
SMT-as-a-Service at the Edge

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Masterstudium Software Engineering and Internet Computing

eingereicht von

Stefan Holzer, BSc
Matrikelnummer 01625724

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar
Mitwirkung: Univ.Ass. Pantelis Frangoudis, PhD

Dr. Christos Tsigkanos

Wien, 30. Juni 2022
Stefan Holzer Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

SMT-as-a-Service at the Edge

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Master programme Software Engineering and Internet Computing

by

Stefan Holzer, BSc
Registration Number 01625724

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram Dustdar
Assistance: Univ.Ass. Pantelis Frangoudis, PhD

Dr. Christos Tsigkanos

Vienna, 30th June, 2022
Stefan Holzer Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Stefan Holzer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. Juni 2022
Stefan Holzer

v

Danksagung

An dieser Stelle möchte ich mich bei meinem Betreuer Schahram Dustdar sowie Mitbe-
treuern Pantelis Frangoudis und Christos Tsigkanos bedanken. Großer Dank gilt hier den
Mitbetreuern, welche mich äußerst schnell mit Feedback unterstützten und mich immer
wieder in die richtige Richtung lenkten. Danke für die viele aufgewendete Zeit, für rasche
E-Mail Antworten, aber auch für sehr hilfreiche Meetings. Ich fühlte mich während der
gesamten Arbeit sehr gut betreut, was für den Abschluss sehr von Bedeutung war.

Neben den Betreuern möchte ich mich auch sehr bei Studienkollegen bedanken, die mir
eine andere Sicht auf die Probleme während der Arbeit lieferten und ich dadurch weitere
Fortschritte erzielen konnte.

Zu guter letzt gilt auch großer Dank meiner gesamten Familie, Freunden und speziell
meiner Freundin und alle anderen, die mir mentale Unterstützung leisteten.

vii

Acknowledgements

At this point, I would like to thank my advisor Shahram Dustdar as well as my co-advisors
Pantelis Frangoudis and Christos Tsigkanos. A big thank you goes to the co-advisors
who supported me very quickly with feedback and always put me on the right track.
Thank you for all the time, for quick email responses and helpful meetings. I felt very
well advised throughout the work, which was significant for the completion of the work.

In addition to the advisors, I would also like to thank my fellow students who gave me
several times a different perspective on the problems during the work.

Last but not least, I would like to thank all my family, friends and especially my girlfriend
and everyone else who gave me mental support.

ix

Kurzfassung

Die steigende Anzahl der Geräte im Internet der Dinge (engl. Internet of Things, IoT)
führt zu neuartigen technologischen Anwendungsbereichen wie Smart Cities, Industrie 4.0
oder E-Health. Ein Großteil der dort verwendeten Geräte verfügt nur über sehr limitierte
Ressourcen wie Speicherkapazität und Rechenleistung, was bezüglich Kostenfaktor einen
Vorteil darstellt, jedoch bei der Verarbeitung von großen Datenmengen in Echtzeit zu
Problemen führt. Durch die Einführung von Cloud Computing wurde dieses Problem
vorerst mit der Auslagerung der Datenverarbeitung gelöst. Der Umstand, dass die Daten
auf den IoT Geräten entstehen und das Ergebnis der Verarbeitung in den meisten Fällen
dort wieder benötigt wird, führt zu dem Paradigma von Edge Computing, bei dem die
Verarbeitung wieder näher an die Endgeräte rückt.

Neben dieser Entwicklung gewinnt der formale Ansatz von Satisfyability Modulo Theories
(SMT) immer mehr an Bedeutung, mit der Modellierung von Optimierungsproblemen
oder Verifikationen im IoT Bereich. Diese Probleme sind zum Teil sehr rechenintensiv,
was den Einsatz von Edge und Cloud Computing zur Folge hat. Auf der anderen Seite ist
ein essenzieller Punkt die Verarbeitung in Echtzeit, welcher die Beachtung der Latenzen
bedingt. Dies resultiert daher in die Notwendigkeit eines Systems, welches das gesamte
device-to-cloud Kontinuum für die Lösung von SMT Problemen nutzt.

Die vorliegende Arbeit folgt genau dieser Notwendigkeit und präsentiert die Idee eines
“SMT-as-a-Service at the Edge”-Systems. Der Kerninhalt der Arbeit ist ein Entschei-
dungsprozess, der entscheidet, in welchem Bereich des device-to-cloud Kontinuums die
SMT-Probleme in Abhängigkeit von den aktuellen Bedingungen am effizientesten gelöst
werden können. Dabei gilt es die Architektur des IoT-Umfelds zu beachten, die aktuellen
Bedingungen, sowie die Ziele, die verfolgt werden wollen. Dieser Prozess agiert in einem
sich wechselnden Umfeld und soll möglichst flexibel in verschiedene Umgebungen integriert
werden können. Dazu wird in dieser Arbeit Reinforcement Learning in unterschiedlichen
Ausprägungen verwendet, um den Anforderungen standzuhalten. In der Arbeit wird eine
Proof of Concept Implementierung vorgestellt, wobei bei der Architektur großer Wert
auf den breiten Einsatz in verschiedenen Szenarien und die einfache Konfigurierbarkeit
gelegt wird.

In einer umfangreichen Evaluierung der prototypischen Implementierung vergleichen wir
verschiedene Deployment Szenarien in einer umfassenden Testumgebung bestehend aus
einem echten Roboter, Einplatinencomputern und virtuellen Maschinen in der Cloud.

xi

Dabei kommen SMT Probleme aus verschiedenen Komplexitätsklassen zum Einsatz.
Neben diesen Benchmarks stellen wir einen konkreten Anwendungsfall, nämlich “Path
Planning for Fog-Supported Robots” vor. Die Ergebnisse zeigen, dass ein System mit
intelligenter Entscheidungsfindung mittels Reinforcement Learning in der Lage ist, SMT
Probleme effizienter zu lösen. Unser Ansatz ist daher ein vielversprechender Schritt zur
Nutzung von SMT im IoT in Kombination mit Auslagerung von Datenverarbeitung.

Abstract

The increasing number of devices in the Internet of Things (IoT) is leading to new
technological application areas such as smart cities, industry 4.0 or e-health. Most of
the devices used there only have very limited resources such as storage capacity and
computing power, which is an advantage in terms of the cost factor, but leads to problems
when processing large amounts of data in real-time. With the advent of cloud computing,
the problem of limited resources was addressed and solved by computational offloading.
However, the fact that the data originate and the processing results are in most cases
needed at the IoT devices causes the paradigm shift to edge computing, in which the
processing moves closer to the edge devices again. Alongside this development, the
formal approach of Satisfiability Modulo Theories (SMT) is gaining importance in IoT by
being used to model optimisation or verification problems. These problems can become
computationally intensive, which leads to the use of edge and cloud computing. On
the other hand, real-time processing is an essential point, which requires attention to
latencies. This results in the need for a system that utilises the entire device-to-cloud
continuum.

In this work, we follow exactly these requirements and present the idea of an “SMT-as-a-
Service at the Edge” system. The core content of the work is a decision making process
that decides in which area of the device-to-cloud continuum the SMT problems can be
solved most efficiently depending on the current conditions. It is important to consider
the architecture of the IoT environment, as well as the goals that want to be pursued
by the underlying systems. This process operates in changing environments and should
be able to be integrated into different settings as flexible as possible. For this purpose,
we use reinforcement learning in various forms to meet the objectives. We present a
proof of concept implementation, whereby great importance is attached to the broad
use in various scenarios and simple configurability. In an extensive evaluation of the
prototype implementation, we compare several deployment scenarios over a fully-fledged
testbed featuring a real robot, single-board computers and virtual machines in the cloud.
Furthermore, we use SMT problems from different complexity classes. Besides these
benchmarks, we present a concrete use case, namely “Path Planning for Fog-Supported
Robots”. The results show that our system using reinforcement learning is able to solve
SMT problems more efficiently. Our approach is thus a promising step towards using
SMT in IoT with the combination of computational offloading.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Work . 4
1.3 Structure . 6

2 Background 7
2.1 Edge Computing and Computational Offloading 7
2.2 Satisfiability Modulo Theories (SMT) 10
2.3 Decision Making with Reinforcement Learning 11
2.4 Q-Learning . 17
2.5 Deep Q-Learning . 21

3 Related Work 27
3.1 SMT within IoT . 27
3.2 Computational Offloading . 29

4 Architecture Design 35
4.1 Requirements . 35
4.2 System Design . 36

5 Implementation 43
5.1 Service Architecture Implementation 43
5.2 Communication Module . 47
5.3 Configuration Module . 48
5.4 Decision Modules . 48
5.5 Monitoring Module . 53
5.6 SMT-Solver . 53
5.7 Deployment . 55

xv

6 Evaluation 57
6.1 Objectives . 57
6.2 Experiment Setup . 58
6.3 Evaluation Configurations . 61
6.4 Experiment Results . 70
6.5 Use Case: Path Planning for Fog-Supported Robots 77
6.6 Summary . 83

7 Conclusion 85
7.1 Adherence to Design Requirements . 85
7.2 Revisiting Research Questions . 86
7.3 Limitations and Future Work . 87

A Data Sets 89
A.1 Simple Data Set . 89
A.2 Medium Problem Set . 90
A.3 Hard Problem Set . 91
A.4 Mixed Problem Set . 92

B Use Case SMT-LIB Encoding 95
B.1 Simple Use Case . 95
B.2 Complex Use Case . 96

List of Figures 97

List of Tables 99

List of Algorithms 101

Listings 101

Bibliography 103

CHAPTER 1
Introduction

1.1 Motivation
With the emergence of the Internet of Things (IoT) novel solutions, technologies and
systems were introduced. According to Cisco, 500 billion connected devices are expected
by 2030 [Eva11]. This results in extensive changes in different areas and smart cities,
smart factories/industry 4.0 or smart homes are becoming state-of-the-art. Such scenarios
lead to multiple IoT problems which need to be solved in real-time.

This leads to the new paradigm of edge computing where the computation is moved
beyond the traditional boundaries of the cloud to the devices, where data are generated.
Gartner predicts that “by 2025, 75% of enterprise-generated data will be created and
processed at the edge outside a traditional centralised data center or cloud” [GR17].
According to a report by Grand View Research, Inc. “the global edge computing market
size is anticipated to reach USD 61.14 billion by 2028, exhibiting a compound annual
growth rate of 38.4%” [Gra21]. Even so, the edge will not displace the cloud, i.e. cloud
and edge computing are complementary and should cooperate. This paradigm shift
from constantly offloading computational tasks to solving tasks on edge devices is driven
by a number of different factors. First, the hardware capabilities for edge devices or
devices nearby at the edge are increasing, including better processors and GPUs that
could facilitate the execution of computationally intensive tasks, making the offloading
obsolete. However, this depends on the environment, as the hardware also brings a cost
factor with it. Another factor is the emergence of lightweight virtualisation technology
(like containerisation) allowing executing workload at lower resource costs compared to
traditional virtual machines commonly used in the cloud [DRK14]. Third, with the advent
of new advanced communication capabilities, including multi-connectivity, high-capacity
and low-latency links as in 5G, the communication is taken to a new level. According to
a November 2021 report from Ericsson, “5G will account for nearly half of all mobile
subscriptions by 2027” [CLJC21]. We see that these are driving forces to use the whole

1

1. Introduction

device-to-cloud continuum for computation tasks in a smart system. Finally, the new IoT
use cases mentioned above face significant challenges, such as latency, network resource
consumption, and privacy-related ones, among others. As we can see, there is no optimal
strategy, as offloading to the cloud could bring disadvantages such as additional latency
and using the edge infrastructure could bring drawbacks like limited hardware capabilities.
Therefore, we need some kind of decision making to always choose the best options, as
we propose in our work.
The applications and use cases of IoT are becoming more widespread, as it touches
more and more areas. One common example for IoT in smart factories is predictive
maintenance [PVB21]. For example, machines can be equipped with sensors, collecting
data about the materials used. The data analysis component will alert if checkups
or predictive maintenance is required and will reduce downtime and as a consequence
production disruption. Another example of smart cities would be smart lighting [CJS13],
where IoT sensors collect data about traffic and pedestrians. The goal is to reduce energy
consumption, by using the collected data and providing lighting in an optimised way.
As the examples show, these are problems that need to be solved in (near) real-time.
This results in the need for an IoT real-time problem-solving strategy utilising the whole
device-to-cloud continuum. We propose an end-to-end distributed execution environment
with the aim of solving problems that arise at the edge in real-time. This leads to a
novel system acting as “Solver-as-a-Service”. To concretise the workload and show some
concrete architecture and examples, we focus on SMT workloads applied to fog robotics
[PD21].
In the area of robotics, a general issue is the checking of environmental conditions. A
specific example would be a smart vehicle that is equipped with sensors to check the
road texture and adapt the speed based on the measured data. The conditions and
requirements can become very complex and result in the necessity of formal verification
[EKJ96]. Such problems can be modelled with Satisfiability Modulo Theories (SMT),
which is an extension of the satisfiability problem (SAT). Additionally, SMT is a powerful
tool for solving complex constraint satisfaction problems [DMB11]. For example, there
exist SMT based approaches for the aforementioned motion planning problem for robots
with complex constraints [IS19a]. Barret et al. provide an overview and summary of
application areas of SMT and highlight the significance of SMT [BKM14]. The presented
success stories range from scheduling and optimisation to computer security and software
quality. Arxer et al. presents the usage of SMT techniques for different planning problems
[EA+18].
Due to increasing complexity, the solver of such problems (called SMT solver) typically
requires intensive computation and results in high energy consumption. Furthermore,
robots and other IoT devices are limited in computational resources and energy/battery
power. An essential requirement of such IoT systems is to support time-constrained
applications and real-time processing. Therefore, the approach of computation offloading
to the cloud, where resources are abundant can only be used to a limited extent, due to
the additionally introduced latency as already mentioned above.

2

1.1. Motivation

Figure 1.1: Use Case Architecture

1.1.1 Motivating Use Cases

Figure 1.1 shows a typical architecture of the device-to-cloud continuum. On the bottom,
the areas of smart factories and smart homes are illustrated as examples. On the one
hand, the smart factory could consist of smart robots and smart assembly lines, including
smart transport vehicles, and on the other hand, the smart home could include a smart
TV, a smart washing machine, a smart heating system or a smart fridge, to name only a
few. These devices could be connected to a more powerful server in the smart factory
or a single board computer (e.g. a Raspberry Pi) in the smart home. In the cloud, we
could use other resources from different cloud providers connected to our nodes in the
fog. These are just a few examples, our proposed system can be used in many other
areas, such as smart agriculture, smart healthcare or smart cities.

On the right side in Figure 1.1, the flow of the SMT formulae is illustrated, which is
described in detail below.

3

1. Introduction

1. Origin of SMT formulae: At the edge devices, the SMT formulae are created. For
example, the smart heating system creates a formula that represents all sensor
conditions and if the formula is not satisfiable, there is some fault in the system.
Another example would be the motion planning of smart transport vehicles. This
could depend on the goods to be transported or other vehicles in the smart factory.

2. Decision on edge devices/edge nodes: We can identify three cases. 1. we always
want to offload the SMT formulae, as the edge device is not able to call a local
SMT solver, 2. we always want to solve the problems on the edge device as there
is no stable Internet connection 3. there is an Internet connection and the device
can solve the problem itself, but we want to solve it with an optimisation goal, like
time or energy efficiency. Therefore, intelligent decision making is needed.

a) Solving of SMT formulae on edge node: If we decided in step 2 to solve directly
on the edge devices, we call the local SMT solver.

3. Decision on fog nodes: If we decided in step 2 to offload, we have again the same
decision as in step 2.

a) Solving of SMT formulae on fog node: If we decided in step 3 to solve directly
on the devices, we call the local SMT solver.

4. Solving of SMT formulae on cloud nodes: If we decided in step 3 to offload, we call
an SMT solver in the cloud.

5. Further, processing of the results: In step 2a, the results are directly forwarded to
the edge device for further processing. Otherwise, the results flow back from the
fog nodes to the edge nodes or, if the cloud nodes are used, from the cloud nodes
to the fog nodes to the edge nodes.

This means that every time we have a system solving SMT formulae in the device-to-cloud
continuum, our proposed service could improve the performance of the system.

1.2 Aim of the Work
The main expected outcome and aim of the work is a fully-fledged system that can
solve problems that are modelled as SMT formulae. The problems are created by
the edge devices, and the mapped formulae could represent specific desired properties
and requirements of the device. Those can be related for example to planning or
security/safety. A goal is to find a novel solution that considers the big amount of data
and the corresponding necessity of real-time processing. Furthermore, the system needs
to define a trade-off between latency and limited computational resources on the edge
devices. Regarding this trade-off, a decision algorithm must be designed and implemented,
which will determine on the fly whether a node should execute a solving task or forward

4

1.2. Aim of the Work

the task to the cloud or the edge. The requests (including the solving tasks) arrive at a
high rate, which leads to the need for a lightweight and fast solution.

This work aims to answer the following research questions:

• RQ. 1: How to architecturally support SMT workloads in the device-to-cloud
continuum?

• RQ. 2: How to provide offloading decision support for the evaluation of SMT
formulae in specific deployment setups and concrete goals?

• RQ. 3: How can different decision making strategies improve the performance of
SMT formulae evaluation within edge settings?

1.2.1 Contributions
We identify four main contributions in our work, where each attempts to assist in
providing answers to the research questions.

1. Architecture: Our system is designed to allow separation of concerns, with a
clear focus on extensibility and interchangeability. In concrete, we build different
modules that are responsible for different parts of the workload and are designed in
a way to be deployable in different application environments. This is intended to
answer the question of how to manage the SMT workload and what an architecture
might look like (see RQ. 1).

2. Decision Engine: The core of the whole work is to find an intelligent decision
making approach for solving SMT formulae. This contribution helps us toward the
second research question (see RQ. 2). We design two different intelligent approaches
applicable to different types of hardware with configurable parameters to be able
to meet different types of requirements. These approaches are based on machine
learning, specifically reinforcement learning.

3. Proof of Concept (PoC): Furthermore, we develop a proof of concept solution
that handles SMT workload in the device-to-cloud continuum. The system is
fully configurable in terms of goals to meet the requirements of the underlying
application. In addition, some parts of the system are containerised, allowing for
simplified deployment and operation over different types of hardware. For the other
parts, the focus is on a very lightweight solution, which is why we omitted the
overhead of containerisation. In general, containerisation is considered as a more
lightweight virtualisation technique compared to virtual machines, for example,
but in extremely constrained environments such as those we target and feature in
our PoC, we run our system there natively. Nevertheless, we take care that the
deployment and configuration are as simple as possible. This aims to support us in
answering all three research questions.

5

1. Introduction

4. Performance Evaluation: Finally, we perform extensive benchmarks on our PoC
system to be able to answer the third research question (see RQ. 3). We compare
our proposed solution and architecture with several baseline approaches in different
settings and environments.

1.3 Structure
The remaining chapters of this work are organised as follows. In Chapter 2 we give
background information providing a good starting point to dive into the topic and
the information is necessary to follow the rest of the work. We introduce the related
terminology and definitions. Chapter 3 discusses the state of the art and concentrates on
the related work that is relevant to ours as identified during our literature review. In
Chapter 4 we present the conceptual solution of our work. In this chapter, we discuss
in detail how the different components are designed and provide information about the
models which are used. Then, Chapter 5 describes the concrete implementation of the
system designed in Chapter 4 and provides further details about the implementation and
the underlying technologies which are used. We present our fully-fledged testbed and the
evaluation scenarios which are used for a qualitative evaluation of our proposed approach
in Chapter 6. In addition, a concrete use case is presented in Chapter 6. The thesis is
concluded in Chapter 7 with a discussion of our research questions and our findings. The
last section provides an outlook for potential extensions in future work.

6

CHAPTER 2
Background

In this chapter, we outline the key concepts and paradigms used in this work. Furthermore,
it presents the fundamentals necessary to understand our thesis. We introduce common
terminology that will be used throughout the work.

We start by introducing the context of our application, including the fundamentals of
edge and fog computing paradigms. After that, we outline the field of SMT including
the purpose and solving techniques. Finally, we give an introduction to relevant decision
making approaches, in particular reinforcement learning.

2.1 Edge Computing and Computational Offloading

2.1.1 Resource-constrained Devices

Statistics show that around 50 billion Internet of Things (IoT) devices will be in use
around the world in 2030 [Numa]. It is natural, that all these devices are not equipped
with the latest processor or lots of memory. IoT devices have a specific goal, which
requires data storage and processing capabilities. Another characteristic of IoT devices is
the ability to communicate with other entities. IoT has stimulated many areas like smart
factories or in other words Industry 4.0 [SOM14], smart mobility, smart healthcare or
smart cities. IoT devices are likely to be deployed in a large number and on that account
minimising the production costs is one goal. IoT devices are often be equipped with
low-power embedded computational devices like 8- or 16-bit microcontrollers and very
little RAM and storage capacities [SPKS12]. For that reason, IoT devices are usually
denoted as constrained devices. Since they are used far away from each other, battery
power is another common limitation along with computing power. These limitations lead
to some considerations and concepts, which are described below and are also an essential
part of the whole work.

7

2. Background

2.1.2 Edge Computing
In the mid-2000s, the cloud infrastructure was an emerging strategy to offer diverse
services over the Internet [Sat17]. All the personal computers acted only as clients
and the computationally intensive tasks were done in the cloud. The origin of edge
computing was set by the introduction of content delivery networks (CDNs), which use
“nodes at the edge close to users to prefetch and cache web content” to improve web
performance [Sat17]. Edge computing generalises this concept and has the potential
to address other aspects besides response time and latency, such as bandwidth cost
savings, data safety/security or data privacy/protection [SCZ+16]. Data are increasingly
produced at the edge of the network, consequently processing the data at the edge of the
network becomes an upcoming paradigm. In other words, cloud services are moved from
the cloud closer to the client/customer. A definition of edge computing follows, once
again summarising the most important aspects, and Figure 2.1 illustrates the paradigm
of edge computing. From the Figure 2.1 we can see that edge devices can act as data
producers as well as data consumers. That means the edge devices do not only request
services from the cloud, they can also perform computing tasks. The further capabilities
of the edge are presented in the Figure 2.1.

Edge computing refers to the enabling technologies allowing computation to
be performed at the edge of the network, on downstream data on behalf of
cloud services and upstream data on behalf of IoT Services. Here, we define
“edge” as any computing and network resources along the path between data
sources and cloud data centres....The rationale of edge computing is that
computing should happen at the proximity of data sources [SCZ+16].

2.1.3 Computational Offloading
To overcome the limits of resource-constrained devices (see Section 2.1.1), computa-
tional offloading is the paradigm to transfer resource-intensive tasks to more powerful
instances. This could be the edge to use the benefits of edge computing or also the cloud.
Computational offloading can be defined as follows:

Computational offloading is a technique whereby a resource-constrained
mobile device fully or partially offloads a computation-intensive task to a
resource-sufficient cloud environment. Computation offloading is performed
mostly to save energy, battery lifetime or due to the inability of the end
device to process computation-heavy applications [TSM+17].

Computational offloading offers numerous advantages, but also has some limitations and
disadvantages. Therefore, the decision between offloading and solving the task locally
can become complex. The big advantage of computational offloading is, of course, that

8

2.1. Edge Computing and Computational Offloading

Figure 2.1: Edge Computing Paradigm [SCZ+16]

several tasks are solved much faster as the resources are more powerful, and we have
higher computing power. In addition, the energy consumption of IoT devices could be
reduced. On the other hand, for simpler tasks, the latency between the devices could play
an important role. Moreover, the devices depend on other instances and the network,
which could both have down-times. One further aspect is that computational offloading
entails certain security risks.

2.1.4 Multi-Access Edge Computing (MEC)
MEC and edge computing are closely related. The main difference is that edge computing
is a model (or a concept) and MEC is the practical application (or a standard architecture
concept) of edge computing. Taleb et al. describe MEC as follows: [TSM+17]

Multi-access edge computing (MEC) is an emerging ecosystem, which aims at
converging telecommunication and IT services, providing a cloud computing
platform at the edge of the radio access network. MEC offers storage and
computational resources at the edge, reducing latency for mobile end users and
utilizing more efficiently the mobile backhaul and core networks [TSM+17].

The standards institute European Telecommunications Standards Institute (ETSI) pro-
vides publications including specifications regarding MEC [goMaECM]. MEC offers
cloud-computing capabilities at the edge with the benefits of decreased latency, scalability
and much more and typical use cases are IoT, video analytics or location services [ETS].

