uB

Die approbierte Originalversion dieser Diplom-/
MMastararbeit ist in der Hauptbibliothek der Tech-
nischen Universitat Wien aufgestellt und zuganglich.
http://www.ub.tuwien.ac.at

E Ui

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

FAKULTAT
FUR INFORMATIK
Faculty of Informatics

http://www.ub.tuwien.ac.at/eng

Evaluation of a novel approach
for requirements engineering

An empirical study on laser engraving machines

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering and Internet Computing
eingereicht von

Gernot Rumpold
Matrikelnummer 0728159

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: Ass.-Prof. Mag. Michael FILZMOSER, PhD
Mitwirkung: Dipl. -Ing. Siegfried SHARMA

Wien, 27.01.2014

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Evaluation of a novel approach
for requirements engineering

An empirical study on laser engraving machines

MASTER’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering and Internet Computing
by

Gernot Rumpold
Registration Number 0728159

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ass.-Prof. Mag. Michael FILZMOSER, PhD
Assistance: Dipl. -Ing. Siegfried SHARMA

Vienna, 27.01.2014

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at

Erklarung zur Verfassung der Arbeit

Gernot Rumpold
Garbergasse 12, 1060 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstéindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit -
einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

Acknowledgements

I would like to express my appreciation to my advisors Ass.-Prof. Mag. Michael Filzmoser,
PhD and DI Siegfried Sharma. Thank you for your guidance throughout the whole process
and your feedback and insights. Special thanks go to Siegfried Sharma sacrificing his free time
for supervision and feedback even when he had left Vienna University of Technology to study
abroad.

My gratitude also goes to the research team of the Ge:MMasS project for allowing me to use
their empirical data for my work. It was also a great expirience to participate in project meetings
of a research project in the very final phase and it provided me valuable insights to a researchers
way of working.

I also want to thank my employer rubicon IT GmbH, especially my colleagues and team
leads for providing me the flexibility that was neccessary to finish my thesis and also for their
feedback and the valuable discussions.

A final thanks goes to all the people that enriched my opinions and ideas and motivated me
by various discussions and reviews of this thesis - writing this thesis would have beeen half the
fun without these dicussions.

iii

Abstract

In the field of product design and development requirements engineering gained more and more
attention over the last decade in various disciplines. During the last years the importance of
direct input of users in the design process was recognized which lead to user centered design
approaches. On the other hand product implementation and requirements management require
structured approaches to handle requirement specifications over the whole product lifecycle.
The way a user interacts with a product is individually and differs for each person. Nevertheless
it is a knwon practice to classify users in user-groups. By nowadays common approaches for re-
quirements engineering, the individual needs of user-groups are not handeled adequately which
leads to discrimination of subsets of users.

The matter of this work is to show, that differences in the demands that several user-groups
make on a product exist. Based on this hypothesis it becomes neccessary to define a require-
ments engineering process that is capable of handling different requirements from several user-
groups to avoid discrimination. Based on an empirical study which was conducted as part of
the Ge:MMas project, it is shown that the assumption of different requirements among gender-
groups exist. Furthermore a process to handle requirements of differnet groups of users is de-
scribed and evaluated based on the data of the empirical study.

The results show, that existing approaches for requirements engineering differ among tech-

incal disciplines, ranging from quite unstructured approaches in the field of agile development to
strictly structured approaches like functional analysis in the field of construction. The proposed
approach, called function-requirements-elevation, combines elements from both methods. It ap-
plies principles that are stated by User Centered Design (UCD) by allowing user to directly state
their demands and collecting them in a semi-structured way. The semi-structured requirements
of multiple user-groups are transformed into a sound and structured requirements specification
that contains the consolidated requirements of all user-groups.
The evaluation of the process based on data gathered during the empirical study of Ge:MMaS
shows that the approach can be applied in practice. Furthermore it is shown that differences
between the requirements of user-groups classified by gender exists. This substantiates the need
of a requirements engineering process that is capable of handling this diverse requirements.

Kurzfassung

Im Gebiet Produktdesign und Produktentwicklung hat der Bereich der Anforderungsanalyse
in vielen Disziplinen in den letzten Jahrzehnten an Bedeutung gewonnen. In den letzten Jahren
wurde auch die Wichtigkeit der Einbeziehung von Anwendern erkannt was zu anwenderzentrier-
ten Designprozessen fiihrte. Andererseits erfordern Produktimplementierung und Anforderungs-
management strukturierte Ansitze um Anforderungsspezifikationen iiber den gesamten Lebens-
zyklus der Produkte zu handhaben.

Die Art und Weise in der ein Anwender mit einem Produkt interagiert ist individuell verschieden,
nichtsdestotrotz konnen Benutzer in Benutzergruppen klassifiziert werden. Giingige Ansitze der
Anforderungsanalyse sind nicht imstande die individuellen Bediirfnisse verschiedener Benutzer-
gruppen adequat abzubilden, was zu Diskriminierungen von Anwendern fiihrt.

Gegenstand dieser Arbeit ist es zu zeigen, dass Unterschiede zwischen den Anspriichen ver-
schiedener Benutzergruppen existieren. Ausgehend von dieser Hypothese wird es notwendig
einen Prozess zur Anforderungsanalyse zu definieren der imstande ist unterschiedliche Bediirf-
nisse mehrerer Benutzergruppen zu handhaben. Basierend auf einer empirischen Studie die im
Zuge des Forschungsprojektes Ge:MMaS durgefiihrt wurde wird gezeigt, dass die Annahme un-
terschiedlicher Anforderungen durch verschiedene Benutzergruppen zutrifft. Weiters wird ein
Prozess zum Umgang mit diesen heterogenen Anforderungen vorgeschlagen und anhand der
Daten aus der empirischen Studie evaluiert.

Die Ergebnisse zeigen, dass die existierenden Ansitze zur Anforderungsanalyse sich zwi-

schen verschiedenen technischen Disziplinen unterscheiden. Sie reichen von weitgehend un-
strukturierten Vorgehensweisen in der agilen Entwicklung bis hin zu streng strukturierten Me-
thoden wie Funktionenanalyse im Bereich der Konstruktion. Der vorgeschlagene Ansatz, ge-
nannt Funktionen-Anforderungs-Erhebung, kombiniert Elemente beider Methoden. Es werden
Prinzipien aus dem Bereich des anwenderzentrierten Designs (UCD) angewandt die Anwendern
die Moglichkeit bieten ihre Anforderungen direkt in den Prozess einfliessen zu lassen. Diese
werden in einer semi-strukturierten Darstellung gesammelt. Die semi-strukturierten Anforde-
rungen verschiedener Benutzergruppen werden in eine vollstdndige und strukturierte Anforde-
rungsspezifikation iibergefiihrt, welche die konsolidierten Anforderungen aller Benutzergruppen
enthlt.
Die Evaluierung des Prozesses basierend auf Daten der empirischen Studie aus Ge:MMaS zeigt,
dass der vorgeschlagene Prozess in der Praxis anwendbar ist. Weiters wird gezeigt, dass Unter-
schiede zwischen den Anfoderungen von Benutzergruppen die nach Geschlecht klassifiziert sind
existieren. Dies untermauert den Bedarf an einem Prozess der die adequate Handhabung dieser
unterschiedlichen Anforderungen ermoglicht.

vii

Contents

2

User Centered Design|

[2.1 Definition and Origination|
[2.2 Principles of User Centered Design|.

2.4 Process Integration| o oL
2.5 User Groups|. o o o i e

3.1 Definitionl e

Function Analysis|

A []

4.2 Terminology|.
4.3 Fieldof apphication| oo
4.4 Methods of functional analysis|
|4.5 Functional analysis in practice]

5

Integrated Approach|

W NN = -

25
25
28
31
33
35
41

51
51
53
54
56
61
64

65

iX

5.2 Combination of techniques|
[5.3 Definition of User Groups|
5.4 Gathering of Function-Requirements|
[5.5 Proritization of Requirements|o 0 Lo
5.6 Aligning abstraction levels| oo 0 o000
[5.7 Categorization of requirements|
[5.8 Consolidating Requirements among user groups|
15.9 Building a Function Family Tree|
[5.10 Productre-design|
[5.11 Comparison to existing approaches|

[II_Evaluation|

|6 Empirical study|

......................................
[6.2 Definition of user-groups| Lo
|6.3 Gathering structured Function-Requirements|.
|6.4 Consolidating user-groups|

[Z__Conclusion|

grapnyl

|A° Comparison of user-groups|

79

81
81
83
83
&9
93
99

105
107

115

CHAPTER

Introduction

1.1 Motivation

The efficiency of today’s machines as well as software systems is mainly affected by the design
of their human-machine-interfaces (HMIs). The quality of the HMI defines the way the user
interacts with the system as well as the set of of all available features that is used by the machine
operator. Due to the increasing complexity of today’s systems and the amount of features avail-
able, the complexity of user interfaces (Uls) is increased as well. This leads to an amendable
usage of those systems as some of the available features are either not known or simply not used
by the systems consumers.
The specific subset of available features, that is employed individually differs. One of the many
factors that influence the set of features that a user explores is the user’s gender. The term gender
in this case refers to the social gender, which is defined by the social background and personality
of a person, and is not limited to their sex [54]. The differences between those gender groups
and their requirements lead to significant inequities in the working ergonomics of individuals
and therefore their productivity.
To allow a more efficient utilization of today’s machines as well as software systems, it is neces-
sary to design systems in a way, that provide a maximum of usability for all the various groups of
users. As a precondition for system design with respect to the various gender groups among the
systems consumers, the influence of the users gender to their requirements needs to be analyzed.
Over a products life-cycle the users expectations to the product change continuously. This
leads to the fact, that requirements need to be managed over the whole product life-cycle and
the product needs to be adapted over time to match the mutated requirements. In case of the
gap between the current systems functionality and the current user needs becomes too big it can
be a valuable course of action to redefine the requirements list completely instead of gradually
adapting to new situations by small changes to the system. This situation is likely to occur for
products that have a long life-cycle or as a consequence of dramatic changes of the environment
in which the product operates. One of those dramatic changes to products environments has
emerged over the last years when gender aware product design gained popularity.

This facts raise the need for a process of requirements re-engineering which allows for creat-
ing a new set of requirements to match the current situation of all affected user groups, although
taking into account the current state of the product and the information that is already available
from preceding requirements management activities.

1.2 Problem Statement

Based on an empirical study conducted as part of the Ge:MMaS Elresearch project on users
of laser engraving machines by Trotec GmbH, an Austrian manufacturer, the gender specific
requirements are assumed to be a crucial factor for improving the efficiency of the production
process.
As a part of this project the relevant user groups of the systems have been identified as female
users, male users and managers. Based on this distinction the individual requirements for each
group have been determined in a qualitative manner in terms of workshops and interviews.
Building on this qualitative data a process for re-engineering the human-machine-interface
(HMI) is to be developed, which takes is capable of handling different requirements from multi-
ple user-groups although providing a sound and structured representation that serves a basis for
product implementation. The resulting list of requirements should serve as a basis for develop-
ing a guideline to define the importance of various product components and the HMI of the laser
engraving machines to enable the design of a new product line.

1.3 Method

For the definition of a novel requirements engineering approach a literature analysis is performed
first. Current methodologies of requirements engineering in various disciplines are examined,
where a focus is put on user centered approaches for requirements gathering as well as structured
representation of requirements catalogs.

Based in this literature evaluation novel process for requirements engineering is described in
enough detail to allow for a practical implementation of the proposed approach. To prove the
validity and practical relevance of this approach, the qualitative data gathered in user workshops
during the Ge:MMaS project is used. The described process is executed on this data which leads
to a structured catalog of requirements that covers the needs of all the defined user groups and
serves as a basis for subsequent product implementation or improvement.

'Project-title: Genderspezifische Anforderungen fiir Entwicklung neuer Maschinen unter Beriicksichtigung der
Mensch Maschine Schnittstelle
Supported by Osterreichische Forschungsférderungsgesellschaft (FFG)
Projectnumber: 826182

2

1.4 Structure

The reminder of the work is structured in two main parts, where the first one is about theoretical
analysis and the second one covers the empirical study and practical evaluation of the developed
approach. Considering the theoretical analysis a first chapter examines User Centered Design
by defining its most important principles and motivation to apply these techniques. Handling of
user-groups and integration of user centered approaches to larger processes is discussed as well.
The following chapter covers the discipline of Requirements Engineering and states its impor-
tance for product development. Key factors like team constellation are examined and nowadays
most common techniques are analyzed. The third chapter of literature research covers function
analysis which, in contrast to user centered design, is a very structured approach for handling
requirements. Based on its history and the definition of terminology current fields of application
and methods for practical application are described in detail.

Based on the three mentioned chapters of related work a novel approach of requirements engi-
neering is developed which combines user centered techniques with the structuring approaches
from function analysis. The whole approach takes into account the findings about current re-
quirements engineering techniques as described in the previous chapters.

The second part aims at proving the practical applicability of the developed approach for
requirements engineering. To do so, each of the defined steps is executed on data gathered in
the context of the Ge:MMaS project. The findings an experiences of each phase when applied
to real world data are discussed and if necessary, the process will be adapted partly. Finally the
results evolving from this empirical study are used to provide a basis for product implementation
and to compare the requirements of the various groups. This will one the one hand show, that
considering the requirements of various user-groups separately is reasonable and on the other
hand that the proposed approach is capable of handling this different requirements.

In a final discussion the findings of the empirical study as well as the practical applicability
of the proposed approach are evaluated.

Part 1

Theory

CHAPTER

User Centered Design

Each product that is created to be operated by a human being requires some kind of Human Ma-
chine Interface (HMI). Obviously most kind of products are designed to interact with humans
in some way, although the type of operator ranges from specially trained personnel to inexperi-
enced end users. Due to this fact, the design of an adequate HMI is crucial for most machines.
There are several methodologies for designing HMIs where some of them are mainly based on
technical requirements and others that are focusing on the needs of the products users. One of
those user oriented approaches, that gained wide acceptance over the last years is the principle
of User Centered Design (UCD).

User Centered Design is a broad term which is used to describe design approaches that enforce
participation of the products target group in the process of HMI development. In UCD users are
seen as development partners and not only as customers of the product to be designed. This is
the base of creating products that are easy to use and support the users intuitive workflow and
handling of the product, which leads to increased efficiency and user satisfaction.

2.1 Definition and Origination

The evolvement of UCD in 1980s can be seen as the fourth wave of rational need driven design
[39]. Therefore UCD was developed by criticism of previous design approaches. According to
Keinonen, there are 3 preceding important schools of design techniques.

Bauhaus Design The design methodology at this time was mainly focusing on fype-forms,
which were meant to be ideal solutions for parts of products or challenges that would
fit the needs of all users ideally. Those kind of template solutions were defined based on
rational needs like mass manufacturing and wide applicability. Due to this, ’soft-facts’
like design and variation of style became unnecessary. To achieve this goal, Bauhaus es-
tablished a form of language including the ’correct’ shapes [84]. Summing up it can be
said, that Bauhaus was more focusing on good and pure design over the user’s reality and

7

individual preferences. Nevertheless, this movement put the relation between a product’s
purpose and form into focus at that time [39].

The science of the artificial During 1960s research focused on techniques on non-coincidental
design from the methodological perspective of design, which was referred to as The sci-
ence of the artificial [[70]. The field of design became accepted as a field of science in this
decade, applying approaches of science, technology and rationalism.

Design for the real world The 3rd wave of rational driven design criticized the previous lack
of social responsibility of design. The main message was on focusing real world problems
over sophisticated and inflexible methodologies as described in [84]]. At this time barrier-
free design and taking into account all types of users when designing a product became
popular. Furthermore environmental sustainability and focusing on the user’s need over
artificial created wants came to the fore.

The next consequence of this eras of design was User Centered Design in 1980s. In contrast
to previous waves, UCD was born from industry’s needs and focused on transforming complex
techniques that originate from professional fields for real world applicability and laypersons.
The movement of UCD applied research results from the fields of cognitive science and psy-
chology to model the human-machine interaction in quasi-scientific settings. [39]

The term User Centered Design originated in the 1980s in the research laboratory of the
cognitive psychologist Donald Norman at the university of California [3]] [60]. Norman iden-
tified three conceptual models of a product, which are the design model, the user’s model and
the system image. The design model is the abstraction that the designer has in mind, while the
user’s model is what users develop to explain how they would like the product to be like. In
the best case those models are equivalent. Both models are mapped to the system image, which
describes how the concrete product behaves in terms of its physical appearance, responses, its
operation as well as manuals and instructions [58].

In conservative product design, the designer develops a design model based on his under-

standing of the products usage and maps this model to a concrete product implementation. This
design model is mainly driven by technical constraints and results that need to be reached using
the product, at the same time it lacks mapping of users workflows and consideration of the envi-
ronment in which the product is used.
Based on this implementation, the user has to find a way to map the system image that was
implemented by the designer based on this design model to his user’s model. In case the design
model and the user’s model are very similar this mapping is easy for the user, but every mapping
done by the designer that is not intuitive from the users perspective causes usability issues.

Since the 1980s the idea of UCD got widely adopted in various domains of product design
and development. Several specific techniques evolved from the basic principles and different
understandings of User Centered Design where developed. Today, User Centered Design is used
in every field of product design, although it is often referred to by different terms like Usability
engineering, User Interaction Design, Human Machine Interface Design and others. Since its

8

origination a lot of research has been done in the field of UCD and the basic methodology
was further operationalised and optimized by others in different domains of development [82].
Nevertheless, surveys among companies from across several industrial domains revealed that
several of the ideas that evolved from research are not effective to be applied in practice [83].
As a modernized definition of the term UCD to be used in the questionnaire of a survey, User
Centered Design was described as follows:

,UCD is herein considered, in a broad sense, the practice of the following princi-
ples, the active involvement of users for a clear understanding of user and task re-
quirements, iterative design and evaluation, and a multi-disciplinary approach.* [83]]

This definition is a good description of UCD as it was seen at the very beginning of the 21st
century. During the last decade UCD has undergone further evolvement, especially in the field
of ICT. It can be seen as the base of the large field of Interface and Interaction Design and
caused the development of several techniques for Usability Testing. Furthermore numerous
methodologies for product design with comprehensive participation of users evolved, which are
united in the field of Participatory Design.

Nowadays, User Centered Design is defined by several standards e.g. [36]]. This standard
refers to UCD using the more general term Human Centered Design and gives the following
definition:

Approach for the design and development of systems, which aims to make inter-
active systems more usable, by focusing on the use of the system and applying
knowledge and techniques from the fields of ergonomics and fitness for use. E] [36]

2.2 Principles of User Centered Design

User Centered Design became widely used after the publication of [[60], which was published by
Norman and the psychologist Stephen Draper in 1986. Norman continued research in the field
of User Centered Design and published [58]] in 1988. The book was reissued in 2002 and is still
one of the central publications in the field of User Interaction Design and Usability. It had in the
past and still has remarkable impact to the practical application of UCD as it states methods and
techniques how the basics of the scientific method of User Centered Design can be applied in
real world projects. The book [59] offers four basic principles regarding user-friendly design:

Make it easy to determine what actions are possible at any moment
A designer has to make sure that the user is able to figure out what to do at any time.
Recognizing possible actions should be possible without further instructions, labels or
training. Each further explanation that is done should cause the user to react like ,,Of
course” or ,,Yes, [see.”. If it becomes hard for the user to remember those explanations
and actions the design has failed.

'Translated from german: Herangehensweise bei der Gestaltung und Entwicklung von Systemen, die darauf
abzielt, interaktive Systeme gebrauchstauglicher zu machen, indem sie sich auf die Verwendung des Systems konzen-
triert und Kenntnisse und Techniken aus den Bereichen der Arbeitswissenschaft/Ergonomie und der Gebrauch-
stauglichkeit anwendet

Make things visible
Making things visible includes the conceptual model of the system as well as alternative
actions and the results of actions.
The overall concept of the product or at least the part of it that is essential for the user in
a specific situation should be intuitive for the user. This means e.g. that the users knows
which point of his workflow he is currently at and to be able to imagine what the next
steps will be like without seeing them.

Make it easy to evaluate the current state of the system
The user should have the possibility to know about the systems state at any time and
to forecast what will happen next. If the user is surprised by the systems behavior in a
negative way, this goal is not met.

Follow natural mappings

Natural mappings should be followed between intentions and the required actions; be-
tween actions and the resulting effect; and between the information that is visible and the
interpretation of the system state

The designer should implement the system in way, that allows the user to find a mapping
from his personal abstract model of the system to the real system image easily. This means
workflows and mappings of states of the system should be done in a way that is related to
the environment which the product is used in. This mapping should be intuitive from the
users perspective to allow him to understand the product based on his present knowledge
of their working domain.

Adhering to those principles basically puts the user in the center of product design. Instead
of designing a product based on his own opinions (based on the design model), the designer
focuses on facilitating the task for the user, which means to understand the users perspective
(the user’s model). The main goal is to ensure that the user can utilize the product as intended
with a minimum of learning effort. Although, it is not enough to tell designers to build products
in a way that allows intuitive usage and to see things from the user’s perspective. For that reason,
Norman suggested the following 7 guidelines for designers [59]:

Use both knowledge in the world an knowledge in the head
By building conceptual models, write manuals that are easily understood and that are
written before the design is implemented.

Simplify the structure of tasks
Make sure not to overload the short-term memory or the long-term memory of the user. On
average the user is able to remember five things at a time. Make sure the task is consistent
and provide mental aids for easy retrieval of information from long-term memory. Make
sure the user has control over the task.

Bridge the gulfs of Execution and Evaluation
The user should be able to figure out the use of an object by seeing the right buttons or
devices for executing an operation.

10

Get the mappings right
One way to make things understandable is to use graphics.

Exploit the power of constraints
This includes natural as well as artificial constraints in order to give the user the feeling
that there is one thing to do.

Design for error
Plan for any possible error that can be made; this way the user will be allowed the option
of recovery from any possible error made.

When all else fails, standardize
Create and international standard if something cannot be designed without arbitrary map-

pings.

Those principles where stated in similar form later on by the computer scientist Ben Shneider-
man as eight golden rules and they were used by the engineer Jacob Nielsen to produce heuristics
for usability engineering [3|].

Although this principles are the base of the large field of User Centered Design, the need
to be adapted tor nowadays needs as the whole User Centered Design changed over the last
decades. Today’s important cornerstones are stated in several standards are are widely similar to
those principles defined by Norman in 1980s, although they enrich these by better applicability
to today’s development processes and refer to specialized sub-disciplines that have not been
established when Norman stated his basic principles. A modern definition of key principles
for Human Centered Design has been developed by ISO. Thus, independent from the operative
process, the distribution of responsibilities and relevant roles, a human centered design should
follow the following conventions: [36]

Design is based on broad understanding of users, tasks and working environments
The design of products, systems and services should consider the people that will use
them as well as further stakeholders that will be affected directly or indirectly. This makes
it necessary to identify all the relevant stakeholders, otherwise this is one of the main
reasons for a products failure. The fitness of use depends on the context in which it is
used, which needs to be taken into account when identifying the stakeholders.

Users are involved during design and development
Involvement of users during system design is a valuable source of information about the
later usage of the system. Participation of users can be achieved directly via letting them
participate in during the design phase or indirectly by gathering information from them.
In any case, the involved persons should cover the full spectrum of later users. An active
participation of users in a products design raises the later acceptance of the product and
engagement of users.

Continuous refinement of design solutions based on user-centric evaluation
Feedback of users is a essential source of information in Human Centered Design and

11

the improvements that are performed based on this feedback drastically reduce the risk of
designing a system that does not fir the users needs or organizational requirements. This
kind of assessment allows to test interim design solutions in real world scenarios and leads
to step wise improvements. In the case of final approval user feedback can ensure that the
requirements have been met.

The process is iterative

An adequate solution for an interactive system can usually not be reached without itera-
tions. Therefore iterations should be used to eliminate uncertainties step by step during
system design. The complexity of human-machine interfaces causes the problem, that it is
impossible to define a sound and detailed description of the system at the beginning of the
design phase. Many requirements of various stakeholders arise during the development
process when it becomes easier for users to articulate their needs in respect to possible
design variations.

During design, the whole User Experience is considered

User Experience arises out of presentation, functionality, interactive behavior and support-
ing resources of an interactive system. Furthermore previous experiences, approaches,
habits and personality of the user influence the User Experience. Therefore it is not suf-
ficient to design a product in a way that it is most easy to use, but personal goals of the
user have to be considered as well as job satisfaction and deletion of monotony. To align
design towards User Experience several aspects need to be considered, e.g. organizational
impacts, training, long-term use, packaging and others.

Interdisciplinary skills and perspectives are represented in the design team

Design-teams do not have to be very large, although they need to be staffed interdisci-
plinary. Important areas of competence therefore are e.g. ergonomics, accessibility, user-
research, domain knowledge and business analysis. Depending on the specific situation
and project, there may be further useful or necessary experts to be present in the team.
In general, projects profit from the additional creativity and the collective base of knowl-
edge that arises from interdisciplinary teams. Furthermore it deepens the understanding
of specialists for the limitations and technical demands of different domains.

Summing up it can be said that the basic values of User Centered Design as it was initially

described by Norman in 1980s are still valid and reach upon today’s definition and understand-
ing of this specific field of product design. Nevertheless several adaptions have been that are
necessary to integrate the practices of User Centered Design into nowadays process models and
development environments. Furthermore some practices that emerged as important for success-
ful design have lead to independent fields of proficiency and research, e.g. Usability Testing and
practices for continuous evaluation and user involvement like participatory design and iterative
development processes.

12

Usability Testing

Usability Testing summarizes several techniques and methodologies to gain information about
how users utilize a product, their satisfaction while using the product, ergonomic aspects of
usage behaviors as well as accessibility of products. Not only direct feedback from users is con-
ducted in form of questionnaires and interviews, but also analysis of their behavior while using
the product can provide insights in needs and possible improvements that the users are not aware
of knowingly. Research on Usability Testing provided various ways of generating insights about
the ways products are used and revealing undetected user needs and room for improvement by
focusing on user needs, relying on empirical measurement and employing iterative design [3]].
Historically, usability tests have been carried out in laboratories under the control and inspection
of experts in user-interface design and testing. The methods used often required extensive tech-
nical equipment and complicated setups, where in many cases the designers observed the testers
unnoticed [3|]. This lead to the fact, that usability tests where hardly implemented in practical
projects and people relied on generalized findings and guidelines that have been developed as a
result of those scientific studies.

Nowadays, Usability Testing plays a central role in User Centered Design [3]], as it allows de-
signers to improve the user interfaces of a product iteratively, assuming that there are techniques
that allow for testing product design with users in an easy and low-cost manner. Several tech-
niques to do so have been developed over the last years, not only because of the wide adoption
of UCD. Experience and investigation on customer satisfaction showed, that once the stakehold-
ers have been identified and their needs have been evaluated, designers can develop alternative
design solutions that users can evaluate during the process of product design and implementa-
tion [3]]. The field of approaches ranges from simple paper prototypes [[72]] over so called wizard
of oz approaches to complete process models like rapid prototyping [[13]] and usability tests in
professional environments. To ensure continuous user satisfaction and product improvement,
evaluation has to continue even after the product is released, e.g. in terms of interviews and
focus group discussions [40] [3]].

Overall Usability Testing is a self-contained field of scientific research to identify usability
patterns and develop new techniques of usability testing. Nevertheless it is an essential part of
User Centered Design and is nowadays widely applied in practice as it offers the possibility of
ensuring to meet the users requirements.

