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Abstract

Computing the Worst-Case Execution Time (WCET) of a task becomes mandatory when timing
guarantees on task completion deadlines have to be given. Unfortunately WCET computation
is a complex undertaking, especially for systems that use caches, out-of-order pipelines, and
control speculation. The state-of-the-art WCET tools are avoiding the complexity problem by
substituting the real hardware with abstracted models. However, abstraction leads to lots of
unclassified model states, which in turn results in overly pessimistic WCET bound and poor
processor utilization.

Single-path code is another alternative to eliminate complexity on timing analysis by trans-
forming the conventional code into a code that has single execution trace. The approach converts
all input-dependent alternatives of the code into pieces of sequential code as well as loops with
input-dependent termination condition into loops with constant execution count, thus eliminat-
ing all control-flow induced variations in execution time. For obtaining the information about
the timing of the code, it is sufficient to run the code once and measure the time. The major
drawback of the single-path approach is its potential to end up with a quite long execution time.

In this work we address the problem of long execution time of single-path code. In particular,
we focus on narrowing the speed gap between processor and main memory, by proposing a
new prefetcher that brings instructions into the cache before they are required. The prefetcher
exploits the time-predictable properties of single-path code to accurately predict the target of
each prefetch request without polluting the cache at any moment. Another advantage of the
prefetcher is its efficiency by issuing prefetch request for every possible cache miss that can
occur during the runtime of the code.

In order to make the system design composable and compositional, we propose a new mem-
ory hierarchy that provides stable timing through the execution of the code. Although single-path
code always runs through the same sequence of instructions, the timing of instructions can vary
due to dependencies on the memory hardware states. In order to achieve stability on execu-
tion time we need to have repeatability on the history of the hardware states on each layer of the
memory hierarchy. Therefore, we have defined a new memory-hierarchy organization that forces
the sequence of the hardware states in the memory hierarchy to be repeatable for any iteration
of the code. The memory hierarchy is also adapted to allow fetching and prefetching processes
to work in parallel without interfering with each other in order to reach the best performance.

To demonstrate the applicability of the new concept, we have implemented the architecture
of the system with the new memory hierarchy on an FPGA board and run experimental evalua-
tion. The results prove the benefits that can be achieved in timing performance for single-path
code.
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Kurzfassung

Die Berechnung der maximalen Ausführungszeit (WCET) eines Tasks ist unumgänlich, wenn
Zeitgarantien für die Beendigung von Tasks gegeben werden müssen. Leider stellt eine WCET-
Berechnung ein komplexes Unterfangen dar, insbesondere für Systeme die Caches, Out-of-
order-Pipelines und spekulative Ausführung nutzen. Die neuesten WCET-Tools vermeiden das
Komplexitätsproblem indem sie die Hardware durch abstrakte Modelle ersetzen. Allerdings
führt Abstraktion zu vielen nicht klassifizierten Modellzuständen, die wiederum überpessimisti-
sche WCET-Schranken und eine schlechte Ausnutzung des Prozessors ergeben.

Single-Path-Code ist eine Alternative, die die Komplexität der Zeitanalyse beseitigt, indem
konventioneller Code in einen Code mit einem einzigen Ausführungspfad umgewandelt wird.
Diese Herangehensweise wandelt alle eingabeabhängigen Alternativen des Codes in Teile eines
sequentiellen Codes um und transformiert alle Schleifen mit eingabeabhängigen Abbruchbedin-
gungen in Schleifen mit konstanter Anzahl von Ausführungen, so dass folglich alle von Kon-
trollflüssen bedingten Schwankungen in der Ausführungszeit eliminiert werde. Um Informatio-
nen über die Laufzeit des Codes zu erhalten, genügt eine einmalige Ausführung und Messung
der Zeit. Der große Nachteil des Single-Path-Ansatyes besteht in einer potenziell sehr langen
Ausführungszeit des resultierenden Codes.

Diese Arbeit beschäftigt sich mit dem Problem der langen Ausführungszeit von Single-Path-
Code. Insbesondere wird ein neuer Prefetcher vorgestellt, der Instruktionen in den Cache lädt
bevor diese gebraucht werden, um den Geschwindigkeitsunterschied zwischen Prozessor und
Hauptspeicher zu verringern. Der Prefetcher nutzt die vorhersagenden Eigenschaften von Single-
Path-Code, um das Ziel der nächsten Prefetch-Anfrage genau vorherzubestimmen, ohne den
Cache zu korrumpieren. Ein weiterer Vorteil des Prefetchers ist die effiziente Verhinderung jedes
möglichen Cache-Miss der während der Laufzeit des Codes auftreten kann.

Um das Systemdesign zusammensetzbar und kompositionell zu gestalten wird eine neue
Speicherhierarchie vorgeschlagen, die stabiles Zeitverhalten während der Codeausführung lie-
fert. Obwohl Single-Path-Code immer dieselbe Anweisungssequenz ausführen, kann die Lauf-
zeit aufgrund der Abhängigkeit vom Zustand der Speicher schwanken. Um eine stabile Ausfüh-
rungszeit zu erhalten, benötigt man die Wiederholbarkeit in der Folge der Hardwarezustände auf
jeder Schicht der Speicherhierarchie. Deshalb wird in dieser Arbeit auch eine neue Speicherhier-
archie definiert, die erzwingt, dass die Sequenzen der Hardwarezustände in der Speicherhierar-
chie für jede Iteration des Codes wiederholbar sind. Die Speicherhierarchie ist auch so adaptiert,
dass sie die parallele Arbeit der Fetching und Prefetching Prozesse ohne gegenseitigen Beein-
trächtigung erlaubt, um die beste Performance zu erzielen.
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Zur Demonstration der Anwendbarkeit des neuen Konzeptes wird die Architektur eines Sys-
tems mit der neuen Speicherhierarchie auf einen FPGA-Board implementiert und experimentelle
Evaluierungen ausgeführt. Die Ergebnisse beweisen die erzielbaren Vorteile in der Ausführungs-
performance für Single-Path-Code.
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CHAPTER 1
Introduction

In this chapter we introduce embedded systems and describe how these systems deal with timing
when they are employed for safety-critical applications. The chapter starts with an introduction
on embedded systems and then continues by reasoning about the need for WCET analysis when
time is a critical asset of the system. Next, the chapter enumerates the issues that emerge when
WCET bounds of the tasks need to be estimated and how these issues can be overcome with the
use of single-path approach. In this chapter, we also discuss the main motivation of the thesis for
building a time-predictable memory hierarchy which provides predictability and performance
improvement for a system that runs single-path code. The list of contributions that has been
achieved during this work is discussed as well. At the end, the chapter gives a brief description
on the structure of the thesis.

1.1 Introduction to Hard Real-Time Systems

By definition, any self-contained information processing system that is embedded into an en-
closing product is called embedded system [74]. The price, size and efficiency that embedded
systems have achieved made them the widest spread class of computers, with a range of use from
home appliances and multimedia systems to nuclear plants and space mission systems [50].

Embedded systems are composed of a processing core, memory component and interfaces
used for communication with the external environment. Usually, embedded systems are hid-
den from the end user and accessed only through interfaces which are acting as remote con-
troller. The software that runs on embedded systems is called embedded software. Compared to
general-purpose systems, embedded systems differ in many aspects. General purpose systems
are designed to run a wide variety of applications where each one has different performance
requirements from the rest, while embedded systems are running a single application or a set
of applications related to a single function during their whole lifetime. Such an advantage of
knowing in advance the purpose of the system gives embedded system designers the opportu-
nity to build systems that are substantially optimized. Depending on the usage, the optimization
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can be on power consumption, cost, reliability, etc. Systems of larger scale can even integrate
a few embedded systems within, where each one has a particular function. In some cases they
can be interconnected in order to interact with each other, but this is not always required. For in-
stance, the modern car is a case of a system that integrates several embedded systems where each
one has a particular task, like one for monitoring and controlling the airbags, one for anti-lock
brakes, another one for fuel injections and so forth [62].

In several application domains, embedded systems are required to perform in timely manner.
In such a system the correctness of the outputs depends not only on the logical results of the
computation, but also on the physical instant at which the results are produced [58]. These
systems are called real-time systems. The time instants when the results must be produced are
called deadlines. However, whether the deadlines are met or not is not always crucial. There
are embedded systems where the miss of the deadline will affect only the system performance
but not the functionality of the system itself. These types of systems are known as soft real-time
systems. For example, video streaming is a real-time system with soft deadlines, because missing
of a few frames will only reduce the quality of service, but the service is still useful. Conversely,
there are systems where the miss of a single deadline can lead the whole system to catastrophic
failure. These systems are called hard real-time systems. An example of a system with hard
timing deadlines is the fly-by-wire controller which is part of the aircraft flying system that
moves the aircraft surfaces for achieving the desired flight path [13]. The fly-by-wire controller
consists of a set of tasks that are running in a predetermined sequential order. Their purpose is to
periodically scan the inputs from the pilot and the surface sensors, to calculate the actual position
of the surface parts and, based on these estimations, to release new outputs to the actuators for
their new position. Considering that the fly-by-wire controller has a crucial safety function in
preventing the aircraft from going outside of its safe operating range, it is important that in
such a system each task must respond within a certain timing period that is given in the aircraft
specification. Failure to do so can cause the aircraft to go off-course at the best or crash at
the worst. Guarantees for task deadlines can be given only if timing analysis of the tasks is
performed. However, when a task is executed, its execution time can take various values across
the range of times due to dependencies on input data and the initial hardware state. For hard real-
time systems, validation process has to consider the maximum length of the execution time of
that task which is known as worst case execution time (WCET), while the analysis that estimates
the WCET value is called WCET analysis [120]. The WCET analysis of the task is performed
under the assumption that the task is not interrupted during its execution. In this thesis we will
consider only the group of real-time systems whose deadline is hard.

1.2 Motivation

Performing WCET analysis on safety-critical embedded systems is a challenging issue, espe-
cially for systems that use caches, pipelines, control speculation and out-of-order execution.
The chase for better performance makes the presence of these features almost inevitable for the
used computer systems, caches aim to bridge the speed gap between processor and main mem-
ory, the pipeline has the goal of overlapping the execution of instructions, the branch predictor
speculates on the outcome of branch instructions to keep the pipeline full with correct instruc-
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tions and out-of-order execution minimizes the stall of the pipeline [102]. On the other hand,
these features are the main source of complexity when the WCET of the system needs to be as-
sessed. The complexity emerges due to execution-history dependency that these features impose
on the execution time of the instructions [49,98]. For instance, the cache can vary the execution
time of an instruction from one to hundred of clock cycles, depending if the cache access for
that instruction results in a hit or miss [119]. Additionally, these features are also interdepen-
dent, which means that the analysis gets even more complex when a timing effect that occurs
between these features as a result of interference has to be considered as well [47]. For example,
a wrong speculation on a branch outcome will entitle the processor to fetch wrong instructions
which also affects the state of the cache. Another example is the interdependency between cache
and pipeline, where a cache miss stalls the pipeline and affects the timing of the other ongoing
pipelined instructions. Thus, for a software that runs on such architectures, a high-quality WCET
estimation can be performed only if the analysis covers all the possible system states that can
emerge during the runtime. Such an approach of exploring all the possible hardware states of
the system will lead the WCET analysis quickly into an unmanageable state-space explosion.

The state-of-the-art WCET tools avoid the problem of complexity by substituting the real
hardware model with an abstracted one [120]. Abstract interpretation is a static program anal-
ysis method that executes an abstract version of the program on a set of abstract values [24].
In case of WCET analysis, abstract domain and abstract transition functions are defined to re-
duce the complexity of hardware modeling and with that to reduce the set of states that need to
be analyzed. The abstraction is considered successful if the set of abstract states can represent
compactly the real hardware states at any program point. However, abstraction leads to informa-
tion loss, which in turn results in lots of unclassified model states and with that in a pessimistic
computation of the WCET value. This affects the task CPU-time reservation, since pessimistic
estimates will lead to poor processor utilization and overly pessimistic results on schedulability
tests.

A technique to eliminate the complexity problem of WCET analysis is the use of single-
path conversion [88]. The approach transforms the conventional code into a code with single
execution trace called single-path code. This is achieved by serializing all input-dependent
alternatives of the code into code with sequential segments. The approach also converts loops
with input-data dependent termination conditions into loops with constant iteration counts. Thus,
the newly generated code, whose execution is fully independent from the input data, forces the
execution to always follow the same sequence of instructions for any set of inputs. The WCET
analysis process for such a code becomes trivial since the whole procedure is turned into a
simple single execution time measurement. Another advantage of single-path conversion is the
property of composability and scalability that the software gains with the use of single-path
code, which also simplifies the process of system design [89]. However, the single-path code
has one major drawback because the conversion may generate code which can end up with a
quite long execution time, especially if the original code has many input-data dependent control
decisions.

The main motivation of this thesis is to present a solution that improves the performance of
the system running single-path code. It is well known that over the past decades the speed of pro-
cessors has been rapidly increased, while the development of main memory was more focused
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Figure 1.1: Performance gap between processor and DRAM memory over the years [50]

on increments of the storage density. The speed gap between these two units (Figure 1.1) be-
came one of the major factors in limiting system performance [122]. Although the employment
of the cache is crucial in bridging this gap, its presence as part of the memory hierarchy cannot
be considered as a complete solution yet. Caches improve the memory performance by holding
a copy of code fractions near to the processor. Thus, whenever a fetch request results into cache
hit, it will be serviced immediately, without any delay. However, this solution reduces only the
frequency of main memory accesses, but not the time that is required for main memory access.
If a cache miss occurs, the processor still has to be stalled and wait for the missed instruction
to be brought from the main memory into the cache [50]. In such cases, prefetching has been
shown to be an effective solution. Its objective is to mask the large latency of memory accesses
by bringing memory blocks into caches before they are referenced [104]. The scheme can be
implemented as a software or hardware solution and the prefetched blocks can contains instruc-
tion or data. However, employment of a prefetcher into the memory hierarchy does not mean
success by default. Prefetching requires prediction of the future stream of execution, which is
not trivial in most cases. Thus, the presence of a prefetcher as part of the hierarchy can interfere
with the normal cache operation by keeping the ports of the cache, the memory bus and the main
memory itself busy with useless traffic [111]. In such cases, the prefetcher will do more harm
on performance than providing improvements. A full utilization of prefetcher benefits can be
achieved only if the prefetch requests are issued at the right moment and have the correct target
address. Any deviation from these two parameters will not only underuse the capacity of the
prefetcher but also reduce the system performance.

Furthermore, a system that runs single-path code should be composable and compositional
by providing stable execution times. To achieve that, the memory hierarchy must force repeata-
bility through all the layers of the hierarchy, which means that the sequence of memory states
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through the execution of the code should be the same for any iteration of the code. However, this
is not trivial to achieve with conventional memory hierarchy solutions. First, not every cache
organization guarantees that the sequence of cache states will be repeatable through different
iterations, even though the sequence of instructions is the same. Second, the interference that
occurs between instruction and data path when main memory is accessed can change the tim-
ing of instructions in an unpredictable way. Third, the asynchronism between DRAM refresh
and memory access can impose unpredictable timing variation on instruction level. All these
occurrences are affecting the execution time of instructions by imposing jitter on the execution
time.

1.3 Contribution

The major contribution of this work is a new memory hierarchy that makes systems with single-
path code become useful and competitive for applications with real-time properties. To achieve
that, the memory has to provide performance improvements by reducing the execution timing of
single-path code as well as predictability on temporal behavior through all layers of the hierar-
chy. In this thesis, we have build and evaluated a memory design that exploits the pre-runtime
knowledge about the execution traces of single-path code to prefetch instructions into the cache
before they are required. Such properties enable the prefetcher to behave predictably and work
efficiently through the whole runtime of the single-path code without polluting the cache at any
moment. To reach the best performance on the whole memory, other levels of the memory needs
to be adapted as well. Therefore, we propose a modified cache design that allows regular instruc-
tion fetching and prefetching to work in parallel without interference. Moreover, we also have
proposed a new organization of the hierarchy in order to eliminate execution jitter and provide
stable timing. Such an approach enables the system designer to build a time-predictable system
that has better performance and still preserve the properties of simplicity and scalability gained
for the single-path code. The contribution in this work is mainly focused on the instruction path
of the memory hierarchy with small changes in the data path.

In the following we emphasize the major contributions accomplished with the implementa-
tion of the new memory hierarchy:

• Accuracy - The calculation of every prefetch target is always accurate, which also elimi-
nates the possibility for cache pollution and useless memory traffic.

• Redundancy - All issued prefetch requests are sent to cache and not directly to the main
memory in order to avoid redundancy to prefetch instructions that are already in the cache.

• Miss penalty time reduction - Prefetching is performed in parallel with execution by
utilizing the free bus cycles in order to reduce the timing of cache-miss penalties.

• Miss rate reduction - In cases when loops fit in the cache, the prefetcher continues with
filling the cache with more than one cache line without interfering with the loop con-
tent. This eliminates the cache misses of the instructions following after the loop exit and
reduces the cache miss rate.
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• Cache conflict avoidance - The prefetcher preserves temporal locality of the cache by
avoiding to prefetch instructions that are mapped in the actual cache lines accessed by the
fetch stage. This is active only when the cache is organized as direct-mapped cache.

• Optimized reference table - The use of an indexed table for pointing to the next prefetch
target eliminates the need to have a fully associative table. This simplifies the hardware
and reduces the table access time.

• Independent from other components - Having a hardware solution makes the prefetcher
fully autonomous, without requiring any changes on the CPU itself or the compiler.

• Repeatability - All layers of the memory hierarchy are organized to provide repeatability
of instruction timing through any iteration of the code.

• Stability - The execution of the single-path code has the same time for any iteration which
means it is jitter free.

1.4 Structure of the Thesis

The thesis has the following structure:
Chapter 2 - compares the advantages and disadvantages of the single-path code approach

with techniques that are nowadays used for WCET tools. The chapter introduces the state-of-
the-art techniques for WCET estimation, describes the issues that occur due to complexity when
these techniques are employed and then continues with a description of single-path transforma-
tion rules and shows how this approach overcomes the problems of complexity.

Chapter 3 - gives a background on all levels of memory hierarchy by showing memory el-
ements of each level of the hierarchy, how they can be organized and what type of technology
is used for their implementation. The chapter starts by describing the concept of hierarchical
memory and then explains in detail each component starting from cache, scrachpad and main
memory. This chapter also describes locking and prefetching as cache techniques for perfor-
mance improvement.

Chapter 4 - presents the time-predictable instruction prefetcher, by enumerating the re-
quirements that a prefetcher should have to be efficient and time-predictable and how these
properties are accomplished in the new single-path code prefetcher. The presentation of the
time-predictable prefetcher starts with a description of the algorithm and then continues with
its architecture. A part of this chapter is also the generation and organization of the table that
guides the prefetcher through the execution.

Chapter 5 - goes through all layers of the memory hierarchy and shows the configuration
that each component needs to have in order to achieve repeatability of instruction timing for any
iteration of the code and with that stability on code execution timing. This chapter shows also
the modifications that are required to be implemented in the cache in order to enable the fetching
and prefetching process to be overlapped without interfering each other.

Chapter 6 - presents hardware implementation algorithms for prefetcher and cache memory,
as well as their integration in the Patmos processor. The chapter describes the evaluation process
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and the benchmarks that are used for that purpose. At the end, the results of the evaluation are
presented.

Chapter 7 - presents the related work. It starts by describing the state-of-the-art approach for
cache analysis and then continues with techniques used to improve predictability of the on-chip
memories. Next, time-predictable on-chip memory with prefetcher are also described.

Chapter 8 - summarizes the thesis with a conclusion and potential future work that can be
done in this direction.
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CHAPTER 2
Worst Case Execution Time Analysis

vs. Single-path Conversion

In this chapter, we compare the process of estimating the worst-case execution time (WCET)
bound on conventional code and on single-path code. The chapter starts with a brief description
of the state-of-the-art strategies that are used nowadays in timing analysis, followed by a list of
issues and obstacles that these techniques have when they are employed in systems with modern
hardware. The chapter continues with a description of the single-path strategy and how this
approach overpasses all these problems. At the end, a summary is given on the advantages and
benefits brought by the code with a single execution path when employed in real-time systems.

2.1 Worst-Case Execution Time Analysis

Any structured method or tool that obtains information about the execution time of a code or
part of it can be considered for execution-time analysis [62]. In general, performing execution-
time analysis of a piece code is not possible due to the halting problem. To make the problem
tractable, the program is restricted with code that is free of recursive structures and has loops
whose number of iterations is boundable in order to guarantee that the program always terminate.
[120]. Despite these restrictions, the execution time analysis process is not trivial. Dependency
on input data and initial hardware states force the execution to vary through a range of values.
The smallest value within that range is called best-case execution time (BCET), the largest one
worst-case execution time (WCET). For a hard real-time system the WCET is the only subject
of interest when timing guarantees have to be provided. However, to estimate a precise WCET
value, the analysis needs to go through all the possible execution states, which in practice is
almost infeasible due to the amount of memory and the computation time that is required for
such an approach.

The state-of-the-art WCET analysis tools are designed to overcome this problem by deriving
an estimated WCETest value, which in fact represents a conservative approximation of the real
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WCETreal. In order to be valid, the estimated WCETest should be safe and tight [70]. A
WCET bound is considered safe if the estimated value is greater or equal to the real bound
WCETest > WCETreal. Overestimation guarantees that the WCETest has covered all the
possible WCET cases. For the second requirement, the WCETest bound is considered tight if
the margin of uncertainty ε of the estimated value is within an acceptable range WCETest ∈
[WCETreal−ε,WCETreal+ε]. For instance, if the WCETest bound is highly overestimated,
it will lead to a system with underutilized resources. Tools that are used nowadays for WCET
analysis are mainly divided into three major groups: measurement-based, static analysis and
hybrid approaches.

The measurement-based approach is the most common way used in industry. It derives the
WCET bound by executing the task on real hardware or a simulator and measuring end-to-end
the execution time of the program. The estimation is derived either by augmenting the program
with an additional code that would read the hardware timer at predefined points, or through
additional hardware that observes the signals of the relevant pins [109]. Since the code consists
of many execution paths, it is required for the approach to perform many measurements of the
same code but with different input vectors in order to trigger different paths. The outcome
from all measurements is compared and the one with the longest execution time is selected
for WCETest. The set of input vectors that are used to trigger different paths can be generated
randomly or with the help of an evolutionary algorithm [114]. In practice, the initial input vector
is generated randomly or as a set of carefully selected inputs that are supposed to trigger a case
with quite long execution time and then through the use of algorithms the input vector evolves
to trigger a path with long execution time. The process is repeated until the maximal predefined
number of iterations is reached or all available resources are consumed. However, finding an
input vector that would trigger the WCETreal is very difficult. To ensure that such a vector has
been found, measurements for all possible combinations of input vectors for that program must
be performed, which in practice is infeasible. Thus, the values derived with measurement-based
approach are always considered to be underestimated compared with the real WCET. This is one
of the main disadvantages of the measurement-based WCET approach. The second problem is
instrumentation of the code for measurement purposes. The augmented code is useful only
during the validation process, but the validation restriction considers the code for valid only if it
remains unchanged. This means that the system in use has to use the same code, including the
instrumented parts, although they are not required for further use. The usual practice in industry
with measurement-based method is to do few measurements, determine the longest measured
execution time from that set and then to add a safety margin to that value. However, such a
solution is not always safe since in many cases it may generate still an underestimated bound
and in some cases it may convert the bound from underestimated to highly overestimated.

The static analysis is the only solution when strong evidence on WCET are required. Unlike
the measurement method, static analysis does not rely on the execution of the code, but combines
the information extracted from the code with mathematical model of the system architecture to
derive the WCET bound [70]. The whole analysis process is divided into three phases [120]:
control-flow analysis, processor-behavior analysis, and estimate calculation.

