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ABSTRACT

This thesis collects several related results on cardinal characteristics of the contin-
uum, all of which employ the method of creature forcing.
In chapter A, we use a countable support product of lim sup creature forcing posets
to show that consistently, for uncountably many different functions the associated
Yorioka ideals’ uniformity numbers can be pairwise different. In addition we show
that, in the same forcing extension, for two other types of simple cardinal char-
acteristics parametrised by reals (localisation and anti-localisation cardinals), for
uncountably many parameters the corresponding cardinals are pairwise different.
The proofs are based on standard creature forcing methods, relational systems and
Tukey connections.
In chapter B, we disassemble, recombine and reimplement the creature forcing
construction used by Fischer et al. [FGKS17] to separate Cichoń’s diagram into
five cardinals as a countable support product with more easily understandable
internal structure. Using the fact that it is of countable support, we augment
the construction by adding uncountably many additional cardinal characteristics,
namely, localisation cardinals. The proofs use both creature forcing and combina-
torial methods.
In chapter C, we introduce several cardinal characteristics related to the splitting
number s, the reaping number r and the independence number i and prove bounds
and consistency results to show that several of these cardinal characteristics are, in
fact, new. Most proofs are of a combinatorial nature; one of the more sophisticated
proofs utilises a creature forcing poset already introduced in chapter B.
All three chapters are self-contained except for minor cross-references.
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PREFACE

Set theory began as a mathematical subject when Georg Cantor discovered the
notion of infinite cardinality and proved that the cardinality of the set of real
numbers (the continuum 2ℵ0) is different from the cardinality of the set of natural
numbers ℵ0. The question of “how different?” immediately became a focal point
of the new subject and has kept its central place for more than a century. Even
before Paul Cohen proved that Cantor’s well-known continuum hypothesis cannot
be refuted, i. e. that there can consistently be infinite sets of reals of intermediate
cardinality, several cardinal numbers of potentially “intermediate” size (so-called
cardinal characteristics, such as the unbounding number b and the dominating
number d, and of course ℵ1) were known, and the inability of mathematicians to
prove equalities between them already hinted at the vast range of unprovability
results that emerged as Cohen’s forcing method was developed and refined.
For a general overview of cardinal characteristics, see [Bla10], [Hal17, chapter 9]
and [Vau90] as well as [BJ95]. We will give brief definitions of the most important
standard concepts and terms from the study of cardinal characteristics which will
appear in this thesis.
Given an ideal I on some base set X, we can define four cardinal characteristics:

• the additivity number add(I) := min{|A| | A ⊆ I and
⋃
A 6∈ I},

• the covering number cov(I) := min{|A| | A ⊆ I and
⋃

A = X},
• the uniformity number non(I) := min{|Y | | Y ⊆ X and Y 6∈ I}, and
• the cofinality cof(I) := min{|A| | A ⊆ I and ∀B ∈ I ∃A ∈ A : B ⊆ A}.

In particular, we will refer to these cardinal characteristics for
• the ideal N := {A ⊆ 2ω | λ(A) = 0} of Lebesgue null sets and
• the ideal M := {A ⊆ ωω | A =

⋃
n<ω An and ∀n < ω : An nowhere dense} of

meagre sets.
In addition to these, we will refer to several other cardinal characteristics (where
f ≤∗ g stands for ∀∞ n < ω : f(n) ≤ g(n)):
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• b := min{|A| | A ⊆ ωω and ∀ g ∈ ωω ∃ f ∈ A : f 6≤∗ g} (the unbounding
number),

• d := min{|A| | A ⊆ ωω and ∀ g ∈ ωω ∃ f ∈ A : g ≤∗ f} (the dominating
number),

• s := min{|S| | S ⊆ [ω]ω and ∀X ∈ [ω]ω ∃S ∈ S : |X ∩ S| = |X r S| = ℵ0}
(the splitting number),

• r := min{|R| | R ⊆ [ω]ω and 6 ∃ X ∈ [ω]ω ∀R ∈ R : |R ∩X| = |R rX| = ℵ0}
(the reaping number), and

• i := min{|I| | I ⊆ [ω]ω and ∀A ·∪ B ⊆ I :
∣∣⋂

A∈AA ∩
⋂

B∈B(ω rB)
∣∣ = ℵ0}

(the independence number),
The common methods predominantly used in all three chapters are countable sup-
port products and creature forcing. The standard reference work for the latter is
by Rosłanowski and Shelah [RS99], but this thesis is self-contained and, hopefully,
more easily digestible.
Finally, we remark that we use the standard notation for forcing conditions where
q ≤ p means that q is a stronger condition than p, and we also strive to follow
Goldstern’s alphabetic convention, i. e. stronger conditions are denoted by lexico-
graphically bigger symbols.
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CHAPTER A

YORIOKA IDEALS

This chapter is based on [KM18], which is joint work with Diego Alejandro Mejía.

A1 Introduction

This research forms part of the study of cardinal characteristics of the continuum
which are parametrised by reals and of the forcing techniques required to separate
many of them. The main motivation of this chapter is to produce a forcing model
where several (even uncountably many) uniformity numbers of Yorioka ideals are
pairwise different; in doing so, we included additional types of parametrised cardi-
nal characteristics which we refer to as localisation and anti-localisation cardinals.
We first review the definition of a Yorioka ideal:

Notation A1.1. We fix the following terminology.
(1) For σ ∈ (2<ω)ω, let [σ]∞ :=

⋂
n<ω

⋃
i≥n[σ(i)] and let htσ ∈ ωω be the function

defined by htσ(i) := |σ(i)|.
(2) For f, g ∈ ωω, we write f � g to state “for every m < ω, f ◦ powm ≤∗ g”,

where powm : ω → ω : i 7→ im.

Definition A1.2 (Yorioka [Yor02]). We define Yorioka ideals in two steps:
(1) For g ∈ ωω, define Jg := {X ⊆ 2ω | ∃ σ ∈ (2<ω)ω : X ⊆ [σ]∞ and htσ = g}.
(2) For f ∈ ωω increasing, define If :=

⋃
g�f Jg. Any family of this form is

called a Yorioka ideal.

Yorioka ideals are partial approximations of the σ-ideal SN of strong measure zero
subsets of 2ω. They were introduced by Yorioka [Yor02] to show that no inequality
between cof(SN ) and c := 2ℵ0 can be proved in ZFC. Though it is very easy to
show that SN =

⋂
g∈ωω Jg, the families of the form Jg are not ideals in general
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Chapter A: Yorioka Ideals

(Kamo and Osuga [KO08]); however, If is a σ-ideal whenever f is increasing,
and SN =

⋂
{If | f ∈ ωω increasing} characterises SN , as well. Also note that

If ⊆ N , where N denotes the ideal of Lebesgue measure zero subsets of 2ω.

ℵ1 add(I)

cov(I)

non(I)

cof(I) c

Figure 1: The standard inequalities for the cardinal characteristics
associated with a σ-ideal I which contains all finite subsets and
has a Borel basis.

The cardinal invariants associated with Yorioka ideals (that is, add(If ), cov(If ),
non(If ) and cof(If )) have been studied for quite some time. Kamo and Osuga
[KO08] showed that for any fixed increasing f , no other inequality consistent with
the standard known inequalities (see Figure 1) can be proved in ZFC. This was
improved by Cardona and Mejía [CM17] by constructing a ccc poset forcing that,
for some f0, the four cardinals associated with If are pairwise different for all
f ≥∗ f0. On the other hand, Kamo and Osuga also showed that add(If ) ≤ b and
d ≤ cof(If ). It is also known that add(N ) ≤ add(If ) and cof(If ) ≤ cof(N ) in ZFC
(attributed to Kamo; see also [CM17, section 3] for a proof), but equality cannot
be proved (Cardona and Mejía [CM17]).
Later, Kamo and Osuga [KO14] forced, using a ccc poset, that infinitely (even un-
countably) many covering numbers of Yorioka ideals are pairwise different; more-
over, continuum many pairwise different covering numbers can be forced under the
assumption that a weakly inaccessible cardinal exists. The dual of this result is
the main question of this chapter.
Question A. Is it consistent with ZFC that infinitely many cardinals of the form
non(If ) are pairwise different?

A key feature in Kamo and Osuga’s model for infinitely many covering numbers
is a relation they discovered between the covering numbers of Yorioka ideals and
anti-localisation cardinals of the form c∃c,h. The duals v∃c,h of these cardinals, as
well as the localisation cardinals themselves, will also play an important role in
solving the question above. They are defined as follows:
Notation A1.3. We fix some basic notation and terminology.
(1) Given A ⊆ ω and a formula ϕ, we write ∀∞ i ∈ A : ϕ for ∃n < ω (∀ i ≥ n, i ∈

A) : ϕ (i. e. all but finitely many members of A satisfy ϕ), and ∃∞ i ∈ A : ϕ
for ∀n < ω (∃ i ≥ n, i ∈ A) : ϕ (i. e. infinitely many members of A satisfy ϕ).
We often write ∀∞ i instead of ∀∞ i < ω, and likewise for ∃∞ i.

2



A1 Introduction

(2) Let c = 〈c(i) | i < ω〉 be a sequence of non-empty sets. We write
∏
c :=∏

i<ω c(i) and seq<ω(c) :=
⋃

n<ω

∏
i<n c(i). For t ∈ seq<ω(c), let [t] = [t]c :=

{x ∈
∏
c | t ⊆ x}.

(3) In addition, if h ∈ ωω, let S(c, h) :=
∏

i<ω[c(i)]
≤h(i), the set of all h-slaloms

(sequences of subsets of size at most h(i)) in
∏
c.

(4) When x and y are functions with domain ω, we write

y localises x, denoted by x ∈∗ y, iff ∀∞ i : x(i) ∈ y(i);

y anti-localises x, denoted by x /∈∗ y, iff ∀∞ i : x(i) /∈ y(i).

(5) When, in addition, x and y go into the ordinal numbers, we write x ≤ y for
∀ i < ω : x(i) ≤ y(i) and x ≤∗ y for ∀∞ i < ω : x(i) ≤ y(i). We likewise use
the notation x < y and x <∗ y.

Definition A1.4. Let c = 〈c(i) | i < ω〉 be a sequence of non-empty sets and
h ∈ ωω. We define the following cardinal characteristics:

v∀c,h := min{|F | | F ⊆
∏
c and ¬∃ϕ ∈ S(c, h) ∀x ∈ F : x ∈∗ ϕ}

c∀c,h := min{|S| | S ⊆ S(c, h) and ∀x ∈
∏
c ∃ϕ ∈ S : x ∈∗ ϕ}

v∃c,h := min{|E| | E ⊆
∏
c and ∀ϕ ∈ S(c, h) ∃ y ∈ E : y /∈∗ ϕ}

c∃c,h := min{|R| | R ⊆ S(c, h) and ¬∃ y ∈
∏
c ∀ϕ ∈ R : y /∈∗ ϕ}

The first two types of cardinals are referred to as localisation cardinals, while the
latter two are referred to as anti-localisation cardinals.1

The localisation and anti-localisation cardinals are a generalisation of the cardinals
used in Bartoszyński’s characterisations add(N ) = v∀ω,h and cof(N ) = c∀ω,h (where
ω is to be interpreted as the constant sequence ω) when h goes to infinity, and
non(M) = c∃ω,h and cov(M) = v∃ω,h when h ≥∗ 1, where M denotes the ideal of
meagre subsets of 2ω (see e. g. [BJ95, Theorem 2.3.9, Lemmata 2.4.2 and 2.4.8]).
Moreover, when c takes infinitely many infinite values, the localisation and anti-
localisation cardinals are already characterised by other well-known cardinals (see
[CM17, section 3]), so these cardinals are more interesting when c ∈ ωω and c >∗ h.
Even then, we have some trivial values: v∀c,h is finite and c∀c,h = c when h does not
go to infinity (Goldstern and Shelah [GS93]); also, c∃c,h is finite and v∃c,h = c when
the quotient h(k)

c(k)
does not converge to 0 (see [CM17, section 3]). See Figure 2 for a

summary of the ZFC-provable inequalities relating localisation and anti-localisation
cardinals to other cardinal characteristics. The additional relation between the
anti-localisation cardinals and the covering and uniformity numbers of N was
previously hinted at for the case of h = 1 in [GS93]; we prove it in general in
Lemma A2.3.
1 A brief note on notation: c∀c,h and c∃c,h were used in [GS93, Kel08, KS09, KS12, KO14] with the

meaning of covering
∏

c with slaloms, where the relations for covering are ∈∗ and ∃∞ i : x(i) ∈
ϕ(i), respectively. The notation v∀c,h and v∃c,h is intended to be read as avoiding or evading such
coverings.
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Chapter A: Yorioka Ideals

add(N ) cov(M) c∀c,h

c∃c,h v∃c,h

v∀c,h non(M) cof(N )

Figure 2: The ZFC-provable inequalities between localisation and
anti-localisation cardinals and other well-known cardinal charac-
teristics in Cichoń’s diagram. Additionally, if

∑
i<ω

h(i)
c(i)

< ∞,
then cov(N ) ≤ c∃c,h and v∃c,h ≤ non(N ), and conversely, if∑

i<ω
h(i)
c(i)

= ∞, then cov(N ) ≤ v∃c,h and c∃c,h ≤ non(N ) (see
Lemma A2.3).

One of the earliest appearance of these cardinals is in Miller’s [Mil81] characteri-
sations non(SN ) = min{v∃c,h | c ∈ ωω} (h ≥∗ 1) and add(M) = min{b, non(SN )}.2
Some time later, Goldstern and Shelah [GS93] proved that uncountably many car-
dinals of the form c∀c,h can be pairwise different. Kellner [Kel08] then improved this
result by showing the consistency of continuum many pairwise different cardinals of
the same type, and Kellner and Shelah [KS09, KS12] included similar consistency
results for the type c∃c,h; they also showed that there may be continuum many of
both types of cardinals (in the same model). All of these consistency results were
proved by using proper ωω-bounding forcing constructions with normed creatures.
By ccc forcing techniques, Brendle and Mejía [BM14] showed that uncountably
many cardinals of the form v∀c,h can be pairwise different – and even continuum
many, under the assumption that there exists a weakly inaccessible cardinal. How-
ever, the corresponding consistency result for v∃c,h remained unknown.

Question B. Is it consistent with ZFC that there are infinitely many pairwise
different cardinals of the form v∃c,h?

In this chapter we answer Question A and Question B in the positive. Assuming
CH, we construct a forcing model where uncountably many cardinals of the form
non(If ), v∃c,h and c∀c,h are pairwise different.

Main Theorem. Assume CH. If 〈κα | α ∈ A〉 is a sequence of infinite cardi-
nals such that |A| ≤ ℵ1 and κℵ0

α = κα for every α ∈ A, then there is a family
〈(aα, dα, fα, cα, hα) | α ∈ A〉 of tuples of increasing functions in ωω and a proper
ωω-bounding ℵ2-cc poset Q that forces v∃cα,hα

= non(Ifα) = c∀aα,dα = κα for every
α ∈ A.

The family of increasing functions is constructed in such a way that for each α ∈ A,
v∃cα,hα

≤ non(Ifα) ≤ c∀aα,dα is provable in ZFC. The poset Q is constructed by a
2 By similar methods, it can also be proved that cof(M) = sup({d}∪{c∃c,h | c ∈ ωω}) and, whenever
h goes to infinity, add(N ) = min({b}∪ {v∃c,h | c ∈ ωω}) and cof(N ) = sup({d}∪ {c∀c,h | c ∈ ωω}).

4



A2 Yorioka Ideals and Cardinal Characteristics

CS (countable support) product of proper ωω-bounding posets, as in Goldstern
and Shelah [GS93], but instead of tree-like posets we use Silver-like posets in the
product. These posets are used to add generic reals that increase each v∃cα,hα

; in
fact, forcing κα ≤ v∃cα,hα

is not difficult. On the other hand, guaranteeing that
c∀aα,dα ≤ κα holds in the final forcing extension requires careful definition of the
increasing functions and strong combinatorics for each forcing in the product. To
be more precise, each poset Qdα

cα,hα
(which is used to increase v∃cα,hα

) is obtained by
a lim sup creature construction and depends on dα in the sense that this function
determines the bigness needed to not increase the cardinals c∀aβ ,dβ for β 6= α.
This chapter is structured as follows.

• In section A2, we strengthen the connections Kamo and Osuga found be-
tween anti-localisation cardinals and Yorioka ideals’ covering and uniformity
numbers; besides, we find a (simple) connection between localisation and
anti-localisation cardinals. These ensure that, in the Main Theorem, the
family of increasing functions satifies v∃cα,hα

≤ non(Iα) ≤ c∀aα,dα for every
α ∈ A.

• In section A3, for c, h ∈ ωω, we define the Silver-like poset we use to increase
v∃c,h and, by incorporating a norm with sufficiently large bigness, we present
sufficient conditions on functions a, e which will guarantee that such a poset
does not increase c∀a,e.

• In section A4, we use the results of the previous sections to construct a
family of functions as required in the Main Theorem, which is finally proved
in section A5.

• The final section A6 is dedicated to discussions and open questions.

A2 Yorioka Ideals and Cardinal Characteristics

For notational simplicity, we describe the cardinal characteristics we are interested
in through relational systems as below.

Definition A2.1. A relational system is a triplet R := 〈X,Y,@〉 where @ is a
relation contained in X × Y . The cardinal characteristics associated with R are

b(R) := min{|B| | B ⊆ X and ¬∃ y ∈ Y ∀x ∈ B : x @ y},
d(R) := min{|D| | D ⊆ Y and ∀x ∈ X ∃ y ∈ D : x @ y}.

The dual of R is the relational system R⊥ := 〈Y,X, 6A〉.
Let R′ := 〈X ′, Y ′,@′〉 be another relational system. A pair (F,G) is a Tukey
connection from R to R′ if F : X → X ′, G : Y ′ → Y and for any x ∈ X and
y′ ∈ Y ′, F (x) @′ y′ implies x @ G(y′). When there is a Tukey connection from R
to R′, we say that R is Tukey-below R′, which is denoted by R �T R′. We say
that R and R′ are Tukey-equivalent, denoted by R ∼=T R′, when R �T R′ and
R′ �T R.

Recall that R �T R′ implies that d(R) ≤ d(R′) and b(R′) ≤ b(R). Also, b(R⊥) =

5



Chapter A: Yorioka Ideals

d(R) and d(R⊥) = b(R). In this section, we will use such Tukey connections to
prove inequalities between cardinal invariants.

Example A2.2. We give two examples of relational systems.
(1) Let I be a family of subsets of a set X that satisfies

(i) [X]<ℵ0 ⊆ I,
(ii) X /∈ I, and
(iii) whenever Y ∈ I and X ⊆ Y , X ∈ I.
Consider the relational systems I := 〈I, I,⊆〉 and Cv(I) := 〈X, I,∈〉. Note
that

b(I) = add(I), d(I) = cof(I),
b(Cv(I)) = non(I), d(Cv(I)) = cov(I),

which are the cardinal invariants associated with I. Note that Cv(I) �T I
and Cv(I)⊥ �T I, so the well-known fact that add(I) is below both cov(I)
and non(I) and that cof(I) is above those three is easily proved through the
relational systems.
If J is another family of subsets of X that satisfies (i)–(iii) above and I ⊆ J ,
then Cv(J ) �T Cv(I), so cov(J ) ≤ cov(I) and non(I) ≤ non(J ).

(2) Let c = 〈c(i) | i < ω〉 be a sequence of non-empty sets and h ∈ ωω. De-
fine the relational systems Lc(c, h) := 〈

∏
c,S(c, h),∈∗〉 and aLc(c, h) :=

〈S(c, h),
∏
c, 63∗〉. Note that

b(Lc(c, h)) = v∀c,h, d(Lc(c, h)) = c∀c,h,

b(aLc(c, h)) = c∃c,h, d(aLc(c, h)) = v∃c,h.

If, in addition, c′ = 〈c′(i) | i < ω〉 is a sequence of non-empty sets, h′ ∈ ωω

and |c(i)| ≤ |c′(i)| and h′(i) ≤ h(i) for all but finitely many i < ω, then
Lc(c, h) �T Lc(c′, h′) and aLc(c′, h′) �T aLc(c, h). Hence, v∀c′,h′ ≤ v∀c,h,
c∀c,h ≤ c∀c′,h′ , c∃c,h ≤ c∃c′,h′ and v∃c′,h′ ≤ v∃c,h.

Lemma A2.3. Let c, h ∈ ωω and assume that c ≥ 1 and h ≥∗ 1.
(a) If

∑
i<ω

h(i)
c(i)

< ∞, then Cv(N ) �T aLc(c, h)⊥. In particular, cov(N ) ≤ c∃c,h
and v∃c,h ≤ non(N ).

(b) If
∑

i<ω
h(i)
c(i)

= ∞, then Cv(N ) �T aLc(c, h). In particular, cov(N ) ≤ v∃c,h
and c∃c,h ≤ non(N ).

Before we engage in the proof, recall that whenever X is an uncountable Polish
space and µ is a continuous (i. e. every singleton has measure zero) probability
measure on the Borel σ-algebra of X, there is a Borel isomorphism f : X → 2ω

that preserves the measures, i. e. µ(A) is equal to the Lebesgue measure of f [A] for
any Borel set A ⊆ X (see e. g. [Kec95, Theorem 17.41]). Therefore, N (X) ∼=T N
and Cv(N (X)) ∼=T Cv(N ). For the following proof, when c ∈ ωω, c > 0, and
c 6=∗ 1,

∏
c is the Polish space endowed with the product topology of the discrete

spaces c(i) (for i < ω), and µc denotes the product measure of 〈µc(i) | i < ω〉, where
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µc(i) is the measure on the power set of c(i) such that each singleton has measure
1/c(i). It is clear that µc is a continuous probability measure on the Borel σ-algebra
of
∏
c.

Proof. To see (a), note that F :
∏
c →

∏
c, defined as the identity map, and

G : S(c, h) → N (
∏
c), defined as G(S) := {x ∈

∏
c | ∃∞ i : x(i) ∈ S(i)}, form the

corresponding Tukey connection.
To see (b), first note that, in general, aLc(c, 1) ∼=T Ed(c) := 〈

∏
c,
∏
c, 6=∗〉, where

x 6=∗ y means ∀∞ i : x(i) 6= y(i). We now first prove the following fact:

Claim. If h ≥ 1, then Ed(d) �T aLc(c, h), where d(i) :=
⌈ c(i)
h(i)

⌉
.

Proof. For each i < ω, we can partition c(i) into d(i) many sets 〈bi,j | j < d(i)〉 of
size ≤ h(i). Define F :

∏
d → S(c, h) by F (x)(i) := bi,x(i), and define G :

∏
c →∏

d such that for any y ∈
∏
c, G(y)(i) is the unique j ∈ d(i) such that y(i) ∈ bi,j.

It is clear that (F,G) is the required Tukey connection.

Thanks to the preceding claim and the final part of Example A2.2 (2), it suffices
to show (b) for h = 1, that is, Cv(N ) �T Ed(c). The case c ≤∗ 1 is trivial because
Ed(c) ∼=T Ed(1) ∼=T 〈{0}, {0}, 6=〉, so assume c 6≤∗ 1. For each y ∈

∏
c, define

G(y) := {x ∈
∏
c | x(i) 6=∗ y(i)}. Note that µc(G(y)) = limn→∞

∏
i≥n

(
1 − 1

c(i)

)
,

and ∏
i≥n

(
1− 1

c(i)

)
≤
∏
i≥n

e−
1

c(i) = e−
∑

i≥n
1

c(i) = 0,

so G(y) ∈ N (
∏
c). Defining F :

∏
c →

∏
c as the identity map, (F,G) hence

witnesses Cv(N ) �T Ed(c).

Kamo and Osuga [KO14] proved the following connections between the covering
and uniformity numbers of Yorioka ideals and anti-localisation cardinals:
(1) Let c ∈ ωω with c ≥∗ 2. If g ∈ ωω and g(n) ≥

∑
i≤n log2 c(i) for all but finitely

many n < ω, then aLc(c, 1)⊥ �T Cv(Jg). In particular, c∃c,1 ≤ cov(Jg) and
non(Jg) ≤ v∃c,1.

(2) Let c, h ∈ ωω and g ∈ ωω monotonically increasing. If 1 ≤∗ h ≤∗ c and c(n) ≥
2g(

∑
i≤n h(i)−1), then Cv(Jg) �T aLc(c, h)⊥. In particular, cov(Jg) ≤ c∃c,h and

v∃c,h ≤ non(Jg).
The two facts above are linked with Yorioka ideals in the sense that Jg ⊆ If ⊆ Jf

whenever f � g (so Cv(Jf ) �T Cv(If ) �T Cv(Jg)). For the purposes of this
chapter, we improve Kamo and Osuga’s results by showing a direct connection to
the Yorioka ideals without passing through a family of the form Jg.

Lemma A2.4. Let c, h ∈ ωω, let 〈In | n < ω〉 be the interval partition such
that |In| = h(n), and let gc,h ∈ ωω be defined by gc,h(k) := blog2 c(n)c whenever
k ∈ In. If c ≥∗ 2, h ≥∗ 1, f is an increasing function and gc,h � f , then
Cv(If ) �T aLc(c, h)⊥. In particular, cov(If ) ≤ c∃c,h and v∃c,h ≤ non(If ).
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Proof. It suffices to find F : 2ω →
∏
c and G : S(c, h) → If such that for any y ∈ 2ω

and S ∈ S(c, h), if ∃∞ n : F (y)(n) ∈ S(n), then y ∈ G(S).
For each n < ω, fix a one-to-one map ιn : 2

blog2 c(n)c → c(n). For S ∈ S(c, h),
enumerate S(n) =: {mS

n,k | k ∈ In} and, whenever k ∈ In, define σS(k) := ι−1
n (mS

n,k)
when mS

n,k ∈ ran ιn; otherwise σS(k) is allowed to be anything of length blog2 c(n)c.
Set G(S) := [σS]∞. Note that |σS(k)| = gc,h(k), so htσs � f and G(S) ∈ If . On
the other hand, for y ∈ 2ω, define F (y)(n) := ιn(y�blog2 c(n)c). If F (y)(n) ∈ S(n)

for infinitely many n, then for such n there is a k ∈ In such that F (y)(n) = mS
n,k,

so σS(k) = y�blog2 c(n)c ⊆ y. As there are infinitely many such k, we conclude that
y ∈ G(S).

Lemma A2.5. Let b, g ∈ ωω such that b ≥∗ 2, g ≥∗ 1, let 〈Jn | n < ω〉 be the
interval partition such that |Jn| = g(n), and let fb,g ∈ ωω be defined by fb,g(k) :=∑

`≤ndlog2 b(`)e whenever k ∈ Jn. If f is an increasing function and there is
some 1 ≤ m < ω such that fb,g(k) ≤ f(km) for all but finitely many k < ω, then
aLc(b, g)⊥ �T Cv(If ). In particular, c∃b,g ≤ cov(If ) and non(If ) ≤ v∃b,g.

Proof. First note that for any function g′, ∃m > 0 ∀∞ k : g′(k) ≤ f(km) iff ∀ f ′ �
f : g′ ≤∗ f ′. It suffices to define functions F :

∏
b → 2ω and G : If → S(b, g) such

that for any y ∈
∏
b and X ∈ If , if F (y) ∈ X, then ∃∞ n : y(n) ∈ G(X)(n).

Consider the interval partition 〈In | n < ω〉 of ω such that |In| = dlog2 b(n)e. For
each n < ω, fix a one-to-one function ιn : b(n) → 2In. For y ∈

∏
b, define F (y) as

the concatenation of the binary sequences 〈ιn(y(n)) | n < ω〉. On the other hand,
for X ∈ If , X ⊆ [σX ]∞ for some σX ∈ (2<ω)ω such that htσX

� f , so we define

G(X)(n) := {ι−1
n (σX(k)�In) | σX(k)�In ∈ ran ιn, In ⊆ htσX

(k), k ∈ Jn}

(since fb,h ≤∗ htσX
and ∀ k ∈ Jn : In ⊆ htσX

holds for all but finitely many n).
If F (y) ∈ X, then there is an infinite W ⊆ ω such that for any n ∈ W , σX(k) ⊆
F (y) for some k ∈ Jn; so σX(k)�In = F (y)�In = ιn(y(n)) and hence we have
y(n) ∈ G(X)(n).

The following result shows a connection between localisation cardinals and anti-lo-
calisation cardinals. This is useful to include localisation cardinals of the type c∀

in our main result.

Lemma A2.6. Let c, h ∈ ωω with c > 0 and h ≥∗ 1. If c′ is a function with domain
ω and h′ ∈ ωω such that for all but finitely many i < ω, c′(i) ≥

∣∣[c(i)]≤h(i) r {∅}
∣∣

and h′(i) < c(i)/h(i), then aLc(c, h) �T Lc(c′, h′). In particular, v∀c′,h′ ≤ c∃c,h and
v∃c,h ≤ c∀c′,h′.

Proof. It suffices to show the result for the case when h(i) ≥ 1, c′(i) = [c(i)]≤h(i) r
{∅} and h′(i) < c(i)/h(i) for all i < ω.3

3 Note that the c′ we work with here and in the subsequent proof is such that
∏

c′ already is a
family of slaloms, which reduces the complexity of the Tukey connection (since we do not have
to bijectively map sets to their cardinalities).
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Define F : S(c, h) →
∏
c′ such that F (S)(i) := S(i) whenever S(i) 6= ∅; otherwise

F (ϕ)(i) is some arbitrary singleton. On the other hand, define G : S(c′, h′) →
∏
c

such that G(ϕ)(i) ∈ c(i)r
⋃
ϕ(i) (which is fine because this union has size ≤ h(i) ·

h′(i) < c(i)). It is clear that (F,G) is the Tukey connection that we want.

The next lemma is more or less the converse of the preceding one. We prove it
only for completeness’ sake, and it will not be used in the sequel.

Lemma A2.7. Let c, h ∈ ωω with c > 0 and h ≥∗ 1. If c′, h′ ∈ ωω with c′ > 0 such
that for all but finitely many i < ω, c′(i) ≤

∣∣[c(i)]≤h(i) r {∅}
∣∣ and h′(i) ≥ ∣∣[c(i) −

1]≤h(i) r {∅}
∣∣, then Lc(c′, h′) �T aLc(c, h).

Proof. It suffices to show the result for the case when h(i) ≥ 1, c′(i) = [c(i)]≤h(i) r
{∅} and h′(i) =

∣∣[c(i)− 1]≤h(i) r {∅}
∣∣ for all i < ω.

Define F :
∏
c′ → S(c, h) by F (S) := S and G :

∏
c → S(c′, h′) by G(y)(i) :=

[c(i) r {y(i)}]≤h(i) r {∅}. Assume that S ∈
∏
c′, y ∈

∏
c and y /∈∗ F (S). This

means that for all but finitely many i < ω, y(i) /∈ S(i), so S(i) ∈ G(y)(i), that is,
S ∈∗ G(y).

By Lemma A2.6 and Lemma A2.7 applied to c′ = c, h = 1 and h′ = c − 1, it
follows that aLc(c, 1) ∼=T Lc(c, c − 1) (although it is also quite simple to prove
this directly). More properties of localisation and anti-localisation cardinals can
be found in e. g. [GS93, CM17].
The following lemma shows how functions should be related to get a particular
chain of inequalities between anti-localisation cardinals, localisation cardinals and
uniformity numbers of Yorioka ideals, which will be useful for the main result of
this chapter.

Lemma A2.8. Assume that a, d, b, g, f, c, h ∈ ωω such that
(I1) b ≥∗ 2, g ≥∗ 1 and ∀∞ i < ω : b(i)/g(i) > d(i),
(I2) a(i) ≥

∣∣[b(i)]≤g(i) r {∅}
∣∣ for all but finitely many i,

(I3) f is increasing and f ≥∗ fb,g (see Lemma A2.5), and
(I4) c ≥∗ 2, h ≥∗ 1 and gc,h � f (see Lemma A2.4).
Then v∃c,h ≤ non(If ) ≤ v∃b,g ≤ c∀a,d.

Proof. This is a direct consequence of Lemma A2.4, Lemma A2.5 and Lemma A2.6.

A3 Motivational Example

We will now define a creature forcing poset whose countable support product we
will use to increase the value of v∃c,h to be at least some prescribed cardinal κ.
Through careful choice of the function parameters (and some additional auxiliary
functions), we will show in section A5 that v∃c,h is indeed forced to be exactly κ, and
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then use a countable support product of many such creature forcing posets with
varying function parameters to force uncountably many Yorioka ideals’ uniformity
numbers to be different.

Definition A3.1. Let c, h ∈ ωω with c > h ≥∗ 1. We define a forcing poset Qc,h

as follows: A condition p ∈ Qc,h is a sequence of creatures p(n) such that each p(n)
is a non-empty subset of [c(n)]≤h(n) and such that, letting the norm ‖ · ‖c,h,n be
defined by

‖M‖c,h,n := max{k | ∀Y ⊆ [c(n)]≤k ∃X ∈M : Y ⊆ X},

p fulfils lim supn→∞ ‖p(n)‖c,h,n = ∞. The order is q ≤ p iff q(n) ⊆ p(n) for all
n < ω (i. e. stronger conditions consist of smaller subsets of [c(n)]≤h(n)). Note that
Qc,h 6= ∅ iff lim supn→∞ h(n) = ∞.
Given a condition p such as above, the finite initial segments in p�k+1 (for k < ω) are
sometimes referred to as possibilities and denoted by poss(p,≤k) :=

∏
`≤k[p(`)]

1 =
{〈{z(`)} | ` ≤ k〉 | ∀ ` ≤ k : z(`) ∈ p(`)}. We may also use the notation
poss(p,<k) := poss(p,≤k − 1). When η ∈ poss(p,≤k), we write p ∧ η to denote
η_p�[k+1,ω).4

We denote the indices of the non-trivial creatures by split(p) := 〈k < ω | |p(k)| > 1〉
and, for n < ω, denote the n-th member of split(p) by sn(p). For p, q ∈ Qc,h, define
q ≤n p as “q ≤ p and q�sn(q)+1 = p�sn(q)+1”, which means that q is stronger than p
and they are identical up to (including) the n-th non-trivial creature.

Observation A3.2. In this section, we often work with the set Q∗
c,h of conditions

p ∈ Qc,h such that ‖p(sn(p))‖c,h,sn(p) ≥ n+ 1 (i. e. the n-th non-trivial creature has
norm at least n+ 1). It is clear that Q∗

c,h is dense in Qc,h.

Lemma A3.3. The poset Qc,h adds a generic slalom Ṡ ∈ S(c, h) such that Qc,h

forces that any ground-model real in
∏
c is caught infinitely often by Ṡ.

Proof. As the set Dn := {p ∈ Qc,h | |p(n)| = 1} is dense in Qc,h, we can define Ṡ(n)
as the unique member of

⋂
p∈Ġ p(n) (where Ġ is the generic filter), which clearly

is a name for a member of [c(n)]≤h(n).
Now assume that x ∈ V ∩

∏
c and fix a condition p ∈ Qc,h and an n0 < ω. Pick

some k ≥ n0 such that ‖p(k)‖c,h,k ≥ 1 and strengthen p to q by setting q(k) = {t}
for some t ∈ p(k) that contains x(k) (which exists because, by the definition of the
norm, ‖M‖c,h,n ≥ 1 iff

⋃
M = c(n)). Hence q ≤ p and q 
 x(k) ∈ Ṡ(k).

The previous argument shows (by density) that for any n0 < ω, Qc,h forces ∃ k ≥
n0 : x(k) ∈ Ṡ(k).
4 The usual creature forcing notation, which is used quite a lot in chapter B, defines the set

of possibilities more abstractly as poss(p,≤k) :=
∏

`≤k p(`) and defines p ∧ η as a condition
with an extended trunk (a concept which we did not deem necessary to introduce in this first
chapter). Since working with possibilities η as sequences of singletons suffices for our proofs and
is conceptually easier, we instead opted for the simpler definition in this first chapter.
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p

...

p(s1(p))

p(s2(p))

↓ poss(p,≤k)

↓ poss(p,<`)

Figure 3: An example for the initial segment of a condition p ∈
Qc,h, with k := s1(p) and ` := s2(p). Each ellipse represents one
element of [c(k)]≤h(k) and [c(`)]≤h(`), respectively.

We now show that the poset Qc,h is indeed a proper ωω-bounding poset and that,
moreover, Q∗

c,h satisfies strong axiom A. It is clear that |Qc,h| = c so, assuming
CH, the standard ∆-system argument shows that this poset has ℵ2-cc and hence
preserves cardinalities and cofinalities.

Lemma A3.4. If n < ω, p ∈ Qc,h and D ⊆ Qc,h is open dense, then there is a
condition q ≤n p in Qc,h such that for any η ∈ poss(q,≤sn(q)), q ∧ η ∈ D.

Proof. Enumerate poss(p,≤sn(p)) =: {ηk | k < m}. By recursion on k ≤ m, define
p0 := p and choose pk+1 ≤ ηk

_pk�[sn(p)+1,ω) in D. Then

q := p�sn(p)+1
_pm�[sn(p)+1,ω),

is precisely the condition we are looking for.

Lemma A3.5. The poset Q∗
c,h satisfies strong axiom A. Concretely, it satisfies:

(a) For any p, q ∈ Q∗
c,h and m ≤ n < ω, if p ≤n q, then p ≤m q and p ≤ q.

(b) Whenever 〈pn | n < ω〉 is a sequence in Q∗
c,h which satisfies pn+1 ≤n pn for

every n < ω, there is some q ∈ Q∗
c,h such that q ≤n pn for every n < ω.

(c) If A ⊆ Q∗
c,h is an antichain, p ∈ Q∗

c,h and n < ω, then there is a condition
q ≤n p in Q∗

c,h such that only finitely many r ∈ A are compatible with q.

11
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In particular, Qc,h is proper and ωω-bounding.

Proof. Property (a) follows immediately from the definition. To see property (b),
first define f : [−1, ω) → ω such that f(−1) := −1 and, for n ≥ 0, f(n) = sn(pn).
For each n < ω define q(k) := pn(k) for any k ∈ (f(n − 1), f(n)]. It is clear that
sn(q) = f(n), so q ∈ Q∗

c,h. By the definition of q, q ≤n pn.
We now show property (c). Set D as the set of conditions p ∈ Qc,h which are either
stronger than some member of A or incompatible with every member of A. It is
clear that D is an open dense set, so we can find q ≤n p in Q∗

c,h as in Lemma A3.4,
that is, such that q ∧ η ∈ D for any η ∈ poss(q,≤sn(q)), which means that there is
at most one rη ∈ A weaker than q ∧ η. Hence, if r ∈ A is compatible with q, then
it must be compatible with q ∧ η for some η ∈ poss(q,≤sn(q)) (of which there are
only finitely many), so r = rη because A is an antichain.

A sequence 〈pn | n < ω〉 as in property (b) is usually known as a fusion sequence,
and the q obtained in its proof is known as the fusion of 〈pn | n < ω〉. As
an application of this notion, we prove the properties of continuous and timely
reading of names and few possibilities for the forcing Qc,h.

Definition A3.6. Let p ∈ Qc,h and let τ̇ be a Qc,h-name for a function from ω
into the ground model V .
(1) We say that p reads τ̇ continously iff for each n < ω there is some kn such

that for each η ∈ poss(p,≤kn), p ∧ η decides τ̇�n.
(2) We say that p reads τ̇ timely iff for each n ∈ split(p) and each η ∈ poss(p,≤n),

p ∧ η decides τ̇�n. (This is equivalent to continuous reading with kn = n for
each n ∈ split(p).)

The term “continuous reading” refers to the fact that, in a sense, there is a continu-
ous function from “branches” in p to V ω, coded by a function from initial segments
of p to initial segments of τ̇ .5 It is clear that timely reading of a name implies
continuous reading thereof; we will only be using the stronger property of timely
reading in the rest of this chapter.

Lemma A3.7 (timely reading of names). Let p ∈ Qc,h and let τ̇ be a Qc,h-name
for a function from ω into the ground model V . Then there is a condition q ≤ p
in Qc,h such that q reads τ̇ timely.

Proof. Denote by Dn the set of conditions in Qc,h which decide τ�n, which is an
open dense subset of Qc,h. By recursion on ` < ω, define an increasing function
f ∈ ωω and a sequence 〈p` | ` < ω〉 of members of Q∗

c,h such that
(i) p0 ≤ p,
(ii) f(`) = s`(p`),
(iii) p`+1 ≤` p`, and
(iv) for any η ∈ poss(p`+1,≤f(`)), p`+1 ∧ η ∈ Df(`).

