov-Born-

Green-Kirkwood-Yvon) chain [68] in classical statistical mechanics. The latter consists of

interlinked equations of motion for the classical n-particle distribution functions.

In this thesis, however, we are mainly concerned with the equation of motion for the one-

particle Green’s function of the Hubbard model and the AIM. Following the discussion in

this section, the corresponding calculations in this specific cases are straightforward and lead,

after a Fourier transform and the application of the Dyson equation [Eq. (2.156)], to:

Σ(ν) =
Un

2
− U

β2

∑

ν′ω

F νν′ω
↑↓ G(ν ′)G(ν ′ + ω)G(ν + ω), (2.194)

which connects the self-energy of the AIM with the vertex function F νν′ω
↑↓ as defined in Eq.

(2.159) and Fig. 2.8. The corresponding equation for the Hubbard model can be readily

obtained by replacing the Matsubara frequencies ν and ω by four-vectors (ν,k) and (ω,q),

respectively, in Eq. (2.194). The diagrammatic representation of Eq. (2.194) is depicted in

Fig. 2.14.
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2.2.7 Analytical calculation of the Green’s functions in specific

cases

In this section we will give some analytic results for the one- and the two-particle Green’s

functions in some limiting cases. Specifically, we will discuss non-interacting particles (U = 0)

and the opposite situation where t → 0 (or, equivalently, U
t
→ ∞), the so-called “atomic

limit”, for the Hubbard [see Eq. (2.22)] model and the AIM [see Eq. (2.23)] (in the latter

the atomic limit corresponds to Vℓ → 0). From a physical point of view, these extreme

assumptions can rarely be used for a quantitative analysis of real systems. However, they

allow for a better mathematical and physical understanding of the general structure of one-

and two-particle Green’s functions, which has been addressed only sporadically hitherto for

the two-particle case. Furthermore, they provide quite valuable benchmarks for numerical

calculations of more general cases.

2.2.7.1 Non-interacting particle (U = 0)

In this case, according to Wick’s theorem [38,69], the two- and more-particle Green’s functions

can be constructed just by summing up all possible products of one-particle Green’s functions.

In fact, in a completely uncorrelated situation all relevant information is contained at the

one-particle level. Hence, in the following we refrain from discussing explicitly two- and

more-particle Green’s functions if U = 0.

Hubbard model

In the following we recall the results for the case of non-interacting particles in the Hubbard

model on an simple cubic lattice (with the lattice constant a = 1). The corresponding

Hubbard Hamiltonian reads:

Ĥ(U=0) = −t
∑

〈ij〉,σ
ĉ†iσ ĉjσ − µ

∑

i

n̂i =
1

(2π)3

∫
d3k

∑

σ

(εk − µ)ĉ†kσĉkσ. (2.195)

In the case of nearest neighbor hopping only εk can be easily calculated by inverting Eq.

(2.15) which yields

εk = −t
∑

〈0j〉
eiRjk = −2t

d∑

i=1

cos(ki), (2.196)

where the sum over j runs over all nearest neighbors of an (arbitrary) lattice site R0. Here,

we have generalized our equation to the case of d dimensions rather than sticking to 3 or 2,
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in order to keep the discussion as general as possible.

The calculation of the one-particle Green’s function for this Hamiltonian, as defined in Eq.

(2.6), can be more easily performed in k space [33, 38, 68] where our Hamiltonian (2.195)

and Green’s function are diagonal due to space translational invariance [see Sec. 2.2.2.1,

Eqs. (2.61) and (2.62)]. Furthermore, we can omit any spin indices since the Hamiltonian

is completely spin-independent and the one-particle Green’s function is just the unit-matrix

in spin space [Sec. 2.2.2.2, Eqs. 2.72 and 2.86)]. According to Eq. (2.54) we can set τ2 ≡ 0

and restrict τ1 ≡ τ to the interval [0, β] in the definition of the Green’s functions, since it

depends only on the difference of τ1 − τ2. Hence, we have:

G1,σ1σ2(τ1,k1, τ2,k2) ≡ G(τ,k) = − 1

Z
Tr
(
e−βĤeτĤĉkσe

−τĤĉ†kσ

)
, τ ∈ [0, β]. (2.197)

For a non-interacting system the time dependent annihilation operator can be calculated

explicitly, which yields:

eτĤĉkσe
−τĤ = ĉkσ(τ) = e−ξkτ ĉkσ, (2.198)

where ξk = εk − µ. The Green’s function, hence, becomes:

G(τ,k) = −e−ξkτ
Tr
(
e−βĤn̂kσ

)

Tr
(
e−βĤ

) = −e−ξkτ e−βξk

1 + e−βξk
= −e−ξkτf(ξk), (2.199)

where f(x) = 1
eβx+1

is the Fermi function. By means of the transformation τ → it (from

imaginary to real times) one observes that the time-dependence of the non-interacting Green’s

function is given by just a pure oscillatory factor e−itξk . This is just the time propagation of

a plane wave and, in fact, the non-interacting Green’s function describes the free propagation

of an added/removed extra electron through the system.

Performing the Fourier transform of (2.199) to fermionic Matsubara frequencies [see Eq.

2.58)] gives:

G(ν,k) =

∫ β

0

dτ eiντG(τ,k) =
1

iν + µ− εk
. (2.200)

Turning to real frequencies by means of the substitution ν → ω + iδ (δ → 0+) shows, that

the Green’s function becomes singular at exactly the energies ω = εk − µ. In fact, on the

real axis the one-particle retarded Green’s function can be written as:

G(ω,k) =
1

ω + µ− εk + iδ
= P

1

ω + µ− εk
− iπδ(ω + µ− εk), (2.201)
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where P denotes the principal value when integrating over ω. Hence, in the non-interacting

case, the poles of the one-particle Green’s function determine the excitation spectrum of the

system. It can be shown that this holds to some extent also for interacting systems in the

cases where single particle excitations are still well enough defined (Fermi liquid) [38]. In any

case, from Eq. (2.201) for the retarded Green’s function one can define the so-called spectral

function as follows:

A(ω,k) = −1

π
ImG(ω,k)

U=0
= δ(ω + µ− εk). (2.202)

While for the non-interacting system A(ω,k) consists of a collection of divergent peaks at

the one-particle energies ω = εk − µ [see Eq. (2.202)], it becomes a smoother function in the

case of an interacting Hamiltonian, as a consequence of the scattering processes between the

electrons. Finally, we recall that summing A(ω,k) over k defines the local spectral function:

A(ω) =
∑

k

A(ω,k), (2.203)

which, if the one-particle eigenstates are well defined, counts their number in the energy

interval (ω, ω + dω), and, hence, corresponds to the so-called density of states for U → 0.

AIM

The non-interacting Hamiltonian of the AIM reads (see Eq. (2.23) and Ref. [42]):

Ĥ(U=0) =
∑

ℓσ

εℓâ
†
ℓσâℓσ +

∑

ℓσ

Vℓ(ĉ
†
σâℓσ + â†ℓσ ĉσ)− µ

∑

σ

ĉ†σĉσ. (2.204)

Since the AIM exhibits bath (â†ℓσ, âℓσ) and impurity (ĉ†σ, ĉσ) degrees of freedom which are

coupled via the hybridization Vℓ, one has to consider three different types of Green’s functions:

Gamaℓ(τ) = −〈âmσ(τ)â†ℓσ〉θ(τ) + 〈â†ℓσâmσ(τ)〉θ(−τ) (2.205a)

Gaℓc(τ) = G∗
aℓc

(τ) = Gcaℓ(τ) = −〈ĉσ(τ)â†ℓσ〉θ(τ) + 〈â†ℓσ ĉσ(τ)〉θ(−τ), (2.205b)

Gcc(τ) = −〈ĉσ(τ)ĉ†σ〉θ(τ) + 〈ĉ†σĉσ(τ)〉θ(−τ), (2.205c)

where in Eq. (2.205b) the time reversal symmetry, Eq. (2.93), was used. The easiest way to

calculate these Green’s functions is to differentiate Eqs. (2.205) with respect to the imaginary

time variable τ . Taking into account the equations of motion for âℓσ(τ) = eτĤâℓσe−τĤ and
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ĉσ(τ) = eτĤĉσe−τĤ, one gets:

d

dτ
âmσ(τ) = eτĤ[Ĥ, âmσ]e−τĤ = −εmâmσ(τ)− Vmĉσ(τ) (2.206a)

d

dτ
ĉσ(τ) = eτĤ[Ĥ, ĉσ]e−τĤ = −

∑

m

Vmâmσ(τ) + µĉσ(τ). (2.206b)

Considering furthermore d
dτ
θ(±τ) = ±δ(τ) leads to the following set of coupled equations for

the Green’s functions:

d

dτ
Gamaℓ(τ) = −εmGamaℓ(τ)− VmGcaℓ(τ)− δ(τ)δℓm, (2.207a)

d

dτ
Gcaℓ(τ) = −

∑

m

VmGamaℓ(τ) + µGcaℓ(τ), (2.207b)

d

dτ
Gcc(τ) = −

∑

ℓ

VℓGaℓc(τ)︸ ︷︷ ︸
=Gcaℓ

(τ)

+ µGcc(τ)− δ(τ). (2.207c)

This set of equations can be readily solved in frequency space by applying
∫ β
0
dτ eiντ to

both sides of the equations and using partial integration on the left-hand side. The resulting

algebraic equations can be easily solved yielding the following expression for the impurity

Green’s function Gcc(ν):

Gcc(ν) =
1

iν + µ−∆(ν)
, (2.208)

where the so-called hybridization function ∆(ν) is defined as:

∆(ν) =
∑

ℓ

V 2
ℓ

iν − εℓ
. (2.209)

Turning to real frequencies ν → ω ± iδ the hybridization function becomes:

∆(ω) = P
∑

ℓ

V 2
ℓ

ω − εℓ
∓ iπ

∑

ℓ

δ(ω − εℓ)

︸ ︷︷ ︸
ρb(ω)

, (2.210)

where ρb(ω) is the density of states of the bath electrons. Calculating the spectral function

according to Eq. (2.202), where we restrict ourselves for the sake of simplicity to the half-filled

case µ = 0, one obtains:

A(ω) =
1

π

Im∆(ω)

ω2 + [Im∆(ω)]2
. (2.211)
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Hence, the sharp delta peak at ω = 0, corresponding to the density of states of the impurity

gets broadened by the imaginary part of the hybridization [Im∆(ω)] with the bath [42], as

it was already discussed in Sec. (2.1.2).

Let us finally note that the impurity Green’s function Gcc represents the most significant

Green’s function in the contest of the AIM, since the interaction will be later imposed on the

impurity site only. More formally, resorting to the path integral formulation of the Green’s

functions, one can show that the bath degrees of freedom can be always integrated out, which

is an alternative way to derive the hybridization function ∆(ν).

2.2.7.2 Atomic limit [t(V ) → 0]

In the atomic limit (t = 0 for the Hubbard model and Vℓ = 0 for the AIM) the relevant energy

scales are evidently the Hubbard interaction U and the temperature T = 1
β
. We recall also

here that the atomic limit of the Hubbard model and the AIM do coincide, because the local

interacting problem is completely decoupled from the rest of the system (whatever this is). In

order to illustrate the corresponding physics in a concise way, we will restrict the discussion

to the case of half-filling, i.e., µ = U
2
, where the effect of electronic correlations is maximal,

though the generalization to average impurity occupations different from 1 (corresponding

to µ 6= U
2
) is rather straightforward [47].

The Hamiltonian of the “atomic” problem then reads:

Ĥ(t→0) = U

[
n̂↑n̂↓ −

1

2
(n̂↑ + n̂↓)

]
, (2.212)

This Hamiltonian, and as a consequence also the Green’s functions, is now diagonal (i.e.,

purely local) in real space, which is why we stick to the real-space representation in this case.

The corresponding one-particle Green’s function, which depends only on τ , reads:

G(τ) = − 1

Z
Tr
(
e−βĤeτĤĉσe

−τĤĉ†σ

)
, τ ∈ [0, β]. (2.213)

Since the system is interacting, we cannot calculate the time-evolution for the operator ĉσ(τ)

explicitly as we did in the previous section for the non-interacting system. However, when

restricting oneself to a single site, the Hilbert space is only four-dimensional and spanned

by the basis {|0〉, |↑〉, |↓〉, |↑↓〉}. Hence, in this (rather special atomic limit) situation we

can easily evaluate the trace in Eq. (2.213) via the Lehmann representation [38, 47, 70] by

just summing over the four basis-states and using the fact that the Hamiltonian (2.212) is
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diagonal in this basis, i.e.,

Ĥ{|0〉, |↑〉, |↓〉, |↑↓〉} = {0|0〉,−U
2
|↑〉,−U

2
|↓〉, 0|↑↓〉}. (2.214)

A straightforward calculation yields:

G(τ) = −e
(τ−β)U

2 + e−τ
U
2

1 + e−β
U
2

. (2.215)

After a Fourier transform this equation reads as:

G(ν) =
1

iν − U2

4iν

=
1

2

[
1

iν + U
2

+
1

iν − U
2

]
. (2.216)

The corresponding spectral function A(ω) = 1
π
ImG(ω), where ω is a real frequency, is given

by

A(ω) =
1

2

[
δ

(
ω +

U

2

)
+ δ

(
ω − U

2

)]
. (2.217)

The particularly simple form of A(ω) in the atomic limit represent an ideal starting point to

illustrate in a specific case the different roles played by electronic correlations at the one- and

the two-particle level. In fact, the spectral function A(ω) [Eq. (2.201)] of the atomic limit

corresponds formally to one-particle excitation energies ε = ±U
2
, which are totally indepen-

dent from T . On the other hand, one would obtain exactly the same local spectral function

(or local one-particle Green’s function) as in Eq. (2.217) for a non-interacting (spinless)

two-site Hubbard model at half-filling with periodic boundary conditions, by choosing the

hopping parameter as t = U
4
. As for the Fourier transform one has only two k points in this

(one-dimensional) system, i.e., k1 = 0 and k2 = π. According to Eq. (2.196) this corresponds

to the “dispersion” ε1 := εk1 = −U
2
and ε2 := εk2 = U

2
. Hence, considering Eqs. (2.202)

and (2.203), the local spectral function of this non-interacting system is indeed equivalent

to the spectral function for the interacting atomic limit in Eq. (2.217). At the same time

the two physical situations are completely different, as as it can be seen, by comparing the

eigenenergies of the four possible eigenstates. For the atomic limit they are reported in Eq.

(2.214), while for our two-site toy- model they are given by:

Ĥ2−site{|0〉, |k1〉, |k2〉, |k1,k2〉} = {0|0〉,−U
2
|k1〉,+

U

2
|k2〉, 0|k1,k2〉}. (2.218)

Interestingly, the states with two (and, of course, zero) electrons exhibit the same energy,
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i.e., 0, for both systems. However, the physical origin of this value is quite different in the

two cases: In the non-interacting model the energy of the state with two particles stems

from adding up the two one-particle energies −U
2
and +U

2
. On the contrary, the energy of

the doubly occupied state in the atomic limit does not originate from summing the energies

of two independent particles but from the interaction between them26. In other words, the

single-particle energies in the atomic limit do depend on whether the impurity site is empty

or singly occupied. Such information is intrinsically beyond any one-particle description and

represents a clear manifestation of correlations. This can be, more formally, understood by

resorting to the diagrammatic representation of the one-particle Green’s function and the

Dyson equation [see Eq. (2.156)]. Considering that G0(ν) =
1
iν

in the non-interacting atomic

case (t = 0, U = 0), the additional contribution in the denominator of Eq. (2.216), U
2

4iν
, should

be connected to the self-energy of the system. Indeed, taking into account the contribution

µ = U
2
from the chemical potential one obtains for the self-energy of a single half filled atom:

Σ(ν) =
U

2
+
U2

4iν
. (2.219)

In contrast to the self-energy Σ(U=0)(ν) = 0 for the non-interacting case, the self-energy in

Eq. (2.219) exhibits a rather strong frequency dependence: It diverges for ν → 0, which well

exemplifies the inapplicability of a an independent particle description for the system.

The fundamental difference between the interacting atomic limit and the non-interacting

two-site Hubbard model discussed above becomes, however, immediately evident in the two-

and more-particle Green’s functions. In fact, while in the non-interacting case, they can be

obtained by summing up products of one-particle Green’s functions, this is not possible for

the interacting atomic limit. On the contrary, it is a typical hallmark of correlations that

higher-order correlation functions (e.g., here two- and more-particle Green’s functions) do

not factorize but rather contain a (connected) vertex part F (even diverging for T → 0),

such as defined in Eq. (2.159) and Fig. 2.8. In fact, the non-vanishing of the vertex part

in a two-particle Green’s function can be regarded as the “defining” property of electronic

correlations. In this respect, the atomic limit provides a simple, analytically solvable, model

system, from which one can gain a basic understanding of electronic correlations, and which

can serve as a benchmark for numerical methods for treating more general situations.

For the actual calculation of the generalized susceptibility and the vertex function in the

26Both single particle states |↑〉 and |↓〉 exhibit the one-particle energy −U
2 . Hence, adding them up in the

doubly occupied state would lead to an energy −U , but the term Un̂↑n̂↓ in the Hamiltonian puts this energy
level back to 0 since the Coulomb energy +U has to be paid if both electrons are at the same site.
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atomic limit [47, 48, 70], we start from the definition of the two-particle Green’s function.

Note that we present only the derivation for the two-particle Green’s function in the ↑↓ sector

(G2,↑↓), since G2,↑↑ can be calculated analogously or can be even deduced from the latter by

means of a SU(2) symmetry relation as given in Tab. 2.1. Let us recall the definition of G2

as a function of imaginary times τi:

G2,↑↓(τ1, τ2, τ3, 0) =
1

Z
Tr
(
T
[
ĉ†↑(τ1)ĉ↑(τ2)ĉ

†
↓(τ3)ĉ↓(0)

])
, (2.220)

where Z = 2(1 + e
βU
2 ) for the atomic limit. In the next step we use the definition ĉ

(†)
σ (τ) =

eβĤĉ(†)σ e−βĤ for the creation and annihilation operators and the action of the Hamiltonian

on the four states of the system, which is given above in Eq. (2.214), to evaluate the trace

in Eq. (2.220). The time ordering operator produces six distinct terms corresponding to the

six possible arrangements of τ1, τ2 and τ3. By evaluating the trace in Eq. (2.220), one can

see that –in the atomic limit– for each of the six time orders only one of the four basis states

yields a non-vanishing contribution27. The explicit calculation of the trace for all six time

sequences is then straightforward and yields:

G2,↑↓(τ1, τ2, τ3, 0) =
1

Z

[
e

U
2
(+τ1−τ2+τ3)θ(τ1 − τ2)θ(τ2 − τ3)

+e
U
2
(+τ1+τ2−τ3)θ(τ1 − τ3)θ(τ3 − τ2)

+e
U
2
(−τ1+τ2+τ3)θ(τ3 − τ1)θ(τ1 − τ2)

−eU
2
(β+τ1−τ2−τ3)θ(τ2 − τ1)θ(τ1 − τ3)

−eU
2
(β−τ1−τ2+τ3)θ(τ2 − τ3)θ(τ3 − τ1)

−eU
2
(β−τ1+τ2−τ3)θ(τ3 − τ2)θ(τ2 − τ1)

]
.

(2.221)

where 0 ≤ τ1, τ2, τ3 ≤ β and Z = 2(1 + e
βU
2 ). Now one can perform the Fourier transform of

this function:

G2,↑↓(ν, ν + ω, ν ′ + ω) =

∫ β

0

dτ1dτ2dτ3e
−iντ1ei(ν+β)τ2e−i(ν

′+ω)τ3G2,↑↓(τ1, τ2, τ3, 0) =

= χνν
′ω

↑↓ + βG(ν)G(ν ′)δω0,

(2.222)

27Specifically, (i) since the rightmost operator ĉ↓ annihilates an electron with spin ↓ only the eigenstates
|↓〉 and |↑↓〉 yield a finite contribution; (ii) which of the two eigenstates eventually survives in the final result

depends on the order of the ↑-operators. For the sequence ĉ†↑ . . . ĉ↑ the state has to contain an ↑-electron
as well and, hence, the only state contributing from the trace is |↑↓〉. For the time orders which lead to

the sequence ĉ↑ . . . ĉ
†
↑ of the ↑-operators the state must not contain an ↑-electron, and, hence, the only state

contributing to the trace is |↓〉.
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where the one-particle Green’s function G for the atomic limit has been derived in Eq.

(2.216). The explicit evaluation of the Fourier transform in Eq. (2.222) is now, though

lengthy, straightforward. The vertex function F↑↓ can be obtained from χ↑↓ by dividing the

latter through the product of four Green’s functions, i.e., G(ν)G(ν + ω)G(ν ′)G(ν ′ + ω), and

multiplying with (−1) [see Eq. (2.159)]. The final result for F↑↓ reads as28:

F νν′ω
↑↓ = U − U3

8

ν2 + (ν + ω)2 + (ν ′ + ω)2 + (ν ′)2

ν(ν + ω)(ν ′ + ω)ν ′
− 3U5

16

1

ν(ν + ω)(ν ′ + ω)ν ′
+

− β
U2

4

1

1 + eβU/2
2δν(−ν′−ω) + δω0
(ν + ω)2(ν ′ + ω)2

(
(ν + ω)2 +

U2

4

)(
(ν ′ + ω)2 +

U2

4

)
+

+ β
U2

4

1

1 + e−βU/2
2δνν′ + δω0
ν2(ν ′ + ω)2

(
ν2 +

U2

4

)(
(ν ′ + ω)2 +

U2

4

)
.

(2.223)

The meaning of the several contributions to F↑↓ can be easier understood by considering the

limit T → 0, i.e., β → ∞. In this case, the terms in the first line do not change at all, since it

is independent29 of β. The expression in the third line of Eq. (2.223), instead, even diverges

when β → ∞ since β(1+e−
βU
2 )−1 β→∞−−−→ β → ∞. More specifically, this divergence occurs for

the (ν, ν ′)-independent background ω = 0 (δω0) and for the main diagonal ν = ν ′ (δνν′), and

follows a β = 1
T
Curie-Weiss law. As we will discuss in more detail in Sec. 3.2.1, such a 1

T

divergent behavior is a hallmark of the formation of long-living local magnetic moment in the

system, which corresponds to the onset of a Mott-insulating phase for sufficiently large values

of the Hubbard interaction U . In this respect we can gain further insight by considering

the explicit evaluation of the trace for calculating the two-particle Green’s function. As

discussed in the paragraph after Eq. (2.220) only the states |↓〉 and |↑↓〉 contribute to the

trace. According to Eq. (2.214) the state |↓〉 is one of the ground states of the system while

|↑↓〉 represent an excited state. In the limit β → ∞ only the ground state should contribute

to the calculation of the vertex function F↑↓, consistent with the fact that in this limit the

system exhibits a magnetic moment.

Let us turn to the second line of Eq. (2.223). One can clearly see that it vanishes for β → ∞
due to the exponential factor (1 + e

βU
2 )−1. As a consequence, such a contribution should

originate exclusively from the excited state |↑↓〉 in the trace. This is also consistent with the

term δν(−ν′−ω), describing the local scattering of the two particles with energies ν + ω and

28The result of Eq. (2.223) has been also derived in Ref. [70], albeit with a small typo, and for a more
general case, i.e., for an arbitrary filling and with a magnetic field, in Ref. [47].

29In fact, β enters the terms in the first line of Eq. (2.223) only implicitly via the definition of the Matsubara
frequencies ν, ν′ and ω.
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ν ′ in the excited state |↑↓〉. It is obvious that particle-particle scattering events are strongly

suppressed by the repulsive interaction U at low temperatures, and, hence, the corresponding

part of the vertex function diminishes.

The ↑↑-vertex can be calculated in principle in the same way as F↑↓. However, it is much

simpler to derive it from the SU(2) symmetry relation F νν′ω
↑↑ = F νν′ω

↑↓ −F
ν(ν+ω)(ν−ν′)
↑↓ as given

in Tab. 2.2). An easy calculation yields for F↑↑:

F νν′ω
↑↑ = β

U2

4

δνν′ − δω0
ν2(ν ′ + ω)2

(
ν2 +

U2

4

)(
(ν ′ + ω)2 +

U2

4

)
. (2.224)

This vertex function is concentrated on the planes ν = ν ′ and ω = 0 in the three-dimensional

frequency space spanned by (ν, ν ′, ω). Similarly as the term in the third line of Eq. (2.223) it

diverges as β = 1
T
→ ∞, for the very same reason as for F↑↓. Finally, we want to stress here

that, due to the particularly simple structure of F↑↑ in the atomic limit, the corresponding

irreducible particle-particle vertex Γt = Γpp,↑↑ can be calculated analytically. For this purpose

we make the Ansatz:

Γνν
′ω

pp,↑↑ = Γνν
′ω

t = γ(ν ′, ω)
[
δνν′ − δν(−ν′+ω)

]
= γ(ν, ω)

[
δνν′ − δν(−ν′+ω)

]
, (2.225)

and rewrite F νν′ω
↑↑ in the particle-particle notation:

F νν′ω
pp,↑↑ = β

U2

4

δνν′ − δν(−ν′+ω)
ν2(ω − ν)2

(
ν2 +

U2

4

)(
(ω − ν)2 +

U2

4

)
=

= −β 1

G(ν)G(ω − ν)

U2

4ν(ω − ν)

[
δνν′ − δν(−ν′+ω)

]
=

= −β 1

G(ν ′)G(ω − ν ′)

U2

4ν(ω − ν)

[
δνν′ − δν(−ν′+ω)

]
.

(2.226)

Inserting now the equations (2.225) and (2.226) for Fpp,↑↓ and Γpp,↑↓ = Γt into the corre-

sponding Bethe-Salpeter Eq. (B.14a) yields:

F νν′ω
t = Γνν

′ω
t − 1

2β
γ(ν ′, ω)(−β) U2

4ν(ω − ν)

∑

ν1

[
δν1ν′ − δν1(−ν′+ω)

]
[δν(−ν1+ω) − δνν1 ]

︸ ︷︷ ︸
−2[δνν′−δν(−ν′+ω)]

=

= Γνν
′ω

t − U2

4ν(ω − ν)
Γνν

′ω
t

(2.227)
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Hence, in the triplet channel the connection between the full vertex Ft and the irreducible

one Γt reduces to the simple algebraic relation:

Γνν
′ω

t =
1

1− U2

4ν(ω−ν)
F νν′ω
t . (2.228)

This equation illustrates very well that one has to expect divergences in the irreducible

vertices. Specifically, in the atomic limit, Γt will exhibit a divergence for particular values of

the interaction strength (U) and Matsubara frequencies fulfilling the condition:

U2

4
= ν(ω − ν), (2.229)

provided that ω > 0. In fact, we will see in the next chapter (Sec. 3.2.2) that such kind of

divergences appear in irreducible vertex functions not only in the atomic limit and even at

ω=0 (in the other channels). Their nature is fundamentally different from the infinities of

the full vertex F , which takes place exactly at the Mott transition and originating from the

formation of the local magnetic moment. In fact, it will be shown that the first divergences of

Γr can rather be interpreted as non-perturbative “precursors” of the Mott transition itself [71],

appearing well inside the metallic regime of the system.



Chapter 3

Local correlations

”
In der Mitte wirst du am sichersten gehen.“(Ovid)

In many significant situations the physics of a bulk correlated electron system is dominated

by local correlations, i.e., correlations between two electrons at the same lattice site. From

a theoretical viewpoint, neglecting nonlocal correlations and considering only the local ones

corresponds to a quantum extension of the classical Weiss mean field theory. This extension

is known as dynamical mean field theory (DMFT). This approach has become one of the

most successful tools for treating correlated electron systems in the last 20 years and allows

for a direct calculation of one-particle quantities, such as Green’s and spectral functions. As

a standard application of DMFT for explaining correlation effects, we present a specific study

of the optical spectral weight in the cuprate high-temperature superconductors. The main

part of this chapter is, however, dedicated to the analysis of (local) two-particle quantities

in the framework of DMFT, i.e., of the local generalized susceptibilities and local vertex

functions. While a systematic DMFT analysis at the two-particle level was hitherto missing

in the literature, this represents a very important issue, because the two-particle vertices

represent the main ingredient for (i) calculating momentum-dependent response functions at

the DMFT level and (ii) treating nonlocal spatial correlations at all length scales by means

of diagrammatic extensions of DMFT.

In the last section of the previous chapter (Sec. 2.2.7) it has been recalled that non-interacting

many-particle systems allow in general for an analytic solution, i.e., an explicit analytic

calculation of the one- and more-particle Green’s functions. The corresponding results for

the one-particle Green’s functions of the Hubbard model and the AIM are given in Eqs.

93
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(2.200) and (2.208). On the contrary, in the case of interacting particles only very specific

and/or very simple systems, such as the atomic limit discussed in section 2.2.7.2, are exactly

solvable.

On the contrary, for a general case, direct numerical simulations of correlated electrons on

a lattice are, at present, usually restricted to small clusters of about ∼ 100 sites due to the

exponential growth of the Hilbert space with the system size. Hence, in general, approxi-

mations are needed in order to treat Hamiltonians exhibiting a two- (or even more)-particle

interaction term. As for the Hubbard model [Eq. (2.22)] and the AIM [Eq. (2.23)] a pertur-

bative expansion in the interaction might be only applicable (depending on the temperature

and doping regime considered) if the interaction parameter U is much smaller than the energy

scale of the non-interacting part of the Hamiltonian, i.e., the hopping parameter t and the

hybridization function ∆(ν), respectively [see Eqs. (2.209) and (2.210)]. In particular, second

order phase transitions cannot be described by any kind of plain lowest order perturbation

theory, not even in classical statistical mechanics [72].

One of the most important attempts to attack the problem of strongly correlated systems is

the mean-field approach which was invented by P. E. Weiss [73] as a theory of magnetism,

and was applied successfully, in particular, for treating the Ising model [74]. For long time,

it was the only theory of phase transitions, and L. D. Landau even suggested that mean-field

theory was essentially exact for describing critical phase transitions [75, 76]. Nowadays, we

know that this is not the case except for sufficiently large values of the spatial dimensionality

or for systems with infinite-range interactions [77].

For introducing the concept of mean-fields theories in general, let us discuss, exemplarily, the

mean-field solution of the classical Ising model on a d-dimensional lattice. The corresponding

model Hamiltonian , in absence of an external magnetic field, is given by:

H = −1

2
J
∑

〈ij〉
sisj , (3.1)

where 〈·〉 denotes the summation over nearest-neighbor sites, and the (classical) spin at the

lattice i can take the values si = ±1. Obviously, J > 0 favors energetically ferromagnetic

alignment of the spins while for J < 0 the system has a tendency towards an antiferro-

magnetic ordering. The numerical value of the parameter J has to be renormalized by the

coordination number z, i.e., the number of nearest neighbors on the lattice:

J =
J ∗

z
, (3.2)
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in order to render the average energy per lattice site independent of z, i.e., it also remains

finite if z → ∞. This is, e.g., the case for a simple cubic lattice in infinite spatial dimensions1.

The variable J ∗, in turn, is just a constant which is independent from the dimensionality or

the coordination number of the system.

Let us now consider the thermal expectation value for si which, in some sense, corresponds

to the one-particle Green’s function in the quantum mechanical case. The corresponding

expression reads as:

〈si〉 =
∑

{sj=±1} e
βJ
2

∑
〈kl〉 skslsi

∑
{sj=±1} e

βJ
2

∑
〈kl〉 sksl

, (3.3)

where the normalization factor in the denominator corresponds to the partition function Z

of the system and
∑

{sj=±1} indicates that the summation over the (two, si = ±1) possible

spin configurations is performed for all spins, i.e., all lattice sites, in the system. Even when

restricting oneself to a d-dimensional simple cubic lattice, the sums in Eq. (3.3) cannot be

performed analytically due to the interacting nature of the Hamiltonian (3.1). The idea of

the mean-field approximation is now to replace the interaction between the single spins by

an interaction of the spins with an effective external field, generated by the spins themselves.

To this end we rewrite the interaction term in the Hamiltonian (3.1) in the following way:

sksl = sk〈sl〉+ 〈sk〉sl︸ ︷︷ ︸
interaction with heff

+ (sk − 〈sk〉)(sl − 〈sl〉)︸ ︷︷ ︸
interaction between fluctuations

− 〈sk〉〈sl〉︸ ︷︷ ︸
constant energy shift

. (3.4)

The first two terms on the right-hand side of this equation describe the interaction of a spin

with an effective field (heff) generated by the mean value of a neighboring spin, while the third

contribution represents the interaction between the fluctuations of neighboring spins around

their mean field values. The last summand in Eq. (3.4) is just a constant contribution to the

total energy and can be neglected here.

A mean-field treatment of the Ising model corresponds to neglecting the fluctuation term

(i.e., the third summand) in Eq. (3.4). Considering the proper scaling of the parameter

J [24] in Eq. (3.2) one can show, that this assumption becomes even exact in the limit of an

infinite coordination number (→ ∞) or dimension (d → ∞) [24]. It is, however, important

to emphasize that for any finite (d = 1, 2, 3) dimensions the neglect of the fluctuation term

constitutes just an approximation, namely a “mean-field” approximation.

1Here, in the specific case of a hypercubic lattice geometry, z = 2d→ ∞ in the limit of infinite dimensions.
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J

Figure 3.1: Schematic representation of the mean field approximation for the Ising model.
An ↑-spin corresponds to si = +1, the ↓-spin to si = −1. The effective field heff is given
by heff = J zm = J ∗m.

In the next step we take into account the homogeneity of the systems which implies that

〈si〉 = 〈s〉 ≡ m, independent from the lattice site i. In this context m represents the

expectation value for the magnetic moment per lattice site. We now insert the decomposition

of sksl, as given in Eq. (3.4), into Eq. (3.3). Applying our mean-field assumptions, i.e.,

neglecting the third summand in Eq. (3.4), yields:

〈si〉 = m =

∑
{sj=±1} e

βJmz∑k sksi∑
{sj=±1} e

βJmz∑k sk
+O

(
1

z

)
. (3.5)

One can see that the contribution Jmz = J ∗m ≡ heff acts as an effective magnetic field

for the spin sk in the exponent of Eq. (3.5). Hence, the mean-field treatment of the Ising

model corresponds to replacing the interaction between one specific spin and its neighbors

by an interaction between this spin with an effective mean-field generated by the other spins,

as it is illustrated in Fig. 3.1. This way, our original two-particle problem from Eq. (3.1)

has been reduced to a single-particle description. The mean field heff has to be determined

self-consistently from Eq. (3.5). Indeed, performing all the sums in the latter relation leads

to:

m = tanh(βheff), heff = J ∗m. (3.6)

This relation is the required self-consistency condition between the mean magnetization m

and the effective interaction heff, which, in this simple case, can be solved graphically or

semi-analytically. Within this mean-field framework, it is then relatively easy to derive,

e.g., all correlations functions and the (meand-field) critical behavior (“Gaussian” critical
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Figure 3.2: Mapping of the Hubbard model onto an effective single site problem embedded
in a time-dependent mean-field G0(t).

exponents) [33, 72, 78] of the Ising model.

The method described above represents evidently a static mean-field approach, i.e., the av-

erage over si is taken with respect to both space and time. This is appropriate for a classical

system such as the Ising model, where no dynamical spin fluctuations can occur. However,

for a corresponding quantum system, local quantum fluctuations might give rise, beyond the

spatial correlations generated by the third term on the right-hand side of Eq. (3.4), also to

purely temporal correlation effects, calling for a corresponding extension of the mean field

scheme presented above [22].

3.1 Dynamical mean-field theory (DMFT) and the limit

of infinite dimensions

The main focus of this thesis is on the quantum Hubbard Hamiltonian defined in Eq. (2.22),

which represents one of the most basic models for describing correlated electron systems. As

already mentioned before, in spite of its rather simple form, the solution of the Hubbard

model for the non-trivial cases, where U 6= 0 and t 6= 0, remains a formidable theoretical

challenge. In particular, in the situation where the kinetic energy scale t and the interaction

energy scale U are of the same order of magnitude, a perturbative treatment [79, 80] of

one of these two parts of the Hamiltonian yields very poor results. Much better results for

the non-perturbative regime has been obtained by applying to this quantum model similar

steps as those of the mean-field theory for the Ising model. Specifically one can replace,

also for the Hubbard model, the actual lattice of interacting sites by one interacting site,

which is coupled to a mean-field generated by the electrons at the remaining sites. This

procedure, which corresponds to performing a spatial average, is indicated schematically

in Fig. 3.2. The crucial difference with respect to the static mean-field approach for the
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AIM

G0(ν)
Inverse

Dyson Eq.

Dyson

equation

DMFT-flow
Gnew(ν) =

∑
kG(ν,k)

G0(ν,k)

G(ν)
Impurity-

solver
Σ(ν) G(ν,k)

Figure 3.3: Flow diagram of DMFT. G(ν,k)=̂GDMFT(ν,k) in this figure.

(classical) Ising model is, however, that we keep now the time dependence of the mean-field

G0(t), which well explains the denotation of this approach as “dynamical mean field theory”

(DMFT) [22,24,25]. In this way, within DMFT, we are able to describe the purely local part

of the electronic correlations (i.e., temporal or quantum local fluctuations), neglecting only

the nonlocal ones in space2.

As already mentioned in the discussion of the Ising model, the observable 〈si〉 corresponds

to the Green’s function G(ν,k) in case of the Hubbard model. Similarly, G0(t) is the time-

dependent counterpart of the static mean-field heff as one can easily infer from a comparison

of Figs. 3.1 and 3.2. However, the Hubbard model analog to the relation between the

observable and the mean-field, which is just the algebraic equation heff = J z〈si〉 = J ∗〈si〉
in the Ising case [see Eq. (3.6)], cannot be written (and solved!) so easily. In this respect,

a breakthrough was achieved in a seminal paper by Georges and Kotliar [81], who realized

that a given dynamical mean-field representation of the Hubbard model on the right-hand

side of Fig. 3.2 corresponds to the solution of an AIM. In fact, in the latter, one interacting

site is hybridized with a non-interacting bath which can be described by a hybridization

function ∆(ν) or, equivalently, by a local non-interacting Green’s function G0(ν), which is

just the Fourier transform of G0(t) [see Eqs. (2.208) and (2.209), where Gcc(ν)=̂G0(ν)]. The

crucial advantage of this identification is, that it is easy to set up a systematic scheme for

the practical application of DMFT, as it is also illustrated in the flow diagram in Fig. 3.3:

1) Starting from an AIM defined by the hybridization function ∆(ν) or the corresponding

non-interacting Green’s function G0(ν) one has to calculate the interacting local Green’s

function G(ν) by means of an impurity solver (such as, e.g., exact diagonalization

(ED) [24], quantum Monte Carlo (QMC) [82, 83], numerical renormalization group

2For a discussion of local and nonlocal correlations in the Hubbard model see also Sec. 2.1.1.
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(NRG) [84] or density matrix renormalization group (DMRG) [85–87]). Let us stress

that this step corresponds to a numerically “exact” solution of a correlated system and,

hence, all local correlations of the AIM are taken into account.

2) One extracts the local3 self-energy of the AIM, Σ(ν) from G(ν) by means of the Dyson

equation [Eq. (2.156)] for the AIM. Let us note that Σ(ν) is exactly the part of G(ν)

which describes the (purely local) correlations in the system. In fact, Σ(ν) ≡ 0 for

the non-interacting case U = 0 and it diverges in the atomic limit [for T = 0, see Eq.

(2.219)].

3) We turn now to the original lattice problem, we are interested in, which is defined

by the bare dispersion εk or the bare lattice Green’s function G0(ν,k) as given in Eq.

(2.200). The DMFT expression for the interacting lattice Green’s function is then given

by:

GDMFT(ν,k) =
1

iν − εk + µ− Σ(ν)
. (3.7)

One can see that the (purely) local correlations are included in this DMFT lattice

Green’s function via the local self-energy Σ(ν) of the related AIM. Let us stress that

GDMFT(ν,k) corresponds to the expectation value 〈si〉 in the Ising model.

4) In the last step we extract the local part of the DMFT Green’s function [Eq. (3.7)] and

compare it to the local Green’s function of the corresponding AIM. If

∑

k

GDMFT(ν,k) = G(ν), (3.8)

then the DMFT cycle already converged. Otherwise we update the mean field G0(ν)

by means of the Dyson equation:

Gnew
0 (ν) =

[
∑

k

GDMFT(ν,k)

]−1

+ Σ(ν). (3.9)

Then we iterate the cycle starting again from step 1) with the new mean-field Gnew
0 (ν)

until convergence is reached. Let us note that Eq. (3.9), i.e., the relation between

3Note that, in this chapter, for the local quantities, i.e., the one- and the two-particle Green’s functions,
the self-energy and the vertices, the same notation as in Cap. 2 will be used, i.e., no additional subscript “loc”
will be added to them (in contrast to Cap. 4, where such a subscript will be attached to all local quantities).
This should, however, not lead to any confusion in the present chapter, since the only k-dependent quantity,
which occurs here, is the DMFT Green’s function GDMFT(ν,k).
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Σ =
a)

+
i

+ . . .
i i

Figure 3.4: Skeleton diagrams for the DMFT self-energy. The DMFT self-energy is purely
local, being built by purely local skeleton diagrams only, exactly as in the cas of the
impurity self-energy of the AIM. (i denotes here the index of the lattice site Ri.)

the Green’s function of the Hubbard model (in the DMFT approximation) and the

non-interacting local Green’s function G0(ν), represents the quantum counterpart of

the self-consistency equation heff = J z〈si〉 = J ∗〈si〉 [see Eq. (3.6)] for the Ising model,

which relates the mean field heff to the expectation value of the observable si, i.e., the

mean magnetization m ≡ 〈si〉.

From the above discussion, it should be clear that correlations enter the DMFT cycle via the

exact solution the AIM, a full interacting quantum many body problem, which is nevertheless

numerically treatable since only one interacting site is involved. Still, in most of the cases

the calculation of the local Green’s function of the AIM is the numerical bottleneck of the

DMFT algorithm, in particular for complicated many-orbital problems.

From a more theoretical perspective, in the discussion of the Ising model at the beginning

of this chapter we stated that the corresponding mean field solution gets exact in the limit

of an infinite coordination number z → ∞. An analogous conclusion can be drawn [22] for

the DMFT solution of the Hubbard model. While we refer to Refs. [24,88–91] for a rigorous

derivation of this statement, we sketch briefly here the main ingredients of ingredients of the

proof.

First of all, in order to render the average kinetic and potential energy independent of the

dimension of the system, we have to introduce a proper scaling for the corresponding param-

eters t and U , analogous to Eq. (3.2) for the scaling of J in the Ising model:

t =
t∗√
z
, U = U∗, (3.10)

where t∗ and U∗ are constants independent from the coordination number or the dimension

of the lattice. One observes that the interaction parameter U , due to its locality in space,

remains unchanged when changing z or d, while the hopping t has to be rescaled with
√
z in

order to keep the kinetic energy finite in the limit z → ∞. With the scaling in Eq. (3.10) one
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can show that all skeleton diagrams4, for the self-energy of the Hubbard model are purely

local in the limit of an infinite coordination number z. This state of affairs is illustrated

explicitly in Fig. 3.4. Hence, it becomes clear also from this diagrammatic point of view

that the DMFT self-energy of the Hubbard model formally does coincides with the local self-

energy of an corresponding AIM in the limit of infinite coordination number or dimension.

Hence, the DMFT approach of Figs. 3.2 and 3.3 can be formally seen as the exact solution

of our quantum many-body problem in this limit.

Let us stress, that for a finite coordination number the DMFT Green’s function GDMFT(ν,k)

in Eq. (3.7) represents just an approximation for the real Green’s function of the Hubbard

model. This observation leads to significant consequences for two- and more-particle Green’s

functions: While the DMFT self-consistency guarantees that the local part of the one-particle

DMFT lattice Green’s function coincides with the one-particle local AIM Green’s function,

i.e.,
∑

kGDMFT(ν,k) = G(ν), for any coordination number z, this holds in the two- and

more-particle case only for z → ∞. For instance, we find that, for any finite coordination

number z: ∑

kk′q

GDMFT
2,kk′q (ν, ν

′, ω) 6= G2(ν, ν
′, ω), (3.11)

where GDMFT
2,kk′q (ν, ν

′, ω) can be caluclated via the standard Bethe-Salpeter procedure described,

e.g., in Ref. [24]. This violation of the two-particle self-consistency for the DMFT solution at

finite z (or d) can also lead to certain difficulties concerning the asymptotic behavior of the

self-energy obtained with ladder diagrammatic extensions of DMFT, as it will be discussed in

Sec. 4.3.1. Despite this, we recall that for calculating spectral functions, DMFT represents

one of the most powerful tools at disposal for treating strongly correlated electron systems.

In many important cases, it allows for an accurate many-body quantitative description of the

properties of real correlated materials, which are missed by more conventional ab-initio DFT

treatments (see Cap. 1). This will be demonstrated in the following section for a specific

case.

3.1.1 A DMFT case study: Optical spectral weight in the cuprates

Parts of the results and the discussion presented in the following section have been already

published in the APS Journal “Physical Review Letters”: PRL 105, 077002 (2010).

4Skeleton diagrams are constructed from full interacting Green’s functions rather than from bare ones
and, hence, must not contain self-energy corrections of the internal lines. For a more detailed discussion of
this issue we refer to Sec. 2.2.4.1.
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Figure 3.5: Schematic phase-diagram of the hole-doped cuprates as a function of tem-
perature and doping level. The green bar indicates the parameter regime for which the
experimental and theoretical study of the two specific Bi-based cuprate compounds dis-
cussed in the text was performed.

In this section we present a DMFT study of the optical conductivity σ(ω, T ) and the related

(partial) sum rule (optical spectral weight) W (Ωc, T ) for the two Bi-based high-temperature

superconducting cuprate compounds Bi2Sr1.6La0.4CuO6 and Bi2Sr2CaCu2O8. This was mo-

tivated by new infrared (IR) optical spectroscopic experimental data for these observables

[i.e., σ(ω, T ) and W (Ωc, T )] obtained at increasingly higher temperatures above the super-

conducting transition temperature Tc of the respective compound at optimum doping5 (see

green bar in the schematic phase-diagram in Fig. 3.5). As it will be shown by a compar-

ison of the theoretical and experimental results, in particular for W (Ωc, T ) [see Fig. 3.8

below], DMFT provides not only for a qualitative understanding of physical properties of

these strongly correlated materials, but it allows also for a quantitative description of the

experimental findings.

The topic presented in this section is mainly thought as a demonstrative illustration of the

applicability of DMFT to experimentally relevant studies, and, hence, does not represent the

main scope of this thesis. For the sake of clarity, however, we will briefly summarize some of

5That is the amount of hole-doping for which Tc takes its largest value in the phase-diagram of the cuprates
(see green bar in Fig. 3.5).
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Figure 3.6: Left panel: Copper 3dx2−y2-orbital. Right panel: In our effective model for the
Copper-oxygen plane of the cuprates only the dx2−y2-orbital is taken into account.

the most important facts concerning the high-temperature cuprate superconductors, as well

as their optical conductivity sum rules relevant for our DMFT analysis.

Hubbard model for the cuprates. The literature about the cuprates is vast both from

the experimental and the theoretical perspective. Hence, we do not aim here at a compre-

hensive description of the physical properties of this class of materials, but we rather recall

the most important facts in a short overview.

In Fig. 3.5 a generic phase-diagram for the cuprates is shown as a function of temperature

and hole-doping, where the origin of the coordinate system corresponds to T = 0 and n = 1

electron per (Cu) lattice site, i.e., without doping (stoichiometric compounds) the system is

half-filled. With increasing (hole) doping the insulating antiferromagnetic phase, which is

rather typical for strongly correlated electron systems at half filling, turns into a so-called

“pseudogap” phase [92]: For specific k vectors a gap appears in the spectrum, i.e., the

system displays an insulating behavior for these values of the crystal momentum, though no

evident long-range order can be individuated in this regime. At higher temperatures, this

pseudogap phase gradually changes with increasing doping to an “anomalous” metallic state

exhibiting non-Fermi liquid behavior. Finally, at a very high concentration of holes, i.e.,

at a much lower electronic density, the cuprates behave progressively more like a standard

Fermi liquid. At lower temperatures and intermediate doping levels, however, one observes

the appearance of the famous unconventional (d-wave high-Tc) superconductivity [17]. Since

the highest critical temperatures for superconductivity in the cuprates largely exceed the

condensation temperature of liquid nitrogen (77 K), this class of materials is, of course, a very

interesting one from a technological point of view. Hence, it is not surprising that most of the
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hitherto existing analyses address the low-temperature behavior, focusing, in particular, on

the unconventional superconductivity and the pseudogap state. However, strong correlations

also influence the physical properties of these materials at high temperatures, leading, e.g.,

to interesting effects such as the violation of the Ioffe-Regel limit for resistivity saturation,

the quasiparticle thermal decoherence or a linear behavior of the resistivity as a function

of temperature [93, 94]. Our investigation, in fact, focuses precisely on the anomalous metal

regime above the superconducting phase up to very high temperatures (∼500 K) at optimum

doping, as indicated by the vertical green bar in Fig. 3.5.

In order to apply a many-body treatment, such as DMFT, to the specific case of the cuprates,

we have to define an appropriate model which covers its basic physics in the parameter regime

under consideration. To this end we consider the lattice of these materials: Superconducting

cuprates have a layered crystal structure. Cu-O planes alternate with layers containing heavy

ions, which act essentially as charge reservoirs. The interesting physics takes place mostly

within the Cu-O planes. In the present theoretical investigation, we restrict ourselves to

the partially filled Copper 3dx2−y2 orbitals which are rather narrow (see left panel in Fig.

3.6), and, hence, exhibit the strongest correlation effects. In this simplified, but widely used,

modelling of the cuprates, the oxygen px and py bands, as well as spherical and axial orbitals

such as Cu 4s and Cu 3dz2, respectively, are folded down into the Cu 3dx2−y2 state, since the

correlation effects are usually rather small for these orbitals. Let us, however, mention that,

in general, a single-band description of the cuprates is in many respects not sufficient as it is

discussed extensively in the literature [95–98].

Keeping in mind these limitations, we will model the two cuprate compounds under consid-

eration by a two-dimensional single-band Hubbard Hamiltonian on a simple square lattice

formed by the Cu atoms, as it is shown schematically in the right panel of Fig. 3.6:

H = −
∑

ij,σ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (3.12)

where tij denotes the hopping amplitude from the lattice site i to the lattice site j. Let us just

mention here that this version of the single-band Hubbard model is slightly more general than

the corresponding definition in Sec. 2.1.1, Eq. (2.22), since it considers hopping processes

between arbitrarily distant sites i and j instead between only nearest neighbors. Specifically,

for the two cuprate compounds under consideration, we take into account a nearest neighbor

hopping t, a next-nearest neighbor hopping t′ (diagonal hopping) and a next-next-nearest
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Figure 3.7: (a) k-integrated spectral function A(ω) for the interacting system
Bi2Sr1.6La0.4CuO6 at T = 100K modeled by the Hamiltonian in Eq. (3.12). The inset
shows the density of states A0(ω) for the corresponding non-interacting system. Dashed
lines mark the Fermi levels at ω = 0. (b) Optical conductivity σ(ω) at T = 100K. The
arrows indicate contributions stemming from optical transitions between different energy
intervals of the one-particle spectral function.

neighbor hopping t′′. Reasonable numerical values for these parameters6 are obtained from

theoretical calculations (DFT) [98,99] and/or extracted from angular resolved photoemission

spectroscopy studies [100]. The parameter U has been chosen7 according to [99]. As already

mentioned, we investigate the system at optimum (hole)doping, i.e., with an average electron

density of n = 0.84 electrons per Cu-atom (or, more precisely, per Cu 3dx2−y2 orbital).

DMFT calculations Let us first discuss the (one-particle) spectral properties of the sys-

tem(s) under consideration. To this end we have performed DMFT(ED) calculations, with

Ns = 6(7) sites in the ED impurity solver, for Bi2Sr1.6La0.4CuO6 (Bi2Sr2CaCu2O8). We start

by discussing the general features of the DMFT spectral function A(ω) on the real axis,

defined as:

A(ω) = −1

π

∑

k

GDMFT(ω,k), (3.13)

6Specifically, in our DMFT calculations we used t=0.25(0.35) eV, t′/t=−0.2(−0.3) and t′′/t′=−0.5(0.0)
for Bi2Sr1.6La0.4CuO6 (Bi2Sr2CaCu2O8).

7U = 12t = 3.0(4.2) eV for Bi2Sr1.6La0.4CuO6 (Bi2Sr2CaCu2O8).
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where GDMFT(ω,k) is given in Eq. (3.7) and ω denotes a real frequency variable.

In Fig. 3.7a the spectral function is shown for the case8 of Bi2Sr1.6La0.4CuO6 at the lowest

temperature under consideration (T = 100K). The interacting spectrum is characterized by

three main features: (i) a (Z-renormalized) quasiparticle peak at the Fermi level ω = 0 (with

Z =
[
1− ∂Σ(ω=0)

∂ω

]−1

), (ii) the lower Hubbard band, almost “attached” to the coherent peak,

and (iii) the upper Hubbard band at ω ≈ U = 12t = 3.6 eV which is well separated from the

two other main spectral features. The inset in Fig. 3.7a shows the corresponding density of

states for the non-interacting system. Notice that the Fermi energy is still relatively far from

the van Hove singularity (VHS) for the considered case. Hence, effects stemming from the

VHS, such as a strong enhancement of the T -dependence of the chemical potential, are not

expected to play a particularly important role here.

Optical conductivity From the DMFT Green’s function GDMFT(ω,k) the (DMFT) opti-

cal conductivity is computed –except for a purely numerical prefactor– as:

σ(ω) ∝
∑

kk′

∂ε(k)

∂k

∂ε(k′)

∂k′

∫ ∞

−∞
dν Im [GDMFT(ω,k)] Im [GDMFT(ω + ν,k)δkk′]

f(ν)− f(ω + ν)

ω
,

(3.14)

where f(ν) = (eν/T + 1)−1 is the Fermi function. Let us just stress here that the expression

of the optical conductivity built on a bubble-like convolution of two one-particle Green’s

functions in Eq. (3.14) becomes rigorously exact, beyond the non-interacting case, only for

the single band Hubbard model in infinite dimensions (the pure DMFT limit) [24, 101–104].