9

2. Background

In the further work, we will make use of the edge computing concept, computational
offloading and its advantages. In addition, we will look at the drawbacks of computational
offloading and find a way to use computational offloading only when it is the best solution.

2.2 Satisfiability Modulo Theories (SMT)
A central concept used in this work is the Satisfiability Modulo Theories (SMT). A
common task is verification, which is necessary for a wide range of systems. E.g., proving
the correctness of a program or verifying multiple conditions of sensors in the field of IoT
or in concrete robotics. All conditions necessary for verification could often be translated
into SMT formulae [BT18]. These formulae can be checked/evaluated with SMT solvers
to solve the original verification problem. However, there are many other application
areas of SMT in computer science such as planning, model checking or automated test
generation.

De Moura et al. from Microsoft Research define SMT and SMT solver as follows:

Satisfiability modulo theories (SMT) generalises boolean satisfiability (SAT)
by adding equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quan-
tifiers, and other useful first-order theories. An SMT solver is a tool for
deciding the satisfiability (or dually the validity) of formulae in these theories.
SMT solvers enable applications such as extended static checking, predicate
abstraction, test case generation, and bounded model checking over infinite
domains, to mention a few [dMB08].

We want to highlight one aspect mentioned in the definition, namely the fact that SAT
could also be used for verification, but SMT is more expressive with the drawback of
higher complexity and potential higher execution times of SMT solvers compared to SAT
solvers.

For reasons of space, we do not go into the details of the underlying theories of SMT and
the algorithms of SMT solver here. In the further work, the understanding of the details
is also not necessary, because we will consider the formulae only as our workload, and we
will use already existing SMT solvers as well as problems. In the following, we describe
only one standard, that is important for the further work and give a brief overview of
the most common SMT solvers.

2.2.1 SMT-LIB
SMT-LIB is an international initiative with the goal of advancing research and develop-
ment in the field of SMT [BST+10]. The initiative was founded in 2003 and in order to
achieve these aims, they have set the following specific goals [BST+10]:

• Provide standard rigorous descriptions of background theories used in SMT systems.

10

2.3. Decision Making with Reinforcement Learning

• Develop and promote common input and output languages for SMT solvers.

• Connect developers, researchers and users of SMT and build a relevant community.

• Build an extensive library of benchmarks for SMT solvers and make these bench-
marks available to the community.

• Collect and promote software tools useful to the SMT community.

The SMT-LIB website1 provides a large library including benchmarks and problems
written according to the SMT-LIB standard, documents describing SMT-LIB in detail,
specifications of background theories and links to SMT solvers and tools [SMT].

Every year, a competition2 is held in which different SMT solvers compete against each
other. There are various contributions with benchmarks that can be used to compare
the different solvers. These benchmarks are used in our evaluation (see Chapter: 6.2.2).

The big advantage of SMT-LIB is that the creation and description of SMT formulae are
independent of the actual solver if the SMT-LIB format is followed. In Table 2.1 there
is one column that shows the support of SMT-LIB versions. Details about the syntax,
semantics and underlying theories can be found in the documentation [BST+10]. The
files containing SMT formulae according to the SMT-LIB specification usually have the
extension “.smt2”.

Comparison of Solvers

Table 2.1 summarises some features of some well-known SMT solvers [Hö14].

The list of built-in theories is not complete, and details can be found in the description of
the SMT solvers. Furthermore, there are often combinations of the theories used. Table
2.2 describes briefly some theories mentioned in Table 2.1.

2.3 Decision Making with Reinforcement Learning
We first describe some general aspects of decision making in computer science and then
dive into the topic of reinforcement learning in this section.

2.3.1 Decision Making - General
In this work, we define decision making as the process of choosing an action from several
alternatives. If there is only one option, there is no need for decision making. In order
to make good decisions, it is necessary to know a lot of information about the current
situation, to clearly define the goals to be achieved and to anticipate/assess and plan the
future situations/actions. With the advent of management information systems, decision

1https://smtlib.cs.uiowa.edu/index.shtml
2https://smt-comp.github.io/

11

https://smtlib.cs.uiowa.edu/index.shtml
https://smt-comp.github.io/

2. Background

Name Coding
Language

SMT-
LIB

Built-in
theories Organisation License

CVC4 C++ v1.0/
v2.0

QF_UF,
QF_AX,
QF_BV,
QF_DL,
Q_LA
QF_NA,
Quantifiers

Stanford
University,
University
of Iowa, ...

BSD

MathSAT 5 C++ v1.2/
v2.0

QF_UF,
QF_AX,
QF_BV,
Q_LA

Fondazione
Bruno Kessler
&
DISI-University
of Trento

proprietary

Z3 C++ v2.0

QF_UF,
QF_AX,
QF_BV,
QF_DL,
Q_LA
QF_NA,
Quantifiers

Microsoft
Research MIT

Yices 2 C v1.2/
v2.0

QF_UF,
QF_AX,
QF_BV,
Q_LA

SRI GPLv3

Table 2.1: Comparison of SMT solvers

making is supported by technology in lots of businesses [OM06] and becomes a complex
part of many systems using different approaches. Albar and Jetter present a model
that divides the decision making process into three components [AJ09]: the decision
parameters, where the parameters are defined that will be used in the next step of decision
making. The selection of the decision parameters can be influenced by the information of
past decisions and knowledge. The next step is the decision making process, where all
alternatives are evaluated based on the parameters. In computer science, this component
can be implemented with different types of algorithms, which will be explained in the
next sections. The final component is the decision implementation, where the actions are
planned and performed.

There are various methods for making decisions in computer science. A simple approach
is to use heuristics, i.e. rules of thumb, which are based on common sense. For example,
if you have multiple parameters that can be represented as numbers, you could define
some ranges/thresholds (based on a rule of thumb), that lead to a decision. In such cases,

12

2.3. Decision Making with Reinforcement Learning

Name Description

QF_UF Unquantified formulae built over a signature of
uninterpreted (i.e., free) sort and function symbols.

QF_AX Closed quantifier-free formulae over the theory
of arrays with extensionality.

QF_BV Closed quantifier-free formulae over the theory
of fixed-size bit vectors.

QF_DL

Difference Logic over the integers/reals. In essence,
Boolean combinations of inequations of
the form x - y <b where x and y are integer/real
variables and b is an integer/rational constant.

QF_LA
Unquantified linear integer/real arithmetic.
In essence, Boolean combinations of inequations
between linear polynomials over integer/real variables.

QF_NA Quantifier-free integer/real arithmetic.
Quantifiers Quantified formulae

Table 2.2: Description of theories [C+11]

decisions can be chained (one decision for each parameter), resulting in decision trees.
In a decision tree, there are multiple nodes and branches, where each node represents a
decision about a parameter and each branch represents the result of the decision. The
leaf nodes represent the final decision [SY15]. Decisions trees are commonly used for
classification.

More complex decision making algorithms, which are part of artificial intelligence, are
discussed in the next section. For better understanding, we want to briefly introduce
the concept of computational (rational) agents here. A computational agent could be
anything that makes decisions (acts in an environment), such as a person, a robot, a
dog or a computer program [PM10]. The decisions (the actions) are based on past and
current perceptions of the environment.

2.3.2 Reinforcement Learning - General
Reinforcement Learning (RL) is an area of machine learning that is a subset of artificial
intelligence. The essence of learning is to learn by interacting with the environment and
to gain knowledge about cause and effect, or in other words, the consequences of actions
[SB18]. With these actions, we want to learn to achieve a goal. However, the actions, the
environment and the goal could become very complex. In this section, we focus on the
computational approach to learning from actions in a goal-oriented way. The objective is
to let the machine learn, how to behave in an environment in order to achieve a goal
(or to maximise a certain reward) [SB18]. Reinforcement learning algorithms study the
environment and learn to optimise their behaviour. This paradigm is based on learning
and building knowledge by interacting with the environment.

13

2. Background

State Reward

Environment

Action

Agent

Figure 2.2: The agent-environment interaction in reinforcement learning

Well-known examples are all kinds of games. There is a given environment (e.g. the
chessboard and chessmen) and for each chessman you get from the opponent, you
get a reward. The main goal is to defeat the opponent. In opposite to supervised
machine learning, where the algorithm gets a labelled set and learns based on that set,
in reinforcement learning the learner does not know at the beginning which action is
the best for a given state [SB18]. In other terms, in reinforcement learning the agent
must learn from its own experience. The learner has to explore the environment to get
knowledge about which actions will bring the most reward in the long run. Another
important aspect to consider is that greedy algorithms only represent a local maximum
by always choosing the action with the highest immediate reward. In reinforcement
learning, however, the goal is to find the global maximum.

Another fundamental point is that in reinforcement learning, the agent faces the whole
problem from the beginning and does not split the problem into sub-problems that may
not fit into the “larger picture” and lead to significant limitations [SB18].

2.3.3 Process of Reinforcement Learning
The process of reinforcement learning consists of the following steps and is illustrated in
Figure 2.2 [SB18]. The terminology used, is described in Section 2.3.4.

1. Agent (the learner or decision maker) observes the environment (receives a state).

2. Agent decides what action to take based on a strategy.

3. Agent performs the action.

4. Environment receives the action and returns a new state and reward or penalty to
the agent.

5. Agent learns from experiences and refines the strategy.

6. Iterate until an optimal strategy is found.

This framework is very abstract and very flexible, resulting in easy application in many
problem areas. For example, the iteration step could be any arbitrary time interval, the

14

2.3. Decision Making with Reinforcement Learning

actions could be very low-level controls (like increasing the speed of a motor) or high-level
decisions like what to have for lunch. Similarly, the environment and thus the states
can cover arbitrary fields, ranging from sensing data in a smart factory to symptom
descriptions in a smart healthcare setting.

2.3.4 Elements of Reinforcement Learning
In the following, we describe the main elements of a reinforcement learning system [SB18].

• Agent: is the entity that interacts with the environment, in concrete performing
actions to gain some reward (e.g. a robot).

• Environment: the problem situation the agent faces (e.g. a chessboard).

• Reward: an immediate return that is given to the agent after performing an action.
Negative rewards are also called penalties.

• State: the current situation the agent faces in the environment. After an action is
performed, the environment returns a new state, i.e. a state transition takes place
after each action.

• Policy: is a strategy that defines how the agent should behave at a given time. In
other words, it is a mapping between states that faces the agent in the environment
and actions they should take in those states. The complexity of this function
can vary. In some simple cases, it is a look-up table, while in other cases more
sophisticated solutions like a neural network are required.

• Reward Function: is a mapping between state-action pairs and a number that
represents the reward. This function defines the goal in a reinforcement learning
problem, and it defines what is good or bad for an agent given a state-action pair.

• Value Function: In contrast to the reward function, which indicates what is good
in an immediate sense, the value function specifies what is good in the long term.
This means that this function also takes into account the rewards in the future.
The goal of an agent is to find actions that give the highest value rather than the
highest reward, as thereby the agent can maximise the reward in the long run. It is
important to mention that determining a reward is much easier than determining
a value. The reason for this is that for a reward, only the current state and the
next action are considered, whereas, for values, an estimate must be made from
the sequences of observations an agent makes.

• Model: mimics the behaviour of the environment. Models can help the agent
to determine how the environment will behave. This can be advantageous at the
beginning when the agent has no knowledge about the environment without a
model. Models can be used for planning, otherwise, the agent acts as a so-called
trial-and-error learner.

15

2. Background

An essential aspect is that the agent is often a part of the environment. This means
that the physical boundary of the agent is not the interface between the agent and the
environment. For example, the physical parts of a robot (like the arms, etc.) should also
be considered as part of the environment [SB18].

2.3.5 Reinforcement Learning Algorithms
The reinforcement learning algorithms can be classified into model-free vs. model-based,
as well as on-policy vs. off-policy algorithms. A brief introduction about the key
differences is given in the following points [SB18].

• Model-free vs. Model-based: As mentioned above, a model can be used to
simulate the environment and thereby plan actions. If no model is available,
algorithms are based on trial-and-error to gain knowledge. The advantage of
model-free algorithms is that no additional model information must be stored,
which can become impractical as the state and actions space grows. On the other
hand, model-free algorithms require some training time to explore the environment.
The algorithms discussed in the next section fall into the category of model-free
algorithms.

• On-policy vs. Off-policy: Agents based on an on-policy algorithm use the same
policy for learning and performing actions, while agents based on an off-policy
algorithm uses different policies. An example of an off-policy method is Q-Learning
(see Section 2.4), as actions are selected based on a greedy policy (behaviour policy),
but the updated policy (Q-Table) is different from the behaviour policy. An example
of an on-policy method would be SARSA (state-action-reward-state-action), which
estimates the value of the policy being followed, but for the reasons of space, we do
not go into detail here.

2.3.6 Markov Decision Process
In reinforcement learning, the agent performs actions based on the signals of the envi-
ronments called state. Creating the status information is not trivial, as it is often not
clear what information is really necessary. But for the time being, we assume that the
creation of the state information is handled by another system for the sake of simplicity.
Ideally, we want status information that also compactly represents past impressions
without loss of information. Informally said, “A state signal that succeeds in retaining
all relevant information is said to be Markov, or to have the Markov property” [SB18].
For example, the current configuration of all chess pieces on a board fulfils the Markov
property. The exact information about previous moves has been lost, but is no longer
relevant for further play. In other words, the Markov property says that the future is
independent of the past given the present.

Now we define the Markov property formally [SB18]. For simplicity, we assume the states
and reward values are finite, but this could be extended to continuous states and rewards.

16

2.4. Q-Learning

P [st+1|st] = P [st+1|s1,, st]

In subsequent, we explain the details of the formula. st is the current state of the agent
and st+1 is the next state. If the equation is given, the system meets the Markov property.
This means that the transition from st to st+1 is independent of the past, as st includes
already the needed information of the past states. With the Markov property, we can
predict the next state and expected reward given the current state and action.

The approaches described below fulfil the Markov property. In order to understand this
better, we first need to introduce Markov decision processes. “A reinforcement learning
task that satisfies the Markov property is called a Markov decision process, or MDP”
[SB18]. It is a stochastic process with no memory. There is a fixed number of states
and the probability to evolve from one state s1 to another state s2 is fixed and only
depends on the pair (s1, s2) [Gér19]. This again means, if the Markov property is given,
each state depends solely on the previous state and the transition from that state to
the current state. The big benefit is, that no memory is needed, which could become a
problem in environments with huge action and state-space. As introduced above, the
transition from one state to another by performing an action can result in a reward. The
goal of reinforcement learning is to find the optimal state value of any state s, noted as
V ∗(s), which leads to the Bellman Optimality Equation [SB18]. This applies if an agent
acts optimally:

V ∗(s) = E[Rt+1 + γV ∗ (st+1|st = s])

This is a general equation, and the details of the components are explained in more detail
in the concrete example of Q-Learning in the next section.

2.4 Q-Learning
Q-Learning is an off-policy, model-free reinforcement algorithm based on Temporal
Differences (TD) [SB18]. Temporal Differences is the approach of learning from an
environment through episodes without prior knowledge of the environment. The Q in
Q-Learning stands for Quality and is a function. The quality describes how valuable
action is in a specific state in order to gain some reward. The Q-Function is based on
the Bellman equation and takes two inputs: state (s) and action (a):

Q : S × A → R

Qπ(st, at) = E[Rt+1 + γRt+2 + γ2Rt+3 + ...|st, at]

Explanation of the components [SB18]:

17

2. Background

• Qπ(st, at): Q-Values for the state given a particular state.

• E[Rt+1 + γRt+2 + γ2Rt+3 + ...]: expected discounted cumulative reward. γ is a
configurable discount factor and defines how much rewards in the distant future
influence the Q-Value in the immediate future.

• st, at: given the state and action.

The goal is to maximise the Q-Value, and therefore we define the function for the optimal
Q-Value, denoted as Q*:

Q∗(st, at) = E[Rt+1 + γmaxQ∗(st+1, at+1)|st, at]

2.4.1 Q-Learning Algorithm Process
To store the Q-Values and follow the Q-Learning approach, a Q-Table is used as the data
structure. The process described in the following is illustrated in Figure 2.3 [SB18].

• Initialise the Q-Table: The Q-Table is initialised with zeros and is a matrix
with n columns (where n is the number of actions) and m rows (where m is the
number of states)

• Choose an Action: The actions are chosen based on the Q-Table. In the
beginning, all values are zero, and therefore we need some other concept. This
leads us the explore-exploit dilemma, which is described in Section 2.4.2 and one
possible concrete concept is the epsilon-greedy strategy.

• Perform an Action: After the action is chosen, the agent performs the action
and the agent receives a new state from the environment and some reward (or
penalty).

• Measure Reward: After the action has been performed, the environment returns
a reward to the agent, which should be measured.

• Update Q-Table / Evaluate: The final step of the iteration is to evaluate the
action and update the Q-Table. This is done until the learning/training process is
complete and the Q-Table represents a Q-Function that maximises the Q-Value.
This update is also called one-step Q-Learning and is defined as followed:

Qnew(st, at) ← Q(st, at) + α ∗ [Rt + γ ∗ maxQ(st+1,a − Q(st, at)]

Explanation of the components:

– Q(st, at): old value
– [Rt + γ ∗ maxQ(st+1,a − Q(st, at)]: temporal difference

18

2.4. Q-Learning

Figure 2.3: Q-Learning algorithm

Figure 2.4: Q-Learning - Overview

– maxQ(st+1,a): estimate of optimal future value

– α: learning rate, is a tuning parameter that determines the step size to get
the optimal Q-Value

With this approach, we approximate the Q*-function. Figure 2.4 illustrates the structure
of a Q-Table. As already mentioned, it is a matrix with rows representing the states and

19

2. Background

columns representing the actions. With an input pair (state, action) we get a Q-Value.
The idea of the greedy policy here is to select the action with the highest Q-Value.

2.4.2 Exploration vs. Exploitation
In opposition to other kinds of learning, e.g. supervised machine learning, one change of
reinforcement learning is the trade-off between exploration and exploitation [SB18].

At the beginning (where all the Q-Values are zero) it is an open question of how the
agent should select the actions. There are two different approaches: Exploration means
to randomly select actions to get more knowledge about the environment and find new
information about unexplored states (parts of the environment). On the other hand,
Exploitation means to select the actions which result in the highest possible outcome
based on the current knowledge base. The question now is when an agent should switch
from exploration to exploitation, which results in the explore-exploit dilemma in
reinforcement learning. There are multiple strategies (see [McF18] and [Wenne]) that
address the dilemma to get an optimal solution. One is the �-Greedy Strategy, which
will be discussed in the next section.

Epsilon-Greedy Strategy

This strategy is one of the most common and simplest algorithms to find a trade-off
between exploration and exploitation by choosing between exploring and exploiting
randomly. The following pseudocode shows the algorithm:

Algorithm 2.1: Epsilon-Greedy Algorithm
1 p ← random();
2 if p < � then
3 select random action
4 else
5 select current best action
6 end

That means, with a probability of � any random action is selected (exploration mode)
and with a probability of 1 − � the action with the highest reward (or in specific Q-Value)
is selected.

Epsilon-Decreasing Strategy

The method is similar to the Epsilon-Greedy Strategy, but in this case the epsilon is
decreased over time with a pre-defined decay-rate [Tok21]. Epsilon is calculated as
follows:

�end + (�start − �end) ∗ e−1∗currentstep∗�decay

20

2.5. Deep Q-Learning

Figure 2.5: DQN - Neural Network Overview

2.5 Deep Q-Learning
The question is what happens when the state and action space becomes so large (e.g.
continuous state parameters) that a Q-Table becomes impracticable [Gér19]. For example,
we have an environment with 10000 states and 1000 actions per state. This would create
a table of 10 million cells. This would quickly get out of hand and memory and time
problems would arise. To solve these problems, the idea is to approximate the Q-Values
with a deep neural network (DNN), also called Deep Q-Networks (DQN). This method is
called Deep Q-Learning [MKS+15].

The whole process is quite similar to the simple Q-Learning. Instead of updating the
Q-Table using the Bellman Equation, the network weights in the neural network are
updated using the Bellman Equation. To achieve more stability in the learning process,
two neural networks are used. In the main network, the weights are updated after each
step and after a specified number of steps, the weights are copied from the main network
to the target network.

2.5.1 Network Architecture

The input layer always consists of a number of neurons that corresponds to the number
of values that represent a state [Lap18]. Then there is an adjustable number of hidden
layers with an adjustable number of neurons. This depends on the problem structure.
The number of neurons in the output layer is equal to the number of actions, and each
neuron defines the Q-Value for one action. The goal of the neural network is to solve a
regression problem. Figure 2.5 illustrates the procedure. We have a state as input, which
is in this case represented with two neurons, one hidden layer with four neurons and
three output neurons representing the different actions. All layers are fully connected.
When we set a concrete state as an input, the neural network calculates the different

21

2. Background

Figure 2.6: DQN - Data Flow [Pas21]

Q-Values for all actions and when the agent is in exploitation mode the action with the
highest Q-Value is the best choice.

2.5.2 Experience Replay

The experiences an agent makes are stored (state, action, reward, statenext). These data
are further used in small batches by the agent to learn. Based on this information, we
can calculate the loss with functions like the Huber loss function or the Mean Squared
Error loss function between the current Q-Values and the target Q-Values with the usage
of the Bellman-Equation. The loss functions are described in more detail in Section 2.5.5.
After the loss is calculated, the weights are updated with the usage of back-propagation
[HN92].

This was only a brief introduction to reinforcement learning. There are multiple other
approaches based on the Q-Learning concept like Deep Deterministic Policy Gradient
(DDPG) (introduced in [LHP+15]) which combines Q-Learning and policy gradients or,
Double DQN (introduced in [vHGS16]) or Dueling DQN (introduced in [WSH+16]).

2.5.3 Training

Figure 2.6 illustrates the data flow in the DQN approach during training. The first step
is to choose an action randomly or based on a policy (policy net). After that the action
is performed in the (sample) environment resulting in a new state and a reward/penalty.
The experience is stored in the replay memory, and the next step is to pick a random
batch from the replay memory to perform the training. With this training, the policy net
is updated and optimised. The target network is updated occasionally, and this process
is done in multiple iterations (episodes) to increase the accuracy of the neural network
[Lap18].

22

2.5. Deep Q-Learning

In the following sections, some theoretical backgrounds of artificial neural networks is
presented, which is important for understanding the design and implementation chapter
(see Chapter 4 and Chapter 5).

2.5.4 Activation Functions
The activation function defines for each artificial neuron how the weighted input is
transformed into the output. There are several activation functions, the most common
being Binary Step, Identity, Sigmoid, TanH, Rectified Linear (ReLU) and Leaky ReLU
[BDW18]. Regarding the choice of the most appropriate activation function Di et al.
proposed the following:

In most cases, we should always consider ReLU first. But keep in mind that
ReLU should only be applied to hidden layers. If your model suffers from
dead neurons, then think about adjusting your learning rate, or try Leaky
ReLU or maxout [BDW18].

Accordingly, we will focus on ReLU and Leaky ReLU in the following:

ReLU

The Rectified Linear Unit (ReLU) has the following mathematical definition [BDW18]:

f(x) =
�

max(0, x), x ≥ 0
0, x < 0

The computation is much simpler compared to Sigmoid and TanH, which were traditionally
used as activation functions [BDW18]. Additionally, ReLU improves convergence by a
factor of six times. Therefore, it is very popular and almost all deep learning models
nowadays use ReLU. There is a problem called “dying neurons”, which means that the
neurons never become active. The reason for this are updates of the weights due to very
large gradients. To fix this, Leaky ReLU was introduced.

Leaky ReLU

The difference between Leaky ReLU and ReLU is that Leaky ReLU has a small slope on
the negative side instead of a flat slope. The coefficient of this slope is set as a constant
and determined before training and not learnt during training [BDW18]. Figure 2.7
illustrates the difference and shows the two different functions as a graph.

2.5.5 Loss Functions
These functions have their origin in statistics and are used to calculate the difference
between target and actual values. So the loss function gives a high value if the algorithm

23

2. Background

Figure 2.7: ReLU vs. Leaky ReLU

(in our case the neural network) deviates strongly from the actual results. We want to
use these functions to find out how good our model is in order to optimise it in a further
step. Since our problem in the further work is a regression problem, we focus on the
category of regression losses and present the most common loss functions [WMZT22]:

Mean Square Error/Quadratic Loss/L2 Loss

MSE =
�n

i=1(yi − ŷi)2

n

The error is measured as the average of the square of the error between the predictions
and actual observations. Outliers are more penalised compared to smaller errors.

