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Kurzfassung

Die Inhalte der vorliegenden Dissertation sind im Laufe eines Kooperationsprojektes
zwischen dem Institut für Mechanik und Mechatronik (Abteilung für Regelungstechnik
und Prozessautomatisierung) und der Firma Liebherr-Transportation Systems GmbH
& Co KG, Korneuburg als Industriepartner entstanden.

Ausfallsicherheit und Energieeinsparung beim Lebensmitteltransport ist ein aktuelles
Thema, welches in dieser Arbeit behandelt wird. Der Schwerpunkt liegt auf der Entwick-
lung neuer Methoden für redundante und energieeffiziente Temperaturregelung, welche
mit modellprädiktiver Regelungsstrategie umgesetzt wurde und der Beobachtung von
nicht messbaren Störungen sowie Alterung des Kühlanhängers.

In dieser Dissertation wird ein modellprädiktives Regelungskonzept für die Temperatur-
regelung eines Kühlanhängers mit redundanten Kälteaggregaten präsentiert. Die Auflö-
sung widersprüchlicher Optimierungsziele, wie die genaue Einhaltung der Temperatur,
die Minimierung des Energieverbrauchs und des Verschleißes, stellt eine große Heraus-
forderung dar.

Da die Dynamiken der Teilsysteme sehr unterschiedlich sind, ist ein hierarchisches Re-
gelungskonzept vorteilhaft. Das komplexe nichtlineare Optimierungsproblem wurde in
mehreren Teilproblemen aufgeteilt. Für die Temperaturregelung des Kühlanhängers
wird eine lineare modellprädiktive Regelung verwendet, welcher in der Lage ist wi-
dersprüchliche Ziele zu lösen, indem Wettervorhersagen berücksichtigt aber auch Be-
schränkungen eingehalten werden. Bei der komplexen Regelung der Kälteaggregate ist
eine gemischt-ganzzahlige Optimierung notwendig. Um Faktoren wie die Sonnenein-
strahlung und die Alterung des Kühlanhängers berücksichtigen zu können wurde ein
Beobachter entwickelt, welcher in der Lage ist die Störeinträge zu separieren.
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Abstract

The content of this thesis originated in the course of a research project between the
Institute of Mechanics and Mechatronics (Division of Control and Process Automation)
and Liebherr-Transportation Systems GmbH & Co KG as industrial partner.

A current issue of potentials for reliability and saving energy in food transportation is
discussed in this work. The research was focused on the development of new method-
ologies for redundant and energy-efficient temperature control and disturbance observa-
tion. In this context a model predictive control strategy and an observer for unmeasured
disturbances and aging of the insulated cool box has been developed.

In this PhD Thesis a model predictive control concept for temperature control of an
insulated cool box with redundant refrigeration systems is presented. Conflicting op-
timization goals naturally arise, where the strict adherence of the temperature, the
minimization of energy consumption and wear poses major challenges.

As the dynamics of the subsystems are different a hierarchical control concept is ad-
vantageous. The complex nonlinear optimization problem has been split into a set of
subproblems. For the temperature control of the insulated cool box a linear model
predictive control is utilized, which is able to solve conflicting goals by taking weather
predictions into account and by consideration of constraints. For the more complex
control of the refrigeration systems a mixed-integer optimization is necessary. To be
able to consider other factors as the solar irradiation and the aging of the insulated cool
box an observer was designed, which is able to separate these disturbance impacts.
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Nomenclature

List of abbreviations

AC air conditioning

CA control allocation

COP coefficient of performance

EXV electronic expansion valve

FDI fault detection and isolation

HVAC heating, ventilating and air con-
ditioning

ICB insulated cool box

ICE internal combustion engine

LS least squares

MI mixed-integer

MILP mixed-integer linear program-
ming

MI-MPC mixed-integer model predic-
itve control

MIO mixed-integer optimizer

MIO3 mixed-integer optimizer with
three large compressors

MIO6 mixed-integer optimizer with six
compressors

MIQP mixed-integer quadratic pro-
gramming

MPC model predictive control

MSE mean square error

PDF probability density function

pi prediction interval

PI proportional-integral controller

RC refrigeration circuit

RMSE root-mean-squared error

RS refrigeration system

SSE sum squared error

UIO unknown input observer

VCC vapor compression cycle

List of symbols

∗ convolution operator

A system matrix of the combined
dynamics

Aa augmented system matrix

AA system matrix of the dynamic RC
model

a first position of a step change in
U(k)