• Control-flow analysis collects information on possible execution paths of the code. Real-
time programs by construction have to guarantee termination of the program for any input

10



data. This means that this type of programs have always a finite number of possible exe-
cution paths. However, finding the exact set of paths is in general undecidable. Therefore,
control-flow analysis defines a superset of paths which is considered as a safe approxi-
mation of the real set. On the other hand, the superset should be as narrow as possible
in order to have small overestimations. The analysis firstly builds the control-flow graph,
which reflects the program structure. Next, it derives information on the bound of the
loops, functions that are called, dependencies between conditions and so on. The bound
on maximal number of iterations that a loop can have is determined through loop bound
analysis [34, 48]. To narrow the set of possible paths, and with that to reduce the pes-
simism of the estimated WCET bound, the analysis tries to identify and exclude infeasi-
ble paths. As infeasible are considered those paths which according to the control-flow
graph structure are executable, but not feasible when the semantics of the code and the
set of possible input data are taken into account [34]. To increase the accuracy of loop
bounds and infeasible paths, the analysis also performs value analysis, which determines
the range of possible values that the registers can have at any point in the program. All this
flow information can be extracted from the source level of the code or from its executable
binary. Extracting information from the source code is easier but not always practical
since not all changes that happen during the compile time can be mapped into the graph.
On the other hand, extracting information from executable binary is more difficult but
the outcome includes all optimization changes which are performed through compiling.
Furthermore, flow information can be provided manually by the programmer or through
automatic flow analysis. Manually extracted flow information can be error-prone, while
the use of automatic approach is not always possible.

• Processor-behavior analysis determines execution time bounds of instructions or basic
blocks on a given architecture. For systems with simple hardware, this is an easy and
straightforward process since the execution time of each instruction is static. A problem
emerges when the program executes on a processor that has cache, pipeline and branch
predictor, where the effects generated from these features impose variability on the exe-
cution time of instructions. In such a system, the execution time of a single instruction
is dependent on the state of the hardware, while the information about the hardware state
at that moment is itself strongly dependent on the history of the previous hardware states.
Therefore, for precise timing estimation, the processor-behavior analysis has to consider
all the possible hardware states that lead the execution to that instruction [119]. To avoid
the problem of state space explosion, most of the hardware analyses employ timing models
that are based on abstract interpretation [62]. The benefit of abstraction is that it simpli-
fies the analysis by substituting the real hardware model with a simplified abstract model,
which reduces the number of states that need to be considered and the calculation efforts.
However, the abstract model can run into a situation where estimation on timing for a
particular state cannot be derived. In this case the model uses conservative approximation
under the assumption that such an approach is safe to be used. For instance, if the analysis
cannot determine if the cache reference of a particular instruction will result into a hit or a
miss, then a safe assumption is considered to classify that instruction as miss in any cache
context. In contrast to control-flow analysis, which can be performed in source or binary
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code, the processor-behavior analysis requires access to binary code, since it analyses the
time on instruction level.

• Estimate calculation is the last stage of static analysis which estimates the WCET up-
per bound of the whole task, by combining the program flow information derived from
control-flow analysis with the outcome from processor-behavior analysis. There are three
possible methods to perform the calculation phase: tree-based calculation, path-based
calculation and implicit path-enumeration technique [120]. Tree-based (structure-based)
estimation generates the WCET bound by performing bottom-up traversal through the
syntax tree of the program [9,22]. As it traverses through the tree, the analysis merges the
nodes to a single one and at the same time it also estimates the time for that node. All trans-
formation are done in accordance with the rules for tree-based transformations. However,
the problem of this approach is that not every control flow can be easily expressed within
a syntax tree. The second technique, path-based calculation, estimates the upper bound
by representing the possible execution paths of the task explicitly and then search through
that set for paths to find the one with longest execution time, which is also considered as
the WCET of that task [108]. The approach is straightforward for codes with single loops,
but becomes complex when loops are nested. The complexity is also related exponentially
with the number of paths that need to be examined, which makes the approach not so suit-
able for codes that have a large number of paths. The last estimate calculation technique,
called IPET, transforms the WCET estimation into an integer linear programing problem
where the structure of the program and the execution-flow information are represented in
form of constraints [67, 92]. The WCET bound of the task is obtained by maximizing the
objective function WCET =

∑N
n=1Bi×Ci, where Bi is the longest execution time that

the basic block i can have and Ci is the execution frequency of that block. Unlike the
previous two methods, IPET is able to handle different types of flow information. The
only problem with IPET is that flow information are represented in form of constraints,
while the size of complexity of estimation grows with the number of constraints. Even
though ILP is not the most suitable technique to estimate the WCET bound it still remains
as the most used approach because of its power compared to tree-based and path-based
methods.

Hybrid approaches combine measurement with static complementing each other. The goal is
to substitute the complex low-level analysis used in static analysis with a simple measurement-
based solution. The approach uses firstly the static analysis to construct the model of the program
and next it partitions the code into small segments. In most cases the size of the partitioned seg-
ments is the size of the basic blocks. When the set of all possible segments is defined, the tool
performs measurements by executing the segments on real hardware or in a cycle-accurate sim-
ulator. If the segment contains data-input branches, then the input data for complete coverage of
that segment should also be given. The measured values are then used as input to static analysis
to produce the WCET bound. Although the hybrid approach includes all the possible paths, it
still cannot be considered as a solution that derives a safe WCET bound since determining the
worst-case initial state for each segment is difficult or even impossible in some cases [120]. The
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context problem is usually attacked by running more measurements of the same segment with
different initial states in order to decrease the uncertainty.

To summarize, all three methods have their pros and cons. Static analysis has in favor the fact
that it covers all the possible context dependencies and gives guarantees, and that the estimated
WCET bound is always safe. In favor of static analysis is also the use of abstraction, which
simplifies complex hardware models and eliminates the need for real code execution. How-
ever, abstraction causes loss of information, which is also reflected in the diminished WCET
bound accuracy. So far, static analysis still misses a general abstraction model that could be
employed on any hardware configuration. Abstracted models, which are used nowadays, are
valid only for small set of hardware configurations. Even for these configurations, if the hard-
ware experiences a small change it makes the analysis not valid anymore. Adapting the model
for the new hardware configuration is also a difficult process. In contrast to static analysis, the
measurement-based approach is much simpler to apply since no timing model for the hardware
is needed. However, the main disadvantage of this approach is the scarcity of input vectors
that would guarantee WCET bounds. Even if somehow the input vector that triggers the real
WCET is found, this does not mean that the same input vector will trigger the WCET of the
same program on other hardware platforms [7]. Hybrid analysis on one side tries to simplify the
complexity of hardware by replacing the abstract processor analysis with measurements, but on
the other side gives less precise WCET estimation by integrating the measured values into the
static analysis. The main advantage of this approach is that it requires less effort when a new
hardware is used. It still cannot give guarantees on the estimated bound.

2.2 WCET Analysis Issues on Modern Hardware

In theory, the estimation of WCET bounds is a decidable problem, because the software and
hardware that are used for real-time systems are by design restricted to have a countable state
space. However, in practice this is not the case. The complexity imposed from the software
and the hardware of the modern system expands the state space to the scale that is tedious or in
some cases even infeasible to be analyzed. The WCET research community tries to diminish
this problem by proposing timing models that would derive approximated WCET bounds. The
efficiency of these models is strongly related to the accuracy of the estimated WCET bound and
the computation effort that is needed to calculate these bounds [56]. Hence, to be acceptable
the WCET analysis should provide timing models and analysis methods that are affordable,
tractable and derive precise results [121]. Despite the advances that have been made during the
last decades in improving the efficiency and the correctness of the models for WCET analysis,
there are still issues that the analysis has to deal with. In the following we describe some of
these issues that the WCET analysis has to deal with.

On the software level, the analysis faces the issue of complexity when information on dy-
namic behavior of the code needs to be extracted. Although there are a number of techniques
that can derive loop bounds [35, 48, 57] and infeasible paths [46, 110] automatically, they are
not always successful. When they fail, flow information needs to be provided manually by the
programmer, which is a tedious and error-prone process [55].
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The situation gets more aggravated with the low-level analysis. The demand for powerful
processing forces the embedded systems to adopt techniques that were developed for general
purpose systems like cache, pipeline, branch predictor and out-of-order execution [61]. On the
other hand, these features are the main source of complexity when the analysis has to be done
and not all of them have adequate timing models that can be used for estimation of the WCET
bound [98, 121]. In the following, we describe the current problems that the static analysis has
to deal with when features like these are employed on the system.

Cache analysis has the goal of classifying each memory access as a hit or miss. Running
exhaustive exploration through all the possible states that the cache can have during program
execution is not feasible due to the enormous size that the cache state space can have. Abstract
interpretation is considered a well established approach that simplifies the complexity of the
cache analysis by aggregating states of different paths into a single abstracted state. However,
the precision of the results derived from the abstracted models are strongly dependent on the
architecture of the cache and its replacement policy [49]. For example, the abstracted model for
LRU replacement policy achieves better predictability compared to the FIFO or PLRU policy,
since the updates of the abstract states for caches with LRU behave in more regular fashion than
those with non-LRU [73]. Cache with non-LRU policies are also more sensitive to the initial
states, which means that the abstract model requires a longer sequence of memory accesses to
evict all unknown cache states from analysis [94]. The uncertainty of cache analysis gets even
higher when subject of analysis are data caches. Before classifying the cache access, cache anal-
ysis needs to know in advance the reference address of that memory access. Unlike instructions
where each address is often available during the compile stage, the addresses for dynamic data
structures can only be known at the run-time. Memory access with unknown address destroy
the history trace of the cache states up to that moment and with that also the predictability of the
analysis [100]. For some cases, value analysis can be used to reduce the set of possible target ad-
dresses which are part of indirect addressing [73]. The same problem remains for unified caches,
since the uncertainty on data accesses will destroy the predictability not only for data accesses
but also for instructions. All of this shows that the current abstract model used for cache analysis
cannot be considered a mature solution yet.

Pipeline analysis models the behavior of a program through the processors pipeline. For an
ideal pipeline, modeling the transition of instructions would be easy, since the execution time
latency of instructions would be equal with the length of the pipeline stage. Unfortunately, with
real pipelines the execution suffers from data, control, or structural hazard due to instruction
dependencies on data or shared resources [50]. When such hazards occur, the pipeline is stalled
until the dependency conflict is solved. However, even if most of the pipelined processors have
forwarding techniques implemented, they still are not able to fully eliminate the stall penalty
time. Interdependency between pipelined instructions prevents the pipeline analysis to perform
individual analysis at the level of single instructions. Instead, the analysis considers all current
pipelined instructions collectively in order to identify all potential pipeline stalls that can occur
and include them into the timing model. Dependencies within a basic block can be modeled
easily. The problem emerges when an instruction of one basic block causes delays to instructions
of the other basic blocks which are not immediate successors [33]. Such dependencies are called
long timing effects. They are the main reason for preventing the pipeline analysis to be performed
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on the level of isolated basic blocks.
Branch prediction analysis has the purpose to analyze the behavior of the branch predictor.

The easiest way to deal with this feature is to disable it or to assume that all branches are mispre-
dicted. However, such an assumption would result in a highly pessimistic bound considering that
mispredicted branches can be very expensive for architectures with deep pipelines. Another rea-
son is that the rate of prediction of modern dynamic branch predictors is quite high. Therefore,
inclusion of branch-prediction analysis is important when tight WCET bounds are required. The
branch-prediction analysis integrates estimated information about branch misses into the global
WCET analysis by adding penalty cost for mispredicted branches [23] or by bounding the num-
ber of mispredicted branches through ILP constraints as part of IPET approach [66]. The first
solution uses tree-based computation and has implementation only for local branch predictor,
while the second one is implemented for global dynamic branch predictor and is more precise
since it considers not only the number of miss-predicted branches but also the effect of the
branch predictor on the cache states. Although the last approach achieves a high precision, its
employment can increase the complexity very fast to a level that makes the analysis to become
not affordable anymore [14].

Powerful out-of-order processors are suffering from timing anomalies. This phenomenon
invalidates the intuitive assumption that a local pessimistic assumption will lead to the global
WCET. Anomalies can emerge when the processor speculates with execution on wrong direction
(speculation-caused anomalies), or when a sequence of instructions are scheduled differently on
the hardware resources (scheduling anomalies) [72]. Speculative execution is used to avoid
pipeline stalls caused from branch instructions, but if the speculation is incorrect the processor
will prefetch wrong instructions, which will also change the cache content. Changes done from
wrong speculation sometimes can cost more to undo than the cost of a cache miss. Hence,
the local assumption of a cache miss can lead to a globally shorter time. The second type of
anomaly can occur in multi-issue out-of-order processor when a cache hit can take longer than
cache miss due to a dependency of instructions and the way how these instructions are allocated
to the resources. In addition, it has been demonstrated that timing anomalies can also occur in
multi-issue in-order processors [118].

2.3 Single-path Approach

The single-path approach uses a code transformation strategy that converts conventional code
with multiple-execution paths to a code that has a single execution trace [88]. The idea behind
the strategy is the elimination of all input-data dependences of the code by serializing input-
dependent alternatives into sequential code segments. The outcome from this transformation is
a new generated code that has preserved the same semantic as the original code, but its execution
always follows the same sequence of instructions regardless of the program input values. For
a code with such a behavior, the WCET analysis becomes a simple process. To determine the
WCET, it is sufficient to run the code and measure the execution time for only one execution.

The whole concept of single-path transformation is based on so called if-conversion which
converts control dependences of the code to data dependences [4]. This technique was firstly
applied only on the body of the most inner loops in order to convert them into non-branching
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Figure 2.1: Distribution of the execution time for conventional and converted single-path code

code and with that to avoid the stall of the pipeline, especially for processors with deep pipelines.
The single-path approach extends this strategy through the whole code by covering all input-
dependent control flows, loops and functions of the code. The strategy can be applied on any
conventional code whose WCET can be bounded.

To achieve input-data independent execution, the transformation needs to transform all in-
put dependent control flow instructions. Identification of those instructions can be done auto-
matically by data-flow analysis. On the other hand, control flow branches that are input data
independent can be preserved as they are or they can also be subject to if-conversion. In both
cases the code will be single-path and will have the same semantic. The difference is only in the
amount of computation time that is required for their execution. If input independent branches
are preserved, then the code will contain mutual alternatives whose patterns of execution will be
always the same regardless of the input data. If they are converted it means that the alternatives
will be serialized and with that also the execution stream of instructions.

Figure 2.1 shows the distribution of the execution time for conventional and single-path
code. While a conventional code has different times for different input data, the single-path
converted code of the same program has the same execution time for any input value. However,
the benefits to have a jitter-free code comes at the cost of the execution time. As can be seen
from the figure, the execution time of single-path code can take much longer than the WCET of
conventional one due to its behavior to force the execution through all instructions of the code.

In the following we describe predicated instruction as a requirement that the system should
support in order to perform single-path execution, the set of rules that are applied on conventional
code for its conversion into a single-path one and the beneficial timing properties that are gained
from the conversion.

Hardware Requirements for Execution of Single-path Code

The execution of single-path code requires from the hardware to support predicated instruction
in order to preserve the semantic of the original code. Predicated instructions are instructions
whose semantics are controlled by a predicate (guard), which can be implemented through a
specific predicate flag or a register in the processor [79]. Instructions whose predicate value
is evaluated as “true” are executed normally, while those with “false” predicates are nullified
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in order to prevent the processor from modifying its state. Predicates of instructions should
be calculated before entering the code segment and the value of the predicate should be kept
unchanged through the whole segment. Since the single-path conversion is spread through the
entire code, the compiler has to take into account interdependencies of the predicates within
nested code structures. In such cases the predicate of the outer structures is passed to the inner
one and then using the boolean algebra they are combined with the inner predicates. For instance,
if a piece of code has two nested loops where L1 is the outer and L2 is the inner loop, and if
their exit conditions are associated with predicates p1 and p2 then the body in the inner loop is
also associated with the outcome of p1 ∧ p2.

Single-path Conversion Rules

Single-path conversion is performed on the executable binary after optimization transformations
have been conducted by compiler [84]. However, to be more lucid with the concept of the
single-path transformation, we demonstrate the transformation rules as they would have been
performed in the source-level of the code. The rules are applied on those parts of the code which
generate variability in execution time. Code structures that are transformed are input-dependent
conditional branches, loops and function calls [90].

Input-dependent branches of if or case structures are conditional statements whose semantic
consists of two or more mutually exclusive alternatives where only one of them can be executed.
The decision about which particular alternative will be executed depends on the outcome of
the branch condition that precedes those alternatives. The single-path conversion serializes all
the alternatives of the branch into sequential code and with that forces the execution to pass
through the whole branch [87]. The responsibility of predicates is to control which instructions
can do register-state changes and which will act as null. In cases when conversion is nested,
the predicates of all nested conditions are combined into a conditional assignment. Figure 2.2
illustrates an example on how the if-else conversion eliminates the input data dependent branch
instruction. Variant (a) is a conventional code with an if branch instruction, where only one
statement is executed. The decision on which one will be executed depends on the outcome of
the condition cond. Variant (b) executes both statements, but only one of them will change the
hardware states and this depends on the value of the predicate pred.

i f ( cond ) goto L2
L1 : s t a t e m e n t _ 1

goto L3
L2 : s t a t e m e n t _ 2
L3 : . . .

(a) Branch instruction.

pred <−cond
( ! p r ed ) s t a t e m e n t _ 1
( p red ) s t a t e m e n t _ 2

. . .

. . .

(b) Predicated instructions.

Figure 2.2: Conversion of branch code into serial code with predicated instructions.

A loop is a code structure that is continually repeated until a certain exit condition has been
reached. If the exit condition is input dependent then the loop can exit after any iteration, depend-

17



ing on the current program input. Such a exit condition generates variability in execution time
of the loop for different loop iterations. The single-path approach transforms input-dependent
loops into loops with constant iteration count where each iteration has a constant execution
time [86]. The conversion sets the iteration count of the new generated loop to the value of the
loop bound derived form the original loop, while the exit condition of the original loop is used
to calculate the value of the predicate related to the body of the new loop. Figure 2.3 illustrates
the transformation of a while loop. As can be seen from the figure, the loop is transformed into
a for loop structure with constant iteration count. The body of the new loop includes predicated
instructions. The predicate is responsible in preventing hardware states to be changed after the
exit condition from the original loop has been satisfied. The value of the predicate is set at the
beginning, before entering the loop, and then is controlled with statement_cond. Once this con-
dition is fulfilled, the value of predicate is changed to false. The loop will iterate until it reaches
max. Thus, although the number of loop iterations is constant on each invocation, the semantic
of the transformed loop will still be the same as the original one.

whi le ( cond ) do
s t a t e m e n t _ 1
s t a t e m e n t _ 2
. . .
s t a t e m e n t _ c o n d

(a) Conventional loop.

pred <−cond
f o r 1 t o max

( p red ) s t a t e m e n t _ 1
( p red ) s t a t e m e n t _ 2

. . .
( p r ed ) pred <−s t a t e m e n t _ c o n d

(b) Loop with predicated instructions.

Figure 2.3: Conversion of conventional loop into a loop with stable time.

A function is a reusable block of code that is executed whenever it is called. Input-dependent
calls invoke the function in dependence to the program input. Single-path conversion transforms
the code in a way that each function of the code is called unconditionally, and with that also a
predicate related to the function call is passed to the called function. Hence, if the predicate is
evaluated as false, even though the execution will pass to the function, there will be no changes
in the hardware states. The function predicate that is passed to the function represents the initial
precondition for all statements within the function.

Predictable Properties of Single-path Code

Single-path converted code, except that it is free of input data-dependent control condition, it
also inherits beneficial properties from transformation that help the process of hard real-time
system design to be simpler and easier. In the following we enumerate the main properties that
the code gains after its transformation [21, 90, 91]:

• Simplicity - One of the most important properties of single-path code is its simplicity.
By making the execution independent from input data, the single-path conversion also
simplifies the process of WCET analysis. Instead of performing complex WCET static
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analysis, for single-path code it is sufficient to do a single end-to-end measurement of
the execution time of the code and with that to determine the exact WCET value. The
measured WCET is safe and valid for any context of the code.

• Stability - From a software point of view, single-path code has no variability in execution
time for any input data. Such a property eliminates the possibility for overallocation of
the hardware resources. The only source for execution-jitter in a system with single-path
code can emerge from hardware features due to their temporal behavior that are based on
execution history. However, in a well designed system this execution-jitter can also be
eliminated.

• Composability - Having a single execution trace allows the programmer to add or remove
segments from the code without affecting the timing of the other code segments. Hence,
each software component can be developed autonomously with respect to the timing and
then added to the main code. This makes the single-path converted code timing compos-
able.

• Compositionality - The timing of code composites can be derived from the timing of the
components with a simple formula. This allows the construction of the system to be
performed hierarchically by keeping the design and development of complex composites
to be simple. In such an approach the timing of the whole system can be calculated
straightforward from its components.

• Predictability - Although there is no precise definition on what predictability is, the pro-
posed ones [44,56] classify the single-path code as time-predictable since the timing anal-
ysis for such a code calculates the WCET with full accuracy.

All these properties support the design process of a real-time system. The use of hierarchical
development allows the designer to dismantle the complexity of the whole system from system
level to the level of sub-component and then treat each sub-component as a smaller sub-problem.
After building all sub-components, their integration into a whole system is performed. This step
is quite simple due to composable and compositional properties that the system components
have.

The only drawback for single-path code is that transformation can produce codes with long
execution time, since every alternative of the code is executed. This is especially pressing if the
code consists of lots of input-data dependent control flows.

2.4 Chapter Summary

Complexity in timing analysis emerges as the result of highly-integrated analyses that state-of-
the-art analysis approaches are using. The analyses simultaneously keep track of all hardware
features whose performance enhancement are based on the program execution history. Each of
these features increases drastically the hardware state space that needs to be analyzed. Addi-
tionally, most of these features are also highly interdependent and this effect on timing analysis
must be included in WCET analysis as well. Abstraction is proposed as an option to mitigate the
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complexity of the analysis by reducing the state space. However, the approach provides accept-
able solution only for a small set of features, while for the rest an appropriate model still needs
to be found.

With the single-path approach, the process of timing analysis gets simple and easy. The
strategy eliminates the complexity of the analysis by generating code that has a single execution
path. In a well designed system, the timing of instructions through all hardware features is the
same whenever it is executed, since the state transitions of the hardware features are always the
same and with that also the path to reach that instruction. Hence, an end-to-end measurement
of the execution is sufficient for WCET estimation. Furthermore, the single-path property of
stable time gives the opportunity for building composable systems whose timing can be easily
derived.
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CHAPTER 3
Background on Memory Hierarchy

Since the invention of the microprocessor the density of transistors per chip area has been dou-
bling roughly every year. Whereas microprocessors have used this advantage to increase the
rate of executed instructions, memory technology was focused on increasing the capacity. Such
divergent development has led to a wide performance gap between processor and memory. To
overcome this issue, the concept of memory hierarchy has been proposed. A good understanding
of the memory hierarchy architecture and the memory technologies is necessary for designing
and analyzing real-time systems.

In this chapter we describe the architectural concept of the memory hierarchy, memory hi-
erarchy components and the technologies that are used in nowadays systems to bridge the speed
gap between processor and main memory.

3.1 The Concept of Memory Hierarchy

Memory is an addressable storage where programs and data are stored. Since fast memories
are expensive and modern programs require large amount of storage, it is important for mem-
ory designers to build memory systems that satisfies cost-performance requirements. This can
be achieved by combining various storage technologies in a well organized structure that as a
whole performs fast and has a low cost per bit. Such memory structures are known as memory
hierarchies.