This issue will be discussed in more detail at the end of this section.

In Fig. 3.7b the DMFT results for σ(ω) at T = 100K are shown for the compound

Bi2Sr1.6La0.4CuO6. Considering the corresponding spectrum in Fig. 3.7a, one can easily

identify the Drude peak at low energies, stemming from transitions “within” the quasiparti-

cle peak, a mid-infrared (MIR) contribution related to transitions between the quasiparticle

peak and the lower Hubbard band as well as high energy contributions at ω ∼ U which are

due to transitions from/to the upper Hubbard band.

Let us note that our DMFT data for A(ω) and σ(ω) in Fig. 3.7 are “spiky” because of

exact diagonalization (ED) as impurity solver, which gives rise to a discrete spectrum due

to the finite number of bath sites. Therefore, a direct quantitative comparison of frequency

resolved observables [such as A(ω) or σ(ω)], calculated from DMFT, with the corresponding

experimental data for a given frequency ω is not very insightful. On the other hand, ED

8Similar results are obtained for the other compound.
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Figure 3.8: Temperature-dependent restricted optical sum ruleW (Ωc, T ) of optimally doped
(a) Bi2Sr1.6La0.4CuO6 and (b) Bi2Sr2CaCu2O8, normalized to the (extrapolated) value
at T = 0. The experimental data (red circles) are compared with DMFT results for
the restricted sum rule (blue diamonds) of the single-band Hubbard model. Also shown
are theoretical calculations for the non-interacting system (U = 0) and the lowest order
Sommerfeld expansion where the coefficient B is simply rescaled by the quasiparticle
DMFT weight (Z scaled). In panel (a) DMFT results for the total (one-band) sum rule
are displayed for comparison (green squares). In the inset the dotted (dashed) line indicates
the fit performed on W (Ωc, T ) data using Eq. (3.16) up to the second (fourth) order. The
figure is reproduced from Ref. [105].

works particularly well for ω-integrated quantities, such as the optical sum rule W (Ωc, T ),

whose behavior and comparison with experiments will be discussed in the next paragraph.

Optical sum rule A quantity which contains essential information about electronic corre-

lations is the (partial) sum rule (or optical spectral weight), which is given by the frequency

integral of the optical conductivity up to a cut-off frequency Ωc:

W (Ωc, T ) =

∫ Ωc

0

dω σ(ω, T ). (3.15)

For Ωc → ∞ the so called f-sum rule is recovered, which implies thatW is proportional to the

charge density of the system (and therefore independent of the temperature). However, for

a finite cut-off Ωc the temperature behavior of this “restricted” sum rule provides significant

information about electronic correlations in the system. Specifically, if Ωc is chosen
9 in such

9Experimentally, this frequency Ωc can be estimated by the position of a minimum in σ(ω), for ω close
to the plasma frequency of the system. From a theoretical point of view, the corresponding Ωc has to be
chosen in such a way that the Drude peak and the MIR contribution of σ(ω) [see Fig. 3.7b] contribute to
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a way that only the lowest conduction band contributes to W , the sum-rule accounts for

the total kinetic energy of the charge carriers in this band. In this respect, it is worth

recalling that precisely the reduction of the kinetic energy estimated experimentally from

the restricted optical sum rules with respect to the non-interacting theoretical predictions

(e.g., from density functional theory) is often used to provide a first quantification of the

“correlation degree” of a given material [106–108]. In the particular case of the cuprates,

the study of the restricted sum rules has attracted a considerable interest in the last decade

[109, 110], because several anomalies have been reported both for the doping dependence

of the optical spectral weight [111, 112] as well as for its temperature dependence in the

normal and in the superconducting phase [99, 111, 113–118]. In particular, the anomalies

reported for the temperature-dependence of the restricted optical sum rule in the normal

phase of the cuprates were referred to a particularly enhanced low-temperature increase of

the optical spectral weight, attributed mostly to electronic correlations. No attempt was

made, at the beginning, to investigate the whole temperature-dependence in the normal

phase on a broader temperature interval. This has become possible only more recently, when

new infrared/optics experiments were performed by the Roma group of Prof. Lupi and Prof.

Calvani, who extended the previous temperature range of their experiments up to 500 K.

In particular, in Fig. 3.8 we compare our DMFT data (blue diamonds) for the restricted

optical sum rule [W (T ) ≡ W (Ωc, T )] normalized by its value at T = 0, i.e., W (T )/W (0),

with the corresponding experimental results (red circles) for temperatures up to 500 K. One

can clearly see a good agreement between theory and experiment in the whole temperature

regime, in contrast to the complete failure of calculations done by neglecting the electronic

interactions (U=0). This demonstrates not only the crucial role played by (local) electronic

correlations in the high-temperature regime of the cuprates, but it also shows the ability

of DMFT to describe quantitatively realistic aspects of strongly correlated materials. We

recall here, however, that for a proper theoretical description of other features of the cuprate

physics such as, e.g., the onset of unconventional superconductivity, the inclusion of nonlocal

correlations beyond DMFT (see Cap. 4) is absolutely needed.

To gain further insight in the specific problem of the optical sum rule at higher temperatures,

we have also compared our DMFT results to a (rescaled) Sommerfeld expansion:

W (T ) ≃W0 −BT 2 + CT 4. (3.16)

For a non-interacting system such an expansion would certainly work with coefficients B =

the optical integral W (Ωc, T ) in Eq. (3.15), yielding a value of roughly 2.5 eV for Ωc.
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B0 and C = C0 which can be calculated (semi-)analytically in terms, e.g., of the hopping

parameters. The question is, however, up to what extent a similar scheme holds also for a

correlated system. To a first approximation, assuming that a Fermi liquid (FL) description

is still valid, one could expect the Sommerfeld coefficients to be renormalized by correlations

as B = B0/Z and C = C0/Z
3 on the basis of a simple dimensional argument (B ∝ 1

t
→ 1

Zt

and C ∝ 1
t3

→ 1
(Zt)3

). As for the comparison, in Fig. 3.8 experimental and DMFT data

are plotted together with the curves obtained by a simple rescaling of the non-interacting

coefficient B0 with the quasiparticle renormalization factor Z. The overall agreement in

the low-temperature regime appears rather satisfactory, the small deviation observed up

to 250-300 K being likely related to the T -dependence of the chemical potential. As for

the coefficient C, whose value affects more the high-temperature regime (T > 300 K), our

analytical calculations demonstrate that the simple dimensional renormalization (1/Z3) is not

applicable to the coefficient C0. In fact, we have seen that its value also depends on frequency-

and temperature-dependent scattering terms of Σ(ω), whose role is found to be substantial

according to our DMFT calculation. However, as one can observe in the insets of Fig. (3.8),

a T 4-fit of our data works up to the highest temperature under consideration, confirming

the possibility of a strongly renormalized Fermi liquid description for the high-temperature

behavior of the restricted optical sum rule, even though we are in the parameter regime (see

green bar in Fig. 3.5) where usually a non-Fermi liquid/anomalous metal behavior of the

cuprates would be expected.

Let us conclude this brief illustration of an application of a DMFT calculation to a realistic

case, with some more general considerations on the formula used to compute σ(ω) in DMFT,

Eq. (3.14). In fact, according to Eq. (3.14), the expression for σ(ω) is obtained only

by the product of two Green’s functions, which would correspond to the non-interacting

contribution of the generalized two-particle (current-current) susceptibility. The latter, in

turn, includes generally so-called vertex corrections at all orders, as it is illustrated in Eq.

(2.159) and Fig. 2.8. This means, that the optical conductivity should be calculated from

a two-particle Green’s function rather than from just a product of two one-particle Green’s

functions. However, it can be shown [24,82,101–104], that, for the single-band Hubbard model

in the DMFT limit of infinite coordination number or dimension z → ∞ (d → ∞), because

of the odd symmetry of the current operator and the locality of the two-particle (irreducible)

vertices (inside a ladder resummation), the vertex (i.e., the actual two-particle) part of the

generalized susceptibility (i.e., F ) vanishes in the calculation of the optical conductivity, and,

hence, only the bare bubble term, constructed as the product of two one-particle DMFT

Green’s functions, survives. While this approximation turns out adequate for the specific
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situation under consideration, it should be stressed, that the inclusion of vertex corrections

to the bubble-like susceptibility is, in general, decisive for an accurate description of other

response functions of correlated systems computed in DMFT. This is well exemplified by

recent comparative calculations [119–121] for the local dynamical spin susceptibility in the

iron-pnictides, where the inclusion of dynamic vertex corrections is crucial for capturing the

main spectral features of the corresponding inelastic neutron scattering experiments. In this

context, however, one should note the lack of systematic analyses of the two-particle vertex

functions in the DMFT literature. Hence, aiming at filling this gap, we will present our

detailed DMFT results for the two-particle Green’s and vertex functions of the Hubbard

model in the rest of the chapter, starting from the next section.

3.2 DMFT results at the two-particle level

Parts of the results and the discussion presented in the following two sections have been

already published in the APS Journal “Physical Review B”: PRB 86, 125114 (2012).

Apart from the spectral function of a system, which is related to the one-particle Green’s

function and can be measured experimentally by (angle-resolved) photoemission spectroscopy

[(AR)PES], most of the experimentally accessible observables correspond to two-particle

Green’s functions. Specifically, the (linear) response of a system to a small external pertur-

bation can be usually represented in terms of (generalized) susceptibilities, which have to be

extracted from two- instead of one-particle objects [see Eqs. (2.137) and (2.146) for the local

case]. Within DMFT such k-dependent generalized susceptibilities can be calculated from

the Bethe-Salpeter equations in the respective channel [24, 119], i.e., Eqs. (B.6) or (B.18),

where the local Green’s function in these relations is replaced by GDMFT(ν,k) while the ir-

reducible vertex Γνν
′ω

r is just the local one, obtained from the AIM connected with DMFT

solution of the lattice model [see also Eqs. (4.5), (4.6), (4.99) and (4.106) in Cap. 4]. The

lowest order contribution to the generalized susceptibility is just the bare DMFT bubble,

i.e., the product of two DMFT Green’s functions. While this first, “one-particle”, part of

the generalized susceptibility is sufficient for calculating, e.g., the optical or the thermal con-

ductivity within DMFT (see the discussion in the last section, in particular Eq. (3.14) and

Refs. [24, 101, 103, 104]), usually (local) vertex corrections, stemming from Γνν
′ω

r , are essen-

tial for an accurate determination of the other response functions within DMFT (see, e.g.,

Refs. [120, 121]). An increasingly efficient and precise treatment of the vertex corrections,

based on a detailed knowledge of the essential properties of the two-particle local vertex func-
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tions of DMFT is, hence, highly desirable for the frontier research of correlated electronic

systems.

The importance of determining the properties of local (reducible and irreducible) two-particle

quantities for the DMFT, i.e., for the AIM connected with the DMFT solution of the Hubbard

model, however, goes well beyond the needs for a numerical calculation of momentum- and

frequency-dependent response functions at the DMFT level. In fact, reducible and irreducible

vertices of the AIM constitute the basic ingredients of the diagrammatic extension of DMFT

aiming at an inclusion of spatial correlations at all length scales. Such methods will be

analyzed extensively in Cap. 4 (see, in particular, Sec. 4.1.2).

The above considerations clearly show the central role of local two-particle

Green’s functions, in particular generalized susceptibilities and vertices, for

a theoretical description of strongly correlated systems. In spite of such rele-

vance, as we mentioned before, no systematic study of the two-particle quan-

tities has been presented in the DMFT literature hitherto (only very recently

we learned about a related study for a Hubbard model exhibiting a dynamical

U(ω), see Ref. [122]). In this section we, hence, perform a thorough inves-

tigation of the local reducible and irreducible two-particle vertex functions

of DMFT. In particular, we will present our DMFT results for all local two-

particle vertex-functions discussed in Sec. 2.2.4.2, i.e., F (full vertex), Γr

(irreducible in channel r) and Λ (fully irreducible vertex) of the single-band

half-filled Hubbard model on a three-dimensional simple cubic lattice, as

defined in Eq. (2.22). In the following we will express all energies (in par-

ticular U and T = 1/β) in units of D, which is given by twice the standard

deviation of the non-interacting density of states of the lattice system. For

the three-dimensional model, this corresponds to D = 2
√
6t where t represent

the hopping amplitude between nearest neighbors. The frequency-dependent

local vertex functions have been obtained numerically from the AIM associ-

ated to the DMFT solution of the Hubbard model by means of exact diago-

nalization (ED). Specifically, the DMFT(ED) algorithm used to compute the

local two-particle vertex functions exploits the Lehmann representation for

the generalized local susceptibilities χph, χpp [Eqs. (2.150a)-(2.150b)] of the

AIM, the analytic expression of which has been derived and reported, e.g.,

in Refs. [26, 50, 70, 123]. From χph and χpp, the full (connected) two parti-

cle vertex (F ) is easily computed by subtracting the unconnected parts and

cutting the other legs [see Eq. (2.159)]. Then, all the two-particle vertices ir-
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reducible in one channel (Γr) are obtained via inversion of the corresponding

Bethe Salpeter equations [see Eq. (2.164), and Eqs. (B.7), (B.19), (B.26) in

Appendix B]. Eventually, the knowledge of the Γr in all channels (r = d,m, s, t)

allows us to determine the fully irreducible vertex (Λ) via the (inverse) par-

quet equation(s) [Fig. 2.11, Eqs. (2.162) and (2.163), and Eqs. (C.1)-(C.6)

in Appendix C]. Let us note that the mathematical formalism for the (local)

two-particle Green’s functions, i.e., for the generalized susceptibilities and

the vertices, has been already discussed in Cap. 2 and Appendices A-C, to

which we refer the reader in for definitions and analytical relations.

The ED-calculations presented in the following have been performed with

Ns = 5 (1 impurity and 4 bath) sites in the AIM, keeping (at least) 160 (posi-

tive) fermionic and bosonic Matsubara frequencies, which has required, for

each determination of the generalized susceptibility, a parallel calculation of

about 100.000 CPU-hours on the Vienna Scientific Cluster (VSC). This allowed

for a precise calculation of the (Matsubara) frequency structures of the two-

particle vertex functions at all levels of the diagrammatics, down to the fully

irreducible objects. The accuracy of the calculations has been directly tested

by checking the asymptotic behavior and the symmetry properties (see Cap.

2 and Appendix A) of the different vertex functions, as well as by compar-

ing them to the corresponding atomic limit results (see Sec. 2.2.7.2). Fur-

thermore, the numerical robustness of our DMFT(ED) results for reducible

and irreducible local vertices has been also successfully verified by compar-

ing with corresponding results obtained with a Hirsch-Fye quantum Monte

Carlo algorithm [124] as impurity solver, in a slightly higher temperature

regime (β=20.0) than that considered here (see Fig. 3.9).

We will present our DMFT results in the following way: we will start analyzing

the most conventional (and easiest to compute) among the vertex functions,

i.e., the full vertex10 F , in the next subsection (Sec. 3.2.1). Subsequently, in

Sec. 3.2.2 we will make a step deeper in the diagrammatics, presenting our

DMFT results for the vertices irreducible in one specific channel (Γr), and, fi-

nally, in Sec. 3.2.3, results for what can be considered the most fundamental

10Let us recall that, at the two-particle level, the connected (full) vertex F is one-particle irreducible (1PI),
as it has been explicitly discussed in Sec. 2.2.4.2 (see, in particular, page 66) and illustrated in Figs. 2.9a and
2.9b. In fRG [125] and DΓA [26] publications, this vertex is usually denoted as Γ, while in DF it is coined
γ(4) [34].
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Figure 3.9: Comparison of DMFT(ED) and DMFT(QMC) results of our calculations for
the two-particle vertices Γr, irreducible in one specific channel r = d,m, s, t for a case with
U = 1.5 and β = 20.0.

block of the two-particle diagrammatics, the fully irreducible vertex function

Λ, will be presented and discussed.

In all cases, the frequency structure of the local vertices will be first examined

at small values of U (e.g., U = 0.5), which allows for a direct comparison with

perturbation theory. Deviations from the perturbation theory predictions will

be also discussed, and in Sec. 3.2.4, their effects on more conventional phys-

ical and thermodynamical quantities will be eventually addressed. Finally,

the impact of our analysis on possible improvements of numerical calcula-

tions of two-particle vertex functions is briefly discussed in Sec. 3.2.5.

3.2.1 DMFT results: Full vertex functions

The full vertex F , which (in the Fermi liquid regime) corresponds physically to

the scattering amplitude between two dressed quasi-particles [38] discussed
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ν ↑

ν ↑ ν ′ ↑

(ν + ω) ↑ (ν ′ + ω) ↑

ν1 ↓

(ν1 + ω) ↓

(ν + ω) ↑ (ν ′ + ω) ↑

ν ′ ↑

ν1 ↓ (ν1 + ν ′ − ν) ↓

P1

P2

a)

ν ↑ ν ′ ↓

(ν + ω) ↑ (ν ′ + ω) ↓

(ν + ω) ↑ (ν ′ + ω) ↓

ν ↑ ν ′ ↓

ν1 ↑ (ν1 + ν ′ − ν) ↓

ν ′ ↓ν ↑

(ν + ω) ↑ (ν ′ + ω) ↓

ν1 ↓

(−ν1 + ν + ν ′ + ω) ↑
P3

P4

P5

b)

Figure 3.10: a) Lowest order (perturbative) diagrams for F↑↑. b) The same for F↑↓. The
figure is reproduced from Ref. [48].

in Sec. 2.2.4.2 (see, in particular, page 66), contains all connected diagrams

with two particles coming in and two particles going out. The relevance of this

vertex functions, as well as its application in different application schemes,

will be discussed extensively in Cap. 4, see in particular Sec. 4.1.2 and Tab.

4.1, while for further formal details concerning the notations and conventions

we refer the reader to Cap. 2, Sec. 2.2.4.2. In Fig. 3.10 the lowest order

(in U ) diagrams for the two possible spin combinations are shown in the

particle-hole frequency convention introduced in Sec. 2.2.3, Eqs. (2.149)

and (2.150a) [the corresponding results in the particle-particle notation can

be simply obtained via the transformation ω → ω−ν−ν ′, see also Eq. (2.151)].

Let us stress that all internal lines in the vertex diagrams correspond to

full interacting Green’s functions, and, hence, only skeleton diagrams are

considered, as it was already discussed at the beginning of Sec. 2.2.4.2. We

recall, moreover, that on the level of F , the singlet- and the triplet-channel

are just linear combinations of Fd and Fm [see discussion on page 73 below

Eqs. (2.169)]. In terms of Green’s functions the lowest order contributions

for F read as follows:

P1 = +
U2

β

∑

ν1

G(ν1)G(ν1 + ω), (3.17a)

P2 = −U
2

β

∑

ν1

G(ν1)G(ν1 + ν ′ − ν), (3.17b)

for the ↑↑-case and:

P3 = U, (3.18a)
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Figure 3.11: Vertex functions vs. the two fermionic frequencies ν = π
β
(2n+1) and ν ′ =

π
β
(2n′+1) (n, n′ ∈ Z): density part F νν′ω

d −U (left) and magnetic part F νν′ω
m +U (right) for

U=0.5 at half-filling (β = 26.0) for fixed ω= π
β
(2m) (m ∈ Z); a) ω=0 (m=0), b) ω=20π

β

(m=10). The figure is readapted from Ref. [48].

P4 = −U
2

β

∑

ν1

G(ν1)G(ν1 + ν ′ − ν), (3.18b)

P5 = −U
2

β

∑

ν1

G(ν1)G(−ν1 + ν + ν ′ + ω), (3.18c)

for the ↑↓-case. The lowest order contributions for the four different channels,

as defined for the Γ’s in Eqs. (2.167), hence, are given by:

F νν′ω
d = F νν′ω

ph,↑↑ + F νν′ω
ph,↑↓ = U +O(U2) (3.19)

F νν′ω
m = F νν′ω

ph,↑↑ − F νν′ω
ph,↑↓ = −U +O(U2) (3.20)

F νν′ω
s = F νν′ω

pp,↑↓ − F νν′ω
pp,↑↓ = 2U +O(U2) (3.21)

F νν′ω
t = F νν′ω

pp,↑↓ + F νν′ω
pp,↑↓ = 0 +O(U2). (3.22)

The full vertex functions F in the density (Fd=F↑↑ + F↑↓) and magnetic (Fm=

F↑↑−F↑↓) channel calculated by means of DMFT are shown for the case ω=0

and ω 6=0 in Fig. 3.11a and Fig. 3.11b, respectively. The x-axis corresponds

to the fermionic Matsubara frequency ν = π
β
(2n+1) (n ∈ Z) while the y-axis

is assigned to ν ′ = π
β
(2n′ + 1) (n′ ∈ Z). Note that, for the sake of readability

of the figure, instead of the absolute values of the Matsubara frequencies

just the corresponding indices n and n′ are reported. The vertex functions F

are calculated for U = 0.5 at half-filling, at a temperature value (β = 26.0, i.e.,

T = 0.038) close to the critical end-point of the MIT in DMFT [24,82]. It should
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ν2 ↑ (ν2 + ν ′ − ν1) ↑

(ν ′ + ω) ↓

ν ′ ↓

ν ↑

(ν + ω) ↑

ν1 ↓

(ν1 + ω) ↓

P8

ν2 ↓ (ν2 + ν ′ − ν1) ↑

(ν ′ + ω) ↑

ν ′ ↑

ν ↑

(ν + ω) ↑

ν1 ↓

(ν1 + ω) ↓

P7

−ν2 ↓ (ν2 + ν ′ − ν1) ↑

(ν ′ + ω) ↑

ν ′ ↑

ν ↑

(ν + ω) ↑

−ν1 ↓

−(ν1 + ω) ↓

P6

Figure 3.12: Third order (perturbative) diagrams for F↑↑ and F↑↓. The figure is reproduced
from Ref. [48].

be recalled that for the half-filled system all vertex functions are purely real

[see Eqs. (2.108) and (2.110)]. Furthermore, here as in the following, the

(constant) contribution of the first order diagram P3 in Fig. 3.10b, namely

the Hubbard U , is subtracted in order to better highlight the frequency-

dependent structures of the two-particle vertices beyond the standard lowest

order perturbative results.

One can now trace the different features of the two-dimensional plot of F

back to different types of diagrams. First of all, let us note that a constant

background is still present, despite the subtraction of the lowest order term.

This constant background stems from higher order diagrams that are inde-

pendent of ν and ν ′. An example in second order perturbation theory is given

in Fig. 3.10: The left diagram in Fig. 3.10a (P1) has no ν- or ν ′-dependence

and is proportional to U2χ0(ω), as it also follows from Eq. (3.17a), and will

be proportional to U2χ0(ω) [see Eq. (2.154)]. The same holds also for dia-

grams of higher order with all possible vertex corrections inside the bubble

of P1: The sum of all diagrams of this family yields the constant background

[roughly proportional to U2χ(ω), with χ(ω) defined in Eq. (2.154)] observed in

Fig. 3.11a for ω = 0. Because of the frequency dependence of χ(ω) this feature

is progressively reduced with an increasing value of ω as one can observe in

Fig. 3.11b.

Secondly, the evident structure along the main diagonal (i.e., the region

around the line ν = ν ′) stems from diagrams like the second ones (P2, P4)

in Fig. 3.10a or b [see also Eqs. (3.17b) and (3.18b)], which describe (at the

order considered) scattering processes reducible in the transverse particle-hole

channel. More specifically, these diagrams, as well as similar diagrams of the
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same type but with vertex corrections included, depend only on (ν−ν ′), which

means that they give a constant contribution (of the kind U2χ(ν − ν ′) along

the lines ν−ν ′=const. The largest contribution, however, is expected for the

case ν − ν ′ = 0 when the scattering between the particle and the hole occurs

at the Fermi surface. One can easily identify these structures in Fig. 3.11.

For the density-case one obviously has to add the diagrams of the ↑↑- and

the ↑↓-channel, which leads to twice the contribution of such diagrams in

second order perturbation theory. For the magnetic vertex, instead, these

second-order contributions cancel exactly each other, and only higher order

contributions to this diagonal line remain, which explains the quantitative

difference between the data for the two channels.

Furthermore, one also observes an enhanced scattering amplitude along the

secondary diagonal ν ′=−ν. The origin of this structure stems from diagrams

like P5 in Fig. 3.10b [see also Eq. (3.18c)], which build up scattering pro-

cesses reducible in the particle-particle channel. In fact, such diagrams (with

and without vertex corrections in the bubble) describe the scattering of two

particles with energies (ν+ω) and ν ′. Hence, the corresponding scattering am-

plitude is enhanced for total energies at the Fermi level, i.e., for ν ′ = −ν−ω. If
ω = 0 this yields the secondary diagonal in the plots shown in Fig. 3.11a, but

for the same reason, at finite ω this line is expected to be shifted to ν ′ = −ν−ω.
This behavior is shown for case of the tenth bosonic Matsubara frequency,

i.e., for ω = π
β
(2 × 10) = 20π

β
, in Fig. 3.11b. Within the chosen particle-hole

notation [see Eq. (2.151)], the main diagonal remains unchanged, as it stems

from ω-independent diagrams, while the secondary diagonal is shifted down-

wards compared to Fig. 3.11a. As it will be discussed in more detail later,

the existence of this shift should be considered explicitly, when implementing

new frequency extrapolation schemes for the vertex F at finite ω.

Finally, we also note a cross-structure (shaped as a “+”) in Fig. 3.11a, i.e.,

one observes an enhanced scattering amplitude compared to the constant

background along the lines ν = 0 and ν ′ = 0. In order to explain the origin

of these structures one has to go at least to third order perturbation theory.

The contribution of the diagrams shown in Fig. 3.12 reads as:

P7,8 = −U
3

β2

∑

ν1ν2

G(ν1)G(ν1 + ω)G(ν2)G(ν2 + ν ′ − ν1). (3.23)
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One sees that it is independent of ν and therefore it gives a constant contri-

bution along the horizontal line ν ′ = const. in Fig. 3.11, with a maximum

for ν ′ ∼ 0, as only in this situation one has the possibility to have all Green’s

functions appearing in Eq. (3.23) simultaneously at the Fermi level. In com-

plete analogy, one can construct diagrams that do not depend on ν ′ (in this

case the vertical bubble should be on the left side). At ω = 0 these result in a

maximum at ν = 0, which explains the cross-structure observed in F . A more

quantitative understanding of the “+”-shaped cross-structure in F requires a

closer look at the spin dependence of the third-order diagrams shown in Fig.

3.12: While the only contribution to F↑↓ is given by the last diagram in this fig-

ure (P8), for F↑↑ one has to include two topologically non-equivalent diagrams

(P6 and P7). The explicit expression for P7 is completely equivalent to that for

the ↑↓-vertex (i.e., P8). As for P6, its expression one can be obtained from P7

by simply inverting the (internal) ↓-lines (and the corresponding frequencies).

This leads to:

P6 = −U
3

β2

∑

ν1ν2

G(−ν1)G(−ν1 − ω)G(−ν2)G(ν2 + ν ′ − ν1). (3.24)

At half-filling one has G(−ν)=−G(ν) due to particle-hole symmetry [see Eqs.

(2.39) and (2.109) in Cap. 2], which implies P6 =−P7. Hence, the diagrams

P6 and P7 cancel each other, and only the contribution P8 to the ↑↓-vertex
remains in this order of perturbation theory. This can be viewed as a man-

ifestation of the so-called Furry’s theorem [69, 126] of quantum electrody-

namics, which states that -as a results of the electron-positron symmetry-

a closed fermionic loop containing an odd number of Fermions always vanishes. This

also explains the different signs of the cross-structure originated by the dia-

grams shown in Fig. 3.12: In the density/magnetic channel F↑↓ enters with a

plus/minus sign which leads to a negative/positive contribution of diagram

P8 w.r.t. the negative background of F as one can directly see by the colored

features of the plots in Fig. 3.11a.

Extending our analysis to the finite-ω case, we observe a broadening of the

cross-structure of F , with the formation of an horizontal and a vertical band,

both extended from −ω to 0, see Figs. 3.11b and 3.13b. This more general

feature can be traced to the sign changes (i.e., their jumps at zero frequen-
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Figure 3.13: The same as in Fig. 3.11, but for U = 2.0. The figure b is readapted from
Ref. [48].

cies) of the four Green’s functions in Eq. (3.23). It is important to note that

the combination of this broadened cross-structure with the (shifted) diagonal

maxima/minima of the vertex function F generates the appearance of a sort

of square-like feature in the frequency plots, the importance of which will be

further discussed in Sec. 3.2.5.

In the final part of this section, we investigate how our DMFT-results change,

upon increasing the value of the Hubbard interaction beyond the weak-

coupling regime. While the quantitative comparison with perturbation theory

is obviously deteriorating when increasing U , it is interesting to note that at

least the “topology” of the main frequency structure of the vertex F survives

qualitatively unchanged also for higher values of U , and -to a good extent-

even in the atomic limit.

In Fig. 3.13 we report our results for U = 2.0, i.e., four times larger than

the interaction value considered before. Notice that this value of U lies well

beyond the perturbative regime, and corresponds, e.g., to the U for which

the maximum of the Néel temperature of the antiferromagnetic instability is

predicted by DMFT at half-filling [24,127].

From a first visual inspection of the plots, it emerges clearly that the main

frequency structures of the vertex functions correspond well to those we have

just discussed for the perturbative case: One can easily identify similar struc-

tures as in the plots of Fig. 3.11 in the same position as before, and even with

the same sign for the deviation w.r.t. the lowest order constant contribution.

Remarkably, a similar situation can be observed even in the extreme case

of the atomic limit (D = 0), where an analytic expression of the full vertex

functions Fd, Fm can be derived [47, 48, 70, 123] directly from the Lehmann
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representation. The corresponding results for the ↑↑- and ↑↓-vertex are re-

ported in Sec. 2.2.7.2, Eqs. (2.224) and (2.223). We reproduce them here for

convenience:

F νν′ω
d,m = F νν′ω

↑↑ ± F νν′ω
↑↓ (3.25)

F νν′ω
↑↑ = β

U2

4

δνν′ − δω0
ν2(ν ′ + ω)2

(
ν2 +

U2

4

)(
(ν ′ + ω)2 +

U2

4

)
(3.26)

F νν′ω
↑↓ = U − U3

8

ν2 + (ν + ω)2 + (ν ′ + ω)2 + (ν ′)2

ν(ν + ω)(ν ′ + ω)ν ′
− 3U5

16

1

ν(ν + ω)(ν ′ + ω)ν ′
+

− β
U2

4

1

1 + eβU/2
2δν(−ν′−ω) + δω0
(ν + ω)2(ν ′ + ω)2

(
(ν + ω)2 +

U2

4

)(
(ν ′ + ω)2 +

U2

4

)
+

+ β
U2

4

1

1 + e−βU/2
2δνν′ + δω0
ν2(ν ′ + ω)2

(
ν2 +

U2

4

)(
(ν ′ + ω)2 +

U2

4

)
. (3.27)

From the analytical expression of the atomic limit Eqs. (3.25)-(3.27), in fact,

one can easily recognize the same main frequency features of the vertex F ,

appearing in the cases studied with DMFT (U = 0.5 and U = 2.0). For in-

stance, one immediately identifies the ph and the pp diagonal structures in

the terms proportional to δνν′ and to δν(−ν′−ω) in Eqs. (3.25), (3.26) and (3.27).

Not surprisingly for the atomic limit of repulsive models, however, the mag-

nitude of the pp structure is exponentially suppressed when T ≪ U , as it can

be inferred from the corresponding prefactor. Interestingly, beyond the two

diagonal structures, one can recognize in the atomic limit formulas also the

(for ω 6= 0 broadened) “+”-shaped cross-structure, which was generated at

small U by the third order diagrams, Eq. (3.23). In fact, this structure corre-

sponds –even in the atomic limit– to the term proportional to U3 in Eq. (3.27).

We observe finally, that in the atomic limit the U-dependence of F , though

obviously strong, appears simplified with respect to the general case. In par-

ticular, one can identify two types of U-dependent contributions to the vertex

functions F : (i) The exponentials e
βU
2 stem from the Maxwell-Boltzmann fac-

tor, appearing when calculating the trace for a grandcanonical ensemble,

while (ii) the powers of U terms originate from the matrix elements. Interest-

ingly, one observes that, due to the absence of any kinetic energy contribu-

tion in the atomic limit, the highest power in U occurring in the expression

for F [see Eqs. (3.25)] is U6 (see, in this respect, also the analysis of Ref. [22]).
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ν ↑

(ν + ω) ↑

F ν1ν2ω
↓↓

ν ′↑

(ν ′ + ω)↑

ν1 ↓

(ν1
+ ω

)↓

+

ν ′↑

(ν ′ + ω)↑

ν1 ↓

(ν1 + ω)↓

ν ↑

(ν + ω)↑ (ν
2 + ω)↓

ν2↓

Figure 3.14: The diagram P1 from Fig. 3.10a supplemented by the corresponding diagrams
including all possible vertex corrections.

Divergences of F . The enhancement of the main structures of the vertex function F ,

i.e., the main (ν = ν ′) and the secondary diagonal (ν = −ν ′ − ω) as well as the constant

background, with an increasing value of the Hubbard interaction U from 0.5 to 2.0 (compare

Figs. 3.11 and 3.13) gives rise to the question, how the Mott metal-to-insulator transition

(MIT) at UMIT ≈ 3 affects these features. To this end we return to the bubble diagrams in

Fig. 3.10, the contributions of which are responsible for the topology of the vertex functions

depicted in Figs. 3.11 and 3.13. As already discussed above, the second-order diagrams from

Fig. 3.10 can be (or, for large values of U , have to be) supplemented by vertex corrections,

without changing the frequency structure of the corresponding contribution. For instance,

in Fig. 3.14 all diagrams, which represent vertex corrections of the bare bubble P1 in Fig.

3.10a, are independent of ν and ν ′, and, hence, give rise to the constant background observed

in F↑↑. One can see that, besides the bare bubble on the left-hand side, bubbles with all

possible vertex corrections, i.e., including the full vertex F↓↓ = F↑↑ arise. Analytically, the

diagrams in Fig. 3.14 correspond to:

U2

β2

∑

ν1ν2

βG(ν1)G(ν1 + ω)δν1ν2 +G(ν1)G(ν1 + ω)F ν1ν2ω
↑↑ G(ν2)G(ν2 + ω) ≡ −U2

∑

ν1ν2

χν1ν2ω↑↑ =

= −U
2

2
[χd(ω) + χm(ω)] , (3.28)

where SU(2) symmetry was used and χd(ω) and χm(ω) are the physical susceptibilities or

response functions discussed at the end of Sec. 2.2.2.6, see in particular Eqs. (2.138) and

(2.139). Similar expressions are obtained when adding vertex corrections to the bubbles11

P2, P4 and P5 in Fig. 3.10. While for a precise analytical determination of all the prefactors

for χd, χm and χpp as functions of the corresponding frequency arguments, i.e., ω for the

longitudinal bubbles, ν ′− ν for the transverse bubbles and ν+ ν ′+ω for the particle-particle

11Note that the consideration of vertex corrections gives rise to to diagrams which have no representation
in second order perturbation theory, and, hence, are not included in Fig. 3.10. An example is the longitudinal
↑↓-bubble for which at least a third-order diagram is required.
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bubbles, we refer to [128], let us, here, discuss the physical significance of Eq. (3.28) and

the considerations above: According to the latter relation, the constant background in Figs.

3.11 and 3.13 is (also) proportional to the local magnetic susceptibility12 χm(ω). However,

χm(0) diverges at the MIT (at T = 0) [24,81,129,130], giving rise to a strong enhancement of

the constant background when approaching this phase transition. A similar analysis can be

performed for the main diagonal structure (ν = ν ′ in Figs. 3.11 and 3.13) which is connected

to the diagrams P2 and P4 in Fig. 3.10 (see also related analyses which appeared recently

in Refs. [131–133]) . Dressing these transverse bubbles with all possible vertex corrections,

similar to the case of the longitudinal bubble illustrated in Fig. 3.14, gives rise to a term

χm(ν − ν ′) contributing to Fd and Fm. Hence, the numerical value at the main diagonal

ν = ν ′ is governed once again by χm(0) which gets strongly enhanced when approaching the

MIT and even diverges at the transition point (at T = 0). On the other hand, χpp(ν+ν
′+ω)

becomes very small with increasing values of U (in the repulsive case), and therefore, the

corresponding feature in the vertex functions, i.e., the secondary diagonal, gets strongly

suppressed, as it has been already discussed for the atomic limit.

The principal message of our analysis of the vertex F can be, hence, summarized as follows:

The topology of the vertex functions is, to a large extent, preserved when increasing U , while

the numerical values of the vertex functions for U & 1.0 are completely unrelated to those

of lowest order perturbations theory (see Fig. 3.10), and their knowledge requires, therefore,

an explicit calculation by means of DMFT. Hence, while for individuating the location of

the main features of F (in particular the main diagonal and the constant background) we

can still resort to perturbation theory, the corresponding bubbles in the ph magnetic channel

will become strongly enhanced by increasing U , with diverging maxima/minima exactly at

the MIT. This happens because with increasing U , the bubble contributions of perturbation

theory are dressed by all higher order corrections, including an infinite resummation of in-

ternal vertex corrections as we have also discussed before [see Fig. 3.14 and Eq. (3.28)]. In

fact, these corrections correspond to replacing the bare bubble with the full interacting sus-

ceptibility χr, where, in particular, the divergence of χm(0) at the MIT (for T = 0) yields a

corresponding divergence of the constant background and the main diagonal in the frequency

structure of F .

12For the repulsive Hubbard model (or AIM) χd(ω) is rather small compared to χm(ω), and is, hence,
neglected in the qualitative discussion in this section.
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Figure 3.15: Vertex functions irreducible the different channels. First and second row:
Γνν

′ω
d −U , Γνν′ωm +U , Γνν

′ω
s −2U , Γνν

′ω
t for U =0.5 at half-filling (β=26.0) for ω=0 (first

row) and ω = 20π
β
(second row) vs. the two fermionic frequencies ν and ν ′. For singlet-

and triplet-channel particle-particle notation was adopted. Third row: one-dimensional
snapshot of the same vertex functions for ν ′ = π

β
(n′ = 0, fixed) and the two values of ω,

compared to the corresponding (lowest order) perturbative results. The figure is readapted
from Ref. [48].

3.2.2 Irreducible vertices in one selected channel

At the level of irreducible vertices one has necessarily to consider four inde-

pendent quantities: the density and the magnetic vertex correspond to the

two possible spin combinations in the longitudinal channel (Γph), while the

singlet and the triplet vertex are linear combinations of the two different spin

directions in the particle-particle channel (Γpp). The transverse channel is not

independent, since it can be obtained from the longitudinal one by means of

the crossing symmetry [see Eq. (2.165) in Sec. 2.2.4.2 and Eq. (B.13) in

Appendix B].

We start with the discussion of the two-dimensional density-plots for the four

channels for U=0.5 and two different values of ω (ω=0 and ω=20π
β
, Fig. 3.15).
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Figure 3.16: Irreducible particle-particle vertices in particle-hole notation: Γ
νν′(ν+ν′+ω)
s −2U

(left) and Γ
νν′(ν+ν′+ω)
t (right) vs. ν and ν ′ for the same parameters as in Fig. 3.15 (for

ω=0). The figure is readapted from Ref. [48].

It is important to recall that for the two particle-particle channels, i.e., the

singlet- and the triplet-channel, the particle-particle notation is adopted. For

the density- and the magnetic channel (first two plots in each row of Fig.

3.15) one identifies the main and the secondary diagonal as it was the case

for the full vertex function F . However, the constant background and the

cross-structure in the center are missing. In fact, such features originate

from diagrams like P1 in Fig. 3.10a and P8 in Fig. 3.12 which are reducible in

the longitudinal channel and therefore do not contribute to Γd and Γm.

For the, particle-particle, channel in particle-hole notation one would ex-

pect again a constant background, the main diagonal as well as the cross-

structure (see Fig. 3.16) but no secondary diagonal since the diagram P5 in

Fig. 3.10b, which is responsible for the latter feature in F , does not con-

tribute to Γs and Γt, since it is particle-particle reducible.

The situation looks, however, different when adopting particle-particle nota-

tion, i.e., ω → ω − ν − ν ′ for the particle-particle irreducible channels: In this

case, the first diagram P1 in Fig. 3.10a, in fact, depends on ω − ν − ν ′ (in-

stead of being independent of ν and ν ′ at all) and therefore yields a constant

contribution along the lines ω = ν + ν ′. For the case ω = 0 this contribution

reaches a maximum yielding the secondary diagonal structure, as it appears

in the density-plots for Γs and Γt (last two plots in each row of Fig. 3.15). On

the other hand, in the particle-particle notation, the diagram P5 in Fig. 3.10
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becomes independent from ν and ν ′ and, hence, would lead to a constant

background. Since this diagram is particle-particle reducible such a contri-

butions is missing in Γs and Γt which, therefore do not exhibit a constant

background as it can be observed in Fig. 3.15.

Let us mention an interesting feature characterizing the triplet vertex Γt in

the particle-hole notation: The triplet vertex Γt coincides with the ↑↑-vertex.
Hence, (in the particle-hole frequency notation) it describes the effective in-

teraction between two incoming electrons with spin ↑ and energies ν + ω and

ν ′, respectively (these are the energies associated with the two annihilation

operators in the particle-hole notation). However, for ν ′ = ν + ω both incom-

ing electrons would be in the same state, which is forbidden by the Pauli-

principle. Therefore the triplet vertex is expected to be completely suppressed

along this line, as it can be actually observed (for ω = 0) in Fig. 3.16 (right

panel).

In the lowest row of Fig. 3.15 one-dimensional slices of the four irreducible

vertex functions are shown: ν ′ is kept fixed to the first fermionic Matsubara

frequency in that case, and Γr is plotted for two different values of ω as a

function of ν. One observes a good agreement with second-order perturba-

tion theory13 obtaining deviations of the order U3 ∼ 0.1. This is to be expected

since third order diagrams have not been considered in the perturbation ex-

pansion.

At U = 1.0 quantitative deviations from perturbation theory results become

gradually visible in the “low-frequency” (small ν, ν ′, if ω = 0) region, see Fig.

3.17, with the possible exception of the triplet channel. To define more gen-

erally such “low-frequency” region, however, one should consider the data at

finite bosonic frequency (ω = 20π
β
), whose quantitative comparison with per-

turbation theory is shown in the lowest row of Fig. 3.17. Here, one observes

that the largest deviations are found in correspondence to the main struc-

tures of the vertex functions, i.e., in the proximity of maxima/minima and

saddle points of the Γr functions (where the exact values deviate already by

more than a factor two from perturbation theory). Similarly as for F , however,

the position of these frequency structures is unchanged w.r.t. perturbation

13Let us recall, that here skeleton diagrams (see Sec. 2.2.4.1), of second order in U , have been considered
for Γr, built from G(ν). No particular changes are obtained in this regime, by replacing G(ν) with G0(ν) for
the fermionic lines.
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Figure 3.17: Same as in Fig. 3.15 but for U=1.0. The comparison with perturbation theory
in the third row shows that, while the most important features of the vertex structures
are located exactly at the same position as for U=0.5, the values of the irreducible ver-
tices Γ (with the exception of the triplet channel) deviate already by more than a factor
two from perturbation theory in the most significant points of the frequency space, e.g.,
in the proximity to the maxima and the minima of the vertex functions. At the same
time, perturbation theory appears to describe reasonably the region in between the main
structures as well as the asymptotic behavior of the vertex (see main text). The figure is
readapted from Ref. [48].

theory. Moreover, from the quantitative point of view, perturbation theory

still works reasonably well, not only for the asymptotics, but also for the

region “in-between” the main vertex structures [128].

This trend is preserved -to some extent- when increasing U further, as it is

immediately understandable from the plots for the most general case (i.e., for

finite bosonic frequency) Fig. 3.18. At U = 2.0 (upper row in Fig. 3.18), the

main frequency structures of the four Γr are located in the same position as

for lower values of U , where perturbation theory was still applicable for their

understanding and classification. By a closer inspection of the U=2.0 results,

however, some general trends emerge. First, one observes a weakening of the
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Figure 3.18: Upper row: Same as in Fig. 3.15 but for U = 2.0 and at finite ω = 20π
β
.

Lower row: atomic limit (D=0.0, Uβ=10.0) calculation. For singlet- and triplet-channel
particle-particle notation was adopted. The figure is readapted from Ref. [48].

secondary diagonal (ν =−ν ′−ω) in Γd and Γm in the upper row of Fig. 3.18.

This is a consequence of the suppression of particle-particle scattering events

in repulsive models, as it was already discussed at the end of section 3.2.1

for the full vertex-function F . Secondly, one can see that, for large values of

U , the triplet vertex (last plot in the first row of Fig. 3.18) consists almost

completely of the double diagonals. This “×”-structure can be understood in

terms of the atomic limit where one can find an exact analytic expression for

the triplet vertex, which is reported in Eq. (2.228). Indeed, the latter relation

states that Γνν
′ω

t is proportional to F νν′ω
t = F νν′ω

pp,↑↑ = F
νν′(ω−ν−ν′)
↑↑ which consists

just of the main (ν = ν ′) and the secondary (ν = −ν ′ + ω) diagonal as one can

infer from Eq. (3.26).

Noteworthy, the main features of the vertex functions are preserved also

when considering the extreme case of zero bandwidth, i.e, the atomic limit

(D=0), shown in the lower row of Fig. 3.18 for a generic choice of Uβ =10.0.

One can clearly identify the dominant diagonal- and square-like features at

ω 6=0 whose locations are unchanged w.r.t. to the case of finite D.

The above discussion shows that the “topology” of the vertex functions is to a

large extent preserved when increasing U . This, in turn, may be used to build

up approximated schemes, beyond the existing ones [134], for parameterizing
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the vertex functions, as well as for simplifying two-particle calculations based

on DMFT input. One could start from the atomic limit: In this case a good

example for such a parametrization is given for the triplet vertex according to

its exact expression in the atomic limit [Eq. (2.228)]:

Γνν
′ω

t = f(ν, ω)δνν′ + g(ν, ω)δν(−ν′+ω). (3.29)

A more detailed discussion of the practical applicability of the knowledge of

the vertex structures, however, will be given in Sec. 3.2.5.

Divergences of Γr. In this section we will discuss divergent features appearing in the

vertex functions Γr irreducible in one specific channel (r) upon increasing U . As an important

premise her, we should stress that different kinds of singularities can appear in Γr. The first,

more conventional, one affects all frequencies (and is even traceable up to the asymptotic

region), while the second one, never properly addressed in the DMFT literature before, occurs

at low frequencies only. Starting by considering the first kind of divergence, we observe that

the progressive enhancement of the main structures of Γr, e.g., the main diagonal for Γd

and Γm, with increasing U and their actual (T = 0) divergence at the MIT have the very

same physical origin as for the full vertices F : For large values of U the bare bubbles from

perturbation theory in Fig. 3.10 have to be replaced by the full susceptibilities χr with

the corresponding frequency dependence. In this way, the divergence of χm(0) leads to the

divergence of the corresponding features in Γd and Γm, i.e., the main diagonal. The only

difference between F and Γr with respect to this type of infinities is, that in Γr all diverging

contributions are excluded which are reducible in the specific channel r, as it is, e.g., the

case for the constant background, which stems from diagrams as P1 in Fig. 3.10. Let us

emphasize again that these divergent features are not confined to a finite frequency range but

extend up to infinity, and hence also affect the asymptotic behavior of the vertex functions

in frequency space.

Interestingly, for Γr also a completely different kind of singularity can occur at much lower

values of U . These second kind of divergences are confined to the low-frequency regime and,

hence, do not effect at all the vertex asymptotics. More specifically, such low-frequency di-

vergences of Γr arise well before the MIT, i.e, for U values considerably smaller than the

critical U of the Mott transition. As already discussed in Sec. 2.2.7.2, such divergences were

indeed discovered for the triplet channel in the atomic limit [see Eqs. (2.228) and (2.229)].

In fact, from a purely mathematical point of view, a singular behavior of the irreducible ver-
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tex functions is not surprising, since they are obtained by means of a matrix inversion from

the generalized susceptibilities. Considering Eqs. (B.6) and (B.18) in Appendix B for the

calculation of Γνν
′ω

r from the matrix inversion of χνν
′ω

r (r = d,m) and χνν
′ω

r ∓χνν
′ω

0,pp (r = s, t),

respectively, one observes that these relations become undefined if one eigenvalue of the ma-

trix χνν
′ω

r (∓χνν′ω0,pp ) vanishes
14, i.e., in principle Γνν

′ω
r cannot be calculated for combinations of

parameters U and T and the bosonic Matsubara frequency ω, where the corresponding gener-

alized susceptibility corresponds to a singular matrix in the fermionic Matsubara frequencies

ν and ν ′. In practice, however, one is usually never on top of such a single point in the

(U, T ) phase diagram but rather in its vicinity, where the lowest eigenvalue of χνν
′ω

r (∓χνν′ω0,pp )

can become arbitrarily small for one specific channel r. Consequently, the corresponding

irreducible vertex Γνν
′ω

r becomes strongly enhanced, since its magnitude is governed by the

inverse of this small eigenvalue. As anticipated above, our analysis of the corresponding

eigenvectors, and of the frequency structures of Γr show that this type of divergence con-

cerns the low-frequency regime of the irreducible vertices Γr, marking the difference from the

divergences of F and Γr due to the Mott transition, which extend to the high-frequency tails

of the vertex. As a preamble to the presentation of the numerical data, let us recall that for

U = 0 the generalized susceptibility coincides with the bare bubble, i.e., with the a diagonal

matrix whose elements are just the products of two Green’s functions. Hence, for U = 0,

the eigenvalues of all χνν
′ω

r are always different from zero (for any temperature T ), and one

expects that the above-discussed singularities can arise (for each T ) at a specific value of U

in a given channel r and at a certain bosonic Matsubara frequency ω.

In fact, the DMFT analysis in Ref. [71] shows that, for the AIM associated to the DMFT

solution of the two-dimensional half-filled Hubbard model on a simple square lattice (with

only nearest neighbor hopping), the first divergence encountered by increasing U is due to

an eigenvalue of χνν
′ω

r crossing zero in the density channel and for ω=0 (i.e., for Γ
νν′(ω=0)
d )15.

This sign change of an eigenvalue of χ
νν′(ω=0)
d is reflected in a sign-change in the low-frequency

structure of the corresponding irreducible vertex (Γ
νν′(ω=0)
r , as one can clearly see in Fig. 3.19.

Such a singularity is located at 1.27 < U < 1.28 for T = 0.1. The analysis was also performed

for different temperatures, allowing to identify a curve U(T ) in the U vs. T phase-diagram

14Note that, for the AIM corresponding to the DMFT solution of a non-frustrated half-filled Hubbard
model, χνν′ω

r (∓χνν′ω
0,pp ) is a real symmetric matrix in the indices ν and ν′ due to particle-hole symmetry [Eq.

2.110)] and time reversal symmetry [Eq. (2.95)], and, hence, has only real eigenvalues (see also Tabs. 2.1
and A.1).

15In the Appendix of Ref. [136], a two-particle vertex divergence has been also reported (for one tempera-
ture) whose position would be controlled by U rather than T . This expectation is, however, not verified by
our data of Fig. 3.20.
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Figure 3.19: Upper row: Evolution of the frequency-dependent two-particle vertex function,

irreducible in the density channel, Γ
νν′(ω=0)
d − U , for increasing U . The data have been

obtained for the fixed temperature β = 10.0 (T = 0.1). Note the characteristic “butterfly”-

shaped structure of the low-frequency divergences of Γ
νν′(ω=0)
d , which closely resemble the

typical low-frequency structures of the fully irreducible vertex Λ
νν′(ω=0)
d (see Sec. 3.2.3).

Lower row: Linear snapshot of the same Γ
νν′(ω=0)
d along the path marked by the dashed

line in the first panel of the upper row, i.e., as a function of ν = π
β
(2n + 1) for ν ′ = π

β

(n′ = 0), compared to second-order perturbation theory results, i.e., to P2 + P4 + P5 in
Fig. 3.10 and Eqs. (3.17) and (3.18). In the legend/insets the closest-to-zero eigenvalue

(λ) of χ
νν′(ω=0)
d /χ

νν′(ω=0)
0 is reported for each U . The figure is reproduced from Ref. [71].

of the Hubbard model, at which the first divergence of Γ
νν′(ω=0)
d (which corresponds to the

first divergence for all Γνν
′ω

r ) can be observed [see red circles (line) in Fig. 3.20]. Remarkably,

by further increasing U for a given T , a second divergence of Γ
νν′(ω=0)
d is encountered. This

divergence appears simultaneously with a divergence in the singlet channel at ω = 0: The

corresponding values of U and T are marked by the orange diamonds (line) in the phase-

diagram in Fig. 3.20. Though not reported in Ref. [71], it is worth mentioning that for a

fixed value of T more and more divergences are found with increasing values of U towards the

MIT. These occur in all channels and also at finite values of ω, with the significant exception

of the singlet channel (i.e., of the irreducible vertex Γνν
′ω

m ). Hence, while an unambiguous

interpretation of these type of divergences has not been found yet, the latter observation

strongly suggest, that these low-frequency singularities can be understood as a precursor

of the MIT, i.e., they are possible related to the formation of a local and instantaneous
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Figure 3.20: Instability lines of the irreducible vertices in the density (Γ
νν′(ω=0)
d red circles)

and in the singlet (Γ
νν′(ω=0)
s orange diamonds) channels reported in the DMFT phase

diagram of the half-filled Hubbard model (the data from the MIT, blue solid line, are taken
from Ref. [82,135]). The red dashed line indicates the corresponding instability condition

(T =
√
3

2π
U) estimated from the atomic limit. Inset: zoom on the low-temperature region,

where also different estimations (dashed light blue [135], dashed blue [82]) of the crossover
region are indicated. The figure is readapted from Ref. [71].

magnetic moment, well inside the metallic regime of the Hubbard model. However, since a

comprehensive analysis of these singularities is an open issue beyond the scope of this thesis,

we refer the interested reader to Ref. [71] for a speculative discussion of possible, more specific,

explanations of these singularities (e.g., in terms of a breakdown of perturbation theory and

standard Baym-Kadanoff formulations [44], and of a connection with the dynamic transitions

observed in the corresponding non-equilibrium calculations [137, 138]).