Mean Absolute Error/L1 Loss

MSE =
�n

i=1 |yi − ŷi|
n

In contrast to MSE, only the difference between the predictions and the actual observations
(no square) is taken into account here. The big advantage is that it is more robust to
outliers, as they are not squared.

Just for the sake of completeness, we mention the Mean Bias Error (MBE), which is the
same as the Mean Absolute Error (MAE), with the only difference of that the absolute
function is not applied to the values. It should be noted that positive and negative errors
can cancel each other out.

In addition, there are other loss functions such as the Mean Squared Logarithmic Error
(MSLE) or the Huber Loss function, which tries to combine the robustness of MEA with
the stability of MSE [WMZT22]. So when something in the middle (in terms of outliers)
is the preferred solution (it depends on the model and the situation), Huber Loss is the
way to go.

24

2.5. Deep Q-Learning

2.5.6 Optimiser
In the previous section, we presented ways to calculate the error/losses. In this section,
we concentrate on ways to minimise the error with optimisation algorithms. The goal
of the optimisation functions is to find a global minimum of the loss/error functions.
However, the global minimum is not easy to find, but at least a local minimum should
be found. In our environment, this can be done by adapting the weights in the neural
network. For the sake of simplicity, we highlight the idea of the algorithms and leave
aside the detailed mathematical background. First, we introduce one of the most generic
optimisation algorithms, called Gradient Descent.

Gradient Descent

To describe this approach, let us use an analogy: Think of a blindfolded man on a
mountain who wants to hike down to the bottom of a valley. A good strategy would be
to go downhill in the direction of the steepest slope, and that is exactly what gradient
descent does. We can think of a gradient as the slope of a function, and gradient descent
measures the local gradient of the error function and goes in the direction of descending
gradient [Gér19]. The process is done in an iterative way.

One of the most common types of gradient descent is stochastic gradient descent (SGD).
In SGD, for each training example within the data set the errors are calculated and the
model gets updated.

Adam Optimisation

In the following, we define Adam:

Adam, which stands for adaptive moment estimation, combines the ideas of
momentum optimisation and RMSProp: just like momentum optimisation, it
keeps track of an exponentially decaying average of past gradients; and just
like RMSProp, it keeps track of an exponentially decaying average of past
squared gradients [Gér19].

Ruder gives a comprehensive overview of gradient descent optimisation algorithms and
concludes: “Insofar, Adam might be the best overall choice” [Rud16].

2.5.7 Normalisation
It is a good practice to normalise input data so that each dimension of the input data
has the same range (e.g. [0,1]). This has the advantage that the training works faster
and the problem of over- or undercompensation of some dimensions is avoided [BDW18].

Batch Normalisation normalises the input for every mini-batch in training, which leads
to the possibility of much higher learning rates. The rationale for using this approach is

25

2. Background

that “the distribution of each layer’s inputs changes as the parameters of the previous
layer change”, which “slows down the training by requiring lower learning rates and
careful parameter initialization” [BDW18]

Ioffe et al. also show how the training can be accelerated through batch normalisation
[IS15].

There are books on the essentials and fundamental theoretical aspects of artificial neural
networks. We have tried to focus on the concepts that will be used and needed in the
further work. Further details and information can be found in referenced books and
articles.

26

CHAPTER 3
Related Work

This chapter deals with related work in our field. We will divide this chapter into two
sections. Section 3.1 explains the usage of SMT in the area of IoT. The use cases are
very diverse and motivate the idea and application of our work. In this section, we will
also refer to some papers in the area of robotics where the focus is on motion planning.
Section 3.2 shows related work in the area of computational offloading. We profile and
present some work on cloud and edge robotics, and further focus on the combination of
computational offloading and reinforcement learning.

3.1 SMT within IoT
The usage of SMT is very broad. Basically, the application of SMT is in most cases
some kind of verification task. In the following, we focus on the field of IoT and describe
various examples in which SMT is used. We will also give examples from the field of
robotics and smart factories (Industry 4.0). In the literature, there are many examples
that could make use of our idea and PoC system.

3.1.1 Security in IoT
One example comes from Mohsin et al. who present IoTSAT, a formal framework for
security analysis of IoT [MAH+16]. The attack surface increases considerably as billions
of devices based on heterogeneous technologies are connected in different ways. IoT
devices often interact with the environment, leading to an expansion of the attack impact
from the cyber world to the physical world. In [MAH+16], the authors use a formal
modelling approach to create a novel security analysis framework. The system shows
attack vectors based on models formulated with SMT. The models are based on two
higher-level models, one formalising interactions between IoT entities and the other
capturing IoT-specific threat classifications. To detect security issues, the SMT formulae

27

3. Related Work

representing the models are evaluated by invoking an SMT solver. Their concept does not
consider limited resources and latency issues, which are essential in the IoT environment.
Our concept could use these SMT formulae generated by the core components of IoTSAT
as workload. The big improvement would be that security threats could be detected more
efficiently, as our decision algorithm could be configured to work in a time-optimised way.

3.1.2 IoT and Control
With the advances in IoT, the realisation and deployment of building automation are
becoming increasingly popular. In their research article [LBL+16], Liang et al. present
a solution for systematically debugging IoT control system correctness for building
automation. Building automation is the use of IoT with the aim of increasing user
comfort, improving energy efficiency or saving costs, to name a few examples. Such
systems could be connected to the heating system, air-conditioning system, lighting,
security systems etc. and controlled in a central manner. The control systems often
consist of automation rules, also known as IFTTT-style rules (If This Then That),
e.g. IF room. temp < 18 THEN room.fireplace = on; [LBL+16]. Besides the automation
rules, some policies are defined, and specified as conjunctions of conditions. The main
contribution of the work [LBL+16] is to provide a practical way for automated debugging
of identified policy violations for users, who are not experts in IoT. To realise this, Liang
et al. propose a framework called Salus that transforms rules into SMT formulae. Our
solution could improve this work in a similar way as mentioned above.

3.1.3 Motion Planning and Robotics
In the area of robotics, SMT and SAT could be useful for different kinds of problems
like scheduling, resource management or motion planning. Nevertheless, robots are often
resource-constrained and therefore solving these problems locally could lead to energy or
time issues. Therefore, an intelligent mechanism as proposed in our work could improve
the solving of the general problems in the field of robotics.

Often the goal for robots is to move around in the environment and reach a goal. In the
following paragraphs, we present two works on motion planning.

Hung et al. focus on motion planning with rectangular obstacles using SMT and SMT
solvers to find a feasible path from the source to the goal [HST+14]. The robot operates
in a three-dimensional space and the random rectangular obstacles are arranged parallel
to the X, Y or Z-axis. The problem formulated with SMT is to find a feasible path
connecting a starting point S and an end point (goal) G, while keeping a distance d from
all obstacles. The robot can only move in straight-line directions, resulting in 90-degree
turns. In the paper [HST+14], the planned path is broken down into several connected
segments. From the information of the start S, the goal G the obstacles M, the distance
d and the space W × L × H, a set of constraints is obtained, which are mapped to a
difference logic satisfiability problem. A further constraint is the minimisation of the
path, which would lead to an optimisation problem. To simplify this, an additional

28

3.2. Computational Offloading

constraint with the path length is added to the SMT problem to limit the travel distance.
After specifying the problem, SMT solvers are used to find solutions to these problems
and if there is no solution (no path), because not all constraints could be satisfied, SMT
solvers can also confirm this.

In their paper, Imeson and Smith. propose a new method for solving multi-robot motion
planning problems with complex constraints [IS19b]. In contrast to the work of Hung et
al., this paper focuses more on the constraints and the fact that multiple robots coexist
in the environment. These planning problems can be very diverse. One example is that
multiple robots are distributed over a large and complex physical space and their task is
to collect something (e.g. a type of mineral). The tasks would be spatially distributed and
interdependent. On the one side, they have the task assignment problem, encoded with
SAT and on the other side, they have the path planning problem, encoded as a travelling
salesman problem (TSP) (which can be reduced to SAT). These problems are typically
coupled, and they propose a framework that can handle additional complex constraints
like battery life limitations, robot carrying capacities or robot-task incompatibilities using
SMT-based solvers.

Another emerging area is smart factories as the new industrial paradigm. Bit-Monnot
et al. present two SMT-based planners for smart factories. As mentioned above, a
recurring problem is task planning, and such planning problems can be modelled with
SMT [BMLPT19]. Again, the problems could be solved more efficiently with our idea.

3.2 Computational Offloading
Computational offloading is widely used. In this section, we start with computational
offloading in the area of robotics, go over to general computational offloading and finish
the section with computational offloading with reinforcement learning.

3.2.1 Cloud/Edge Robotics
In this section, we describe the field of robotics invoking cloud or edge resources to gain
multiple benefits.

We need to distinguish between networked robotics, a group of robotic devices connected
by a communication network [KBS05] and cloud robotics, which is similar to networked
robotics, but leverages cloud computing technologies [HTW12]. The aim is to use elastic
resources offered by a cloud infrastructure to overcome the resource constraints of robots
[HTW12]. By using the cloud and offloading computationally intensive tasks, many
new applications for robotics emerge. Hu et al. propose an M2M/M2C communication
framework, where the machine-to-machine (M2M) layer is used for communication
between machines to form a collaborative computing structure and the machine-to-
cloud (M2C) layer is used to utilise a pool of shared computation and storage resources,
provided by the cloud. The underlying protocols can be diverse. Another aspect that
this paper focuses on is the elastic cloud computing architecture. Three models are

29

3. Related Work

presented: Peer-Based Model, where the robots and the cloud instances form a fully
distributed computing mesh, Proxy-Based Model, where one robot is the “group-leader”
communicating with a proxy cloud instance and Clone-Based Model, where each robot has
a clone in the cloud with which it communicates and to which it offloads tasks. However,
the conclusion is that cloud robotics enable “the deployment of inexpensive robots with
low computation power and memory requirements by leveraging on the communications
network and elastic computing resources offered by the cloud infrastructure” and that
many applications can benefit from the cloud robotics approach.

The bandwidth cost and long delays of cloud robotics lead to limitations. Chen et
al. propose an edge robotics solution, specifically an industrial robotics system based
on edge computing with the deployment of edge nodes near the data sources [CFS18].
The architecture of their robotic system is composed of cloud, edge, and physical
resource layers, with the cloud layer forming the core of the system and being responsible
for executing the computationally intensive tasks. In addition, the cloud layer is the
coordinator and supervisor of the robotic system including several components like service
management, path planning etc. The main objective of the edge layer is to filter and
pre-process the data, as it is inefficient to transmit all raw data directly to the cloud. The
physical resource layer interacts with the real environment and measures data from the
environment with sensors and cameras. The results show that Chen et al.’s system “offers
better real-time and network transmission performance than a cloud-based approach”.

Our work makes use of cloud and edge robotics, but we will use an intelligent mechanism
and do not always offload our workload to the cloud or the edge. These aspects are also
considered in the next section.

3.2.2 Computational Offloading with specific goals
There is a vast amount of literature on different approaches regarding computational
offloading. These are often based on specific goals. In this section, we portray related
work with the goal of energy efficiency or latency awareness, as this is also relevant to
our work. Zhang et al. provide a solution for energy-efficient offloading for mobile edge
computing in 5G heterogeneous networks [ZML+16]. They formulate an optimisation
problem to minimise the energy consumption of the offloading system, considering the
costs of the task computation and the file transmission. The energy spent on computing
mainly depends on the computational capabilities of the mobile edge device and the
transmission costs depend on multiple factors like wireless channel state, the size of the
computation file and again the mobile device. An additional fact is that interference can
reduce transmission rates, which would decrease the energy efficiency [ZML+16]. Zhang
et al. propose a complex energy model that takes into account the energy required for
CPU cycles and more. Zhao et al. provide another algorithm with a focus on minimising
energy consumption and meeting response time requirements [ZZL16]. The following two
works concentrate on the time aspect.

Shahhosseini et al. focus on finding a solution for the optimal response time for services in

30

3.2. Computational Offloading

the IoT paradigm [SAA+22]. They take into account that transmission time leads to an
increase in the response time and create a model with a three-layer architecture consisting
of a Sensor Layer, Fog Layer and Cloud Layer. In their model they consider the following
three questions to optimise the computational offloading problem: where to offload, when
to offload, what to offload? Masoudi et al. also address the question of on-device vs.
edge computation for mobile services and propose a solution for a delay-aware decision
making algorithm to minimise power consumption [MC20].

Our contribution is different to these papers, as the goal can be configured and the
underlying model can be freely specified. However, delay awareness and energy efficiency
could be two potential goals.

3.2.3 Computational Offloading with Reinforcement Learning

Next to the computational offloading algorithms with specific optimisation goals, there
are many examples of computational offloading using reinforcement learning [LGLL18]
[CZW+19] [NDW+19b] [NDW+19a]. Below we profile some of them and highlight the
differences in our contributions. One difference that applies to all papers is that the
workload is not SMT formulae.

Li et al. present a system with the objective of optimising the sum of delay and energy
consumption costs [LGLL18]. To achieve this goal, they optimise the offloading decision
using an RL-based optimisation framework to consider their time-varying and dynamic
environment. Their application domain is Mobile/Multi-access Edge Computing (MEC),
which is a viable solution for computation-intensive applications in 5G. We have explained
the key concept behind MEC in Section 2.1.4. The core idea of Li et al. is to use Q-
Learning utilising a Deep Q Network (DQN) to support a multi-user system environment
to reduce delay and energy consumption with different system parameters.

Their concept comprises three different models: Network Model, Task Model and Com-
putation Model. The Network Model consists of several user equipment (UE) and one
node where a MEC server is deployed. Each UE has a computationally intensive task to
perform, which can be offloaded to the MEC or be executed locally. Parameters like the
bandwidth of the channel and the upload data rate for each UE are considered in the
model. The tasks in the Task Model include the computation input data, the total number
of CPU cycles required, and the maximum tolerable delay of the task. The Computation
Model is separated into the Local Computing Model and the Offloading Computing Model.
In these models, the costs of the two approaches are considered, including parameters
like required time, energy or transmission delay and this information is combined into an
optimisation problem which is “to minimize the sum cost combining execution delay and
energy consumption of all users in MEC system” [LGLL18].

The results show that using Q-learning and DQN is much better in terms of the sum of
costs than “Full Offload”, which means that all UEs offload their tasks to the MEC and
“Full Local”, which means that all UEs execute their tasks locally.

31

3. Related Work

It is not clear to us where the decision making process takes place. For us, it seems that
the decisions are calculated in advance and not at runtime when a new problem occurs.
Another limitation is in the decision making, as there is only one MEC server, resulting
in a single point of failure. In addition, the tasks are classified in detail, which is also a
limitation in dynamic environments.

The limitation that there is only one MEC server does not apply to the work of Chen
et al. [CZW+19]. They focus on “designing optimal stochastic computation offloading
policies in a sliced radio access network RAN, where a centralised network controller
(CNC) is responsible for control-plane decisions on wireless radio resource orchestration
over the traditional communication and MEC services”. In short, the goal is to optimise
computing performance from the mobile users’ (MUs) point of view. The decision is
influenced by the state of the task queue, the state of the energy queue and the channel
qualities between mobile users and base stations. The tasks are modelled similarly to the
work of Li et al. [LGLL18], where a computational task is represented by the size of the
input data and the number of CPU cycles required. Based on the assumption that the
mobile devices of the MUs can be charged wirelessly, they introduced an energy queue
in their model where the received energy is stored. To solve the growing state-space
problem, they use a DQN [CZW+19]. A major advantage of this solution is that, due to
the RL approach, no a priori information about dynamics statistics is needed. In their
paper, they propose two different concepts. One is called a double deep Q-network (DQN)
based reinforcement learning (DARLING) where the idea is similar to our approach, and
we discussed the background information in Section 2.5. To the best knowledge of the
authors of the paper, they present the first work to combine a Q-function decomposition
technique with double DQN, which they call deep state-action-reward-state-action-based
reinforcement learning (Deep-SARL) which is the second concept. They use a linear
Q-function decomposition technique for simplifying the offloading decision by introducing
multiple virtual agents.

A drawback of this solution is that they use a centralised controller and the edge devices
cannot decide for themselves. This leads to a single point of failure and the devices are
dependent on this controller. Again, the tasks are classified in detail, which is again a
limitation in dynamic environments.

In these two papers [NDW+19b] and [NDW+19a], Ning et al. describe the idea of an
intelligent offloading framework using Deep Reinforcement Learning in the Internet
of Vehicles (IoV) domain. The idea of [NDW+19a] is to use a three-layer offloading
framework to minimise the overall energy consumption while meeting the delay constraints
of users. The system model consists of three layers: cloudlet, Roadside units (RSU)
and fog nodes, where both parked and moving vehicles can be considered as fog nodes.
The vehicles can send their tasks to the RSU, which then decides to offload them to
the cloudlet or to nearby fog nodes. The main focus of the work is on energy efficiency
and the decision on where to offload is always made by the RSUs. Theoretically, tasks
can be offloaded to the origin vehicle (where the task was created), as the RSU could
decide to offload it to that particular fog node (vehicle). This would lead to unnecessary

32

3.2. Computational Offloading

transmission overhead, and the issue could be solved with smarter vehicles. However,
the results show the effectiveness of their method: “average energy consumption can be
decreased by around 60 % compared with the baseline algorithm” [NDW+19a].

To summarise, the existing literature focuses on separate partial problems, like minimising
energy consumption, decision making problems regarding computation offloading or
system verification on edge devices. There is a lack of research in combining these
problems and in solutions that provide system support for the dynamic execution of SMT
workloads in a seamless way across the device-to-cloud continuum in a Solver-as-a-Service
manner. The focus of this work is to provide a runtime environment to facilitate this.

33

CHAPTER 4
Architecture Design

In our work, we want to analyse how a software architecture can look like for a system
that supports the dynamic and adaptive serving of SMT workloads. To this end, we will
first analyse the requirements of our system and then propose a system design that meets
these requirements. The design will be provided in a language- and protocol-agnostic
manner. The concrete technology used to implement the proposed architecture and
design is presented in Chapter 5. The main goal of this chapter is to provide answers to
the research questions RQ. 1 and RQ. 2, where RQ. 1 focuses on the architecture aspect
and RQ. 2 focuses on the algorithmic aspects of our decision module.

4.1 Requirements
In this work, we follow a component-based software engineering approach. The compo-
nents, which we call modules in the further work, should be easily interchangeable if we
want to use a different strategy or approach in one part of the system.

4.1.1 Resource-constrained devices
Our system should be deployable on different types of edge devices. These edge devices
could be very resource-constrained devices, such as IoT devices or single-board computers.
To this end, we will focus on a lightweight solution and architecture. In Chapter 6 we will
provide a benchmark to show that our system can work properly on resource-constrained
devices, such as a Lego Mindstorms EV3.

4.1.2 Multiple Decision Modules
The aim of the work is to find ways to decide whether SMT formulae should be offloaded
or solved locally. These decision making algorithms can be based on different methods.
Therefore, one requirement is that the system supports multiple decision modules, as the

35

4. Architecture Design

Figure 4.1: Architecture Design

extensibility and interchangeability are important requirements. However, common parts
of the software should be extracted, and it should be possible to add another specific
approach with very little effort. It is also essential that several decision modules can
co-exist, without affecting each other’s performance and functionality negatively.

4.1.3 Configuration

Another requirement is that the implementation itself needs to be adapted as little as
possible when the environment changes. Therefore, there should be a central way to
configure all settings like hyperparameters, offload instances, reward model (all these
terms will be clarified in the next sections).

4.2 System Design
Our software is divided into different modules. Figure 4.1 illustrates the different modules
and the interactions between them. In the subsequent sections, we will describe these
modules in more detail. Figure 4.2 shows the workflow in our architecture in the form of
an UML activity diagram. This workflow is described in more detail with the following
points:

36

4.2. System Design

1. The first step is always the occurrence of a new SMT formula. This can be done at
regular intervals or depending on the requirements of the underlying system. The
SMT formula can be provided from another system, so the possibilities here are
very diverse. Briefly, we just take an SMT formula and do not bother with the
creation and so on.

2. The next activity is to get the latest state information, which is relevant for decision
making. This results in a call to the monitoring module (see Section 5.5).

3. After determining the state, we call the decision module to make a decision between
offloading or solving locally. The decision on offloading could include a decision on
which instance to offload, but this information is omitted for simplicity.

4. If we decide to offload, we forward the SMT formula to the communication module,
which offloads the SMT formulae to the provided instance.

5. After offloading, we start again at the first activity.

6. If the decision is to solve locally, we pass the SMT formula to the SMT module that
solves the problem. After that, we are in a final state because the SMT formula is
solved.

7. The last step is that the result is recursively returned to the source instance. Due
to the offloading mechanism, several instances could be invoked, but the original
instance needs the result.

4.2.1 Configuration Module
This component handles the configuration. All other modules depend on the configuration
module. The other way round, the module is loosely coupled and has no dependencies on
other modules. Here we want to configure all the other modules and the general software.

In the sections below we present the modules in the core module.

4.2.2 Communication Module
The communication module is used for communication with other devices. If an SMT
formulae will be offloaded, this is done via the communication module. Because of the
loosely coupled module, the way of communication can easily be replaced, e.g., if we
want to change the underlying protocol.

4.2.3 Decision Module(s)
The decision module receives SMT formulae and decides how to proceed with them.
Depending on which decision mode is active, the formulae are forwarded to the corre-
sponding submodule. In general, external modules can also be called, to take over further

37

4. Architecture Design

Figure 4.2: Activity Diagram: Workflow in Architecture

processing. If the active decision mode is Q-Learning, the formula is forwarded and
further processed by the submodule Q-Learning. The same applies to the decision mode
DQN and the submodule DQN. In our architecture, we provide these two approaches.
As already mentioned, further approaches could easily be added. Our solution is based
on reinforcement learning (see fundamental information in Chapter 2) for the following
reasons. The decision module should work in very different and changing system environ-
ments, which rules out heuristic approaches. Furthermore, it makes the whole system
more flexible and applicable for different applications, as it can be configured to focus on
the needs of the supported underlying application. We start with some general details
about the design of reinforcement learning.

Reinforcement Learning - General

There exists multiple ways to do reinforcement learning. The parts that are common
and necessary for each approach are located in the reinforcement learning module. The
specific aspects are located in the associated submodules. In our architecture, there are
two common aspects that are needed for both specific submodules:

• Balance exploration and exploitation: An essential aspect is to define how
the agent should choose the actions at the beginning (see Section 2.4.2). We will
use an Epsilon-Greedy Strategy, as this is one of the most common and simplest

38

4.2. System Design

methods. All the parameters (exploration rate, decay rate and end of epsilon) are
configurable.

• Environment: Information about the state and the rewards can be handled by the
generalised module. The reward model can be fully configured. In each submodule,
there is an environment manager that handles approach-specific aspects.

Below we describe the elements of reinforcement learning in our architecture:

• Environment/State: The state information is built from the problem complexity
of the SMT formula and the connectivity (more specific details below) of the device.

• Action: The actions are in general to solve locally or to offload. If there are
multiple instances to offload, we have one action for each instance.

• Reward/Reward Model: The reward function could be easily changed. However,
we focus on the time-aware mode (see Section 6.3.3). In our case, we define the
reward with: configurable constant number of seconds - required time to solve the
problem in seconds. That means if, it needs more than the configurable number of
seconds, we get a negative reward (= penalty).

One design decision we want to highlight here is the hyperparameter discount factor
(γ). The discount factor determines how much the agent cares about rewards in the
distant future relative to those in the immediate future. We have a completely myopic
agent with a discount factor of 0, due to the following reason. We do not know how the
environment changes with our actions, as we do not know the future problem complexity
of the SMT formulae and also the connectivity. That means the actions taken now, do
not influence the rewards in the future, which lead to the fact that we can not care about
rewards in the distant future. Therefore, a myopic and greedy agent is the only sensible
design decision and solution.

Q-Learning

For simple Q-Learning, we need a Q-Table. When we speak of Q-Learning in the following
work, we mean Q-Learning with a Q-Table. This Q-Table has the following attributes:

We define the following ratings for the states: poor = 0, fair = 1, average = 2, good = 3,
excellent = 4

• It has a size of 25 rows and three or five columns (depends on the device).