Figure 3.1 illustrates, in form of a pyramid, the main components that are used for the con-
struction of a memory hierarchy in embedded systems. Each level of the pyramid provides
temporary repository for recently accessed memory blocks, but they are distinct to each other
by their size, speed and cost. The components located on the higher layers have better perfor-
mance than those on the lowers one, but the cost per bit is in the reverse order. At the top are
registers. These are the smallest and the fastest components of the hierarchy. Usually, registers
are organized in a set of so-called register files, as an integrated as part of the central processing
unit (CPU) in order to keep the actual instructions and data near to the CPU. The second layer
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Figure 3.1: Levels of memory hierarchy in embedded system

covers caches and scratchpad memories for bridging the speed gap between CPU and the main
memory. The difference between these two types of memories is that a cache holds content
that is duplicated from the lower layers and is transparent to the CPU, while the scratchpads
has unique content and occupies part of the memory address space, which means that it can
be directly accessed. Another difference is that the cache contents is managed through an au-
tonomous hardware, while scratchpad needs special software for that. The storage of cache and
scratchpad components is mainly based on static random access memory (SRAM) technology.
The third layer, called main memory, is an off-chip memory that is mostly based on dynamic
random-access memory DRAM technology. When an embedded system employs non-volatile
storage for applications and the main memory is used only for keeping temporal data, then an
SRAM chip can be considered for main memory as well. Disk is the last and the only layer of
the hierarchy that provides non-volatile storage. It has a large capacity, but it is slow on read and
write. For embedded systems, this layer is usually used to store executable images and system
configuration parameters.

Functionality of the entire concept of the memory hierarchy is based on the principle of
locality. Locality is an observed code attribute that results from the tendency of computer pro-
grams to access the same or nearby memory locations frequently and repeatedly. Mainly, there
are two different types of locality:

• Temporal locality - means the code executed at the moment is likely to be referenced
again in the near future. On the instruction stream, this type of program behavior is
exhibited when a loop is executed, since the instructions that are building the loop body
are referenced repeatedly on each iteration. On the data stream, temporal locality occurs
when the same program variables are accessed frequently.

• Spatial locality - refers to the following accesses of nearby memory locations that are
close to the actual reference. On the instructions stream, this type of locality occurs when
instructions allocated sequentially in the memory are also executed in same order. Within
the data reference stream, the spatial locality occurs due to the tendency of compilers to
cluster related variables together in the memory space. A classic example for such locality
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is the access to elements of arrays, where elements that are belonging to the same array
are located adjacently in the memory space.

A memory hierarchy exploits the advantage of locality by keeping the entire executable code
in the main memory, while the upper layers of the hierarchy keeps only copies of code fractions.
Therefore, the main memory can be considered as the operating storage, cache and registers as
the fast storages, while the disk as the permanent storage.

Memory Access Paths

There are two memory-design alternatives for accessing and transferring instructions and data
through the layers of the memory hierarchy. These alternatives are known as Von Neumann and
Harvard architectures [25].

The Von Neumann architecture, depicted in Figure 3.2a, is a design with a single unified
cache that stores both instructions and data on the same storage space. The address space for
such a cache can be divided between data and instructions in a way that each type has its own
sub-space of addresses, or it can be an intermixed address space that allows both instructions and
data to be located anywhere within the cache. On Von Neumann architectures all CPU generated
memory accesses are transfered through a single shared bus. Therefore, when the processor is
pipelined the transfer of instruction and data should be scheduled, since the fetch and load/store
stage can not access the memory at the same time.

In the Harvard architecture (Figure 3.2b), the program memory and data memory are dis-
joint and each part is accessed through a dedicated bus. The major advantage of such a sepa-
rated approach is the overlapping of the instruction and data accesses in order to increase the
performance of the pipelined processors. In contrast to the Von Neumann architecture, having a
separate cache storage for instructions and data does not only reduce the utilization of the cache
size but also increase the cost of the system.

Modern CPU combine both memory designs (Figure 3.2c). They use separated on-chip
buses for instruction and data cache, while the off-chip communication is done through a com-
mon single bus. Such kind of hybrid architecture can be classified internally as Harvard but
externally as Von Neumann solution.
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Memory

(a) Von Neumann architecture

CPU

I-Cache

I-Main 
Memory
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Memory

(b) Harvard architecture
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I-Cache
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(c) Combined architecture

Figure 3.2: Memory access paths
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3.2 Memory technologies

Technologies used for memory components of embedded systems are mainly divided into three
main categories [117]:

• SRAM - Static Random Access Memory,

• DRAM - Dynamic Random Access Memory, and

• Flash Memory.

The first two, SRAM and DRAM, are volatile types of memories, which means that the
content retains on them as long as electrical power is applied on them. Once the power is cut off,
all data is lost. In contrast to that, flash memory is non-volatile memory, because it keeps the
data safe even after power supply is off. In the following we describe the main characteristics of
these three types of technologies.

SRAM technology

SRAM is an integrated memory that is organized in form of an array where the cell is its fun-
damental storage for storing a single bit. Figure 3.3a shows an SRAM cell consisting of six
transistors, where transistors T1-T4 are used for keeping the cell value, while T5 and T6 control
the access to that cell. The activation of the T5 and T6 transistors is done through the word line,
while the value of the cell is read/write through the bit line. Although for normal operation of the
SRAM memory one bit line for each cell is enough, in practice the SRAM cells are connected
to two bit lines with opposite charging in order to detect faster the voltage difference between
these two lines and with that the value of the cell as well [52].
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Despite the fact that SRAM memories occupy a relatively large area per bit, they are mainly
integrated as part of the processor die since they use the same fabrication process. Such an
approach keeps the manufacturing process simple and reduces the cost [117]. Furthermore, this
technology provides fast and simple access to the data. The access time to each SRAM cell is fix
and can take one or two clock cycles depending on the speed of the CPU. This property makes
this technology suitable to be used for cache memories.

DRAM technology

DRAM is an array memory, which unlike SRAM has a much simpler cell structure. Figure 3.3b
shows the DRAM cell consists of one transistor-capacitor pair. The charge of the capacitor
determines the cell stored value while the transistor controls the access to that bit. The selection
of the cell is done by applying voltage to the word line while the cell value is read/write through
the bit line. The use of only one transistor makes the DRAM much denser and cheaper per
bit than SRAM. However, the DRAM-cell capacitors are not perfect, because they need to be
recharged periodically in order to retain the stored information. This is also the reason why this
type of memory has the prefix dynamic in its name.

DRAM memory is mainly employed as an off-chip memory solution which implies longer
latencies and higher power consumption than the on-chip counterparts [102]. For these reasons
DRAM is used at the lower level of the memory hierarchy.

Flash Memory

Flash memory is a non-volatile type of memory that stores data permanently but also much
slower than SRAM and DRAM. Most embedded system use this type of technology to keep boot
loader, operating system or applications that do not change often [10]. Because of their limited
performance, the contents of the flash memory is copied into the RAM at the start of the system
and is then accessed from there. Writing to the flash memory is possible only in blocks which
is firstly preceded by an erasing action. Concerning their internal organization, flash memories
can be of type NOR or NAND flash. In contrast to NOR, NAND is cheaper but the reading is
much slower since the page has to be re-read if the elements accessed are not continuous, while
NOR offers an acceptable random read access due to its parallel internal structure. Furthermore,
flash memories of type NOR are suitable for so-called eXecute-In-Place (XIP), which means
that the instructions can be read directly from the flash memory without copying the code into
the working memory, but this is not always suitable because they are much slower compared to
DRAM [117].

3.3 Cache Memory

Caches are small high-speed memories which are located between the processor and main mem-
ory. Their purpose is to bridge the speed gap between the processor and main memory by holding
copies of code fragments that are frequently accessed. Hence, when the CPU references an ad-
dress that has been recently accessed, the reference will be fetched from the cache. Instructions
are loaded from main memory into the cache with a granularity of one memory block that hold
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more than one instruction. Such an approach improves the access time when the next accessed
instruction belongs to the same cache line.

Cache organization

When the processor requests an instruction, the cache is the first level of the memory hierarchy
that encounters the request. Figure 3.4 illustrates an example of a two-way set-associative in-
struction cache design consisting of lookup tables (tag entries), valid bits (V) and data storages
(instruction entries). Since the cache holds only portion of code, its first action is to determine if
the requested instruction is in the cache or not. In case of hit, the instruction is immediately sent
to the processor and the execution continues. Cache hit occurs when tag part of the requested
address matches with the entry from the cache tag table. The tag table contains the upper portion
of the address which is used to identify instructions that are held at that row. A cache can also
hold instructions that may not be valid even though the tags match. This can happen when the
processor starts up and the content of the cache is not flushed. To indicate whether the cached
instructions are valid or not, a valid bit of each cache line should be set. If the valid bit is zero
then all instructions belonging to that line are considered not valid.

In case of a cache miss, the request is forwarded to the next lower level of the memory
hierarchy in order to fetch the required block. Such an occurrence affects the processor by
stalling its pipeline until the required instruction becomes available. Once the instruction arrives
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into the cache, the cache controller will set the valid bit of that line and send the instruction to
the fetch stage. The causes for a cache miss can be categorized into three groups [50]:

• Compulsory - The very first reference to a block always generates a cache miss, since the
block has not yet been loaded into the cache.

• Capacity - When the cache is full, some instructions from the cache must be evicted to
make space for the incoming fetched instructions. A capacity cache miss occurs when the
evicted instructions are referenced again from the processor.

• Conflict - If the retrieved block is restricted to be placed only in one location in cache and
evicts instructions that are later referenced again then a conflict miss will occur.

The time needed to determine if the requested instruction is in the cache or not is called hit
time, while the time for retrieving the instructions from the lower memory level (when a cache
miss occur) is called miss penalty time. Since the performance is the major reason for organizing
the memory in form of a hierarchy, the time for servicing hits and misses is important. In the
following we describe the impact of the cache-line size, cache size, placement and replacement
policies on cache performance.

Cache Line

The main memory is logically partitioned into a set of cache lines with size of b bytes. A
cache line (cache block) is a fixed-size data that is transfered from main memory to the cache.
Selecting the appropriate line size is an important decision of the cache-design process. Small
line sizes have several advantages since their transmission time from the main memory is short.
With small line size fewer unneeded instructions will be brought to the cache along with the
requested one. On the other hand, large line sizes have their advantage in fetching more data at
once, increasing the exploitation of spatial locality, and reducing the complexity of the lookup
circuit by decreasing the number of lines in the cache. The criteria for choosing the optimal
cache-line size are a trade-off between short and long cache lines in order to reduce the number
of cache misses and the miss penalty time.

Cache size

Increasing the cache size increases the exploitation of codes temporal locality and with that the
cache hit rates. However, the size of the cache cannot be too large for several reasons [104].
Firstly, caches are expensive and usually are on-chip memory, where the part of the die that can
be reserved for cache is limited. Secondly, smaller caches have a smaller lookup table, which
means less searching hardware and also shorter access times. Hence, the size of the cache is
again a trade-off between the price and expected performance.
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Cache placement policies

Caches are designed to be transparent to the processor in order to eliminate the control overhead.
Such an approach is achieved by employing well-defined placement algorithms that automati-
cally map memory blocks form the main memory to the cache lines.

The simplest form of assigning a memory block to the cache is the direct-mapped placement
policy where each memory block is assigned to a fixed single cache line. The approach forces
mapping of type many-to-one, by restricting the placement to only one possible cache location.
This location is determined by using n bits from the address of the memory block as a direct
index for one of the 2n possible locations in the cache. Figure 3.5a illustrates the mapping of the
memory blocks into the cache using direct-mapping. The equation for calculating the cache-line
index is:

(main memory address) MOD (number of cache lines) (3.1)

The second strategy, called set-associative, is more flexible because it allows the memory
block to be mapped at any location within a set of cache lines. This policy forces many-to-
few mapping. In contrast to direct-mapped, set-associative placement uses part of the address
to index the sets. Figure 3.5b illustrates a two-way set-associative cache and how the memory
blocks can be located at any of the two cache lines within the assigned set. The mapping between
addresses and the sets is done through the following equation:

(main memory address) MOD (number of sets) (3.2)

The last policy is the most flexible one, since it allows placing any memory block at any
location in the cache (any-to-any mapping). This form of placement policy is called fully asso-
ciative. In such an approach no index bits are used from the memory address for determining
the storage location.
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The direct-mapped implementation has the simplest hardware overhead and achieves the
shortest access cycle, but due to its restriction on placement the conflict rate between memory
blocks placed in the cache is quite high. On the other hand, fully associative is an expensive and
slow solution but the conflict rate is zero. In order to balance between these properties different
n-way set-associative solutions have been proposed.

Replacement policies

When the cache is full and a new miss occurs, the cache is forced to evict the content from
one of the currently occupied cache lines and make space for the currently referenced one. The
candidate to be evicted is selected based on the predefined replacement policy. For cache with
direct-mapped placement this is a trivial problem, since there is only one cache line where the
memory block can be placed. However, associative organized cache needs to choose which line
form the set to replace in order to place the upcoming memory block. For a set associative
cache, the selection is restricted only within the set, while the selection of the set is chosen
based on the address index. Fully associative caches have a wider freedom, since any cache
line can be a potential candidate for eviction. The replacement algorithm should be a hardware
implementation in order to perform quickly and have no negative impact on the cycle length.

There are five common policies that can be found in modern caches: random replacement
(RR), first-in first-out (FIFO), least recently used (LRU), pseudo least recently used (P-LRU)
and most recently used (MRU).

• The random replacement policy selects the candidate for eviction randomly. The advan-
tage of this algorithm is that it does not need to keep a record of the previous accesses.
However, implementation of a pure random policy in practice is very difficult. Therefore,
caches that require randomness on replacement usually employ some reasonable pseudo-
random approximation to select the block for eviction [102].

• The first-in first-out replacement policy keeps track of the cache misses and evicts the
entry that has resided in the cache for the longest time. Such an algorithm can be im-
plemented as a simple circular counter where the counter points to the oldest cache line.
Every time a new block arrives in the cache, the value of counter is incremented. The
counter is updated only when cache misses occur. In case when the maximal count value
is reached the counter is set to zero. A fully associative cache has only one counter, while
a set associative cache requires one counter for each set.

• The least recently used policy keeps tracks on references of each block. Every time a
cache line is referenced, it is positioned on the top of the order list while the others are
shifted down. The least referenced cache line, which is at the bottom of the list, is the first
candidate for eviction. In contrast to FIFO, LRU is updated on each cache access (miss or
hits).

• The pseudo least recently used strategy is an approximation of LRU that tries to reduce
the cost of implementation. It guarantees that the candidate for eviction is not the most
recently used cache line, but that candidate is not always the least recently used one. The
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implementation is based on binary decision tree consisted of n− 1 nodes, where n is the
number of ways in cache associativity. The bit in nodes directs the path towards the cache
line that will be replaced. For instance, the policy can be set to point the cache line for
replacement by follow the path of zeros. In case of a hit, the bits that directs to the cache
line will be inverse in order to protect the last accessed line from eviction.

• The most recently used policy protects the most recently referenced cache line form evic-
tion. Its implementation is simple. Each cache line has one bit that is set to one when
the cache line is accessed. In case where all bits become one and only one is zero, the
policy resets all the bits to zero except for the most recent cache line that was zero, which
is switched to one.

Although the LRU policy is the most successful in reducing the cache miss rate, the other
policies are more widely used in practice because the implementation of LRU is challenging do
to additional hardware and storage that requires to update the records on replacement.

3.4 Scratchpad Memories

Scratchpad is another on-chip memory alternative. It is a small and fast SRAM memory that can
be accessed in one or two processor cycles. In contrast to cache, scratchpad has no additional
hardware logic for managing its content, which makes it small by occupying a smalles area of
the die and also more energy efficient. However, the content of the scratchpad must be managed
explicitly through software provided from the programmer or compiler [117]. Such an approach
allows the user to have full control on the scratchpad content, since nothing can be stored in it
unless the software explicitly puts it there. Another distinction from cache is that scratchpads
are not transparent to the processor but they are part of the memory address space with their
own assigned address range. Thus, any access to the scratchpad must be performed through an
explicit address. Embedded systems can have instruction, data or unified scratchpads.

The allocation of the program portion into the scratchpad can be done statically or dynami-
cally. A static approach loads the selected code fractions into the scratchpad before the start of
the program and keeps its content unchanged during the whole execution. On the other side, dy-
namic allocation swaps the content between main memory and scratchpad during the execution
based on the flow of the execution. This approach can be considered as more scalable, especially
for large applications. The detailed knowledge about the code that is gained during the compile
stage can be used to determine which fractions of the code should be located into the scratchpad.
The selection criteria depend on the goal that is aimed to be achieved since scratchpad memory
has been shown to be successful in improving system performance, energy consumption and
timing predictability [115].

Despite their beneficial properties, scratchpads have also disadvantages [5]. First, the com-
piler has to do additional work to determine fractions of the code that have to be allocated into
scratchpad based on some predefined algorithms. Second, compiler must take into account the
target of control-flow instructions, since the scrachpad has its own address space. The target
address of each control-flow instruction that points to a destination that is allocated to scratch-
pad needs to be changed. Third, the transfer time of the code fractions between scratchpad and
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main memory generates additional overhead. Fourth, the scratchpad requires additional control
instructions inserted into the code which increases the code size.

3.5 Main Memory

Main memory is the largest operational storage of the embedded system. It stands in a separated
die and communicates with the processor through the bus. Main memory is composed of a
DRAM storage device and memory controller, where the DRAM storage keeps the code, while
the memory controller intermediates between processor and DRAM by handling the requests
from the processor to the DRAM device. In many cases, when the embedded system requires
fast but not large operational memory, a chip of SRAM technology can also be used.

DRAM Chip Organization

A DRAM chip has a set of DRAM cells organized in an array with rectangular form where the
access to each cell is performed as an intersection of rows and columns. A row is a group of
parallel cells that are activated through a single row line, while a column is a fraction of data
from that row that is transferred to the memory controller. DRAM memories with more than
one array can be organized in different ways. If the memory arrays are considered as a single
unit, then they operate in unison where the width of the column gives the number of arrays
that are accessed. For example, a x4 DRAM organization means that the die has four DRAM
arrays acting as one and each access provides four bits of data (one bit from each column).
The collection of arrays that work as a single unit and respond to the same commands are called
banks. The other solution is when the arrays are operating independently form each other, where
each array is a bank in itself. Independently means that each bank can be activated, precharged,
read or write independently from the activities of the other banks that belongs to the same die.
Modern DRAM devices contain multiple banks consisting of multiple arrays in order to allow
pipelining of operational commands. In practice, interleaving many independent memory banks
has been shown as a successful approach for achieving higher memory bandwidth. In such case,
the bus uses higher frequency and switches back and forth between banks. A set of DRAM chips
can be further organized into ranks, which act as a unison of DRAM devices where internally
each device can have one ore more independent banks [52].

Figure 3.6 illustrates an example of main memory consisting of two DRAM chips where
each one has a single array. In this case each array is also a bank in itself. The selection of
chips is done through chip-select signal that is part of control signals, while the address lines
are divided between row and column to select the required cell. In fact, the DRAM selects the
whole row and transfers the data of that row to a row buffer. The column part of the address
selects a fraction of data from the buffer and sends them to the bus. This is the smallest unit of
transaction performed between DRAM and memory controller.

Communication between memory controller and DRAM storage is done through three dif-
ferent types of memory buses: data, address and control bus. The data bus is usually 64 bit wide
and is used for transfer of data to and out of the DRAM storage. The address bus carries the
address of the data location. Its width depends on the size of the DRAM chip. In order to keep

31



Row address

Column address

Row buffer

Column decoder

Data In/Out

R
o

w
 d

e
c
o

d
e
r

DRAM bank
DRAM chip

Row address

Column address

Row buffer

Column decoder

R
o

w
 d

e
c
o

d
e
r

DRAM bank
DRAM chip

 Address

D
a
ta

 I
n
/O

u
t

Control signals

Control signals

 M
e
m

o
ry

 c
o

n
tr

o
lle

r

Figure 3.6: DRAM memory organization

the price of the DRAM low, the row and column access are multiplexed using the same address
pins. The control bus is composed of strobe signal, output enable, clock, clock enable, chip
selection, and all other signals that are used to manage the data transfer between the memory
controller and the DRAM chip. In terms of communication, address and control buses perform
unidirectional communication while the data bus is bidirectional.

Memory Controller

The memory controller serves as communication interface between the processor and DRAM
die in order to hide the complex details from the processor when DRAM memory is accessed.
This is achieved through a well defined protocol that moves the data in and out of the DRAM
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device in accordance with timing access constraints defined in the DRAM-memory specification.
The part of the memory controller that services the requests form the processor is known as the
front-end of the controller, while the other part that deals with the DRAM device is called the
back-end [3].

The front-end accepts the incoming requests from the processor, performs arbitration if there
is more than one source of request, and queues them to the back-end. When the requested data
is brought from the DRAM device to the memory controller, the front-end informs the processor
through control signals that the data is ready for transfer and releases it into the bus.

On the other hand, the back-end reads the requests queued from the front-end, performs
scheduling if there is more than one queue, and translates them into a set of commands which
are adequate for the DRAM chip. Since the DRAM is organized as a set of arrays, the back-end
firstly decomposes the requested address into a command for identifying the rank, bank, row
and column within the memory chip. Once the data is localized within the DRAM, the cells are
activated and the information is transferred to the memory controller [52]. The back-end is also
responsible for the refreshing period by releasing periodically the refresh command to recharge
the cell capacitor.

Memory Access Protocol

A memory access protocol defines the sequence of commands to access data in the DRAM
device and the timing constraints that these commands should meet when sequential accesses
are performed. Different DRAM memory systems have slightly different access protocols, but
the set of fundamental commands is similar for all of them.

The protocol itself can be observed as a three step process. During the first step the location
of the row that contains the required data within the DRAM chip is determined. At this stage
the address of the required data and the control signals to access that row are sent to the address
and command bus. The second step covers the process of transferring the data from the selected
row to the sense amplifier. Since the voltage of the storage capacitor is extremely small, the
DRAM uses the sense amplifier to detect faster the values of the row and also to recharge them.
Once the data are brought to the sense amplifier they can remain there until the next row access
is triggered, thus making the sense amplifier to act as a row buffer. During the third step the
protocol moves the data from the row buffer through the data bus to the memory controller if the
request is for read, or in the other direction if it is a write request.

All read and write operations on the DRAM are performed through a set of commands.
The first command that the memory controller issues for any type of access is the row access
command or also known as row activation command, which selects the requested row, moves
the data from its array to the sense amplifier and then restores the cells values of that row. The
time that the row access command needs to move the data from the row to the sense amplifier is
called Row-Column Delay (tRCD), while the time need to restore the values of the cells is called
Row Access Strobe (tRAS). Next is the column read command which moves the data from the
sense amplifier through the data bus to the memory controller. The time required to access the
column from the row buffer is known as Column Access Strobe (tCAS), while the time needed
for the burst transfer through the data bus is (tBURST ). Modern DRAM memories move the
data internally in short and continuous bursts as well. The duration of this process is labeled as
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(tCCD), which also represents the minimum timing between column to column commands. In
contrast to column read, the column write command moves the data in reverse direction from
memory controller to the selected array. The timing between assertion of the command and
placement of the data into the data bus is called Column Write Delay (tCWD), while the time to
propagate the data to the array is Write Recovery (tWR).

After each row access, the sense amplifier and the bit line needs to be reset in order to be
prepared for the next row access. This is known as precharging, which brings the voltage of
the bit lines and the sense amplifier to the reference value. The timing parameter associated
with the precharge command is tRP . tRP defines the time duration of this process. In modern
system, precharging can be configured to be open-page or close-page. The open-page policy
triggers the precharging process only when the read command has to switch to a new row line.
This is especially beneficial for codes with high spatial locality, since it avoids the row access
latency if the next access is done on the same row. In contrast to that, the close-page policy
activates a precharge command after every read command and prepares the array for the next
access. This solution shows better performance for a code that jumps more frequently through
different memory locations.