It should be finally mentioned that the low-frequency divergences of Γr, discussed above, can

be traced up to large values of U and T and are present also in the case of vanishing bandwidth

(D = 0), i.e., in the atomic limit. More, specifically, this case allows even for a (semi-

)analytical treatment of such vertex singularities. In fact, the atomic limit calculations are

quite useful for gaining a deeper insight into the structure of the eigenvalues and eigenvectors

of χνν
′ω

r associated with corresponding divergence of Γνν
′ω

r . Similarly as for the triplet channel,

see the discussion in Sec. 2.2.7.2, Eqs. (2.228) and (2.229), one can find explicit analytical

expressions for the divergence parameter conditions T (U) in the atomic limit also for the
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density and the singlet channels. In the following, we will present corresponding calculations

for the case ω = 0.

As for the divergence of Γ
νν′(ω=0)
d , we should consider the related generalized susceptibility

χ
νν′(ω=0)
d , which can be obtained analytically from the expression for F

νν′(ω=0)
↑↑ and F

νν′(ω=0)
↑↓

in Eqs. (3.26) and (3.27), the Green’s function for the atomic limit in Eq. (2.216) and the

definition in Eq. (2.159). By a closer inspection of the ν and ν ′ dependence of χ
νν′(ω=0)
d ,

one observes that most terms are functions of ν2 and (ν ′)2 rather than ν and ν ′. Hence,

these parts of the generalized susceptibility in the density channel are invariant under the

transformations ν → −ν and ν ′ → −ν ′. This finding suggests the following possible Ansatz

for the (normalized) eigenvector connected with vanishing eigenvalues of χ
νν′(ω=0)
d :

Ed,ν̄(ν) =
1√
2

[
δνν̄ − δν(−ν̄)

]
, (3.30)

where ν̄ is an arbitrary (fixed) fermionic Matsubara frequency. It is obvious that all parts of

χ
νν′(ω=0)
d which are invariant under ν → −ν and ν ′ → −ν ′ vanish when acting on Ed,ν̄(ν) as

defined in Eq. (3.30). Hence, only the contributions proportional to δνν′ and δν(−ν′) survive,

yielding, after a length but straightforward calculation, the following eigenvector equation:

∑

ν′

χ
νν′(ω=0)
d Ed,ν̄(ν

′) = β
ν̄2 − 3U2

4(
ν̄2 + U2

4

)2
︸ ︷︷ ︸

λd,ν̄

Ed,ν̄(ν). (3.31)

From this relation for can easily extract the analytic condition for the vanishing of the

eigenvalue λd,ν̄ :

ν̄ =
π

β
(2n̄+ 1) =

√
3U

2
⇒ T

U
=

√
3

2π

1

2n̄+ 1
, (3.32)

where n̄ ∈ N0. From Eq. (3.32) it is obvious that the smallest U for which a vanishing

eigenvalue, and, hence, a divergence in Γ
νν′(ω=0)
d can be observed, is given by n̄ = 0, i.e.,

T
U
=

√
3

2π
. This represent evidently a strong support for the DMFT results of Fig. 3.20, where

the dashed red line, denoting our divergence condition for the atomic limit, is approached

asymptotically by the numerical DMFT data for the first instability line of the phase diagram,

in the regime of large values of U and T . We should note, moreover, that the Ansatz (3.30)

for the eigenvector of χ
νν′(ω=0)
d is not the only one which leads to a vanishing eigenvalue for

χ
νν′(ω=0)
d . However, the DMFT numerical data indicate quite clearly that the form for Ed,ν̄(ν)
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in Eq. (3.30) leads to the smallest possible value of U , for which a vanishing eigenvalue of

χd (and, hence, a divergence of Γd) arises.

By increasing U , on the other hand, a similar analysis can be performed for the singlet channel

χ
νν′(ω=0)
s . In this case numerical calculations as well as generic analytical considerations

suggest the following structure of the (normalized) eigenvector connected to the vanishing

eigenvalue(s):

Es(ν) = 2B cos

(
βB

2

)√
2B

β[βB − sin(βB)]

1

ν2 −B2
, (3.33)

where B ∈ R
+ is a real positive constant. Applying χ

νν′(ω=0)
s to the Ansatz for the eigenvec-

tors in Eq. (3.33) and considering the requirement that the corresponding eigenvalue should

vanish, leads to an infinite set of transcendental equations for the two real (positive) variables

Uβ = U
T
and B, from which only two are independent. They have been solved with help of

Mathematica [139], confirming also the large U −T asymptotic linear behavior of the second

divergence curve for Γ
νν′(ω=0)
s in the phase diagram in Fig. 3.20 (orange diamonds). Let us

note that, very recently, we observed that the very same Ansatz (3.33) for the eigenvector in

the singlet case applies also in the density channel, leading to a simultaneous divergence in

this channel too.

In conclusion, while the general problem of low-frequency singularities of the DMFT irre-

ducible vertices, as well as their physical interpretation and impact onto numerical algorithms

based on irreducible quantities (e.g., parquet), remains completely open, our exact atomic

limit results represent an important first step for “supporting” the numerical evidence of

vertex divergences in more general cases. Furthermore, they also might provide a guidance

to “classify” the numerical low-frequency singularities of Γr encountered by increasing U :

From the atomic limit results we have learned that two classes of eigenvectors with vanishing

eigenvalues of χd exist. The first (and simplest) one is given by Eq. (3.32), and the second one

(associated with a simultaneous divergence in the singlet channel) is reported in Eq. (3.33).

Finally, our findings also demonstrate the existence of an infinite number of singularities in

the atomic limit, strongly suggesting that an analogous proliferation of instabilities will be

found in the DMFT phase-diagram of the Hubbard model by further approaching the MIT

(as it seems also confirmed by preliminary numerical calculations). Possible extensions of

analytical studies of the atomic limit out of half-filling as well as corresponding numerical

DMFT/DCA calculations will be certainly performed in the immediate future for a clarifica-

tion of these highly non-perturbative features, which completely surround the Mott-Hubbard

MIT in the phase diagram of the Hubbard model.
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a)

(ν + ω) ↑ (ν ′ + ω) ↓

ν ↑ ν ′ ↓
ν1 ↑

ν3 ↑

ν2 ↓ ν4 ↑

ν6 ↓

ν5 ↓

(ν + ω) ↑ (ν ′ + ω) ↓

ν ↑ ν ′ ↓
ν1 ↓

ν3 ↓

ν2 ↓ ν4 ↑

ν6 ↑

ν5 ↑

ν4 = ν + ν ′ + ω − ν1 + ν2 − ν3
ν5 = ν + ω + ν2 − ν3
ν6 = ν − ν1 + ν2

ν4 = −ν − ν ′ − ω + ν1 + ν2 + ν3
ν5 = −ν − ω + ν2 + ν3
ν6 = −ν + ν1 + ν2

b)

Figure 3.21: U4-contributions to the perturbative expansion of the fully irreducible vertex
(“envelope”-diagrams) in particle-hole notation for Λνν

′ω
↑↑ (a) and Λνν

′ω
↑↓ (b). The figure is

readapted from Ref. [48].

3.2.3 Fully irreducible vertices

In this subsection we present results for the fully irreducible vertex Λ, whose

calculation has been performed using formulas reported in Appendix C. We

recall here, that the fully irreducible vertex can be viewed as the most fun-

damental “brick” among the two-particle vertex functions, representing the

diagrammatic analog of the self-energy at the two-particle level. Hence, ap-

proximations based on this level of the diagrammatics, such as the parquet

approximation or the DΓA are extremely appealing from a theoretical point

of view. At the same time, the calculation and the manipulation of fully

irreducible vertex functions is quite challenging, so that the few calcula-

tions [45,46,140,141] based on approximations for Λ just replace the latter

with its lowest-order contribution (U ), with the only exception of Ref. [142],

where the parquet formalism has been combined with the dual fermion the-

ory (see also Sec. 4.4.1).
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Figure 3.22: a) Fully irreducible vertex functions vs. the two fermionic frequencies ν
and ν ′: density part Λνν

′ω
d −U (left) and magnetic part Λνν

′ω
m +U (right) for U = 0.5

at half-filling (β = 26.0) for ω = 0. b) The corresponding 4th-order perturbation theory
results (“envelope” diagrams in Fig. 3.21). Note, in all plots, the emergence of a typical
“butterfly”-shaped structure at low frequencies and the occurrence of the trivial lowest
order [±(2)U ] asymptotic behavior in all directions of the ν − ν ′ plane. The figure is
reproduced from Ref. [48].

Motivated by the lack of studies on the frequency dependence of the fully irre-

ducible local vertices, even at the level of perturbation theory, we will present

our numerical and analytical results with more details than in the previ-

ous subsections and we also explicitly consider the effects of the frequency

dependence of Λ in selected physical and thermodynamical quantities as a

function of the Hubbard interaction U .

By definition no channel-dependence of the fully irreducible vertex function

Λ can exist, since it is irreducible in all channels. Hence, as for F in Sec.

3.2.1, here we also restrict ourselves to the DMFT result for the density and

the magnetic vertices, which represent the two possible spin combinations.

Diagrammatically, the lowest order contribution to the fully irreducible vertex

is the bare Hubbard interaction U (diagram P6 in Fig. 3.10b). The next terms

in the perturbation expansion are already of 4th order: These diagrams have

the form of an envelope, and, hence, are usually referred to as “envelope”-

diagrams. The envelope-diagrams for the ↑↑- and the ↑↓-case are shown in

Fig. (3.21).

Let us just mention, here, one interesting feature for the ↑↑ diagrams, which

is specifically relevant for the particle-hole symmetric case: At half-filling

the contributions of the first and the second (as well as of the third and

the fourth) diagrams in Fig. 3.21a become exactly the same, i.e., one can

take only the first and the third diagram and assign a factor two to them.
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Figure 3.23: (color online). Λνν
′ω

d −U (left) and Λνν
′ω

m +U (right) for U =0.5 at half-filling
(β=26.0) for a selected one-dimensional snapshot at fixed ω=0 or ω=20π

β
, ν ′= π

β
, as a

function of ν. The figure is reproduced from Ref. [48].

This happens because all these diagrams differ only for the direction of the

propagators in their closed fermion loops containing four internal electron

↓-lines. This is again analog to Furry’s theorem [69,126] of quantum electro-

dynamics, which was already discussed in Sec. 3.2.1 below Eq. (3.24) for a

third-order contribution to the full vertex function F . In contrast to the sit-

uation explained there, where an odd number of fermion lines in a fermionic

loop led to a cancellation of diagrams (see also Fig. 3.12), we are dealing here

with a closed loop containing an even number of fermions. This leads to a

factor 2 for the diagram under consideration rather than to a cancellation.

In Fig. 3.22, eventually, our DMFT results for Λνν
′ω

d and Λνν
′ω

m are compared

with the U4-contributions from perturbation theory, given by the envelope

diagrams in Fig. 3.21. Algebraically, the contribution stemming from such a

diagram is given by:

Λνν
′ω

env = (±)
U4

β3

∑

ν1ν2ν3

G(ν1)G(ν2)G(ν3)G(ν4)G(ν5)G(ν6), (3.34)

where ν4, ν5 and ν6 are functions of ν1, ν2 and ν3 (reported in Fig. 3.21) rather

than independent summation variables. We recall, that the lowest order dia-

gram, which is simply given by the bare Hubbard interaction U (diagram P3

in Fig. 3.10b) here, is subtracted in both cases, i.e., only deviations from this

constant contribution are plotted.

From Fig. 3.22 one can see that the characteristic “butterfly”-shaped fre-

quency structure of the DMFT results for Λνν
′ω

d,m closely resembles that of the
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envelope diagram. This is expected for a relatively small U = 0.5 and it is also

demonstrated in Fig. 3.23. There a one-dimensional slice of Λ is plotted (ω

and ν ′ are fixed) in comparison with perturbation theory, i.e., the envelope-

diagrams. The deviations from the constant term ±U for Λνν
′ω

d and Λνν
′ω

m ,

respectively, are of the order U4∼10−2−10−3 which is perfectly consistent with

our numerical data. As we will discuss in the next subsection, this situation

can radically change for larger values of U .

Our numerical results show also that, contrary to the case of F and Γr,

due to the complete absence of reducible contributions, the high-frequency

asymptotic value of Λd,m is always given by the lowest order terms (±U ). As

this asymptotic property is intimately connected with the intrinsic fully irre-

ducible nature of Λ, this result holds evidently independently from the value

of U . A consequence for numerical calculations based on this finding will be

discussed in Sec. 3.2.5.

Divergences of Λ. Furthermore, let us finally discuss the divergences which can be ex-

pected (and observed) in the frequency structures of the fully irreducible vertex Λνν
′ω

r . First,

we recall that Λνν
′ω

r is obtained from F νν′ω
r and Γνν

′ω
r by means of the corresponding explicit

parquet relations which are algebraic and linear in F νν′ω
r and Γνν

′ω
r [see Eqs. (C.1)-(C.2) in

Appendix C]. Hence, Λνν
′ω

r cannot exhibit new divergences, which are not already present in

either the full vertex F νν′ω
r or in the vertices Γνν

′ω
r irreducible in the channel r.

As for the infinities in F νν′ω
r (which can be, partially, also found in Γνν

′ω
r ), we discussed

in Sec. 3.2.1 that they originate from bubble diagrams as depicted in Fig. 3.10, or, more

precisely, from the full susceptibilities obtained by dressing the bubbles with all possible

vertex corrections. In any case, these diagrams are all reducible in one specific channel and,

therefore, do not contribute to the fully irreducible vertex Λνν
′ω

r . Consequently, also the

corresponding divergent features are not present in the fully irreducible vertex functions.

In fact, one can explicitly show that all the bubble contributions leading to infinities due

to the T = 0 divergence of χm(0) when approaching the MIT cancel out in the Parquet

equations (C.1)-(C.2) for Λνν
′ω

r , which is consistent with the previous observation of a uniform

asymptotic behavior of these vertex functions.

On the other hand, the low-frequency divergences of Γνν
′ω

r , which originate from the matrix

inversion of the Bethe-Salpeter equations, persist also in the fully irreducible vertex Λ. In-

deed, by a closer inspection of the explicit expression for the parquet equations in Appendix

C, it is obvious that no cancellation of these infinities of Γνν
′ω

r can occur. From another
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perspective, when considering the fully irreducible as the most basic among the vertex func-

tions, one can even state that these divergences have their origin in Λνν
′ω

r rather than in

Γνν
′ω

r , which is also confirmed by the strong enhancement (and a change of sign) of the low-

frequency structures of Λνν
′ω

r at the corresponding values of the parameters U and T , where

the low-frequency singularities of Γr are found.

3.2.4 Effects on physical quantities

In this section, we aim at establishing a connection between the results for

two-particle quantities, we have presented so far, and the more familiar re-

sults at the one-particle level, i.e., those for the self-energy of the system. In

a second step, the connection with some selected physical quantities, which

are typically analyzed in the context of the Hubbard model, will also be illus-

trated. As for the self-energy, this goal can be easily achieved by exploiting

the Schwinger-Dyson equation of motion which is given in Eq. (2.194) and il-

lustrated in Fig. 2.14 in Sec. 2.2.6. Inserting the parquet decomposition [Eq.

(2.162)] into this equation, i.e., splitting up F νν′ω
↑↓ into a fully irreducible and

the three reducible parts allows us to identify four different contributions to

the self-energy stemming from the irreducible and the reducible part of the

full vertex function F νν′ω
↑↓ . Specifically, in the upper row of Fig. 3.24 we com-

pare the DMFT self-energy Σ(ν) with its contributions which originate from

the fully irreducible vertex Λνν
′ω

↑↓ only and from its lowest order contribution

(U ), respectively. For this purpose we used the equation of motion (2.194)

and replaced F νν′ω
↑↓ by Λνν

′ω
↑↓ and U , respectively (where the second case simply

yields diagrammatic contributions similar to those of the 2nd-order perturba-

tion theory).

For the relatively small U = 0.5 (upper left panel in Fig. 3.24) there is no

visible difference between the self-energies calculated with the frequency-

dependent Λ of DMFT and the bare U . Furthermore, both of them almost

coincide with the exact DMFT local self-energy. This is to be expected here,

since in the perturbative regime the relative difference between the full Λνν
′ω

↑↓
and U is extremely small, as we have already noticed in Fig. 3.23. Moreover,

for the rather small value of U under consideration second-order perturbation

theory (i.e., where F νν′ω
↑↓ is replaced by U ) should constitute a good approxi-

mation for the exact local DMFT self-energy, as it can also be observed from
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Figure 3.24: Upper row: DMFT self-energy (red circles) compared to the contributions
stemming from Λνν

′ω
↑↓ (blue squares) and from U (light-blue triangles) only, respectively,

for U=0.5 (left) and U=1.5 (right); Lower row: double occupancy (left) and susceptibil-
ities (right). The error bars refer to the finite frequency range adopted for the fermionic
frequency summations over ν, ν ′.16 The figure is reproduced from Ref. [48].

the upper left panel in Fig. 3.24.

On the other hand, for a larger value of the Hubbard interaction (U = 1.5,

upper right panel in Fig. 3.24) one can see that, while the major part of

the self-energy is still coming from the fully irreducible part of F νν′ω
↑↓ , the

frequency dependence of Λνν
′ω

↑↓ becomes essential for the calculation of the

self-energy. Hence, setting Λνν
′ω

↑↓ = U , as it is done, e.g., in the parquet ap-

proximation, would yield results quite far from the correct structure of the

one-particle local self-energy, which appears to be determined, to a major

extent, by frequency-dependent high-order terms of Λνν
′ω

↑↓ .

Very similar conclusions can be drawn by analyzing the contribution of Λνν
′ω

↑↓
to the value of the double occupancy n↑n↓ =

1
βU

∑
ν Σ(ν)G(ν) as a function of U ,

which is shown in the lower left panel of Fig. 3.24. By comparing the results

16Note: The error bars have been estimated here by comparing the result for the summations over a finite-
frequency range with the exact DMFT results, which can be obtained directly for n↑n↓ and χνν′ω

d,m from the
ED impurity solver.
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obtained with the full DMFT self-energy, with those obtained considering

Λνν
′ω

↑↓ only, we observe that also in this case the fully irreducible vertex gives a

significant contribution to the well-known reduction of the double-occupancy

value w.r.t. its not interacting value of n↑n↓ = n↑ × n↓ = 0.25 with increasing

U . Also in this case, however, for U > 1.0 the results calculated with the

approximation Λνν
′ω

↑↓ = U deteriorate very quickly, so that at U ∼ 1.4 a very

incorrect estimate for n↑n↓ would be obtained by neglecting the frequency

dependence of Λνν
′ω

↑↓ .

The situation appears more articulated, however, when analyzing the case

of two-particle local response functions, such as the density χd(ω) and mag-

netic χm(ω) local susceptibilities at zero bosonic frequency (ω = 0) [see also

Sec. 2.2.2.6, in particular page 55]. Such thermodynamic quantities contain

a very important piece of information for the physics of the Hubbard model

as it was already discussed in Secs. 2.2.2.6 and 3.2.1: Approaching the MIT

is marked by a constant enhancement of χm(ω) with increasing U [24]. In

fact, a T = 0 divergence of χm ≡ χm(ω = 0) actually signalizes the transition to

the Mott-insulating state, as it corresponds to the formation of a stable local

magnetic moment in the Mott phase. At the same time, the reduced mobility

of the electrons with increasing values of the local Coulomb interaction U

is mirrored in a gradual suppression of the local charge fluctuations, and,

hence, in a monotonous decrease of χd ≡ χd(ω), with U . Such trends are nat-

urally well captured by our DMFT calculations, performed via a summation

of both Matsubara fermionic frequencies ν, ν ′ of the generalized susceptibility

χνν
′ω=0, defined as in Eq. (2.159). Following the same procedure described

above, we have extracted the contribution to χd and χm originated by the fully

irreducible vertex Λνν
′ω

↑↓ and its lowest-order term (U ). While only limited in-

formation can be extracted from the χd, as it is becoming very small in the

non-perturbative region, by analyzing the data for χm some relevant differ-

ence with the previous cases can be noted. The contribution to χm stemming

from the irreducible vertices Λνν
′ω

↑↓ and reducible diagrams in F νν′ω
↑↓ (i.e., Φνν

′ω
↑↓ )

are comparable. The latter contributions appear to become the predominant

ones in the region U > 1.0 where a stronger enhancement of χm is observed.

This is not surprising since it is known that for an accurate description of

a susceptibility at the corresponding (second-order) phase transition the in-

clusion of ladder scattering diagrams is crucial. We also note here that the
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relative error made by replacing Λνν
′ω

↑↓ = U is naturally increasing with U ,

though remaining weaker than in the previous cases.

3.2.5 Possible algorithmic developments and improvements

After having presented our numerical results for the local vertex function of

DMFT, we close this section by discussing here some possible practical ap-

plications of our results in improving or developing algorithms for computing

the two-particle properties in DMFT, as well as in other many-body methods.

Let us briefly recall that the computation of two-particle vertex functions in

ED, as well as in QMC, over a large number of frequencies poses evidently

significant practical problems (from the stability of the results in the high-

energy regime, to the storing of increasingly larger arrays). In this respect,

numerical schemes capable to limit the frequency region of the actual calcu-

lations of the generalized susceptibility are very useful. A relevant example

is the algorithm illustrated in Ref. [143], which allows for a considerable

reduction of the size of the frequency region for the numerical calculation of

χνν
′(ω=0), aiming at a much faster computation of the q-dependent susceptibil-

ities in DMFT at zero frequency. This algorithm is based on the replacement of

the calculated high-frequency values of the irreducible vertices Γr, with their

corresponding asymptotics. In this respect, our results demonstrate that the

high-frequency asymptotics of the fully irreducible vertex Λ always reduces

to the lowest order perturbative contribution (U ). This provides (i) an inde-

pendent confirmation of the assumptions behind the analytical derivation of

the high-frequency behavior of Γr of Ref. [143] and (ii) useful information for

its possible extension to the finite frequency (ω 6= 0) case [128]. Specifically,

the analysis of the frequency structure of the irreducible vertices Γr at finite

bosonic frequency (see, e.g., Figs. 3.15, second row, and 3.18) suggests the

way to generalize the results of Ref. [143] to an arbitrary (bosonic) frequency

case: One can easily note that the simple double diagonal (“×”) structure of

Γr vertices at zero frequency is replaced by a square-like structure. Hence,

the frequency region which one has to calculate exactly will be no longer the

low frequency one, but one should rather keep all the vertex values for fre-

quencies belonging to or in the proximity of the square-structure, replacing

the remaining ones with the corresponding asymptotics.
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Figure 3.25: Irreducible vertices for the attractive model: Γνν
′ω

d −U , Γνν
′ω

m +U , Γνν
′ω

s − 2U
and Γνν

′ω
t for U = −0.5 at half-filling (β = 26.0) for ω = 0. The figure is readapted from

Ref. [48].

Finally, let us stress here, that many calculations (not only DMFT based)

of the Hubbard model aiming to include dynamical vertex corrections may

greatly benefit from (approximated) simplifications or parameterizations of

the vertex structures, e.g., considering only the most important features of

F , Γ or Λ (see, e.g., the proposed parameterization schemes of the vertex

function F for functional renormalization group (fRG) calculations on the

AIM [134,144], the Hubbard model [145] or even spin-only models [146]). We

also emphasize, here, that the challenge of finding the most efficient vertex

parametrization will be also a central issue for algorithmic improvements of

the recently proposed DMF2RG scheme [147]. In this light, our results may

either guide the construction of such approximations, or –at least– provide

a very precise reference for evaluating the correctness of the approximations

already in use [134,148–150].

3.3 DMFT Results for the attractive model

Before analyzing, in the next chapter, the results which can be obtained by

using the two-particle local vertex of DMFT for including nonlocal correla-

tions at all length scale within diagrammatic extensions of DMFT, we will

devote the last section of this chapter to study the two-particle DMFT vertex

functions for the case of an attractive interaction (U < 0), i.e., for the attractive

Hubbard model. To this end we refer the reader also to Sec. 2.2.5, where the

mapping between the repulsive and the attractive case by means of a partial

particle hole transformation for the half-filled system was discussed.

Obviously, one should keep in mind that an attractive interaction among

electrons can represent at most an “effective” low-energy description of more
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Figure 3.26: Γνν
′ω

m for U = +0.5 (left) and Γνν
′ω

pp,↑↓ =
1
2
(Γνν

′ω
s + Γνν

′ω
t ) for U = −0.5 (right),

both at half-filling (β = 26.0) for ω = 0. The figure is readapted from Ref. [48].

complex microscopic phenomena in condensed matter. However, the physics

described by the attractive Hubbard model is far from being merely aca-

demic. In fact, the latter represents an ideal playground to investigate the

physics of the superconducting and charge-density wave ordered phases in

the intermediate-to-strong-coupling regime and, more generally, the impor-

tant problem of the BCS-Bose Einstein crossover [61]. These issues have

raised a remarkable interest also because of their possible relevance to the

physics of high-temperature superconductivity. Let us recall, e.g., the anal-

yses of the actual role played by the fluctuations of the phase of the super-

conducting order parameter in the underdoped cuprates [151–154], and the

possibility to derive phase-only effective theories [155,156] to capture a part

of the underlying physics of these materials, going beyond [157] the stan-

dard BCS assumptions. As for DMFT, its application to the attractive case

was very useful to identify [158,159] the hallmarks of the BCS-Bose Einstein

crossover in several thermodynamic and optical properties of correlated sys-

tems [160–163]. We should also mention here the novel perspectives opened

by the “actual” experimental realization of quantum models with tunable at-

tractive or repulsive interaction, when confining ultra-cold atoms in the in-

terference pattern of laser sources [164,165]. This exciting new physics is al-

ready stimulating novel DMFT studies [166] of the attractive Hubbard model.

Similarly as for the repulsive case, also for the attractive model, previous

DMFT studies focused mainly on the one-particle properties. Even the well-

known mapping [54] between the repulsive and the attractive Hubbard model

(see Sec. 2.2.5), to the best of our knowledge, has never been explicitly ap-
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plied to investigate the connections between the repulsive and attractive mod-

els at the level of the two-particle vertex functions. Hence, here our aim is to

extend our theoretical analysis of Sec. 3.2 also to the U < 0 case, identifying

and interpreting the observed frequency structures in the vertex functions

in terms of the mapping onto the corresponding repulsive case and of the

discussions in the previous section(s).

In this respect, let us recall the consequences of the partial particle-hole

transformation of the half-filled Hubbard model or, more precisely, of the

AIM associated to the DMFT solution of the half-filled Hubbard model, for

the properties of the local Green’s functions of the system (see Sec. 2.2.5).

The (purely imaginary) local one-particle Green’s function (and, hence, also

the corresponding self-energy) for (half-filled) systems, which differ only in

the sign of the Hubbard interaction parameter U , are indeed identical, as it

is indicated in Eq. (2.176). At the two-particle level the situation is obvi-

ously more complicated. While for the ↑↑ case the corresponding two-particle

Green’s functions, generalized susceptibilities and vertices coincide for the

attractive (−U ) and the corresponding repulsive (+U ) model [Eq. (2.175)], it is

shown in Sec. 2.2.5 that the ↑↓ susceptibility with U < 0 is mapped onto the

magnetic susceptibility for U > 0 [see Eqs. (2.185) and (2.186)]. Physically,

this can be understood as follows: Fluctuations of the x- and y-spin com-

ponent (i.e., the order parameter of the antiferromagnetic phase transition)

at positive U are equivalent to fluctuations of the “cooper-pair density“ ĉ†↑ĉ
†
↓

(i.e., to the superconducting order parameter) at negative U , as it was already

demonstrated in the discussion about the SO(4) symmetry of the half-filled

Hubbard model and AIM, respectively, in Sec. 2.2.2.6 [see Eqs. (2.127) and

(2.128)]. For the lattice model this means that, for any antiferromagnetic

instability (with orientation of the magnetic field in the xy-plane) at a given

point (U > 0, T ) in the phase diagram, there exists a superconducting insta-

bility in the corresponding attractive model at (−U, T ).
We can now verify our analytical results from Sec. 2.2.5, which we re-

called briefly in the previous paragraph, and gain further insight of the ver-

tex structures for U < 0, by looking at the corresponding DMFT data. Our

DMFT results for the Γr’s in the four different channels are shown in Fig.

3.25 for the case U = −0.5. Comparing it with Fig. 3.15, i.e., the Γ’s for

the corresponding repulsive case U = +0.5, one observes that the triplet-
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channel Γνν
′ω

t is unchanged. This is expected because the triplet channel

is identical to the ↑↑ particle-particle channel Γνν
′ω

pp,↑↑, and the ↑-creation- and

annihilation-operators are not affected by the particle-hole transformation

[see Eq. 2.170)].

Furthermore, following Eqs. (2.185), (2.186) and (2.188), which state that

the magnetic-channel is mapped onto the particle-particle ↑↓-channel (plus
an additional frequency shift), we compare these two channels in Fig. 3.26.

Performing the additional transformation ν ′ → (ω = 0)− ν ′ in the plot for Γνν
′ω

pp,↑↓
(i.e., reflecting the plot along the x = ν-axis) one sees that the two plots are

indeed identical.

Our analytical and numerical results for the case U < 0 can be, hence, sum-

marized as follows. The main features of the vertices Γνν
′ω

r (and logically of

the corresponding F νν′ω
r ) appear also for U < 0 along the diagonals and origi-

nate from reducible processes. As a consequence, also in the attractive case,

the “topology” of the vertex functions remains essentially preserved upon in-

creasing U . In contrast to the repulsive case, however, as suggested by Eq.

(2.186) and Fig. 3.26, the strong enhancement of the main diagonal struc-

ture, identified as an hallmark of the MIT, will be now visible in the secondary

diagonals (ν = −ν ′) in some of the channels (e.g. magnetic, singlet). Physi-

cally, this reflects simply that for U <0, χpp,↑↓(0) [instead of χm(0)] is diverging

at the MIT, since the “insulating” (symmetry broken) phase is now consisting

of a collection of preformed local Cooper pairs.





Chapter 4

Nonlocal Correlations beyond DMFT

”
Die Mittelmäßigkeit wiegt immer richtig, nur ist ihre Waage falsch.“(A. Feuerbach)

In this chapter we discuss the the importance of nonlocal electronic correlations and the

development of new methods beyond DMFT to take them into account in theoretical cal-

culations. While cluster extensions of DMFT capture accurately short-range correlations

(i.e., those within the cluster size), diagrammatic methods are needed for treating nonlocal

electronic correlations on all length scales. The dynamical vertex approximation (DΓA) is

an important representative of such methods, and, hence, will be addressed explicitly in this

chapter. First, we discuss its basic physical idea and describe its actual implementation. We

also present DΓA results for the case of simple nanoscopic systems and we apply a simpli-

fied version of the DΓA equations (ladder approximation) to provide an accurate description

of the critical properties of the antiferromagnetic phase transition in the three-dimensional

Hubbard model beyond the weak coupling regime. In the second part of the chapter, we

illustrate other diagrammatic approaches based on the functional integral formalism, such as

the dual fermion (DF) theory. Within this framework, eventually a new method based on

the one-particle irreducible (1PI) functional for the Green’s functions is proposed. This novel

1PI approach aims at improving the treatment of nonlocal correlations with respect to the

standard (ladder) implementation of both DF and DΓA, and also allows for a comparison of

the diagrammatic content of the existing techniques within a unifying formalism.

4.1 Importance of nonlocal correlations

In the previous chapter, we demonstrated the strength of DMFT in describing correlated elec-

tron system on a model level as well as for real materials. However, being a mean field theory

147
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in the space coordinates, DMFT captures only the local part of the electronic correlations.

While in many situation this constitutes the main contribution, several important physical

phenomena have their origin in nonlocal electronic correlations. Let us just mention among

many the high-temperature superconductivity in the cuprates [17] or pnictides [167, 168],

transport through newly engineered hetero- and nanostructures [30, 169–174], the physics

and entropy of ultracold atoms trapped in optical lattices [164, 175], or the occurrence of

quantum critical points (QCP) in heavy fermion systems [176], which cannot be described

accurately in standard DMFT.

The limitations of DMFT are also easily understandable from a purely theoretical point of

view: As a mean field theory DMFT considers the effect of electrons at different lattice

sites on the electron(s) at one specific site by a (self-consistent) mean field, i.e., it takes an

average over all neighbors of this specific site. From this point of view DMFT resembles the

classical mean-fields theories even though, in contrast to the latter, it avoids a time average

and, hence, takes into account all local quantum fluctuations at the given lattice site. From

a statistical point of view, replacing a random variable by an average over its realizations

represents a good approximation if the number of samples is large. In fact, if this number

approaches infinity, which corresponds to the limit of infinite coordination number z → ∞ or

dimensions d → ∞ in DMFT, the approximation gets even exact according to the law of large

numbers [177]. Also at high temperatures, where classical thermal fluctuations dominate over

the quantum fluctuations, independent of whether local or nonlocal, DMFT will be typically

rather accurate. However, in the opposite limits nonlocal spatial correlations can become

predominant:

• low dimensional systems: Considering, e.g., the one-dimensional system depicted

in the left panel of Fig. 4.1, one can observe that the mobility of the electron at the

second lattice site (from left) depends strongly on the occupation of the two neighboring

sites. Indeed, while there is no obstacle that prevents the particle moving to the left,

the hopping of this electron to the adjacent site on the right would cost an energy U .

Hence, if U is large, the probability for the latter process to happen is very low, which

drastically lowers the mobility of the electron at the selected site. Here we see how this

system exhibits significant (in this case: short-ranged) nonlocal spatial correlations

which, of course, would be washed out by a mean-field description such as DMFT.

• second-order phase transitions: In the vicinity to a second-order phase transition

to a long-range ordered (e.g., ferromagnetically as it is indicated in the right panel of

Fig. 4.1) phase spatial fluctuations on all length scales occur in a system. Specifically,
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Figure 4.1: Schematic representation of typical situations, where nonlocal spatial correla-
tions play a crucial role (in a lattice model). Left panel: For the low dimensional systems
(in this picture one-dimensional) the mobility of an electron at a given site (e.g., the second
from the left) depends strongly on the precise configuration of the neighboring sites, which
renders a mean-field description problematic. Right panel: In the vicinity of a second-
order phase transition to an spatially ordered phase the system is governed by fluctuations
on all length scales, making the local description of DMFT a poor approximation in this
situation.

exactly at the transition point the correlation length ξ of the fluctuations corresponding

to the emergent order, diverges, rendering the local DMFT treatment of this physical

phenomenon a very poor approximation.

From the above discussion, it is clear that the inclusion of nonlocal spatial correlations in our

calculations is crucial for the understanding of the mechanism of many relevant and exciting

physical phenomena at the frontier of the scientific research in condensed matter physics.

On the other hand, one would also like to keep the correct treatment of the local correla-

tions, provided by DMFT, since they are essential for an accurate description of the Hubbard

Hamiltonian in the intermediate-to-strong coupling regime, as well as for capturing nonper-

turbatively the physics of the Mott-Hubbard metal-to-insulator transition. This motivates

us to search new methods, which add -on the basis of DMFT- nonlocal corrections beyond its

spatial mean-field description, and can provide for a better understanding of spatial correla-

tion effects occurring in strongly correlated electron systems. To this end, two main routes

have been followed: (i) Different groups have developed self-consistent algorithms for cluster

extensions of DMFT, where the single impurity of DMFT is replaced by a cluster of sites,

and (ii) diagrammatic extensions, which rely on the Feynman-diagrammatic representation

of one- and two-particle Green’s functions. Both routes will be discussed in the following

with a particular focus on the diagrammatic extensions, which represent one of the principal
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Figure 4.2: Cluster extensions of DMFT: The actual lattice problem is replaced by a
cluster of interacting sites, which is embedded into a, self-consistently determined, non-
interacting bath, allowing for the inclusion of spatial correlations within the cluster size.
Cellular DMFT (CDMFT) and dynamical cluster approximation (DCA) correspond to the
two possibilities of considering the cluster in real space (CMDFT) or momentum space
(DCA), respectively.

topics of this work.

4.1.1 Cluster extensions of DMFT

The basic idea of cluster extensions of DMFT is to replace the actual infinite lattice problem

with a finite cluster ofNc interacting sites which hybridizes with a self-consistently determined

non-interacting bath (see Fig. 4.2), that accounts for the rest of the lattice. In this respect,

these schemes represent the most natural extension of the single site DMFT algorithm to a

cluster of sites. Specifically, the cluster can be defined either in real space, leading to the

so-called cellular DMFT method (CDMFT) [178, 179], or in momentum space, where the

corresponding approach has been coined “dynamical cluster approximation” (DCA) [180–

182]. The latter formulation has the advantage of not breaking (when present) the lattice

translational symmetry of the system.

In order to better clarify the basic characteristics of these methods, let us first consider the

limiting cases of a small and a large number Nc of cluster sites. Taking into account only

Nc = 1 cluster-site reproduces DMFT, which well justifies the denotation of cluster methods

as extension of DMFT. On the other hand, forNc → ∞ the exact solution of the lattice model

is recovered. Hence, in this respect, DCA or CDMFT with 1 < Nc <∞ can be considered as

methods which “interpolate”, systematically, between the DMFT and the exact solution of

the lattice problem. For practical calculations, the cluster size has to be restricted obviously

to a relatively small value of Nc, by numerical limitations due to the exponential growth of

the Hilbert space with the number of sites of the cluster. At present calculations with up

to ∼ 100 cluster sites are feasible [183, 184], which corresponds, e.g., to 4 − 5 sites in each
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Figure 4.3: Left panel: DCA phase diagram (with Nc = 4) for the two-dimensional Hubbard
model on a simple cubic lattice. δ represents the amount of hole-doping in the system.
The figure is reproduced from Ref. [182]. Right panel: Formation of the pseudogap in the
spectrum of the two-dimensional Hubbard model at half-filling. The figure is reproduced
from Ref. [187].

direction for the three-dimensional simple cubic lattice1.

Obviously, cluster extensions of DMFT are capable of treating nonlocal electronic correlations

within the cluster size very accurately. In this respect, DCA was quite successful in analyzing

the effect of short-range nonlocal correlations on spectral and thermodynamic properties of

the two- and three-dimensional Hubbard model, such as, e.g., the formation of a gap in

the spectral function at low temperatures (right panel in Fig. 4.3 from Ref. [187] for the

half-filled case, and, for the pseudogap occurrence out of half-filling, see Refs. [188,189]), the

d-wave superconductivity for the hole-doped model which might be relevant for the theoretical

description of the high-temperature superconducting cuprates (left panel of Fig. 4.3 from

Ref. [182]), the momentum space anisotropy in the (nonlocal) self-energy [190], the d-wave

symmetry of the effective pairing interaction in the repulsive case [191], and, more recently,

the thermodynamics for the three-dimensional model in the vicinity of the antiferromagnetic

phase transition [184].

However, as it is easy to imagine, long-range spatial correlations are taken into account only

1Note that the accuracy of a DCA calculation depends not only on the actual number of cluster sites
but also on the geometry of the cluster, in particular for small cluster sizes or the purpose of extrapolations.
It can be indeed shown that for each (small) number Nc of cluster sites a different cluster geometry is
advantageous, leading to the so-called Betts clusters which are in general not simple squares or cubes in two
and three dimensions, respectively [127, 185, 186].
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on a mean-field level by cluster extension of DMFT. This renders a comprehensive description

of second-order phase transitions difficult within these approaches. In fact, at a second-order

phase transition one observes fluctuations on all length scales as the corresponding correla-

tions length ξ diverges. As a matter of course, cluster extensions of DMFT cannot capture

directly this physics and, hence, fail in describing critical properties adequately. Even extrap-

olations of the results to an infinite cluster size (Nc → ∞), which –when properly done on a

apecific subset of (Betts) clusters– allow for an estimation of the transition temperature to a

magnetically ordered phase [127] or of the Kosterlitz-Thouless Tc for d-wave superconductiv-

ity at finite dopings [182], cannot yield accurate predictive results for the critical exponents

of the system2. Hence, for the description of critical properties of the Hubbard and related

models, as well as for the treatment of nonlocal correlations which remains feasible also for

realistic systems [192], we aim at the development of complementary methods for taking into

account nonlocal correlations on all length scales on the same footing. Such approaches,

known as diagrammatic extension of DMFT, might be also combined in the future with clus-

ter methods in general multi-scale schemes [193]. Their state-of-the-art development will be

presented in the next sections.

4.1.2 Diagrammatic extensions of DMFT

Let us start analyzing the common structure underlying all diagrammatic extensions of

DMFT. Though we try to keep the discussion in this section as general as possible, one

should keep in mind that we aim at approximate treatments of Hubbard-like Hamiltonians.

At this point, a comment on the notation adopted in the following sections is also appropri-

ate: While in the previous two chapters (2 and 3) almost only local, i.e., k-independent, one-

and two-particle Green’s function were considered, in the following we will be also concerned

with the corresponding k-dependent objects. Hence, in order to avoid any confusion or am-

biguity in the denotation of Green’s and vertex functions, we will supplement here all local,

i.e., k-independent quantities, obtained from an AIM (mostly from that connected with the

DMFT solution of the Hubbard model), with an explicit subscript “loc”, differently from

the previous chapters 2 and 3. As for the k-dependent Green’s and vertex functions, we

will specify their momentum arguments explicitly, except for the specific situations, where a

subsumption of frequencies and momenta into a four-vector is convenient for the sake of a

2Consider, e.g., the following ascertainment in Ref. [182]: “However, . . . these critical exponents (i.e., that
of DCA) reflect the behavior at intermediate temperatures. Very close to the transition there must be a
region of mean-field behavior.”
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UG0(ν)

Figure 4.4: Diagrammatic elements of the standard perturbative expansion of the Hub-
bard model. Left: the bare propagator G0(ν,k) = 1

iν+µ−εk . Right: The bare Hubbard
interaction U .

better readability of the equations.

As indicated in the headline of this section, we will investigate extension of DMFT which are

based on the technique of Feynman diagrams. For this purpose we briefly recall the standard

diagrammatic perturbation theory for the Hubbard model. In general, two diagrammatic

elements are required for expanding the (n-particle) Green’s functions of a system into a

diagrammatic series. For the case of Hubbard (and related) models these ingredients are

depicted in Fig. 4.4 and discussed in the following: (i) A bare propagator is needed which

is given by the non-interacting Green’s functions of the system, G0(ν,k) =
1

iν+µ−εk . This is

represented by a (dashed) line on the left-hand side of Fig. 4.4. These propagators in turn

have to be connected in all possible, but topologically distinct, ways [38] by (ii) the bare

interaction which, in the case of the one-band Hubbard model, is given just by a constant

U (see right panel of Fig. 4.4). Using these diagrammatic elements one can construct all

possible diagrams for the self-energy of the system, as it is indicated in Fig. 2.5c. While for

a more detailed discussion of the Feynman diagrammatic technique we refer to section 2.2.4

in chapter 2 and the general literature [32, 33, 38, 194], let us stress here that a truncation

of the diagrammatic series at a certain order of U yields typically reasonable results only

if this interaction parameter is sufficiently small (i.e., much smaller than the bandwidth

W = εmax − εmin of the system). In this regime (U ≪ W ) it might be, hence, possible to

obtain a good approximation for the self-energy of the system by means of plain perturbation

theory up to some finite order in U (depending on, e.g., the temperature).

However, in this thesis we are interested in strongly correlated electron systems, where the

Coulomb repulsion between the electrons is not well screened. Hence, as for our models (like

the Hubbard model), we consider interaction parameters U which are of the order of - or

even larger than - the bandwidth W . In this nonperturbative region of the parameter-space

one cannot describe the physics of the underlying system by means of perturbation theory

up to any finite order in the interaction parameter U . For instance, the mechanism leading

to a Mott insulating state in the Hubbard model, which is marked by a divergence of the
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GDMFT

Gloc
γ
(4)
loc γ

(6)
loc

. . .

a) b)

Figure 4.5: Diagrammatic elements for diagrammatic extensions of DMFT; a) The bare
propagators are given by G≡ GDMFT(ν,k) = 1/ [iν + µ− εk − Σloc(ν)] and/or Gloc(ν) =
1/ [iν + µ−∆(ν)− Σloc(ν)]; b) The interaction part consists of the local n-particle (n =

2, 3, . . .) vertex functions γ
(2n)
loc of DMFT (2n in the superscript of γloc denotes the number

of outer legs of the corresponding n-particle vertex function).

self-energy for ν → 0 (at T = 0), cannot be captured by a perturbative resummation of a

finite number of diagrams for Σ. In this respect DMFT really represents a big step forward

by allowing for a summation of all the infinitely many purely local Feynman diagrams for

the self-energy, and, hence, for a qualitative description of both sides of the Mott-Hubbard

metal-to-insulator transition. On the other hand, as we already discussed in Sec. 3.1, DMFT

neglects the k dependence of the self-energy, and, hence, does not take into account any

nonlocal correlation effects. Therefore, it is desirable to recast the perturbation theory for the

self-energy of the Hubbard model in such a way that the DMFT contributions, i.e., all local

correlations, are included already as a starting point of our new perturbative expansion: This

means that DMFT will represent the “lowest-order” of our new diagrammatic techniques,

while nonlocal contributions will be calculated, perturbatively (but not in U !), by means of

selected diagrammatic corrections.

The construction of such a “perturbation” theory around DMFT is the common feature of all

diagrammatic extension of DMFT. The corresponding diagrammatic elements of these new

approaches are depicted in Fig. 4.5:

• bare propagator: The DMFT Green’s function GDMFT(ν,k) or the local DMFT

Green’s functionGloc(ν) =
∑

kGDMFT(ν,k) (after the DMFT self-consistency is reached)

act as “bare” propagators of the diagrammatic techniques (see Fig. 4.5a). This choice

ensures a nonperturbative inclusion of all purely local correlations of DMFT already

at the level of lowest (zeroth) order perturbation of the new schemes via the (local)

DMFT self-energy Σloc(ν), which is included in GDMFT(ν,k) and Gloc(ν).
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Figure 4.6: Two second-order diagrams for the lattice self-energy Σ(ν,k) built from the dia-
grammatic elements in Fig. 4.5. G denotes either the DMFT Green’s functionGDMFT(ν,k)
or the local DMFT Green’s function Gloc(ν).

• interaction: The interaction part of all diagrammatic extension of DMFT is given by

the local n-particle vertex functions γ
(2n)
loc of DMFT (see Fig. 4.5b). Which type of ver-

tex function, i.e., (fully) reducible, one-particle irreducible, two-particle irreducible or

even two-particle fully-irreducible, is selected for the construction of diagrams, depends

on the specific method under consideration3. The common feature of all these vertex

functions is that, in contrast to the bare interaction U adopted in ordinary perturbation

theory, they exhibit a (in many cases very pronounced) frequency dependence. This

means that the interaction between the new “bare particles” (which are, of course,

dressed with all local correlation effects) gets strongly nonlocal in time.

We are now in a position to construct diagrams for our k-dependent lattice self-energy Σ(ν,k),

using the diagrammatic elements introduced in Fig. 4.5 and discussed above. Exemplarily,

two second-order [in γ
(2n)
loc ] diagrams are depicted in Fig. 4.6.

It is, however, not possible to sum up all diagrams for the self-energy, considering all higher-

order vertex functions, which would correspond, in fact, to the exact solution of the Hubbard

model. Hence, approximations are needed. Typically, two types of approximations are in-

volved in all diagrammatic extension of DMFT:

1) restriction to γ
(4)
loc: Usually one restricts oneself to the two-particle local vertex func-

tion as interaction term, neglecting the three- and more particle contributions. The

3For this reason, we adopt here the general notation γ
(2n)
loc for the vertex function aiming at keeping the

discussion at this point as general as possible. We will specify the type of vertex function we are using only
later, when referring to the specific type of diagrammatic extension of DMFT.
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physical argument for this simplification relies on the fact that the original bare in-

teraction among the physical electrons is of a two-particle type. Hence, it is plausible

that approximations made on the level of the two-particle vertex can already contain

the most relevant contributions for the description of nonlocal correlations. However,

it should be stressed that there does not exist a rigorous proof for this statement in the

general case, and, hence, one should carefully check whether the restriction to γ
(4)
loc is jus-

tified in the specific case under consideration [35,195]. From a practical point of view,

such an approximation is, however, necessary in many situations (with few exceptions),

since the calculation of three- and more-particle local vertex functions in a general

case is an almost infeasible task even when adopting the most recent continuous-time

quantum Monte Carlo (CTQMC) methods4.

2) selection of type of diagrams: Even within the restriction to the two-particle local

vertex for the new interaction it is not possible to sum up all diagrams for the self-

energy. Besides performing finite summations of lowest-order [in γ
(2n)
loc ] diagrams5, one

often considers two schemes which account for an infinite resummation of Feynman

diagrams:

– ladder diagrams: In the vicinity of second-order phase transitions, resummations

of infinite numbers of diagrams are necessary to describe the effect of the corre-

sponding critical fluctuations on the physics of the system. However, such infinite

resummations can be readily performed, if the type of the emergent order is known

and if there are no competing instabilities to differently ordered phases. In that

case we can restrict ourselves to the summation of ladder diagrams in the specific

channel corresponding to the instability under consideration. Analytically, this

is done by considering a Bethe-Salpter equation in this specific channel. For a

detailed discussion of the diagrammatic and analytic structure of ladder diagrams

and Bethe-Salpeter equations, we refer to section 2.2.4.2 (in particular page 69)

and appendix B, as well as to sections 4.3 and 4.4.2.1, where the ladder versions

of the DΓA and 1PI are discussed and compared.

– parquet diagrams: In case one cannot identify a priori the most important fluc-

tuation channel of the system, or if there are two or more competing instabilities,

4To the best of our knowledge, the hitherto only calculation of local three-particle vertex functions was
performed in Ref. [123].

5Note that nonlocal corrections to the self-energy, arising, e.g., from 2nd-order diagrams, constitute a
sizable contribution only when inserted into a self-consistent scheme [36], and even in that case they can take
into account only short-range correlations [123].
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one should construct ladder diagrams in all channels, and couple them, in a self-

consistent manner. This corresponds analytically to solving the parquet equations

for the system [26,44–46]. A diagrammatic and analytical description of this rather

complicated set of coupled non-linear integral equations is given in section 2.2.4.2

and appendix C, as well as in the discussion of the full parquet-based version of

DΓA of section 4.2.2. Let us just remark here that working with the parquet

equations is numerically very demanding. Hence, one usually restricts oneself to

ladder approximations whenever it is possible, or, alternatively, if a full parquet

treatment is needed but not feasible, one might consider methods based on the

functional renormalization group [196], such as the recently proposed DMF2RG

in Ref. [147].

After this rather general discussion of the basic ingredients and approximations involved

in the diagrammatic extensions of DMFT we will present a short overview over the specific

approaches, which were considered in the literature since the invention of DMFT. Historically,

one of the first attempts to address the problem of nonlocal correlations beyond DMFT was

the so-called 1/d-method proposed in Ref. [197], which is rather appealing from a purely

theoretical point of view. In fact, since DMFT corresponds to the limit of d → ∞, i.e.,

1/d = 0, it is rather obvious to construct nonlocal corrections to the DMFT Green’s functions

by an expansion of the latter in the “small” parameter 1/d. However, it turned out that,

in the cases of interest, i.e., for d = 2 or d = 3, keeping just the first few terms of such a

series does not improve the DMFT results much and becomes a rather poor approximation if

nonlocal correlations are equally or even more important than their local counterparts. A next

attempt to include spatial correlations on the top of DMFT was the DMFT+Σk approach

[198–202] which considers nonlocal corrections to the local DMFT self-energy arising from the

interaction of non-interacting electrons with spin fluctuations. This theory was constructed

mainly for describing the pseudogap behavior of the cuprates and, in this sense, its nature

is semi-phenomenological, i.e., it cannot be considered as a purely microscopic approach to

the Hubbard model. In this respect we should also mention a more recent extension of

DMFT, proposed in Ref. [203], which is based on the mapping of the lattice problem onto a

multitude of two-impurity Anderson models, and allows to describe the pseudogap formation

in the two-dimensional Hubbard model.

The most important diagrammatic approaches, which were developed in the last five to six

years and constitute the main topics of this chapter, are the dynamical vertex approxima-

tion (DΓA) in its ladder and its parquet version, the dual fermion (DF) theory and, very
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Method Based on local:
Two-

particle
level

Diagrams

dual fermion (DF) full (connected) vertex Floc
2nd-order, ladder,

parquet

one-particle irreducible
approach (1PI)

one-particle irreducible
vertex

Floc ladder

DMFT+functional
renormalization group

(DMF2RG)

one-particle irreducible
vertex

Floc
RG flow

(parquet-like)

ladder dynamical vertex
approximation (ladder

DΓA)

two-particle
irreducible vertex

Γloc,r ladder

dynamical vertex
approximation (DΓA)

two-particle fully
irreducible vertex

Λloc parquet

Table 4.1: Table of the different diagrammatic methods and the corresponding type (i.e.,
full, one-particle irreducible, two-particle irreducible or two-particle fully irreducible) of
local vertex functions which is required by the method, as well as their two-particle coun-
terparts6 (Floc, Γloc,r and Λloc). In the last columns the type(s) of diagrams which have
been hitherto considered for the respective approaches are reported.

recently, the one-particle irreducible (1PI) approach, which exhibits a unifying aspect with

respect to the other two methods (DΓA and DF). As discussed before, all these schemes

are based on the local two-particle vertex functions γ
(4)
loc and the full or local DMFT Green’s

functions GDMFT or Gloc, respectively. To get an overall orientation about which type

of two-particle vertex and which type of diagrammatic approximation is related to which

specific diagrammatic extension of DMFT we refer to Tab. 4.1. Let us mention that the

6Let us recall that, at the two-particle level, the full connected vertex coincides with the one-particle
irreducible one (Floc), as it was already discussed in Sec. 2.2.4.2 (see, in particular, page 66).
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Figure 4.7: a) In DMFT the fully irreducible one-particle vertex, i.e., the self-energy Σ,
is purely local (i represents a site index of the lattice); b) In DΓA the fully irreducible
two-particle vertex Λ is purely local. Note that all diagrams in this figure are skeleton
diagrams, i.e., the lines represent the full interacting Green’s functions. The dots in turn
correspond to the bare Hubbard interaction U .

recently proposed combination of DMFT and fRG (DMF2RG) [147] also naturally fits in our

classification scheme, since here parquet-like diagrams are generated by a renormalization

group flow starting from the full two-particle vertex of DMFT. However, we want to point

out that the diagrammatic content of DMF2RG cannot be straightforwardly identified as in

the other cases (DF, DΓA, 1PI), because corrections to DMFT are not obtained by a direct

calculation of a specific subset of diagrams.

