
International Journal of Infrared and Millimeter Waves (2019) 40: 365–394
https://doi.org/10.1007/s10762-019-00573-5

INVITED REVIEW ARTICLE

Frequency Limitations of Resonant-Tunnelling
Diodes in Sub-THz and THz Oscillators and Detectors

Michael Feiginov1

Received: 29 October 2018 / Accepted: 26 February 2019 / Published online: 13 March 2019
© The Author(s) 2019

Abstract
The review outlines the basic principles of operation of resonant-tunnelling diodes
(RTDs) and RTD oscillators followed by an overview of their development in the
last decades. Further, we discuss different types of RTDs and RTD oscillators, the
limitations of RTDs due to parasitics, inherent limitations of RTDs and operation of
RTDs as detectors. We also give an overview of the present status of sub-THz and
THz RTD oscillators and give several examples of their applications.

Keywords Resonant tunnelling · Resonant-tunnelling diodes · Terahertz sources ·
Terahertz detectors

1 Introduction

The concept of resonant tunnelling through the quantum states between double bar-
riers is known since very long time, for example, it has been described in detail in
a classical textbook already in 1951 [1]. The principles of operation of the devices
based on the phenomenon have been discussed very long time ago as well: attain-
ability of negative differential conductance (NDC) and even resonant-tunnelling
transistors and triple-barrier resonant-tunnelling structures have been addressed
as early as in 1964 [2]. However, a theoretical analysis of practically realisable
semiconductor-heterostructure resonant-tunnelling diodes (RTDs) with few barriers
was first presented in 1973 [3], NDC in such structures was demonstrated experimen-
tally shortly afterwards in 1974 [4]. Semiconductor-heterostructure RTDs stay in the
main focus of the research in this field until now.
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An RTD is the most simple and basic structure to study the resonant-tunnelling
phenomena. As such a toy system, it has stimulated a wealth of theoretical and exper-
imental publications in the semiconductor physics in the last half a century. Apart
from that, the prospect to use RTDs in practise has also contributed to increased
interest in the devices. Specifically, tunnelling can be an extremely fast process [5],
although definition of tunnelling time is a controversial subject [6]. Additionally,
RTDs can exhibit NDC, which makes them active devices, i.e., they can provide
amplification or gain. That has raised promise to use RTDs in high-frequency (HF)
electronics, particularly, to construct mm-wave and sub-THz RTD oscillators. Indeed,
the development of RTD oscillators was progressing fast in the subsequent years:
712 GHz RTD oscillators have been reported in 1991 [7]. However, in the follow-
ing years, nobody could achieve higher operating frequencies or even reproduce the
achieved results. Gradually, the expectation that RTDs could be used in practise
has disappeared in the research community and RTDs were almost abandoned as a
research subject for the following almost 20 years.

A breakthrough has been achieved in 2010 and 2011, when two groups have
reported RTD oscillators at ≈1 THz [8] and ≈1.1 THz [9], respectively. In the
subsequent years, the operating frequencies of RTD oscillators were continuously
increasing and presently they have reached almost 2 THz [10]. It has to be mentioned,
that, contrary to THz quantum-cascade lasers (QCLs) [11], RTD oscillators are room-
temperature devices and that is their crucial advantage compared THz QCLs. The
output power of RTD oscillators is getting close to mW level at the upper sub-THz
frequencies [12]. Different types of fundamental THz and sub-THz oscillators have
been demonstrated in the meanwhile [7–10, 13], some of them are extremely small
[9]. High-speed wireless data transmitters based on RTDs have been also demon-
strated [14]. This development in the recent years puts RTD oscillators in the position
of a viable enabling technology for real-world THz applications.

The review will describe the development in sub-THz and THz RTD research and
outlines the present status and major recent achievements in the field. The paper is
organised as follows. Section 2 describes the basic principles of operation of RTDs
and their basic properties. Section 3 describes different types of RTDs. Section 4
shortly outlines the development of RTDs and RTD oscillators in the past 50 years.
Section 5 describes different types of RTD oscillators. Section 6 is concerned with
the use of RTDs as detectors of THz radiation. Section 7 is devoted to discussion on
HF limitations of RTDs and how they could be modelled in an accurate and simple
way. An accurate linear model of the RTD admittance is crucial for the development
of THz RTD oscillators and for understanding the limitations of RTDs. Section 8 is
devoted to a qualitative discussion on non-linear RTD dynamics. Section 9 describes
the present status of RTD oscillators and several application examples. Section 10
concludes the review.

2 Principles of Operation of RTDs

In the semiconductor heterostructure RTDs, the tunnel barriers are sandwiched
between highly doped contact layers. The band diagrams together with the typical
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I–V curves of a double-barrier RTD are sketched in Fig. 1. For double barriers with
only weakly transparent individual barriers (with the tunnel coefficients T1 and T2,
where T1 � 1 and T2 � 1), the resonant component of the current dominates over
non-resonant one [2]. In this case, the total tunnel transparency (Ttotal) of the dou-
ble barriers will become large for electrons with the energy equal to or close to the
energy levels of the quantised states in the quantum well (QW) between RTD barri-
ers. For symmetric barriers, Ttotal is as high as 1 in the resonance [1]. However, Ttotal
is extremely low, if the energy of electrons is not coinciding with one of the quantised
states in the QW: Ttotal is ∼ T1T2. That is, the double barriers are basically only trans-
parent for the resonant electrons. An instructive discussion of resonant tunnelling has
been given in [15], where the above particularities have been addressed.

A particular N-shaped form of the RTD I–V curve with the NDC region is a con-
sequence of the resonant tunnelling through the double barriers. The heterostructure
and doping parameters of an RTD are usually chosen in such a way, that at low biases
(U ), the bottom of the ground subband in the QW (EQW) is above the emitter Fermi
level (Ee

F , Fermi level on the left-hand side of the RTD in Fig. 1a). Consequently, the
resonant-tunnelling current through the RTD is close to zero at low biases. At higher
applied biases (Fig. 1b), EQW is shifting down below Ee

F and the resonant-tunnelling
current is starting to flow. The current is roughly proportional to the number of the
subband states between Ee

F and EQW; therefore, the RTD current keeps growing with
further increase of bias, this is the positive-differential-conductance (PDC) region of
the I–V curve. However, at some point (Fig. 1c), EQW shifts below the conduction-
band bottom on the emitter side of RTD (Ee

C), the elastic resonant tunnelling (the
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Fig. 1 Schematic RTD band diagram at different bias voltages (a–c); sketches of the RTD I-V curve (d, e),
where the black and red lines illustrate I–V curves, when the space-charge effects (Coulomb interaction)
are neglected and taken into account, respectively
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electron momentum in the plane of the barriers and energy are conserved) becomes
impossible in this case; there are no more occupied states in emitter, which are in
resonance with the QW states. The RTD current suddenly drops at such biases. The
I–V curve of an ideal RTD is sketched in Fig. 1d; it has a triangular shape. A realistic
I–V curve is more smooth due to scattering effects in RTDs, non-zero temperature,
structural imperfections, etc., but good-quality RTDs do have a distinctive N-shaped
I–V curve with a prominent NDC region (see Fig. 1e) and experimental I–V curves
in Fig. 2.

Implicitly, we were discussing above a coherent model of elastic resonant tun-
nelling: the wave function of an electron incident on the barriers extends all the way
from emitter through the QW to collector. One calculates the tunnel probability of
the stationary states, which are coherent in the whole structure. The model has been
used to describe the properties of RTDs from the beginning [1–3]. However, later on,
a sequential-tunnelling model has been suggested [17, 18], where the electron tun-
nelling is described as a two-stage process. First, an electron is elastically tunnelling
from the emitter into the QW. Then, a scattering event is taking place, the coherency
is broken, but the electron is still staying in the same QW subband, the QW electrons
could be also getting thermalised. As a second step, the QW electrons are elastically
tunnelling further into the collector. Although the two models seem to describe dif-
ferent mechanisms of resonant tunnelling, they turn out to be intimately related, e.g.,
the I–V curves described by both models are exactly the same [19], if we disregard
difference in the broadening of the resonant states due to the scattering processes;
also, the electron transit time through the barriers for both models is determined by
the same electron tunnel lifetime (τ ) in the QW between the barriers [20, 21].

Clearly, when the barriers are thick, the time electrons spend in the QW (τ ) is long
and the sequential tunnelling should dominate the tunnel electron transport through
RTDs, at least at room temperatures. When the RTD barriers are getting thin, then
the coherent tunnelling might play essential role, since τ might eventually become

(a) (b)

Fig. 2 Reprinted from [16], with the permission of Europhysics Letters. a Band diagram of an RTD. The
inset shows the layer sequence of the structure, with two symmetrical 1.6 nm AlAs barriers sandwiching
In0.53Ga0.47As/InAs/In0.53Ga0.47As QWwith a 1.2-nm nominal thickness of each layer. bMeasured (con-
tinuous lines) and calculated (black-dashed line) I–V curves of the RTD. The green curve corresponds to
an unstabilised test RTD, the I–V curve is strongly deteriorated in the NDC region due to low-frequency
parasitic oscillations. The blue line corresponds to an RTD stabilised by a parallel shunt resistor, smooth
shoulder in the NDC region is due to oscillations of the diode in a resonator (slot antenna) at 510 GHz
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shorter than the electron phase-breaking time. However, there are no clear evidences
of coherent tunnelling at room temperatures so far, it is not even clear, what should
be the signatures of coherent tunnelling to pinpoint it in experiment. The room-
temperature experimental data on electron transport in RTDs are well described by
the sequential-tunnelling model so far; therefore, the model is used predominantly in
the analysis of RTDs.