The last is the refresh command, which is issued to restore the values of the DRAM cells.
Triggering this command means reading the value of the cells and with that restoring their volt-
age to full level. The command should be issued regularly before the level of voltage in the
capacitors falls below the threshold. However, the drawback of this process is that refreshing
temporary blocks all read or write processes to the banks that are subject of refreshing. The
process can be performed as burst or distributed. Burst means that all rows of all DRAM banks
are refreshed one after the other and during that period no other action in the DRAM device can
be performed. On the other hand, distributed refreshing spreads the refreshing process through
wider timing interval where each issued refresh command affects only one row from all banks.
There are few different ways to refresh an array [12]. The first option is called RAS-Only re-
fresh, where the RAS signal is activated and a row address is issued on the address bus. It is
the duty of the memory controller to provide the correct address and make sure that all rows
are refreshed in turn. The second option is CAS-before-RAS refresh, where the CAS signal is
activated and then the row selected. The difference between these two options is that with RAS-
Only the memory controller has to provide the refresh address, whereas CAS-before-RAS keeps
track on the refresh address using an internal counter. The third option is called Hidden refresh
which is the same as CAS-before-RAS except that with hidden refresh the data from the pre-
vious read or write process are still available in the bus. All these refreshing techniques have
been used for asynchronous DRAM. The evaluation of asynchronous DRAM to SDRAM mod-
ified the refreshing technique as well. SDRAM uses auto-refresh and self-refresh techniques
for bank refreshing. When auto-refresh is triggered, both CAS and RAS are asserted and the
internal counter releases the address of the rows to be refreshed. The memory controller only
activates the refreshing process, while the internal counter is responsible for the address of rows
that should be refreshed. In contrast to auto-refresh, self-refresh is performed when the system
is idle in order to save power, where the DRAM device internally generates refresh pulses using
an internal timer.
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3.6 Prefetching

Prefetching is a technique that aims to enhance memory-system performance. Its job is to antici-
pate upcoming cache misses and issue prefetch requests a few cycles in advance in order to bring
the memory blocks into the cache before they are requested [104]. The process is performed in
parallel with the normal CPU operations by utilizing free bus cycles. Through overlapping, the
prefetcher achieves to hide from the CPU the long latency of memory accesses. In the following
we illustrate a simple example of how the system benefits from prefetching. When the CPU
fetches the memory block with address X, the prefetcher assumes that the execution will con-
tinue through the next consecutive memory block as well and for that reason it issues a prefetch
request for the following sequential block. If the cache line is of size four instructions and the
current address is X then the address of the next memory block is X+4. Hence, while the ex-
ecution progresses through instructions with addresses X, X+1, X+2, and X+3, the prefetcher
will issue the request and prefetch the memory block with address X+4. Memory blocks that are
fetched before they are referenced are called prefetched blocks.

Metrics and Terminologies for Prefetching

The main metrics used to evaluate the effectiveness of prefetching are: coverage, accuracy and
timeliness [32]. Coverage represents the fraction of the original cache misses that are covered
with prefetching. If the guess on a prefetch target is correct then the prefetch request is qualified
as good prefetching and if a wrong item is loaded then the request is qualified as bad prefetching.
The second metric, accuracy, represents the fraction of prefetched cache lines that are good
prefetching. If the code has in total M misses and the number of good prefetches is marked with
G and bad prefetches with B, then the coverage and the accuracy of prefetcher can be calculated
as:

Coverage =
G

M
(3.3)

Accuracy =
G

G+B
(3.4)

Timeliness is the time distance D between the moment when the prefetch request is issued
and the moment when the corresponding address is accessed. As the distance increases from
zero, the amount of hidden latency is also increased. The miss latency can be hidden completely
if the timeliness distance is wide enough, but not so wide because the prefetched line can be
evicted from cache before it is accessed. The metric for representing the timeliness distance
can be expressed through the number of clock cycles, the number of branches, the number of
instructions, or the number of misses that occur between the moment of issuing the prefetch and
its corresponding fetch request. Each of these measure is valid and conveys unique information.

However, in a real implementation, these metrics can work against each another. For exam-
ple, increasing the coverage means employing an algorithm that performs more aggressively, but
on the other hand reduces the rate of correct guesses and with that also the accuracy. Similarly,
improvement on prefetch distance could increase the chances for eviction of memory blocks that
are still useful. This also affects the cache miss rate by generating new cache misses that would
not occur if the prefetching were not active [93].
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Prefetching Techniques

Prefetching can be implemented either as software or hardware solution. Software prefetching
employs explicit prefetch instructions that are inserted into the code and executed when prefetch
requests need to be issued [15]. The position of prefetch instructions in the code defines the trig-
gering moment of the prefetch request, while the content of the prefetch instruction dictates the
address of the target that should be prefetched. The process of placing the prefetch instructions
into the code is called prefetch scheduling and this can be done manually, by the program-
mer, or automatically through an intelligent compiler. Software prefetching generates a separate
prefetch instruction for each prefetch action. Having explicit control on the prefetching mo-
ment and prefetch target of each prefetching request makes the software prefetcher to achieve
high accuracy even for codes with complex structures. However, this type of prefetching has
also a number of disadvantages. First, inserting prefetch instructions into the code for each
prefetching action drastically increases the size of the code and with that also its execution time.
Second, prefetch instructions require additional hardware modification so the CPU could sup-
port their execution. Third, scheduling the prefetch instructions within the code is not an easy
task due to the difficulty of finding appropriate locations that would achieve optimal prefetch
performance. This is especially tricky for references that have more than one predecessor path
where the prefetch instruction can be placed. In such cases, the scheduler should be careful with
the location so that the prefetch instruction would not generate useless memory traffic or cache
pollution. Last, software prefetching rely exclusively on compile-time analysis and during this
stage not all referenced addresses are available. For instance, prefetch instructions for indirectly
addressed targets cannot be generated, although they could be good candidates for prefetching.

In contrast to software prefetching, hardware solutions are implemented through additional
hardware logic that are part of the memory hierarchy and perform prefetching without any sup-
port from the compiler [104]. The job of the hardware prefetcher is to monitor the behavior of
the code during its runtime and based on that, to issue the prefetch requests. The benefit of such
an approach is that it eliminates the need for explicit prefetch instructions and the additional
execution-time overhead. However, hardware solutions consume additional hardware resources,
where the size and complexity depends on the type of behavior patterns that they try to antici-
pate. A prefetcher that employs simple prefetching algorithm, like anticipating and prefetching
the next sequential block, has a small size on the die, but has limited success regarding its cover-
age and accuracy rate. On the other hand, a prefetching algorithm that tries to anticipate complex
code behavior with higher coverage and accuracy needs a much larger and complex hardware
design. In some cases, a complex hardware solution uses additional memory storage, which is
organized in form of a table for keeping the history of the previously executed states and based
on that anticipates the targets for the upcoming prefetch requests. Usually, the period of filling
the table is considered as a training time during which the prefetcher is not effective. Although
hardware prefetching does not generate any additional prefetch instructions, it often issues more
unnecessary prefetch requests than the software solution. This is due to the lack of compile-
time information that the software prefetching has. Such a behavior consumes higher memory
bandwidth and in some cases it can result in cache pollution.

To overcome the limitations of the software and hardware solutions, a combined scheme of
these two approaches has also been proposed [43, 71]. The idea is to use a hardware prefetcher
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for targeting simple code structures, while the software prefetching would insert prefetch in-
struction for code structures which are more complex. Thus, through cooperation between these
two solutions a new prefetching scheme will result, which trades off between the number of
prefetch instructions and the consumed hardware size.

Prefetching Algorithms

Prefetching algorithms are distinguished from each other on how they anticipate on upcoming
cache miss, but in general they can be classified into two main categories: those which are target-
ing sequential (continuous) misses and those which are targeting non-sequential (discontinuous)
ones [106]. In this section we cover only instruction prefetching algorithms, considering that the
instruction path of the memory is the focus of this thesis.

Sequential prefetch algorithms are the simplest form of prefetching, and also one of the most
dominant solutions on modern processors [50]. With this scheme, the address of the prefetch
target is calculated simply by incrementing the address of the current cache block [103]. The
tendency of the compiler to generate code layout that is sequential makes this kind of approach
quite efficient.

Always prefetching is the first and the most primitive sequential prefetching algorithm which
initiates prefetching of the next cache line whenever a new cache line is fetched. The following
extension of always prefetching is Next-N-line prefetcher, which attempts to reduce the memory
access overhead by prefetching N consecutive cache lines after the one that is currently fetched.
However, increasing the value of N increases the likelihood for prefetching useless memory
blocks and generating cache pollution. To mitigate such an effect, adaptive prefetching has
been proposed [26, 51]. While in fixed N sequential prefetcher the number of prefetched cache
blocks is constant, an adaptive prefetcher tunes the degree of prefetching based on a dynamic
measurement of prefetching efficiency. To do this, a prefetch-efficency metric is periodically
calculated as indication for the spatial locality of the code. The metric is the ratio between useful
prefetches and total prefetched blocks. Another solution to avoid cache pollution is adding
a stream buffer where all prefetched lines are placed [54]. When a miss occurs, the stream
buffer begins prefetching successive lines after the one that triggers the miss. Hence, subsequent
accesses to the cache will also compare their address against the entries in the stream buffer. If
the reference results in a miss in cache but a hit in the buffer then the cache is reloaded in a
single cycle from the stream buffer. This avoids polluting the cache with prefetches that may
never be referred.

To control the frequency of useless prefetches, variations of sequential prefetching schemes
called prefetch on miss and tagged prefetching have also been proposed [104]. Prefetch on miss
is similar to the previous sequential algorithms, except that the prefetching of memory block
X+1 is performed only if the reference to the block X is a miss. Tagged prefetching associates
each cache line with single tag bit used to detect when the line is demand-fetched or prefetched.
The bit is set to zero when the line is prefetched from memory and changed to one when the
same line is referenced from the CPU. Whenever the tag bit is switched from zero to one, a
prefetch request for the next cache line is issued. This is similar to always prefetching, except
that it avoids issuing repetitive requests for a cache line which has been prefetched and later
replaced without having been referenced.
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In contrast to the sequential prefetcher, non-sequential ones strive to capture the target of
control-flow instructions and with that to overcome limitations of sequential schemes. This
group of prefetchers is especially efficient when the program is composed of small functions
and the transfer of control happens very frequently. Based on the style of how non-sequential
prefetchers anticipate their prefetch requests, they are categorized as history-based schemes or
execution-based schemes [106]. History-based schemes have a table which is maintained and
consulted through the execution in order to determine the address of prefetch targets. Execution-
based schemes use additional hardware, like branch predictors, to run ahead and explore the
target of the upcoming control-flow instructions and bring them into the cache before they are
demanded by the fetch unit.

A target-prefetcher is one of the earliest non-sequential prefetch implementations consisting
of a small table that retains information about the behavior of control-flow instructions, and
based on that history determines the prefetch target [105]. The table is organized in form of
a list of pairs, where each pair is composed of a current line address and target line address.
Whenever the program counter changes from one address to another, the prefetcher uses this
value and searches through the table for a possible match. If a match is found, then the target
address from the table becomes a prefetch-candidate address. The content of the table is dynamic
and updated whenever there is a line change. If the missed line is the next consecutive line,
the table is updated for that too. Later, the same approach was augmented with a filter that
checks the queue with prefetch requests against the most recent demand fetches in order to
eliminate possible useless prefetch requests that are already served as fetch demand [106]. A
similar scheme is wrong-path-instruction-prefetching as well [81]. The major difference from
the previous two schemes is that the last scheme does not save any target address. Instead, it
prefetches the fall-through and then immediately the branch target after the branch instruction is
decoded. Thus, if the execution returns to the branch, the target has already been brought to the
cache.

Markov prefetching uses a Markov transition diagram to model the miss address stream
and based on that anticipates the featured memory references [53]. Nodes of the model are
representing the missed references while transitions hold the probabilities that the current node
will be followed from the other one. However, this model can become arbitrary large since the
execution can have different reference pattern for different iterations. In practice such a model is
implemented through dedicated hardware that is organized in form of a table with limited size.
This constrains the number of states that can be recorded and with that also the accuracy and
the coverage of the prefetcher. Each state of the model occupies one row of the table and each
row has the addresses of a few transitions that can be made from that state. The decision about
which transition will be taken depends on their associated priority.

Branch-prediction-based prefetching is an aggressive algorithm, where the prediction of the
prefetch target address for control-flow instructions is driven by the branch predictor [17]. The
whole concept is based on a separated pseudo-program counter called Look Ahead Program
Counter (LA-PC) which runs ahead of the regular program counter (PC) [18]. The prefetch
unit is an autonomous state machine, that fetches the cache line from the cache and runs ahead
through instructions till a branch instruction is encountered. In the same cycle, the prefetcher
predicts the direction of the branch by using a two-level branch predictor. However, if the actual

38



outcome of the branch is different from the prediction, then the PC value of the prefetcher is
reset to the real PC and also the content of the branch history register is reset to that of the
execution unit. When the examination of the cache line reaches the end of the line and no
branch instruction is encountered, then the prefetcher will continue with prefetching the next n
sequential cache lines.

Fetch-directed-instruction-prefetching (FDIP) performs non-sequential prefetching [95] by
using requests generated from the branch predictor. This solution decouples the branch predic-
tor from the instruction cache in order to allow the branch predictor to proceed independently
through the code when the instruction cache gets stalled. The asynchronism between these two
components is bridged through a buffer called Fetch Target Queue (FTQ). The entries from FTQ
are used as input for the prefetch unit. To be more effective, the prefetcher implements filtering
as well to avoid the prefetching of blocks that are already in the cache.

Temporal-instruction-fetch-streaming prefetching algorithm records the sequence of cache
misses and then uses the trace to predict and prefetch cache misses when the same stream re-
curs [41]. The success of the approach depends on stability and repetitiveness of the instruction
reference. However, the uncertainty imposed from data dependency branches and branch pre-
dictor reduces the ability of the algorithm to predict the sequence of accesses and with that its
effectiveness. Later, the algorithm was modified into Proactive-instruction-fetch algorithm [40],
where instead of cache misses the sequence of instruction references was recorded. The cor-
rectness of the stream is achieved by recording retire-order instruction sequences, that are not
affected by speculative execution, branch predictor or hardware interrupts. When the same
recorded address sequence recurs, the prefetcher simply starts with prefetching based on that
sequence.

3.7 Chapter Summary

A memory hierarchy is a stack of layers consisting of on-chip and off-chip memories. On-chip
memories are small and fast memories located near the processor and keep only a fraction of the
code and data. Off-chip memories are larger and can be of type SRAM or DRAM, depending on
the size of the application. Their communication with the processor is done through a memory
controller, while the connection can be organized as Von Neumann or Harvard architecture.

A prefetcher is an additional component of the memory hierarchy that brings memory blocks
into the cache before they are referenced. Simple prefetchers are easy to build but may bring
useless cache lines which can interfere with useful lines, by evicting them before they are used
and also generating useless traffic. This results from the inability of these prefetchers to guess
all the prefetch addresses due to the simplicity of the implemented algorithms. On the other
hand, a complex implementation prefetcher with higher accuracy demands a complex solution
with huge metadata and latency overhead. Storing the data off-chip will need frequent and costly
communication, while storing it on-chip consumes precious chip size.

39





CHAPTER 4
Time-predictable Instruction

Prefetching

In this chapter, we describe a time-predictable instruction prefetcher for single-path code. The
chapter starts with the requirements that a prefetcher needs to posses in order to be effective
and time-predictable. Next, the chapter continues with a presentation of a new prefetching al-
gorithm for single-path code. Details on how the proposed prefetching algorithm anticipates the
prefetch target address for different single-path code structures and how all of this is performed
in an effective and time predictable way is also described. After that, the chapter presents the
architecture of the prefetcher, firstly by showing the architecture on a higher level as a set of
well organized modules and then by continuing with the details of each module. The chapter
ends with a description of the process that generates the static information of the code, which
the prefetcher uses as control input.

4.1 Towards Effective and Time-predictable Prefetching

For a long time prefetching has been known as an approach for hiding the long latency of mem-
ory accesses [104]. However, its presence in a system does not mean improvement of perfor-
mance by default [111]. There are cases when a prefetcher behaves contrary to its purpose. For
example, it can happen that the prefetcher guesses a wrong target and brings into the cache an
incorrect memory block. Another failure that can happen with a prefetcher is when the correct
target is brought into the cache but the prefetching process is triggered at a wrong moment. In
both cases prefetching is useless, since it keeps the memory bus busy with unnecessary memory
traffic and brings into the cache memory blocks that will not be referenced by the processor. The
situation gets even worse when the uselessly prefetched memory blocks evict memory blocks
from the cache that will be referenced in a near future. In such a case, the prefetcher becomes
even harmful because it degrades system performance by generating new cache misses that
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would not occur if prefetching had not been performed. The process of evicting useful cache
contents with a useless prefetched memory block is known as cache pollution.

To achieve effective and time-predictable prefetch behavior the prefetch algorithm must con-
sider the following criteria [38, 112]:

• Target addresses prediction - The algorithm should be able to guess with full accuracy
the address of every cache block that is a candidate for prefetching. In other words, this
criterion should answer correctly the question of what to prefetch;

• Prefetch lookahead distance - The algorithm should calculate precisely the release moment
of each prefetch request. In other words, this criterion should answer the question of when
to prefetch;

• Placing prefetched block - The algorithm should choose the right location in the cache
to place the prefetched block without destroying any useful residing block. This should
answer the question of where to place new content;

A deviation from any of these three criteria during the design stage of the prefetcher would
result in an algorithm that would interfere with the normal cache-processor operations and gen-
erate cache pollution. In the following, we describe the main issues that a prefetcher has to deal
with in order to fulfill the above requirements.

Target address prediction

The duty of the instruction prefetcher is to foresee the execution stream of instructions and
based on that to anticipate the addresses of the following memory blocks. However, prediction
of the upcoming memory blocks is a difficult process because the execution can run sequentially
through consecutive memory addresses or it can be transferred to some remote memory location
and continue from there. When the execution flows through sequential segments of the code, the
anticipation of the upcoming target address is an easy and straightforward process since the block
that should be prefetched resides in the next consecutive memory address of the currently active
block. The difficulty emerges when the prefetching algorithm has to deal with non-sequential
structures. Transfer of control happens as a result of control-flow instruction execution. How-
ever, the decision on transferring the execution may be mandatory or optional, depending if the
transfer-of-control instruction is condition-dependent or not. Condition-dependent control flow
instructions change the direction of execution only when the outcome of their condition is true,
otherwise the execution will just fall-through. Hence, for such code structures the non-sequential
prefetcher must firstly predict the condition outcome of the control flow instruction and after that
calculate the target address. While the target address of direct control-flow instructions can be
known during compile time, the outcome for indirect control-flow instructions, procedure (func-
tion) returns and indirect jumps, can be known only when the code is executed. Considering that
the prefetcher should make the prediction of the target addresses ahead of time, it means that
for these types of instructions it is almost impossible for the prefetcher to be accurate on target
address prediction.
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Another issue related to the what to prefetch question is the level of aggressiveness that the
prefetching algorithm should realize. A conservative approach would issue fewer prefetching
requests but would have a higher rate of accuracy on the target addresses. Although such a so-
lution achieves better predictability on prefetched blocks, the level of efficiency on performance
improvement can be insignificant due to the low number of the requests that are issued. On the
other hand, an aggressive approach achieves higher coverage, but has smaller accuracy because
a large number of the issued prefetch requests will result with erroneous target addresses [16].

The last parameter that the what to prefetch question has to consider is the number of blocks
that a prefetcher should prefetch when a single prefetch request is issued. Each prefetch request
can be configured to bring into the cache one or N continuous blocks. When a request prefetches
a single memory block it reduces the possibility for cache pollution, since it makes a guess for
only one memory block. But when each memory block is prefetched individually, a separate
request for each prefetch candidate needs to be issued which will generate additional memory
access latency. Prefetching N consecutive memory blocks, on the other hand, has the advantage
of shrinking the memory access latency by eliminating the need for more prefetch requests to be
sent to the memory, but this solution increases the probability to bring into the cache memory
blocks that are then not referenced by the CPU.

Prefetch lookahead distance

Prefetch algorithms are devised to issue prefetch requests a few cycles before the target is ref-
erenced from the CPU in order to provide enough time distance for the prefetcher to be able to
mask the prefetching process. However, the moment of issuing the request is quite critical. If
the request is issued too early then the chances for the prefetched block to remain in the cache
before being referenced are very low, because it can be evicted form the cache by a replacement
operation. From timeliness point of view, this type of request can be called early request. On the
other hand, if the request is issued too late then the prefetched block may not arrive in the cache
before it is referenced from the CPU. In this case the processor will still be exposed to a stall,
but the stalling period is shorter than the one which happens with conventional cache miss [112].
This type of request can be called late request. Therefore, a timely prefetch algorithm should
issue the request at the right moment, which is early enough to hide the memory access latency
but not that early as to be evicted form the cache before it is referenced. From the timeliness
point of view, this type of request is called timely request.

Placing prefetched block

A prefetching process can be harmful even when the prefetch prediction is correct and the request
is issued at the right moment, if the prefetched block is placed at a wrong location within the
cache. This is because the prefetched block competes for cache location with the other resident
memory blocks in the cache. Eviction of any residing memory block that is useful will generate
a new cache miss. To avoid such a problem, the prefetcher should be designed to place the
prefetched block in locations that do not affect any of the blocks which are potential candidates
to be referenced in the near future.
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The proposed solution for eliminating this problem is the use of a stream buffer as an aug-
menting part of the memory hierarchy, and placing all the prefetched block there [54]. When the
CPU issues a fetch request, the same reference is also compared with the entries of the stream
buffer. If the search in the cache results in a miss and a hit in the buffer then the block from
the buffer will be immediately reloaded into the cache. This option protects the useful memory
block in the cache to be victim of early prefetched blocks or from prefetch requests with a wrong
target, but on the other hand it increases the complexity of the look-up hardware and the size of
the on-chip memory.

4.2 Prefetching Algorithm for Single-path Code

The prefetching algorithm for single-path code is devised to be effective and time-predictable.
Predictability derives from the property of the single-path code of having a single execution
trace that stays fixed for any set of input data. Such a property enables the prefetcher to extract
statically the whole knowledge on code behavior and later to use this for accurate anticipation
of the target address of each issued request.

For the sake of efficiency, the algorithm is designed to perform aggressively as well, by
issuing prefetch requests for every possible memory block that is part of the program. This
is achieved by triggering the prefetcher and releasing a new prefetch request whenever the ex-
ecution switches to a new cache line. In this way, the prefetcher always prefetches the next
upcoming memory block and is at least one step ahead from the on-demand fetching process.
The target of the issued requests depends on the flow of the execution, which can be the next
sequential memory block or the block of some remote memory location from where the exe-
cution will continue. The decision is taken based on the knowledge that is collected form the
statical analysis of the single-path code. Once the target is determined, the request is issued and
the prefetching process is started. Hence, a combination of these two properties enables the pro-
posed prefetching algorithm, in predictable and efficient fashion, to cover all the possible cache
misses that can occur during the runtime of the code.

The granularity of the prefetching algorithm is determined to be on the level of memory
blocks in order to minimize the possibility for cache pollution. Since the algorithm performs
with full accuracy through the whole execution, the only pollution that can happen with single-
path code prefetching algorithm is when the memory block, brought with prefetching, contains
control-flow instructions which can dislocate the execution. However, this form of pollution
is unavoidable due to restriction in the transfer between the cache and the main memory to a
minimum of one cache line.