5 See Observation B6.2 for a more detailed explanation.
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For the construction, choose any p0 ≤ p in Q∗
c,h and let f(0) := s0(p0), which clearly

satisfy (i) and (ii). Now assume that p` and f(`) have been constructed and that
they satisfy (ii). Find p`+1 ∈ Q∗

c,h by application of Lemma A3.4 to `, p` and Df(`).
As in Lemma A3.5 (b), define q = 〈q(k) | k < ω〉 such that q�(f(`)−1,f(`)] :=
p`�(f(`−1),f(`)] for any ` < ω (letting f(−1) := −1). It is clear that s`(q) = f(`), even
more, ‖q(f(`))‖c,h,f(`) = ‖p`(f(`))‖c,h,f(`) ≥ ` + 1, so q ∈ Q∗

c,h. Besides, q ≤` p` for
any ` < ω. On the other hand, by (iv), q∧η ∈ Df(`) for any η ∈ poss(q,≤f(`)).

Lemma A3.8 (few possibilities). Let g ∈ ωω be a function going to infinity. If p ∈
Qc,h, then there is a condition q ≤ p in Q∗

c,h such that | poss(q,<sn(q))| < g(sn(q))
for all n < ω.

Proof. We construct f ∈ ωω and a fusion sequence 〈pn | n < ω〉 in Q∗
c,h such that

(i) p0 ≤ p,
(ii) f(n) = sn(pn),
(iii) | poss(pn, <f(n))| < g(f(n)), and
(iv) pn+1 ≤n pn.
Start with p−1 := p and f(−1) := −1. For n < ω such that pn−1 has already been
defined, choose f(n) > f(n−1) in split(pn−1) such that ‖pn−1(f(n))‖c,h,f(n) ≥ n+1
and | poss(pn−1,≤f(n − 1))| < g(f(n)) (where poss(p,≤−1) := {〈 〉}). Define pn
such that pn(k) := pn−1(k) for every k ∈ [0, f(n−1)]∪ [f(n), ω] and, for k ∈ (f(n−
1), f(n)), pn(k) is a singleton contained in pn−1(k). It is clear that pn ≤n−1 pn−1

and that | poss(pn, <f(n))| = | poss(pn−1,≤f(n− 1))| < g(f(n)).
As in previous arguments, define the fusion q ∈ Q∗

c,h of the sequence 〈pn | n < ω〉
by q(k) := pn(k) whenever k ∈ (f(n − 1), f(n)]. It is easy to see that q is as
required.

We are now interested to know for which functions b, g ∈ ωω the poset Qc,h will
not increase the cardinal v∃b,g (i. e. any slalom in S(b, g) from the generic extension
anti-localises some real in

∏
b from the ground model) or the cardinal c∀b,g (i. e.

any real in
∏
b from the generic extension is localised by some slalom in S(b, g)

from the ground model). This will be the key point to understand the relation
between the functions so that the Main Theorem can be proved using a countable
support product of our posets increasing cardinals of the form v∃c,h. To ensure
such preservation, it seems that our forcing requires the norms on the creatures to
satisfy bigness (in the sense of [FGKS17] or section B5),6 and for this we modify
the original definition of Qc,h.

Definition A3.9. Let c, h, d ∈ ωω with c > h ≥∗ 1, d ≥ 2, and

lim sup
n→∞

1

d(k)
logd(k) h(k) = ∞.

6 Note that bigness is equivalent to the concept of completeness in the sense of [GS93], as is
explained in detail in section B5.
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Recalling Definition A3.1 of Qc,h, we now define Qd
c,h as follows: A condition

p ∈ Qd
c,h is a sequence of creatures p(n) such that each p(n) is a subset of [c(n)]≤h(n)

and such that, replacing ‖ · ‖c,h,n with the norm ‖ · ‖dc,h,n defined by

‖M‖dc,h,n :=
1

d(n)
logd(n)(‖M‖c,h,n + 1),

p fulfils lim supn→∞ ‖p(n)‖dc,h,n = ∞. The order is the same as on Qc,h.

Let Q∗d
c,h be the set of conditions in Qd

c,h that satisfy ‖p(sn(p))‖dc,h,sn(p) ≥ n + 1 for
all n < ω, which clearly is a dense subset of Qd

c,h.

The requirement lim supn→∞
1/d(k) logd(k) h(k) = ∞ is what guarantees that the

poset Qd
c,h is non-empty. Note that Qd

c,h ⊆ Qc,h and Q∗d
c,h ⊆ Q∗

c,h. Also note that
the results proven so far remain equally valid for Qd

c,h and Q∗d
c,h (the same proofs

apply), in particular, that we can use the poset to increase v∃c,h.

Lemma A3.10 (bigness). For any n < ω, the norm ‖ · ‖dc,h,n is strongly d(n)-big,
i. e. whenever M ⊆ [c(n)]≤h(n) and f : M → d(n), there is an M∗ ⊆ M such that
f�M∗ is constant and ‖M∗‖dc,h,n ≥ ‖M‖dc,h,n − 1/d(n).

Proof. This is quite similar to [FGKS17, Lemma 8.1.2 (1)] or the case t = nn of
Theorem B5.6 (i). For each j < d(n), let Mi := f−1[{j}] and mj := ‖Mi‖c,h,n. By
Definition A3.9, there is some aj ⊆ c(n) of size mj +1 such that no member of Mj

contains aj, thus no member of M contains a :=
⋃

j<d(n) aj, so ‖M‖c,h,n ≤ |a|−1 ≤
d(n) · (m+ 1)− 1 where m := mj∗ = maxj<d(n){mj}. Therefore

‖M‖dc,h,n =
1

d(n)
logd(n)(‖M‖c,h,n + 1) ≤ ‖Mj∗‖dc,h,n +

1

d(n)

as required.

Corollary A3.11. Fix n,m, k < ω. If m/k ≤ d(n), then, whenever M ⊆ [c(n)]≤h(n)

and f : M → m, there is an M∗ ⊆ M such that |f [M∗]| ≤ k and ‖M∗‖dc,h,n ≥
‖M‖dc,h,n − 1/d(n).

Proof. Partition m into sets {aj | j < `} of size at most k with ` ≤ d(n). Define
f ′ : M → ` such that f ′(z) = j iff f(z) ∈ aj. By Lemma A3.10 there is some
M∗ ⊆M such that f ′�M∗ is constant with value j∗ and ‖M∗‖dc,h,n ≥ ‖M‖dc,h,n− 1

d(n)
.

Hence f [M∗] ⊆ aj∗ , so |f [M∗]| ≤ k.

Thanks to bigness, timely reading of names can be strengthened in the following
way:

Lemma A3.12 (early reading). Let 〈An | n < ω〉 be a sequence of non-empty
finite sets, and let τ̇ be a Qd

c,h-name for a member of
∏

n<ω An. If d goes to infinity
and

∣∣∏
i<nAi

∣∣ ≤ d(n) for all n < ω, then for any p ∈ Qd
c,h, there is some q ≤ p

which reads τ̇ early, that is, for any n < ω and η ∈ poss(q,<n), q ∧ η already
decides τ̇�n.

14



A3 Motivational Example

Proof. Without loss of generality, by Lemma A3.7 we may assume that p ∈ Q∗d
c,h

reads τ̇ timely, that is, p ∧ η decides τ̇�n for any η ∈ poss(p,≤n) and n ∈ split(p);
by Lemma A3.8 we may also assume that | poss(p,<n)| < d(n) for any n ∈ split(p).
We construct q(k) by recursion on k < ω. When k /∈ split(p), let q(k) := p(k).
Now assume that k ∈ split(p) and work with pk := q�k

_p�[k,ω). Enumerate
poss(pk, <k) =: {ηj | j < m}, where m < d(k). By recursion on j ≤ m, define
Mj ⊆ p(k) such that
(i) M0 = p(k),
(ii) Mj+1 ⊆Mj,
(iii) ‖Mj+1‖dc,h,k ≥ ‖Mj‖dc,h,k − 1/d(k), and
(iv) there is some rj ∈

∏
i<k Ai such that for any t ∈ Mj+1, pk ∧ (ηj

_{t}) forces
τ̇�k = rj.

Assume we already have Mj. Define the function hj : Mj →
∏

i<k Ai such that for
any t ∈ Mj+1, pk ∧ (ηj

_{t}) forces τ̇�k = hj(t). Hence, by Lemma A3.10, there is
some Mj+1 ⊆Mj as in (iii) such that hj�Mj+1

is constant with value rj.
Define q(k) :=Mm. By property (iii),

‖q(k)‖dc,h,k ≥ ‖p(k)‖dc,h,k −
m

d(k)
> ‖p(k)‖dc,h,k − 1

and, by property (iv), pk ∧ (ηj
_{t}) forces τ̇�k = rj for any t ∈ q(k) and j < m,

which means that q�k+1
_p�[k+1,ω) ∧ ηj forces τ̇�k = rj.

By the construction, when k ∈ split(p), ‖q(k)‖dc,h,k ≥ ‖p(k)‖dc,h,k − 1, so q ∈ Qd
c,h. If

k ∈ split(p) and η ∈ poss(q,<k), then q ∧ η decides τ̇�k. Now, if k ∈ ω r split(p)
and η ∈ poss(q,<k), then there is a unique η′ ∈ poss(q,< k′) extending η, where
k′ is the smallest member of split(p) above k, so q ∧ η = q ∧ η′. As this decides
τ̇�k′ , it is clear that it also decides τ̇�k.

The following result gives sufficient conditions on functions a, e to guarantee that
Qd

c,h does not increase c∀a,e. Hereafter, we fix the notation cOh(k) := |[c(k)]≤h(k)|.

Lemma A3.13. Assume that c, d, h ∈ ωω are as in Definition A3.9 with d going
to infinity, a, e ∈ ωω with a > 0 and e going to infinity, and that they satisfy
(L1)

∏
k<n a(k) ≤ d(n) and

∏
k<n c

Oh(k) ≤ e(n) for all but finitely many n, and
(L2) limk→∞ min

{ cOh(k)
e(k)

, a(k)
d(k)

}
= 0.

Then Qd
c,h forces that any real in

∏
a is localised by some member of S(a, e) ∩ V .

Proof. We show that, whenever p ∈ Qd
c,h and ẋ is a Qd

c,h-name for a real in
∏
a,

then there is some ϕ ∈ S(a, e) ∩ V and some q ≤ p in Qd
c,h forcing ẋ(k) ∈ ϕ(k) for

all but finitely many k. Without loss of generality, we assume that
(i) p ∈ Q∗d

c,h reads ẋ early (by (L1) and Lemma A3.12),
(ii) for any k ∈ split(p), | poss(p,<k)| ≤ d(k) and

min
{
cOh(k)

e(k)
,
a(k)

d(k)

}
≤ 1

2 | poss(p,<k)|

15
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(by (L2) and Lemma A3.8), and
(iii) | poss(p,<k)| ≤ e(k) for every k < ω (by (L1)).
By recursion on k, we construct q(k) and ϕ(k) according to the following case
distinction: First, let pk := q�k

_p�[k,ω).
When k /∈ split(q). As ẋ(k) is decided by the possibilities in poss(pk, <k), the set
ϕ(k) := {` ∈ a(k) | ∃ η ∈ poss(pk, <k) : pk ∧ η 
 ẋ(k) = `} has size ≤ e(k) by (iii),
so ϕ(k) ∈ [a(k)]≤e(k) and pk forces ẋ(k) ∈ ϕ(k). Set q(k) := p(k).
When k ∈ split(q). According to (ii), we split into two subcases. If

| poss(pk, <k)| ≤
e(k)

2cOh(k)
,

then poss(pk,≤k) has size < e(k), so the set of possible values ϕ(k) for ẋ(k) has
size < e(k). Hence pk forces ẋ(k) ∈ ϕ(k) and ϕ(k) ∈ [a(k)]≤e(k). Set q(k) := p(k).

Now consider the case when | poss(pk, <k)| ≤ d(k)
2a(k)

. Note that

a(k)⌊
e(k)

| poss(pk,<k)|

⌋ ≤ 2a(k)| poss(pk, <k)|
e(k)

≤ d(k)

e(k)
≤ d(k).

We show how to find q(k) ⊆ p(k) with ‖q(k)‖d(k)c,h,k ≥ ‖p(k)‖d(k)c,h,k − 1 and ϕ(k) ∈
[a(k)]≤e(k) such that q�(k+1)

_p�[k+1,ω) forces ẋ(k) ∈ ϕ(k). Start by enumerating
poss(pk, <k) =: {ηk | k < m}, where m := | poss(pk, <k)| < d(k). By recursion on
j ≤ m, define Mj ⊆ p(k) such that
(a) M0 = p(k),
(b) Mj+1 ⊆Mj,
(c) ‖Mj+1‖dc,h,k ≥ ‖Mj‖dc,h,k − 1/d(k), and
(d) there is some sj ⊆ a(k) of size ≤

⌊ e(k)
m

⌋
such that for any t ∈ Mj+1, pk ∧

(ηj
_{t}) forces ẋ(k) ∈ sj.

Assume we already have Mj. By (i), pk ∧ (ηj
_{t}) decides ẋ(k) for every t ∈ Mj,

which is a value in a(k). As a(k)/b e(k)
m

c ≤ d(k), by Corollary A3.11 there are Mj+1

and sj as in (b)–(d). Once we have Mm, set q(k) :=Mm and ϕ(k) :=
⋃

j<m sj.
At the end of the construction, it is clear that q forces ẋ(k) ∈ ϕ̇(k) for any suf-
ficiently large k, and that ϕ(k) ∈ [a(k)]≤e(k).

Observation A3.14. The function cOh is used as an upper bound of 〈|p(k)| |
k < ω〉 for any p ∈ Qd

c,h, since p(k) ⊆ [c(k)]≤h(k). In the same way, we could use
ch (pointwise exponentiation) instead (as long as h ≥∗ 2), because |[m]≤k| ≤ mk

whenever m, k < ω and k 6= 1 (since |[m]≤1| = m + 1). In fact, in the following
sections, every instance of cOh could be replaced by ch without affecting the results
and the proofs.

Thanks to the Tukey connection constructed in Lemma A2.6, we can now easily
deduce sufficient conditions on functions b, g to guarantee that v∃b,g is not increased
by Qd

c,h.
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A4 Lots and Lots of Auxiliary Functions

Corollary A3.15. Assume that c, d, h ∈ ωω are as in Definition A3.9 with d going
to infinity, b, g, d ∈ ωω with b, g > 0, e(k) :=

⌈ b(k)
g(k)

⌉
− 1 going to infinity, and that

they satisfy
(AL1)

∏
k<n b

Og(k) ≤ d(n) and
∏

k<n c
Oh(k) ≤ e(n) for all but finitely many n, and

(AL2) limk→∞ min
{ cOh(k)

e(k)
, b

Og(k)
d(k)

}
= 0.

Then Qd
c,h forces that any slalom in S(b, g) is anti-localised by some member of∏

b ∩ V .

Proof. Set a(k) := bOg(k). By Lemma A2.6, there is a definable Tukey connection
(F,G) which witnesses aLc(b, g) �T Lc(a, e) (even in forcing-generic extensions).
As a and e satisfy the assumptions in Lemma A3.13, in any Qd

c,h-generic extension,
any real in

∏
a is localised by some slalom in S(a, e) ∩ V . Hence any slalom in

S(b, g) is anti-localised by some member of
∏
b ∩ V .

A4 Lots and Lots of Auxiliary Functions

To show that we can separate uncountably many different Yorioka ideals’ unifor-
mity numbers, we could in principle define two sequences of integers acting as
universal bounds on our function parameters and auxiliary functions (similar to
[GS93]). However, for the sake of clarity we will give the definition of the sequences
as part of an inductive definition in the construction of the auxiliary functions.
We stress that there also is an a priori definition, which would, however, make the
text less readable.
Either way, we fix two sequences n−

k , n
+
k of natural numbers ≥ 2 such that

(i) n−
k · n+

k < n−
k+1 for any k < ω, and

(ii) limn→∞ logn−
k
n+
k = ∞.

Given Lemma A3.13 and Corollary A3.15 above, we now make the following def-
inition.

Definition A4.1. Given the bounding sequences n−
k , n

+
k , we call a family F =

〈(aα, dα, bα, gα, fα, cα, hα) | α ∈ A〉 of tuples of increasing functions in ωω suitable
if it fulfils the following properties for any α ∈ A:
(S1) The functions aα, dα, bα, gα, bOgαα , bα/gα, hα and cOhα

α are bounded from below
by n−

k and bounded from above by n+
k , i. e. for any k < ω, we have

aα(k), dα(k), bα(k), gα(k), b
Ogα
α (k),

bα(k)

gα(k)
, hα(k), c

Ohα
α (k) ∈ [n−

k , n
+
k ].

(S2) hα < cα and lim supk→∞
1

dα(k)
logdα(k)(hα(k) + 1) = ∞.

(S3) bα/gα > dα.
(S4) aα ≥ bOgαα .

17



Chapter A: Yorioka Ideals

(S5) There is some ` > 0 such that fbα,gα ≤∗ fα◦pow` for fbα,gα as in Lemma A2.5.7
(S6) fα � gcα,hα for gcα,hα as in Lemma A2.4.
(S7) For any β ∈ A, if β 6= α, then

lim
k→∞

min

{
c
Ohβ

β (k)

dα(k)
,
aα(k)

dβ(k)

}
= 0.

Properties (S3)–(S6) ensure that, by Lemma A2.8, v∃cα,hα
≤ non(Ifα) ≤ v∃bα,gα ≤

c∀aα,dα. When we prove the Main Theorem in the following section, we will aim
to force all these cardinals to be equal to some predetermined κα for each α. We
therefore increase the cardinals v∃cα,hα

by using a countable support product of
posets of the form Qdα

cα,hα
, while at the same time ensuring that c∀aα,dα does not

exceed the desired value. Property (S2) guarantees that each poset Qdα
cα,hα

is non-
empty and, thanks to Lemma A3.13, property (S7) will ensure that Qdβ

cβ ,hβ
will not

increase c∀aα,dα for β 6= α. To this end, it is also necessary that
∏

k<n a(k) ≤ d(n) for
all but finitely many n (property (L1) in Lemma A3.13), which is a consequence
of property (S1). In fact, property (S1) is what allows us to explicitly control the
functions and the number of possibilities of the creatures in the poset.

Theorem A4.2. There are bounding sequences n−
k , n

+
k such that there is an un-

countable suitable family F = 〈(aα, dα, bα, gα, fα, cα, hα) | α ∈ 2ω〉.

Proof. For clarity, we first explain how to construct a suitable family for one single
α, that is, a suitable tuple of the form (a, d, b, g, f, c, h) (as in Definition A4.1 for
the case |A| = 1, for which (S7) is vacuous). For motivational purposes, assume
we have already defined n−

k and d(k) ≥ n−
k , and the values of all the functions

at ` < k (with the exception of f , which depends on some interval partition as
indicated in the following argument).
To have property (S2), it suffices to define h(k) such that 1

d(k)
logd(k)(h(k) + 1) ≥

k + 1, so we let h(k) := d(k)(k+1)·d(k). (Later, when we define c(k), it will be clear
that c(k) > h(k).) The value of g(k) is determined such that property (S6) is
satisfied, but for now we will just assume that we have already defined it and will
later explain how to define it according to our needs. (The value of g(k) will only
depend on h(k) as well as h(`) and g(`) for ` < k.)
Now, to fulfil (S3), we let b(k) := 2g(k)+d(k) (such that log2 b(k) will be an integer,
making the definition of fb,g a bit nicer). Now recall that fb,g is defined, along
the interval partition 〈In | n < ω〉 of ω which satisfies |In| = g(n), as fb,g(j) =∑

`≤n log2 b(`) for any j ∈ In. In our construction, we may assume that we have
already defined g(`) and I` for any ` ≤ k, so we explain how to define f�Ik such
that property (S5) is satisfied – even more, such that fb,g(j) ≤ f(j) for any j ∈ Ik.

7 We can simplify property (S5) by restricting it to ` = 1: Assume the statement holds for some
`′ > 1. Let f ′

α = fα ◦ pow`′ . Then fbα,gα ≤∗ f ′
α and f ′

α � gcα,hα
still holds (by the definition

of �). This is why we can work with f ′
α instead of fα, in which case property (S5) is already

satisfied for ` = 1 and property (S6) remains true for f ′
α.
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We also require that f is increasing, so we define

f(j) :=
∑
`≤k

log2 b(`) + j −min(Ik)

for any j ∈ Ik. This definition allows f to be increasing when attached to the
previous intervals because

f(max(Ik−1)) =
∑

`≤k−1

log2 b(`) +max(Ik−1)−min(Ik−1)

=
∑

`≤k−1

log2 b(`) + g(k − 1)− 1 <
∑
`≤k

log2 b(`) = f(min(Ik)).

Recall that gc,h is defined, along the interval partition 〈Jn | n < ω〉 of ω which
satisfies |Jn| = h(n), as gc,h(j) = blog2 c(n)c for all j ∈ Jn. In order to have
property (S6), it suffices to define c(k) such that f(jk+2) ≤ log2 c(k) for any j ∈ Jk.
If we can ensure that jk+2 ∈ Ik for any j ∈ Jk, then

f(jk+2) =
∑
`≤k

log2 b(`) + jk+2 −min(Ik)

≤
∑
`≤k

log2 b(`) +max(Ik)−min(Ik) <
∑
`≤k

log2 b(`) + g(k),

so it suffices to define

c(k) := 2
∑

`≤k log2 b(l)+g(k) = 2g(k) ·
∏
`≤k

b(`).

Now, to ensure that jk+2 ∈ Ik for any j ∈ Jk, it suffices to have that min(J`)`+1 =
min(I`) for any ` ≤ k + 1 (as min(J0) = 0 and min(J`+1) = min(J`) + h(`) as well
as min(I`+1) = min(I`) + g(`), the values of min(Jk+1) and min(Ik+1) are already
known). So we assume that we had already ensured min(Jk)k+1 = min(Ik) from the
beginning (so, before n−

k is even determined; also note that this is true for k = 0)
and, after defining h(k), we let g(k) := min(Jk+1)

k+2 −min(Ik). This implies that
min(Ik+1) = min(Ik) + g(k) = min(Jk+1)

k+2 as required.
We can choose a(k) above cOh(k) and bOg(k), and define n+

k := a(k), which guar-
antees property (S4). Note that by our definitions, we have

n−
k < d(k) < h(k) < g(k) < b(k) < c(k) < cOh(k) < a(k) = n+

k

as well as

n−
k < d(k) <

b(k)

g(k)
< b(k) < bOg(k) < a(k) = n+

k ,

which together ensure property (S1).
We can then choose n−

k+1 above n−
k ·n+

k (note that logn−
k
n+
k ≥ logd(k)(h(k)+1) > k)

and define d(k + 1) to be larger than n−
k+1, and then the iterative construction

continues for k + 1.
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Now, we define both the bounding sequences and the suitable family F of size
continuum inductively. More or less the same strategy as above will suffice to
define the values at a fixed k, but some extra work is needed in order to guarantee
property (S7). We construct tuples of functions 〈(at, dt, bt, gt, ft, ct, ht) | t ∈ 2<ω〉
such that
(i) |at| = |dt| = |bt| = |gt| = |ct| = |ht| = |t| and |ft| =

∑
k<|t| gt(n), and

(ii) if t ⊆ t′ in 2<ω, then at ⊆ at′ , and likewise for the other functions.
Using these, we define aα :=

⋃
n<ω aα�n for α ∈ 2ω, and likewise for the other

functions, as well as n−
k := d0̄(k) − 1 and n+

k := a1̄(k) (where ē = 〈e, e, e, . . .〉 for
e ∈ {0, 1}) and claim that these are as desired in the theorem.
Denote by � the lexicographic order in both 2ω and 2n for any n < ω. We construct
〈(at, dt, bt, gt, ft, ct, ht) | t ∈ 2n〉 by recursion on n. When n = 0, it is clear that a〈 〉,
d〈 〉, etc. are defined as the empty sequence. Assuming we have reached step n of
the construction, we show how to obtain the functions for t ∈ 2n+1. We do this in
the following two steps:

1. Assuming we have already defined dt(n), we define at(n), bt(n) and so on in
the same way as in the definitions for the simple case |A| = 1.

2. By recursion on 〈2n+1,�〉, we construct dt(n) for t ∈ 2n+1.

We first show step 1. At this point, we have sequences 〈I t�`+1

` | ` < n〉 and
〈J t�`+1

` | ` < n〉 of consecutive intervals covering an initial segment of ω such
that |I t�`+1

` | = gt(`) and |J t�`+1

` | = ht(`). In fact, I t�`+1

` = [|ft�`|, |ft�` | + gt(`)) for
any ` < n. Note that we can already define min(I tn) and min(J t

n) at this stage
(considering that we are constructing interval partitions of ω). Further assume
that min(I tn) = min(J t

n)
n+1, which is trivially true for n = 0.

Define ht(n) := dt(n)
(n+1)·dt(n), gt(n) := (max(J t

n) + 1)n+2 − min(I tn), where J t
n :=

[min(J t
n),min(J t

n) + ht(n)), and bt(n) := 2gt(n)+dt(n). Let I tn := [|ft�n|, |ft�n | + gt(n))
and, for k ∈ I tn, define

ft(k) :=
∑
`≤n

log2 bt(`) + k − |ft�n|.

By definition, |ft| = |ft�n|+ gt(n) = max(I tn) + 1. Finally, let

ct(n) := 2gt(n) ·
∏
`≤n

bt(`)

and choose at(n) above cOht
t (n) and bOgtt (n). As in the case of |A| = 1, dt(n) <

ht(n) < gt(n) < bt(n) < ct(n) < at(n) (it will be clear from the next step that dt
will always take values ≥ 2), the other three functions to be bounded lie somewhere
in between, and ft is increasing.
To see step 2, start by choosing d0̄�n+1

(n) > d0̄�n(n − 1) · a1̄�n(n − 1) + 2 (in case
n = 0, just choose d0̄�1(0) to be any number above 2). Now assume that we have
dt(n) and that t+ ∈ 2n+1 is the immediate successor of t with respect to �. Let
dt+(n) := (n + 1) · at(n). This completes the construction. Note that, whenever
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t, t′ ∈ 2n+1 and t � t′, then at(n)
dt′ (n)

≤ 1
n+1

, which is what ultimately guarantees
property (S7).
Now we finally show that F = 〈(aα, dα, bα, gα, fα, cα, hα) | α ∈ 2ω〉 is a suitable
family for the bounding sequences n−

k and n+
k , that is, it satisfies the properties

in Definition A4.1. Properties (S1)–(S6) are immediate by construction, as in the
case |A| = 1. Note that Iαn := I

α�n+1
n and Jα

n := J
α�n+1
n (for n < ω) define interval

partitions of ω such that |Iαn | = gα(n) and |Jα
n | = hα(n), so properties (S5) and

(S6) can be proved in the same way as before.
To prove property (S7), since aα > cOhα

α for any α, it suffices to show that, whenever
α�β in 2ω, limk→∞

aα(k)
dβ(k)

= 0. Let n be the minimal number such that α(n) < β(n);
by the definition of dβ, dβ(k) ≥ (k + 1) · aα(k) for any k ≥ n, which implies that
the sequence of the aα(k)

dβ(k)
converges to 0.

A5 The Grand Finale

Now that we have defined suitable families, we can put everything together to
prove the Main Theorem:

Theorem A5.1. Assume CH and let 〈κα | α ∈ A〉 be a sequence of infinite cardinals
such that |A| ≤ ℵ1 and κωα = κα for every α ∈ A. Given bounding sequences n−

k , n
+
k

and a suitable family F = 〈(aα, dα, bα, gα, fα, cα, hα) | α ∈ A〉, the poset

Q :=
∏
α∈A

(Qdα
cα,hα

)κα

(where the product and all powers have countable support) forces

v∃cα,hα
= non(Ifα) = v∃bα,gα = c∀aα,dα = κα

for every α ∈ A.

(Recall Definition A4.1 for the definition of a suitable family and Definition A3.9
for the definition of the poset Qdα

cα,hα
.)

This section is dedicated to proving the theorem above. Fix a disjoint family
〈Kα | α ∈ A〉 such that |Kα| = κα and let K :=

⋃
α∈AKα. Hence, we can express

Q as the countable support product of 〈Qξ | ξ ∈ K〉, where Qξ := Qdα
cα,hα

whenever
ξ ∈ Kα. For any p ∈ Q, ξ ∈ supp(p) and k < ω we write p(ξ, k) := p(ξ)(k).
By the following lemma, without loss of generality we may assume that any p ∈ Q
is modest (unless we explicitly say the opposite), that is, for every ` < ω there is
at most one ξ ∈ supp(p) such that ` ∈ split(p(ξ)).

Lemma A5.2 (modesty). The set of modest conditions in Q is dense.

Proof. Fix p ∈ Q. By induction on n < ω it is possible to define a function
f = (f0, f1) : ω → supp(p)× ω such that
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(i) f1 is strictly increasing,
(ii) f1(n) ∈ split(p(f0(n))) and the norm of p(f0(n)) (with respect to Qf0(n)) is

larger than n+ 1, and
(iii) for any ξ ∈ supp(p), the set f−1

0 [{ξ}] is infinite.
Define q with supp(q) = supp(p) such that q(ξ, k) = p(ξ, k) whenever (ξ, k) ∈ ran f ,
otherwise q(ξ, k) is a singleton contained in p(ξ, k). By the definition of f it is clear
that q ∈ Q and q ≤ p. Moreover, by (i), q is modest.

Thanks to modesty, Q behaves very much like a single forcing as in section A3.
Before we show Theorem A5.1, we revisit the notation and results of section A3
and revise them for the context of Q.

Notation A5.3. In the context of Q, for any p ∈ Q and k, n < ω:
(1) split(p) :=

⋃
ξ∈supp(ξ) split(pξ), which is a disjoint union by modesty.

(2) sn(p) denotes the n-th member of split(p).
(3) For k ∈ split(p), let ξp(k) denote the unique ξ ∈ supp(p) such that k ∈

split(p(ξ)).
(4) p�w := 〈p(ξ)�w | ξ ∈ supp(p)〉 when w is a subset of ω (usually an interval).
(5) poss(p,≤k) :=

∏
ξ∈supp(p) poss(p(ξ),≤`). By modesty, this set is finite with

size ≤
∏

`≤k n
+
` < n−

k+1. Define poss(p,< k) similarly.
(6) For η ∈ poss(p,≤k), p ∧ η denotes the condition 〈p(ξ) ∧ η(ξ) | ξ ∈ supp(p)〉.
(7) For ξ ∈ K, Ṡξ denotes the slalom added by Qξ. Note that if ξ ∈ Kα, then Ṡξ

is a Qξ-name for a slalom in S(cα, hα).
(8) If q ∈ Q, q ≤n p means that q ≤ p, ξq(s`(q)) ∈ supp(p) for every ` ≤ n, and

(q�sn(q)+1)�supp(p) = p�sn(q)+1.
(9) If q ∈ Q and F ⊆ K is finite, q ≤n,F p means that q ≤ p, F ⊆ supp(p) and

q(ξ) ≤n p(ξ) for any ξ ∈ F .

Lemma A5.4. If n < ω, p ∈ Q, and D ⊆ Q is open dense, then there is some
q ≤n p in Q such that for any η ∈ poss(q,≤sn(q)), q ∧ η ∈ D.

Proof. The same argument as in the proof of Lemma A3.4 works here. Con-
cretely, enumerate poss(p,≤sn(p)) =: {ηk | k < m} and, by recursion on k ≤
m, choose pk+1 ≤ η′k

_pk�
[sn(p)+1,ω) (‘pointwise’ concatenation) in D such that

s0(pk+1(ξ)) > sn(p) for any ξ ∈ supp(pk+1)r supp(p) and η′k is the unique member
of poss(pk,≤sn(p)) containing ηk . Let q := r_pm�

[sn(p)+1,ω), where r has domain
supp(pm)×(sn(p)+1), r(ξ, `) := p(ξ, `) whenever ξ ∈ supp(p) and r(ξ, `) := pm(ξ, `)
otherwise (which is a singleton).

Define Q∗ as the set of conditions in p ∈ Q such that for any n < ω, the norm of
p(ξp(sn(p)), sn(p)) is above n+1. Note that the condition q found in Lemma A5.2
is actually in Q∗, so this set is dense in Q. Also, if p ∈ Q∗, α ∈ A, and ξ ∈ Kα ∩
supp(p), then p(ξ) ∈ Q∗

ξ := Q∗dα
cα,hα

.

Lemma A5.5 (fusion). Let 〈pn, Fn | n < ω〉 be a sequence such that
(i) pn ∈ Q∗ and Fn ⊆ K is non-empty finite,
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(ii) pn+1 ≤n,Fn pn,
(iii) Fn ⊆ Fn+1 and W :=

⋃
n<ω Fn is equal to

⋃
n<ω supp(pn).

Then there is a condition q ∈ Q with supp(q) = W such that q ≤n,Fn p for every
n < ω.

Proof. For each ξ ∈ W , let nξ := min{n < ω | ξ ∈ Fn}. It is clear that 〈pn(ξ) | n ≥
nξ〉 is a sequence in Q∗

ξ and that pn+1(ξ) ≤n pn(ξ). Thus, there is a fusion q(ξ) ∈ Q∗
ξ

of that sequence as in the proof of Lemma A3.5. Note that sk(q(ξ)) = sk(pn(ξ))
for any n ≥ nξ and k ≤ n.
Let q := 〈q(ξ) | ξ ∈ W 〉. If ξ, ζ ∈ W are different and k, k′ < ω, then, for some
sufficiently large n, we have that sk(q(ξ)) = sk(pn(ξ)) 6= sk′(pn(ζ)) = sk′(q(ζ)) (by
modesty). Hence q is modest, so q ∈ Q.

Lemma A5.6. Let χ be a sufficiently large regular cardinal and let N � Hχ be
countable such that Q ∈ N . Let 〈Dn | n < ω〉 be a sequence of open dense subsets
of Q such that each Dn ∈ N . If p ∈ Q ∩ N , then there is a condition q ≤ p in Q
such that for any n < ω and η ∈ poss(q, sn(q)), q ∧ η ∈ Dn.

Proof. Enumerate K ∩ N =: {ξk | k < ω} and let Fn := {ξk | k ≤ n} for every
n < ω. By recursion on n < ω, construct a sequence 〈pn | n < ω〉 such that
(i) p0 ≤ p,
(ii) pn ∈ Q∗ ∩N and Fn ⊆ supp(pn),
(iii) Ln := 〈sk(pn(ξ)) | k ≤ n, ξ ∈ Fn〉 is an initial segment of split(pn),
(iv) for any k < |Ln| and η ∈ poss(pn,≤sk(pn)), pn ∧ η ∈ Dk, and
(v) pn+1 ≤n,Fn pn.

Each step of this construction takes place inside N , though it is very likely that
the final sequence is outside N .
Figure 4 illustrates the idea of the following construction. Choose some p′ ≤ p in
Q∗ that satisfies (ii) and (iii), that is, ξ0 ∈ supp(p′) and s0(p′) = s0(p

′(ξ0)), and find
p0 ≤0 p

′ by application of Lemma A5.4 to D0. Assume that we have constructed
pn. By recursion on k < 2(n+ 2), construct pn,k as follows:
(1) First note that max(Ln) = smn(pn) where mn := |Ln| − 1 = (n+ 1)2 − 1. Let

pn,0 := pn.
(2) Having defined pn,k for k ≤ n, choose an ` ∈ split(pn,k(ξk)) larger than

smn+k(pn,k), choose some p′n,k ≤mn+k pn,k such that p′n,k(ξk, `) = pn,k(ξk, `) and
` = smn+k+1(p

′
n,k), and find pn,k+1 ≤mn+k+1 p

′
n,k by application of Lemma A5.4

to Dmn+k+1.
(3) Having defined pn,n+1, choose some p′n,n+1 ≤mn+n+1 pn,n+1 such that ξn+1 ∈

supp(p′n,n+1) and s0(p
′
n,n+1(ξn+1)) = smn+n+2(p

′
n,n+1), and afterwards find

pn,n+2 ≤mn+n+2 p
′
n,n+1 by application of Lemma A5.4 to Dmn+n+2.

(4) Having defined pn,k at n+2 ≤ k < 2(n+2)−1, choose an ` ∈ split(pn,k(ξn+1))
larger than smn+k(pn,k), choose some p′n,k ≤mn+k pn,k such that p′n,k(ξn+1, `) =
pn,k(ξn+1, `) and ` = smn+k+1(p

′
n,k), and find pn,k+1 ≤mn+k+1 p

′
n,k by applica-

tion of Lemma A5.4 to Dmn+k+1.
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ξ0 ξ1 ξ2 ξ3 ξ4

c0,0

c0,1

c0,4

c0,9

c1,2

c1,3

c1,5

c1,10

c2,6

c2,7

c2,8

c2,11

c3,12

c3,13

c3,14

c3,15

... ... ... ... ...

sm0(p0) + 1

sm1(p1) + 1

sm2(p2) + 1

sm3(p3) + 1

Figure 4: The proof of Lemma A5.6 up to the construction of p3.
The term “ck,`” is short for the creature q(ξk, s`(q)). The shaded
area shows the part of p2 that is not modified in the construction
of p3, and will also remain constant in any further steps of the
construction. Note that m0 = 0, m1 = 3, m2 = 8 and m3 = 15.
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(5) At the end, pn+1 := pn,2(n+2)−1 is as desired.
By Lemma A5.5, we can find a fusion q of 〈pn | n < ω〉 with supp(q) = K ∩N such
that q ≤n,Fn pn for any n < ω. By (iii), q ≤|Ln|−1 pn for each n < ω, so (iv) implies
that q is as desired.

Corollary A5.7. Q is proper and ωω-bounding.

Proof. Properness is immediate by applying Lemma A5.6 to the enumeration of
all the open dense subsets in N .
To show that Q is ωω-bounding, let ẋ be a Q-name for a member of ωω and let
p ∈ Q. Let χ be a sufficiently large regular cardinal and let N � Hχ be countable
such that Q, p, ẋ ∈ N . Let Dn be the set of conditions of Q that decide ẋ(n), which
is an open dense set that belongs to N . Find q ≤ p by application of Lemma A5.6
to 〈Dn | n < ω〉, which implies that q 
 ẋ ∈ Bn, where Bn := {k < ω | ∃ η ∈
poss(q, sn(q)) : q ∧ η 
 ẋ(n) = k} is a finite set. Hence, q forces that ẋ is bounded
by f ∈ V , where f(n) := max(Bn).

Corollary A5.8 (timely reading of names). Let p ∈ Q and let τ̇ be a Q-name for
a function from ω into the ground model V . Then there is a condition q ≤ p in Q
such that q reads τ̇ timely.

Proof. A fusion argument as in the proof of Lemma A5.6 works, but here the dense
sets need to be defined within the construction of the fusion sequence. Concretely,
start with a sufficiently large regular cardinal χ and a countable model N � Hχ

such that Q, p, τ̇ ∈ N , and construct the fusion sequence 〈pn | n < ω〉 satisfying
conditions (i)–(iii) and (v) in the proof of Lemma A5.6 – but instead of (iv) demand
(iv’) for any k < |Ln| and η ∈ poss(pn, sk(pn)), pn ∧ η ∈ Dk, where Dk is the (open

dense) set of conditions in Q∗ that decide τ̇�sk(pn).
The construction is the same as in Lemma A5.6 except that the dense sets Dk are
defined just before each application of Lemma A5.4.

Lemma A5.9. The poset Q is ℵ2-cc.

Proof. This follows by a typical ∆-system argument under CH.

Lemma A5.10 (few possibilities). Let 〈gξ | ξ ∈ supp(p)〉 be a sequence of functions
from ω into ω that go to infinity. If p ∈ Q, then there is a condition q ≤ p in
Q∗ such that supp(q) = supp(p) and for any ξ ∈ supp(q) and ` ∈ split(q(ξ)),
| poss(q,<`)| < gξ(`).

Proof. Enumerate supp(p) =: {ξn | n < ω} and let Fn := {ξk | k ≤ n} for every
n < ω. By recursion on n < ω, construct a sequence 〈pn | n < ω〉 such that
(i) p0 ≤ p,
(ii) pn ∈ Q∗ and supp(pn) = supp(p),
(iii) Ln := 〈sk(pn(ξ)) | k ≤ n, ξ ∈ Fn〉 is an initial segment of split(pn),
(iv) for any ` ∈ Ln, | poss(pn, <`)| < gξpn (`)(`), and
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(v) pn+1 ≤n,Fn pn.
Choose `0 ∈ split(p(ξ0)) such that both gξ0(`0) and the norm of p(ξ0, `0) are larger
than 1, and choose p0 ≤ p in Q∗ with supp(p0) = supp(p) such that p0(ξ, k)
is a singleton for all k < `0 and p0(ξ0, `0) = p(ξ0, `0) (so s0(p0) = `0). Having
constructed pn, we can define by recursion an increasing sequence 〈`n,k | k < 2n+3〉
of natural numbers such that
(I) `n,0 > max(Ln),
(II) `n,k ∈ split(pn(ξk∗)) with k∗ := min{k, n+ 1}, and
(III) gξk∗ (`n,k) is larger than poss(pn,≤max(Ln)) ·

∏
i<k |pn(ξi∗ , `n,i)|.