Now, we turn to discussion on several effects, which make the measured RTD I–V
curves look quite different compared to the simplistic picture shown with the black
lines in Fig. 1d and e. First, we deal with the space-charge effects due to accumulation
of electrons in the QW. In the sequential-tunnelling approximation, one can write the
QW→collector tunnel current density (jwc) in the form as follows:

jwc = −eN2D

τc

, (1)

where −e is the electron charge, τc is the lifetime due to electron tunnelling through
the collector barrier, and N2D is the 2D electron concentration in the QW. In the dc
case (with “0” superscript we denote the static and quasi-static parameters), the RTD
current density (jRTD) is the same through each of the barriers, i.e., j0RTD = jwc.
Discussing the ideal I–V curve in Fig. 1, we were disregarding the space-charge
effects. Equation 1 shows thatN2D is non-zero, where j0RTD is non-zero, andN2D gets
higher when the current is high. N2D creates a space charge in the QW. Qualitatively,
the potential of the QW shifts upwards when we switch on the space-charge effects
(Coulomb interaction). To bring the QW states back to the same position relative
to the conduction-band bottom in emitter (that would restore the value of j0RTD),
we need to apply higher bias. As a consequence, all current points will shift to the
right in the I–V curve (see Fig. 1d and e). The ideal I–V curve will get a “Z” shape
with a bistability region [22, 23]. Although exotic, such I–V curves are observable
in experiment at low temperatures in high-quality RTDs [24–26]. The more common
RTD I–V curves sketched in Fig. 1e do not get the exotic “Z” shape, they preserve the
simple “N” shape. However, the regions with higher current density shift significantly
to the right, i.e., the I–V curve shape is strongly affected by the space-charge effects
in this case as well. The NDC region becomes more steep and the NDC gets larger
due to the space-charge effects. The effects have significant impact on the dc I–V
curve of almost every RTD. We will come back to the importance of the space-charge
effects, when we will be discussing the dynamic properties of RTDs.

There are other effects, which have influence on the realistic I–V curves. Partic-
ularly, LO-phonon assisted tunnelling can create a replica peak at the biases higher
than those of the main peak [27]. In strongly asymmetric RTDs with thick collector
barrier, the phonon-replica peak could be almost as high, as the main peak [25].

Another ubiquitous effect is parasitic oscillations in the external biasing circuit.
Due to such oscillations, an averaged dc current is measured, rather than the gen-
uine static RTD I–V curve (see Fig. 2b.) As a result, the averaged I–V curve exhibits
a plateau-like behaviour and hysteresis in the NDC region [28–31]. Those plateaus
could be confused with intrinsic space-charge bistability, features due to 2D sub-
bands in the space-charge accumulation layer in emitter or other effects; sometimes,
it is challenging to identify intrinsic features in the RTD I–V curves [29, 32, 33].
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In general, the parasitic oscillations are almost always present and one unavoidably
sees plateaus and hysteresis in the dc RTD I–V curve, if special precautions are not
taken [29], e.g., one intentionally fabricates small-area RTDs to reduce their NDC
(the total NDC is proportional to the RTD area) or one can also include a shunt resis-
tor in parallel to the RTD to reduce or even eliminate the total NDC; the shunt resistor
contribution to the total current should be then subtracted during processing of the
measurement data (see blue curve in Fig. 2b).

3 Different Types of RTDs

Figure 3 gives an overview of different RTDs, which are relevant or could be relevant
for THz applications. A most common double-barrier RTD is depicted in Fig. 3a. In
former times, such RTDs were predominantly based on GaAs structures with AlAs or
AlGaAs barriers. RTD oscillators with such RTDs have been working up to 420 GHz
[28, 31, 34, 35]. The advantage of the material system is that it is lattice matched,
the disadvantage is that the barrier hight is relatively low and that leads to rather high
thermionic-emission current, which is responsible for high valley current at room

(a) (b) (c)

(e)(d) (f)

(h)(g) (i)

Fig. 3 Different types of RTDs. a Conventional double-barrier RTD. b An RTD with a “step emitter”.
c An RTD with a composite QW. d and e antimonide-containing RTDs with intra-band and inter-band
tunnelling, respectively; f triple-barrier RTD; g single-barrier RTD with tunnelling close to the valence
band; h Γ − X − Γ single-barrier RTD; i tunnel Schottky contact with narrow 2D channel
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temperature, e.g., peak-to-valley current ratio (PVCR) is around 1.5 in such sub-THz
diodes [35]. To overcome the problem, InGaAs structures with AlAs barriers have
been put forward, where the barrier hight is ≈1.2 eV and the valley current could be
suppressed, 650 GHz oscillators have been demonstrated with the basic InGaAs/AlAs
RTD design [36]. That are strained heterostructures, therefore AlAs barrier thickness
is limited to � 4.5 nm [37].

GaN/AlN RTDs with basic designs have been demonstrated recently [38–40].
However, the RTD band-structure profile of Fig. 3a is strongly deteriorated by the
polarisation charges in this case. High current density of≈ 4 mA/μm2 (although with
rather limited PVCR of � 1.5) [39] and even oscillators at ≈1 GHz [40] have been
reported recently with GaN/AlN RTDs. One of the challenges of GaN/AlN RTDs in
view of THz applications is the relatively high contact resistance of GaN, which is so
far 1–2 orders of magnitude higher than that in RTDs based in InGaAs/AlAs material
system [39, 40].

Several modifications of the basic design in Fig. 3a have been used in the recent
years to improve the performance of THz RTDs. To achieve high NDC, the RTD
barriers are made thin (≈ 1 nm), that leads to very high current density up to
≈ 30 mA/μm2 [10]. As a consequence, RTDs are getting prone to thermal break
down. To reduce heating, it is desirable to shift the NDC region to the lower bias.
That has led to the “step”- or “graded”-emitter design of RTDs, see Fig. 3b, where
an additional AlInGaAs layer is incorporated into the emitter to rise the conduction-
band bottom there. Additionally, the QW is made with high indium content to shift
the QW bottom and ground quantum subband down. That shifts NDC region to lower
bias. Such designs have been used in the first 1 THz RTD oscillator [8] and later on
in higher-frequency oscillators [41, 42]. An alternative solution is to incorporate an
InAs sub-well in the middle of the QW (see Figs. 2a and 3c). As a result, the ground
subband shifts down, which is shifting NDC to lower bias. However, the second sub-
band remains almost unaffected by the sub-well in the QW, the separation between
the ground and second subbands gets larger and that leads to suppression of the val-
ley current, PVCR gets higher in such RTDs, e.g., room-temperature PVCR of 50 has
been reported in [43]. Such RTDs have been used up to 1.1 THz so far [9, 16, 44].

Antimonide-containing RTDs have been also investigated in the past years. A typ-
ical design of an InAs/AlSb intra-band RTD is sketched in Fig. 3d. The advantages
of such RTDs are related to InAs in the transport layers surrounding RTD, since one
can make very low-resistance ohmic contacts to InAs, and to type-II band offset at
the InAs/AlSb heterojunction, that leads to higher tunnel transparency of the barri-
ers (compared to GaAs or InGaAs RTDs with AlAs barriers of the same thickness),
although the barriers remain high [45]. Such RTDs have been used in RTD oscillators
up to 712 GHz [7]. Making use of type-II band offsets, one can also realise inter-
band RTDs sketched in Fig. 3e. Electrons are tunnelling resonantly to the quantised
hole states in this case [46, 47]. In a way, the mechanism of NDC in such structures
could be similar to that in Esaki tunnel diodes: the valence-band states are shifted
below the conduction-band bottom with increase of bias and the current drops. The
inter-band RTDs can exhibit quite high PVCR of ≈ 20 at room temperature [46, 47],
but they have not been used in sub-THz or THz oscillators so far.
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Triple-barrier RTDs, see Fig. 3f, have been demonstrated to work up to≈ 500 GHz
in the oscillators [13, 48]. In such RTDs, the current flows due to resonant tunnelling
between subbands in the neighbouring QWs. The NDC is arising due to the shift and
misalignment of the QW subbands with increase of bias. In the context of QCLs, one
calls such type of active-layer designs and inter-well electron transitions as “diago-
nal”. The advantage of the triple-barrier RTDs is their higher flexibility in the design
of the I–V curve and NDC region. That is particularly beneficial for RTD detectors
(see more details in Section 6.) The disadvantage of such RTDs is that the achieved
current density [13, 48] is so far approximately an order of magnitude lower than that
in the double-barrier THz RTDs [10].