In the following we describe how the prefetching algorithm copes with sequential and non-
sequential structures of the single-path code, what type of information are required to be derived
by static analysis to achieve accurate anticipation of the prefetch targets, how the prefetched
memory blocks are managed within the cache without generating cache pollution and what are
the performance limitations of the proposed algorithm. In this section we also present a new
prefetching scheme called bulk prefetching and describe how this form of prefetching is inte-
grated together with sequential and non-sequential prefetching into a single and well synchro-
nized prefetching algorithm for single-path code.
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Sequential prefetching

Over half of the memory accesses of conventional code are performed on program segments
with sequential addresses [38]. This number becomes even higher when a conventional code
is converted into a single-path due to its fundamental transformation rule to serialize all input
data-dependent alternatives of the code. With a structure of that form, the single-path converted
code becomes even more suitable for sequential prefetching.

For our single-path prefetching solution we use the simplest sequential prefetching algorithm
called next-line always prefetching [104]. Whenever a cache line is fetched from the CPU,
the next-line always prefetcher immediately issues a request for the next sequential memory
block. The address of the new prefetching target is calculated by incrementing the address of
the currently active memory block. However, within the single-path code prefetcher this scheme
of prefetching is active only when the execution runs through sequential segments of the code,
thus preventing the sequential prefetching component to perform useless prefetch actions or to
pollute the cache when the execution has to run through non-sequential structures of the code.

Non-sequential prefetching

Single-path conversion transforms all dynamic control-flow decisions of the code into static
ones, thus making the outcome and the target of each control-flow instruction statically avail-
able. However, organizing and passing all this information to the prefetcher is a great challenge.
The format and the amount of information that needs to be transfered to the prefetcher for accu-
rate address prediction varies for different non-sequential code structures. In the following we
describe the types of discontinuances that single-path code can have and the format of informa-
tion that needs to be transfered to the prefetcher for its correct behavior.

Based on the type of discontinuance, control-flow decisions of single-path code can be cate-
gorized into: if-branches, loop-branches, call-branches and return-branches. Figure 4.1 depicts
a fragment of a control-flow graph of a single-path code that includes different types of branches.
The stream of execution for this example is A, B, D, E, A, C, F , I , C, D and E, where nodes
F and I are part of another function. Node A contains an if-branch, node E a loop-branch, node
C a call-branch and node I a return-branch.

If-branches of converted single-path code are input-independent, which means that the out-
come of these branch instructions can be statically derived. To predict accurately the issuing
moment and the address of the target memory block for If-branches, the prefetch algorithm
needs to have information on the position of the branch in the code, the outcome of the branch
condition and the address of the target if the branch is taken. Passing all this information to
the prefetcher in form of a string can be expensive and space consuming. The use of a lossless
compression algorithm [96] can be consider as an approach for reducing the size of the outcome
string of if-condition. The algorithm needs to be lossless because the generated reconstruction
from the compressed representation should be identical with to the original string. However, the
pattern of the if-condition through the execution of the code can be irregular and quite long. This
makes difficult to devise a general compression model that would be efficient for all strings of
if-conditions. Furthermore, the presence of input-independent if-branches in code is very rare
considering that most of the if-structures are input-data dependent and they are all serialized af-
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Figure 4.1: Control flow graph of single-path code consisted of if-branch, loop-branch, call-
branch and return-branch

ter transformation. Therefore, for if-branches we propose to inform the single-path prefetching
algorithm only on the position of the if-branches in the code and not about their behavior. Thus,
whenever an if-branch is encountered, the prefetcher will not perform any prefetch action at that
moment but will only follow the execution. Once the branch is executed, the prefetcher will
observe if the branch is taken or not and based on that it will calculate the position in the code
from where the prefetcher should continue with its actions. Such an approach prevents the cache
state to be interfered with useless memory blocks by not allowing the prefetcher to make any
wrong decisions on branch target and pollute the cache. Input-independent if-branches are the
only structures of the single-path code for which the single-path prefetching algorithm does not
issue a prefetch request.

The next code structure encountered in single-path code are loops. In our approach converted
single-path loops have a single exit node and constant number of iterations, which means that
the execution frequency of the loop is also a constant. Furthermore, the loop-branch decision
for exit is always located at the end of the loop [84]. Therefore, for this type of discontinuity
it is sufficient to inform the prefetcher only on the position of the loop-branch within the code,
the loop header and the number of iterations. Hence, whenever the prefetcher is triggered for a
loop-branch prefetching, the back edge target of the loop will be prefetched. Once the iteration
reaches the value zero, the prefetcher will dismiss the loop-prefetching option and will continue
to prefetch the next memory block through sequential prefetching. However, there are cases
when loop conversion is not required and the loop still generates a single trace. Figure 4.2a
shows an example of a nested loop where the iteration of the outer loop is converted to its loop
bound while the iteration of the inner loop remains dependent from the iteration of the outer
one. Although the iteration of the inner loop changes due to dependency on the outer loop, the
sequence of iterations of the inner loop will remain the same. This mean that the execution of the
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(b) Inner loop is set to max.

Figure 4.2: Conversion of nested loops.

inner loop can be considered a single-path and its behavior can be statically derived. To predict
the behavior of such a loop, the prefetcher would require additional information for each loop
iteration and this can be expensive. One solution is to restrict the compiler to convert the inner
loop to a loop with a constant number of iterations as shown in Figure 4.2b. Another approach
is to inform the prefetcher for the loop-branch of the inner loop as it would be an if-branches. In
this case the prefetcher will not perform any prefetching whenever the loop-branch of the inner
loop is encountered.

In single-path code, functions (procedures) are always called and executed, but the value of
the predicate related to the function determines if the execution will affect the hardware states
or not. Therefore, the prefetcher will always prefetch the target of the call instructions when this
type of discontinuity is encountered. Information that are passed to the prefetcher for this kind
of code structure are only about the position of call-branches within the code and their target
addresses.

Unlike the other types of single-path branches that have always the same target, return-
branches can have different ones and this depends on the position in the code from where the
function is called. Although the string of targets for each return instruction can be statically
derived, transferring this to the prefetcher will mean a huge amount of information is passed.
Therefore, for this type of branch, we inform the prefetcher only on the position of the call-
branches within the code without giving any further detail on its behavior. As the code runs,
whenever a call instruction is executed the address of the instruction that follows that call is
stored in a stack. Once the prefetcher arrives at the end of the function and the return target
needs to be prefetched, the value of the target is read directly from the stack. Such an approach
gives enough time to the prefetcher to read from the stack the information about the target
address and issue the request when a return-branch needs to be prefetched.

Bulk prefetching

In addition to sequential and non-sequential prefetching, the single-path code algorithm also
performs bulk prefetching. This form of prefetching is active only when the execution iterates
through a loop which is smaller than the cache size. In such a case, all CPU fetch accesses will
result in cache hits, since the entire loop will be found in the cache, thus leaving the memory bus
free. The prefetching algorithm uses this opportunity and engages the bus to bring more memory
blocks into the cache that will be accessed after the loop execution will be finished. For this form
of prefetching, the prefetcher requires information about the address of the last memory block
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of the loop in order to determine the moment when this type of prefetching should be triggered
and the number of blocks that can be prefetched when bulk prefetching is active. The number
of memory blocks that can be prefetched with bulk prefetching is determined statically through
analyzing the execution trace of the code.

Placement of the prefeched block within the cache memory

The single-path prefetching algorithm brings prefetched memory blocks directly into the cache
without affecting the temporal property of the cache at any moment. The main purpose is to
not generate any additional cache miss compared to the execution without a prefetcher. For
sequential and non-sequential scheme this advantage emerges by design since these two schemes
have a prefetch granularity of one memory block and both of them anticipate the prefetch targets
with full accuracy. Thus, the cache line that is replaced with the prefetched block is the same
one that would have been replaced if there were only ”on-demand” fetching, except that now
with single-path code prefetching the process of eviction begins a few cycles earlier.

The situation is different when bulk prefetching is performed. Since few memory blocks in a
row are prefetched with this scheme, the prefetcher needs to be careful about the cache lines that
will be evicted from the cache in order to prevent temporal property of the cache and with that to
maximize the benefit gained from temporal locality of the code. Bulk prefetching is active only
when loop smaller than the cache size is executed, therefore the attention should be on the cache
lines that hold the loop and avoid any sort of cache conflict between them and the prefetched
block. The single-path prefetching algorithm prevents this from the stage of code analysis when
information about the possible free cache line is generated. During this process the analyzer
takes into consideration the size of the cache, its replacement algorithm, the size of the loop, its
position within the cache and based on that it determines the number of free cache lines that can
be replaced without affecting the temporal properties of the cache. It is important to note that in
cases when a loop body contains call instructions then the analyzer considers for loop size the
space that is required for loop memory blocks and the blocks which belong to functions that are
called from that loop.

Limitations of the Single-path Prefetching Algorithm

Fundamental for a prefetcher to be effective is to run in parallel to the other CPU operation. This
condition happens only when the CPU fetch request results in cache hit and the free cycles of the
bus are used for prefetching. The single-path prefetching algorithm is devised to maximize the
utilization of the free bus cycles, but its success in overlapping the fetch with prefetch process
gets limited when the memory bus becomes the bottleneck of the system. Figure 4.3 illustrates
this limitation by showing the length of overlapping that can be achieved when a sequence of
a few memory blocks is fetched and executed. The blue quadrilaterals in the figure mark bus
transfer time of the memory blocks, while the red ones their execution time. The first part of
the figure (fetching) shows the execution time of the blocks without prefetching. In this case
we have on-demand fetch, where the cache transfers the memory blocks from the main memory
only when they are requested by the CPU. The CPU stalls during the transfer time and proceeds
with the execution when the whole memory block is present in the cache. The second part of the
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figure (prefetching) demonstrates the benefit on execution time when the prefetcher is present.
As can be seen from the figure, the prefetcher starts immediately with prefetching once the bus
becomes free. Although the prefetcher utilizes every possible free bus cycle, the access latency
still can not be completely hidden due to the memory-wall problem [122]. For such a scenario,
the prefetcher hides only part of the cache miss latency and with that partially mitigates the CPU
stall time.

CPU Execution

Cache line 1 Cache line 2 Cache line 3

Bus Tranfer

Fetching

Prefetching

benefit

1

Cache line 1

1

0 20 40 60 80 100 clk

Cache line 2

2

Cache line 3

3

Cache line 4

4

2 3 4

Cache line 4

Figure 4.3: Reducing the cache miss latency through prefetching

If we assume that the program executed in Figure 4.3 consists of a sequence of n memory
blocks (l1, l2, ..., ln), where the transfer time for each block takes t cycles and the execution of
the block is constant and takes e cycles, then for a sequence of n blocks the execution time for
an on-demand memory architecture will be:

timeexecution = (t+ e) ∗ n (4.1)

while for the architecture that includes a prefetcher the execution time of the sequence will be:

timeexecution = (t+ e) + t ∗ (n− 1) (4.2)

Under the assumption that each memory block is entirely executed, the maximal benefit that can
be gained from prefetching is:

benefitmax = e ∗ (n− 1) (4.3)

The single-path prefetcher can fully hide the cache miss latency only when bulk prefetching
is performed. Figure 4.4 illustrates the benefit of the prefetcher in such a scenario, where a
few memory blocks are prefetched while the loop is iterating. Unlike the first case where the
presence of the prefetcher reduces only the cache miss latency, here the prefetcher reduces the
cache miss rate.

If we consider the same assumptions as in the above calculation then the number of possible
memory blocks whose latency can be fully hidden with prefetching is:

Nmax = r ∗ (b ∗ e) mod t (4.4)

where r is the number of iterations of the loop, b is the number of memory blocks belonging
to the loop, e is the execution time of one memory block, and t time needed to transfer one
memory block from the main memory to the cache. The outcome is the maximal number of
memory blocks that can be masked with prefetching during the execution of the loop.
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Figure 4.4: Reducing the cache miss rate through prefetching

4.3 Architecture Model of the Single-path Code Prefetcher

The single-path code prefetcher has been built as a separated hardware unit in order to enable its
design to be developed independently from the processor and compiler. Another reason for hav-
ing a hardware solution instead of a software one, is that this type of prefetcher does not require
additional prefetch instructions in the code that would increase the execution-time overhead.
However, in contrast to the other conventional hardware prefetching solutions where the knowl-
edge on code behavior is attained during the runtime [40, 41, 107], for the proposed single-path
code prefetcher this knowledge is statically derived and available before the execution starts.
Thus, having all the required information on code behavior ahead of time allows the prefetcher
to start with prefetching immediately, once the execution is triggered, and with that to cover not
only capacity and conflict cache misses but also compulsory ones.

The architecture of the single-path code prefetcher is organized as a set of modules where
each module performs one type of prefetching. This design makes the prefetcher scalable, be-
cause if a new prefetching scheme needs to be added it would be just another module. Figure 4.5
illustrates the high-level model of the architecture consisting of If, Sequential, Call, Return, Loop
and Bulk module. The activation/deactivation of each module is orchestrated through a separate
module called Controller, while the information about the behavior of the single-path code,
which have been statically derived, are placed in the Reference Prediction Table (RPT). Part of
the prefetcher is also the Return Address Stack (RAS), which is accessed only from the Call and
Return modules. Although one return instruction can have multiple targets, for single-path code
all target addresses as well as the order of their occurrence can be statically derived. However,
such a solution would impose having multiple entries for the same return instruction in the RPT
due to multiple-target addresses that the same return instruction can have. The employment of
Return Address Stack (RAS) eliminates this issue and at the same time reduces the size of the
table. Whenever the prefetcher encounters a function return, it reads the target from the RAS
which has been pushed when the function was called. The modules and the table are connected
with each other through control and data signals. In the figure, dotted lines represent control
signal connections, whereas the data paths are shown with full lines.

From Figure 4.5 it can be seen that each address reference issued by the program counter
(PC) is also forwarded to the prefetcher, which at any moment makes the prefetcher aware of the
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Figure 4.5: Architecture model of the single-path code prefetcher

position of the execution within the code. The prefetcher also knows the length of the cache line.
Thus, whenever a new PC reference is received, the prefetcher firstly checks if the new reference
is in the same cache line with the previous PC reference or the execution has to switch to a new
cache line. The detection of cache line switching is based on the comparison of the cache-
line bits of the current reference address with the cache-line bits of the previous one. If they
have the same value, it means that the execution is still on the same cache line. If they differ
then the execution has changed the cache line. Once the execution enters a new cache line,
the prefetcher immediately triggers the algorithm and releases a new prefetch request for the
following memory block. The calculation of the prefetch target address begins by forwarding
the PC reference address to the RPT to check for a possible match. If the search in the table
results in a hit, it means that the upcoming cache line is non-sequential and the calculation of
the target should be done by one of the non-sequential modules. Which non-sequential module
will be selected depends on the entries in the table. On the other hand, if the search in the table
results in a miss, then the sequential module is activated. Once the target has been calculated the
request is generated and released for prefetching.

Reference Prediction Table

The Reference Prediction Table (RPT) is a small memory organized in form of a table that holds
code-related information for guiding the prefecher through non-sequential prefetching. In other
words, the RPT is a projection of the control-flow structure of the code. Execution of the single-
path code always follows the same execution trace, which means that the entries of the RPT
will be accessed in the same order as they are produced and this order is preserved through any
iteration of the code. This property eliminates the need to search through the whole RPT for a
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possible match. Whenever a PC reference needs to be compared there is only one entry from the
table that has to be checked and the position of that entry is pointed to by the Index register, illus-
trated in Figure 4.5. The value of the Index register is changed whenever the comparison results
in a hit, in order to point to the next upcoming non-sequential prefetching entry. This solution
simplifies the size and complexity of the hardware required for RPT implementation. Another
advantage of having this form of table organization is that the RPT allows multi-targeting, even
though the encoding granularity of the table is in the level of cache lines. For instance, if there
are two or more control-flow instructions within one cache line, then the same cache line will
be represented in the table as many times as it contains control-flow instructions and each entry
will be encoded with a different prefetch target. The position of these targets in the table will
determine their order of prefetching.

The type of entries that the RPT can have are separated in eight groups, where each group
has a different column. In the following we describe in detail each of these columns.

• Index - Each row of the table holds entries for one non-sequential prefetch action. This
column indexes these rows.

• Trigger - Holds the triggering address for non-sequential prefetching. If the fetch ad-
dress matches with the trigger address then prefetching with entries from this row will be
performed.

• Type - Determines the type of prefetch module that should be activated to work on the
prefetch request. The type of entries that this column can have are if, call, return, loop or
bulk, which are the same as the names of the modules that should trigger.

• Destination - Holds the target address for non-sequential prefetching, which is statically
calculated and released as a prefetch request.

• Iteration - Determines the number of loop iterations. For loops in single-path code this
number is constant due to the property of the single-path loops that have constant execu-
tion time.

• Next - Points to the next non-sequential entry by holding the next value of the Index
register.

• Count - Determines the number of cache lines that can be prefetched when bulk prefetch-
ing is performed.

• Depth - Distinguishes the loop-nesting level for nested loops in order to prevent the iter-
ation value of the counters from the outer loops to be jeopardized by the inner ones.

Table 4.1 illustrates an example of an RPT that holds all possible types of entries that this
type of table can have. The first row shows the entries required by an If-module to perform
prefetching when an If type of code structure is encountered. As can be seen from the table,
this row has data in Trigger column which is the trigger address, in Type column to tell to
the prefetcher the type of module that should be activated, in Destination column which is the
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Table 4.1: Reference Prediction Table

Index Trigger Type Destination Iteration Next Count Depth
0 8014 if 8020 - 3 - -
1 8310 call 8305 - 1 - -
2 8350 return - - - - -
3 8780 loop 8205 24 2 - 1
4 9215 bulk - - - 15 -

address of the destination if the branch is taken and in Next column which represents the new
value of the Index pointer in case the branch is taken. Entries in Trigger column are necessary
information for each type of non-sequential prefetching and are part of each row. The entries in
the second row of the table are for Call type of prefetching. This row has data in the Trigger,
Type, Destination and Next columns. For this type of prefetching the data in Destination column
is the address of the target that should be prefetched, which in this case is the first memory block
of the function. The entry in Next column is used by the Index register to point the position in
the RPT of the next non-sequential prefetch action. The third row has entries for Return type of
prefetching, which in contrast to Call has no data in the Destination and Next columns, because
the target of return instructions and the next value of the Index register is read from the Return
Address Stack. Entries for Loop type of prefetching are shown in the fourth row. Apart from
data in the Trigger and Type columns, for this type of prefetching the table provides information
about the address of the loop header in Destination column, how many times the execution will
jump to the loop header in Iteration column, where the Index pointer should be located when
the execution goes back at the beginning of the loop in Next column and the depth of the loop
to distinguish if the loop is nested within some other loop in Depth column. The last row of
the RPT example is about Bulk prefetching which determines the number of sequential memory
blocks that should be prefetched while the execution iterates through some cached loop. This
entry is placed in the Count column.

By default the prefetcher activates the sequential components and switches to non-sequential
only when the search in the RPT results in a hit. The idea behind this solution is based on the
tendency of single-path code to have longer sequential segments due to its main transformation
rule to serializing all input dependent alternatives. Having this, single-path code has fewer
control flow instructions compared to conventional code and with that also needs a smaller RPT.

Controller

The Controller is the module that coordinates all the actions within the prefetcher. Its job is
to watch the stream of execution, to initiate prefetching when the execution switches to a new
cache line, and to select the appropriate prefetch component for calculation and generation of the
prefetch target address. In our solution, the Controller is modeled as a state machine consisting
of states A, B and C as shown in Figure 4.6. State A is the initial state, which marks the
readiness of the Controller to perform a prefetch action. When prefetching is triggered, and the
actual prefetching is performed by the Sequential, Call, Return or Loop module then the state of
the state machine does not change but remains in A since the calculation of the target addresses
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for these types of prefetching is done within one cycle. This tells to the Controller that the actual
prefetch action is finished and the prefetcher is ready to perform the next upcoming prefetching.
The state machine transits to state B only when the prefetcher encounters an if -branch structure.
For this type of prefetching, the prefetcher has the information about the position of the branch
in the code but no information about its outcome. Therefore, the state machine transits to state
B and stays there until the outcome of the if -branch is solved. At the same time, when the
state machine transits to state B, the If module of the prefetcher is also triggered. In state B
the prefetcher does not perform any prefetch action in order to preserve temporal properties
of the cache and avoid any possibility for cache pollution. Once the outcome of the branch is
resolved, the state machine switches back to state A and waits for the next prefetching action to
be triggered. The Controller transits to state C when the bulk prefetching has to be performed. In
this state, the Controller monitors the execution of the loop and the prefetching process. When
the bulk prefetching has finished with the prefetching of memory blocks or the execution has
exited the loop, the state machine will transit to state A immediately.

Astart B

C

seq, call,
return, loop

if

bulk

back

back

Figure 4.6: State machine diagram of the prefetch controller

Sequential Module

The Sequential-module, illustrated in Figure 4.7, generates the prefetch address of the following
memory block and is triggered whenever the search in the RPT results in a miss. Its architecture
has the simplest design of all other modules. It is comprised of one adder and one sign extend
component. Whenever a prefetch request for the next sequential memory block needs to be
issued, the cache-line address of the current PC fetch address is passed as an input through the
adder, is incremented, and released as the cache-line address of the next memory block. The sign
extension unit is used to extended the width of the cache-line address to the length of the full
memory address so the request is in the same format as the address issued from the PC because
the prefetcher works with cache-line addresses. This whole process is performed within one
cycle.
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If Module

The If -module is activated when prefetching encounters an if code structure. This is the only
module that does not issue any prefetch request, but just sets the prefetcher with the right settings
and prepares it for the following prefetch action. The module calculates the next value of the
Index register in order to point to the right position in the RPT once the if-branch has been solved.
The architecture of the If -module, shown in Figure 4.8, is comprised of three registers (Index
Reg1, Index Reg2, and Dest. Reg), one multiplexer, one comparator and one adder. They are
connected in form of two parallel paths, where one path is for calculation of the next sequential
index (index 1) and the other for reading the index from the RPT table (index 2). The next
sequential index is just an increment of the current index value and is valid only when the if-
branch is not taken. In case the branch is taken, the value of the index is read from the RPT table,
which is statically calculated and stored ahead of time when the RPT table is filled. The decision
which of these two indexes will be chosen depends on the outcome of the comparator, where
the cache-line bits (PC line address) of the current PC reference are compared with the value
of the Destination register, which are the cache-line bits of the destination where the execution
will be dislocated if the branch is taken. The value of the Destination register is also statically
calculated and stored in the RPT table. If the comparison results in a hit, it means that the branch
is taken and the next index value is the one read from the RPT, otherwise the index value is just
incremented.

The whole process of next-index calculation is performed in two steps. In the first step, when
the If -module is triggered, the values of both indexes are generated and saved in their related
registers, while in the second step the outcome of the branch is compared and the right index
value is sent to the main Index register.

Call module

The Call module generates the prefetch address of the first memory block of the called function.
As shown in Figure 4.9, this module does not perform any calculation, but only releases the
prefetch request with target read from the RPT table and replaces the content of the Index register
with the value read also from the table. Both entries, the prefetch target and the Index register
value are calculated statically.

However, this module prepares the prefetcher for return prefetching when the end of the
function is reached. For that reason, the architecture in addition includes two adders which
are employed to increment the current PC address and the value of the Index register. Both
incremented values are pushed on the Return Address Stack (RAS) located within the prefetcher,
between Call and Return module. The whole operation is performed within one cycle.
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Return module

The architecture of the Return module is shown in Figure 4.10. Its job is to issue prefetch
requests for the cache line of the code from where the function was called. Whenever this
module is triggered, it immediately pulls the pair Destination and Index from the RAS and
decrements the value of the stack pointer. The first value of the RAS pair is used as prefetch
target, which is the cache-line address from where the function was called. The cache-line bits
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are extended through the sign extend and released from the prefetcher as a prefetch request.
The second value read from RAS is the new value of the Index register. The whole process is
performed within one cycle.