Define pn+1 with supp(pn+1) = supp(pn) such that pn+1(ξ, k) = pn(ξ, k) when either
ξ ∈ supp(pn) and k ∈ [0,max(Ln)] ∪ [`n,2n+2, ω), or ξ = ξi∗ and k = `n,i for some
i < 2(n+2), and otherwise such that pn+1(ξ, k) is a singleton contained in pn(ξ, k).
It is clear that pn+1 is as required.
Define q as in Lemma A5.5.

Lemma A5.11 (early reading). Let 〈Xk | k < ω〉 be a sequence of non-empty sets
with |Xk| ≤ n+

k , and let τ̇ be a Q-name for a member of
∏

k<ωXk. Then for any
p ∈ Q, there is a condition q ≤ p in Q which reads τ̇ early, that is, for any n < ω
and η ∈ poss(q,<n), q ∧ η already decides τ̇�n.

Proof. Without loss of generality, by Corollary A5.8 assume that p reads τ̇ timely.
By recursion on k < ω we define q(ξ, k) for all ξ ∈ supp(p) (so at the end,
supp(q) = supp(p)). When k /∈ split(p), let q(ξ, k) := p(ξ, k). Assume k ∈ split(p)
and let pk := q�k_p�[k,ω) (‘pointwise’ concatenation). Exactly as in the proof of
Lemma A3.12 (bigness can be used because |

∏
i<kXi| ≤

∏
i<k n

+
i < n−

k < dα(k)
for any α ∈ A), we can find q(ξp(k), k) ⊆ p(ξp(k), k) such that the difference
between their norms is less that 1 and, for every η ∈ poss(pk, <k), there is an
rη such that pk ∧ η′ 
 τ̇�k = rη for any η′ ∈ poss(pk,≤k) that extends η with
η′(ξp(k), k) ⊆ q(ξp(k), k). For ξ 6= ξp(k), just define q(ξ, k) := p(ξ, k).

Proof of Theorem A5.1. First, we remark that since Q has ℵ2-cc, it preserves car-
dinalities and cofinalities. Now note that since F is suitable, the assumptions
in Lemma A2.8 are fulfilled for any α ∈ A: (S1) and (S3) imply (I1); (S4)
implies (I2); (S1) and (S5) imply (I3); and (S1) and (S6) imply (I4). Hence
v∃cα,hα

≤ non(Ifα) ≤ v∃bα,gα ≤ c∀aα,dα , so it suffices to show Q 
 v∃cα,hα
≥ κα and

Q 
 c∀aα,dα ≤ κα for any α ∈ A.

The lower bound. Fix some α ∈ A. We prove Q 
 v∃cα,hα
≥ κα when κα > ℵ1

(otherwise it is trivial) as follows (analogously to the proof of Lemma A3.3): Let
Ḟ be a Q-name for a subset of

∏
cα of size < κα. By ℵ2-cc, there is some B ∈ V

with |B| < κα such that Ḟ is a Q�B-name. Hence there is some ξ ∈ Kα rB.
It suffices to show that for any Q�B-name ẋ for a member of

∏
cα, Q forces that

ẋ(k) ∈ Ṡξ(k) for infinitely many k < ω. Only for this argument, we can briefly
forget about modesty. Fix p ∈ Q and some n0 < ω and, without loss of generality,
also assume ξ ∈ supp(p). Pick a k ≥ n0 such that the norm of p(ξ, k) is at
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least 1; afterwards, find an r ≤ p�B which decides ẋ(k) = z. Define p′ ∈ Q
such that supp(p′) = supp(r) ∪ supp(p), p′(γ) := r(γ) for γ ∈ B and p′(γ) :=
p(γ) otherwise. Finally, strengthen p′ to q with the same support by first setting
q�Kr{ξ} := p′�Kr{ξ}, and then setting q(ξ, k) := {t} for some t ∈ p′(ξ, k) which
contains z (which exists by the definition of the norm, as explained in Lemma A3.3)
and q(ξ, n) := p′(ξ, n) when n 6= k. Hence q ≤ p′ and q 
 ẋ(k) ∈ Ṡξ(k).
This argument shows that given any family of size less than κα, this set cannot be
localising in the sense of v∃cα,hα

, and hence Q 
 v∃cα,hα
≥ κα.

The upper bound. This argument is very similar to Lemma A3.13. Fix α ∈ A
and let Cα :=

⋃
{Kβ | κβ ≤ κα, β ∈ A}. Note that |Cα| = κα and Q�Cα forces

that c = κα. To show Q 
 c∀aα,dα ≤ κα it suffices to prove that for any p ∈ Q and
any Q-name ẋ for a member of

∏
aα, there is some q ≤ p in Q and some Q�Cα-

name ϕ̇ such that q 
 “ϕ̇ ∈ S(aα, dα) and ẋ ∈ ϕ̇”. (This means that whenever
G is Q-generic over V , any member of

∏
aα is localised in V [G] by some slalom

in S(aα, dα) ∩ V [G ∩ Q�Cα ], where the latter set has size κα.) Without loss of
generality, we may assume that
(i) p ∈ Q∗ reads ẋ early (by Lemma A5.11 because aα(k) ≤ n+

k ), and
(ii) for any ξ ∈ supp(p)r Cα, if β ∈ A and ξ ∈ Kβ, then for any k ∈ split(p(ξ)),

min
{
c
Ohβ

β (k)

dα(k)
,
aα(k)

dβ(k)

}
≤ 1

2 | poss(p,<k)|

(by (S7) and Lemma A5.10 applied to the function gξ defined by

gξ(k) :=

(
2 ·min

{
c
Ohβ

β (k)

dα(k)
,
aα(k)

dβ(k)

})−1

when ξ is as above, or the identity on ω otherwise).
By recursion on k, we construct ϕ̇(k) and q(ξ, k) for any ξ ∈ supp(p) (so at the
end, supp(q) = supp(p)). Let pk := q�k_p�[k,ω). We distinguish two cases.
When k /∈ split(p). In this case, for any η ∈ poss(pk, <k), pk ∧ η already decides
ẋ(k) to be some rη ∈ aα(k), so we define ϕ̇(k) (in the ground model) as the set of
those rη. Note that |ϕ̇(k)| ≤ | poss(pk, < k)| < n−

k < dα(k). Let q(ξ, k) := p(ξ, k)
for any ξ ∈ supp(p).
When k ∈ split(p). First, assume that ξp(k) ∈ Cα. For any η ∈ poss(pk, <k) and
s ∈ p(ξp(k), k), there is a unique η′ ∈ poss(pk,≤k) that extends η and such that
η′(ξp(k), k) = {s}, so by (i) there is some rη,s ∈ aα(k) such that pk ∧ η′ 
 ẋ(k) =
rη,s. Define ṙη as the Q�Cα-name for a member of aα(k) such that any condition
p′ ∈ Q�Cα with p′(ξp(k), k) = {s} for some s ∈ p(ξp(k), k) forces that ṙη = rη,s.
Let ϕ̇(k) := {ṙη | η ∈ poss(pk, <k)}, which is clearly a Q�Cα-name for a set of size
< dα(k). Also, for any η ∈ poss(pk, <k), pk∧η forces ẋ ∈ ϕ̇(k). Let q(ξ, k) := p(ξ, k)
for all ξ ∈ supp(p).
Now assume that ξp(k) /∈ Cα and let β ∈ A be such that ξp(k) ∈ Kβ. According
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to (ii), we distinguish two subcases. If

| poss(pk, <k)| ≤
dα(k)

2c
Ohβ

β (k)
,

then | poss(pk,≤k)| ≤ | poss(pk, <k)| · c
Ohβ

β (k) < dα(k). Let ϕ̇(k) (in the ground
model) be the set of objects in aα(k) that are decided to be ẋ(k) by pk ∧ η for
some η ∈ poss(pk,≤k). It is clear that this set has size < dα(k), so we can define
q(ξ, k) := p(ξ, k) for all ξ ∈ supp(p).

The other subcase is when | poss(pk, <k)| ≤ dβ(k)

2aα(k)
. Exactly as in the proof of

Lemma A3.13 (with a = aα, d = dβ and e = dα), we can find q(ξp(k), k) ⊆
p(ξp(k), k) such that the difference between their norms is less than 1, as well as a
ϕ̇(k) ∈ [aα(k)]

≤dα(k) (in the ground model) such that pk+1 := q�k+1_p�[k+1,ω) forces
that ẋ ∈ ϕ̇(k). For any ξ ∈ supp(p)r {ξp(k)}, let q(ξ, k) := p(ξ, k).
In the end, both q and ϕ are as required.

A6 Open Questions

Concerning the consistency of infinitely many pairwise different cardinals associ-
ated with Yorioka ideals, the following summarises the current open questions.

Question C. Is each of the statements below consistent with ZFC?
(Q1) There are continuum many pairwise different cardinal invariants of the form

cov(If ).
(Q2) There are continuum many pairwise different cardinal invariants of the form

non(If ).
(Q3) There are infinitely many pairwise different cardinal invariants of the form

add(If ).
(Q4) There are infinitely many pairwise different cardinal invariants of the form

cof(If ).

It is also interesting to consider the consistency of the conjunction of the statements
above.
As mentioned in the introduction, Kamo and Osuga [KO14] used the existence of
a weakly inaccessible cardinal to force the statement in (Q1), but its consistency
is still unknown assuming only ZFC. We believe that extending the ideas in our
construction with lim inf techniques as in [KS12] would work to solve this problem
(even simultaneously with (Q2)).
Very little is known about the additivity and cofinality of Yorioka ideals. Even the
following questions are still open (see also [CM17, section 6]).

Question D. Is it consistent with ZFC that there are two Yorioka ideals with
different additivity numbers (or cofinality numbers)?
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Any idea to solve this question in the positive could be used to prove the consis-
tency of (Q4) using a lim sup creature construction as in this chapter. However,
as the additivity numbers of Yorioka ideals are below b, the typical ωω-bounding
creature forcing notions will not work to prove the consistency of (Q3).
As for the localisation and anti-localisation cardinals, the remaining open problems
are the following.

Question E. Is each of the statements below consistent with ZFC?
(Q5) There are continuum many pairwise different cardinal invariants of the form

v∀c,h.
(Q6) There are continuum many pairwise different cardinal invariants of the form

v∃c,h.

Brendle and Mejía [BM14] used a weakly inaccessible cardinal to force (Q5), but
its consistency with respect to ZFC alone is still open.
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CHAPTER B

MODULAR FRAMEWORK FOR
CREATURE FORCING

This chapter is based on [GK18], which is joint work with my advisor, Martin
Goldstern.

B1 Introduction

Much like the first chapter, this research forms part of the study of cardinal char-
acteristics of the continuum and the forcing techniques required to separate many
of them.
Some of the most popular cardinal characteristics are collected in Cichoń’s dia-
gram. The paper [FGKS17] is one in a series of progressively more difficult results
showing that more and more of the cardinals from Cichoń’s diagram can in fact
simultaneously be different, in suitably constructed models of set theory. In that
particular paper it was shown that those cardinals in Cichoń’s diagram which are
neither cov(N ) nor provably below d (specifically: non(M), non(N ), cof(N ), and
2ℵ0) can have quite arbitrary values (subject to the known inequalities which the
diagram expresses).
The older paper [GS93] presented a consistency result about infinitely many pair-
wise different cardinal characteristics of the continuum with particularly simple
definitions, answering a question of Blass [Bla93, p. 78]. Specifically, they showed
that uncountably many so-called localisation cardinals

cf,g := min

{
|S|

∣∣∣∣∣ S ⊆
∏
k<ω

[f(k)]≤g(k), ∀x ∈
∏
k<ω

f(k) ∃S ∈ S : x ∈∗ S

}
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can be pairwise different in a suitably constructed set-theoretic universe.8

The common method used in both of these papers is creature forcing. While
the method of [GS93] was a rather straightforward countable support product of
natural tree-like forcing posets, the elements of the forcing poset in [FGKS17] were
sequences of so-called compound creatures, and the forcing poset was not obviously
decomposable as a product of simpler forcing posets. The apparent complexity of
that construction may have deterred some readers from taking a closer look at this
method.
In this chapter, we will revisit the construction of [FGKS17], but in a more modular
way. Using (mostly) a countable support product of lim sup creature forcing posets,
together with a lim inf creature forcing poset, we construct a ZFC universe in which
the cardinal characteristics ℵ1, non(M), non(N ), cof(N ) and 2ℵ0 are all distinct,
and moreover distinct from uncountably many localisation cardinals.
We give a brief outline of the construction. The original forcing construction from
[FGKS17] can be decomposed and modified to become a product consisting of
three factors: a countable support product of lim sup creature forcing posets, a
lim sup creature forcing poset that is not further decomposable, and a lim inf crea-
ture forcing poset. The latter two are still simpler than the parts of the original
creature forcing construction corresponding to them; we believe they cannot be
replaced by countable support products of creature forcing posets. This new rep-
resentation allows describing the methods and proofs used in a more modular way,
which can then more easily be combined with other lim sup creature forcing posets.
As a motivating example, we show how to add a variant of the lim sup creature
forcing posets used to separate the localisation cardinals cf,g from [GS93] to this
construction.
The main result is the following:

Theorem B1.1. Let
• types := {nm, nn, cn, ct} ∪

⋃
ξ<ω1

{ξ},
• types lim sup := typesr{nm},
• types modular := types lim sup r{ct}, and
• types slalom :=

⋃
ξ<ω1

{ξ}.
Assume CH in the ground model. Assume we are given cardinals κnm ≤ κnn ≤
κcn ≤ κct as well as a sequence of cardinals 〈κξ | ξ < ω1〉 with κξ ≤ κcn for all
ξ < ω1 such that for each t ∈ types, κℵ0

t = κt. Further assume we are given a
congenial sequence9 of function pairs 〈fξ, gξ | ξ < ω1〉.
Then there are natural lim sup creature forcing posets Qt for each t ∈ types modular,
a lim sup creature forcing poset Qct, κct and a lim inf creature forcing poset Qnm, κnm

8 For more detail on cf,g, see section B10; for a more general treatment of localisation and anti-
localisation cardinals, see Definition A1.4.

9 We will define this term in Definition B3.2.
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such that

Q :=

( ∏
t ∈ types modular

Qκt
t

)
×Qct, κct ×Qnm, κnm

(where all products and powers have countable support) forces:
(M1) cov(N ) = d = ℵ1,
(M2) non(M) = κnm,
(M3) non(N ) = κnn,
(M4) cof(N ) = κcn,
(M5) cfξ,gξ = κξ for all ξ < ω1, and
(M6) 2ℵ0 = κct.
Moreover, Q preserves all cardinals and cofinalities.

See Figure 5 for a graphical representation of our results.

ℵ1 add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N ) 2ℵ0

cf1,g1

cf2,g2cf3,g3

cf4,g4 cf5,g5

min

max

Figure 5: Cichoń’s diagram with some exemplary cf,g added to
it; cardinals which are forced to be equal are grouped together,
and each such group can be forced to be different from the others
subject to the usual constraints.

We give a brief outline of this chapter.
• In section B3, we define all the constituent parts of the forcing construction,

and in section B4, we show how to put them together and prove a few
fundamental properties.

• We then introduce and prove the main properties of the forcing construction
which will be used throughout the chapter – bigness in section B5 and con-
tinuous and rapid reading in section B6 and section B7. The latter section
also contains proofs of properness and ωω-bounding, as well as the “easy”
parts of the main theorem ((M1) and (M6)).

• The following sections contain the proofs to the remaining parts of the main
theorem:
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– section B8 and section B11 prove (M4),
– section B9 proves (M2),
– section B10 proves (M5), and
– section B11 and section B12 prove (M3).

• Finally, in section B13, we give a brief account of the limitations of the
method (and some of our failed attempts to add factors to the construction)
and open questions.

B2 Motivational Prologue

We now define the basic framework of the forcing poset. We will not be defining
each and every cog of the machinery right from the start; we will instead fill in the
blanks one by one, to reduce the complexity and allow for more easily digestible
reading.
At the most elementary level, our forcing poset is a product of four parts, each of
which employs creature forcing constructions. In such a creature forcing construc-
tion, conditions are sequences of so-called creatures holding some finite amount
of information on the generic real. For technical reasons, we will separate these
forcing posets into different sets of levels – the (compound) creatures in the lim inf
forcing poset Qnm, κnm will be enumerated by integers of the form 4k, the creatures
in the modular lim sup forcing posets Qnn and Qcn will be enumerated by integers
of the form 4k + 1, the creatures in the modular lim sup forcing posets Qξ will
be enumerated by integers of the form 4k + 2 and the creatures in the Sacks-like
lim sup forcing poset Qct, κct will be enumerated by integers of the form 4k + 3.
The modular lim sup forcing posets are not too complicated, having just a creature
C` at each level ` for each index in the support. Each such C` is a subset of some
finite set of so-called possibilities POSSt,`.
The lim sup forcing poset Qct, κct cannot be separated into a countable support
product of factors. (To be precise, we cannot separate it into a countable support
product of factors or replace it by such a forcing poset.) We are quite certain
that this is due to fundamental structural reasons, namely that in order to prove
Lemma B8.1, we have to group the levels (and hence the associated creatures)
in this forcing poset together in a certain way, and these partitions need to be
compatible, i. e. there must be a single level partition shared by all indices in the
support of Qct, κct.
Each element of the lim inf forcing poset Qnm, κnm consists of a sequence of grids of
creatures C`. Each such grid has a finite support S` ⊆ Anm (where Anm is some
index set of size κnm). For each `, there is a finite set J` (i. e. some natural number),
and the grid consists of a |S`|-tuple 〈C`,α | α ∈ S`〉 of stacked creatures C`,α; each
stacked creature C`,α, in turn, is a finite sequence of creatures C(`,0),α, . . . , C(`,J`−1),α.
We will also refer to such (`, i) as “sublevels”. Additionally, each lim inf level ` also
has a so-called “halving parameter” d(`), a natural number.10

10 See Figure 8 for a graphical representation of this structure.
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For easier reading, we will be using the term “height” to mean “level” for the lim sup
forcing posets or “sublevel” for the lim inf forcing poset. A height L ∈ heights is
thus either a level ` = 4k + 1, ` = 4k + 2 or ` = 4k + 3 or a sublevel (`, i) with
` = 4k and i ∈ J`. (For Qct, κct , we will consider all creatures within the same class
of the level partition as a unit, which complicates induction on the heights a little
bit.)
The descriptions of these forcing posets as “lim inf forcing” or “lim sup forcing” refers
to the kind of requirements we demand of the sequences of creatures. Each of these
creature forcing posets has a norm (a sequence of functions from 2POSSt,L to the non-
negative reals) associated with it. As one would expect from the nomenclature, we
will demand that for any given condition p ∈ Q, for each lim sup forcing poset Qt
we have lim sup`→∞ ‖p(α, `)‖t,` = ∞ for each α ∈ supp(p) (again, for Qct, κct , this
will look a tiny bit different) as well as that lim inf`→∞ ‖p(`)‖nm = ∞. (Note that
in this statement, we are deliberately referring to levels and not to heights, and
the limits are to be understood as limits in terms of the tg-appropriate levels.)
The forcing posets involved will depend on certain parameters, which we will define
iteratively by induction on the heights. For each height L, we will also inductively
define natural numbers nP

<L < nR
<L < nB

L < nS
L.

We want to briefly explain the purpose of these sequences:
• nP

<L will be an upper bound on the number of possibilities below L (corre-
sponding to maxposs from [FGKS17] and n− from [GS93]). By this we mean
that nP

<L will bound the number of different possible maximal strengthen-
ings11 of a condition p below L and hence e. g. the number of iterations we
have to go through whenever we want to consider all possible such strength-
enings.

• nB
L will be a lower bound on the bigness of a creature at height L (corre-

sponding to b from [FGKS17] and also n− from [GS93]), which we will be
defining a bit later. For now, think of this as follows: Whenever we partition
a creature CL into at most nB

L many sets (e. g. according to which value they
force some name to have), there is always one set such that strengthening
CL to a subcreature corresponding to that set will only very slightly decrease
the norm.

• nS
L will be an upper bound on the size of POSSt,L for all t ∈ types (corre-

sponding to M from [FGKS17] and n+ from [GS93]).
• nR

<L will be used to control how quickly a condition p decides finite initial
segments of reals (corresponding to H from [FGKS17]), i. e. its rapidity. This
decision of initial segments will be referred to as “reading” in the sequel.

11 This will be explained in more detail in the following. By “strengthening of p below L”, we
mean conditions q ≤ p such that p and q are identical at all heights K ≥ L, and by “maximal
strengthening” we mean that there is no stronger q with this property.
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B3 Defining the Forcing Factors

Let us now begin to define the framework of the forcing construction.
Definition B3.1. Assume we are given cardinals κnm ≤ κnn ≤ κcn ≤ κct and a
sequence of cardinals 〈κξ | ξ < ω1〉 with κξ ≤ κcn for all ξ < ω1 such that for each
t ∈ types, κℵ0

t = κt.12 Choose disjoint index sets At of size κt for each t ∈ types.
We will use the shorthand notations

• Aslalom :=
⋃

ξ<ω1
Aξ,

• A∗n := Acn ∪ Ann, and
• A := Anm ∪ A∗n ∪ Aslalom ∪ Act,

as well as the notations
• typegroups := {nm, ∗n, slalom, ct}, and
• typegroups lim sup := typegroupsr{nm}.

For each ` = 4k, we will fix some J` with 0 < J` < ω. We will refer to the set of
heights

heights :=
⋃
k<ω

({(4k, i) | i ∈ J4k} ∪ {4k + 1, 4k + 2, 4k + 3})

as well as its subsets
• heights nm :=

⋃
k<ω{(4k, i) | i ∈ J4k},

• heights ∗n := {4k + 1 | k < ω},
• heights slalom := {4k + 2 | k < ω}, and
• heights ct := {4k + 3 | k < ω}.

The heights will be ordered in the obvious way, that is:

. . . < 4k − 1 < (4k, 0) < (4k, 1) < . . . < (4k, J4k − 1)

< 4k + 1 < 4k + 2 < 4k + 3 < (4k + 4, 0) < . . .

We will also use L+ and L− to refer to the successor and predecessor of a height
L in this order.
The creatures of our forcing poset Q will “live” on (some subset of)

DOMAIN := Anm × heights nm ∪ A∗n × heights ∗n

∪ Aslalom × heights slalom ∪Act × heights ct ,

that is, each p ∈ Q will have creatures for each α in a countably infinite supp(p) ⊆
DOMAIN (though for each height, only finitely many will be non-trivial). For
each

(α,L) ∈
⋃

tg ∈ typegroups

(Atg ∩ supp(p))× heights tg ,

there will be a finite set POSSα,L, and the creatures Cα,L will be some non-empty
subsets of these. (See Figure 6 for a schematic representation of the structure of
Q.)
12 Recall that types = {nm, nn, cn, ct} ∪

⋃
ξ<ω1

{ξ}.
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Anm A∗n Aslalom Act

4k − 1

(4k, 0)

...

(4k, J4k − 1)

4k + 1

4k + 2

4k + 3

(4k + 4, 0)

...

Figure 6: A diagram of the basic structure of the forcing poset Q.

Given some index α ∈ A respectively some height L ∈ heights, we will use tg(α)
respectively tg(L) to denote the appropriate group of types, i. e. the tg such that
α ∈ Atg respectively the tg such that L ∈ heights tg.

We will now first define the forcing posets themselves. However, the inductive def-
initions of the forcing posets and those of the auxiliary sequences nP

<L, n
B
L , n

S
L, n

R
<L

mentioned above are actually intertwined. We will be using the auxiliary functions
as parameters here and very diligently make sure in section B4 that when induc-
tively defining them, we will not be using anything not previously defined up to
that step of the induction process (mostly, this means taking care not to commit
off-by-one errors). For now, think of these four sequences as growing very, very
quickly and fulfilling nP

<L � nR
<L � nB

L � nS
L � nP

<L+.13

Keep the following in mind: To define creature forcing posets, we mainly have to
define the sets of possibilities POSSt,L and the associated norms. The reasons for
the specific choices of the norms will only become clear later in section B5, when
we define the concept of bigness.
We will start with Qslalom.

Definition B3.2. Given the sequences nP
<L, n

B
L , n

S
L, we call a sequence of function

pairs (fξ, gξ) in ωω congenial if:
13 As a matter of fact, in the inductive definitions of these sequences, we will only be demanding

that they be far larger than some other term, and we define them in some appropriate way to
ensure that; making them larger still would not pose any problems.
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(i) for each ξ and for all k < ω, nB
4k+2 ≤ gξ(k) < fξ(k) ≤ nS

4k+2,
(ii) for each ξ, limk→∞

log fξ(k)

nP
<4k+2·log gξ(k)

= ∞, and

(iii) for all ξ, ζ with ξ 6= ζ, either limk→∞
fζ(k)

2

gξ(k)
= 0 or limk→∞

fξ(k)
2

gζ(k)
= 0.14

When referring to a single pair of functions in a congenial sequence, we will call
this a congenial pair of functions.

The choice of nB
L � nS

L will ensure that there are sufficiently many different such
function pairs.

Definition B3.3. Given the sequences nP
<L, n

B
L , n

S
L, n

R
<L and a congenial pair of

functions (fξ, gξ), the forcing factor Qξ is defined as the set of all conditions p
fulfilling the following:
(i) p consists of a sequence of creatures 〈p(L) | L ∈ heights slalom〉. Each such L

is of the form 4k + 2.
(ii) The sets of possibilities are given by the subsets of POSSξ,L := fξ((L−2)/4) =

fξ(k). This means that for each such L, p(L) = p(4k + 2) ⊆ fξ(k) = fξ((L−
2)/4) (and p(L) 6= ∅).

(iii) The norm ‖ · ‖ξ,L is given by ‖M‖ξ,L := log |M |
nP
<L·log gξ((L−2)/4)

= log |M |
nP
<4k+2·log gξ(k)

.15

(iv) There is an increasing sequence of Li ∈ heights slalom such that ‖p(Li)‖ξ,Li
≥

i. Equivalently, lim supL→∞ ‖p(L)‖ξ,L = ∞. This means that for these Li,
|p(Li)| is much larger than gξ((Li− 2)/4) (in more legible notation: for these
ki, i. e. such that Li =: 4ki + 2, we have that |p(4ki + 2)| is much larger than
gξ(ki)).

A condition q is stronger than a condition p if q(L) ⊆ p(L) holds for each L ∈
heights slalom.
Note that Definition B3.2 (ii) ensures that Qξ is non-empty.

Next, we define Qnn.

Definition B3.4. Given the sequences nP
<L, n

B
L , n

S
L, n

R
<L, the forcing factor Qnn is

defined as the set of all conditions p fulfilling the following:
(i) p consists of a sequence of creatures 〈p(L) | L ∈ heights ∗n〉.
(ii) For each such L, fix a finite interval IL ⊆ ω (for notational simplicity, dis-

joint from all IK for K < L) such that with the definitions given below,
‖POSSnn,L ‖nn,L > nB

L .

14 Property (iii) here corresponds to the assumption in [GS93, Theorem 3.1], but is more specific.
While [GS93] only demands (if we ignore the distinction between g and h) that for each k < ω,
either fζ(k) is much smaller than gξ(k) or gζ(k) is much bigger than fξ(k), but the order could
be inverted for k + 1, we actually demand that the functions are eventually ordered the same
way. We could just as well work with the more general property, but we believe our restriction
makes the proofs somewhat easier to digest.

15 As stated previously, the specific definition of the norm here is not really important, and other
definitions might work equally well; we mainly require the norms to have a property called
“bigness” (defined in section B5), which will be proved in Theorem B5.6.
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(iii) The sets of possibilities are given by

POSSnn,L :=

{
X ⊆ 2IL

∣∣∣∣ |X| =
(
1− 1

2n
B
L

)
· |2IL|

}
,

that is, all subsets X of 2IL of relative size 1− 2−nB
L .

(iv) The norm ‖ · ‖nn,L on subsets of POSSnn,L is given by

‖M‖nn,L :=
log ‖M‖intersectL

nB
L lognB

L

with ‖M‖intersectL := min{|Y | | Y ⊆ 2IL , ∀X ∈M : X ∩ Y 6= ∅}.
(v) There is an increasing sequence of Li ∈ heights ∗n such that ‖p(Li)‖nn,Li

≥ i.
Equivalently, lim supL→∞ ‖p(L)‖nn,L = ∞.

Note that the minimum in the definition above is equal to 2|IL|/2n
B
L (up to rounding

errors) for M = POSSnn,L. Therefore, fulfilling ‖POSSnn,L ‖nn,L > nB
L (and the

lim sup condition on the norms for conditions) is possible and Qnn is non-empty.
A condition q is stronger than a condition p if q(L) ⊆ p(L) holds for each L ∈
heights ∗n.

Next, we define Qcn. The norm we give here is technically different from (and
hopefully simpler than) the one given in [FGKS17], but fulfils the same purpose.

Definition B3.5. Given the sequences nP
<L, n

B
L , n

S
L, n

R
<L, the forcing factor Qcn is

defined as the set of all conditions p fulfilling the following:
(i) p consists of a sequence of creatures 〈p(L) | L ∈ heights ∗n〉.
(ii) For each such L, fix a finite interval IL ⊆ ω (for notational simplicity, dis-

joint from all IK for K < L) such that with the definitions given below,
‖POSScn,L ‖cn,L > nB

L .
(iii) The sets of possibilities are given by

POSScn,L :=

{
X ⊆ 2IL

∣∣∣∣ |X| =
(
1− 1

2n
B
L

)
· |2IL|

}
,

that is, all subsets X of 2IL of relative size 1 − 2−nB
L . This is the same kind

of possibility set as for Qnn, but the norm is different:
(iv) The norm ‖ · ‖cn,L on subsets of POSScn,L is given by

‖M‖cn,L :=
log |M | − log

(2|IL|−1

2
nB
L

−1

)
2min IL · (nB

L )
2 · log 3nB

L

.

(v) There is an increasing sequence of Li ∈ heights ∗n such that ‖p(Li)‖cn,Li
≥ i.

Equivalently, lim supL→∞ ‖p(L)‖cn,L = ∞.
A condition q is stronger than a condition p if q(L) ⊆ p(L) holds for each L ∈
heights ∗n.
Note that if the IL are chosen as above, then Qcn is non-empty; see the observation
below on why such a choice of IL is possible.
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This is the only forcing poset which we have substantially modified as compared
to [FGKS17], so let us briefly explain what we have done and why that is fine.
(We will omit the rounding to integers in the following calculations.)

Observation B3.6. The construction in [FGKS17] combines two different norms
which provide properties required for the proofs, nor∩b and nor÷I,b. One can easily
see that nor∩b (x) =

⌊ log x
log 3b

⌋
; this is not explicitly stated in [FGKS17], but is is

straightforward from the definitions (setting M(δ, `) := 3 /̀δ).
On the other hand, nor÷I,b(x) = x/

(2|I|−1

2b−1

). Consider nor÷I,b(POSScn,L) for b := nB
L ; for

appropriately large (with respect to nB
L ) choices of I, this can become arbitrarily

large. But then the same holds for log nor÷I,b(x) and also for log nor÷I,b(x)
log 3b

, and we have
only decreased the norm by modifying it this way. This norm now is almost the
same as nor∩b except for the subtrahend, but we have already established that this
norm still goes to infinity. Hence, if we replace the norm in [FGKS17, Definition
10.1.1 (3)] (which defines Qcn) by this instead, all relevant properties are preserved
and we have used a slightly nicer, closed form instead.

Next, we define Qct, κct. As mentioned before, this forcing poset is a lim sup forcing
poset, but not decomposable into factors. We first define an auxiliary norm.

Definition B3.7. We define the split norm ‖ · ‖split of a finite tree T by

‖T‖split := max{k | ∃S ⊆ T : S ∼= 2≤k},

that is, the maximal k such that the complete binary tree 2≤k of height k order-
embeds into T .
Given a finite interval I ⊆ ω and a non-empty X ⊆ 2I , we identify X with the
tree TX := X ∪ {η�I ∩ n | η ∈ X,n ∈ I} and write ‖X‖split for ‖TX‖split.16

Definitions 2.3.1 and 2.3.4 in [FGKS17] define a norm norB, m
Sacks(X) as

norB, m
Sacks(X) := max

(
{i | FB

m (i) ≤ ‖X‖split} ∪ {0}
)

for some function FB
m (i); we will use this norm without repeating the technical

arguments, instead briefly referring to the relevant properties the norm is proved
to have in [FGKS17, Lemma 2.3.6].

Definition B3.8. Given a cardinal κct with κωct = κct, an index set Act of size κct
and the sequences nP

<L, n
B
L , n

S
L, n

R
<L, the forcing poset Qct, κct is defined as the set

of all conditions p with countable supp(p) ⊆ Act fulfilling the following:
(i) There is a partition of heights ct into a sequence of consecutive intervals,

which we will call a frame. To avoid confusion with the intervals IL, we will
refer to the intervals (i. e. partition classes) of the frame as segments.

16 We were tempted to simply write η�n in the definition of TX here, but we think that η�I ∩ n

more explicitly shows that we actually mean η�{k∈I|k<n}.
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(ii) We formalise the frame as a function segm : heights ct → heights<ω
ct mapping

each height to the finite tuple of heights constituting the segment it belongs
to. We will also use F (L) to refer to min(segm(L)), so

segm(L) = [F (L), F (L∗)− 4] ∩ heights ct ,

where L∗ is the minimal L′ ∈ heights ct above L such that segm(L′) 6=
segm(L). (See Figure 7 for the structure of a frame.)

(iii) For each α ∈ supp(p), p(α) consists of a sequence of creatures 〈p(α,L) | L ∈
heights ct〉

(iv) Given a segment M̄ := 〈M1, . . . ,Mm〉, we will use the abbreviated notation
p(α, M̄) to denote 〈p(α,M1), . . . , p(α,Mm)〉. We will call p(α, M̄) a creature
segment.

(v) For each L ∈ heights ct, fix a finite interval IL ⊆ ω (for notational simplicity,
disjoint from all IK for K < L) such that with the definitions given below,
‖POSSct,L ‖ct,L > nB

L . (This ensures that even for the trivial frame consisting
of only singleton segments, there are valid conditions.)

(vi) The sets of possibilities are given by POSSct,L := 2IL. This means that for
each such L and α ∈ supp(p), p(α,L) ⊆ 2IL (and p(L) 6= ∅).

(vii) We will treat each creature segment as a unit and define the norm of a
condition in Qct, κct on creature segments. Let X̄ := 〈X1, . . . , Xm〉 be a crea-
ture segment of p(α) (for some α ∈ supp(p)) associated with the segment
K̄ := 〈K1, . . . , Km〉. This means that for some i < ω, we haveKj = 4(i+j)+3
and Xj ⊆ POSSct,Kj

for j ∈ {1, . . . ,m}.
(viii) The norm ‖ · ‖ct,L on a creature segment X̄ is given by

‖X̄‖ct,K1 := max
j∈{1,...,m}

nor
nB
K1

, k

Sacks (Xj),

where k is such that K1 = 4k + 3.
(ix) For each α ∈ supp(p), there is an increasing sequence of Li ∈ heights ct, each

of which is the initial height in a segment, such that ‖p(α, segm(Li))‖ct,Li
≥ i.

Equivalently, lim supL→∞ ‖p(α, segm(L))‖ct,F (L) = ∞.
A condition q is stronger than a condition p if supp(q) ⊇ supp(p), q(α,L) ⊆ p(α,L)
holds for each α ∈ supp(p) and each L ∈ heights ct, and the frame of q is coarser
than the frame of p.
Note that the choice of the IL above ensures that Qct, κct is non-empty. Also note
that we will sometimes for brevity write ‖X‖ct,K1 to mean nor

nB
K1

, k

Sacks (X), to avoid
having to single out the ct case when it is not strictly necessary.

We remark that if q ≤ p only differs from p in that its frame is coarser, then the
norms on the creature segments in q are greater or equal to the norms on the
corresponding creature segments in p.

Observation B3.9. One could decompose the forcing poset Qct, κct as the com-
position of a σ-complete forcing poset F defining a frame partition F and a
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...

F (L)

L

L∗

...

segm(L)

Figure 7: A visualisation of the segment segm(L) of the height L
in a frame, as well as the last and first heights of the preceding
and succeeding segment, respectively.

parametrised version QF
ct, κct with a fixed frame, analogous to the well-known de-

composition of Mathias forcing R into a forcing poset U adding an ultrafilter U
and the parametrised Mathias forcing RU (cf. [Hal17, Lemma 26.10]). However,
this decomposition of Qct κct neither simplifies nor generalises our constructions, so
we will not use it.

Finally, we define Qnm, κnm (the only lim inf forcing poset), which we will define en
bloc instead of as a countable support product.

Definition B3.10. Given a cardinal κnm with κωnm = κnm, an index set Anm of size
κnm and the sequences nP

<L, n
B
L , n

S
L, n

R
<L, the forcing poset Qnm, κnm is defined as the

set of all conditions p fulfilling the following:
(i) p consists of a sequence 〈p(4k) | k < ω〉 of compound creatures, each of

which has a finite support S4k ⊆ supp(p) ⊆ Anm, together with a sequence
of reals d(4k) which are called halving parameters. The supports S4k are
non-decreasing.

(ii) We define the finite sets of sublevels to be

J4k := 3(4k+1)·2
4k·nP

<(4k,0) .

(The reason for this definition will become clear in (xi) below.)
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B3 Defining the Forcing Factors

(iii) For each α ∈ S4k, Cα,4k is a stacked creature consisting of |J4k|many creatures
Cα,(4k,i), i ∈ J4k. So the compound creature p(4k) is indexed by S4k×{(4k, i) |
i ∈ J4k}, and each p(α, 4k) = Cα,4k is a stacked creature. (See Figure 8 for
an example of a compound creature.)

(iv) In the following, L = (4k, i) will refer to some sublevel height of p(4k).
(v) Define the cell norm ‖ · ‖cellL by ‖M‖cellL := log |M |

nB
L log nB

L
.

(vi) For each L = (4k, i), fix a finite interval IL ⊆ ω (for notational simplicity,
disjoint from all IK for K < L) such that ‖2IL‖cellL > nB

L .
(vii) POSSnm,L := 2IL; this means that for each such L and all α ∈ S4k, p(α,L) ⊆

2IL.
(viii) Call the minimal 4k < ω such that there is an α ∈ supp(p) and a K =

(4k, i) ∈ heights nm with |p(α,K)| > 1 the trunk length of p, denoted by
trklgth(p). We call the part of p below trklgth(p) the trunk and denote it by
trunk(p); the trunk of p consists of singletons p(α,L) in POSSnm,L for each
α ∈ supp(p) and each L = (4j, i) with j < k and i ∈ J4j. By definition, we
let S4j = ∅ for j < k.

(ix) Each sublevel fulfils a condition called modesty,17 which means that for each
L = (4k, i), there is at most one index α ∈ S4k such that p(α,L) is non-trivial,
i. e. |p(α,L)| > 1.

(x) Define the stack norm ‖ · ‖stack4k on stacked creatures as follows: ‖p(α, 4k)‖stack4k

is the maximal r such that there is an X ⊆ J4k with µ4k(X) := log3 |X|
4k+1

≥ r

and such that ‖p(α, (4k, x))‖cell(4k,x) ≥ r for all x ∈ X.

Note that µ4k(J4k) = 24k·n
P
<(4k,0). Consequently, the stack norm of a maximal

stacked creature having the full 2IL at each height also is 24k·n
P
<(4k,0) , as nB

L >

24k·n
P
<(4k,0) for L > (4k, 0).

(xi) Define ‖ · ‖nm,4k on compound creatures by

‖p(4k)‖nm,4k :=
log2

(
min{‖p(α, 4k)‖stack4k | α ∈ S4k} − d(4k)

)
nP
<(4k,0)

or 0 if the above is ill-defined (for instance, because the minimal stacked
creature norm is smaller than the halving parameter d(4k)).

Note that for the trunk, applying this norm to any subset of supp(p) and any
level 4j < trklgth(p) also just yields 0. Also note that the norm of the maximal
compound creature consisting of the maximal stacked creatures thus is

log2(2
4k·nP

<(4k,0) − d(4k))

nP
<(4k,0)

,

which for d(4k) = 0 is exactly 4k.
17 In [FGKS17], the set of modest conditions was introduced as a dense subset of the conditions

instead; while we will do this similarly in the following section in Lemma B4.4, for sake of easier
presentation, we prefer to define the lim inf conditions as modest right from the start. Note that
if we drop modesty from the definition, applying Lemma 2.2.2 from [FGKS17] to an arbitrary
condition p easily yields a stronger modest condition q.
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... ...

Cα,(4k,2)

... ...

· · ·

· · ·

· · ·

...

(4k, 0)

(4k, 1)

(4k, 2)

(4k, 3)

(4k, 4)

(4k, 5)

(4k, J4k − 1)

S4k

Figure 8: An example of a compound creature C := p(4k) of a
condition p ∈ Qnm, κnm. A possible pattern of cells containing non-
trivial creatures is hatched.