2.3 Motivation

The goal of each product designer is to create a product that makes the user feel good while
using it. Products that satisfy users are more sustainable in the market and therefore increase
better revenues for the product vendor. In several areas like retail market, customers are willing
to to pay a higher amount for well designed products and systems [36]. Beside that economic
reasoning, products that are convenient to use, increase the efficiency and productivity of users in
several ways. Obviously, products that fit into the user’s intuitive workflow require less learning
efforts and help to speed up or ease the tasks that have to be fulfilled by the user. Furthermore,
products that cause positive moods for their users can have motivational effects on them. This

13

means, if a user is satisfied by a product, because it is easy to operate and help him in fulfilling
his task, he may draw intrinsic motivation from that, which positively affects the user’s overall
productivity .

For satisfying a user it is crucial for products to be usable in an intuitive way that fits established
workflows. Products need to integrate into the environmental established workflow that the
operator is used to or, if it introduces new workflows, integrate into the workflow as the user
would imagine it intuitively. If a product causes the user to change his way of fulfilling tasks
or his operational procedure due to constraints caused by the product, it will not satisfy the
user and fail to generate a positive working atmosphere. Therefore, the concrete benefit of User
Centered Design is that it allows for creating products that integrate smoothly into everyday life
an working routines. This means that humans get supported by those products without the need
of adapting to it - it simply eases daily life without any necessary investment for getting this
easement.

From an economic point of view the benefits of applying User Centered Design are not the
obvious as they are hard to measure. There are several soft facts as it is important to understand
the needs for potential new and innovative products. Doing so is one of the central function
of marketing research as such an understanding is clearly an essential input to the development
process of new products [[78]]. Beside that, Kohne et. al. stated several further economical driven
benefits of User Centered Design as well as ways to measure them in a quantitative manner,
which are divided in producers benefits and customer’s benefits in [42]].

The motivation for users and their organization to participate in User Centered Design and De-
velopment of a product therefore is to improve operational efficiency of the product. Although
participation in product development is likely to cause additional expenses on the short hand,
this effort pays back later on. A reduced number of errors and overall operation time increases
the operational efficiency of the user’s organization. The cost of operation time is a crucial factor
as it includes the number of people working with the product and their working hours, as well as
unit price. Therefore this part of benefits that increases operational efficiency can be measured
as quantitative data [42].

Benefits for the development organization are driven by numerous factors, where a substantial of
the is reduced development cost. This reduction is hard to measure directly, because comparing
the cost of suing UCD and not using it is usually impossible on the same project. To make this
benefits visible, developers may be asked to estimate the reduction of cost by using UCD in
terms of development time required to implement a product of the same quality without accord-
ing to principles of UCD. This estimations and real project costs can be compared quantitatively
afterward.

A further often mentioned advantage is the improved quality of the product as usability is im-
proved by executing UCD. Usability metrics are effectiveness, efficiency and satisfaction, which
can be shown in user test experiments in terms of operation time and number of errors. This is
especially interesting to measure, if a previously implemented product has been redesign using
UCD.

Finally UCD leads to increased sales volume and profits, which is the most attractive property
of UCD for managers. The investment in UCD as well as the amount of orders or sales volume
can be shown as quantitative data for an organization. Although, this data can be misleading as

14

there are several external factors that can increase sales volume, trends show that applying UCD
techniques increases sales volume and profits [42].

In a real world study UCD methods like observation were used to find problems of the
end-user’s perspective. UCD professionals proposed a new concept about the customer’s facil-
ities and system based on those insights, which lead to receiving an order due to its potential
to increase the customer’s business value. After implementation the product built using UCD
techniques replaced a competitors system at the customer’s site and order amount was written as
quantitative beside quantitative benefits in terms of customer’s comments in which they recog-
nize the concept made by UCD activities. On the quantitative side, the development cost could
be reduced by the cost that 10 people worked in 2-3 months, which was furthermore strongly felt
by the developers. Additionally, for one application the time required for one user to send and
organize e-mails within the designed application was reduced by about 8 seconds. For the cus-
tomer, this makes increased operational efficiency of 800 hours a year. Details on the concrete
project situation as well as numbers are stated in [42].

Consequences

If customers are able to utilize products without additional support, this decreases the cost for
customer support and consultancy as well as it widens the field of potential users to new groups
of society that would not be able to use the product otherwise. In most countries employers as
well as suppliers are legally obligated to protect users from threats to their health and safety.
Human centered practices can reduce those risks and ensure the barrier free access to the prod-
uct without discrimination of specific groups of people [36]. According to standards, applying
human centered practices has the following positive consequences:

e Increased productivity of users and economic efficiency of organizations

Reduced cost for training due to easier understanding of the product

Increased fitness for purpose for people with a larger band of capabilities and therefore
improved accessibility

e Improvement of user experience

Reduction of discomfort and stress

Providing competitive advantage, e.g. by sharpening the brand image
e Contribution to sustainability goals

Summing up, several positive consequences of the application are stated in standards, where
some of them are even legally required or positively affect social and ecological desirable. Most
of those consequences result from the overall life-cycle-cost of a product, system or service
including conception, design, implementation, operation, utilization and finally abandonment
(36].

15

Impact

User Centered Design causes impacts for the developing organization as well as the customer’s,
which are widely agreed to be mainly positive, although they can be analyzed and stated distinct
of each other to illustrate benefits for specific stakeholders [42]. The main negative impact to be
mentioned, is an increased development effort for customers for the exchange of less required
support and increased efficiency. On the other hand research findings yield that UCD methods
generally are considered to improve a product’s usefulness and usability, although organizations
differ remarkably in the degree of adoption of UCD methods [83[]. The positive impacts of
applying UCD to a product development process are often not seen or underestimated. Case
studies showed, that especially developers that have no experience with UCD methodologies are
likely to underestimate the diversity of users among their customers. Therefore they do not see
the advantages at the first hand, that a systematic process to identify different user groups, select
representative users and identify representative user needs can provide [44]]. Despite the fact, that
the degree of appliance differs, the adoption of UCD methodologies in practice quite mature,
especially in specific fields of products that mainly are related to science and technological
complexity. In case studies, users were found to be the actual developers of 82% of all considered
commercialized scientific instruments as well as 63% of all semiconductor and electronic sub-
assembly manufacturing equipment innovations studied [78]] [[79]]. Since those years, the overall
adoption of UCD practices increased steadily and the positive implications of those techniques
are widely agreed on. More recent case studies showed, that the degree of the application of
UCD in product development still varies widely. Despite this fact, 72% of the participants
agreed that UCD methods had made a significant impact on product development by indicating
5 or higher on an 7 point scale. The large majority of 80% stated, that UCD methods improved
usefulness and usability of products they developed, where a quarter of them chose 7 on a 7
point scale [83]].

It is widely agreed that the involvement of users in the design of a product causes them to know
from an early stage what to expect from a product. Furthermore it causes positive mood at the
user’s side as they feel that their ideas and suggestions have been taken into account during the
design and development process [3]]. This leads to a positive attitude among the product overall
and to positive working experience and intrinsic motivation in special.

Measurability

As User Centered Design is an abstract set of methodologies and practices to be applied at sev-
eral phases of a product life-cycle, the benefits of applying those principles are hard to measure.
It is widely agreed that there are several positive affects that are caused by accordance to UCD,
mainly focusing on user experience, accessibility and product positioning. Nevertheless there
are only few implications that can be directly traced back to the implementation of UCD in a
quantitative manner. The lack of measurability of UCD effectiveness and common evaluation
criteria has be shown be research as well. Research on this topic further revealed, that cost-
benefit analysis and tradeoffs are the key consideration in the decision if UCD practices should
and will be applied in projects and organizations. Furthermore there is a discrepancy between
commonly cited measures and the ones that are actually applied in practice [83|.

16

The widely agreed positive implications of UCD as well as the fact the quantitative measure-
ments are hard to define leads to the combination of quantitative and qualitative as both areas
need to be taken into account to estimate the impact of UCD techniques to real world projects.
Previous research already clarified the cost benefits of UCD in general, such as reduced need for
resources and support cost as wells as increased customer satisfaction and productivity [42]. Al-
though this research was based on case studies and projects in scientific scenarios that range over
a broad field of industries and project types. To decide if the employment of UCD techniques
is reasonable specific projects in certain fields of industry raises the need for measures that al-
low for estimation of the impacts of doing so in concrete projects. Furthermore organizations
require measures that enable them to determine if application of UCD in previous projects lead
to improvements to decide if they continue to implement projects in a user centered manner.

A pragmatic approach for measuring the impacts of UCD in respect to specific projects and
organizations was proposed by Kohno et. al. [42]]. The described approach takes into account
qualitative analysis as well as clearly quantitative techniques of measurement for economical
relevant key data. Several of the measures use qualitative methods to gather data which is fur-
ther used to generate quantitative results. Key measures defined by this approach are changes in
sales volume and increased operational efficiency in terms of working hours, as well as reduced
cost of project implementation and quality of the created product based on estimations of de-
velopers and stakeholders after the project is finished. Qualitative measures like interviews on
customer satisfaction, the mood caused by working with the product as well as accessibility are
considered as well.

As for today there is still no clear qualitative method for measuring the economic benefits of
applying UCD, nevertheless there is effort spent on making the positive effects of UCD clearly
visible to establish the practices in industry projects. UCD is clearly a field that can not be
measured in a purely quantitative manner as most of the goals of the included techniques aim
at increased customer satisfaction and usability, which are not easy to measure by themselves.
Therefore it is essential to value to qualitative implications of UCD, although quantitative mea-
sures are required to consolidate the position of UCD in industrial environments.

2.4 Process Integration

As User Centered Design does not contain an own dedicated process model, the appliance of
UCD needs to be embedded in surrounding processes. Even if a organization or team does
not want to apply any traditional process model, UCD is not capable of ensuring or guiding a
successful project handling. Therefore a basic process model is necessary to implement UCD
practices efficiently and draw the most revenue of doing so. If there is no a priori process model
to be adhered to, agile methodologies will serve best as several of their key principles are a
natural fit to key techniques of UCD. This is because standards state the execution of iterations
a an essential element of implementing UCD entirely and iterations are also one of the key
principles of agile techniques [36]].

As UCD is mainly a collection of techniques and advises how to utilize them, it is possible to
embed UCD practices in any process model. For each project and process it can be decided at
which stage of the process specific techniques will be implemented and furthermore it is not

17

necessary to make use of all the practices proposed by UCD as also a partly implementation will
lead to an improvement of the final product and it’s user experience. Despite those facts, there
are some phases that are common amongst most process models, e.g. definition of requirements
or final testing, which are focused by UCD approach. If UCD does not influence those stages of
the overall process it is unlikely that it is possible to recognize all its advantages.

In general UCD has to be applied over the whole product life-cycle, this means also and
especially at a layer above the process model of a products development project. Therefore also
standards describing UCD are mainly targeting people that are capable of influencing the pro-
cess of whole product life-cycle management [36]. To ease the practical implementation and
adaption of such processes and life-cycle management, the appendix of ISO 2942-210 defines a
guideline for doing so in real world projects.

Summing up it can be said that UCD influences the processes during the design and implemen-
tation of products on a project level, as well as the processes used for life-cycle and product
management and even the mindset and principles that influence a whole organizations culture.
Nevertheless, the grade of application and to which extent existing practices and processes are
influenced is up to the developing organization for each individual scenario.

UCD by itself does not prefer specific process models and courses of action over others. It is
interesting to observe that UCD and the agile movement developed the principle of iterative ap-
proaches widely independent of each other, although some of the proposed techniques arose at
the same time. Furthermore t is common to both approaches, that they may be applied at project
level as well as to a whole organization. This backs up the leading thoughts of agile techniques
as well as of UCD practices.

2.5 User Groups

It is obvious the the customer base of products, especially in retail market can get inestimably
large. Nevertheless UCD requires the comprehension of users in the design and development
process. This raises the need of choosing specific users or groups of those from a large customer
base that are representative for the whole customer base. Selecting a representative subset of
users from a large customer base is often not easy, as the distinction between those groups is
usually neither obvious nor without any doubt. Therefore special techniques for establishing
appropriate categorization of users become necessary.

Definition of User Groups

Involving users in the development of a product usually is possible for just a few individuals
which should give a representative sample of the whole customer base. As those have to be
selected from a potentially huge customer base, a sampling strategy is needed [44]]. Nevertheless
the is no general strategy to obtain a representative subset of users, as the selection of those is
highly dependent on the type of product, the size of the overall user-base as well as the size of
the sample to be selected. A reasonable selection of the representing user groups is essential as
not all users can contribute the same value in new product development [29]], therefore the ones
who can provide the deepest insights and most efficient suggestions are to be selected.

18

Beside the distinction of those groups, the sample size can be hard to define as well. The size
of the user groups to be involved in development and design depends on the product as well as
the customer base. Main factors are the overall number of users and the variability among those
as well as the number of user roles that should be represented. Nevertheless, research showed,
that as few as six users may server as representative sample and can provide useful information
to the designers and developers [45]]

In general there are 3 basic types of users for every kind of product, which are primary
users, secondary users and tertiary users. Primary users are those who directly interact with the
product and whose workflows and daily routines are influenced by the product. The group of
secondary users covers those who use the product occasionally or in an indirect manner. Tertiary
users do not use the product themselves, although they are influenced by the impact the product
causes. More detailed classification of the three basic types of user groups have been originally
formulated by Eason in 1987 [20].

Beside those three basic user groups, there are two constitutional approaches on how to distinct
among users and which kind of criteria to use. The first one classifies users by the way they use
the product respectively which goals they want to achieve. This method is likely to focus on
primary users mainly and split them into sub groups which share special views in respect to the
product. The second approach is by splitting users into groups by individual characteristics, that
are not apparently related to the product, e.g. body height, gender or age. The first approach is
classical for industry projects to ensure product acceptance over the whole target group, which
is predefined or already known. The second approach is useful to ensure accessibility and avoid
discrimination by the product among all types of possible users. Furthermore the second ap-
proach is very suitable for scientific research on how different groups of people utilize specific
tools or which usage patterns are possibly related to which individual characteristics oh humans.

The complexity in defining user-groups is significantly driven by the type of product and

therefore the structure of the target group. The identification of user groups is especially de-
manding if there is a large number of users or if the user base is very heterogeneous [44]. A
special difficulty arises for new products without an established customer base. For this type
of products, the types of customers and representative individuals have to be estimated which is
especially difficult as the developers have a market in mind but this assumption is not necessarily
identical to the real market that is reached when the product is finished [25]]. Nevertheless, this
fact allows for designing products selectively to specific market segments. If the segment that
should be attracted is well defined, choosing user groups among this segment and applying UCD
will lead to better acceptance of the product in the desired section.
An further observation regarding the estimations of developers is, that they usually underesti-
mate the diversity of users. Most developers neglect the importance of various groups beside
the primary target group. Therefore they tend to omit groups as infrequent and indirect users
(secondary and tertiary) as well as other special groups. This fact can be counteracted by spe-
cial user identification sessions, which have shown to help developers to orient towards different
groups by brainstorming various user characteristics [44].

19

Common approaches

Explicit definition of user groups is often avoided as this process is complex and costly, even
though the required effort is lower and benefits are increasing in later stages of a project. If
there are no explicit user groups, developers usually design the product in a way that seem to
be most useful for their idea of a typical user. This means they are explicitly not developing
as it would fit their personal needs and bias but for their personal model of an abstract user.
Although a developers imagination of a typical user is often vague or even contradictory to
the real world users [44]. A compromise that is often taken ion practice is using archetypes
as they have been described by Cooper [16]. Using this technique, the elastic notion of user is
replaced by archetypes of typical users which are called personas and have defined names, needs
and biases. When doing so a persona is the abstract representation of a user group summing
up their characteristics and goals in one exemplary abstract person. The weighting of factors
like the size of various groups and similar metrics are lost in this case. The creation of such
personas can be done based on interviews or in cooperation with real users to ensure a close
to reality representation of the users by the persona. Although establishing personas makes it
necessary for the developers to look into the user base and describe characteristics in detail,
they are not adequate to real user-groups and can not be directly compared in later process
phases. Furthermore persona development emphasizes building detailed descriptions of typical
users, but it does not concentrate on identifying representative user, which is a part of setting up
user groups [71]. Important differences hereby are, that there is no possibility for dialogues with
personas as well as usability tests on personas are not possible. In industry projects it is often the
case, that personas are developed within the development team and maybe few representatives of
an applicant just to establish a common understanding of a user among the development team.
Although this technique also relies on personas, it can not be denoted a User Centric Design
approach, as the personas rely on assumptions which do not necessarily hold true for real users.
Nevertheless personas can be a good approximation of user groups if they are set up correctly
and with influence of real users and they can server the needs of projects where establishing real
user groups is to costly or otherwise impossible.

In literature on Human-Computer Interaction there is usually the advice to categorize users
by means of certain common characteristics. An exemplary list of such characteristics was set up
by Scheiderman [69] where he states that each design should be based on understanding of the
intended users. Characteristics mentioned in this list are including population profiles reflecting
age, physical abilities, education, gender, as well as cultural background. Furthermore there
are training, motivation, goals and personalities as well as characteristics influenced by user
communities, different countries, rural and urban location, economic profiles and disabilities.
Although this list is quite long, there are more detailed lists of user characteristics by various
authors containing lots of other measures [44]]. It is not very likely that user groups are defined
according to all of those characteristics, although those lists serve as an origin to develop a list
of categories for a specific product and situation.

One should be aware that user groups can not be defined at the very beginning of a development
project that hold true over the whole product life-cycle. Case-studies showed that establishing
adequate user groups is an iterative process [44]]. This means that at an early point in time
user groups are established according to categories that seem reasonable at the current situation.

20

While working with those user groups in terms of discussion, usability tests and other techniques
it will be revealed that several individuals agree on their opinions and therefore are likely to
represent a natural user group. On the other hand it is likely to happen that single individuals do
not agree with the majority of their group repeatedly. In such situations it is valid to assign an
individual user to a different user group at any time during the product life-cycle. If the situation
occurs that there are commonalities among users, even of different groups, that have not been
treated as a significant characteristic yet it is reasonable to introduce a new user group summing
up those individuals and categorizing them by the newly discovered commonality even if this
causes the annulment of a previous user group. Another reason to adapt user groups and move
single users to another group can be individual changes affecting this persons view to the product
which are outside the scope of the project, e.g. getting a new job.

Lead User approach

When identifying user groups, one characteristic used may be the user’s competency in using a
product. This can result in one experienced or expert group. Focusing on this group is referred
to as lead user approach developed by von Hippel [44] [80]. The biggest difference to the ap-
proach of user groups is, that the lead user approach is not defining multiple user groups but
focusing on the one group of users that is likely to have the most valuable impact on product
design and development. For identifying lead users there exist several methodologies where all
rely on the same principle, which is to measure a users competence in terms of using a product
as well as knowing the market which the product is placed in [29]. The relevance of lead user
techniques has been analyzed in case studies comparing separate samples of lead and non-users.
As aresult the lead user concept was judged to be superior alternatives available at that time [[78]].

The lead user approach assumes that there are users, so called lead users, who can have a
highly positive impact to the development process and should therefore be involved into this.
This assumption is based on the idea that users who have experience with a need are better
able to give information regarding it than others. Lead users usually are confronted with with
requirements and needs that become present on the rest of the market months or even years
later. Therefore, if the market segment is one where need-related trends exist, those people
experiencing needs before others do are leading those trends [78]]. A further attribute of lead
users is that they profit significantly if a solution for those needs is found as fast as possible [29]]
[81]]. Due to this lead users are motivated to put effort to understand the problem and find a
solution for it, which is not a common attribute for ordinary users. Often it is the case that lead
users identified need years before the market and already found personal solutions to overcome
those problems, where there personal solution are a valuable basis for product improvement [44]].
One field where the phenomenons assumed by the lead user approach appear especially often
are most segments of the high technology market. As this market is changing very rapidly is
it hard for supplier to stay on track of current market trends as well as it is hard for ordinary
users to be at the front of the trend. But only those users, that manage to stay at the front of
the trend or even participate in the definition of this trend have the real-world experience which
manufacturers must analyze to know what the market will demand tomorrow [78]].

21

Working with lead users and integrating them in the process of product development is at-

tractive for developers as well as manufacturing organizations due to several reasons. The main
reason is, that lead users are very familiar with the product and they can forecast market trends
and they are willing to utilize their knowledge for product improvement. They are able to pro-
vide highly creative ideas, suggestions for improvement and innovations that can incorporate the
product development process. Lead users are capable of triggering product innovations and they
are willing to participate in this innovation process for the benefit that their needs get solved,
even though they are not yet present in the market. An important attribute of lead users that are
attractive for developers is the ability to communicate clear and effectively with organizations
and development teams. In this communication lead users usually are proactive as they want to
share their suggestions for improvements and influence the future design of a product [29].
The benefits of lead users become clear by the results of several case studies, where one of the
identified that one lead user contributed as much information and insights to the development
process as five ordinary users. One problem that has been observed in case studies is, that the re-
quirements of lead users are so advanced that they are not relevant for ordinary users at all [44].
For that reason in many cases it is the best choice to combine lead users and ordinary users,
where lead user support the team with their needs and innovative ideas which are checked for
realistic needs by ordinary users. In the case of discrepancies it has to be decided by the devel-
opment team if certain suggestions are implemented or not, as the implementation may cause
further costs but on the other hand lead users may get demotivated and disappointed if their par-
ticipation is not honored.

A classical methodology for applying lead user approach to a product development project
can be described by the following steps [[78]:

Specify Lead User Indicators To specify those indicators they should be divided in market or
technological trend and related measures, which contain the users competency regarding
the product and the market. Users should be experienced in using this or a similar product
as well as they should have insights to possible alternative solutions. The second group of
indicators are measures of potential benefits, as lead users are motivated to participate in
product design as it can help to ease their everyday work. Therefore the potential benefits
of the users should be analyzed, as a user that is front of the trend and knows the market
but has not to expect any improvements for his situation is unlikely to be motivated to
serve as a lead user.

Identify Lead User Group Based on those indicators a group of lead user can be selected from
all the known users of the product. The size of the group to be selected is depending on the
size of the development team as well as the complexity of the product. As lead users tend
to be very proactive and innovative the group of lead users should not become too large
to offer the possibility for every suggestion to be heard and evaluated. If there is a clear
group of users that already have an established relationship to the developing organization
and are known to be in front of the trend, this group of users may be used as lead user
group directly without defining any indicators.

22

Generate Concept with Lead Users When the group of lead users is selected, a concept of the
product should be developed by a cooperation of the lead users and the development team.
Techniques to do so are available in sufficient quantities in the field of UCD and can be
applied here directly.

Test Lead User Concept Once a prototype of the product that has been design with the influ-
ence of lead users is implemented it should be tested with ordinary users as well as lead
users to avoid building a product for a specialized target group. Lead user groups are likely
to design highly innovative products but often they fail today’s market and the needs of
ordinary users.

The lead user approach has significantly influenced the way product innovations are achieved
today. The classical model was based on producer modelsm which means that suppliers and
organization identify potential innovations and products for their customers. This has been rea-
sonable on the first sight, as suppliers and manufacturers have the capabilities to implement
innovation processes and develop new products, which are afterward used by a large customer
base. Although there was no place for the innovation potential of product users which means
that the potential of lead user lied idle [3[]. The lead user approach allows to utilize this potential
for innovation while still using the manufacturers capabilities and therefore can lead to innova-
tive and new products that fit customers needs. Empirical studies show that up to nearly 40%
of users engage in developing products in specific types of industrial products as well as con-
sumer products [4]] [21]. In terms of creation and design of innovative new solutions and whole
products, the lead user method turned out to be almost twice as fast as traditional approaches to
reveal promising product concepts while it is less costly as well [29] [31]].

23

2.6 Discussion

User Centered Design is a quite general and philosophical approach on how products should
be designed and where the input for a product development process should originate from. By
putting the later customers into focus by letting them provide the required data for the whole
development process and asking them for participation in the design phase, UCD leads to a
removal of technology of the process of product design. This suggests the analogy to drivers
for product design in economics, which are technology-push vs. market-pull, by treating clas-
sical, technology dominated development approaches as technology-push approaches while the
methods of UCD cause a shift towards customer oriented market-pull approaches by developing
exactly the kind of product the customer requests. The basic principle in UCD is to focus on
the purpose of a product from a customers perspective, which is to fulfill a function that the
customer needs. To reach this goal it is necessary to involve the user in the design process in-
stead of building theoretical models of users and deriving abstract product concepts from those
theoretical user models.

Product development through collaboration of designers, developers and users is a permanent
learning process for all the involved parties. Therefore an iterative approach becomes reasonable
and even necessary to allow each participant to identify the viewpoint of other parties and to un-
derstand their arguments and motivations. Doing so enables the team to lift the whole discussion
to a higher level in the following iteration. One main advantage of UCD is that it allows a deeper
understanding of the psychological, organizational, social and ergonomic factors that affect the
use of the designed product [3]].

The benefits of UCD for the developing organization, customers and designers are obvious and
also economical benefits of UCD approaches can be founded. Although, from a management
perspective and classical product development scenarios a more technology driven and well
structured and defined process would be preferable. UCD hardly states defined sub-goals to be
reached and its only requirement to the design process is to be iterative at least in parts. UCD
by itself helps to reveal the users needs and give the user the possibility of participation, never-
theless UCD is not capable of ensuring the derivation of a structured and sufficiently technical
representation of a product from this bunch of input, to allow for an efficient development and
implementation process.

24

CHAPTER

Requirements Engineering

A crucial phase at the beginning of any kind of project that aims to create a product for a cus-
tomer is the phase of defining the requirements of those customers. Whenever the developer of
a product is not its later user, the developer is challenged to uncover, understand and specify the
user requirements (Davis et al.,1997) [43]]. In this case, mental models represent how the user
thinks about the product he wants to be implemented as well as a mental model of developers.
Before requirements have been clarified, these two model can be radically different although
related to the same system [43].

Due to this importance Requirements Engineering became an important field of research espe-
cially in the field of software engineering and several techniques for requirements elicitation as
well as definition have been established [6][7] [22].

3.1 Definition

Requirements Engineering has always been an intrinsic part of any project, which gained more
and more importance over the last decades. Due to the perception of the importance of clearly
stated requirements, Requirements Engineering became a dedicated phase of development projects
that includes learning, uncovering, surfacing and discovering the needs of the intended systems
stakeholders [1-3] [28]]. The result of this phase is a list of requirements that define the product
in a way that satisfies each stakeholder. A single requirement can be described as a condition or
capability that is needed by a stakeholder to solve a problem or achieve an objective [5]]. A more
formal and sound definition is stated in /EEE Std 1233-1998 and defines requirements as

,»-a condition or capability that must be met or possessed by a system or system-
component to satisfy a contract, standard, specification, or other formally imposed
document®. [35]]

Nevertheless, this definition states what has to be included semantically in the result of
requirements analysis, though it does not state how to achieve and represent those requirements.

25

Actually the representation as well as the acquisition of requirements depends on thee individual
stakeholders as well as the project situation at hand. Generally there are three basic questions
that have to be answered at the beginning of requirements analysis, which help to adequately
define the detected requirements. According to [88]] the three basic questions for requirements
analysis are

What should requirements be? The development team as well as stakeholders need to agree
what kind of requirements they want to be defined and at which level of detail they want
to elicit them.

How should requirements be stated? There are several methods to describe requirements, reach-
ing from formal tables over technical descriptions and structured language to user stories
which are less technical and written in natural language.

How should requirements be derived? Deriving requirements is the key challenge of the phase
of requirements analysis. As there are various techniques to solve this quest, the team and
stakeholders need to agree on which methods they will utilize to do so.

As requirements are a clear and sound definition of what a user wants or needs the product
to be like in order to help him to achieve a goal, they just state what the product should be
like. It has to be stated, that requirements never specify the way of implementation or technical
descriptions of how to fulfill specific requirements [1] [2]]. Therefore they can be seen as a kind
of wish-list describing the product as it should be without considering how this requirements can
be met. Nevertheless the list should contain elements that are likely to be satisfiable.