AICB surface are of the ICB

AP system matrix of the plant

B input matrix of the combined dy-
namics

Ba augmented input matrix

BA input matrix of the dynamic RC
model
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b second position of a step change
in U(k)

BP input matrix of the plant

c all counts of compressor switch-
ing for ̺act

C output matrix of the combined
dynamics

Ca augmented output matrix

CA output matrix of the dynamic RC
model

cl count of compressor switching for
̺actl

CP output matrix of the plant

DA direct input-output matrix of the
dynamic RC model

damb random disturbance effecting
ϑamb in ◦ C

dA direct input-output matrix of P0

to P

dICB random disturbance effecting
ϑICB in ◦ C

dn random disturbance in ◦ C

dP direct input-output gain of the
plant

E disturbance matrix of the com-
bined dynamics

E energy consumption in J

Ea augmented disturbance matrix

EP disturbance matrix of the plant

emodel Output error of the model

eϑICB
prediction error of the plant’s
output ϑICB

Em disturbance matrix of the mea-
sured disturbances of the plant

Eo disturbance matrix of the non-
measured disturbances of the
plant

F T
P distrubance input matrix of the

plant

F u prediction matrix based on ∆U

F x prediction matrix based on cur-
rent xMPC

F z prediction matrix based on ∆Z

fα nonlinear function which de-
scribes the α deterioration

fh function of the compressor status

fΨ function depending of the contin-
uous variables

F -test statistical test with F-
distribution

Fcrit critical value of the F -test

GA,P transfer function of P

GA,u transfer function of u

gAA(t) weighting function of the contin-
uous anti-aliasing low-pass filter

GAA pulse transfer function of the
anti-aliasing low-pass filter

GFB feedback gain

GICB pulse transfer function of the
plant

gP,i nonlinear static relation for P0,i

gu,i nonlinear static relation for u0,i

GH observer gain matrix

gP nonlinear static relation for P0

GS gain for the estimated distur-
bance

gu nonlinear static relation for u0

h hours of all compressors of the RS
in h
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H sum of the operating hours of all
combinations ̺act in h

hi,j operating hours of compressor j
of RC i in h

Hl sum of the operation hours of the
l-th combination of ̺act in h

i index for the RC

I unit matrix

j index for the compressors

Jα cost function of the α estimation

JC cost function of the continuous
decision values

JD cost function of the discrete deci-
sion values

JD1 cost function of compressor
switching

JD2 cost function of operating hours

JL cost function of the optimal ob-
server poles selection

JO cost function of other criteria
(such as control settling time)

JP cost function of power consump-
tion

JW cost function of wear

Jglob global model

Jloc local model

J1 cost function of the MPC

J2 cost function of the MI-MPC

K samples of the large sampling
time TS

k samples of the small sampling
time tS

KA,u gain of the RS model

KI gain of the integral part of the PI
controller

KMPC feedback matrix of the uncon-
strained case

KP gain of the proportional part of
the PI controller

L vector of observer poles

l index of the subset of the com-
pressor combinations ̺act

L Lagrange function

L1, L2 observer poles

M integral effect of z for a small
sample k

MΣ cumulative effect of all Ms over
one large sample K

MP integral effect of z on the ICB for
a large sample K

mcp thermal mass capacity of the ICB

in kgm2

s2K

N simulatin time in sec

nc control horizon of the CA

Nc control horizon of the MPC

ni sum of all compressors in the RC
i

nl number of all compressor combi-
nations in the subset ̺act

nnRC
sum of all compressors in the RC
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np prediction horizon of the CA