(xii) There is an increasing sequence of ki < ω such that ‖p(4`)‖nm,4` ≥ i for all
` ≥ ki. Equivalently, lim infk→∞ ‖p(4k)‖nm,4k = ∞.

(xiii) The relative widths (i. e. the width-to-height ratio) of the compound crea-
tures converge to 0, i. e. limk→∞

|S4k|
4k+1

= 0.
A condition q is stronger than a condition p if

• trklgth(q) ≥ trklgth(p) (the trunk may grow),
• S4k(q) ⊇ S4k(p) for each 4k ≥ trklgth(q) (above the trunk, the supports do

not shrink),
• for each k < ω, for each α ∈ S4k(p) and for each i ∈ J4k, q(α, (4k, i)) ⊆
p(α, (4k, i)), and

• d(q)(4k) ≥ d(p)(4k) (the halving parameters do not decrease).
Note that for reasonably small halving parameters (namely, such that for some
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k0 < ω and some ε > 0

d(4k) < 24k·n
P
<(4k,0) · (1− ε)

holds for all k > k0), the choice of the IL above ensures that Qnm, κnm is non-empty.

We want to briefly remark on the terminology: Our compound creatures are the
smallest possible kind of compound creatures in [FGKS17], since there compound
creatures could span multiple levels. Our cells and stacks are the subatoms and
atoms of [FGKS17].

B4 Putting the Parts Together

We remark that we still have not shown that the definitions we make are possible,
as we require the sequences nP

<L, n
B
L , n

S
L, n

R
<L to make the definitions. Before we

rectify that omission, we define the full forcing poset.

Definition B4.1. Let
• types := {nm, nn, cn, ct} ∪

⋃
ξ<ω1

{ξ},
• types lim sup := typesr{nm}, and
• types modular := types lim sup r{ct}.

Assume we are given cardinals κnm ≤ κnn ≤ κcn ≤ κct as well as a sequence of
cardinals 〈κξ | ξ < ω1〉 with κnm ≤ κξ ≤ κnn such that for each t ∈ types, κℵ0

t = κt.
Then our forcing poset is defined as follows:

Q :=
∏

t ∈ types modular

Qκt
t ×Qct, κct ×Qnm, κnm ,

where all products and powers have countable support.
Since Q is a product, a condition q is stronger than a condition p if each factor
of q is stronger than the corresponding factor of p. See Fact B4.10 for a detailed
description of all the properties subsumed by the statement “q ≤ p”.

Definition B4.2. Given p ∈ Q, tg ∈ typegroups lim sup and L ∈ heights tg, define
supp(p, tg, L) to be the set of all α ∈ Atg such that for some K ≤ L in heights tg,
|p(α,K)| > 1. This means that the tg-specific support of a condition at some
height L is the set of all indices of that group of types such that p has already had
a non-trivial creature at that index up to L.
For tg = ct, we usually will refer to the support of a segment K̄ = 〈K1, . . . , Km〉
(since we treat each creature segment as a whole) and mean supp(p, ct, K̄) =
supp(p, ct, Km).
For tg = nm, we define supp(p, nm, 4k) := S4k(p) and supp(p, nm, (4k, i)) :=
supp(p, nm, 4k) for all i ∈ J4k.
We define supp(p, L) to be the union of all appropriate supp(p, tg, K) with K ≤ L,
and supp(p) to be the union of all supp(p, L) with L ∈ heights.
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We immediately remark that we will instead work with a dense subset of Q:

Definition B4.3. We call a condition p ∈ Q modest if
(i) for each tg ∈ typegroups lim sup, supp(p, tg, `) = ∅ for all ` < trklgth(p),18
(ii) for each L ∈ heights, there is at most one index α ∈ A such that p(L, α) is

non-trivial, i. e. |p(L, α)| > 1,
(iii) the segments of p(ct) are such that for each segment L̄ = 〈L1, . . . , Lm〉 with

L1 = 4k + 3, for all α ∈ supp(p, ct, L̄) we have ‖p(α, L̄)‖ct,L1 ≥ k as well as
| supp(p, ct, L̄)| = | supp(p, ct, Lm)| < k, and

(iv) for each segment L̄ = 〈L1, . . . , Lm〉 of the frame of p(ct) (with L1 = 4k + 3)
and α ∈ Act such that p(α, L̄) is non-trivial, there is exactly one L∗ ∈ L̄ such
that p(α,L∗) is non-trivial, and furthermore ‖p(α, L̄)‖ct,L1 = k. Letting c =
F

nB
L1

k (k) (i. e. precisely the split norm necessary to achieve this ct norm), we
furthermore demand that each such p(α,L∗) is already minimal; in particular,
this means that there are exactly 2c many possibilities in p(α,L∗).

Lemma B4.4. The set of modest conditions is dense in Q; moreover, for any
p ∈ Q there is even a modest q ≤ p with the same support.

Proof. Given an arbitrary p ∈ Q, we have to find a modest q ≤ p. We first pick
arbitrary singletons in each non-trivial creature below trklgth(p) to fulfil (i). Then,
we define q piecewise for each tg ∈ typegroups:

• For tg = nm, we have already defined the compound creatures such that
they fulfil (ii).

• For tg ∈ typegroupsmodular, finding q(tg) is just a matter of diagonalisation
and bookkeeping (picking arbitrary singletons within creatures as required
to fulfil (ii)).

• To achieve (iii), we coarsen the frame to encompass sufficiently large p(α,K)
into the creature segments and/or strengthen to arbitrary singletons when-
ever necessary (plus bookkeeping, again).

• Property (iv) is fulfilled by choosing, for each α ∈ supp(p, L̄), a single L∗ ∈ L̄
such that ‖p(α,L∗)‖split is large enough, shrinking p(α,L∗) such that it is
minimal and replacing all other p(α,L′) by arbitrary singletons; by definition,
all of this leaves the ct norms of such segments at least k and the resulting
q(ct) is still a valid (part of a) condition.

It is clear that supp(q) = supp(p).

Note that for any modest p ∈ Q, property (ii) immediately implies that supp(p, L)
is finite for any L ∈ heights.
We will extend the meaning of the word “trunk” to refer to the entire single possi-
bility of a modest condition p below the trunk length of p.
We will only ever work with modest conditions; whenever we speak of conditions,
the qualifier “modest” is implied. Though the results of some constructions may
18 In the preceding section (in Definition B3.10), trklgth(p) only took the nm part of p into account,

but now we want to make sure that p has no non-trivial creatures below trklgth(p) at all.
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not be modest conditions themselves, we can find stronger conditions with the
same support by the preceding lemma; and moreover, if a condition is already
partially modest (i. e. modest up to a certain height), we can keep that part when
making it modest.
We remark that modesty properties (iii) and (iv) roughly correspond to the concept
of “Sacks pruning” in [FGKS17, subsection 3.4] and [FGKS17, Lemma 2.3.6].
Modesty properties (ii)–(iv) are of vital importance to the entire construction.
Without them, it would not be possible to define the sequences nP

<L, n
B
L , n

S
L, n

R
<L

in a sensible manner, which we are now finally able to do. Before we do so, we
have to introduce the “maximal strengthenings of a condition p below a height L”
mentioned in the introductory remarks.

Definition B4.5. Given a condition p ∈ Q, we call a height L relevant if either
• L ∈ heights ct is the minimum L1 of a segment L̄ = 〈L1, . . . , Lm〉 of the frame

of p(ct); or
• L ∈ heightsr heights ct and there is an α ∈ supp(p) such that p(α,L) is

non-trivial, i. e. such that |p(α,L)| > 1.
We will use this terminology to simplify the structure of proofs in which we iterate
over the heights and modify a condition at each height; naturally, we will only
need to do this at the relevant heights, and in such a way that we treat the ct part
of the condition at the lower boundaries of segments of the frame.

Definition B4.6. We define the possibilities of a condition p ∈ Q up to some
height L as follows:

• For each sensible choice of α ∈ supp(p) and K ∈ heights (i. e. such that
tg(α) = tg(K)), let poss(p, α,K) := p(α,K).

• For each α ∈ supp(p)r Act and each L ∈ heights, let

poss(p, α,<L) :=
∏
K<L

tg(K)=tg(α)6=ct

poss(p, α,K).

• For each α ∈ supp(p) ∩ Act and each segment L̄ = 〈L1, . . . , Lm〉 of the frame
of p(ct), let

poss(p, α,<L1) :=
∏

K<L1

poss(p, α,K),

poss(p, α,<Li) :=
∏

K≤Lm

poss(p, α,K)

for all i ∈ {2, . . . ,m}. This means that when talking about possibilities of
p(ct) below some Li, we have to take the whole segment of the frame into
account unless we are at the lower boundary L1 of such a segment.

• (For easier notation, consider poss(p, α,<L) for L ∈ heightsr heights ct and
α ∈ supp(p) ∩ Act to mean poss(p, α,<L∗) with L∗ := min{K ∈ heights ct |
L < K}.)

47



Chapter B: Modular Framework for Creature Forcing

• For each L ∈ heights, let

poss(p,<L) :=
∏

α∈supp(p)rAct

poss(p, α,<L)×
∏

α∈supp(p)∩Act

poss(p, α,<L).

Note that while technically, the last product above is infinite, thanks to modesty
only finitely (even boundedly) many of the factors will be non-trivial. The fact
that for each p and L iterating over all η ∈ poss(p,<L) only takes boundedly many
steps (with the bound depending only on L) will be very important in many of
the following proofs. Also note that for L ≤ trklgth(p), | poss(p,<L)| = 1.19

Definition B4.7. Given p ∈ Q, L ∈ heights and η ∈ poss(p,<L), we define
p ∧ η =: q as the condition resulting from replacing all creatures below L as well
as those above L in the current segment of the frame of p(ct) with the singletons
from η. Formally, q is defined by

• q(α,K) := {η(α,K)} for all K < L and q(α,M) := p(α,K) for all K ≥ L
and all α ∈ supp(p)r Act, and

• q(α,K) := {η(α,K)} for all K < L∗ and q(α,K) := p(α,K) for all K ≥
L∗ and all α ∈ supp(p) ∩ Act, where L∗ := min{M ∈ heights ct | M ≥
L and M is the minimum of a segment of p(ct)}.

In some proofs, we will use the notation p<L or q≥L to denote partial initial or
terminal (pseudo-)conditions in the obvious sense of p<L := 〈p(K) | K < L〉 and
q≥L := 〈q(M) | M ≥ L〉. We will denote the join of such partial conditions by
p<L_q≥L; we will at those times take special care to make sure what we are writing
down actually ends up being a proper condition.

We will now finally show that the definition of the sequences nP
<L, n

B
L , n

S
L, n

R
<L is

possible in a consistent way. What we are actually doing is the following: We
define the base sets in each level/height L of the forcing posets Qt, t ∈ types lim sup,
respectively in each sublevel/height L of Qnm, κnm iteratively by induction on the
levels and also define the four sequences for that L in that step, assuming we
already know the four sequences for K < L. The order of definitions is as follows:

1. nP
<L,

2. nR
<L,

3. nB
L ,

4. the section of the forcing poset for the height L, and finally
5. nS

L.

Definition B4.8. Recall that L− and L+ denote the predecessor and successor of
a height L, respectively. We define the sequences nP

<L, n
R
<L, n

B
L , n

S
L as follows:

nP
<L: We recall that nP

<L is meant to be an upper bound on the number of possi-
bilities below the height L, hence nP

<L− · nS
L− < nP

<L must hold. (Note that as an
19 A further note: While as in [FGKS17], the “shapes” of possibilities are not really “nice”, this is less

of a conceptual problem in this chapter, as due to the compartmentalisation of the creatures to
different heights depending on the factor they belong to, possibilities are by necessity tiered; the
fact that the ct possibilities may be further “down” in the heights structure is less of a conceptual
stretch now.
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immediate consequence, we also get
∏

K<L n
S
K < nP

<L.) For the initial step, simply
let nP

<(0,0) := 1. (The interpretation of this number still makes sense, as there is
exactly one trivial – empty – possibility “below the first height”.) For any height
L not in heights ct, let nP

<L+ be the minimal integer fulfilling the inequality

nP
<L · nS

L < nP
<L+.

For a height L = 4k + 3 ∈ heights ct, let nP
<L+ be the minimal integer fulfilling the

inequality

nP
<L · (nS

L)
k−1 < nP

<L+.

That this is indeed a sufficient bound even for the ct case is a result of modesty
properties (iii) and (iv) – by shrinking the ct creatures down to a certain prescribed
minimal size, we are certain to be bounded by 2IL1 , even if the actual non-trivial
creature turns out to be far above L; and there are at most k − 1 many of those
creatures in the segment starting at L = 4k + 3.20

nR
<L: The definition of this sequence coding the rapidity of the reading depends

on the forcing factor. (Technically, both nP
<L and nR

<L only require information
about the previous height L−, but it makes more sense to define them both at the
beginning of the following height’s definitions.) For technical reasons, we require
nP
<L < nR

<L; apart from that, the definition’s motivations should be clear once the
concepts of rapid reading (Definition B6.1) respectively punctual reading (Def-
inition B10.12) have been introduced.
As a general requirement, for any L− ∈ heights we demand the following: Let
` := 4k (if L− = (4k, i)) or ` := L− (otherwise). We then require nR

<L to be at least
large enough that it fulfils the inequality

nP
<L < nR

<L <
2n

R
<L

`
.

(While this is not strictly necessary, it makes the proof of Lemma B7.7 slightly
nicer.) In most cases, this is easily fulfilled already, anyways, but in the case that
for any lower heights the subsequent definitions are smaller than would be required
by the above, we just pick nR

<L larger instead.
Depending on the specific typegroup,

• For L− ∈ heights nm: Let nR
<L := nP

<L + 2max IL−+1.
• For L− ∈ heights ∗n: Let nR

<L := nP
<L+2 ↗ (max IL−+2), where 2 ↗ x := 22

x.
• For L− ∈ heights slalom: In Lemma B10.13, we will define a function z ∈ ωω

in which the value of z(k) only depends on the value of nS
4k+2; we let nR

<L :=
nP
<L + z(k).

• For L− ∈ heights ct: We do not have any additional demands for this part of
the sequence.

20 In many cases (whenever the segments of the frame are not trivially short), we are actually way
too generous here, but that does not matter.
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nB
L : This is a straightforward definition; let

nB
L := (nB

L−)n
P
<L·n

R
<L

(with nB
(0,0)− := 2).21

Note that having defined these three numbers, all of the definitions of the various
forcing factors can be made, though see the next paragraph regarding the slalom
forcing posets.
nS

L: The definition of this sequence also depends on the specific forcing factor. We
recall that this sequence is meant to be an upper bound on the size of the base
sets at this height, i. e. the number of possibilities at this height.22

• For L ∈ heights nm: The base sets for this factor is 2IL for some IL, so let
nS
L := 2|IL|.

• For L ∈ heights ∗n: For both cn and nn, the base set for these factors is the
set of all subsets of 2IL of relative size 1 − 2−nB

L ; there are of course equally
many of relative size 2−nB

L , so let

nS
L :=

(
2|IL|

2|IL|−nB
L

)
.

• For L ∈ heights slalom: This is a bit different from the other cases. While for
the other factors, the bound on the size is an a posteriori observation, for
the slalom forcing factor, we actually define the bound nS

L on the size a priori
and then (in Lemma B10.10) define the congenial sequence of function pairs
〈fξ, gξ | ξ < ω1〉 such that they fit between nB

L and nS
L. For L = 4k + 2, we

hence pick

nS
L := (nB

L )
e3

2k+1

k

(for some increasing sequence ek strictly greater than nB
L , also defined in

Lemma B10.10).
• For L ∈ heights ct: The base set for this factor is also 2IL for some IL (though

with very different requirements on the size of IL), so let nS
L := 2|IL|.

We immediately see that nP
<L and nS

L work as intended:

Lemma B4.9. For all p ∈ Q and L ∈ heights, | poss(p,<L)| ≤ nP
<L.

Proof. For L = (0, 0), poss(p,<(0, 0)) is trivial and nP
<(0,0) = 1. The rest follows by

induction from nP
<L·nS

L < nP
<L+ for L ∈ heightsr heights ct and nP

<L·(nS
L)

k−1 < nP
<L+

together with modesty for L = 4k + 3 ∈ heights ct.

21 Note that this definition implies (nB
L−)n

P
<L < nB

L as well as nB
L− · 2n

S
L−+1 < nB

L and 2n
P
<L·nR

<L ≤
(nB

L−)n
P
<L·nR

<L .
22 Also note that the definitions of the intervals IL are such that nB

L < nS
L holds for all L. However,

in case the reader prefers not to verify this fact, she can just assume that the IL are chosen even
larger such that this inequality holds.
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(The function of nB
L and nR

<L will be shown in detail in section B5 and section B6,
respectively.)
Having finally defined all parameters required for the forcing poset, we will now
first remark on a few simple properties.

Fact B4.10. Since Q is a product, a condition q is stronger than a condition
p if q(tg) is stronger than p(tg) for each tg ∈ typegroups; moreover, for each
t ∈ types modular (i. e. all but ct and nm), this statement can be broken down
further to “q(α) is stronger than p(α) for each α ∈ At ∩ supp(p)”.
To briefly summarise, “q ≤ p” hence means that

• trklgth(q) ≥ trklgth(p) (the trunk may grow),
• supp(q) ⊇ supp(p) (the support may grow),
• supp(q, nm, 4k) ⊇ supp(p, nm, 4k) for each k < ω (above the trunk, the

supports do not shrink for the lim inf factor),23
• the frame24 of q(ct) is coarser than the frame of p(ct),
• for each α ∈ supp(p) and each L ∈ heights with tg(α) = tg(L), q(α,L) ⊆
p(α,L) (strengthening the creatures on the old support), and

• for each k < ω, d(q)(4k) ≥ d(p)(4k) (the halving parameters do not decrease).

Lemma B4.11. For any given countable set of indices B ⊆ A, there is a condition
p such that supp(p) = B. In particular, given any α ∈ A, there is a condition p
such that supp(p) = {α}.

Proof. We prove the simple case first: Given any α ∈ A, define p by letting p(L)
be equal to the full base set for each L ∈ heights tg(α). (If α ∈ Anm, let the halving
parameter sequence be equal to the constant 0 sequence. If α ∈ Act, let the frame
be the trivial partition of heights ct into singleton segments.)
Given an arbitrary countable B ⊆ A (without loss of generality such that B
has infinite intersection with At for each t ∈ types) instead, we first enumerate
Btg = Atg ∩B for each tg ∈ typegroups lim sup as Btg =: {αx, α4+x, α2·4+x, α3·4+x, . . .}
(with the x depending on the tg, in such a way that the 4k + x correspond to
the appropriate levels for this tg). Also enumerate Bnm = Anm ∩ B as Bnm =:
{β1, β2, . . .}.
We then define the condition p as follows:

• For tg ∈ typegroups lim sup, we first let p∗(αi, 4k + x) (again, x corresponding
to tg) be equal to the full base sets for each i ≥ 4k+x and arbitrary singletons
below that level. Let the frame of p∗(ct) be the trivial partition of heights ct
into singleton segments.

23 In the forcing construction of [FGKS17], this was true in a more general sense, but we have
restricted the concept of the trunk to the lim inf factor and defined the support at a height
slightly differently. These changes mean that in fact, the support at a certain height may shrink
in the lim sup factors in a stronger condition, because the non-trivial creatures witnessing that a
certain index α was already in the support by height L may have been eliminated when extending
the trunk, so α will then only enter the support at a later height. This conceptual change does
not cause any problems, however.

24 Recall Definition B3.8 for the definition of frames.
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– Now use some appropriate diagonalisation of Btg to thin out p∗(tg) in
such a way that in the resulting p(tg) fulfils modesty25 (which only
requires reducing creatures to singletons or to order-isomorphic copies
of 2≤k) while still fulfilling the requirements on the lim sup of the norms.

– (It follows from the definitions of the forcing factors that the p∗(tg)
fulfil the lim sup conditions for each tg ∈ typegroups lim sup, and so do
the p(tg) after diagonalisation.)

• For nm, we let d(p)(4k) = 0 for all k < ω and pick some increasing se-
quence s4k (with s0 = 1) such that limk→∞

s4k
4k+1

= 0. We will let S4k(p) :=

{β1, . . . , βs4k}, so limk→∞
|S4k(p)|
4k+1

= 0 is fulfilled. Note that without loss of
generality |S4k(p)| = s4k will be much smaller than k + 1.
– We will define p such that p(nm, 4k) has at least norm k. For each α ∈
S4k(p), pick a set Xα ⊆ J4k of size 3(4k+1)·k (which means µ4k(X) = k)
disjoint from Xα′ for each α′ ∈ S4k with α 6= α′. We let p(α, (4k, j)) be
equal to the full base set for each j ∈ Xα and some arbitrary singletons
elsewhere. The full base sets have cell norms much larger than k, so the
whole compound creature p(nm, 4k) has norm k and the lim inf condition
is fulfilled.

– The choice of these Xα is possible because we only require

s4k · 3(4k+1)·k < (k + 1) · 3(4k+1)·k

many different sublevels to choose from to do that, and by our definition,
J4k = 3(4k+1)·2

4k·nP
<(4k,0) is much larger than that.

Before proceeding, we recall the following combinatorial result from [FGKS17,
Lemma 2.2.2].

Lemma B4.12. Given ` ≤ k and a family 〈Xi | 1 ≤ i ≤ `〉 of subsets of J4k, there
is a family 〈X∗

i | 1 ≤ i ≤ `〉 of pairwise disjoint sets such that for each 1 ≤ i ≤ `,
X∗

i ⊆ Xi and µ4k(X
∗
i ) ≥ µ4k(Xi)− 1.

Lemma B4.13. Given two conditions p, q ∈ Q with disjoint supports, identical
(or compatible) frames and identical sequences of halving parameters, there is a
condition r stronger than both.

Proof. Since |S4k(p)|
4k+1

and |S4k(q)|
4k+1

must both converge to 0, there is some k0 such that
|S4k(p)|
4k+1

≤ 1
2
and |S4k(q)|

4k+1
≤ 1

2
for all k ≥ k0. Define p′ ≤ p and q′ ≤ q as the conditions

resulting from extending the trunk to 4k0 (and choosing arbitrary singletons within
all non-trivial creatures below).
We first define the pseudo-condition r∗ as simply the union of p′ and q′ together
with the finest frame coarser than the frames of p(ct) and q(ct). Of course, r∗
might not fulfil modesty. For each tg ∈ typegroups lim sup, we use diagonalisation to
thin out r∗(tg) and pick appropriately small subcreatures in r∗(ct) in such a way
that the resulting r(tg) fulfils modesty.
25 Recall Definition B4.3 for the definition of modesty.
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As for each α ∈ supp(r∗) ∩Act, the minimal elements of the segments – which are
the reference points for the norms – can only have shrunk, it follows that r∗(ct) is
indeed a valid condition.
For r∗(nm), we need to do a bit more. Assume without loss of generality that for
all k ≥ k0, ‖p′(nm, 4k)‖nm,4k ≥ 2 and ‖q′(nm, 4k)‖nm,4k ≥ 2. We do the following
procedure for each k ≥ k0:

• Let S4k(p
′) =: {α1, . . . , αc} and S4k(q

′) =: {β1, . . . , βd} and note that c, d ≤ 2k
by our choice of k0.

• Let np := ‖p0(nm, 4k)‖nm,4k, nq := ‖q0(nm, 4k)‖nm,4k and n := min(np, nq).
For each 1 ≤ i ≤ c and 1 ≤ j ≤ d, there must be sets Ai ⊆ J4k respectively
Bj ⊆ J4k such that they witness the stacked creature norm of p′(αi, 4k)
respectively q′(βj, 4k) being at least n. We remark that since n is at least 2,
so are µ4k(Ai) and µ4k(Bj), and hence |Ai| and |Bj| are at least 32·(4k+1).

• By applying Lemma B4.12 to the family 〈A1, . . . , Ac, B1, . . . , Bd〉, we get a
family 〈A∗

1, . . . , A
∗
c , B

∗
1 , . . . , B

∗
d〉 of pairwise disjoint subsets of J4k such that

for each 1 ≤ i ≤ c and each 1 ≤ j ≤ d,
– µ4k(A

∗
i ) ≥ n− 1 and µ4k(B

∗
j ) ≥ n− 1,

– for each a ∈ A∗
i , ‖p′(αi, (4k, a))‖cell(4k,a) ≥ n, and

– for each b ∈ B∗
j , ‖q′(βj, (4k, b))‖cell(4k,b) ≥ n.

Define r(nm, 4k) by keeping the creatures in these sublevel index sets and
replacing the others by arbitrary singletons.

• It follows that ‖r(nm, 4k)‖nm,4k ≥ n− 1.
Hence the resulting r is indeed a condition, and r is stronger than both p and q
by construction.
Corollary B4.14. Given a condition p ∈ Q and any α ∈ Ar supp(p), there is a
q ≤ p with supp(q) = supp(p) ∪ {α}.

Proof. By Lemma B4.11, there is a condition pα with support {α}. If α ∈ Anm, we
replace pα by the condition with identical creatures, but the halving parameters
of p instead; since p is a condition, the halving parameters must be small enough
such that lim infk→∞ ‖p(nm, 4k)‖nm,4k = ∞, and hence the same must hold for pα
with the same halving parameters. Then we apply Lemma B4.13 to p and pα; the
resulting q is as required.

We can now define the generic sequences added by the forcing.
Definition B4.15. Let G be a Q-generic filter. For each tg ∈ typegroups and
each α ∈ At ⊆ Atg, let ẏα be the name for

{(L, z) | L ∈ heights tg,∃ p ∈ G : trklgth(p) > L ∧ p(α,L) = {z}}.

For tg 6= nm, there is the equivalent, clearer representation (with x the appropriate
element of {1, 2, 3})

{(k, z) | 4k + x ∈ heights tg,∃ p ∈ G : trklgth(p) > 4k + x ∧ p(α, 4k + x) = {z}}.

We write ẏ for 〈ẏα | α ∈ A〉. We remark that depending on the specific tg, the z
in the definitions above are entirely different kinds of objects.
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We note a few simple facts about generics and possibilities.

Fact B4.16. Let p ∈ Q and L ∈ heights.
• For η ∈ poss(p,<L), p ∧ η ≤ p.26
• p ∧ η and p ∧ η′ are incompatible if η, η′ ∈ poss(p,<L) are distinct.
• p ∧ η forces that ẏ extends η, i. e. that ẏα extends η(α) for all α ∈ supp(p).

In particular, p forces that ẏ extends p< trklgth(p).
• η ∈ poss(p,<L) iff p does not force that η is incompatible with ẏ.
• Q forces that ẏ is defined everywhere. (This follows from Corollary B4.14.)

Lemma B4.17. Given q ≤ p and η ∈ poss(q,<L), there is a unique ϑ ∈
poss(p,<L) such that q ∧ η ≤ p ∧ ϑ.

Proof. Recall Definition B4.6: Since the possibilities are structurally somewhat
more complicated for ct, we need to take that into account when trimming η to
get ϑ.
Set L∗ := min{M ∈ heights ct | M ≥ L,M is the minimum of a segment of p(ct)}.
Let ϑ�ArAct := η�supp(p)rAct and ϑ�Act := η�supp(p)∩Act(<L

∗) (this restriction is neces-
sary for technical reasons, because p(ct) in general could have a finer frame than
q(ct)). Uniqueness follows from the incompatibility of p∧ ϑ and p∧ ϑ′ for distinct
ϑ, ϑ′ ∈ poss(p,<L).

The first important fact about Q we will prove is the following:

Lemma B4.18. Assuming CH, Q is ℵ2-cc.

Proof. Assume that Z := 〈pi | i < ω2〉 is a family of conditions. Using the ∆-
system lemma for families of countable sets and CH, we can find ∆ ⊆ A and thin
out Z to a subset of the same size such that for any distinct p, q ∈ Z,

• ∆ = supp(p) ∩ supp(q),
• for all k < ω, d(p)(4k) = d(q)(4k),
• the frames of p(ct) and q(ct) are identical, and
• p and q are identical on ∆, i. e. for all α ∈ ∆ and all L ∈ heights tg(α),
p(α,L) = q(α,L).

By Lemma B4.13 (applied to p and q�Ar∆), there is some r ∈ Q stronger than
both p and q, hence Z is not an antichain.

Lemma B4.19. Assume that B ⊆ A and either Anm ⊆ B or Anm ∩ B = ∅. Let
QB ⊆ Q consist of all p ∈ Q with supp(p) ⊆ B. Then QB is a complete subforcing
poset of Q. (QB has the same general properties as Q, as it is essentially the same
forcing poset, just with a smaller index set.)
If we additionally assume that Act ⊆ B or Act ∩ B = ∅, then it is clear from the
product structure of Q = QB ×QArB that QB is a complete subforcing poset of Q.
26 Recall Definition B4.7 for the definition of p ∧ η.
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Proof. It is clear that the “stronger” relation and incompatibility work as required
for a complete embedding. We have to show that given q ∈ Q, there is some
π(q) =: p ∈ QB such that any p′ ∈ QB with p′ ≤ p is compatible with q in Q.
Let π : Q → QB be the projection mapping each q ∈ Q to π(q) := q�(supp(p)∩B).
Let p := π(q) and fix an arbitrary p′ ∈ QB stronger than p. Let p∗ := p�ArB and
apply Lemma B4.13 to p′ and p∗ (keeping in mind that their frames are necessarily
compatible, in case that is relevant) to get an r ∈ Q stronger than p′ and q.

B5 Bigness

One key concept for many of the following proofs is the fact that by our construc-
tion, creatures at height L are much, much bigger than creatures at height L−

and much, much smaller than creatures at height L+.27 The exact nature of this
size difference is encoded in the sequence nB

L . While this concept is referred to as
completeness in the older [GS93], we will be using the modern and more standard
terminology of bigness from [FGKS17], while unifying the different concepts and
generalising them even further in Definition B5.4.

Definition B5.1. Fix positive integers c and d.
(i) We say a non-empty set C and a norm

‖ · ‖ : (P(C)r {∅}) → R≥0

on the subsets of C are c-big (synonymously, have c-bigness) if the following
holds: For each non-empty X ⊆ C and each colouring χ : X → c of X,
there is a non-empty Y ⊆ X such that χ�Y is constant and ‖Y ‖ ≥ ‖X‖ − 1.
Equivalently, (C, ‖·‖) is c-big if for each non-emptyX ⊆ C and each partition
X = X1∪X2∪. . .∪Xc, there is some i ∈ {1, 2, . . . , c} such that ‖Xi‖ ≥ ‖X‖−1.

(ii) We say (C, ‖·‖) is (c, d)-big (synonymously, has (c, d)-bigness) if the following
holds: For each non-empty X ⊆ C and each colouring χ : X → c of X,
there is a non-empty Y ⊆ X such that | ranχ�Y | ≤ d and ‖Y ‖ ≥ ‖X‖ − 1.
Equivalently, (C, ‖ · ‖) is (c, d)-big if for each non-empty X ⊆ C and each
partition X = X1 ∪ X2 ∪ . . . ∪ Xc, there is some d-tuple {i1, i2, . . . , id} ⊆
{1, 2, . . . , c} such that ‖Xi1 ∪Xi2 ∪ . . . ∪Xid‖ ≥ ‖X‖ − 1.28

(iii) We say (C, ‖ · ‖) is strongly c-big (synonymously, has strong c-bigness) if in
the above, even ‖Y ‖ ≥ ‖X‖ − 1/c (respectively ‖Xi‖ ≥ ‖X‖ − 1/c) holds.

Since the colouring and the partition formulations of the properties above are
evidently equivalent, we will use whichever is more suited for that particular proof.

Fact B5.2. A few simple facts about bigness:
• If (C, ‖·‖) has (strong) c-bigness, it also has (strong) c′-bigness for any c′ ≤ c.

27 Recall that L− and L+ denote the predecessor and successor of a height L, respectively.
28 This partition formulation of (c, d)-bigness is precisely the definition of (c, d)-completeness from

[GS93, Definition 2.2].
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• A simple example of a norm with c-bigness is logc | · |.
• Modifying the norm to be logc |·|/c gives us strong c-bigness.
• An example of a (c, d)-big norm is logc/d | · |.

The first fact can be generalised as follows:

Lemma B5.3. If c/d ≤ b and ‖ · ‖ is b-big, then ‖ · ‖ is also (c, d)-big.

Proof. Let X = X1 ∪ X2 ∪ . . . ∪ Xc; we have to find a d-tuple {i1, i2, . . . , id} ⊆
{1, 2, . . . , c} such that ‖Xi1 ∪ Xi2 ∪ . . . ∪ Xid‖ ≥ ‖X‖ − 1. Since c/d ≤ b, we have
c ≤ d · b. We regroup the partition of X as

X = (X1 ∪X2 ∪ . . . ∪Xb) ∪ (Xb+1 ∪ . . . ∪X2b) ∪ . . . ∪ (X(d−1)b+1 ∪ . . . ∪Xdb),

where Xk := ∅ for c < k ≤ d · b. Define Yj :=
⋃

1≤i≤dXib+j for 1 ≤ j ≤ b. Then

X = Y1 ∪ Y2 ∪ . . . ∪ Yb

and, since ‖ · ‖ is b-big, there is some j0 such that ‖Yj0‖ ≥ ‖X‖ − 1. Then
{j0, b+j0, 2b+j0, 3b+j0, . . . , (d−1)b+j0} is the d-tuple we had to provide. Possibly,
some of these indices are not even necessary – namely if they point to empty Xk;
in that case, pick arbitrary replacement indices pointing towards actually existing
sets.

Definition B5.4. We extend the definition of (c, d)-bigness and strong c-bigness
in the following way:
(i) We say (C, ‖ · ‖) is e-strongly c-big (synonymously, has e-strong c-bigness) if

Xi ⊆ X is even such that ‖Xi‖ ≥ ‖X‖ − 1/e.
(ii) We say (C, ‖ · ‖) is e-strongly (c, d)-big (synonymously, has e-strong (c, d)-

bigness) if the d-tuple is even such that ‖Xi1 ∪Xi2 ∪ . . . ∪Xid‖ ≥ ‖X‖ − 1/e.

(We omit the equivalent colouring formulations of the same definitions.)

Observation B5.5. Dividing a (c, d)-big or c-big norm by e yields an e-strongly
(c, d)-big or e-strongly b-big norm, respectively.
Note that if c/d ≤ b and ‖ · ‖ has e-strong b-bigness, using the same method as in
the preceding lemma gives us a d-tuple such that ‖Xi1∪Xi2∪ . . .∪Xid‖ ≥ ‖X‖−1/e
and hence even e-strong (c, d)-bigness.

We have defined the norms of the various forcing factors in such a way that they
have nB

L -bigness at height L:

Theorem B5.6. Recall the definitions of the norms in Definition B3.4 (for Qnn),
Definition B3.5 (for Qcn), Definition B3.3 (for Qslalom), Definition B3.8 (for Qct, κct)
and Definition B3.10 (for Qnm, κnm).
(i) For each t ∈ types modular and each L ∈ heights tg(t), (POSSt,L, ‖ · ‖t,L) has

nB
L -bigness. For t ∈ {nn, cn}, we even have strong nB

L -bigness. Letting
L := 4k + 2, for ξ ∈ types slalom, we even have nP

<4k+2-strong gξ(k)-bigness at
height 4k + 2.
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(ii) Given a condition p(ct) ∈ Qct, κct, for each segment K̄ := 〈K1, . . . , Km〉 of its
frame, (p(ct, K̄), ‖ · ‖ct,K1) has nB

K1
-bigness.

(iii) For each L ∈ heights nm, (POSSnm,L, ‖ · ‖cellL ) has strong nB
L -bigness.

Proof. For t = ξ ∈ types slalom, the norm is the exemplary norm with gξ((L−2)/4)-
bigness from Fact B5.2 divided by nP

<4k+2, so by Observation B5.5, we have nP
<4k+2-

strong gξ(k)-bigness, and since gξ((L− 2)/4) ≥ nB
L , we also have nB

L -bigness.
For t = nn, let X ⊆ POSSnn,L and fix a partition X = X1∪X2∪· · ·∪XnB

L
. Consider

‖Xi‖intersectL and let r be the maximal such intersect norm (letting i∗ be some such
index with ‖Xi∗‖intersectL = r); hence ‖Xi‖intersectL ≤ r for all i ∈ nB

L , witnessed by
sets Yi. Then Y :=

⋃
Yi witnesses that ‖X‖intersectL ≤ nB

L · r; hence

‖X‖nn,L ≤ log(nB
L · r)

nB
L lognB

L

≤
logmaxi<nB

L
‖Xi‖intersectL

nB
L lognB

L

+
1

nB
L

= ‖Xi∗‖nn,L +
1

nB
L

and hence i∗ is an index such that ‖Xi∗‖nn,L ≥ ‖X‖nn,L − 1/nB
L .

For t = cn, we first remark that

‖M‖cn,L =
log |M |

r · nB
L log 3nB

L

− s

for some positive r, s only depending on L. Given X ⊆ POSScn,L and a colouring
c : X → nB

L , there is some c-homogeneous Y ⊆ X with |Y | ≥ |X|/nB
L and hence

‖Y ‖cn,L ≥ log |X| − lognB
L

r · nB
L log 3nB

L

− s ≥ ‖X‖cn,L − lognB
L

r · nB
L log 3nB

L

≥ ‖X‖cn,L − 1

nB
L

.

For ct, the claim is a direct translation of [FGKS17, Lemma 2.3.6 (6)], since (letting
K1 =: 4k+3) modesty ensures that p(ct, K̄) will contain at most a (k−1)-tuple of
creature segments which are non-trivial (which correspond to the Sacks columns
of [FGKS17]), all of which have a norm of at least k.29

For nm, the cell norm is exactly the exemplary norm with strong nB
L -bigness from

Fact B5.2.

We remark that the nB
L thus precisely describe the (strong) bigness properties at

height L.
Corollary B5.7. Let p ∈ Q, α ∈ supp(p) r Act and let L ∈ heights tg(α) be a
relevant height. Then for each colouring c : p(α,L) → nB

L , there is a c-homogeneous
q(α,L) ⊆ p(α,L) such that ‖q(α,L)‖tg(α),L ≥ ‖p(α,L)‖tg(α),L − 1 for tg(α) 6= nm
and ‖q(α,L)‖cellL ≥ ‖p(α,L)‖cellL − 1 for tg(α) = nm.
The same holds for supp(p)∩Act: Let L̄ = 〈L1, . . . , Lm〉 be a segment of the frame
of p(ct) such that p(ct, L̄) is non-trivial. Then for each colouring c : p(ct, L̄) → nB

L1
,

there is a c-homogeneous q(ct, L̄) ⊆ p(α, L̄) such that
‖q(α, L̄)‖ct,L1 ≥ ‖p(α, L̄)‖ct,L1 − 1

for all α ∈ supp(p, ct, L̄).
29 The demand imposed on their norms in the definition of modesty is only necessary to be able to

apply the cited technical lemma without modifications.
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Note that using the fact that nB
L is big with respect to nP

<L and nR
<L, this can be iter-

ated downwards. (We will not use the following consideration directly, but a similar
one will come up later on.) First note that a colouring c : poss(p,≤L) → nR

<L can
be reinterpreted as a colouring d : p(α,L) → (nR

<L)
poss(p,<L). Since (nR

<L)
poss(p,<L) ≤

(nR
<L)

nP
L ≤ nB

L , we can use the preceding corollary to make the colouring indepen-
dent of the possibilities at height L. (For ct, keep in mind we have to treat tuples
of creature segments as units.) Iterating this downwards allows, for instance, the
following:

• Given a colouring c : poss(p,<L) → nR
<L′ for some relevant heights L′ < L,

we can strengthen p(αK , K) to q(αK , K) for all L′ ≤ K < L, decreasing the
corresponding norms by at most 1, such that the colouring c restricted to
poss(q,<L) only depends on poss(q,<L′). (The number of colours here limits
how far we can iterate this downwards.)

• In particular, if c : poss(p,<L) → 2 for some relevant height L, we can find
q ≤ p such that poss(q,<L) is c-homogeneous.

Finally, we will require one similar specific consequence of strong bigness:

Lemma B5.8. Let H be a finite subset of heightsr heights ct and for each L ∈ H,
assume we are given some type tL ∈ tg(L) and some CL ⊆ POSStL,L. Let K be
the minimum of H and F :

∏
L∈H CL → nB

K. Then there are DL ⊆ CL, with the
norm of DL decreasing by at most 1/nB

L when compared to CL, such that the value
of F is constant on

∏
L∈H DL.

Proof. The case |H| = 1 is trivial, so assume |H| ≥ 2 and letM be the maximum of
H. We construct DL by downwards induction on L ∈ H. Then F can be written
as a function from CM to (nB

K)
P , where P :=

∏
L∈H,L 6=M CL. Since (nB

K)
|P | ≤

(nB
K)

nP
<M ≤ nB

M , we can use strong nB
M -bigness to find DL.

Continue the downwards induction with H ′ := H r {M}.