In the following chapters we will discuss all methods in Tab. 4.1 (except for DMF2RG, for

which we refer the interested reader to Ref. [147]) in more detail and analyze their perfor-

mance to describe nonlocal correlations beyond DMFT in the system under consideration.

4.2 Dynamical vertex approximation

4.2.1 Basic Idea

For an understanding of the basic idea of the dynamical vertex approximation (DΓA) [26,

27, 29], we make reference once again to the diagrammatic interpretation of DMFT. From

the latter perspective, DMFT can be viewed as a method which is based on the locality of

the one-particle fully irreducible vertex, i.e., on the complete locality of the self-energy of the
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Figure 4.8: a) In DΓA the nonlocal full vertex Fijkl is constructed from the local fully
irreducible one Λiiii ≡ Λloc and the nonlocal DMFT Green’s function Gij (illustrated by
the lines in this figure). b) The nonlocal self-energy Σij in turn is calculated from the full
vertex Fijkl and the DMFT Green’s function Gij by means of the (nonlocal version of the)
Schwinger-Dyson equation of motion [see Eq. (2.194)] which is depicted graphically here.
(The indices i, j, k, . . . denote lattice sites here.)

system (see Fig. 4.7a). A very natural generalization of this idea is to raise the concept of

locality to the two- or even more-particle level. Hence, in this spirit, the DΓA assumes the

locality of the fully irreducible two-particle vertex function Λloc. These local building blocks

are then connected by DMFT (nonlocal) Green’s functions, yielding a nonlocal reducible

vertex Fijkl [or Fkk′q in momentum space, see also the definition of the Fourier transform in

Eqs. (2.61) and (2.62)], as it is illustrated in Fig. 4.8a. This vertex in turn leads, via (the

k-dependent version of) the equation of motion (2.194), to a nonlocal self-energy, as depicted

diagrammatically in Fig. 4.8b. Let us point out that for n = ∞, i.e., when assuming the

∞-particle vertex to be purely local, the exact solution of the (Hubbard) model is recovered.

However, as discussed in the previous section, the calculation of local three- and more-particle

vertex functions is numerically very demanding (if not infeasible). Hence, for a practical

implementation, we restrict ourselves to the DΓA assumption of complete locality for the
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Figure 4.9: Comparison of the flow-diagrams of DMFT and DΓA.

fully irreducible two-particle vertex function Λ, as illustrated in Fig. 4.7b. Before discussing

the algorithmic details of DΓA let us recall that conceptually similar methods have been

presented in the last years. For instance, a less elaborate version of DΓA has been discussed

by Kusonose in Ref. [204], similar techniques have been proposed by Janîs et all. for the

treatment of disordered systems [140, 141], and a multi-scale extension of DΓA has been

presented by Slezak et al. in Ref. [193].

Let us now turn to the actual implementation, i.e., the flow diagram, of the DΓA, which, for

the sake of clarity, is compared with the corresponding flow diagram of DMFT in Fig. 4.9.

The DΓA algorithm can be described (in comparison to DMFT) as follows:
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1) One has to calculate the local one- and two-particle7 Green’s function (or generalized

susceptibility) Gloc(ν) and χνν
′ω

loc for an auxiliary AIM [defined by G0(ν)] by means of

an impurity solver such as, e.g., exact diagonalization (ED) or quantum Monte Carlo

(QMC). Note that in the corresponding step in DMFT only the calculation of the

one-particle Green’s function Gloc(ν) is required (see Fig. 4.9).

2) For DΓA one has to extract the local fully irreducible two-particle vertex Λνν
′ω

loc from

Gloc(ν) and χ
νν′ω
loc , essentially by inverting the parquet equations for the local AIM, as we

will discuss in more detail in the next section (see also section 2.2.4.2 and appendices

B and C). On the contrary, DMFT requires just the calculation of the local fully

irreducible one-particle vertex, i.e., the local self-energy, by inverting the much simpler

algebraic Dyson equation of the associated AIM.

3) In the next step the DΓA approximation is applied: This means, one assumes that

the fully irreducible vertex of the lattice (Hubbard) model can be replaced by its local

counterpart Λνν
′ω

loc , calculated by solving an auxiliary AIM. From Λνν
′ω

loc and the non-

interacting lattice Green’s function G0(ν,k) one obtains a momentum-dependent lattice

vertex F νν′ω
kk′q,σσ′ and a momentum-dependent lattice self-energy Σ(ν,k) by solving, self-

consistently the parquet equations and the Schwinger-Dyson equation, respectively, for

the lattice system. Finally, the lattice Green’s function G(ν,k) can be easily deter-

mined from Σ(ν,k) via the Dyson equation. Again, the corresponding procedure is

numerically much less demanding in DMFT, where the lattice Green’s function is cal-

culated simply by means of the (lattice) Dyson equation from the local self-energy and

the bare propagator of the lattice G0(ν,k).

4) Finally, we recompute the local part of the lattice Green’s function,
∑

kG(ν,k), and

identify it with the local Green’s function of a new auxiliary AIM [
∑

kG(ν,k) ≡
Gnew

loc (ν)], which is defined in this way. In practice, from Gnew
loc (ν) one should extract the

corresponding electronic bath Gnew
0 (ν) of the new AIM by solving the “inverse” impurity

problem. Let us point out, however, that this is more complicated than the “direct”

impurity problem, where the local interacting Green’s function Gloc(ν) is calculated

from the Weiss field G0(ν), and requires an iterative procedure8.

7For the connection between the full two-particle Green’s function G2 and the generalized susceptibility
χ we refer to section 2.2.3, Eqs. (2.145)-(2.150).

8For example, Gnew
0 (ν) can be determined from Gnew

loc (ν) =
∑

kG(ν,k) by solving the impurity model
and the local Dyson equation self-consistently in the following way: (i) Starting from an arbitrary lo-

cal self-energy Σ
(0)
loc(ν), one obtains an updated Weiss field through the Dyson equation, i.e., G(1)

0 (ν) =
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5) Steps 1-4 are iterated till convergence of Gloc(ν).

The parquet equations, which are obviously a crucial part of the DΓA algorithm, will be

discussed in the next section. Let us here just anticipate that, while the bottleneck of

DMFT is the solution of the impurity problem, an additional numerical challenge of DΓA

is represented by the numerical solution of the parquet equations. In fact, the full DΓA

scheme is numerically very demanding which makes a simplified version of this approach

very desirable. This issue will be discussed in section 4.3.

Let us finally mention an interesting point concerning the relation between DMFT and DΓA:

Since in the (outer) DΓA self-consistency cycle the AIM is updated, the final solution is in

no way connected to DMFT. In fact, though the AIM connected with DMFT might well

serve as a reasonable starting point for the first DΓA iteration, other choices of the initial

AIM are certainly possible. If viewed (and applied) in this generalized framework, DΓA is

not simply adding nonlocal correlations on the top of the local ones of DMFT, as discussed

in section 4.1.2, but it generates all correlation effects, i.e., local and nonlocal, by itself. In

fact, a feedback of nonlocal correlations on the local one- and two-particle Green’s functions

is certainly to be expected in finite dimensions. The latter ones, hence, might strongly differ

from their DMFT counterparts in the final DΓA solution depending on the parameter regime

considered.

4.2.2 Parquet equations

In the previous section, we have illustrated that important parts of the DΓA algorithm rely

on the parquet formalism. While an analytical derivation and explanation, as well as a

diagrammatic illustration, have been given in section 2.2.4.2 and appendices B and C, we

will now discuss the numerical treatment of these complicated relations [45,46,142]. To this

end we recall schematically the basic equations of the parquet formalism, i.e., the parquet

[
Σ

(0)
loc(ν) + 1/Gnew

loc (ν)
]−1

. (ii) Solving the AIM defined by this Weiss field provides a new local Green’s func-

tion G
(1)
loc(ν) and, hence, also a new self-energy Σ

(1)
loc(ν) =

[
G(1)
0 (ν)

]−1

−
[
G

(1)
loc(ν)

]−1

. (i) and (ii) are iterated

until G
(n)
loc (ν) = Gnew

loc (ν) [or, equivalently, Σ
(n)
loc (ν) = Σ

(n−1)
loc (ν)] within a given numerical accuracy. This way,

the calculated G(n)
0 well represents the Weiss field defining the AIM connected to Gnew

loc (ν).
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equation(s), the Bethe-Salpeter equation(s) and the Schwinger-Dyson equation of motion:

F = Λ + (F − Γph)︸ ︷︷ ︸
Φph

+ (F − Γph)︸ ︷︷ ︸
Φph

+ (F − Γpp)︸ ︷︷ ︸
Φpp

, (4.1a)

F = Γr +

∫
Γr(GG)rF, (4.1b)

Σ =
Un

2
+

∫
GGGF, (4.1c)

where r = ph, ph, pp denotes the channel under consideration. For a more explicit form of

the parquet and Bethe-Salpeter equations in the three different channels [Eqs. (4.1a) and

(4.1b)], including frequency and spin arguments, we refer to Eqs. (C.2), (B.1), (B.8) and

(B.14), as well as to Eq. (2.194) for the Schwinger-Dyson equation of motion [Eq. (4.1c)].

As for the nonlocal versions of these three (sets of) equations, let us point out that they can

be readily obtained by considering the four vector k = (ν,k) and q = (ω,q) in place of the

fermionic and bosonic Matsubara frequency ν and ω, respectively.

Let us first discuss the local version of the inverse parquet method, which is needed for ex-

tracting the local fully irreducible vertex Λνν
′ω

loc from the local generalized susceptibility χνν
′ω

loc

and the local Green’s function Gloc(ν) of a given AIM, which can be directly calculated from

the impurity solver of choice, e.g., ED or QMC. The corresponding procedure is illustrated

in the left panel of Fig. 4.10 and described in the following:

1) By means of the Bethe-Salpeter equations (B.7) and (B.19) Γloc,r is calculated from χloc

and Gloc [for the four different channels and spin combinations r = d,m, s, t as defined,

e.g., in Eq. (2.167)].

2) The Φloc,r are obtained by means of Eq. (C.1), and, then, the parquet equations (C.2)

are solved for Λloc [for the four different channels and spin combinations which are given

in Eqs. (C.2)].

One can see that in the inverse parquet formalism no iteration is required, i.e., the fully

irreducible vertex is obtained straightforwardly from the local one- and two-particle Green’s

functions of the AIM via a one-shot calculation. The situation, however, is much more

involved for the following step, i.e., for obtaining all lattice one- and two-particle quantities

of the system from a given (purely local) Λ. Let us stress that, besides the non-interacting

Green’s function G0(ν,k), Λ is the only input to the parquet equations, from which all

reducible and irreducible one- and two-particle quantities, i.e., F , Γr, G and Σ, of the lattice
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Figure 4.10: Left panel: Flow diagram for the (local) inverse parquet equations, used for
extracting the fully irreducible vertex Λloc from the local one- and two-particle Green’s
functions (or susceptibilities) Gloc and G2,loc (or χνν

′ω
loc ). Right panel: Flow diagram for

the (lattice) parquet equations of DΓA where from the only input Λloc the full (reducible)
vertex F , the vertices Γr that irreducible in the different channels r = ph, ph, pp, the
lattice self-energy Σ and the lattice Green’s function G are obtained. Let us recall that
all local quantities are denoted with a subscript “loc” while all other nomenclature refers
to momentum-dependent lattice objects. In this figure, the frequency-, momentum- and
spin arguments of the functions are suppressed for the sake of a better readability.

system can be obtained self-consistently. Specifically, the algorithm for solving the parquet

equations from a given Λ consists of two nested loops, illustrated in the right panel of Fig.

4.10. Let us give below a short description of this procedure:

1) After initializing the one- and two-particle quantities of the lattice system [F , Γr and

G (or Σ)], one enters the inner loop (II), where first an updated F is calculated from

Γr (and, of course G) by means of the Bethe-Salpeter equations. From this F and the

Γr the reducible vertices Φr can be obtained, which in turn allow for updating Γr by

means of the parquet equations. In this step the input to the parquet equations, i.e.,

the fully irreducible vertex Λ (which, in the DΓA case, is Λνν
′ω

loc ), enters the algorithm.

The inner cycle is iterated for a fixed G until the convergence for F and Γr is reached.
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2) From the full vertex F the self-energy Σ can be obtained by means of the Schwinger-

Dyson equation of motion.

3) Finally, the Dyson equation allows for updating the Green’s function of the system.

With this new Green’s function we enter again the inner self-consistency loop for F

and Γr where this Green’s function is kept fixed. The outer loop (I) is iterated until

the self-consistency for Σ (or G) is reached.

From a numerically point of view it turns out that the algorithm described above is not

stable for values of U larger than the bandwidth of the system, i.e., for intermediate-to-strong

couplings. This problem was solved very recently by explicitly enforcing the fulfillment of

the crossing relations for the vertex-functions which are otherwise violated by the parquet

iteration discussed above [46].

4.2.3 First results for nanoscopic systems

The following first results have been obtained in a collaboration and have been also reported

in the PhD thesis of A. Valli [30].

Since the full, parquet-based, DΓA scheme is rather complicated and numerically very de-

manding, it is strongly desirable to perform tests of its applicability for simple systems, which

allow for a comparison with exact solutions. To this end the benzene ring, consisting just

of six carbon atoms, which is depicted in the upper left panel of Fig. 4.11, was explicitly

considered. This structure can be modeled, in a first approximation, by an one-dimensional

single-band Hubbard model with six sites and periodic boundary conditions. The hopping

amplitude for an electron moving from one site to a neighboring site is given by the pa-

rameter t and the Hubbard repulsion between two electrons sitting at the same site of this

one-dimensional lattice is denoted as U . The number of electrons per site is set to n = 1,

since for this specific filling the strongest effects due to local and nonlocal correlations are

expected. Let us stress, that we do not pretend to perform a realistic material calculation

for the benzene at this point, but we are rather interested in the effects of nonlocal correla-

tions which are expected to be particularly large due to the low dimensionality of the system

(d = 1).

We start our calculation by extracting the local fully irreducible vertex Λν,ν
′ω

loc,r from the AIM,

which is related to the DMFT solution of this system. In the right upper panel of Fig. 4.11 a

one dimensional slice of Λνν
′ω

loc,r−Ur for fixed values of ω = 0 and ν = πT is shown as a function
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Figure 4.11: DΓA results for nanoscopic systems: Left upper panel: The benzene ring
which was considered for the calculation. t is the nearest-neighbor hopping parameter, U
represents the local Hubbard interaction and β = 1/T corresponds to the inverse temper-
ature. The calculations were performed for U = 2.0t and β = 10.0/t. Right upper panel:
The local DMFT fully irreducible vertex Λνν

′ω
loc,r − Ur (Ud = U , Um = −U , Us = 2U and

Ut = 0) for fixed values of ω = 0 and ν = πT as a function of ν ′ (or, more precisely, of
the corresponding Matsubara index nν′). Lower panels: The imaginary part of the local
[ImΣ00(iωn)] and the real part of the nonlocal [ReΣ01(iωn)] self-energy in real space for the
benzene ring, obtained by means of DΓA in comparison to the corresponding DMFT re-
sults and the exact (QMC) solution (iωn=̂ν in the main text). The figures are reproduced
from Ref. [30].

of ν ′ (or, more precisely, as a function of the Matsubara index nν′)
9. One notes immediately

that the (frequency-dependent) deviation of Λνν
′ω

loc,r from its lowest-order contribution Ur is

about two orders of magnitude smaller than the interaction parameter Ur itself, which allows

for the approximation Λνν
′ω

loc,r ≈ Ur. Hence, for this system and the specific values for the

9Ur is the lowest-order (in U) contribution to the fully irreducible vertex Λνν′ω
loc,r in each channel. Specifi-

cally: Ud = U , Um = −U , Us = 2U and Ut = 0.
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parameters U and T , the full DΓA scheme reduces to the so-called parquet approximation,

where the fully irreducible vertex Λr is replaced by the bare Hubbard interaction Ur as input

for the parquet equations. The reason for this negligible small frequency dependence of Λνν
′ω

loc,r

is due to the (band)-insulating behavior of the non-interacting system. In fact, the half-filled

six-site Hubbard model with nearest neighbor hopping exhibits, for U = 0, a large gap in

its spectrum at the Fermi level, which leads to a strong suppression of all the frequency-

dependent higher-order corrections to Λνν
′ω

loc,r .

Let us now compare the results for the local and nonlocal self-energies obtained by means of

DΓA with the corresponding ones from DMFT and the exact QMC solution for this system,

respectively. First, we want to point out, that for the half-filled case the local part of the

self-energy, i.e., Σii(ν), is purely imaginary (except for the constant Hartree contribution
U
2
) while the (real-space) self-energy between two neighboring sites, i.e., Σi(i+1)(ν), is purely

real, as can be inferred from the particle-hole symmetry of the system [see Eqs. (2.108) and

(2.117)]. The plot in the lower left panel of Fig. 4.11 illustrates that, by comparison with the

exact solution, DMFT provides for a qualitatively and quantitatively accurate description of

the local self-energy Σii(ν), indicating that nonlocal corrections beyond DMFT will not affect

strongly the local physics. In fact, we actually observe that DΓA, which, of course, includes

also all local DMFT correlations, yields similar results for the local part of the self-energy in

the present case. On the contrary, for the nonlocal self-energy Σij(ν), the DMFT solution

is per definition equal to zero, while DΓA closely resembles the exact QMC solution. These

preliminary results demonstrate the applicability and the potential of DΓA for improving the

DMFT self-energies by including nonlocal spatial correlation effects beyond DMFT10.

Before describing, in the next section, an approximate, easier manageable, implementation of

DΓA, which is currently used for bulk calculations in two and three-dimensional systems, let

us stress that further investigations of more complex molecules are currently under progress.

Such benchmarks, where the exact solution is still available, will be very important for

testing the validity of the DΓA hypothesis in one of the most unfavorable situations (d = 1).

Furthermore, it will provide the first actual result obtained within the nanoscopic DΓA

scheme (nano-DΓA) recently proposed in Ref. [205] and applied hitherto only at the DMFT

level [206, 207].

10Let us briefly comment here on the deviations between the DΓA self-energy and the one obtained with
the exact solution at larger frequencies, which can be observed for both the local and the nonlocal case: These
errors stem from the finite frequency interval which is used for solving the Bethe-Salpeter equations and the
equation of motion within the parquet approach. However, the size of the mismatch can be systematically
reduced by taking into account a larger number of frequencies.
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4.3 Dynamical vertex approximation - ladder approxi-

mation

As discussed in section 4.2 (see in particular 4.2.2), solving the parquet equations requires

a tremendous numerical effort and is (at present) certainly not feasible for realistic multi-

orbital systems. Hence, while considerable work will be invested in the next years for the

improvement of the full algorithm, at present, simplifications of the DΓA scheme are needed

for standard applications of the method. The development of sound and, at the same time,

manageable approximations is also highly desirable in view of DΓA treatments of complicated

multi-orbital systems [192]. Here, we will illustrate the most commonly used simplification of

the full DΓA algorithm, based on ladder diagram resummations (“ladder approximation”),

discussing also its physical meaning. To this end, we will start from the exact parquet

decomposition of the full lattice vertex F νν′ω
kk′q,↑↓ as it is illustrated (for the local case) in Fig.

2.11:

F νν′ω
kk′q,↑↓ = Λνν

′ω
kk′q,↑↓ + Φνν

′ω
pp,kk′q,↑↓ + Φνν

′ω
ph,kk′q,↑↓ + Φνν

′ω
ph,kk′q,↑↓. (4.2)

We recall that the full vertex F νν′ω
kk′q,↑↓ can be directly used for calculating the lattice self-energy

by means of the (lattice) Schwinger-Dyson equation of motion [see Eq. (2.194) for the local

version]. According to the previous section, the DΓA assumption corresponds to replacing

Λνν
′ω

kk′q,↑↓ by its local counterpart Λνν
′ω

loc,↑↓, while for all the reducible contributions Φνν
′ω

r,kk′q,↑↓
(r = pp, ph, ph) the full momentum dependence is kept. In fact, the Φνν

′ω
r,kk′q,↑↓ are obtained

by a self-consistent solution of the parquet and the Bethe-Salpeter equations, as discussed in

section 4.2.2 for the DΓA. We want to emphasize here, that the momentum dependence of

Φνν
′ω

r,kk′q,↑↓ is crucial for describing a second-order phase transitions to a spatially ordered phase

such as, e.g., (anti)ferromagnetism, charge density waves, or superconductivity. The vicinity

of such an ordering instability is indicated by a strong enhancement of the momentum-

dependent two-particle ladder diagrams Φνν
′ω

r,kk′q,↑↓ in the channel r, which is connected to

the instability under consideration. Specifically, in the particle-hole channels the nonlocal

reducible (ladder) part of the vertex, i.e., Φph or Φph, describes (para)magnons while the

corresponding particle-particle ladder Φpp yields attractive pairing and localization effects

[208–210]. Hence, if one knows the leading instability of the system a priori one can consider

a momentum-dependent ladder Φνν
′ω

r,kk′q,↑↓ only in this relevant channel and restrict oneself to

the local approximation for the other ladder(s). This assumption corresponds to the “ladder
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approximation” of DΓA.

In the following, we will mainly focus on the repulsive Hubbard model on a bipartite lat-

tice at half-filling with nearest neighbor hopping only. This system is known to exhibit a

low-temperature (for two dimensions only at T = 0) antiferromagnetically ordered phase.

Therefore, antiferromagnetic fluctuations are expected to constitute the main contribution

to the nonlocal correlations in this system. Hence, in this situation a restriction to non-

local Φph and Φph, while keeping Φpp local, is quite natural. As will be discussed later in

section 4.3.2, we have verified that, for the three-dimensional model and the specific values

of the parameters U and β examined there, the difference between the nonlocal and the

local particle-particle ladder is negligible compared to the corresponding difference for the

particle-hole (in particular the spin) ladders.

Let us now present a short derivation of the equation for the self-energy within the ladder

DΓA approach, based on Ref. [26]. As discussed above, applying this approximation to the

particle-hole channels (ph and ph), we assume both Λ and Φpp to be purely local in Eq. (4.2).

Considering furthermore the SU(2) symmetry relation B.13 [which also holds in the nonlocal

case when replacing ν(′) → (ν(′),k(′)) and ω → (ω,q)]:

Φνν
′ω

ph,kk′q,↑↓ = −Φ
ν(ν+ω)(ν′−ν)
m,k(k+q)(k′−k), (4.3)

we obtain the following explicit expression for the full vertex F νν′ω
kk′q,↑↓ in the ladder approxi-

mation for the DΓA:

F νν′ω
lad,kk′q,↑↓ = Λνν

′ω
loc,↑↓ + Φνν

′ω
loc,pp,↑↓ + Φνν

′ω
ph,kk′q,↑↓ − Φ

ν(ν+ω)(ν′−ν)
m,k(k+q)(k′−k). (4.4)

The reducible particle-hole vertices (ladders) for the lattice are calculated by means of the

corresponding Bethe-Salpeter equations in the density and magnetic channel [see Eqs. (B.4)],

where the local irreducible vertices Γloc,d and Γloc,m are connected by nonlocal DMFT Green’s

functions GDMFT(ν,k). The corresponding equations read:

F νν′ω
r,q = Γνν

′ω
loc,r +

1

β

∑

ν1,k1

Γνν1ωloc,rGDMFT(ν1,k1)GDMFT(ν1 + ω,k1 + q)F ν1ν′ω
r,q , (4.5)

where r = d,m. Note that, within the ladder DΓA, the vertex F νν′ω
r,q defined by Eq. (4.5)

does not depend on the momenta k and k′ of the incoming particle and hole but only on the

transferred momentum q. The reason for this is that the irreducible vertex Γr in Eq. (4.5) is

assumed to be local. Hence, the ladder approximation of DΓA can be viewed –in a general
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Figure 4.12: Flow diagram for the ladder version of DΓA. The starting point is a converged
DMFT solution (DMFT flow-diagram on the left). From DMFT one extracts the local
irreducible vertices Γνν

′ω
loc,r in channels r = d,m. From the latter and the momentum-

dependent DMFT Green’s function GDMFT(ν,k) one can obtain the nonlocal reducible
vertex function F νν′ω

r,q . Finally the momentum-dependent ladder DΓA self-energy Σ(ν,k)

is derived from F νν′ω
r,q and GDMFT(ν,k) via the equation of motion.

framework– as the scheme where the assumption of complete locality is made at a less deeper

level than in the full DΓA, i.e., not for the fully irreducible two-particle vertex Λ, but for

the irreducible vertex Γr. Such a simplification, however, has a cost, making it problematic

to perform ladder calculations within a self-consistent scheme. Technically the problem can

be illustrated by considering the parquet equations, where the irreducible vertices, which are

local in the ladder DΓA, can be expressed as Γph = Λ+Φpp +Φph and Γph = Λ+Φpp +Φph.

However, since Λ and Φpp are also supposed to be local, these equations state that Γph and

Γph should display some nonlocal dependence due to the nonlocality of Φph and Φph. This

contradiction prevents the implementation of any standard self-consistency and it is also
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partly related to a further problem concerning the asymptotics of the ladder DΓA self-energy

which will be discussed in the next section.

Performing a Fourier transform of F νν′ω
r,q to real space shows that this vertex function includes

only scattering processes of a particle and a hole from one common lattice site i to another

common lattice site j11. On the other hand, we want to stress that the scattering amplitude

is highly nonlocal in time, i.e., the particle and hole which are scattered can arrive at the

initial site i and leave the final site j at different times. This means that retardation effects

are fully taken into account by the ladder DΓA while nonlocal scattering effects in space are

only partially considered.

As for the practical determination of F νν′ω
r,q we note, that usually the corresponding gen-

eralized susceptibility χνν
′ω

r,q is considered. This function is easily obtained by means of an

analogous Bethe-Salpeter equation [see Eq. (B.6) in appendix B] and reads, in the lattice

case:

χνν
′ω

r,q = βχνω0,qδνν′ −
1

β
χνω0,q

∑

ν1

Γνν1ωr χν1ν
′ω

r,q , (4.6)

where

χνω0,q = −
∑

k

GDMFT(ν,k)GDMFT(ν + ω,k+ q), (4.7)

is the k-summed bare bubble constructed from DMFT Green’s functions12. The connection

between the susceptibility χνν
′ω

r,q and the corresponding vertex F νν′ω
r,q reads as follows:

χνν
′ω

r,q = βχνω0,qδνν′ − χνω0,qF
νν′ω
r,q χν

′ω
0,q . (4.8)

It is important to stress that F νν′ω
r,q represents only the full lattice vertex calculated from

the Bethe-Salpeter equations in the particle-hole channels. In the ladder version of DΓA it

will be, hence, different from the lattice vertex defined via the parquet equation (4.4) due

to the non-self-consistent treatment of these two sets of relations, i.e., parquet and Bethe-

Salpeter. In fact, within the ladder DΓA F νν′ω
r,q represents only an auxiliary quantity, used

11More explicitly, the Fourier transform of the vertex Fkk′q to real space (schematically) reads as: Fijlm =∑
kk′q e

−ikRiei(k+q)Rje−i(k′+q)Rleik
′RmFkk′q, where i, j, l,m denote the indices of the corresponding lattice

vectors Ri,Rj,Rl,Rm. If F does not depend on k and k′, the summations over these momenta yield δij
and δlm, respectively.

12Note, that χνν′ω
r,q is in principle also a k,k′ summed quantity, i.e., χνν′ω

r,q =
∑

kk′ χνν′ω
r,kk′q, where the Bethe-

Salpeter equation for the more general object χνν′ω
r,kk′q differs from the corresponding one for χνν′ω

r,q just by a
factor δkk′ in the first summand on the right-hand side of Eq. (4.6). In any case, only the k- and k′-summed
susceptibility is needed within ladder DΓA calculations. For the sake of precision, we also point out here the
slightly different prefactor in the definition of the local χ0 in Eq. (2.153) and the corresponding nonlocal
quantity in Eq. (4.7).
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for determining the reducible vertices Φph and Φph of the lattice via the relations:

Φνν
′ω

d,q = F νν′ω
d,q − Γνν

′ω
d , Φνν

′ω
m,q = F νν′ω

m,q − Γνν
′ω

m , (4.9)

which are then, in turn, used for calculating the final full lattice vertex F νν′ω
kk′q,↑↓ of the ladder

DΓA approach in Eq. (4.4), and the corresponding ladder DΓA self-energy via the Schwinger-

Dyson equation of motion. Substituting Eqs. (4.9) into the expression for the full lattice

vertex of the ladder DΓA, Eq. (4.4), yields:

F νν′ω
lad,kk′q,↑↓ =

1

2

(
F νν′ω
d,q − F νν′ω

m,q

)
− F

ν(ν+ω)(ν′−ν)
m,k′−k − 1

2

(
F νν′ω
loc,d − F νν′ω

loc,m

)
, (4.10)

where F νν′ω
loc,d and F νν′ω

loc,m denote the full local vertex functions as defined in section 2.2.4.2.

Plugging the vertex function obtained by means of ladder DΓA [Eq. (4.10)] into (the lattice

version of) the equation of motion (2.194) yields the expression for the nonlocal self-energy

as obtained in Ref. [26]:

Σlad(ν,k) =
Un

2
− U

2β2

∑

ν′ω

∑

k′q

(
F νν′ω
d,q − 3F νν′ω

m,q − F νν′ω
d + F νν′ω

m

)
×

×GDMFT(ν
′,k′)GDMFT(ν

′ + ω,k′ + q)GDMFT(ν + ω,k+ q),

(4.11)

where a shift of summation variables has been performed in the second summand of F νν′ω
lad,kk′q,↑↓

in order to sum up all contributions stemming from the magnetic vertex F νν′ω
m,q .

After deriving the relevant relations for the ladder DΓA method, we want to turn our at-

tention now to the flow diagram of the ladder version of DΓA, shown in Fig. 4.12. Let us

first mention that, because of the self-consistency issues discussed before, in contrast to the

full DΓA scheme, the ladder version of DΓA always adopts one- and two-particle Green’s

functions of DMFT as a starting point. The calculation steps read as follows:

1) A complete DMFT self-consistency cycle has to be performed as indicated in the left-

hand box of Fig. 4.12.

2) After the DMFT convergence the local one- and two-particle Green’s functions (or

generalized susceptibilities), Gloc(ν) and χ
νν′ω
loc , are computed from the impurity solver.

3) The irreducible vertices in the channel(s) under consideration, Γνν
′ω

loc,r , are calculated via

the local Bethe-Salpeter equation(s) [see Eqs. (B.7) and (B.19)].
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(k1 +
q) ↓

U

Figure 4.13: Diagrams for F kk′q
↑↓ that do not depend on ν (and k). Note that the four

vector notation k=̂(ν,k) and q=̂(ω,q) is adopted.

4) The local irreducible vertex functions Γνν
′ω

loc,r and the (momentum-dependent) DMFT

Green’s function GDMFT(ν,k) serve as an input for the (lattice) Bethe-Salpeter equa-

tions which, in turn, yield the full vertex functions F νν′ω
r,q .

5) The self-energy is derived from the DMFT Green’s function GDMFT(ν,k) and the vertex

F νν′ω
r,q by means of the equation of motion [see Eq. (4.11)].

One can see that, besides the iteration within the DMFT part of the method, no self-

consistency is involved in the ladder version of DΓA. This renders a fixing of the number

of particles per lattice site problematic in general, since the chemical potential in the one-

particle Green’s function of the ladder DΓA is already fixed by the DMFT self-consistency

and is not altered within a one-shot ladder DΓA calculation. Furthermore, the violation

of the particle conservation by a one-shot calculation of ladder DΓA can be also observed

at the two-particle level and becomes manifest in an enhanced asymptotic behavior of the

corresponding lattice self-energy. This issue, and a possible solution of this problem, will be

discussed in the following section.

4.3.1 Asymptotic behavior and Moriyasque λ corrections

In this section we will discuss the 1
iν
-asymptotic behavior of the self-energy Σ(ν,k) obtained

by means of ladder DΓA, as it is given in Eq. (4.11). To this end, we consider first the

general form of the equation of motion [see also Eq. (2.194)] for the Hubbard model, which

connects the two-particle vertex function F νν′ω
kk′q,↑↓ with the self-energy Σ(ν,k) of the system,
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and later on the ladder DΓA approximation for this relation. The general equation of motion

reads:

Σ(k) =
Un

2
− U

β2

∑

k′q

F kk′q
↑↓ G(k′)G(k′ + q)G(k + q), (4.12)

where we adopt the four-vector notation k=̂(ν,k) and q=̂(ω,q) (and analogous for k′ and

k1) for the sake of a better readability. Let us now analyze the single contributions to the

self-energy with respect to their ν-dependence:

• G(k + q) =
ν→∞−→ 1

iν
+ O

[
1

(iν)2

]
: Since G(k + q) exhibits already a contribution 1

iν
, we

have to single out terms which are constant with respect to ν in all the remaining parts

of Eq. (4.12) in order to get the 1
iν
-asymptotics of the entire expression13.

• F kk′q
↑↓ : The ν-independent contributions to the vertex-function are given by the dia-

grams shown in Fig. 4.13. Analytically, these terms can be written as:

F kk′q
↑↓ =

U

β

∑

k1

[
G(k1)G(k1 + q)F k1k′q

↓↓ + βδk1k′
]
+O

[
1

iν

]
=

= −U
β

1

G(k′)G(k′ + q)

∑

k1

χk1k
′q

↑↑ +O

[
1

iν

]
, (4.13)

where SU(2) symmetry and the definition of χ, as discussed in Eqs. (2.159) and (4.8)

and Fig. 2.8, have been used.

Inserting the result from Eq. (4.13) into Eq. (4.12) for the self-energy leads, at the order 1
iν
,

to:

Σ(k) =
Un

2
+

1

iν

U2

β3

∑

k1k′q

χk1k
′q

↑↑ +O

[
1

(iν)2

]
. (4.14)

For the exact χk1k
′q

↑↑ [see Eq. (2.150a)]of the AIM or of the Hubbard model, the sum in Eq.

(4.14) can be evaluated analytically and yields:

1

β3

∑

k1k′q

χk1k
′q

↑↑ = 〈n↑n↑〉 − 〈n↑〉〈n↑〉 =
n

2

(
1− n

2

)
, (4.15)

13For the substitution G(k + q) → 1
iν

note also that the largest contribution to the self-energy stems from
the ω = 0 term.
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in the SU(2) symmetric case, leading to the well-known expression for the 1
iν
-asymptotic

behavior of self-energy of the AIM and the Hubbard model, respectively14:

Σ(k) =
Un

2
+ U2n

2

(
1− n

2

) 1

iν
+O

[
1

(iν)2

]
. (4.16)

In the ladder version of DΓA, however, we construct the susceptibility χkk
′q

r = χνν
′ω

r,q as a

ladder consisting of local irreducible vertices Γνν
′ω

loc,r and DMFT Green’s functions GDMFT(ν,k)

[see Eq. (4.6)]. This approximated susceptibility does actually correspond to the definition of

the momentum-dependent susceptibility of DMFT [24]. As it is known, however, DMFT used

as an approximation for finite dimensional systems is not guaranteed to be self-consistent at

the two-particle level. In fact, one observes that the related χ↑↑, as calculated within ladder

DΓA or DMFT [see Eq. (4.6) or Ref. [24], respectively], does not fulfill Eq. (4.15), which is

reflected in a corresponding violation of the 1
iν
-asymptotic behavior of the ladder DΓA self-

energy in Eq. (4.16). The deeper reason for this is related to the fact that the ingredients

for constructing the ladder diagrams for χ (or F ) do not perfectly match any longer in finite

dimensions: The irreducible vertex is purely local while the DMFT Green’s function exhibits

a k-dependence which, in finite dimensions, also leads to a nonlocal self-energy. In this way,

the Baym-Kadanoff relation (given only schematically without any arguments here) [44]:

Γ =
δΣ

δG
, (4.17)

cannot be satisfied within the ladder DΓA, since the left-hand side of this equation is assumed

to be purely local, while one gets a k-dependent quantity on its right-hand side. This problem

clearly cannot be overcome by any kind of self-consistency at the one-particle level15, i.e., for

G and Σ, since the main problem of combining a local irreducible vertex Γ and a momentum-

dependent Green’s functions G remains. Even an outer self-consistency, i.e., some kind of

iterative scheme which updates the AIM, possibly useful for other purposes, cannot improve

the situation. Hence, alternative ways of restoring the correct asymptotic behavior of the

self-energy have been considered within the ladder DΓA approach [27, 28].

Moriyasque λ corrections

In the previous paragraph we pointed out, that the lack of two-particle self-consistency in the

14In Ref. [211] the asymptotic behavior of the ladder DΓA self-energy was derived in a similar way.
15From the above discussion, it should be clear, on the other hand, that a self-consistent treatment of the

one- and the two-particle Green’s functions, as performed in the full DΓA scheme via the parquet equation,
will be sufficient for generating the correct asymptotic behavior of the self-energy in all cases.
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construction of the nonlocal susceptibility χνν
′ω

r,q in the ladder DΓA scheme is responsible for

the enhanced 1
iν
-asymptotic behavior of the corresponding self-energy. Hence, it is obvious,

to solve the problem of the wrong high-frequency behavior of Σ(ν,k) by correcting χνν
′ω

r,q

“effectively” in such a way that Eq. (4.15) is fulfilled as for the full DΓA scheme. Obviously,

it is always desirable to apply effective corrections to physical observable quantities rather

than to quite abstract objects such as the generalized susceptibility. To this end, we consider

the physical susceptibility χωr,q defined as:

χωr,q =
1

β2

∑

νν′

∑

kk′

χνν
′ω

r,kk′q ≡ 1

β2

∑

νν′

χνν
′ω

r,q . (4.18)

As for the physical interpretation of this function, we refer to the related discussion for the

local case in section 2.2.2.6, in particular to page 55. Let us just recall here that for ω = 0

(static limit) χω=0
r,q corresponds to the thermodynamic response function which describes

the response of the system to some external field whose spatial structure is described by a

certain q vector. Specifically, in the magnetic channel (r = m), the response of the system

to a staggered magnetic field is evidently found at16 q = Π, while the response to a uniform

magnetic field corresponds to q = 0. On the other hand, considering the density (r = d)

and the particle-particle (r = pp) channel, respectively, for q = 0, one gets the response of

the system to an external chemical potential or to a pairing field, i.e., the tendency of the

system to a charge order or formation of electron pairs. In fact, we recall that the divergence

of the corresponding physical susceptibility χω=0
r,q at a given value of the temperature T and

of the Hubbard interaction U (of course for the specific channel r and momentum q), marks

the onset of a second-order phase transition to the corresponding spatially ordered phase. In

the specific situation considered in the following, the system exhibits a low-temperature (for

d = 2 only at T = 0) antiferromagnetically ordered phase, the transition to which is signaled

by the divergence of χAF ≡ χω=0
m,q=Π. Hence, in the following, we will discuss the method

of λ corrections exemplarily for this specific situation, though it should be stressed that an

adaption of the corresponding equations for systems featuring ferromagnetic, charge-density-

wave or pairing (superconducting) instabilities is straightforward.

Specifically, the procedure to define the λ corrections can be derived as follows: Since we aim

at correcting the spurious asymptotic behavior of the ladder DΓA self-energy by a modifica-

tion of the physical susceptibility χωr,q, we have to rewrite the expression for Σlad(ν,k) in Eq.

(4.11) in such a way that χωr,q enters this relation instead of F νν′ω
r,q or χνν

′ω
r,q [for the relation

16Π = (π, π, . . .) is the d-dimensional vector where all components are π.
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between F νν′ω
r,q and χνν

′ω
r,q see Eq. (4.8)]. Following the derivation presented in Ref. [28], which

is analogous to the corresponding calculations for the λ corrections in the 1PI approach in

section 4.4.2.1, one obtains:

Σlad(ν,k) =
Un

2
+

U

2β2

∑

ω,q

[
γνωd,q − 3γνωm,q + Uγνωd,qχ

ω
d,q + 3Uγνωm,qχ

ω
m,q + 2+

−
∑

ν′

(
F νν′ω
d − F νν′ω

m

)
GDMFT(ν

′,k′)GDMFT(ν
′ + ω,k′ + q)

]
GDMFT(ν + ω,k+ q),

(4.19)

where the three-point vertex γνωr,q is defined in Eq. (4.127). For a more explicit derivation

of Eq. (4.19) we refer to the corresponding calculations of the λ corrections within the 1PI

approach on page 238 and following.

We observe that, indeed, after rewriting the expression for the self-energy of the ladder DΓA

method, the magnetic susceptibility χωm,q explicitly enters the equation for Σlad(ν,k). Hence,

we will modify this physical susceptibility in such a way that the corresponding self-energy in

Eq. (4.19) exhibits the correct 1
iν
-asymptotic behavior. Following Moriya’s theory of “Spin

Fluctuations in Itinerant Electron Magnetism” [212], we are now in a position to give a

physical motivation for an effective correction of the magnetic susceptibility in the case of a

non-self-consistent treatment of spin fluctuations, as in ladder DΓA.

As already discussed above, for the half-filled repulsive Hubbard model on a bipartite lattice

χω=0
m,q=Π is strongly enhanced, which shows that the system exhibits strong antiferromagnetic

fluctuations. Hence, in the same spirit of the Moriya theory for itinerant magnetism [212],

we will renormalize χωm,q. Expanding this object for ω = 0 around q = Π we obtain (see also

Eq. (12) in Ref. [28]):

χω=0
m,q =

A

(q−Π)2 + ξ−2
, (4.20)

where A is just some constant and ξ denotes the correlation length of the system, which is a

function of the temperature. ξ diverges at the phase transition, determining the related si-

multaneous divergence of χω=0
m,q at q = Π. The crucial point is now that, when the generalized

susceptibility χνν
′ω

m,q is calculated within DMFT, i.e., from the local irreducible DMFT vertex

Γνν
′ω

loc,r and the nonlocal DMFT Green’s function GDMFT(ν,k), the transition temperature,

i.e., the temperature at which the divergence of the corresponding χω=0
m,q=Π takes place, is

overestimated. In fact, this way, one is just calculating the transition temperature of DMFT,

which is known to be enhanced compared to the exact solution, since DMFT is a mean field
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theory which neglects all spatial fluctuations. These spatial fluctuations, in turn, tend to

destroy the order and, hence, to decrease the transition temperature of the antiferromagnetic

phase compared to DMFT. From another perspective, this means that, at a given tempera-

ture (in the paramagnetic phase), the correlation length ξ calculated by the DMFT ladder

is most likely too large, i.e., ξ−2 is too small, compared to the exact solution. Hence, a very

natural idea in this situation is to correct (the square of) the inverse correlation length ξ−2

by just adding a positive constant λ. This method is also applicable for temperatures below

the transition temperature of DMFT where ξ, and hence also χω=0
m,q=Π, has become already

negative and can be rendered positive by adding the constant λ. In practice, the corrections

to χωm,q are performed as follows:

[
χωm,q

]−1 →
[
χωm,q

]−1
+ λ = χλ,ωm,q, (4.21)

which corresponds to adding λ to ξ−2 when considering the explicit form of χωm,q (at ω = 0

and q = Π) in Eq. (4.20). In contrast to the standard Moriya theory, the constant λ, in turn,

is now fixed by the requirement that the self-energy calculated as in Eq. (4.19) by means

of the λ-corrected susceptibility χλ,ωm,q as in Eq. (4.21), exhibits the correct 1
iν
-asymptotic

behavior. In this respect it is also interesting to consider Eq. (4.15), where the susceptibility

is directly related to the 1
iν
-high-frequency behavior of the self-energy:

1

β3

∑

νν′ω

∑

kk′q

χνν
′ω

kk′q,↑↑ =
1

β

∑

ω,q

χωq,↑↑ =
1

2β

∑

ω,q

(
χωd,q + χωm,q

)
≡ n

2

(
1− n

2

)
, (4.22)

where n denotes the number of particles per lattice site (e.g., n = 1 for the half-filled case).

Since we know that DMFT exhibits the correct asymptotic behavior for the self-energy, it is

clear that its corresponding local susceptibility fulfills Eq. (4.22), i.e.,

1

β3

∑

νν′ω

χνν
′ω

↑↑ =
n

2

(
1− n

2

)
. (4.23)

If, hence, ∑

q

χω↑↑,q =
1

2

∑

q

(
χωd,q + χωm,q

)
=

1

2
(χωd + χωm) , (4.24)

holds for all values of ω, condition (4.22) is fulfilled also for the nonlocal susceptibilities

χωr,q, r = d,m. Condition (4.24), which requires a ω-dependent λ = λ(ω), states that the

k-summed two-particle quantities (susceptibilities) have to be identical to the corresponding
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local objects determined from the AIM associated to DMFT. This requirement is nothing

else than the self-consistency at the two-particle level which is fulfilled in DMFT only in

the limit of infinite dimensions (and, at finite d, by the full parquet-based DΓA). We note

that the two-particle self-consistency condition in Eq. (4.24) is evidently stronger than the

requirement of charge conservation at the two-particle level in Eq. (4.22), and, hence, implies

the latter. However, in our practical calculations, it turned out that the determination of

λ(ω) by means of Eq. (4.24) yields the same, ω-independent, λ as the requirement of charge

conservation in Eq. (4.22). Let us also remark that the two-particle self-consistency condi-

tion (4.24) as well as the requirement of charge conservation in Eq. (4.22) calls, in principle,

also for a renormalization of the density susceptibility χωd,q by means of the corresponding

λ correction via a λd. However, for the considered situation of the repulsive half-filled Hub-

bard model on a simple cubic lattice with nearest neighbor hopping only, nonlocal magnetic

fluctuations dominate, while density fluctuations are strongly suppressed by the Hubbard

repulsion. Hence, the difference between the nonlocal χωd,q and the local χωd is negligible and

the λ corrections for χωd,q can be neglected (λd ≡ 0). With this further approximation the

final equation for determining the value of λ in the λ-corrected magnetic susceptibility can

be written as:

1

2β

∑

ω,q

χλ,ωm,q =
n

2

(
1− n

2

)
− 1

2β

∑

ω,q

χωd,q ≈ n

2

(
1− n

2

)
− 1

2β

∑

ω

χωd . (4.25)

Let us finally remark, that it is possible to fulfill both conditions for λ, i.e., (i)
[
χλ,ωm,q

]−1
=[

χωm,q
]−1

+ λ > 0 and (ii) Σ(ν,k) → U2

iν
n
2

(
1− n

2

)
for ν → ∞ [or, equivalently, Eq. (4.25)],

by decreasing temperature only down to the corresponding transition temperature of the

system. Hence, in two dimension the λ-corrected ladder DΓA calculations can be performed

down to T = 0 [28], in accordance with the Mermin-Wagner theorem [213], while in d = 3 a

finite temperature for the phase transition to the antiferromagnetic state occurs. This will

be of course lower than the corresponding one in DMFT [31] as a result of the effects of

nonlocal correlations included by DΓA. In the next section, a ladder DΓA analysis this phase

transition will be discussed in detail.

4.3.2 A (ladder) DΓA case study: Critical behavior of the 3d Hub-

bard model

Parts of the results and the discussion presented in the following section have been already
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published in the APS Journal “Physical Review Letters”: PRL 107, 256402 (2009).

In this section we report an analysis of the critical properties of the anti-

ferromagnetic instability of the half-filled three-dimensional Hubbard model

on a simple cubic lattice with nearest neighbor hopping only, by means of

the ladder DΓA approach (with Moriya-corrections). Starting point of our in-

vestigation is the corresponding (divergent) antiferromagnetic susceptibility,

already introduced in the previous section:

χAF = χω=0
m,q=Π = 2

∫ β

0

dτ 〈Ŝz,Π(τ)Ŝz,−Π(0)〉 (4.26)

where the spin operator is defined analogously to Eq. (2.64) in chapter 2, i.e.,

Ŝz,q(τ) = 1
2
[n̂q↑(τ)− n̂q↓(τ)] and n̂qσ(τ) is the Fourier transform of the density

operator n̂iσ(τ) with respect to the spatial coordinate i. In the following all the

energies (in particular U and T ) will be given in terms of the typical energy

scale D = 2
√
6t which corresponds to twice the standard deviation of the non-

interacting density of states on a three-dimensional simple cubic lattice. This

specific choice renders our results more easily comparable to corresponding

ones in other dimensions.

As mentioned in the previous section, the ladder version of DΓA with λ cor-

rections well reproduces the textbook Mermin and Wagner results for the

Hubbard model in d=2 dimensions yielding a finite, but exponentially large

susceptibility at any finite T [28], while the phase transition, which is indi-

cated by χAF → ∞, occurs only at T = 0. In d = 3 the situation is, however,

more intriguing, since the antiferromagnetic phase remains stable in a broad

region at finite T , allowing for a direct study of the critical properties.

Of particular interest is the analysis of the evolution of the “critical region”,

where a mean field description of the system is not applicable due to strong

nonlocal fluctuations, as a function of the Coulomb repulsion U . To this

end, we show the inverse susceptibility χ−1
AF as a function of T for different

U values in Fig. 4.14. The vanishing of χ−1
AF ∝ (T − TN)

γ marks the onset of

the antiferromagnetic long-range order, defining the corresponding transition

temperature TN for a given U . More important is, however, the examination of

the critical behavior: While in a mean-field (or DMFT) approach χ−1
AF is vanish-

ing linearly close to TN in accordance with the mean-field (Gaussian) critical
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Figure 4.14: Inverse antiferromagnetic susceptibility as a function of T for different U val-
ues. Lower inset: Inverse DMFT susceptibility with a mean-field (γ = 1: linear behavior)
critical exponent. Upper inset: larger T interval. Red arrows denote the respective temper-
atures, at which the devition between χ−1

AF and the corresponding linear high-temperature
fit becomes larger than 10%. The figure is reproduced from Ref. [31].

exponent γ = 1 (see lower inset of Fig. 4.14), DΓA data clearly show a bend-

ing in the region close to the antiferromagnetic transition (i.e., for T < TG,

the so-called Ginzburg temperature [72]), indicating a DΓA critical exponent

γ definitely larger than 1. The nonperturbative nature of DΓA also allows for

determining the size of the critical region as a function of U from weak to

intermediate-to-strong coupling: Our data clearly show that the size of the

temperature region where χ−1
AF ∝ |T − TN |γ deviates from the linear mean-field

behavior, i.e., where γ is different from 1, increases with U . This can be even

quantified by calculating χAF for T much larger then the transition tempera-

ture, i.e., T ≫ TN , and fitting the high-temperature linear behavior, as it was

done in the upper inset of Fig. 4.14 for U = 1.25 and U = 1.5. In this way TG

has been, hence, estimated as the temperature below which the relative devi-

ation of χ−1
AF from the above-mentioned linear fit becomes larger than 10% (red

arrows in the upper inset of Fig. 4.14). By this criterion for TG, the size of the
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Figure 4.15: Fit of χ−1
AF(T ) and ξ−1(T ) for the highest interaction value considered, i.e.,

U = 2.5. Left: fit with fixed ν = 0.707 (Heisenberg-exponent in d=3 [214]). Right: free
fit, showing the good compatibility with the d=3 Heisenberg universality class. The figure
is reproduced from Ref. [31].

critical region with non-mean-field behavior, i.e., ∆Tcrit = TG − TN , increases

from ≃ 0.01 for U =1.0, to ≃ 0.02 for U =1.25 and ≃ 0.025 for U =1.5, following

therefore the dependence determined by the Ginzburg criterion, which im-

plies the inapplicability of the standard Landau-Ginzburg expansion in the

temperature region ∆Tcrit ∝ T 2
N [72]. For U < 1.0 (not shown) the bending

of χ−1
AF becomes hardly visible, since in this regime TN follows the RPA-type

behavior TN ∼ e−
D
U , and therefore the size of the critical region becomes ex-

tremely narrow. On the contrary, for U > 1.5 the linear behavior becomes

confined to temperatures even higher than those shown in Fig. 4.14.

A more quantitative study of the critical behavior requires also a precise eval-

uation of the critical exponent(s). From the behavior of the antiferromagnetic

susceptibility, one can extract the values of the critical exponent ν, which

controls the divergence of the antiferromagnetic correlation length ξ [defined

as the square root of the inverse mass of the (physical) magnetic susceptibil-
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Ref. [31].

ity at ω = 0 and q = Π as can be inferred from Eq. (4.20)] when T → TN . This

can be computed either from the divergence of χAF (i.e., directly from the data

shown in Fig. 4.14), using the relation17 γ=2ν, or by extracting the value of ξ

from χAF by fitting its q-dependence for different values of T .18

The results of our analysis, shown in Fig. 4.15, demonstrate that DΓA can

17Note that within Moriyasque DΓA, the critical exponent η is not changed from its MF value (i.e., 0),
since the explicitly q-dependent terms of the spin-spin propagator in Eq. (4.20) (but not its mass, which is
corrected by λ!) is computed at the level of DMFT.

18Specifically, the value of ξ has been computed by fitting the DΓA spin susceptibility χω=0
m,q with the fitting

function χfit(q) = A/[4(sin2( qx−π
2 ) + sin2(

qy−π

2 ) + sin2( qz−π
2 )) + ξ−2] which reduces to Eq. (4.20) for q ∼ Π.
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describe well the antiferromagnetic criticality of the Hubbard model. For the

largest values of U = 2.5, indeed, both divergences of χAF and ξ observed

in DΓA can be described (left panels of Fig. 4.15) with high-accuracy by

the critical exponent ν = 0.707 of the d = 3-Heisenberg antiferromagnetism

[214]. This is expected to be the correct exponent, not only because the half-

filled Hubbard model can be mapped onto the Heisenberg model in the limit

of large U , but also since dimension and symmetry of the order parameter

suggest the same universality class. Similar results, though with a lower

degree of precision, can be found by directly fitting the value of the ν exponent

to χ−1
AF and ξ (right panels): For U = 2.5, our two fits provide an estimate of ν

∼ 0.70 and 0.73, respectively. This shows the Heisenberg universality is still

valid also in a parameter region (i.e., at intermediate-to-strong coupling),

where the Hubbard model is not well approximated by the Heisenberg model.