Currently, the RPT holds only a single entry for each return in the code by telling to the
prefetcher only the moment during the execution when this module should be triggered. All other
required information for operation of the Return-module are stored on the RAS. The presence
of the RAS reduces the size of the RPT table because the RAS consumes less space due to the
dynamic to change its pointer and to keep information only for the actually called functions.
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Return 
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Index

Index
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Figure 4.10: Return-module

Loop module

The Loop module, illustrated in Figure 4.11, is triggered when the prefetcher encounters a loop
structure in the code. Its architecture is designed to operate in three modes called entry mode,
iteration mode and exit mode. In Figure 4.11, the components of the module that are active in
one mode are marked in red color. In all three modes, the upper part of the architecture, framed
with a dotted line rectangle, generates the prefetch-target address whenever the Loop module is
triggered. This part of the architecture is comprised of one adder, one multiplexer and one sign
extend unit. The lower part of the architecture has to calculate the value of the Index register
for pointing to the next non-sequential entry in the RPT and to count the number of iterations
that the loop has performed. This part comprises three adders, two multiplexers and one register
called Loop Iteration. The mode status of the Loop module is saved in the Loop Status register,
and it switches from one mode to another based on the number of loop iterations that have been
left. In the following we describe the behavior of Loop module through each mode.

By default, the Loop module always starts in entry mode. This mode is active only when the
loop executes its first iteration and once the loop finishes this iteration, the mode is immediately
changed to iteration mode or exit mode, depending on the number of iterations that are left. As
can be seen from Figure 4.11a, in this mode the prefetcher reads the prefetch target address
directly from the RPT table and after passing it through sign extension it is releases a prefetch
request. Because this is the first iteration of the loop, the prefetcher reads the number of iterations
from the RPT. This value is firstly decremented and then saved in the Loop Iteration register. In
this mode, the value of the Index register is read from the RPT table as well.
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Figure 4.11: Loop-module
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If loop has more than one iteration then the next mode of the Loop module is iteration mode.
The module stays in this mode until the loop reaches its last iteration. This mode differs from the
previous one only in the part of the architecture that counts the number of iterations. While in
entry mode the number of iteration was read directly from RPT table, iteration mode decrements
the value of the Loop Iteration register. This can be observed in the lower part of the architecture
illustrated in Figure 4.11b.

For the last iteration, the Loop module switches to exit mode, where at the end of the loop
body the prefetcher will not prefetch the target of the loop back edge but will bring into the
cache the next sequential memory block. Therefore, in the upper part of the architecture in
Figure 4.11c, the prefetch target address is not read anymore from the RPT but its value is
calculated as an increment of the actual PC address. The part of the architecture that counts
iterations will reset the Loop Iteration register to zero, while the part for index calculation will
increment the value of the Index register to point to the next RPT entry. When this is finished,
the mode is switched back to the entry mode waiting for the next loop.

In order to simplify the presentation of the Loop module, in Figure 4.11 we have shown
the example for only one loop. In reality loops can be nested. Thus the architecture of the
Loop module has a set of Loop Iteration registers and Loop Status registers, which are active
at different levels depending on the depth of the nested loop. The depth level of each loop is
determined statically and is read from the RPT from the Depth column.

Bulk module

The architecture of Bulk module, illustrated in Figure 4.12, can be viewed as two separate com-
ponents, where one is for counting the number of prefetched blocks by this module (Counter) and
the other for calculating the target address of the issued prefetch requests (Address-generator).
The Counter component consists of one multiplexer, one adder and one register, while the
Address-generator has the same elements as the Counter plus one sign extend. Before the state
machine of the Controller switches to state C, the counter component of the Bulk module reads
the number of sequential memory blocks that can be prefetched with bulk-prefetching from the
RPT and saves this number in the Count register. At the same cycle the Address-generator com-
ponent increments the cache line address of the last memory block of the loop and saves it into
the Addr register. Once these two registers are set, the bulk-prefetching can be started.

The Bulk module becomes active only when the state-machine switches to state C. In this
state the prefetcher cannot use the cache-line switching as a trigger signal anymore, because
the execution now runs through a loops that is already in the cache and if the same triggering
approach is used then the rate of issued prefetch requests would be so high that the memory
would not be able to handle all of them. To avoid this problem, Bulk module uses the memory
bus signal for triggering, which enables the tag fragment of the address to be written in the
cache. In the protocol of bringing the memory block into the cache, this signal is the last one in
the sequence of issued signals and therefore it is employed to insure that the requested memory
block has arrived and a request for new prefetch can be released. After each issued request, the
part of the architecture that counts the requests (Counter) will decrement the value of the Count
register, while the other part (Address-generator) will increment the value of the Addr register.
This process continues until one of the following two conditions is reached. The first condition
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is that the value in the Count register becomes zero because all planed memory blocks have
been brought into the cache, and the second is that the iterations of the loop are finished and the
execution continues with the first block outside the loop. The second condition is employed as
a prevention mechanism because this type of prefetching is performed independently from the
execution and it may happen that the execution exits the loop before bulk-prefetching finishes
with its predetermined number of memory blocks. This way, the prefetcher immediately gets
synchronized again with the flow of execution and continues to issue prefetch request whenever
the execution switches to a new cache line.

4.4 Compact Representation of Code Behavior Information

To be effective, the instruction prefetcher requires information about the behavior of the code in
order to guess the target of the prefetch addresses. This information can be generated dynami-
cally during the runtime of the code and used later if the same execution stream is repeated, or
it can be derived statically, before the execution starts. The advantage of the second approach
is that the knowledge on code behavior is provided ahead of time and enables the prefetcher
to guess correctly from the beginning of the execution without requiring any additional time to
learn about the behavior of the code. Moreover, the prefetcher starts immediately with prefetch-
ing by covering even cold cache misses.
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Single-path code experiences a lot of transformation through the conversion process by being
converted into a code that has no more input-dependent branch conditions, longer sequential
segments and loops that have a constant number of iterations. Thus, the transformation not only
eliminates uncertainty on code behavior but also reduces the complexity of the code structure
and with that also the amount of information required to describe its control-flow graph. Since
single-path code has no dynamic decisions, the whole knowledge about its behavior can be
derived statically. It is sufficient to extract information about the control-flow decisions and with
that to achieve full coverage on the behavior of the code. Therefore, for guiding the single-path
prefetcher through code execution we have decided to use statically derived information that
reflects the control-flow graph of the code. In oder to encode statically derived control-flow
information in a compact form, we have chosen to use the Reference Prediction Table presented
in section 4.3. Each control-flow decision has only one entry in the table, no matter how many
times it is executed and the size of the table is proportional to the number of the control-flow
decisions in the single-path code.

Generation Process of Reference Prediction Table

The RPT is created by analyzing the execution trace of the single-path code. An execution trace
represents a record of instruction addresses as they are referenced by the program counter. The
single-path code has the same trace for any input-data, which means that the address trace of a
single code iteration is sufficient to extract all the required information.

Source code Compiler

Cache Model

Input

Trace

Analyzer

RPT Table

RPT 

generator

Control-flow 

graph

Binary 

Excecutable
Trace 

generator

Figure 4.13: RPT generation process

Figure 4.13 shows the whole process of RPT table generation. After the single-path transfor-
mation has been performed and the code has been compiled, the executable binary is passed to
the trace-generator to record the order of addresses as they are referenced by the processor and
then sends the trace outcome to the analyzer. It is important to note that the compiler serializes
all if-structures in the code and all converted loops have a constant number of iterations and a
single exit point. The job of the analyzer is to use the trace and symbol table to identify the
functions in the code, calls in each function, and build the control-flow graph of the function.
The pseudo-code for the identification of the functions and calls within the function is shown in
Algorithm 4.1. The algorithm uses as input the trace of addresses and the symbol table, while
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input : address_trace, function_map
output: F, C = <set of functions, set of calls>

1 F← {};
2 C← {};
3 call_stack← [];
4 previous_address← Null;

5 for ∀ address ∈ address_trace do
6 entry_address , function_name← function_map(address);
7 if function_name /∈ F then
8 F← F ∪ (function_name, Function(function_name, entry_address);
9 end

10 func← F(function_name);
11 func.cfg(address); // update the cfg of the function
12 if address = entry_address then
13 if func /∈ call_stack then
14 call_stack.push(previous_address, func);
15 end
16 else if func 6= call_stack(top) then
17 call_site, callee← call_stack.pop();
18 if call_site /∈ C then
19 C← C ∪ (call_site, Call(call_site, address, callee));
20 end
21 end
22 previous_address← address;
23 end

Algorithm 4.1: Trace analysis

the outcome is a set of functions F and a set of calls C. For each address the algorithm reads
from F the function instance where the address belongs and add the address to the functions
control-flow graph as a new node. If the function does not exist a new function instance is cre-
ated. The algorithm also generates a call instance when the trace switches from one function to
the other and places that instance in the set C. Once this is finished, the analyzer starts with the
identification of the back edges in each function. The algorithm for recording the back edges in
the function is shown in Algorithm 4.2. The input of the algorithm is the set of functions, while
the output is a set of back edges for each function. The algorithm identifies the back edges by
traversing through all nodes of the functions control-flow graph. If the node v is visited for the
first time and its successor w has already been visited then the edge (v, w) is considered as a
back edge and is added to the set. The next step is the building of the tree of loops for each
function. The algorithm for the loop tree construction is shown in Alorithm 4.3. The loop tree
is used for determining the depth of each loop. For each function, the algorithm creates a virtual
back edge and considers that as a root of the tree.

The information produced from the analyzer are then sent to the RPT generator. The RPT
generator uses this information to identify the position of the control-flow instructions in the
code, as well as the type of code structure which they create. The process of table generation is
shown in Agorithm 4.4. For each control-flow change in the code, the RPT generator generates
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input : F = <set of functions>
output: back_edges

1 for ∀ function ∈ F do
2 back_edges← {};
3 visited_node← {};
4 finished_node← {};
5 stack.push(function_entry_address);
6 while length(stack) > 0 do
7 v← stack.pop();
8 if v ∈ visited_node then
9 finished_node← finished_node ∪ v;

10 continue
11 end
12 visited_node← visited_node ∪ v;
13 stack.push(v);
14 for ∀ w ∈ cfg(v) do // w is successor of v in cfg
15 if w ∈ visited_node and w /∈ finished_node then
16 back_edges← back_edges ∪ edge(v, w);
17 end
18 if w /∈ visited_node then
19 stack.push(w);
20 end
21 end
22 end
23 end

Algorithm 4.2: Identify back edges in each function

a unique RPT entry. At the beginning, the algorithm fills the table with loop, call and return
entries of each function. For the classification of the loops, the RPT generator needs to know the
size of the cache in order to determine if the loop is smaller or larger than the cache size. This
information is provided from the Cache Model Input. Loop size includes not only the size of the
actual loop but also the size of the code segments that are called from within the loop. If the loop
fits into the cache then an entry for bulk prefetching will be generated, otherwise the entry will
be for a normal loop. The Cache Model Input informs the RPT generator about the associativity
of the cache as well. This information is important when the RPT generator determines the
number of memory blocks that will be prefetched with bulk prefetching. For instance, if the
cache is direct-mapped and the code has a loop which consists of calls to other functions and the
size of the loop, including the size of the called functions from that loop is smaller than the size
of the cache, the RPT generator will still not generate a bulk-prefetching entry if the memory
blocks of the loop are in cache conflict with memory blocks of those functions but instead will
classify the entry as normal loop. However, this rule is not effective if the cache is organized as
full associative. The information on associativity enables the RPT generator to generate entries
that will prevent the temporal properties of the cache. The next step of the algorithm is to sort
all RPT entries by their trigger address. At the end, the data in the Next column for loop and
call type of entries is calculated.
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input : backedges
output: loop_tree

1 root← Loop(entry_address, exit_address) ; // virtual loop
2 last← root;
3 for ∀ edge ∈ backedges do
4 previous← last;
5 new← Loop(edge);
6 while True do
7 if new ∈ previous then // check if loop is nested
8 new.parent← previous;
9 previous.children← previous.children ∪ new;

10 break
11 end
12 previous← previous.parent
13 end
14 last← new
15 end
16 loop_tree← root

Algorithm 4.3: Building loop tree

input : cache_size, cache_line_size
input : F, C = <set of function, set of calls>
output: RPT = <set of table entries>

1 RPT← {};

2 for ∀ function ∈ F do
3 rpt_group← {};
4 for ∀ loop ∈ function do
5 if loop_size 6 cache_size and ¬tag_conflict(loop) then
6 rpt_group← Bulk_entry(loop);
7 else
8 rpt_group← Loop_entry(loop);
9 end

10 end
11 for ∀ call ∈ function do
12 rpt_group← Call_entry(call);
13 end
14 rpt_group← Return_entry(function.last_address);
15 sort_by_address(rpt_group);
16 RPT← RPT ∪ rpt_group;
17 end
18 for ∀ entry ∈ RPT do
19 next_index(entry);
20 end

Algorithm 4.4: RPT generation
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4.5 Chapter Summary

To summarize, a prefetcher can be predictable and effective if it successfully answers the ques-
tions of what to prefetch, when to prefetch and where to place the prefetched blocks. The static
behavior of single-path code allows extracting a-priory all required information on code behav-
ior, which is succinctly summarized in the RPT and later used for guiding the prefetcher in the
time and value domain in order to eliminate any possibility for speculative behavior. Using this
advantage, the proposed single-path code prefetcher achieves full accuracy on prefetch target
anticipation as well as on time when the request should be issued. The constraint on the number
of free bus cycles limits the improvement that can be achieved with prefetching.

The architecture of the prefetcher is designed as a set of modules whose behavior is coordi-
nated by a controller. Such an approach allows the development of the prefetcher to be scalable
and gives the possibility to make future changes on any of the modules without affecting the
properties of the others.
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CHAPTER 5
Time-predictable Memory Hierarchy

In this chapter we introduce the architecture of the memory hierarchy for a system that runs
single-path code. The chapter starts by enumerating the issues that the conventional memory
hierarchy faces to achieve a stable execution of the single-path code. Next, the chapter contin-
ues with a description about modifications that should be implemented in on-chip and off-chip
memories in order to provide stable execution and performance improvement when single-path
code is executed. This chapter also describes the integration of the prefetcher as part of the
memory hierarchy as well as the types of filtering that are implemented in order to maximize the
benefits of prefetching.

5.1 Memory Hierarchy for Single-path Code

An embedded system that runs single-path code must consist of a memory hierarchy whose
timing is stable, predictable and has short access latency. Otherwise the system will loose all the
benefits gained from the single-path transformation. This can be provided only if the timing of
instructions is repeatable for any iteration of the code in all layers of the memory hierarchy.

The property of single-path code to have a single trace of execution forces the instruction
path of the memory hierarchy to always run through the same order of states, which means that
the timing of instructions becomes repeatable through any iteration of the code. However, this
is not true for a system with a conventional memory hierarchy since not all of its components
provide stable timing. First, the single-path transformation does not perform any changes in the
data part of the code. Although all load and store instructions are executed, the timing of instruc-
tions will vary through different iterations of the code due to the presence of the conventional
data cache. Second, the interference that occurs between instruction and data accesses on the
shared main memory affects the timing of instructions due to unpredictable blocking from data
accesses. The effect of the interference between these two paths is also reflected in the stability
of the execution time of the whole code. Third, to deal with increased code size, modern embed-
ded systems require most of the time to employ high-capacity off-chip memory like Dynamic
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Figure 5.1: Time-predictable memory hierarchy for single-path code

Random Access Memory (DRAM). As a consequence, the timing of the individual instructions
is not stable anymore due to the variability that this technology imposes on the timing of each
instruction.

Figure 5.1 illustrates the architecture of the memory hierarchy that provides timing stability
and performance improvement for systems with single-path code. The hierarchy is composed
of the single-path code prefetcher, instruction and data on-chip memory, memory controller
and main memory. In the following part of this chapter, we describe the configuration and
modification of each of these components in order to achieve stability at the level of instructions
and better performance in their execution.
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5.2 Organization of the On-chip Memory

The on-chip layer of the memory hierarchy for single-path code is comprised of an instruction
cache and a data scratchpad. Most of instruction cache organizations provide stability by design
since they repeat the same history of states whenever a single-path code is iterated. On the other
hand, to achieve stable timing through the data path of the memory hierarchy we propose two
possible solutions. The first approach is the use of a data scratchpad as an on-chip data memory,
whose content is loaded before the execution starts. In this case, the timing of each load and
store instruction will be the same for each run, since all required data will be available in the
scratchpad. Furthermore, the presence of a data scratchpad eliminates the interference that can
occur between instruction and data path because the access on the shared main memory for these
two type of information will be performed in different phases. When the amount of data is too
large to completely fit into the scratchpad, a dynamic software controlled data scratchpad can
be used. With this solution the data content is reloaded periodically through special instructions
inserted in the code [52]. The timing and the amount of data that the special instructions bring
in the data scratchpad should be determined statically. We should note that the data path of
the memory hierarchy is not subject of the research in this thesis and the proposed scratchpad
solutions are only complements to the instruction path in order to achieve stable timing for the
whole execution.

Modified Instruction Cache

The integration of the prefetcher into the memory hierarchy requires a modification of the cache
architecture in order to allow regular fetching and prefetching to be performed in parallel without
interfering the work of each other. Therefore, the instruction cache is a dual-port on-chip mem-
ory that accepts and processes address references issued from both processor and prefetcher. It is
based on SRAM technology where each bit cell can be accessed for read and write concurrently
form both ports. As the execution runs, each reference that arrives at the cache is firstly com-
pared with the entries of the tag table to search for a possible match. In case of a miss, depending
on the source of the request, the cache performs one of two types of actions. On a processor
cache miss, the cache works like a conventional cache, it stalls the processor and forwards the
processor request to the external main memory. On a prefetch-cache miss, the cache forwards
the request of the prefetcher directly to the main memory without disturbing the operation of the
processor. Distinguishing these two types of misses in the cache enables the prefetcher and the
processor fetch stage to work in parallel without interfering the execution. Thus, while the fetch
stage accesses instructions that are already in the cache, the prefetcher initiates the prefetching
of upcoming cache lines.

As can be seen from Figure 5.1, it may happen that both types of address references arrive in
the cache at the same time. If both of them result in a cache miss, then only one request can be
forwarded to the main memory. In this case, the cache gives priority to the request issued from
the processor because these requests stall the execution, but also in this way the cache restricts
the prefetcher to read the memory only when the bus is idle. The hardware mechanism for this
arbitration is implemented by a cascade of two multiplexers (Mux 1 and Mux 2) where Mux 1
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releases the prefetch request only if the prefetch target is not in the cache, while Mux 2 gives
priority to fetching before prefetching if both result in a cache miss.

The Impact of the Replacement Policy on Instruction Cache

One of the requirements of single-path code for having stability is that the replacement of cache
lines within the instruction cache should be repeatable by generating the same trace of hits and
misses for any iteration of the code. For a direct-mapped cache this is achieved by design and
the same is valid for any other n-associative cache organization that implements a replacement
scheme with well defined rules on the replacement of the cache content. The only exclusion are
n-associative caches with random replacement or pseudo replacement policies. Another stability
issue on cache level is the difference of hit/miss traces between cold and warm cache. The timing
difference between the first and the following iteration can be eliminated if the cache content is
flashed at the beginning of each iteration, thus always performing with cold cache. To achieve
that, a simple hardware is added to the cache which invalidates all valid bits of the cache tags
whenever execution starts a new iteration and is triggered through a special instruction inserted
at the beginning of the code.
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Figure 5.2: The impact of cache replacement policy on single-path loop
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Besides predictability, the cache memory has to provide performance as well. Therefore we
aim at organizing the cache in the way that would benefit from single-path properties. Intuitively,
increasing the associativity of the cache means better exploitation of the codes temporal locality,
since the selection of cache lines that can be evicted is larger, but this is not alway true for single-
path code. The main concept of the single-path transformation is to convert all input-dependent
alternatives of the code into a sequential segment. Thus, loops with sequential body are very
often cases of single-path code. For such loops the direct-mapped cache can achieve higher hit
rate than a fully associative cache when the loop is larger than the cache size. For example,
Figure 5.2 shows a control-flow graph of a loop consists of six memory blocks (a,b,c,d,e,f)
and two instruction caches with capacity of four cache line, where the first one is organized as
direct-mapped and the second is fully associative cache with LRU replacement policy. During
the first iteration all cache accesses will result in cache miss due to the cold cache state, but
for any other iteration the direct mapped-cache will have two hits and four misses, while with
a fully associative cache all accesses will result in cache miss. In such cases, fully associative
cache can achieve the same performance as direct-mapped if a dynamic cache lock mechanism
is implemented that will lock part of the cache lines with loop content and release them after the
last loop iteration has been executed [19].

5.3 Organization of the Main Memory

The memory controller needs to arbitrate between the instruction and data path when they share
the same bus to access the main memory. If the on-chip data memory is a scratchpad that
is loaded before the execution starts, then the memory controller can employ any arbitration
policy because the access to the main memory between instruction and data accesses will never
interfere with each other. For the second solution from Section 5.2, when the data path of the
memory hierarchy has a dynamic software controlled data scratchpad that is periodically loaded,
the arbitration policy should be priority-based where the data accesses have higher priority than
the instructions. Such a policy prevents the data cache to stall the processor for longer time,
especially when the bus gets busy from the prefetcher which is in bulk prefetching mode.

The last layer of the hierarchy is the main memory which can be of SRAM or DRAM tech-
nology. The advantage of using SRAM is that this type of technology provides fast and stable
timing for each access, no matter if the type of access is read or write. However, SRAM solutions
are expensive and can be employed as main memory only when the system runs applications of
small size. On the other hand, DRAM offers cheap storage with fast access but the duration of
each access is dictated from the organization of DRAM itself. A DRAM bank with open-page
policy serves a request immediately if the previous request was targeting the same row as the
actual one and not so fast if the target of the previous access was on different row [78]. Knowing
that single-path code has long sequential segments makes the employment of this solution much
more beneficial than the closed-page policy. Timing variety with open-page policy occurs due
to precharge command, which is released only when a bank row needs to be closed in order to
bring into the sense amplifier the following row targeted from the actual request. Another rea-
son for time variety is DRAM rank switching, because ranks share the same data bus and when
targets of the current and the previous access are on different ranks then a penalty in form of an
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idle cycle needs to be considered [31]. If the previous access was write and the actual is read,
or vice versa, then the data bus requires a few clock cycles for bus turnaround as well [2]. All
these time delays due to the dependency of the actual access from the state of the previous one,
make the access time of the request variable. However, timing variety imposed from all these
parameters has no impact on timing stability of the single-path code because the sequence of
DRAM commands that are sent to the DRAM device are always the same for each code itera-
tion. The only problem that emerges from the employment of DRAM technology in a system
with single-path code is the occurrence of jitter due to DRAM refreshing. DRAM requires to be
refreshed periodically and this process is not synchronized with DRAM accesses. If the memory
controller tries to access the DRAM device when refreshing is in progress the request will be
stalled until the refreshing operation is finished. Thus, the asynchronous interferences that this
process imposes on the execution of the single-path code generates execution-time jitter. One
solution that has been proposed for eliminating this issue is to synchronize the start of execu-
tion with the refreshing process by delaying the beginning of the execution until the first refresh
operation takes place [78]. To implement this, a signal from the memory controller that triggers
refreshing should be send to the processor as well. However the length of delay is still not con-
stant. Another solution to eliminate the refreshing jitter is to disable auto-refreshing and employ
software-assisted refreshing instead [11]. This can be implemented through a new task that will
do burst refreshing by reading each row of memory banks. The other option is to reprogram
the refresh interval of the DRAM control register to perform burst refreshing of all rows of the
DRAM memory, where its activation/deactivation is controlled by a separate software task. Our
proposal is to use a special instruction that would trigger refreshing at the beginning of each it-
eration no matter when the previous refresh has been performed. In this way the period between
two refreshes will be reset and synchronized with the beginning of the iterations. Since the re-
fresh will stall the beginning of each iteration, it is recommended the refresh period to be of type
distributed in order to minimize the delay from refreshing on applications with short execution
time. By doing so, the refresh process becomes repeatable, since its triggering moment becomes
repeatable for each iterations of the code.