B6 Continuous and Rapid Reading

We now prove the main properties required to show that Q is proper and ωω-
bounding.

Definition B6.1. Let p ∈ Q and let τ̇ be a Q-name for an ordinal. We say that
p decides τ̇ below the height L if p ∧ η decides τ̇ for each η ∈ poss(p,<L); in other
words, there is a function T : poss(p,<L) → Ord with p ∧ η 
 τ̇ = T (η) for each
η ∈ poss(p,<L).
We say that p essentially decides τ̇ if there is some height L such that p decides τ̇
below L. Let ṙ be a Q-name for a countable sequence of ordinals. We say that p
continuously reads ṙ if p essentially decides each ṙ(n).
Let ṡ be a Q-name for an element of 2ω. We say that p rapidly reads ṡ if for each
L ∈ heights, ṡ�nR

<L
is decided below L.
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For B ⊆ A, we say that p continuously reads ṙ only using indices in B if p
continuously reads ṙ and the value of T (η) depends only on η�B. Analogously,
we say that p continuously reads ṙ not using indices in B if p continuously reads
ṙ only using indices in A r B. (The same terminology will be used for “rapidly”
instead of “continuously”.)

Observation B6.2. The name “continuous reading” comes from the following
consideration: For a fixed condition p, the possibilities form an infinite tree Tp; the
set of branches [Tp] carries a natural topology. A condition p continuously reads
some ṙ iff there is a function f : Tp → Ord<ω in the ground model such that for
the natural (continuous) extension F : [Tp] → Ordω of f , p 
 ṙ = F (ẏ), where ẏ is
the generic branch in [Tp]. In our case, the tree is finitely splitting and hence Tp is
compact, so continuity and uniform continuity coincide.
Rapid reading then is equivalent to a kind of Lipschitz continuity. We remark
that the nR

<L describe “how rapidly” p reads ṡ, i. e. they can be interpreted as
corresponding to the Lipschitz constants.

Lemma B6.3. If p continuously (or rapidly) reads ṙ and q ≤ p, then q continuously
(or rapidly) reads ṙ. (The same holds if we add “only using indices in B” or “not
using indices in B”.)

Proof. This follows immediately from Lemma B4.17.

Lemma B6.4. If q ≤∗ p and p essentially decides τ̇ , then q also essentially decides
τ̇ .

Proof. Since q ≤∗ p, the frame of q must be coarser than the frame of p (because
if not, then we could strengthen the frame of q in a way incompatible with the
frame of p and get r ≤ q incompatible with p). p forces that τ̇ is decided below
some height L; let L∗ ≥ L be the minimum of the first segment of the frame of
q(ct) which is entirely above L. Clearly, p also forces that τ̇ is decided below L∗;
so for each η ∈ poss(p,<L∗), we have p ∧ η 
 τ̇ = t for some t ∈ Ord.
Since q ≤∗ p and since L∗ is the minimum of segments in the frames of both p
and q (which ensures that the possibilities of p(ct) and q(ct) below L∗ have the
same length), it is clear that poss(q�supp(p), <L∗) ⊆ poss(p,<L∗) (because if not,
then there would be an r ≤ q incompatible with p). Let ϑ ∈ poss(q,<L∗). There
is a unique η ∈ poss(q�supp(p), <L∗) ⊆ poss(p,<L∗) such that ϑ = η�supp(p). By
q ∧ ϑ ≤∗ p ∧ η it follows that q ∧ ϑ 
 τ̇ = t must also hold.

Lemma B6.5. In the ground model, let κ := max(ℵ0, |B|)ℵ0 for some B ⊆ A.
Then in the extension, there are at most κ many reals which are read continuously
only using indices in B; more formally, letting G be a Q-generic filter, there are
at most κ many reals r such that there is a p ∈ G and a name ṡ such that p
continuously reads ṡ only using indices in B and such that ṡ[G] = r.

Proof. The argument is a variation of the usual “nice names” consideration. Given
p continuously reading some ṡ, we can define the canonical name ṡ′ continuously
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Chapter B: Modular Framework for Creature Forcing

read by p′ := p�B such that p forces ṡ = ṡ′. (We can do this by the following
procedure: Let Ln be the height such that ṡ(n) is decided below Ln. For each
η ∈ poss(p,<Ln), we have p∧ η 
 ṡ(n) = xηn for some xηn. Define ṡ′(n) as the name
containing all pairs 〈x̌ηn, p ∧ η〉.)
Hence it suffices to prove that there are at most κmany names of reals continuously
read in this manner. There are at most κ many countable subsets of B and hence
at most κ many conditions p′ with supp(p′) ⊆ B, because

• there are countably many heights,
• for each such height L ∈ heights tg, we have at most countably many indices

in B ∩ Atg, and
• for each such index α, we have to choose one of finitely many creatures (very

often: singletons) to be p′(α,L).
Given any such p′, there are only 2ℵ0 many possible ways to continuously read a
real ṡ′ with respect to p′ (by picking the decision heights Ln and the values xηn for
each of finitely many η ∈ poss(p′, <Ln)).

We will now first prove that given a condition continuously reading some ṙ ∈ 2ω,
we can find a stronger condition rapidly reading ṙ, and only afterwards prove that
we can densely find conditions continuously reading any τ̇ ∈ Ordω. (This sequence
of proofs, the same as in [FGKS17], makes for an easier presentation.)

Theorem B6.6. Given p continuously reading ṙ ∈ 2ω, there is a q ≤ p rapidly
reading ṙ. (The same is true if we add “only using indices in B”.)

Proof. For each height L, we define:

Kdec(L) is the maximal height such that ṙ�nR
<Kdec(L)

is decided below L by p. (∗1)

The function Kdec is non-decreasing, and continuous reading already implies that
Kdec is unbounded. (If it were bounded by K, that would mean that for any
K ′ ≥ K, ṙ(nB

K′) were not essentially decided by p.) Kdec can, however, grow quite
slowly. (p rapidly reading ṙ translates to Kdec(L) ≥ L for all L.)
For all heights K ≤ L we define

ẋLK := ṙ�nR
<min(K,Kdec(L))

(which is, by definition, decided below L).

There are at most 2nR
<K many possible values for ẋLK , since nR

<min(K,Kdec(L))
≤ nR

<K .
In the following, we will only consider relevant heights. Recall that relevant heights
are those that are either in heights ct and the minimum of a segment of the frame
of p(ct), or are in heights tg for some tg 6= ct and are such that there is an αL ∈
supp(p) ∩ Atg with a non-trivial p(αL, L). For a relevant height L /∈ heights ct, we
will use αL to refer to the corresponding index.
Step 1: Fix a relevant L. We will choose, by downwards induction on all relevant
L′ ≤ L, objects CL

L′ (which will be either creatures CL
L′ ⊆ p(αL′ , L′) or tuples of

creature segments CL
L′ ⊆ p(ct, segm(L′))) and functions ψL

L′.
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B6 Continuous and Rapid Reading

Step 1a: To start the induction, for L′ = L we set CL
L := p(αL, L) respectively

CL
L := p(ct, segm(L)). We let ψL

L be the function with domain poss(p,<L) assigning
to each η ∈ poss(p,<L) the corresponding value of ẋLL. (This means that p ∧ η 

ẋLL = ψL

L(η) for each η ∈ poss(p,<L).)
Step 1b: We continue the induction on L′ and write C ′ := CL

L′ , ψ′ := ψL
L′ , ẋ′ := ẋLL′

for short.
Our plan is as follows:

• We will pick a creature C ′ stronger than p(αL′ , L′) respectively a tuple of
creature segments C ′ stronger than p(ct, L′) such that the corresponding
norm decreases by at most 1.

• ψ′ will be a function with domain poss(p,<L′) such that

modulo 〈CL
K | L′ ≤ K < L〉, each η ∈ poss(p,<L′) decides ẋ′ to be ψ′(η),

or, put differently, that p ∧ η forces ẋ′ = ψ′(η) if the generic ẏ is compatible
with CL

K for all non-trivial heights K with L′ ≤ K < L.30

We will define C ′, ψ′ as follows: Let L′′ be the smallest relevant height above L′. By
induction, we already have that ψ′′ := ψL

L′′ is a function with domain poss(p,<L′′)
such that modulo 〈CL

K | L′′ ≤ K < L〉, each η ∈ poss(p,<L′′) decides ẋ′′ := ẋLL′′ to
be ψ′′(η).
Let ψ′′

∗(η) be the restriction of ψ′′(η) to nR
<min(L′,Kdec(L)). This means that ψ′′

∗ maps
each η ∈ poss(p,<L′′) to a restriction of ẋ′′ – a potential value for ẋ′.
We can refactor ψ′′

∗ as a function ψ′′
∗ : X × Y → Z, where X := poss(p,<L′),

Y := p(αL′ , L′) respectively Y := p(ct, segm(L′)) and Z is the set of possible values
of ẋ′, which has at most size 2n

R
L′ . This implicitly defines a function from Y to

ZX ; with |ZX | ≤ 2n
P
L′ ·nR

L′ , we can by Corollary B5.7 use bigness at height L′ to find
C ′ ⊆ p(αL′ , L′) respectively C ′ ⊆ p(ct, segm(L′)) (with the norm decreasing by at
most 1) such that ψ′′

∗ does not depend on height L′. From this, we get a natural
definition of ψ′.
Step 2: We perform a downwards induction as in step 1 (always in the original
p) from each relevant height L, thus defining for each relevant K < L the crea-
tures/tuples of creature segments CL

K and a function ψL
K fulfilling

modulo 〈CL
K′ | K ≤ K ′ < L〉, each η ∈ poss(p,<K) decides ẋLK to be ψL

K(η). (∗2)

The corresponding norms of these creatures/tuples of creature segments decrease
by at most 1.
Step 3: For a givenK, there are only finitely many possibilities for both CL

K and ψL
K .

So by König’s Lemma there necessarily exists a sequence 〈C∗
K , ψ

∗
K | K relevant〉

such that

for each L, there is L∗ > L such that for all K ≤ L, 〈CL∗

K , ψL∗

K 〉 = 〈C∗
K , ψ

∗
K〉. (∗3)

30 We could also introduce a term referring to “p, but replacing all p(αK ,K) by CL
K” here, but for

notational simplicity, we eschew this.
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(These 〈C∗
K , ψ

∗
K | K relevant〉 thus form an infinite branch in the tree of all

〈CL
K , ψ

L
K〉.)

Step 4: To define q, we replace all creatures and tuples of creature segments of p by
C∗

K ⊆ p(αK , K) respectively C∗
K ⊆ p(ct, segm(K)). Thus q has the same support

as p, the same trunk, the same frame and the same halving parameters, and all
corresponding norms decrease by at most 1, hence q actually is a condition. We
now claim that q rapidly reads ṙ, i. e. we claim that each η ∈ poss(q,<K) decides
ṙ�nR

<K
.

Step 5: To show this, we fix K and pick a K ′ > K such that Kdec(K
′) ≥ K.

According to its definition Eq. (∗1), this means that ṙ�nR
<K

is decided below K ′.
Now pick L∗ > K ′ per Eq. (∗3) and note that per Eq. (∗2), ẋL

∗
K is decided below

K by each η ∈ poss(p,<K) to be ψL∗
K (η), modulo 〈CL∗

K′′ | K ≤ K ′′ < L∗〉. Since
Kdec(K

′) ≥ K and L∗ ≥ K ′ (from which Kdec(L
∗) ≥ Kdec(K

′) follows), we have
min(Kdec(L∗), K) = K and hence ẋL∗

K = ṙ�nR
<K

. As we had Kdec(K
′) ≥ K, ẋL∗

K is
already decided below K ′ by the original condition p. Hence, in “modulo 〈CL∗

K′′ |
K ≤ K ′′ < L∗〉”, we can actually disregard any K ′′ > K ′.
However, by Eq. (∗3) we know that q has as its creatures and tuples of creature
segments CL∗

L = C∗
L for all relevant L < K ′. Hence q forces that the generic ẏ be

compatible with CL∗
L for all non-trivial K ≤ L < K ′. From that, we immediately

have that ψL∗
K = ψ∗

K correctly computes ẋL∗
K = ṙ�nR

<K
modulo q, and hence q decides

ṙ�nR
<K

below K. As Step 5 holds for any K, q rapidly reads ṙ.

B7 Unhalving and More Continuous Reading

This section will contain proofs constructing a fusion sequence of conditions in Q.
While the lemmata and theorems could be formulated more generally, this would
not give any additional insight, as they are only of a technical character. Since
the structure of the possibilities in the ct factor is a bit unpleasant to work with,
we will anchor these fusion constructions at the easiest possible nm levels of a
condition, which are those which lie exactly between the maximal height of one
segment in the frame of the ct factor of the condition and the minimal height of
the frame segments immediately succeeding it.

Definition B7.1. Given a condition p ∈ Q, we call a lim inf level 4k (respectively
4k + 1 ∈ heights ∗n respectively 4k + 2 ∈ heights slalom) p-agreeable if the heights
4k − 1 and 4k + 3 in heights ct are such that 4k − 1 = max(segm(4k − 1)) and
4k + 3 = min(segm(4k + 3)).

Restricting our constructions to use these heights as the stepping stones makes the
possibilities easier to think about.
This section will also be the only time we actually use the halving parameters, in
the form of the following operation on conditions:
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B7 Unhalving and More Continuous Reading

Definition B7.2. Given a condition q ∈ Q and 4h < ω, define r := half(q,≥4h)
as the condition obtained by replacing the halving parameters d(q)(4k) of q by

d(r)(4k) := d∗(q)(4k)

:= d(q)(4k) +
min{‖q(α, 4k)‖stack4k | α ∈ supp(q, nm, 4k)} − d(q)(4k)

2

for all 4k ≥ 4h.

It is clear that for r := half(q,≥4h), the compound creature r(nm, 4k) is identical
to q(nm, 4k) for each 4k < 4h and that for 4k ≥ 4h, the norm of the compound
creature r(nm, 4k) has decreased by exactly 1/nP

<(4k,0)
compared to the norm of

q(nm, 4k) (respectively, has remained 0 in case 4h ≤ 4k < trklgth(q)).
The point of this is the following: Given q ∈ Q with relatively large nm norms
and r ≤ half(q,≥4h) such that some nm norms of r are rather small, we can find
an “unhalved” version s of r such that s ≤ q, s has relatively large nm norms
and s =∗ r. We will use this unhalving operation in the first part of the proof of
continuous reading.

Lemma B7.3. Fix M ∈ R and h < ω. Given q ∈ Q such that ‖q(nm, 4k)‖nm,4k ≥
M for all 4k ≥ 4h as well as r ≤ half(q,≥4h) such that trklgth(r) = 4h and
‖r(nm, 4k)‖nm,4k > 0 for all 4k ≥ 4h, there are s ∈ Q and h∗ > h such that
(i) s ≤ q,
(ii) trklgth(s) = 4h,
(iii) ‖s(nm, 4k)‖nm,4k ≥M for all 4k ≥ 4h∗,
(iv) s is identical to r above (4h∗, 0), which means: s(α,L) = r(α,L) for each

sensible choice of α ∈ supp(r) = supp(s) and L ∈ heights (and their halving
parameters and frames are identical above (4h∗, 0)),

(v) ‖s(nm, 4k)‖nm,4k ≥M − 1/nP
<(4k,0)

≥M − 1/nP
<(4h,0)

for all 4h ≤ 4k < 4h∗, and
(vi) poss(s,<(4h∗, 0)) = poss(r,<(4h∗, 0)).
Taken together, (iv) and (vi) imply s =∗ r and hence by Lemma B6.4, if r essen-
tially decides some τ̇ , then so does s.

Proof. Let h† ≥ h such that ‖r(nm, 4k)‖nm,4k > M for all 4k ≥ 4h†. Set h∗ := h†+1.
Define s to be identical to r except for the fact that for all 4h ≤ 4k < 4h∗, we replace

q

half(q,≥4h)

s r
=∗

Figure 9: The construction in Lemma B7.3.
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the halving parameters d(r)(4k) by d(q)(4k). (This means that for 4h ≤ 4k < 4h∗

we have d(s)(4k) = d(q)(4k).)
It is clear that (i)–(iv) and (vi) are true; it remains to show that (v) holds. Fix k
such that 4h ≤ 4k < 4h∗; we have to show that

‖s(nm, 4k)‖nm,4k =
log2

(
min{‖s(α, 4k)‖stack4k | α ∈ supp(s, nm, 4k)} − d(s)(4k)

)
nP
<(4k,0)

!

≥M − 1

nP
<(4k,0)

.

Recall the definition of d∗ in the preceding definition; as d∗(q)(4k) were the halv-
ing parameters of half(q,≥4h) and r ≤ half(q,≥4h), we know that d(r)(4k) ≥
d∗(q)(4k).
Since we assumed ‖r(nm, 4k)‖nm,4k > 0, we know that

0 <
log2

(
min{‖r(α, 4k)‖stack4k | α ∈ supp(r,nm, 4k)} − d(r)(4k)

)
nP
<(4k,0)

=
log2

(
min{‖s(α, 4k)‖stack4k | α ∈ supp(s, nm, 4k)} − d(r)(4k)

)
nP
<(4k,0)

Fixing any β ∈ supp(s, nm, 4k) = supp(r,nm, 4k), this shows

0 < log2
(
‖s(β, 4k)‖stack4k − d(r)(4k)

)
and thus

‖s(β, 4k)‖stack4k > d(r)(4k) ≥ d∗(q)(4k)

= d(q)(4k) +
min{‖q(α, 4k)‖stack4k | α ∈ supp(q, nm, 4k)} − d(q)(4k)

2

Hence (recalling d(q)(4k) = d(s)(4k))

‖s(β, 4k)‖stack4k − d(s)(4k) ≥ min{‖q(α, 4k)‖stack4k | α ∈ supp(q, nm, 4k)} − d(q)(4k)

2

for any α ∈ supp(s, nm, 4k) = supp(r,nm, 4k). Taking log2 and then dividing by
nP
<(4k,0) yields

log2
(
‖s(β, 4k)‖stack4k − d(s)(4k)

)
nP
<(4k,0)

≥ ‖q(nm, 4k)‖nm,4k −
1

nP
<(4k,0)

and consequently (since this holds for any β)

‖s(nm, 4k)‖nm,4k ≥ ‖q(nm, 4k)‖nm,4k −
1

nP
<(4k,0)

≥M − 1

nP
<(4k,0)

,

proving (v).
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To prove that we can densely find conditions continuously reading a given name,
we will first prove the following auxiliary lemma.

Lemma B7.4. Let τ̇ be an arbitrary Q-name and let p∗ ∈ Q and `∗ < ω and
M∗ ≥ 1 be such that 4`∗ is p∗-agreeable and ‖p∗(nm, 4k)‖nm,4k ≥ M∗ + 1 holds for
all 4k ≥ 4`∗. Then there is a condition q such that:

• q ≤ p∗,
• q essentially decides τ̇ ,
• below (4`∗, 0), q and p∗ are identical on supp(p∗), and any α ∈ supp(q) r

supp(p∗) only enter the support above (4`∗, 0) (as a consequence, 4`∗ also is
q-agreeable), and

• ‖q(nm, 4k)‖nm,4k ≥M∗ for all 4k ≥ 4`∗.

Proof. The proof consists of three parts.
Part 1: finding intermediate deciding conditions by applying the un-
halving lemma
Suppose we are given p ∈ Q, ` < ω and M ≥ 1 such that 4` is p-agreeable and
‖p(nm, 4k)‖nm,4k ≥M +1 for all 4k ≥ 4`. We construct an extension r(p, 4`,M) of
p with certain properties:
First, enumerate poss(p,<(4`, 0)) as (η1, . . . , ηm) and note that m ≤ nP

<(4`,0). Set-
ting p0 := q0 := p, we now inductively construct conditions p1 ≥ . . . ≥ pm and
auxiliary conditions q̃1, q1, . . . , q̃m, qm such that for each n < m, the following
properties hold:
(1) q̃n+1 is derived from pn by replacing everything below (4`, 0) (in supp(p))

with ηn+1.
• By (3) below, we will have trklgth(q̃n+1) = 4`.
• For n = 0, q̃1 is just p0 ∧ η1; but for n ≥ 1, ηn+1 will not actually be in

poss(pn, <4`), so we cannot formally use that notation.
• Note that in general, supp(pn) will be larger than supp(p), so we do

not replace everything below 4` with ηn+1, but only the part that is in
supp(p).

• We could also derive q̃n+1 from qn, since pn and qn only differ on the
part being replaced to get q̃n+1, anyway.

(2) qn+1 ≤ q̃n+1. (Note that, obviously, qn+1 6≤ qn, since their trunks are different
and the conditions are hence incompatible.)

(3) trklgth(qn+1) = 4`. (This means that by strengthening q̃n+1 to qn+1, we do
not increase the trunk lengths.)

(4) ‖qn+1(nm, 4k)‖nm,4k ≥M + 1− n+1/nP
<(4`,0)

for all 4k ≥ 4`.
(5) One of the following two cases holds:

• qn+1 essentially decides τ̇ .
• qn+1 = half(q̃n+1,≥4`)

More explicitly: If the “decision” case is possible under the side conditions
(2)–(4), then we use it (i. e. strengthen the condition to decide). If not, only
then do we halve – and thereby certainly satisfy (2)–(4).
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(6) We define pn+1 as follows: Below (4`, 0), pn+1 is identical to p on supp(p);
above (including) (4`, 0) as well as outside supp(p), pn+1 is identical to qn+1.
In detail:

• For all α ∈ supp(p), pn+1(α,L) := p(α,L) for all sensible L < (4`, 0).
• For all α ∈ supp(p), pn+1(α,L) := qn+1(α,L) for all L ≥ (4`, 0).
• For all β ∈ supp(q)r supp(p), pn+1(β) := qn+1(β).

(Note that as we required trklgth(qn+1) to remain 4`, any newly added indices
β can only start having non-trivial creatures starting with height (4`, 0) by
modesty.)

(7) pn+1 ≤ pn, so the 〈pn | n ∈ m+ 1〉 are a descending sequence of conditions.
Ultimately, we define r(p, 4`,M) := pm (the last of the pn constructed above).
r := r(p, 4`,M) fulfils r ≤ p and ‖r(nm, 4k)‖nm,4k ≥M for all 4k ≥ 4`. As r differs
from p only above (4`, 0), it is also clear that 4` is r-agreeable.
Furthermore, r has the following important decision property:

If η ∈ poss(r,<(4`, 0)) and if there is an s ≤ r ∧ η such that s essentially
decides τ̇ , trklgth(s) = 4` and ‖s(nm, 4k)‖nm,4k > 0 for all 4k ≥ 4`,
then r ∧ η already essentially decides τ̇ .

(∗4)

To prove Eq. (∗4), note the following: η canonically corresponds to some ηn+1 ∈
poss(p,<(4`, 0)), therefore s ≤ r ∧ η ≤ qn+1 ≤ q̃n+1. We thus only have to show
that qn+1 was constructed using the “decision” case. Assume, towards an indirect
proof, that this was not the case; so qn+1 came about by halving q̃n+1. Since s
is stronger than half(q̃n+1,≥4`), we can use Lemma B7.3 and unhalve s to obtain
some s′ ≤ q̃n+1 with large norm such that s′ =∗ s. This means we could have used
the “decision” case after all, which finishes this step of the proof.
Part 2: iterating the intermediate conditions to define q
Given p∗, `∗ and M∗ as in the lemma’s statement, we inductively construct con-
ditions pn and accompanying `n < ω for each n ≥ 0. Let p0 := p∗ and `0 := `∗.
Given pn and `n such that 4`n is pn-agreeable, define pn+1 and `n+1 as follows:

• Choose `n+1 > `n such that:
– 4`n+1 is pn-agreeable,
– ‖pn(nm, 4k)‖nm,4k ≥M∗ + n+ 1 for all 4k ≥ 4`n+1, and
– for each α ∈ supp(pn, (4`n, 0))r Anm of type t, there is a height L with

(`n, J4`n − 1) < L < (4`n+1, 0) such that ‖pn(α,L)‖t,L ≥M∗ + n+ 1.
• Set pn+1 := r(pn, 4`n+1,M

∗+n+1). (By the construction of r in the previous
part, it follows that 4`n+1 then also is pn+1-agreeable.)

Thus 〈pn | n < ω〉 is a descending sequence of conditions, which converges to
a condition q ∈ Q. To verify that q is indeed a condition, note the following:
By construction, we have ‖q(nm, 4k)‖nm,4k ≥ M∗ + n for all 4k ≥ 4`n+1. For all
other types t and all indices α ∈ supp(q) ∩ At, we have assured the existence of
a subsequence of creatures of strictly increasing norms of q(α), since below any
(4`n+1, 0), q is equal to pn+1 (and also to pn). Thus, q is indeed a condition. Clearly,
q ≤ p∗ also holds.
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In the next and final part, we will show that q essentially decides τ̇ (proving the
lemma). The following property will be central to the proof:

If η ∈ poss(q,<4(`m, 0)) for some m and if there is an r ≤ q ∧ η such that r
essentially decides τ̇ , trklgth(r) = 4`m and ‖r(nm, 4k)‖nm,4k > 0 for all
4k ≥ 4`m, then q ∧ η already essentially decides τ̇ .

(∗5)

To prove Eq. (∗5), note that η canonically corresponds to some ηn+1 which was al-
ready considered as a possible trunk when constructing the intermediate condition
pm := r(pm−1, 4`m,M

∗ +m), so we can use Eq. (∗4) to conclude Eq. (∗5).
Part 3: using bigness to thin out q and prove its essential decision
property
The final part of the proof is essentially a rerun of the proof of Theorem B6.6.
This is the main reason we proved rapid reading before continuous reading, as the
idea of the proof is easier to digest in the rather simpler Theorem B6.6, in our
opinion. The difference is that this time, we do not homogenise with respect to
the potential values for some names, but instead with respect to whether q ∧ η
essentially decides τ̇ or not.
Step 1: Fix a relevant height L > (4`0, 0). We will choose, by downwards induction
on all relevant L′ with (4`0, 0) ≤ L′ ≤ L, objects CL

L′ (again, either creatures
CL

L′ ⊆ q(αL′ , L′) or tuples of creature segments CL
L′ ⊆ q(ct, segm(L′))) and subsets

of possibilities BL
L′.

Step 1a: To start the induction, for L′ = L we set CL
L := q(αL, L) respectively

CL
L := q(ct, segm(L)). We let BL

L be the set of all η ∈ poss(q,<L) such that q ∧ η
essentially decides τ̇ .
Step 1b: We continue the induction downwards on the relevant heights L′ with
(4`0, 0) ≤ L′ < L. We construct CL

L′ and BL
L′ such that the following holds:

• CL
L′ is a strengthening of q(αL′ , L′) respectively q(ct, segm(L′)) such that the

corresponding norm decreases by at most 1.
• BL

L′ is a subset of poss(q,<L′) such that for each η ∈ BL
L′ and each x ∈ CL

L′ , we
have η_x ∈ BL

L′+ , and analogously for each η ∈ poss(q,<L′)r BL
L′ and each

x ∈ CL
L′ , we have η_x /∈ BL

L′+. (We will call this property “homogeneity”.)
Since we only concern ourselves with relevant heights, BL′+ might not be
explicitly defined by this process – if not, just take the smallest relevant
height L′′ above L′ and cut off the elements of BL

L′′ at height L′+ to get BL
L′+.

Just as in the case of the proof of rapid reading in Theorem B6.6, we can find such
objects using bigness:

• Define L′′ to be the smallest relevant height above L′.
• By induction, there is a function F mapping each η ∈ poss(q,<L′′) to
{∈BL

L′′ , /∈BL
L′′}.

• We thin out q(αL′ , L′) to CL
L′ , decreasing the norm by at most 1, such that

for each ν ∈ poss(q,<L′), each extension of ν compatible with CL
L′ has the

same F -value F ∗(ν).
• This in turn defines BL

L′.
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Step 2: We perform a downwards induction as in step 1 (always in the original q)
from each relevant height L above (4`0, 0). Given a relevant height K such that
(4`0, 0) ≤ K < L and η ∈ poss(q,<K), and given that q ∧ η essentially decides τ̇
and that η′ ∈ poss(q,<L) extends η, it is clear that q ∧ η′ also essentially decides
τ̇ . We thus have

if q ∧ η essentially decides τ̇ for η ∈ poss(q,<K), then ∀L > K : η ∈ BL
K . (∗6)

Step 3: We now show the converse, namely:

Whenever η ∈ BL
L′ for some relevant height L with L′ = (4`m, 0) ≤ L

(for some m), then q ∧ η essentially decides τ̇ .
(∗7)

To prove Eq. (∗7), derive a condition r from q by using η as the trunk and replacing
creatures respectively tuples of creature segments at relevant heights K (with
L′ ≤ K ≤ L) with CL

K . Now, since all η′ ∈ poss(r,<L) ⊆ poss(q,<L) are in
BL

L , all q ∧ η′ ≥∗ r ∧ η′ essentially decide τ̇ , and consequently, so does r. Noting
that ‖r(nm, 4k)‖nm,4k > 0 for all 4k ≥ 4`m, we can use Eq. (∗5) to get that q ∧ η
essentially decides τ̇ .
Hence, to show that q essentially decides τ̇ , by Eq. (∗7) it suffices to show that for
all η ∈ poss(q,<(4`0, 0)) there is a height L such that η ∈ BL

(4`0,0)
.

Step 4: As in Theorem B6.6, we choose an “infinite branch” 〈C∗
K , B

∗
K | K relevant〉.

(Recall that this means that for each height L0, there is some L > L0 such that,
for all K ≤ L0, (CL

K , B
L
K) = (C∗

K , B
∗
K).) By replacing the creatures and tuples of

creature segments of q at relevant heights K with C∗
K , we obtain a condition q∗.

Step 5: To show that q essentially decides τ̇ , we thus have to show (as noted in
Step 3) that η ∈ B∗

(4`0,0)
for all η ∈ poss(q,<(4`0, 0)) = poss(q∗, <(4`0, 0)).

Fix any such η. Find an r ≤ q∗∧η deciding τ̇ . Without loss of generality, for some
m, trklgth(r) = 4`m and ‖r(nm, 4k)‖nm,4k > 0 for all 4k ≥ 4`m. Let η′ > η be the
trunk of r restricted to supp(q, (4`m, 0)), which ensures η′ ∈ poss(q,<(4`m, 0)) and
r ≤ q ∧ η′. By Eq. (∗5), q ∧ η′ already essentially decides τ̇ .
Now pick some relevant L > (4`m, 0) such that (CL

K , B
L
K) = (C∗

K , B
∗
K) for all

relevant K ≤ (4`m, 0). According to Eq. (∗6), η′ ∈ B∗
K and by homogeneity

η ∈ B∗
(4`0,0)

(since η′ is an extension of η). Hence by Eq. (∗7), q ∧ η also essentially
decides τ̇ , which completes the proof.

We can now use this lemma to prove continuous reading.

Theorem B7.5. Let ṙ be a Q-name for an element of Ordω in V and p ∈ Q.
Then there is a q ≤ p continuously reading ṙ.

Proof. We will iteratively construct conditions pn in a similar way as in Part 2 of
Lemma B7.4. Given p∗, `∗,M∗, τ̇ as in Lemma B7.4, we will denote the condition
resulting from the application of that lemma by s(p∗, `∗,M∗, τ̇).
Set p−1 := p. Let p0 := s(p−1, `−1, 1, ṙ(0)), where `−1 is the minimal ` such that
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• 4` is p−1-agreeable,
• p0 decides ṙ(0) below (4`, 0) (i.e., if L is the minimal height such that p0

decides ṙ(0) below L, then choose ` minimal such that L ≤ (4`, 0)),
• 4` ≥ trklgth(p−1), and
• ‖p−1(nm, 4k)‖nm,4k ≥ 2 for all 4k ≥ 4`.

Given pn and `n−1 such that 4`n−1 is pn-agreeable, pn essentially decides ṙ�{0,...,n}
and ‖pn(nm, 4k)‖nm,4k ≥ n+1 for all 4k ≥ 4`n−1 (which is evidently true for n = 0),
we define pn+1 and `n as follows:

• Let `n > `n−1 be the minimal ` such that:
– 4`n is pn-agreeable,
– pn decides ṙ(n) (or, equivalently, ṙ�{0,...,n}) below (4`, 0),
– ‖pn(nm, 4k)‖nm,4k ≥ n+ 2 for all 4k ≥ 4`, and
– for each α ∈ supp(pn, (4`n−1, 0))rAnm of type t, there is a height L with

(`n−1, J4`n−1 − 1) < L < (4`n, 0) such that ‖pn(α,L)‖t,L ≥ n.
• Let pn+1 := s(pn, `n, n+ 1, ṙ(k + 1)).

Lemma B7.4 ensures that pn+1 ≤ pn, that pn+1 essentially decides ṙ(n + 1) (and
thus ṙ�{0,...,n+1}) and that it fulfils ‖pn+1(nm, 4k)‖nm,4k ≥ n+ 1 for all 4k ≥ 4`n.
Similar to Part 2 of Lemma B7.4, 〈pn | n < ω〉 is a descending sequence of con-
ditions converging to a condition q ∈ Q. By construction, q continuously reads
ṙ.

Theorem B7.5 and Theorem B6.6 taken together show that for any p ∈ Q and
any Q-name ṙ for a real, there is a q ≤ p rapidly reading ṙ. Even more important
are the following consequences of the previous two sections, which prove the first,
easier parts of this chapter’s main theorem, Theorem B1.1:

Lemma B7.6. Q satisfies the finite version of Baumgartner’s axiom A and hence
is proper and ωω-bounding. Assuming CH in the ground model, Q moreover pre-
serves all cardinals and cofinalities.

Proof. Define the relations ≤n by ≤0 := ≤ and (for n ≥ 1) q ≤n p if there is some
` ≥ n such that 4` is p-agreeable, such that p and q are identical below (4`, 0) on
supp(p) and such that ‖q(nm, 4k)‖nm,4k > 0 for all 4k ≥ 4`. It is clear that any
sequence p0 ≥0 p1 ≥1 p2 ≥2 . . . has a limit; and by Lemma B7.4, for any p ∈ Q,
n < ω and τ̇ a Q-name for an ordinal, there is a q ≤n p essentially deciding τ̇ ,
which means that it forces τ̇ to have one of finitely many values.
Lemma B4.18 shows that Q preserves all cardinals and cofinalities ≥ ℵ2, and since
it is proper, it also preserves ℵ1. This proves the “moreover” part of Theorem B1.1.

Lemma B7.7. Assuming CH in the ground model, in the extension d = ℵ1 and
cov(N ) = ℵ1.

Proof. Since Q is ωω-bounding, it forces d to be ℵ1. To prove the second part of
the statement, we show that each new real is forced to be contained in a ground
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Chapter B: Modular Framework for Creature Forcing

model null set, so the ℵ1 many Borel null sets of the ground model cover the reals
(in other words, Q adds no random reals) and hence cov(N ) is forced to be ℵ1.
Let ṙ be a Q-name for a real and p ∈ Q. Let q ≤ p read ṙ rapidly, which means
that for each L ∈ heights, ṙ�nR

<L
is determined by η ∈ poss(q,<L); let Xq

L be the
set of possible values of ṙ�nR

<L
. For notational simplicity, consider only heights

` of the form (4k, 0), 4k + 1, 4k + 2, 4k + 3 and identify (4k, 0) with 4k. Then
it follows that |Xq

` | ≤ nP
<` < nR

<` < 2
nR
<`/`, where the last inequality holds by our

general requirement on the nR
<`. This means that the relative size of Xq

` is bounded
by 1/` and hence 〈Xq

` | ` < ω〉 can be used to define the ground model null set
Nq := {s ∈ 2ω | ∀ ` < ω : s�nR

`
∈ Xq

` }. By definition, q 
 ṙ ∈ Nq.

This proves (M1) of Theorem B1.1.

Lemma B7.8. In the extension, 2ℵ0 = κct.

Proof. If α, β ∈ Act are distinct, then the reals ẏα and ẏβ are forced to be different,
hence there are at least κct many reals in the extension. But every real in the
extension is read continuously by Theorem B7.5, hence by Lemma B6.5 there are
at most κℵ0

ct = κct many reals in the extension.

This proves (M6) of Theorem B1.1. It remains to prove points (M2)–(M5) of
Theorem B1.1, which we will do in the following sections.

B8 cof(N ) ≤ κcn

To show cof(N ) ≤ κcn, we prove that Q has the Laver property over the interme-
diate forcing poset

Qnon-ct :=

( ∏
t ∈ types modular

Qκt
t

)
×Qnm, κnm

(and hence also the Sacks property, since it is ωω-bounding). We will use the same
equivalent formulation as in [FGKS17, Lemmas 6.3.1–2], namely, we will prove:

Lemma B8.1. Given a condition p ∈ Q, a name ṙ ∈ 2ω and a function g : ω → ω
in V . Then there is a q ≤ p and a name Ṫ ⊆ 2<ω for a leafless tree such that:

• q reads Ṫ continuously not using any indices in Act,
• q 
 ṙ ∈ [Ṫ ], and
•
∣∣Ṫ �2g(n)

∣∣ < n+ 1 for all n < ω.

Proof. We first note that we can increase g without loss of generality, since if
g1(n) ≤ g2(n) for all n and Ṫ witnesses the lemma for g2, then the same Ṫ also
witnesses the lemma for g1.
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We can also assume without loss of generality that p is modest and rapidly reads
ṙ, i. e. poss(p,<L) determines ṙ�nR

<L
for all heights L. Considering this, we can find

a strictly increasing sequence of segment-initial heights Ln (i. e. min(segm(Ln)) =
Ln) such that g(n) = nR

<Ln
for all n < ω (increasing g when necessary).

Hence, each η ∈ poss(p,<Ln) defines a value Ṙn(η) for ṙ�g(n). We split each η
into two components, ηct and ηrmdr (i. e. the non-ct remainder). If we fix the ηct
component of η, then Ṙn(·, ηct) is a name not depending on the ct component, i. e.
not using any indices in Act. (More formally: Given an ηrmdr compatible with the
generic filter such that (ηrmdr, ηct) = η ∈ poss(p,<Ln), Ṙn(ηrmdr, ηct) evaluates to
Ṙn(η).)
We will now construct a stronger condition q and an increasing sequence 〈in |
n < ω〉 of natural numbers with the following properties: Given some in+1, let
in < m ≤ in+1 and η ∈ poss(q,<Lin+1). Such an η extends a unique ηm in the
set of possibilities poss(q,<Lm) cut off at height Lm, which we call poss†(q,<Lm).
Restricting this ηm to the ct component yields ηmct := ηm�Act.31 Then q ∧ η forces
the name Rm(·, ηmct ) to be evaluated to ṙ�g(m), and hence q forces ṙ�g(m) to be an
element of

Ṫm := {Rm(·, ηmct ) | η ∈ poss(q,<Lin+1)},

which is a name not using any indices in Act. It thus suffices to show that there
are few such ηmct , i. e. that letting Pm := {ηmct | η ∈ poss(q,<Lin+1)}, for all m < ω
we have |Pm| < m+ 1.
The condition q will have the same support as p. On supp(p) r Act, we define q
to be equal to p. Hence we now only have to define q on supp(p) ∩ Act. We will
inductively construct the sequence 〈in〉 and the new condition q(ct) below Lin , and
show that |Pm| < m + 1 holds for all m ≤ in. To begin the induction, let i0 = 0
and let q(ct) below L0 be identical to some arbitrary possibility in poss(p(ct), <L0),
giving us |Pi0| = 1.
By way of induction hypothesis, assume we already have in, q is defined up to Lin

and |Pm| < m+ 1 holds for all m ≤ in. (By our choice of i0 = 0, all this is fulfilled
for n = 0.) Keep in mind that each Li is the initial height in a segment of the
frame of p(ct).
Step 1: Let Σ := supp(p, ct, Lin) ∩ Act and let m be such that Lin = 4m+3. (Note
that hence |Σ| < m, though this is not important to this proof.) Let c be minimal

such that nor
nB
Lin

, m

Sacks (2c) = n. Let i′ := (in +1) · 2c·|Σ|. For each α ∈ Σ, find Lα > Li′

(with Lα 6= Lβ for α 6= β) such that nor
nB
Lin

, m

Sacks (p(α,Lα)) ≥ n. Finally, let in+1 > i′

be minimal such that Lα < Lin+1 for all α ∈ Σ.
Step 2: We define q(ct) from Lin up to (but excluding) Lin+1 as follows: For each
31 Note that these ηmct are not possibilities in poss(q, ct, <Lm), however, since such possibilities

would actually go up to height max(segm(Lm−1)) instead of ending at height Lm. (They are,
however, still possibilities in the “moral” sense, i. e. they are initial segments of the generic real
ẏ.) Please excuse this minor abuse of notation. It makes sense when one considers that in the
frame of p, Lm used to be a segment-initial height, even if it no longer is in the frame of q.
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α ∈ Σ, we take p(α,Lα) and shrink it such that nor
nB
Lin

, m

Sacks (q(α,Lα)). For all other
heights L ∈ heights ct with Lin ≤ L < Lin+1 , replace p(α,L) with an arbitrary
singleton to get q(α,L). In particular, this means that for Lin ≤ L ≤ Li′ , p(α, ct, L)
is a singleton for each α ∈ Σ.
For the frame of q(ct), take the segments in the frame of p(ct) starting at (the
segment starting with) Lin and going up to, and including, the (segment ending
with the) heights ct-predecessor L′ of Lin+1; merge all of them to form a single
segment in the frame of q(ct).
Step 3: For those indices α in supp(p, ct, L′) which are outside of Σ (i. e. those
which enter the support of p(ct) strictly above Lin and up to L′), also choose
arbitrary singletons to get a trivial q(α, ct, 〈Lin , . . . , L

′〉). (Such indices will be in
the support of q(ct) from Lin+1 onwards.)
Step 4: We now just have to prove that |Pm| is sufficiently small up to (and in-
cluding) in+1. First, let in < m < i′; for such m, we did not add any possibilities
to q (as all new creature segments consist of singletons up to that height), so
|Pm| = |Pin| < in < m. Now consider i′ ≤ m ≤ in+1. For each α ∈ Σ, the number
of possibilities in q(α, ct, 〈Lin , . . . , L

′〉) is exactly 2c. By the induction hypothesis
we already know that |Pin| < in+1, and due to the choice of i′, we altogether have

|Pm| ≤ |Pin| · 2c·|Σ| < (in + 1) · 2c·|Σ| = i′ < m+ 1

and we are done with the induction.