Several more-exotic device concepts with single tunnel barriers and NDC have
been suggested, although they have never been used in sub-THz and THz devices
so far. Figure 3g shows a single-barrier structure with particular band offsets. In the
structure, the electrons are non-resonantly tunnelling through the barrier at energies
closer to the valence, rather than to the conduction band (in the barrier). Therefore,
the barrier transparency declines with increase of the energy of the incident electrons,
i.e., the barrier becomes less transparent with increase of bias, that leads to NDC.
NDC in such structures at cryogenic temperatures has been demonstrated in [49],
the authors suggest that the mechanism should be also working at room temperature
in other material systems. Strictly speaking, it is not an RTD, NDC appears due to
non-resonant tunnelling.

Another type of single-barrier RTD has been suggested in [50], where the resonant
current flows via the inter-valley tunnelling through the quantised X states in the
barrier (see Fig. 3h). Γ − X coupling in this case is analogous to the tunnel coupling
through a single barrier in a double-barrier RTD. NDC in such single-barrier RTDs
has not been demonstrated experimentally so far, but such RTDs is a very intriguing
concept and there are experimental results showing that the mechanism of NDC is
realistic [51].

One more exotic single-barrier RTD is sketched in Fig. 3i, where electrons are
tunnelling resonantly through a triangular Schottky barrier from a metal gate into a
quantum subband in a narrow 2D channel, e.g., in a high electron-mobility transistor
(it will be a diode, if we use just one contact to the channel) [52, 53]. Similar to
the mechanism discussed in Fig. 3g, the Schottky barrier will get higher and less
transparent with increase of bias for electrons tunnelling resonantly from the gate
into the channel, the mechanism leads to NDC [52, 53]. Reduction of the tunnel
transparency of the Schottky barrier with bias for resonantly tunnelling electrons in
such GaAs structures has been demonstrated experimentally [54], the results also
indicate that NDC should be achievable in Al/InGaAs/InAlAs or Al/GaN/AlGaN
structures.

Another very intriguing RTD type demonstrated in the last years is based on
graphene, where electrons are tunnelling resonantly between two graphene layers
separated by boron-nitride barrier with the thickness of few atomic layers [55]. NDC
in such structures appears due to misalignment of the electronic spectra in the neigh-
bouring graphene layers with the change of bias. Such RTDs are expected to be
working in the sub-THz range [56].



International Journal of Infrared and Millimeter Waves (2019) 40:365–394 373

4 Early Development of RTDs and RTDOscillators

An RTD is an active device, its NDC can compensate for the losses in a resonant cir-
cuit or a resonator. That leads to a simple concept of an RTD oscillator. First, one
takes a resonator. Any resonator has losses, e.g., ohmic and radiation losses. In the
most simple case, the resonator could be a resonant LC circuit with the losses repre-
sented by a (positive) resistor (Fig. 4a). Then, we connect an RTD to the resonator,
apply a bias in the NDC region and the NDC (if large enough) will compensate for
the resonator losses. The resonator will then start oscillating by itself, i.e., the RTD
will turn it into an oscillator. In addition, as mentioned in the introduction, tunnelling
can be an extremely fast process. These considerations have fuelled expectation, that
very high frequencies could be achieved with RTD oscillators.

Indeed, the performance of RTD oscillators was improving very fast in the 1980’s
last century. Fundamental oscillations at relatively low frequencies (LF) up to 9 GHz
at 200 K have been reported in 1984 [28]. A room-temperature RTD oscillator at the
fundamental frequency of 56 GHz has been demonstrated in 1987 [34], at 200 GHz
in 1988 [31], at 420 GHz in 1989 [35] and at 712 GHz in 1991 [7]. The development
of RTD oscillators was progressing very fast. However, no further progress has been

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4 Different types of RTD oscillators. a Schematic of a simple LC RTD oscillator, R is the resonant-
circuit loss resistance, RRTD < 0 is the RTD resistance in the NDC region. b Hollow-waveguide
oscillators, the reported highest frequency is ≈ 0.7 THz [7]. c On-chip slot-antenna oscillators, the highest
achieved frequency is 1.98 THz [8, 10, 36, 42]. d Membrane slot-antenna oscillators, the highest fre-
quency is ≈ 1.1 THz [9]. e Patch-Antenna oscillators, the highest achieved frequency is ≈ 0.5 THz [13].
f Travelling-wave oscillators, they are expected to operate at THz frequencies [59]
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achieved in the subsequent almost 20 years. RTD oscillators started to be considered
as a not viable technology and they were abandoned until THz RTD oscillators have
been demonstrated in 2010 and 2011 [8, 9].

In the context of the development of RTD oscillators, there was always a ques-
tion standing in the background: what are the frequency limitations of RTDs? In the
early years, the publication [20] was taken with much surprise, where a rectification
response of an RTD was measured up to 2.5 THz. Although RTDs were not working
as active devices in the experiment, operation of RTDs at so high frequencies was
not expected. This puzzling result has stimulated the idea of sequential tunnelling
in RTDs [17] and incorporation of tunnel lifetime in the analysis of dynamic RTD
response [21, 57]. Later on, operation of RTDs as rectifiers has been demonstrated at
even higher frequencies of 3.9 THz [58].

5 Different Types of RTD Oscillators

Oscillators based on diodes with NDC are investigated for many decades already.
An early overview of different oscillator concepts developed for Esaki diodes can be
found in [60]. Meanwhile, different types of RTD oscillators have been also demon-
strated and studied. The early development has started with coaxial resonators up to
9 GHz [28], where an RTD was mounted at the bottom of a cylindrical cavity and
it was contacted by a needle (with a backshort at some distance in the cavity) going
through the centre of the cylinder. Hollow-waveguide resonators have been used at
higher frequencies up to 0.7 THz [7, 31, 34, 35]. Such resonators consist of a piece
of a hollow waveguide with a (movable) backshort at one end and a mount for an
RTD with a whisker contact at the other end (see schematic in Fig. 4b). The movable
backshort is used to tune the resonance frequency and to verify that the oscillator is
operating at fundamental frequency. It is quite challenging to handle such resonators,
therefore they are not in use presently.

While measuring the characteristics of RTD oscillators, special attention is
required to check and to prove that the measured signal indeed corresponds to the
fundamental oscillation frequency. Examples showing that it is a challenging and not
a trivial task could be found in [7, 35]. This is one of the critical points in the analysis
of the measurements of RTD oscillators. Unfortunately, this issue was disregarded in
some of the subsequent publications.

Later on, the concept of slot-antenna-integrated RTD oscillators has been put for-
ward in 1997 [36]. Slot antenna is a simple resonant type of antenna; therefore it
can be used as a resonator and relatively easily integrated with an RTD in the fab-
rication process Fig. 4c. These are very important advantages of the slot-antenna
resonators: THz RTDs usually have sub-μm dimensions and monolithic integration
of RTDs in a resonator becomes crucial at THz frequencies. However, at low fre-
quencies up to around 100 GHz, discrete RTDs fabricated separately could be also
soldered onto a slot antennas [44]. The concept of slot-antenna RTD oscillators was
adopted and further developed by the group of M. Asada and eventually brought to
operation at frequencies up to 1.98 THz recently [8, 10, 41, 61]. Meanwhile, slot-
antenna RTD oscillators became a standard type of RTD oscillators at sub-THz and
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THz frequencies. Such oscillators are usually fabricated on semiconductor substrates
with a high dielectric constant; therefore, the radiation is predominantly emitted into
the substrate. To couple the radiation out and collimate it, the chips are mounted on
top of a hemispherical Si lenses.

The slot-antenna oscillators have been also modified in different ways. The RTD
capacitance is quite high, it is typically in the range of 1–10 fF/μm2, it is usu-
ally dominating over the eigen slot-antenna capacitance. As a consequence, the slot
antenna length in THz oscillators is becoming smaller and much smaller than the
radiation wavelength. The radiation efficiency of such small slot antennas becomes
poor and that limits the radiated power of the oscillators. To circumvent the problem,
asymmetrical slot antennas have been used in the RTD oscillators: RTD is placed
close to one end of the slot, the short end works as a resonator and defines the res-
onance frequency, while the long end of the slot works as an efficient radiator. The
approach allows one to increase the output power of the oscillators, e.g., ≈400 μW
at ≈550 GHz have been achieved in such oscillators [12].

Another advantage of the slot-antenna RTD oscillators is that one can relatively
easily fabricate an integrated array of such oscillators. That has been presented
already in the very first publication on the slot-antenna RTD oscillators [36]. Using
small number of oscillators in the array, one can achieve mutual locking of their
oscillation frequencies and combine their output power coherently, e.g., two-element
arrays were reported to emit 270 and 180 μW at 770 and 810 GHz, respectively,
[12]. Due to variation of the parameters of the neighbouring oscillators (because of
technological imperfections), it is quite difficult to achieve mutual locking of a larger
number of oscillators [12].