• The rows represent the state. As we have two dimensions (connectivity + problem
complexity) and five rating options, we get 52 = 25 rows. For the sake of simplicity
and to keep the Q-Table small and simple, we use only one random connectivity
information as the state. Of course, we could expand the state with all connectivity

39

4. Architecture Design

Figure 4.3: Design of Neural Network for DQN

information to all instances, but the Q-Table would become very fast very big,
which would lead to performance issues, which is in contradiction of the requirement
of a lightweight solution.

• The columns represent the actions. As this depends on the number of possible
offload instances, this can vary.

Deep Q-Learning (DQN)

In contrast to the Q-Table, we use here the connectivity information to all instances.
This leads to some given facts of the architecture of the neural network, as the number
of input neurons must be equal to the number of state dimensions and the number of
output neurons must be equal to the number of actions. Figure 4.3 shows a simplified
version of the neural network used. To save place, the hidden layers show only three
neurons but actually, there are 24 neurons. As described in Section 2.5.1 the number of
input neurons is predefined. Since we use the problem complexity and the four different
average round trip times of the different cloud instances as state information, we get five
input neurons. The different actions are solving locally and offload to one of the four
cloud instances. This results in five output neurons, which is also illustrated in Figure
4.3. Then there are three hidden layers with 24 hidden neurons on each hidden layer.
Another aspect is the connection of the different layers. We use a fully connected neural
network, that results in an architecture where all neurons from one layer are connected to
all neurons in the next layer. This architecture is commonly used for regression problems.

Loss Function In our system, we use the MEA (mean absolute error) as the loss function.
A brief discussion of the various loss functions can be found in Section 2.5.5. At this
point, we would like to emphasise again the advantages of MEA: All errors are weighted

40

4.2. System Design

on the same linear scale (we do not put too much weight on outliers) [WMZT22]. Due
to the non-deterministic environment, outliers might occur, but we do not want to give
them too much weight and therefore MEA is a good choice.

Optimiser To optimise the model, Adam (see Section 2.5.6) is used as the optimisation
algorithm in our architecture.

Activation Function As an activation function, we are using Leaky ReLU, because
ReLU is the most popular activation function and Leaky ReLU faces the problem of dead
neurons (see Section 2.5.4).

4.2.4 Monitoring Module
The monitoring module is used to monitor the environment (the devices on which the
system is running). This information is used for decision making. The monitoring
component could provide any information which could be useful for the decision making.
This could range from battery-level or CPU-usage to connectivity to different hosts in
form of average round trip time. The monitoring component is asynchronously executed
in a background thread and gets the state information periodically. The time period can
be configured. The benefit of doing this in the background and not at each decision is
that the cost of the decision itself can be reduced, as the operations for monitoring are
more time-intensive. If the device is more powerful, the period could be reduced. This
would lead to more up-to-date monitor values for the decision module.

4.2.5 SMT Module
The SMT module consists of two parts. The first one is an interface to the native SMT
solver, which can be called by the other modules. The second one provides an endpoint to
which other devices can offload their SMT problems. That means that the offload instance
in Figure 4.1 could be a complete instance including the core module and configuration
module or only an SMT module, which solves the SMT formulae.

41

CHAPTER 5
Implementation

This chapter presents the implementation details of the proof of concept of the proposed
design in Chapter 4. In particular, it starts with some general implementation details,
describing the used programming language and packages. Afterwards, a description of
the communication mechanism and the different modules in detail follows.

5.1 Service Architecture Implementation

This section presents some general implementation details relevant to the modules
described later.

5.1.1 High-Level View

Figure 5.1 illustrates an overview of the architecture, concretising implementation details
in contrast to Figure 4.1. As stated in Section 5.1.2, we use Python as the programming
language. This is also indicated in the core module and in the SMT solver instance by the
Python icon. We use CVC4 as the local native solver and PySMT on the cloud instances
(see more details in Section 5.6). When an SMT formula is offloaded to another node via
the REST client module, there are two options (conditional control). If the node is a
final node, it is offloaded to an SMT solver instance running in a Docker container that
solves the problem with PySMT. Otherwise, it is offloaded to an instance, which in turn
forwards the problem to the decision module in the core module. The communication is
done via REST Endpoints, which are realised with Flask. It is also important that the
arrows go in both directions. This means that the results are returned to the original
requesting node. This can also happen via several nodes.

43

5. Implementation

Figure 5.1: Architecture Design with Implementation Details

44

5.1. Service Architecture Implementation

5.1.2 Development Framework
The entire code base is based on Python. We are using Python 3.5 and higher. On some
devices, we have to rely on specific versions, as we need to use dependencies for which no
pre-built binaries exist.

The following points should underline why we chose Python:

1. In Chapter 6 we are using a Lego Mindstorms EV3 and ev3dev (see Section 6.2.1).
There are multiple libraries that abstract the low-level API in different programming
languages like Python, Java, Go etc. However, the Python library is very well
documented, has a big community and is easy to use.

2. According to a survey by statista [Vai21], Python is the third most used pro-
gramming language among developers worldwide in 2021. Only JavaScript and
HTML/CSS are used more frequently. There are many open-source frameworks,
tools and libraries with a huge community in the background.

3. We use reinforcement learning, which is a subset of machine learning, in the decision
module (see Section 4.2.3). Python provides libraries for this area like TensorFlow,
Keras, PyTorch (for deep learning) or NumPy (see Section 5.4.2 and Section 5.1.2).

4. It is a high-level programming language and an interpreted language. It allows us
to run the same code on multiple platforms without recompilation. Therefore, we
can run our system on every Python capable device.

Python Packages

In order not to “reinvent the wheel”, we benefit from multiple Python packages. In the
following list we highlight the intended purposes and the advantages:

• psutil: The package is used to retrieve information about the running system.
psutil is an acronym for python system and process utilities and can be used as a
cross-platform Python library. It provides an API for several UNIX command-line
tools like ps, top or nextstat [psu]. We can use this package to get information about
the CPU usage, memory usage and traffic. This information can be used by the
decision algorithm. Furthermore, the algorithm can easily be extended with more
information about the system using psutil, e.g. disk usage or running processes.

• pythonping: The package helps us to obtain information about the connectivity
of a system. Specifically, a ping to the instances to offload to is used to achieve this.
There exist useful parameters, such as count to limit the number of ICMP packets
to be sent to reduce the time required to obtain the connectivity information [pytb].

• python-ev3dev2: The package provides an interface for ev3dev (more in Section
6.2.1). It is used to determine the battery level of the robot which could be used

45

5. Implementation

for decision making. Furthermore, it provides methods to get sensor data (e.g.
from the ultrasonic sensor) or to send data to actuators (e.g. motors connected to
wheels) [pyta].

• requests: The package is used to offload data and the library makes it very easy to
send HTTP requests [Req]. We use the POST method of the HTTP protocol and
send the data, in particular the *.smt2 files, which are the textual representation of
SMT formulae according to the SMT-LIB specification (see Section 2.2.1) as form
data.

• NumPy: The package benefits to store and access the Q-Table, which is used in
one decision making approach [Numb]. NumPy provides multidimensional array
objects and a number of very fast operations on arrays, such as selection etc. In
our use case, we want to get the maximum of a row in a two-dimensional array as
fast as possible. In addition, NumPy is also used by PyTorch, which is explained
in more detail in Section 5.4.2.

• watchdog: The package is used to provide the ability to change the configuration
at runtime. Watchdog provides a cross-platform API for monitoring file system
events [wat].

• PyYAML: The package helps us to parse YAML files [pyy]. YAML is a recursive
acronym for “YAML Ain’t Markup Language” (originally “Yet Another Markup
Language”) and is a human-readable data serialisation language often used for
configuration files, as we do [BKEI09].

• Flask: The package is used to provide REST-endpoints that can be called by
the instances which want to offload SMT formulae. It is one of the most popular
Python web application frameworks that makes it quick and easy to get started
[fla].

5.1.3 Deployment Strategy
Some components in our architecture use a container-based cross-platform deployment.
The specific technology we use is Docker, which is introduced below, with a focus on the
areas of application in our implementation.

Docker is an open-source engine that automates the deployment of applications
into containers. Docker adds an application deployment engine on top of
a virtualised container execution environment. It is designed to provide a
lightweight and fast environment in which to run your code, as well as an
efficient workflow to get that code from your laptop to your test environment
and then into production [Tur14].

In the following, we describe the necessary components we need for implementation and
deployment/evaluation [Tur14]:

46

5.2. Communication Module

• Docker Image: Docker containers are launched from Docker images. Images are
the “build” part of the Docker lifecycle. It is a set of instructions to build a Docker
container.

• Docker Container: These are the running instances of Docker images.

• Registries: A registry like Docker Hub1 is a repository for Docker images. We
can download (pull) an image from the registry and start a container from it.

• Dockerfile: This is the file, that describes how to create a Docker image.

The SMT solver instance is a containerised application with a simple REST endpoint
that solves the provided SMT formulae with PySMT. These instances are deployed in
the cloud and do not need to make any further decisions. The big advantage of using
Docker here is that we can easily deploy multiple instances on different clouds. This
means that instead of installing all the necessary dependencies like Python, PySMT and
an underlying SMT solver etc. we only need to install Docker, pull the Docker image
(from a registry) and run the image as a container.

We could also use a more sophisticated container orchestration mechanism like Kuber-
netes2. This would bring the advantage of high scalability if there would be many edge
devices that want to offload their problems. In our evaluation (see Chapter 6) we have a
limited number of devices and therefore Kubernetes would be an overkill solution. Why
do we use Docker only on the cloud instances? A containerised application would result
in overhead, and also not all edge devices are compatible with Docker. Therefore, our
core module and the configuration module are natively installed on the edge devices.
However, it would be easy to containerise these modules as well.

The following sections explain the various implementation details of the modules.

5.2 Communication Module
In this module, we primarily use the Python package requests (see Section 5.1.2).

5.2.1 Communication Mechanism
Communication between the components is done via HTTP. When a problem is offloaded,
a POST request is created with the SMT formula in the body and the solution result in the
answer. However, the implementation allows an easy switch to another communication
mechanism like MQTT, as the communication module is loosely coupled. On top of
HTTP, we use REST and the following points show why we choose this approach:

1https://hub.docker.com/
2https://kubernetes.io/

47

https://hub.docker.com/
https://kubernetes.io/

5. Implementation

1. It allows us to meet the ETSI MEC specifications (see Section 2.1.4) if it is desirable
to deploy our system on top of MEC hosts.

2. REST is more mature/widespread.

3. Our architecture follows a request-response style: We submit SMT formulae and
receive the solution as a response. Therefore, REST is more suitable than publish-
subscribe approaches like MQTT.

REST API

We only have one endpoint:

POST /formulae

Request: The type of the request body is form-data. The key is formula_file and the
corresponding value is the SMT formula as a file in SMT-LIB format (.smt2).

Response: The response content type is text and contains the result: True if the
SMT formula is satisfiable or False if not. Of course, it is also possible to return more
information, like a model, if the SMT formula is satisfiable. The HTTP status code is in
both cases 200 OK.

5.3 Configuration Module
In this module, we mainly use the Python packages pyyaml and watchdog (see Section
5.1.2). We use a .yaml file for the entire configuration. Table 5.1 shows the most
important configuration options.

As already mentioned in Section 5.1.2 with watchdog we offer the possibility to change
the configuration at runtime. For example, the update period in the monitoring module
could be changed if we find problems with outdated state information.

5.4 Decision Modules
The implementation of the decision modules consists of multiple Python modules. These
modules represent the core of the entire work. During the implementation, great care was
taken to ensure that the modules can be exchanged as easily as possible. For example, if
there is a new idea of decision making that is not already covered, then it is possible to
create some new Python modules and reuse existing common code for decision making.
The entry point into the whole decision module is the Python module processing and
processing_ev3. Here we decide which specific approach to use for decision making. If
we want to add a new approach, we could extend the DecisionMode enumeration and
add a new if branch.

48

5.4. Decision Modules

Key/Section Description

smt.solver-location defines the installation location of the solver,
to call it natively

smt.decision-mode

could be set to q_learning - leads to Q-Learning
as decision approach, or deep_q_network -
leads to DQN as decision approach,
or none - leads to no further decision making

instances the endpoints for offloading are configured here
(.cloud and .edge)

ev3.in-use

set to True if the software is executed on the robot -
leads to other behaviour for other configuration calls:
e.g. when getting solver instances and
this option is set to True, the edge instances are returned,
otherwise, the cloud instances

decision.common-hyper
-parameters

common hyperparameters like learning rate,
number of episodes, etc.

decision.deep-q-network DQN specific options like batch-size or memory-size

monitoring.update-period how often (in seconds) the current monitoring status
is determined

Table 5.1: Important Configuration Options

Two other common Python modules used by the concrete decision approaches are the
problem_classifier module and the state module. The first module acts as an “oracle” for
the complexity of SMT formulae. For simplicity, in our implementation, the classification
is hard-coded in the form of a Python directory, where the key is the filename of the
SMT formula and the value is the classification as a numerical value. Furthermore, we
have two different directories, one for the Raspberry Pi’s and one for the robot, as the
complexity varies depending on the device. The approach to classification involves the
following steps:

1. Execute all problems on the robot and the Raspberry Pi’s and record the execution
times.

2. Define an upper bound of execution time for the robot and Raspberry Pi’s (in our
case, it was set to three seconds).

3. Calculate classification value (= problem complexity) with
round(runtime/upper_bound_execution_time ∗ 100)

4. The higher the value, the harder the problem.

The state module represents the state needed for the concrete decision approaches.
It calls the monitoring module to get information about the connectivity and calls

49

5. Implementation

the problem_complexity module presented above to get information about the current
problem.

There are three important implementation details to mention. First, the values of
the state are normalised with the following simple formula: normalised_value =
value/MAX_V ALUE. This has the benefit that the values are then in the range
of 0 to 1. The MAX_VALUEs are defined as constants for the different indicators (in the
configuration file). Secondly, for the Q-Learning approach (described below, see Section
5.4.1) we need to transform the continuous values into discrete values. This is done with
the help of a Rating enumeration containing the following values: poor, fair, average,
good, excellent. And the last point is that we need some simulation in our evaluation (see
Section 6.3.2). In general, this simulation can influence any value that represents the
state. In our case, it is the average round trip time (rtt/latency), but it can easily be
extended to simulate other state information. The simulation helps us to test our system
under different settings.

5.4.1 Q-Learning

Q-Learning is the first specifically implemented approach for decision making with
reinforcement learning. To store the Q-Table, NumPy is used, as already described in
Section 5.1.2. The Q-Table has a size of 25 rows and three or five columns (depends on
the number of offload options). The state information we use is on the one hand, the
problem complexity and on the other hand the connectivity to the other edge devices.
This leads to a state dimension of two. Each dimension could have five different values
(values of the Rating enumeration, introduced above). We use a learning rate of 0.001.

In this section, we also want to describe the transformation from the continuous value
range to the concrete value range in more detail. This is implemented with the function
shown in Listing 5.1. If no value is given, we return poor as the default Rating. To be
loosely coupled to the number of possible Rating values, we store the number of rating
classes in a variable. After that, the value (a value between 0 and 1) is multiplied by the
number of rating classes and the values after the decimal point are truncated. Due to the
constant maximum values, it can happen that the maximum value is exceeded, which
would result in a value greater than 1. If the value reaches or exceeds the maximum
value, the converted value is reduced by 1. Afterwards, we get the rating by: number of
rating classes - 1 - converted value.

Example: value = 0.5, number of rating classes = 5 (e.g. poor=0, fair=1, aver-
age=2, good=3 and excellent=4), converted value would then be 0.5 ∗ 5 = 2.5 →
match.trunc(2.5) = 2, which would result in Rating(5 − 1 − 2) → Rating(2) →
Rating.average. As 0.5 is in the middle of the range, 0 to 1 average is the correct
rating.

50

5.4. Decision Modules

1 def __get_rating(value):
2 if value is None:
3 return Rating.poor
4 number_of_rating_classes = get_number_of_rating_classes()
5 converted_value = math.trunc(value * number_of_rating_classes)
6 if converted_value >= number_of_rating_classes:
7 converted_value = number_of_rating_classes - 1
8 return Rating(number_of_rating_classes - 1 - converted_value)

Listing 5.1: Transformation of continuous values to discrete values

5.4.2 Deep Q-Learning (DQN)
A slightly more sophisticated implementation is DQN, which is described in this section.
To give more details, we also provide two Listings. The first one 5.2 shows how to create
a neural network architecture and the second presents how to optimise the model 5.3.

PyTorch

With the increasing trend of deep learning, the number of deep learning frameworks has
also increased. Choosing the most suitable library is not easy, as there are many popular
ones: PyTorch3, TensorFlow4, Keras5 or Apache MXNet6.

When developing a deep learning framework, it is difficult to find a good trade-off between
usability and speed. However, unlike other popular deep learning frameworks, PyTorch
focused on both goals. PyTorch is an open-source machine learning framework developed
mainly by developers from the Facebook AI Research Lab [PGM+19].

There are four main design principles [PGM+19]: As developers in the area of machine
learning are familiar with Python, the first principle is to Be Pythonic. The second
principle is Put researchers first, since it should be as simple and productive as possible.
Provide pragmatic performance is the third principle, as the performance must be
compelling, but not at the expense of simplicity and ease of use. The last principle is
Worse is better, which means that a simple but perhaps incomplete solution is better
than a comprehensive but complex and difficult to maintain solution.

Why we chose PyTorch:

• The balance between speed and ease of use [PGM+19].

• Our whole project is implemented in Python. Therefore, a library which completely
focused on this programming language is a good choice.

• PyTorch is commonly used in research.
3https://pytorch.org/
4https://www.tensorflow.org/
5https://keras.io/
6https://mxnet.apache.org/versions/1.9.0/

51

https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/
https://mxnet.apache.org/versions/1.9.0/

5. Implementation

• PyTorch is faster than Keras [Dee].

Installation

Section 6.2.1 shows the resource limitations of the Lego Mindstorms EV3. We focus on a
lightweight solution, but the DQN requires more computing power and is therefore not
efficiently feasible on the robot. The main problem here is the available RAM and the
main processor, as we would need much more to perform deep learning in a meaningful
way. To solve this problem, we have already proposed the Q-Learning approach using
the Q-Table, which requires fewer resources (see Section 5.4.1). Beside the resource
limitations, we have further difficulties in installing PyTorch on the Lego Mindstorsm
EV3, as there are no pre-built packages and compilation has to be done on the robot,
which would be very time-consuming, resulting in the need for cross-compilation (see
Section 5.6.2). This and the resource-intensity of PyTorch are the reasons why we do
not use DQN on the robot. Another fact is that there are only pre-built packages for
Python3.7 or lower7. Since the default Python version of RaspbianOS is 3.9, we need to
install Python3.7 on the Raspberry Pi’s.

Model

In this section, we describe the creation of the neural network with PyTorch in detail.
The structure and design of the network is explained in Section 4.2.3.

In Listing 5.2 we can see that the first layer (line 6) has a number of input features equal
to the number of indicators. In line 15 we see that the number of output features is equal
to the number of actions. Between the layers, we use a normalisation technique (see lines
7, 10, 13). The benefits of normalisation are presented in Section 2.5.7. The usage of
the activation function Leaky ReLU is shown in the lines 8, 11 and 14 in Listing 5.2. In
the PyTorch (torch) environment, the MEA loss function is called l1_loss and can be
seen in lines 11 and 14 in the Listing 5.3. Listing 5.3 shows the usage of Adam as the
optimisation function in line 12 - 17 (with comments included). The default settings are
applied, i.e. a learning rate of 0.001 is used (the same learning rate as in the Q-Learning
approach (see Section 5.4.1).

1 class DQN(nn.Module):
2 def __init__(self, number_of_indicators, number_of_actions):
3 super().__init__()
4
5 self.layers = nn.Sequential(
6 nn.Linear(in_features=number_of_indicators, out_features=24),
7 nn.BatchNorm1d(24),
8 nn.LeakyReLU(),
9 nn.Linear(in_features=24, out_features=24),

10 nn.BatchNorm1d(24),
11 nn.LeakyReLU(),
12 nn.Linear(in_features=24, out_features=24),

7at the time: 24. March 2022

52

5.5. Monitoring Module

13 nn.BatchNorm1d(24),
14 nn.LeakyReLU(),
15 nn.Linear(24, out_features=number_of_actions)
16)
17
18 def forward(self, t):
19 return self.layers(t)

Listing 5.2: Neural Network Class

1 def optimize_model():
2 if len(memory) < dqn_hyper_parameters[’batch-size’]:
3 return
4 experiences = memory.sample(dqn_hyper_parameters[’batch-size’])
5 states, actions, rewards, next_states = extract_tensors(experiences)
6
7 current_q_values = QValues.get_current(policy_net, states, actions)
8 target_q_values = rewards
9

10 # l1_loss = MEA = mean absolute error
11 loss = F.l1_loss(current_q_values, target_q_values.unsqueeze(1))
12 # gradients of all weights and biases in policy_net are set to zero
13 optimizer.zero_grad()
14 loss.backward()
15 # updates the weights and biases with the gradients
16 # that were computed when called backward() on loss
17 optimizer.step()

Listing 5.3: Function for optimising the model

5.5 Monitoring Module
For this module, the configuration option monitoring.update-period sets the period after
which the monitoring information is determined. The perfect period requires some
fine-tuning and depends on the particular device. For the training process, where the
additional overhead does not matter, we fetch the current monitoring status for each
SMT formula to always have up-to-date training data. In this module, we mainly use
the Python packages psutil, pythonping and python-ev3dev2 (see Section 5.1.2).

5.6 SMT-Solver
The main objective of the work is to solve SMT problems. For this purpose, we use SMT
solvers. In our implementation there are two approaches to call them. The first one is
with the Python library PySMT, the second one is a native approach. The benefits of
PySMT are that the solution is solver independent, and the underlying native solver can
be chosen to best fit the environment. The disadvantages are the additional overhead and
that some solvers are not easy to integrate. However, according to the documentation of
PySMT any SMT-LIB compliant solver could be used [GM15].

53

5. Implementation

5.6.1 PySMT
Here we describe the first approach of calling the SMT solvers. This one is used on the
SMT solver instances.

PySMT is a Python library that provides an additional layer between the SMT formulae in
the SMT-LIB format (see Section 2.2.1) and the solvers API [GM15]. The big advantage
of this additional layer is that the formulae can be defined in a solver independent way,
and you could select the best fitting solver for each environment [GM15]. For example, if
the application using PySMT is executed on a more resource-rich system, Z38 could be
used as the underlying SMT-solver. If the system is very constrained or only SAT theories
need to be solved, for example, PicoSAT9 could be used. The PySMT package is divided
into three parts: Formula API, which includes modules to easily perform quantifier
elimination, interpolation, etc. Solver API which calls the third part, Converter, to
convert the general format to the solver specific format.

5.6.2 Native - CVC4
Here we describe the second approach of calling the SMT solvers. We use CVC4 as the
native solver. This one is used on the robot and the Raspberry Pi’s. The following is a
definition and description of CVC4 [BCD+11]:

CVC4 is an efficient open-source automatic theorem prover for satisfiability
modulo theories (SMT) problems. It can be used to prove the validity
(or, dually, the satisfiability) of first-order formulae in a large number of
built-in logical theories and their combination. CVC4 is the fourth in the
Cooperating Validity Checker family of tools (CVC, CVC Lite, CVC3) but
does not directly incorporate code from any previous version. A joint project
of Stanford University and The University of Iowa, CVC4 aims to support the
features of CVC3 and Version 2 of the SMT-LIB standard while optimising
the design of the core system architecture and decision procedures to take
advantage of recent engineering and algorithmic advances. [BCD+11]

The decision on CVC4 was made due to the following aspects:

1. It is supported by PySMT. So we could use CVC4 natively as well as with PySMT.

2. It is more lightweight than Z3, but supports more theories than Yices10, Boolector11

or PicoSAT which are also supported by PySMT.
8https://github.com/Z3Prover/z3
9http://fmv.jku.at/picosat/

10https://yices.csl.sri.com/
11https://boolector.github.io/

54

https://github.com/Z3Prover/z3
http://fmv.jku.at/picosat/
https://yices.csl.sri.com/
https://boolector.github.io/

5.7. Deployment

3. Due to the rare CPU architecture of the device, a compilation by sources approach
for installation must be followed. This makes proprietary solvers such as MathSAT12

out of question.

4. CVC513 is very new and therefore there is much less material and guidance on
(cross-)compilation via source code compared to CVC4.