Functional vs. non-functional requirements

Requirements can be divided in two main categories, which are functional and non-functional
requirements. The requirements that are usually defined in projects in industry practice are
mainly functional requirements, which describe specific features of the products and their be-
havior. Functional requirements describe how the system works and usually state some measure
to determine the degree of fulfillment in a quantitative way. Non-functional requirements on the
other hand define ’soft-facts’ about the product like the look and feel, noise levels, UI-Design
as well as usability and overall customer satisfaction. Non-functional requirements may also in-
clude strategic organizational requirements affecting the product. For each project functional as
well as non-functional requirements are necessary to describe the system sufficiently to ensure
an implementation that satisfies all customers expectations. Research identified projects where
a shift from customer- to market-driven approaches caused a changed balancing of technical
user-requirements and organizational non-functional requirements . [66].

Non-functional requirements are mainly influencing a products quality, as there usually exist
several ways of implementation that fulfill all the functional requirements, their accordance to
defined non-functional quality attributes express which solution will fit the customers needs best.
Quality attributes can be described as non-functional requirements of a system, e.g. reliability,
performance and modifiability [7, 10]. [[11]. One further type of non-functional requirements are

26

usability requirements which have string impact on functional requirements since the usability
goals define how the system will be utilized by the users [|89].

Although non-functional requirements are meant to define a products quality beside its fea-
ture set which is described by functional requirements, research showed that in some situations
the estimations of non-functional requirements is not perceived useful enough to ensure the high
quality of a product [[I11]. Nevertheless a combination of both requirement types is required
to state a sound definition of the product to be designed and in most cases non-functional re-
quirements are an adequate method to ensure the quality of implementation for later customer
satisfaction.

State of the art

Due to the increased importance and appreciation of requirements engineering, research devel-
oped several techniques and methodologies for requirements analysis. One of the most intuitive
techniques are interviews of stakeholders. The most simple form of requirements interviews is
a meeting of all projects stakeholders, including the development team, where a moderator tries
to identify requirements in a top down approach which are written down in natural language.
During this meeting the product to be designed is described in an abstract way in the beginning
to identify several fields or groups of requirements. Each group is afterward discussed and de-
scribed in more detail. As each requirements needs to be discussed until there is a consensus
among all stakeholders, this interviews and meetings can last for several days.

A more efficient approach which is also applied in practice are collaborative workshops which
are described in [53]]. Those workshops are able to deliver requirements fast and furthermore
they build a healthy project community which lasts beyond the phase of requirements elicita-
tion [24].

Although some basic techniques of requirements engineering are applied in practice, most
of them are used intuitively and are not following a predefined process model. This makes it
hard to ensure the correctness of the identified requirements as well as to maintain them over the
whole project life-cycle and react to changes. Despite several benefits that are clearly given by
according to a requirements engineering process and utilizing specific methods and techniques
to identify and define requirements, the current practices in small and medium enterprises are
mostly ad hoc ones, which has been shown in case studies [|53]].

Usability Requirements

One specific dimension of non-functional requirements are usability requirements as mentioned
in ISO/IEC 9126 [37]. Usability is an important topic to be covered already in the phase of
requirements analysis, although this kind of requirements can hardly be captured in terms of
functional requirements. Usability requirements encapsulate essential interaction steps, needed
information and options for the user. Thus they specify the system behavior in a more abstract
way without being too specific about concrete details of implementation [89].

Usability requirements are supporting developers in generating a conceptual model of the system

27

to be implemented by understanding the workflows and ways how users want to achieve specific
goals. Therefore usability requirements can help to keep the gap between the designers model
and the users model small. Usability and workflow requirements are synthesized into a set of
solution elements which are further detailed using functional requirement by the designers [89],
and therefore lead to a overall product structure in components that is reasonable for a products
users.

Defining useful usability requirements and allowing designers to utilize them to design a system
should be a natural part of the requirements engineering process, although it requires usability
awareness in the development team. In practice many developers tend to underestimate the
importance of this kind of requirements and are focusing on functional requirements. Usability
requirements are ofter more complicated to fulfill as they require and integrated view to the
system and can not be implemented punctual or in terms of components as this is often the case
for functional requirements. Due to this fact, usability teams started to organize training in their
companies to raise awareness for usability requirements and find ways how to handle the for
development teams [30]].

3.2 Motivation

Requirements Engineering gained wide acceptance over the last years and is generally accepted
to be one of the most critical and complex task during the development of systems. Further-
more Requirements Engineering is especially important to the development of socio-technical
systems, which nearly every of today’s product are counted among as they interact with end
users in some way [38], [[62] . It is widely accepted that discovering errors during the phase of
requirements analysis can reduce the cost of correcting the error by a factor of 100 compared to
mistakes that are discovered during implementation or acceptance tests.

Due to this facts, Requirements Engineering is essential for a projects success, which was made
evident by a Standish Group study in 1995, which showed that most of the causes of project
failure are related to the RE process [63].

Beside this importance for project success and cost less correction of errors that are discov-
ered early, requirements engineering offers several other benefits to project teams. One of them
is the possibility of trading nonessential functionality for product quality [66]. In practice it is
often the case, that one of the three dimension of a project, time, budget and quality, can not
be met. By not exceeding the projects deadline as well as the budget the only way to go is to
increase the product quality in this traditional model. Adequate Requirements Engineering, es-
pecially requirements management can help to cut quality in terms of a products scope and not
the quality of implemented features. This can be done by skipping features that have been iden-
tified as less important to users during requirements analysis. By doing so the overall quality of
the product can be kept high, except the missing features, while finishing the project in time and
budget as well. Trading features against quality is not possible if there is no clear definition of
required features and measures of the quality of their implementation. Beside this importance
for project success and cost less correction of errors that are discovered early, requirements en-
gineering offers several other benefits to project teams. One of them is the possibility of trading
nonessential functionality for product quality [[66]]. In practice it is often the case, that one of

28

the three dimension of a project, time, budget and quality, can not be met. By not exceeding the
projects deadline as well as the budget the only way to go is to increase the product quality in
this traditional model. Adequate Requirements Engineering, especially requirements manage-
ment can help to cut quality in terms of a products scope and not the quality of implemented
features. This can be done by skipping features that have been identified as less important to
users during requirements analysis. By doing so the overall quality of the product can be kept
high, except the missing features, while finishing the project in time and budget as well. Trading
features against quality is not possible if there is no clear definition of required features and
measures of the quality of their implementation.

Development and implementation of high quality products depends on the successful col-
laboration of heterogeneous stakeholders. Furthermore this collaboration needs to last over all
the different life-cycle activities [27]. To allow for a efficient collaboration over this long time
among all stakeholders, some defined process has be applied, which is referred to as require-
ments management. Nevertheless any kind of collaboration in respect to product quality as well
as requirements management is based on adequate requirements analysis at the beginning of
the project. Without clearly stated requirements, that can be discussed and modified during the
whole life-cycle, collaboration and adaption to changes in changed requirements of a stakeholder
become impossible.

Potential Risks

Although applying techniques of requirements engineering helps projects to be successful, they
raise some risks. It has to be mentioned, that just a few of those risks are really originating from
the applied requirement engineering process but they just become visible much better due to
this. Nevertheless, some of the risks are actually caused by requirements engineering and won’t
occur otherwise.

Three basic types of risks regarding product requirements are distincted in literature, which are
ambiguity, inaccuracy and inconsistency [86]]. All those are meaning attributes to the list of
identified requirements which, if they are present, mean a risk due to an invalid or low quality
requirements definition. Ambiguity refers to requirements that allow for different interpreta-
tions by customers and developers, therefore each requirement should be described clearly and
the interpretation of all stakeholders should be consolidated. Inaccuracy refers to functional
requirements which define some measure to check their fulfillment. This measure may either
be inadequate by itself or the required value does not cope with errors of measurement. This
leads to problematic situations during the acceptance tests at the end of the project. The last
attribute of bad requirements is inconsistency which applies to a combination of multiple iden-
tified requirements. Between those there may be inconsistencies or even contradictions. If so,
those inconsistencies are likely to be discovered during product development, although correct-
ing requirements at this late stage can be costly. Therefore all requirements should be checked
for consistency before development starts. Overall it can be said, that all three types of risks
may also be present if no RE process is applied, the used techniques just make the risks visible,
therefore it allows to deal with them at an early stage as well.

Dealing with discovered risk at such an early point can be problematic for industry projects in
special cases, as this means revealing all the potential errors to be made and the whole projects

29

complexity to the customers. This may lead to an early shut down of the project before de-
velopment even started. This risk is caused by applying RE techniques, but nevertheless the
project would have been likely to fail otherwise as well. It is widely accepted that the earlier
such potential risks are identified the easier it is to manage or even eliminate them [8].

One big risk of applying RE is the completeness of the identified requirements. Once the
requirements list has been established, it is very hard to ensure that it is sound and contains all
the necessary requirements to ensure a correct implementation. Although having such a list in
place will make developers and other stakeholder tend to not rethink the requirements during
the implementation phase and just trusting the list of requirements as it was ensured that is is
complete. Dealing with this problem is part of requirements management and the whole team
should be aware of this risk when implementation phase follows a list of identified requirements.
Davis [19] suggests three reasons which make it unlikely to obtain a complete list of [88]]:

The limitations of humans as information processor and problem solvers This problem is by
nature and can not be avoided. In large and complex projects humans are often not capa-
ble to keep the overview of the whole project and requirements and discover differences
between those.

The variety and complexity of information requirements There are various different types
of requirements which are specific for each project. Due to this a complete field of require-
ments may be oversight during the requirements analysis phase. Due to the singularity of
each project there is no general process of checklist to avoid this problem.

The complex patterns of interaction among users and analysts in determining requirements
Requirements analysis and elicitation is a complex interaction process between various
stakeholders coming from different domains. This fact leads to a highly dynamic interac-
tion process during requirements elicitation which is hard to cover by defined processes
to ensure completeness of the result.

Another problem regarding completeness of requirements is that often requirements are identi-
fied early but not formulated and tracked as they will become important at a later stage. In con-
trary to this approach, each requirement should be traced via requirements management from
the first time it has been discovered. All requirements during a software’s life-cycle have to be
seen, independent of whether they are important and necessary at the present time or they are
not but will become important in future [2].

Common requirements engineering activities in practice tend to overvalue the technology
side of requirements meaning focusing too much on functional requirements and possible ways
of their implementation [5]]. This is due to the fact that those kinds of requirements are easier to
measure and they do not need to cope with requirements uncertainty. Several strategies to deal
with requirements uncertainty to face this problem used by experienced IS/software manager
have been analyzed in recent research [56], which made clear that dealing with uncertainty of
requirements is an intrinsic part of adequate requirements management by reducing the uncer-
tainty over the projects lifetime.

Uncertainty is often caused by different background and vocabulary used by various stakehold-
ers. As requirements are expected to be contractually satisfied, specifications are often written in

30

natural language [[86] which makes it hard to identify and eliminate uncertainties. This problem
originates from a communication barrier between analysts and stakeholders caused by a gap in
their domain knowledge [10]. Therefore a common basis of domain knowledge of all stakehold-
ers as well as the analysts is the fundamental of successful requirements analysis to deal with
specific vocabulary and uncertainties in formulations and specifications.

3.3 Requirements Representation

During the process of requirements analysis it becomes necessary to persist the identified re-
quirements in a way that allows understanding at a later point in time, even for persons who did
not participate in the process of requirements analysis. Furthermore the representation of the
requirements must be adequate to be used by developers to decide about implementation details,
for testers to decide about the boundaries and conditions of test cases as well as other stakehold-
ers like customers and project management as this list of requirements is the central piece of
information to be discussed over the remaining project lifetime. Due to this multiple utilization
of the requirements persistence it is crucial to find a way of representation that fulfills all those
needs which is commonly referred to as Requirements Specification. A general definition of a
Requirements Specification (RS) is that it

,provides verifiable and testable demands towards the system.* [89]

Beside those general definition of the specification of requirements, there is an industry
standard providing guidelines for defining usability requirements. As usability requirements are
one dimension of non-functional requirements which gained importance over the last years, they
follow special rules to be stated in sufficient detail to make an effective contribution to design
and development as well as defining criteria of usability that can be validated if needed [6].

A sound representation of requirements in general needs to contain several pieces of infor-
mation for users, designers, implementers and testers of a system. Although there may be further
stakeholders relying on the representation of the requirements, at least those four groups should
always be served by this kind of document. To do so, this representation must at least contain
the following information [88]]:

Functional specification The functional specification is basically a list of functions that the
system must be able to perform. This can be implemented in terms of a list of functional
requirements.

System context, constraints, and assumptions A clear definition of the scope and the systems
boundaries must be given. This includes environmental conditions of operation as well as
boundaries in terms of use-case scenarios where the system is not adequate to fit.

Performance specification Dynamic properties of the system must be defined in terms of re-
quired value ranges or similar. Basically this part includes most non-functional require-
ments.

31

Measurement and test conditions A testing process stating how the previously requirements
are measured and validated in necessary to ensure a common understanding of test sce-
narios as well as the general measurability of the defined requirements.

One proposed structure of a requirements specification satisfying these constraints is to state a
functional model of the object system, a data dictionary defining the various components of the
functional model as well as a set of performance and test specifications for the system [8§]].

Requirements Specification

The term Requirements Specification refers to the outcome of the requirements analysis process
and is defined by various standards, so the IEEE STD 830-1998 defines this document generally
as

,-a document that correctly defines all of the software requirements of the system
to be developed. [[14]]

A similar definition of a Software Requirements Specification (SRS) is given as

,,short statement of the requirements to be fulfilled by the software.* [|15]]

(331

As these definitions are correct but very abstract and not defining what should especially
contained in a (S)RS, a more detailed definition is given in a IEE standard that states that a
completed SRS should include all customer requirements, as well as those needed for the defi-
nition of the system. Moreover, it should have all pages, tables and figures numbered, all terms
defined, all units provided and all referenced material present. Finally, it should not have any to
be determined (TBD) sections [35]].

As each definition of a sound RS contains a list of requirements, there are several attributes
that need to be fulfilled by the requirements to ensure the feasibility of the SRS. A main demand
is the understandability of each requirement as well as the complete RS. This refers to the usage
of unique words, symbols and notations and the use of grammatically correct language and
symbology [5]]. Furthermore feasibility is considered as a central requirement attribute as well
to result in a RS that provides value during the phase of implementation and system testing [5].

A complete list of quality attributes for Requirement specifications has been stated by Wilson
[86[] and contains the following attributes:

Complete A complete Requirements Specification must define all real world situations that
might occur as well as the systems behavior in those situations.

Consistent Consistency is given when there is no combination of requirements that contradict
each other. This means all requirements are compatible to each other as well as non-
functional requirements to not negate the utility of the product.

Correct To be correct a Requirements Specification must identify the conditions and limitations
of all real world situations that might occur as well as the system’s behavior in those
situations and it’s impact to the situation.

32

Modifiable In order to allow for later requirements management, the Requirements Specifica-
tion must be modifiable and ensure that all changes are traced.

Ranked The requirements in the Requirements Specification need to be ranked to express the
importance of specific requirements in respect to others.

Traceable For traceability each requirement need to be assigned an individual identifier apply-
ing to a logical scheme.

Unambiguous Statements of requirements need to allow only one possible interpretation. This
often makes necessary to use domain specific vocabulary which should be clearly defined
in a glossary.

Verifiable To ensure verifiability specifications at one level of abstraction must be consistent
with those at other levels.

Conclusively there are several attributes to be fulfilled by a Requirements Specification,
which makes the whole document complex and costly to implement in a correct manner. Nev-
ertheless this effort pays off during the remaining project life-cycle as a qualitative SRS can
server as the central document used by various stakeholders and eases communication, change
management and elicitation as well as approval of the final product.

3.4 Team constellation

The process of requirements analysis involves multiple stakeholders represented by one or more
persons. Due to this fact various persons and individuals are involved in this process which is
very communication intensive [17]]. Therefore human interaction plays a big role in the process
of requirements analysis and management [11] [28]], which makes it necessary to set up an ade-
quate team for those activities. Requirements engineering has been identified as a mainly social
interaction between people [5] therefore also research findings from the field of psychology have
been applied to this process. One of those conducted the potential of cooperative inquiry which
assumes that genuine cooperation means sharing both knowledge and power [[53]] which backed
up the importance of team constellation for the process of requirements engineering.

Beside the various stakeholders that are represented in a RE team, their role in their organization
and the project needs to be taken into account. Independent from the represented stakeholders
only a part of the team should be made of decision makers that are responsible for project level
decisions. Domain specialists as well technical professionals and usability experts should be
present in the team as well to ensure an integrated view to the project. Each of those individual
is driven by different motivations and biased perspectives [3[], which may be of economical na-
ture or regarding the technical feasibility or quality of the resulting product, which are equally
important and need to be harmonized and negotiated during this process.

In practice usability specialists as well as people that are mainly targeting the quality of the final
product are often not part of the RE team or are not in the position to influence decisions effec-
tively. However usability specialists have been showed to be willing to conduct user stories and
to increase the understanding of users and the domain for all team members [30].

33

An additional fact to be considered when establishing a RE team is the availability of the
team members. In practice it often occurs that especially managers and decision makers as well
as customer representatives are participating in initial requirements analysis and contributing to
an early stage requirements specification. Although this increases the quality of the require-
ments, the RS will change over the projects lifetime, which causes problems if not all members
of the team are available at later stages. It can cause later misunderstandings or problematic
changes to the RS if the stakeholders of specific requirements are not available for further ex-
planations or negotiations of requirements. Case studies showed that it often is the case that
the customer representative is not always available and involved in the development team [[7].
This problem can be reduced by establishing an internal customer proxy inside the developing
organization that delicately represents the customers point of view.

Domain Knowledge

A special consideration when setting up a team for requirements engineering is the previous
Domain Knowledge (DK) of each individual. Although DK has several positive effects on the
first hand it can also cause several problems when analyzing and negotiating requirements.
Domain knowledge among customers is present in most cases and is also hard to avoid. The
extensive DK of customer representatives in practice often causes the developing organization
to choose representatives with DK as well to appear competent to the customer and to ease
communication, as specific vocabulary is understood by both parties. Research has shown that
sufficient DK on the requirements analysts side support the communication between the analyst
and the stakeholder. Being able to use the domain terminology furthermore enables the analyst
to present questions that the stakeholder can understand and to comprehend the answers that are
given [28]].

Beside those advantages of domain aware analysts, this knowledge causes several problems as
studies in the field of psychology [|85]] show that it may cause a tendency to approach situations
in a way that has already been used in the past. Therefore DK can lead to fixation in problem
solving and hinder innovation and new concepts. Furthermore some indication of negative ef-
fects to the cognitive processes involved in requirements definition have been observed in case
studies [28]].

Although analysts with deep DK are helpful for communicating with all stakeholders during
RE, studies argue that a person without any domain knowledge at all is important to the success
of system development. This ignoramus has not assumption about the domain, although he or
she has technical understanding and motivation to participate in the RE process. The ignora-
mus is capable of spotting inconsistencies and will ask questions whenever some information is
missing or something has been left unsaid [28]]. This minimizes the risk of DK aware analysts
to neglect to ask questions to which the answers seem obvious, although this is not true.

34

3.5 Process Models

As Requirements engineering is only one aspect of implementing a successful product or fin-
ishing a development project it must be integrated in the overall process model. Requirements
Engineering in general is applicable to any kind of process model as it does not state any process
by itself. Nevertheless it is important that Requirements Engineering includes analysis as well as
management of requirements, therefore it can not be applied at the beginning of a process model
and not paid attention at later stage. The requirement planning phase and management phase are
executed independently for effective management of requirements and especially management
of requirements is iterative in nature [61]]. Although this does not hinder to apply it to traditional,
non-iterative process models. Requirements analysis in the other hand as well as development
of specifications should occur prior to writing the requirements document and therefore at an
very early phase of the overall process model, which applies well to sequential models but can
also be done in iterative environments.

Results from studies on the appliance of RE ion practice revealed that the process model
used differ from those described in literature. Several case studies showed, that RE does not
occur in a structured way but are implemented opportunistically when they seem adequate and
therefore are simplified as well as the requirements models are restructured when they reach high
complexity [51]]. Due to this fact, the applied processes vary widely among organizations and
projects and are seen as one aspect of the overall development process instead of a discipline
in its own right. This view to RE also affects the team structures which means that there are
usually no dedicated teams established responsible for requirements analysis and management
but each project stakeholder influences this processes at some point in time without central
organization. This is contradictorily to literature which suggests to establish specification and
style standards at the outset of the project and further to train all project participants in the
use of those standards [[86]]. The structured and disciplined process for RE as developed by
research, which aims at introducing engineering principles into the practice of system analysis
and establishing structured and repeatable activities, is not widely accepted in practice [51].

The Capability Maturity Model [64] explicitly addresses requirements processes on level
two Requirements Management key practice area but not in the following levels. More recent
definitions like the Systems Engineering CMM4 [77] has a wider coverage of RE activities
but is perceived only at niche industries and therefore not widely applied. Literature defines a
similar multi-level maturity definition in the dedicated to the field of Requirements Engineering
by distincting the following levels [66]:

Level 1 Organizations at the initial-level utilize ad-hoc requirement processes. They can hardly
estimate and control costs due to the necessary rework of requirements and poor customer
satisfaction. Their RE processes are not supported by structured documentation or reviews
but are dependent on the skills and experience of individuals.

Level 2 Organizations at the repeatable-level have standards for requirements documents and
policies for requirements management in place. They utilize tools and methods to ensure
high quality of their documents and their completion in time.

35

Level 3 Organization on the defined-level have a defined process model based on good prac-
tices. They have an active process improvement and are able to assess new methods
objectively.

Today most industry organizations are at the initial-level as their processes are mainly ad-hoc
and no standards for documents are defined at an organization wide level.

Integration to Life-cycle

The concept of software life-cycles has been proposed by IBM [12] similarly to product life-
cycles. According to those terminologies, a products life-cycle starts with establishing the de-
velopment project and lasts over operation and maintenance until a controlled removal from
service. Traditionally RE was placed at the very beginning of this life-cycle when the develop-
ment of the product starts and RE was finishing at latest when the implementation was complete.
With raising complexity of products it became impossible to develop an accurate set of require-
ments that remain stable over the whole life-cycle [61]]. Due to this trend the techniques for
requirements management have been developed which are place over the complete life-cycle of
a product.

In practice this means that requirements analysis is still performed at the very beginning of
a project, but the identified requirements are not taken for granted and the development team
must be aware of changing requirements and therefore the process model has to cope with those
changes. Nowadays requirements engineering activities occur across multiple phases in most
process models [51]], where the maintenance of the requirements and reacting to changes is han-
dled by implementing specific requirements management techniques.

This evolvement lead to RE as a discipline that affects a whole products life-cycle including han-
dling requirements for a clean shut down of a product, therefore there are various RE techniques
that are meant to be carried out in parallel to product development as well as maintenance and
redesign.

Phases of Requirements Engineering

Requirements Engineering contains two main disciplines which are requirements development
and requirements management. In traditional process models requirements development is im-
plemented at the beginning of the project. It is also referred to as requirements elicitation or
requirements gathering and covers activities to discover, analysis and specify the relevant re-
quirements [61]]. Requirements management is implemented in later project stages and traces
changing requirements and introduces those changes to the applied development process. Nev-
ertheless both activities should be carried out in parallel to the whole project life cycle.
Requirements development contains 4 main activities which are requirements extraction,
requirements analysis, requirements documentation and requirements validation. All of those
activities can be implemented in parallel over the whole project duration [2f]. Requirements
extraction covers activities to identify the requirements, which are afterward analyzed in detail
when discovered. Requirements analysis should provide detailed insights on the details of re-
quirements and contains discussion processes to ensure a clear understanding of requirements

36

by all stakeholders. Another activity of requirements analysis is negotiating agreements on the
requirements [53[]. Requirements documentation is the process of generating a requirements
specification or a similar requirements document collecting all the identified requirements. The
last activity of requirements validation aims at ensuring that the requirements specification is
valid and understood by all stakeholders in the same way. Once the first raw requirements are
extracted all the other activities can be started on those requirements while requirements extrac-
tion is still continued providing continuous input to the following phases.

Requirements management is based on the requirements specification which was docu-
mented in previous phases. Activities of requirements management ensure a structured pro-
cess and implementation of the requirements development activities during the projects lifetime.
Furthermore it contains activities to identify changing requirements and making sure that all
stakeholders are aware of those changes and the whole requirements specification stays valid.

Iterative vs. Sequential Approach

Traditional process models pursuit sequential approaches while, in contrary to that, nowadays
processes which are iterative in their totality are established. A third group of process models
which occur in real world situations processes with iterations between activities have been iden-
tified [51]]. Requirements Engineering is implemented in all of those process models, however
RE is widely iterative by nature as their are several research results that back this up.
Stakeholders are continuously adding new requirements or modify existing ones until they reach
a specification of the system in a way that fits their conception [49]]. When the stakeholders see
other requirements from different individuals, they discover new requirements which are impor-
tant to them or the become aware that the existing requirements do not fit or even contradict
their needs. This can happen at any time during the process, therefore one of the biggest risks
for development projects is to be unaware of this fact and treat requirements that are specified at
the very beginning as fixed and valid [53]]. If this position is taken at an organizational level the
implementation of an adequate requirements management process becomes impossible.

Also when examining a whole product life-cycle iterations in RE are necessary as software evo-
lution is a process which is based on continuous feedback from various sources [22]]. Therefore
an adequate RE process has to be iterative over the whole life-cycle of the product to be able
to cope with this continuous feedback. Such a process must not stop gathering new feedback at
any point in time just because the sequential flow requires to do so.

Traditional cascading models, e.g. the waterfall model, aim at recognizing and specifying
requirements of stakeholders before the development starts and therefore to avoid rework which
would lead to wasting time and costs. A basic flow of an sequential RE process is depicted
in This approach is based on two assumptions. At first it is assumed that the correction
or change of requirements in any case leads to high costs. The second assumption is that is is
possible to define complete and correct requirements at the beginning of a project [2]. Although
research showed that at least the second assumption is not true and when looking at agile project
teams the first assumption does not hold true in any case as well, this kind of processes is still
widely applied in practice.

37

Concept

v

Problem
analysis

v

Feasibility and
choice of options

Y

Analysis and
modelling

v

Requirements
documentation

Figure 3.1: Linear requirements engineering process [51]]

Requirements Engineering practices in agile software development, e.g. Scrum [67]], widely
differs from traditional RE processes [[7]]. In a process that is generally iterative and strongly
involving the user, RE integrates smoothly and becomes an essential part of the overall process
instead of being implemented in parallel to the technical development. A schematic represen-
tation of a purely iterative process is given in[3.2] This leads to the fact that RE is often less
formal in iterative environments and to some extent not denoted as Requirements Engineering
explicitly, but is seen as an intrinsic part of the overall development process.

A conceptual linear RE process with iterations between activities has been proposed by
Sommerville in 1998 and can be seen as a compromise between both approaches. This partly
iterative process states that activities are often overlapping and are implemented iteratively as
depicted in[3.3] The linear progression resulting in documentation is reflected by this process as
it is by the traditional and iterative approach as well.

Conclusively Requirements Engineering activities can be implemented in each of the three
described process models, although in sequential models it is often the case that RE is im-
plemented in parallel to the technical process and contains iterative elements when they are
necessary. As an adaption to this the partly iterative models have been developed which allow
Requirements Engineering to implement the required iterations while they enable a sequential
flow of the general process. In purely iterative environments RE integrates in all elements of the
process once it is established but demands some sequentiality at the beginning.