A natural by-product of the calculation of the critical exponents is the deter-

mination of TN at the DΓA level, whose values overall well agree with the most

accurate DCA and QMC/DDMC data obtained till 2011 (see Fig. 4.16). While

the quantitative agreement is particularly good in the intermediate-to-strong

coupling regime, the deviations observed around U = 1.0 (smaller TN in DΓA

than in QMC/DCA) might originate from neglecting the relatively small non-

local corrections of the charge- and particle-particle-channels, which could

affect non-universal quantities such as TN . On the other hand, also the

DCA/QMC finite-size extrapolation is difficult in this region since the anti-

ferromagnetic correlation length is large. In this respect, we refer to a very

recent diagrammatic determinant Monte Carlo study [215], where the Néel

temperature in the weak coupling regime (U ∼ 1) was found reduced com-

pared to previous QMC studies, towards the corresponding DΓA values. Let

us also mention that the dual fermion approach yields results for the anti-

ferromagnetic Néel temperature of the Hubbard model in three dimensions

similar as in the DΓA, with an overestimation of TN at weak and a possi-

ble underestimation at strong couplings [123]19 with respect to older QMC

data [216].

In this respect, it is interesting to note here, that very recently an analogous situation has

been also observed [195] by performing a ladder dual fermion study of critical properties of

19Note that, in general, the dual fermion method provides only an upper bound for the Néel temperature
of the system.
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the Falicov-Kimball model [217]. Within these ladder diagrammatic corrections to DMFT,

very accurate predictions for the critical exponents have been obtained, while deviations

with respect to lattice QMC data have been observed for non-universal quantities, such as

the transition temperature.

Up to now, the focus of our analysis was on two-particle quantities of the three-dimensional

half-filled Hubbard model, specifically on the (antiferromagnetic) susceptibility χAF =χ
(λ),ω=0
m,q=Π ,

used for studying the critical properties of the phase transition to the antiferromagnetic state

(i.e., the transition temperature TN and the critical exponents ν and γ). However, very valu-

able information is also contained in the one-particle Green’s function and, in particular, in

the electronic self-energy Σlad(ν,k), which can be easily obtained in ladder DΓA by means of

Eq. (4.19). Hence, in the following, we will present a thorough investigation of Σlad(ν,k) and

of the related spectral properties of our model. To this end, we start with a comparison of

our ladder DΓA results for the self-energy20 with the corresponding most recent DCA data

of Ref. [183]. In order to avoid any complications connected with the analytic continuation

of our Matsubara data to the real axis, we perform this comparison on the imaginary fre-

quency axis. In Fig. 4.17, the ladder DΓA self-energy with λ corrections (ΣλDΓA ≡ Σlad) is

compared to the corresponding DMFT and DCA data for different cluster sizes. The specific

value for the Hubbard interaction parameter considered U =1.633 is quite significant, being

located in the intermediate-to-strong coupling regime. As for the temperatures, two values

have been taken into account, one below and one above the Néel temperature of DMFT. The

corresponding (U, T ) points are marked by orange crosses in the phase diagram in Fig. 4.16.

In general, for higher temperatures, local and nonlocal short-range correlations are expected

to be the predominant, and, hence, DMFT and DCA should yield fairly similar and reliable

results in this situation. Indeed, in the upper panels of Fig. 4.17, one observes for a temper-

ature well above the Néel temperature of DMFT (β=9.798, see also the upper orange cross

in the phase-diagram in Fig. 4.16), that both nonlocal corrections of DCA and DΓA to the

DMFT self-energy are overall small, and that the DCA data as a function of cluster size ap-

pear already well converged at this rather high temperature. Aiming at a more quantitative

analysis, we observe that for a k point inside the Fermi surface, e.g., the Γ point [k = (0, 0, 0),

upper left panel in Fig. 4.17], a very good agreement is found between the DΓA and the

DCA curve for the largest cluster under consideration (100 cluster sites). In addition, com-

20More specifically, we compare just the imaginary part of the self-energy in Fig. 4.17 since, for the
half-filled system and the considered high-symmetry k-points at the Fermi level for which ki = π − kP (i),
i = 1, . . . , d, where P (i) denotes an arbitrary permutation of the numbers {1, . . . , d} [see Eq. (2.117) and the
discussion below this relation], the real part of Σ(ν,k) is just given by the Hartree term Un

2 .
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Figure 4.17: Imaginary part of the self-energy obtained with the Moriyasque DΓA (ΣλDΓA =
Σlad) calculated via Eq. (4.19) vs. DMFT and DCA results for different cluster sizes (taken
from Ref. [183]). The (U, T = 1/β) values for which the results have been obtained are
marked by an orange cross (“×”) in the phase-diagram in Fig. 4.16.

paring the DCA results for 84 and 100 cluster sites one can see, that the DCA calculations

are almost converged as a function of cluster size and tend to match the corresponding DΓA

data points. On the contrary, for k = (π
2
, π
2
, π
2
) on the Fermi surface the DΓA self-energy

differs from the corresponding (converged) DCA curves for 84 and 100 cluster sites as can

be seen in the right upper panel of Fig. 4.17. At the high temperature under consideration,

this observation might be related to the neglect of short-range nonlocal contributions to the

irreducible density and magnetic vertices Γloc,d and Γloc,m in the ladder version of DΓA. More

specifically, the observed underestimation of nonlocal corrections within ladder DΓA could

be mitigated by the inclusion of part of these missing nonlocal corrections to Γloc,d and Γloc,m,

by means of the one-particle irreducible (1PI) scheme (see Secs. 4.4.2 and 4.4.3), especially

in the regime of intermediate-to-strong coupling. A more detailed discussion of this issue

will be given in Sec. 4.4.3.1 (see, in particular, page 245). Turning to the lower temperature
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β = 13.997, which is located well below the Néel temperature of DMFT for the interaction

value U = 1.633 (see lower orange cross in Fig. 4.16), one figures out that DCA calculations

are not yet converged as a result of nonlocal correlations extended over longer ranges than

the available cluster sizes. For the Γ point k = (0, 0, 0), the evolution of the DCA self-energy

with the cluster size looks at least monotonous, tending to the corresponding solution ob-

tained with the (λ-corrected) ladder version of DΓA. On the contrary, at k = (π
2
, π
2
, π
2
) on

the Fermi surface one even observes a non-monotonous behavior of the DCA self-energies as

a function of cluster size, i.e., |Σ18
DCA| < |Σ100

DCA| < |Σ84
DCA| at the first Matsubara frequency,

which, evidently, renders the comparison with DΓA less significant.

As for a more quantitative description of the difference between the DCA and the ladder DΓA

self-energies on the Matsubara axis, we can introduce the following measure: We calculate

the relative deviation 1
N

∑
n |ImΣDΓA(k, ωn)− ImΣDCA(k, ωn)|/|ImΣDΓA(k, ωn)| and sum it

over the first N =7 Matsubara frequencies, since for those a difference between the DMFT

and the DCA/DΓA self-energy is observable. With respect to the above criterion the relative

difference between the DCA and DΓA self-energy is smaller than 5% for all cases depicted in

Fig. 4.17. For the lower right panel, i.e., for β = 13.997 and k = (π
2
, π
2
, π
2
) this is smaller than

the DCA difference between the two largest clusters considered (84 and 100 sites), indicating

that in this regime the DΓA errors are smaller than the accuracy of the present DCA data.

Let us now turn to the investigation of the effects of nonlocal correlations on the spectral

properties of the half-filled three-dimensional Hubbard model. As for a quantitative de-

scription, we consider the relative differences between the DΓA and the DMFT self-energy

at the lowest Matsubara frequency and the point k2 = (π, 0, π
2
) on the Fermi surface for

which the strongest impact of nonlocal correlations is expected and found numerically:

|ΣDMFT(iν1) − ΣDΓA(k2, iν1)|/|ΣDMFT(iν1)|. Note that this quantity, which can be obtained

from the Matsubara data for the self-energy, i.e., without an analytic continuation to the real

axis, is directly related to the quasiparticle weight Z in the Fermi liquid regime if the linear

low-frequency behavior of the self-energy already holds (approximately) at the lowest Mat-

subara frequency iν1. By this one-particle criterion, DMFT is estimated to remain reliable

down to the dashed violet line in Fig. 4.16, below which nonlocal DΓA corrections exceed

10%.

While these findings may validate (a posteriori) the usage of DMFT for computing one-

particle quantities such as spectral functions in d = 3, provided one is not interested in

the immediate vicinity of (second-order) magnetic instabilities (i.e., in the region below the

dashed violet line in Fig. 4.16), it is important to stress that for two-particle quantities

nonlocal correlations play a relevant role in a much larger region of the phase diagram,



4.3. DYNAMICAL VERTEX APPROXIMATION - LADDER APPROXIMATION 189

i.e., even above the violet line. Let us note that also in the case of single site DMFT for

realistic system, such as the pnictides, it has been recently pointed out that local electronic

correlations appear more visibly in two- than in one-particle quantities [120]. In our specific

case, we observe that the size of the critical region ∆Tcrit, obtained from the temperature

dependence of the antiferromagnetic susceptibility χAF (i.e., from a two particle quantity),

exceeds the violet line at U > 1.25. Significant effects of nonlocal correlations may occur

even further away from the antiferromagnetic transition, depending on the quantity under

consideration. In particular, relevant deviations from the DMFT predictions at even higher-

T s have been reported when analyzing the temperature dependence of the entropy [184].

As for a more physical picture of the impact of nonlocal correlations at the one-particle

level, we consider, in the following, the one-particle Green’s function on the real frequency

axis. To this end we have to perform an analytic continuation of the corresponding self-

energy ΣλDGA ≡ Σlad which has been obtained as a function of Matsubara frequencies in Eq.

(4.19). Let us recall that the analytic continuation procedure of a finite discrete data set

on the Matsubara axis is mathematically ill-conditioned, since the accumulation point of the

Matsubara frequencies is at ±i∞. Keeping an eye on this problem, we have performed a Padé

fit of our Matsubara data for the self-energy and calculated the k-resolved spectral function

A(ω,k) = − 1
π
ImG(ω,k), as defined and discussed in section 2.2.7, for two different k-points

on the Fermi Surface21, i.e., k1=(π
2
, π
2
, π
2
), k2=(π, 0, π

2
). The results for three specific values

of U and T have been reported in Ref. [31] and are shown in the insets of Fig. 4.16. At U = 1.0

and for a temperature well above the violet line in the phase diagram (upper inset in Fig.

4.16) the effect of nonlocal correlations on the spectrum appears, as expected, moderate: One

observes just a small quantitative change in the height of the quasiparticle peak with respect

to DMFT for k2, while for k1 almost no deviation from DMFT can be seen in the spectrum.

The situation of course changes considerably when approaching the second-order transition

line. This is because the corresponding (λ-corrected) magnetic susceptibility χλ,ωm,q, which

explicitly enters in the DΓA equation for ΣλDΓA=Σlad [Eq. (4.19)], is diverging at the (red)

transition line of Fig. 4.16). Such behavior is particularly evident in the spectra shown in the

two lower insets of Fig. 4.16 for temperatures slightly above the TN of DΓA but far below

the violet curve which marks the region of applicability of DMFT for calculating one-particle

Green’s function. At U = 1.0 (left lower inset in Fig. 4.16), a pronounced broadening of the

quasiparticle peak occurs in the DΓA spectra compared to DMFT. At U=2.0, the enhanced

scattering by nonlocal magnetic fluctuations even qualitatively changes the spectra: the

21This choice is highly significant, because for these k-points (on the Fermi surface) the largest/smallest
deviations from the DMFT self-energy are found.
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Figure 4.18: Left panel: Local spectral function A(ω) =
∑

kA(ω,k) = − 1
π

∑
k ImG(ω,k)

computed with DMFT and DΓA. Right panel: DMFT quasi-particle scattering rates Zγ
vs the corresponding DΓA results as a function of the temperature for two relevant k-
points at the Fermi surface. The continuous curves where obtained by single polynomial
fit of the Padé estimation for Zγ.

(already) damped quasiparticle peak of DMFT is transformed into a “pseudogap” in DΓA in

the right lower inset in Fig. 4.16. In principle, one can expect pseudogap behavior very close

to the Néel temperature also for an arbitrarily small Hubbard repulsion. The corresponding

region gets, however, very narrow at small U : a qualitative estimate according to Eq. (4.19)

yields the condition for the pseudogap behavior ξ > 4πv3F/(TNU
2) (vF is an average Fermi

velocity), which is only fulfilled in the immediate vicinity of the phase transition at small U ,

where TN is exponentially small [31].

In addition to the k-resolved DΓA spectra in the insets of Fig. 4.16 we also present a k-

summed, i.e., a local, spectral function in the left panel of Fig. 4.18 for U = 2.0 and β = 14.0,

i.e., for the U and T values corresponding to the right lower inset in the phase-diagram. One

can see that the most important qualitative feature of the k-resolved DΓA spectra, i.e., the

formation of the gap, is preserved also in the local (k-summed) density of states A(ω), which

indicates a significant impact of nonlocal correlations also on local physical observables in

this parameter regime.

Let us finally discuss the consequences of nonlocal correlations for the Fermi liquid coefficients

in the parameter region, where a quasi-particle description of the system is still applicable,

i.e., for small values of U and T . In this region of the phase diagram the (retarded) self-energy

on the real axis, Σ(ω,k), can be expanded into a series at ω=0. For the half-filled system

the particle-hole symmetry relations (2.108) and (2.117) and the point group symmetry of

the simple cubic lattice (see section 2.2.2.4) imply that Σ∗(iν,k) − U
2
= −Σ(iν,k) + U

2
(on
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the Matsubara axis) for the two specific k points on the Fermi surface considered above [i.e.,

k1 = (π
2
, π
2
, π
2
) and k2 = (π, 0, π

2
)]. Hence, the expansion of the corresponding Σ(ω,k) on the

real frequency axis reads:

Σ(ω,k;T ) =
U

2
− iγ(k;T )− α(k;T )ω +O(ω2), (4.27)

where α is related to the quasiparticle renormalization factor as Z = (1+α)−1. For U = 1.25

we extracted from our Padé fits for the self-energies the coefficients γ(k;T ) and Z(k;T ) for

different temperatures above the Néel temperature of DΓA. Let us note that the extraction

of the Fermi liquid coefficients from the Padé fits of the self-energy is numerically a rather

delicate procedure, leading to a considerable uncertainty in the results. The DΓA curves in

the right panel of Fig. 4.18 have, hence, been fitted to the data points shown in this plot

while data points, where the Padé fit exhibited anomalies (e.g., in the sum-rules) and, hence,

needs to be double checked, have been excluded. Remarkably, for DMFT such numerical

inconsistencies are even larger, since the self-energy is obtained directly from the impurity

solver rather than from a momentum integral as in DΓA, which has smoothing effects on the

data. Therefore, we present only the fitted curve in the case of DMFT.

In the right panel of Fig. 4.18 the effective scattering rates Zγ are shown for the two k points

under consideration and compared to the corresponding DMFT values as a function of tem-

perature. While for a Fermi liquid one typically expects a monotonous increase of Zγ with

the temperature, as it can be indeed observed for DMFT, the corresponding DΓA results

exhibit an evident non-monotonous behavior, with increasing values of Zγ at low temper-

atures when approaching the antiferromagnetic phase transition. This finding is related to

the scattering of the electrons by nonlocal magnetic fluctuations which becomes progressively

more important at low temperatures and dominates all other effects in the vicinity of the

second-order phase transition. These nonlocal magnetic fluctuations and the corresponding

scattering are neglected in DMFT. Let us note that qualitatively similar low-temperature

nonlocal corrections for the behavior of the Fermi liquid coefficients, in particular of the ef-

fective scattering rate, have been reported in a related DCA study in Ref. [190] for the case

of the two-dimensional Hubbard model.

We have seen that the ladder DΓA represents a powerful tool for analyzing qualitatively

and quantitatively the critical properties of the half-filled Hubbard model. While for uni-

versal quantities, such as the critical exponents, one obtains accurate results, one notices

deviations with respect to cluster calculations for non-universal quantities, such as the Néel

temperature. A similar situation has been recently observed for ladder calculations within
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the dual fermion approach [123]. The main limitation of ladder DΓA, however, is the neglect

of nonlocal contributions to the irreducible vertex in the specific channel under consideration.

This problem matters even more if the system is out of half-filling, since in that case the

importance of spin fluctuations compared to the other channels gets gradually reduced with

the doping of the system. While a full parquet treatment within the DΓA would certainly

overcome this problem, it is numerically very demanding. Hence, in the following we will

consider alternative approaches with the aim of including (part of) nonlocal corrections into

the irreducible vertices at the ladder level.

4.4 Functional Integral based methods

In this section we will discuss methods for the inclusion of nonlocal correlations beyond the

purely local ones, taken into account by DMFT, which are based on the functional integral

representation of the n-particle Green’s function [32,33], defined (in the operator formalism)

in Eq. (2.27):

Gn,i1...i2n(τ1, . . . , τ2n) =
1

Z

∫
D[c+i (τ), ci(τ)] e

−S[c+i (τ),ci(τ)] c+i1(τ1)ci2(τ2) . . . c
+
i2n−1

(τ2n−1)ci2n(τ2n),

(4.28)

where ci(τ) and c
+
i (τ) are the Grassmann fields corresponding to the fermionic operators ĉi(τ)

and ĉ†i(τ), respectively, as given in Eq. (2.28). It should be stressed that, in our convention,

similar as for the operators, the variables c+i (τ) and ci(τ) are dimensionless. The partition

function Z, which serves as normalization factor, reads as Z =
∫
D[c+i (τ), ci(τ)] e

−S[c+i (τ),ci(τ)],

and the indices ij represent the set of all degrees of freedom of the system under consideration

as it was discussed in Sec. 2.2, page 25 below Eq. (2.29), i.e., ij=̂(Rj, σj) [or ij=̂(kj , σj)

after a Fourier transform] for the Hubbard Hamiltonian while ij=̂σj for the AIM. S denotes

the imaginary time action which reads as:

S[c+i (τ), ci(τ)] =
∫ β

0

dτ

[
∑

i

c+i (τ)
d

dτ
ci(τ) +H [c+i (τ), ci(τ)]

]
, (4.29)
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where H is the Hamiltonian functional of the Grassmann fields c+i (τ) and ci(τ). For the

models which are relevant for this section these Hamiltonian functionals read:

HHubbard[c
+
iσ(τ), ciσ(τ)] =− t

∑

〈ij〉,σ
c+iσ(τ)cjσ(τ) + U

∑

i

c+i↑(τ)ci↑(τ)c
+
i↓(τ)ci↓(τ)+

− µ
∑

i,σ

c+iσ(τ)ciσ(τ) (4.30)

for the lattice system (i.e., the Hubbard model), and

HAIM[c
+
σ (τ), cσ(τ)] =

∑

σ

∫ β

0

dτ ′ ∆(τ − τ ′)c+σ (τ)cσ(τ
′) + Uc+↑ (τ)c↑(τ)c

+
↓ (τ)c↓(τ)+

− µ
∑

σ

c+σ (τ)cσ(τ), (4.31)

for the AIM, where ∆(τ) is the inverse Fourier transform of the hybridization function,

defined in Eq. (2.209). To render the Hamiltonian functionals and the action, respectively,

diagonal, it is convenient to introduce the Fourier transform with respect to the imaginary

time τ (and the space variable Ri in the case of the Hubbard model) of the fermionic fields

c+iσ(τ) and ciσ(τ). Hence, one defines the following transformation of the Grassmann fields

c+iσ(τ) and ciσ(τ):

c
(+)
iσ (τ) =

1

β

∑

ν,k

e
−
(+) i(ντ−kRi)c

(+)
kσ (ν), c

(+)
kσ (ν) =

∑

i

∫ β

0

dτ e
+

(−) i(ντ−kRi)c
(+)
iσ (τ), (4.32)

where ν is a fermionic Matsubara frequency [the sign in the exponent with (without) paren-

theses is for the creation (annihilation) operators], and
∑

k is a shorthand notation for the

momentum integral over the first Brillouin zone, i.e.,
∑

k =̂
1

(2π)d

∫ π
−π d

dk for the Hubbard

model on a d-dimensional simple cubic lattice with lattice constant a = 1. The correspond-

ing equations for the AIM can be readily obtained by removing all k and i variables and

summations from Eqs. (4.32). In the following also the fields c+iσ(ν) and ciσ(ν), where the

Fourier transform is conducted with respect to the time variable τ only, will be considered;

the corresponding transformation is equivalent to Eqs. (4.32) except for
∑

k e
±ikRi and∑

i e
±ikRi , respectively22.

Inserting the Fourier transform of the Grassmann fields c+ and c, as defined in Eqs. (4.32),

22Let us also mention that, since c+iσ(τ) and ciσ(τ) are dimensionless quantities, c+kσ(ν) and ckσ(ν) have

the physical dimension of an inverse energy, i.e., [c
(+)
kσ (ν)] = (eV)−1, see Eqs. (4.32).
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into the Gaussian part of the action in Eqs. (4.29), (4.30) and (4.31) yields:

SHubbard[c
+, c] =

1

β

∑

ν,k,σ

[−iν + εk − µ] c+kσ(ν)ckσ(ν) + U
∑

i

∫ β

0

dτ c+i↑(τ)ci↑(τ)c
+
i↓(τ)ci↓(τ),

(4.33a)

SAIM[c
+, c] =

1

β

∑

ν,σ

[−iν +∆(ν)− µ] c+σ (ν)cσ(ν) + U

∫ β

0

dτ c+↑ (τ)c↑(τ)c
+
↓ (τ)c↓(τ). (4.33b)

Comparing Eq. (4.33a) with (4.33b) one sees that, concerning the action, the main difference

between the Hubbard model and the AIM is the way in which an interacting lattice site is

“connected” to the rest of the system, i.e., to the other (interacting) lattice sites in the case of

the Hubbard model and to the (non-interacting) bath sites in case of the AIM, respectively. In

the following, this observation will be the guideline for separating local and nonlocal degrees

of freedom in the Hubbard model23. In fact, it is straightforward to express the action of the

Hubbard model in terms of the corresponding one for the AIM which reads as:

SHubbard[c
+, c] =

∑

i

SAIM[c
+
i , ci]−

1

β

∑

ν,k,σ

[∆(ν)− εk] c
+
kσ(ν)ckσ(ν). (4.34)

The calculation of the Green’s functions by means of the functional integral formalism,

as introduced in Eq. (4.28), is typically performed by adding a term containing so-called

(fermionic) source-fields ηi(τ) and η
+
i (τ) in the exponent [32]:

Z[η+i (τ), ηi(τ)] =

∫
D[c+i (τ), ci(τ)] e

−S[c+,c]+∑
i

∫ β
0 dτ [c+i (τ)ηi(τ)+η

+
i (τ)ci(τ)], (4.35)

where, for the sake of generality, we come back for the moment to the notation adopting

the generalized index i, the meaning of which depends on the model under consideration24.

The Green’s functions can be now obtained by differentiating Z[η+, η] with respect to the

23Here and in the following we make excessively use of Parseval’s theorem [218] which states that the
inner product of two functions (or, in our case, Grassmann fields) is invariant under a Fourier transform
(except for a possible factor of β concerning the transition from time-integration to frequency-summation),

i.e., 1
β

∑
ν,k c

+
kσ(ν)ckσ(ν) =

∫ β

0
dτ
∑

i c
+
iσ(τ)ciσ(τ).

24Let us stress here, that in our convention, while c+i (τ) and ci(τ) are dimensionless Grassmann fields,
η+i (τ) and ηi(τ) should have the dimension of an energy ([η+i (τ)] = [ηi(τ)] ≡ eV) in order to render the
corresponding term in the exponent of Eq. (4.35) dimensionless.
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fermionic source fields η and η+, evaluated at η=0 and η+=0:25

Gn,i1...i2n(τ1, . . . , τ2n) =
1

Z

δ2nZ[η+, η]

δη+i2n(τ2n)δηi2n−1(τ2n−1) . . . δη
+
i2
(τ2)δηi1(τ1)

∣∣∣∣
η+=0,η=0

, (4.36)

where the partition function Z can be expressed as Z ≡ Z[η+ = 0, η = 0] in this context. Eq.

(4.36) explains the denotation of Z[η+, η] as generating functional for the n-particle Green’s

functions. Similarly, one can define a more specialized generating functional W [η+, η], from

which the connected parts of the Green’s functions can be directly extracted, as defined in

Fig. 2.8 and Eq. (2.159). This functional is simply given by:

W [η+, η] = lnZ[η, η+]. (4.37)

One can now obtain the connected n-particle Green’s function Gc
n by differentiating W [η+, η]

with respect to the source fields η+ and η:

Gc
n,i1...i2n

(τ1, . . . , τ2n) =
δ2nW [η+, η]

δη+i2n(τ2n)δηi2n−1(τ2n−1) . . . δη
+
i2
(τ2)δηi1(τ1)

∣∣∣∣
η+=0,η=0

. (4.38)

Note that the normalization factor 1
Z
is not needed here, since it is automatically produced

by differentiating the logarithm in Eq. (4.37).

In the following sections we are mainly concerned with the calculation of the one-particle

Green’s function for the Hubbard model, G(ν,k). This quantity does not exhibits any un-

connected parts, i.e., Gc
1 ≡ G1, and can be, hence, calculated according to Eqs. (2.57), (2.61)

(with lattice constant a = 1) and (4.38):

G1,kk′,σσ′(ν, ν
′) =

δ2W [η+, η]

δη+k′σ′(ν
′)δηkσ(ν)

= βδνν′(2π)
dδ(d)(k− k′)δσσ′G(ν,k), (4.39)

25Note that, even though the Grassmann fields η+ij (τj) and ηij (τj) exhibit the physical dimension of an

energy, the Green’s function in Eq. (4.36) is dimensionless since the operation of functional differentiation

involves an integration over τ , i.e.,
∫ β

0
dτ δ(τ − τj)c

(+)
ij

(τj), which compensates for the energy dimension of

the source fields ([dτ ] = (eV)−1 and [η
(+)
ij

(τj)] = [δ(τ − τj)] = eV).
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where the Fourier transformed source fields η+kσ(ν) and ηkσ(ν) are defined as26:

η
(+)
iσ (τ) =

∑

ν,k

e
−
(+) i(ντ−kRi)η

(+)
kσ (ν), η

(+)
kσ (ν) =

∑

i

1

β

∫ β

0

dτ e
+
(−) i(ντ−kRi)η

(+)
iσ (τ). (4.40)

Let us now discuss the basic idea for the inclusion of nonlocal correlations in the Green’s

functions of the Hubbard model (beyond the local ones of DMFT) in the framework of the

functional integral formalism presented above. To this end, we start from the generating

functional [Eq. (4.35)] for the Hubbard model and use the splitting of the lattice action into

a local and a nonlocal part, as it was illustrated in Eq. (4.34):27

Z[η+, η] =

∫
D[c+, c] exp

{
−
∑

i

SAIM[c
+
i , ci] +

∑

ν,k,σ

1

β
[∆(ν)− εk] c

+
kσ(ν)ckσ(ν)+

+ c+kσ(ν)ηkσ(ν) + η+kσ(ν)ckσ(ν)

}
. (4.41)

In the next step a Hubbard-Stratonovich (HS) [33] transformation is performed in order to

decouple the term describing the nonlocal degrees of freedom k. For a given set of quantum

numbers (ν,k, σ) such a transformation reads:

e
1
β
[∆(ν)−εk]c+kσ(ν)ckσ(ν) = [Bkσ(ν)]

−2

∫
dc̃+kσ(ν)dc̃kσ(ν) e

± 1√
β
[∆(ν)−εk]

1
2Bkσ(ν)[c+kσ(ν)c̃kσ(ν)+c̃

+
kσ(ν)ckσ(ν)]

× e−[Bkσ(ν)]
2c̃+

kσ(ν)c̃kσ(ν), (4.42)

where Bkσ(ν) is an arbitrary complex function [i.e., Bkσ(ν) ∈ Z] of the variables ν, k and σ,

the dimension of which has to be consistently defined28. Also the sign of the exponent in the

26Note that, in contrast to the Fourier transformation for the physical fields c+ and c, introduced in Eqs.
(4.32), the prefactor 1

β
in Eqs. (4.40) is now assigned to the inverse Fourier transform. Hence, the source

fields η+kσ(ν) and ηkσ(ν) in Fourier space exhibit the same physical dimension as the source fields in real space
η+iσ(τ) and ηiσ(τ), namely that of an energy (eV). This is also consistent with the definition of the Fourier
transform of the n-particle Green’s function in Eq. (2.35b), which should have dimension of (eV)−2n when

considering the 2n-frequency object G̃n,i1...i2n(ν1, . . . , ν2n), Eq. (2.35b), which can be directly obtained from

a functional derivative of Z with respect to the Fourier transformed source fields η
(+)
ij

(νj). The corresponding

2n− 1-frequency object, defined in Eq. (2.58), exhibits of course a physical dimension of (eV)−2n+1.
27There is no factor 1

β
in the second line of Eq. (4.41) since the Fourier transform of the fields η+ and η

is defined without such factor [see Eqs. (4.40)] in contrast to the Fourier transform of the physical fields c+

and c [see Eqs. (4.32)].
28There is only a requirement concerning the dimension of the complex-valued function Bkσ(ν) and the

Grassman variable c̃(+), namely, that all terms in the exponent of Eq. (4.42) must be dimensionless. This
condition is fulfilled if [B] = [c̃(+)]−1. For instance, if [c̃(+)] = (eV)−1 as for the Grassmann fields of the real
electrons in frequency and momentum representation one has that [B] = eV.
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first exponential function under the integral is not unambiguously defined (± [∆(ν)− εk]),

since - when expanding the exponential function - the Grassmann integral over the first order

term vanishes, while the relevant zeroth- and second-order contributions do not depend on

the sign of the exponent. Following the convention of Ref. [36], we choose the plus-sign for

this term which is the opposite convention of the dual fermion literature, where the Hubbard-

Stratonovich (HS) fields c̃(+) are typically labeled f (+) [34].Let us also remark that one can

obtain Eq. (4.42) also by means the so-called covariation splitting formula [219] rather than

a HS transformation, as it is explicitly discussed in Appendix D.

Rewriting Z[η+, η] in Eq. (4.41) by applying the Hubbard Stratonovich decoupling in Eq.

(4.42) yields:

Z[η+, η] =

(
∏

ν,k,σ

[Bkσ(ν)]
−2

)∫
D[c+, c]D[c̃+, c̃] exp

{
−
∑

i

SAIM[c
+
i , ci]+

+
∑

ν,k,σ

1√
β
[∆(ν)− εk]

1
2 Bkσ(ν)

[
c+kσ(ν)c̃kσ(ν) + c̃+kσ(ν)ckσ(ν)

]
+

−
∑

ν,k,σ

[Bkσ(ν)]
2 c̃+kσ(ν)c̃kσ(ν) +

∑

ν,k,σ

[
c+kσ(ν)ηkσ(ν) + η+kσ(ν)ckσ(ν)

]
}
. (4.43)

It turns out convenient to choose Bkσ(ν) as
29

Bkσ(ν) = bσ(ν) [∆(ν)− εk]
− 1

2 , (4.44)

since, in this way, the k-integration in the second line of Eq. (4.43) is eliminated in favor of

a summation over all lattice sites due to Parseval’s theorem, which allows us to combine the

contribution

∑

ν,k,σ

[∆(ν)− εk]
1
2 Bkσ(ν)

[
c+kσ(ν)c̃kσ(ν) + c̃+kσ(ν)ckσ(ν)

]
=
∑

ν,i,σ

bσ(ν)
[
c+iσ(ν)c̃iσ(ν) + c̃+iσ(ν)ciσ(ν)

]
,

(4.45)

in Eq. (4.43) with SAIM[c
+
i , ci], leading to the following expression for the generating func-

29[b] = (eV)
1
2 [B] = (eV)

1
2

[
c̃(+)

]−1
.
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tional:

Z[η+, η] = Z̃

∫
D[c̃+, c̃] exp

{
−
∑

ν,k,σ

[Bkσ(ν)]
2 c̃+kσ(ν)c̃kσ(ν)

}
×

×
∏

i

∫
D[c+i , ci] exp

{
−SAIM[c

+
i , ci] +

+
∑

ν,σ

c+iσ(ν)

[
1√
β
bσ(ν)c̃iσ(ν) + ηiσ(ν)

]
+

[
1√
β
bσ(ν)c̃

+
iσ(ν) + η+iσ(ν)

]
ciσ(ν)

}
,

(4.46)

where Z̃ =
(∏

ν,k,σ[Bkσ(ν)]
−2
)
. The last two lines of Eq. (4.46) can be now identified as

the generating functional for the local Green’s functions of the AIM at the lattice site i, i.e.,

ZAIM[η̃
+
i , η̃i]:

ZAIM[η̃
+
i , η̃i] =

∫
D[c+i , ci] exp

{
−SAIM[c

+
i , ci] +

∑

ν,σ

c+iσ(ν)η̃iσ(ν) + η̃+iσ(ν)ciσ(ν)

}
, (4.47)

with η̃+iσ(ν) = β− 1
2 bσ(ν)c̃

+
iσ(ν)−η+iσ(ν) and η̃iσ(ν) = β− 1

2 bσ(ν)c̃iσ(ν)+ηiσ(ν). Hence, rewriting

the generating functional of the Hubbard model of Eq. (4.46) in terms of the corresponding

one for the AIM yields30:

Z[η+, η] =Z̃

∫
D[c̃+, c̃] exp

{
−
∑

ν,k,σ

[Bkσ(ν)]
2 c̃+kσ(ν)c̃kσ(ν)

}
×

×
∏

i

ZAIM[β
− 1

2 bc̃+i + η+i , β
− 1

2 bc̃i + ηi] =

=Z̃

∫
D[c̃+, c̃] exp

{
−
∑

ν,k,σ

[Bkσ(ν)]
2 c̃+kσ(ν)c̃kσ(ν)+

+
∑

i

WAIM[β
− 1

2 bc̃+i + η+i︸ ︷︷ ︸
η̃+i

, β− 1
2 bc̃i + ηi︸ ︷︷ ︸
η̃i

]




,

(4.48)

30Let us remark that the prefactor Z̃ =
∑

ν,k,σ[Bkσ(ν)]
−2 in Eq. (4.48) is irrelevant, and, hence, can be

neglected, for the calculation of the (connected) n-particle Green’s functions, which requires only derivatives

of the logarithm of Z[η+, η] with respect to the fermionic source fields η+ and η on which Z̃ does not depend.
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where WAIM = lnZAIM is the generating functional for the connected Green’s function of the

AIM. By expanding WAIM in Eq. (4.48) in terms of η̃+i and η̃i one can see that the new fields

c̃+ and c̃, which represent the nonlocal degrees of freedom of the system, are interacting via

the local one-, two- and more-particle connected local Green’s (or vertex) functions of the

AIM. The latter are generated by integrating out the original fermions locally. Differently

from the usual HS decoupling of the interaction term [33], here the integral over the original

(physical) fields c+i and ci is not Gaussian, since SAIM contains an interaction term. Hence,

it can not be performed analytically. However, this Grassmann integration corresponds to

calculating the one-, two- and more-particle Green’s functions for the AIM, for which a

numerical solution is possible.

Hence, considering the DMFT solution for the AIM, i.e., the AIM which is determined self-

consistently by the DMFT procedure discussed in chapter 3 (Sec. 3.1), the formalism derived

above might serve as a starting point for a “perturbative” expansion of the one-particle

Green’s function of the Hubbard model around the DMFT solution, aiming at a systematic

inclusion of nonlocal correlations beyond the local ones of DMFT. In the following two

sections, we will discuss two possible methods to do so: (i) We will recall the DF approach

and analyze possible problems caused by the inclusion of one-particle reducible contributions

to the vertex functions in the interaction term [WAIM in Eq. (4.48)]. (ii) We will discuss a

new method based on a Legendre transform ofWAIM, leading to the generating functional for

one-particle irreducible (1PI) n-particle local Green’s (or, more precisely, vertex) functions.

The latter are introduced to overcome the above-mentioned problems in the DF theory due

to one-particle reducible vertices.

Let us stress, that, in the following, the DF theory will be discussed in a non-standard way

(compared to the corresponding literature) within the framework of generating functionals

introduced above, because this allows for a more direct comparison with the newly developed

1PI approach. The advantage of the presented formalism is constituted in the fact, that all

Green’s functions for the original (physical) fields c+ and c can be obtained by just calculating

the derivative(s) of Z[η+, η] with respect to the source fields η+ and η, independent from all

transformations performed for the original functional integral in Eq. (4.35).

4.4.1 Dual Fermion approach

The dual fermion (DF) method was introduced in 2008 by Rubtsov et al. [34] as a dia-

grammatic extension of DMFT based on the functional integral description of the lattice

Green’s functions. Its basic idea is the splitting of local and nonlocal degrees of freedom
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of the Hubbard model by means of an appropriate Hubbard-Stratonovich transformation,

similar to that introduced in the previous section in Eq. (4.42). In this way the original

lattice electrons c+ and c are replaced by so-called dual fermions f+ and f (corresponding

to c̃+ and c̃ of the previous section), which interact via the local vertex functions of an aux-

iliary AIM, e.g., that connected with the DMFT solution of the Hubbard model. These dual

particles are already dressed with all local correlation effects of the DMFT and, hence, a

perturbation theory in these dual fields adopts DMFT (or another local AIM) as starting

point for a perturbative calculation of the Green’s functions of the system. In this respect,

DF perfectly fits into the general scheme of diagrammatic extensions of DMFT discussed

in Sec. 4.1.2. DF has already been applied to improve the DMFT results in several cases,

among which is, e.g., the two-dimensional Hubbard model. For this system, DF yields, at the

one-particle level, pseudogap-behavior [34,220] and Fermi-arcs [221] and, at the two-particle

level, lattice susceptibilities [222,223] and second-order phase transitions [35,123,195,224]. In

more recent works, DF was used for analyzing non-equilibrium problems [225] and has been

also combined with DCA and the parquet formalism, making a first step in the direction of

multi-scale methods [142, 193] (see Sec. 4.1.1). In this section, we will, however, focus on

some specific aspect and limitation of this method, which serves as a guideline for possible

extensions and improvements. Specifically, our considerations will lead to the development

of a new approach, based on the one-particle irreducible (1PI) functional, which will be in-

troduced in Sec. 4.4.2. A good starting point for our analysis is a (non-standard) derivation

of the dual fermion theory within the framework of the functional integral formalism and the

generating functional method developed in the previous section.

Specifically, we can begin by considering Eq. (4.48) and introducing a shift of the fields c̃+

and c̃ in order to get rid of the source fields η+ and η in the local AIM part of the generating

functional:

c̃+ = c̃ ′+ −
√
βb−1η+, c̃ = c̃ ′ −

√
βb−1η, (4.49)

where we suppressed all arguments of both the Grassmann fields (i.e., ν, i, σ) and the function

b (i.e., ν, σ). For the sake of a better readability we relabel the new variables as c̃ ′+ → c̃+

and c̃ ′ → c̃ and obtain the following equation for the generating functional Z[η+, η] for the
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Green’s functions of the Hubbard model:

Z[η+, η] = Z̃

∫
D[c̃+, c̃] exp

{
−
∑

ν,k,σ

[Bkσ(ν)]
2
[
c̃+kσ(ν)−

√
βb−1

σ (ν)η+kσ(ν)
]
×

×
[
c̃kσ(ν)−

√
βb−1

σ (ν)ηkσ(ν)
]
+
∑

i

WAIM[β
− 1

2 bc̃+i , β
− 1

2 bc̃i]

}
.

(4.50)

Aiming at an interpretation of this equation, we consider η+ = η ≡ 0 for which Eq. (4.50) cor-

responds just to the partition function Z of the Hubbard model. This can be then expressed

as Z = Z̃Zd, whereupon Zd is given by the Grassmann integral

Zd =

∫
D[c̃+, c̃]e−Sd[c̃

+,c̃], (4.51)

and the dual action Sd reads as:

Sd[c̃+, c̃] =
∑

ν,k,σ

[Bkσ(ν)]
2 c̃+kσ(ν)c̃kσ(ν)−

∑

i

WAIM[β
− 1

2 bc̃+i , β
− 1

2 bc̃i]. (4.52)

For a better treatment and physical understanding of the “new” particles, i.e., of the “dual

fermions”, c̃(+) arising in Eqs. (4.50), (4.51) and (4.52), we divide the dual action into a “non-

interacting” part which is quadratic in c̃+ and c̃ and a remainder, the interacting part, which

is of higher (fourth, sixth and, in principle, all) orders in these fields. Since the generating

functional WAIM still contains a non-interacting contribution, i.e., one which is quadratic in

c̃+ and c̃, it is useful to (Taylor-) expand it with respect to its arguments β− 1
2 bc̃+i and β− 1

2 bc̃i,

yielding:

WAIM[bc̃
+
i , bc̃i] = lnZAIM[bc̃

+
i , bc̃i] = lnZAIM[0, 0]︸ ︷︷ ︸

ZAIM

+

+
∑

ν1ν2
σ1σ2

1

ZAIM

δ2ZAIM[η̃
+
i , η̃i]

δη̃+σ2(ν2)δη̃σ1(ν1)

∣∣∣∣∣
η̃+=0,η̃=0︸ ︷︷ ︸

βGloc(ν1)δν1ν2δσ1σ2 , [(4.36), (4.38), (4.47)]

[
β− 1

2 bc̃iσ1(ν1)
] [
β− 1

2 bc̃+iσ2(ν2)
]
+

+
1

4

∑

ν1...ν4
σ1...σ4

Gc
2,loc,σ1...σ4(ν1, . . . , ν4)

[
β− 1

2 bc̃iσ1(ν1)
] [
β− 1

2 bc̃+iσ2(ν2)
] [
β− 1

2 bc̃iσ3(ν3)
] [
β− 1

2 bc̃+iσ4(ν4)
]
+

+ . . . , (4.53)
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where . . . denotes sixth- and higher-order contributions in the fields c̃+ and c̃. The connected

two-particle Green’s function Gc
2,loc reads as:

Gc
2,loc,σ1...σ4(ν1, . . . , ν4) = G2,loc,σ1...σ4(ν1, . . . , ν4)+

−G1,loc,σ1σ2(ν1, ν2)G1,loc,σ3σ4(ν3, ν4) +G1,loc,σ1σ4(ν1, ν4)G1,loc,σ2σ3(ν2, ν3).

(4.54)

One can see in Eq. (4.53) that the quartic part of WAIM is given by the local two-particle

connected Green’s function which is equivalent to the local vertex function with outer legs,

i.e.,

Gc
2,loc,σσσ′σ′(ν, ν + ω, ν ′ + ω′, ν ′) = −βδωω′Gloc(ν)Gloc(ν + ω)F νν′ω

loc,σσ′Gloc(ν
′ + ω)Gloc(ν

′),

(4.55a)

Gc
2,loc,σσ′σσ′(ν, ν + ω, ν ′ + ω′, ν ′) = −βδωω′Gloc(ν)Gloc(ν + ω)F νν′ω

loc,σσ′Gloc(ν
′ + ω)Gloc(ν

′),

(4.55b)

according to the definitions of the vertex function Floc in chapter 2, taking into account all

symmetries of the AIM [see Eqs. (2.57), (2.58) and (2.149) for the frequency conventions, Eqs.

(2.73) and (2.74) for the spin dependence, and Eq. (2.159) and Fig. 2.8 for the definition of

the vertex function Floc in Eqs. (4.55)]. Gloc denotes the interacting (local) Green’s function

of the AIM, defined by the hybridization function ∆(ν).

Since it is generally preferable to work with pure vertex functions without outer legs [Floc, in

the case of the two-particle contribution to WAIM in Eq. (4.53)] rather than the connected

two-particle Green’s functions Gc
2,loc, one chooses bσ(ν) as the inverse of the full (interacting)

one-particle Green’s function of the (local) AIM, i.e.:

bσ(ν) =

√
1

β
[Gloc(ν)]

−1 =

√
1

β
[iν −∆(ν) + µ− Σloc(ν)], (4.56)

where Σloc(ν) denotes the self-energy of the AIM31. In this way all outer legs of the connected

two-particle Green’s function will be amputated, which, of course, holds also for the three-

and more-particle connected Green’s functions occurring in a further expansion of WAIM.

Moreover, let us point out, that for the choice of b made in Eq. (4.56), c̃+ and c̃ coincide

with the definition of the so-called dual fermions f+ and f of the literature [34].

31The additional factor β− 1
2 in Eq. (4.56) provides for the correct physical dimension of b, namely, [b] =

(eV)
3
2 (see the discussion in footnotes 28 and 29).



4.4. FUNCTIONAL INTEGRAL BASED METHODS 203

Taking into account Eq. (4.56), one can rewrite the generating functional for the connected

Green’s function of the AIM, WAIM [Eq. (4.53)], in the following way:

WAIM[bc̃
+
i , bc̃i] = lnZAIM − 1

β

∑

ν,σ

[Gloc(ν)]
−1c̃+iσ(ν)c̃iσ(ν)+

− 1

2

1

β3

∑

νν′ω

∑

σσ′

(
1− 1

2
δσσ′

)
F νν′ω
loc,σσ′ c̃

+
iσ(ν)c̃iσ(ν + ω)c̃+iσ(ν

′ + ω)c̃iσ′(ν
′) + . . . ,

(4.57)

where the time-reversal symmetry for the vertex function Floc has been used (F νν′ω
loc,σσ′ =F

ν′νω
loc,σ′σ,

see also Tab. 2.2). Next, we insert relation (4.57) into the expression for the generating

functional of the lattice Green’s function [Eq. (4.50)]. In order to obtain the Gaussian part

with respect to the dual fermions c̃+ and c̃, we combine the quadratic term from WAIM in

Eq. (4.57) with the corresponding quadratic contribution, explicitly appearing in Eq. (4.50),

whereupon B and b are defined in Eqs. (4.44) and (4.56), respectively:

−
{
[Bkσ(ν)]

2 + [bσ(ν)]
2 Gloc(ν)} c̃+kσ(ν)c̃kσ(ν) =

= − 1

β
G−1

loc(ν)
[
(∆(ν)− εk)

−1 +Gloc(ν)
]
G−1

loc(ν) c̃
+
kσ(ν)c̃kσ(ν) =

=
1

β

[
1

iν − εk + µ− Σloc(ν)︸ ︷︷ ︸
GDMFT(ν,k)

−Gloc(ν)

]−1

c̃+kσ(ν)c̃kσ(ν), (4.58)

where GDMFT(ν,k) denotes an approximate Green’s function for the Hubbard model, con-

structed with the bare dispersion of the lattice (εk) and the local self-energy of the AIM

[Σloc(ν)]. In fact, GDMFT(ν,k) formally corresponds to the definition of the DMFT Green’s

function in chapter 3, Eq. (3.7), if the respective AIM is self-consistently connected to the

DMFT solution of the Hubbard Hamiltonian (see Sec. 3.1). However, in DF, the local AIM

does not need to coincide with the corresponding DMFT solution of the Hubbard model.

That is, the hybridization function ∆(ν), which uniquely defines the AIM (besides the Hub-

bard interaction U), is not necessarily determined within a DMFT self-consistency cycle.

Nevertheless, the AIM connected with the DMFT solution of the lattice system can be con-

sidered as a reasonable starting point for a DF calculation, since in this case all purely local

correlations are already included in the Gaussian part of the dual action. In this respect

DMFT can be seen as a convenient zeroth-order perturbative approximation for the DF

approach, as it has been discussed for general diagrammatic extensions of DMFT in Sec.
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4.1.2.

Inserting the expansion ofWAIM, obtained in Eq. (4.57), into the expression for the generating

functional of the Hubbard model, stated in Eq. (4.50), gives, in consideration of Eq. (4.58),

rise to the following relation:

Z[η+, η] = Z̃

∫
D[c̃+, c̃] exp

{
1

β

∑

ν,k,σ

[GDMFT(ν,k)−Gloc(ν)]
−1 c̃+kσ(ν)c̃kσ(ν) +

∑

i

VAIM[c̃
+
i , c̃i]+

+
∑

ν,k,σ

[∆(ν)− εk]
−1G−1

loc(ν)
[
η+kσ(ν)c̃kσ(ν) + c̃+kσ(ν)ηkσ(ν)

]

−β
∑

ν,k,σ

[∆(ν)− εk]
−1 η+kσ(ν)ηkσ(ν) +

∑

i

lnZAIM

}
, (4.59)

where the effective interaction VAIM[c̃
+
i , c̃i] between the dual particles is defined, according to

Eq. (4.57), as:

VAIM[c̃
+
i , c̃i] = −1

2

1

β3

∑

νν′ω

∑

σσ′

(
1− 1

2
δσσ′

)
F νν′ω
loc,σσ′ c̃

+
iσ(ν)c̃iσ(ν + ω)c̃+iσ(ν

′ + ω)c̃iσ′(ν
′) + . . . .

(4.60)

Note that the contributions to VAIM, which are of sixth and higher orders in the dual fields

c̃+ and c̃, have been neglected, as in the typical DF implementations [see, e.g., Ref. [34]

as well as the corresponding discussions in Sec. 4.1.2 and after Eq. (4.63)]32. Considering

the definition of the dual partition function and the dual action in Eqs. (4.51) and (4.52),

respectively, motivates the introduction of the dual Green’s functions, formally analogously

to the Green’s function for the lattice electrons [Eq. (4.28)]:

Gd
n,i1...i2n(ν1, . . . , ν2n) =

1

Zd

∫
D[c̃+, c̃]e−Sd[c̃

+,c̃] c̃+i1(ν1) . . . c̃i2n(ν2n), (4.61)

where Zd = Z/Z̃, and the dual action Sd can be represented using the corresponding effective

interaction33:

Sd[c̃+, c̃] = − 1

β

∑

ν,k,σ

[
GDMFT(ν,k)−Gloc(ν)︸ ︷︷ ︸

Gd
0(ν,k)

]−1
c̃+kσ(ν)c̃kσ(ν)−

∑

i

VAIM[c̃
+
i , c̃i]−

∑

i

lnZAIM.

(4.62)

32To the best of our knowledge, the only DF calculation taking into account the local three-particle vertex
has been reported in Ref. [123].

33The last contribution
∑

i lnZAIM is just a constant not depending on the fields c̃+ and c̃ and can be
neglected, since it drops out in calculations of Green’s functions.
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Gd
0 = GDMFT −Gloc

γ
(4)
loc = Floc γ

(6)
loc

. . .

a) b)

Figure 4.19: Diagrammatic elements of the DF approach: a) The bare propagator of DF is
given by the purely nonlocal Green’s function; b) The interaction part of DF is represented

by the local (connected) n-particle vertex function γ
(2n)
loc .

The free dual propagator, i.e., the dual one-particle Green’s function for VAIM = 0, Gd
0,

is given by the difference GDMFT − Gloc. Hence, if starting from the AIM connected with

the DMFT solution of the Hubbard model, the k-summation over this bare dual Green’s

function vanishes because of the DMFT self-consistency condition, justifying the denotation

as purely nonlocal for this quantity. The dual fermions c̃+ and c̃ are interacting via the

effective potential VAIM, Eq. (4.60), which is built from the two- and more-particle local

vertex functions of the corresponding AIM. Since these vertices are frequency-dependent, the

interaction between the dual fermions is explicitly nonlocal in time in contrast to the bare

Hubbard interaction U between the original fermions. On the other hand, the dual potential

VAIM remains purely local in space, as the original interaction.

We are now in a position to perform diagrammatic perturbation theory for the dual one-

particle Green’s function Gd(ν,k) defined in the most general way in Eq. (4.61). The basic

diagrammatic elements, i.e., the bare dual Green’s function Gd
0(ν,k) = GDMFT(ν,k)−Gloc(ν)

and (parts of) the interaction VAIM[c̃
+, c̃] between the dual particles, are depicted graphically

in Fig. 4.19. Let us remark once again that these diagrammatic bricks of DF fit well into the

general scheme for diagrammatic extensions of DMFT discussed in Sec. 4.1.2, as one can also

infer from comparing Figs. 4.5 and 4.19. As usual we will construct diagrammatic corrections

not directly for the dual Green’s function Gd(ν,k) but for its one-particle irreducible part,

i.e., the dual self-energy Σd(ν,k) which is defined by the (dual) Dyson equation:

Σd(ν,k) = [Gd
0(ν,k)]

−1 − [Gd(ν,k)]−1. (4.63)

For practical calculations of the dual self-energy one has to make further simplifications. As
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Floc Floc

G−Gloc

G−Gloc

G−Gloc

Floc Floc

G−Gloc

G−Gloc

Gloc

a) b)

Figure 4.20: a) DF second-order diagram constructed from the local two-particle vertex
function only. The figure is readapted from Ref. [36]. b) DF first order diagram constructed
from the one-particle reducible part of the three-particle vertex (marked in red). G ≡
GDMFT for the sake of a better readability.

for general diagrammatic extensions of DMFT, discussed in Sec. 4.1.2, two different types

of approximations are involved: First, one usually restricts oneself to the two-particle vertex

γ
(2)
loc = Floc in the interaction part of the dual action [see Eqs. (4.60) and (4.62) as well

as Fig. 4.19], since three- and more particle local vertex functions are extremely difficult

to calculate numerically. Secondly, for the moment, we will discuss only the typical DF

implementations, which take into account low-order or ladder diagrams for the perturbation

series in the dual space34. In Fig. 4.20a we show a second-order diagram for the dual self-

energy restricting ourselves to the two-particle vertex function Floc. The Green’s functions

connecting the vertices are purely nonlocal according to Eq. (4.62) and Fig. 4.19a, i.e.,
∑

kG
d
0(ν,k) = 0. Let us point out that in specific parameter regimes already this second-

order (in Floc) diagram for the dual self-energy provides remarkably nonlocal corrections to

the local DMFT self-energy35, which are reported for the two-dimensional half-filled Hubbard

model on a square-lattice (with only nearest-neighbor hopping), e.g., in Ref. [221] and Fig.

4.21. More sophisticated implementations of DF, including also ladder diagrams, are even

able to describe also the pseudopgap behavior at low U (i.e., U = 1.0) [35], not present in

the second-order results from Ref. [221] (see Fig. 4.21).

However, despite its successful application for describing nonlocal correlations in the Hubbard

model, there are some problematic aspects in DF. In particular, we refer here to a publication

[226], that has recently pointed out possible problems arising from the inclusion of one-particle

34We will not consider here the more cumbersome parquet-based approximations in DF, whose first appli-
cation has been recently reported in Ref. [142].