Cross-Compilation

There are no pre-compiled CVC4 binaries for the CPU architecture (armv5tejl) of the
Lego Mindstorms EV3 (see Section 6.2.1). Therefore, we need to create the binary by
compiling the source code. This procedure is not feasible on the Lego Mindstorms EV3
due to its constrained resources. In order to solve this issue, we use the concept of
cross-compilation. The normal case is that a compiler runs on one system and produces
binaries that run on the same system. Such compilers are also called native compilers
[Cro]. A cross-compiler is a compiler that runs on a different system than the produced
binary is executed [Cro]. One can distinguish between the host system and the target
system: the host system is the system on which the compiler runs and the executable is
produced, the target system is the system on which the produced executable is executed
[Cro].

The ev3dev (see Section 6.2.1) provides us with a Docker image (see Docker concepts
in Section 5.1.3), with the most common developer tools for cross-compiling. From this
Docker image, we can create a Docker container that allows us to run something very
close to the ev3dev operating system on a more powerful computer. This means that
we have the same libraries as the Lego Mindstorms EV3, but compile with the power of
a desktop processor. A more detailed tutorial can be found here: [ev3a]. If additional
libraries are necessary, it is important to use the target version as well. In our case, we
need to add :armel when installing packages. CVC4 depends on several other modules.
The most complicated module is ANTLR (ANother Tool for Language Recognition)14,
which is a “powerful parser generator for reading, processing, executing, or translating
structured text or binary files”. For this to work, we must first cross-compile the ANTLR
module and use the cross-compiled module in the further cross-compiling procedure of
CVC4.

5.7 Deployment
In this section, we briefly describe how we deploy the software on the different components.
We can differ between the dockerised software and the modules run natively on. In
general, we do not provide an automatic deployment with e.g. Ansible15. The first

12https://mathsat.fbk.eu/
13https://github.com/cvc5/cvc5
14https://www.antlr.org/
15https://www.ansible.com/

55

https://mathsat.fbk.eu/
https://github.com/cvc5/cvc5
https://www.ansible.com/

5. Implementation

step is always to connect via SSH. We provide a step-by-step tutorial in the next two
subsections:

Dockerised SMT Solver Instance

1. Install Docker

2. Open necessary ports to make service reachable remotely (Flask is running on port
5000 by default)

3. Pull the docker image containing the SMT solver instance software from a registry
(e.g. DockerHub)

4. Create and run a docker container

Native Other Modules

1. Copy all necessary Python files via ssh

2. Adapt the configuration file: set smt.solver-location, smt.decision-mode, ev3.in-use,
instances, ...

3. Start the component by running the main module

56

CHAPTER 6
Evaluation

In this chapter, we will benchmark the different components of our system and compare
our approaches with some well-known baseline approaches. It starts with describing the
objectives and then moves on to comprehensive technical specifications of our experimental
setup, including the hardware on which we deploy our components. The next section
looks at the details of the different approaches we use in our experiments and the metrics
we measure. We also give an outlook with examples of other possible metrics that could
be used, but are not evaluated in our experiments. In the subsequent section, we describe
the test data we used. Finally, we present the results of our tests and discuss them in
detail. We provide detailed explanations of the performance of the different approaches
in the different settings and analyse the causes of the behaviour.

6.1 Objectives
The primary objective is to set up a testbed to show and compare multiple approaches
with different settings. These approaches range from simple baseline approaches to
more sophisticated solutions. Due to the technical complexity, extensive end-to-end
instrumentation is needed to show all the components and modules. We use a robot,
as we want to target autonomous mobile robots use cases, and the specific one as a
representative of the low end of such techs, given its resource limitations. As resource-
constrained edge computing hardware, we use two Raspberry Pi’s which are becoming
the de facto standard for evaluating edge computing systems for various IoT use cases
(see, for example: [CWC+18], [CWC+18] or [HJS+20]). The more powerful server-grade
virtual machines in the cloud complete the overall testbed. Also, this testbed is a mix that
is a representative of the whole spectrum of hosts that can be found in the device-to-cloud
compute continuum. The aim is to connect all the different components and provide a way
to easily deploy and configure the whole architecture to compare the different approaches.

57

6. Evaluation

Furthermore, this setup should show that our implementation and architecture can be
materialised in practice (especially across all supported hardware architectures).

The main goal is to get answers to our research question (RQ. 3) that focuses on a
comparison of decision making strategies performances within different edge settings.

Another goal is to show that our solution can be compared in different dimensions with
the usage of simulations.

6.2 Experiment Setup
As follows, the technical specifications of the used testbed are described.

6.2.1 Testbed Specifications
Technical Specification for the EV3 Brick

The Lego Mindstorms EV3 is the third generation (the EV3 stands for “evolution”)
of the Lego Mindstorms line [RL14]. The “brain” of the Lego Mindstorms EV3 robot
is the brick, which serves as the control centre and power station. Table 6.1 lists the
specifications of the brick. The brick can be connected with multiple sensors (touch,
gyro, colour, ultrasonic) and motors (medium and large). Building instructions can be
found on the official website.1 The robot is the most resource-constrained device in our
testbed and the SMT formulae originate on the robot when using the full testbed.

ev3dev

Instead of using the pre-installed operating system of the LEGO Mindstorms EV3 we use
ev3dev. ev3dev is a Debian Linux-based operating system [ev3b]. The big benefit of using
a Linux-based operating system is the availability of thousands of software packages and
the Linux kernel provides the possibility to use USB and Bluetooth devices, like Wi-Fi
dongles or keyboards. To connect the robot to the Internet, we use a Wi-Fi USB adapter,
specifically the Edimax EW-7811Un, which supports the most common standards and is
ideal for robots like this. A further improvement is that ev3dev runs from a microSD
card and therefore does not touch the installed firmware. By removing the microSD -
card and restarting the robot, it can easily be switched back to the original firmware
[ev3b].

Technical Specification for the Raspberry Pi’s

In contrast to the very resource-constrained robot (see Section 6.2.1) we also use two
Raspberry Pi’s as more powerful edge devices. In the further course of the work, they

1https://education.lego.com/en-us/product-resources/mindstorms-ev3/downlo
ads/building-instructions

58

https://education.lego.com/en-us/product-resources/mindstorms-ev3/downloads/building-instructions
https://education.lego.com/en-us/product-resources/mindstorms-ev3/downloads/building-instructions

6.2. Experiment Setup

Release Date September 2013
Operating System Linux (ev3dev)
Display 178 x 128 pixel, Black & White, Monochrome LCD
Main Processor TI Sitara AM1808 (ARM926EJ-S core) @300 MHz
Flash Memory 16 MB
RAM 64 MB
Memory Micro SD card slot - supports SDHC, version 2.0, 32 GB
USB Host Port USB 2.0 Communication to Host PC - up to 480 Mbit/sec
WiFi Optional dongle via USB port
Bluetooth Yes

Ports
4 input ports for sensors (1, 2, 3, 4)
4 output ports for motors (A, B, C, D)
Mini-USB PC port, to connect the EV3 Brick to a computer

Speaker for any sound effects
Power 6 AA batteries or rechargeable battery

Table 6.1: Specification of Lego Mindstorms EV3 Brick

Model Raspberry Pi 4 Model B Rev 1.1
OS Raspbian GNU/Linux 11 (bullseye)

Processor
Broadcom BCM2711
ARMv7 Processor rev 3 (v7l)
4x Cortex-A72 1.5 GHz

Memory 4GB LPDDR4

Connectivity

2.4 GHz and 5.0 GHz IEEE 802.11b/g/n/ac wireless
LAN, Bluetooth 5.0, BLE
Gigabit Ethernet
2 x USB 3.0 ports
2 x USB 2.0 ports

Input power

5V DC via USB-C connector (minimum 3A)
5V DC via GPIO header (minimum 3A)
Power over Ethernet (PoE)-enabled
(requires separate PoE HAT)

Table 6.2: Specification of Raspberry Pi

are also referred to as dedicated edge devices (DEDs). Raspberry Pi is a small single-
board computer, of which several series and generations exist. Table 6.2 details the
specifications for the Raspberry Pi’s. Besides computing power, another difference
between the Raspberry Pi’s and the Lego Mindstorms EV3 is that the Raspberry Pi’s
have a continuous power supply. Accordingly, energy aspects, as described in Section
6.3.3, are not relevant on these devices.

59

6. Evaluation

OS Ubuntu 20.04.3 LTS (GNU/Linux 5.4.0-88-generic x86_64)

Processor Intel Xeon Processor (Skylake)
4 core, 2.2 GHz

Memory 8 GB RAM
48 GB hard disk

Location Frankfurt, Germany

Table 6.3: Specification of external Cloud VM

OS CentOS Linux 8 (Linux version 4.18.0-147.el8.x86_64)

Processor Intel Xeon Processor (Cascadelake)
8 core, 2,1 GHz

Memory 8 GB RAM
22 GB hard disk

Location TU Vienna

Table 6.4: Specification of TU Vienna Cloud VM 1

OS CentOS Linux 8 (Core) (Linux version 4.18.0-193.6.3.el8_2.x86_64)

Processor Intel Xeon Processor (Cascadelake)
4 core, 2,1 GHz

Memory 8 GB RAM
20 GB hard disk

Location TU Vienna

Table 6.5: Specification of TU Vienna Cloud VM 2

Technical Specification for Cloud VM’s

The final part of the testbed is formed by the various cloud instances. There are four
different virtual machines, three of which are located in the TU Vienna network and one
in Germany. These instances have the most computational power in our testbed. Table
6.3 sums up the detailed specifications of the external cloud VM instance. Table 6.4,
Table 6.5 and Table 6.6 show the detailed specifications of the cloud VM instances in the
TU Vienna environment.

6.2.2 Dataset
In this chapter, we present the process of selecting the test data. Throughout this work,
we use the terms (SMT) formulae, (SMT) problem and test data as synonyms for the
workload used in our evaluation. In the appendix A is a detailed listing of the problems
used in the various sets and links to the resources. We use problems from the official
SMT-LIB-benchmark repository2. The selection process consisted of the following steps:

2https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks

60

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks

6.3. Evaluation Configurations

OS CentOS Linux 8 (Core) (Linux version 4.18.0-147.el8.x86_64)

Processor Intel Xeon Processor (Cascadelake)
2 core, 2,1 GHz

Memory 8 GB RAM
20 GB hard disk

Location TU Vienna

Table 6.6: Specification of TU Vienna Cloud VM 3

Set Name Number of Problems Execution Time
Simple 14 [0 - 0.5] seconds

Medium 7]0.5 - 1] seconds
Hard 9]1 - 1.5] seconds
Mixed 10 [0 - 1.5] seconds

Table 6.7: Problem Sets

1. Downloading all the problems from the GitLab-repository.

2. Measure the execution times of all the problems with a timeout of 60 seconds.
Problems that required more time are filtered out. The classification was done with
a local CVC4 solver installed on an Intel(R) Core(TM) i5-6200 CPU @ 2.30GHz,
with 8GM RAM Windows 10 machine. We then have a list of problems with a
maximum execution time of 60 seconds.

3. Sort the problems by execution time and create three sets/buckets. The first set
contains problems with an execution time of 0 - 0.5 (inclusive) seconds. The second
set 0.5 (exclusive) - 1 (inclusive) seconds and the third set 1 (exclusive) - 1.5
(inclusive) seconds.

4. Filter out problems that can not be solved on the robot. Multiple problems are
not solvable due to the constrained architecture of the robot. Some errors that
occurred: Unimplemented code encounteredConversion is dependent on SymFPU,
Expected CVC4 to be compiled with SymFPU support or Unimplemented code
encounteredFloating-point literals not yet implemented.

5. This results in the problems sets, described in Table 6.7. The mixed set contains
problems from the simple, medium and hard set.

6.3 Evaluation Configurations
The following sections describe all the approaches we are comparing, how we simulate
latency and the metrics we will use to compare the configurations.

61

6. Evaluation

Figure 6.1: DED Only without Robot

6.3.1 Configurations

In this section, we specify the different approaches we deploy and evaluate on our testbed.
A distinction can be made between two parts. In the first part, we do not use the robot
and only compare the solutions by using the DEDs and the cloud instances. In the
second part, we use the entire testbed, from the robot to the DEDs to the cloud instances.
The reason we use these two parts is to better show the differences between the various
approaches. It could be, for example, that we already have edge devices (robots) that are
more resource-rich and comparable to our DEDs. This would be a use case for the first
part we mentioned. Also, one approach (DQN) is not feasible on the robot and with this
part, we could better show the benefits as the simulation of latency is between the DEDs
and the cloud. In the second part, the latency is simulated between the robot and the
DEDs. This represents a use case where the edge device is very limited and some more
resource-intensive devices (like Raspberry Pi’s) are installed in spatial proximity. All the
approaches with some intelligent decision making represent use cases where offloading
and solving locally are potential options. However, if one option is always the preferred
solution, our experiments will show that the algorithms learn this behaviour.

We start with four approaches, where we do not use the robot.

DED Only without Robot

All the SMT formulae are solved on the DED itself. The DED does not make decisions
and there is no offloading to other devices. The DED always forwards the formulae to the
local native SMT solver (CVC4). This approach should represent a use case where the
edge device is more powerful. A scenario, where this approach makes sense, is described
in Section 6.3.1.

This results in one option to solve the formulae: on the DED (see Figure 6.1).

62

6.3. Evaluation Configurations

Figure 6.2: Cloud Only without Robot

Cloud Only without Robot

All the SMT formulae are offloaded to cloud instances. The selection is random and on
the cloud instances, the requests are processed by a solver instance running as a docker
container. The instances provide an endpoint to which the formulae can be sent and solve
the formulae using PySMT (see Section 5.6.1). The underlying SMT solver is MathSAT5.
This approach represents the traditional cloud offloading approach, or in other words,
the computational offloading to the cloud (see Section 2.1.3).

This results in four options to solve the formulae: on the four cloud instances (see Figure
6.2).

Q-Learning on DED + Cloud without Robot

This is the first approach that involves more sophisticated decision making. We use
Q-Learning on the DED to decide whether the problem should be offloaded to one of
the cloud instances or solved on the DED. On the cloud instances, there is no further
decision making.

This results in five options to solve the formulae: on the DED, on the four cloud instances
(see Figure 6.3).

DQN on DED + Cloud without Robot

DQN is used on the DED to decide whether the problems should be offloaded to one of
the cloud instances or solved on the DED. There is no further decision making on the
cloud instances.

63

6. Evaluation

Figure 6.3: Q-Learning on DED + Cloud without Robot

Figure 6.4: DQN on DED + Cloud without Robot

This results in five options to solve the formulae: on the DED, on the four cloud instances
(see Figure 6.4).

In the following, we present approaches, where the problems originate at the robot.

Robot Only

All the SMT formulae are solved on the robot itself. The robot does not make decisions
and there is no offloading to other devices. The robot always forwards the formulae to the
local native SMT solver (CVC4). These scenarios serve to demonstrate the limitations
of executing only on-device computations and motivate the need for offloading. It

64

6.3. Evaluation Configurations

Figure 6.5: Robot Only

Figure 6.6: DEDs Only

should be noted that this setup can be considered characteristic of scenarios that feature
disconnected and fully autonomous robot operation, where physical limitations such as
the lack of network infrastructure (e.g. some disaster management situations [MTK16])
mandate that the execution of service logic takes place on the robots themselves, without
edge or cloud assistance and control.

This results in one option to solve the formulae: on the robot (see Figure 6.5).

DEDs Only

All the SMT formulae are offloaded to the DEDs. The selection is random and the DEDs
forward the formulae to the local native SMT solver (CVC4).

This results in two options to solve the formulae: on the two DEDs (see Figure 6.6).

65

6. Evaluation

Figure 6.7: Cloud Only

Cloud Only

Basically identical to the approach described in Section 6.3.1. The difference to Section
6.3.1 is that the problems are originated at the robot and not on the DEDs.

This results in four options to solve the formulae: on the four cloud instances (see Figure
6.7).

Q-Learning on Robot + DEDs

We use Q-Learning on the robot to decide whether the problem should be offloaded to
one of the DEDs or solved on the robot. On the DEDs there is no further decision making.
They forward the formulae to the local native SMT solver (CVC4). In this approach, the
additional latency represents the additional latency between the robot and the DEDs.

This results in three options to solve the formulae: on the robot, on the two DEDs (see
Figure 6.8).

Q-Learning on Robot + Q-Learning on DEDs + Cloud

We use Q-Learning on the robot to decide whether the problem should be offloaded to
one of the DEDs or solved on the robot. Q-Learning is also used on the DEDs to decide
whether the problems should be offloaded to one of the cloud instances or solved on the
DEDs. There is no further decision making on the cloud instances. As in the previous
approach, here the additional latency represents the additional latency between the robot
and the DEDs.

This results in seven options to solve the formulae: on the robot, on the two DEDs, on
the four cloud instances (see Figure 6.9).

66

6.3. Evaluation Configurations

Figure 6.8: Q-Learning on Robot + DEDs

Figure 6.9: Q-Learning on Robot + Q-Learning on DEDs + Cloud

67

6. Evaluation

Figure 6.10: Q-Learning on Robot + DQN on DEDs + Cloud

Q-Learning on Robot + DQN on DEDs + Cloud

We use Q-Learning on the robot to decide whether the problem should be offloaded to
one of the DEDs or solved on the robot. DQN is used on the DEDs to decide whether the
problems should be offloaded to one of the cloud instances or solved on the DEDs. There
is no further decision making on the cloud instances. In this approach, the additional
latency represents the additional latency between the robot and the DEDs.

This results in seven options to solve the formulae: on the robot, on the two DEDs, on
the four cloud instances (see Figure 6.10).

6.3.2 Latency Simulation
In order to compare our approaches with different latency settings, we simulate the
latency at the application level. We use 5 different setups. In the first case, no artificial
latency is added. We only have the natural latency between the components. In the
other four setups, a latency of 100 to 400 ms is artificially added. This results in some
additional time being needed when offloading problems. This additional time (additional
waiting time for response) is calculated with the following simple formula:

additional response time = additional latency ∗ 0.005

The constant of 0.005 is set based on the analysis of the changes in response time when
simulating latency at the network level. To simplify the evaluation, we use this constant
value and a simple calculation. However, a more sophisticated simulation could also be
used, but this work does not consider this aspect. For example, the simulated latency
could be different between the instances and the calculation of the additional response

68

6.3. Evaluation Configurations

time could follow a more advanced scheme/algorithm. The latency and additional waiting
time is added between the DEDs and the cloud instances for the approaches without the
robot and between the robot and the DEDs for the approaches with the robot. With this
simulation, we are able to show how the approaches behave in different environments
with additional latency between different components of our testbed.

6.3.3 Metrics
Below, we describe how we will compare the different approaches. We concentrate on the
time metric. The energy-aware mode is explained in detail and is evaluated in a limited
and simplified version, and other modes are only explained theoretically.

Time - Time-Aware Mode

One obvious metric is time. The question is how much time the different approaches
need to solve a specific number of problems of varying complexity.

Energy - Energy-Aware Mode

Another potential metric is energy. The question is how the different approaches drain
the battery. Energy consumption when solving SMT problems locally could be higher or
lower than when offloading the problems. For example, for very simple problems, the
energy consumption for offloading (transmission costs etc.) could be higher than the local
execution. On the other hand, offloading can be more energy-saving if the problems are
very complex and require long execution times. As a consequence, various indicators such
as problem complexity, current battery level, connectivity etc. could further influence
the energy consumption. In our testbed, the Lego Mindstorms EV3 only provides us
with information on the open load voltage. The measurement of the battery level from
the open load voltage is very unreliable. Therefore, an accurate comparison between the
different approaches is not feasible. We have done some experiments with the battery
level on the robot, but a good comparison is not possible. In different runs with similar
problems and similar execution time, the battery level does not drop in a traceable and
deterministic way. Because of this, we will only evaluate our solution with a simplified
energy model in the energy-aware mode at the end of this chapter.

The model we use in our evaluation for energy consumption is specified as follows, where
e(p) is the function with the parameter p as the provided SMT problem.

e(p) =
�

normalised size of p, if p is offloaded
normalised complexity of p, if p is executed locally

We are aware that this model may have two limitations. First, we use our sophisticated
reinforcement learning approach for a simple minimum condition. However, that shows
that our proposed system can also be used in environments with very simple reward

69

6. Evaluation

functions. Second, the model is an abstract model that aims to approximate actual
energy consumption costs in practice, and that (i) loss of accuracy is unavoidable, (ii)
adaptions of the model may be required to account for the particularities of different
connectivity technologies.

Traffic - Time/Energy and Traffic-Aware Mode

Our implementation makes it possible to combine multiple metrics. Offloading is not free
of charge. There are costs for the bandwidth and also costs for hosting and calling the
services. The cloud service, for example, could operate on a “charge per request” model.
More specifically, the execution of SMT requests could be offered as a function-as-a-service
(FaaS) using serverless computing [BCC+17]. Accordingly, a traffic-aware mode makes
sense where the goal is to reduce the costs by reducing the volume of traffic. However,
only a traffic-aware mode is not really useful, as the solution would be to never offload
and thus reduce the traffic to zero. But it would make sense to combine the traffic-aware
mode with the time-aware ore energy-aware mode presented above. So on the one hand
we want to minimise the energy consumption or the time needed and on the other hand
we want to reduce the generated traffic. Our algorithm would have to find some trade-offs,
as the objectives conflict with each other, and it is not possible to optimise for one
without compromising the other.

6.4 Experiment Results
In this section, we present the results of the different approaches. We want to stress a
few points in advance that are relevant in the results. The execution time of the SMT
formulae is not deterministic. For multiple runs, we get small differences. Therefore, we
take the average of several problems over several runs. As our testbed is installed in a
real environment, the latencies between the different runs may vary slightly.

6.4.1 Analysis of Comparison without Robot
In this section we focus on the results without the robot: Figure 6.11 compares all the
different approaches with different latencies and Figure 6.12 illustrates the average results
across all latencies.

In the following, we point out some details. The start and the end of problem-solving is on
a DED, i.e. the results are based on the start and the end timestamps taken on the DED.
The simulated latency is added between the DED and all the cloud instances. Figure
6.11 illustrates that the cloud only approach always increases linearly with additional
latency. The results point out that the performance of the DED only approach is always
the same and is independent of the additional latency.

Simple Problem Set: The focus is on the graph at the top left in Figure 6.11.
Offloading makes no sense, so the best solution is always to solve on the DED. From the
graph we can see that results of Q-Learning, DQN and DED only are almost the same.

70

6.4. Experiment Results

It can be seen in Figure 6.12 that the DQN approach performs slightly worse on average
than the DED Only and Q-Learning approaches. The reason for this is the overhead due
to the use of the neural network, which is not compensated in this set.

Medium Problem Set: The focus is on the graph at the top right in Figure 6.11. If
the latency is very low (0ms additional latency), offloading make sense. In the other
cases, it is the better choice to solve the problems on the DED. The DQN approach
can better classify the complexity of the problems, and therefore the results for 0ms
additional latency are better than the Q-Learning approach. Also on average across all
medium problems, the DQN approach is the best solution.

Hard Problem Set: The focus is on the graph at the bottom left in Figure 6.11. For
additional latency up to 200ms, offloading is the better choice. For more than 200ms,
solving on the DED is the better choice. The cause for that is that the problems of
the hard problem set are more complex and need more computational power, which is
provided better by the cloud instances compared to the Raspberry Pi. However, if the
latency and thus the additional response time is higher, solving on the DED is the better
choice. With 100ms additional latency, the DQN approach is worse than the cloud only
and Q-Learning approaches. The reason for this could be, on the one hand, that the
latencies in these runs differed a bit (see general remarks above). On the other hand,
due to the non-deterministic execution time of the problems, the accuracy of the model
used might not be good enough to choose the best options in this scenario. But for
other settings (e.g. 0ms) the DQN approach is better than the Q-Learning approach, but
moderately worse than the cloud only approach due to the additional overhead.

Mixed Problem Set: The focus is on the graph at the bottom right in Figure 6.11. We
can see that the results are quite similar to the medium problem set, which is reasonable
as it contains problems of the simple, the medium and the hard problem sets.

In general (Figure 6.12), we see that our approaches (including some intelligence like
Q-Learning or DQN) always choose the optimal decision between offloading and solving
on the DED. We also see that the DQN approach is the best solution.

6.4.2 Analysis of Comparison with Robot
In this section we focus on the results with the robot: Figure 6.13 compares all the
different approaches with different latencies and Figure 6.14 illustrates the average results
across all latencies.