The other modification of a simple slot-antenna resonator is a membrane RTD
oscillator, when a slot antenna integrated with an RTD is fabricated on a thin dielec-
tric membrane. Such resonators are usually also integrated with an additional planar
broad-band (Vivaldi) antenna to improve the radiation efficiency of the oscilla-
tor (Fig. 4d). This kind of oscillators on a thinned ≈ 20-μm-thick InP substrate
operating at 400 GHz has been reported in [62]. The highest frequency achieved
with the oscillators is 1.1 THz [9], the oscillators were fabricated on few-μm thick
spin-on dielectric membrane in this case. Such oscillators could be extremely tiny:
≈500 × 500 μm2 [9].

The idea of integrating an RTD with a patch antenna, see Fig. 4e, which is also a
resonant type of antenna, is around for relatively long time as well. In the beginning,
the patch antenna was used to improve the coupling of the external radiation into
an RTD [63]. Later on, an RTD oscillator at ≈ 500 GHz based on patch-antenna
resonator has been also reported [13]. The advantage of this approach is that the
radiation is emitted by the antenna upwards from the chip and the hemispherical Si
lens is not needed in such oscillators; therefore, the dimensions of the oscillators
could be rather small.

Meanwhile, several types of more complex oscillators have been reported, which
combine, e.g., a slot and patch antennas [64] or a slot and Yagi-Uda antennas [65] or
even more complex designs, where a slot antenna is complemented by an additional
array of corner-shaped slots to emit circular-polarised radiation [66]. The advantage
of such oscillators is that one is forcing the slot antennas to radiate in the air, rather
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than to the substrate and one can get better control over the radiation pattern of the
oscillators.

The concept of travelling-wave distributed oscillators with NDC active layers has
been discussed already quite long time ago [60]. A detailed theoretical analysis of
travelling-wave microstrip RTD oscillators was presented in [59], see schematic of
the oscillator in Fig. 4f. It turns out, that such oscillators should be working at 1–
2 THz at room temperatures and perhaps even at higher frequencies. Due to larger
active volume in microstrips, compared to the lumped-element oscillators, one can
expect generation of higher output THz power in such oscillators. From another per-
spective, microstrip RTD oscillators could be seen as THz QCLs with metal-metal
waveguide, where the whole cascade is replaced by its single period—an RTD. Con-
trary to THz QCLs, microstrip RTD oscillators do not require cryogenic cooling and
they should be working at room temperature. The reason for that could be rather basic
[59]: the NDC region can be preferable to achieve higher gain in the THz QCLs (with
“diagonal” active transitions) [67], but QCLs cannot be operated in the region due to
build up of the high-field domains. On the other hand, the QW in an RTD has direct
contacts on both sides, which keep the RTD active region stable. Therefore, RTDs
could be easily operated in the NDC region in their optimum regime. That is proba-
bly the main reason why RTD oscillators are working at room temperatures, although
THz QCLs do not.

One more type of RTD oscillators is harmonic oscillators. Harmonic emission has
been also reported long time ago, e.g., 87 GHz emission at the second harmonic was
reported in [34]. The first report on THz emission from RTD oscillators was also at
the third harmonic in [68]. The highest frequency harmonic emission was at 1.52 THz
in triple-push oscillators (third harmonic), the output power was 1.9 μW [69].

6 RTDs as Sub-THz and THz Detectors

Experimental investigation of the maximum fundamental operating frequency of
RTD oscillators is one of the ways to find out the frequency limitations of RTDs.
However, RTDs are working in the NDC region in this case and they are com-
bined with a lossy resonator in an RTD oscillator, therefore it is an investigation of
the limitations of a coupled system, rather than an RTD alone. From the point of
view of analysis of the frequency limitations and frequency-dependent characteris-
tics of RTDs, the rectified (usually quadratic) response of RTDs can give extended
or complementary information, compared to the RTD oscillators. Particularly, we
can measure frequency-dependent detector response in the PDC region, where RTD
oscillators cannot operate; we can also flexibly choose the signal amplitude applied
to an RTD: the RTD relaxation time constants are, generally speaking, dependent on
the signal amplitude in the non-linear regime of operation.

The frequency dependence of an RTD-detector response is determined by the
interplay of several factors. The rectification response of an RTD is determined
by the amplitude of the signal across the diode and by the non-linearity of the
RTD characteristics. The amplitude depends on the impedance matching between
the RTD and the waveguide/antenna, on the external RTD parasitics and on the
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RTD impedance. The RTD impedance is frequency and, generally speaking, also
signal-amplitude dependent; the impedance inherently depends on the small-signal or
large-signal charge-relaxation time constants. The very same RTD impedance (in the
NDC region) also determines the oscillation conditions and the output power of RTD
oscillators. In the small signal operating regime of the detectors, the RTD impedance
is adequately described by a linear RTD model, e.g., by a model outlined in Section 7
with the corresponding linear RTD impedance and response time. Nevertheless, the
model still needs to be extended or complimented by some additional assumptions to
estimate the non-linear (although small signal) response of an RTD detector. A large-
signal model is required in the general case, the non-linear RTD dynamics will be
qualitatively discussed in more detail in Section 8. However, we note that an accurate
analysis of the non-linear HF RTD characteristics is sill an open topic, it still remains
to be done.

The non-linear characteristics are also of high interest for practical application of
RTDs in THz detectors. There are two regions with large non-linearity in the I–V
curve of a double-barrier RTD (see Fig. 5a). First, it is the region (A) of the onset
of the resonant-tunnelling current, where the current starts flowing through the RTD
due to resonant tunnelling of electrons in the tail of the electron energy distribution
function in the RTD emitter. The RTD current density in the region is approximately
described by the thermal exponent:

jRTD ∝ exp

(
αeURTD

kT

)
, (2)

where URTD is the bias applied to the RTD, k is the Boltzmann constant, T is the
temperature, the coefficient α = d/(d + l) describes which part of the RTD bias falls
between the emitter and QW, d and l are the effective thicknesses of the emitter-QW
and QW-collector regions, respectively; the thicknesses include the barrier thick-
nesses, depletion region in collector and screening-lengths (in emitter and collector)
(see Fig. 2a). Except for the factor α, this thermal exponent is similar to that in Schot-
tky diodes. Correspondingly, the RTD non-linearity in the region is weaker (by the

(a) (b)

(c)

Fig. 5 a A sketch of an RTD I–V curve with highly non-linear regions (A and B) in the PDC range, which
are usable for detection. b Schematic of an RTD with top and bottom contacts to n++ layers. cA simplified
equivalent circuit of an RTD with a contact resistance



378 International Journal of Infrared and Millimeter Waves (2019) 40:365–394

factor α) than that in the Schottky diodes. Additionally, the space-charge effects were
neglected in Eq. 2, the effects should weaken the RTD non-linearity even further.

The second region (B in Fig. 5a) with significant non-linearity is close to the
current peak, when the resonant current is starting to switch off with increase of bias.
The non-linearity is not due to the thermal exponent in this case; it is determined
by the broadening of the QW resonant subband instead. Since the broadening can
be much smaller than kT ≈ 25 meV (at room temperature), the responsivity of an
RTD detector can be much larger than that of a typical Schottky diode detector. That
gives a fundamental advantage to RTD detectors, which can be elucidated by defining
the current responsivity of a detector in a usual way as I ′′/2I ′ (where ′ denotes the
derivative of I (U)). In a Schottky diode, the maximum responsivity is as follows:

I ′′

2I ′ = e

2kT
, (3)

which is equal to ≈20 A/W at room temperature. An alternative type of common
detectors gaining ground in the last decade is based on rectification in the chan-
nel of field-effect transistors (FETs) operated above cut-off frequencies. The current
responsivity of FETs turns out to be twice less than the value given by Eq. 3 [70].
These numbers determine the fundamental limitations of those common detectors.
However, since the RTD non-linearity in the region (B) in Fig. 5a is determined by
the broadening of the resonant subband, RTD detectors can overcome the limitation.
For example, a factor of ≈12 dB higher sensitivity of RTDs compared to Schottky
diodes has been experimentally determined in [71].

The triple-barrier RTDs could be also used in detectors. Their advantage is that
the non-linearity at the onset of the resonant current is not due to the thermal tail in
the electron distribution function; it is due to the alignment of the 2D subbands in the
neighbouring QWs, i.e., the non-linearity can be strong and the current responsivity
of such RTDs can exceed the thermal limit of Eq. 3 not only in the region (B) but
also in the region (A) in Fig. 5a. Such diodes could be even designed in a way, that
the region (A) is shifted to zero bias [72]. The superior performance of such triple-
barrier RTDs is not demonstrated experimentally so far but some preliminary results
are published recently in [48, 72]. The disadvantage of such RTDs is that their current
density is lower than that of double-barrier RTDs; their impedance is higher and that
results in difficulties to achieve an optimum matching with the detector antenna [72].

The non-linearity of the RTD I–V curve could be easily used in the PDC region,
although, the NDC region should be avoided, since RTD becomes unstable in the
region and it starts to oscillate by itself. However, the RTD non-linearity is the largest
near the peak of the RTD I–V curve, i.e., quite close to the NDC region. That imposes
a limitation on the amplitude of the detected signal: the oscillating RTD bias should
be small, it should not go into NDC region. As a consequence, the dynamic range
of non-linear RTD detectors is more limited than that of a Schottky diode detector,
although their sensitivity could be much higher.