Np prediction horizon of the MPC

nRC number of RCs

ns number of samples
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o plane orthogonal to state trajec-
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o1, ..., on−1 parametrization of orthogo-
nal plane o

P total electrical power of the active
RCs in kW

p number of parameters in the re-
gression model

P Poincaré map

pDi
discharge pressure of RC i in bar

Pi electrical power of the RC i in kW

P L solution of the discrete-time Ric-
cati equation with the augu-
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PMPC characteristic polynomial of the
MPC

Pobs characteristic polynomial of the
current observer

pSi
suction pressure of RC i in bar

P κ total electrical power of the per-
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P0,i stationary electrical power con-
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the PI-controller solution
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p(u) probability density function
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kW
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Q̇H,i heating capacity of RC i in kW

Q̇H total heating capacity of the ac-
tive RCs in kW

Q̇loss heat flow through the surface of
the ICB in kW

Q̇req required cooling capacity in kW

Q̇sol solar irradiation in kW

Q̇z total disturbance in kW
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z prediction of the disturbance in
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for day r

R1 weighting factor for the output
error of the MPC

R2 weighting factor penaltize the
change of the input variable of the
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R3 weighting factor for the deviation
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RO weighting factor for other criteri-
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RP weighting factor for electrical
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RW weighting factor for wear
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TDi
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K
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pling time k in kW

uκ range of possible cooling capacity
from permutation κ

uA input vector of the dynamic RC
model

u total cooling capacities of the ac-
tive RCs in kW

u average cooling capacity of the
active RCs in kW

ũ(t) low-pass filtered u(t)

ui cooling capacity of RC i in kW

umax,κ maximum possible cooling capac-
ity from permutation κ

umin,κ smallest possible cooling capacity
from permutation κ

UMPC output of the MPC in kW

upast sum of all already implemented
u(k)

uPI cooling capacity of the PI-
controller solution

uss steady state of uP

u0 total stationary cooling capacity
in kW

u0,i stationary cooling capacity of RC
i in kW

U1(K) first entry of U(K)

u∆Σ Term of J2 which enforces switch-
ing action

u∑ possible cooling capacity range of
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u(t) continuous version of u(k)

v valve positions of all RCs in %

V terminal cost of the MPC
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X regressor vector of the least
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x state vector of the combined dy-
namics

xA state vector of the dynamic RC
model

xα regressor vector of the α estima-
tion

xcl closed loop state vector

xset set point of the combined dynam-
ics

xMPC augmented state vector

xP state of the plant

x̂P predicted state of the plant

x̃P error between the state and pre-
dicted state of the plant
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model
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zenv measurable environmental condi-
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ẑp
m prediction of the ambient temper-

ature in ◦ C

ẑp
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α0 known heat transfer coefficient of
a new ICB

α1 deterioration of the heat transfer
coefficient over time
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Chapter 1