In the following, we point out some details. The start and the end of problem-solving is
on the robot, i.e. the results are based on the start and the end timestamps taken on the
robot. The simulated latency is added between the robot and all DEDs. Figure 6.13 show
that the cloud only and DED only approach always increases linearly with additional
latency. The results point out that the performance of the robot only approach is always
the same and is independent of the additional latency. An important piece of information
is that we omit the results of the robot only approach for the sets, as the average time

71

6. Evaluation

0 100 200 300 400
0

0.5

1

1.5

2

Additional latency (ms)

Av
er

ag
e

tim
e

ne
ed

ed
pe

r
re

qu
es

t
(s

) Simple Problem Set - without robot

0 100 200 300 400

1

1.5

2

2.5

3

Additional latency (ms)
Av

er
ag

e
tim

e
ne

ed
ed

pe
r

re
qu

es
t

(s
) Medium Problem Set - without robot

0 100 200 300 400
1

1.5

2

2.5

3

3.5

Additional latency (ms)

Av
er

ag
e

tim
e

ne
ed

ed
pe

r
re

qu
es

t
(s

) Hard Problem Set - without robot

0 100 200 300 400
0.5

1

1.5

2

2.5

Additional latency (ms)

Av
er

ag
e

tim
e

ne
ed

ed
pe

r
re

qu
es

t
(s

) Mixed Problem Set - without robot

DED Only without Robot
Cloud Only without Robot

Q-Learning on DED + Cloud without Robot
DQN on DED + Cloud without Robot

Figure 6.11: Comparison without Robot

72

6.4. Experiment Results

0 0.5 1 1.5 2 2.5

Simple

Medium

Hard

Mixed

All

0.172

1.017

1.946

0.832

0.992

0.166

1.027

1.944

0.894

1.008

1.251

1.901

2.222

1.702

1.769

0.167

1.085

2.385

0.977

1.154

Average time needed per request (s)

DED Only without Robot
Cloud Only without Robot

Q-Learning on DED + Cloud without Robot
DQN on DED + Cloud without Robot

Figure 6.12: Comparison of all latencies (on average) - without robot

needed per request is much higher, which would negatively affect the visualisation of
the diagram. In particular, the robot only approach achieves 5.058, 46.254, 104.176 and
46.045 seconds in average per request for the simple, medium, hard and mixed problem
sets, respectively. Mainly, there is not much difference between DQN and Q-Learning
approach on the DEDs, as the latency only differs between the robot and the DEDs and
not between the DEDs and the cloud. The differences here are illustrated and described
above.

Simple Problem (refcount38.smt2): The focus is on the graph at the top centre
in Figure 6.13. This problem has very low complexity and only in this diagram we add
the execution time on the robot. This figure illustrates an example where it is better to
solve the problems on the robot than to offload them. The performance of the DED only
and the cloud only approach is very similar, as the problem is very simple.

Simple Problem Set: The focus is on the graph at the top left in Figure 6.13. The
simple set contains some very simple problems (like refcount38.smt2, described above).

73

6. Evaluation

From about 100ms additional latency, it is, therefore, better for some problems to solve
them on the robot. All of our approaches learn this behaviour and make the optimised
decision. In this case, cloud only approach is slightly worse than DEDs only for the
following reasons: 1. the problems are very simple and can be solved very fast on the
DEDs, 2. the natural latency between the robot and the cloud is worse than the natural
latency between the robot and the DEDs. In general, Q-Learning and DQN on the DEDs
lead to additional overhead that can not be compensated for problems from the simple
problem set. This causes a bit worse results when there is an additional decision making
approach on the DEDs.

Medium Problem Set: The focus is on the graph at the top right in Figure 6.13.
Offloading from the robot is always the best option. The problems are more complex
(compared to the simple problem set), therefore cloud only is better than DED only. In
contrast to the simple problem set the additional decision making on the DEDs pays off
and therefore these approaches perform better than only Q-Learning on the robot.

Hard Problem Set: The focus is on the graph at the bottom left in Figure 6.13.
Offloading from the robot is always the best option. The problems are more complex
(compared to the simple problem set) therefore cloud only is better than DED only. The
problems are in most cases offloaded to the cloud, so cloud only and decision making on
the DEDs are the best options and very similar.

Mixed Problem Set: The focus is on the graph at the bottom right in Figure 6.13.
In most cases, offloading from the robot is the best option (except for some very simple
problems like refcount38.smt2). For some problems the best option is to solve on the
robot, for some problems to solve on the DEDs and for some on the cloud instances.
Therefore, Q-Learning on the robot + decision making on the DEDs performs best.

In general, all the diagrams show that our approaches always make the optimal decision
between offloading and solving on the DED or on the robot. We also see that DQN and
Q-Learning on the DEDs are principally very similar, as the latency is stable, and we
cannot take advantage of the decision making with DQN as shown above.

6.4.3 Analysis of Energy-Aware Mode Results
Since, the energy-aware mode only makes sense on the robot, as the other devices in our
experiment setup have a continuous power supply, we will only compare the following three
configurations: Robot Only, DEDs Only, Q-Learning on Robot + DEDs. For the reason
of simplification, we do not consider energy costs on the devices with a continuous power
supply, although our model would easily allow that. We also omit the configuration Cloud
Only, as this is identical to DEDs Only from a device energy consumption perspective.
Figure 6.15 shows the comparison of the three configurations mentioned above. The
energy needed is defined with the model we introduced in 6.3.3. The bars show the sum
of all problems in the simple, medium, hard and mixed problem sets. When using our
system, the decision making module opts for a minimum of needed energy from the local
execution and offloading, resulting in lower overall energy consumption. We also see

74

6.4. Experiment Results

0 100 200 300 400

0.5

1

1.5

2

2.5

Additional latency (ms)

Av
er

ag
e

tim
e

ne
ed

ed
pe

r
re

qu
es

t
(s

) Simple Problem (refcount38.smt2)

0 100 200 300 400
0.5

1

1.5

2

2.5

Additional latency (ms)

Av
er

ag
e

tim
e

ne
ed

ed
pe

r
re

qu
es

t
(s

) Simple Problem Set

0 100 200 300 400

1.5

2

2.5

3

3.5

4

Additional latency (ms)

Av
er

ag
e

tim
e

ne
ed

ed
pe

r
re

qu
es

t
(s

) Medium Problem Set

0 100 200 300 400

2

3

4

5

Additional latency (ms)

Av
er

ag
e

tim
e

ne
ed

ed
pe

r
re

qu
es

t
(s

) Hard Problem Set

0 100 200 300 400

1.5

2

2.5

3

3.5

Additional latency (ms)

Av
er

ag
e

tim
e

ne
ed

ed
pe

r
re

qu
es

t
(s

) Mixed Problem Set

Robot Only
DEDs Only
Cloud Only

Q-Learning on Robot + DEDs
Q-Learning on Robot + Q-Learning on DEDs + Cloud

Q-Learning on Robot + DQN on DEDs + Cloud

Figure 6.13: Comparison with robot

75

6. Evaluation

1 1.5 2 2.5 3 3.5 4 4.5

Simple

Medium

Hard

Mixed

All

1.301

2.504

2.933

2.108

2.212

1.277

2.515

2.934

2.112

2.209

1.239

2.773

4.164

2.465

2.66

1.718

2.625

2.927

2.247

2.379

1.631

2.814

4.353

2.63

2.857

Average time needed per request (s)

DEDs Only
Cloud Only

Q-Learning on Robot + DEDs
Q-Learning on Robot + Q-Learning on DEDs + Cloud

Q-Learning on Robot + DQN on DEDs + Cloud

Figure 6.14: Comparison of all latencies (on average) - with robot

76

6.5. Use Case: Path Planning for Fog-Supported Robots

0 5 10 15

Simple

Medium

Hard

Mixed

0.7

2.156

5.809

2.814

1.31

4.695

8.665

5.37

0.731

3.708

10.501

4.984

Energy needed
Robot Only
DEDs Only

Q-Learning on Robot + DEDs

0 50 100 150

Simple

Medium

Hard

Mixed

87.14%

117.76%

70.57%

90.83%

4.42%

71.99%

80.77%

77.11%

Energy needed
Relative Gain to Robot Only
Relative Gain to DEDs Only

Figure 6.15: Comparison with energy-aware mode

that for the simple and the medium problem set, it is better to solve locally, and for
hard problems, it is better to offload. In most cases, the size of the problems and the
complexity correlates, but there are also exceptions where the description (the file size)
is large, but the problem is not that complex and vice versa. On the left, the increase
in energy cost as a percentage of the cost of the Q-Learning mechanism are shown. We
see that the gains are significant, and e.g. for the medium set we can reduce the needed
energy by more than half.

Figure 6.16 shows a comparison of the energy needed for all problems of all sets with
the different approaches. The total is the sum of the energy for all problems from all
sets with the three different approaches, i.e. it is the energy needed for three times the
amount of problems. The figure presents the ratios of the energy consumed by each
approach to the total energy consumed across all experiments.

6.5 Use Case: Path Planning for Fog-Supported Robots
In this section, we present a real use case in the field of fog robotics and show a 360-degree
end-to-end view of our system, where a problem is translated into an SMT formula,
processed by our system and the result is utilized by a robot. We create a planning
problem based on a Hamiltonian path, which is a well-known problem in the mathematical
field of graph theory.

77

6. Evaluation

Q-Learning on Robot + DEDs

22.31%
Robot Only

38.73%

DEDs Only

38.96%

Figure 6.16: Energy needed per approach

A Hamiltonian path, also called a Hamilton path, is a graph path between
two vertices of a graph that visits each vertex exactly once. If a Hamiltonian
path exists whose endpoints are adjacent, then the resulting graph cycle is
called a Hamiltonian cycle (or Hamiltonian cycle) [Wei03].

The Hamiltonian path problem is NP-complete, and it follows that the problem can be
reduced in polynomial time to a satisfiability problem which can be solved by an SMT
solver efficiently.

The search for a Hamiltonian cycle may appear in multiple real applications; consider
a contemporary warehouse where a robot operates. A simple application scenario is a
warehouse with a robot. The robot receives a continuous stream of commands, each
containing a set of items (e.g., construction materials) to pick up and carry them to its
base. Each material/item is placed at a fixed location. These materials represent the
vertices, and the ways between them represent the edges. The robot should not pick
up materials twice, and therefore every vertex should be visited only once, leading to a
Hamiltonian path problem. This scenario could be extended with more constraints like
different edges having different costs and so on, but for the sake of simplicity we present
the simplest form. The robot is required to end its route with the starting point again,
and therefore we formulate a Hamiltonian cycle problem dynamically. Each command is
translated to an SMT formula, whose satisfiability checking will result in a solution to
the specific Hamiltonian cycle problem instance. In turn, this solution is translated to a
sequence of low-level instructions for the robot, so that the latter implements the derived
route.The stream of commands therefore represents our SMT workload, which is possible
to execute on the robot, on top of dedicated edge devices, or in the cloud, according
to a decision made dynamically – on a per-command basis – by our SMT-as-a-Service
framework.

78

6.5. Use Case: Path Planning for Fog-Supported Robots

6.5.1 Hamiltonian Cycle in SMT-LIB Format
Since our system requires the input in SMT-LIB format, we need to develop a mechanism
to translate a Hamiltonian cycle problem into an SMT formula in SMT-LIB format. It is
essential that the procedure is independent of the environment and the robot is able to
find Hamiltonian cycles for different graphs.

Listing 6.1 shows how to populate a file in SMT-LIB format that encodes a Hamiltonian
cycle problem based on a graph. The input graph has the format of a Python dictionary,
where each key is a vertex in the graph and the value is a list of adjacent vertices, e.g.
0:[1,2], 1:[2], 2:[1,0], which means that there are three vertices 0, 1, 2 and e.g. 0
has 1 and 2 as neighbours. In line 2 we set the option to produce models when solving
the formulae, as we use the model to move the robot. Line 3 shows the used logic, namely
QF_LIA which stands for quantifier-free linear integer arithmetic.

The logic involved is as follows. We generate a list of Int constants and assert that
the first vertex (v0) is 0. Then we pick a vertex i, and attempt to number all vertices
reachable from i in such a way that they have a number that is one higher (modulo the
number of vertices) than the one assigned to the vertex i (we use an OR constraint for
this). A resulting constraint could look like the example below, where 8 is the number of
vertices and v1 and v3 are adjacent vertices of v0.

((assert (or(= v1 (mod (+ v0 1) 8))(= v3 (mod (+ v0 1) 8))))

The last two lines show that we are checking for satisfiability, and if this is the case, we
want to obtain a model that satisfies all assertions. Two complete examples based on the
use case below can be found in the Appendix B.

1 def fill_temporary_file(graph, temp_file):
2 temp_file.writelines("(set-option :produce-models true)\n")
3 temp_file.writelines("(set-logic QF_LIA)\n")
4 number_of_vertices = len(graph)
5 for i in range(number_of_vertices):
6 declaration = "(declare-const v" + str(i) + " Int)\n"
7 temp_file.writelines(declaration)
8 temp_file.write("(assert (= v0 0))\n")
9 for i in range(number_of_vertices):

10 or_conditions = ""
11 for j in graph.get(i):
12 or_conditions = or_conditions + "(= v" + str(j) +
13 " (mod (+ v" + str(i) + " 1) " + str(
14 number_of_vertices) + "))"
15 if or_conditions != "":
16 or_assert = "(assert (or" + or_conditions + "))\n"
17 temp_file.writelines(or_assert)
18 temp_file.writelines("(check-sat)\n")
19 temp_file.writelines("(get-model)\n")

Listing 6.1: Fill SMT-LIB file for Hamiltonian Cycle Problem

79

6. Evaluation

6.5.2 Moving on a Grid
For the sake of simplicity, we let the robot move only in four directions: (i) right, (ii)
left, (iii) up and (iv) down. The robot knows a grid structure with coordinates and is
able to move to specific coordinates. In Listing 6.2 we show how the robot moves to a
destination represented with coordinates. The solution (the model) from the SMT solver
is parsed to get a sequence of vertex IDs (the path) which is translated to actual grid
elements. Then, for each stop (defined by a starting point and a destination) in the path,
the function move_to presented in Listing 6.2 is called so that the robot moves from the
starting node to the destination. The variable coordinates is a dictionary where the
key is the number of the vertex and the value is a tuple representing the coordinates
of the vertex (the grid elements). The invoked functions call the robot API and turn
on the motor for a specific number of seconds to move forward/backward or to change
the direction of the robot (see details in Listing 6.3). The robot only knows two “view
directions” and for moving left and up the speed is negative, leading the robot to move
backwards.

1 def move_to(starting_point, destination, view_direction):
2 destination_coordinates = coordinates.get(destination)
3 starting_point_coordinates = coordinates.get(starting_point)
4 move_action = (destination_coordinates[0]
5 - starting_point_coordinates[0],
6 destination_coordinates[1]
7 - starting_point_coordinates[1])
8 if move_action[0] != 0:
9 if view_direction == ’right’:

10 change_direction_to_down()
11 move(move_action[0])
12 view_direction = ’down’
13 if move_action[1] != 0:
14 if view_direction == ’down’:
15 change_direction_to_right()
16 move(move_action[1])
17 view_direction = ’right’
18 return view_direction

Listing 6.2: The move to logic of the robot

In our use case, we assume a fixed grid and choose a constant speed. Based on the speed
and the distances between the stops, we determine how long the motor must be active
(see Listing 6.3). In a real-world deployment scenario, it is also realistic to start from a
fixed terrain and create an initial configuration on which to base the robot’s movements.
Some robots (also Lego Mindstorms EV3) offer a more high-level API, that only needs
the distance and the speed or the rotation angle as parameters, which has the advantage
that the duration of how long the motor has to be active does not have to be specified.
However, in this use case, we use the low-level interfaces. For simplicity, however, we
focus on simple grid structures, as very general and complex floor plans would go beyond
the scope.

80

6.5. Use Case: Path Planning for Fog-Supported Robots

1 TURN_SPEED = 10
2 MOVE_SPEED = 40
3
4 def move(value):
5 forward = 1
6 if value < 0:
7 forward = -1
8 motor.on_for_seconds(left_speed=MOVE_SPEED * forward,
9 right_speed=MOVE_SPEED * forward, seconds=abs(value))

10
11 def change_direction_to_right():
12 motor.on_for_seconds(left_speed=TURN_SPEED * -1,
13 right_speed=TURN_SPEED * -1, seconds=1.5)
14 motor.on_for_seconds(left_speed=0,
15 right_speed=TURN_SPEED, seconds=3)
16 motor.on_for_seconds(left_speed=TURN_SPEED * -1,
17 right_speed=0, seconds=0.35)
18
19 def change_direction_to_down():
20 motor.on_for_seconds(left_speed=TURN_SPEED * -1,
21 right_speed=TURN_SPEED * -1, seconds=1.5)
22 motor.on_for_seconds(left_speed=TURN_SPEED,
23 right_speed=0, seconds=3)
24 motor.on_for_seconds(left_speed=0,
25 right_speed=TURN_SPEED * -1, seconds=0.35)

Listing 6.3: Move logic of robot

6.5.3 Experiment
In this section, we feature two experiment setups representing the general use case. In
Section 6.5.1 we presented how to translate the path problem into an SMT formula and
in Section 6.5.2 we showed how to make the robot move. Figure 6.17 shows an abstract
version of our use case. In Figure 6.17a a simple version with 8 vertices and in Figure
6.17b a more complex version with 16 vertices is illustrated. The robot starts at vertex 0
and the underlying idea is that each vertex has some materials placed that need to be
collected.

Figure 6.18 shows the real Lego Mindstorms EV3 in a miniaturised warehouse terrain
grid. Again, on the left side, Figure 6.18a illustrates the simple version and Figure 6.18b
the complex one. Here we need to distinguish a bit between the structures. To reuse the
tape on the floor, in the simple version the squares represent the vertices (e.g. the robot
is placed in a square representing a vertex in the figure) and in the complex version, the
crosses of the tape represent the vertices (e.g. the robot is placed on a cross representing
a vertex in the figure). We set the graphs from Figure 6.17 as the input graphs, and
the SMT problem is generated by the robot with the function presented in Section 6.5.1.
The input graph is arranged as a grid in both cases. After that, the problem is passed
to our proposed system and processed properly. Since there exists a solution for the
Hamiltonian cycle problem, a model (a path) is returned, which is then further processed

81

6. Evaluation

(a) Simple

(b) Complex

Figure 6.17: Use case - Abstract

by the robot’s motion module. This scenario could be further extended with additional
constraints or further SMT problems during the robot’s motion, but for simplicity, we
stick to these problems.

(a) Simple (b) Complex

Figure 6.18: Use case - Real World

In these experiments, we do not simulate latency and compare only Robot Only, DEDs
Only, and Q-Learning on Robot + DEDs, as we focus on the use case rather than the
benchmarks previously presented.

Figure 6.19 and Figure 6.20 illustrate the results of our experiments. On the left, we
compare the three approaches Robot Only, DEDs Only and Q-Learning on Robot +
DEDs including the generation of the SMT problem, the processing and the movement of
the robot based on the result of the processing. The experiments on the right show the
average of five Hamiltonian cycle problems without problem generation and movement

82

6.6. Summary

Robot Only

DEDs Only

Q-Learning on Robot + DEDs

76

78

80

82

84

86 85.2

76.26 76.19

T
im

e
ne

ed
ed

pe
r

re
qu

es
t

(s
)

Including Movement

Robot Only

DEDs Only

Q-Learning on Robot + DEDs
0

2

4

6

8 7.6

0.77 0.76

Av
er

ag
e

tim
e

ne
ed

ed
pe

r
re

qu
es

t
(s

)

Without Movement

Figure 6.19: Use Case Simple - Experiment Results

of the robot. We see that offloading to the DED is the best option for both the simple
and the complex problem, and therefore our approach achieves similar results as DEDs
Only. Our mechanism thus is shown to select the best of the available strategies. In more
general and complex settings, as we have demonstrated in Section 6.4, it is reasonable to
expect that our RL-based mechanism would effectively balance between on-device, edge,
and cloud workload execution.

6.6 Summary
The results of all our experiments have further strengthened our hypothesis of the
necessity and the performance enhancement of the proposed system that processes SMT
workload in a dynamic and adaptive way. The experiments show that solving problems
always on the robot is only a good choice for very simple problems. When we do not
include the robot in our configurations, we can see from Figure 6.12 that the Q-Learning
approach used on the DED improves the performance by 12.65% compared to the DED
only approach and could save 43.02% of the required time compared to the cloud only
approach. Our experiments confirm that the DQN approach performs slightly better
compared to the Q-Learning approach by a factor of 1.02. It must be pointed out that
these decision strategies also cause an additional overhead, which is amortised in our
experiments. The results shown in Figures 6.15 and 6.16 support that our system also
improves the performance based on other goals and in particular energy costs by around
42% compared to robot only or DEDs only. Another finding is that the resources of the
devices and the complexity of the problems are the driving indicators for decision making.

83

6. Evaluation

Robot Only

DEDs Only

Q-Learning on Robot + DEDs

150

200

250

300

350
319.41

148.25 148.68

T
im

e
ne

ed
ed

pe
r

re
qu

es
t

(s
)

Including Movement

Robot Only

DEDs Only

Q-Learning on Robot + DEDs

0

50

100

150

200 171.23

2.66 2.58

Av
er

ag
e

tim
e

ne
ed

ed
pe

r
re

qu
es

t
(s

)

Without Movement

Figure 6.20: Use Case Complex - Experiment Results

“Path Planning for Fog-Supported Robots” underlines the advantages, and shows that
our system is able to select the optimal solution for specific use cases.

84

CHAPTER 7
Conclusion

This thesis has given an account of the fundamentals of computational offloading, rein-
forcement learning and SMT. The overarching theme of the present work was to combine
these areas. Additionally, in the literature review summarised in Chapter 3, we found
several systems that could benefit from the approach presented. In this work, we have
shown a proof of concept implementation of an architecture for dynamic and adaptive
SMT workload serving. We have furthermore outlined that our system can be used in
multiple environments and can be extended to support other reward modes. Besides
the adaptability using reinforcement learning, our system is also flexible enough to
support other decision making mechanisms. Additionally, our design, implementation
and evaluation results fulfil the requirements we specified in Section 4.1. Furthermore,
we have shown multiple deployment scenarios for our system, spanning over the entire
device-to-cloud continuum. Additionally, we presented a concrete use case, in the form of
path planning for fog-supported robots. Finally, we provided an analysis of the different
scenarios and the corresponding experiment results.

7.1 Adherence to Design Requirements
When considering the requirements we specified in Section 4.1 and the final result achieved,
we can observe the following

• Resource-constrained devices: The benchmarks in Chapter 6 show deployment
scenarios using resource-constrained devices, such as Lego Mindstorms EV3 and
single-board computer like Raspberry Pi’s. This acts as a proof that our system is
also usable in such constrained environments.

• Multiple Decision Modules: In our PoC system (see Chapter 5) and the
evaluation (see Chapter 6), we show the possibility of different decision approaches

85

7. Conclusion

on different devices. Therefore, the best fitting engine, depending on the resources,
can be deployed on each device. Moreover, our modularised design (see Chapter 5)
allows the integration of further decision making mechanisms in the future, without
significant engineering effort for the integration with the rest of the framework.

• Configuration: Our PoC implementation shows that very little configuration is
needed. Moreover, some parts of the configuration can be reused across all instances
and only some small parts must be adapted for each device.

7.2 Revisiting Research Questions
In this section, we will revisit the three research questions we presented in the introduction
(see Chapter 1.2). We attempt to answer them directly or refer to the parts of our work
where we answer them and highlight the results here again.

RQ. 1: How to architecturally support SMT workloads in the
device-to-cloud continuum?

In Chapter 4 we have devised a system architecture for dynamic and adaptive SMT
workload serving in the device-to-cloud continuum. We later implement the software
architecture in Chapter 5. It is important to create an architecture that is as independent
as possible from the concrete underlying setting. Therefore, we use state-of-the-art
technologies in the implementation, i.e. HTTP for communication between distributed
instances of the system. Where the system allows, we also rely on containerisation, im-
plying an easier and more independent deployment. As we are looking for an architecture
in the device-to-cloud continuum, we created a distributed system where the instances of
the architecture are stretching over the entire compute continuum. That means the SMT
workload can be handled on each layer, i.e. there are instances on the edge, the fog and
the cloud. The open question is how to choose the best option to execute the workload
resulting in the transition to the next research question.

RQ. 2: How to provide offloading decision support for the evaluation of
SMT formulae in specific deployment setups and concrete goals?