RTD detectors can operate at very high frequencies. 2.5 THz detectors (rectifica-
tion signal) have been reported already very long time ago [20]. The highest reported
operating frequency of RTD detectors is 3.9 THz [58], RTD was whisker contacted
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and mounted in a corner-cube reflector in this case. A number of antenna-integrated
RTD detectors have been reported more recently both with triple- and double-
barrier RTDs [48, 71]. Such detectors have been used in imaging [73], high-speed
data transmission at 9 Gbit/s [74] and spectrometer [75] experiments at sub-THz
frequencies.

The RTD detector could be constructed in a similar way as an RTD oscillator.
That is an important advantage of the RTD detectors: both detectors and RTD oscil-
lators could be fabricated in the very same process and easily combined together
in the transmitter/receiver systems. Even the very same RTD can be operated as a
gain media in an oscillator or a detector, depending whether it is biased in the NDC
or non-linear PDC region of the I–V curve, respectively, [48]. However, the opti-
mum designs of RTD oscillators and detectors are different: in an oscillator, an RTD
must be combined with a resonator or a resonant antenna, whereas it is preferable to
combine an RTD with a non-resonant broad-band antenna in the case of a detector.

7 High-Frequency Characteristics of RTDs: Linear Model

The operating frequencies of RTD oscillators are limited due to losses in resonators
(e.g., ohmic or radiation losses) and due to limitations of the RTDs themselves, e.g.,
RTD cannot provide enough NDC to compensate for the resonator losses or the RTD
cannot provide any gain at all beyond certain limiting frequency, since NDC turns
into PDC with increase of frequency. The properties of resonators are discussed in
[41]. Here, we are concerned with the analysis of the RTD limitations, which could
be divided into internal and external.

The external limitations arise due to RTD parasitics. The most important one is
the specific (per unit area) resistance (ρc) of the top RTD contact (see Fig. 5b). Its
typical value is 1–10 Ohm·μm2 in RTDs with InGaAs contact layers. However, it
might turn out to be above 100 Ohm·μm2, if special care is not taken to fabricate
good contacts. We can recognise the importance of ρc already looking at the load
line and the dc I–V curve of an RTD (see Fig. 5a). THz RTDs usually have thin
tunnel barriers, high current density and high NDC. The working point on an RTD
is in the NDC region and the RTD must be dc stable there, i.e., ρc < −1/G0

RTD,
where G0

RTD is the specific static differential conductance of an RTD (G0
RTD < 0

in the NDC region). For example, an RTD with not the record-high peak current
density of jRTD ≈ 25 mA/μm2 used in 1.46 THz oscillator in [42] had 1/G0

RTD ≈
−15 Ohm·μm2. Correspondingly, the value of ρc should be less than −1/G0

RTD to
be able to bias the RTD in the NDC region.

The bottom RTD contact has larger area and it is usually less critical, but its con-
tribution to the total contact resistance of RTD can still be considerable and should
be also taken into account, as well as the spreading resistance of the n++ layers
(see Fig. 5b). That would mean that ρc must be even less than the value in the above
assessment. We note at this point, that an elegant solution to the contact-resistance
problem has been suggested in [36], where a Schottky collector has been built into
an RTD, that allows one to eliminate the top contact ρc.
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Of course, the contact resistance and other parasitics impose also limitations on
the operating frequencies of RTDs: due to parasitics, the negative total conductance
of an RTD will reduce and become positive at high frequencies. For example, if we
disregard all other parasitics except for ρc and assume that RTD layers could be
represented by a simple RC model with GRTD and CRTD (specific RTD capacitance)
(see Fig. 5c), then the total conductance will be negative only below the maximum
angular frequency ωmax:

ωmax = 1

CRTD

√
−GRTD

(
1

ρc

+ GRTD

)
. (4)

At frequencies ω � ωmax, the total RTD conductance is positive and the RTD cannot
provide any amplification/gain. The limitation of Eq. 4 will be somewhat relaxed
due to the contact capacitance, which is ∼20 fF/μm2 in typical InGaAs THz RTDs.
However, the frequency limitation is getting more severe, when other parasitics are
not negligibly small, particularly, bottom-contact resistance, spreading resistance in
the n++ layers, additional parasitic capacitances, inductance of the air-bridge, skin
effect, etc. Although parasitics are playing a crucial role in the frequency limitations
of RTDs, their accurate estimation and assessment could be done in a straightforward
manner, in the same way as that is done for Schottky diodes and transistors at sub-
THz and THz frequencies.

Internal limitations of RTDs is a more involved problem. During resonant tun-
nelling, the electrons are getting trapped to and released from the resonant states, i.e.,
the process is inherently associated with a certain time delay and it might be slow.
Therefore, the RTD NDC should decrease with frequency and it can even become
positive beyond some limiting frequency. Such effects can impose inherent frequency
limitations on RTDs. The way to tackle the problem is to develop physics-based mod-
els for the electron transport through RTDs, which should describe the complex RTD
admittance or, in other terms, frequency dependence of RTD conductance and capac-
itance. Such models could be analytical [21, 37, 76–78] or fully based on numerical
simulations [79, 80]. Although numerical simulations could be quite general, the
interpretation of their results is far from being straightforward. Often, it is difficult
to use them, when one wants to single out main effects responsible for particular
behaviour of RTDs. Numerical simulations are not easy to use in practise in the anal-
ysis and design of RTDs. They are quite helpful though, when the main effects are
identified, qualitatively clear and one needs to get more accurate estimates of them.
Some analytical models [37, 76, 77], although accurate from the physics point of
view, turn out to be quite complicated as well, involve many parameters and could be
more appropriate for numerical calculations in practise.

An intuitive, simple and not necessary less accurate description of HF properties
of RTDs could be achieved with analytical and semi-analytical models. Meanwhile,
several types of such models have been suggested. The most simple one is an RC
circuit, where RTD is modelled as a resistor (with the conductanceG0

RTD) and capaci-
tance (C0

RTD) connected in parallel (see Fig. 6a). Now and further, we will be referring
to the specific (per unit area) parameters (conductance, capacitance, etc.) in the RTD
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(a) (b) (c)

(d)

Fig. 6 RTD equivalent circuits. a The most simple RC model. b RLC model [21]. c RLCR model [78,
81], where Lq = τrel/(G

0
RTD − G∞

RTD). d Comparison of the frequency dependence of RTD conductance
according to a RC, b RLC (schematic behaviour), c RLCR models and experimental data reported in [82].
Small mismatch at low frequencies is because the theoretical value of G0

RTD is based on a derivative of the
calculated I–V curve, which is overlapping quite good, but not ideally with the experimental curve

models. The model is widely used due to its simplicity, but it obviously disregards the
electron accumulation in the QW and the time delay due to the resonant tunnelling.

A more accurate and still simple model has been suggested in [21], where the
finite tunnel electron lifetime (τ ), which electrons spend in the QW during resonant
tunnelling, is taken into account. The time delay can be represented by an inductance
(L) connected in series with G0

RTD in the RLC model (see Fig. 6b). Qualitatively, the
current through an RTD does not follow instantaneously the variation of the applied
bias, it takes time τ for the current to adjust to the bias variations. The time delay
is analogous to the effect of an inductance with the value of L = τ/G0

RTD in series
with a resistor with conductance G0

RTD. Cec in Fig. 6b is the specific geometrical
emitter-collector RTD capacitance. The model predicts, that the RTD conductance
is decreasing with increase of frequency, the rate of the decrease is related to the
time constant τ (see line (b) in Fig. 6d). Lower RTD conductance at high frequencies
together with account of contact resistance ρc leads to a lower bound for ωmax, where
RTD conductance becomes positive [21].