Case studies showed that one model cannot represent all processes of requirements engineering
in practice. A purely sequential model was not successful and iterations have been introduced ad
hoc when necessary. Conversely a pure iterative process was not able to represent the progres-
sion of RE activities which often build on preceding activities. Resulting from those observations

38

User Feedback

User
User
requiremery Models to
Requirements alidated
specification by
Knowledge Requirements
. .) Models .
Elicitation Specification Validation
Request more Validation
knowledge results
Domain b)
omain
Knowledge
= Knowledge
Problem
Domain

Figure 3.2: Iterative requirements engineering process [51]]

Requirements
validation

Requirements
documentation

Requirements
analysis and

Requirements
elicitation

negotiation

User needs Requirements
domain document
information. Agreed
existing requirements
system System
information. specification
regulations,

standards, etc.

Figure 3.3: Linear requirements engineering process with iterations [[51]]

a RE process model would benefit from a combination of both approaches, e.g. a model that is
linear in general at the beginning of the project until implementation of a prototype and continue

in an iterative manner from this stage [51].

39

Relation to UCD

In practice it is hard to manage and control UCD over the whole development process [68]],
although RE offers a good starting point to anchor UCD principles in the product. So it is
recommended to evaluate the context of use when starting to define requirements, which means
to analyze who are anticipated users and in which environment they will employ the product.
Raising this awareness among all stakeholders of the RE process will increase the usability
of the product to be designed later on by reflecting those consideration in the requirements
specification. Furthermore concrete usability requirements can be derived from this context of
use which the later on identified functional requirements need to adhere to.

Research showed that, if users are involved in the RE process intermediate results are generated
at the beginning to identify weak spots, gaps or error in the requirements. Later on based on those
raw results, more detailed requirements are developed which can finally be used to perform the
product assessment [87]]. This fact makes it difficult to apply UCD to Requirements Engineering
in a sequential project workflow.

The cooperation with users usually takes place in terms of interviews or workshops as tem-

poral locality is required for external stakeholders like users. User representatives as well as
domain experts are participating only in these discussions, therefore an implementation of out-
going RE techniques are to be implemented not according to UCD principles but internally to
the development team due to organizational constraints.
Beside interviews and workshops there are several other UCD methodologies that fit to the RE
process, especially in the phase of requirements validation. Those methodologies are including
usability tests or expert reviews which are applied to early prototypes or the requirements specifi-
cation itself. The workflow description of the requirements specification are therefore evaluated
with real users by comparing their workflows to the proposed ones and taking into account their
feedback modifications. Furthermore sketching techniques are excellent for establishing a com-
mon understanding of all stakeholders and to reveal ambiguities and potential problems of later
users caused by requirements. These early prototypes and sketches can be compared to style
guides and measures defined in the requirements specification at a very early point in time if the
described solution meets the expectations [[89].

Summing up it can be said that applying UCD principles to a development process is best
to be started during the phase of requirements analysis and specification. Involving users in
this process is more easy than in the concrete development process as it is less technical and
users are more likely to state their honest opinion in a creative environment as when testing an
already implemented prototype. Furthermore cost of rework can be reduced by allowing for
participation of users at an as early as possible point in the overall process.

40

3.6 Common Techniques

The wide field of Requirements Engineering contains various techniques and practices to be
employed in various phases of the RE process, where the selection of the right technique for
a given problem is necessary to implement RE effectively [[18]. In general it is not necessary
to select a specific technique and stick with this, quite contrary combinations of multiple tech-
niques showed to provide the best results. The use of different RE techniques base on the
project characteristics has been proofed in a case study which revealed that a pragmatic, project-
oriented combination of techniques has a positive influence on the success of the developed
system [53]]. Further studies even evidenced the need of applying alternative approaches to ana-
lyze requirements as it often is not possible to choose the correct technique in the beginning of
the process [3].

Concrete techniques in the field of requirements engineering usually aim at integrating the
various view points of different stakeholders, where three main parties have been identified for
usual RE scenarios. The three parties A, B and C as well as their relations are described by [3.4]
As the most obvious participants of the RE process are peoples who represent various stakehold-

Technology

\ o
i
L

Figure 3.4: Three parties in the Requirements Engineering process [3]]

ers, their organizations and especially the developing organization influences the whole process.
This is due to the fact that individual are bound to their organizations guide lines and tend to
represent their organizations interests even if their personal opinion is different. Technology
plays an important role in the RE process as it is usually rough defined by the participating
organizations and therefore the technical possibilities are restricted from the beginning at an
organizational level. Nevertheless technology also facilitates the participating individuals by
providing tools and offering possible ways of implementation and finally the produced outcome
will be a technological artifact. Handling the dependencies between this various dimension as

41

well as different positions of participants is the main aim of RE techniques.
Practical approaches to do so mostly focus on objects, functions and states to produce artifacts
that can be translated to a technical implementation of the requirements easily [32]]. Further-
more this focus helps to decrease communication barriers due to prior knowledge and bias of
the participating stakeholders. Widely used techniques in practice contain group elicitation,
prototyping and cognitive techniques, which are often hard to apply due to varying goals of
the involved parties and their physical distribution [34]. More structured approaches in use are
questionnaires and surveys which are easier to implement although they lack the possibility of
discussion and negotiation and therefore bear the risk of misunderstandings and ambiguities.
Requirements engineers in general should aim at facilitation of the stakeholder rather than
controlling them [53]]. This approach combined with adequate techniques leads to RE becoming
a more cooperative process of all affected parties. In RE there need to be enough possibilities for
discussion and negotiation and only detailed requirements that are agreed on should be finalized
and documented to generate more stable requirements which are less likely to change during
the implementation [/7]]. Beside the widely used techniques as interviews and document analysis
[[73]] which are easy to implement and do not required a sophisticated process, there are several
younger techniques which aim on user participation and early development of simple prototypes
and sketches. Those younger techniques are often coming from the field of software engineering,
especially in agile environments as those teams tend to be adventurous and give novel techniques
a try. Several techniques have proven to be useful and are getting wider acceptance over the last
years as they are mostly generic in their nature and therefore applicable to different domains as
well.

Interviews

A technique that is extensively used in practice for requirements analysis and gathering are in-
terviews [55]]. Various stakeholders as well as end users are presented several questions by a
team of requirements engineers, which can be done face to face in meetings but as well online
or using questionnaires. The questions may contain open questions as well as closed questions,
although open questions are more appropriate to identify new requirements as well as gaps in
existing specifications [28]. Closed questions can be an effective way to validate an existing
requirements specification.

Interviews and meetings that are moderated by questions are capable of eliciting non-tacit knowl-
edge of the stakeholders [[50] where the prior domain knowledge of the interviewee as well as the
interviewer plays an important role. The interviewer must be aware of in long lasting interviews
and complex domains are cognitive limitations of the interviewee especially difficulties due to
the limited capacity of the short-term memory as well as biases that influence responses when re-
calling from the long term memory. According to research one area that should receive attention
in the field of interviews is recall techniques that can be used to overcome cognitive limitations
of interviewees [[28]]. Interview questions therefore should be distinguished in domain-dependent
and independent prompting schemes where the ratio of both as well as the order of questions
may influence the result [9].

A categorization of interview questions is generally advised in literature in terms of question

42

types [46] as this categorization makes it easier for the interviewee to keep focus and keep the
context of specific questions in memory.

In general it can be said that interviews are widely applied in practice, although they are
mostly implemented in an ad-hoc manner. Literature and research in the field of psychol-
ogy revealed several risks and misunderstandings that can be caused by inadequate interview
techniques and proper interview methodologies are described. Nevertheless those sophisticated
techniques are hardly used in real world projects as they require extensive setup while ad-hoc
interviews often provide acceptable results.

Workshops

The workshop technique is quite similar to interviews as it is based on social interaction and
discussion. Although there are several important differences that can significantly change the
outcome of both techniques. When conducting a RE workshop all stakeholders, or at least a
significant group of them, are assembled in one meeting. In contrary to a usual meeting a work-
shop is facilitated by a requirements engineer who is not participating in discussions and may
use various tools and activities for guiding the workshop. Based on this dedicated facilitation
and the employed activities a valuable outcome can be ensured.

Having all stakeholders together at one big conference leads to more discussions than individual
interviews as each participant is enriched by the statements of others and can either contradict
or extend them. This leads to more valuable outcome and lowers the later effort for aligning the
opinions of the participants.

Although there are several positive implications of the dynamics of group discussions they bare
risks as well. Statements and requirements of individual participants can cause long-running
and emotional discussion which endanger the positive ending of a workshop. Groups discussing
requirements without dedicated facilitation tend to get stuck with details and positions of stake-
holders may get hardened which makes it difficult to negotiate agreements later on. Therefore
a dedicated and competent facilitator who has sufficient domain knowledge and is respected
by each participant is required to perform efficient workshops. Several common techniques for
group discussions and creativity workshops can be employed by the facilitator although they are
not especially designed for requirements engineering.

Overall workshops should be preferred over individual interviews as they generate deeper
insights and make it easier to align the requirements of all participants as they contain basic
negotiation processes. Nevertheless workshops should only be chosen as a tool when there is a
dedicated and competent facilitator available.

User-stories

User stories are a special form of requirements representation and specification which originates
from the area of agile software development. Requirements are stated in a less formal way by
sentences expressing the users goals formulated in the end users language. A common pattern
of a user story is ,,As a user want to [...]. ““, where more detailed patterns take into account user
groups and the larger goals they want to achieve by patterns similar to ,,As a [...] [want to [...]
in order to [...]. “. Although the basic principles of user stories remains to state users wishes in

43

their natural language, the patterns are to be seen as guidance so any kind of description of a
users goals and actions are valid user stories.

During requirements analysis a list of such user stories is collected where each of them rep-
resents a single requirements for the later development. If there are complex workflows that
require several user stories to be executed sequentially the concept can be extended by epics.
An epic is stating a larger goal of a user, which is afterward split into several user stories. In
the later development process, each user story is implemented as a whole before the next one is
started according to agile principles. This ensures that each requirement is implemented entirely
and each need of the users is met. Furthermore this leads to early testable prototypes as after
each iteration of implementation there is a completed user story that can be tested by users and
the stories behind can be adapted or extended if necessary.

User stories allow users to participate in the RE process easily as they can speak in their nat-
ural language and state their goals without taking care of technical constraints of formalisms.
According to research, defining requirements with user stories is a way to facilitate the commu-
nication between business and engineering roles and increases the probability of capturing and
meeting the customers’ expectations [7].

Conclusively user stories are a way to ease the participation in the RE process for users, es-
pecially coming from non-technical domains. Nevertheless this method does not define measure
to check if requirements are correctly met by the product as they treat a requirement as fulfilled
when the corresponding user story and its implementation are accepted by users. User stories
are especially useful in agile environments that adjust their implementation process to them and
implement one complete story at a time. Introducing user stories to more sequential approaches
or processes that split the whole product into components that are implemented independently,
user stories can be complicate the implementation of the product.

Prototypes

Prototypes are highly valuable for requirements engineering especially in the phase of require-
ments analysis as they can be used to ensure a common understanding of requirements and
processes of all stakeholders. Furthermore in contrary to abstract discussions running through
a demonstration scenario helps to focus users’ attention [73]. Prototypes in this context can
be more advanced artifacts like partial implementations but as well sketches and simulations of
products. One technique that showed to be especially useful in the field of RE are paper proto-
types which are widely used in software development.

A paper prototype is a representation where each interactive or dynamic element of a user inter-
face is represented by a piece of paper where the respective Ul element is drawled on. Those
paper elements are assembled to a mockup implementation of the UI. After doing so, the user
is asked to carry out a specific workflow or action by typing the elements with his finger that
he would click in a real implementation. When the user has typed an element the requirements
engineer reassembles the elements according to this action, therefore is simulating the systems
behavior. By doing so misunderstandings and design flaws can be identified at a very early point
in time before effort is put on technical implementation.

More advanced prototypes like raw implementations should be used later in the process to ensure
the correctness of requirements as well as the understanding of the implementation team. Pro-

44

totyping techniques are especially useful for requirements re-engineering where an implemen-
tation of the system is already available. This implementation should be treated as a prototype
and therefore be employed at the RE process for redesign by running through demonstration
scenarios to identify usability lacks and reveal requirements that have not been covered so far.
Requirements re-engineering based on an existing implementation, which can be a prototype
as well, are also referred to as artifact based requirements engineering. Research showed that
artifact based elicitation can be surprisingly effective, especially in combination with detailed
questioning techniques [73]].

Overall prototypes are one of the best possibilities to ensure common understanding of the
system and the requirements of all stakeholders as well as they help to keep users focused. Re-
quirements engineers need to be aware that a prototype is often the more valuable the simpler it
is as users tend to retent design issues and disaffection if they think that the current implemen-
tation of the prototype already took a lot of effort. Therefore early and simple prototypes like
sketches and paper prototypes should be preferred over complex interactive prototypes to gather
honest feedback of users.

Wire-frames

Wire-frames are a special type of sketches which aim at demonstrating workflows and are usually
used during the design of complex software user interfaces. Executing a whole workflow in a
software product usually requires the user to put several actions where each action results in a
at least partial changes of the screen, as each step of a workflow is represented by different Ul
elements. Although simple paper prototypes and sketches are useful to design single views and
interaction steps, they lack the representation of long running workflows. An exemplary wire-
frame is given in[3.5]
Wire-frames cover this gap by a raw representation of each view that is to be seen at any point
during the workflow. Those sketches of single screens do not need to be very detailed, they just
need to contain the necessary interaction elements to proceed to another step in the workflow.
After all those single screen catches are collected, each interaction element is linked to the screen
which will be displayed when it is employed.
This allows users as well as requirements engineers to get an overview of the overall process
and identify potential dead-ends in navigation as well as points where users can get stuck in the
UI, which means they are not able to continue the workflow and have to restart.

Wire-frames are to be used for the representation of complex workflows although they are
usually limited to the domain of UI design in software engineering as they are hardly capable of
representing states of a mechanical system.

Easy WinWin

The Easy WinWin approach has been researched by Gruenbacher back in 2000 [26]] and is widely
accepted in practice since then. As identified by various research projects the WinWin approach
states the process of requirements engineering as heavily depending on the collaboration of
stakeholders with different backgrounds, objectives and expectations. The WinWin technique
aims at allowing each stakeholder to participate in the RE process and to enable them to get

45

their individual goals fulfilled. To do so it is necessary to provide methodology and supporting
tools that are easy to understand by technically non-savvy participants although they need to be
able to generate deliverables which meet the technical standard required by the implementing
engineers.

To allow each stakeholder to state their opinions and motivations, the WinWin approach utilizes
four types of artifacts where the first ones are Win conditions which are in the following ex-
tended by Issues. Based on those Issues Options are identified which finally allow to generate
agreements. Win conditions are stating the goals and objectives of individual stakeholders where
each participant is free to state as many Win conditions as there are important for him. Issues
are added to those conditions by other stakeholders as they see potential problems with specific
conditions. If a Win condition keeps left without Issues they can become requirements directly.
The identified issues are extended by options that may either allow to adapt the Win condition to
not cause the Issue or suggest possible solutions for issues without changing the Win condition.
When all options are identified, the affected parties negotiate to define agreements which are
added to the conflicting Win conditions in a final step. In parallel to those artifacts a glossary
of terms should be maintained to ensure the correct understanding of the artifacts by all stake-
holders. Generation of the described artifacts cause discussions to take place in a structured way
focusing on the important parts that cause disagreements. Furthermore the produced outcome is
defined in a structured way which is capable of being utilized by development teams to structure
their implementation process.

An extended structure of a requirements elevation process is depicted in [3.6] and defines
concrete steps to generate the described artifacts. At first a domain taxonomy is elaborated
to allow for better structuring of revealed Win conditions. Consecutively the Win conditions
of all stakeholders are brainstormed followed by a dedicated process step to converge on Win
conditions, where the main goal is to clean out redundancies and organize the Win conditions
in more abstract taxonomy elements. Beside this the used domain language is captured by
establishing a glossary. The identified Win conditions are prioritized afterward and then based
on their priority conflicts and constraints for those conditions are examined. Based on those
constraints and conflicts are represented by structured issues and options to overcome those. In
a final step agreements on those issues and options are negotiated by the affected stakeholders
which are mapped to the previously defined taxonomy.

A positive affect by following this approach and the structured representation of artifacts
allow for distributed and asynchronous development of requirements which is supported by spe-
cial collaboration tools as well. Dedicated meetings and direct interaction of stakeholders can
be limited to the steps which require negotiations on agreements, although the whole process
can be implemented in terms of workshops as well. Further positive impacts by utilizing this
approach have been identifier in case studies [26] and are reduced cycle time as well as an in-
creased number of created artifacts. Reduced cycle time is achieved as the approach allows to
work on multiple Win conditions in parallel as most of them will not affect each stakeholder.
Therefore only the affected stakeholders are required to work on specific conditions while others
can continue with different Win conditions at the same time without missing important informa-
tion. The increased number of artifacts, meaning Win conditions, options and agreements which
are collected in a structured manner are positively affecting the later implementation process.

46

Goal oriented approach

According to goal driven approaches there are two different perspectives to be considered in
requirements engineering, namely organizational modeling which is focused on the systems
stakeholders beside decisional modeling which is done by decision makers on customers side
as well as the side of the developing organization [23|]. The goal oriented approach proposes
to analyze the requirements of both parties independently and following different processes,
which results in two requirements models of the system which are consolidated and negotiated
afterward. The approach is mainly based on semi-structured diagrams representing each parties’
point of view and their goals.

Organizational modeling is therefore divided in three phases which are goal analysis, fact
analysis and attribute analysis. Starting with goal analysis actor and rationale diagrams are
produced to provide an overview of all stakeholders and the interferences between them. This
is implemented in terms of an actor diagram in which actors represent agents, roles or posi-
tions within their organizations. Afterward the the goals of each actor are analyzed in more
detail producing a rationale diagram for each actor. Coming to fact analysis those diagrams are
extended by facts which are valid for one or more stakeholder and which are driving their behav-
iors. Finally the diagrams are extended by attributes which are given a value when identifying
facts [23]]. The whole process is iterative where each iteration is based on the diagrams produced
in the previous one.

Decisional modeling is focusing on the goals of decision makers, which means those actors
that play the most important role in the decisional process [23]]. This process contains the phases
of goal analysis producing rationale diagrams, fact analysis extending those diagrams by facts,
dimension analysis adding dimensions to those diagrams and measure analysis which are finally
adding measures. Similar to organizational models stakeholders and their goals are identified
and known facts are added. In the phase of dimension analysis each fact is related to dimensions
that decision makers consider necessary to satisfy their goals. Finally measures are defined for
each fact in respect to the relevant dimensions [23]].

The goals resulting from both processes may be completely different although the acting
individuals may widely overlap. Therefore this process is capable to consider the various points
of view of individuals in terms of decision making and seeing themselves as stakeholders of
the product, where both information is highly relevant in the later development process. After
both areas are analyzed the identified requirements need to be consolidated and validated, which
may require negotiations as conflicting requirements may occur between the two perspectives.
Although this process takes additional effort, taking into account both perspectives allows to
react to business events that dynamically happen during the projects life-cycle quickly as all the
relevant information is known and relations between requirements are disclosed.

47

Automated approaches

Although requirements engineering is mainly a process of social interaction and discussion,
there are several approaches to automate at least parts of this process. Requirements analysis
can hardly be automated as users individual needs and environments can not be captured in a
structured way. Nevertheless there are various approaches for structured representation of re-
quirements which allows for later atomization of requirements validation and management. A
structured representation of use cases is contained in the UML standard, which allows for auto-
mated processing of those use cases once they are defined. One approach of formal and use-case
driven requirements engineering for automated validation and tracking of the requirements has
been researched [48] is possible to be implemented. Although the representation of requirements
according to UML standards is not widely accepted in practice by now as it is an costly process
to capture use cases in UML notation.
A different approach for automated requirements validation is described in [43]], which is based
on the fact that mental models of a system, as they are built by each individual during RE pro-
cesses, can be represented as networks-state transition diagram which basically means to repre-
sent the system to be implemented in terms of complex state machines. Research is carried out
to pathfinder networks can be used to categorize requirements and discover misunderstandings
about requirements between stakeholders based on these networks in an automated manner [43]].
In theory this could lead to a formal verification of the consistency of a set of requirements which
is one big challenge of today’s requirements engineering processes.
Finally there is also researched carried out on extracting structured requirements from natural
language descriptions. A proposed tool searches informal documents used during requirements
specification for terms that have been identified as quality indicators to extract a complete and
structured list of non-functional quality requirements. Although is has to be stated that these
tools are not capable of ensuring the correctness of the extracted requirements themselves [86]].
Summing up there are various efforts on tool support and automation for the process of
requirements engineering. Proposed tools are mainly focusing on later stages of RE like re-
quirements validation and requirements management, as this are main tasks in today’s RE pro-
cesses and are based on processing already existing requirements. Nevertheless the process of
requirements analysis requires human interaction in terms of discussion and negotiation and can
therefore hardly be automated. Automated tool for requirements engineering are hardly used in
practice as they mostly require a strict formal representation of requirements which is costly to
generate.

48

[c9]l surerjorim e jo ojdwrexy :g°¢ danSiq

siusped ()

UL

i

T o | SRR

asay AeWWNSaWOS

(=) a1y uaned (o) |

swodjeM (FEED)

G eseasiq ()

(=50 weped ([=%) syuaned (]

49

Brainstorm
stakeholder
interests

Elahorate domain
taxonomy

taxanomy elements and ideas and ideas

Converge on win . Capture domain
conditions i language
categarized win condilions - !

Prioritize win
conditions

Transfer of artifacts ——»
Viewing of artifacts ------- +

o ; Legend:

calegorized, prioritized win conditions. ‘,” glnssavy‘nl' terms

glossary of tarms

Efaborate
contflicts and
constraints

issues
options -

wmrondans | Map negotiation
Elaborate issues | ! Negotiate issues P neg
doptiong [Ssuesandoptiens =) agreements) results o
an oplions taxonomy
greements

Figure 3.6: Easy Win Win activities

CHAPTER

Function Analysis

4.1 History

A basic definition of the techniques of function analysis was given back in 1947 for describ-
ing systems and products. Since then various techniques have evolved based on than original
methodology which are used in manifold application areas. Though the basic principles from
the originating definition of functional analysis remain the same until nowadays.

Relation to Value Analysis

Function analysis did arise as a single approach but together with value analysis as the basic
method of value engineering originally proposed by Lawrence D. Miles in 1947 [52f]. In this
original description of the methodology Miles defined three basic paradigms:

e Practical values for the customer are to be converted to functions. The functions of a
product found its serviceability and provide the user with the desired worth.

e Practical values require functions which make the product fit for purpose while the pres-
tige value require functions that cause the selling of the product.

o The recording of the desired functions of a product or the expected execution of a service
are the basis for determining its value.

According to that the clear determination of the desired functions is the cornerstone of value
analysis. The first of the three basic steps is the identification of the functions, where each
product fulfills at least one main function and as the case may be additional auxiliary functions.
Each of these functions can be defined sufficiently to define the core of the function by using
to words - one verb and one substantive. This verbal denotation of functions is the base of
functional analysis.

51

FAST - Function Analysis System Technique

By applying this basic concept of function analysis a large amount of functions is generated to
describe an arbitrary system or product, although these functions are not structured and the main
function can not be distinguished from various auxiliary functions. So called FAST (Functional
Analysis System Techniques) proposed by Charles W. Bytheway helps to find remedy for this
problem as it is capable of not only identifying the main function but as well revealing the
relations between the individual functions. To do so, nine core questions are applied to the
functions which allow for the creation of a FAST-chart. Such a FAST-chart is the certificate of
a concluded function analysis. Bytheway described the value of a FAST-chart as not as big as
the value of thoughts and creativity which where put to its creation. Therefore the FAST-chart is
just a tool to stimulate creativity in the process of its application.

The area of application of FAST broadened and FAST was used as a tool for better plan-
nings and their enforceability as well as an efficient communication tool, which supported the
cooperative understanding during planning processes. During the further procedure the focus
of approaches shifted towards FAST-charts which where originally seen as a tool to stimulate
creativity. Defined formats where developed which FAST-charts should adhere to and further
terms like superior functions, base function, derived function, constant function, parallel func-
tion as well as undesired function where introduced. Another extension by T.J. Snodgrass de-
notes superior functions as tasks with subordinate overall functions as well as four additional
functions. Those additional functions are defined as gain/comfort, reliability, satisfaction and
impression/prestige. Those dimensions should ensure the acceptance of the product by the cus-
tomer.

Value Engineering Function Charts

Another extension of the basic function analysis technique from Miles are given by Arther
E. Mudges principle of Value Engineering Function Charts (VEFC) which where proposed in
1965 [57]. The basic idea of this approach to develop a chart which reveals overlapping and
cost intensive functions and therefore enable an objective evaluation and cost reduction of the
construction without harming the essential function of the product. In a VEFC the essential
functions are denoted at the top while the functions of its parts are listed below. There is no
special logic in the linking of the functions, therefore VEFC is a method for the structuring of
functions for the goal of cost reduction. This method relies to the basic definition of functions
as verb and substantive given by Miles.

Enhancement of function analysis in Japan

Back in 1967 professor Masatusi Tamai founded the development of Function Family Trees
base on the function analysis according to Miles in his essay "How to build Functional Family
Trees’ [[75]]. In the same year he published the book Function Analysis [74] in which he gave a
critical analysis of VEFD, FAST and the method of Function Family Trees. When introducing
Function Family Trees, Tamai defined the following six goals of this method:

o Inspection of the adequacy of functions

52

Revealing of omitted functions

e Definition of function fields

Revealing of relations between functions

Identification of a development concept for the fulfillment of certain functions
e Definition of basic functions

In contrast to Miles and Mudge the Function Family Tree was described using technical terms
and therefore emphasized the technical aspect of this methodology. Furthermore FAST was de-
scribed as a method for the analysis of functions whereas the Function Family Tree is a diagram
resulting from those analysis. Therefore it holds, that FAST emphasizes the analytical process
and Function Family Tress emphasize the analytical results. In Japan the Function Family Tree
is the preferred form of function analysis since 1967. This fact was documented in 1984 by
a survey among 123 Japanese corporations, where 66% of those used Function Family Trees
whereas only 26% used FAST and 8% different techniques of function analysis [76]. Function
Family Trees are thereby still used in combination with the original definition of functions as a
verb and a substantive by Miles.

4.2 Terminology

The term Function Analysis is built by the terms *function’ and ’analysis’, where each of both
words requires a clear definition in this context which is to some extent different to the aldays
use of these words. The meaning of the terms is defined in [1]] as follows:

Function

In the field of function analysis the term function has three meanings:

The effect and activity of things *Thing’ can be interpreted in several ways, where material
objects can be treated as static and fixed whereas immaterial things are defined as ob-
servable events. The term ’function’ does not relate to static, fixed or observable circum-
stances but to operations or accomplishments of dynamic, interconnected things. Those
operations are what is analyzed by function analysis.

Functions emphasize purpose Operations can be ascripted to various things, so there are ac-
tions in the area of natural phenomenons or random events which analysis is a challenge
of natural sciences. Functional analysis deals with analysis of operations in the field of
products or services which aim at serving a purpose and provide value for human beings.

Functions are concepts Things that are static and fixed can be defined by there color and shape,
which is not the case for dynamic functions which are integrated in processes. Therefore
functions are concepts and the function analysis is the process of analyzing such abstract
concepts.

53

Analysis

The area of management methods comprises various analytical methods, but in general the term
“analysis can be defined as follows’:

o The dissection of something in its various components, elements and aspects.

o The classification and assignment of each of the different characteristics and attributes that
define a concept.

Therefore an analysis can be described as the definition of a concept or object by dissecting and
characterizing its essential components.