5.4 Prefetch Filtering

The prefetcher is located between the processor and instruction cache and has one input for
monitoring the fetch requests issued from the processor and one output for releasing the prefetch
request. The output of the prefetcher can be connected directly to the main memory or it can
reach the memory through the cache. The advantage of the first approach is that the cache
remains unchanged and no lookup search is triggered in the cache since all prefetch requests are
sent directly to the main memory. But if the prefetch target is a memory block that is already in
the cache then the whole prefetching process becomes redundant. In such a case the prefetcher
will degrade the system performance by wasting the bus cycles with useless memory traffic.
The second solution treats each prefetch request as if it were a normal fetch request by sending
it firstly to the cache. This technique is called prefetch probe filtering, since firstly it checks if
the potential prefetch target is already in the cache or not and then releases it to the memory [95].
In case of a hit the filter will just discard the request and wait for the next one, otherwise the
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request will be forwarded to the main memory. The output of the single-path code prefetcher is
connected to the cache as illustrated in Figure 5.1.

Usually, memory hierarchies that are augmented with a prefetch unit have a cache organized
as n-way-associative in order to avoid any possible conflict between fetching and prefetching
processes if both targets are mapped on the same cache location. But this type of conflict can
easily occur if the cache has a direct-mapped organization. For example, if the fetch stage of
the processor fetches instructions for the n-th line of cache and in the meantime the prefetched
block is mapped on the same cache line then prefetching will destroy the content of that cache
line by generating additional cache misses. In such cases the prefetcher only degrades system
performance. To eliminate this problem we propose a conflict filter which monitors the addresses
of prefetch requests and compares them with the address of the actual fetch. If the address
fragment that identifies the cache line is the same then the filter will drop the prefetch request
before it enters the cache. This way, the filter insures that the prefetcher does not evict the cache
line that holds the currently executing instruction. Its position in memory hierarchy is shown in
Figure 5.1.

5.5 Chapter Summary

To summarize, a real-time system that runs single-path code can become predictable only when
the memory hierarchy of the system supports predictability on all of its layers. This means, the
timing of instructions should be repeatable whenever the same instruction is executed through
different iterations. Therefore, in this section we have defined a memory hierarchy that would
satisfy these requirements. Apart form predictability, the proposed memory design provides
performance as well by employing implementations that are more suitable for single-path code
without affecting its predictable properties. To prevent any form of redundant memory traffic,
prefetch filtering has been proposed to discard prefetch requests for memory blocks that are
already in the cache.

73





CHAPTER 6
Implementation and Evaluation

This chapter presents the implementation and evaluation of the time predictable memory hierar-
chy for single-path code. The chapter begins by introducing the T-CREST platform and Patmos
processor as a framework that supports the execution of single-path code. Next, the chapter de-
scribes the implementation process of the single-path code prefetcher and the instruction cache
as part of the memory hierarchy. The chapter ends by evaluating the performance of the memory
hierarchy through running a number of experimental executions and discussing the results.

6.1 T-CREST platform and Patmos Processor

The intention of the proposed memory hierarchy is to improve the execution time performance
of the single-path code. To achieve that, the memory hierarchy is required to be build upon a
system consisting of a time-predictable processor that supports predicated execution. To the best
of our knowledge, the T-CREST platform [99] with Patmos processor [101] is the only platform
that supports predicated instructions and has a compiler that transforms conventional code into
single-path code.

The T-CREST platform is a real-time system platform designed to make the WCET analysis
simple and the execution of the worst-case faster. The platform covers technologies at processor
level, on-chip communication, compiler with WCET optimization and single-path conversion
and WCET analysis tools. All hardware components of the platform are time-predictable and
allow WCET analysis. The processor node includes the Patmos processor, special instruction
and data cache memory, and local scratchpad memories for instructions and data. Patmos is a
32 bit dual-issue processor with instruction set of RISC-style. Both issues of the processor share
between them a register file with 32 registers. Patmos can be configured to have two-pipeline
units for high performance or only a single one to save hardware resources. The architecture
of the processor is a Very Long Instruction Word (VLIW) 5-stage pipeline with incorporated
forwarding paths. The stream of instructions is statically scheduled by the compiler. All instruc-
tion delays are well defined and visible at ISA level. All instructions are predicated and take at
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most three register operands. The execution time of each instruction is constant, independent
from the value of the predicate. Patmos can supports bundles that are 32 or 64 bits wide. The
local memory of Patmos is a set of caches consisting of a standard instruction cache or method
cache, data cache, stack cache as well as instruction and data scratchpad. The last two types
of scratchpads can be used as substitutes for instruction and data cache or in addition to them.
Splitting of the local memories has the purpose of simplifying the model of caches and with that
the WCET analysis.

The compiler used in T-CREST is an extension of the LLVM compiler framework [60],
which integrates the option for an automatic transformation of the conventional code into single-
path code. When the single-path option is selected, the compiler serializes all if-statements,
transforms all loops into loops with constant number of iterations and maintains the value of
predicates through function calls. In addition, each loop is generated with a single exit edge at
the end of the loop body. The compiler performs transformation in the backend and operates on
the control flow graph representation rather than on the source code. The only requirement that
the compiler has for single-path transformation is that the loop bounds for each loop have to be
provided in the source code. However, the current compiler version does not make distinction
between input-dependent and input-independent branches by transforming all of them into a
sequential code. Thus, the new generated code has no execution alternatives that are input-
independent.

6.2 Implementation of the single-path code prefetcher

For the implementation of the single-path code prefetcher, we chose to use Chisel [8], which is
a hardware-design language embedded in the Scala programing language [77]. The intention
of Chisel language is to be the platform that offers the possibility to design low-level hardware
blocks by using modern programing language features. Compilation of the source code can
generate a fast cycle-accurate simulator or Verilog code suitable to be synthesized for an FPGA
or ASIC solution.

The single-path code prefetcher is implemented as a state machine, as illustrated in Fig-
ure 6.1. It consists of combinatorial logic for the calculation of the output (prefetch address),
combinatorial logic for the calculation of the next Index value and the values of the next state,
sequential logic for saving the state, the RPT for reading the parameters and the Index register to
point at the actual row in the RPT. As can be seen from Figure 6.1, the output of the prefetcher
depends not only on the present state but also on the input, which makes the state-machine to be
of Mealy type.

The pseudo-code for implementation of the prefetcher is shown in Algorithm 6.1. The first
two lines define the states of the state machine and dictate state A as initial one. Based on
Section 4.5, the model of the state machine should consist of three states as the one shown in
Figure 4.6, but in the current version state B has been not implemented because the compiler
prototype used for our evaluation serializes all if -branches in the code. Thus, for transformed
code that has no if-structure the state machine will never transfer to state B. Lines 3-36 of the
algorithm cover the hardware design for state A, lines 37-43 for state C. The hardware generated
from the first when condition within state A checks if the execution has switched to a new cache
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Figure 6.1: Representation of the single-path code prefetcher as state-machine

line. When this condition is fulfilled, the prefetcher continues with the selection of the prefetch
module based on conditions defined in the other when cases. Lines 6-7 define the hardware
for the sequential module, lines 8-11 for the call module, lines 12-15 for the return module
and lines 25-36 for the loop module. As can be seen, the loop module has three other when
conditions within, in order to define the hardware for all three modes of the loop as described in
Section 4.11. Lines 16-24 of state A belong to bulk module. The hardware defined in lines 16-21
is used only to set the parameters for bulk prefetching, while the transit of the state machine
from state A to state C is done through the hardware in lines 22-24. The transition is performed
on the next prefetch trigger in order to ensure that the actual prefetching process is finished and
there will be no conflict with the request issued from bulk prefetching. In state C prefetcher
triggering cannot be synchronized with cache line switching anymore because the execution
now runs through a loop which is already in the cache. Therefore, in this state the triggering is
done only when tag_signal is high, which is defined in line 35. tag_signal writes the tag of the
memory block brought in the cache and goes high only when the last bit of the memory block
arrives in the cache. Thus, using the same signal the prefetcher gets informed that the requested
prefetch block is already in the cache and a new prefetch request can be issued. The target of
the next prefetch address is calculated through the hardware generated from lines 38-41. The
condition to exit burst prefetching is given in line 42. The state machine switches to state A if
the number of memory blocks dictated by the RPT have been all prefetched or the execution
has exited the loop and continues through the next cache line. To simplify the presentation of
the algorithm, we have not presented implementation details that deal with rare conditions like
when the loop size is smaller or equal to the size of the cache line or when the prefetch target
and the destination are on the same cache line.
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input : RPT, PC_line_address
output: prefetch_address

1 state: A, C;
2 state←− A;
3 when (state == A)
4 when (PC_line_address 6= cache_line_reg)
5 cache_line_reg← PC_line_address ;
6 when (no_match_with_RPT and ¬change_state)
7 prefetch_address← PC_line_address + 1;
8 when (match_with_RPT and ¬change_state and type == call)
9 prefetch_address← RPT;

10 index← RPT;
11 push;
12 when (match_with_RPT and ¬change_state and type == return)
13 prefetch_address← stack;
14 index← stack;
15 pull;
16 when (match_with_RPT and ¬change_state and type == burst)
17 change_state← true;
18 index← index + 1;
19 count_reg← RPT;
20 address_reg← PC_line_address;
21 trigger_reg← PC_line_address + 1;
22 when (change_state)
23 state← C;
24 change_state← false;
25 when (match_with_RPT and ¬change_state and type == loop)
26 when (first_loop_iteration)
27 prefetch_address← RPT;
28 index← RPT;
29 iteration_reg← RPT;
30 when (next_loop_iteration)
31 prefetch_address← RPT;
32 index← RPT;
33 iteration_reg← iteration_reg − 1;
34 when (last_loop_iteration)
35 prefetch_address← PC_line_address + 1;
36 index← index + 1;
37 when (state == C)
38 when (tag_signal and count_reg 6= 0)
39 prefetch_address← address_reg;
40 address_reg← address_reg + 1;
41 count_reg← count_reg − 1;
42 when (count_reg == 0 or trigger_reg == PC_line_address)
43 state← A;

Algorithm 6.1: Algorithm of single-path code prefetcher
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6.3 Implementation of the cache

The cache memory is implemented as a composition of three components: front-end, back-end
and storage. The front-end provides an interface to the processor fetch stage and prefetcher,
by accepting their requests. Next, the front-end searches through the cache and checks if these
references are present or not and based on that declares cache hit or miss for each reference no
matter if it is issued from fetch stage or prefetcher. Patmos is a dual-issue VLIW processor,
which fetch bundle of two instruction on each fetch operation. Since Chisel does not support
true dual-port memory, we were forced to split the tag table of the cache in two parts, defined as
table with even addresses and table with odd addresses, in order to allow parallel search through
them. Furthermore, the cache allows matching for prefetch requests to be done in parallel with
fetch operation/request. Therefore, we have two more replica of even and odd tag tables, used
only by the prefetcher. The hardware that performs these operations is implemented through
Algorithm 6.2. The hardware has as input the even and odd fetch addresses issued from the
processor and the prefetch address issued from the prefetcher, while outputs are the hit/miss
signals for all three issued requests and the address reference that should be fetched from the
main memory. The first four lines of the algorithm define the default values of the output signals,
because the whole component is built on combinatorial logic. Lines 5, 7 and 10 of the algorithm
generate the hardware to do matching between tag bits of the addresses issued from the processor
and prefetcher with tag bits of the tag table as well as checking the valid bit of that tag table if it
is true or false. Since cache is organized as direct-mapped, only one location from the tag table
is required to be compared and the position of that entry is extracted from the index bits of the
reference addresses. Chisel converts when-elsewhen structures into a cascade of multiplexers,
where the first condition has the highest priority, then the second one and so on. Such an order
gives priority firstly to even and odd fetch references and then to the prefetching as they are
defined in lines 4, 9 and 13. Lines 6, 8 and 12 are signals about the outcome of the search
in the tag table. When any of them becomes false a fetch request is forwarded to the main
memory, but only hit_even and hit_odd signals can stall the processor, thus enabling fetching
and prefetching to be performed in parallel. The condition in line 11 is optional for direct-
mapped cache because it compares the index bits of fetch and prefetch addresses in order to avoid
possible cache conflicts between these two processes. In case the prefetch address is mapped to
be placed in a cache line that is actually used by the fetch stage, the hardware synthesized from
line 11 will drop the prefetch request (conflict filter).

The back-end component of the cache deals with requests released from the front-end and
forwards them to the main memory. When the requested memory block arrives, the job of the
back-end is also to place the block into the determined cache line. The hardware implementation
of this component is based on the state-machine shown in Figure 6.2. As can be seen, the state-
machine can be in state init, idle, wait and tran, where the first state init is also the initial one.
The Patmos processor can read instructions from cache or scratchpad memory. Thus, the first
state is to determine if the cache is the component from where the read of instructions should
be done. Once the cache has been selected, the state machine transfers to the state idle and
waits for the fetch request. If any of the hit signals from front-end component switches to false,
the back-end immediately reads the fetch address and forwards it to the main memory. If the
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input : address_even, address_odd, prefetch_address
output: fetch_address, hit_even, hit_odd, hit_pref

1 hit_even← True ;
2 hit_odd← True ;
3 hit_pref← True ;
4 fetch_address← address_even ;
5 when ((tag_cache_even 6= tag_address_even) ‖ (¬valid_even))
6 hit_even← False ;
7 .elsewhen ((tag_cache_odd 6= tag_address_odd) ‖ (¬valid_odd))
8 hit_odd← False ;
9 fetch_address← address_odd ;

10 .elsewhen ((tag_cache_prefetch 6= tag_address_prefetch) ‖ (¬valid_prefetch))
11 when ((index_even 6= index_prefetch) && (index_odd 6= index_prefetch))
12 hit_prefetch← False ;
13 fetch_address← prefetch_address ;

Algorithm 6.2: Algorithm for cache and prefetch hit\miss detection

request is acknowledged by the main memory then the state machine transits to state tran. If
the memory is occupied from some other master component in the system, the response to the
back-end will be negative. In that case the state machine switches to state wait and waits until
the main memory becomes free. Once this happens, the back-end receives an acknowledge and
the state machine transits to state tran. The state machine stays in state tran until all instructions
of the actual cache line have been brought into the cache. When the transfer has finished, the
state machine transits back to the state idle and waits for the next request. It is important to note
that the tag address of each cache line is written at the moment when the last bit of the cache
line has been brought into the cache.

initstart idle wait tran
cache not-ack

ack

ack

finished

Figure 6.2: State-machine diagram of the cache back-end

The storage is the last component of the cache consisting of tag memories and instruction
memories, which stores the memory blocks brought from the main memory. The number of
tag memories that are generated depends on the organization of the cache. As we mentioned,
direct-mapped cache has four tag memories (even, odd, prefetch_even and prefetch_odd) and
two instruction memories (instruction_even and instruction_odd) due to limitations of the Chisel
language and this number increases n times for n-way set-associative caches but at the same time
the number of lines on each memory is reduced n times as well.
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6.4 Evaluation Platform

In order to evaluate the performance of the new memory hierarchy, we have synthesized the
prototype design of the system and uploaded it on an DE2-115 FPGA board consisting of an
Altera Cyclone IV EP4CE115 device, which has 114480 logical elements (LEs) and 3888 Kbits
of embedded memory. The synthesized prototype includes the Patmos processor, single-path
code prefetcher, instruction and data cache memory, Open Core Protocol (OCP) for on-chip
communication and SRAM memory controller. The system employs as main memory the 2MB
SRAM chip located on board. This memory results in 21 clock cycles when a burst of 4 32-bit
instructions are brought into the cache.

We have synthesized a set of systems with four different types of memory organizations.
The first group employs conventional cache with direct-mapped organization, the second group
uses 2-way set-associative cache with LRU replacement policy, the third group uses direct-
mapped cache augmented with single-path code prefetcher and the last group uses a 2-way
set-associative cache with single-path code prefetcher as well. For all four groups the employed
instruction cache was of size 1KB, 2KB, 4KB, 8KB, 16KB and 32KB. In all cases the data
cache was organized as write-through direct-mapped cache with a size of 4KB. The single-path
code prefetcher alone consumes 2014 LE, 577 registers and has a Fmax of 84.56 MHz. The
Fmax of the prefetcher is measured for the benchmark with the largest RPT from all evaluated
benchmarks.

6.5 Evaluation

For the evaluation of the memory hierarchy, we use the collection of Mälardalen WCET bench-
marks [45]. This set of programs is designed to evaluate and compare different types of WCET
analysis tools and methods. The set consists of 36 programs, which are composed of different
program constructs like nested loops, input dependent loops, switch cases, nested if-statement,
bit manipulation, float point calculation, array and matrix calculation in order to test and eval-
uate the WCET for a wider range of program properties. The advantage of Mälardalen WCET
benchmarks is that the programs contain their own inputs, and the bounds of the loops are given.
The disadvantage of using this set is that the input vector that would trigger the WCET of the
program is not given. Thus, the real WCET of the code derived through measurement and the
WCET of the same code that transformed to single-path can not be compared to see the tim-
ing overhead that is generated from the transformation. From the whole set of benchmarks we
excluded the fac, recursion, matmul, st and duff, as our compiler prototype does not handle
recursion and calls to external libraries.

We had to instrument the code of each benchmark in order to perform end-to-end measure-
ments of the execution time. To avoid the transformation of the instrumented code, we adapted
all benchmarks by defining a new main function which contains the instrumented code and a
function call to call the original main function of the benchmark. Thus, the compiler transfor-
mation target is only the original main function. In addition, we also have added an attribute to
the benchmark’s main function in order to avoid inlining of functions by compiler.

We compiled the set of selected Mälardalen WCET benchmarks with -O2 optimization using
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the T-CREST cross-compiler under the Ubuntu operating system. The executable binary was
then run on pasim, which is the simulator of Patmos processor, to generate the trace of the
program counter (PC). Next, the analyzer combined with the RPT-generator used this trace
information to generate the RPTs. In our implementation we synthesize each RPT as a ROM
memory.

Evaluation results

We now present the results from our evaluation. We have evaluated the impact of the single-path
code prefetcher on the execution time of the Mälardalen benchmarks for different memory con-
figurations. We started by evaluating the predictability of the prefetcher. Next, we examined the
impact that diverse cache organizations have on the performance of the prefetcher by changing
the size of the cache, the cache line length and the associativity. We also quantify the impact of
the data cache on the performance of the prefetcher. Finally, we compare the performance of the
prefetcher and instruction cache with other forms of on-chip memory organization.

Figure 6.3a presents normalized values of the execution time to show the timing improve-
ment that can be achieved when a memory hierarchy with a prefetcher is used. All benchmarks
were run on two platforms that were identical, except for the prefetcher which was used only
in one setup. In both cases the cache is organized as direct-mapped, with cache lines of four
instructions where each instruction is 32 bits and cache size in the range of 1KB to 32KB. The
horizontal red line, in the figure, positioned at 1 represents the threshold for the interpretation of
the results. Any bar above the threshold means positive performance improvement and anything
below means reduction. From the figure we observe that for all cases the bars are above the
threshold which means that the positive improvement has been achieved in all cases. This is due
to time-predictable behavior of the prefetcher which prevents any possibility for cache pollution
or useless memory traffic that could slow down the execution.

However, even though the prefetcher guarantees improvement for any workload, the degree
of improvement is not the same. If we observe the impact of the cache size, we see that for most
of the benchmarks (adpcm, compress, cover, fft1, lms, ludcmp, minver, prime, qurt, select, sqrt
and ud) the prefetcher is more successful for configuration with small cache size. This is due
to the instruction footprint of the benchmarks. Larger cache size means greater exploitation of
codes temporal locality and fewer conflict cache misses. Therefore, in cases with large cache
the single-path code prefetcher is mainly effective only with cold cache misses. The scale of
improvement also depends on the structure of the single-path code. For instance, codes with
small loops will initiate more bulk prefetching. From the observed results of all benchmarks in
Figure 6.3a, the range of improvement is from 0.01% for bs100 to 17.1% for cover benchmark.
The average performance improvement for cache with size of 1KB is 7.3% and this number
decreases as the size of the cache is increased by reaching 3% in average for cache with size of
32KB.

Figure 6.3b shows the number of RTP entries that each evaluated benchmark generates. This
number is proportionally dependent with control-flow instructions in the code since each of them
generates one entry. In general, for Mälardalen benchmarks these tables are not so large. The
benchmark with the largest table is lms and has 168 entries, while the average number of entries
for all benchmarks is 27.
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Figure 6.4 shows the performance of the single-path code prefetcher for different cache
organizations. For this figure we selected to show those Mälardalen benchmarks for which the
effect of prefetching can mostly be observed. Figure 6.4a shows the results for a cache with line
size of 16B, Figure 6.4b for a cache with line size of 32B and Figure 6.4c for a cache with line
size of 64B. The bars on the left-hand side of each figure show the results for the caches with
direct-mapped organization, while those on the right-hand side show the results for the caches
with 2-way set-associative organization and LRU replacement policy. The size of the cache
varies in the range from 1KB to 32 KB. Increasing the length of the cache line means longer
overlap period between fetching and prefetching process, but this is beneficial for prefetching
only when the whole cache line is executed, as demonstrated in Figure 6.4. From the results we
observe that increasing the length of the cache line affects positively the prefetch performance
only for cover benchmark (from 17% to 19%) and nsichneu benchmark (from 16% to 18%),
while for the rest of the benchmarks increased cache line reduces the prefetch performance. The
cover and nsichneu benchmarks contain larger sequential segments and therefore prefetching in
these cases becomes more efficient. On the other hand, the change of cache organization from
direct-mapped to 2-way set-associative results in small improvements only for ludcmp and fft1
for cache of size 8KB, which results from cache conflict reduction due to increased associativity.
For all other cases, the switching from direct-mapped to 2-way associative is almost irrelevant
for the prefetching performance.

It is important to note that the execution times of the benchmarks are derived through end-to-
end measurement. For such an approach, the measured time is a composition of time required
to bring instructions into the instruction cache (ti), time required to bring data into the data
cache (td) and time to process them (tp). The presence of prefetcher affects only (ti), while the
other two timing parameters remain unchanged. Therefore, benchmarks with small instruction
footprint and large data have poor prefetching performance. The results shown in this way
represent relative improvement of the execution time.