However, the space-charge (Coulomb interaction) effects have been neglected in
the above RLC model. The effects have a strong impact on the electron transport in
two ways. First, the variation of the electron charge in the QW shifts the QW potential
the same way, as we have seen that in the discussion on the static I–V characteristics
of RTDs in Section 2. It turns out, that the (dynamic) shift has a profound effect on
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the rate of charge relaxation processes: as a result, the QW-charge relaxation process
will be described by a relaxation time constant (τrel), rather than τ , and τrel could
be much shorter or much longer than τ [78, 83]. Second, the account of Coulomb
interaction effects is switching on the displacement-current mechanism of the cur-
rent flow through an RTD and through its individual barriers [78, 81]. For example,
the real electron current might be flowing only between the emitter and QW, but
the displacement current in the collector region makes it flowing through the whole
structure and appear in the current through the external contacts of RTD. It is a sort
of additional instantaneous (no delays) current channel through the RTD. It turns out,
that both effects could be included into a slightly modified RLCR equivalent-circuit
model of an RTD [78, 81] (see Fig. 6c). The change in the relaxation time modifies
the equivalent “quantum” inductance (Lq ) as follows:

Lq = τrel

G0
RTD − G∞

RTD

(5)

and the displacement-current mechanism adds an additional parallel current-flow
channel, which appears as an additional “HF” parallel resistor (G∞

RTD). That leads
to the following equation for the admittance (YRTD(ω)) of the RTD, which could be
represented as RLCR circuit in Fig. 6c [78, 81, 83]:

YRTD(ω) = iωCec + G∞
RTD + G0

RTD − G∞
RTD

1 + iωτrel
. (6)

As mentioned above, the role of the inductance in the equivalent RTD circuit is
the delay of the current with respect to the bias variation. The delay is equal to L/R

in a serial LR circuit. In the RLCR model, the RTD current has both an instantaneous
(G∞

RTD) and delayed (by τrel) current components, represented by the second and the
last terms in Eq. 6, respectively and the corresponding branches in the equivalent
circuit in Fig. 6c. The inductance Lq in Eq. 5 is positive in the PDC region, but it
becomes negative, when G0

RTD − G∞
RTD < 0. However, note, the delay τrel is always

positive. The negative sign of Lq is related to the change in sign of the conductance
(G0

RTD − G∞
RTD) in the nominator of the last term in Eq. 6, i.e., a positive change in

the bias leads to a negative change in the current, which is delayed by τrel.
Figure 6d illustrates the difference in the frequency dependence of the RTD

conductance (GRTD = Re(YRTD)) for different models and compares them with
the experimental data from [82]. In this example, we were intentionally studying
an RTD with very thick barriers, so that τrel ≈ 100 ps. The RC model predicts
frequency-independent behaviour, which is oversimplified to describe accurately the
experimental data. In this example, it would be applicable only below ∼ 0.5–1 GHz.
RLC and RLCR models exhibit roll-off of the RTD conductance with frequency,
however, at different frequencies of 1/2πτ and 1/2πτrel, respectively. RLC model
overestimates the roll-off frequency, since it is ascribed to τ , rather than τrel in the
case of RLCR model. The later one demonstrates essentially better agreement with
the experimental data, since τrel > τ in the NDC region of the I–V curve and the
roll-off frequency is getting lower [78, 81, 83]. It is also important to notice, that
RLC model predicts that the RTD conductance should tend to zero at high frequency,
although the RLCR model predicts asymptotic convergence of the RTD conductance
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towards a finite value of G∞
RTD, which is in agreement with experiment: RTD con-

ductance indeed can stay negative at ωτrel 	 1. RLCR model has been compared to
other experimental data in [81] and, further on, it has been used extensively in the
analysis of different RTD oscillators in [9, 16, 44], where very good agreement with
experimental data has been demonstrated.

The RLCR circuit has been derived in [78, 81] based on sequential-tunnelling
model [17] of electron transport in RTDs with account of Coulomb interaction
effects. It turns out, that one can give a simple and intuitive picture for the
mechanism, describing how Coulomb interaction affects the relaxation time. The
mechanism is illustrated in Fig. 7. First, we assume that we have a QW separated by
a tunnel barrier from a contact (Fig. 7a). We assume, that there are many equidistant
quantum states in the QW separated by the energy interval ΔE, each of the states is
characterised by the same tunnel lifetime τ . Next, we fill the states in the QW and the
contact by electrons up to a certain Fermi level (EF ); this is a stationary state of the
system (Fig. 7b). Further, we introduce a perturbation, we move an electron from the
contact into the QW, Coulomb interaction is switched off (Fig. 7c). The electron will
occupy a state in the QW above the EF in the contact (temperature is assumed to be
zero) and it will tunnel out from the QW with the time constant τ (Fig. 7c). However,
when we switch on the Coulomb interaction, the picture is changing (Fig. 7d). The
perturbing electron we have moved into the QWwill add some charge to the QW, that
will shift the QW potential upwards due to charging of the contact-QW capacitance

(a)

(e) (f) (g)

(b) (c) (d)

Fig. 7 Mechanism of Coulomb acceleration of the charge relaxation in a–d single- and e–f double-barrier
structures with a series of equidistant quantum states in the QW. b, e Steady states of the systems. c, d,
f, g Perturbation due to an extra electron in the QW with the Coulomb interaction switched off (c, f) and
switched on (d, g)
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(C). The corresponding energy shift is e2/C. That means that not only the elec-
tron we have placed initially as a perturbation into the QW, but also β = e2/CΔE

additional electrons will contribute to the tunnel relaxation current, since the states
occupied by the electrons will be shifted above the contact EF . Noticing that to bring
the system back to the initial stationary state, only one electron should tunnel through
the barrier, the relaxation time of such process will be (1 + β) times shorter than τ ,
i.e., τrel = τ/(1 + β). The mechanism leads to acceleration of the relaxation process
by the factor of (1 + β).

The same mechanism works in a similar way also in the double-barrier tunnel
structures, that is illustrated in Fig. 7e–g. Now, we sandwich QW between two tunnel
barriers and two contacts. The emitter and collector barriers are characterised by the
tunnel lifetime τe and τc, respectively. When we apply a bias to the system, a dc
current will be flowing through the barriers. This is a stationary state of the system,
Fig. 7e. In the same way as above, we introduce a perturbation, we add an electron
into the QW and look at the rate of relaxation of the perturbation. First, the Coulomb
interaction of the perturbing electron is switched off (Fig. 7f). The electron can tunnel
to the collector with the tunnel rate 1/τc. The electron in the QW also blocks an
emitter→QW tunnel channel. The emitter→QW electron flow will reduce and we
can represent that as if we are adding a compensating current flow QW→emitter
with the value e/τe. Adding up these relaxation current flows from QW to emitter
and collector, we find that the relaxation time constant is equal to the tunnel electron
lifetime τ , where,

1

τ
= 1

τe

+ 1

τc

. (7)

This is the relaxation rate, which is taken into account in the RLC model (Fig. 6b).
However, when we switch on the Coulomb interaction, the relaxation time is chang-
ing (Fig. 7g). The potential of the QW shifts upwards, and now the additional
β = e2/CQWΔE states will be blocked for tunnelling from emitter into QW, where
CQW denotes a combined capacitance between QW and emitter and collector. In
result, the relaxation time will be accelerated according to as follows:

1

τrel

= 1 + β

τe

+ 1

τc

= 1

τ
+ β

τe

. (8)

We did not specify the parameter ΔE so far. In RTDs with 2D QW, electrons are
quantised in the QW in one direction, but they can freely move in two other directions
and form a subband. Then, ΔE in such structures is equal to 1/ρ2DS, where ρ2D is
the 2D density of states in the QW subband and S is the RTD area. Substituting this
expression into the above equation for β, we get the following expression for an RTD
with 2D QW:

β = e2ρ2D

CQW

, (9)

where as CQW we denote further the sum of QW-emitter and QW-collector capaci-
tances per unit area.

The above effect might look similar to the Coulomb blockade, but it is essen-
tially different. First, the Coulomb-blockade effect blocks the dc current, although
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the above effect describes Coulomb acceleration of the tunnel relaxation process,
i.e., it is a dynamic effect. Second, the Coulomb-blockade effect relies on the dis-
cretisation of the electrons charges, although for the above effect the discretisation
of charges is not important. We could have put an arbitrary number N of electrons
into the QW as an initial perturbation in the above examples, then (1 + β)N elec-
trons would contribute to charge relaxation and τrel would stay unchanged: τrel is
a time constant in a linear relaxation model. Third, the effect is determined by the
parameter β = e2/CΔE, rather than e2/CkT in the case of Coulomb blockade. β

is temperature independent, therefore, low temperature is not required and the above
effect works at room temperatures as well. Fourth, we can notice, that the parameter
β in Eq. 9 is independent of the RTD area, i.e., the effect is present in arbitrary large
RTDs, since it is determined by the ratio of the 2D electron density in the QW and the
specific QW capacitance. On the contrary, extremely small capacitance is required
to observe the Coulomb-blockade effect (e2/C 	 kT ). We can see from the above
discussion, that the Coulomb acceleration of the relaxation process is an ubiquitous
effect in RTDs, it is determined by the parameter given by Eq. 9, with the typical
values of β for InGaAs or GaAs RTDs in the range ≈ 2–10. The effect is by far not
small.

The above simple mechanism of Coulomb acceleration of relaxation processes
works well in the PDC region of the RTD I–V curve: β > 0 in the PDC region and
τ > τrel, as it follows from Eq. 8. In this sense, RTD is a fast device in the PDC
region, its relaxation time is shorter than τ . However, an additional effect starts to
play an essential role in the NDC region: τe is changing rapidly with the Coulomb
shift of the QW potential. A detailed analysis of β in the NDC region [78, 83] shows,
that β < 0 there and, as a consequence of Eq. 8, τ < τrel, i.e., RTD is a slow device
in the NDC region, its relaxation time is longer than τ .