Meaning of Function Analysis

According to the definitions above he term function analysis deals with dividing concepts which
serve a defined purpose into their various components and defining their characteristic attributes.
Subsequently the following three dimensions of function analysis can be defined:

Impact of products and services Goods and services have diversified effects. The goal of
function analysis is to reveal these effects to define the character of a product or service.

Purpose of products and services All products and services have been created by there orig-
inator to serve a certain purpose. Function analysis reveals the intentions and goals that
caused the creation of a product thereby defines the character of the object for analysis.

Concepts of products and services Each product or service is based on an idea - a concept -
how it should fulfill its mission. Function analysis defines the character of the object of
analysis or the service by revealing these concepts and therefore the basic idea.

4.3 Field of application

Products are developed to be utilized by customers to support them in their operational pro-
cedures. Nevertheless product do not only have to satisfy customer requirements but as well
they must be producable and marketable efficiently for the manufacturer. This causes various
problems ranging from quality and security over technical constraints and customer support to
pricing and cost of use of products. To solve these problems it is necessary to analyze them,
where two main procedural steps are distinguished, namely analysis and synthesis. The anal-
ysis copes with revealing the problem and its causation whereas synthesis applies methods to
eliminate the problem and its source completely. To do so function analysis can be utilized
in different domains, where the most important one is the field of product development beside
process optimization and the design of services.

54

Product Design

Product design and development in general means as well the gathering of requirements to the
product or the recognition of problems as the planning of the implementation of the developed
steps and the accompanying process during the phase of implementation. As a cognitive human
process the development is a process which starts with the identification of goals [1]]. Afterward
this goals are approximated vie repeated phases of design and testing.

According to that function analysis can support product development by defining the product to
be designed in terms of functions and structure diagrams. In doing so the purpose of the product
is focused over the functions that are to be fulfilled by the product for the operator. Due to this
way of definition the solution space is not restricted while all relevant functions and relations
between this functions are recognized.

Process improvement and Process design

A process in general defines a combination of a special kind of actions or a defined sequence
e.g. a method of manufacture. In contrast to this general definition, the four areas of Industrial
Engineering (IE) - manufacturing, controlling, transportation and latency/storage - are denoted
as basic procedures. Are these basic procedures joined together, this composition is called a
process [1].

Therefore a process is designed to shape an object of arbitrary type and a related system is char-
acterized by a conversion process of diversified input variables (humans, material, information)
into output variables like products. Process improvement therefore means enhancing such a sys-
tem in terms of effectivity, whereas process design means to design such a system. Traditional
approaches for process improvement have been covered by industrial engineering which caused
several problems as those techniques usually focus on a detailed analysis and the recognition of
dissipation and their removal. This kind of techniques are hard to apply in process design. A
further issue is their focus on observable event, which means concrete conversions of the pro-
cessed objects, which often hinders abstract and exhaustive improvements of the whole process
while it optimizes sub-steps of it.

Function analysis on the other hand concentrates on functions as purpose driven actions
of objects, in the case of processes this means the analysis of purpose driven actions which
are defined for the conversion of physical objects. A functional point of view to processes
shows explicitly which conversion functions a process should execute and enables an approach
to development for production systems. This systems can therefore be developed based on
defined processes, where these processes are analyzed and defined with regard to their functions
to be executed.

Design of services

Despite the wide use of the term service or rendering of service, there is no distinct definition
for services. Things that are designed for consumers are usually divided into manufactures and
services, subsequently everything that does not include a physical good and still creates value
for a customer can be treated as a service. Once characteristics of services there is, that they are

55

immaterial, which means that quality and cost are usually hard to measure. To the same extent
the imaginations of producing and development are often blurred. Activities of indirect man-
agement widely share those characteristics of services and can therefore be covered by function
analysis as well. Function analysis allows for the improvement of services by treating them as
object of analysis and therefore focusing on their functions from a customer’s perspective. Ac-
cording to this, services can be analyzed and structured referred to the functions to be fulfilled by
them. Such a representation of services in turn enables the development of alternative solution
scenarios, the recognition of dependencies between partitions as well as the identification of not
needed components. Summing up it can be said that function analysis is capable of determining
the components in factual manner based on its functions and enables essential improvements
based on this functions.

Therefore the areas of application of functional analysis are eclectic, where the representa-
tion of the object of analysis in terms of structured function charts constitutes a level of abstrac-
tion that is common among all areas of application. The creation of this function charts differs
among the different domains while the structure of the definition of functions in substantive-
verb-form stays constant as well as the focus on representing the purpose and the created value
of the function. Based of the abstraction of the object of analysis in terms of functions the same
or at least similar techniques can be applied over various domains to reveal room for improve-
ment and effect improvements.

4.4 Methods of functional analysis

The methods of function analysis can be grouped in naming of functions and structuring of
functions. The process of the naming of functions copes with the definition and bounding of the
essential functions of the object of analysis. Based on this functions are put in relation to each
other to generate an clearly arranged picture of the system during the process of structuring of
functions.

Function Naming

The core objective of function naming are the definition, identification and clarification of func-
tions. In particular this means to define the borders of functions and fixing their meanings
as well as to recognize identical functions respectively to clearly distinguish between different
functions. To do so, function naming should be generally understandable and objective.

A product can generally be defined clearly by its physical properties, although this definition
is not sufficient from a users perspective as he is not primary interested in the physical proper-
ties of the product but the functions that the product performs. This constitutes the importance
of function naming, which provides the possibility to describe a product in a way that reflects
the concepts and goals of the customer. To do so functions are divided in utilitarian functions
and prestige functions. The former fulfill a purpose for the user, e.g. a fridge is used to con-
serve food. Prestige functions do not influence the operative effect of a product but cover other
aspects that are given value by the customer like design and presentation. During product de-
velopment the goals of the customer must be revealed which means to define the core functions

56

of the product. These functions are consecutively translated to construction plans and a physical
implementation of the product. Customer requirements can be understood as functions which
therefore allow a clear description of the object to be developed.

The naming of functions is an essential tool of function analysis and contributes to the
achievement of superior goals like

e Determination of functions to be developed or improved
e Evaluation of relations between those functions

e Creation of high quality products and services

e Evaluation of alternative products and services

A basic goal of function analysis is the development of value-based products and services, which
means to execute the required functions efficiently in terms of costs. To do so each function has
to be named appropriately to enable the following evaluation of relations between functions and
possible implementation scenarios.

Approach for function naming

To define the function of an object the question *What is its effect’ has to be answered in a struc-
tured way by using a verb and a substantive. This kind of verbal function naming conveys the
focusing on the target goals as the function is expressed in an easy manner. Further advantages
of this approach are the clear definition of each function and its general understandability. Fur-
thermore this objective way of definition which is focused on the functions effects conveys novel
ideas for technical implementations. Therefore the following basic rules should be considered
when expressing functions:

e generally easy understandable phraseology
o well-considered, unambiguous terms
e using word that are not directly related to the object of analysis

A function is generally described by one verb and one substantive, where the following
definitions need to be considered:

Verb The verb is the predicate, thus the meaning of the sentence and therefore the actual naming
of the function. Verbs are divided into transitive and intransitive verbs. In function naming
typically transitive verbs are used, as a function represents an (external) operation.

Substantive The substantive in this context is the object on which the function operates. Ide-
ally substantives with a specified function are used and identifiers of parts and products
are avoided. When such denotations are used this deprecates the function of its general
meaning in most cases.

57

Abstraction

Function naming by using verb and substantive provides the basis for idea generation and the
recognition of promising alternatives. This means that a function on the one hand has to be
technically correct and on the other hand fairly abstract to not reducing the room of solution.
Therefore it should not be limited to specific instruments of its execution. The naming of a func-
tion using verb and substantive is an abstraction by itself as words are abstract notions, although
the room of solutions is not extended when the tightness of the term used by the functions nam-
ing bounds the concept meant by it. Therefore special attention must be paid to the naming of
verbs and substantives, additionally this should not be done only for single words but as well
for the whole substantive-verb denomination. Although the room of solution is extended by the
naming, boundaries of the meaning of the function must be defined by it as well. Functions have
to be adequately concrete.

Quantifiability

Function naming also serves as the basis to define conditions for the evaluation of ideas and
alternatives. Thus the function should be easy to quantify to define the degree of fulfillment
corresponding to adequate criteria. The quantifiability in general mainly affects the substantive,
therefore the concerned object of the function. This should be named in a way that suggests a
quantifiable respectively measurable dimension. In some cases it can although be reasonable to
use a easily measurable verb as the basis for the degree of fulfillment.

Criteria in function naming

Function naming can either be restricted to substantive-verb-form or contain additional crite-
ria. Function in a narrow sense, meaning substantive-verb-form, servers as catchword or idea
generator for finding solutions. Function in a wider sense contains criteria for the evaluation of
the degree of fulfillment and for the purpose of rating alternative ideas and solutions. E.g. the
function of a watch is ’displaying time’, where this does not state that the current time should be
displayed correctly. Via an additional criterion like the maximum deviation in seconds a mea-
sure can be created which allows for the rating of alternative solutions. Criteria of functions are
dependent on customer requirements and are identified based on specifications and data. Not all
criteria are required for function naming, as function analysis focuses on the customers perspec-
tive only those criteria that are based on customer specification have to be considered. Overly
fixed criteria influence the process of idea generation as they limit the room of solution, although
they ease the separate determination of the degree of fulfillment and therefore the evaluation of
solution proposals.

Types of functions

Functions can be examined from different perspectives and serve the fulfillment of various needs.
This results in a rough categorization into the following types of functions, which relations are

depicted in 4.1}

58

functions functions

Functions

Necessary
functions

functions functions

Unnecessary
functions

Figure 4.1: Function types and their relations [1]

Utilitary functions
Utilitary functions serve for the fulfillment of a particular functional purpose. Nearly all
functions that refer to the inner mechanisms of products or their materials are utilitary
functions.

Prestige functions
Prestige functions are meant to satisfy the various senses of the customer. This functions
usually turn towards the artistic and decorative design of products. In particular fields,
e.g. retail products, it can occur that the value of prestige functions overcomes the value
of utilitary functions.

Base functions
Base functions give the right to exist to the object of the function naming, therefore they
vary depending on the object and the scope of the function naming and define the actual
purpose of parts of the product.

Secondary functions
Secondary functions are all remaining functions which support the realization of the base
functions, respectively additional function that are caused by the presence of objects al-
though they would not justify its presence on their own.

Necessary function
Necessary functions are functions that are required by the customer or are related to their
requirements.

59

Unnecessary function
This functions are present although they are not needed, therefore they provide no addi-
tional value. Unnecessary functions can be removed by changes to the construction. This
category also includes functions that become unnecessary due to changes to the construc-
tions. The removal of such functions can contribute to the cost optimization of products.

Function structuring

The process of function structuring aims at revealing relations between functions and ordering
functions according to a defined logic. To do so the functions are depicted in terms of a diagram.
For the creation of a FAST-Diagram the How-Why-Logic is used whereas a Function Family
Tree is based in the Purpose-Medium-Logic []1]].

There exist several possibilities to express a circumstance, where the main ways comprise de-
scriptive explanation, explanation via cause-effect relations as well as explanation based on
goals. Function analysis makes use of explanation based on goals, thus a purpose-medium-
logic, where circumstances are analyzed with respect to their nature to reach defined or revealed
goals.

Products are in general described based on their observable appearance, thus their physical
characteristics, whereas services are describes by involving their business activity and behavior.
According to function analysis each product and service aims at fulfilling specific functions.
Therefore each product as well as each service can be captured by capturing and structuring the
functions that they execute. To do so, FAST-Diagrams and Function Family Trees are utilized.

Function structuring is, as well as to function naming, a basic step of procedure in the course
of function analysis and primary pursues three goals:

e Determination of the next higher function that is to be fulfilled by the product or service
e Determination of relations between those functions
o Creation of alternatives to the analyzed products and services

Products and services are decomposed to multiple function where some of them are partial func-
tions and others are overall functions. Function structuring reveals partial and overall functions
and thereby defines explicitly which functions the product or service must fulfill. The identi-
fied functions are interconnected in manifold manners. Some functions only exist to execute
other functions and some can not be realized without others. Therefore functions can not be
analyzed independently and isolated as they are interconnected in many different ways. Further-
more function structuring reveals the philosophy that stand behind the development of a product.
When relations between functions are depicted using FAST-Diagrams or Function Family Trees,
this allows for the creation of alternative solutions for parts of the product and recognizing their
interplay with other functions and parts of the product at an early stage.

FAST-Diagrams

The structuring of functions using FAST-Diagrams serves to detect goal functions and to search
for the respective next higher classified function by asking why. This process stimulates the

60

creativity and allows to focus on the purpose of functions and thus to identify alternative so-
lutions. The persons that are engaged in the analysis of the object are in general also engaged
in the creation of FAST-Diagrams. The creation process of the diagrams helps to improve the
communication among team members by supporting the collaborative capturing of the functions
and their relations. The FAST-Diagram widely corresponds to a bottom-up approach where by
selective questioning for the *why’ of functions the superior functions and goals are identified.

Function Family Trees

Function Family Trees are based on the purposive-instrumental-logic. Thereby a goal function
gets assigned multiple instruments that are required to fulfill this function. So in general there
are various instrumental functions related to a single purposive function or are subordinated to
it. The instrumental function on the same level are thereby independent of each other and only
related by their common purposive function. The top-level purposive function or when indicated
also several purposive function that have no superior function can therefore be treated as the base
functions of the product, where all subsequent instrumental functions can be treated as secondary
functions which are necessary to fulfill the base functions. As instrumental functions on the
same level are independent of each other, this means a fragmentation to various components of
the system. A Function Family Tree therefore is proper to apply a top-down approach where,
based on base functions, the required instrumental functions are identified by asking "how’.

A combination of both approaches seems legit and reasonable, where based on a given func-
tion according to FAST-Diagrams its base function is identified and by using a Function Family
Tree the therefore required secondary functions are determined. It has to be considered, that
independent of the combinability of the approaches, they both use slightly different forms of
representation of the resulting diagrams.

4.5 Functional analysis in practice

The practical fields of application range from product improvement and process improvement
over product- and process development to improvement of immaterial services. Although the
individual areas differ in respect to details of practical implementation, the basic concepts are
common among all of them. Due to that, the following investigation focuses on the application
of function analysis for product development and improvement.

Product development means the alignment and determination of characteristic attributes of
a new product that should satisfy a certain need of a customer. Product development with the
aid of function analysis is composed of the three procedural steps of Capturing the object of
analysis, function naming and structuring of functions [1[].

Capturing the object of analysis

Product development is usually based on customer- or internal corporation requirements, which
are defined by a requirements specification. Although it can happen that this specification is
not complete and product development based in inadequate planning documents takes place.
Beside sound documents, the application of function analysis requires the gathering of required

61

information and the complete capturing of all requirements to the product. Are all necessary
requirements and information collected they have to be structured to get an overview of the
required functionality. After a classification of the heterogeneous information they can be col-
lected in a information-form and integrated into development. Thereby a compromise between
functions, production capacity as well as caused cost needs to be found. It is important that all
requirements and constraints are considered when doing so.

Function naming

Functions are effects that the products that are to be developed should cause. The explicit def-
inition of this functions is therefore the starting point of the development process. Due to that
the functions that allow the derivation of product functions are selected among all the already
developed functions. The gathered requirements contain demands to the product that can be
rough partitioned into its functions, distribution and economic aspects as well as fabrication and
supply. Some of those requirements can be translated to product functions, although this is not
possible for all of them. Such requirements that can not be translated to product functions nev-
ertheless have to be considered during the development process, as they affect the construction
of the product without directly influencing its functions. To do so this functions are converted
into criteria, attributes or solution caused constraints for the identified functions.

For each requirement that has been selected for function naming the corresponding function is
denoted in substantive-verb-form. The respective requirement is described in an narrative form
which has to reflect the function to be executed be the product exactly.

All functions that have been identified underlie certain restrictions in respect to the degree of ful-
fillment. The following step is therefore the definition of this restricting measures and conditions
and their assignment to functions. Such criteria are based on requirements to quality, distribu-
tion and production. A essential question hereby is *Which criteria restrict the functions?’. The
final result of this step is a list of functions that have to be implemented by the product, where
each function may have assigned several criteria which restrict it or define its measurability and
degree of fulfillment.

Structuring of functions

Each function that has been captured during the phase of function naming is transferred to a
function card [1]. There have to be as many function cards as there are functions in the list,
where the substantive-verb-form of the function is denoted on the card at the proper location. At
first one function is selected randomly and its goal is analyzed by asking *why?’. Consecutively
the one function card is selected that answers this question and is put to the left side of the initial
card. If there is no card containing a function that answers the question appropriately a new
card with a new function is created and put to the left side of the initial card. This process is
repeated until a answer is outside the scope of the current goal of development. The functions
are structured by applying this process to all the initial function cards. In case it is not possible to
produce explicit goal functions, the function namings have to be reconsidered or the collection
of functions has to be completed.

62

When all functions are positioned according to their functional sequence, the correctness of this
sequence is approved by asking the following questions:

e Can the goal function be satisfied by its instrumental functions reliably?

o Are the instrumental functions dispensable when the goal function is dispensable?

e Are the base functions that the product has to fulfill depicted completely?

e Can the concept of product development be derived from the functional sequence easily?
Functions should be added or corrected when:

o instrumental functions do not satisfy the goal function reliably

e instrumental functions serve others than the necessary goal functions

The corresponding criteria to the functions are afterward added to the final Function Family
Tree. When all criteria that have been identified by the process of function naming are enlisted
in the tree it has to be checked wether all criteria that are caused by development requirements
are represented in the tree and they have to be added in case.

The resulting function tree represents a technical basis for the execution of product develop-
ment. The tree contains as well main functions as additional secondary functions that have to be
fulfilled by the product. Due to that the function tree becomes the basis of solutions that satisfy
all required functions and therefore contributes to the completion of concepts.

The functions that are depicted in the tree are of different kinds, where the overall product de-
velopment is completed by implementing the main function as well as the instruments to fulfill
this functional sequence and those of the secondary functions. Thus the final step of function
analysis is the definition of this main functional sequence in the function tree. which meas the
one functional sequence that defines the basic procedure of product development. In most cases
there is only one main function which covers the most important basic function, in some cases
there may occur two main functions [1]].

Adaptions for product improvement

Product improvement means the redevelopment of a product based on an existing product to
achieve improvements, optimize costs or increase quality. The procedure for product improve-
ment is very similar to the one used for product development, where prior to the capturing of
the object of analysis the topic of the improvement needs to be defined which influences the
subsequent activities respectively their input data.

The selection of a topic means the selection of a certain product of the sortiment to be
improved or, in most cases, a certain component of a product. Is this component used in multiple
products, a directed improvement of the component can cause simultaneously improvements
of multiple products. In rare cases product improvement means improvement of the whole
product [[1]], where the reason is that problems like quality deficits or cost usually are not caused
by all but by certain parts of the product. Once a topic for improvement is selected its boundaries
must be clearly specified to define the range in which function analysis is applied.

63

The following steps for capturing the object of analysis, function naming and structuring of
functions take place as in the case of product development. Thereby it has to be considered at
the time of analysis, that only requirements and criteria are taken into account which affect the
selected topic and such that affect different parts of the product are not brought to the following
process. At the time of function structuring respectively the identification of the goal function,
the scope of improvement that is defined by the topic has to be considered to know when the
appropriate level of abstraction is reached.

4.6 Discussion

The methods of function analysis originate back in 1947 in the first proposal of the technique
by Lawrence D. Miles and have been improved and developed since then, thus this methods
experienced a much longer development process as many of today’s techniques for product de-
sign and product development especially in the field of software engineering. The methods of
function analysis are per se not appropriate to carry out classical requirements engineering as
they assume that the requirements to the product are already known. Although function analysis
constitutes as a connector between requirements gathering and the product implementation itself
by translating the unstructured requirements and needs of customers into a structured represen-
tation of the product. Function analysis is therefore a appropriate way to derive a structured
representation of the product to be developed from qualitative descriptions on different levels of
abstraction, where it takes care that all the gathered requirements are included in the final repre-
sentation of the product, measures are defined in an appropriate way and a sufficiently technical
depiction of the product is created to support the following process of product implementation.
The techniques of function analysis mainly originate from the field of manufacturing processes
and their management wherelse many of today’s common techniques for requirements engineer-
ing originate from the field of software engineering. None of the widespread processes attempts
to combine the advantages that arise from both methodologies that originate from different do-
mains. Although commonalities can be seen at various points, so the differentiation of functions
and criteria basically equals the differentiation in functional and non-functional requirements.
Similarly the analogy between base functions and instrumental functions to user stories and
epics in agile software engineering is almost obvious.

This at least partial similarity of basic concepts suggests to combine the benefits of both ap-
proaches, especially as they apply at different phases of the overall development process and
therefore could setup on each other.

64

CHAPTER

Integrated Approach

The preceding investigation on common requirements engineering techniques in the field of
software engineering as well as User Centered Design and Function Analysis reveals that there
is potential for approaches which combine those disciplines. Although all of those fields of study
are related to product design and definition of requirements they originate from different fields
of application where the mentioned techniques for requirements engineering are common in
today’s Software Engineering projects, especially in an agile environment. UCD and especially
Function Analysis on the other hand are widely used in production environments which focus
on manufacturing processes and product design in general.

There have been several approaches in the past that combined best practices from one field and
either combined them to existing approaches in a different one or even ported whole approaches
to a different domain. The most widely used of this approaches is Kanban in the context of agile
software development. The process of Kanban defining a production process by different phases
which provide the input for following stages based on a pull-strategy was initially implemented
at Toyota in the field of car manufacturing. Nevertheless the abstract process was translated
to the needs of lean software development and serves as the basic development process for
agile software development teams nowadays [47] [41]]. Success-stories like Kanban show, that
combining approaches which are originating from different domains offer large potential for
improvement of development and design processes.

5.1 Potential

The desccribed approach is combining the strengths of agile requirements engineering in the
field of software development and the strengths of Function Analysis and UCD which is widely
applied in manufacturing domain. Agile requirements engineering offers lots of tools to dis-
cover requirements of users in their totality, including latent knowledge of users. Most of those
techniques are mainly based on the involvement of the users of a product which makes those
techniques very tightly related to User Centered Design approaches. On the other hand most

65

of those techniques lack the capability to develop a structured, abstract representation of the
product to be developed. In common approaches requirements are collected in a quite unstruc-
tured manner in terms of user stories or similar textual representation. The entirety of those
user unstructured requirement is referred to as product backlog, which is during the further pro-
cedure implemented step by step without a structured preparation. This leads to the fact, that
agile processes in software development are capable of dealing with this unstructured backlog
of requirements by implementing iterative approaches which make them highly adaptable to
changing requirements as each iteration focuses on some particular elements of the backlog.
Nevertheless this approach provides high flexibility to uncertain domains, it is not adequate for
all kinds of projects. Especially projects in a well known domain like the re-design of a product
or projects causing traditional development models for any reason loose the capability of gen-
erating a structured representation of the product and therefore upfront planning if they employ
this kind of requirements engineering.

Function Analysis on the other hand provides the capability to prepare and abstract description
of a product to be developed at the design time. This allows for more accurate planning in
later stages of the development process. Function Analysis allows in particular to generate a
structured description of the product in a way that is sufficient for the following implementation
process to be based on this description. Nevertheless Function Analysis by itself does not define
how the initial requirements for a product are collected. Therefore this approach can be com-
bined with UCD techniques for collecting requirements directly from users an das well be well
supported by requirements engineering techniques from agile software development. In later
project phases Function Analysis is as well capable of dealing with changes to requirements at
a later stage in a structured way which is currently implemented by a unstructured backlog and
flexible development process in the field of agile software development.

5.2 Combination of techniques

The described approach is referred to as Function-Requirements-Elevation as requirements en-
gineering in a way that aims at apllying function analysis directly to the revealed customer
requirements. To do so common techniques of requirements engineering are used to reveal
functional requirements as well as both functional and non-functional requirements of users
which are contained in latent knowledge. This process of identifying customer requirements
goes hand in hand with the principles uf User Centered Design, which allows for discovering
of the individual requirements of specific groups of users, which may differ drastically between
groups. This fact is not especially targeted by most wide spread approaches for requirements
engineering nowadays. Requirements are collected in a semi-structured way which allows for
an easy translation to functions, where each function correponds to a requirement that has been
identified beforehand. Based on this functions a Function Family Tree is developed, which rep-
resents the product to be developed while it contains all the users requirements. Changes to
this requirements at later stages can be added to this Function Family Tree as well as this tree
allows to define the course of action for the product implementation basedon the prioritization
of paricular features.

The fact that this approach is explicitly able to deal with requirements of multiple user groups

66

offers high potential for the development and design of products which are used by diverse
types of user which is especially relevant today in the area of gender sensitive product design.
Futhermore this fact makes the proposed approach as well applicable for Lead-User based de-
velopment approaches. The whole approach does not require the user to be aware of Function
Analysis by using the strengths of nowadays techniques for requirements engineering and user
centered design which allow for the participation of users without any previous knowledge of
the techniques.

The main steps of the integrated approach for requirements engineering which is proposed
in this work are depicted in figure [5.1] Each step is described in more detail in the subsequent
sections. The two last steps of the depicted process are seperated in terms of color as they are
not crucial for the requirements engineering process itself. Nevertheless they can be useful in
specific situation when either there is an existing implementation of the product that is to be
revised or a more detailed analysis of the differences between the user-groups is required.

Definition of user-groups

Gathering of Function-
Requirements

Prioritization of
requirements

Aligning abstraction levels

Categorization of
requirements

Consolidating requirements
among user-groups

Building a Function Family
Tree

Evaluation of current
implementation

\

'S N

Comparison of user-groups

L

Figure 5.1: Main steps of the proposed integrated approach

67

Defintion of User Groups At the very beginning the various groups of users need to be outlined
and each participating user is assigned to their corresponding groups. This step is optional
as defining just one large group of users is valid as well and will simplify the further
process. Nevertheless the capability of handling requirements of multiple distinct user
groups is one of the biggest surpluses of this approach.

Gathering of Function-Requirements For each user groups requirements are gathered sepa-
rately. In contrary to common requirements engineering techniques the resulting require-
ments are documented in terms of structured functions instead of user stories.

Prioritization of Requirements The collected requirements are prioritized by classifying them
in a predefined scheme. The prioritization is done for each group individually with partic-
ipation of users as well as the product design team.

Aligning abstraction levels Each of the collected requirements needs to be transformed to fit
to a certain level of abstraction. This step is performed by the product design team based
on the users Function-Requirements.

Categorization of Requirements The Function-Requirements which are defined on an com-
mon level of abstraction are categorized in modules of the product to be design or in
clusters collecting Function-Requirements that correspond to related features.

Consolidating Requirements among user groups The Function-Requirements of all groups
are merged together, where duplicates can be eliminated. Contradictions in requirements
between groups should be identified and handled at this point.

Building a Function Family Tree Based on the resulting list of Functional-Requirements a
function family tree can be built which serves as guidance for the further implementa-
tion process as well as requirements management.

In the case of product re-design, two additional steps become necessary:

Evaluation of current implementation After the step of Prioritization of Requirements the
current implementation of the described functionality is rated by the participating users.
The evaluation may range from ’perfectly implemented/ do not change’ to "not usable/ not
implemented at all’.

Comparison of user groups Product re-design is often triggered a the fact, that specific groups
of users are not satisfied by the product. To counter this situation, before the phase of Con-
solidating Requirements among user groups, the requirements of the analyzed user groups
are compared to each other. Doing so may reveal insights about which requirements are
specific to a certain group and which are common among several groups of users. This
knowledge allows to prioritize requirements for the following re-design process as well as
it enables tailoring of the product to fit the needs of specific groups in particular

68

5.3 Definition of User Groups

In a first preparative step to requirements analysis the future customers of a product need to
be identified. Doing so is a necessity for each requirements engineering process. In case the
potential user base is very large as it may be the case for retail products, the field of User
Centered Design provides various methodologies to select an appropriate subset of users that
represent the overall customer base and are willing to participate in the process of product design,
e.g. the Lead User approach.