Having proved this, we now know that Q has the Sacks property over the in-
termediate forcing poset Qnon-ct. By [BJ95, Theorem 2.3.12] (later restated as
Theorem B10.3 in section B10, where we will use it a bit more extensively), this is
equivalent to the fact that any null set in the model obtained by forcing with the
entire Q is contained in a null set of the model obtained by forcing with Qnon-ct,
and hence we have shown that Q 
 cof(N ) ≤ κcn by Lemma B6.5.
We will show Q 
 cof(N ) ≥ κcn a bit later.

B9 non(M) = κnm

The following proof does not use any specifics of the creatures and possibilities; it
only requires that Qnm, κnm is the only part of the forcing poset involving a lim inf
construction.

Lemma B9.1. The set of all reals that can be read continuously only using indices
in Anm is not meagre.

Proof. Let Ṁ be a Q-name for a meagre set. We can find Q-names of nowhere
dense trees Ṫn ⊆ 2<ω such that Ṁ =

⋃
n<ω Ṫn is forced. We will show that there

is a Q-name for a real ṙ which is continuously read only using indices in Anm such
that ṙ /∈ Ṁ ; hence, the set of all such reals cannot be meagre.
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First note that since Q is ωω-bounding and all Ṫn are nowhere dense, for each
n < ω, there is a ground model function fn : ω → ω such that the following holds:
For each ρ ∈ 2x, there is a ρ′ ∈ 2fn(x) such that ρ ⊆ ρ′ and such that ρ′ /∈ Ṫn is
forced.
We fix some p ∈ Q forcing the previously mentioned properties of Ṁ and 〈Ṫn〉
and continuously reading all Ṫn (which is possible per Theorem B7.5). We will
construct (in the ground model) q ≤ p and a real ṙ continuously read by q only
using indices in Anm such that q 
 ṙ /∈ Ṁ .
We will define q inductively as the limit of a fusion sequence qi. Assume we have
already defined q in the form of a condition qi up to some qi-agreeable 4ki, and
that we have an xi < ω and a Q-name żi for an element of 2xi such that żi is
decided by poss(qi�Anm , <(4ki, 0)). (The real ṙ will be defined as the union of the
żi.) Finally, assume that qi already forces żi /∈ Ṫ0 ∪ Ṫ1 ∪ . . . ∪ Ṫi−1. The idea is to
now extend żi to a longer name żi+1 which is forced by qi+1 to avoid Ṫi, as well.
To that end, enumerate poss(qi, <(4ki, 0)) as (η0, η1, . . . , ηm−1). Set 4k0i := 4ki,
x0i := xi, ż0i := żi. By induction on j, 0 ≤ j < m, we deal with ηj: Assume we are
given a name żji for an element of 2xj that is decided by poss(qi, <(4kj, 0)), and
that we have already constructed a condition qji such that

• qji ≤ qi,
• qji is identical to qi below 4ki,
• 4kji is qji -agreeable, and
• between 4k0i = 4ki and 4kji , all creatures in qji �ArAnm are singletons.

Let xj+1
i := fn(x

j
i ) and choose some qji -agreeable 4kj+1

i above 4kji which is big
enough for p to determine Ẋ := Ṫi�xj+1

i
, i. e. there is some function F from

poss(p,<(4kj+1
i , 0)) to possible values of Ẋ (a consequence of continuous read-

ing). We now define qj+1
i as follows: Below 4kji and above 4kj+1

i , qj+1
i is identical

to qji . Between 4kji and 4kj+1
i , we just leave qji (nm) as it is; and on A r Anm, we

just choose arbitrary singletons within qji to get qj+1
i .

We now briefly consider the name Ẋ: A possibility ν ∈ poss(p,<(4kj+1
i , 0)) consists

of
• U , the part below 4kji ,
• V , the part in Ar Anm between 4kji and 4kj+1

i , and
• W , the part in Anm between 4kji and 4kj+1

i .
So we can write Ẋ = F (U, V,W ). Under the assumption that the generic follows
ηj (U = ηj) and the singleton values of qj+1

i on A r Anm (V = V j for some fixed
V j), then there is a name Ẋ ′ = F (ηj, V j, ·) depending only on indices in Anm such
that qj+1

i 
 Ẋ = Ẋ ′.
Recall that żji is already determined by the nm-part of ηj and that already p forces
that there is some extension z′ ∈ 2x

j+1
i of that value of żji such that z′ /∈ Ẋ ′. By

picking (in the ground model) for each possible choice of W some z′(W ) ∈ 2x
j+1
i r

F (ηj, V
j,W ) extending żji , we can define the name żj+1

i := z′(·) which depends
only on indices in Anm and is determined below 4kj+1

i . By construction, we have
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that qj+1
i 
 żji ⊆ żj+1

i and qj+1
i ∧ ηj 
 żj+1

i /∈ Ṫi.
Repeating this construction for all j, 0 ≤ j < m, finally define żi+1 := żmi and
xi+1 := xmi and let 4ki+1 be such that

• 4ki+1 is above 4kmi ,
• 4ki+1 is qmi -agreeable, and
• for all α ∈ supp(qmi , (4kmi , 0)) r Anm of type t, there is a height (4kmi , 0) <
L < (4ki+1, 0) such that ‖p(α,L)‖t,L ≥ i.

Define qi+1 to be equal to qmi below 4kmi and equal to p above 4kmi . By our choice
of 4ki+1, we have ensured that the lim sup part of the fusion condition q :=

⋂
i<ω qi

will actually be a condition (the lim inf part trivially is). By the construction of
qi+1, we have ensured that qi+1 forces that ṙ :=

⋃
i<ω żi avoids Ṫ0 ∪ Ṫ1 ∪ . . . ∪ Ṫi,

and hence q forces that ṙ avoids Ṁ . Finally, by the construction of the żi, they
are continuously read by q only using indices in Anm, and so is their union ṙ.

Corollary B9.2. Q forces non(M) ≤ κnm.

Proof. By Lemma B6.5, the non-meagre set from Lemma B9.1 has size at most
κnm, and hence we have Q 
 non(M) ≤ κnm.

To prove non(M) ≥ κnm, we first define some meagre sets in the extension. Recall
that for α ∈ Anm, the generic object ẏα is a heights nm-sequence of objects in
POSSnm,L = 2IL , or equivalently an ω-sequence of 0s and 1s. We define a name
for a meagre set Ṁα as follows: A real r ∈ 2ω is in Ṁα iff for all but finitely many
k < ω, there is an ik such that r�I(4k,ik)

6= ẏα(4k, ik), or equivalently

Ṁα :=
⋃
n<ω

⋂
k≥n

{r ∈ 2ω | r�I4k 6= ẏα�I4k}

(abusing the notation by letting I4k :=
⋃

i∈J4k I(4k,i)), whence it is clear that Ṁα is
indeed a meagre set.
By the choice of nR

<L for the nm case in Definition B4.8, if p rapidly reads ṙ, then
for any L ∈ heights nm, ṙ�IL is decided ≤L. Also note that if the cell norm ‖x‖cellL

of some creature x is at least 1, then it follows that |x| > nP
<L.

Lemma B9.3. Let ṙ ∈ 2ω be a name for a real and let p rapidly read ṙ not using
the index α ∈ Anm. Then p 
 ṙ ∈ Ṁα.

Proof. We first remark that it suffices to prove that there is an s ≤ p such that
s 
 ṙ ∈ Ṁα. Assume that we have shown this, and also assume that p does not
force ṙ ∈ Ṁα; then there is a q ≤ p forcing the contrary, and q still rapidly reads ṙ
not using the index α. Since we can thus find an s ≤ q which does force ṙ ∈ Ṁα,
we have arrived at the desired contradiction.
We only have to find s ≤ p forcing ṙ ∈ Ṁα. As a matter of fact, we will only have
to modify p in very few places to arrive at the desired condition s. Without loss of
generality, assume that α ∈ supp(p). Recall that by the definition of Qnm, κnm , there

74



B10 cfξ,gξ = κξ

is some k1 such that for any k ≥ k1, ‖p(4k)‖nm,4k ≥ 1; as a consequence, for each
stacked creature p(α, 4k), there is at least one i ∈ J4k with ‖p(α, (4k, i))‖cell(4k,i) ≥ 1;
for each k ≥ k1, we pick some such ik.
Consider one of these (4k, ik) =: L. We know that ṙ�IL is decided ≤L by p – and
actually even below L, since by modesty (ii), there can be at most one index β
such that p(L, β) is non-trivial, α already is such an index and p reading ṙ does
not depend on α. Since there are at most nP

<L many possibilities below L in p,
there can be at most nP

<L many possible values for ṙ�IL , and since |p(α,L)| > nP
<L,

there must be some xk ∈ p(α,L) different from all possible values of ṙ�IL under
the reading by p.
We define the condition s by replacing each p(α, (4k, ik)) with the singleton {xk}.
It is clear that s is still a condition, as we have at most reduced each stacked
creature’s norm in p(α) by 1, which does not negatively affect the lim inf norm
convergence. By definition, s 
 ṙ ∈ Ṁα as required, since ṙ�I(4k,ik)

is different from
ẏα for all k ≥ k1.
Corollary B9.4. Q forces non(M) ≥ κnm.

Proof. Fix a condition p, some κ < κnm and a sequence of names of reals 〈ṙi | i ∈ κ〉.
We find some α ∈ Anm such that p 
 {ṙi | i ∈ κ} ⊆ Ṁα.
For each i ∈ κ, fix a maximal antichain Ai below p such that each a ∈ Ai rapidly
reads ṙi. Recall that Q is ℵ2-cc by Lemma B4.18. Since κnm > κ and without loss of
generality κnm > ℵ1 (otherwise, there is nothing to prove), S :=

⋃
i∈κ
⋃

a∈Ai
supp(a)

has size κ < κnm and we can find an index α ∈ AnmrS. Each a ∈ Ai rapidly reads
ṙi not using the index α; so by the preceding lemma, for each i, each a ∈ Ai forces
ṙi ∈ Ṁα and so does p (since Ai is predense below p), finishing the proof.

This proves (M2) of Theorem B1.1.

B10 cfξ,gξ = κξ

Definition B10.1. Given f, g ∈ ωω going to infinity such that 0 < g < f , we call
S := 〈Sk | k < ω〉 ∈ ([ω]<ω)ω an (f, g)-slalom if Sk ⊆ f(k) and |Sk| ≤ g(k) for all
k < ω, or in shorter notation, if S ∈

∏
k<ω[f(k)]

≤g(k).
We say a family of (f, g)-slaloms S is (f, g)-covering if for all h ∈

∏
k<ω f(k) there

is an S ∈ S such that h ∈∗ S (i. e. h(k) ∈ Sk for all but finitely many k < ω).32

We then define the cardinal characteristic cf,g, sometimes also denoted by c∀f,g and
referred to as one of two kinds of localisation cardinals, as

cf,g := min

{
|S|

∣∣∣∣∣ S ⊆
∏
k<ω

[f(k)]≤g(k), ∀x ∈
∏
k<ω

f(k) ∃S ∈ S : x ∈∗ S

}
,

the minimal size of an (f, g)-covering family.
32 Equivalently, h ∈ S would lead to the same results.
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A simple diagonalisation argument shows that under the assumptions above, cf,g
is always uncountable. [GS93, section 1] contains a few simple properties following
from the definition, but the only one we will be interested in here is monotonicity,
in the following sense:

Fact B10.2. If f ≤∗ f ′ and g ≥∗ g′, then cf,g ≤ cf ′,g′.

For the following proof of cf,g ≤ cof(N ), we recall a result from [Bar84] (as pre-
sented in [BJ95, Theorem 2.3.12]):

Theorem B10.3 (Bartoszyński). Let M ⊆ N be transitive models of ZFC∗. The
following are equivalent:
(i) Every null set coded in N is covered by a Borel null set coded in M .
(ii) Every convergent series of positive reals in N is dominated by a convergent

series in M .
(iii) For every function h ∈ ωω ∩ N there is a slalom S ∈ C ∩ M such that

h(k) ∈ S(k) for almost all k.

In this theorem, C is defined as the set of all slaloms S such that∑
k≥1

|Sk|
k2

<∞,

which does not directly relate to our cardinal characteristics, but very nearly so:

Fact B10.4. Consider the following:
• We extend the definition of (f, g)-slalom and (f, g)-covering to allow f ∈ (ω+
1)ω. Write

cω,g := min

{
|S|

∣∣∣∣∣ S ⊆
∏
k<ω

[ω]≤g(k),∀x ∈ ωω ∃S ∈ S : x ∈∗S

}
,

i. e. identify ω with the constant ω-valued function. By Fact B10.2, we then
have that cf,g ≤ cω,g.

• Note that cω,g ≤ κ actually is a thinly veiled statement about the Sacks
property.

• Finally, recall the well-known fact that the statement of the Sacks property
is independent of the specific slalom size used (since for any two slalom size
functions, the statements can be converted into each other by a simple coding
argument). Hence it is clear that for any g, g′ ∈ ωω going to infinity with
0 < g, g′, we have cω,g = cω,g′.

Definition B10.5. Let cω,C be the minimal size of a family of slaloms in C covering
all functions in ωω, i. e.

cω,C := min{|S| | S ⊆ C,∀x ∈ ωω ∃S ∈ S : x ∈∗ S}.

Lemma B10.6. Let g ∈ ωω be going to infinity with 0 < g. Then cω,g = cω,C.
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Proof. Letting g+(k) := k2 and g−(k) := log k, define

C+ :=

{
S

∣∣∣∣∣ S ∈∗
∏
k<ω

[ω]≤g+(k)

}

and

C− :=

{
S

∣∣∣∣∣ S ∈∗
∏
k<ω

[ω]≤g−(k)

}
.

It is clear that C+ ⊇ C ⊇ C−, which implies cω,g+ ≤ cω,C ≤ cω,g−.
Now Fact B10.4 implies that cω,g+ = cω,g− = cω,g for any g ∈ ωω going to infinity
with 0 < g, and hence cω,g+ = cω,C = cω,g− = cω,g.

Lemma B10.7. For any g ∈ ωω going to infinity with 0 < g, cω,g = cof(N ).

Proof. By Lemma B10.6, we instead show cω,C = cof(N ). We use Theorem B10.3.
To show cω,g ≤ cof(N ), we use (i)⇒(iii):
Let N := V and let M be a model of size κ such that every null set in N is covered
by a Borel null set in M . Then Theorem B10.3 shows that {S ∈ N | S ∈ C}
witnesses cω,C ≤ κ = cof(N ).
To show the converse result cω,C ≥ cof(N ), we use (iii)⇒(i) in the same vein.

Theorem B10.8. Given f, g as in Definition B10.1, cf,g ≤ cof(N ).

Proof. This follows immediately from Lemma B10.7 and Fact B10.4.

Observation B10.9. Apart from this inequality, there are no limitations on the
placement of the cfξ,gξ relative to the other cardinal characteristics in this chapter.

Recall that κℵ0
ξ = κξ for any ξ < ω1. As a consequence of the theorem, note that if

we were to omit the cof(N ) forcing factors entirely, we would then get the following
result for cof(N ) in V [G]: Let λ := supξ<ω1

cfξ,gξ . Then it is clear that λ ≤ cof(N )
by Lemma B10.7 and cof(N ) ≤ λℵ0 by the fact that there are only λℵ0 many reals
after forcing with Qnon-ct (recall section B8). If cofλ ≥ ω1, then GCH in the ground
model implies that λℵ0 = λ and hence cof(N ) = λ.

Before we prove the cardinal characteristics’ inequalities, we need to show that
there indeed is a congenial ω1-sequence of function pairs as defined in Defini-
tion B3.2. We can show even more:

Lemma B10.10. There is a congenial sequence 〈fξ, gξ | ξ < c〉 of continuum many
function pairs.

Proof. (This proof is a modification and simplification of the construction in [GS93,
Example 3.3].)
Recall that we need to show the following properties from Definition B3.2:

77



Chapter B: Modular Framework for Creature Forcing

(i) For all ξ and for all k < ω, nB
4k+2 ≤ gξ(k) < fξ(k) ≤ nS

4k+2.
(ii) For all ξ, limk→∞

log fξ(k)

nP
<4k+2·log gξ(k)

= ∞.

(iii) For all ξ 6= ζ, either limk→∞
fζ(k)

2

gξ(k)
= 0 or limk→∞

fξ(k)
2

gζ(k)
= 0.

Also recall the definitions of nB
4k+2 and nS

4k+2 in Definition B4.8.
Let 〈ek | k < ω〉 be an increasing sequence such that ek > nB

4k+2 ≥ 2 for all k < ω
(e. g. ek := nB

4k+2+1). Take the complete binary tree T := 2<ω and enumerate T∩2k

in lexicographic order as {s1k, . . . , s2
k

k }. We now define a pair of functions (fξ, gξ)

for each branch bξ ∈ [T ] by the following rule: If bξ�k = sik, then fξ(k) := (nB
4k+2)

e3
2i

k

and gξ(k) := (nB
4k+2)

e3
2i−1

k .
It is clear that by definition, nB

4k+2 ≤ gξ(k) < fξ(k), and recalling the fact that in
Definition B4.8 we set

nS
4k+2 := (nB

4k+2)
e3

2k+1

k ,

we also have fξ(k) ≤ nS
4k+2. This proves property (i).

To show property (ii), we first remark that gξ(k) ≥ nB
4k+2 > 2n

P
<4k+2 and hence

log gξ(k) > nP
<4k+2; it thus suffices to show

lim
k→∞

log fξ(k)
(log gξ(k))2

= ∞.

This is easy to see, as (for some 1 ≤ i ≤ 2k depending on bξ and k)

log fξ(k)
(log gξ(k))2

=
e3

2i

k

(e3
2i−1

k )2 · lognB
4k+2

=
e3

2i−2·32i−1

k

lognB
4k+2

=
e3

2i−1

k

lognB
4k+2

≥ e3k
lognB

4k+2

diverges to infinity as k goes to infinity.
Finally, consider ξ 6= ζ, without loss of generality such that bξ < bζ in the natural
lexicographic order on the branches of [T ]. (If we have bζ < bξ, we can just prove
the other statement in property (iii) the same way.) Taking the first k such that
bξ(k − 1) 6= bζ(k − 1), there are 1 ≤ i < j ≤ 2k such that bξ�k = sik and bζ�k = sjk
(and analogously for any larger k). Then it follows that

F (ξ, ζ, k) :=
fξ(k)

2

gζ(k)
= (nB

4k+2)
2·e32ik −e3

2j−1

k

and since ek > 2 and 2i < 2j − 1, we have that

2 · e32ik < e3
2i+1

k ≤ e3
2j−1

k

and hence F (ξ, ζ, k) < 1/nB
4k+2, which goes to 0, as required to show property

(iii).

We point out once more that in order to make it easier to read, the construction
above is actually slightly less general than the one in [GS93, Example 3.3]; in our
case, the pairs of functions are not only pointwise “far apart”, but instead even have
the same ordering between them at each point. The reader can easily convince
herself that the more general construction would also work in the same way.
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Lemma B10.11. Q forces that for all ξ < ω1, cfξ,gξ ≥ κξ.

Proof. Fix some ξ < ω1. Let G be Q-generic and let S be some family of gξ-slaloms
in V [G] of size less than κξ. Each S ∈ S is read continuously only using indices in
some countable subset BS of A and there are less than κℵ0

ξ = κξ = |Aξ| many S,
so letting B :=

⋃
S∈S BS, all of S is read continuously only using indices in B and

there is some α ∈ ArB.
Now assume towards a contradiction that there were some gξ-slalom S∗ ∈ V [G�B]
covering the generic ẏα. Working in V , this means that there is a Q�B-name Ṡ∗

and a condition p ∈ Q such that 
Q�B “Ṡ∗ is a gξ-slalom” and p 
Q “Ṡ∗ covers ẏα”.
But then we can find some k < ω such that |p(α, 4k+2)| > gξ(k). Find q ≤ p by first
strengthening p�B to decide Ṡ∗

k = T and then finding some x ∈ p(α, 4k+2)rT and
replacing p(α, 4k+2) by {x}. The condition q then forces the desired contradiction,
proving that fewer than κξ many gξ-slaloms cannot suffice to cover all functions in∏

k<ω fξ(k).

To prove the converse, we first have to prepare just a few more technical tools.

Definition B10.12. Let p ∈ Q and let ṫ be a Q-name for a function in
∏

k<ω n
S
4k+2.

We say that p punctually reads ṫ if for each k < ω, ṫ�k+1 is decided below 4k + 2.

Lemma B10.13. Fix a coding function C which continuously maps functions in∏
k<ω n

S
4k+2 to 2ω. Then there is a unique family of functions 〈Ck | k < ω〉 with

Ck : 2
<z(k) →

∏
`≤k n

S
4`+2 and a unique z ∈ ωω such that the following holds: For

any function t ∈
∏

k<ω n
S
4k+2, there is an s ∈ 2ω such that for all k < ω, we have

Ck(s�z(k)) = t�k+1.

Proof. Define z(0) := dlog2(nS
2 )e + 1 and z(k) := z(k − 1) + dlog2(nS

4k+2)e + 1 for
k ≥ 1. The functions Ck are the natural restrictions of the inverse of the coding
function C.

Corollary B10.14. Let ṫ be a Q-name for a function in
∏

k<ω n
S
4k+2 and p ∈ Q.

Then there is a q ≤ p punctually reading ṫ.

Proof. By the preceding lemma, there is a Q-name ṡ for an element of 2ω such that
for any k < ω, Ck(ṡ�z(k)) = ṫ�k+1. Find q ≤ p rapidly reading ṡ; by the preceding
lemma, q then punctually reads ṫ.

Definition B10.15. For a modest p ∈ Q, we call 4k+ 2 a slalom-splitting level if
there is an α ∈ supp(p) such that |p(α, 4k+ 2)| > 1. We refer to this unique index
by αk, and the corresponding type by ζk < ω1.

Definition B10.16. Fix some ξ < ω1. We call a condition p ∈ Q ξ-prepared if for
all ζ 6= ξ and all k < ω, one of the following three statements holds:

• 4k + 2 is not a slalom-splitting level of p�supp(p)r{ξ},
• fζ(k)

2 < gξ(k), or
• fξ(k)

2 < gζ(k).
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Lemma B10.17. Fix some ξ < ω1 and let p ∈ Q. Then there is a ξ-prepared
q ≤ p.

Proof. We do the following steps for each ζ 6= ξ.
First, note that per the proof of Lemma B10.10, there is some kζ such that for
all k < kζ , fξ(k) = fζ(k) and gξ(k) = gζ(k), but for all k ≥ kζ , the functions are
different.
Second, per property (iii) in Definition B3.2, we know that either

lim
k→∞

fζ(k)
2

gξ(k)
= 0 or lim

k→∞

fξ(k)
2

gζ(k)
= 0

and hence there must be some k∗ζ ≥ kζ such that fζ(k)
2

gξ(k)
< 1 for all k ≥ k∗ζ or

fξ(k)
2

gζ(k)
< 1 for all k ≥ k∗ζ . Now for k < k∗ζ , replace p(ζ, 4k + 2) by arbitrary

singletons to get q(ζ, 4k + 2). The resulting q is then ξ-prepared.

Lemma B10.18. Q forces that for all ξ < ω1, cfξ,gξ ≤ κξ.

Proof. Fix some ξ < ω1 and let A :=
⋃

κt≤κξ
At.33 We will prove that the gξ-slaloms

in V Q�A cover
∏

k<ω fξ(k); this suffices since by Lemma B6.5 (and by the fact that
Q�A is a complete subforcing of Q, see Lemma B4.19), 
Q�A 2ℵ0 ≤ κξ and hence

Q (2ℵ0)V

Q�A ≤ κξ.
So let ṫ be a Q-name for a function in

∏
k<ω fξ(k) and let p∗ ∈ Q be an arbitrary

condition. Find p ≤ p∗ such that p punctually reads ṫ and is ξ-prepared.
We will find a condition q ≤ p and a Q�A-name Ṡ for a gξ-slalom such that
q 
 “Ṡ covers ṫ”.
To find q and define Ṡ, we go through the levels of the form 4k + 2 and make the
following case distinction. (We know that one of the following cases must hold
since p is ξ-prepared.)
Case 0: 4k + 2 is not a slalom-splitting level of p.
In this case, we have that | poss(p,<4k + 3)| = | poss(p,<4k + 2)| (since at level
4k+2, there is only one possible extension for each possibility from below). Hence
letting q(slalom, 4k + 2) := p(slalom, 4k + 2) and defining

Ṡk := {x < ω | ∃ η ∈ poss(q,<4k + 3): p ∧ η 
 ṫ(k) = x},

we actually have a (ground model) set of size at most

| poss(p,<4k + 3)| = | poss(p,<4k + 2)| < nP
<4k+2 < nB

4k+2 ≤ gξ(k),

and clearly q 
 ṫ(k) ∈ Ṡk.
33 Note, however, that the t /∈ slalom are not especially relevant here. The case distinction below

only cares about the Aζ with ζ < ω1 – and whether κζ ≤ κξ or κζ > κξ –, but the definition is
just cleaner in this more general formulation.
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Case 1: 4k + 2 is a slalom-splitting level of p, but ζk is such that κζk ≤ κξ.
In this case, αk ∈ A. We once more let q(slalom, 4k + 2) := p(slalom, 4k + 2) and
define Ṡk to be a Q�A-name satisfying


Q�A Ṡk = {x < ω | ∃ η ∈ poss(q,<4k + 3): p ∧ η 
 “ṫ(k) = x and η(αk) = ẏαk
”},

which means we only allow those possibilities η which are compatible with the
generic real ẏαk

added by the forcing factor Qαk
. Similar to the previous case,

this means that 
Q�A |Ṡk| ≤ | poss(p,<4k + 2)|, for the following reason: Let
ε := ẏαk

; then in the definition of Ṡk above, the only admissible possibilities η ∈
poss(p,<4k + 3) are those of the form η = ν_ε for some ν ∈ poss(p,<4k + 2).
Hence 
Q�A |Ṡk| < gξ(k), and by definition q 
 ṫ(k) ∈ Ṡk.
Case 2: 4k + 2 is a slalom-splitting level of p, κζk > κξ and fζ(k)2 < gξ(k).
From fζ(k)

2 < gξ(k), we get the following:

| poss(p,<4k + 3)| ≤ | poss(p,<4k + 2)| · fζ(k) ≤ nP
<4k+2 · fζ(k)

< nB
4k+2 · fζ(k) < fζ(k)

2 < gξ(k)

By once more letting q(slalom, 4k + 2) := p(slalom, 4k + 2) and defining

Ṡk := {x < ω | ∃ η ∈ poss(q,<4k + 3): p ∧ η 
 ṫ(k) = x},

we hence again have a (ground model) set of size at most gξ(k), and by definition
q 
 ṫ(k) ∈ Ṡk.
Case 3: 4k + 2 is a slalom-splitting level of p, κζk > κξ and fξ(k)2 < gζ(k).
This is the only case where we have to do any actual work to get q, as we cannot
simply collect all potential values of ṫ(k). Instead, we will first have to use the
bigness properties of the norm to reduce the number of potential values. To begin,
we remark that letting mk := | poss(p,<4k + 2)|, c := fξ(k) and d := gξ(k)/mk, we
have

c

d
=
fξ(k)
gξ(k)

mk

= fξ(k) ·
| poss(p,<4k + 2)|

gξ(k)
≤ fξ(k) ·

nP
<4k+2

gξ(k)
< fξ(k) < gζ(k)

and since ‖ · ‖ζ,4k+2 has nP
<4k+2-strong gζ(k)-bigness by Theorem B5.6, according

to Observation B5.5 it also has nP
<4k+2-strong (c, d)-bigness.

Enumerate poss(p,< 4k+2) =: {η1, . . . , ηmk
}. We claim we can find a sequence of

subsets p(αk, 4k + 2) = F 0
k ⊇ F 1

k ⊇ F 2
k ⊇ . . . ⊇ Fmk

k and a sequence of sets Cj with
the following properties (for each 1 ≤ j ≤ mk):
(i) ‖F j

k‖ζ,4k+2 ≥ ‖F j−1
k ‖ζ,4k+2 − 1/nP

<4k+2

(ii) |Cj| ≤ d
(iii) p ∧ (ηj_x) 
 ṫ(k) ∈ Cj holds for all x ∈ F j

k .
We know that, given F j

k , for each x ∈ F j
k , we have that p ∧ (ηj_x) decides ṫ(k)

by punctual reading of ṫ (noting that ηj_x ∈ poss(p,<4k + 3)). Since there are
most c many possible values for ṫ(k), we can use nP

<4k+2-strong (c, d)-bigness of the
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norm ‖ · ‖ζ,4k+2 to find F j+1
k ⊆ F j

k and Cj+1 with the desired properties, proving
our claim.
Now, we define Fk := Fmk

k . Since mk ≤ nP
<4k+2, by (i) we have that

‖Fk‖ζ,4k+2 ≥ ‖p(αk, 4k + 2)‖ζ,4k+2 −
mk

nP
<4k+2

≥ ‖p(αk, 4k + 2)‖ζ,4k+2 − 1.

Hence, defining q(αk, 4k + 2) := Fk and q(slalom, 4k + 2) := p(slalom, 4k + 2)
elsewhere (i. e. on Aslalom r {αk}) does not negatively affect the lim sup properties
of the norm.
Finally, let Ṡk :=

⋃
1≤j≤mk

Cj. Then by (ii), we have that |Ṡk| ≤ d · mk = gξ(k),
and (iii) implies q 
 ṫ(k) ∈ Ṡk, finishing the proof.

This proves (M5) of Theorem B1.1.

B11 non(N ) ≥ κnn and cof(N ) ≥ κcn

The proofs in this section are more or less identical to those in [FGKS17], although
we sincerely hope we have improved the presentation.
To prove non(N ) ≥ κnn, we define some null sets in the extension, similar to the
definition of Ṁα in section B9. Recall that for α ∈ Ann, the generic object ẏα is
a heights ∗n-sequence of subsets Ṙα,L of 2IL of relative size 1 − 2−nB

L .34 Since the
sequence of NB

L , L ∈ heights ∗n, is strictly monotone, we have∏
L ∈ heights ∗n

(
1− 1

2n
B
L

)
> 0

and hence the set {r ∈ 2ω | ∀ k < ω : r�I4k+1
∈ Ṙα,4k+1} is positive. It follows that

the set {r ∈ 2ω | ∀∞ k < ω : r�I4k+1
∈ Ṙα,4k+1} has measure one, and therefore its

complement

Ṅα := {r ∈ 2ω | ∃∞ k < ω : r�I4k+1
/∈ Ṙα,4k+1}

is a name for a null set.
Recall that (by Theorem B5.6) for each L ∈ heights ∗n, (POSSnn,L, ‖ · ‖nn,L) has
strong nB

L -bigness. We show a similar, more specific property:

Lemma B11.1. Let L ∈ heights ∗n, X ⊆ POSSnn,L and E ⊆ 2IL. Let X ′ := {H ∈
X | H ∩ E = ∅}. Then ‖X ′‖intersectL ≥ ‖X‖intersectL − |E|.
If additionally |E| ≤ nP

<L, then it follows that ‖X ′‖nn,L ≥ ‖X‖nn,L − 1/log nB
L .

Proof. For the first part, assume that some Y witnesses ‖X ′‖intersectL ; then Y ∪ E
certainly witnesses ‖X‖intersectL .
34 Recall that heights ∗n = {4k + 1 | k < ω}.
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For the second part, note that nP
<L ≤ nB

L/2 and hence |E| ≤ (nB
L )

‖X‖nn,L/2. Since nB
L ≥

2 and assuming X is non-trivial (without loss of generality, assume ‖X‖nn,L ≥ 2),
a trivial inequality gives

(nB
L )

‖X‖nn,L

2
=

(‖X‖intersectL )1/n
B
L

2
=

(
‖X‖intersectL

2n
B
L

)1/nB
L

≤

((
1− 1

2n
B
L

)nB
L

· (‖X‖intersectL )n
B
L

)1/nB
L

=

(
1− 1

2n
B
L

)
· ‖X‖intersectL

and hence the first part implies

‖X ′‖nn,L =
log ‖X ′‖intersectL

nB
L lognB

L

≥ log(‖X‖intersectL − |E|)
nB
L lognB

L

≥ log(‖X‖intersectL /2n
B
L )

nB
L lognB

L

=
log ‖X‖intersectL

nB
L lognB

L

− log 2nB
L

nB
L lognB

L

= ‖X‖nn,L − 1

lognB
L

.

Lemma B11.2. Let ṙ ∈ 2ω be a name for a real and let p rapidly read ṙ not using
the index α ∈ Ann. Then p 
 ṙ ∈ Ṅα.

Proof. We first remark that as in Lemma B9.3, it suffices to prove that there is an
s ≤ p such that s 
 ṙ ∈ Ṅα. Similar to that proof, we will only have to modify p in
very few places to get the desired condition s. Without loss of generality, assume
that α ∈ supp(p).
We will only modify p at index α for infinitely many heights in heights ∗n. Assume
we have already modified n many heights L0, . . . , Ln−1; pick some Ln := 4kn +
1 ∈ heights ∗n such that p(α,Ln) is non-trivial and has a norm of at least 2. By
rapid reading, we know that ṙ�ILn

is decided ≤ Ln by p, and as in Lemma B9.3,
by modesty and since ṙ does not depend on the index α, it is even decided below
Ln. Hence the set En of possible values for ṙ�ILn

has size at most nP
<L; by the

preceding lemma, replacing p(α,Ln) by Cn := {H ∈ p(α,Ln) | H ∩ En = ∅} only
decreases the norm by at most 1.
The condition s resulting from replacing each p(α,Ln) by Cn then fulfils s 
 ṙ ∈ Ṅα

by definition, as s 
 ṙ�I4kn+1
/∈ Ṙα,4kn+1 holds for all n < ω.

Corollary B11.3. Q forces non(N ) ≥ κnn.

Proof. The proof is identical to the proof of Corollary B9.4.

To prove cof(N ) ≥ κcn, we define null sets in the extension in the same way we
did at the start of this section, namely

Ṅα := {r ∈ 2ω | ∃∞ k < ω : r�I4k+1
/∈ Ṙα,4k+1}

for α ∈ Acn. However, the purpose of these null sets will be quite different; rather
than covering all reals in the extension which do not depend on α, they will avoid
being covered by any null set not depending on α.

83



Chapter B: Modular Framework for Creature Forcing

We wish to spare the reader the details of the combinatorial arguments from
[FGKS17, section 9], and hence will only sketch the modifications necessary to
see why the proofs in [FGKS17] still hold. The relevant result we will be using is
[FGKS17, Lemma 10.2.1], in the following form:

Lemma B11.4. Fix a height L ∈ heights ∗n, an index α ∈ Acn and a creature
C ⊆ POSSα,L such that ‖C‖cn,L ≥ 2.
(i) Given T ⊆ 2IL of relative size at least 1/2, we can strengthen C to a creature

D such that T 6⊆ X for all X ∈ D and such that

‖D‖cn,L ≥ ‖C‖cn,L − 1

2min IL · nB
L

.

(ii) Given a probability space Ω and a function F : C → P(Ω) mapping each
X ∈ C to some F (X) ⊆ Ω of measure at least 1/nB

L , we can strengthen C to
a creature D such that

⋂
X∈D F (X) has measure at least 1/nB

L+ and such that

‖D‖cn,L ≥ ‖C‖cn,L − 1

2min IL · nB
L

.

Proof sketch. In [FGKS17], Lemma 10.2.1 is an immediate consequence of two
properties – (i) follows from Lemma 9.2.2 and (ii) follows from Eq. (9.1.4).
The second part is straightforward: By the considerations in Observation B3.6, it
is clear that (ii) still follows for our new norm as long as nB

L+ > nB
L · 2nS

L+1, which
is the case by the definition of nB

L+.
The first part (Lemma 9.2.2) requires a bit more thought (since our modification
to take the logarithm of the nor÷I,b complicates the direct argument). Define

∆L :=

(
2|IL|−1

2n
B
L−1

)
.

The relevant statement in Lemma 9.2.2 then is: Given C and T as in (i), we can
find D such that T 6⊆ X for all X ∈ D and such that

|C rD| ≤ ∆L. (∗8)

We first explain why Eq. (∗8) implies (i): Let δ := |C r D|. Then ‖C‖cn,L ≥ 2
implies |C| ≥ 2∆L, and ∆L ≥ δ implies |D| ≥ |C|/2 ≥ δ, so δ/|D| ≤ 1. By the
well-known fact that

log(z + ε)− log z
ε

≤ 1

z

and the fact that |C| = |D|+ δ, we get

log |C| − log |D| ≤ δ

|D|
≤ 1.

84



B11 non(N ) ≥ κnn and cof(N ) ≥ κcn

By all this, we know that having found such a D, the numerators of the fractions
in ‖C‖cn,L and ‖D‖cn,L differ by at most 1, and hence the whole norms differ by at
most 1/(2min IL ·nB

L ) (actually, even less).
Finally, the reason why Eq. (∗8) holds is the same combinatorial consideration
explained in [FGKS17, Lemma 9.2.2 (1)].

Fact B11.5. We require a few facts about the correspondence between trees of
measure 1/2 and null sets.
(i) Let T ⊆ 2<ω be a leafless tree of measure 1/2 (and recall that such trees

bijectively correspond to closed sets of measure 1/2). For X ⊆ 2ω, let X +
2<ω :=

⋃
{X + r | r ∈ 2<ω}, the set of all rational translates of X (where

X + r := X + r_〈000 . . . 〉). Then the set NT := 2ω r ([T ] + 2<ω) is a null set
closed under rational translations.

(ii) Conversely, given an arbitrary null set N , there is a leafless tree T of measure
1/2 such that N ⊆ NT , since the complement of N+2<ω must contain a closed
set of size 1/2.

(iii) Let k < ω and s ∈ T ∩ 2k. We define the relative measure of s in T as
2k · λ([T ] ∩ [s]). Analogously, for finite trees T ∈ 2≤m (such that there are
no leaves below tree level m) we define the relative measure of s ∈ T ∩ 2k

for k ≤ m in the same way. (For s /∈ T , the relative measure of s in T is 0,
naturally.)

(iv) Given a leafless tree T ⊆ 2<ω, some s ∈ T of positive relative measure and
some 0 < ε < 1, there is some extension t of s such that t has relative
measure > ε. Moreover, it follows that for all tree levels above the tree level
of t there is some extension u of t such that u has relative measure >ε. (These
statements are a simple consequence of Lebesgue’s density theorem.)

Since the measure of a tree T does not change if we remove any s ∈ T of relative
measure 0, we will be working with such trees instead:

Definition B11.6. We call T ⊆ 2<ω a sturdy tree if it has measure 1/2 and no
s ∈ T has relative measure 0 (in particular, this means T is leafless).

The considerations from Fact B11.5 also hold for sturdy trees, so we will be working
with those instead.
Finally, we remark that 22

k is an upper bound for the cardinality of the set 2≤k.
We can thus code any name for a sturdy tree Ṫ by a real ṫ ∈ 2ω such that Ṫ ∩ 2k is
determined by ṫ�

22h+1 , and by the definition of nR
<L, if a condition p rapidly reads

ṫ, then for each η ∈ poss(p,≤L), p ∧ η decides Ṫ ∩ 2max IL; we abbreviate this fact
by “p rapidly reads Ṫ ”.

Lemma B11.7. Let Ṫ be a name for a sturdy tree and let p rapidly read Ṫ not
using the index α ∈ Acn. Then p 
 Ṅα 6⊆ NṪ , that is, p forces that there is an
s ∈ Ṅα ∩ [Ṫ ].