Both the deformation of the dc I–V curve (discussed in Section 2) and modifica-
tion of τrel are related to the QW-potential shift due to Coulomb interaction. Both
effects are intimately related and it turns out that one can derive an equation [78, 81,
83] relating the static differential conductance of RTD (G0

RTD) and the ratio τ/τrel:

G0
RTD = Cwc

τc

(
1 − τrel

τ

)
, (10)

where Cwc is the QW-collector capacitance of RTD. The equation turns out to be
very helpful for calculation and analysis of τrel, since G0

RTD is directly measurable
and Cwc, τc and τ could be assessed rather easily. At this point, we also note that the
RLCR model, represented by Eq. 8 and Fig. 6c, is very simple; it contains only four
parameters. Out of them, G0

RTD is directly measurable, G∞
RTD could be also measured

directly, at least in the relatively low-frequency RTDs [82], or evaluated (see below),
Cec is easy to calculate relying on the doping profile of the RTD layers. Relying on
Eq. 10, we can also evaluate τrel, then we know all 4 parameters of the model. That
makes the RCLR model easy to use in practise.

The impact of the displacement currents on the HF properties of RTDs could be
illustrated also in a quite intuitive way with the help of the Shockley-Ramo theo-
rem [84, 85]. According to the theorem, the current density (jRTD) at the external
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boundaries of the RTD layers, i.e., in the conducting regions of RTD emitter and
collector, is as follows:

jRTD = d

d + l
jew + l

d + l
jwc + Cec

∂URTD

∂t
, (11)

where d and l are defined earlier and illustrated in Fig. 2a; jew and jwc are the emitter-
QW and QW-collector current densities, respectively; generally speaking, jew 
= jwc
at high frequencies; URTD is the bias across RTD layers. Equation 11 is exact, it
takes into account both the real electron and displacement currents flowing through
the RTD layers. The first two terms in Eq. 11 describe contributions of real currents
jew and jwc to jRTD, where the currents are multiplied by the coupling coefficients
containing only geometrical parameters d and l. The mechanism of coupling is via
displacement currents. The last term in Eq. 11 describes the capacitive current due to
accumulation of charges at the external boundaries of the RTD layers.

The HF behaviour of RTD could be explained with the help of Eq. 11 [78, 81].
At high frequencies, when ωτrel 	 1, N2D becomes a time independent constant, it
cannot follow bias variations at so high frequencies. jwc has non-resonant nature, it
changes only due to the variation of the collector-barrier tunnel transparency in this
regime. The mechanism gives a positive contribution of jwc to RTD conductance,
i.e., RTD collector current contributes to loss at high frequencies. On the other hand,
the mechanism of jew is resonant tunnelling and jew still gives negative contribution
(amplification and gain) to the RTD conductance also at high frequencies. If RTD
has a thick depletion region on the collector side (d � l), then the (lossy) contribu-
tion of jwc will be dominant and (gain) contribution of jew will be suppressed (its
contribution in Eq. 11 will have a small pre-factor d/(d + l)). As a consequence,
RTD conductance will be positive (lossy) at high frequencies in such RTDs. How-
ever, in RTDs with highly doped collector l ≈ d, the pre-factor in front of jew in
Eq. 11 will get higher (≈ 0.5) and the contribution of jwc will get lower (the pre-
factor is ≈ 0.5 compared to ≈ 1 in the previous case). As a result, such RTDs should
have NDC (gain) in the regime ωτrel 	 1 [78, 81], i.e., such RTDs have a wide
operating-frequency range.

The general RLCR model we have discussed here could be reduced to a simple
RC models in the LF and HF limits, although the RC parameters are quite different
in these two regimes [78, 81, 83]. The general Eq. 6 is reduced to a LF RC circuit
with the admittance:

Y LF
RTD(ω) ≈ iω

(
Cec + τrel

(
G∞

RTD − G0
RTD

))
+ G0

RTD. (12)

The circuit is applicable only in the limit: ωτrel � 1. Note, that the LF capacitance
(C0

RTD = Cec + τrel(G
∞
RTD −G0

RTD)) is not equal to the geometrical RTD capacitance
Cec. As described in [78, 81, 83], the additional term can lead to decrease or increase
of the capacitance in the PDC region of the I–V curve, but it gives a spike in the LF
capacitance in the NDC region measured in [86, 87]. The capacitance spike could be
attributed to the negative sign of Lq ; however, the additional term in C0

RTD indicates
that the origin of the spike is the negative sign of the conductance term (G0

RTD −
G∞

RTD) in Eq. 6.
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On the other hand, the RTD admittance is reduced to the following:

YHF
RTD(ω) ≈ iωCec + G∞

RTD (13)

in the HF limit (ωτrel 	 1), with the geometrical capacitance Cec and the conduc-
tance replaced by G∞

RTD. We note that in the HF regime in RTDs with heavily doped
collectors (l ∼ d), the contribution of jwc to the HF component of jRTD is getting
negligibly small compared to the contribution of jew, since N2D ≈ const and the HF
part of jwc tends to zero (see Eq. 1) that leads to a simple equation for G∞

RTD in such
RTDs [78, 81]:

G∞
RTD = − d

l + d

Cwc

τ
. (14)

Accurate validity conditions for the approximation are defined in [78, 81]; to be pre-
cise, Eq. 14 defines the maximum achievable value of G∞

RTD for given RTD geometry
(d and l) and τ [78, 81]. Using Eq. 14, one can easily evaluate G∞

RTD for further use in
the RLCR model, Eq. 6 and Fig. 6c. We also note, that the transport time through the
depleted collector region does not play any role in RTDs with heavily doped collector
in the HF regime, since HF part of jwc is negligibly small in this regime.

A detailed theory of the above effects has been developed in [78, 81, 83]. Later
on, it was demonstrated experimentally that τ > τrel in the PDC and τ < τrel in
the NDC regions of the I–V curve [82]. NDC in the regime ωτrel 	 1 and ωτ 	 1
up to 12 GHz in RTDs with heavily doped collector has been also demonstrated
experimentally [82]. Further on, operation of RTD oscillators in the regime ωτrel 	 1
and ωτ 	 1 has been demonstrated experimentally up to ≈ 550 GHz [16, 44];
simultaneously, these works give direct proof that the RTDs do exhibit NDC at the
operating frequencies of oscillators, i.e., also in the regime ωτrel 	 1 and ωτ 	 1.
Our analysis of the experimental data in [9] indicates that RTD oscillators should be
operating in the regime ωτrel > 1 at ≈ 2 THz. This series of works proves that RTDs
inherently can operate far beyond the tunnel lifetime and relaxation-time limits.

We have also investigated RTDs, where the doping in collector is so high, that
the bottom of the QW subband stays immersed not only under the emitter, but also
under the collector Fermi levels [42]. The electron back injection into the QW from
collector is comparable to the injection from emitter in this case. It is a quite unusual
regime of operation for RTDs. We have shown experimentally that such RTDs can
work at ≈ 1.5 THz in oscillators [42].

8 Non-linear RTD Dynamics: Qualitative Discussion

The above linear RTD model is sufficient for the analysis of instability (oscillation)
conditions of the oscillators, to determine the frequency limitations of the oscilla-
tors, to describe the frequency dependence of the small-signal RTD impedance and
the frequency roll-off of its NDC (or gain). However, the amplitude of the steady-
state oscillations is limited by the RTD non-linearity, i.e., a non-linear RTD model
is required for the analysis of the output power of an oscillator. One can distinguish
between several regimes of operation of the RTD oscillators. If an RTD oscillator is
approaching its frequency limit, then its output power tend to zero, the amplitude of
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the oscillations is small and the RTD should be working in a quasi-linear regime in
the vicinity of its operating point. Particularly, the time constant τrel and the above
linear model for the admittance should give an adequate description of the dynamic
behaviour of the RTD in this limiting regime. Nevertheless, incorporation of non-
linearity into the RTD model is still required also in this quasi-linear regime, if we
need to estimate the output power in addition to the oscillation conditions, limiting
frequency of an RTD, etc.

However, when RTD oscillators are operated significantly below their limiting
frequency, RTDs are working in essentially non-linear regime, which might have a
profound impact on their dynamic characteristics and on RTD time constants. As a
qualitative example, assume that the RTD is bouncing between some PDC (close to
peak) and valley points of its I–V curve. During half a cycle, the RTD QW has to
be become fully depleted, the process might be associated with the time constant
τc, when RTD is pushed into the valley region of the I–V curve, where the emitter-
barrier current is switched off and only the collector-barrier current can deplete the
QW. During the second half cycle, the RTD with an empty QW is pushed back into
the PDC region of the I–V curve, where the QW has to be filled in by electrons; the
relevant time constant then could be τrel in the PDC region. The time constants are
not necessary long, e.g., τrel in the PDC region and τc could be short as compared
to τrel in the NDC region, as we have discussed that in Section 7. These qualitative
arguments indicate, that different time constants might be relevant to the non-linear
RTD dynamics, it might be also a multi-time-constant dynamics and the time con-
stants are not necessary longer than NDC τrel (describing the linear dynamics of an
RTD). An accurate non-linear dynamic analysis of RTDs still remains to be done.