Once the users that will participate in product design are identified, they should be classified
into several user groups according to specified criteria. The criteria which are characterizing the
user-groups are not limited an may include biological properties like user’s age, body height or
gender as well as socially defined properties like education, experience, income or marital status.
Depending on the product to be designed there may be various factors which are supposed to
influence users requirements and view to the product. Each of those factors should be expressed
by a characteristic which can be measured for each participating user and therefore allows to
divide the users into initial user-groups. Selecting participating users and defining the criteria
that divide them into groups should consider the fact that each group should be about the same
size of users. If one group is noticeable larger than the others, this may result in the fact that
the requirements of this group gain a higher presence in resulting Function Family Tree and
therefore the resulting product.

Once the user-groups are defined and each participating user is assigned to one group the
initial definition of user groups is finished. Nevertheless it is absolutely valid to re-assign certain
users to a different group at any point of the process if it turns out that they are not comfortable
with the received opinion of their current group. In this case, the relevant users may be simply
assigned to another existing group and participate there for the following process. In special
cases it may also happen, that the initial definition of user groups turns out to be not valid
in parts or at all. This is likely to be the case when there is a user-group that hardly finds a
consensus on their requirements and priorities, or if several users are misplaced in their groups.
In this case, the respective users can be arranged to a completely new group. If the user groups
seem to be inappropriate overall it may be the best choice to redefine all user groups and start
the whole requirements gathering from scratch.

5.4 Gathering of Function-Requirements

Once the user-groups are set up, each group developes their requirements. Similar to agile tech-
niques which often make use of user stories, requirements are collected in a defined format
where each member of the group should participate and state their personal requirements.

In contrast to user stories, requriments are defined as functions, which means they are deonted
as a verb and a noun. This representation is referred to as function-requirement, where each
function-requirement should describe one specific task that a user wants to be accomplished by
the product. At this point the level of abstraction of this requirements is not defined, therfore
the functions may describe very specific parts of the product as well as the overall workflow
that is represented by the product. Nevertheless more detailed function-requirements should be

69

preferred as they allow for a more detailed product description later on. Similar to many other
agile techniques, requirements are collected during moderated discussions or workshops with a
group of users usually. In some cases it may also be more adequate to have individual inter-
views with single users to identify function-requirements. Nevertheless it should be considere,
that group dynamics may reveal unconscious requirements that would not have been collected
in personal discussions. A especially useful technique to collect function-requirements are fo-
cus group discussions [40]. In particular this means widely free group discussions, where one
moderator guides the discussion to avoid sticking at details or focussing on special areas of the
product that are the considered as especially important.

Once a user discovers or states a requirement that they want to be fulfilled by the product, they
write their requirement down on a special function card, which defines dedicated areas for for-
mulating a funtion in the verb-noun format.

5.5 Prioritization of Requirements

The function-requirements that have been collected in the previous step need to be weighted ac-
cording to their priority for users. This is not done immediately during the phase of requirements
gathering for two reasons. First, users should get an overview among all the identifier function-
requirements to ensure correctnes of relative weightings among requirements, second is that it
may take other users than the one who identified the requirement some time to fully understand
the impact of the requirement in the overall product context. As all users should participate in
prioritization of requirements it is reasonable to perform this weighting in a separate step.

In the most simple case requirements are just marked as important or not important where the
first group collects requirements that are essential to be met by the product whereas the second
group collects requirements that represent nice-to-have features. In this scenario it is very likely
that the majority of requirements will be marked as important unless the phase of requirements
gathering lasts very long to give the participants enough time to identify nice-to-have require-
ments once they are done with collecting crucial requirements. In more complex scenarios each
kind of graduation of importance is valid which may be expressed by labeling as well as by a set
of numbers. The important thing to keep in mind at this phase is, that requirements are priori-
tized relatively to each other as this prioritization affects the sequence of implementation later
on. Nevertheless it is valid to assign the same relative priority to several function-requirements
to express that they are equally important and there sequence of implementation is not defined
at this point and therefore driven by technical constraints. Assigning a unique priority value at
this stage would mean to force the users to define the complete implementation sequence which
is not reasonable from a technical perspective.

A different approach for prioritization is to order all the collected requirements of the group
according to their importance. Nevertheless this approach will serve it’s purpose of a relative
ordering it is hard to implement as this phase of prioritization takes place separately for each
user-group. This is necessary as only the users of the corresponding group participated in the
discussion that revealed the requirement and therefore are able to see the function-requirements
in their context. If the collected function-requirements are ordered corresponding to their im-
portance in groups without assigning them a weighting value, this makes it hard to merge the

70

lists of all groups without an additional discussion of all function-requirements with all users.
Although this is possible and may be reasonable in some situations, in most cases this discussion
will be very long-lasting and furthermore is likely to affect formulation of particular function-
requirements or even remove some of them which should not be the case at this stage.

As a result of this phase the initial list of function-requirements for each group should be ordered
by their importance of implementation where each function-requirement should have a value or
label assigned which expresses its priority relatively to other function-requirements.

5.6 Aligning abstraction levels

Function Requirements when expressed by users are likely to be on different levels of abstrac-
tion. Where in some cases requirements of users are very concrete and even dictate parts of the
technical implementation, there are other requirements that are rather abstract and just describe
the desired behavior of the product without any technical implications. Nevertheless all of this
different kinds of requirements are valid and equally important from a users perspective and
therefore all of them need to be gathered.

To ensure comparability of requirements and identify duplicates among user groups in later
stages it is necessary to align the levels of abstraction which means find a description for each
requirement which resides at a defined level of abstraction. Aligning the abstraction levels is the
first phase in the process which is done by the design team and does not require any user partic-
ipation. Nevertheless there may be some additional information from users required in special
cases which can be collected selectively.

In general there are four levels of abstraction which function-requirements should be assigned
to as they arise from the phase of gathering requirements. At each of this levels it is possible to
describe the users wishes or intended behavior as functions in the noun-verb form. The different
abstraction levels can be differentiated as follows:

Technical level At this level of abstraction technical deficiencies or necessities are described.
Functions at this level do not take into account the users intention or implications to their
work-flow. This is the most abstract level of functions that can be transformed into user
requirements although the users perspective is not included at this level of abstraction.
An example for a function-requirement at the technical level is *fan causes noise’, which
is a purely technical description stating that the fan of a device causes some noise and not
including how this affects the users and what are the wishes of a users regarding the fan
and its noise.

Personal level The personal level describes which problem should be solved for the user. Based
on the technical abstraction level there is some behavior of the product which either causes
a personal problem for the user or solves one. Functions at this level are user-centered
without considering any technical implications or constraints, they just express the moti-
vation of the user to state this requirement.
An example for a function-requirement at the personal level, which may be related to the
example from above, is *concentration is reduced’ or ’ambient noise is drowned’.

71

Requirement At this level of abstraction the real requirements that the user wants to be fulfilled
is stated. Those requirements are formulated as function in the noun-verb form as well.
Based on the technical description and the problem that the user wants to be solved, a
requirement states clearly what should be fulfilled by the implemented solution.
Continuing the example from above, a function at this level is 'reduce fan noise’. If the
used language is English, there is a rule of thumb saying that functions at the technical
and personal level usually start with a noun followed by a verb, where functions at the
requirement level are started by the verb.

Proposal for solution In some cases it may happen that users have concrete suggestions for
technical solutions of requirements. It may even be the case that users are able to sponta-
neously describe the solution they want to be implemented without being clear about what
their requirement behind this solution is. As suggestions for solutions of users are valu-
able information for later implementation this information should be collected as well,
furthermore it may help users to realize the requirements behind their suggestions.
According to the fan example, a function at this level is 'reduce fan-speed’.

As it can be seen from the examples above, there may be multiple function-requirements at a
particular level which are related to the same function-requirement at a different level.

During the phase of aligning abstraction levels for each function stated during the phase of
requirements gathering a function-requirement at the requirement level has to be found. To do so
in a first step the functions that have been stated by users need to be assigned to the appropriate
level. Once this is done, functions at the technical level can be transferred to the personal level
by asking ’what problem does this behaviour cause’ or simply asking *why’. Functions at the
personal level can be further transferred to the requirements level by asking *what does the user
want’ or what has to be changed/done’. Functions that are initially formulated as a proposal of
solution can be transferred to the requirement level by asking *why should this be done’.

When this step is completed the function-requirement at the requirement level should be
defined for each requirment from the phase of requirements gathering. It is not necessary to fill
all the other level for each requirement, although it is recommended. Especially by defining the
technical and peronal level of function requirements a lot of context is can be described very
efficiently. In the end the description of a requirement in all three level (technical, personal,
requirement) is as expressive as a textual description or user story, although it consists of only 6
word and is stored in a structured representation.

5.7 Categorization of requirements

To allow an overview among the collected function-requirements they should be categorized
into several groups. The definition of groups my be widely technology driven which means each
component of the product is mapped by a specific group but as well usability driven as there may
be groups of requirements that are defined by special usability properties that they are related to.
There may be as many groups defined as it seems necessary to provide a reasonable semantic
clustering of requirements. Nevertheless each function-requirement should be assigned only to

72

one single group. If it seems necessary to assign one requirement to multiple groups, the defini-
tion of the groups should be reconsidered.

Categorization of requirements is not vital for the overall process, nevertheless it eases the fol-
lowing phase of consolidating requirements among user-groups- Furthermore especially in the
case of product re-design this semantic clustering of requirements may provide valuable insights
on which group of users is especially affected by particular parts of the product or which features
are especially favoring particular groups of users.

At this stage it is sufficient to process the function-requirements at the requirements level from
the preceding phase of aligning abstraction levels. Other abstraction levels should be stored for
contextual information about particular requirements, although they are not explicitly needed in
the following phases.

5.8 Consolidating Requirements among user groups

Based on the categorized lists of requirements, the goal of this phase is to build a sound and con-
sistent description of the future product in terms of function requirements. To do so the function
requirements of all participatin user-groups have to be merged. Although merging in this case
basically means appending the lists, there are several special cases which need to be consid-
ered to avoid conflicting requriments as well as redundancies. To keep an overview among the
requirements of the various groups it is recommended to use the categories developed in the
preceding phase and merge one category after another.

To perform the merging, the requirements of one arbitratry group are taken as they are as the ini-
tial list. The plain list of requirements is extended by columns that indicate for each requirement
in which groups this particular requirements has been identified. For each following user-group
each requirement to be merged into this list needs to be compared to all the other requirements
that are already contained. In most cases it is sufficient to compare functions at the requirements
level, although it may happen that there are functions that seem very similar at this level. Once
this occurs all the other abstraciton levels of this requirement should be considered for compar-
ison to decided if this requriment is really redundant among groups or just very similar. In case
it is just a similarity both requirements are added to the resulting list as they are. In case of a
redundancy, both requirements are merged into one entry in the final list and get an additional
marker indicating the groups which raised this requirement.

In case that there are requirements that are likely to cause conflicts or are obviously con-
tradictory these requirments need special treatment as well. The first approach to resolve the
contradiction is trying to find a technical solution which means a way of implementation that
would serve both requirements and describe this solution by a new requirement. If this is pos-
sible, the newly created requirement is added to the resulting list while the initial contradicting
requirements are removed. An example for this scenario is requirement A from group A stating
"decrease machine height’ while requirement B from group B states “increase machine height’.
At first sight, this requirements may be contratdictory although there may exists a technical so-
lution described by the requirement ’adjustable machine height’. In this case requirement A
as well as requirement B are not part of the resulting list as they are represented by the newly
created one. This newly created requirement although gets the markers indicating that this was

73

requested by both groups.

In case the requirements are really contradictory and there is no possible technical solution, the
affected user-groups need to be consolidated, describing the conflict in requirements to both of
them and trigger a new discussion to find a solution for this contradiction. In practice contra-
dictory requirements are quite rare, although this process of initiating a new discussion is time
intensive, therefore a possible alternative may be to just decide that one of the affected groups
is considered more important for the products marketing strategy or considered more relevant
for other reasons. In this case the requirement of this group may be just taken as it is, while the
requirement of the other group is simply ignored. Although this approach is not clean in terms
of the described approach, it may be reasonable in special situations in practice.

5.9 Building a Function Family Tree

Once all function-requirements at an adequate level of abstraction are collected and categorized,
building a Function Family Tree is straight forward according to the process described in [[1].
The Function Family Tree to be built does not explicitly reflect the particular user groups that
have been used for gathering requirements as the Function Family Tree mainly serves as guid-
ance for product implementation. As teh rough structure of the Function Family Tree is widely
defined by various components of the product the assigned categories of function-requirements
serve as a good starting point for building this tree.

The Function Family Tree which is initially built at this stage serves as an living artifact of doc-
umentation, which means if user’s requirements change during the development process, this
changes must be added to the Function Family Tree. As the Function Family Tree is the main
artifact for communication between the design team and the team for technical implementation
it needs to be kept actual at any time. This also means to mark areas of the tree that have already
been implemented by the technical team, which means that design changes at this components
are more cost intensive and should only be done if absolutely necessary. Finally, as the Function
Family Tree is a structured representation of the complete product and its features it may also be
used a tool for customer communication. Function Family Trees proved to be useful to explain
a complex product and the contained technical constraints and dependencies to customers. This
is especially the case when prototypes of the product are built in higher frequencies to allow for
user tests as decribed by User Centric Design.

As a guidance for product implementation the functions contained in the Function Family Tree
are priorized accoding to their customer value, which basically reflects the prioirty values that
have been collected when gathering function-requirements [5.4] This assigned values lead to a
sequence in which the different features should be implemented, which is very similar to an agile
or lean development approach.

74

5.10 Product re-design

In the case of re-designing an existing product, some additional steps in the described approach
may become useful or even necessary. This additional steps are related to evaluation of the
current implementation which may be a valuable indicator to decide if the re-design and re-
implementation is really adequate and how much increased value can be expected therefrom.
On the other hand this steps allow to evaluate how adequate the current implementation is for
particular user groups and which groups of users are served best by the current implementation.
This analysis are especially valuable for product strategies and marketing activities.

Evaluation of current implementation

Evaluation of the current implementation makes it necessary to created a sound description of
the current implementation in terms of functions. This kind of product description tends, de-
pending on teh complezity of the product, to become quite large. Due to this fact it should be
considered if just a particular component or aspect of the product shoudl be evaluated to decrease
the required effort to build this tunfion-based description.

The creation of the list of function should be done by domain experts from the developing orga-
nization based on their knowledge as well as availble documentation like manuals and technical
documents. The process of creting the list of functions should focus on properties and capabil-
ities of the product that provide value for users or at least are designed to do so. THe question
to be asked for each function shoudl be similar to *which user need is fulfilled by this?’. By
doing so the resulting description is a list of functions-requirements at the requirement level of
abstraction. More details on how to describe existing products in terms of functions are defined
by classical function analysis in [[1]].

Once this kind of list describing the existing product is created, it is compared to either
each list of function-requirements of the user-groups or to the already merged list. It depends
on the goal of the analysis which lists are to be compared. When comparing the lists three
types of function-requirements need to be distinguished, which are implemented and required,
implemented but not used and requrired but not implemented. Obviously a function requirement
is of the first category if it occurs in both of the compared lists, while it is part of the second
goup if it occurs just in the decription of the current implementation and to the last one if it
was requested by users but is not implemented currently. From the results of this comparison it
can be derived how many of the required functions of users are already implemented as well as
which and how many of teh currently available functions are not employed by users and could
therefore be removed during the process of re-design.

Comparison of user groups

In the context of product re-design it may become valuable to analyse which groups of users
are surved how well by the current implementation. In a more scientific, nevertheless practical
relevant, setting it can be of interest to analyse where differences between various groups can
be identified. This is of scientific relevance on the one hand to get a deeper understand of
particular groups of users, e.g. in the context of gender correctness. An adequate definition

75

and calssification of users groups is of high economic value as well for marketing activities and
strategic product design.

All these kinds of analysis can be implemented by implementing one step of analysis in
addition to the presented approach. To gain this kind of information, it is basically sufficient
to compare the lists of function-requirements of different user groups. Similar to the approach
for evaluating the current implementation, each function-requirement may either be relevant for
both groups or relevant for only one group. Assuming that all teh collected function requriments
have been structured in categories, as stated above, and the categories are representing certain
aspects of the product, is can be clearly seen how important each aspect is for a particular group
of users as well as in which areas the biggest differences can be found. An exemplary analysis of
the differences between various user groups has been carried out following this approach, based
on an empirical study. The details of this investigation are given in[[Il

5.11 Comparison to existing approaches

The proposed approach offers several advantages for product-design when there is an heteroge-
nous user-base. Evaluating the requirements of all users together in such situations may lead to
a corruption of results. Usually the largest group of the one which is most comfortable with the
implemented requirements engineering process overrules the other minor groups which leads to
discrimination of smaller groups as their requirements perish. The distinct treatment of user-
groups allows minorities among the user-base a fair participation.

Requirements engineering processes in general have to fit the need of allowing an easy partici-
pation of user, according to UCD, but as well a structured representation of the results to allow
efficient implementation subsequently as described by function analysis. Nowadays common
techniques can be categorized by this properties and analyzed independently, which allows a
more clear comparison to the proposed approach.

User centered approaches

Well known representatives of this kind of approach are user-stories and workshops or discus-
sions. Those techniques aim at an easy participation of users without requiring special skills
or knowledge from them. Therefore this techniques are based on natural language and do not
restrict the way users state requirements. This avoids falsification of requirements and require-
ments being not collected as users are not capable of stating them in a complexly structured
way. Nevertheless these techniques face the problem of having lots of text in natural language
as results which are hard to process later on. Therefore this approaches work well when the
development team is capable of keeping the requirements in mind and having an overview of the
whole product. They do not scale very well for large products and require an implementation
process that is designed to handle this kind of requirements, e.g. modern process models for
agile software devvelopment.

The proposed integrated approach allows for the collection of requirements in terms of in-
terviews and focus group discussions, which means there are hardly any restrictions for users.
Stating requirements in the format of functions is very similar to natural language, especially as

76

the level of abstraction is not restricted by this technique. Due to this every user can state all of
his needs and it turned out to be helpful to state requirements in this semi-structured manner to
avoid dubiety for users and help them to distinct their requirements explicitly.

Compared to other techniques the presented process provides results that are at least semi-
structured at a very early stage and become fully strucutured throughout the subsequent steps.
This means this process offers the required formalism that is required for later implementation
and requirements management while it does not restrict user input at early stages and therefore
adheres to UCD principles.

Structured approaches

Nowadays structured approaches for requirements engineering aim mainly at supporting later
phases of development like implementation and maintenance. This processes apply well when
requirements are collected by a team of professionals or trained persons but they often provide
bad and incomplete results when implemented with users without technical awareness. In this
cases the users are overwhelmed by the proces sitself which makes it hard for them to state their
requirements efficiently and correctly. This leads to incomplete requirements catalogues and a
falsified representation of the real requirements. Furthermore it can cause user-frustration at a
very early stage which affects later user involvement, e.g. for prototyping, negatively.

The proposed approach offers all the required flexibility at early stages that is required for
efficient user involvement and allows them to state their needs in a most easy way. Nevertheless
it keeps the advantages of strucutured approaches in later stages when the requirements have to
be implemented and managed.

77

Part 11

Evaluation

79

CHAPTER

Empirical study

6.1 Situation

The empirical study contained in this work has been carried out as a part of the Ge:MMaS
Hesearch project. The aim of this project was to survey the demands that various users make in
laser engraving machines produced by Trotec GmbH, an Austrian manufacturer. Based on an
existing implementation of this machines, it should be determined how satisfied certain groups
of users are whith this implementation respectively what their specific demands are.

For this purpose the three most relevant user-groups have been identified during the GeMMaS
project. As a main focus of the project was put on gender-aspects, the two initial groups split
users of the laser engraving machines in male and female users. As an additional distinct subset
the group of managers was identified, who, in contrast to the other users, do not work with
the machines every day and whose focus was assumed to lie on economic and organizational
aspects.

Based on this classification, focus group discussions have been implemented with each of the
three groups individually. These discussions were moderated, although the development of the
discussion and the addressed topics were widely left to the participants. Each requirement that
the group decided to be relevant was stored on a function card as mentioned in[ll At the end
of the discussion these function cards have been arranged to a matrix under supervision of the
moderator. The matrix expressed the importance of the cards topic as well as the degree of
current fulfillment and satisfaction. For a more detailled analysis later on, the whole discussions
have been recorded on video.

"Projecttitle: Genderspezifische Anforderungen fiir Entwicklung neuer Maschinen unter Beriicksichtigung der
Mensch Maschine Schnittstelle
Supported by Osterreichische Forschungsférderungsgesellschaft (FFG)
Projectnumber: 826182

81

Scope

The aim of analysis in the context of GeMMaS was to reveal, which different demands the
various groups of users make on the examined laser engraving machines. The results of this
investigation should subsequently be used, to allow the manufacturer Trotec GmbH to design
a new generation of this machines, which satisfy all relevant groups of users and covers their
specific needs. The scientific interest in the result of the analysis for the GeMMaS project is
to show, that different gender groups, where gender refers to the social and not the biological
gender, make different demands shared products. The differences between the groups should
be ananlyzed in terms of the degree of differentiation in general. Furthermore, it should be
examined if specific groups differ from others in specific fields of use. Finally, the revealed
specific requirements should be compared to the current implementation. This allows shed light
if in current requirements engineering processes dominant groups mask the requirements of less
dominant groups.

Structure

The analysis relevant for the GeMMaS project have been carried out partially in the empirical
study of this work. In the context of this study the focus was put on a function based approach
for requirements engineering. It was analyzed if the proposed approach[5]is capable of revealing
individual requirements of specific groups. Furthermore it should be showed that differences
between the various user-groups exist in principle. To validate the proposed process, the case
study should proof that this process leads to a final list of requirements which can support the
further process of development. The analysis are very similar in their implementation in both
cases, the scientific questions of the GeMMaS project as well as the experimental application of
the proposed approach. Especially the extensive comparison between gender groups, which are
relevant for evaluation of the hypothesis of the GeMMaS project, are hardly relevant to evaluate
the functionality of the proposed requirements engineering approach. As for the situation of the
GeMMasS project comparisons of gender groups have been implemented during this empirical
study, which are not especially relevant for gender-focussed analysis and are not required steps
of the proposed approach. Nevertheless they provide valuable insights to the opportunities that
are offered by this approach and point out its relevance. All analysis of this kind, that have been
carried out during this study are marked as such, the rest of this study may be treated as an
exemplarily implementation of the proposed approach.

Concluding, the experiences during this exemplarily implementation of the proposed re-
quirements engineering process are discussed and potential weak points of the approach are in-
vestigated in detail. In a closing theoretical investigation, the practical relevance and feasibility
of the approach is discussed.

82

6.2 Definition of user-groups

As described in section [5.3] an appropriate definition of user groups is crucial for the proposed
approach of requirements engineering. In the context of this work user groups have been prede-
fined as a part of the Ge:MMaS project. Nevertheless the underlying thoughts and considertaions
of the definition is stated for better understandability of the subsequent process as well as the
conlusions.

For the field of laser engraving machines there is one major usergroup which comprises
individuals that are directly working and interacting with the machines in their daily routines.
For the analysis of requirements of various gender groups, this groups has been further divided
in female and male users. Beside individuals that are interacting with the machine directly an
additional group of managers has been identified. This is due to the fact that this group of
users is affected indirectly by the provided human-machine-interface but especially focussing of
capabilities of integrating those machines in producution processes and facility environments.
As the needs of the group of managers are widely independet from direct interaction which is
supposed to be influenced by gender, a further distinction of managers according to their gender
has not been made. This results in three initial user groups, namely male users, female users and
managers. Those three initially defined user-groups remained stable for the whole process and
hast not been changed during later stages as described in[5.3]

Special considerations where necessary in the context of this work, as all the users that par-
ticipated in focus group discussions of their corresponding group are customers of the machine
supplier Trotec GmbH and therefore may also be competitors in their market segment. The
relation of customers and Trotec GmbH as well as relations between competitors made it nec-
essary to allow for anonymous participation in those discussions. To do so, each participant
was assigned a fake name, which was used throughout the whole process. Obviously it is not
possible to anonymize participants completely when it comes to describing usage scenarios and
individual problem situations when interacting with the machines. Nevertheless, anonymization
enables participants to speak more freely and leads to revealing deeper insights during discus-
sion. Therefore anonymous participation of users appeared as a useful method for any kind of
user centered approaches which requires several users to interact with each other.

6.3 Gathering structured Function-Requirements

The first step of analysis of the outcomes from the focus group discussion was based on video
material as well as pictures of the resulting pin boards. An example for the function-cards that
have been collected during the focus group discussions is given by figure [p.1] The main goal
of this phase was capturing the gathered data in a more structured manner that allows for effi-
cient further processing. The result of this procedure is a table listing all the identified function
requirements. For a better understanding the structure of this table is described in detail before
the process of transferring the actual data from discussion to this table is described. Finally the
perceived challenges and advantages of this stage of the proposed process are discussed briefly.

83

Figure 6.1: Function cards collected in focus-group discussions

Structure

As the output of this phase is a table which represents all the gathered data in a structured man-
ner, the configuration of this table needs to be well defined and several considerations need to
be taken into account. At this stage of data structuring it is crucial to preserve the original data
as accurate as possible. Therefore the original formulation of the function cards that resulted
from the focus group discussions are recorded in the resulting chart. To allow an early semantic
grouping of this formulations a category is present in the table as well.

As described in[[|requirements can be expressed at several levels of abstraction, namely a rech-
nical level, a personal level, as function requirement and as suggested solution. Therefore each
of those two levels of abstraction needs to be reflected by the table.

When converting original formulations, which often do not cleanly adhere to the definition of
functions, to a noun-verb-form it may become necessary to add constraints or comments. Both
of them are to be added in seperate columns of the resulting chart. Finally the assigned prior-
ity as well as the degree of satisfaction with the current implementation are enlisted, where the
values for each function-requirement is defined by the value assigned to its original formulation
which it corresponds to.

A template structure for a resulting table of this phase of data structuring, taking into account
the mentioned influencing factors, is depicted in table[6.1]

84

sjuowaImbar uorouny Jurayes) 10§ Injonys 9[qes Ae[dwa], :1°9 JqeL,

Mo[peq D JUIensuod € uonemis ploAe ¢109[qo o[puey ¢ 19lqo Xy ¢# 70 | D uswoanmbar reusuQ
MO[pPoO3 JUSWIWOD JOYI0 IUIRISUOD 7109[qo oouenyur ¢ Aixadoxd onpar zo[puey oroxdwr g g Juswaainbai reuisuQ
Sy peq JUQUILIOD SWIOS YIUTeNSUOd — Yuonnjos juowojdur 1 109[qo)it [wopqoid oafos 1 juouodwod oSueyo |) v juowernbar reurSuQ
unou qIoA unou QoA unou QoA unou QoA
Aot d yuarm) JUDUIOD) JureNsSuo) uonnjos pasa3sns yuowanmbai-uonouny [0A9] TeuosIad [QAQ] [BITUYI) ar Am3ae) | uonenuuoj [eursuQ
uonoensqy

85

Procedure

Once the structure of the chart to be produced is defined, each function card that was filled dur-
ing focus group discussion was translated to one or more corresponding entries in this table.
As a first step to do so, the original formulation of each card was entered to a seperate line of
the chart. Additionally, the prioritization as well as degree of implementation were enlisted at
this point. Once all the data from function cards was captured, the original formulations were
reordered and grouped in semantic categories.