35Note that the dual self-energy has to be transformed to the corresponding self-energy for the real electrons
by means of Eq. (4.65), as it will be discussed in detail below.
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Figure 4.21: Momentum dependent self-energy at the Fermi energy (i.e., ω = 0), obtained
within the DF approach, adopting the second-order diagram in Fig. 4.20a. Data are shown
at β = 20.0 and U = 1.0 and U = 2.0, respectively (4t ≡ 1.0). Left panel: Contour plots
for ImΣ(ω = 0,k). Right panel: Renormalized dispersion εk + ReΣ(ω = 0,k), compared
with reference data for a 10× 10 lattice. The figure is reproduced from Ref. [221].

reducible contributions to the local vertex functions, which represent the interaction between

the dual particles. To clarify this, let us first consider the diagram depicted in Fig. 4.20b

where one of the nonlocal Green’s functions is replaced by a purely local one. This diagram

yields an even larger contribution to the dual self-energy than that from Fig. 4.20a, since

G − Gloc is smaller than Gloc (when the internal k-summation is performed) due to the

DMFT self-consistency condition. However, since Gloc is not a building element of the dual

fermion theory (see Fig. 4.19), the diagram shown in Fig. 4.20b is not included in the

typical implementation of DF, where one takes into account only two-particle local vertices

as interaction between the dual particles. Indeed, the red part of this diagram represents

the one-particle reducible contribution to the three-particle vertex, and, hence, this diagram

constitutes a correction to the dual self-energy which is of first order in this three-particle

vertex. However, numerical calculations including the three-particle vertex are usually not

feasible, and, hence, the (rather large) diagrammatic contribution from Fig. 4.20 is usually

neglected in standard DF calculations.

On the other hand, the one-particle reducible part of the three- (and also the more-) par-

ticle vertex functions gives rise to a further problem: The third-order diagram depicted in

Fig. 4.22 contains (besides two two-particle vertex functions F ) the one-particle reducible

contribution to the local three-particle vertex. In terms of real electrons such a diagram

would generate a one-particle reducible contribution to the self-energy of the original elec-

trons. This is obviously in contradiction to the definition of the electronic self-energy as

one-particle irreducible part of the one-particle Green’s function. However, with respect to
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the dual action given in Eq. (4.62) and the diagrammatic element of DF in Fig. 4.19, re-

spectively, the diagram in Fig. 4.22 is not one-particle reducible since Gloc is not present in

the perturbation theory for the dual fermions. This contradiction between the real and dual

space can be clarified by considering explicitly the transformation between the corresponding

Green’s functions and self-energies of these two formulations. To this end we simply calcu-

late the (second) derivative of the generating functional W [η+, η] = lnZ[η+, η], with Z[η+, η]

given in Eq. (4.59), with respect to the source fields η+ and η [see Eq. (4.39)] and consider

the definition of the dual Green’s function Gd in Eq. (4.61). The result for the one-particle

Green’s function reads:

G(ν,k) = G−2
loc(ν)[∆(ν)− εk]

−2Gd(ν,k) + [∆(ν)− εk]
−1. (4.64)

From this relation one can easily derive the corresponding, exact, relation between the lattice

and the dual self-energy which reads:

ΣDF(ν,k) = Σloc(ν) +
Σd(ν,k)

1 +Gloc(ν)Σd(ν,k)
, (4.65)

where Σloc(ν) is the self-energy of the AIM. Expanding the denominator in Eq. (4.65) leads

to the following expression for the real self-energy:

ΣDF(ν,k) = Σloc(ν) + Σd(ν,k)− Σd(ν,k)Gloc(ν)Σ
d(ν,k) + . . . . (4.66)

Considering the second-order diagram in Fig. 4.20a for Σd in Eq. (4.66), the red term in

this equation is exactly equivalent to the diagrammatic contribution stemming from the one-

particle reducible vertex depicted in Fig. 4.22. Since these two terms exhibit a different sign

they cancel each other, avoiding in this way any one-particle reducible contributions to the

real self-energy. One can demonstrate that this exact cancellation works order per order if

one considers all diagrams of the theory (i.e., the exact solution). However, when restricting

oneself to the local two-particle vertex functions, as in the standard implementations of DF,

the term which should be canceled by the transformation formula, Eq. (4.65), is not present

in the perturbative expansion of the dual self-energy, and, hence, applying this transformation

introduces rather than cancels such spurious one-particle reducible contributions in the real

self-energy.

Summing up, one can assert that the problems of the DF approach, illustrated in Figs. 4.20

and 4.22 and discussed above, are generated by the one-particle reducible contributions to
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Figure 4.22: Perturbative correction constructed from the one-particle reducible contri-
bution of the local three-particle vertex (red part of the diagram) which gives rise to a
reducible contribution to the real self-energy (i.e., the self-energy of the original degrees
of freedom). The figure is readapted from Ref. [36].

the three- (and more-) particle vertex functions. Hence, a method which avoids, from the

very beginning, the generation of these vertex functions is desirable, aiming at a more concise

formulation of the perturbation theory in the dual space. A possible realization of such a

method will discussed in the next section.

4.4.2 The one-particle irreducible (1PI) approach

In order to overcome the specific difficulties arising in the DF implementations (perturbative

and/or ladder) due to the reducible parts of the local three- and more-particle vertex func-

tions, we aim at a complete elimination of such terms in the perturbative expansion of the

self-energy. To this end we consider the Legendre transformation of the generating functional

WAIM, discussed in Eqs. (4.47), (4.53) and (4.57):

WAIM[η̃
+
i , η̃i] = ΓAIM[φ

+
i , φi]−

∑

ν,σ

[
η̃+iσ(ν)φiσ(ν) + φ+

iσ(ν)η̃iσ(ν)
]
, (4.67)

where the fields φ+ and φ will be defined as:

φ+
iσ(ν) =

δWAIM[η̃
+
i , η̃i]

δη̃iσ(ν)
, φiσ(ν) = −δWAIM[η̃

+
i , η̃i]

δη̃+iσ(ν)
. (4.68)
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The inverse Legendre transformation is given by:

η̃+iσ(ν) = −δΓAIM[φ
+
i , φi]

δφiσ(ν)
, η̃iσ(ν) =

δΓAIM[φ
+
i , φi]

δφ+
iσ(ν)

. (4.69)

Let us stress that in Eq. (4.68) φ+
i and φi are functionals of the fields η̃+i and η̃i [and vice

versa for the inverse Legendre transform in Eq. (4.69)]36.

The functional ΓAIM generates the local one-particle irreducible (amputated) vertex functions

of the AIM [32]. Hence, working with this functional precludes from the beginning the

appearance of one-particle reducible contributions in the three- and more-particle vertex

functions, which led to the specific problems of DF discussed at the end of the previous

section (Sec. 4.4.1). Expanding ΓAIM with respect to φ+
i and φi up to the fourth order in

these fields yields [32]:

ΓAIM[φ
+
i , φi] =WAIM[0, 0] +

1

β

∑

ν,σ

[Gloc(ν)]
−1φ+

iσ(ν)φiσ(ν)+

− 1

2

1

β3

∑

νν′ω

∑

σσ′

(
1− 1

2
δσσ′

)
F νν′ω
loc,σσ′φ

+
iσ(ν)φiσ(ν + ω)φ+

iσ(ν
′ + ω)φiσ′(ν

′) + . . . ,

(4.70)

where . . . denotes sixth- and higher-order terms in the fields φ+
i and φi, the coefficients

of which correspond to the local one-particle irreducible (1PI) amputated three- and more

particle vertex functions. As a side remark, let us mention that WAIM[0, 0] = lnZAIM, as

in Eq. (4.53), is in any case just a constant which is not relevant for the calculation of the

Green’s functions. Comparing the expansion of ΓAIM in Eq. (4.70) with the corresponding

one for the functional WAIM in Eqs. (4.53) and (4.57), one observes that the fourth-order

(two-particle) terms are equivalent for both functionals, if one chooses b ∝ [Gloc]
−1 in WAIM,

as in Eq. (4.56). The reason for this equivalence is founded in the topological structure of

the connected two-particle Green’s (or vertex) function, discussed in chapter 2, Fig. 2.9: at

the two-particle level the full vertex F coincides with the one-particle irreducible one.

Moreover, choosing b ∝ [Gloc]
−1 as in Eq. (4.56) renders also the second-order (one-particle)

term of WAIM identical to the corresponding one of ΓAIM, except for a different sign. Let us

stress that the amputated Green’s functions, i.e., the vertex functions, appear in WAIM only

for the specific choice of b as in Eq. (4.56), while for ΓAIM the amputation of the outer legs

36It should be also noted that the fields φ+i and φi (as a function of the Matsubara frequency) exhibit the
dimension of an inverse energy, i.e., (eV)−1, so that the second term on the right-hand side of Eq. (4.67)
becomes dimensionless.



4.4. FUNCTIONAL INTEGRAL BASED METHODS 211

(one-particle Green’s functions) is performed by the Legendre transform itself, and, hence, b

can be chosen arbitrarily37.

While the expansion coefficients ofWAIM and ΓAIM are equivalent up to the fourth order (two-

particle level) in c̃+/c̃ and φ+/φ, respectively (except for a sign in the quadratic term), they

become different in their sixth- and higher-order contributions. In fact, the corresponding

three- and more-particle vertex functions, which constitute these expansion coefficients, are

the full connected ones for WAIM (employed in DF), while –per construction– only their one-

particle irreducible counterparts contribute to the Taylor series of ΓAIM. For instance, the

three-particle diagram depicted in Fig. 2.9c is contained in the sixth-order term of WAIM

but not in ΓAIM, since it is one-particle reducible. Similar examples can be given also for

higher-order terms in the expansion of WAIM and ΓAIM, respectively.

Returning to the explicit calculations, we insert the Legendre transform ofWAIM, Eq. (4.67),

into the expression for the generating functional of the Hubbard model, Eq. (4.50). Since

b is arbitrary now, we make the simplest choice which is consistent with the dimensionality

requirement in footnotes 29 and 37, i.e., b = β− 3
2 . Furthermore, considering Eq. (4.50), η̃+i

and η̃i are given as:

η̃+iσ(ν) = β−2c̃+iσ(ν), η̃iσ(ν) = β−2c̃iσ(ν), (4.71)

and, hence, the generating functional in Eq. (4.50) can be rewritten in the following form:

Z[η+, η] = Z̃

∫
D[c̃+, c̃] exp

{
− 1

β3

∑

ν,k,σ

[∆(ν)− εk]
−1 [c̃+kσ(ν)− β2η+kσ(ν)

] [
c̃kσ(ν)− β2ηkσ(ν)

]
+

+
∑

i

(
ΓAIM[φ

+
i , φi]−

1

β2

∑

ν,σ

[
c̃+iσ(ν)φiσ(ν) + φ+

iσ(ν)c̃iσ(ν)
])
}
.

(4.72)

Note, that φ+
i and φi are functionals of c̃+i and c̃i or, more precisely, of η̃+i = β−2c̃+i and

η̃i = β−2c̃i, which are defined by Eqs. (4.68). Since ΓAIM depends on φ+
i and φi, it is

convenient to rewrite the functional integral in Eq. (4.72) in terms of an integration over φ+
i

and φi instead of c̃+i and c̃i. For this purpose, we use the explicit expressions for c̃+i = β2η̃+i

37One just has to make sure that b exhibits the correct dimension as discussed in footnote 29, i.e., [b] =

(eV)
3
2 .
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and c̃i = β2η̃i in Eqs. (4.69), i.e., the inverse Legendre transformation:

c̃+iσ(ν) = −β2 δΓAIM[φ
+
i , φi]

δφiσ(ν)
, c̃iσ(ν) = β2 δΓAIM[φ

+
i , φi]

δφ+
iσ(ν)

, (4.73)

between the variables c̃+/c̃ and φ+/φ in Eq. (4.72). Obviously, a transformation of the

integration variables in a Grassmann integral requires the multiplication of the integrand

with the inverse of the determinant of the Jacobian of this transformation [32,33]. However,

while one usually deals with linear transformations, where the Jacobian is just a matrix of

ordinary complex numbers, in our case we are concerned with a non-linear transformation:

δΓAIM/δφ
+
i and δΓAIM/δφi are not just linear functions of φ+

i and φi but contain terms of

arbitrary order in these fields. Specifically, the Jacobian matrix M [φ+
i , φi] corresponding to

the variable transformation in Eq. (4.73) reads as:

D

(
c̃+iσ(ν)

c̃iσ(ν)

)
=
∑

ν′,σ′

β2




− δ2ΓAIM

δφ+
iσ′ (ν′)δφiσ(ν)

− δ2ΓAIM

δφiσ′ (ν′)δφiσ(ν)

δ2ΓAIM

δφ+
iσ′ (ν′)δφ

+
iσ(ν)

δ2ΓAIM

δφiσ′ (ν′)δφ+iσ(ν)




︸ ︷︷ ︸
M [φ+i ,φi]

D

(
φ+
iσ′(ν

′)

φiσ′(ν
′)

)
. (4.74)

Hence, the transformation (c̃+, c̃) ⇒ (φ+, φ) (for all lattice sites i) leads to the additional

contribution:
∏

i

det
(
M [φ+

i , φi]
)−1

= exp

{
−
∑

i

ln detM [φ+
i , φi]

}
, (4.75)

in the integrand of Eq. (4.72). The determinant of the matrix M is taken with respect to

the ν and σ indices of the fields φ+ and φ.

In order to obtain the functional integral for Z[η+, η] in terms of φ+ and φ we insert Eqs.

(4.73), (4.74) and (4.75) into Eq. (4.72), which yields:

Z[η+, η] = Z̃

∫
D[φ+, φ]×

× exp

{
−β

∑

ν,k,σ

[
δΓAIM[φ

+, φ]

δφkσ(ν)
+ η+kσ(ν)

]
[∆(ν)− εk]

−1

[
−δΓAIM[φ

+, φ]

δφ+
kσ(ν)

+ ηkσ(ν)

]
+

+
∑

i

[
ΓAIM[φ

+
i , φi] +

∑

ν,σ

δΓAIM[φ
+
i , φi]

δφiσ(ν)
φiσ(ν)− φ+

iσ(ν)
δΓAIM[φ

+
i , φi]

δφ+
iσ(ν)

− ln detM [φ+
i , φi]

]}
,

(4.76)

where δΓAIM[φ
+, φ]/δφkσ(ν) and δΓAIM[φ

+, φ]/δφ+
kσ(ν) are defined as the Fourier transforma-
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tion of Eqs. (4.73) with respect to the spatial degrees of freedom [see, e.g., Eq. (4.32) and

the discussion below this equation].

In the next step, we have to calculate the first and second derivatives of ΓAIM with respect

to φ+ and φ from Eq. (4.70) and insert them into Eq. (4.76). For this purpose, we restrict

ourselves to terms up to the fourth order (in φ+ and φ) in the expansion of ΓAIM[φ
+, φ] in Eq.

(4.70), i.e., to two-particle vertex functions. Hence, we neglect all terms which are of sixth and

higher orders in φ+ and φ, the expansion coefficients of which are given by the one-particle

irreducible three- and more-particle vertex functions. Let us recall that this represents one

of the (two) typical approximation in the framework of diagrammatic extensions of DMFT,

as it has been already outlined in the general introduction about diagrammatic methods in

Sec. 4.1.2.

Before entering into the details of the calculations, let us discuss (schematically) the dia-

grammatic structure of the terms in the second line of Eq. (4.76). We can identify a part

proportional to (δφΓAIM)(δφ+ΓAIM) (where δφ(+) denotes the functional derivative with respect

to the field φ(+)). If one evaluates now this contribution by inserting the explicit expression

for (the two-particle part of) ΓAIM [Eq. (4.70)], one finds a term which is proportional

to (Floc)
2(φ+φ)3. Such contributions build up terms containing local one-particle reducible

three- (and more)-particle vertices in the considered 1PI diagrammatics38. We note here that

such contributions are absent in almost all numerical DF calculations, usually restricted to

the level of two-particle local vertex functions for the interaction between the dual particles.

In this respect, if not taking into account any self-consistency effects, it is clear that the

1PI-scheme allows for the inclusion of the largest possible number of diagrams at the ladder

level, starting from a two-particle local vertex approximation.

In principle, one should now practically calculate the first and second derivatives of ΓAIM with

respect to φ+ and φ, occurring in Eqs. (4.74) and (4.76), directly from Eq. (4.70) and insert

them into the generating functional for the Hubbard model after the Legendre transformation

[Eq. (4.76)]. However, this would lead (i) to rather complicated contributions up to the sixth

order in φ+ and φ (corresponding to the local one-particle reducible three-particle vertices),

and (ii) to terms of the form (η+φ)(φ+φ), (φ+η)(φ+φ) and η+η in the second line of this

equation [(4.76)], which renders the connection between the real Green’s function for the

Hubbard model and the corresponding Green’s functions for the new fields φ+ and φ rather

complicated39. In fact, since η+ and η couple to terms of third order in φ+ and φ, the second

38Consider, e.g., the one-particle reducible three-particle diagram, shown in Fig. 2.9c, which is clearly
proportional to the “product” of two vertex functions Floc, i.e., ∝ (Floc)

2.
39The term η+η is also present in the DF approach [see Eq. (4.59)], and leads to the specific, well known,
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functional derivative of Z with respect to η+ and η in Eq. (4.76), would require the calculation

of a three-particle Green’s function for the fields φ+ and φ (〈(φ+φ)3〉). Hence, it turns out

convenient to first decouple the term which is quadratic in
(
±δΓAIM/δφ

(+) − η(+)
)
[i.e., the

second line of Eq. (4.76)] by means of a further Hubbard-Stratonovich transformation [for a

given set of quantum numbers (ν,k, σ)]. In order to keep the notation as simple and readable

as possible, we now switch to a four-vector notation k=̂(ν,k) and q=̂(ω,q), already adopted

in Sec. 4.3.1 [see Eq. (4.12) and below], for the frequency- and momentum arguments of

the fields and the Green’s functions and treat the frequency- and momentum-dependency

separately only when explicitly needed (e.g., in the case of purely local quantities, which

depend only on a frequency). Let us also recall that four-vectors denoted as k contain always

a fermionic Matsubara frequencies while the vectors labeled as q exhibit a bosonic frequency.

Adopting this convention the above-mentioned Hubbard-Stratonovich decoupling of the term

in the second line of Eq. (4.76) is given by:

exp

{
−β [∆(ν)− εk]

−1

[
δΓAIM[φ

+, φ]

δφkσ
+ η+kσ

] [
−δΓAIM[φ

+, φ]

δφ+
kσ

+ ηkσ

]}
=

=− C−2

∫
dψ+

kσdψkσ×

× exp

{√
β [∆(ν)− εk]

− 1
2 C

[(
δΓAIM

δφkσ
+ η+kσ

)
ψkσ + ψ+

kσ

(
−δΓAIM

δφ+
kσ

+ ηkσ

)]}
×

× exp

{
C2ψ+

kσψkσ

}
, (4.77)

where C = Ckσ ∈ Z is an arbitrary complex number depending on the variables ν, k and σ.

In the light of the previous discussion of Eq. (4.76), it is useful to choose C as40:

Ckσ =
1√
β
[∆(ν)− εk]

1
2 . (4.78)

This eliminates the corresponding prefactor in the third line of Eq. (4.77), and, hence, the

source fields η+ and η, now coupled linearly to ψ+ and ψ, do not exhibit any prefactor.

However, this way, the fields φ+ and φ are not coupled to these source fields anymore. In

order to render the equations in a more symmetric form with respect to the fields φ+/φ and

relation between the real and the dual Green’s function and the corresponding self-energies, respectively
[34, 221], see Eqs. (4.64) and (4.65).

40Similar as for φ+ and φ, the fields ψ+ and ψ have the physical dimension of an inverse energy, i.e.,
[ψ(+)] = (eV)−1. Hence, C must exhibit the dimension of an energy, i.e, [C] = eV.
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ψ+/ψ we introduce the following linear shift of Grassmann variables

ψ+
kσ = ψ′+

kσ − φ+
kσ, ψkσ = ψ′

kσ − φkσ, (4.79)

and insert it, together with the definition of C = Ckσ in Eq. (4.78), into the Hubbard-

Stratonovich decoupling [Eq. (4.77)], which yields:

exp

{
−β [∆(ν)− εk]

−1

[
δΓAIM[φ

+, φ]

δφkσ
+ η+kσ

] [
−δΓAIM[φ

+, φ]

δφ+
kσ

+ ηkσ

]}
=

=− β [∆(ν)− εk]
−1

∫
dψ+

kσdψkσ×

× exp

{
1

β
[∆(ν)− εk]

(
ψ+
kσ − φ+

kσ

)
(ψkσ − φkσ)

}
×

× exp

{
δΓAIM

δφkσ
(ψkσ − φkσ)−

(
ψ+
kσ − φ+

kσ

) δΓAIM

δφ+
kσ

+ η+kσ (ψkσ − φkσ) +
(
ψ+
kσ − φ+

kσ

)
ηkσ

}
,

(4.80)

where we have relabeled ψ′+ and ψ′ into ψ+ and ψ for the sake of a better readability.

In the next step, we insert the identity (4.80) into the expression for the generating functional

for the Hubbard model in Eq. (4.76). Since the sum over i in the third line of this equation

can be rewritten in terms of a k-sum, whereupon,
∑

i ΓAIM[φ
+
i , φi], in the four-vector notation,

is given by:

∑

i

ΓAIM[φ
+
i , φi] =

∑

i

lnZAIM +
1

β

∑

k,σ

[Gloc(ν)]
−1φ+

kσφkσ+

− 1

2

1

β3

∑

kkq

∑

σσ′

(
1− 1

2
δσσ′

)
F νν′ω
loc,σσ′φ

+
kσφ(k+q)σφ

+
(k′+q)σφk′σ′ + . . . . (4.81)

We can easily combine the terms from Eq. (4.80), inserted in the second line of Eq. (4.76),

with the corresponding ones already present in the third line of this equation. First, one

recognizes that the contributions (δΓAIM/δφ)φ and φ+ (δΓAIM/δφ
+) cancel. Furthermore,

considering that

∆(ν)− εk = [iν + µ− εk − Σloc(ν)]︸ ︷︷ ︸
G−1

DMFT(k)

− [iν + µ−∆(ν)− Σloc(ν)]︸ ︷︷ ︸
G−1

loc(ν)

, (4.82)

where Gloc(ν) and Σloc(ν) denote the local Green’s function and self-energy of the AIM,
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respectively, we arrive at the following expression for the generating functional of the Hubbard

model41:

Z[η+, η] =

∏
k,σ β

4

︷ ︸︸ ︷
Z̃
∏

k,σ

{−β [∆(ν)− εk]}
∏

i

ZAIM

∫
D[φ+, φ]D[ψ+, ψ]×

× exp





1

β

∑

k,σ

G−1
DMFT(k)

(
φ+kσφkσ + ψ+

kσφkσ + φ+kσψkσ
)
+
[
G−1

DMFT(k)−G−1
loc(ν)

]
ψ+
kσψkσ+

− 1

β3

∑

kk′q

∑

σσ′

(
1− 1

2
δσσ′

)
F νν

′ω
loc,σσ′

[
ψ+
kσφ(k+q)σφ

+
(k′+q)σ′φk′σ′ + φ+kσφ(k+q)σφ

+
(k′+q)σ′ψk′σ′+

+
1

2
φ+kσφ(k+q)σφ

+
(k′+q)σ′φk′σ′

]
−
∑

i

ln detM [φ+i , φi] +
∑

k,σ

η+kσ (ψkσ + φkσ) +
(
ψ+
kσ + φ+kσ

)
ηkσ



 .

(4.83)

Finally, we want to discuss the structure of the Jacobian M [φ+
i , φi]. To this end we have

to evaluate the second functional derivatives of ΓAIM with respect to the fields φ+
i and φi

as in Eq. (4.74). The corresponding expressions can be found in appendix E in real- and

momentum space. Specifically, considering Eqs. (E.2) suggests to rewrite M [φ+
i , φi] in terms

of the unit-matrix and a remainder which we will call D[φ+
i , φi]:

M [φ+
i , φi] = βG−1

loc(ν)
{
1+D[φ+

i , φi]
}
, (4.84)

where 1 denotes the unit-matrix in frequency/spin space, i.e., 1 ∼ δνν′δσσ′ , whereupon

D[φ+
i , φi] is given in appendix F. For further simplifications concerning the term containing

M [φ+
i , φi] in Eq. (4.83) we consider the following general identity for the logarithm of the

determinant of a matrix A:

ln detA = tr lnA, (4.85)

which holds for any (diagonalizable) n × n matrix A (also for Grassmann numbers). The

trace in Eq. (4.85) is taken with respect to the frequency- and spin variables for each lattice

41For convenience we also switch the sign of the fields φ+ and φ, i.e., φ+ → −φ+ and φ→ −φ.
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site i. Applying Eq. (4.85) to the Jacobian M [φ+
i , φi] in Eq. (4.84) yields42:

ln detM [φ+
i , φi] = tr ln

[
βG−1

loc(ν)
]
+ tr ln

(
1+D[φ+

i , φi]
)
=

=
∑

ν,σ

ln
[
βG−1

loc(ν)
]
+ tr ln

(
1+D[φ+

i , φi]
)
=

= lnZAIM + tr ln
(
1+D[φ+

i , φi]
)
. (4.86)

Inserting this relation into the expression for the generating functional [Eq. (4.83)] leads to

a cancellation of
∏

i ZAIM in the prefactor of the functional integral. Hence, we arrive at the

final expression for the generating functional of the Hubbard model represented in the 1PI

formalism:

Z[η+, η] =
∏

k,σ

β4
∫
D[φ+, φ]D[ψ+, ψ]×

× exp





1

β

∑

k,σ

G−1
DMFT(k)

(
φ+kσφkσ + ψ+

kσφkσ + φ+kσψkσ
)
+
[
G−1

DMFT(k)−G−1
loc(ν)

]
ψ+
kσψkσ+

− 1

β3

∑

kk′q

∑

σσ′

(
1− 1

2
δσσ′

)
F νν

′ω
loc,σσ′

[
ψ+
kσφ(k+q)σφ

+
(k′+q)σ′φk′σ′ + φ+kσφ(k+q)σφ

+
(k′+q)σ′ψk′σ′+

+
1

2
φ+kσφ(k+q)σφ

+
(k′+q)σ′φk′σ′

]
−
∑

i

tr ln
(
1+D[φ+i , φi]

)
+
∑

k,σ

η+kσ (ψkσ + φkσ) +
(
ψ+
kσ + φ+kσ

)
ηkσ



 .

(4.87)

In order to connect the rather complicated (path-)integral transformations above with our

original objective, i.e., the calculation of the one-particle Green’s function G(ν,k) of the

Hubbard model, we must evaluate the second functional derivative of lnZ[η+, η] in Eq. (4.87)

with respect to η+kσ and ηkσ for η+kσ = 0 and ηkσ = 0, as it was was discussed at the beginning

of this section about functional integral based methods in Eq. (4.39). Note that, in order

to obtain the one-frequency and one-momentum object G(ν,k) we have to integrate the

general one-particle Green’s function in Eq. (4.39) over the second frequency and momentum

argument, ν ′ and k′,respectively:

G(ν,k) =
1

β

∑

k′,σ′

δ2Z[η+, η]

δη+k′σ′δηkσ

∣∣∣∣∣
η+
k′σ′=0,ηkσ=0

=
1

β

δ2Z[η+, η]

δη+kσδηkσ

∣∣∣∣∣
η+kσ=0,ηkσ=0

, (4.88)

42For the first summand on the right-hand side of Eq. (4.86) consider the general identities 〈n̂〉 = 1
β

∂ lnZ
∂µ

=
1
β

∑
k,σ Gk = 1

β
tr(G) and G = ∂

∂µ
ln
(
βG−1

)
.
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whereupon the last equality, in principle, holds rigorously only for a finite system where the

delta-function (2π)dδ(d)(k − k′) becomes a Kronecker-delta δkk′ , due to the discrete nature

of the momentum arguments k in that case. Considering the 1PI representation for the

generating functional Z[η+, η] in Eq. (4.87) for the calculation of the (real) one-particle

Green’s function in Eq. (4.88), G(ν,k) will be expressed as the sum of the four distinct

one-particle 1PI Green’s functions, given as propagators of the fields φ+, φ, ψ+ and ψ:

G(ν,k) =
1

β

[
〈φ+

kσφkσ〉+ 〈φ+
kσψkσ〉+ 〈ψ+

kσφkσ〉+ 〈ψ+
kσψkσ〉

]
. (4.89)

The averaging 〈·〉 is performed using the action S1PI[φ+, φ, ψ+, ψ] of the Hubbard model in

the 1PI representation:

〈ρ+kσξkσ〉 :=
∏

k,σ

β4

∫
D[φ+, φ]D[ψ+, ψ]e−S1PI[φ+,φ,ψ+,ψ]ρ+kσξkσ, (4.90)

where ρ = φ, ψ, and ξ = φ, ψ. The action S1PI of the 1PI approach can be easily ex-

tracted from the generating functional in Eq. (4.87). It is convenient to split it into a

“non-interacting” (Gaussian) part and an “interacting part”, i.e., S1PI = S1PI
0 +S1PI

I , with43

S1PI
0 [φ+, φ, ψ+, ψ] = − 1

β

∑

k,σ

G−1
k

(
φ+
kσφkσ + ψ+

kσφkσ + φ+
kσψkσ

)
+
[
G−1
k −G−1

loc,ν

]
ψ+
kσψkσ

(4.91a)

S1PI
I [φ+, φ, ψ+, ψ] =

1

β3

∑

kk′q

∑

σσ′

(
1− 1

2
δσσ′

)
F νν′ω
loc,σσ′

[
1

2
φ+
kσφ(k+q)σφ

+
(k′+q)σ′φk′σ′+

+ψ+
kσφ(k+q)σφ

+
(k′+q)σ′φk′σ′ + φ+

kσφ(k+q)σφ
+
(k′+q)σ′ψk′σ′

]
+
∑

i

tr ln
(
1+D[φ+

i , φi]
)
.

(4.91b)

For the sake of readability, we have also introduced a new notation for the DMFT and the

local Green’s function [GDMFT(ν,k) and Gloc(ν), respectively] in Eqs. (4.91), writing the

arguments of these two objects as subscripts and omitting the label “DMFT” in the DMFT

43Let us note that here the “interacting” part still contains a Gaussian contribution (i.e., a summand
∝ φ+φ) via the term stemming from the Jacobian,

∑
i tr ln

(
1+D[φ+i , φi]

)
, see Eq. (F.4) in appendix F.

However, since this term contains a local vertex function F νν′ω
loc,σσ′ we assign it to S1PI

I , so that S1PI
0 is defined

as the action which results from setting F νν′ω
loc,σσ′ = 0 in Eq. (4.87).
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Green’s function, i.e.,

Gloc,ν := Gloc(ν), Gk := GDMFT(ν,k) =
[
G−1

0 (ν,k)− ΣDMFT(ν)
]−1

, (4.92)

while G written with its frequency- and momentum arguments, i.e., G(ν,k), as in Eq. (4.89),

represents the (full) interacting one-particle Green’s function of the Hubbard model (exhibit-

ing, of course, a nonlocal self-energy). Since in the 1PI representation of the generating

functional for the Hubbard model, one deals with two distinct fields, i.e., φ and ψ, it is

convenient to combine them in the spinors Φ+ and Φ which are defined as:

Φ+
kσ =

(
φ+
kσ

ψ+
kσ

)
, Φkσ =

(
φkσ ψkσ

)
. (4.93)

Hence, the spinor Green’s function Gkσ = 1
β
〈Φ+

kσΦkσ〉, which we will refer to as 1PI Green’s

function in the following, is given by the 2× 2-matrix:

Gk =
1

β

(
〈φ+

kσφkσ〉 〈φ+
kσψkσ〉

〈ψ+
kσφkσ〉 〈ψ+

kσψkσ〉

)
, (4.94)

where the expectation values are defined as in Eq. (4.90). Note that the sum over all

four components of the 1PI Green’s function Gkσ yields the Green’s function G(ν,k) of the

Hubbard model, as one can easily see from Eqs. (4.89) and (4.94).

In the following we will discuss the 1PI action S1PI[φ+, φ, ψ+, ψ] in Eqs. (4.91) and the

corresponding 1PI Green’s function Gkσ [Eq. (4.94)] in terms of a perturbative expansion in

Feynman diagrams, aiming at a better physical understanding of the various contributions

to S1PI and components of Gk, respectively. First, it is important to understand what is

the “bare” 1PI Green’s function, since this object constitutes one of the two basic bricks of

diagrammatic perturbation theory (see Sec. 4.1.2). To this end we omit the interaction part

of the action [Eq. (4.91b)] for the evaluation of the 1PI Green’s function(s) in Eqs. (4.90)

and (4.94), which corresponds to neglect the local vertex of the AIM, i.e., F νν′ω
loc,σσ′ = 0. The

corresponding “bare” expectation values for bilinear terms in the fields ρ = φ, ψ and ξ = φ, ψ

are then calculated similar as in Eq. (4.90) but with the non-interacting action S1PI
0 instead

the full interacting one, i.e.,

〈ρ+kσξkσ〉0 :=
∏

k,σ

β4

∫
D[φ+, φ]D[ψ+, ψ]e−S1PI

0 [φ+,φ,ψ+,ψ]ρ+kσξkσ. (4.95)
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b2)

Floc Floc Floc

b1)

Floc Floc

(φ+φ)(φ+φ) (ψ+φ)(φ+φ) + c.c.

a)

G̃ = GDMFT −Gloc

Gloc

−Gloc

Figure 4.23: Diagrammatic elements of the 1PI approach: a) The bare propagator(s); b1)
The interaction terms which are given by the local vertex function Floc [to be multiplied
with

(
1− 1

2
δσσ′
)
, see Eqs. (4.87) and (4.91b)]; b2) Terms stemming from the Jacobian;

The latter are given by combinations of local vertices Floc and local Green’s functions
Gloc, providing for the cancellation of double-counted local contributions. The figure is
readapted from Ref. [36].

Considering these definitions, the “bare” 1PI propagator(s) now read(s) as:

G0,k =
1

β
〈Φ+

kσΦkσ〉0 =
(
G−1
k G−1

k

G−1
k G−1

k −G−1
loc,ν

)−1

=

(
Gk −Gloc,ν Gloc,ν

Gloc,ν −Gloc,ν

)
. (4.96)

Summing up all matrix element, which yields the electronic Green’s function of the lattice

system in the corresponding approximation, shows that the zeroth order perturbation theory

in the local vertex Floc, i.e., F
νν′ω
loc,σσ′ = 0, just reproduces the DMFT Green’s function Gk =

GDMFT(ν,k). Hence, similar as for the DF approach, the 1PI method can be considered as

a diagrammatic expansion of the full lattice Green’s function around the DMFT solution,

whereupon the latter already includes all local correlations of the system. In this way, the

1PI approach perfectly fits into the general scheme of diagrammatic extensions of DMFT,

outlined previously in Sec. 4.1.2.
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Floc Floc

Floc

Floc

G
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c

G
loc

Gloc

G̃ G̃

G̃G̃

ψ

ψ

ψ

a)

Floc Floc

Floc

Floc

G
lo
c G

loc

Gloc

G̃ G̃

G̃G̃

Floc Floc

Floc

Floc

G
lo
c G

loc

b)

Figure 4.24: a) Fourth-order diagram (in Floc), which is constructed from three interaction
terms of type (φ+φ)(φ+ψ) (second diagram in Fig. 4.23b1) and one interaction term of
type (φ+φ)(φ+φ) (first diagram in Fig. 4.23b1). b) The same diagram appears in second-
order perturbation theory, if one includes a (local) three-particle vertex diagram, marked
in red in this graphic. However, this diagram is canceled if one expands the Jacobian up
to D3 [corresponding to (φ+φ)3], which leads to a compensation of this doubly counted

term. G̃ = GDMFT −Gloc and Floc has to be multiplied with
(
1− 1

2
δσσ′
)
.

From Eqs. (4.96) and (4.91b) one can now easily derive the diagrammatic elements for the

expansion of the 1PI Green’s function Gk, which are illustrated graphically in Fig. 4.23. As

for the purely Gaussian part of the 1PI formalism, Eq. (4.96) gives rise to three different

types of non-interacting (“bare”) Green’s functions which are also depicted in Fig. 4.23a:

The propagator G̃k = Gk−Gloc,ν =
1
β
〈φ+

kσφkσ〉0 corresponds to the purely nonlocal electronic

fluctuations, while 1
β
〈φ+

kσψkσ〉0 = 1
β
〈ψ+

kσφkσ〉0 = − 1
β
〈ψ+

kσψkσ〉0 = Gloc,ν describe the local

ones, coupled to the nonlocal degrees of freedom via the interaction in the second line of Eq.

(4.91b). Let us stress that all these “bare” propagators, in the 1PI approach contain the

full local self-energy Σloc(ν) of the AIM, and, hence, include all local purely self-interaction

effects.

As for the “interacting part” of the 1PI action, we discuss the contributions stemming from

the Jacobian, i.e.,
∑

i tr ln
(
1+D[φ+

i , φi]
)
, separately from the terms proportional to Floc in

Eq. (4.91b). The diagrammatic elements which correspond to the latter are depicted in Fig.

4.23b1. One observes that the interaction term consists of two parts: The first diagram in

Fig. 4.23b1 corresponds to the contribution Floc(φ
+φ)(φ+φ) in the interacting part of the 1PI

action, Eq. (4.91b). This vertex can be either coupled to both local (〈φ+ψ〉 or 〈ψ+φ〉) and
nonlocal propagators (〈φ+φ〉) or to nonlocal propagators only. On the contrary, the other
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contribution to the interaction in Eq. (4.91b), Floc [(ψ
+φ)(φ+φ) + (φ+φ)(φ+ψ)], is connected

with at least one local propagator.

Let us now turn to the Jacobian part of the action, i.e.,
∑

i tr ln
(
1+D[φ+

i , φi]
)
, in Eq.

(4.91b). After expanding the logarithm, as done in appendix F, Eq. (F.3), one can rewrite

this term as a sum over traces of the single contributions of the corresponding series, i.e.,
∑

i trD− 1
2
trD2+. . ., whereupon the explicit expression forD andD2 are reported in appendix

F, Eqs. (F.4) and (F.5)44.
∑

i trD (schematically) corresponds to the first (left) graph in

Fig. 4.23b2. Such a diagram represents just a purely local correction to the self-energy and

is, hence, already included in the self-energy Σloc of the AIM. This means that this diagram

in Fig. 4.23b2 would lead to a double-counting of local contributions to the self-energy. On

the other hand, such a diagram is also generated in first order perturbation theory by the

second element of the interaction terms in Fig. 4.23b1. Considering the prefactors and signs

of both “spurious” contributions, it turns out that they exactly cancel. This avoids a double

counting of local correlations at the one-particle level.

In a similar way, the second diagram in Fig. 4.23b2 just constitutes a purely local correction

to the local vertex function Floc, and, therefore, would also lead to a double-counting of such

vertex contributions. Again, the same diagrams arises from second-order perturbation theory

within the 1PI formalism, using the second diagram in Fig. 4.23b1 and Gloc, which leads to

an cancellation of such spurious terms.

Let us note that the higher-order contributions in D, i.e., D3, D4, . . ., correspond to local

(one-particle irreducible) three- and more particle vertex functions, which can be constructed

just from the local two-particle vertex and local Green’s functions, see, e.g., the red part of

diagram 4.24b for D3. It is obvious that the same local three-particle diagram arises if one

expands ΓAIM up to the (φ+φ)3, i.e., if one considers the local, one-particle irreducible, three-

particle vertex for ΓAIM. One can show that the latter has the opposite sign with respect

to the corresponding contribution stemming from the Jacobian, and hence these two terms

cancel. Note that this cancellation takes place already in the interacting part of the action,

i.e., the red part of diagram 4.24b does not occur at all in the diagrammatic expansion of the

1PI approach if one expands ΓAIM up to the local three-particle vertex45. On the other hand

it is clear that diagram 4.24b should contribute to the 1PI (and also to the real) self-energy,

and, indeed, this diagram can be constructed just from the diagrammatic element of ΓAIM

44The
∑

i can be of course rewritten as a sum over momenta as it was done for the functional ΓAIM in Eq.
(4.81).

45Let us remark that this cancellation does actually occur only for the exact functional ΓAIM. Hence,
formally, the restriction to, e.g., the two-particle vertex level should be applied only after having considered
the occurrence of this cancellation in the action.



4.4. FUNCTIONAL INTEGRAL BASED METHODS 223

restricted to the two-particle vertex level as it is shown in Fig. 4.24a. Summing up, one can

state that in the 1PI approach, diagrams from local (one-particle irreducible) three- and more-

particle vertex functions, which are built from (local) two-particle vertices and local Green’s

functions, are generated already at the two-particle vertex level. The equivalent contributions

stemming from an explicit consideration of three- and more-particle vertex contributions to

ΓAIM, which would lead to a double counting of diagrams such as the one depicted in Fig.

4.24a or b, are canceled by the corresponding contributions of the Jacobian. Let us stress

again that this cancellation takes place already for the action of the 1PI approach, not only

for the resulting terms in a diagrammatic expansion. Therefore, since we are restricting

ourselves to the two-particle vertex for ΓAIM, we have to neglect third- and higher-order

contributions in D also in the Jacobian of the Legendre transformation. Let us finally note

that the discussion of the Jacobian presented above is, of course, just schematically, while an

explicit calculation (at least for the contributions up to the fourth order in φ+ and φ, i.e.,

trD and trD2) is reported in appendix F.

4.4.2.1 Ladder Approximation in the 1PI approach

Parts of the results and the discussion presented in following section are based on the publi-

cation in the APS Journal “Physical Review Letters”: PRL 105, 077002 (2010).

Apart from the restriction to the two-particle local vertex in Eq. (4.53), which represents one

of the (two) typical simplifications within diagrammatic extensions of DMFT (see Sec. 4.1.2),

the practical application of the 1PI method requires a further approximation concerning the

type of diagrams adopted for an expansion of the self-energy. In the following, we will restrict

ourselves to ladder diagrams which can be constructed from the diagrammatic elements

depicted in Figs. 4.23a and 4.23b1. Besides the evaluation of just lowest-order (in Floc)

diagrams, ladder-type calculations represent the standard approximation scheme for almost

all diagrammatic extensions of DMFT, such as DΓA and DF, as already discussed in Sec.

4.1.2 (see also Tab. 4.1). From a practical point of view, the reason for this is that this type

of approximation requires “only” the solution of one Bethe-Salpeter equation in a specific

channel, while the more complex parquet treatment is based on the self-consistent numerical

solution of the parquet equations and the Bethe-Salpeter equations in all channels. Though

recently important steps further have been made in this direction [45,46,142], the numerical

effort for a general treatment of the parquet formalism is still considerable, which renders

the restriction to the ladder approximation inevitable in many cases. However, in situations

where one (Bethe-Salpeter) channel plays a dominant role, such as, e.g., the magnetic channel
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GDMFT

Floc Floc

Floc

G̃

G̃

1PI

Figure 4.25: Third order (in terms of the local vertex F νν′ω
loc,σσ′) self-energy diagram in the 1PI

scheme, and ladder extension thereof (indicated by the dashed lines). G̃ = GDMFT −Gloc.
The figure is readapted from Ref. [36].

for the half-filled bipartite lattice, neglecting the (small) nonlocal fluctuations in the other

channels is also physically justifiable, as it has been already discussed in section 4.3.

A typical ladder diagram for the 1PI approach is depicted diagrammatically in Fig. 4.25,

for the particle-hole channel (ph). As for the explicit derivation of the corresponding ana-

lytical expressions, we start from the analysis of all possible bubble-diagrams, which can be

constructed from the diagrammatic elements for the 1PI approach shown in Figs. 4.23a and

4.23b1. Considering all possible bubbles (Fig. 4.26), we observe, as a first point, that the

bubble (a) with two local Green’s functions should not appear in our 1PI corrections to the

local self-energy, since it is already included in Floc and, hence, it would lead to a double-

counting of local vertex diagrams. In fact, as discussed in the previous section (see page 222),

the contribution of Fig. 4.26a is canceled by the corresponding counterterms contained in

the (inverse of the) determinant of the Jacobian, J [φ+, φ], shown by the second diagram of

Fig. 4.23b2. Hence, bubbles with two local Green’s function will be not considered for the

construction of our ladders.

So far we have not imposed any constraints on our auxiliary AIM, which we used to decouple

the local from the nonlocal degrees of freedom in the lattice system. In other words: Hitherto,

the hybridization function ∆(ν), which defines the AIM [see Eq. (4.33b)], is still arbitrary.

For this general case, all the bubble diagrams depicted in Figs. 4.26b, c and d contribute

to the ladder. However, considering the specific AIM associated with the DMFT solution

of the Hubbard model allows for a further simplification: In this situation all contributions

stemming from bubbles with a single local Green’s function, as depicted in Figs. 4.26b and

c, vanish due to the self-consistency condition of DMFT, i.e.,
∑

k G̃k =
∑

kGDMFT(ν,k) −
Gloc(ν) ≡ 0. Hence, the ladder part of the diagram for the self-energy should necessarily



4.4. FUNCTIONAL INTEGRAL BASED METHODS 225

a) b)

Floc Floc Floc Floc

c) d)
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Figure 4.26: Bubble diagrams for the 1PI approach which can be constructed from the
diagrammatic elements shown in Figs. 4.23a and 4.23b1. Only the diagram d) contributes

to the perturbation series, if one starts from the AIM connected with DMFT. G̃ = GDMFT−
Gloc. The figure is readapted from Ref. [36].

be composed only of bubbles with two nonlocal Green’s functions G̃k (see Fig. 4.26d).

Considering, eventually, the two available vertex functions of the 1PI theory shown in Fig.

4.23b1, it is obvious that the ladder part of a diagram has to be constructed solely from

Floc(φ
+φ)(φ+φ) vertices, except for the leftmost and rightmost vertex, which can be either

of the type Floc(ψ
+φ + φ+ψ)(φ+φ), connected by one local Green’s function Gloc, or of the

type Floc(φ
+φ)(φ+φ), connected by only nonlocal Green’s functions G̃.

The above considerations lead to considerable simplifications concerning the four components

of the self-energy (matrix) in the spinor formalism, whose most general form is given by:

Σ =

(
Σφφ Σφψ

Σψφ Σψψ

)
. (4.97)

While the ladder has to be the same [i.e., constructed from G̃ and Floc(φ
+, φ)(φ+φ) only] for

all four components of the self-energy, the non-ladder part can be different. In practice, this

situation is well exemplified in Fig. 4.27, where exemplarily third-order (ladder) diagrams for

the four components of the self-energy are depicted. By a closer inspection of this figure it is

obvious that the components φφ, φψ and ψφ of the self-energy are perfectly equivalent. In

fact, for all these three contributions, the Green’s function, which does not enter the ladder,
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Figure 4.27: The four components of the matrix Σ depicted for diagrams of third order in
Floc. G̃ = GDMFT −Gloc. The figure is readapted from Ref. [36].

is given by G̃ + Gloc = GDMFT (or G̃ + 2Gloc − Gloc = GDMFT for Σφφ), since the fields

φ and ψ are available for constructing the internal propagator. On the contrary, the ψψ

component must have the fields ψ at the outer legs of the diagram (see the right diagram in

the second row of Fig. 4.27), and, hence, all the inner propagators of the diagram have to

be constructed from the fields φ only, which means that just the nonlocal Green’s function
1
β
〈φ+φ〉 = G̃ is available for the inner line which does not enter the ladder. Hence, eventually,

one can express the four components of the self-energy of the ladder 1PI by means of only

two distinct contributions, which differ just in the Green’s function not entering the ladder

(i.e., G̃ + Gloc = GDMFT or G̃). For convenience, we represent the φφ, φψ and ψφ elements

of Σ as the sum of two terms Σ1 and Σ2, corresponding to having GDMFT = G̃+Gloc in the

internal (non-ladder) line, while, of course, the ψψ component of Σ, which contains only G̃

as internal propagators, is given by Σ1 only:

Σφφ,k = Σφψ,k = Σψφ,k = Σ1,k + Σ2,k,

Σψψ,k = Σ1,k. (4.98)
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Let us emphasize here once again that both, Σ1 and Σ2, contain the very same ladder, to be

calculated by means of a corresponding Bethe-Salpeter equation. Since we restrict ourselves

to the case of a half-filled bipartite lattice, where particle-hole (in particular magnetic) fluc-

tuations dominate, we consider only the particle-hole channels (density and magnetic), as it

is illustrated (schematically) in Fig. 4.25. The corresponding Bethe-Salpeter equations are

completely analogous to the local ones for the AIM reported in appendix B, Eqs. B.4, except

for the replacements of Γloc with Floc and Gloc with G̃. This leads to the following integral

equation for the calculation of the momentum-dependent vertex function Fd(m),q in the 1PI

approach:

F νν′ω
r,q = F νν′ω

loc,r +
1

β

∑

k1

F νν1ω
loc,r G̃k1G̃k1+qF

ν1ν′ω
r,q , r = d,m, (4.99)

where again a four-vector notation is adopted, i.e., k1=̂(ν1,k1) and q=̂(ω,q). Let us note

that Fd(m),q, as calculated in Eq. (4.99), is identical to the corresponding nonlocal vertex

of (ladder) DΓA in Eq. (4.5), which is constructed from the local vertex irreducible in the

density (magnetic) channel, Γloc,d(m), [instead of the full local vertex Floc,d(m) in Eq. (4.99)]

and the DMFT Green’s function GDMFT = G̃ + Gloc [instead of the nonlocal propagator G̃

in Eq. (4.99)]. This can be easily proven by eliminating the full local vertex Floc,d(m) from

Eq. (4.99) by means of the local Bethe-Salpeter equation (B.4).

In the next step, we use the nonlocal vertex function Fr,q, as constructed in Eq. (4.99)

[or, equivalently, in the corresponding DΓA Eqs. (4.5) or (4.6)], for the calculation of the

contributions Σ1 and Σ2 to the 1PI self-energy, according to the diagrams depicted in Fig.

4.25. Considering the (different) prefactors for the two spin combinations, i.e., Ad =
1
2
and

Am = 3
2
, we obtain:

Σ1,k = − 1

β2

∑

k′q

∑

r=d,m

ArF
νν′ω
loc,r G̃k′G̃k′+qF

ν′νω
r,q G̃k+q − Σ

(2)
1,k, (4.100a)

Σ2,k = − 1

β2

∑

k′q

∑

r=d,m

ArF
νν′ω
loc,r G̃k′G̃k′+qF

ν′νω
r,q Gloc,ν+ω, (4.100b)

where Σ2,k ≡ Σ2,ν is, in fact, k-independent (1PI correction to the local self-energy due to

nonlocal corrections). Σ
(2)
1,k is defined as:

Σ
(2)
1,k = −1

2

1

β2

∑

k′q

∑

r=d,m

ArF
νν′ω
loc,r G̃k′G̃k′+qF

ν′νω
loc,r G̃k+q. (4.101)

The latter contribution accounts for the double-counting of the second-order (in F loc) dia-
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gram due to the indistinguishability of identical particles (see the analogous discussion for the

Bethe-Salpeter equation in the particle-particle channel in appendix B.3). Note that the cor-

responding double-counting correction for Σ2 yields zero due to the DMFT self-consistency

condition, i.e., Σ
(2)
2,k ∝

(∑
k′ G̃k′

)2
≡ 0.

Inserting the Ansatz (4.98) for the components of the self-energy into the (matrix) Dyson

equation gives:

G−1
k = G−1

0,k −Σk =

(
G−1
k − Σ1,k − Σ2,k G−1

k − Σ1,k − Σ2,k

G−1
k − Σ1,k − Σ2,k G−1

k −G−1
loc,ν − Σ1,k

)
. (4.102)

In order to obtain the corresponding Green’s function G(ν,k) ≡ G1PI(ν,k) for the lattice

system, we have to invert the matrix in Eq. (4.102) and then sum up its components [see

Eqs. (4.89) and (4.94)]. This yields:

G1PI(ν,k) =
1

iν − εk + µ− Σloc,ν − Σ1,k − Σ2,k
. (4.103)

Hence, the total self-energy obtained by means of the 1PI approach is just given by:

Σ1PI,k = Σloc,ν + Σ1,k + Σ2,k. (4.104)

We observe that the relationship between the 1PI self-energy (matrix), Eq. (4.97), and the

self-energy for the real electrons, Eq. (4.104), is much simpler than the corresponding relation

in the DF theory [Eq. (4.65)]. Specifically, the 1PI approach yields no spurious denominator

corrections for the lattice self-energy. We also note, that in the dual fermion approach,

with the usual restriction to the two-particle local vertex, only the contribution Σ1 [with the

corresponding denominator, given in the Eq. (4.65)] appears, while Σ2 would correspond

to the contributions stemming from the local three-particle (one-particle reducible) vertex,

see also Figs. 4.20b and 4.28, which is usually neglected in DF. At the same time, both

contributions naturally appear in the 1PI approach already at the two-particle vertex level,

providing a possible way-out to the problem of the DF method, discussed at the end of section

4.4.1.

In the following, we will gain a deeper understanding of the diagrammatic contents and

the mutual interrelations among the different diagrammatic extensions of DMFT. Such a

competitive analysis and understanding, which was missing hitherto in the existing literature,

will be obtained by explicitly studying the similarities of DF, DΓA and 1PI (in their ladder
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Figure 4.28: Third order (in terms of the local vertex F νν′ω
loc,σσ′) diagrams for 1PI (a), DF

(b) and its corresponding DΓA counter part (c). The contribution of (a part of) the one-
particle reducible three-particle vertex is marked in red in the 1PI and DΓA diagrams.
The figure is readapted from Ref. [36].

diagram implementation) in more detail.

Differences between 1PI, DF and DΓA

The different diagrammatic content of the ladder 1PI, ladder DF and ladder DΓA approaches

can be readily individuated by a direct inspection of the corresponding diagrams. We will

start by considering a typical third-order diagram of the 1PI ladder series, shown in Fig.

4.28a. By comparing it to the corresponding diagram of the DF approach (Fig. 4.28b), it is

evident that the latter does not include the term, where the fermionic line at the bottom (bold

red line in Fig. 4.28a) corresponds to a local Green’s function. We recall, in this respect,

that in the dual fermion space the propagation occurs via purely nonlocal Green’s functions

G̃ = GDMFT − Gloc, as it can be inferred from Fig. 4.19. Hence, when only the two-particle

local vertex is considered as interaction among the dual fermions, there is no way to generate

local Green’s functions in the DF diagrams for a ladder series. The difference between the

diagrams of Fig. 4.28a and Fig. 4.28b corresponds, in fact, to the contribution of the local

three-particle vertex in the DF approach (red part in Fig. 4.28a), which is usually neglected.