The support depends on the goal that is being pursued. Our solution is modular and
configurable, i.e. the goals can be configured depending on the deployment setup and
the requirements of the operator. Based on that, the indicators for offloading decision
support are defined. This flexible way is enabled by the usage of reinforcement learning,
where the actor (in our case the decision maker) is able to learn based on the environment
(in our case the deployment setup) and rewards (in our case the concrete goals). We
found during the experiments that the problem complexity is a very significant indicator
of decision making, applying to all the goals we outlined in our work. As we focus on
the goal of reducing response time in our experiments, besides the problem complexity,
latency is another important input needed for the reinforcement learning actor. We

86

7.3. Limitations and Future Work

answer why we use reinforcement learning as the strategy for decision making in Section
4.2.3 and present the details of the concrete implementation in Section 5.4. Additionally,
we provide a comprehensive summary of the reinforcement learning fundamentals in
Section 2.3.2.

RQ. 3: How can different decision making strategies improve the
performance of SMT formulae evaluation within edge settings?

Our findings in Section 6.4 show the improvements in the performance of our decision
making strategies using reinforcement learning compared to baseline approaches like a
cloud only one. The different edge settings are given by simulating latency and evaluating
multiple problems with different complexities. The most remarkable result to emerge
from the experiments is that comparing across all problem sets the decision making
strategies using reinforcement learning can improve the results by 43.02% comparing
Q-Learning and cloud only and 43.92% comparing DQN and cloud only (see Figure 6.12).

7.2.1 Key Takeaways
We have contributed a framework and mechanisms to support the execution of SMT
workloads as a service at the edge and beyond.

1. Reinforcement learning provides flexible and adaptive support for decision making
in computational offloading.

2. The problem complexity of SMT formulae is a very important indicator for decision
making, as this influences the runtime massively.

3. The cost of invoking SMT solvers on very resource-constrained devices is lower
only for high latencies to offloading instances and simple problems (in respect to
complexity) with the goal of time efficiency.

4. The decision making approach creates additional overhead, but this definitely
amortises in changing edge environments.

7.3 Limitations and Future Work
There are a number of parts in our system which could be extended and improved
in future work. One area is the deployment strategy. Of course, this depends on the
environment in which our proposed system is installed. If the number of devices where the
problems are created is increasing, more focus must be set on scalability. As we provided
dockerised parts of our system, this could be realised with a container orchestration
technology like Kubernetes. Furthermore, the deployment could be more automated to
reduce the number of manual steps with tools like Ansible.

87

7. Conclusion

In our evaluation and PoC we concentrate on time efficiency (and simplified energy
efficiency) of solving problems. Of course, other metrics like traffic-costs, more realistic
energy consumption models etc. could be useful, which would lead to the need for a new
reward/penalty model for our decision making strategy. This would also result in other
input parameters and state information. However, our solution is implemented in a way,
that such an extension should not be a big deal.

Another limitation is that we use an “oracle” for the complexity of SMT formulae. This
“oracle” is based on preconfigured constant values. For new problems, we always need to
add constants and classify the new problems. A more flexible solution or a solution that
is more independent of the complexity of the problems is conceivable here.

The communication mechanism is based on REST, which results in synchronous com-
munication as the sender waits for the response. There is the question of what happens
to the REST API when a request takes a long time, which is a valid concern for
computation-heavy SMT formulae. This problem can be solved in a number of ways,
which is potentially future work. One could be to provide an additional endpoint where
the status of the evaluation can be queried instead of maintaining the connection open.
This means we post the problem to an endpoint that provides a callback where we can get
the solution (or the status information that the problem has not been evaluated) instead
of waiting for the result. We could also switch to a completely different mechanism like
publish-subscribe, however, the most appropriate approach can be application-specific.

88

APPENDIX A
Data Sets

In the following we list the different data sets and the files used in the present work.
They have the form (name: link).

A.1 Simple Data Set

1. 1_1.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-bench
marks/QF_LRA/-/blob/master/2019-ezsmt/robotics/1_1.smt2

2. b161test0003.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB
-benchmarks/QF_ABV/-/blob/master/bench_ab/b161test0003.smt2

3. cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers–regulator–
isl6271a-regulator.ko-main.cil.out.c.smt2: https://clc-gitlab.cs.uiowa.
edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachec
ker-induction-svcomp14/cpachecker-induction.32_7a_cilled_t
rue-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271
a-regulator.ko-main.cil.out.c.smt2

4. double_req_bl_0330a_true-unreach-call.c_2.smt2: https://clc-gitlab.c
s.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20
190429-UltimateAutomizerSvcomp2019/double_req_bl_0240a_tru
e-unreach-call.c_5.smt2

5. storeinv_invalid_t3_pp_sf_ai_00004_001.cvc.smt2: https://clc-gitlab.c
s.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFLIA/-/blob/maste
r/storeinv/storeinv_invalid_t3_pp_sf_ai_00004_001.cvc.smt2

6. RND_3_5.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-b
enchmarks/LRA/-/blob/master/scholl-smt08/RND/RND_3_5.smt2

89

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LRA/-/blob/master/2019-ezsmt/robotics/1_1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LRA/-/blob/master/2019-ezsmt/robotics/1_1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_ABV/-/blob/master/bench_ab/b161test0003.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_ABV/-/blob/master/bench_ab/b161test0003.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachecker-induction-svcomp14/cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271a-regulator.ko-main.cil.out.c.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachecker-induction-svcomp14/cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271a-regulator.ko-main.cil.out.c.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachecker-induction-svcomp14/cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271a-regulator.ko-main.cil.out.c.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachecker-induction-svcomp14/cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271a-regulator.ko-main.cil.out.c.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachecker-induction-svcomp14/cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271a-regulator.ko-main.cil.out.c.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/double_req_bl_0240a_true-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/double_req_bl_0240a_true-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/double_req_bl_0240a_true-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/double_req_bl_0240a_true-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFLIA/-/blob/master/storeinv/storeinv_invalid_t3_pp_sf_ai_00004_001.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFLIA/-/blob/master/storeinv/storeinv_invalid_t3_pp_sf_ai_00004_001.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFLIA/-/blob/master/storeinv/storeinv_invalid_t3_pp_sf_ai_00004_001.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LRA/-/blob/master/scholl-smt08/RND/RND_3_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LRA/-/blob/master/scholl-smt08/RND/RND_3_5.smt2

A. Data Sets

7. swap_invalid_t3_np_nf_ai_00010_007.cvc.smt2: https://clc-gitlab.cs.
uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap
/swap_invalid_t1_np_nf_ai_00004_002.cvc.smt2

8. refcount38.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-b
enchmarks/AUFDTLIA/-/blob/master/20172804-Barrett/fmf-cav2
013/refcount/refcount38.smt2

9. slent_kaluza_201_sink.smt2: https://clc-gitlab.cs.uiowa.edu:2443
/SMT-LIB-benchmarks/QF_SLIA/-/blob/master/2019-Jiang/slent
/slent_kaluza_201_sink.smt2

10. float_req_bl_0877_true-unreach-call.c_0.smt2: https://clc-gitlab.cs.ui
owa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/201904
29-UltimateAutomizerSvcomp2019/float_req_bl_0877_true-unre
ach-call.c_0.smt2

11. javafe.ast.FieldDecl.149.smt2: https://clc-gitlab.cs.uiowa.edu:2443
/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.
FieldDecl.149.smt2

12. swap_invalid_t1_np_nf_ai_00004_002.cvc.smt2: https://clc-gitlab.cs.
uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap
/swap_invalid_t1_np_nf_ai_00004_002.cvc.smt2

13. contraposition-1.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-L
IB-benchmarks/UF/-/blob/master/20201221-induction-by-refle
ction-schoisswohl/reflectiveConjecture/contraposition-1.sm
t2

14. R509-011__higher_order_proof__why_c5e835_sparkmnhigher_ordermnfold-T-
defqtvc__00.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB
-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark201
4bench/R509-011__higher_order_proof__why_896899_sparkmnhigh
er_ordermnfold-T-defqtvc__00.smt2

A.2 Medium Problem Set

1. RND_6_39.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB
-benchmarks/LRA/-/blob/master/scholl-smt08/RND/RND_6_39.sm
t2

2. mutex1.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-ben
chmarks/QF_LIA/-/blob/master/2019-cmodelsdiff/mutualExclus
ion/mutex1.smt2

90

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap/swap_invalid_t1_np_nf_ai_00004_002.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap/swap_invalid_t1_np_nf_ai_00004_002.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap/swap_invalid_t1_np_nf_ai_00004_002.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFDTLIA/-/blob/master/20172804-Barrett/fmf-cav2013/refcount/refcount38.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFDTLIA/-/blob/master/20172804-Barrett/fmf-cav2013/refcount/refcount38.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFDTLIA/-/blob/master/20172804-Barrett/fmf-cav2013/refcount/refcount38.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA/-/blob/master/2019-Jiang/slent/slent_kaluza_201_sink.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA/-/blob/master/2019-Jiang/slent/slent_kaluza_201_sink.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA/-/blob/master/2019-Jiang/slent/slent_kaluza_201_sink.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/float_req_bl_0877_true-unreach-call.c_0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/float_req_bl_0877_true-unreach-call.c_0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/float_req_bl_0877_true-unreach-call.c_0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/float_req_bl_0877_true-unreach-call.c_0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.FieldDecl.149.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.FieldDecl.149.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.FieldDecl.149.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap/swap_invalid_t1_np_nf_ai_00004_002.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap/swap_invalid_t1_np_nf_ai_00004_002.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap/swap_invalid_t1_np_nf_ai_00004_002.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UF/-/blob/master/20201221-induction-by-reflection-schoisswohl/reflectiveConjecture/contraposition-1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UF/-/blob/master/20201221-induction-by-reflection-schoisswohl/reflectiveConjecture/contraposition-1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UF/-/blob/master/20201221-induction-by-reflection-schoisswohl/reflectiveConjecture/contraposition-1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UF/-/blob/master/20201221-induction-by-reflection-schoisswohl/reflectiveConjecture/contraposition-1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark2014bench/R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-defqtvc__00.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark2014bench/R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-defqtvc__00.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark2014bench/R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-defqtvc__00.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark2014bench/R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-defqtvc__00.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LRA/-/blob/master/scholl-smt08/RND/RND_6_39.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LRA/-/blob/master/scholl-smt08/RND/RND_6_39.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/LRA/-/blob/master/scholl-smt08/RND/RND_6_39.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIA/-/blob/master/2019-cmodelsdiff/mutualExclusion/mutex1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIA/-/blob/master/2019-cmodelsdiff/mutualExclusion/mutex1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIA/-/blob/master/2019-cmodelsdiff/mutualExclusion/mutex1.smt2

A.3. Hard Problem Set

3. cruise-control.nosummaries.smt2: https://clc-gitlab.cs.uiowa.edu:
2443/SMT-LIB-benchmarks/QF_LIRA/-/blob/master/LCTES/cruise
-control.nosummaries.smt2

4. qlock.induction.7.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-L
IB-benchmarks/QF_ALIA/-/blob/master/qlock2/qlock.induction
.7.smt2

5. javafe.ast.OnDemandImportDecl.275.smt2: https://clc-gitlab.cs.uiowa.
edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/j
avafe.ast.OnDemandImportDecl.275.smt2

6. 099-incremental_scheduling-15631-0.smt2: https://clc-gitlab.cs.uiowa.
edu:2443/SMT-LIB-benchmarks/QF_LIA/-/blob/master/2019-ezsm
t/incrementalScheduling/099-incremental_scheduling-15631-0.
smt2

7. 182.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-bench
marks/BV/-/blob/master/2017-Preiner-psyco/182.smt2

A.3 Hard Problem Set

1. 183.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-bench
marks/QF_SLIA/-/blob/master/2019-full_str_int/py-conbyte_c
vc4/leetcode_int-addStrings/183.smt2

2. splice_true-unreach-call_false-valid-memtrack.i_10.smt2: https://clc-gitl
ab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/abv/-/blob/master/
20190429-UltimateAutomizerSvcomp2019/splice_true-unreach-ca
ll_false-valid-memtrack.i_10.smt2

3. bresenham-ll_valuebound2-O0.smt2: https://clc-gitlab.cs.uiowa.edu:
2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/20210219-Dart
agnan/ReachSafety-Loops/bresenham-ll_valuebound2-O0.smt2

4. s3_srvr.blast.01_false-unreach-call.i.cil.c_0.smt2: https://clc-gitlab.cs.
uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFNIA/-/blob/master/
UltimateAutomizer/s3_srvr.blast.01_false-unreach-call.i.cil.
c_0.smt2

5. 151_gcc.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-ben
chmarks/aufbv/-/blob/master/20210301-Alive2/gcc/151_gcc.smt
2

6. egcd3-ll_valuebound50-O0.smt2: https://clc-gitlab.cs.uiowa.edu:
2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/20210219-Dart
agnan/ReachSafety-Loops/egcd3-ll_valuebound50-O0.smt2

91

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIRA/-/blob/master/LCTES/cruise-control.nosummaries.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIRA/-/blob/master/LCTES/cruise-control.nosummaries.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIRA/-/blob/master/LCTES/cruise-control.nosummaries.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_ALIA/-/blob/master/qlock2/qlock.induction.7.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_ALIA/-/blob/master/qlock2/qlock.induction.7.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_ALIA/-/blob/master/qlock2/qlock.induction.7.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.OnDemandImportDecl.275.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.OnDemandImportDecl.275.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.OnDemandImportDecl.275.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIA/-/blob/master/2019-ezsmt/incrementalScheduling/099-incremental_scheduling-15631-0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIA/-/blob/master/2019-ezsmt/incrementalScheduling/099-incremental_scheduling-15631-0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIA/-/blob/master/2019-ezsmt/incrementalScheduling/099-incremental_scheduling-15631-0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_LIA/-/blob/master/2019-ezsmt/incrementalScheduling/099-incremental_scheduling-15631-0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/BV/-/blob/master/2017-Preiner-psyco/182.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/BV/-/blob/master/2017-Preiner-psyco/182.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA/-/blob/master/2019-full_str_int/py-conbyte_cvc4/leetcode_int-addStrings/183.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA/-/blob/master/2019-full_str_int/py-conbyte_cvc4/leetcode_int-addStrings/183.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_SLIA/-/blob/master/2019-full_str_int/py-conbyte_cvc4/leetcode_int-addStrings/183.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/abv/-/blob/master/20190429-UltimateAutomizerSvcomp2019/splice_true-unreach-call_false-valid-memtrack.i_10.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/abv/-/blob/master/20190429-UltimateAutomizerSvcomp2019/splice_true-unreach-call_false-valid-memtrack.i_10.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/abv/-/blob/master/20190429-UltimateAutomizerSvcomp2019/splice_true-unreach-call_false-valid-memtrack.i_10.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/abv/-/blob/master/20190429-UltimateAutomizerSvcomp2019/splice_true-unreach-call_false-valid-memtrack.i_10.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/20210219-Dartagnan/ReachSafety-Loops/bresenham-ll_valuebound2-O0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/20210219-Dartagnan/ReachSafety-Loops/bresenham-ll_valuebound2-O0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/20210219-Dartagnan/ReachSafety-Loops/bresenham-ll_valuebound2-O0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFNIA/-/blob/master/UltimateAutomizer/s3_srvr.blast.01_false-unreach-call.i.cil.c_0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFNIA/-/blob/master/UltimateAutomizer/s3_srvr.blast.01_false-unreach-call.i.cil.c_0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFNIA/-/blob/master/UltimateAutomizer/s3_srvr.blast.01_false-unreach-call.i.cil.c_0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFNIA/-/blob/master/UltimateAutomizer/s3_srvr.blast.01_false-unreach-call.i.cil.c_0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/aufbv/-/blob/master/20210301-Alive2/gcc/151_gcc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/aufbv/-/blob/master/20210301-Alive2/gcc/151_gcc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/aufbv/-/blob/master/20210301-Alive2/gcc/151_gcc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/20210219-Dartagnan/ReachSafety-Loops/egcd3-ll_valuebound50-O0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/20210219-Dartagnan/ReachSafety-Loops/egcd3-ll_valuebound50-O0.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/20210219-Dartagnan/ReachSafety-Loops/egcd3-ll_valuebound50-O0.smt2

A. Data Sets

7. digital-stopwatch.locals.smt2: https://clc-gitlab.cs.uiowa.edu:2443
/SMT-LIB-benchmarks/QF_NIA/-/blob/master/LCTES/digital-sto
pwatch.locals.smt2

8. orb05_700.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-b
enchmarks/QF_RDL/-/blob/master/scheduling/orb05_700.smt2

9. javafe.ast.ArrayRefExpr.40.smt2: https://clc-gitlab.cs.uiowa.edu:
2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javaf
e.ast.ArrayRefExpr.40.smt2

A.4 Mixed Problem Set

1. swap_invalid_t3_np_nf_ai_00010_007.cvc.smt2: https://clc-gitlab.cs.
uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap
/swap_invalid_t3_np_nf_ai_00010_007.cvc.smt2

2. refcount38.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-b
enchmarks/AUFDTLIA/-/blob/master/20172804-Barrett/fmf-cav2
013/refcount/refcount38.smt2

3. contraposition-1.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-L
IB-benchmarks/UF/-/blob/master/20201221-induction-by-refle
ction-schoisswohl/reflectiveConjecture/contraposition-1.sm
t2

4. double_req_bl_0240a_true-unreach-call.c_5.smt2: https://clc-gitlab.c
s.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20
190429-UltimateAutomizerSvcomp2019/double_req_bl_0240a_tru
e-unreach-call.c_5.smt2

5. cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers–regulator–
isl6271a-regulator.ko-main.cil.out.c.smt2: https://clc-gitlab.cs.uiowa.
edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachec
ker-induction-svcomp14/cpachecker-induction.32_7a_cilled_t
rue-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271
a-regulator.ko-main.cil.out.c.smt2

6. javafe.ast.FieldDecl.149.smt2: https://clc-gitlab.cs.uiowa.edu:2443
/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.
FieldDecl.149.smt2

7. R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-
defqtvc__00.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB
-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark201

92

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/LCTES/digital-stopwatch.locals.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/LCTES/digital-stopwatch.locals.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NIA/-/blob/master/LCTES/digital-stopwatch.locals.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_RDL/-/blob/master/scheduling/orb05_700.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_RDL/-/blob/master/scheduling/orb05_700.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.ArrayRefExpr.40.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.ArrayRefExpr.40.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.ArrayRefExpr.40.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap/swap_invalid_t3_np_nf_ai_00010_007.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap/swap_invalid_t3_np_nf_ai_00010_007.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AX/-/blob/master/swap/swap_invalid_t3_np_nf_ai_00010_007.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFDTLIA/-/blob/master/20172804-Barrett/fmf-cav2013/refcount/refcount38.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFDTLIA/-/blob/master/20172804-Barrett/fmf-cav2013/refcount/refcount38.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/AUFDTLIA/-/blob/master/20172804-Barrett/fmf-cav2013/refcount/refcount38.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UF/-/blob/master/20201221-induction-by-reflection-schoisswohl/reflectiveConjecture/contraposition-1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UF/-/blob/master/20201221-induction-by-reflection-schoisswohl/reflectiveConjecture/contraposition-1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UF/-/blob/master/20201221-induction-by-reflection-schoisswohl/reflectiveConjecture/contraposition-1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UF/-/blob/master/20201221-induction-by-reflection-schoisswohl/reflectiveConjecture/contraposition-1.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/double_req_bl_0240a_true-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/double_req_bl_0240a_true-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/double_req_bl_0240a_true-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP/-/blob/master/20190429-UltimateAutomizerSvcomp2019/double_req_bl_0240a_true-unreach-call.c_5.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachecker-induction-svcomp14/cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271a-regulator.ko-main.cil.out.c.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachecker-induction-svcomp14/cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271a-regulator.ko-main.cil.out.c.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachecker-induction-svcomp14/cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271a-regulator.ko-main.cil.out.c.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachecker-induction-svcomp14/cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271a-regulator.ko-main.cil.out.c.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_UFLRA/-/blob/master/cpachecker-induction-svcomp14/cpachecker-induction.32_7a_cilled_true-unreach-call_linux-3.8-rc1-drivers--regulator--isl6271a-regulator.ko-main.cil.out.c.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.FieldDecl.149.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.FieldDecl.149.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/UFLIA/-/blob/master/simplify/javafe.ast.FieldDecl.149.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark2014bench/R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-defqtvc__00.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark2014bench/R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-defqtvc__00.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark2014bench/R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-defqtvc__00.smt2

A.4. Mixed Problem Set

4bench/R509-011__higher_order_proof__why_896899_sparkmnhigh
er_ordermnfold-T-defqtvc__00.smt2

8. storeinv_invalid_t3_pp_sf_ai_00004_001.cvc.smt2: https://clc-gitlab.c
s.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFLIA/-/blob/maste
r/storeinv/storeinv_invalid_t3_pp_sf_ai_00004_001.cvc.smt2

9. 182.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-bench
marks/BV/-/blob/master/2017-Preiner-psyco/182.smt2

10. orb05_700.smt2: https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-b
enchmarks/QF_RDL/-/blob/master/scheduling/orb05_700.smt2

93

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark2014bench/R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-defqtvc__00.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark2014bench/R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-defqtvc__00.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/ufdtlira/-/blob/master/20200306-Kanig/spark2014bench/R509-011__higher_order_proof__why_896899_sparkmnhigher_ordermnfold-T-defqtvc__00.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFLIA/-/blob/master/storeinv/storeinv_invalid_t3_pp_sf_ai_00004_001.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFLIA/-/blob/master/storeinv/storeinv_invalid_t3_pp_sf_ai_00004_001.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_AUFLIA/-/blob/master/storeinv/storeinv_invalid_t3_pp_sf_ai_00004_001.cvc.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/BV/-/blob/master/2017-Preiner-psyco/182.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/BV/-/blob/master/2017-Preiner-psyco/182.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_RDL/-/blob/master/scheduling/orb05_700.smt2
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_RDL/-/blob/master/scheduling/orb05_700.smt2

APPENDIX B
Use Case SMT-LIB Encoding

In the following, we list the encoding of two use cases presented in 6.5 in the SMT-LIB
format.