Proof. Once again, it suffices to find a q ≤ p and a Q-name ṡ for a real such that
q 
 ṡ ∈ Ṅα ∩ [Ṫ ]. Without loss of generality, assume that α ∈ supp(p). To achieve
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this, we will modify p(α) at infinitely many ∗n heights to get q and thereafter
define the required real s inductively in the extension.
Let L ∈ heights ∗n be a height, above all the previously modified heights, such that
‖p(α,L)‖ ≥ 3. (The condition on the norm is necessary for us to be able to apply
Lemma B11.4 (i) sufficiently often.) Let Ṫ ∗ := Ṫ ∩ 2max IL. By rapid reading, p
decides Ṫ ∗ below L (since Ṫ does not depend on α and by modesty, there is no
other index β such that p(β, L) is non-trivial). In particular, this means that the
set W of possible values of Ṫ ∗ has size at most nP

<L.
We now enumerate all U ∈ W and all u ∈ U ∩2min IL with relative measure at least
1/2 (measured in U). Clearly, there are at most M := nP

<L · 2min IL many such pairs
(U, u). Starting with C0 := p(α,L), we will iteratively apply Lemma B11.4 (i) to
the creature Cn and the tree u_U�2IL to get a creature Cn+1 ⊆ Cn which then
fulfils the following statement: For each X ∈ Cn+1, there is some u′ ∈ 2IL rX such
that u_u′ ∈ U , and

‖Cn+1‖cn,L ≥ ‖Cn‖cn,L − 1

2min IL · nB
L

.

After going through all M many possible choices of (U, u), we arrive at D := CM ,
which fulfils the following statement: For each X ∈ D and each (U, u) as above,
there is some u′ ∈ 2IL r X such that u_u′ ∈ U , and ‖D‖cn,L ≥ ‖p(α,L)‖cn,L − 1,
since nP

<L < nB
L and hence

M

2min IL · nB
L

=
nP
<L · 2min IL

nB
L · 2min IL

≤ 1.

Denote the condition which emerges after repeating the process above for infinitely
many heights by q (and note that q ≤ p and q only differs from p at index α). We
will now work in the forcing extension V [G] (for some generic filter G containing
q) and construct some s ∈ Ṅα ∩ [Ṫ ]. Recall that the requirements on s are that it
is a branch of [Ṫ ] and that for infinitely many L ∈ heights ∗n we have s�IL /∈ Ṙα,L.
Start with s0 := ∅ and k0 := 0. Assume we have already defined kn and sn (which
will be equal to s�kn) such that sn ∈ Ṫ . Since Ṫ is a sturdy tree and hence has
no nodes of relative measure 0, by Fact B11.5 (iv) there is some k′ > kn and a
t ∈ Ṫ ∩ 2k

′ such that t extends sn and has relative measure at least 1/2. Pick a
height L ∈ heights ∗n such that L was considered in the construction of q and such
that min IL =: k′′ > k′. Also by Fact B11.5 (iv), there is (still) a u ∈ Ṫ ∩ 2k

′′ such
that u extends sn and has relative measure at least 1/2. Let U := Ṫ ∩ 2max IL and
note that in the construction of q, we dealt with the pair (U, u). Hence for all
X ∈ q(α,L) (in particular, the Ṙα,L chosen by the generic filter G), there is some
u′ ∈ 2IL rX such that u_u′ ∈ U . So we can set sn+1 := u_u′ and kn+1 := max IL
and continue the induction; the resulting s :=

⋃
n<ω sn is as required.

Corollary B11.8. Q forces cof(N ) ≥ κcn.

Proof. Fix a condition p, some κ < κcn and a sequence of names of null sets
〈Ṅi | i ∈ κ〉 which p forces to be a basis of null sets. As described above, for each
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i ∈ κ, we can assume that Ṅi = NṪi
for some name for a sturdy tree Ṫi. The rest

of the proof is identical to the proof of Corollary B9.4.

This proves (M4) of Theorem B1.1.

B12 non(N ) ≤ κnn

For the final proofs, we will require two more lemmata. First, we show that the
slalom part of the forcing construction has a property similar to Lemma B11.4 (ii).

Lemma B12.1. Fix a height L ∈ heights slalom, a slalom type ξ ∈ types slalom, an
index α ∈ Aξ, and a creature C ⊆ POSSξ,L such that ‖C‖ξ,L ≥ 2.
Given a probability space Ω and a function F : C → P(Ω) mapping each X ∈ C
to some F (X) ⊆ Ω of measure at least 1/nB

L , we can strengthen C to a creature D
such that

⋂
X∈D F (X) has measure at least 1/nB

L+ and such that

‖D‖ξ,L ≥ ‖C‖ξ,L − 1

2min IL · nB
L

.

Proof. As in the proof of Lemma B11.4 (ii), we only require that a statement
analogous to [FGKS17, Eq. (9.1.4)] holds (as nB

L+ > nB
L · 2nS

L+1 is true for any L).
We already know that Eq. (9.1.4) holds for a norm with the basic structure35 of
log x
log 3b

; the slalom norms have the basic structure log x
log gξ(k)

(with L = 4k + 2), and in
our construction in Lemma B10.10, each gξ(k) is defined as some e-th power of nB

L ;
each such exponent e is assured to be at least 8 and even the smallest nB

(0,0) ≥ 8,
hence (nB

L )
e ≥ 3nB

L and the same basic property holds for this norm structure, as
well.36

The other lemma is one more combinatorial statement about trees.

Lemma B12.2. Given a tree T ⊆ 2<ω of positive measure and an ε > 0, we call
s ∈ T ∩ 2k fat if

λ([T ] ∩ [s]) ≥ 1− ε

2k
.

Then there is a k∗ < ω such that for all k ≥ k∗, there are at least |T ∩ 2k| · (1− ε)
many fat nodes s ∈ T ∩ 2k.

Proof. (This is the same proof as the one of [FGKS17, Lemma 10.5.3].)

35 “Basic structure” in the sense of “ignoring additional factors in the denominator or additive terms
in the numerator, the norm is fundamentally of logarithmic character”.

36 Alternatively, we could simply amend Definition B3.2 (i) to demand 3nB
4k+2 ≤ gξ(k), instead.
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Let µ := λ([T ]). Since |T ∩ 2k| · 2−k decreasingly converges to µ, there is some k∗
such that for all k ≥ k∗, we have

|T ∩ 2k|
2k

− µ · ε2 ≤ µ. (∗9)

Fix some k ≥ k∗ and let f be the number of fat s ∈ T ∩ 2k (and ` := |T ∩ 2k| − F
the number of non-fat s). It suffices to show f ≥ µ · 2k · (1− ε).
Note that

µ < f · 1

2k
+ ` · 1− ε

2k
=

|T ∩ 2k|
2k

− ` · ε
2k

(∗10)

and hence Eq. (∗9) and Eq. (∗10) together imply µ · 2k · ε ≥ `. Since f + ` = |T ∩
2k| ≥ µ · 2k, it follows that f ≥ µ · 2k − ` ≥ µ · 2k · (1− ε).

Now recall that in section B8, we proved that Q had the Sacks property over the
complete subforcing poset Qnon-ct (which consists of all conditions p with supp(p)∩
Act = ∅). In particular, this implied that any null set in the Q-extension is already
contained in some null set in the Qnon-ct-extension.
We will now show that the set R of all reals read rapidly only using indices in
Anm∪Ann is not null; by the consideration above, we can work entirely with Qnon-ct
and show that it is not null there. As in the preceding section, we will work with
sturdy trees instead of null sets.

Lemma B12.3. Let Ṫ be a name for a sturdy tree and let p ∈ Qnon-ct rapidly read
Ṫ . Then there is a q ≤ p in Qnon-ct and a name ṙ for a real such that q rapidly
reads ṙ only using indices in Anm ∪Ann (i. e. not using any indices in Acn ∪Aslalom)
and such that q 
 ṙ ∈ [Ṫ ].

Proof. We will construct q and ṙ by induction on n < ω. For each n, we will define
or show the following:
(i) We will define some Ln := (4kn, 0) ∈ heights nm.37
(ii) We will define conditions qn ≤ p such that

• ‖qn(4k)‖nm,4k ≥ n+ 3 for all k ≥ kn,
• qn+1 ≤ qn,
• qn+1 and qn are identical on supp(qn) below Ln and any new α ∈

supp(qn+1)r supp(qn) only enter the support of qn+1 above Ln,
• ‖qn+1(4k)‖nm,4k ≥ n for all kn ≤ k < kn+1, and
• for each α ∈ supp(qn+1, Ln) r Anm of type t, there is a height L with
Ln < L < Ln+1 such that ‖qn+1(α,L)‖t,L ≥ n.

Thus 〈qn | n < ω〉 will be a descending sequence of conditions converging to a
condition q.
(iii) We will define some in < ω and a name ṙn for an element of Ṫ ∩2in such that

qn decides ṙn below Ln only using indices in Anm ∪ Ann.
37 Since we are working in Qnon-ct, in contrast to section B7 we do not have to worry about the

heights being p-agreeable.
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(iv) We will require that in is not “too large” with respect to Ln in the sense that
2in+2 < nB

Ln
. (Since nB

L grows quickly and monotonously, it will suffice to
show 2in+2 < 4kn.)38

(v) The in will be such that in+1 > in.
(vi) The ṙn will be such that ṙn+1 is forced (by qn+1) to extend ṙn.
Thus q will force that ṙ :=

⋃
n<ω ṙn will the the desired branch in [Ṫ ].

(vii) Finally, we will also construct a name Ṫn which qn will force to be
• a subtree of Ṫ with stem ṙn and relative measure greater than 1/2 (i. e.
λ([Ṫn]) > 1/2 · 2−in)

• which is read continuously by qn in such a way that below Ln, the
reading only uses indices in Anm ∪ Ann.

Step 0: To start the induction, define i0 := 0, ṙ0 := 〈 〉 and Ṫ0 := Ṫ . Choose
L0 = (4k0, 0) such that ‖p(4k′)‖nm,4k′ ≥ 3 for all k′ ≥ k0 ≥ 1 (“≥ 1” to ensure
property (iv)) and let q0 be the condition resulting from extending the trunk of p
to L0. It is clear that properties (i)–(vi) are fulfilled by definition, and property
(vii) holds since below L0, there is only a single possibility, and hence the reading
of Ṫ0 cannot depend on any indices in Acn ∪ Aslalom below L0.
In the following steps, assume we have constructed the required objects (Ln =
(4kn, 0), qn, in, ṙn and Ṫn) for some n < ω; we will now proceed to construct them
for n+ 1.
Step 1: Choose a height L∗ = (4k∗, 0) large enough such that for each α ∈
supp(qn, Ln) r Anm of type t, there is a height L with Ln < L < L∗ such that
‖qn(α,L)‖t,L ≥ n+ 1.
It is forced (by qn) that Lemma B12.2 holds for Ṫn and ε := 1/(nP

<Ln
·nP

<L∗ ). Hence
there is a name for a tree level ṁ such that from ṁ upwards, there are many fat
nodes in Ṫn. We can use Lemma B7.4 to strengthen qn to q′ such that

• qn and q′ are identical below L∗,
• the nm norms of q′ remain at least n+ 2 starting from 4k∗, and
• there is an m∗ > in such that q′ 
 m∗ ≥ ṁ.

Hence Lemma B12.2 is forced to hold for this m∗ as well, and there is a name
Ḟ ⊆ Ṫn ∩ 2m

∗ for a “large” set of fat nodes. This m∗ will be our in+1.
Step 2: We apply Lemma B7.4 a second time to strengthen q′ to q′′ such that

• (qn and) q′ and q′′ are identical below L∗,
• the nm norms of q′′ remain at least n+ 1 starting from 4k∗, and
• q′′ essentially decides Ḟ , i. e. q′′ decides Ḟ below some height L∗∗ = (4k∗∗, 0).

Since we already know Ṫ is read continuously by p (and thus also by any stronger
condition), we pick L∗∗ large enough such that q′′ decides Ṫn ∩ 2in+1 below L∗∗,
and also such that the nm norms of q′′ are at least n + 4 starting from 4k∗∗ and
4k∗∗ > 2in+1+2. This L∗∗ = (4k∗∗, 0) will be our Ln+1 = (4kn+1, 0). So far, we have
defined Ln+1 and in+1 and fulfilled properties (i), (iv) and (v).

38 The reason for the term “+2” will become apparent in Step 3 of the construction below.
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Step 3: The set Ḟ is forced to be a subset of Ṫn∩2in+1 of relative size at least 1−ε,
and both Ḟ and Ṫn ∩ 2in+1 are decided by q′′ below Ln+1. We also already know
that Ṫn ∩ 2in+1 does not depend on any indices in Acn ∪ Aslalom below Ln. Hence
we can construct a name Ḟ ′ ⊆ Ḟ , also not depending on such indices, such that
Ḟ ′ has relative size at least 1− ε · nP

<Ln
= 1− 1/nP

<L∗ ≥ 1/2, as follows:
Each η ∈ poss(q′′, <Ln+1) determines objects Fη ⊆ Sη in the sense that

q′′ ∧ η 
 Ḟ = Fη and Ṫn ∩ 2in+1 = Sη.

We call two possibilities η, η′ ∈ poss(q′′, <Ln+1) equivalent if they differ only on
indices in Acn ∪ Aslalom below Ln. (Note that this implies Sη = Sη′.) Obviously,
each equivalence class [η] has size at most nP

<Ln
; for each such equivalence class,

let F ′
[η] :=

⋂
ϑ∈[η] Fϑ; the relative size of any such F ′

[η] then is at least 1 − ε · nP
<Ln

.
Hence the function mapping each η to F ′

[η] defines a name Ḟ ′ (not depending on
any indices in Acn ∪ Aslalom below Ln) for a subset of Ṫn ∩ 2in+1 of relative size at
least 1/2.
Since Ṫn is forced to have ṙn ∈ 2in as its stem and measure greater than 1/2 · 2in ,
the size of Ṫn ∩ 2in+1 is forced to be greater than 2in+1−(in+1), and the size of Ḟ ′ is
then forced to be greater than 2in+1−(in+1) · 1/2 = 2in+1−in−2, which is greater than
2in+1/nB

Ln
by property (iv).

So far, we have achieved the following: Ṫn ∩ 2in+1 and its subset Ḟ ′ are decided by
q′′ below Ln+1 not using any indices in Acn∪Aslalom below Ln; q′′ forces each s ∈ Ḟ ′

to fulfil λ([Ṫn]∩ [s]) ≥ (1− ε) · 2−in+1; and as a subset of 2in+1 , Ḟ ′ is forced to have
measure greater than 1/nB

Ln
.

Step 4: We define the condition q∗ ≤ q′′ by replacing all lim sup creatures in q′′

starting from L∗ and below Ln+1 by arbitrary singletons. So q∗ is identical to qn
below Ln, and identical to q′′ starting from Ln+1. Note that so far, the nm norms of
q∗ remain at least n+1 starting from 4kn. In the next few (lengthy) steps, we will
define qn+1 from q∗ by modifying the creatures in q∗ starting from Ln and below
Ln+1 such that afterwards, the nm norms of qn+1 will remain at least n starting
from 4kn, and there will be witnesses for lim sup norms at least n between Ln and
Ln+1, as required to fulfil property (ii).
Since q∗ decides both Ṫn ∩ 2in+1 and Ḟ ′ below Ln+1 not using any indices in Acn ∪
Aslalom below Ln, we decompose the set of possibilities poss(q∗, <Ln+1) into U ×
V ×W as follows:

• U := poss(q∗, <Ln) = poss(q,<Ln),
• V are the possibilities of q∗ starting from Ln and below L∗, and
• W are the possibilities of q∗ starting from L∗ and below Ln+1, for which we

only have to consider the nm part, as the lim sup part has just been defined
to be arbitrary singletons.

We will now proceed as follows: For each ν ∈ W , we will perform an induction
on the heights starting from Ln up to (L∗)− to arrive at a candidate D(ν) for the
creatures of qn+1 between Ln and L∗; we will then use bigness to see that for many
ν ∈ W , the candidates D(ν) will be equal, and we will use that fact to finally
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define qn+1.
Step 5: Fix some ν ∈ W . Recall that relevant heights (in the context of this proof)
are those L ∈ heights tg for some tg 6= ct such that there is some αL ∈ supp(q∗)∩Atg
with a non-trivial q∗(αL, L). We will inductively go through all heights L with
Ln ≤ L < L∗ (although we will only have to do something for relevant heights)
and successively define conditions qL ≤ q∗ such that for any Ln ≤ K < L < L∗

• qL ≤ qK and qK and qL are identical up to (including) K,
• the norm of qK(αK , K) decreased by at most 1 when compared with the norm

of q∗(αK , K), and
• the norm of qK(αL, L) decreased by at most i/nB

L when compared with the
norm of q∗(αL, L), where i is the number of steps already performed in the
induction (i. e. the number of heights between Ln and K).

This means that the induction successively strengthens the non-trivial creature
at height L until the induction height is L itself; after that step, the non-trivial
creature at height L is final and will no longer be modified.
We will also define functions FL mapping each η ∈ U × V to a subset FL(η) of
2in+1 such that

• qL
− ∧ (η, ν) 
 FL(η) ⊆ Ḟ ′,

• FL(η) is of relative size at least 1/nB
L , and

• FL(η) does not depend on any indices in Acn ∪ Aslalom below L.
The preparation for the induction (so that we can start with L = Ln) is simply to
set qL−

n := q∗ and FLn := Ḟ ′.39

Now assume we are at some step Ln ≤ L < L∗ of the iteration and have already
defined qK

− and FK for all Ln ≤ K < L. If L is not a relevant height or if
the associated index is in Anm ∪ Ann, we do not have to do anything and can set
qL := qL

− and FL+
:= FL. So assume the creature C := qL

−
(αL, L) associated

with the relevant height L is of type cn or slalom.
We now further decompose V (restricted to just those possibilities which are com-
patible with C) into

• V −, the part below L,
• C, the part at height L, and
• V +, the part strictly above L (and below L∗).

Hence we can write every η ∈ U × V (which is compatible with C) as (η−, ηL, η+),
where η− ∈ U × V −, ηL ∈ C and η+ ∈ V +.
If we now fix η− and η+, the function FL is reduced to an F (η−,η+) mapping each
X ∈ C to a subset of 2in+1 of relative size at least 1/nB

L . Hence we can use (depending
on the type of C) either Lemma B11.4 or Lemma B12.1 to strengthen the creature

39 We ask the reader to excuse the abuse of notation here; a name and a function are, of course,
not the same thing, but for all practical purposes, they might as well be in the context of this
step of the proof.
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C to D(η−, η+), decreasing the norm by at most 1/nB
L , such that

F ∗(η−, η+) :=
⋂

X∈D(η−,η+)

F (η−,η+)(X)

is a set of relative size at least 1/nB
L+.

If we now fix only η+ and successively iterate this strengthening for all η− ∈ U×V −,
we ultimately arrive at some D(η+) ⊆ C with the norm decreasing by at most
nP
<L/nB

L < 1 in total. Note that since nS
L < nB

L+ , there are less than nB
L+ many possible

values for D(η+) and we can apply strong bigness in the form of Lemma B5.8 on
the V + part to strengthen all qL−

(αK , K) for L+ ≤ K < L∗ to qL(K), decreasing
the norm by at most 1/nB

K at each height K, such that for each η+ in the resulting
smaller V +, we get the same D := D(η+).40 This D then will be the (final) value
of qL(αL, L). If we now define

FL+

(η) :=
⋂
X∈D

FL(η−, X, η+),

by the considerations above, this is a set of relative size at least 1/nB
L+ , does not

depend on any indices in Acn ∪Aslalom below L+, and is forced to be a subset of Ḟ ′

by qL ∧ (η, ν).
Having now defined qL and FL+ , we can proceed with the next step of the inductive
construction.
Step 6: We perform the construction in Step 5 independently for each ν ∈ W (i. e.
starting with the original q∗ each time). We thus get a (potentially) different q(L

∗)−
ν

for each ν. Since the number of possible values for q(L
∗)−

ν is less than nB
L∗ , we can

now apply Lemma B5.8 again to thin out the creatures q∗(αK , K) for L∗ ≤ K <
Ln+1 to q∗(αK , K), decreasing the norm by at most 1/nB

K at each height K, such
that for each ν in the resulting smaller W , we get the same q∗∗ := q

(L∗)−
ν . We can

then finally define qn+1 := q<L∗
∗∗

_q≥L∗
∗ , which fulfils property (ii) by construction.

Step 7: Now, this qn+1 forces the family of “terminal” F (L∗)−
ν (for ν ∈ W ) to con-

stitute a name Ḟ ′′ for a subset of Ḟ ′ ⊆ 2in+1 of relative size greater than 0, and
qn+1 decides Ḟ ′′ below Ln+1 not using any indices in Acn ∪Aslalom – due to the fact
that below Ln, even the name Ḟ ′ did not depend on such indices; from Ln up to
L∗, we removed the dependence on such creatures height by height in Step 5; and
from L∗ up to Ln+1, by Step 4 only singletons remain for such lim sup creatures,
anyway.
Hence we can pick some name ṙn+1 for an arbitrary fixed element of Ḟ ′′ (e. g. the
first element in the natural lexicographic order), and this name fulfils properties
(iii) (by construction) and (vi) (since ṙn+1 is a node in Ṫn, whose stem is forced to
be ṙn by qn).
Step 8: Since qn+1 forces ṙn+1 ∈ Ḟ ′′, ṙn+1 is a fat node, which means Ṫ ′ := Ṫn∩[ṙn+1]
is forced to have measure greater than 1−ε

2in+1
. The tree Ṫ ′ is read continuously by

40 Keep in mind that since we are working in Qnon-ct, there will be no K ∈ heights ct, and hence we
can apply Lemma B5.8.

92



B13 Failed Attempts and Open Questions

qn and hence also by qn+1; in particular, for each j > in+1, the finite initial tree
Ṫ ′ ∩ 2j is decided below some Lj. For each η ∈ poss(qn+1, <Lj), let T j

η be the
corresponding value of Ṫ ′ ∩ 2j (which is a subset of 2j with at least 2j · 1−ε

2in+1
many

elements). It is clear that for j < j′ and η ∈ poss(qn+1, <Lj), η′ ∈ poss(qn+1, <Lj′)
such that η ⊆ η′, it is forced that the corresponding finite trees are also nested,
i. e. T j′

η′ ⊆ T j
η .

We now implement a reduction similar to Step 3 to eliminate the dependency on
indices in Acn ∪ Aslalom: We call two possibilities η, η′ ∈ poss(qn+1, <Lj) equivalent
if they differ only on indices in Acn∪Aslalom below Ln+1. Since from L∗ up to Ln+1,
there are only singletons for such lim sup creatures, each equivalence class [η] has
size at most nP

<L∗. For each such equivalence class, let T j
[η] :=

⋂
ϑ∈[η] T

j
ϑ. Note that

by the nesting of the T j
ϑ, the T

j
[η] are also nested (for j, j′, η, η′ as above), and the

size of T j
[η] is at least

2j · (1− ε · nP
<L∗)

2in+1
=

2j · (1− 1/nP
<Ln

)

2in+1
.

So qn+1 forces the family of such T j
[η] (for j > in+1 and η ∈ poss(qn+1, <Lj)) to

constitute a name Ṫn+1 as required to fulfil property (vii).

Corollary B12.4. Q forces non(N ) ≤ κnn.

Proof. Fix a condition p and a sequence of names of null sets 〈Ṅi | i ∈ I〉 which p
forces to be a basis of null sets. As described above, for each i ∈ I, we can assume
that Ṅi = NṪi

for some name for a sturdy tree Ṫi. Let Ṙ consist of all reals read
rapidly only using indices in Anm ∪ Ann.
By the preceding lemma, for each Ṫi, there is a q ≤ p in Qnon-ct and an ṙ ∈ Ṙ such
that q 
 ṙ ∈ [Ṫi] and henceQnon-ct 
 ṙ /∈ NṪi

; it follows thatQnon-ct 
 “Ṙ is not null”
and hence also Q 
 “Ṙ is not null”.

This proves (M3) of Theorem B1.1, and hence completes the proof of that theorem
entirely.

B13 Failed Attempts and Open Questions

To counteract the common habit of only talking about successes and withholding
the failed attempts that went before, we want to give a very brief account of two
results we attempted, but failed to achieve in the course of writing this chapter.
For one, we wanted to add κrp many factors which would carefully increase the
cardinals r and u to κrp, a cardinal between κcn and κct. The plan was to use a
forcing poset Qrp (a variant of the forcing poset from [GS90]) in each factor. While
it seemed quite simple to align the structure of Qκrp

rp with the structure of Qct, κct

to allow the proof of section B8 to function for both Qκrp
rp and Qct, κct , it was not

clear why the κct many Sacks-like reals would preserve u ≤ κrp, or indeed why the
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old reals would be unreapable even after multiplying the forcing poset with the
product of merely two copies of Qrp.
The second idea we had was to add Cohen forcing to the construction to control
the value of cov(M) in the resulting model. This would have complicated a lot of
the proofs, since many things would then have turned into names dependent on the
Cohen-generic filter; however, a more fundamental problem is that this approach
destroys the Sacks property of the “upper” part of the construction:

Lemma B13.1. Let C be the Cohen forcing poset and let S be the Sacks forcing
poset. Then V C×S does not have the Sacks property over V C.
More generally, consider two forcing posets X and Y, where X adds an unbounded
real ẋ and Y adds another new real ẏ. Then V X×Y does not have the Sacks property
over V X.

Proof. We prove the stronger claim. Let τ̇ denote the name of some code for
ẋ-dependent initial segments of the other real ẏ, i. e. τ̇(n) := 〈ẏ|ẋ(n)〉.

Assume that we have some sequence of X-names Ḃk for a (k + 1)-slalom catching
τ̇(k):


X |Ḃk| = k + 1

(p, q) 
 ∀ k < ω : Ḃk ⊆ 2ẋ(k) ∧ τ̇(k) ∈ Ḃk

Let n be the index of the first value of ẋ not bounded by p. Let T be the tree of
initial segments of ẏ; since ẏ is a new real, T must have unbounded width. Hence
there is some m such that the τ̇(m) has at least n + 2 many possible values. Fix
such an m. Then find p′ ≤ p forcing ẋ(n) = m∗ ≥ m, and let p∗ ≤ p′ be such that
p∗ decides Ḃn, i. e. p∗ 
 Ḃn = B for some B.
Since τ̇(m∗) has at least n + 2 many possible values, there is some possible value
v that is not in B. But then there is a q∗ ≤ q forcing τ̇(m∗) = v, and hence

(p∗, q∗) 
 τ̇(m∗) 6∈ B,

which is a contradiction.

The point of this lemma is that if we do not have the Sacks property, cof(N ) will
increase.
We turn our attention towards related work and open questions. Several recent
results [KTT17, GKS17, KST17] have constructed models in which eight or even all
ten conceivably different cardinal characteristics in Cichoń’s diagram take different
values. The constructions involved are all finite support iterations, however, which
necessarily means the left side of Cichoń’s diagram must be less than or equal to
the right side, in particular non(M) ≤ cov(M) (since the cofinality of the iteration
length lies between these two cardinal characteristics). In contrast, [FGKS17] and
our improvement thereof have non(M) > cov(M).
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However, as far as Cichoń’s diagram is concerned, our creature forcing construction
still has rather strict limitations as explained in the preceding section. Necessar-
ily, d = ℵ1 by the ωω-boundedness of the forcing posets involved; the only open
question regarding Cichoń’s diagram and our construction is whether it is possible
to separate cov(N ) from ℵ1.

Question F. Is it possible to modify the construction to achieve ℵ1 < cov(N )?

Finally, our failed attempt to introduce r and u into the construction motivates
the following general question:

Question G. Are there any well-known cardinal characteristics which can be set
via a lim sup-type creature forcing poset compatible with the structure of Q?
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CHAPTER C

HALFWAY NEW
CARDINAL CHARACTERISTICS

This chapter is based on [BHK+18], which is joint work with Jörg Brendle, Lorenz
J. Halbeisen, Marc Lischka and Saharon Shelah.

C1 Introduction

Like the first two chapters, this research forms part of the study of cardinal char-
acteristics of the continuum.
Based on the well-known cardinal characteristics s, r and i,41 we were inspired to
define specialised variants of these (all of them related in some way to asymptotic
density, in particular asymptotic density 1/2) and successfully proved a number of
bounds and consistency results for them.
We will use the following concept in a few of the proofs:

Definition C1.1. A chopped real is a pair (x,Π) where x ∈ 2ω and Π is an interval
partition of ω. We say a real y ∈ 2ω matches (x,Π) if y�I = x�I for infinitely many
I ∈ Π.

We note that the set Match(x,Π) of all reals matching (x,Π) is a comeagre set
(see [Bla10, Theorem 5.2]).
We remark that we will not rigidly distinguish between a real r in 2ω and the set
R := r−1(1), or conversely, between a subset of ω and its characteristic function.
This chapter is structured as follows.
41 See the preface to this thesis for definitions and references.
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Chapter C: Halfway New Cardinal Characteristics

• In section C2, we introduce and work on several cardinal characteristics
related to s.

• In section C3, we conduct a particularly sophisticated proof for a consistency
claim from the preceding section.

• In section C4, we introduce and work on cardinal characteristics mostly re-
lated to r and i.

• The final section C5 summarises the open questions.

C2 Characteristics Related to s

Recall the following concepts from number theory.

Definition C2.1. For X ∈ [ω]ω and 0 < n < ω, define the initial density (of X
up to n) as

dn(X) :=
|X ∩ n|

n

and the lower and upper density of X as

d(X) := lim inf
n→∞

(dn(X)) and d̄(X) := lim sup
n→∞

(dn(X)),

respectively. In case of convergence of dn(X), call

d(X) := lim
n→∞

(dn(X))

the asymptotic density or just the density of X.

We define four relations on [ω]ω× [ω]ω and their associated cardinal characteristics.

Definition C2.2. Let S,X ∈ [ω]ω. We define the following relations:
• S bisects X in the limit (or just S bisects X), written as S |1/2 X, if

lim
n→∞

|S ∩X ∩ n|
|X ∩ n|

= lim
n→∞

dn(S ∩X)

dn(X)
=

1

2
.

• For 0 < ε < 1/2, S ε-almost bisects X, written as S |1/2±ε X, if for all but
finitely many n < ω we have

|S ∩X ∩ n|
|X ∩ n|

=
dn(S ∩X)

dn(X)
∈
(
1

2
− ε,

1

2
+ ε

)
.

• S weakly bisects X, written as S |w1/2 X, if for any ε > 0, for infinitely many
n < ω we have

|S ∩X ∩ n|
|X ∩ n|

=
dn(S ∩X)

dn(X)
∈
(
1

2
− ε,

1

2
+ ε

)
.
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• S bisects X infinitely often, written as S |∞1/2 X, if for infinitely many n < ω
we have

|S ∩X ∩ n|
|X ∩ n|

=
dn(S ∩X)

dn(X)
=

1

2
.

Definition C2.3. We say a family S of infinite sets is


bisecting (in the limit)
ε-almost bisecting
weakly bisecting
infinitely often bisecting

if for each X ∈ [ω]ω there is some S ∈ S such that


S bisects X (in the limit)
S ε-almost bisects X
S weakly bisects X
S bisects X infinitely often

and denote the least cardinality of such a family by s1/2, s1/2±ε, sw1/2, s∞1/2, respectively.

Theorem C2.4. The relations shown in Figure 10 hold.

ℵ1 s sw1/2 s∞1/2

cov(M) s1/2±ε s1/2 non(N )

d

non(M)

2ℵ0

Figure 10: The ZFC-provable and/or consistent inequalities be-
tween s1/2, s1/2±ε, sw1/2, s∞1/2 and other well-known cardinal charac-
teristics, where −→ means “≤, consistently <” and 99K means “≤,
possibly =”.

Proof. Recall that it is known that s ≤ non(M) and s ≤ non(N ) (see e. g. [Bla10,
Theorem 5.19]) as well as s ≤ d (see e. g. [Hal17, Theorem 9.4] or [Bla10, Theorem
8.13]).
s ≤ sw1/2 ≤ s∞1/2: An infinitely often bisecting real is a weakly bisecting real (being
equal to 1/2 infinitely often implies entering an arbitrary ε-neighbourhood of 1/2
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infinitely often), and a weakly bisecting real is a splitting real (if a real X does not
split another real Y , the relative initial density of X in Y , that is

dn(X ∩ Y )

dn(Y )
,

cannot be close to 1/2 infinitely often). Hence a family witnessing the value of s∞1/2
gives an upper bound for the value of sw1/2 (and analogously for s ≤ sw1/2).
s ≤ s1/2±ε ≤ s1/2: The first claim follows since an ε-almost bisecting real is
a splitting real by the fact that finite sets have density 0 and cofinite sets have
density 1, and hence if X does not split Y , the relative initial densities of X and
ωrX in Y tend to 0 and 1, respectively (or vice versa). The second claim follows
since a bisecting real is an ε-almost bisecting real by definition.
cov(M) ≤ s1/2±ε: Given a family S witnessing the value of s1/2±ε, take S ∈ S.
Define a chopped real based on S with the interval partition having the partition
boundaries at the n!-th elements of S; the sets matching this chopped real form
a comeagre set which consists of reals not halved by S (as the matching intervals
grow longer and longer, “pulling” the relative initial density above 1− 1/n). Hence
the family E(S) of those reals that are ε-almost bisected by S is a meagre set
(as its complement is a superset of a comeagre set), and {E(S) | S ∈ S} is a
2ω-covering consisting of meagre sets.
sw1/2 ≤ s1/2: A bisecting real is a weakly splitting real – for the relative density
to converge to 1/2, it has to eventually be arbitrarily close to 1/2, and hence also
within an arbitrary ε-neighbourhood of 1/2 infinitely often. The same argument
using the families witnessing the cardinal characteristics holds.
s∞1/2 ≤ non(M): For a given X ∈ [ω]ω, we show that the set B(X) of reals
bisectingX infinitely often (contains and hence) is a comeagre set. For any F /∈ M,
F ∩B(X) is non-empty, hence it contains a real bisecting X infinitely often.
Given X as above, let f(n) :=

∑n
k=0 k! and define an interval partition Π with

partition boundaries precisely after the f(2n)-th elements of X. Define a chopped
real (S,Π) as follows: Let S ∩ (ωrX) = ∅ (i. e. S contains no elements not in X).
For each 0 < n < ω, the n-th interval In ∈ Π contains at least (2n − 1)! + (2n)!
elements of X. Let S skip the first (2n−1)! of these elements and contain the rest.
Any real that matches (S,Π) indeed has a lower relative density of 0 in X and an
upper relative density of 1 in X and hence bisects X infinitely often. The set of
all reals matching (S,Π) is comeagre, as required to finish the proof above.
s∞1/2 ≤ d: Let D be a dominating family. Without loss of generality assume that
every member g of D is strictly increasing and satisfies g(0) > 0. Let X ∈ [ω]ω and
let fX be its enumeration. Pick a gX =: g from D that dominates fX and define
G : ω → ω by G(n) := g(n+1)(0) for every n < ω. Then, for sufficiently large n,

G(n) ≤ fX(G(n)) < g(G(n)) = G(n+ 1).

Hence (for sufficiently large n) every interval [G(n), G(n+ 1)) contains at least one
element of X and at most G(n+1)−G(n) many. Now iteratively define a function
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Γ: ω → ω by Γ(0) := 0, Γ(1) := G(0) = g(0) and Γ(n + 1) := G
(∑n

k=0 Γ(k)
)
=

G(Σn) and consider the interval partition with partition boundaries 〈Γ(n) | n < ω〉;
for sufficiently large n, every interval

In :=
[
Γ(n),Γ(n+ 1)

)
=
[
G
( n−1∑

k=0

(Γ(k))
)
, G
( n∑

k=0

(Γ(k))
))

=
[
G(Σn−1), G(Σn−1 + 1)

)
∪ . . . ∪

[
G(Σn−1 + Γ(n)− 1), G(Σn−1 + Γ(n))

)
contains at least Γ(n) many elements of X and at most Γ(n + 1) − Γ(n) many of
them.
The real defined as the union of every other interval, i. e. the intervals I2k =
[Γ(2k),Γ(2k + 1)), will yield a real YX bisecting X infinitely often: Since the
number of elements of X which are in any interval In is at least as large as the
lower boundary of In, and since YX is defined to alternate between consecutive
intervals, this means the relative initial density infinitely often reaches 1/2, as each
I2k “pushes” the relative initial density above 1/2 (and each I2k+1, which is disjoint
from YX , “pulls” it below 1/2).
s∞1/2 ≤ non(N ): Given some X ∈ [ω]ω with enumerating function fX and a
Lebesgue-random set S (i. e. such that ∀n < ω : Pr[n ∈ S] = 1/2), the function
g(n) := |X ∩ S ∩ fX(n)| − n/2 defines a balanced random walk with step size 1/2,
since

g(n+ 1)− g(n) =

{
+1/2 fX(n) ∈ S,
−1/2 fX(n) /∈ S.

From probability theory we know that for almost all S, g(n) will be 0 infinitely
often. Equivalently, almost surely,

g(n)

n
+

1

2
=

|X ∩ S ∩ fX(n)|
n

will be 1/2 infinitely often.
In other words, for any X ∈ [ω]ω, the set of all S not bisecting X infinitely often
is a null set. By contraposition, for any X ∈ [ω]ω, any non-null set contains a set
S that bisects X infinitely often.
s1/2 ≤ non(N ): Let X ∈ [ω]ω and F /∈ N . Enumerating X =: {x0, x1, x2, . . .}, we
define functions fX,n and fX as follows:

fX,n : [ω]
ω → {0, 1} : Y 7→

{
0 xn /∈ Y

1 xn ∈ Y

fX : [ω]ω → [0, 1] : Y 7→

limk→∞

∑k
n=1 fX,n(Y )

k
if the limit exists

0 otherwise

It is clear that λ(f−1
X,n({1})) = 1/2. Hence, the fX,n are identically distributed ran-

dom variables on the probability space [ω]ω with probability measure the Lebesgue
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measure λ. Moreover, they are independent and have finite variance. By the law
of large numbers it follows that fX is almost surely equal to 1/2, in other words
λ(f−1

X ({1/2})) = 1. This means that with

SX := {Y ∈ [ω]ω | fX(Y ) = 1/2} = {Y ∈ [ω]ω | Y |1/2 X},

we have that λ(SX) = 1 and hence SX /∈ N . Hence F ∩ SX 6= ∅ and there is
some S ∈ F such that S |1/2 X. Since all this holds for any X ∈ [ω]ω, we have
s1/2 ≤ non(N ).
Con(non(M) < s1/2±ε): This is implied by Con(non(M) < cov(M)) as wit-
nessed by the Cohen model.
Con(s∞1/2 < s1/2±ε): This also follows from Con(non(M) < cov(M)).

Con(s∞1/2 < non(M)), Con(s∞1/2 < d) and Con(s∞1/2 < non(N )): In the Cohen
model, we have ℵ1 = s = s∞1/2 = non(M) < non(N ) = d; and in the random model,
we have ℵ1 = s∞1/2 = d < non(M).

Con(cov(M) < s ≤ s1/2): In the Mathias model, we have cov(M) < s = 2ℵ0 ,
see [Hal17, Theorem 26.14].
Con(s1/2 < non(N )): See Theorem C3.5 in the subsequent section.

Finally, we remark that b is incomparable with all of our newly defined cardinal
characteristics. This is because in the Cohen model, s is strictly above b and so
are all of our characteristics; and in the Laver model, non(N ) is strictly below b
and so are all of our characteristics.

C3 Separating s1/2 and non(N )

To prove Con(s1/2 < non(N )), we will use a typical creature forcing construction
to increase non(N ) and show that the forcing poset does not increase s1/2.
We will not go into too much detail regarding creature forcing in this chapter; see
[RS99] for the most general and most detailed explanation, or refer to the previous
two chapters for more concise expositions. The specific forcing poset we use here
also appears in [FGKS17] and chapter B.