Subsequently each formulation is paraphrased in a noun-verb-form and therefore defined in
terms of a structured function. At this point the formulation at the function card need to be
assigned to one of the abstraction levels. Usually users tend to formulate their requirements
as personal problems rather than in structured funtion-requirements. Therefore the paraphrased
requirement needs to be assigned to the corresponding level of abstraction. Once this was done,
each requirement that was not defined at the level of function-requirements needed to be trans-
formed to this abstraction level as described in [l When carrying out those transformations it
became necessary to state multiple funcion-requirements for a single orginal formulation, which
is valid in terms of the described process. Nevertheless the decriptions at different levels of ab-
straction provided useful information about the context of particular function-requirements. To
allow tracking of particular function requirements to map their context at later stages, each line
of the table was assigned a unique ID. When assigned the ID it is important to be aware that the
requirements of all groups are merged at a later stage, therefore the ID ideally somehow encodes
the user-group which this requirement arised from. If the function card contained a suggestion
for solutions, the corresponding funtion was added at the proper abstraction level as well.
Implementing this paraphrasing showed to be a time consuming task as it needs quite some feel
for language and deliberation to paraphrase requirements without changing their meaning or
context. It is crucial at this point to avoid extending or constraining the original formulation. In
some cases this process needs more understanding of the context than it is provided by the func-
tion card. In this cases it became necessary to investigate the video material to ensure a proper
understanding of the intention of function cards. Reflecting this additional context information
was done by using the constraint or comment columns. Furthermore it became necessary in
several cases to consult domain experts to ensure proper understanding of domain specific vo-
cabulary.

The resulting tables containing all gathered function requirements of all three user-groups are
available on the accompaning data medium.

For an easier understanding a few examples are outlined here to illustrate the results of
this steps. The resulting table has been derived from dunction-cards in combination with audio
streams of the focus group discussions. The exemplary results are depicted in table [6.2] and are
as well contained in the complete evaluation on teh accompaning data medium. As this data is
part of an empirical study which was conducted in German language, the examples are given is
German language as well to avoid falsification of contents by translation.

86

syusuwaImbai-uonouny parayies jo sejdwexy :7°9 qe],

(TSI peq Uopiotion s
sy prq oy youst yosneLsa) Ziny 15 y . Ny - .
gy prq wsassaqIa 0z wwmu Bundnspagsyonion Bruomiapunu st ([PLIRJA $919550q [91A UQIYEY €] JOA 1M I[1) WIOSSIGIOA FUNSAESqY
QoA uowon [[wowon [N
g Summay e 1 o1 Suniopiojuy Uoqg yPIugSIad ErEENERTHER) ar om0y Sunsomyuiog SISO
Qv

87

Discussion

The main finding of implementing this phase of the proposed process was that defining functions
in the verb-noun-form is crucial for transporting the correct information. Therefore this task
is very time consuming and it is especially important to be aware of the context and scope of
various requirements and function cards. Ideally at least one person that participated in the focus
group discussion should be involved in this process to ensure propoer formulations of function-
requirements. If this is not possible video material of the focus group discussion is absolutely
necessary.

Categorizing function-requirements also needs special attention as in several cases a definitve
categorization is hardly possible. Although the assigned categories are not vital for the overall
process, proper assignment of categories strongly influences the calrity of the resulting list of
function-requirements which can potentially be very large. Proper assignment of categories may
make coordination with domain experts necessary.

In very specialized domains, as in the case of this work, domain specific vocabulary may be
necessary to understand the requirements and their context. This case also makes discussion
with domain experts necessary, as wrong interpretations lead to incorrect function-requirements.
This can have serious impact on the whole process and finally lead to erroneous or unintended
implementations.

A final finding of this part of the empirical study was, that several function-requirements were
added to the list which were not represented by task cards. This is because of the fact that when
investigating in the discussiond of all user-groups it may occur that several topics are mentioned
in each group but not discussed long enough to be written down on a card. Especially if the
common opinions of the groups differ it is reasonable to add function-requiremetns for those
tpoics at this early stage.

88

6.4 Consolidating user-groups

Once the function-requirements of each analyzed user groups are gathered in structured tables, it
becomes necessary to consolidate the requirements stated by all groups. At this point contradic-
tions in requirements among groups as well as duplicate requirements are handled. The structure
of the chart resulting from this step is described in detail before focusing on the procedure of
consolidating the three table from the previous step. Subsequently the experiences and findings
that showed up during this step are discussed. Finally the process of transforming the resulting
chart to a function family tree is described.

Structure

The goal of this step is a table containing all the function requirements stated in all user groups in
a structured manner. This table should especially allow to identify requirements that are common
among several user groups respectively differences on certain aspects and requirements between
groups. For better readability this table is just containing the abstraction level of function re-
quirements while providing the ID(s) for each of those to enable traceability to corresponding
entries in the table from the last phase. Beside the function requirements in verb-noun-format,
the constraints and comments for each of the function requirements are stated as well as satis-
faction with current implementation and priority for each group separately.

At this point it is important to mention, that several entries from the preceding tables may be
merged to one entry in this step if several user-groups stated the same requirement. Due to this
fact, the columns for constraints and comments, which are not separated for each group, contain
merged comments and constraints. Merged means, that constraints must not be untightened here
and comments must not be omitted. The column for IDs contains the IDs of all entries among
all user-groups that the corresponding line originated from. This allows for later backtracking to
the corresponding entries in case more context information is required.

Taking into account all this consideration, an example structure of the table resulting from this
step is given in table [6.5] For the ease of formatting the priorities as well as satisfaction with
current implementation are expressed by symbols. In terms of Current Implementation a °+’
means good while a ’-> means bad and a 'N’ means currently not implemented. For priority a
"+’ simply stands for high while a ’-’ stands for low.

function requirement Current Priority
Category | ID verb noun Constraint Comment f m b f m b
Category 1 | #1 process object 1 constraint 1 some comment + + + -+ -

Table 6.3: Template table structure for consolidating user-groups

&9

Procedure

For consolidating the requirements among user-groups initially one group was selected which
requirements have been transformed to the described table structure. When processing the sec-
ond group, each requirement was treated separately and checked with the current resulting table
to check for a matching entry that is already in this table. If no matching entry could be found
it was added as is. If there is a corresponding entry from another group that is represented by
exactly the same verb-noun-form the entries have been merged. Performing the merge in par-
ticular means adding the additional ID, generating the most tight constraint from both entries as
well as concatenating the comments. Finally the corresponding assessment of the current im-
plementation as well as priority needs to be added for the corresponding group. At this point it
may happen, that constraints or comments are contradictory although the function-requirements
are identically. In this case the entries can not be merged and the new entry is added to the list
separately.

When processing big amounts of requirements the process of looking up the resulting table for
each requirement to be added can become a very time consuming and complex task. Using the
categories that have already been introduced in the previous step allows for splitting up the table
which helps to keep track of the overall list and accelerates finding duplicates.

It needs to be underlined, that just looking for entries with the exact same verb-noun-from is
not sufficient when consolidating the requirements of various user-groups. If this was possible
this task could be completed in a widely automated manner, but in real world situations it hap-
pens to be that different groups of users use slightly different vocabulary. This is especially the
case as in different discussions the groups face certain aspects of the system from different points
of view. This leads to the fact that consolidating the lists of different groups requires semantic
understanding and comparison of each function-requirement. For each pair of requirements,
that seems to be very similar or even semantically equivalent it needs to be decided, if and how
those requirements can be merged. In most cases this means to state a new verb-noun-form for
the affected requirements, which again requires some feeling for language as well as sufficient
domain knowledge. When merging function-requirements this way it is crucial to ensure after-
ward, that the new formulation does neither extend the scope or meaning nor limit those for each
of the originating function-requirements. If no formulation can be found that fulfills this need in
every dimension, the merge of the function-requirements would be invalid as it adds or removes
information.

For better understanding of the structure of the resulting data of this step, the example started
in refch:gatheringFunctionRequirements is continued in table

Discussion

During the implementation of this procedure it became apparent that keeping track of all the
function-requirements and finding all potential duplicates becomes highly complex when there
are more than 2 user groups. Nevertheless categorizing requirements semantically eases the
look-up for potential duplicates it was often the case that due to different wordings requirements
were added to different categories although they were referring to the same things. An accurate
processing of each single entry of the originating tables is absolutely crucial for resulting in a

90

sjuowaIrnbar-uonouny pejeprjosuod jo sjdwexy :4°9 qeL,

+ - UOPIOULIOA SunSnseeqsyoniony gD/ $¢d / T¢d | ueuorssiug
+ - USUOUI IO)JUS[[QUIRT JOp Jonepsuaqo] 124 Sumurep
- + - - UI9SSIqIoA [eLIaTB W L] 0zd Sumurep
O W M O w M Jeyuowwoy Sun3urpeg qQIaA UQWION] dl Juo3aey
JRIIOLI] Sumaop Sunispojuy

91

correct list of requirements without redundancies.

The most complicated part although was merging function-requirements that seemed to be se-
mantically equivalent although used different wordings. Finding adequate formulations for the
merged requirements without violating or adapting the meaning and intention of the original
statement requires deep understanding of the domain and consideration of all context informa-
tion that is available. As for some requirements from the previous steps it happens to be the case,
that they were originally stated at a different abstraction level, they already have undergone one
step of rephrasing and potentially experience a further rephrasing at this phase. This fact can
lead to dramatic changes in the meaning of requirements overall if the meaning is just changed
slightly in each step. To prevent this effect, each merged requirement was compared to its initial
formulation, even if on a different level of abstraction, to ensure a correct overall transformation.

Carrying out this consolidation of user groups makes it necessary to find the correct tradeoff
for each merge, as being too cautious leads to the fact that there are no merges, which basically
means that no information about the commonalities of the user-groups is generated. On the other
hand generating commonalities by incorrect merges leads to invalid results. Meeting the correct
grade of adapting formulations requires feeling for the language as well as understanding of the
domain and the context of function-requirements. Furthermore it was experienced, that some
amount of routine is necessary to develop some feeling for when to merge things and when to
keep them as they are. In any case it showed to be essential that the persons that implement
this step and create the resulting list of requirements need to be the same persons that created
the initial lists for each user groups. Otherwise a correct understanding of all the requirements
and their context can not be ensured when requirements are represented in this compressed and
structured manner.

Building a function family tree

The list of function-requirements that results from this step basically contains all the information
that is required to build a function family tree according to 4.4 As a function family tree was
not required for the Ge:MMaS project it has not been created as a part of this empirical study.
Nevertheless the information that has been generated by the process so far and the structured
information that is contained in the generated table is a viable and sufficient basis for creating a
function family tree.

When doing so, the tree should be based on the categorization of the requirements on the one
hand and the priority over all groups of users on the other hand. The categories that are assigned
in the list allows for splitting the tree at a very high level of abstraction which supports overview
and readability. The priorization overall user-groups is the basis for the sequence of implemen-
tation that should be expressed by the resulting tree as well. Without implementing the described
steps, it is hardly possible to find out the importance of single requirements over all user groups.
Building a tree based on this information is essential for a later implementation of a product that
is aware of the requirements of all the different user groups and treats them in a fair and rational
manner.

92

6.5 Differences between user-groups

Based on the collected data and performed evaluations differences and commonalities between
different user groups can be analyzed. Although this step is not essential when applying the
described process in a real world project, it may provide viable insights to the interconnection
and importance of distinguished user-groups. In terms of real world application this kind of
analysis allows deeper insights and understanding of different groups of users and customers.
It enables identification of customer segments that are discriminated or privileged by current
implementations. This deep of understanding for different groups of users is a potential basis
for a more sensible process of product development, handling of requirements and building
barrier-free products.

In the scope of this work, beside the insights to different gender groups among the users of
Trotec laser engraving machines, this analysis are the basis to proof the initial hypothesis of
gender dependent requirements as well as a validation of the proposed approach for requirements
engineering.

Structure

In the course of the GeMMas research project a defined set of categories has been developed
for which differences between user-groups should be analyzed. This categories have been the
basis for a final requirement profile for the evaluated laser engraving machines. Therefore the
discovered requirements are categorized by this defined structure in a first step. Based on this
categorization the nominations of requirements in each category are compared by their absolute
and relative frequency. A comparison of the frequencies for different categories allows on the
one hand to identify main focusses of certain user groups and a comparison of their weightening
of various aspects of the products. Furthermore an interpretation of the results enables to state
if differences between user-groups are significant at all and if the proposed approach is able to
handle those differences in a requirements engineering process. Finally the main facts of the
confrontation of the groups results are stated briefly and are depicted by diagrams. A discussion
and interpretation of this findings and results is performed in chapter[6.6]

Categorization for requirement profile

The re-assesed categorization of the identified requirements from preceding steps is specific for
the GeMMaS project and became necessary as the final categories to be used have been de-
veloped in parallel to the initial evaluation and processing of the data gathered by focus group
discussions. The categories that have been identified for the GeMMaS project are listed in table
[6.3] a more detailed desciption of teh categories can be found in the final report of the Ge:MMaS
research project. Categories identified by a number are referred to as top-level categories, while
those identified by a number and a letter are subordinated categories referred to as detailed cat-
egories As the whole GeMMasS project has been carried out in german language, the definition
of categories is given in the original german formulation to avoid corruption, nevertheless an
english translation is provided as well. Furthermore it has to be mentioned, that questionaires
have been evaluated in parallel to the evaluation of the focus group discussions. Aligning the

93

results of both processes to this defined categories allows for a comparison of the results of both
survey-techniques as well.

The structure of the resulting table of this step is the same as stated given by table [6.5] with an
additional column for the assigned category. The complete result of this evaluation is available
on the accompaning data medium.

ID Original Translation
2 Funktionalitit Functionality
2a Hauptanwendungen Main Applications
2b Leistungsbereich Power Range
2c Geschwindigkeit Speed
2d | Zuverldssigkeit Reliability
2e Lebensdauer / Garantiezeit Durability
2f Umweltauswirkungen Environmental Impact
2g Wiederverwendung von Bauteilen Reuse of components
2h Modularer Aufbau Modular Design
2i Genauigkeit Accuracy
2j Anpassbarkeit Adaptability
3 Bedienerfreundlichkeit Usability
3a Software Software
3b Schnittstellen/Kommunikation Interfaces/Communication
3c Servicefreundlichkeit Serviceability
3d Reinigung/Absaugung Cleansing
3e Erreichbarkeiten/Positionierung Accessibility
3f Bedienpanel Control Panel
3g Kommunikation/Marketing Communication/Marketing
3h Sicherheit am Arbeitsplatz Safety
4 Design Design
4a optisches Erscheinungsbild Visual Appearance
4b Gehiusefarbe Case-color
4c Baugrosse Size
4d Gewicht Weight
6 Zubehor/Optionen Accessories
7 Arbeitssystem Work System
7a Arbeitsteilung Dibision of labour
7b Technischer Anspruch von Werkstoffen | technical sophistication of materials
Tc Mitentscheidungsfihigkeit bei Decision capability
der Bearbeitungsreihenfolge on processing order
7d | Abwechslung bei der Arbeit Diversity in work
Te Gutes Gefiihl bei der Arbeit Good feeling at work
7t Stressiges Gefiihl bei der Arbeit Stressful feeling at work
Tg Anstrengende Situationen Strenuous situations
7h Ursache fiir Fehler/Ausschuss Cause of error

94

i Problembewiltigung Problem solving

7j Materialhandhabung Material handling

7k Datenmanagement Data Management

8 Anlernen der Systembenutzung Teaching the system use

8a Anlernen der Systembenutzung generell | Teaching general use

8b Erfahrungshintergrund Experience

8c Handbuch Anforderungen Manual requirements

8d Schulung Anforderungen Training requirements

8e Wichtig zum Lernen Important for learning

8f Vorraussetzung fiir die Arbeit Prerequisite of work

8g Art der Einschulung Type of enrollment

8h Zusammenhang wer wie engeschult wird | Dependecy who is trained how
8i Learning by Doing/Trial&Error Learning by Doing

3a Software Software

3a.1 | Dialoggestaltung Dialogue Design

3a.2 | Funktionale Kriterien Functional criteria

3a.3 | Kiriterien Ein/Ausgabe Input/Output criteria

3a.4 | Dialogtechniken Dialogue techniques

3a.5 | Darstellung visueller Informationen Presentation of visual information
3a.6 | Organisation der Informationen Organzation of information

Table 6.5: Categories for requirements defined for the Ge:MMaS

requirement profile

Counting nominations of categories

Once the categories have been assigned for each requirement stated by the various user-groups,
the weightening of certain categories by user-groups was analyzed. To do so, the absolute num-

ber of requirements for each category was counted. As different user-groups stated a different
number of requirements in total, this absolute number are a valid measure to determine the main
focussed categories within a group, although they are inadequate to compare groups. To enable
this kind of comparison, the relative frequency of nominations fo each group and category was
calculated. This relative numbers allow a direct comparison of a certain category and the weight
that is put on this categories by the various groups. Therefore this relative numbers were the
main basis for the following interpretations of the results. The evaluated results are stated in
table

95

96

absolute frequency

relative frequency

Category | females males supervisors females males supervisors
2 20 8 17 31,25% 21,62% 30,36%
2a 3 3 5 4,690% 8,11% 8,93%
2b 4 0 0 6,25% 0,00% 0,00%
2c 0 0 0 0,00% 0,00% 0,00%
2d 3 0 0 4,60% 0,00% 0,00%
2e 0 0 0 0,00% 0,00% 0,00%
2f 6 3 5 9,38% 8,11% 8,93%
2g 2 0 0 3,13% 0,00% 0,00%
2h 0 1 0 0,00% 2,70% 0,00%
2i 0 0 0 0,00% 0,00% 0,00%
2j 2 1 7 3,13% 2,710% 12,50%
3 36 18 28 56,25% 48,65% 50,00%
3a 7 8 10 10,94% 21,62% 17,86%
3b 1 0 2 1,56% 0,00% 3,57%
3c 5 0 1 781% 0,00% 1,79%
3d 8 0 3 12,50% 0,00% 5,36%
3e 11 10 9 17,19% 27,03% 16,07%
3f 0 0 0 0,00% 0,00% 0,00%
3g 4 0 1 6,25% 0,00% 1,79%
3h 0 0 2 0,00% 0,00% 3,57%
4 0 2 0 0,00% 5.41% 0,00%
4a 0 0 0 0,00% 0,00% 0,00%
4b 0 0 0 0,00% 0,00% 0,00%
4c 0 2 0 0,00% 5,41% 0,00%
4d 0 0 0 0,00% 0,00% 0,00%
6 5 0 1 7.81% 0,00% 1,79%
7 3 9 10 4,69% 24,32% 17,86%
Ta 0 0 1 0,00% 0,00% 1,79%
7b 2 2 1 3,13% 541% 1,79%
Tc 0 1 1 0,00% 2,70% 1,79%
7d 0 0 0 0,00% 0,00% 0,00%
Te 0 1 1 0,00% 2,70% 1,79%
7t 0 0 0 0,00% 0,00% 0,00%
7g 0 0 0 0,00% 0,00% 0,00%
7h 0 0 0 0,00% 0,00% 0,00%
7i 0 1 1 0,00% 2,70% 1,79%
7] 0 0 0 0,00% 0,00% 0,00%
7k 1 4 5 1,56% 10,81% 8,93%
8 0 0 0 0,00% 0,00% 0,00%
8a 0 0 0 0,00% 0,00% 0,00%

&b 0 0 0 0,00% 0,00% 0,00%
8¢ 0 0 0 0,00% 0,00% 0,00%
&d 0 0 0 0,00% 0,00% 0,00%
8e 0 0 0 0,00% 0,00% 0,00%
8f 0 0 0 0,00% 0,00% 0,00%
8g 0 0 0 0,00% 0,00% 0,00%
8h 0 0 0 0,00% 0,00% 0,00%
8i 0 0 0 0,00% 0,00% 0,00%
3a 7 8 10 10,94% 21,62% 17,86%
3a.l 5 5 6 7.81% 13,51% 10,71%
3a.2 1 0 2 1,56% 0,00% 3,57%
3a.3 1 2 0 1,56% 5,41% 0,00%
3a4 0 0 0 0,00% 0,00% 0,00%
3a.5 0 0 0 0,00% 0,00% 0,00%
3a.6 0 1 2 0,00% 2,70% 3,57%

Table 6.6: Absolute and relative frequency of nominations among
user-groups

Comparison of user-groups

Comparing the results of the various groups to identify differences between groups needs to be
done at a proper level of abstraction to preserve readbility. For this reason, the comparison is
mainly based on absolute and relative diagrams that are representing the top-level categories,
more detailed diagrams for each separate category can be found in[A] Nevertheless the interpre-
tation of results given here is sound an not limited to top-level comparison.

The absolute numbers of nominations for each groups are given in[6.2] Female users had the

most nominations overall, although most of the overplus was related to category 2 Functionality.
The same holds true for supervisors at a lower rate. The only further difference among groups
at this level of comparison is to determine that female users have been less focussed on require-
ments regarding the work system than the other groups have been. Based on this diagram no
significant differences between the groups can be identified beside the fact that there have been
different absolute counts of nominations to category 2, which nevertheless is the main foucs for
each group.
When evaluating the detailed diagrams for the category this impression does not hold true any
more. Especially when considering the detailed categories for usability [6.3| and functionality
[6.4] the nominations are distributed differently among the groups, although there total number
is roughly the same. Despite the fact that the distribution of nominations is differing between
groups (represented by the different shapes of the graphs without respect to their actual ampli-
tudes), a comparison of groups based on this aboslute charts is not adequate and should be based
on relative frequencies.

97

Gesamt

40
35 /\
c
& 30
S 5 / A\
[=
S / \ == Frauen
s Vi w
< 5 == Manner
«=fe=Chefs
X N Qo < <
N & ¥ %@@ & &
i)oo &61 » «?g\ & 0,6\&
& N & N P
« 3 ¥ (b?‘
Vv & A
X2
>
%Q/
»
Figure 6.2: Absolute frequencies for top-level categories
Bedienerfreundlichkeit
12
Enlo —\
5 8
£ 6 N\
2
z ., \ /]
©
5 2 == Frauen
0 i == Manner
2 X 2 > &
& AN s PO S - Chefs
& S 2 Q N K
9 N >) < 0N
'° & o’ & Q° °
» S & < & &
EN & 5 0 &
Y Q? . ’5\’ ‘\:b
& & i &
3 < N N
of- N & ¢
e &
oo %

Figure 6.3: Absolute frequencies for detail categories on usability

Funktionalitat

8
c 7 _
& 6
S I /7\\
c
[7] 4 |—— A
2 s LN /NN
K=
s \NEEVAN /75\% e rrnuen
E 2NN/
o N W e NN —8-Manner
& & & & &S Chefs
@& H T & W
S & & F S &SSP
QD \)Q X QQ} Q)’b <0 < \’b(.(’)Q’
Q N (—,(") ‘\ Q> N O \
Q‘@ oF 182 v) & Qé 06 V
S S v RIS N\
S v & A LA
0% ® N
"% %

Figure 6.4: Absolute frequencies for detail categories on functionality

The relative frequencies for the top-level categories are given in figure [6.5] As already
supposed from the analysis of the absolute diagrams when looking at top-level categories the
differences between groups are hardly significant. This is likely to be caused by the coarse
granularity of this categories. When looking to the detailed categories again it comes clear that
there are large differences between groups in certain fields. As given in figure[6.7]supervisors pay
by far more attention in adaptability than other users do. Furthermore it is interesting to notice
that while male users are interested in a modular design and adaptability, female users pay about
the same amount of attention on durability. Further significant differences occured in the field
of usability as depicted in figure[6.6] Here it comes clear that male users are different from the
other groups by focussing only on accessibility and software, while female users and supervisors
have similar points of focus which are more equally distributed among all the categories.

6.6 Discussion

This section state the results and findings of the empirical study and gives a domain scoped
discussion of those. It is discussed if there are significant differences in the requirements of
various user-groups and especially for the case of this empirical study how this differences may
be gender related. Based on this discovered differences several factors of influence that may
have affected the results are stated and discussed and finally the practical implications of this
results are outlined.

99

100

Gesamt

3a Software

8 Anlernen der Systembenutzung

7 Arbeitssystem

W Vorgesetzte

. W Ménner
4 Design
M Frauen

3 Bedienerfreundlichkeit

2 Funktionalitat

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00%
realtive Haufigkeit

Figure 6.5: Relative frequencies for top-level categories

Bedienerfreundlichkeit

3h Sicherheit am Arbeitsplatz

3g Kommunikation/Marketing

3f Bedienpanel

3e Erreichbarkeiten/Positionierung

1 Vorgesetzte

3d Reinigung/Absaugung ® Ménner

® Frauen

3c Servicefreundlichkeit

3b Schnittstellen/Kommunikation

3a Software

0,00% 5,00% 10,00% 15,00% 20,00% 25,00% 30,00%
relative Haufigkeit

Figure 6.6: Relative frequencies for detail categories on usability

Funktionalitat

2j Anpassbarkeit/Verstellbarkeit —

2i Genauigkeit

2h Modularer Aufbau EEEEE————
2g Wiederverwendung von Bauteilen Vorgesetzte
R
2 Umwetauswriung | i
B Ménner
2e Lebesdauer/Garantiezeit
M Frauen
2d Zuverlassigkeit
2c Geschwindigkeit
2b Leistungsbereich
|
2a Hauptanwendungen r
0,00% 2,00% 4,00% 6,00% 8,00% 10,00% 12,00% 14,00%

relative Haufigkeit

Figure 6.7: Relative frequencies for detail categories on functionality

Differences between user-groups

Looking at the big picture of the results differences between the requirements of the various
user-groups can be identified, although it is not obvious if this differences are significant. The
global trend among all groups regarding which topics they are focusing is very similar, although
the weighting of the focused points differs remarkably. This is expressed by the relative weights
that are given to the top-level categories. This is a first strong indicator, that differences between
user-groups should be handled in the process of requirements engineering. Beside this different
prioritization of categories, much bigger differences between the groups can be observed when
evaluating the detailed categories. In terms of the analyzed domain this means that male users
attach less importance to the serviceability of the laser engraving machines, whereas this area is
very important for female users in terms of cleanliness and maintenance. It was observed that
only the group of female users, in contrast to other groups very certain, have a need for reliability
of the machines and they claim constant behavior of the machine over time.

Impact of gender

Based on this widely technical and methodical analysis it can hardly be stated whether this
differences are caused by the fact that the groups where distinguished by gender. Nevertheless
some interpretation in this context seem appropriate. The first thing to be observed is, that
male users have a distinct approach of working than managers, which have been predominantly
male in this study as well. The group of male users is the only one paying attention to design
considerations, which may eventually be caused by the fact, that they have a stringer personal
identification with the machine they use in everyday work.

101

Regarding the group of managers, it happens to be the case at several points that they differ
drastically from the other groups regarding topics like modularization and adaptability. This is
likely to be caused by the fact that they have a stronger focus on economical considerations and
therefore flexible utilization of the machines. The same holds true for requirements regarding
the safety of work.

Influencing factors

During the evaluation of the empirical study and interpretation of the results, several potential
influencing factors have been identified, that may affect the results when implementing a similar
study and therefore complicate the interpretation of results. A main influencing factor is the
general domain and type of product, which means that a pure retail product that is designed for
private customers servers a much larger base of users and therefore there may be more user-
groups to be distinguished which are likely to differ even stronger that the user-groups defined
in this empirical study. A further factor that influences the results is the dynamics of group
discussions. Although the discussion are moderated it may be the case that different user groups
put strongly different focuses in their requirements just because of the course of discussion.
Considering this it seems reasonable to have multiple discussion for each user group, maybe
even with changing individuals, to clean out this factor.