Apart from the dynamic time constants, another aspect one needs to take into
account in the analysis of the non-linear RTD characteristics is the shape of the RTD
I–V curve, which depends on the operating frequency. At low frequencies, when ω

is small compared to 1/τrel and other time constants, which might be relevant for
the non-linear RTD dynamics, RTD I–V curve remains close to its dc shape. This is
a quasi-static regime of operation. Analysis of RTD oscillators is straightforward in
this case: the dc RTD I–V curve (which is directly measurable) could be used in the
non-linear analysis of the amplitude of the oscillations. For example, approximating
the non-linear RTD I–V curve by a third-order polynomial, one can derive a simple
equation for the maximum power generated by an RTD: ΔIΔV 3/16, see [88], where
ΔI and ΔV are the peak-to-valley current and voltage swings, respectively.

The opposite limit, HF case, is more involved; there is no straightforward way,
how to measure the HF I–V curve at THz frequencies. In the HF regime, ω is large
compared to the inverse of τrel and of other non-linear time constants. Charge screen-
ing of the electric field by the charge accumulation in the QW is suppressed at so
high frequencies. As a result, HF RTD I–V curve deviates significantly from the dc
one. Analysis of RTD operation in such HF regime has been done in [89] and illus-
trated in Fig. 8. The dc and HF I–V curves are shown in Fig. 8a. In the HF regime, the
electron concentration in the QW is “frozen”, it cannot follow the external bias oscil-
lations; therefore, the tunnel currents through the emitter (jHFew ) and collector (jHFwc )
barriers become quite different. jHFwc does not show the typical RTD I–V signatures
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(a) (b)

Fig. 8 Non-linear HF characteristics of RTDs. Reprinted from [89], with the permission of AIP Publish-
ing. a The figure shows calculated dc (jDC, black curve) and HF electron-current densities, flowing though
the emitter (jHFew , blue curve) and collector (jHFwc , green curve) barriers and through the external contacts
(jHFel,ext, red curve) of an RTD. One can notice strong discrepancy between jDC and jHF

el,ext. b Relying on

jHFel,ext, distortions of the dc RTD I–V curve due to oscillations are calculated (violet curve). The measured
dc RTD I–V curves with (green curve) and without (blue curve) oscillations in RTD are also shown. The
insets (i) and (ii) zoom the hysteresis regions at the onset of oscillations. Hystereses are not seen in the
measured curves due to relatively high instability of the dc voltage source used for RTD biasing. The inset
(iii) shows calculated (violet curve) and measured (blue curve) RTD oscillation amplitude and the output
power, respectively

at all: jHFwc is determined only by the variation of the tunnel transparency of the col-
lector barrier with bias; as a function of bias, jHFwc is a smooth function and it has a
positive slope, i.e., its contribution to the external RTD conductance is positive. On
the other hand, jHFew does exhibit NDC and PDC regions, although jHFew has a smaller
slope than the dc I–V curve, that is due to suppression of screening, as we discussed
that in Section 2. However, jHFew shows a larger peak current, since QW electron con-
centration is “frozen” at a lower level than that at the peak of the dc I–V curve and
that leads to lower back-flow current from the QW to emitter. After proper averaging
of jHFew and jHFwc , applying Shokley-Ramo theorem, see Eq. 11, one gets the exter-
nal electron RTD current (jHFel,ext) shown in Fig. 8a. One can notice, that the HF I–V
curve is quite different from the dc one; it has different values and bias positions for
the peak and valley currents, the amplitude of the current swing is different, the HF
I–V is also dependent on the RTD working point. We note, that in the close vicinity
to the RTD operating point, the slope of jHFel,ext corresponds to G∞

RTD derived in the
framework of the above linear RTD model.

Non-linear jHFel,ext curve was further used in the analysis of the oscillation character-
istics of a HF RTD oscillator. Figure 8b shows the measured and calculated (relying
on the outlined HF non-linear model) RTD I–V curves with and without distortions
due to oscillations (oscillations change the dc RTD current, e.g., due to quadratic non-
linearity). The insets also show the oscillation onset regions, amplitude of the voltage
swing and the output power of the RTD oscillator. The measurement and simula-
tion data were in perfect agreement with each other. The example illustrates that the
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HF non-linear model can describe well the characteristics of RTD oscillators. How-
ever, accurate description of the non-linear RTD characteristics in the intermediate
(between quasi-static and HF) regime is much more challenging and still remains to
be done.

9 Characteristics of RTD Oscillators and Their Applications

In the meanwhile, the operating frequencies of RTD oscillators have reached
1.98 THz (see an overview in Fig. 9). The output power of single-element RTD oscil-
lators has reached 1 mW below 300 GHz, ≈ 400 μW at 550 GHz; it drops to few
tens of μW at frequencies above 1 THz and to ≈ 0.3 μW close to 2 THz. RTD oscil-
lators with a two-element RTD array could provide ≈ 600 μW at ≈ 600 GHz and
≈ 200 μW at ≈ 800 GHz [12].

The output power and operating frequencies outlined above could be already use-
ful for certain applications. However, mW output-power level is usually considered
as desirable for practical use of RTD oscillators. The level is not reached so far at fre-
quencies near 1 THz, but based on the analysis of studied RTD oscillators, we know
that there is much room for further improvement of the RTD-oscillator parameters,
and mW output power at THz frequencies seems to be a realistic. Specifically, the
ohmic losses in RTD resonators could be reduced by a better design of the resonators;

Fig. 9 Operating frequencies and output power of sub-THz and THz coherent (single-frequency) RTD
oscillators. It has to be noted, that the output power is not always specified consistently in the publications.
Sometimes, it is the power coupled into a detector. However, more often, the reported power refers to an
estimate of the emitted oscillator power based on several assumptions correcting for the back reflections
at the surface of Si lens, mismatch of the radiation pattern and the parabolic mirrors, probe and waveguide
losses, etc. The data in the figure are taken from the following publications: [10, 12, 42] (Tokyo Institute
of Technology), [9] (Technical University of Darmstadt), [90] (University of Glasgow), [13] (Canon), [69]
(KAIST, an oscillator was combining three RTDs emitting at the third harmonic), [7] (Lincoln Laboratory)
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an optimum coupling of the RTD to resonator still needs to be achieved to increase
the output power, the radiation efficiency of the emitting antenna of an oscillator still
needs to be improved, and RTD parameters could be also improved in the terms of an
optimum width of the NDC region, suppression of the valley current, etc. Eventually,
some unconventional concepts of RTD oscillators still could to be invented.

For practical applications, not only the output power and operating frequencies
are relevant but also other parameters of RTD oscillators are important. The typical
linewidth of a free-running RTD oscillator is in the range of ∼ 10 MHz (see, e.g.,
[44, 91]). The linewidth is too large for many foreseen applications. To overcome the
problem, phase-lock-loop stabilisation of an RTD oscillator has been demonstrated
recently, where the linewidth was reduced to ≈ 1 Hz [92]. Another limitation of the
simplest RTD oscillators is the frequency-tuning range; it is usually around 1–2%.
The frequency is changing due to the variation of the RTD capacitance, when the bias
is changing within NDC region. Recently, more complex RTD oscillators have been
demonstrated, where an additional varactor diode has been built into an oscillator.
The tuning range of a single oscillator was ≈ 10–20% and ≈ 40% for an integrated
four-element array of oscillators [41, 93, 94].

The RTD oscillators could be used for high-speed wireless data transmission. The
biasing circuit of the oscillator should allow for HF modulation of the RTD for such
applications. For example, 34 Gbit/s data transmission based on amplitude shift key-
ing at 500 GHz has been demonstrated in [14]. Two-channel transmission with the
data rate of 2 × 28 Gbit/s has been demonstrated relying on the frequency divi-
sion multiplexing in two channels at 500 and 800 GHz and, alternatively, relying on
polarisation division multiplexing (2 orthogonal linear polarisations) [95]. RTD oscil-
lators were mounted on Si lens in the above experiments. An on-chip RTD oscillator
with an array of (passive) circular slot antennas around an RTD oscillator designed
to emit a circularly polarised beam upwards from the chip (no Si lens) has been
also demonstrated in data transmission experiments with the data rate of 1 Gbit/s
at ≈ 500 GHz [96]. Schottky diodes have been used as high-speed detectors in the
above experiments. However, RTDs can perform also well as detectors in the wire-
less communication systems: 9 Gbit/s at 286 GHz have been demonstrated in [74].
Meanwhile, RTD oscillators have been used also in an imaging demonstrator [73]
and in a high-resolution photonic-crystal spectrometer [75]; both are at ≈300 GHz.
The recent development shows that RTD oscillators are getting mature enough for
many practical applications.

10 Conclusions

We could see in the last years that room-temperature RTDs and RTD oscillators can
operate at THz frequencies, their output power is steadily increasing and getting close
to mW level at frequencies close to 1 THz, RTD oscillators could be extremely tiny
and they consume low dc power. Typical examples of THz applications have been
also demonstrated recently, where RTDs have been used in oscillators and detectors.
On the other hand, we see that there is much room for further development of RTD
oscillators: RTDs are still not optimised, the RTD resonators and antennas are still
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very simplistic and not efficient, even the basic concept of the contemporary RTD
oscillators might need to be reconsidered and reinvented to achieve the performance
RTDs are capable of. This recent development in the field demonstrates that RTDs is
a promising viable technology for real-world THz applications, and they have large
potential for further development.
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