Definition C3.1. We define a forcing poset P as follows: A condition p ∈ P is a
sequence of creatures p(k) such that each p(k) is a non-empty subset of

POSSk :=

{
F ⊆ 2Ik

∣∣∣∣ |F |
|2Ik |

≥ 1− 1

2ak

}
for some sufficiently large consecutive intervals Ik ⊆ ω and strictly increasing
ak < ω (for our construction, let Ik be an interval of length 22

k and let ak := k)
and such that, letting the norm ‖ · ‖ of a creature C be defined by ‖C‖ := log2 |C|,
p fulfils lim supk→∞ ‖p(k)‖ = ∞. The order is q ≤ p iff q(k) ⊆ p(k) for all k < ω
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(i. e. stronger conditions consist of smaller subsets of POSSk). Note that P 6= ∅
since lim supk→∞ ‖POSSk ‖ = ∞.
Given a condition p such as above, the finite initial segments in p�k+1 (for k < ω) are
sometimes referred to as possibilities and denoted by poss(p,≤k) :=

∏
`≤k[p(`)]

1 =
{〈{z(`)} | ` ≤ k〉 | ∀ ` ≤ k : z(`) ∈ p(`)}. We may also use the notation
poss(p,<k) := poss(p,≤k − 1). When η ∈ poss(p,≤k), we write p ∧ η to denote
η_p�[k+1,ω).42

Define the forcing poset Q as the countable support product Q :=
∏

α<ω2
Qα, where

each Qα = P. We will work with the dense subset of modest conditions of Q, i. e.
conditions p ∈ Q such that for each k < ω, there is at most one index αk such that
|p(αk, k)| > 1. We call such creatures p(αk, k) non-trivial. (An easy bookkeeping
argument shows that the modest conditions do indeed form a dense subset of Q.)
Modest conditions p have the advantage that for each k < ω, poss(p,<k) is finite
and even bounded by maxposs(<k) :=

∏
j<k |POSSk |, which makes iterating over

all possibilities below a certain level possible.

By the usual ∆-system argument, CH implies that Q is ℵ2-cc. (For details, see
[FGKS17, Lemma 3.3.1] or Lemma B4.18.) By the usual creature forcing argu-
ments, it is clear that Q satisfies the finite version of Baumgartner’s axiom A and
hence is proper and ωω-bounding, that Q continuously reads all reals and that Q
preserves all cardinals and cofinalities. (For details, see [FGKS17, section 5] or
section B6 and section B7 in chapter B.) In particular, given any condition p ∈ Q
and any name ṙ for a real, we can find q ≤ p such that each η ∈ poss(q,<k) already
decides ṙ�min(Ik) (which we refer to as “q reads ṙ rapidly”). We will reproduce an
abbreviated version of the proof of V Q � non(N ) ≥ ℵ2 here:

Lemma C3.2. Assuming CH in the ground model, Q forces that non(N ) ≥ ℵ2.

Proof. First, note that for α < ω2, the generic object Ṙα is a sequence of Ṙα(k) ⊆
2Ik of relative size at least 1 − 1/2ak . Since 〈ak | k < ω〉 is strictly increasing, it is
clear that ∏

k<ω

(
1− 1

2ak

)
> 0

and hence the set

{r ∈ 2ω | ∀ k < ω : r�Ik ∈ Ṙα(k)}

is positive and

Ṅα := {r ∈ 2ω | ∃∞ k < ω : r�Ik /∈ Ṙα(k)}
42 The usual creature forcing notation, which is used quite a lot in chapter B, defines the set

of possibilities more abstractly as poss(p,≤k) :=
∏

`≤k p(`) and defines p ∧ η as a condition
with an extended trunk (a concept which we did not deem necessary to introduce in this third
chapter). Since working with possibilities η as sequences of singletons suffices for our proofs and
is conceptually easier, we instead opted for the simpler definition in this third chapter.

103



Chapter C: Halfway New Cardinal Characteristics

is a name for a null set.
Now, given a name ṙ ∈ 2ω for a real and a p ∈ Q which reads ṙ rapidly, we can pick
an α < ω2 not in the support of p and add it to the support to get a (without loss
of generality) modest condition p′; then p′ still reads ṙ rapidly not using the index
α. Since we only require the lim sup of the norms to go to infinity, one can then
show that p′ 
 ṙ ∈ Ṅα. From this fact and ℵ2-cc, it follows that for any κ < ω2,
any sequence of names of reals 〈ṙi | i < κ〉 is contained in a null set of V Q.43

We will now prove that the ground model reals are a bisecting family in V Q. To
show this, we will use the following combinatorial lemma.

Lemma C3.3. If R,S ⊆ ω are disjoint finite sets of sizes r and s, respectively,
s = c · r for some c > 1, and A ⊆ R, B ⊆ S such that

|B|
|S|

∈
(
1

2
− ε,

1

2
+ ε

)
for some ε > 0, then

|A ∪B|
|R ∪ S|

∈
(
1

2
− ε− 1

c
,
1

2
+ ε+

1

c

)
.

Proof. Since

1

1 + 1/c
≥ 1− 1

c
,

we have the lower bound

|A ∪B|
|R ∪ S|

>
s · (1/2 − ε)

r + s
=
s · (1/2 − ε)

s · 1/c + s
=

1/2 − ε

1 + 1/c

≥
(
1

2
− ε

)(
1− 1

c

)
≥ 1

2
− ε− 1

c
.

For the upper bound, we get

|A ∪B|
|R ∪ S|

<
r + s · (1/2 + ε)

r + s
=
s · 1/c + s · (1/2 + ε)

s · 1/c + s

=
1/2 + ε+ 1/c

1 + 1/c
≤ 1

2
+ ε+

1

c
.

43 The actual argument for p 
 ṙ ∈ Ṅα involves a slightly more complicated norm than we defined
above; however, since the parameters of the creature forcing poset P are immaterial for the more
complicated proof in Lemma C3.4 below, we opted to omit the details for this chapter. Details
can be found in section B11.
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Lemma C3.4. 2ω ∩ V is a bisecting family in V Q.

Proof. We will show the following: Given a modest condition p ∈ Q and a name
Ẏ for a real, we can find q ≤ p and a ground model real X such that q 
 X |1/2 Ẏ .
In order to do this, we will construct p∗ ≤ p as well as m0 := 0 < m1 < m2 < . . .
and choose 〈Pi | i < ω〉 with P0 := 1/2, Pi > 0 for all i < ω and limi→∞ Pi = 0 such
that the following statements hold:
(i) The condition p∗ is not only modest, but even fulfils that for each interval

Ji := [mi,mi+1), there is exactly one ki ∈ Ji such that |p∗(αki , ki)| > 1, i. e.
such that the creature Ci := p∗(αki , ki) is non-trivial.

(ii) Due to continuous reading, we can find for each η ∈ poss(p∗, <ki) and each
S ∈ Ci finite sets Yη,S ⊆ mi+1 and Zη,S ⊆ Ji such that

p∗ ∧ (η_{S}) 
 Ẏ �mi+1
= Yη,S and Ẏ �Ji = Zη,S.

(iii) Note that due to property (i), Ni+1 := | poss(p∗, <mi+1)| = | poss(p∗,≤ki)|
only depends on the i-th creature Ci = p∗(αki , ki), since from ki + 1 to mi+1,
there are only singletons in p∗. Hence we can choose mi+1 such that mi+1 �
Ni+1.

(iv) For all 0 < i < ω, we have Ni ≥ i6. Additionally, let N1 = |C0| ≥ 100. (This
is possible without loss of generality since we can just “skip” creatures which
do not have sufficiently many elements to fulfil these bounds.)

(v) Letting the name Ṁi denote the number of elements in Ẏ �[mi,mi+1)
, we can

ensure that p∗ forces for all i < ω that Ṁi ≥ max{2i ·mi, Ni+1}.
(vi) Letting Ei := dNi · Pie, letting ei(η, S) be the Ei-th element of Zη,S and

letting ei := maxη,S ei(η, S), we can finally choose mi+1 large enough such
that mi + ei < mi+1.

We now make a probabilistic argument using the following formulation of Cher-
noff’s bound (see [AS16, Theorem A.1.1]): Given mutually independent random
variables 〈xi | 1 ≤ i ≤ k〉 with Pr[xi = 0] = Pr[xi = 1] = 1/2 for all 1 ≤ i ≤ k and
letting Sk :=

∑
1≤i≤k xi, it follows that for any a > 0,

Pr
[
Sk −

k

2
> a

]
< exp

(
− a2

2k

)
.

We use this bound as follows: Fix n < ω. Let X be some randomly chosen subset
of Jn and denote the probability space by Ω. Fix η ∈ poss(p∗, <kn), S ∈ Cn and
m ∈ Jn with m ≥ mn + en(η, S). We consider the probability that this randomly
chosen X does not bisect Zη,S ∩ m with error at most 1

2n
; denote this event by

FAIL(X, η, S,m).
Let k ≥ En denote the number of elements in Zη,S ∩ m. Then the choice of X
(or, more precisely, the choice of the initial part of X relevant for this argument)
amounts to tossing k fair coins xj with values in {0, 1}, summing up the results and
dividing by k, and comparing the gap between the result and 1/2. By Chernoff’s
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bound above we have

Pr[FAIL(X, η, S,m)] = Pr

[ ∑
1≤i≤k

xi
k

− 1

2
>

1

2n

]
= Pr

[ ∑
1≤i≤k

xi −
k

2
>

k

2n

]

< exp
(
−(k/2n)2

2k

)
= exp

(
− k

8n2

)
.

Hence the probability of failing for at least one m ∈ Jn (with Zη,S ∩m ≥ En) is
bounded as follows (note that we only have to sum over the elements of Zη,S ∩m):

Pr[FAIL(X, η, S)] := Pr[∃m ≥ mn + en(η, S) : FAIL(X, η, S,m)]

<
∑
k≥En

exp
(
− k

8n2

)
=

exp(−En/8n2)

1− exp(−1/8n2)

Using the fact that 1
1−exp(−x)

≤ 2
x
for x ∈ (0, 1), we get

Pr[FAIL(X, η, S)] < 16n2 · exp
(
− En

2n2

)
= 16n2 · exp

(
−dNn · Pne

2n2

)
.

For the final step of our probabilistic estimate, we want to bound the probability
of failing for at least one η, and we get

Pr[FAIL(X,S)] := Pr[∃ η : FAIL(X, η, S)] ≤ Nn · 16n2 · exp(−dNn·Pne/2n2) =: δn.

It is easy to see that δn < 1/2 holds for e. g. Pn := max{1/2, 1/n} and Nn ≥
min{n6, 100}, which holds by property (iv).
Now we make the following observation: If we count the number of pairs {〈X,S〉 |
X ∈ Ω, S ∈ Cn} with FAIL(X,S), this total number of failures is bounded from
above by δn · |Cn| · |Ω|. If we now assume that for each X ∈ Ω, the number of
S ∈ Cn with FAIL(X,S) is at least F , then the total number of failures is bounded
from below by F · |Ω| – but this shows that F ≤ δn · |Cn| < |Cn|/2.
Summing up the entire probabilistic argument, this means that we can find some
X =: Xn ⊆ Jn and some Dn ⊆ Cn with |Dn| > |Cn|/2 (and hence ‖Dn‖ > ‖Cn‖− 1)
such that for each η ∈ poss(p∗, <kn), each S ∈ Dn and each m ≥ mn + en(η, S), we
have that

|Xn ∩ Zη,S ∩m|
|Zη,S ∩m|

∈
(
1

2
− 1

2n
,
1

2
+

1

2n

)
.

Now we perform the usual fusion construction, starting with q0 := p∗, shrinking
the creature Cn to Dn in the n-th step (and keeping everything below that from
qn−1), and constructing a fusion condition q :=

⋂
n<ω qn as well as sets Xn ⊆ Jn.

It is clear that the q constructed this way is a valid condition. We now claim that
the set X :=

⋃
n<ωXn is as required; in particular, we claim that for each ε > 0,

there is an mε such that for all m ≥ mε, we have

q 

|X ∩ Ẏ ∩m|

|Ẏ ∩m|
∈
(
1

2
− ε,

1

2
+ ε

)
.
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We prove this inductively and will show that the error at any point m < ω is
bounded by an expression that goes to 0 as n goes to infinity. Let X<n :=

⋃
i<nXi

for each n < ω. For our induction hypothesis, assume that we already know that
at mn, the bisection error of X<n with each possible Yη,S�mn

is at most 1/n−1. For
each m ∈ [mn + 1,mn+1], we now have to consider the bisection error of X<n+1 at
m with each such Yη,S.

• For m ∈ [mn + 1,mn + en(η, S)), note that Yη,S�mn
has at least Nn elements

by property (v), while Yη,S�[mn,m] has at most En = Nn · Pn elements by
property (vi). Thus we can apply Lemma C3.3 with R := Yη,S�[mn,m], S :=
Yη,S�mn

, ε := 1/n−1 and some c > 1/Pn to get

|X<n+1 ∩ Yη,S ∩m|
|Yη,S ∩m|

∈
(
1

2
− 1

n− 1
− 1

c
,
1

2
+

1

n− 1
+

1

c

)
⊆
(
1

2
− 1

n− 1
− Pn,

1

2
+

1

n− 1
+ Pn

)
⊆
(
1

2
− 2

n− 1
,
1

2
+

2

n− 1

)
.

• For m ∈ [mn + en(η, S),mn+1], it is clear that

|X<n+1 ∩ Yη,S ∩m|
|Yη,S ∩m|

∈
(
1

2
− 1

n− 1
,
1

2
+

1

n− 1

)
,

since the error on Yη,S�mn
is at most 1/n−1 and the error on Yη,S�[mn,m] is at

most 1/n.
• For m = mn+1, however, we have to show even more to ensure that our

induction hypothesis remains true for the next step. So note that Yη,S�mn

has at most mn elements, while Yη,S�[mn,mn+1] has at least 2n ·mn elements by
property (v). Thus we can apply Lemma C3.3 once more with R := Yη,S�mn

,
S := Yη,S�[mn,mn+1], ε := 1/2n and some c ≥ 2n to get

|X<n+1 ∩ Yη,S ∩mn+1|
|Yη,S ∩mn+1|

∈
(
1

2
− 1

2n
− 1

c
,
1

2
+

1

2n
+

1

c

)
⊆
(
1

2
− 1

n
,
1

2
+

1

n

)
,

which is precisely the induction hypothesis for n+ 1.
Given any ε > 0, pick some nε such that 2

nε−1
< ε and let mε := mnε. Then for all

m ≥ mε, by the bounds above

q 

|X ∩ Ẏ ∩m|

|Ẏ ∩m|
∈
(
1

2
− ε,

1

2
+ ε

)
,

finishing the proof.

Theorem C3.5. Con(s1/2 < non(N )).

Proof. Assume CH in the ground model; then the statement follows by combining
Lemma C3.2 and Lemma C3.4.
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C4 Characteristics Related to r and i

We define a second set of properties more closely related to i, although s does
reappear in this section.

Definition C4.1. A set X ∈ [ω]ω is moderate if d(X) > 0 as well as d̄(X) < 1.44

Definition C4.2. A family I∗ ⊆ [ω]ω is statistically independent or ∗-independent
if for any set X ∈ I∗ we have that X is moderate and for any finite subfamily
E ⊆ I∗, the following holds:

lim
n→∞

(
dn
(⋂

E∈E E
)∏

E∈E dn(E)

)
= 1

In the case of convergence of dn(X), this simplifies to asking for 0 < d(X) < 1 to
hold for all X ∈ I∗ and ∏

E∈E

d(E) = d
( ⋂
E∈E

E
)

to hold for any finite subfamily E ⊆ I∗.
We denote the least cardinality of a maximal ∗-independent family by i∗.

Recall that a family I of subsets of ω is called independent if for any disjoint finite
subfamilies A,B ⊆ I, the set ⋂

A∈A

A ∩
⋂
B∈B

(ω rB)

is infinite. Generalising this notion leads to the following definitions (which are
more obviously related to the classical i):

Definition C4.3. Let ρ ∈ (0, 1). A family Iρ ⊆ [ω]ω is ρ-independent if for any
disjoint finite subfamilies A,B ⊆ Iρ, the following holds:

d

(⋂
A∈A

A ∩
⋂
B∈B

(ω rB)

)
= ρ|A| · (1− ρ)|B|,

which simplifies to = 1/2|A|+|B| in the case of ρ = 1/2. This definition is equivalent
to demanding that for any finite A ⊆ Iρ, the following holds:

d

(⋂
A∈A

A

)
= ρ|A|

We denote the least cardinality of a maximal ρ-independent family by iρ.
44 Actually, it would suffice to demand d̄(X) > 0 as well as d(X) < 1, though one would have to

modify a few of the subsequent proofs.
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Recalling the definition of r as the least cardinality of a family R ⊆ [ω]ω such that
no S ∈ [ω]ω splits every R ∈ R, we naturally arrive at the following definition:

Definition C4.4. A family R1/2 ⊆ [ω]ω is 1/2-reaping if there is no S ∈ [ω]ω

bisecting all R ∈ R1/2. We denote the least cardinality of a 1/2-reaping family by
r1/2.

Given the above, the natural question is: Can we define r∗ analogously? Consider
the following definition:

Definition C4.5. A family R∗ ⊆ [ω]ω is statistically reaping or ∗-reaping if

6 ∃ S ∈ [ω]ω moderate such that ∀X ∈ R∗ : lim
n→∞

(
dn (S ∩X)

dn(S) · dn(X)

)
= 1.

We denote the least cardinality of a ∗-reaping family by r∗.

The motivation for this is as follows: Considering the analogous definitions for r,
we might call I maximal quasi-independent if there is no X such that for all Y ∈ I
we have that X splits Y and X splits ω r Y (i. e. X and Y are independent for
all Y ∈ I). It is obvious that a reaping family is also maximal quasi-independent;
the converse can easily be derived by taking a maximal quasi-independent family
and saturating it (without increasing its size) by adding the complements of all its
sets, resulting in a reaping family. By this train of thought, it makes sense to take
Definition C4.5 as the defining property of a ∗-reaping family.
Dualising the definition of ∗-reaping leads to the following, final definition:

Definition C4.6. A family S∗ ⊆ [ω]ω is statistically splitting or ∗-splitting if

∀X ∈ [ω]ω ∃S ∈ S∗ moderate : lim
n→∞

(
dn (S ∩X)

dn(S) · dn(X)

)
= 1.

We denote the least cardinality of a ∗-splitting family by s∗.

Theorem C4.7. The relations shown in Figure 11 hold.

Proof. cov(N ) ≤ r1/2 and s∗ ≤ non(N ): Both proofs are analogous to the proof
of s1/2 ≤ non(N ).
For the first claim, let R1/2 be a family witnessing the value of r1/2. By the argument
for s1/2 ≤ non(N ) in the proof of Theorem C2.4, the family

{[ω]ω r SR | R ∈ R1/2}

is a covering of N . (Recall that [ω]ω r SR ∈ N for R ∈ R1/2.)
For the second claim, let X ∈ [ω]ω and F /∈ N . As seen above, letting

SX = {Y ∈ [ω]ω | Y |1/2 X},
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ℵ1

cov(N )

r1/2

s

cov(M)

r∗

i1/2

non(M)

i∗

r

d

s∗

s1/2

i

non(N )

2ℵ0

Figure 11: The ZFC-provable and/or consistent inequalities be-
tween i1/2, i∗, r1/2, r∗, s1/2, s∗ and other well-known cardinal char-
acteristics, where −→ means “≤, consistently <” and 99K means
“≤, possibly =”.

we have that λ(SX) = 1 and hence SX /∈ N . Moreover, this is true in particular
for X = ω and

Sω = {Y ∈ [ω]ω | Y |1/2 ω} = {Y ∈ [ω]ω | d(Y ) = 1/2}.

Since then F ∩SX ∩Sω 6= ∅, there is some S ∈ F such that S |1/2 X and d(S) = 1/2,
which implies S |∗ X.
Since all this is true for any X ∈ [ω]ω, we have s∗ ≤ non(N ).
r1/2 ≤ r∗: Let R∗ be a ∗-reaping family and let R1/2 := R∗ ∪ {ω}; clearly, |R1/2| =
|R∗|. Now, any S which bisects all R ∈ R1/2 also ∗-splits all R ∈ R∗ – this follows
from the fact that S |1/2 ω implies d(S) = 1/2, and hence for any R ∈ R∗, we now
have

dn(S ∩R)
dn(S) · dn(R)

=
dn(S ∩R)
dn(R)

· 1

dn(S)
→ 1,

since S |1/2 R implies that the first factor converges to 1/2, while d(S) = 1/2 implies
that the second factor converges to 2.
r1/2 ≤ non(M): Since the set of all reals bisected by a fixed real S is a meagre
set (by the argument for cov(M) ≤ s1/2±ε), a non-meagre set contains some real
not bisected by S and hence is 1/2-reaping.
r∗ ≤ non(M): This is analogous to the proof of r1/2 ≤ non(M), since the set of all
reals ∗-split by a fixed moderate real S is a meagre set, as well. To see this, define a
chopped real based on S with the interval partition having the partition boundaries
at the n!-th elements of S; the sets matching this chopped real form a comeagre
set which consists of reals X not ∗-split by S: As the matching intervals grow
longer and longer, they “pull” dn(S∩X)

dn(X)
above 1− 1/n, which implies that dn(S∩X)

dn(S)·dn(X)

cannot converge to 1 as dn(S) does not converge to 1 by the moderacy of S.
cov(M) ≤ s∗: This is analogous to the proof of cov(M) ≤ s1/2 by the same
argument as in the proof of r∗ ≤ non(M).
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s ≤ s∗: Let S∗ be a family witnessing the value of s∗ and let X ∈ [ω]ω be
arbitrary. We will prove by contradiction that there must be some S ∈ S∗ splitting
X. Suppose not, that is, suppose that for any S ∈ S∗, either (a) S ∩X is finite or
(b) S ∩X is cofinite. In case (a), we use the fact that S is moderate to see that
dn(S) must eventually be bounded from below by some ε, and the fact that S ∩X
is finite to see that |S ∩X ∩ n| is bounded by some k∗. Letting kn := |X ∩ n|, this
eventually yields

dn (S ∩X)

dn(S) · dn(X)
≤

k∗/n

ε · kn/n
=

k∗

ε · kn
→ 0.

Similarly, in case (b) we use the moderacy of S to see that dn(S) is eventually
bounded from above by some 1− δ, and the fact that S ∩X is cofinite to see that
|S ∩ X ∩ n| is bounded from below by kn − k∗ for some k∗. (This bound simply
states that after some finite aberrations, S contains all elements of X.) Taken
together, we eventually have

dn (S ∩X)

dn(S) · dn(X)
≥

(kn−k∗)/n

(1− δ) · kn/n

=
1

1− δ
− k∗

(1− δ) · kn
→ 1

1− δ
= 1 + ε

for some ε > 0. In summary, for all S ∈ S∗ we have that S does not ∗-split X, and
hence S∗ could not have been a witness for the value of s∗.
r1/2 ≤ i1/2 and r∗ ≤ i∗: For the first claim, let I1/2 be a maximal 1/2-independent
family. Define

R1/2 :=

{⋂
A∈A

A ∩
⋂
B∈B

(ω rB)

∣∣∣∣∣ A,B ⊆ I1/2,A ∩ B = ∅

}
.

Then R1/2 is a 1/2-reaping family, since the existence of an S ∈ [ω]ω bisecting each
R ∈ R1/2 (in the limit) would contradict the maximality of I1/2.
The proof of the second claim is analogous: Take all finite tuples of sets in the
witness I∗ of the value of i∗ and collect their Boolean combinations in a family
R∗; this family must then be ∗-reaping, because a set S ∗-splitting each R ∈ R∗
would violate the maximality of I∗, and thus R∗ witnesses r∗ ≤ i∗.
iρ ≤ 2ℵ0 and i∗ ≤ 2ℵ0 : For iρ, consider the collection Iρ of all ρ-independent
families. Now, Iρ has finite character, i. e. for each I ⊆ 2ℵ0 , I belongs to Iρ iff
every finite subset of I belongs to Iρ. Hence we can apply Tukey’s lemma and
see that Iρ has a maximal element with respect to inclusion. Therefore, iρ is well
defined and hence iρ ≤ 2ℵ0. The proof for i∗ is analogous.
Con(r∗ < r): This follows from Con(non(M) < cov(M)), but we also have an
explicit proof of this.
We will show that Cohen forcing does not increase r∗ due to the ground model
reals remaining ∗-reaping; we already know that Cohen forcing increases r, proving
our consistency statement.
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Let Ẋ be a C-name for a real. We will construct a ground model real Y such that
for any q ∈ C, we can find r ≤ q such that r 
 Ẋ 6 |∗ Y .
Let ϕ(Ẋ) be the statement ∀ k ∃ `0, `1 > k : Ẋ(`0) = 0 ∧ Ẋ(`1) = 1. Let Dgood :=
{p ∈ C | p 
 ϕ(Ẋ)} and Dbad := {p ∈ C | p 
 ¬ϕ(Ẋ)} and note that D := Dgood ∪
Dbad is open dense in C. Since it is clear that any q ∈ Dbad already forces that Ẋ
is not moderate, we only need to consider q ∈ Dgood.
Now pick an enumeration 〈pk | k < ω〉 of Dgood which enumerates each element
infinitely often. In the following argument, for each k < ω, let Lk :=

∑
`≤k `k.

• For k = 0, we find q0 ≤ p0, `0 ≥ 2 and A0 ⊆ [0, `0) such that q0 decides Ẋ�`0 ,
q0 
 Ẋ�`0 = A0 and such that |A0| ≥ 1, |[0, `0)rA0| ≥ 1, and at least one of
these two inequalities is an equality.

• For 0 < k < ω, we find qk ≤ pk, `k < ω and Ak ⊆ [Lk−1, Lk) such that qk
decides Ẋ�Lk

, qk 
 Ẋ�[Lk−1,Lk)
= Ak and such that |Ak| ≥ 3Lk−1, |[Lk−1, Lk)r

Ak| ≥ 3Lk−1, and at least one of these inequalities is an equality.
Define Y piecewise by Y �[Lk−1,Lk)

:= Ak. Assume Ẋ ∗-splits Y ; then there must be
some q ∈ C forcing this. It is clear that q ⊥ Dbad. In particular, this means that q
forces that for any ε > 0, there is some mε < ω such that for any j > mε,

dj(Ẋ ∩ Y )

dj(Ẋ) · dj(Ẏ )
> 1− ε.

Pick some sufficiently small ε, say ε := 2/9, and find n < ω such that pn = q and
Ln > m1/4. Letting On and In be the number of 0s and 1s in An, respectively,
qn ≤ q forces

dLn(Ẋ ∩ Y ) ≤ Ln−1

Ln

,

dLn(Ẋ) ≥ In
Ln

,

dLn(Y ) ≥ On

Ln

.

Without loss of generality, On = 3Ln−1 and In = 3Ln−1+∆ for some ∆ < ω. Then
qn forces

dLn(Ẋ ∩ Y )

dLn(Ẋ) · dLn(Ẏ )
≤

Ln−1

Ln

OnIn
L2
n

=
Ln−1Ln

OnIn
=
Ln−1(Ln−1 +On + In)

OnIn

=
Ln−1(7Ln−1 +∆)

3Ln−1(3Ln−1 +∆)
=

7Ln−1 +∆

3 · (3Ln−1 +∆)
,

which is strictly decreasing in ∆ and is 7/9 for ∆ = 0. This contradicts the as-
sumption on q, proving that Ẋ does not ∗-split Y in V C.
Hence assuming CH in the ground model and forcing with Cλ for some λ ≥ ℵ2 with
λ = λℵ0 gives us V Cλ � r∗ = ℵ1 < λ = r = c.
Con(r1/2 < non(M)) and Con(r∗ < non(M)): This follows from Con(r <
non(M)), see [BJ95, Model 7.5.9].
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C4 Characteristics Related to r and i

Con(s < s∗): Just like Con(r∗ < r), this follows from Con(non(M) < cov(M)),
but once more, we also have an explicit proof of this.
We will show that Cohen forcing increases s∗ due to the Cohen real not being
∗-split by any real from the ground model; we already know that Cohen forcing
keeps s small, proving our consistency statement.
The proof uses the same technique as the one for s ≤ s∗: Given some moderate
X ∈ [ω]ω ∩ V , with moderacy in the sense of d̄(X) = 1− 2ε and dn(X) < 1− ε for
all n ≥ n0 for some n0, we will show that the assumption that there is a condition
forcing X |∗ Ċ, i. e. that X ∗-splits the Cohen real, leads to a contradiction.
So suppose that there were some p ∈ C such that p 
 X |∗ Ċ; more specifically,
suppose that for some n1, even p 
 dn(X∩Ċ)

dn(X)·dn(Ċ)
< 1−δ for all n ≥ n1, where δ := ε/2

1−ε
.

We now define q ≤ p as follows: Let n2 be large enough such that

|p|
|X ∩ n2|

<
ε

2
⇐⇒ 2 · |p|

ε
< |X ∩ n2|;

this is possible due to the moderacy of X (which implies X is infinite). Let
k := max{n0, n1, n2} and q := p_χX�[|p|+1,k], that is, extend p by the next k − |p|
values of the characteristic function of X. Then we have

dk(X ∩ Ċ)
dk(X) · dk(Ċ)

>
1

1− ε
· dk(X ∩ Ċ)

dk(Ċ)

by the moderacy of X. By our choice of q, we have

q 

dk(X ∩ Ċ)
dk(Ċ)

=
|X ∩ Ċ ∩ k|

|Ċ ∩ k|
≥ |X ∩ k| − |p|

|X ∩ k|
= 1− |p|

|X ∩ k|
> 1− ε

2
,

with the first inequality being an equality in the “worst case” of X�|p|+1 ≡ 1 and
(p = q�|p|+1 =) Ċ�|p|+1 ≡ 0. This implies that

q 

dk(X ∩ Ċ)

dk(X) · dk(Ċ)
>

1− ε/2

1− ε
= 1 + δ,

contradictory to the original assumption on p.
Con(cov(M) < s ≤ s∗): Follows as in the proof of Con(cov(M) < s ≤ s1/2).
Con(r1/2 < i1/2) and Con(r∗ < i∗): For these proofs, which are due to Jörg
Brendle, see [BHK+18, Lemma 4.8 and Corollary 4.9].
Con(i1/2 < 2ℵ0): This follows from Lemma C4.9 below.

For the final proof of this section, we will require another combinatorial lemma.

Lemma C4.8. If R,S ⊆ ω, 0 < r < 1, ε > 0 and m < n are such that

|R ∩m|
m

∈ (r − ε, r + ε)
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Chapter C: Halfway New Cardinal Characteristics

and for all ` with m ≤ ` ≤ n, we have

|S ∩ `|
`

∈ (r − ε, r + ε) ,

then for all ` with m ≤ ` ≤ n, we have

|(R ∩m) ∪ (S ∩ [m, `))|
`

∈ (r − 3ε, r + 3ε) .

Proof. Suppose this were false for some `∗ ≥ m; then without loss of generality,

|(R ∩m) ∪ (S ∩ [m, `∗))|
`∗

≥ r + 3ε.

Since

|R ∩m|
m

< r + ε,

we get

|S ∩ [m, `∗)|
`∗

≥ r + 3ε− m

`∗
(r + ε).

But then

|S ∩m|
m

> r − ε

implies

|S ∩ `∗|
`∗

=
|(S ∩m) ∪ (S ∩ [m, `∗))|

`∗
>
m

`∗
(r − ε) + r + 3ε− m

`∗
(r + ε)

= r + 3ε− 2m

`∗
· ε ≥ r + ε,

which is a contradiction.

Lemma C4.9. Con(i1/2 < i).

Proof. The proof is analogous to the classical proof of Con(ℵ1 = a < 2ℵ0) (see e. g.
[Hal17, Proposition 18.5]).
Assume CH in the ground model and let λ ≥ ℵ2. We force with the λ-Cohen forcing
poset Cλ; letting G be a Cλ-generic filter, it is clear that V [G] � i = 2ℵ0 = λ. We
will now show V [G] � i1/2 = ℵ1 by constructing a maximal 1/2-independent family
A in the ground model such that A remains maximal 1/2-independent in V [G]. By
the usual arguments, it suffices to consider what happens to a countably infinite
1/2-independent family when forcing with just C := 〈2<ω,⊆〉.
Let A0 := {An ⊆ [ω]ℵ0 | n < ω} be such a family. Fix (in the ground model)
an enumeration {(pα, Ẋα) | ω ≤ α < ω1} of all pairs (p, Ẋ) such that p ∈ C
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C4 Characteristics Related to r and i

and Ẋ is a nice name for a subset of ω.45 In particular, this means that for any
〈ň, p1〉, 〈ň, p2〉 ∈ Ẋ, either p1 = p2 or p1 ⊥ p2. Note that since V � CH, there are
just ℵ1 many nice names for subsets of ω in V .
We now construct A from A0 iteratively as follows: Let ω ≤ α < ω1 and assume we
have already defined sets Aβ ⊆ ω for all β < α. Below, we will construct Aα ⊆ ω
such that the following two properties hold:
(i) The family {Aβ | β ≤ α} is 1/2-independent.
(ii) If pα 
 |Ẋα| = ℵ0 ∧ “{Aβ | β < α} ∪ {Ẋα} is 1/2-independent”, then for all

m < ω, the set Dα
m := {q ∈ C | ∃n ≥ m : q 
 Aα∩[2n, 2n+1) = Ẋα∩[2n, 2n+1)}

is dense below pα.
We first show that the A := {Aβ | β ≤ ω1} constructed this way is a maximal
1/2-independent family in V C. Clearly, A is 1/2-independent, so only maximality
could fail. Suppose it were not maximal; then there is a condition p and a nice
name Ẋ for a subset of ω such that p 
 “A ∪ {Ẋ} is 1/2-independent”. Let α be
such that (p, Ẋ) = (pα, Ẋα) and let ε > 0 be sufficiently small (e. g. ε < 1/16). We
can then find q ≤ pα and m < ω such that

q 

|Aα ∩ Ẋα ∩ `|

`
∈
(
1

4
− ε,

1

4
+ ε

)
for all ` ≥ 2m (∗11)

(because pα forces that {Aα, Ẋα} is 1/2-independent) and

|Aα ∩ [2n, 2n+1)|
2n

>
1

2
− ε for all n ≥ m.

Now by the density of Dα
m below pα, we can find r ≤ q and some n ≥ m such that

r 
 Aα ∩ [2n, 2n+1) = Ẋα ∩ [2n, 2n+1). But this implies that

r 

|Aα ∩ Ẋα ∩ 2n+1|

2n+1
=

1

2
· |Aα ∩ Ẋα ∩ 2n|

2n
+

1

2
· |Aα ∩ Ẋα ∩ [2n, 2n+1)|

2n

>
1/4 − ε

2
+

1/2 − ε

2
=

3

8
− ε >

1

4
+ ε,

which contradicts Eq. (∗11).
We finally have to show that we can find such an Aα satisfying (i) and (ii) for
any ω ≤ α < ω1. We only have to consider those α such that Ẋα satisfies the as-
sumption in property (ii), since finding an Aα with property (i) is straightforward.
Enumerate {Aβ | β < α} as {Bn | n < ω}. For n < ω and any partial function
f : n→ {−1, 1}, we let

Bf :=
⋂

i∈dom(f)

B
f(i)
i ,

where B1
i := B and B−1

i := ω r B. We further pick some strictly decreasing
sequence of real numbers 〈δn | n < ω〉 with δ0 := 3 and limn→∞ δn = 0 and let
45 The reason the index set of the enumeration is [ω, ω1) instead of [0, ω1) is just to make the

notation more convenient.

115



Chapter C: Halfway New Cardinal Characteristics

〈qn | n < ω〉 be some sequence enumerating all conditions below pα infinitely
often. We will now construct, by induction on n < ω, conditions rn ≤ q′n ≤ qn, a
strictly increasing sequence of natural numbers 〈kn | n < ω〉 and initial segments
Zn = Aα∩2kn of Aα such that for all n < ω and all partial functions f : n→ {−1, 1},
the following four statements will hold (with F := | dom(f)|+ 1)

(R1) |Bf ∩ Zn ∩ 2kn|
2kn

,
|(Bf r Zn) ∩ 2kn|

2kn
∈
(

1

2F
− δn

3
,
1

2F
+
δn
3

)
,

(R2) q′n 

|Bf ∩ Ẋα ∩ `|

`
,
|(Bf r Ẋα) ∩ `|

`
∈
(

1

2F
− δn

3
,
1

2F
+
δn
3

)
for all ` with 2kn ≤ ` ≤ 2kn+1 ,

(R3) |Bf ∩ Zn+1 ∩ `|
`

,
|(Bf r Zn+1) ∩ `|

`
∈
(

1

2F
− δn,

1

2F
+ δn

)
for all ` with 2kn ≤ ` ≤ 2kn+1 , and

(R4) rn 
 Zn+1 ∩ [2kn , 2kn+1) = Ẋα ∩ [2kn , 2kn+1).

It is clear that (R1)–(R4) taken together for all n < ω imply that Aα :=
⋃

n<ω Zn

is as required by (i) and (ii).
For n = 0, let k0 := 0, q′0 := q0 and Z0 := ∅; then (R1) and (R2) hold vacuously
by our choice of δ0, and there is nothing to show yet for (R3) and (R4).
Now assume that we have obtained kn, q′n ≤ qn and Zn such that (R1) and (R2)
hold for n; we will construct rn ≤ q′n, kn+1, q′n+1 ≤ qn+1 and Zn+1 such that (R3)
and (R4) hold for n and such that (R1) and (R2) hold for n + 1. We first find
q′n+1 ≤ qn+1 and k′n ≥ kn such that for all partial functions f : n+1 → {−1, 1}, we
have that (with F := | dom(f)|+ 1)

q′n+1 

|Bf ∩ Ẋα ∩ `|

`
,
|(Bf r Ẋα) ∩ `|

`
∈
(

1

2F
− δn+1

3
,
1

2F
+
δn+1

3

)
for all ` ≥ 2kn (hence satisfying (R2) for n+1); this is possible since the assumption
in property (ii) is true. Next we find rn ≤ q′n and a sufficiently large kn+1 ≥ k′n
such that for all partial functions f : n + 1 → {−1, 1}, we have that (still with
F := | dom(f)|+ 1)

rn 

|Bf ∩ Ẋα ∩ 2kn+1 |

2kn+1
,
|(Bf r Ẋα) ∩ 2kn+1|

2kn+1
∈
(

1

2F
− δn+1

6
,
1

2F
+
δn+1

6

)
(∗12)

and that rn decides Ẋα ∩ 2kn+1; in particular, let Xn ⊆ [2kn , 2kn+1) be such that
rn 
 Ẋα ∩ [2kn , 2kn+1) = Xn. All this is also possible since the assumption in
property (ii) is true. Let Zn+1 := Zn ·∪Xn.
Now, (R4) holds for n by definition of Zn+1. Apply Lemma C4.8 to R := Zn,
S := Ẋα[rn], r := 1/2F , ε := δn, m := 2kn and n := 2kn+1 to see that (R3) for n
follows from (R1) and (R2) for n and our choice of Zn+1. Finally, (R1) for n + 1
follows from Eq. (∗12), (R4) for n and the choice of a sufficiently large kn+1 (e. g.
using the argument from Lemma C3.3).
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C5 Open Questions

By the usual arguments, our construction implies that A remains maximal 1/2-in-
dependent in V Cλ.

C5 Open Questions

While we have shown that several of our newly defined cardinal characteristics are,
in fact, new, there are still a number of open questions.
Question H. We summarise the open questions related to Figure 10:
(Q1) Does Con(d < s1/2±ε ≤ s1/2) hold or is s1/2 ≤ d? (If it is the latter, we already

know Con(s1/2 < d) by Con(non(N ) < d).)
(Q2) Which of the following statements are true?

Con(s < sw1/2) or s = sw1/2

Con(sw1/2 < s∞1/2) or sw1/2 = s∞1/2

Con(s1/2±ε < s1/2) or s1/2±ε = s1/2

(Q3) Given ε > ε′ and an ε-almost bisecting family, can one (finitarily) modify
it to get an ε′-almost bisecting family of equal size? (If yes, then s1/2±ε is
independent of ε. If not, then infε∈(0,1/2) s1/2±ε and supε∈(0,1/2) s1/2±ε might be
interesting characteristics, as well.)

(Q4) Can characteristics in the upper row of the diagram consistently be smaller
than ones in the lower row? Specifically, which of the following statements
are true?

Con(s1/2±ε < sw1/2) or s1/2±ε ≥ sw1/2

Con(s1/2±ε < s∞1/2) or s1/2±ε ≥ s∞1/2

Con(s1/2 < s∞1/2) or s1/2 ≥ s∞1/2

Question I. We summarise the open questions related to Figure 11:
(Q5) Is it consistent that i∗ < 2ℵ0?
(Q6) Which relations between i1/2, i∗ and i are true or consistent?
(Q7) Are there any smaller upper bounds for i1/2 and i∗?
(Q8) Which relations between s1/2 and s∗ are true or consistent?
(Q9) Which of the following statements are true?

Con(cov(N ) < r1/2) or cov(N ) = r1/2

Con(r1/2 < r∗) or r1/2 = r∗

Con(s∗ < non(N )) or s∗ = non(N )

We suspect that (Q5) might be provable (via Con(i∗ < i)) using the same idea as in
Lemma C4.9. If the probabilistic argument from Lemma C3.4 can be reproduced
for s∗, a similar approach as in section C3 might also work to answer the third
part of (Q9) and prove Con(s∗ < non(N )). Finally, since it is not too difficult
to ensure that a creature forcing poset keeps cov(N ) small (compare [FGKS17,
Lemma 5.4.2] or Lemma B7.7), a clever creature forcing construction might be
able to answer the first part of (Q9) and prove Con(cov(N ) < r1/2).
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