As for the corresponding DΓA diagram (Fig. 4.28c), we observe, that –in contrast to DF– it
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does contain the full DMFT Green’s functionGDMFT = G̃+Gloc, yielding, hence, also “mixed”

terms with GDMFT − Gloc propagators in the ladder part of the diagram and one local Gloc

outside the ladder (bottom of the diagram). Again, analogously to the 1PI diagram, the part

of Fig. 4.28c colored in red corresponds to the contribution of the three-particle vertex in

the DF approach. At the same time, one should emphasize that the DΓA ladder diagrams,

as those depicted in Fig. 4.28c, evidently represent only a subset of the 1PI ladder diagrams.

This can be easily understood from a comparison of Fig. 4.28a and Fig. 4.28c: In the

1PI approach, all vertices used for building up the self-energy diagrams are the dynamical

ones (Floc), while in DΓA, where the self-energy is explicitly derived from the Schwinger-

Dyson equation [see Eqs. (2.194) and (4.11)], one of the vertex functions is replaced by its

lowest-order counterpart, i.e., the bare interaction U . Hence, when performing diagrammatic

approximations of DMFT at the ladder level, the 1PI ladder resummation contains a larger

number of diagrams with respect to DF or DΓA. Specifically, it contains all diagrams of the

DΓA and DF ladders and additional contributions beyond. On the other hand, we should

also keep in mind that the 1PI ladder diagrams themselves represent a subset of the more

general set of diagrams, generated by employing the parquet equations for the DΓA instead of

the ladder approximation. We will show in the following that the specific 1PI diagram shown

in Fig. 4.28 are not contained in ladder DΓA but are generated by the full parquet-based

version of DΓA.

To this end, it proves convenient to rewrite Σ1 and Σ2 in Eqs. (4.100) by means of the

Bethe-Salpeter equation for the nonlocal vertex Fr,q [Eq. (4.99)]. Indeed, a closer inspection

of (4.99) and (4.100) shows that both self-energy contributions Σ1 and Σ2 contain a term

which is completely equivalent to the reducible part of the (nonlocal) Bethe-Salpeter equation

(4.99), i.e., to the second summand on the right-hand side of this equation. Hence, one can

recast the 1PI ladder self-energies in the following way:

Σi,k = − 1

β

∑

q

∑

r=d,m

Ar
1

β

∑

k′

F νν′ω
loc,r G̃k′G̃k′+qF

ν′νω
r,q

︸ ︷︷ ︸
F ννω
r,q −F ννω

loc,r , see Eq. (4.99)

Gi,k+q − Σ
(2)
i,k =

= − 1

β

∑

q

∑

r=d,m

Ar

(
F νν′ω
r,q − F νν′ω

loc,r

)
Gi,k+q − Σ

(2)
i,k , i=1, 2,

(4.105)

where G1,k+q = G̃k+q and G2,k+q = Gloc,ν+ω. Eq. (4.105) has a very clear diagrammatic

interpretation, which is illustrated in Fig. 4.29: The nonlocal self-energy correction to the

local DMFT self-energy, calculated via the ladder approximation within the 1PI approach,
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Figure 4.29: Nonlocal (ladder) self-energy corrections within the 1PI approach up to the
third order in Floc,r: One has to sum up all ladder contributions to Fr,q except for the
(purely local) lowest-order term Floc,r. Note that for Σ2 (corresponding to Gloc for the
non-ladder Green’s function) the second-order diagram (first diagram on the right-hand

side of this equation) vanishes (Σ
(2)
2 ≡ 0).

can be represented as a Hartree diagram, where the “interaction” is given by the nonlocal

vertex function Fr,q, and the Green’s functions is either (i) purely nonlocal (Σ1) or (ii) solely

local (Σ2) [see the first diagram in Fig. 4.29]. The subtraction of the local vertex Floc,r in

Eq. (4.105), which corresponds to the second diagram depicted in Fig. 4.29, accounts for

the purely local contribution to the 1PI self-energy already included in DMFT. Due to this

subtraction, any possible double-counting of local contributions to the lattice self-energy is

prevented.

In order to establish the connection with the DΓA, we will represent Fr,q now in the DΓA

way, i.e., in terms of the local vertex, which is irreducible in the density (magnetic) channel,

Γloc,d(m), instead of the full local vertex [as discussed below Eq. (4.99)]. The corresponding

Bethe-Salpeter equations have been already given in the section about the ladder DΓA [Eq.

(4.5)] and are here recalled for convenience:

F νν′ω
r,q = Γνν

′ω
loc,r +

1

β

∑

k1

Γνν1ωloc,rGk1Gk1+qF
ν1ν′ω
r,q , r = d,m, (4.106)

where G denotes, as usual, the lattice DMFT Green’s function, which contains the local

self-energy Σloc, i.e., all local correlation effects. Inserting now Eq. (4.106) for Fr,q and its

local counterpart [Eq. (B.4)] for Fr into the expressions for the two contributions to the 1PI

self-energy in Eq. (4.105), one arrives at the following result:

Σi,k = − 1

β

∑

q

∑

r=d,m

Ar
1

β

∑

k′

Γνν
′ω

loc,r

(
Gk′Gk′+qF

ν′νω
r,q −Gloc,ν′Gloc,ν′+ωF

ν′νω
loc,r

)
Gi,k+q − Σ

(2)
i,k ,

(4.107)

where again G1,k+q = G̃k+q and G2,k+q = Gloc,ν+ω. According to Eq. (4.104) one has to sum
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up Σ1, Σ2 and the local self-energy Σloc in order to obtain the full lattice self-energy within

the ladder 1PI approach, which reads:

Σ1PI,k = Σloc,ν−
1

β

∑

q

∑

r=d,m

Ar
1

β

∑

k′

Γνν
′ω

loc,r

(
Gk′Gk′+qF

ν′νω
r,q −Gloc,ν′Gloc,ν′+ωF

ν′νω
loc,r

)
Gk+q−Σ

(2)
1,k

(4.108)

This result can be compared to the nonlocal self-energy of the DΓA in section 4.3, Eq. (4.11):

ΣDΓA,k =
1

2
Un− U

β2

∑

k′q

Gk′Gk′+q

(
AdF

νν′ω
d,q − AmF

νν′ω
m,q − 1

2
F νν′ω
loc,d +

1

2
F νν′ω
loc,m

)
Gk+q. (4.109)

From a first rough comparison of Eqs. (4.108) and (4.109), we can recognize an important

difference between Σ1PI and ΣDΓA: Apart from (local and second-order) double-counting

corrections46, the bare interaction U in ΣDΓA, Eq. (4.109), is replaced by the local particle-

hole irreducible vertex Γloc,r in Σ1PI, Eq. (4.108). What does the formal difference between

1PI and DΓA mean physically? As it is illustrated in Fig. 4.30, the additional diagrams

present in 1PI correspond to considering nonlocal corrections to the irreducible vertex in the

selected channel, while in ladder DΓA calculations perfect locality of this vertex is assumed.

It is important to recall, that the assumption of locality of the irreducible vertex in a given

channel (e.g., density or magnetic) is not implied at all for the general assumptions of DΓA,

in its full parquet-based version. Here, nonlocal corrections to these vertices are indeed

generated via the self-consistent solution of the parquet equations, starting from a fully

irreducible local vertex. Therefore, even if, in general, the inclusion of a larger number

of diagrams does not guarantee on itself an improvement of a given approximation, in our

case the additional nonlocal corrections for the irreducible (density- and magnetic-) vertices

are physically justifiable by reason of the diagrams which would be generated by the full

(parquet-based) DΓA approach.

Let us finally present an analytically more thorough comparison between ΣDΓA and Σ1PI. To

this end we introduce the following notations for products of two Green’s function [see Eq.

46Double counting corrections are required for the first (and the second) summand inside the parenthesis
in Eqs. (4.108) and (4.109), respectively.
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Figure 4.30: We show explicitly how a 1PI diagram can be expressed in a similar form
as in DΓA, where there is always a bare U at the left-hand side of the diagrams (i, j, k
denote lattice sites). We start from the specific 1PI diagram a) and consider the particular
contribution to the leftmost vertex shown in b), so that a) becomes c). Because of the DΓA
requirement of a bare U on the leftmost side (see Fig. 4.28c), the entire red box should be
interpreted correspondingly as a DΓA-generated reducible vertex. This red box, in turn,
can be deformed to d), where the yellow box clearly contains nonlocal (j 6= k) contributions
to the vertex irreducible in the longitudinal channel (Γr). Such nonlocal contributions to
Γr are, hence, generated within DΓA only via the full parquet implementation of the
method. The figure is readapted from Ref. [36].

(4.7)]:

χνω0,q = −
∑

k

GkGk+q, (4.110a)

χνω0,loc = −Gloc,νGloc,ν+ω, (4.110b)

χ̃νω0,q = −
∑

k

G̃kG̃k+q = χνω0,q − χνω0,loc. (4.110c)
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Note that, apart from a factor β, the definition of the local bare susceptibility in Eq. (4.110b)

coincides with the diagonal elements of the matrix χνν
′ω

0 defined in Eq. (2.153). Let us also

point out that the last equality in Eq. (4.110c) follows from the DMFT self-consistency

condition
∑

k
Gk =

∑
k
Gk+q ≡ Gloc,ν . Considering the definitions in Eqs. (4.110), one can

rewrite Eqs. (4.108) and (4.109) for the 1PI and DGA self-energy, respectively, as well as the

Bethe-Salpeter equation (4.106), by replacing the term
∑

kGkGk+q with −∑ν χ
νω
0,q in these

relations. Considering that, according to Eq. (4.110c), χνω0,q = χ̃νω0,q+χ
νω
0,loc, it is clear that the

nonlocal contributions to the 1PI and the DΓA self-energies are generated from χ̃νω0,q. Hence,

it is convenient to expand the (momentum-dependent) self-energies (and, of course, also the

momentum-dependent vertex Fr,q) in terms of this purely nonlocal susceptibility. Taking

into account contributions up to the first order in χ̃νω0,q, we obtain:

Σ
(2)
1PI,k = Σloc,ν + Σ

(2)
1,k = Σloc,ν +

1

2

1

β2

∑

ν′q

∑

r=d,m

ArF
νν′ω
loc,r χ̃

ν′ω
0,qF

ν′νω
r G̃k+q, (4.111)

for the corresponding 1PI self-energy with Σ
(2)
1,k defined as in Eq. (4.101), and

Σ
(2)
DΓA,k = Σloc,ν+

1

β2

∑

ν′ν′′q

AdF
νν′′ω
loc,d χ̃

ν′′ω
0,q

(
F
ν′′ν′ω
loc,d − U

2
δν′′ν′

)
+AmF

νν′′ω
loc,m χ̃

ν′′ω
0,q

(
F
ν′′ν′ω
loc,m +

U

2
δν′′ν′

)

(4.112)

for the DΓA case. F loc is defined as:

F
νν′ω
loc,d(m) = ±U

[
δνν′ +

1

β
χνω0,locΓ

νν′ω
loc,d(m)

]−1

= ±U
∑

ν′′

F νν′′ω
loc,d(m)

[
Γν

′′ν′ω
loc,d(m)

]−1

, (4.113)

where the matrix inversions are taken with respect to the fermionic Matsubara frequencies

ν, ν ′ and ν ′′.

Comparing Eqs. (4.111) and (4.112) one observes two differences: (i) The factor 1/2 in Eq.

(4.111), which avoids double counting of diagrams in the 1PI self-energy, is replaced by an

explicit subtraction of the double counting terms ±U/2 in Eq. (4.112) for the DΓA. The

reason for this is the “asymmetric” form of the DΓA self-energy correction compared to the

1PI one (bare U in DΓA vs. the full vertex in 1PI on the left-hand side of the self-energy

diagrams, see Fig. 4.28). Specifically, the ladder for the (local) vertex F
νν′ω
loc,d(m) exhibits

always a bare U as leftmost (or rightmost) vertex47. Hence, it does not fulfill the crossing

47On the contrary, the ladder series for the full local vertex Floc,d(m) is exclusively built from irreducible
vertices Γloc,d(m), whose crossing properties [see Eq. (2.165)] render the full ladder (i.e., the full Floc,d(m))
crossing symmetric.
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symmetry, which is responsible for the double-counting of diagrams, apart from its lowest-

order contribution U which, therefore, has to be corrected by a factor 1/2. (ii) The second,

more important, difference between the two expressions is that F
νν′ω
loc,d(m) in Eq. (4.112) is

replaced by F νν′ω
loc,d(m) in Σ

(2)
1PI. In fact, the difference between F

νν′ω
loc,d(m) and F νν′ω

loc,d(m) marks a

particular set of nonlocal corrections to the self-energy, automatically generated in the 1PI

ladder diagrams, but neglected in the ladder approximation of the DΓA.

The interpretation of the ladder 1PI expressions derived in this section can be summarized as

follows: Within the ladder approximation, the 1PI approach includes terms, beyond all the

ladder diagrams of DF and DΓA, not present in either of the two diagrammatic extension

of DMFT. In the latter approaches, these terms would be generated by going beyond the

ladder approximation to DΓA and beyond the two-particle local vertex in DF, respectively.

At the same time, the numerical effort of performing a ladder 1PI calculation is obviously

much smaller compared to the full (parquet-based) DΓA, or to the DF with the three-particle

vertex. In this sense, the 1PI approach seems to be the one, which better utilizes, in building

a ladder resummation, the information contained in the local two-particle vertex functions

of DMFT.

Asymptotic behavior of the 1PI ladder self-energy

In this paragraph we analyze the 1
iν
-asymptotic behavior of the ladder 1PI self-energy Σ1PI,k

with respect to the DΓA one. In general, performing a high-temperature expansion of the

(exact) lattice self-energy Σ(ν,k) yields [see also Sec. 4.3.1 and Eq. (4.16)]:

Σ(ν,k) =
Un

2
+ U2n

2

(
1− n

2

) 1

iν
+O

(
1

[iν]2

)
, (4.114)

where n = n↑ + n↓ denotes the average number of electrons per lattice site in the system.

We recall that the DMFT self-energy Σloc,ν , which coincides with a “numerically exact”

one of an AIM with the same density, exhibits always the correct 1
iν
-asymptotic behavior

reported in Eq. (4.114). On the contrary, as we have observed (and discussed) in Sec. 4.3.1,

the 1
iν
-contribution to the lattice self-energy calculated within the DΓA formalism shows a

deviation from the result in Eq. (4.114). As will be shown in the following, also the 1PI

the self-energy, if calculated via a ladder resummation, exhibits the same violation of the

high-frequency behavior of Σ. As for the DΓA, the enhanced asymptotics of 1PI calls for

an effective treatment of of the self-consistency at the two-particle level. In this respect

the situation is pretty similar to the corresponding issue in the DΓA. Therefore, as a first

attempt, it is obvious to start by enforcing the required self-consistency effectively via the
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Moriya λ corrections (see Sec. 4.3.1 and Refs. [27, 28]). Before discussing this in the next

subsection, we focus here on the explicit (analytical) comparison of the asymptotic behavior

of the 1PI and the DΓA self-energies. Specifically, we note that Σ1,k, as given, e.g., in Eq.

(4.107), is proportional to G̃k+q = Gk+q − Gloc,ν+ω, where Gk+q again denotes the DMFT

Green’s function GDMFT(ν + ω,k + q). Since both, Gk+q and Gloc,ν+ω, exhibit the same
1
iν
-asymptotic behavior, the latter term cancels out and G̃k+q

ν→∞−→ 1
(iν)2

. Hence, as for the
1
iν
-asymptotic behavior of the lattice self-energy calculated in the framework of 1PI, Σ1PI,k,

we have to consider only Σ2,k and Σloc,ν in Eq. (4.104). Σ2,k, which is given in Eq. (4.107)

in terms of the irreducible particle-hole vertex Γloc,r, is written as:

Σ2,k =
1

β

∑

q

∑

r=d,m

Ar
1

β

∑

ν′

Γνν
′ω

loc,r

(
χν

′ω
0,qF

ν′νω
r,q − χν

′ω
0,locF

ν′νω
loc,r

)
Gloc,ν+ω, (4.115)

where the particle-hole bubbles χνω0,q and χνω0,loc are defined in Eqs. (4.110). Let us recall

that Σ2,k does not depend on k, but yields only a local correction to the DMFT self-energy

Σloc,ν , i.e., Σ2,k ≡ Σ2,ν . As for the analysis of the 1
iν
-asymptotic behavior of the local DMFT

self-energy Σloc,ν it is convenient to represent it in terms of the (local) equation of motion

[see Eq. (2.194)]48:

Σloc,ν =
Un

2
+
U

β2

∑

ν′ω

χν
′ω

0,locF
νν′ω
loc,↑↓Gloc,ν+ω =

Un

2
− U

β2

∑

ν′ω

χν
′ω

0,locF
νν′ω
loc,mGloc,ν+ω, (4.116)

where the last equality follows from:

U

β2

∑

ν′ω

χν
′ω

0,locF
νν′ω
loc,↑↑Gloc,ν+ω = 0, (4.117)

in the SU(2) symmetric case. Eq. (4.117) can be easily proven by substituting the summation

variables ν ′ and ω as ν ′ → ν + ω and ω → ν ′ − ν and considering the crossing relation

F
ν(ν+ω)(ν′−ν)
loc,↑↑ = −F νν′ω

loc,↑↑ as given in Tab. 2.2.49

Let us now try to single out the ν dependence of each term in Eqs. (4.115) and (4.116) in

the high-frequency regime, for obtaining a 1
iν
-expansion of the entire 1PI self-energy (cf. Sec.

48Note that the DMFT self-energy Σloc,ν exhibits already the correct asymptotic behavior as given in Eq.
(4.114), i.e., its exact analytical expression for the 1

iν
-term is known to be U2 n

2

(
1− n

2

)
1
iν
. However, as for

the comparison with the asymptotic behavior of the DΓA self-energy in Eq. (4.109), which includes the local
part, it is useful to represent Σloc,ν in a similar framework as Σ2,k [Eq. (4.100b)] and ΣDΓA [Eq. (4.109)].

49Consider that χν′ω
0,locGloc,ν+ω = −Gloc,ν′Gloc,ν′+ωGloc,ν+ω is invariant under the transformation ν′ → ν+ω

and ω → ν′ − ν.
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+

(ν + ω)σ

νσ ν ′σ′

(ν′ + ω)σ′

Uδσ(−σ′) F ν1ν
′ω

loc,(−σ)σ′

ν ′σ′

(ν ′ + ω)σ′

(ν + ω)σ

νσ
ν1(−σ)

(ν1 +
ω)(−σ)

U

Figure 4.31: All possible diagrams for F νν′ω
loc,σσ′ that do not depend on ν.

4.3.1):

• Gloc,ν+ω → 1
iν
: In order to get the 1

iν
-contribution of the entire expression we are

interested in constant contributions with respect to ν for all the remaining terms50.

• Γνν
′ω

loc,r , r = d,m: Since Gloc,ν+ω is already of the order 1
iν
, we have to identify the

diagrammatic contributions to the irreducible vertex in the longitudinal particle-hole

channel Γloc,r, r = d,m not showing any decay for ν → ∞, i.e., those which do not

depend on ν. Considering first the full vertex F ν′νω
loc,r , all corresponding ν-independent

diagrams are depicted in Fig. 4.31. Since the diagram on the right-hand side of this

figure is reducible in the longitudinal particle-hole channel, only the diagram on the

left-hand side, i.e., the bare Hubbard interaction U can contribute to the ν-independent

part of Γν
′νω

loc,r . Considering that:

Γνν
′ω

loc,d = Γνν
′ω

loc,↑↑ + Γνν
′ω

loc,↑↓, (4.118a)

Γνν
′ω

loc,m = Γνν
′ω

loc,↑↑ − Γνν
′ω

loc,↑↓, (4.118b)

the ν-independent part of Γν
′νω

loc,r is given by Γνν
′ω

loc,d∼+U and Γνν
′ω

loc,m∼−U , respectively.

• F ν′νω
r,q and F νν′ω

loc,r : These terms are also present in the DΓA expression for the self-energy

in Eq. (4.109). Since we are interested to compare the asymptotic behavior of the 1PI

with the one of DΓA, we will for now keep this contributions in Eqs. (4.115) and (4.116)

as they are.

50For the substitution Gloc,ν+ω → 1
iν

note also that the largest contribution to the self-energy stems from
the ω = 0 term.
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Inserting now the asymptotic forms of the different contributions in Eqs. (4.115) and (4.116)

yields:

Σ2,k+Σloc,ν =
Un

2
+

1

iν

1

2

U

β

∑

ν′q

(
−3F νν′ω

m,q + F νν′ω
d,q

)
χν

′ω
0,q +

(
F νν′ω
loc,m − F νν′ω

loc,d

)
χν

′ω
0,loc+O

(
1

[iν]2

)
.

(4.119)

Considering that, as discussed above, Σ1,k does not contribute to the 1
iν
-asymptotic behavior

of the 1PI self-energy Σ1PI,k one has:

Σ1PI,k =
Un

2
+

1

iν

1

2

U

β

∑

ν′q

(
−3F νν′ω

m,q + F νν′ω
d,q

)
χν

′ω
0,q +

(
F νν′ω
loc,m − F νν′ω

loc,d

)
χν

′ω
0,loc +O

(
1

[iν]2

)
.

(4.120)

This can be compared to the asymptotic behavior of the DΓA self-energy [Eq. (4.109)], where

one should just replace Gk+q by 1
iν
. After performing this substitution in Eq. (4.109), the

perfect equivalence of the 1
iν
-contributions of the 1PI and the DΓA self-energies is evident.

Moriya λ corrections for the 1PI approach

The high-frequency behavior of the 1PI ladder self-energy Σ1PI,k exhibits the very same

enhancement with respect to the exact 1
iν
-asymptotics [given in Eq. (4.114)], as the corre-

sponding ladder DΓA self-energy. Since also the origin of this is the same as in DΓA (lack of

two-particle self-consistency within the ladder approximation), it is logical to try to correct

this problem by the same effective scheme adopted in DΓA. We recall that in the DΓA such

a self-consistency at the two-particle level is effectively restored by means of the so-called

Moriya λ corrections, which have been already discussed in section 4.3.1 and Refs. [27, 28].

The basic idea is to renormalize the mass of the nonlocal spin propagator (susceptibility) χωr,q

(obtained from a one-shot calculation, and, hence, not self-consistently at the two-particle

level) by means of a constant λ. Practically, the value of λ is determined (unambiguously) by

the requirement that the self-energy obtained from the λ-corrected spin susceptibility χλ,ωr,q

exhibits the correct asymptotic behavior as given in Eq. (4.114). Hence, in order to apply

the λ correction scheme also to the 1PI approach, one must first rewrite the expression for

the 1PI self-energy, as given in Eq. (4.105), in terms of χωr,q, r = d,m. To this end, we

represent the (lattice) vertex F νν′ω
r,q by means of the (lattice) generalized susceptibility χνν

′ω
r,q

and the (lattice) bare susceptibility χνω0,q [defined in Eq. (4.110a)]:

F νν′ω
r,q = βδνν′

(
χνω0,q

)−1 −
(
χνω0,q

)−1
χνν

′ω
r,q

(
χν

′ω
0,q

)−1

. (4.121)
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The nonlocal susceptibility χωr,q can be derived from the corresponding generalized suscepti-

bility χνν
′ω

r,q in Eq. (4.121) as

χωr,q =
1

β2

∑

νν′

χνν
′ω

r,q , (4.122)

i.e., summing over the fermionic Matsubara frequencies of the generalized susceptibility χνν
′ω

r,q

yields the physical response function χωr,q.

The problem is now that, when inserting the expression for the nonlocal vertex function in Eq.

(4.121) into the 1PI self-energy equation (4.105), the generalized (χνν
′ω

r,q ) rather than the phys-

ical (χωr,q) susceptibility enters in the latter relation, making difficult a direct implementation

of the λ corrections explained above. Hence, we have to recast the generalized susceptibility

in Eq. (4.121) in terms of the physical one. Following the ideas of Refs. [27, 28, 227], this

can be achieved by separating the ladder for F νν′ω
r,q in the particle-hole (density or magnetic)

channel in Fig. 4.29 by the bare interaction Ur instead of the fully irreducible vertex Γνν
′ω

loc,r :

χνν
′ω

r,q = χ∗,νν′ω
r,q − 1

β2

∑

ν1ν2

χ∗,νν1ω
r,q Uν1ν2

r χν2ν
′ω

r,q , (4.123)

where the bare interaction matrix Uνν′
r is constant, i.e., Uνν′

r ≡ Ur with Ud = +U and

Um = −U (U is the bare Hubbard interaction). The auxiliary susceptibility χ∗,νν′ω
r,q can be

obtained by solving Eq. (4.123), via a matrix inversion using the nonlocal version of the

Bethe-Salpeter equation reported in appendix B, Eq. (B.7). The result reads:

χ∗,νν′ω
r,q =

[(
χνω0,q

)−1
δνν′ +

1

β2

(
Γνν

′ω
loc,r − Ur

)]−1

, (4.124)

where the outer matrix inversion is performed with respect to the fermionic Matsubara fre-

quencies ν and ν ′. As for an interpretation of Eq. (4.124) one has to consider that the bare

interaction Ur in the corresponding channel (r = d,m) represents just the lowest-order (in

U) contribution to the local irreducible vertex function Γloc,r. Hence, the subtraction of Ur

from the irreducible vertex Γloc,r in Eq. (4.124) leads to a ladder which is irreducible just in

the bare interaction Ur, i.e., removing one interaction vertex U from a diagram for χ∗,νν′ω
r,q

does not split the diagram into two parts (see the corresponding definition in Ref. [227]).

The missing diagrams, which are reducible in the interaction U , are in turn recovered by

constructing a ladder from χ∗,νν′ω
r,q and the bare interaction Ur, yielding the full generalized

susceptibility in Eq. (4.123).
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Iterating Eq. (4.123) leads to:

χνν
′ω

r,q =χ∗,νν′ω
r,q − 1

β2

∑

ν1ν2

[
χ∗,νν1ω
r,q Urχ

∗,ν2ν′ω
r,q +

1

β2

∑

ν3ν4

χ∗,νν1ω
r,q Urχ

ν2ν3ω
r,q Urχ

∗,ν4ν′ω
r,q

]
=

=χ∗,νν′ω
r,q − Ur

β2

∑

ν1ν2

χ∗,νν1ω
r,q χ∗,ν2ν′ω

r,q +
U2
r

β2

∑

ν1ν4

χ∗,νν1ω
r,q

(
1

β2

∑

ν2ν3

χν2ν3ωr,q

)

︸ ︷︷ ︸
χω
r,q

χ∗,ν4ν′ω
r,q =

=χ∗,νν′ω
r,q − Ur

(
1− Urχ

ω
r,q

) 1

β2

∑

ν1ν2

χ∗,νν1ω
r,q χ∗,ν2ν′ω

r,q . (4.125)

Inserting the last line of this equation into the expression for the full lattice vertex in Eq.

(4.122) gives rise to the following representation of F νν′ω
r,q :

F νν′ω
r,q =

(
χνω0,q

)−1
[
δνν′ − χ∗,νν′ω

r,q

(
χν

′ω
0,q

)−1
]
+ Ur

(
1− Urχ

ω
r,q

)
γνωr,qγ

ν′ω
r,q , (4.126)

where the two-frequency “triangular” vertex γνωr,q is defined as:

γνωr,q =
(
χνω0,q

)−1 1

β

∑

ν′

χ∗,νν′ω
r,q . (4.127)

An explanation of the physical meaning of this vertex is given in Ref. [28].

Inserting now the vertex function F νν′ω
r,q from Eq. (4.126) into the expression for the self-

energy in Eq. (4.105) yields the following result for Σ1PI,k:

Σ1PI,k = Σloc,ν −
1

β

∑

r=d,m

Am
∑

q

{(
χνω0,q

)−1 − χ∗,ννω
r,q

(
χνω0,q

)−2
+ Ur

(
1− Urχ

ω
r,q

) (
γνωr,q
)2}

Gk+q+

+
1

β

∑

r=d,m

Am
∑

ω

F ννω
loc,rGloc,ν+ω − Σ

(2)
1,k, (4.128)

where χ∗,νν′ω
r,q is given in Eq. (4.124) and γνωr,q is defined in Eq. (4.127). One can easily observe

that the physical susceptibility χωr,q enters explicitly in Eq. (4.128) for the lattice self-energy

of 1PI. Hence, the same Moriya λ corrections of DΓA [27,28] can be directly introduced into

this equation by just defining [see Eq. (4.21)]:

χλr ,ωr,q =
[(
χωr,q
)−1

+ λr

]−1

, (4.129)
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where λd and λm are real positive numbers. Note that for the case of the half-filled Hubbard

model on a bipartite (quadratic, cubic,...) lattice with nearest neighbor hopping only spin

fluctuations play the dominant role for the behavior of the system. In this case λd can be

neglected, i.e., λd ≡ 0, and we set λ ≡ λm, according to the similar discussion for the λ

corrections of DΓA in Sec. 4.3.1. For our numerical calculations within the 1PI scheme,

presented in the next section, only this situation will be considered.

4.4.3 Numerical results

Parts of the results and the discussion presented in the following section have been already

published in the APS Journal “Physical Review B”: PRB 88, 115112 (2013).

In this section, we present numerical results for nonlocal corrections to the

self-energy of the two-dimensional Hubbard model obtained by means of the

ladder 1PI formalism and compare them with the corresponding DF and DΓA

results. Once more, we consider the relevant case of the Hubbard model on

a (two-dimensional) square lattice with nearest-neighbor hopping t at half-

filling, where the effect of nonlocal correlations beyond DMFT is expected to

be particularly strong. Note that, in the following, all energy scales, such as

the Hubbard interaction parameter U and the temperature T = 1/β, will be

given in units of the half bandwidth W/2 = 4t = 1. Furthermore, one should

bear in mind that due to the particle-hole symmetry of considered case,

the self-energy evaluated for k-points at the Fermi-surface is purely imag-

inary as a function of Matsubara frequencies (besides the constant Hartree-

contribution Un
2
). Hence, in order to keep the notation as simple as possible,

Σ refers to the imaginary part of the self-energy, i.e., Σ =̂ ImΣ, in the sections

below.

Before presenting our numerical results in the next two subsections, let us

stress that the only possibility to perform a one-by-one comparison between

the diagrammatic methods stands for the (non-self-consistent) one-shot cal-

culations. Only in this case the exact relations between the three differ-

ent approaches and their diagrammatic content can be precisely identified.

Hence, this analysis is performed first. We want to emphasize here, that

the one-shot results do not necessarily represent the final, physical results

of the three methods. For instance, as discussed in sections 4.3.1 and

4.4.2.1 for DΓA and 1PI, respectively, the one-shot ladder self-energies ex-
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hibit an enhanced high-frequency asymptotic behavior, typically corrected

by an effective treatment of the two-particle self-consistency via (Moriya) λ

corrections [27, 28, 31, 36]. As for DF, one observes that the (often) small

nonlocal corrections, produced at the level of one-shot calculations, are typ-

ically strongly enhanced already by the implementation of the “inner” self-

consistency (i.e., the self-consistency for the perturbation theory in dual

space, without a change of the original local input [34, 221]). Hence, in a

separate, final, subsection, we will look at the trends emerging when going

beyond the one-shot calculations. We note already here, that because of

the different ways the self-consistency is implemented (Moriyaesque λ cor-

rections [27,28,36] in DΓA and 1PI discussed in Eqs. (4.19) and (4.128) vs.

inner and outer self-consistency loops in DF [34,123]), as well as the different

possible levels of approximation (ladder or parquet diagrams, see table 4.1)

an unambiguous identification of equivalent levels of approximation as in

the one-shot case is in general not possible. Also for keeping the comparison

among different methods as precise as possible, we present our numerical

results on the Matsubara frequency axis only, avoiding the additional, and

to some extent uncontrolled, effects of an analytic continuation.

4.4.3.1 One-shot calculations

In this subsection, we will focus on non-self-consistent one-shot calculations

for nonlocal corrections to the (local) DMFT self-energy: this approach repre-

sents an expansion around DMFT, where the auxiliary local AIM [Eq. (4.31)]

is not changed with respect to DMFT and the DMFT Green’s functions (see

caption of Fig. 4.5) are not renormalized by a feedback of the nonlocal self-

energy. As one can understand from the discussion in the previous sections,

examining (non-self-consistent) one-shot calculations corresponds to consid-

ering well-defined sets of diagrams for the lattice electrons. This way we are

able to individuate the general trends obtained by the three approaches (1PI,

DF and DΓA) emerging solely from their different diagrammatic content.

For the sake of conciseness, we will mainly discuss the numerical results

obtained with ladder calculations, since (i) they are most frequently adopted

in previous papers [28,31,35,222], and (ii) the inclusion of ladder diagrams

proved to be essential to correctly describe crucial features of the two- and
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Figure 4.32: Nonlocal corrections ∆Σr(k, iωn)=Σr(k, iωn)−Σloc(iωn) (r=1PI [Eq. (4.104)]
and DF [Eq. (4.65)], respectively) to the DMFT (local) self-energy for the d = 2 Hubbard
model on a square-lattice at half-filling for two different values of U , two different k-
points on the Fermi surface [i.e., k=(π

2
, π
2
), nodal point, and k =(π, 0), anti-nodal point],

and temperatures slightly above the corresponding TN of DMFT (see phase-diagram in
Fig. 4.16). For the 1PI results the single contributions Σ1 [Eq. (4.100a)] and Σ2 [Eq.
(4.100b)] are also shown separately. Note, all self energies are purely imaginary except for
the Hartree contribution U

2
; this imaginary part is shown. The figure is reproduced from

Ref. [36].

three-dimensional physics. Examples are the pseudogap [35] in d = 2 or the

critical exponents of second-order phase transitions for d < 4 dimensions

[31,195], as already discussed in section 4.3.2.

We start our analysis by presenting n Fig. 4.32 our numerical results for

one-shot calculations of the nonlocal corrections to the DMFT self-energy,

∆Σr(k, iωn) = Σr(k, iωn)−Σloc(iωn) for r=1PI [Eq. (4.104)] and DF [Eq. (4.65)],

respectively, on the Matsubara frequency axis. For the 1PI approach, we also

show the two contributions Σ1 [Eq. (4.100a)] and Σ2 [Eq. (4.100b)] separately.

Note, that since no self-consistent adaption of the underlying local model is
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performed, the local self-energy inserted in the diagrams coincides with the

DMFT one, i.e., Σloc(iωn)=ΣDMFT
loc (iωn). Specifically in Fig. 4.32, data for weak-

(U = 1.0) and intermediate-to-strong coupling (U = 2.0) and for two different

k-points on the Fermi surface are presented. The temperature has been

chosen to be slightly above the onset of the antiferromagnetic ordering (Néel

temperature, TDMFT
N ) obtained in DMFT, aiming at maximizing the possible

effects of nonlocal correlations. One can see that, quite generally, the non-

local corrections in the considered approaches increase the imaginary part

of the self-energy, making its low-frequency- dependence less “metallic-like”.

Comparing the relative magnitudes of the nonlocal corrections shown in Fig.

4.32, the contribution of Σ1 of the 1PI approach appears always rather small

even though the U and T values have been selected very close to the anti-

ferromagnetic instability of DMFT. The reason for this behavior is that in Σ1

one has to perform k-summations over terms containing GDMFT −Gloc, which

yields small results since in a one-shot calculation,
∑

kGDMFT(ν,k)−Gloc(ν) = 0

because of the DMFT self-consistency [Eq. (3.8)]. Let us also note that in

one-shot calculations, the Σ1-part of the 1PI correction [Eq. (4.100a)] almost

exactly coincides with the DF correction ΣDF − ΣDMFT, except for the absence

of the disputable denominator [226] in Eq. (4.65). For the data presented

here, however, the effect of such denominator is found to be rather small.

On the contrary, in Σ2 a mixing of local and nonlocal contributions occurs,

because one single Green’s function Gloc enters instead of GDMFT − Gloc [see

Eq. (4.100b)]. Hence, this explains why Σ2 becomes significantly larger than

Σ1.

At the same time, as it was already mentioned in section 4.4.2.1, the con-

tribution Σ2 displays, similarly to the DΓA ladder diagrams, an enhanced

high-frequency asymptotics, while Σ1 decays faster than 1
iωn

and preserves

the exact 1
iωn

asymptotic behavior of the self-energy when added to the local

self-energy of DMFT. The reason for this is again that Σ1 is constructed from

GDMFT − Gloc only, which decays as 1
(iωn)2

. Σ2 has an explicit 1
iωn

contribution

from the Gloc-term, which leads to a (spurious) correction of the already ex-

act 1
iωn

behavior of the DMFT self-energy. As in the DΓA case, the enhanced

asymptotics can be corrected either by treating the full parquet set of di-

agrams, or enforcing the self-consistency condition
∑

q χ
ω
r,q = χωloc,r [see Eq.

(4.24)] at the ladder level via Moriyaesque λ corrections [28], see the results
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in the next subsection.

In Fig. 4.33 we plot the self-energy obtained from one-shot ladder calcula-

tions for 1PI, DF and DΓA in comparison to DMFT. For 1PI and DΓA, nonlocal

corrections are large as expected from the proximity to the DMFT Néel tem-

perature. In the weak-coupling regime (i.e., for U = 1.0), one further observes

that the 1PI correction is smaller than the corresponding DΓA correction.

The reason for this is that the U appearing in the DΓA equation (4.109) is re-

placed by the irreducible vertex in the 1PI formula as it is illustrated in Eqs.

(4.108), (4.109), (4.111) and (4.112) as well as in Fig. 4.25. At small values

of the interaction parameter U , the (irreducible) vertex in the predominant

(magnetic) channel is reduced [26,27,48] with respect to the bare interaction

due to metallic screening. Therefore, nonlocal corrections obtained within

the 1PI formalism tend to be smaller than the corresponding ones obtained

in DΓA.

The situation is completely reversed in the intermediate-to-strong coupling

regime (U = 2.0). Here, the local (irreducible) vertex is strongly enhanced

[26,27,48,71] compared to the bare Hubbard interaction U , due to the for-

mation of the local moment in the proximity of the Mott phase. Hence, the

1PI self-energy correction is larger than that obtained in DΓA. This observa-

tions suggest also some speculative considerations on the possible impact of

different classes of diagrams onto other important results obtained with dia-

grammatic extensions of DMFT. Specifically, we will focus here on the existing

estimate of TN for the three-dimensional Hubbard model. In this respect we

recall that in the present implementation of (the ladder versions of) 1PI and

DΓA the calculation of the Néel-temperature TN by means of a λ-corrected

magnetic susceptibility is purely based on the asymptotic behavior of the

(nonlocal) self-energy (see sections 4.3.1 and 4.4.2.1). However, this is the

same in both approaches as it was shown in section 4.4.2.1, see in particular

page 235 and following, and, hence, one would get the same transition tem-

peratures. However, an improved scheme of λ corrections or a self-consistent

treatment of these theories is expected to yield different TN ’s due to the dif-

ferences at low Matsubara frequencies in their self-energies. As we can see in

Fig. 4.16, TN for the half-filled Hubbard model in three dimension was found

smaller in (ladder) DΓA than the one estimated in DCA [127,184] or in lattice

quantum Monte Carlo [216] at weak-coupling, indicating a possible overes-
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Figure 4.33: Self-energies (imaginary part) obtained with one-shot calculations for the 1PI
approach vs. DF, DΓA and DMFT self-energies for the same parameters as in Fig. 4.32.
The figure is reproduced from Ref. [36].

timation of the nonlocal correlation effects. Let us also emphasize here that

similar values of TN have been estimated by means ladder DF calculations

in the weak-coupling regime [123]. As it was argued in section 4.3.1 and

Ref. [31], nonlocal corrections to the charge- and particle-particle irreducible

channels, which can be rigorously included only by performing the DΓA at

the parquet level, might be responsible for such underestimation. Hence, the

1PI approach, which partly takes this corrections into account (see Fig. 4.30),

is rather promising to improve the agreement between the diagrammatic and

the cluster estimations of TN in the Hubbard model, even at the level of lad-

der approximations. This may also hold true in the strong-coupling regime,

where TN was slightly larger in ladder DΓA than in the cluster methods, mir-

roring, to some extent, the inversion of the hierarchy in the magnitude of

nonlocal corrections between between 1PI and DΓA at intermediate-to-strong

coupling.
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Figure 4.34: Nonlocal corrections ∆Σr(k, iωn)=Σr(k, iωn)−Σloc(iωn) (r=1PI, DF and DΓA,
respectively) as in Fig. 4.32, but for calculations including Moriyaesque λ corrections (1PI
and DΓA) or self-consistency (DF). This figure is reproduced from Ref. [36].

As for the comparison with the (one-shot) DF self-energy, one clearly observes

that it is smaller than the corresponding 1PI and DΓA ones. The reason

for this is obviously the same as discussed for the contribution Σ1 to the

1PI self-energy. However, one should consider, that the different ways of

implementing self-consistency for 1PI, DF and DΓA can change this situation

significantly (see next section).

4.4.3.2 Self-consistency and Moriyaesque λ corrections

The analysis of the one-shot results has shown the existence of a well-defined

hierarchy in the relative magnitude of the nonlocal corrections. It is however

expected that the overall size of the nonlocal corrections will be strongly mod-

ified by the inner and outer self-consistency loops in DF [35] on the one hand

and the inclusion of the Moriyaesque λ corrections in DΓA and 1PI on the

other. These effects are briefly analyzed in this subsection.
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Figure 4.35: Self-energies obtained with the 1PI approach including λ corrections vs. self-
consistent DF, λ-corrected DΓA and DMFT self-energies for the same parameters as in
Fig. 4.34. This figure is reproduced from Ref. [36].

The results of the self-consistent DF, DΓA, and 1PI approaches are presented

in Fig. 4.34. Comparing them to Fig. 4.32, one observes that the inclusion

of the λ corrections in DΓA and 1PI (which reduces the value of TN from the

overestimated DMFT value) leads to a significant reduction of the nonlocal

corrections to the self-energy (note the different scales in the two figures).

This has been observed previously for DΓA [28, 36]. Hence, the λ-corrected

results become much more similar to those obtained in self-consistent DF cal-

culations. In particular, at strong coupling, 1PI and DF agree rather well. At

the same time, the previously mentioned hierarchy in the relative magnitude

of the nonlocal corrections to DMFT of 1PI and DΓA results is fully preserved

by the Moriyaesque λ corrections (see Fig. 4.34): At weak coupling (U = 1.0)

the 1PI corrections remain smaller than the DΓA ones due to the metallic

screening of the irreducible vertex, while in the intermediate-to-strong cou-

pling regime (U = 2.0) the enhancement of the same vertex due to the vicinity
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Figure 4.36: Self-energies for U = 1.0 obtained with the 1PI approach including λ correc-
tions vs. λ-corrected DΓA and DMFT self-energies for β = 17.0 (left panels) compared
to the low-temperature data β = 100.0 (right panels). Note that DF ladder calculations
cannot be performed at such low temperatures, since the ladder series diverges already at
the DMFT Néel temperature TDMFT

N = 0.054 (βN = 18.487).

of the MIT leads to larger corrections for the 1PI approach with respect to the

DΓA. Note that the small value of the nonlocal part of the self-energy in the

1PI approach at U = 1.0 (especially in the nodal direction) may result from a

simplified way of considering self-consistent effects through the λ correction.

Since this correction is determined solely from the asymptotic behavior of the

self-energy at large frequencies, it may yield an overestimation of the effect of

non-ladder diagrams in the 1PI approach in the low-frequency region, calling

for a refined implementation of Moriya corrections adopted for the 1PI ladder

diagrams.

In Fig. 4.35 we present the corresponding results for the self-energies. For

U = 1.0 one can see, that at the considered temperature one observes metal-
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lic behavior in all the approaches, except, perhaps, for the DF data in the

(π, 0) direction. We have verified, however, that even for this relatively small

value of U the nonlocal 1PI corrections, though smaller than the DΓA and

DF ones, eventually overcome the metallic behavior of the DMFT self-energy

at sufficiently small temperatures consistent with the lattice QMC study in

Ref. [228] and with the results from the self-consistent lattice theory pro-

posed in Ref. [203]. Such a low-temperature insulating behavior at U = 1.0

is clearly found in the numerical data for both 1PI and DΓA at β = 100.0,

shown in the right panels of Fig. 4.36. Note that ladder DF calculations

cannot be performed at such low temperatures and the contribution of 2nd-

order DF diagrams would not include long-range spatial correlations to open

a low-temperature gap at small values of U [123]. We emphasize that, in

this parameter regime, cluster extensions of DMFT would predict, instead,

a low-temperature metallic phase below a larger, critical value of U (e.g., of

about 1.5 according to the plaquette C-DMFT results of Ref. [229]). This con-

firms the necessity of including long-range spatial correlations beyond DMFT

in order to capture correctly the low-temperature insulating behavior of the

non-frustrated half-filled case down to very small values of the Hubbard in-

teraction U . From a more physical point of view, our diagrammatic 1PI calcu-

lations would suggest that, differently from the DMFT or cluster DMFT case,

the strong role played by long-range spin fluctuations makes quite hard, if

not impossible, a clear-cut definition of the Mott-Hubbard transition in two-

dimensions. Rather, a crossover between low-temperature insulating phases

driven by antiferromagnetic correlations, whose nature gradually changes

from Slater to Heisenberg [230–233], emerges from our analysis of the un-

frustrated particle-hole symmetric case. Such general considerations can

be also rather significant for realistic cases well beyond the model system

considered here. For instance, an intrinsically intermixed insulating regime

might be actually realized (see Refs. [112,234], but see also Ref. [235]) in re-

alistic situations of high-interest, as the correlated “Mott” antiferromagnetic

phase of the doped/undoped cuprates.



Chapter 5

Summary and Outlook

5.1 Summary

In this thesis we have addressed the important problem of the theoretical many-body descrip-

tion of electronic correlations in lattice systems. In real materials strong correlations arise

usually in compounds with partially filled d- or f -shells and are responsible for many fasci-

nating phenomena such as, e.g., the Mott metal-to-insulator transition [236], quasiparticle

renormalization effects [38,194,237,238] or anomalies (“kinks”) in the specific heat [239] and

in the optical spectra and sum-rules [99, 105, 110, 111]. All these effects can be sufficiently

well described by taking into account only local correlations, which can be accomplished

by means of DMFT. However, some of the arguably most fascinating phenomena in con-

densed matter physics, such as unconventional superconductivity [17], (weak) localization

effects [208, 210, 240–242] or (quantum) critical behavior [243, 244] originate from nonlocal

correlations. In this situation DMFT is insufficient due to its intrinsic mean-field nature

with respect to spatial degrees of freedom. Hence, extensions of DMFT, which are capable

of including nonlocal correlations, are required for an accurate qualitative and quantitative

description of the effects originating from nonlocal correlations. The main goal of this thesis

is, hence, to point out routes from DMFT and its non-perturbative description of local corre-

lations to more advanced many-body techniques capable of taking into account also nonlocal

correlation effects.

In this respect, chapter 1 gives a short introduction into the physics of correlated electron

systems and introduces the methods to treat them, which is the main scope of this thesis.

Furthermore, this chapter contains a survey over the main topics of the present thesis.

Chapter 2 provides for an introduction to the basic models for correlated electrons and

251
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the quantum field theoretical techniques to treat them. Specifically, we start by recalling

how the Hubbard model (2.22) can be deduced from the general solid state Hamiltonian

(1.1) restricting ourselves just to the most relevant degrees of freedom, i.e., the correlated

energy band(s) at the Fermi level, and taking into account just a local interaction between

electrons at the same lattice site. Nevertheless, the physics of this model is characterized by

both local and nonlocal correlation effects and can be –with good cause– considered as the

simplest model for correlated electrons on a lattice. Furthermore, we introduced the Anderson

impurity model (AIM) which describes just the local correlations between two electrons at

a single impurity site hybridized with a non-interacting bath. Let us mention that, though

the AIM has physical significance on its own, in the present thesis it mainly serves as a

(dynamical) mean-field representation of the Hubbard Hamiltonian. When applying quantum

field theory methods to these models the most relevant information is enclosed in the one-

and two-particle Green’s functions of the system. Their general properties and symmetry

relations are extensively discussed in the second part of chapter 2, providing –to the best

of our knowledge for the first time– a comprehensive and systematic presentation of this

matter. For an illustration of the typical structure of the most important one- and two-

particle Green’s functions, we discuss their explicit expressions for the Hubbard model and

the AIM at the end of chapter 2 for the two limiting cases of vanishing potential and kinetic

energy, respectively, i.e., for the non-interacting system and the atomic limit.

As for the treatment of the realistic situation of a finite bandwidth and interaction we have

to resort to approximations for calculating the Green’s functions of the Hubbard model. In

a parameter regime where the kinetic and the potential energy are of the same order of

magnitude non-perturbative approaches are required. Hence, in chapter 3 we introduce

the dynamical mean field theory [24]. This method replaces the actual lattice problem with

a self-consistent AIM, including in this way non-perturbatively all purely local correlation

effects. In order to demonstrate the predictive power of DMFT, in situations where these

local correlations are predominant even for real systems, we presented a DMFT study of the

temperature dependence of the optical conductivity and sum rule in two optimally doped

Bi-based high-temperature superconducting cuprates for temperatures much larger than the

critical temperature of the superconducting phase-transition (T ≫ Tc). Let us stress that the

optical conductivity reduces to just the product of two one-particle Green’s function. How-

ever, in general the inclusion of (local) frequency dependent vertex corrections beyond this

bare bubble contribution is crucial for an accurate numerical description of other response

functions, as it is demonstrated, e.g., for the frequency dependent magnetic susceptibility

of LaFeAsO in Ref. [120]. In fact, the scope of the present thesis goes well beyond the
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state-of-the-art DMFT analysis of one-particle Green’s functions. Specifically, in the second

part of chapter 3 we presented a comprehensive study of local two-particle DMFT Green’s

functions, i.e., generalized susceptibilities and vertex functions. They are crucial ingredi-

ents not only for calculating momentum-dependent response functions within the DMFT

formalism, as mentioned above, but they also serve as an input for (almost) all diagrammatic

extensions of DMFT, aiming at the inclusion of nonlocal correlations beyond the local ones

of DMFT. Besides a general discussion of the structure of the local two-particle objects in

terms of a comparison with perturbation theory, which provides very significant information

for improving the numerical treatment, we also explicitly analyzed the different types of di-

vergences occurring at all vertex levels (F , Γr and Λ). We found that, while the singularities

of the principal features (background and diagonal structures) of the vertices F and Γr are

governed by the corresponding divergence of the local magnetic susceptibility at the Mott

metal-to-insulator transition, a completely different low-frequency singular behavior can be

observed for Λ and Γr [71, 130]. For the latter, singularities occur for interaction values well

before the Mott transition, possibly indicating a precursor of the MIT at low temperatures.

They can be traced to large values of U and T and are found even in the atomic limit, where

analytical derivations have been given explicitly. However, a conclusive interpretation of

these low-frequency divergences of Γr and Λ is still missing, calling for further investigations

of this fascinating and unexpected observation. In the third part of chapter 3 we have also

presented a brief discussion of the corresponding attractive Hubbard model in terms of the

mapping onto its repulsive counterpart, which is relevant as an effective model of the BCS-BE

crossover [159–163, 245, 246].

In chapter 4 of this thesis, we include nonlocal correlations beyond DMFT in our calcu-

lations. As argued in the first section of this chapter these nonlocal correlations are cru-

cial for an accurate description of low-dimensional systems and systems in the vicinity of

second-order phase transitions. In this respect the focus of this thesis has been on so-called

diagrammatic extensions of DMFT which –in contrast to cluster extensions– are able to take

into account correlations at all length scales on equal footing. This is necessary, e.g., for

capturing the critical behavior of a system close to a second-order phase transition. After

a survey of the common features of all diagrammatic methods, we focus on the DΓA, the

formalism of which we present in more detail. First results for a simple benzene molecule

obtained by means of the full DΓA scheme demonstrate the applicability of this method for

describing nonlocal correlations. Since the full DΓA method, based on the self-consistent

solution of the parquet equations, is numerically very demanding, we also discuss a simpli-

fied scheme, coined ladder DΓA which we applied to the interesting problem of the critical
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behavior of the half-filled three dimensional Hubbard model close to the second-order phase

transition to the antiferromagnetic state. It was shown that DΓA improves on the numerical

value of the transitions temperature and corrects the mean-field like critical exponents of

DMFT. Remarkably, they were found to be (within the numerical precision) coinciding with

those of the three-dimensional Heisenberg model, as it can be expected for this universality

class. In addition, we also observed significant effects of nonlocal correlations on the spec-

tral quantities, where gaps open in parameter regimes predicted to be metallic by DMFT.

Eventually, in the last section of chapter 4, we presented a completely new approach based

on the functional integral formalism and the one-particle irreducible generating functional

of the Hubbard model, coined 1PI approach, which allows for a comparison of the existing

diagrammatic methods, i.e., DF and DΓA, within a unifying formalism. The corresponding

diagrammatic analysis and the numerical results obtained for the half-filled two-dimensional

Hubbard model on a square lattice indeed provide for a better understanding of the relation

between DF, DΓA and 1PI, which might trigger new developments in the field of diagram-

matic methods beyond DMFT. In this respect let us just mention the very recent attempts

to combine DMFT with functional renormalization group techniques (fRG) [125], where the

corrections to DMFT are computed through parquet-like diagrams generated via the fRG

flow of one specific parameter rather than by an explicit construction [147].

Let us emphasize that, despite the successful application of the methods for describing elec-

tronic correlations on all length scale for specific many body problems, which were discussed

in this thesis, a considerable number of important open questions remains to be addressed.

Hence, a brief outlook on still unsolved physical problems and recent methodological devel-

opments is given in the following, final section.

5.2 Outlook

The methods and the corresponding applications presented in this thesis are at the frontier

research of quantum many-body theory. Hence, it is difficult to make precise predictions on

which specific aspects will be more significant for future developments in this field. Never-

theless, we will try in the following final section to figure out some relevant future issues,

which are suggested by the results of this work.