Overview

1.1 Introduction

Food transport systems are widely used. There are at least one million refrigerated
road vehicles in use in the world, [28]. Their refrigeration systems (RSs) consume a
substantial amount of energy. There is also a rising trend towards higher consumption
of several food products with a consequent increase in environmental impacts. Such a
significant impact are greenhouse gas emissions, [93]. In UK the commercial food sector,
including agriculture, food manufacture, transport and retail is responsible for 22 % of
the total greenhouse gas emissions. Technologies and approaches in food transport
refrigeration and their environmental affects are reviewed in [92]. The impacts are
expressed in terms of greenhouse gas emissions arising from the fuel consumption of the
vehicle and refrigeration system engines and refrigerant leakage to the environment.
Norway is yet another example. In Norway, seafood is one of the largest exports,
mostly in fresh, frozen or dried form, [97].
The transport of cooled or frozen goods requires effective control of the temperature
inside the insulated cooling box (ICB) to prevent degeneration of perishable goods.
Therefore, one of the objectives of technical development is to increase their energy
efficiency and availability. In the case of using an internal combustion engine as primary
energy source also the reduction of emissions is crucial.
In order to obtain low maintenance and energy costs and to maximize availability of
the system, ICBs will be equipped with redundant refrigeration circuits (RCs) each
utilizing one or more compressors. However, this approach leads to a multitude of both
switched (compressor on/off state) and continuous (expansion valve, fan speed) control
variables, calling for an mixed-integer (MI) optimization.
In many applications data links to weather predictions are available making model
predictive control (MPC) of the ICB’s temperature an attractive solution. MPC is
an attractive method where conflicting targets and predictions of disturbances such as
ambient temperature exist. Furthermore, operational and technological constraints can
be easily incorporated in the optimization strategy.
Nevertheless, fast acting disturbances which are not detected by a dedicated sensor
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- like the solar irradiation - disturb the optimal control of the MPC and act as an
unknown input. Also the slowly deteriorating heat transfer coefficient of the ICB cannot
be directly measured. The heat transfer coefficient is an important model parameter
necessary for an accurate model in the MPC, and it also indicates the state of health of
the ICB. Therefore, in this thesis different methods which are able to solve the above
mentioned problems are proposed.

1.2 Motivation

Typically, an RS is designed for one specific operating point, but it operates most of
the life time in conditions significantly different from design cases. Therefore, it is
worth to analyze how to make these systems operate more efficiently by optimizing all
operational modes. Using an RS with multiple RCs each with multiple compressors finer
discretization can be achieved, which is an advantage at part-load conditions. Multiple
RCs also provide a redundant system, which leads to a higher system availability but
at the same time requires a more complex control strategy.
Additionally, the time constant of the ICB is typically in the range of 1.5 hours, and
the RCs variables respond within minutes. The proposed solution to this problem is
a hierarchical control structure where a linear MPC controls the temperature inside
the ICB based on reference and disturbance trajectories. It operates at a low sampling
frequency and covers a long prediction horizon to effectively cope with the large time
constant of the ICB. An underlying control allocation (CA), which is operating at a
high sampling frequency and a small prediction horizon, optimizes the control variables
of the RS. This structure effectively solves the above-mentioned problems: 1) The opti-
mization of the systems with largely differing time constants is now split into separate
optimization problems. 2) The CA horizon is short, so feasible solutions are more likely
and the computational load will be small. 3) Different contradicting optimization goals
are incorporated in the control structure.

1.3 Problem description

One typical challenge is the hybrid nature of the refrigeration system; this means that
both continuous and switching control variables have to be optimally set by the control
scheme. Solving such a system is a computationally expensive problem. However,
optimization of the control variables in the sense of reducing energy costs or wear
is an important topic. Besides that the optimization of the temperature of the ICB
and the optimization of the refrigeration system have time constants which differ by
a major factor. Therefore a hierarchical concept with different sampling times and
prediction horizons is advantageous. For the temperature control an MPC is a well
known control method. Measured and predicted disturbances could be considered.
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But another challenge is that the number of sensors is kept small due to economic
reasons, so an estimation of solar irradiation from existing measurements is desirable.
Since both effects, the unknown disturbances and the slowly deteriorating heat transfer
coefficient α, act additively on the ICB’s temperature, the custom disturbance observer
can reconstruct the contributions of irradiation and aging have to be reconstructed.

1.4 Scientific questions

The following scientific questions will be treated and answered in the main part of this
thesis:

1. Control allocation problem: A large number of both continuous and switched con-
trol variables in the RS have to be chosen such that a multitude of contradicting
criteria are met.

2. Temperature control of the ICB utilizing a suitable control allocation method for
the RS, constraint handling, and disturbance predictions have to be designed.

3. The methods developed as a solution to question one and two shall be extended
with simultaneous estimation of disturbances and the heat transfer coefficient of
the ICB using a suitable observer structure.