B.1 Simple Use Case
1 (set-option :produce-models true)
2 (set-logic QF_LIA)
3 (declare-const v0 Int)
4 (declare-const v1 Int)
5 (declare-const v2 Int)
6 (declare-const v3 Int)
7 (declare-const v4 Int)
8 (declare-const v5 Int)
9 (declare-const v6 Int)

10 (declare-const v7 Int)
11 (assert (= v0 0))
12 (assert (or(= v1 (mod (+ v0 1) 8))(= v3 (mod (+ v0 1) 8))))
13 (assert (or(= v0 (mod (+ v1 1) 8))(= v2 (mod (+ v1 1) 8))(= v4 (mod (+ v1 1)

8))))
14 (assert (or(= v1 (mod (+ v2 1) 8))(= v5 (mod (+ v2 1) 8))))
15 (assert (or(= v0 (mod (+ v3 1) 8))(= v4 (mod (+ v3 1) 8))(= v6 (mod (+ v3 1)

8))))
16 (assert (or(= v1 (mod (+ v4 1) 8))(= v3 (mod (+ v4 1) 8))(= v5 (mod (+ v4 1)

8))(= v7 (mod (+ v4 1) 8))))
17 (assert (or(= v2 (mod (+ v5 1) 8))(= v4 (mod (+ v5 1) 8))))
18 (assert (or(= v3 (mod (+ v6 1) 8))(= v7 (mod (+ v6 1) 8))))
19 (assert (or(= v4 (mod (+ v7 1) 8))(= v6 (mod (+ v7 1) 8))))
20 (check-sat)
21 (get-model)

Listing B.1: Encoding of Simple Use Case in SMT-LIB Format

95

B. Use Case SMT-LIB Encoding

B.2 Complex Use Case
1 (set-option :produce-models true)
2 (set-logic QF_LIA)
3 (declare-const v0 Int)
4 (declare-const v1 Int)
5 (declare-const v2 Int)
6 (declare-const v3 Int)
7 (declare-const v4 Int)
8 (declare-const v5 Int)
9 (declare-const v6 Int)

10 (declare-const v7 Int)
11 (declare-const v8 Int)
12 (declare-const v9 Int)
13 (declare-const v10 Int)
14 (declare-const v11 Int)
15 (declare-const v12 Int)
16 (declare-const v13 Int)
17 (declare-const v14 Int)
18 (declare-const v15 Int)
19 (assert (= v0 0))
20 (assert (or(= v1 (mod (+ v0 1) 16))(= v4 (mod (+ v0 1) 16))))
21 (assert (or(= v0 (mod (+ v1 1) 16))(= v2 (mod (+ v1 1) 16))(= v5 (mod (+ v1

1) 16))))
22 (assert (or(= v1 (mod (+ v2 1) 16))(= v3 (mod (+ v2 1) 16))(= v6 (mod (+ v2

1) 16))))
23 (assert (or(= v2 (mod (+ v3 1) 16))(= v7 (mod (+ v3 1) 16))))
24 (assert (or(= v0 (mod (+ v4 1) 16))(= v5 (mod (+ v4 1) 16))(= v8 (mod (+ v4

1) 16))))
25 (assert (or(= v1 (mod (+ v5 1) 16))(= v4 (mod (+ v5 1) 16))(= v6 (mod (+ v5

1) 16))(= v9 (mod (+ v5 1) 16))))
26 (assert (or(= v2 (mod (+ v6 1) 16))(= v5 (mod (+ v6 1) 16))(= v7 (mod (+ v6

1) 16))(= v10 (mod (+ v6 1) 16))))
27 (assert (or(= v3 (mod (+ v7 1) 16))(= v6 (mod (+ v7 1) 16))(= v11 (mod (+ v7

1) 16))))
28 (assert (or(= v4 (mod (+ v8 1) 16))(= v9 (mod (+ v8 1) 16))(= v12 (mod (+ v8

1) 16))))
29 (assert (or(= v5 (mod (+ v9 1) 16))(= v8 (mod (+ v9 1) 16))(= v10 (mod (+ v9

1) 16))(= v13 (mod (+ v9 1) 16))))
30 (assert (or(= v6 (mod (+ v10 1) 16))(= v9 (mod (+ v10 1) 16))(= v11 (mod (+

v10 1) 16))(= v14 (mod (+ v10 1) 16))))
31 (assert (or(= v7 (mod (+ v11 1) 16))(= v10 (mod (+ v11 1) 16))(= v15 (mod (+

v11 1) 16))))
32 (assert (or(= v8 (mod (+ v12 1) 16))(= v13 (mod (+ v12 1) 16))))
33 (assert (or(= v9 (mod (+ v13 1) 16))(= v12 (mod (+ v13 1) 16))(= v14 (mod (+

v13 1) 16))))
34 (assert (or(= v10 (mod (+ v14 1) 16))(= v13 (mod (+ v14 1) 16))(= v15 (mod (+

v14 1) 16))))
35 (assert (or(= v11 (mod (+ v15 1) 16))(= v14 (mod (+ v15 1) 16))))
36 (check-sat)
37 (get-model)

Listing B.2: Encoding of Complex Use Case in SMT-LIB Format

96

List of Figures

1.1 Use Case Architecture . 3

2.1 Edge Computing Paradigm [SCZ+16] . 9
2.2 The agent-environment interaction in reinforcement learning 14
2.3 Q-Learning algorithm . 19
2.4 Q-Learning - Overview . 19
2.5 DQN - Neural Network Overview . 21
2.6 DQN - Data Flow [Pas21] . 22
2.7 ReLU vs. Leaky ReLU . 24

4.1 Architecture Design . 36
4.2 Activity Diagram: Workflow in Architecture 38
4.3 Design of Neural Network for DQN . 40

5.1 Architecture Design with Implementation Details 44

6.1 DED Only without Robot . 62
6.2 Cloud Only without Robot . 63
6.3 Q-Learning on DED + Cloud without Robot 64
6.4 DQN on DED + Cloud without Robot . 64
6.5 Robot Only . 65
6.6 DEDs Only . 65
6.7 Cloud Only . 66
6.8 Q-Learning on Robot + DEDs . 67
6.9 Q-Learning on Robot + Q-Learning on DEDs + Cloud 67
6.10 Q-Learning on Robot + DQN on DEDs + Cloud 68
6.11 Comparison without Robot . 72
6.12 Comparison of all latencies (on average) - without robot 73
6.13 Comparison with robot . 75
6.14 Comparison of all latencies (on average) - with robot 76
6.15 Comparison with energy-aware mode . 77
6.16 Energy needed per approach . 78
6.17 Use case - Abstract . 82
6.18 Use case - Real World . 82
6.19 Use Case Simple - Experiment Results . 83

97

6.20 Use Case Complex - Experiment Results 84

98

List of Tables

2.1 Comparison of SMT solvers . 12
2.2 Description of theories [C+11] . 13

5.1 Important Configuration Options . 49

6.1 Specification of Lego Mindstorms EV3 Brick 59
6.2 Specification of Raspberry Pi . 59
6.3 Specification of external Cloud VM . 60
6.4 Specification of TU Vienna Cloud VM 1 60
6.5 Specification of TU Vienna Cloud VM 2 60
6.6 Specification of TU Vienna Cloud VM 3 . 61
6.7 Problem Sets . 61

99

List of Algorithms

2.1 Epsilon-Greedy Algorithm . 20

Listings

5.1 Transformation of continuous values to discrete values 51
5.2 Neural Network Class . 52
5.3 Function for optimising the model . 53
6.1 Fill SMT-LIB file for Hamiltonian Cycle Problem 79
6.2 The move to logic of the robot . 80
6.3 Move logic of robot . 80
B.1 Encoding of Simple Use Case in SMT-LIB Format 95
B.2 Encoding of Complex Use Case in SMT-LIB Format 96

101

Bibliography

[AJ09] Fatima M. Albar and Antonie J. Jetter. Heuristics in decision making. In
PICMET ’09 - 2009 Portland International Conference on Management of
Engineering Technology, pages 578–584, 2009.

[BCC+17] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Alek-
sander Slominski, et al. Serverless computing: Current trends and open
problems. In Research advances in cloud computing, pages 1–20. Springer,
2017.

[BCD+11] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings, volume 6806 of Lecture Notes in Computer
Science, pages 171–177. Springer, 2011.

[BDW18] Anurag Bhardwaj, Wei Di, and Jianing Wei. Deep Learning Essentials: Your
hands-on guide to the fundamentals of deep learning and neural network
modeling. Packt Publishing Ltd, 2018.

[BKEI09] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. Yaml ain’t markup
language (yaml™) version 1.1. Working Draft 2008-05, 11, 2009.

[BKM14] Clark Barrett, Daniel Kroening, and Tom Melham. Problem solving for the
21st century, 2014.

[BMLPT19] Arthur Bit-Monnot, Francesco Leofante, Luca Pulina, and Armando Tac-
chella. SMT-based Planning for Robots in Smart Factories. In Franz
Wotawa, Gerhard Friedrich, Ingo Pill, Roxane Koitz-Hristov, and Moonis
Ali, editors, Advances and Trends in Artificial Intelligence. From Theory to
Practice, pages 674–686, Cham, 2019. Springer International Publishing.

[BST+10] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. The smt-lib standard:
Version 2.0. In Proceedings of the 8th international workshop on satisfiability
modulo theories (Edinburgh, England), volume 13, page 14, 2010.

103

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Ed-
mund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem,
editors, Handbook of Model Checking, pages 305–343, Cham, 2018. Springer
International Publishing.

[C+11] David R Cok et al. The smt-libv2 language and tools: A tutorial. Language
c, pages 2010–2011, 2011.

[CFS18] Youdong Chen, Qiangguo Feng, and Weisong Shi. An industrial robot system
based on edge computing: An early experience. In USENIX Workshop on
Hot Topics in Edge Computing (HotEdge 18), 2018.

[CJS13] Miguel Castro, Antonio J Jara, and Antonio FG Skarmeta. Smart lighting
solutions for smart cities. In 2013 27th International Conference on Advanced
Information Networking and Applications Workshops, pages 1374–1379.
IEEE, 2013.

[CLJC21] Patrik Cervall, Anette Lundvall, Peter Jonsson, and Stephen Carson. Erics-
son Mobility Report November 2021. https://www.ericsson.com/e
n/reports-and-papers/mobility-report/reports/november-
2021, November 2021. (Accessed on 05/12/2022).

[Cro] The GNU configure and build system - Cross Compilation Tools. https:
//www.airs.com/ian/configure/configure_5.html. (Accessed
on 01/13/2022).

[CWC+18] Baotong Chen, Jiafu Wan, Antonio Celesti, Di Li, Haider Abbas, and Qin
Zhang. Edge computing in iot-based manufacturing. IEEE Communications
Magazine, 56(9):103–109, 2018.

[CZW+19] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng Ji,
and Medhi Bennis. Optimized Computation Offloading Performance in
Virtual Edge Computing Systems Via Deep Reinforcement Learning. IEEE
Internet of Things Journal, 6(3):4005–4018, 2019.

[Dee] Deep Learning Frameworks Speed Comparison - Deeply Thought. ht
tps://wrosinski.github.io/deep-learning-frameworks/.
(Accessed on 03/24/2022).

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[DMB11] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories:
introduction and applications. Communications of the ACM, 54(9):69–77,
2011.

104

https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2021
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2021
https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2021
https://www.airs.com/ian/configure/configure_5.html
https://www.airs.com/ian/configure/configure_5.html
https://wrosinski.github.io/deep-learning-frameworks/
https://wrosinski.github.io/deep-learning-frameworks/

[DRK14] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. Virtualization vs
containerization to support paas. In 2014 IEEE International Conference
on Cloud Engineering, pages 610–614, 2014.

[EA+18] Joan Espasa Arxer et al. Smt techniques for planning problems, 2018.

[EKJ96] Bernard Espiau, Konstantinos Kapellos, and Muriel Jourdan. Formal
verification in robotics: Why and how? In Robotics Research, pages 225–
236. Springer, 1996.

[ETS] ETSI - Multi-access Edge Computing - Standards for MEC. https://
www.etsi.org/technologies/multi-access-edge-computing.
(Accessed on 03/21/2022).

[ev3a] Using docker to cross-compile. https://www.ev3dev.org/docs/
tutorials/using-docker-to-cross-compile/. (Accessed on
01/13/2022).

[ev3b] ev3dev is your EV3 re-imagined. https://www.ev3dev.org/. (Accessed
on 04/07/2022).

[Eva11] Dave Evans. The internet of things: How the next evolution of the internet
is changing everything. CISCO white paper, 1(2011):1–11, 2011.

[fla] Welcome to flask — flask documentation (2.1.x). https://flask.pall
etsprojects.com/en/2.1.x/. (Accessed on 01/13/2022).

[Gér19] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems.
O’Reilly Media, 2019.

[GM15] Marco Gario and Andrea Micheli. Pysmt: a solver-agnostic library for fast
prototyping of smt-based algorithms. In SMT Workshop 2015, 2015.

[goMaECM] ETSI Our group on Multi-access Edge Computing (MEC). ETSI - Our
group on Multi-access Edge Computing (MEC). https://www.etsi.o
rg/committee/1425-mec. (Accessed on 03/21/2022).

[GR17] Bob Gill and Santhosh Rao. Technology insight: Edge computing in support
of the internet of things. Technical report, Gartner Research Report, 2017.

[Gra21] Edge computing market share & trends report, 2021-2028. https://www.
grandviewresearch.com/industry-analysis/edge-computi
ng-market, May 2021. (Accessed on 05/12/2022).

[HJS+20] Chaitra Hegde, Zifan Jiang, Pradyumna Byappanahalli Suresha, Jacob
Zelko, Salman Seyedi, Monique A Smith, David W Wright, Rishikesan
Kamaleswaran, Matt A Reyna, and Gari D Clifford. Autotriage-an open

105

https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.ev3dev.org/docs/tutorials/using-docker-to-cross-compile/
https://www.ev3dev.org/docs/tutorials/using-docker-to-cross-compile/
https://www.ev3dev.org/
https://flask.palletsprojects.com/en/2.1.x/
https://flask.palletsprojects.com/en/2.1.x/
https://www.etsi.org/committee/1425-mec
https://www.etsi.org/committee/1425-mec
https://www.grandviewresearch.com/industry-analysis/edge-computing-market
https://www.grandviewresearch.com/industry-analysis/edge-computing-market
https://www.grandviewresearch.com/industry-analysis/edge-computing-market

source edge computing raspberry pi-based clinical screening system. medrxiv,
2020.

[HN92] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In
Neural networks for perception, pages 65–93. Elsevier, 1992.

[HST+14] William N. N. Hung, Xiaoyu Song, Jindong Tan, Xiaojuan Li, Jie Zhang,
Rui Wang, and Peng Gao. Motion planning with Satisfiability Modulo The-
ories. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 113–118, 2014.

[HTW12] Guoqiang Hu, Wee Peng Tay, and Yonggang Wen. Cloud robotics: archi-
tecture, challenges and applications. IEEE network, 26(3):21–28, 2012.

[Hö14] Andrea Höfler. SMT Solver Comparison. https://spreadsheets.ist
.tugraz.at/wp-content/uploads/sites/3/2015/06/DS_Hoe
fler.pdf, July 2014. (Accessed on 02/04/2022).

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
conference on machine learning, pages 448–456. PMLR, 2015.

[IS19a] Frank Imeson and Stephen L Smith. An smt-based approach to motion
planning for multiple robots with complex constraints. IEEE Transactions
on Robotics, 35(3):669–684, 2019.

[IS19b] Frank Imeson and Stephen L. Smith. An smt-based approach to motion
planning for multiple robots with complex constraints. IEEE Transactions
on Robotics, 35(3):669–684, 2019.

[KBS05] Vijay Kumar, George Bekey, and Arthur Sanderson. Networked robots.
WTEC Panel on INTERNATIONAL ASSESSMENT OF RESEARCH AND
DEVELOPMENT IN ROBOTICS DRAFT REPORT, pages 57–72, 2005.

[Lap18] Maxim Lapan. Deep Reinforcement Learning Hands-On: Apply modern RL
methods, with deep Q-networks, value iteration, policy gradients, TRPO,
AlphaGo Zero and more. Packt Publishing Ltd, 2018.

[LBL+16] Chieh-Jan Mike Liang, Lei Bu, Zhao Li, Junbei Zhang, Shi Han, Börje F.
Karlsson, Dongmei Zhang, and Feng Zhao. Systematically Debugging IoT
Control System Correctness for Building Automation. In Proceedings of the
3rd ACM International Conference on Systems for Energy-Efficient Built
Environments, BuildSys ’16, page 133–142, New York, NY, USA, 2016.
Association for Computing Machinery.

[LGLL18] Ji Li, Hui Gao, Tiejun Lv, and Yueming Lu. Deep reinforcement learn-
ing based computation offloading and resource allocation for MEC. In

106

https://spreadsheets.ist.tugraz.at/wp-content/uploads/sites/3/2015/06/DS_Hoefler.pdf
https://spreadsheets.ist.tugraz.at/wp-content/uploads/sites/3/2015/06/DS_Hoefler.pdf
https://spreadsheets.ist.tugraz.at/wp-content/uploads/sites/3/2015/06/DS_Hoefler.pdf

2018 IEEE Wireless Communications and Networking Conference (WCNC),
pages 1–6, 2018.

[LHP+15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015.

[MAH+16] Mujahid Mohsin, Zahid Anwar, Ghaith Husari, Ehab Al-Shaer, and Moham-
mad Ashiqur Rahman. IoTSAT: A formal framework for security analysis of
the internet of things (IoT). In 2016 IEEE Conference on Communications
and Network Security (CNS), pages 180–188, 2016.

[MC20] Meysam Masoudi and Cicek Cavdar. Device vs Edge Computing for Mobile
Services: Delay-Aware Decision Making to Minimize Power Consumption.
IEEE Transactions on Mobile Computing, 06 2020.

[McF18] Roger McFarlane. A survey of exploration strategies in reinforcement
learning. McGill University, 2018.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel
Veness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas
Fidjeland, Georg Ostrovski, Stig Petersen, Charlie Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518:529–533, 2015.

[MTK16] Robin R Murphy, Satoshi Tadokoro, and Alexander Kleiner. Disaster
robotics. In Springer handbook of robotics, pages 1577–1604. Springer, 2016.

[NDW+19a] Zhaolong Ning, Peiran Dong, Xiaojie Wang, Lei Guo, Joel J. P. C. Rodrigues,
Xiangjie Kong, Jun Huang, and Ricky Y. K. Kwok. Deep Reinforcement
Learning for Intelligent Internet of Vehicles: An Energy-Efficient Computa-
tional Offloading Scheme. IEEE Transactions on Cognitive Communications
and Networking, 5(4):1060–1072, 2019.

[NDW+19b] Zhaolong Ning, Peiran Dong, Xiaojie Wang, Joel J. P. C. Rodrigues, and
Feng Xia. Deep Reinforcement Learning for Vehicular Edge Computing:
An Intelligent Offloading System. ACM Trans. Intell. Syst. Technol., 10(6),
oct 2019.

[Numa] Number of Internet of Things (IoT) connected devices worldwide in 2018,
2025 and 2030. https://www.statista.com/statistics/8026
90/worldwide-connected-devices-by-access-technology/.
(Accessed: 02/04/2022).

107

https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/

[Numb] Numpy documentation — numpy v1.22 manual. https://numpy.org/
doc/stable/. (Accessed on 01/13/2022).

[OM06] James A O’brien and George M Marakas. Management information systems,
volume 6. McGraw-Hill Irwin, 2006.

[Pas21] Adam Paszke. Reinforcement Learning (DQN) Tutorial — PyTorch Tutorials
1.11.0+cu102 documentation. https://pytorch.org/tutorials/in
termediate/reinforcement_q_learning.html, 2021. (Accessed
on 03/22/2022).

[PD21] Victor Casamayor Pujol and Schahram Dustdar. Fog
robotics—understanding the research challenges. IEEE Internet
Computing, 25(5):10–17, 2021.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

[PM10] David L Poole and Alan K Mackworth. Artificial Intelligence: foundations
of computational agents. Cambridge University Press, 2010.

[psu] psutil documentation — psutil 5.9.1 documentation. https://psutil.r
eadthedocs.io/en/latest/. (Accessed on 01/13/2022).

[PVB21] Martin Pech, Jaroslav Vrchota, and Jiří Bednář. Predictive maintenance
and intelligent sensors in smart factory. Sensors, 21(4):1470, 2021.

[pyta] Api reference — python-ev3dev 2.1.0.post1 documentation. https://ev
3dev-lang.readthedocs.io/projects/python-ev3dev/en/s
table/spec.html. (Accessed on 01/13/2022).

[pytb] pythonping · pypi. https://pypi.org/project/pythonping/.
(Accessed on 01/13/2022).

[pyy] Pyyaml documentation. https://pyyaml.org/wiki/PyYAMLDocume
ntation. (Accessed on 01/13/2022).

[Req] Requests: Http for humans™ — requests 2.27.1 documentation. http
s://docs.python-requests.org/en/latest/. (Accessed on
01/13/2022).

108

https://numpy.org/doc/stable/
https://numpy.org/doc/stable/
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://psutil.readthedocs.io/en/latest/
https://psutil.readthedocs.io/en/latest/
https://ev3dev-lang.readthedocs.io/projects/python-ev3dev/en/stable/spec.html
https://ev3dev-lang.readthedocs.io/projects/python-ev3dev/en/stable/spec.html
https://ev3dev-lang.readthedocs.io/projects/python-ev3dev/en/stable/spec.html
https://pypi.org/project/pythonping/
https://pyyaml.org/wiki/PyYAMLDocumentation
https://pyyaml.org/wiki/PyYAMLDocumentation
https://docs.python-requests.org/en/latest/
https://docs.python-requests.org/en/latest/

[RL14] Mark Rollins and Mannie Lowe. Beginning Lego Mindstorms Ev3, volume
253. Springer, 2014.

[Rud16] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[SAA+22] Sina Shahhosseini, Arman Anzanpour, Iman Azimi, Sina Labbaf, DongJoo
Seo, Sung-Soo Lim, Pasi Liljeberg, Nikil Dutt, and Amir M. Rahmani.
Exploring computation offloading in IoT systems. Information Systems,
107:101860, 2022.

[Sat17] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[SCZ+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge com-
puting: Vision and challenges. IEEE Internet of Things Journal, 3(5):637–
646, 2016.

[SMT] SMT-LIB The Satisfiability Modulo Theories Library. https://smtlib
.cs.uiowa.edu/. (Accessed on 03/21/2022).

[SOM14] F. Shrouf, J. Ordieres, and G. Miragliotta. Smart factories in industry 4.0: A
review of the concept and of energy management approached in production
based on the internet of things paradigm. In 2014 IEEE International
Conference on Industrial Engineering and Engineering Management, pages
697–701, 2014.

[SPKS12] Anuj Sehgal, Vladislav Perelman, Siarhei Kuryla, and Jurgen Schonwalder.
Management of resource constrained devices in the internet of things. IEEE
Communications Magazine, 50(12):144–149, 2012.

[SY15] Yan-Yan Song and LU Ying. Decision tree methods: applications for
classification and prediction. Shanghai archives of psychiatry, 27(2):130,
2015.

[Tok21] A. Aylin Tokuç. Solving the K-Armed Bandit Problem | Baeldung on
Computer Science. https://www.baeldung.com/cs/k-armed-ba
ndit-problem, February 2021. (Accessed on 03/23/2022).

[TSM+17] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny
Dutta, and Dario Sabella. On multi-access edge computing: A survey of
the emerging 5g network edge cloud architecture and orchestration. IEEE
Communications Surveys Tutorials, 19(3):1657–1681, 2017.

109

https://smtlib.cs.uiowa.edu/
https://smtlib.cs.uiowa.edu/
https://www.baeldung.com/cs/k-armed-bandit-problem
https://www.baeldung.com/cs/k-armed-bandit-problem

[Tur14] James Turnbull. The Docker Book: Containerization is the new virtualiza-
tion. James Turnbull, 2014.

[Vai21] Lionel Sujay Vailshery. Most used languages among software developers
globally 2021 | statista. https://www.statista.com/statistics/
793628/worldwide-developer-survey-most-used-language
s/, August 2021. (Accessed on 01/16/2022).

[vHGS16] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 30(1), Mar. 2016.

[wat] Watchdog — watchdog 2.1.5 documentation. https://python-watch
dog.readthedocs.io/en/stable/. (Accessed on 01/13/2022).

[Wei03] Eric W Weisstein. Hamiltonian path. https://mathworld. wolfram. com/,
2003.

[Wenne] Lilian Weng. Exploration Strategies in Deep Reinforcement Learning |
Lil’Log. https://lilianweng.github.io/posts/2020-06-07-
exploration-drl/, 2020 June. (Accessed on 03/30/2022).

[WMZT22] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey
of loss functions in machine learning. Annals of Data Science, 9(2):187–212,
Apr 2022.

[WSH+16] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot,
and Nando Freitas. Dueling network architectures for deep reinforcement
learning. In International conference on machine learning, pages 1995–2003.
PMLR, 2016.

[ZML+16] Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin
Peng, Li Pan, Sabita Maharjan, and Yan Zhang. Energy-efficient offloading
for mobile edge computing in 5g heterogeneous networks. IEEE Access,
4:5896–5907, 2016.

[ZZL16] Xiaohui Zhao, Liqiang Zhao, and Kai Liang. An energy consumption
oriented offloading algorithm for fog computing. In International conference
on heterogeneous networking for quality, reliability, security and robustness,
pages 293–301. Springer, 2016.

110

https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://www.statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://python-watchdog.readthedocs.io/en/stable/
https://python-watchdog.readthedocs.io/en/stable/
https://lilianweng.github.io/posts/2020-06-07-exploration-drl/
https://lilianweng.github.io/posts/2020-06-07-exploration-drl/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the Work
	Structure

	Background
	Edge Computing and Computational Offloading
	Satisfiability Modulo Theories (SMT)
	Decision Making with Reinforcement Learning
	Q-Learning
	Deep Q-Learning

	Related Work
	SMT within IoT
	Computational Offloading

	Architecture Design
	Requirements
	System Design

	Implementation
	Service Architecture Implementation
	Communication Module
	Configuration Module
	Decision Modules
	Monitoring Module
	SMT-Solver
	Deployment

	Evaluation
	Objectives
	Experiment Setup
	Evaluation Configurations
	Experiment Results
	Use Case: Path Planning for Fog-Supported Robots
	Summary

	Conclusion
	Adherence to Design Requirements
	Revisiting Research Questions
	Limitations and Future Work

	Data Sets
	Simple Data Set
	Medium Problem Set
	Hard Problem Set
	Mixed Problem Set

	Use Case SMT-LIB Encoding
	Simple Use Case
	Complex Use Case

	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Bibliography