Practical consequences

There are several considerations for a subsequent phase of product implementation that can be
derived from the results of this empirical study. At first it becomes obvious which are the must-
have features of the product, namely those that are strongly focused by all user-groups. The
current implementation seems to have deficiencies in terms of positioning the workpieces as
well as regarding the software, especially the dialogue design. Furthermore key features for
all user-groups are in the area of usability, environmental implications as well as supporting
individual main areas of application. Those points should be implemented and prototyped at an
very early phase as they hold the most business value. Once this is done, the specific needs of
single user groups should be considered.

If the economic strategy is to focus on special user-groups, e.g. for marketing purposes, the
results clearly state the specific needs of each group. This information can be used either for
direction of development but as well for separated marketing strategies and advertisements, e.g.
emphasizing the flexibility when talking to manager, while putting focus on cleanliness for the
group of female users.

In addition the results allow to see if there are any groups strongly discriminated, which seems
to be not the case for this case study. An interesting fact that was revealed is that there is hardly
any need for easier teaching to new colleagues and the design of the product whereas usability
is clearly emphasized by all groups. This acknowledges the need for a user centered approach
for requirements engineering and product design.

At some points it was observable that some groups put a stronger focus on missing functionality
than others. This may be the case because those groups are not aware of functions that are
already available. Further analysis would be necessary to prove if this assumptions is true.

102

Summing up it can be said that the global trends are widely identical over all user-groups
and therefore they define clear priorities for the early phases of product development and imple-
mentation. The requirements differ significantly in details, which means once the main, global
requirements are fulfilled the further process can be steered in a directed way defining which
group should be paid how much attention.

103

CHAPTER

Conclusion

The initial hypothesis of this work was, that there are differences in the requirements of various
user-groups, which are not perceived and handled adequately by current requirements engi-
neering processes. Based on existing approaches for requirements engineering from different
domains a theoretical analysis of their strengths and weaknesses was performed. This analysis
also took into account how well the requirements engineering approaches could be embedded in
larger product development strategies. Based on this theoretical research became apparent that
very structured processes exist in the fields of construction and product development stand in
contrast to more flexible and user centered approaches especially known in the areas of software
development and lean techniques. Furthermore that different processes showed to be comple-
mentary in their strengths and weaknesses. In consequence of that fact, a novel approach for
requirements engineering was proposed which attempts to combine elements of both areas, con-
sidering key elements from User Centered Design, although as soon as possible aiming for
structured representation of the collected information which can be fed into a defined and struc-
tured process.

The described approach is based on user interviews and group discussions at early phases, which
are transformed to a structured process later on that is tightly related to functional analysis. This
offers the advantage that the transition from function analysis to a following process, e.g. us-
ing Function Family Trees, is already known from literature. This means that it is compatible
to current larger processes and strategies for product development that include implementation,
logistics etc. Therefore the presented approach is capable of to append to existing processes that
currently are based on function analysis approaches.

To prove the validity of the proposed process the data gathered for an empirical study in the
context of the Ge:MMaS project was analyzed. The Ge:MMaS project is mainly focusing on the
relevance of gender specific requirements, which is a valid classification of user-groups in the
scope of this work. Therefore this empirical study is an appropriate scenario for the proposed
approach. Based on the data of this empirical study the described novel approach was applied
to process the gathered data. On the one hand this was done to prove that there are differences

105

between gender groups in the context of the Ge:MMaS project, on the other hand to prove that
the developed process is capable of handling the unstructured data from discussions with various
user-groups and to transform the to a combined catalog of requirements.

The evaluation of the empirical study showed, that different groups of users state signifi-

cantly different requirements to a product. In the scope of Ge:MMaS this means, that an re-
quirements engineering process that purposely perceives different gender groups is reasonable.
In the scope of this work, this furthermore shows that the initial hypothesis of different require-
ments by different user-groups is correct. How significant this differences are depends on the
one hand from the domain and on the other hand from the classification of the groups. It can
be said, that products that are closer to end-users and serve a larger user-base are very likely to
possess much stronger differences in the requirements of their user-groups. The meaningfulness
and practical relevance of the proposed approach is therefore taken for granted, at least for spe-
cific products.
Furthermore the proposed approach was tested in terms of it’s applicability during the evaluation
of the empirical study and slightly adapted when necessary. It has been shown that the process as
described here is capable of gathering requirements as stated by UCD directly from the user in
a widely unstructured format. However, the gathered data can be processed in a way that allows
them to be fed into structured processes based on function analysis that are already described in
literature and implemented in practice.

In contrast to previous requirements engineering processes this approach offers the advan-
tage, that agility is given where necessary, i.e. at phases that are tightly related to users, whereas
it also provides structure where it is needed, i.e. in later stages of the overall process. In addition
to this, the proposed method enables a clear and sound tracking of each requirement over the
whole life-cycle in both directions, which is the basis for successful requirements management
over a products life-cycle. For practical application, at least a partial automation or tool sup-
port of the approach is desirable, as the manual effort increases disproportionately with rising
complexity of the product and as well the number of classified user-groups. This kind of tool
support requires expertise in the field of language processing and software that is capable of
building synonyms of functions without adding or loosing any information and meaning.

From today’s perspective the proposed approach seems practicable for certain fields of ap-
plication and products, that intentionally want or need to focus on the needs of different user-
groups. This trend is coming more and more in nowadays. In the scope of this work it could
be shown that differences in the requirements of various user-groups exist and it could further-
more be shown that the proposed approach is capable of handling this differences and supporting
practical relevant product development processes.

106

[10]

Bibliography

Kaneo Akiyama. Funktionenanalyse: der Schliissel zu erfolgreichen Produkten und Dien-
stleistungen. Verlag Moderne Industrie, 1994.

Mina Attarha and Nasser Modiri. Focusing on the importance and the role of requirement
engineering. In Interaction Sciences (ICIS), 2011 4th International Conference on, pages
181-184. IEEE, 2011.

Bainbridge and William Sims, editors. Berkshire encyclopedia of human-computer inter-
action. Berkshire Pub. Group, 2004. (e-book) 0-97430912-5 (hardcopy).

Carliss Y. Baldwin and Eric Von Hippel. Modeling a Paradigm Shift: From Producer
Innovation to User and Open Collaborative Innovation. Social Science Research Network
Working Paper Series, November 2009.

Fernando Belfo. People, organizational and technological dimensions of software require-
ments specification. Procedia Technology, 5:310-318, 2012.

Nigel Bevan. Common industry specification for usability—requirements, 2006.

Elizabeth Bjarnason, Krzysztof Wnuk, and Bjorn Regnell. A case study on benefits and
side-effects of agile practices in large-scale requirements engineering. In Proceedings of
the 1st Workshop on Agile Requirements Engineering, page 3. ACM, 2011.

Frederick P Brooks Jr. No silver bullet-essence and accidents of software engineering.
IEEE computer, 20(4):10-19, 1987.

Glenn J Browne and Michael B Rogich. An empirical investigation of user requirements
elicitation: Comparing the effectiveness of prompting techniques. Journal of Management
Information Systems, 17(4):223-250, 2001.

Jim Van Buren and David A. Cook. Experiences in the adoption of requirements engineer-
ing technologies. CrossTalk - The Journal of Defense Software Engineering, December
1998.

Rafael Capilla, Muhammad Ali Babar, and Oscar Pastor. Quality requirements engineer-
ing for systems and software architecting: methods, approaches, and tools. Requirements
Engineering, 17:255-258, 2012.

107

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

108

Abhijit Chakraborty, Mrinal Kanti Baowaly, Ashraful Arefin, and Ali Newaz Bahar. The
role of requirement engineering in software development life cycle. Journal of Emerging
Trends in Computing and Information Sciences, 3(5):723-729, 2012.

Chee Kai Chua, Kah Fai Leong, and C Chu Sing Lim. Rapid prototyping: principles and
applications. World Scientific, 2010.

IEEE Computer Society. Software Engineering Standards Committee, Inc. Electronics En-
gineers, and IEEE-SA Standards Board. IEEE recommended practice for software require-
ments specifications: approved 25 June 1998, volume 830. IEEE, 1998.

IEEE Computer Society. Software Engineering Standards Committee, Inc. Electronics En-
gineers, and IEEE-SA Standards Board. IEEE recommended practice for software require-
ments specifications: approved 25 June 1998, volume 830. IEEE, 1998.

Alan Cooper and Paul Saffo. The inmates are running the asylum, volume 1. Sams, 2004.

Jane Coughlan and Robert D Macredie. Effective communication in requirements elicita-
tion: a comparison of methodologies. Requirements Engineering, 7(2):47-60, 2002.

Alan M Davis. Software requirements: objects, functions, and states. Prentice-Hall, Inc.,
1993.

Gordon B Davis. Strategies for information requirements determination. IBM systems

Jjournal, 21(1):4-30, 1982.

KD Eason. Ergonomic perspectives on advances in human-computer interaction. Er-
gonomics, 34(6):721-741, 1991.

Nikolaus Franke and Eric von Hippel. Satisfying heterogeneous user needs via innovation
toolkits: the case of apache security software. Research Policy, 32(7):1199-1215, 2003.

Tilei Gao, Tong Li, Zhongwen Xie, Jiandong Xu, and Ye Qian. A process model of soft-
ware evolution requirement based on feedback. In Information Technology, Computer En-
gineering and Management Sciences (ICM), 2011 International Conference on, volume 2,
pages 171-174. IEEE, 2011.

Paolo Giorgini, Stefano Rizzi, and Maddalena Garzetti. Goal-oriented requirement analysis
for data warehouse design. In Proceedings of the 8th ACM international workshop on Data
warehousing and OLAP, pages 47-56. ACM, 2005.

Ellen Gottesdiener. Requirements by collaboration: getting it right the first time. Software,
IEEFE, 20(2):52-55, 2003.

Jonathan Grudin. Systematic sources of suboptimal interface design in large product de-
velopment organizations. Human-Computer Interaction, 6(2):147-196, 1991.

[26]

Paul Gruenbacher. Collaborative requirements negotiation with easywinwin. In Database
and Expert Systems Applications, 2000. Proceedings. 11th International Workshop on,
pages 954-958. IEEE, 2000.

Paul Gruenbacher. Integrating groupware and case capabilities for improving stakeholder
involvement in requirements engineering. In Euromicro Conference, 2000. Proceedings of
the 26th, volume 2, pages 232-239. IEEE, 2000.

Irit Hadar, Pnina Soffer, and Keren Kenzi. The role of domain knowledge in requirements
elicitation via interviews: an exploratory study. Requirements Engineering, pages 1-17,
2012.

Guozheng He and Jianan Yu. Identify lead users by customer competence. In Industrial
Engineering and Engineering Management (IEEM), 2010 IEEE International Conference
on, pages 1305-1308, 2010.

Juho Heiskari, Marjo Kauppinen, Mikael Runonen, and Tomi Mannisto. Bridging the gap
between usability and requirements engineering. In Requirements Engineering Conference,
2009. RE’09. 17th IEEE International, pages 303-308. IEEE, 2009.

Cornelius Herstatt and Eric Von Hippel. From experience: Developing new product con-
cepts via the lead user method: A case study in a llow-techffield. Journal of product
innovation management, 9(3):213-221, 1992.

Elke Hochmiiller. Requirements classification as a first step to grasp quality requirements.
In Dubois & al.: Proceedings of the Third International Workshop on Requirements Engi-
neering, REFSQ, volume 97, 1997.

Hubert F Hofmann and Franz Lehner. Requirements engineering as a success factor in
software projects. IEEE software, 18(4):58-66, 2001.

Syed Alim Hussain, Arun Kumar Rathore, and Rajesh Singh. Globally accepted require-
ment elicitation methods. 4D International Journal of management and science, Vol. 1:52—
59, 2012.

IEEE. Ieee guide for developing system requirements specifications. /IEEE Std 1233, 1998
Edition, pages 1-36, 1998.

ISO. Ergonomie der mensch-system-interaktion — teil 210: Prozess zur gestaltung ge-
brauchstauglicher interaktiver systeme, 01 2011.

ISO/IEC. ISO/IEC 9126. Software engineering — Product quality. ISO/IEC, 2001.

Natalia Juristo, Ana M Moreno, and Andrés Silva. Is the european industry moving toward
solving requirements engineering problems? Software, IEEE, 19(6):70-77, 2002.

Turkka Keinonen. User-centered design and fundamental need. In Proceedings of the
5th Nordic conference on Human-computer interaction: building bridges, pages 211-219.
ACM, 2008.

109

[40] Jenny Kitzinger. Qualitative research. introducing focus groups. BMJ: British medical
Jjournal, 311(7000):299, 1995.

[41] Henrik Kniberg. Kanban and Scrum-making the most of both. Lulu. com, 2010.

[42] Izumi Kohno, Hiroko Yasu, Satoshi Sugawara, and Masahiro Nishikawa. Pragmatic ap-
proach to cost benefit analysis of user centered design. In Aaron Marcus, editor, HCI (9),
volume 8012 of Lecture Notes in Computer Science, pages 525-534. Springer, 2013.

[43] Udai Kumar Kudikyala and Rayford B Vaughn. Software requirement understanding using
pathfinder networks: Discovering and evaluating mental models. Journal of Systems and
Software, 74(1):101-108, 2005.

[44] Sari Kujala and Marjo Kauppinen. Identifying and selecting users for user-centered design.
In Proceedings of the third Nordic conference on Human-computer interaction, pages 297—

303. ACM, 2004.

[45] Sari Kujala and Martti Mintyld. How effective are user studies? In People and Computers
X1V - Usability or Else!, pages 61-71. Springer, 2000.

[46] Marianne LaFrance. The knowledge acquisition grid: A method for training knowledge
engineers. International Journal of Man-Machine Studies, 26(2):245-255, 1987.

[47] Dean Leffingwell. Agile software requirements: lean requirements practices for teams,
programs, and the enterprise. Addison-Wesley Professional, 2010.

[48] Xiaoshan Li, Zhiming Liu, and Jifeng He. Formal and use-case driven requirement analysis
in uml. In Computer Software and Applications Conference, 2001. COMPSAC 2001. 25th
Annual International, pages 215-224. IEEE, 2001.

[49] Martin Lopez-Nores, Jose J Pazos-Arias, Jorge Garcia-Duque, and Belen Barragans-
Martinez. An agile approach to support incremental development of requirements spec-
ifications. In Software Engineering Conference, 2006. Australian, pages 10-pp. IEEE,
2006.

[50] NAM Maiden and Gordon Rugg. Acre: selecting methods for requirements acquisition.
Software Engineering Journal, 11(3):183-192, 1996.

[51] Sacha Martin, Aybiike Aurum, Ross Jeffery, and Barbara Paech. Requirements engineer-
ing process models in practice. In 7th Australian workshop on requirements engineering.
Deakin University, Melbourne, Australia, pages 41-47, 2002.

[52] Lawrence D Miles. Techniques of value analysis and engineering, volume 4. McGraw-hill
New York, 1972.

[53] Deepti Mishra, Alok Mishra, and Ali Yazici. Successful requirement elicitation by com-
bining requirement engineering techniques. In Applications of Digital Information and
Web Technologies, 2008. ICADIWT 2008. First International Conference on the, pages
258-263. IEEE, 2008.

110

[54]

[55]

[62]

[65]

[66]

[67]

[68]

John Money. The concept of gender identity disorder in childhood and adolescence after
39 years. Journal of Sex & Marital Therapy, 20(3):163-177, 1994. PMID: 7996589.

Janette W Moody, J Ellis Blanton, and Paul H Cheney. A theoretically grounded approach
to assist memory recall during information requirements determination. Journal of Man-
agement Information Systems, 15(1):79-98, 1998.

Tony Moynihan. Coping with ‘requirements-uncertainty’: the theories-of-action of expe-
rienced is/software project managers. Journal of Systems and Software, 53(2):99 — 109,
2000.

Arthur E. Mudge. How to construct and use a ve function chart. Value Engineering, 1965.
Donald A Norman. The psychology of everyday things. Basic books, 1988.
Donald A. Norman. The design of everyday things. Basic Books, September 2002.

Donald A Norman and Stephen W Draper. User centered system design; new perspectives
on human-computer interaction. L. Erlbaum Associates Inc., 1986.

Dhirendra Pandey, U Suman, and AK Ramani. An effective requirement engineering pro-
cess model for software development and requirements management. In Advances in Re-
cent Technologies in Communication and Computing (ARTCom), 2010 International Con-
ference on, pages 287-291. IEEE, 2010.

U Suman Pandey and AK Ramani. Social-organizational participation difficulties in re-
quirement engineering process-a study. In National Conference on Emerging Trends
in Software Engineering and Information Technology, Gwalior Engineering College,

Gwalior, 2009.

patientmo. Exemplary Wireframe. http://patientmo.files.wordpress.com/
2012/04/compressedandresizedl. jpg. [Online; accessed 2013-09-10].

Mark C Paulk, Charles V Weber, Bill Curtis, and MB (Ed.) CHRISSIS. The capability
maturity model: Guidelines for improving the software process, volume 441. Addison-
wesley Reading, 1995.

S.L. Pfleeger and J.M. Atlee. Software Engineering: Theory and Practice. Pearson Prentice
Hall, 2006.

Pete Sawyer, Ian Sommerville, and Stephen Viller. Capturing the benefits of requirements
engineering. Software, IEEE, 16(2):78-85, 1999.

Ken Schwaber and Mike Beedle. Agile software development with Scrum, volume 1. Pren-
tice Hall Upper Saddle River, 2002.

Ahmed Seffah and Eduard Metzker. The obstacles and myths of usability and software
engineering. Communications of the ACM, 47(12):71-76, 2004.

111

http://patientmo.files.wordpress.com/2012/04/compressedandresized1.jpg
http://patientmo.files.wordpress.com/2012/04/compressedandresized1.jpg

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]

112

Ben Shneiderman and Shneiderman Ben. Designing The User Interface: Strategies for
Effective Human-Computer Interaction, 4/e (New Edition). Pearson Education India, 2003.

Herbert Alexander Simon. The sciences of the artificial. MIT press, 1996.

Rashmi Sinha. Persona development for information-rich domains. In CHI’'03 extended
abstracts on Human factors in computing systems, pages 830-831. ACM, 2003.

Carolyn Snyder. Paper prototyping: The fast and easy way to design and refine user
interfaces. Morgan Kaufmann, 2003.

Alistair Sutcliffe. Requirements rationales: integrating approaches to requirement anal-
ysis. In Proceedings of the st conference on Designing interactive systems: processes,
practices, methods, & techniques, pages 33—42. ACM, 1995.

Masatosi Tamai. Function Analysis. 1697.
Masatosi Tamai. How to build fufunction family trees. ValValue Engineering 8 (7), 1967.

Masayoshi Tanaka. A survey concerning target ccost, ve and price estimates in the product
development and design process. Japan VE Association, 1985.

CMMI Product Team. Cmmi for systems engineering/software engineering/integrated
product and process development/supplier sourcing, version 1.1, continuous representa-
tion. CMU/SEI, 2002.

Glen L. Urban and Eric von Hippel. Lead user analyses for the development of new indus-
trial products. Manage. Sci., 34(5):569-582, 1988.

Eric Von Hippel. The dominant role of users in the scientific instrument innovation process.
Research policy, 5(3):212-239, 1976.

Eric Von Hippel. New product ideas from lead users. Research Technology Management,
32(3):24-27, 1989.

Eric Von Hippel. Democratizing innovation: the evolving phenomenon of user innovation.
International Journal of Innovation Science, 1(1):29—-40, 2009.

Karel Vredenburg. Increasing ease of use. Communications of the ACM, 42(5):67-71,
1999.

Karel Vredenburg, Ji Y. Mao, Paul W. Smith, and Tom Carey. A survey of user-centered
design practice. In Proceedings of the SIGCHI conference on Human factors in computing
systems: Changing our world, changing ourselves, CHI *02, pages 471-478, New York,
NY, USA, 2002. ACM.

Nigel Whiteley. Design for society. Reaktion books, 1993.

[85] Jennifer Wiley. Expertise as mental set: The effects of domain knowledge in creative
problem solving. Memory & cognition, 26(4):716-730, 1998.

[86] William M Wilson, Linda H Rosenberg, and Lawrence E Hyatt. Automated analysis of re-

quirement specifications. In Proceedings of the 19th international conference on Software
engineering, pages 161-171. ACM, 1997.

[87] Natalie Woletz. Evaluation eines user-centred design-prozessassessments: empirische un-
tersuchung der qualitä t und gebrauchstauglichkeit im praktischen einsatz. 2006.

[88] Surya Yadav, Ralph Bravoco, Akemi Chatfield, TM Rajkumar, et al. Comparison of anal-
ysis techniques for information requirement determination. Communications of the ACM,
31(9):1090-1097, 1988.

[89] Dirk Zimmermann and Lennart Grétzbach. A requirement engineering approach to user
centered design. In Human-Computer Interaction. Interaction Design and Usability, pages
360-369. Springer, 2007.

113

APPENDIX

Comparison of user-groups

The following diagrams depict the differences between the various user-groups that have been
evaulated based on data of the empirical study. As the whole empirical study was performed in
german language, the captions are in german language as well. Line charts depict the count of
function-requirement nominations for the respective categories and user-groups. Bar charts are
based on the same data but are representing the count of nominatins in a nomalized manner by
using relative weighting.

Gesamt

40

35 /\
30

c
()
[-T:]
5 25 /AN
R N\
= 15
[10 / \ \ ==@==Frauen
f= 1
< 5 v \\V}k / == Manner
0 . i Chefs
g & N ¥ & N
-0 N ™ <& O o
X X < &)
\)&{- Q,QQ {O\ &Q/ ")’b
’l«<< e& ,\V ‘bv
S
€
>

Figure A.1: Absolute frequencies for top-level categories

115

116

Funktionalitat

8
c 7
[}
® 6
2 5
] 4
2
‘Ev 3
b 2 === Frauen
< 1
0 == Manner
=== Chefs
Q
<
'z>°$
N
S
l\/’b
Figure A.2: Absolute frequencies for detail categories in functionality
Bedienerfreundlichkeit
12
gc,o 10 ‘\
5 8
£ K\
2
z 4 \ » / /\
©
5 2 / /{/ \ ; :i == Frauen
0 J == Mainner
. > A
gb& > ,<§{-Q’\ 03)°% » N Q‘;&\% Q\%" === Chefs
é\\. &\O ,b\) QO & .{{')
B Qb M & @’b N
3 > \a 2 \ S
& & N &
& \)Q XY ’b&
& NG g X
(—)Q’ S &\}Q Q/{(\
o p &
oﬁ}- N

Figure A.3: Absolute frequencies for detail categories in usability

2,5
2
c
&
§ 1,5
g =4-=Frauen
2
= =fli=Manner
I 1
2 / \ ==fe=Chefs
0,5
0 14 *
4a optisches 4b Gehdusefarbe 4c Baugrosse 4d Gewicht

Design

Erscheinungsbild

Figure A.4: Absolute frequencies for detail categories in design

Arbeitssystem
6
S5 A
g /}
3 4
£
2 3
=2
1
§: 1 === Frauen
0 <> == Manner
A @ & & & & cachefs
&y & ¢ & & L & ¢ F &
& 3 @;O @0 o ..@& «—,(' 4&’0\ (\5(\ sz?o
& ¥ S PO E S
«,ov & zgf\ & & é\b A & é\’b &
ze'(\o qu\ S P & @'z"& &
<
AQ D AT K(,;ée’ \é{:’é AT A A
AN

Figure A.5: Absolute frequencies for detail categories in working system

117

Software

Anzahl Nennungen
o = N w H w [e)] ~N

A === Frauen
/ —8—Ménner
= f —#—Chefs
v
& & & Q & & &
O & & ¢ & & &
5° & 33 & & © <
Q’% \a <& & o
o X & & O & &
2° o & & N @
0\% ;00 @ N A I 0(
o> & & As Ry & 0
5 A< ,,;& ” o R 5
’b’b' f),’b')

Figure A.6: Absolute frequencies for detail categories in software

Gesamt
3a Software
8 Anlernen der Systembenutzung
7 Arbeitssystem
H Vorgesetzte
B Ménner
4 Design
M Frauen
3 Bedienerfreundlichkeit
2 Funktionalitat
0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00%
realtive Haufigkeit

Figure A.7: Relative frequencies for top-level categories

118

Funktionalitat

21 ArpasshrketVerstetarict:

2i Genauigkeit

2h Modularer Aufbau

2g Wiederverwendung von Bauteilen Vorgesetzte
2f Umweltauswrikun;
8 1 Ménner
2e Lebesdauer/Garantiezeit
Frauen

2d Zuverlassigkeit

2c Geschwindigkeit

2b Leistungsbereich

|
22 Houptanwendungen ﬂ—

0,00% 2,00% 4,00% 6,00% 8,00% 10,00% 12,00% 14,00%
relative Haufigkeit

Figure A.8: Relative frequencies for detail categories in functionality

Bedienerfreundlichkeit

3h Sicherheit am Arbeitsplatz

3g Kommunikation/Marketing

3f Bedienpanel

3e Erreichbarkeiten/Positionierung

W Vorgesetzte

3d Reinigung/Absaugung ® Manner
® Frauen

3c Servicefreundlichkeit

3b Schnittstellen/Kommunikation

3a Software

0,00% 5,00% 10,00% 15,00% 20,00% 25,00% 30,00%
relative Haufigkeit

Figure A.9: Relative frequencies for detail categories in usability

119

120

Design

4d Gewicht

= Vorgesetzte

W Méanner
4b Gehéusefarbe ™ Frauen
4a optisches Erscheinungsbild
0,00% 1,00% 2,00% 3,00% 4,00% 5,00% 6,00%
relative Haufigkeit
Figure A.10: Relative frequencies for detail categories in design
Arbeitssystem
7k Datenmanagement #
7j Materialhandhabung
7i Problembewiltigung -
7h Ursache fiir Fehler/Ausschuss
7g Anstrengende Situationen
7f Stressiges Gefiihl bei der Arbeit = Vorgesetzte
7e Gutes Gefiihl bei der Arbeit -— : :j:::'
7d Abwechslung bei der Arbeit
7c Mitentscheidungsfahigkeit bei der Bearbeitungsreihenfolge
7b Technischer Anspruch von Werkstoffen
7a Arbeitsteilung

0,00% 2,00% 4,00% 6,00% 8,00% 10,00% 12,00%
relative Haufigkeit

Figure A.11: Relative frequencies for detail categories in working system

Software
3a.6 Organisation der Informationen *
W Vorgesetzte
3a.5 Darstellung visueller Informationen = Minner
® Frauen
Benutzungsoberflache
3a.4 Dialogtechniken
3a.3 Kriterien Ein/Ausgabe
3a.2 Funktionale Kriterien
3a.1 Dialoggestaltung
0,00% 2,00% 4,00% 6,00% 8,00% 10,00% 12,00% 14,00% 16,00%
relative Haufigkeit

Figure A.12: Relative frequencies for detail categories in software

121

	Introduction
	Motivation
	Problem Statement
	Method
	Structure

	Theory
	User Centered Design
	Definition and Origination
	Principles of User Centered Design
	Motivation
	Process Integration
	User Groups
	Discussion

	Requirements Engineering
	Definition
	Motivation
	Requirements Representation
	Team constellation
	Process Models
	Common Techniques

	Function Analysis
	History
	Terminology
	Field of application
	Methods of functional analysis
	Functional analysis in practice
	Discussion

	Integrated Approach
	Potential
	Combination of techniques
	Definition of User Groups
	Gathering of Function-Requirements
	Prioritization of Requirements
	Aligning abstraction levels
	Categorization of requirements
	Consolidating Requirements among user groups
	Building a Function Family Tree
	Product re-design
	Comparison to existing approaches

	Evaluation
	Empirical study
	Situation
	Definition of user-groups
	Gathering structured Function-Requirements
	Consolidating user-groups
	Differences between user-groups
	Discussion

	Conclusion
	Bibliography
	Comparison of user-groups