Non-local interactions. In this thesis we were exclusively concerned with the Hubbard

model and the AIM, which exhibit a purely local interaction between the particles. As we

have seen, from such a purely local interaction both local and nonlocal correlations emerge.
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However, the real, “naked” interaction between the electrons in a crystal is given by the

Coulomb repulsion [see Eq. (1.1)], which is long-range in its nature. In many situations

the 1
r
tail (r = |r|) of this potential is of course well screened (leading to an exponentially

damped Yukawa-like interaction e−r/λ

r
), which can justify the assumption of a purely local

interaction as in the Hubbard model and the AIM, e.g., for the case of very localized orbitals

at the Fermi-level. In general, however, neglecting nonlocal interaction contributions might

represent a rather crude approximation for a given system as was shown recently, e.g., for the

case of adatoms on semiconductor surfaces [40,247]. In such a situation, one should evidently

supplement the Hubbard Hamiltonian with a nonlocal (e.g., nearest-neighbor) interaction

V (“extended Hubbard model”), which further provides the opportunity of observing new

physical phenomena, such as a tendency to a charge-ordered phase (instead of the spin-

ordered state induced by the purely local interaction). We also note that the effects of a

nonlocal interaction V can be translated formally into a dynamically screened local Coulomb

interaction U(ω), if one performs a downfolding of the nonlocal to a purely local interaction.

From a more technical point of view, we recall that for a theoretical description of this

extended Hubbard model [248–250], the DMFT limit of an infinite coordination number z

leads just to the static Hartree approximation for the nonlocal interaction V , if the proper

scaling V = V ∗

z
is adopted. However, if one is interested more in the physical consequences

of the nonlocal interaction rather than in a formally clean derivation in the limit of z → ∞,

a different scaling such as V = V ∗√
z
can be assumed. This leads to a divergent Hartree-

contribution, which has to be subtracted, but, at the same time, gives rise to a non-trivial

limit for this model, the so-called extended DMFT (EDMFT) approach. EDMFT can be

applied for studying the competition between local and nonlocal interactions at a model

level, allowing, e.g., for an understanding of satellite features in spectra due to plasmonic

excitations [251]. As for the description of realistic materials (E)DMFT has been recently

combined with the GW [252], an ab-inito method which treats the solid state problem (1.1)

on the Hartree-Fock level where, however, the full Coulomb interaction has been screened

by random phase approximation diagrams. An application of this combined method on

the above-mentioned systems of adatoms on a semiconductor surface yields encouraging

results [40], e.g., for the density of states, compared to experimental data.

Although the GW+DMFT approach [149,227,253–255] represents a conceptual improvement

for calculating the electronic structure of real materials with respect to LDA+DMFT [21,256],

which suffers from an intrinsically unsolvable double-counting problem, it still constitutes

a rather ad-hoc merging of two (in their respective field successful) approaches without a

unifying underlying principle. Hence, in the following, a new theory, which incorporates
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Figure 5.1: Fully irreducible vertex Λ for the ab initio version of DΓA: The lowest order
contribution of the local vertex of “standard” DΓA, i.e., the Hubbard interaction param-
eter U , is replaced by the full nonlocal Coulomb interaction V (which is represented here
as Vij , i.e., in real space).

both the nonlocal interactions of GW and the local correlations of DMFT but also goes

beyond the latter approaches by including nonlocal correlations, will be suggested.

DΓA for realistic materials. The basic idea of DΓA, as discussed in Sec. 4.2, is to

replace the fully irreducible vertex of the system by its local counterpart (see Fig. 4.7b)

obtained from a corresponding AIM (Λ = Λloc). From Λloc, in turn, one can obtain all

(momentum-dependent!) one- and two-particle Green’s function of the lattice system via the

self-consistent solution of the Parquet equations (see Sec. 4.2.2). According to the discussion

in Secs. 3.2.3 and 4.2 and to Fig. 4.7b the lowest order contribution to Λloc is represented by

the purely local Hubbard interaction U , if one considers the simplified Hubbard Hamiltonian

(2.22) as model for the actual compound. A natural idea, aiming at an application of DΓA to

real materials without being restricted to the case of a purely local interaction, is to replace

this lowest order contribution to Λloc by the corresponding lowest order contribution to Λ

of the real system, i.e., by the full Coulomb interaction (e.g., Vij on a given Wannier-basis

in real space). In practice, this means that the input of the Parquet solver will be changed

from Λloc of DΓA to the fully irreducible vertex shown in Fig. 5.1, i.e., Vij + Λloc − U , in

the so-called ab-initio DΓA [192]. Solving the parquet equations with this changed input,

which includes the full Coulomb interaction as lowest order term, and the bare dispersion of

our compound, reproduces all diagrams which are generated in GW, as well as the full set of

DMFT diagrams [192]. In addition, nonlocal correlation effects which are considered neither

in GW nor in DMFT are taken into account systematically.

New Physics accessible. The improved theoretical description of correlations might hold

the key for the understanding of fascinating phenomena such as quantum criticality, (weak)

localization or unconventional superconductivity. These physical problems are typically

treated in the weak-coupling regime with perturbative methods such as fluctuation ex-

change (FLEX) [44,257], weak-coupling perturbation theory, or renormalization group tech-
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niques [125, 196]. Ab initio DΓA, which has been introduced in the previous paragraph,

has the potential to provide for a qualitative and quantitative understanding of this striking

physical phenomena even for strongly correlated systems, where conventional perturbative

approaches are no longer applicable.

More precisely, a more sophisticated quantum many-body treatment of the solid state Hamil-

tonian (1.1), including nonlocal interactions and correlations, could be applied to several still

unsolved physical problems. In this respect, let us focus here on the physics, previously

mentioned, of quantum critical points (QCP) [176, 243, 258], i.e., critical points at zero tem-

perature (T = 0). There is a large bunch of experimental results [259, 260] reporting the

actual presence of QCPs in strongly correlated systems such as heavy fermion compounds.

Even the high-temperature superconductivity of the cuprates has been related from several

groups and in different perspective to a quantum critical point inside the superconducting

dome [261,262]. Currently, two theoretical approaches are applied to treat quantum critical-

ity: (i) In the Hertz-Millis-Moriya theory, a perturbative approach, critical fluctuations on

the time-axis are treated in the same way as the corresponding spatial fluctuations, leading

to an increase of the dimension of the system by one [263]. (ii) On the other hand, in the

local quantum criticality picture of Q. Si [264], a special role is assigned to temporal fluctua-

tions, rendering the situation similar to that described by DMFT. Ab initio DΓA, including

non-perturbatively both kind of fluctuations, could be used in the future to clarify whether

one of these scenarios is correct or a more complex interplay between the two is occurring in

a given material.





Appendix A

Symmetries

In this section the symmetry properties of the two-particle objects are reported for the

particle-particle (pp) notation. We start with the corresponding symmetry relations for the

generalized susceptibility:

Symmetry Relation in pp-notation Reference

Crossing

symmetry
χνν

′ω
pp,σσ′

− δσσ′χ
ν(ω−ν′)ω
0,pp = −χν(ω−ν′)ωpp,σσ′ + χνν

′ω
0,pp

Sec. 2.2.1.2, Eq. 2.37

Complex

conjugation (χνν
′ω

pp,σσ′)
∗ = χ

(−ν′)(−ν)(−ω)
pp,σ′σ

SU(2)
= χ

(−ν′)(−ν)(−ω)
pp,σσ′

Sec. 2.2.1.3, Eq. 2.39

SU(2)

symmetry

χνν
′ω

pp,σσ′ = χνν
′ω

pp,(−σ)(−σ′) = χνν
′ω

pp,σ′σ

χνν
′ω

pp,σσ = χνν
′ω

pp,σ(−σ) − χ
ν(ω−ν′)ω
pp,σ(−σ) + χνν

′ω
0,pp

Sec. 2.2.2.2, Eqs. 2.87,

2.89

Time reversal

symmetry χνν
′ω

pp,σσ′ = χν
′νω
pp,σ′σ

SU(2)
= χνν

′ω
pp,σσ′

Sec. 2.2.2.3, Eq. 2.95

Particle-hole

symmetry(
µ = U

2
only

)
(
χνν

′ω
pp,σσ′

)∗
= χνν

′ω
pp,σσ′

Sec. 2.2.2.5, Eqs.

2.108-2.110

SU(2)P

symmetry(
µ = U

2
only

) χνν
′ω

pp,σσ = χ
ν(ν−ω)(ν+ν′−ω)
pp,σ(−σ) − χ

ν(ν−ω)(ν−ν′)
pp,σ(−σ) + χνν

′ω
0,pp Sec. 2.2.2.6, Eq. 2.136

Table A.1: Summary of the symmetry relations for the susceptibilities in pp-notation.
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The corresponding symmetry relations for Fpp read:

Symmetry Relation in pp-notation Reference

Crossing

symmetry
F νν′ω
pp,σσ′

= −F ν(ω−ν′)ω
pp,σσ′

Sec. 2.2.1.2, Eq. 2.37

Complex

conjugation
(F νν′ω

pp,σσ′)
∗ = F

(−ν′)(−ν)(−ω)
pp,σ′σ = F

(−ν′)(−ν)(−ω)
pp,σσ′

Sec. 2.2.1.3, Eq. 2.39

SU(2)

symmetry

F νν′ω
pp,σσ′ = F νν′ω

pp,(−σ)(−σ′) = F νν′ω
pp,σ′σ

F νν′ω
pp,σσ = F νν′ω

pp,σ(−σ)+F
νν′ω
pp,σ(−σ) = F νν′ω

pp,σ(−σ)−F
ν(ω−ν′)ω
pp,σ(−σ)

Sec. 2.2.2.2, Eqs. 2.87,

2.89

Time reversal

symmetry
F νν′ω
pp,σσ′ = F ν′νω

pp,σ′σ = F ν′νω
pp,σσ′ Sec. 2.2.2.3, Eq. 2.95

Particle-hole

symmetry

(
F νν′ω
pp,σσ′

)∗
= F νν′ω

pp,σσ′

Sec. 2.2.2.5, Eqs.

2.108-2.110

SU(2)P

symmetry(
µ = U

2
only

) F νν′ω
pp,σσ = F

ν(ν−ω)(ν+ν′−ω)
pp,σ(−σ) − F

ν(ν−ω)(ν−ν′)
pp,σ(−σ) Sec. 2.2.2.6, Eq. 2.136

Table A.2: Summary of the symmetry relations for the vertex function F in pp-notation.
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Bethe-Salpeter equations

In this Appendix, we summarize the spin dependence of the three irreducible channels (i.e.,

ph, ph, and pp) and present the derivations of the corresponding Bethe-Salpeter equations

for the SU(2) symmetric case, partly following Ref. [44].

B.1 The longitudinal (=horizontal) channel ph

We start with the Bethe-Salpeter equations for the three different cases Γph,↑↑↑↑ = Γph,↑↑,

Γph,↑↑↓↓ = Γph,↑↓ and Γph,↑↓↓↑ = Γph,↑↓. The three other non-vanishing spin-combinations,

where all the spins are reversed, are equivalent due to SU(2)-symmetry. Diagrammatically,

the Bethe-Salpeter equations take the forms shown in Fig. B.1. Algebraically they read as:

F νν′ω
↑↑ = Γνν

′ω
ph,↑↑ +

1

β

∑

ν1σ1

Γνν1ωph,↑σ1G(ν1)G(ν1 + ω)F ν1ν′ω
σ1↑ (B.1a)

F νν′ω
↑↓ = Γνν

′ω
ph,↑↓ +

1

β

∑

ν1σ1

Γνν1ωph,↑σ1G(ν1)G(ν1 + ω)F ν1ν′ω
σ1↓ (B.1b)

F νν′ω
↑↓ = Γνν

′ω
ph,↑↓ +

1

β

∑

ν1

Γνν1ω
ph,↑↓G(ν1)G(ν1 + ω)F ν1ν′ω

↑↓ . (B.1c)

The plus sign in front of the second summand on the right hand side of these equations can

be easily verified by comparison with second order perturbation theory: Indeed, replacing,

e.g., both vertex functions Γph and F in Eq. (B.1a) by their lowest order contribution U

one obtains the second order diagram P1 shown in 3.10a which exhibits a plus sign [see Eq.

(3.17a)].
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=

ν ↑

(ν + ω)↑ (ν ′ + ω) ↑

ν ′ ↑

Γνν
′ω

ph,↑↑

ν ↑

(ν + ω) ↑ (ν ′ + ω) ↑

ν ′ ↑

+ Γ
νν1ω
ph,↑σ1

ν ↑

(ν + ω) ↑

F
ν1ν

′ω
σ1↑

(ν ′ + ω) ↑

ν ′ ↑
ν1σ1

(ν1 + ω)σ1

F νν
′ω↑↑

=

ν ↑

(ν + ω) ↑ (ν ′ + ω) ↓

ν ′ ↓

Γνν
′ω

ph,↑↓

ν ↑

(ν + ω) ↑ (ν ′ + ω) ↓

ν ′ ↓

+ Γ
νν1ω
ph,↑σ1

ν ↑

(ν + ω) ↑

F
ν1ν

′ω
σ1↓

(ν ′ + ω) ↓

ν ′ ↓ν1σ1

(ν1 + ω)σ1

F νν
′ω↑↓

=

ν ↑

(ν + ω) ↓ (ν ′ + ω) ↓

ν ′ ↑

Γνν
′ω

ph,↑↓

ν ↑

(ν + ω) ↓ (ν ′ + ω) ↓

ν ′ ↑

+ Γ
νν1ω
ph,↑↓

ν ↑

(ν + ω) ↓

F
ν1ν

′ω
↑↓

(ν ′ + ω) ↓

ν ′ ↑ν1 ↑

(ν1 + ω) ↓

F νν
′ω

↑↓

Figure B.1: Bethe-Salpeter equations in the longitudinal channel.

One can see that Eqs. (B.1a) and (B.1b) are coupled, while Eq. (B.1c) contains only Γνν
′ω

ph,σσ′
.

In any case, we will postpone the calculation of this vertex function to the transversal particle-

hole channel since Γph,σσ′ and Γph,σσ′ are connected via the crossing relation derived in Eq.

(2.165):

Γνν
′ω

ph,↑↓ = −Γ
ν(ν+ω)(ν′−ν)
ph,↑↓ . (B.2)

Considering only the coupled Eqs. (B.1a) and (B.1b) we find that, in the SU(2)-symmetric

case, we can decouple them analytically by considering their sum and their difference, re-

spectively:

F νν′ω
d(ensity) := F νν′ω

↑↑ + F νν′ω
↑↓ , (B.3a)

F νν′ω
m(agnetic) := F νν′ω

↑↑ − F νν′ω
↑↓ , (B.3b)

which correspond to Eqs. (2.167a) and (2.167b) for the Γ’s.
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Hence, we arrive at two decoupled equations for the density and magnetic channel:

F νν′ω
d = Γνν

′ω
d +

1

β

∑

ν1

Γνν1ωd G(ν1)G(ν1 + ω)F ν1ν′ω
d (B.4a)

F νν′ω
m = Γνν

′ω
m +

1

β

∑

ν1σ1

Γνν1ωm G(ν1)G(ν1 + ω)F ν1ν′ω
m . (B.4b)

For the derivation of theses equations from Eqs. (B.1a) and (B.1b) we used the SU(2)

symmetry, i.e.,Γ↑↑ = Γ↓↓ and Γ↑↓ = Γ↓↑ (and similar for the F ’s). We can solve Eqs. (B.4)

for the Γ’s by an inversion of the matrix (1+ 1
β
GGF )νν

′ω in the νν ′-space, i.e.,

Γνν
′ω

d,m =
∑

ν1

F νν1ω
d,m

[
(1+

1

β
GGFd,m)

−1
]ν1ν′ω

, (B.5)

where the quantity which is inverted can be written as χνν
′ω

d,m /χνν
′ω

0 according to the definition

in Eq. (2.160) and Fig. 2.8. The definition of χd and χm is analogue to Eqs. (2.167) for the

Γ’s and Eqs. (B.3) for the F ’s.

For the sake of completeness, we want to rewrite Eq. (B.5) into the form which was used for

extracting the Γ’s shown in this thesis. Combining the definition of the χ’s in Eq. (2.160)

with the Bethe-Salpeter equations for the F ’s [Eq. (B.4)] one finds the corresponding Bethe-

Salpeter equations for the χ’s:

χνν
′ω

d,m = χνν
′ω

0 − 1

β2

∑

ν1ν2

χνν1ω0 Γν1ν2ωd,m χν2ν
′ω

d,m . (B.6)

Solving these equations for Γνν
′ω

d and Γνν
′ω

m yields

Γνν
′ω

d,m = β2(χ−1
d,m − χ−1

0 )νν
′ω. (B.7)

B.2 The transverse (=vertical) channel ph

Diagrammatically, the Bethe-Salpeter equations for the three different spin-combinations are

shown in Fig. B.2. Algebraically these equations read as:
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=F νν
′ω↑↑

ν ↑

(ν + ω) ↑ (ν ′ + ω) ↑

ν ′ ↑

Γνν
′ω

ph,↑↑

ν ↑

(ν + ω) ↑ (ν ′ + ω) ↑

ν ′ ↑

−

Γ
νν′ω1
ph,↑σ1

ν ↑ ν ′ ↑

F ν̄ν̄ ′ω̄
σ1↑

(ν + ω) ↑ (ν ′ + ω) ↑

(ν ′ + ω1)σ1

(ν + ω1)σ1
=F νν

′ω↑↓

ν ↑

(ν + ω) ↑ (ν ′ + ω) ↓

ν ′ ↓

Γνν
′ω

ph,↑↓

ν ↑

(ν + ω) ↑ (ν ′ + ω) ↓

ν ′ ↓

−

Γ
νν′ω1
ph,↑↓

ν ↑ ν ′ ↓

F ν̄ν̄ ′ω̄
↑↓

(ν + ω) ↑ (ν ′ + ω) ↓

(ν ′ + ω1) ↓

(ν + ω1) ↑

=

ν ↑

(ν + ω) ↓ (ν ′ + ω) ↓

ν ′ ↑

Γνν
′ω

ph,↑↓

ν ↑

(ν + ω) ↓ (ν ′ + ω) ↓

ν ′ ↑

−

Γ
νν′ω1
ph,↑σ1

ν ↑ ν ′ ↑

F ν̄ν̄ ′ω̄
σ1↓

(ν + ω) ↓ (ν ′ + ω) ↓

(ν ′ + ω1)σ1

(ν + ω1)σ1
F νν

′ω
↑↓

Figure B.2: Bethe-Salpeter equations in the transverse channel with ν̄ = ν+ω1, ν̄
′ = ν ′+ω1,

ω̄ = ω − ω1.

F νν′ω
↑↑ = Γνν

′ω
ph,↑↑ −

1

β

∑

ω1σ1

Γνν
′ω1

ph,↑σ1
G(ν + ω1)G(ν

′ + ω1)F
(ν+ω1)(ν′+ω1)(ω−ω1)

σ1↑
(B.8a)

F νν′ω
↑↓ = Γνν

′ω
ph,↑↓ −

1

β

∑

ω1

Γνν
′ω1

ph,↑↓G(ν + ω1)G(ν
′ + ω1)F

(ν+ω1)(ν′+ω1)(ω−ω1)
↑↓ (B.8b)

F νν′ω
↑↓ = Γνν

′ω
ph,↑↓ −

1

β

∑

ω1σ1

Γνν
′ω1

ph,↑σ1
G(ν + ω1)G(ν

′ + ω1)F
(ν+ω1)(ν′+ω1)(ω−ω1)

σ1↓
. (B.8c)

As in the longitudinal channel, the minus sign in front of the second summand on the right

hand side of these equations can be inferred from a comparison with second order perturbation

theory [diagrams P2 and P4 in Fig. 3.10 as well as Eqs. (3.17b) and (3.18b)].

On can see that Eqs. (B.8a) and (B.8c) are coupled in the same way as it was the case for

Γph,↑↑ and Γph,↑↓ in the longitudinal (horizontal) channel [see Eqs. (B.1a) and (B.1b)]. This
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is not surprising since these functions are related to via the crossing symmetry relations, i.e.:

Γνν
′ω

ph,↑↑ = −Γ
ν(ν+ω)(ν′−ν)
ph,↑↑ , (B.9a)

Γνν
′ω

ph,↑↓ = −Γ
ν(ν+ω)(ν′−ν)
ph,↑↓ , (B.9b)

as it is reported for the full vertex functions F in Tab. 2.2 and for the Γ’s in Eqs. (2.165)

and (2.166). Therefore the only “new” (independent) quantity in the transverse (vertical)

channel is Γph,↑↓ [Eq. (B.8b)] which corresponds to Γph,↑↓ via the crossing relation Eq. (2.165).

Hence, in the following we will discuss only Eq. (B.8b) in more detail. First of all we want

to replace the sum over the bosonic Matsubara-frequency ω1 with the sum over a fermionic

Matsubara-frequency ν1 by means of the transformation ω1 = ν1 − ν, yielding:

F νν′ω
↑↓ = Γνν

′ω
ph,↑↓ −

1

β

∑

ν1

Γ
νν′(ν1−ν)
ph,↑↓ G(ν1)G(ν1 + ν ′ − ν)F

ν1(ν1+ν′−ν)(ω−ν1+ν)
↑↓ . (B.10)

In the next step we introduce the transformation ν → ν, ν ′ → ν+ω, and ω → ν ′−ν and make

use of the SU(2)-symmetry relation reported in Tab. 2.2, F
ν(ν+ω)(ν′−ν)
↑↓ = −(F νν′ω

↑↑ −F νν′ω
↑↓ ) =

−F νν′ω
m . Furthermore we define Γ̃νν

′ω = −Γ
ν(ν+ω)(ν′−ν)
ph,↑↓ . After these manipulations (and a

multiplication with −1) Eq. (B.10) reads as

F νν′ω
m = Γ̃νν

′ω +
1

β

∑

ν1

Γ̃νν1ωG(ν1)G(ν1 + ω)F ν1ν′ω
m . (B.11)

We observe that this is exactly the same equation as we already obtained for Γνν
′ω

m [Eq.

(B.4b)], which means that

Γ̃νν
′ω = Γνν

′ω
m , (B.12)

Together with the definition of Γ̃ this yields:

Γph,↑↓ = −Γν(ν+ω)(ν
′−ν)

m (B.13)

Hence, in the SU(2)-symmetric case, the transverse (vertical) channel does not provide any

“new” information, and Γm and Γd represent, in fact, the only two independent functions for

the two irreducible particle-hole channels.
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= Γνν
′ω

pp,↑↑

ν ↑

(ω − ν ′) ↑ (ω − ν) ↑

ν ′ ↑

(ω − ν ′) ↑ (ω − ν) ↑

F νν ′ω
pp,↑↑

ν ↑ ν ′ ↑

(ω − ν ′) ↑

Γν1ν
′ω

pp,↑↑

ν ′ ↑

−1
2

(ω − ν) ↑

F
ν(ω−ν1)ω
pp,↑↑

ν ↑

ν1 ↑
(ω − ν1) ↑

= Γνν
′ω

pp,↑↓

ν ↑

(ω − ν ′) ↑ (ω − ν) ↓

ν ′ ↓

(ω − ν ′) ↑ (ω − ν) ↓

F νν ′ω
pp,↑↓

ν ↑ ν ′ ↓

(ω − ν ′) ↑

Γν1ν
′ω

pp,σ1↑(−σ1)↓

ν ′ ↓

−1
2

(ω − ν) ↓

F
ν(ω−ν1)ω
pp,↑σ1↓(−σ1)

ν ↑

ν1σ1

(ω − ν1)(−σ1)

= Γνν
′ω

pp,↑↓

ν ↑

(ω − ν ′) ↓ (ω − ν) ↓

ν ′ ↑

(ω − ν ′) ↓ (ω − ν) ↓

F νν ′ω
pp,↑↓

ν ↑ ν ′ ↑

(ω − ν ′) ↓

Γν1ν
′ω

pp,σ1↓(−σ1)↑

ν ′ ↑

−1
2

(ω − ν) ↓

F
ν(ω−ν1)ω
pp,↑σ1↓(−σ1)

ν ↑

ν1σ1

(ω − ν1)(−σ1)

Figure B.3: Bethe-Salpeter equations in the particle-particle channel.

B.3 The particle-particle channel

The particle-particle channel is completely independent from the two particle-hole channels

and fulfills a crossing relation on its own [Eq. 2.166)]. Diagrammatically, the Bethe-Salpeter

equations for the three possible spin-combinations are depicted in Fig. B.3. Algebraically
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these equations read as follows:

F νν′ω
pp,↑↑ = Γνν

′ω
pp,↑↑ −

1

2

1

β

∑

ν1

Γν1ν
′ω

pp,↑↑G(ν1)G(ω − ν1)F
ν(ω−ν1)ω
pp,↑↑ (B.14a)

F νν′ω
pp,↑↓ = Γνν

′ω
pp,↑↓ −

1

2

1

β

∑

ν1σ1

Γν1ν
′ω

pp,σ1↑(−σ1)↓G(ν1)G(ω − ν1)F
ν(ω−ν1)ω
pp,↑σ1↓(−σ1) (B.14b)

F νν′ω
pp,↑↓ = Γνν

′ω
pp,↑↓ −

1

2

1

β

∑

ν1σ1

Γν1ν
′ω

pp,σ1↓(−σ1)↑G(ν1)G(ω − ν1)F
ν(ω−ν1)ω
pp,↑σ1↓(−σ1), (B.14c)

where the minus sign in front of the second summand on the right hand side of the Bethe-

Salpeter equations can be again inferred from comparison with second-order perturbation

theory.

The factor 1
2
appearing in Eqs. (B.14) prevents a double counting of diagrams which other-

wise would be present in the particle-particle channel due to the indistinguishability of the

particles. Fig. B.4 illustrates this state of affairs for the respective lowest order reducible

contribution to Eqs. (B.14a) and (B.14b): (i) In Fig. B.4a the two topologically distinct

lowest order diagrams for Γνν
′ω

pp,↑↑ and F
ν(ω−ν′)ω
pp,↑↑ , respectively, are shown. According to the

Bethe-Salpeter equation one can connect, e.g., the first and the second diagrams of each box

via two Green’s functions in order to generate reducible contributions as shown in Fig. B.4b.

However, these diagrams are topologically equivalent as one can easily verify by identifying

the red and the blue lines and shifting the summation variable as ν1 → (ω − ν1) in one of

the diagrams. Hence, the Bethe-Salpeter construction of reducible contributions leads to a

double counting which has to be corrected by the factor 1
2
introduced in Eqs. (B.14a). A

deeper understanding of this issue can be obtained by considering the crossing symmetry for

Γpp,↑↑ and F νν′ω
pp,↑↑ as given in Tab. A.2: Exchanging the two outgoing or incoming lines in AΓ

(AF ) in Fig. B.4a one obtains the diagram BΓ (BF ) which is consistent with the fact that

AΓ (AF ) belongs to Φph,↑↑ and BΓ (BF ) is part of Φph,↑↑. Since Φph,↑↑ and Φph,↑↑ can be

translated one into the other via crossing relations, they give rise to equivalent contributions

in the Bethe-Salpeter equation, and, hence, to a double counting of diagrams. (ii) Similarly,

for the Bethe-Salpeter equation (B.14b) the contributions corresponding to σ1 =↑ and σ1 =↓
lead to equivalent diagrams due to the crossing symmetry. This is illustrated for the lowest

order irreducible diagrams (which is the bare U in the ↑↓ case) in Fig. B.4c. There it is shown

that the summation over σ1 counts the emerging lowest order reducible (“bubble”) diagram

on the right hand side of this figure twice. The argumentation is completely analogous for
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G

G

U ∈ Γpp,↑↓ −U ∈ Γpp,↑↓

σ1 =↑ σ1 =↓

U ∈ Fpp,↑↓ −U ∈ Fpp,↑↓

σ1 =↑ σ1 =↓
∑

σ1

2× U 2

G

G

,

Γν1ν
′ω

pp,↑↑

BΓ
(ω−ν1)↑

,

F
ν(ω−ν1)ω
pp,↑↑

AF

(ω−ν ′)↑

ν1↑

(ω−ν1)↑

ν ′↑

AΓ

(ω−ν ′)↑

ν ′↑

(ω−ν1)↑

ν ↑

(ω−ν)↑

ν1↑

ν ↑

(ω−ν)↑

ν1↑

(ω−ν1)↑

AΓ GG AF

G

G

(ω−ν ′)↑

ν1↑ ν ′↑

(ω−ν1)↑

(ω−ν ′)↑

ν ′↑

ν ↑ ν1↑

(ω−ν)↑
BF

ν ↑

(ω−ν)↑

(ω−ν1)↑

ν1↑

BΓ GG BF

a)

b)

c)

Figure B.4: a) Topologically distinct lowest order contributions to Γνν
′ω

pp,↑↑ and F νν′ω
pp,↑↑ in Eq.

(B.14a) and Fig. B.3 (first line), respectively. The two diagrams shown in b), which are
both constructed by means of the Bethe-Salpeter equation, are topologically equivalent. c)
Diagrammatic representation of the lowest order diagrams for the Bethe-Salpeter equation
(B.14b). The same bubble diagram is generated twice due to the internal spin sum over
σ1.

the Bethe-Salpeter equation (B.14c).

In the particle-particle channel, the ↑↑-vertex is completely independent from the two other

spin-combinations, while Γpp,↑↓ and Γpp,↑↓ are not. In fact, they are coupled in the same way

as Γph,↑↑ and Γph,↑↓, and, hence, it is possible to decouple them by introducing the linear
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combinations:

F νν′ω
s(inglet) = F νν′ω

pp,↑↓ − F νν′ω
pp,↑↓ (B.15a)

F νν′ω
t(riplet) = F νν′ω

pp,↑↓ + F νν′ω
pp,↑↓, (B.15b)

which correspond to Eqs. (2.167c) and (2.167d) for the Γ’s and are completely analogous to

the definition of the density and magnetic channel in Eqs. (B.3). By adding and subtracting

Eqs. (B.14b) and (B.14c), one gets the Bethe-Salpeter equations for the singlet and the

triplet channels:

F νν′ω
s = Γνν

′ω
s +

1

2

1

β

∑

ν1σ1

Γν1ν
′ω1

s G(ν1)G(ω − ν1)F
ν(ω−ν1)ω
s (B.16a)

F νν′ω
t = Γνν

′ω
t +

1

2

1

β

∑

ν1σ1

Γν1ν
′ω1

t G(ν1)G(ω − ν1)F
ν(ω−ν1)ω
t . (B.16b)

Applying the crossing relations in pp-notation, given in Tab. A.2, to F
ν(ω−ν1)ω
s and F

ν(ω−ν1)ω
t

yields:

F ν(ω−ν′)ω
s = F νν′ω

s , F
ν(ω−ν′)ω
t = −F νν′ω

t . (B.17)

Inserting these crossing-relations into Eqs. (B.16) yields again the standard matrix multiplication-

form of the Bethe-Salpeter equations. Furthermore, combining these equations with the def-

inition of the susceptibility in Eq. (2.160) yields the corresponding Bethe-Salpeter equations

for the generalized susceptibilities χ which read as

χνν
′ω

s = −χνν′ω0,pp − 1

2

1

β2

∑

ν1ν2

(χνν1ω0,pp − χνν1ωs )Γν1ν2ωt χν2ν
′ω

0,pp , (B.18a)

χνν
′ω

t = χνν
′ω

0,pp − 1

2

1

β2

∑

ν1ν2

(χνν1ω0,pp + χνν1ωt )Γν1ν2ωt χν2ν
′ω

0,pp , (B.18b)

where χs and χt are defined analogously to the F ’s in Eqs. (B.15b) and (B.15a).

Solving Eqs. (B.18) for Γνν
′ω

s and Γνν
′ω

t yields

Γνν
′ω

s = β2
[
4(χs − χ0,pp)

−1 + 2χ−1
0,pp

]νν′ω

Γνν
′ω

t = β2
[
4(χt + χ0,pp)

−1 − 2χ−1
0,pp

]νν′ω
.

(B.19)
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Considering, furthermore, the SU(2) symmetry relation

F νν′ω
t = F νν′ω

pp,↑↑, (B.20)

as derived in Eq. (2.169b), implies that [in the SU(2) symmetric case] there are only two

independent irreducible particle-particle vertices, namely, Γs and Γt.

However, according to Eqs. (2.168) and the discussion below, it should be sufficient to

consider Γpp,↑↓ only, since Γs and Γt are just its symmetric and anti-symmetric part with

respect to the fermionic frequency arguments. There is indeed a possibility to decouple the

↑↓ from the ↑↓ Bethe-Salpeter equation without resorting to the singlet- and the triplet-

channel: One can express the functions Γpp,↑↓ and Fpp,↑↓ appearing in Eq. (B.14b) for σ1 =↓
in terms of Γpp,↑↓ and Fpp,↑↓, respectively, by means of the crossing-relations

Γνν
′ω

pp,↑↓ = −Γ
(ω−ν)ν′ω
pp,↑↓ , F νν′ω

pp,↑↓ = −F ν(ω−ν′)ω
pp,↑↓ . (B.21)

Hence, we can eliminate Γpp,↑↓ from Eq. (B.14b) and obtain an equation containing Γpp,↑↓

only:

F νν′ω
pp,↑↓ = Γνν

′ω
pp,↑↓ −

1

β

∑

ν1

Γν1ν
′ω

pp,↑↓G(ν1)G(ω − ν1)F
ν(ω−ν1)ω
pp,↑↓ . (B.22)

Note that the factor 1
2
and the spin summation have disappeared in this equation. This is

completely consistent with the discussion below Eqs. (B.14): The factor 1
2
was introduced

in Eq. (B.14b) since the diagrams for σ1 =↑, generated by Γpp,↑↓ and Fpp,↑↓, are completely

identical to those for σ1 =↓, generated by Γpp,↑↓ and Fpp,↑↓ which leads to a double counting of

diagrams (see Fig. B.4c). Fixing σ1 =↑ in this equation (omitting the spin-summation) avoids

this double-counting, and, hence, the factor 1
2
has to be removed in that case. Physically,

this result can be understood in the following way: The factor 1
2
was introduced in the

particle-particle channel to avoid double-counting of diagrams since the two particles are

indistinguishable. This clearly holds for the ↑↑-case. However, in the ↑↓-case the spin can be

fixed (i.e., no spin-summation in the Bethe-Salpeter equation) and hence, the two particles

are now distinguishable by their spin.

Finally we write Eq. (B.22) in terms of the corresponding susceptibility χνν
′ω

pp,↑↓

χνν
′ω

pp,↑↓ = − 1

β2

∑

ν1ν2

(χνν1ω0,pp − χ
ν(ω−ν1)ω
pp,↑↓ )Γν1ν2ωpp,↑↓ χ

ν2ν′ω
0,pp . (B.23)

In contrast to Eqs. (B.18) this equation does not have the form of a matrix-multiplication
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since it contains χ
ν(ω−ν1)ω
pp,↑↓ instead χνν1ωpp,↑↓ inside the sum. Nevertheless, it is possible to rewrite

it by means of the substitution ν ′→ω−ν ′ and the transformation ν2→ω−ν2 of the summation

variable ν2. Considering that χ
(ω−ν2)(ω−ν′)ω
0,pp =χν2ν

′ω
0,pp one gets

χ
ν(ω−ν′)ω
pp,↑↓ = − 1

β2

∑

ν1ν2

(χνν1ω0,pp − χ
ν(ω−ν1)ω
pp,↑↓ )Γ

ν1(ω−ν2)ω
pp,↑↓ χν2ν

′ω
0,pp . (B.24)

With the definition χ̃νν
′ω

pp,↑↓=χ
ν(ω−ν′)ω
pp,↑↓ (and the same for the Γ’s) one gets the Bethe-Salpeter

equation (B.24) in the usual form of a matrix multiplication

χ̃νν
′ω

pp,↑↓ = − 1

β2

∑

ν1ν2

(χνν1ω0,pp − χ̃νν1ωpp,↑↓)Γ̃
ν1ν2ω
pp,↑↓ χ

ν2ν′ω
0,pp , (B.25)

It can be solved for Γ̃ yielding

Γ̃νν
′ω

pp,↑↓ = β2
[
(χ̃pp,↑↓ − χ0,pp)

−1 + χ−1
0,pp

]νν′ω
. (B.26)

Let us stress again, that from Γνν
′ω

pp,↑↓ all the other vertex functions irreducible in the particle-

particle channel, i.e., Γνν
′ω

s and Γνν
′ω

t = Γνν
′ω

pp,↑↑, can be obtained via the crossing relation Eq.

(2.168).





Appendix C

Parquet equations

In this section we give the explicit form of the parquet Eq. (2.162) taking into account

their frequency dependence in terms of the density, magnetic, singlet and triplet channel

introduced in Sec. 2.2.4.2. In order to simplify the notation we use the definition of the

reducible vertex Φ

Φνν
′ω

r = F νν′ω
r − Γνν

′ω
r , r = d,m, s, t. (C.1)

Hence, the parquet equations read

Λνν
′ω

d = Γνν
′ω

d +
1

2
Φ
ν(ν+ω)(ν′−ν)
d +

3

2
Φν(ν+ω)(ν

′−ν)
m −

− 1

2
Φνν

′(ν+ν′+ω)
s − 3

2
Φ
νν′(ν+ν′+ω)
t (C.2)

Λνν
′ω

m = Γνν
′ω

m +
1

2
Φ
ν(ν+ω)(ν′−ν)
d − 1

2
Φν(ν+ω)(ν

′−ν)
m +

+
1

2
Φνν

′(ν+ν′+ω)
s − 1

2
Φ
νν′(ν+ν′+ω)
t (C.3)

Λνν
′ω

s = Γνν
′ω

s − 1

2
Φ
νν′(ω−ν−ν′)
d +

3

2
Φνν

′(ω−ν−ν′)
m −

− 1

2
Φ
ν(ω−ν′)(ν′−ν)
d +

3

2
Φν(ω−ν

′)(ν′−ν)
m (C.4)

Λνν
′ω

t = Γνν
′ω

t − 1

2
Φ
νν′(ω−ν−ν′)
d − 1

2
Φνν

′(ω−ν−ν′)
m +

+
1

2
Φ
ν(ω−ν′)(ν′−ν)
d +

1

2
Φν(ω−ν

′)(ν′−ν)
m . (C.5)

For the Λs and Λt particle-particle notation was adopted. Since at the level of Λ no depen-

dency on an irreducible channel (ph, ph or pp) is present Λs and Λt can be expressed in terms

of the Λd and Λm

Λνν
′ω

s =
1

2
Λ
νν(ω−ν−ν′)
d − 3

2
Λνν

′(ω−ν−ν′)
m

Λνν
′ω

t =
1

2
Λ
νν(ω−ν−ν′)
d +

1

2
Λνν

′(ω−ν−ν′)
m .

(C.6)
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Appendix D

Covariance Splitting Formula

In this appendix we will present a slightly different way of deriving the decoupling of local

and non-local degrees of freedom, as performed in Eqs. (4.48) and (4.47), which is based on

the covariance splitting formula [219] rather than on a Hubbard-Stratonovich transformation,

adopted in Eq. (4.42). This might improve the understanding of the physical meaning of

the integral transformations presented in Sec. 4.4, Eq. (4.42). We start from the general

formulation of the covariance splitting formula for Grassmann variables:

detA

∫
D[c+, c] e−c

+
i A

−1
ij cjF [c+, c] = detB

∫
D[c̃+, c̃] e−c̃

+
i B

−1
ij c̃j×

× detC

∫
D[c+, c] e−(c+i −c̃+i )C−1

ij (cj−c̃j)F [c+, c],

(D.1)

where A, B and C are complex N × N matrices which obey the relation A = B + C. The

indices i and j can be interpreted as multi-indices containing all degrees of freedom of the

system, e.g., τ/ν,Ri/k, σ, . . .. F [c+, c] is an arbitrary function of the Grassmann-fields c+

and c which, in our case, will contain, amongst others, the non-Gaussian part of the action.

Assuming that B contains the non-local and C the local degrees of freedom of our system,

Eq. (D.1) represents exactly the splitting of these two types of variables. In order to make

a connection with our previous considerations concerning the generating functional Z[η+, η]

for the Hubbard model and the AIM [see Eqs. (4.33), (4.34) and (4.41)] we identify the

matrices A, B and C with the corresponding bare Green’s functions of the two models under

275
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consideration in the following way:

A = G0(ν,k) =
1

iν − εk + µ
, (D.2a)

B = G0(ν,k)− G0(ν) = −G0(ν,k)G0(ν) [∆(ν)− εk] , (D.2b)

C = G0(ν) =
1

iν −∆(ν) + µ
. (D.2c)

Furthermore, the function F [c+, c] contains the interactions term U as well as the fermionic

source fields η+ and η and reads as:

F [c+, c] = exp

{
−
∑

i

∫ β

0

dτ
[
Uc+i↑(τ)ci↑(τ)c

+
i↓(τ)ci↓(τ)− c+iσ(τ)ηiσ(τ)− η+iσ(τ)ciσ(τ)

]
}
.

(D.3)

It is now straightforward to show that, inserting Eqs. (D.2) and (D.3) into the splitting

formula, Eq. (D.1), yields exactly the representation of the generating functional Z[η+, η]

for the Hubbard model as given in Eq. (4.48), if we choose bσ(ν) =
1√

βG0(ν)
there1. Hence,

the representation of the generating functional for the Green’s functions of the Hubbard

model, as given in Eq. (4.48), can be also interpreted in terms of the covariation splitting

formula applied to the separation of local and non-local degrees of freedom in the action of

the Hubbard model. While the Hubbard-Stratonovich transformation, Eq. (4.42) allows for

a more flexible decoupling of the non-local degrees of freedom from a mathematical point

of view [bσ(ν) is an arbitrary function in that case], the covariance splitting formula, Eq.

(D.1), where bσ(ν) =
[√
βG0(ν)

]−1
, might constitute a physically more transparent way of

separating local and non-local degrees of freedom in the Hubbard model.

1Note that one has to transfer the prefactor detA from the left-hand side of Eq. (D.1) to the right-hand
side, yielding a total factor det(A−1BC) =

∏
ν,k,σ β[G0(ν)]

2 [∆(ν)− εk] there. This exactly coincides with

the prefactor in Eq. (4.48) when setting bσ(ν)=
1√

βG0(ν)
.



Appendix E

Functional derivatives of ΓAIM

In this appendix we report the first and second functional derivatives of ΓAIM[φ
+, φ] with

respect to the Grassmann fields φ+ and φ in real and momentum space, starting from the

explicit expression for ΓAIM in Eq. (4.70). In real space one has:

δΓAIM[φ
+
i , φi]

δφiσ(ν)
= − 1

β
[Gloc(ν)]

−1 φ+
iσ(ν)+

+
1

β3

∑

ν1ω,σ1

(
1− 1

2
δσσ1

)
F ν1νω
loc,σσ1

φ+
iσ(ν + ω)φ+

iσ1
(ν1)φiσ1(ν1 + ω), (E.1a)

δΓAIM[φ
+
i , φi]

δφ+
iσ(ν)

=
1

β
[Gloc(ν)]

−1 φiσ(ν)+

− 1

β3

∑

ν1ω,σ1

(
1− 1

2
δσσ1

)
F νν1ω
loc,σσ1

φiσ(ν + ω)φ+
iσ1

(ν1 + ω)φiσ1(ν1), (E.1b)

for the first derivatives of ΓAIM and

δ2ΓAIM

δφiσ′(ν ′)δφiσ(ν)
=

1

β3

∑

ω

(
1− 1

2
δσσ′

)
F

(ν′−ω)νω
loc,σσ′ φ+

iσ(ν + ω)φ+
iσ′(ν

′ − ω), (E.2a)

δ2ΓAIM

δφ+
iσ′(ν

′)δφiσ(ν)
= − 1

β
[Gloc(ν)]

−1 δνν′δσσ′+

+
1

β3
δσσ′

∑

ω,σ1

(
1− 1

2
δσσ1

)
F

(ν+ω)ν(ν′−ν)
loc,σσ1

φ+
iσ1

(ν + ω)φiσ1(ν
′ + ω)+

− 1

β3

∑

ω

(
1− 1

2
δσσ′

)
F νν′ω
loc,σσ′φ

+
iσ(ν + ω)φiσ′(ν

′ + ω) (E.2b)

δ2ΓAIM

δφiσ′(ν ′)δφ
+
iσ(ν)

=
1

β
[Gloc(ν)]

−1 δνν′δσσ′+

− 1

β3
δσσ′

∑

ω,σ1

(
1− 1

2
δσσ1

)
F
ν(ν+ω)(ν′−ν)
loc,σσ1

φ+
iσ1

(ν ′ + ω)φiσ1(ν + ω)+

+
1

β3

∑

ω

(
1− 1

2
δσσ′

)
F νν′ω
loc,σσ′φ

+
iσ′(ν

′ + ω)φiσ(ν + ω) (E.2c)

δ2ΓAIM

δφ+
iσ′(ν

′)δφ+
iσ(ν)

=
1

β3

∑

ω

(
1− 1

2
δσσ′

)
F
ν(ν′−ω)ω
loc,σσ′ φiσ(ν + ω)φiσ′(ν

′ − ω), (E.2d)

for the second derivatives of ΓAIM.

For the corresponding relations in momentum space we adopt the four-vector notation intro-
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duced in Sec. 4.3.1, which yields:

δΓAIM[φ
+, φ]

δφkσ
= − 1

β
[Gloc(ν)]

−1 φ+
kσ+

+
1

β3

∑

k1q,σ1

(
1− 1

2
δσσ1

)
F ν1νω
loc,σσ1

φ+
(k+q)σφ

+
k1σ1

φ(k1+q)σ1 , (E.3a)

δΓAIM[φ
+, φ]

δφ+
kσ

=
1

β
[Gloc(ν)]

−1 φkσ+

− 1

β3

∑

k1q,σ1

(
1− 1

2
δσσ1

)
F νν1ω
loc,σσ1

φ(k+q)σφ
+
(k1+q)σ1

φk1σ1 , (E.3b)

for the first derivatives of ΓAIM and

δ2ΓAIM

δφk′σ′δφkσ
=

1

β3

∑

q

(
1− 1

2
δσσ′

)
F

(ν′−ω)νω
loc,σσ′ φ+

(k+q)σφ
+
(k′−q)σ′ , (E.4a)

δ2ΓAIM

δφ+
k′σ′δφkσ

= − 1

β
[Gloc(ν)]

−1 δνν′δσσ′+

+
1

β3
δσσ′

∑

q,σ1

(
1− 1

2
δσσ1

)
F

(ν+ω)ν(ν′−ν)
loc,σσ1

φ+
(k+q)σ1

φ(k′+q)σ1+

− 1

β3

∑

q

(
1− 1

2
δσσ′

)
F νν′ω
loc,σσ′φ

+
(k+q)σφ(k′+q)σ′ (E.4b)

δ2ΓAIM

δφk′σ′δφ
+
kσ

=
1

β
[Gloc(ν)]

−1 δνν′δσσ′+

− 1

β3
δσσ′

∑

ω,σ1

(
1− 1

2
δσσ1

)
F
ν(ν+ω)(ν′−ν)
loc,σσ1

φ+
(k′+q)σ1

φ(k+q)σ1+

+
1

β3

∑

ω

(
1− 1

2
δσσ′

)
F νν′ω
loc,σσ′φ

+
(k′+q)σ′φ(k+q)σ (E.4c)

δ2ΓAIM

δφ+
k′σ′δφ

+
kσ

= +
1

β3

∑

q

(
1− 1

2
δσσ′

)
F
ν(ν′−ω)ω
loc,σσ′ φ(k+q)σφ(k′−q)σ′ , (E.4d)

for the second derivatives of ΓAIM.



Appendix F

Functional determinant of ΓAIM

In this appendix we provide an explicit expression for the matrix D[φ+
i , φi] [Eq. (4.84)], which

is part of the Jacobian M [φ+, φ] [Eq. (4.74)] of the transformation of integral variables from

ĉ+/ĉ to φ+/φ in Eq. (4.73). Furthermore, we evaluate the trace of ln[1+D] by performing

an expansion of this expression up to the fourth order in φ+
i and φi. To this end we use the

results for the second functional derivatives of ΓAIM with respect to φ+
i and φi which are given

in appendix E. For the sake of a better readability we introduce the following definition:

F̂ νν′ω
σσ′ =

(
1− 1

2
δσσ′

)
F νν′ω
loc,σσ′ , (F.1)

and write the frequency arguments of φ+
i and φi as superscripts. Hence, D[φ+

i , φi] reads (in

blockform) as:

D[φi, φ
+
i ] =

1

β2
Gloc(ν)×

×
∑

ω




F̂ νν′ω
σσ′ φ

+,(ν+ω)
iσ φ

(ν′+ω)
iσ′ +

F̂
ν(ν′−ω)ω
σσ′ φ

+,(ν′−ω)
iσ φ

+,(ν+ω)
iσ′−δσσ′

∑
σ1
F̂
ν(ν+ω)(ν′−ν)
σσ1 φ

+,(ν+ω)
iσ1

φ
(ν′+ω)
iσ1

F̂
ν(ν′−ω)ω
σσ′ φ

(ν+ω)
iσ φ

(ν′−ω)
iσ′

F̂ νν′ω
σσ′ φ

+,(ν′+ω)
iσ′ φ

(ν+ω)
iσ +

−δσσ′
∑

σ1
F̂
ν(ν+ω)(ν′−ν)
σσ1 φ

+,(ν′+ω)
iσ1

φiσ1(ν + ω)



,

(F.2)

where SU(2) and time-reversal symmetry relations, given in Tab. (2.2), were used. Note

that each of the four blocks in Eq. (F.2) is a matrix with respect to the frequency- and

spin-arguments, i.e., the indices of the four sub-matrices are the combined indices (νσ) and
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(ν ′σ′).

In order to to evaluate tr ln
(
1+D[φ+

i , φi]
)
, as required, e.g., in Eq. (4.87), we expand the

logarithm with respect to D:

ln (1+D) = D − 1

2
D2 +

1

3
D3 + . . .+ (−1)n+1 1

n
Dn + . . . . (F.3)

Now we are in a position to calculate tr ln
(
1+D[φ+

i , φi]
)
by computing the trace of the

single terms Dn in the expansion of ln
(
1+D[φ+

i , φi]
)
in Eq. (F.3). However, as for the

functionals WAIM in Eqs. (4.53) and (4.57) as well as ΓAIM in Eq. (4.70) we restrict ourselves

to terms up to the fourth order in the fields φ+
i and φi which correspond to the contributions

D and D2 in Eq. (F.3). The corresponding result for the first order term reads as:

trD = 2
1

β

∑

ν,σ

[
1

β

∑

ω

Gloc(ν + ω)F̂ ννω
σσ − 1

β

∑

ω,σ′

Gloc(ν + ω)F̂
ν(ν+ω)0
σσ′

]
φ+
iσ(ν)φiσ(ν), (F.4)

where SU(2)-, crossing-, and time-reversal-symmetry have been used for rendering the ex-

pression on the right hand side as simple as possible. The trace of the contribution, which is

of second order in D, i.e., trD2, is much more complicated and yields:

1

2
trD2 =

1

β3

∑

νν′ω

∑

σσ′

[(
1

β

∑

ν1,σ1

F̂ νν1ω
σσ1 Gloc(ν1)Gloc(ν1 + ω)F̂ ν1ν′ω

σ1σ

)
+

+

(
1

β

∑

ν1

F̂ νν1ω
σσ Gloc(ν1)Gloc(ν1 + ω)F̂ ν1ν′ω

σσ′

)
+

+

(
1

β

∑

ν1

F̂ νν1ω
σ′σ Gloc(ν1)Gloc(ν1 + ω)F̂ ν1ν′ω

σσ

)
+

−
(
1

β

∑

ν1

F̂
νν′)(ν1−ν)
σσ′ Gloc(ν1)Gloc(ν1 + ν ′ − ν)F̂

ν1(ν1+ν′−ν)(ω+ν−ν1)
σ′σ

)
+

+

(
1

β

∑

ν1

F̂ ν(ν+ν′+ω−ν1)(ν1−ν)
σσ1 Gloc(ν1)Gloc(ν + ν ′ + ω − ν1)F̂

ν1ν′(ω+ν−ν1)
σ′σ

)]
×

× φ+
iσ(ν)φiσ(ν + ω)φ+

iσ(ν
′ + ω)φiσ(ν

′), (F.5)

where F̂ is defined in Eq. (F.1).
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de Physique, 6, 661 (1907).

[74] E. Ising, Beitrag zur Theorie des Ferromagnetismus, Zeitschrift für Physik, 31, 253

(1925).



BIBLIOGRAPHY 287

[75] L. Landau, Theory of phase transformations. I, Zh. Eksp. Teor. Fiz., 7, 19 (1937).

[76] L. Landau, Theory of phase transformations, II, Zh. Eksp. Teor. Fiz., 7, 627 (1937).

[77] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford

University Press (1971).

[78] L. D. Landau and E. M. Lifshitz, Statistical Physics Part 1, Elsevier Ltd. (1980).

[79] P. G. J. van Dongen, Extended Hubbard model at weak coupling, Phys. Rev. B, 50,

14016 (1994).

[80] P. G. J. van Dongen, Extended Hubbard model at strong coupling, Phys. Rev. B, 49,

7904 (1994).

[81] A. Georges and G. Kotliar, Hubbard model in infinite dimensions, Phys. Rev. B, 45,

6479 (1992).
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[165] M. Greiner and S. Fölling, Condensed-matter physics: Optical lattices, Nature, 453,

736 (2008).

[166] A. Privitera, M. Capone, and C. Castellani, Finite-density corrections to the unitary

Fermi gas: A lattice perspective from dynamical mean-field theory, Phys. Rev. B, 81,

014523 (2010).

[167] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and

H. Hosono, Iron-Based Layered Superconducter: LaOFeP, J. Am. Chem. Soc., 128,

10012 (2006).

[168] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-Based Layered Super-

conductor La[O1−xFx]FeAs (x = 0.05− 0.12) with Tc = 26K, J. Am. Chem. Soc., 130,

3296 (2008).

[169] A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3

heterointerface, Nature, 427, 423 (2004).

[170] A. Ohtomo and H. Y. Hwang, Corrigendum: A high-mobility electron gas at the

LaAlO3/SrTiO3 heterointerface, Nature, 441, 120 (2006).



BIBLIOGRAPHY 295

[171] N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter,
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