To understand the impact of the prefetcher in greater depth, we have executed single-path
transformed binary-search algorithm on four almost identical systems which differ only in their
on-chip memory organization. The first system has a memory consisted of instruction and data
cache, the second system additionally includes a single-path code prefetcher, the third system
consisted of instruction cache and data scratchpad, while the fourth system has the on-chip
memory like the third one plus the prefetcher. Configurations with data scratchpad were up-
loaded with all required data before the execution started. For evaluation we used an array of
size between 10 and 100 elements. Figure 6.5a shows the execution time of the binary search
algorithm in all four systems. From the results we observe that as the size of the array increases
the execution time gap between systems with data cache and data scratchpad also gets wider.
In Figure 6.5b we show execution time improvement that can be achieved with prefetching in
systems with data cache and data scratchpad for the same binary search algorithm. From the
results we can observe that the presence of a prefetcher in a system with conventional data cache
improves the execution time in the range from 8.2% to 10.7%, while for a system with data
scratchpad the improvement is in the range from 13.3% to 14.8%, due to elimination of td. An-
other phenomenon that can be observed from the same figure is that as the number of elements
increases the timing improvements get lower for both configurations because tp increases while

84



ti remains constant.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

cover

nsichneu

qurt
ludcm

p

sqrt
fft1

ud statem
ate

cover

nsichneu

qurt
ludcm

p

sqrt
fft1

ud statem
ate

e
x
e

c
u

ti
o

n
 t

im
e

 i
m

p
ro

v
e

m
e

n
t

1KB 2KB 4KB 8KB 16KB 32KB 1KB 2KB 4KB 8KB 16KB 32KB

2-way associative with LRUdirect mapped

(a) cache with 16B line size
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(b) cache with 32B line size
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(c) cache with 64B line size

Figure 6.4: Performance evaluation for diverse cache organization
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Figure 6.5: Execution of binary sort algorithm on system with different memory configurations
(I$ - instruction cache, D$ - data cache, PR - prefetcher, DSP - data scratchpad)

6.6 Chapter Summary

For the prototype we used Patmos processor because it supports predicated instruction and has a
compiler that generates single-path code. We also implemented the prefetcher and integrated it
in the memory hierarchy. The cache has been modified to allow fetching and prefetching to be
performed in parallel. For main memory a SRAM chip is used. For the evaluation we executed
the Mälardalen WCET benchmarks. From the results it can be observed that the prefetcher
behaves in a predictable fashion by improving performance for all benchmarks. The scale of
improvement depends on the code structure and the size of the instruction footprint within the
code.
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CHAPTER 7
Related Work

In this chapter we show related work on techniques for improving the predictability of mem-
ory hierarchies. In general, research in this area can be observed going in two directions. On
one side, there is ongoing research on building analysis tools for analyzing the timing behav-
ior of conventional memory architectures. On the other side, we see the development of new
techniques that are employed in memory hierarchies to improve predictability and simplify the
analysis. The chapter starts by giving an overview of state-of-the-art static cache analysis used
in systems with conventional cache architectures and then continues with approaches that in-
clude the effect of prefetchers in WCET bound estimation. Next, the chapter describes tech-
niques designed to improve predictability of the memory. The chapter ends by showing existing
WCET-aware prefetch solutions that improve estimated WCET bounds in a predictable form.

7.1 Static Analysis of Conventional Cache Memory

Predicting the dynamic behavior of the cache is one of the main issues in WCET analysis due
to the history dependency of the cache states. To make the analysis tractable, state-of-the-art
tools are using an abstract interpretation of cache behavior [76]. They classify memory accesses
in always hit, always miss, or not classified if classification for the access cannot be determine
and then based on that outcome determine the memory time of each access. In fact, the analysis
associates concrete cache states with abstract cache states for each point in a program. For
caches organized as n-set associative, the age of cache lines is also modeled. The update of
abstract cache states is performed in a way as a concrete cache would have been updated. Since
the analysis is performed on a control-flow graph, whenever a join point emerges the states of all
incomes are combined. At this point the analysis uses must or may merge functions depending on
the type of classification that is performed. The must function generates the common updated
abstract cache state with content that is guaranteed to be in the concrete cache state at that
program point. The may function computes a common abstract cache state with content that
might be found in the concrete cache state at that program point. If the memory block is not
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in the abstract cache state then it is safe to be classified as cache miss. If the memory block
cannot be classified as always hit or always miss then it is not classified. The precision of the
analysis was further improved with persistence analysis, which classifies cache accesses within
loop structures where the accesses for the first iteration may result in a miss but for all the other
iteration in a hit [39]. The analysis was firstly valid only for caches with LRU replacement
policy, but later it was extended also for FIFO, MRU and PLRU [94].

Static Analysis of Cache with Prefetcher

Utilizing a prefetcher in an real-time system can do both, harm performance or improve it.
If the prefetcher brings instructions into the cache before they are required it will reduce the
number of cache misses, but if the prefetched block evicts useful cache lines then the number of
cache misses will be increased. The other issue is blocking, where a prefetch access can block
instructions or data fetch by prefetching a useless memory block with an incorrect target. In
both cases, the presence of a prefetcher affects the WCET bound of the system, which means
its inclusion in the analysis is unavoidable. However, including the behavior of the prefetcher
in the analysis increases the complexity even more by making the prefetcher not so suitable for
real-time systems.

Yan and Zhang, in [123], extend the static cache simulation approach [6] by including the
impact of a next-N-line prefetcher on the instruction categorization outcome. The basic idea
of this approach is to firstly compute the status of each instruction and then update their status
based on the changes due to prefetching. The algorithm consist of four steps: initialization, loop
analysis without prefetching, loop analysis with prefetching and branch analysis. The initial-
ization step determines the status of each instruction and calculates their access time. The loop
analysis without prefetcher categorizes all loop instructions in case they can be categorized as
first miss or first hit. The loop analysis with prefetcher updates the status of the categorized loop
instructions by including the effect of cache conflict due to prefetching. The last step, branch
analysis, deals with non-fall-through targets by updating their status based on the outcome of
the conflict set consisting of prefetched instructions. The evaluation shows that the presence of
a next-N-line prefetcher can increase the WCET of the code due to the cache pollution that it
generates.

Later, Ding and Zhang in [30] improve the WCET from the previous approach by extend-
ing the previous next-N-line prefetcher with loop back-end prefetching and call it Loop-Based
instruction prefetching. The scheme performs next-N-line by default and switches to the other
scheme only when execution reaches a loop boundary. At that moment, instead of the next
sequential memory block, the block that has the head of the loop is prefetched. Switching
between loop-directed prefetching and next-N-line prefetching is controlled through a Loop-
BranchEnable signal, which is active only when a loop-branch instruction is executed. The
solution requires a special instruction for loop branches in order to distinguish them from the
other control-flow instruction. Loop prefetch targets are stored in a hardware table as a pair of
loop-bound address and the address of the loop head. Since they can be identified statically, they
are derived before the execution starts. The WCET analysis, similar to the previous solution,
is based on static cache simulation. The only difference is that the loop-based-prefetching now
eliminates the cache conflict between loop instructions and the following instructions after the
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loop, as it was the case with the previous solution. Now the conflict occurs only in the last iter-
ation of the loop because the prefetcher always triggers loop head prefetching at the end of the
loop.

7.2 Scratchpad Memories as an alternative in Hard Real-time
Systems

Scratchpads are fully predictable concerning the time of memory references [116]. Even though
the content can be managed statically or dynamically, both of these approaches are fully under
software control, which supports predictability. The disadvantage of using scratchpads is the
necessity for the correction of the execution flow with additional control-flow instructions due
to the dislocation of the code parts into different memory address spaces.

Wehmeyer and Marwedel in [115] have analyzed the influence of scratchpad memory size
on WCET. They use static allocation where the selection of scratchpad-allocated objects is for-
mulated as an integer programing problem. The objective is the allocation of basic blocks with
higher execution or access frequency to scratchpad memory. The result shows that increasing the
scratchpad size drastically improves the WCET value. However, the used algorithm has the goal
of energy efficiency and not WCET performance. A WCET-aware static allocation algorithm for
scratchpad memory has been proposed by Falk and Kleinorge in [36]. The scratchpad-allocation
problem is again formulated as an ILP problem, but now it has the goal of optimizing the worst-
case execution path (WCEP). The algorithm is applied exclusively to the program segments that
are part of the WCEP. After each allocation decision, the algorithm checks if another code path
has become the new WCEP. The results show that the use of scratchpad can improve the WCET
up to 40% compared to the same architecture without on-chip memory.

Patel et al. in [80] proposed a static instruction scratchpad allocation scheme that would
satisfy time constrains for the PRET architecture [68]. PRET uses the ARM ISA extended
with a deadline instruction. This instruction is used in pair in order to define the execution
time deadline of the code fraction enclosed between these two instructions called timed block.
The first deadline instruction is at the beginning, while the second at the end. The objective of
the scratchpad allocation scheme is to allocate instructions from those timed blocks which are
violating the local time deadlines. The selection is based on a greedy algorithm. The approach
was later improved by Prakash and Patel [83], who formulate the allocation as an ILP problem.
The ILP approach allocates only the minimum number of instructions that are necessary to meet
the local time deadline, thus leaving the remaining free scratchpad space to be used for the
allocation of other instructions from other critical blocks in the same program to meet timing
requirements specified in their blocks.

Metzlaff et al. in [75] propose an instruction scratchpad that dynamically manages the con-
tent during the run-time of the code. The idea is to avoid a conflict between instruction and
data paths by dynamically allocating the functions to the scratchpad. In every call or return,
the scrachpad controller copies the functions from main memory to the scratchpad, where the
granularity of transaction is the whole function. Thus, every instruction of the code that is part
of a function is accessed from the scratchpad. A function can only be loaded or replaced on
the whole, which restricts the minimal size of the scratchpad. The solution is implemented in a
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simultaneous multithreaded architecture in order to increase processor utilization. Thus, while
one thread is executing instructions from the scratchpad, the other one will load the upcoming
function. To avoid collisions between threads, the scratchpad is partitioned with each thread
having a separate space assigned. Avoidance of interference is important for precise WCET
estimation.

7.3 Cache Locking Techniques for Predictability Improvement

Cache locking is a promising approach for simplifying the WCET analysis of the cache and
increasing the cache predictability, since the contents of the locked instructions are statically
known. Once the cache block is locked, it cannot be evicted anymore under the replacement
policy [1]. This guarantees that the access of those instructions will always result in a cache
hit. The disadvantage of such a technique is that it reduces the size of the unlocked part of
the cache available for the rest of the program. Cache locking can be performed in a static or
dynamic manner. The static implementation loads and locks the selected code fractions into the
cache during the system boot time and keeps them unchanged throughout the whole execution,
while the dynamic solution locks and unlocks the cache content interchangeably during the
execution time of the code. In the following we discuss cache locking techniques for improving
predictability and WCET bound.

In [37], Falk et al. present a static instruction-cache locking technique for minimizing the
WCET. The objective of the approach is to lock functions that are part of the WCEP and with
that to also reduce the WCET. The algorithm firstly builds a context-specific function call graph
of the code and then uses a heuristic algorithm to determine the WCEP of the set of paths.
The next step is the selection of the most frequently accessed functions to be locked. Since the
WCEP can be changed after each locked function, the algorithm takes also into consideration the
possibility of WCEP switching. In fact, the algorithm recalculates the WCEP after each locking
decision. Liu et al. in [69] use the same approach of function locking, except that the heuristic
algorithm for function selection is replaced with an ILP model. Later Plazar et al. in [82] expand
the ILP model to the level of basic blocks. Furthermore, the model takes into account the effect
of locked memory blocks and with that it also eliminates the need for a repetitive calculation of
the WCEP. Li et al. in [65] combine cache locking with code positioning. After the selection of
cache locking content, the code positioning is employed to reduce the conflicts among the blocks
to be locked. If a cache conflict is detected, the code positioning will allocate and place those
blocks continuously in the memory layout. Such changes also require the insertion of additional
jump instructions in order to make the control flow correct. However, all these approaches have
implemented full cache locking which means that caching other instructions during the run-time
can not be considered anymore an option. Therefore, Ding et al. in [28] introduce partial cache
locking that has the flexibility to lock only part of the cache while allowing the rest of cache
content to be still an object of replacement policy. The locking mechanism integrates cache
locking with cache modeling, where cache modeling determines which accesses are predictable
while cache locking optimizes the WCET by locking unpredictable ones. The selection of the
cache locking contents can be done through ILP formulation if the analysis can be performed
on concrete cache states, or by heuristic approaches when the complexity of the cache analysis

90



increases and abstract cache states need to be used.
However, static cache locking has shown to be successful only for large caches where the

scope of WCET optimization is larger. In this context, dynamic cache locking manifest an
even further improvement on WCET optimization. Puaut in [85] suggests greedy and genetic
algorithms for dynamic locking of the cache content. The proposed algorithms divide the code
into regions from which the cache contents are statically selected. Each region has a reload
point located at the beginning of the loop or function in order to enhance temporal locality. As
the program execution moves from one reload point to the other, the cache content is loaded
and remains unchanged until the next reload point. The greedy algorithm has predefined reload
points and the selection of contents relies on the knowledge of the execution frequency of the
blocks along the WCEP, while the genetic algorithm searches the space for cache contents and
reload points in a blind manner. The cache-contents selection criteria for both algorithms are
based on the execution frequencies of basic blocks along the WCEP. Ding et al. in [29] propose
flexible loop-based dynamic cache locking approach that selects the memory blocks that should
be locked and the position of the locking points. The approach differs from the previous one by
adapting partial cache locking. Its main advantage is that the position of locking for memory
blocks that belong to the inner loop can be locked at different loop levels. The selection of the
memory blocks to be locked and their locking points is done through ILP modeling. Vera et
al. in [113] use dynamic cache locking to lock the data cache on those code regions where the
addresses of memory accesses can not be determined at compile time. The cache is locked just
before the execution goes through such a region and unlocked after the region is executed. The
content that is load and locked in the data cache is determined by using a simple analysis based
on reuse analysis. This approach can be implemented on instruction cache as well by locking
code regions which increases the uncertainty of the WCET bound.

7.4 Instruction Cache with Time-predictable Architecture

Method Cache

A method cache was firstly proposed by Schoeberl in [97] as part of the Java Processor for Java
programs and later also extended for functions and procedures of procedural languages [27].
In contrast to conventional cache, a method cache has a coding granularity of a method. Thus,
whenever a cache miss occurs, the whole method is loaded into the cache. This strategy improves
predictability by restricting the occurrences of cache misses only to method calls and returns.
Any other access within the method will result in a hit. Another advantage of the method cache
is that it removes the interference with data cache since the instructions from main memory are
loaded only on call or return.

The simplest configuration is the method cache that holds only one method. The timing
model for such a configuration consists of the transfer time needed to load the method from the
main memory to the cache and the hit time of each access within the method. This makes the
integration of method cache analysis into the WCET analysis a very easy process. However,
single-method caches are not so performance efficient especially when the loaded method has a
large overhead and only a fraction of it is executed. For performance improvement, a method
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cache with a variable number of blocks was also proposed, where the size of the blocks can
be fixed or variable [27]. In the first case, the on-chip memory is divided into blocks with a
fixed size and the maximum number of cached methods is limited by the number of blocks.
The second solution is more flexible since the methods can be allocated variably in the on-chip
memory. Compared with the single-method cache, multi-block method caches are more complex
due to the additional hardware required for the positioning of the methods into the cache and also
for the replacement policy, a disadvantage which is also reflected in the timing analysis of the
method cache.

7.5 Memory with WCET-aware Instruction Prefetcher

A Dual-mode Instruction Prefetch Scheme

The dual-mode instruction prefetcher, proposed by Lee et al. in [64], is an alternative to instruc-
tion caching. Its main concept is based on special threads associated with each instruction block
to guide the prefetcher through the prefetching process. The scheme operates in real-time and
non real-time mode depending on the criticality of the executed task. In real-time mode, the
prefetcher has the tendency to improve the WCET, while in non real-time mode the average-
case execution time is improved. For real-time tasks, threads are generated during compile stage
through the analysis of the worst case execution path of the code. Non real-time tasks have
threads which are updated dynamically by pointing to a block that is most likely to be accessed
again. The hardware for supporting this scheme consist of two instruction buffers, one prefetch
control unit and a thread write buffer. One of the two instruction buffers places the currently
executed memory block, while the other places the memory block being prefetched. When the
execution in the current block is finished, the blocks alternate their functions. The prefetch-
control unit searches through the buffers if the requested reference is already present or it should
be fetched from the memory. The thread-write buffer is active only for non real-time tasks in
order to update the threads in case they have done wrong target guessing. The prefetcher was
later extended with a larger prefetch buffer in order to keep loops and reduce repeated prefetch-
ing when loops can fit into the buffer [63]. The timing scheme used for WCET estimation was
also revised to include the prefetch buffer.

TickPAD Memory

TickPAD is a memory system proposed by Kuo et al. in [59] for a predictable and efficient
execution of synchronous programs. The memory consists of four types of memory compo-
nents. The first component is called spatial memory pipeline and its job is to perform sequential
prefetching by utilizing free bus cycles and bringing the next sequential block. Its architecture
consists of two buffers of the size of one cache line that are interleaved to present fetch and
prefetch stage. In addition, the component has hardware that monitors the high bits of instruc-
tions in order to detect branch instructions at disabled prefetching when they are encountered.
The second component is composed of the tick address queue, designed to maintain the list
of resumption addresses at thread-switching points, and the tick instruction buffer to place the
preloaded instructions. The third component is the associative loop memory, which is a small
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memory for loading loops. Which instructions of the loop will be allocated is determined stat-
ically and during the runtime. When the loop is encountered, the processor is stalled until the
whole loop is loaded. The last component is called command table, which is a lookup table that
contains a set of commands for instructing the TickPAD during runtime. The command in the
table can be: discard to reset the content of the loop memory, store to load the loop memory, fill
tick instruction buffer to bring the first line of the thread, and load tick address queue to maintain
the list of thread resumptions.

Shared Memory Tree Prefetching

Garside and Audsley in [42] proposed a hardware prefetch design for multicore real-time sys-
tems. The system accesses the main memory across a dedicated tree-based interconnection,
where the leaves of the tree are representing connected CPUs, while the external memory is
connected at the root. The tree enables the WCET analysis to be composable by splitting the
memory bandwidth among all the tasks. Therefore, when the WCET bound of a single task
is estimated, the analysis must assume a maximal blocking from all other tasks that access the
memory through the same interconnection. However, the assumption of fully loaded memory in-
terconnect is not the case most of the time, thus generating many reserved spare slots that are not
used. The prefetcher utilizes these spare time slots within the memory systems to perform safety
prefetching without harming the WCET bound. Its position between the main memory and the
tree interconnection allows it to snoop all read requests before they enter the memory controller
in order to detect spare slots and assign them for prefetching. In addition, if a prefetched block
is referenced from the CPU then the fetch slot for that reference will be replaced with another
prefetch slot. The architecture of the prefetcher consists of the demand queue to store fetch re-
quests, the hit queue to store spare slots, a prefetch calculator which monitors the fetch requests
and decides when a prefetch request should be generated, a stream buffer to store the existing
stream data, the demand mem queue to store request which are not discarded, the prefetch buffer
to store prefetch requests, the PF merger which merges prefetch requests with spare slots, a PF
queue stores merged prefetches ready to be issued, and the Squash filter to discard fetch requests
that are already prefetched. Placing the prefetching directly into the cache may affect the WCET
by evicting useful cache lines. For this reason, prefetched blocks are placed into additional cache
memory called prefetch cache.

7.6 Chapter Summary

To summarize, cache memories are the main source of unpredictability in the memory hierar-
chy. A precise timing analysis of them is almost infeasible, and with the use of abstraction a
lot of information is lost. Implementation of cache locking and scratchpad memory improves
timing predictability through the memory hierarchy, but their presence most of the time lowers
the performance of the system compared to the one that has conventional cache. Thus they can
be considered as beneficial only when the new derived WCET bound becomes shorter as re-
sult of increased predictability. On the other hand, the memories with WCET-aware prefetcher
also have their disadvantages. The dual-mode prefetching scheme requires additional threads
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attached to each memory block to guide the prefetcher through the WCEP, the TickPAD is de-
signed to work with synchronous languages, while the Shared Memory Tree Prefetching can
only grantee that the WCET will not get worse due to the presence of the prefetcher.
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CHAPTER 8
Conclusion and Future Work

In this chapter we summarize our contribution and give directions for our future work, on further
improvements of timing performance in systems that run single-path code.

8.1 Conclusion

The single-path conversion is an alternative for reducing the complexity of timing analysis in
hard-real time systems. The approach eliminates all timing variation through the conversion of
the conventional code into a code that has a singleton trace of execution for any input data. It is
sufficient to run the code once and with that to derive its WCET bound. However, the advantage
of generating single-path time-predictable code comes at the cost of longer execution time.

A single-path code prefetcher offers the opportunity of improving timing performance for
the system that runs single-path code. The prefetcher reduces the cache miss penalty time and the
cache miss rate by prefetching instructions into the cache before they are required for execution.
The key concept of the proposed solution is based on the fully predictable execution behavior
of single-path code, which allows the prefetcher to operate in a fully predictable fashion both
in time domain, by determining the exact moment when the prefetch requests should be issued,
and in the value domain, by determining the correct value of the prefetch target addresses. The
prefetcher also takes into consideration the organization of the cache in order to avoid an eviction
of any useful cache block with a prefetched block. This way, the prefetcher not only contributes
in exploitations of codes spatial locality but it also improves exploitations of codes temporal
locality. Using the metrics for prefetch performance comparison, it can be seen that the proposed
prefetcher achieves full coverage and full accuracy on all possible cache misses that can occur
during the execution of the code. Moreover, the modular design makes the prefetcher scalable
and keeps its design complexity under control, by allowing each module to be further developed
in the future, without affecting the behavior of the other modules.

To bring stability to the execution timing, we presented a new organization of the memory
hierarchy. Although the single-path code forces the execution to run through the same order
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of instructions, there is still timing variety that occurs in each layer of the memory hierarchy.
Stable timing is achieved when the sequence of states of memory hierarchy becomes repeat-
able for any iteration of the code. At the cache level the only restriction is not to use an n-way
associative cache organization with random replacement policy. Any other organization of the
cache that has well defined rules on cache-line replacement satisfies the requirement for cache
state repeatability for single-path code. At an arbitration level, to avoid any unpredictable in-
terference between instruction and data path of the memory, we propose the use of explicitly
controlled data scratchpad that will upload all required data before the execution starts, or in
scheduled fashion with a strictly defined moment if the data amount is much larger than the
size of the scratchpad. For the main memory with DRAM technology, we propose the use of
a special instruction that will reset the refreshing controller at the beginning of each task, thus
synchronizing both the refreshing and memory accessing process.

We also demonstrate the benefit of the new memory hierarchy with the single-path code
prefetcher in the context of performance improvement. The implementation was synthesized
and uploaded on an FPGA board where a set of Mälardalen benchmarks were executed. The
results show that the presence of the prefetcher is always beneficial but the scale of improvement
depends on the structure of the code.

8.2 Future Work

The work in this thesis opens several new challenges that would further improve the timing
performance of single-path code. First, in pipelined systems, a wrong speculation on branch
target can cost the execution a few more cycles. Nowadays, systems employ branch predictors
to predict branch conditions and branch targets. However, the decision is speculative since it is
based on the previous behavior of the branch. By using time-predictable properties of single-
path code, we can build a fully time-predictable branch prediction. Furthermore, the information
of the RPT can also be used for guiding the branch predictor, thus eliminating the need for
additional memory to store the decisions and the targets of the branches.

Second, aligning the beginning of a single-path loop with the beginning of cache line can
significantly reduce the number of cache misses for loops that are larger than the cache size,
considering that after transformation they are set to iterate for the maximum number which is
equal to the bound of the original loop. This can be implemented in the compiler, where after
transformation padding with nop instruction can be done until the beginning of the loop gets
aligned with the cache line. As a concept, the benefit of such an approach was demonstrated
in [20]. The strategy itself is quite old, but so far it has been implemented only for data caches.

Last, the single-path code prefetcher can also be adopted for multi-task systems with a table
driven scheduler. In such a system, the sequence of tasks and the preemption moments of task
switching are clearly off-line defined. This exact knowledge about task sequence and timing
can be utilized by a prefetcher to start the prefetching of the next task before task switching is
performed.
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