Chapter 2

System description

2.1 Overall system

Transport systems for perishable goods consist of an insulated cool box (ICB) which
includes the goods and the refrigeration system which provides the necessary cooling
capacity for cooling the ICB. The refrigeration system (RS) consists of a refrigeration
circuit (RC) which includes at least a condenser, an evaporator, an electronic expansion
valve and a compressor. The RS provides a cooling capacity u, which is the only control
variable. Main disturbances of the ICB are the the heat flow through the surface Q̇loss,
solar irradiation Q̇sol and a slowly time-varying heat transfer coefficient, Fig. 2.1.
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Figure 2.1: Model of the insulated cool box with refrigeration system.

2.2 Vapor compression cycle system

A single RC consists of four main elements: (a) Compressor, (b) condenser, (c) evapo-
rator and (d) electronic expansion valve (EXV), Fig. 2.2. All components in the circuit
are linked with pipes, demonstrating inherently nonlinear behavior. The vapor com-
pression cycle (VCC) uses a refrigerant as the medium which absorbs and removes heat



2.2 Vapor compression cycle system 5

from the space to be cooled and subsequently transfers that heat elsewhere. The ideal
form of this thermodynamic cycle utilizes four processes: (1-2) isentropic compression;
temperature and pressure of the refrigerant raises, (2-3) isobaric heat rejection and con-
densation, (3-4) isenthalpic expansion; temperature and pressure drops, (4-1) isobaric
heat absorption and evaporation, Fig. 2.2.
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Figure 2.2: Left: Main elements of a single RC; Right: Pressure-enthalpy di-
agram with superheat TSH, suction pressure pS, discharge pressure
pD and discharge temperature TD.

Effective control of these systems is essential in order to maximize efficiency and ensure
safe operation, particularly during system startup and when responding to changes in
heat load or external conditions. The dynamics of these systems evolve at different time
scales. The dominant dynamics are typically those of the evaporator and condenser.
Two heat exchanger modeling approaches are commonly used, [73, 74]: 1) Moving-
boundary lumped-parameter methods, [36] where separate control volumes and lumped
parameters for each fluid phase (i.e. subcooled liquid, two-phase, or superheated vapor)
is employed. Time-varying boundaries for these control volumes are typically used. 2)
Finite-volume distributed-parameter, [67]. These models discretize the heat exchanger
using average parameter values within each volume and applying equations for the
conservation of energy and mass. A comparison of both methods is made in [8].
The physical process of a VCC is in fact complex and not fully state controllable [5, 6].
In order to improve the operating stability of the complex RS, it is necessary to obtain a
simple and accuracy mathematical model for system control. In [38], a control oriented
model for combined compression ejector system is proposed. By analyzing the inner
relationship between compressor and ejector, a hybrid model is built based on thermo-
dynamic principles and a lumped parameter method. A comparison of three methods
(a traditional gain scheduled PI-based controller, a predictive functional controller and
a predictive functional controller with a neural network model) for controlling the su-
perheat in a RS is given in [66].
In this work it is assumed that a suitable model of the RC exists. A suitable model
of the RC in the sense of control design is typically of simple structure and low-order,
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nevertheless it should cover the dominant nonlinearities and dynamics. Therefore, either
a static look-up table or a Hammerstein-model is proposed in this work, as explained
in more detail in Section 2.3.5.

2.3 Refrigeration system

2.3.1 Fundamental structure

The RS can consist of a variable number of parallel RCs denoted by the index i ∈
[1, 2, . . . , nRC], each RC can have multiple compressors.
Fig. 2.3 shows the structure of such a system, where each RC i provides a cooling ca-
pacity Q̇i and heating capacity Q̇H,i. The electrical power consumed by all compressors
ni in each RC i is denoted by Pi. These variables depend on the ambient temperature
ϑamb, the ICB temperature ϑICB and all continuous variables Ψi (e.g. EXV position,
compressor and fan speeds).
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Figure 2.3: The structure of the refrigeration system with multiple refrigeration
circuits each with multiple compressors.

2.3.2 Variables of the RCs

Each RC i includes a plurality of compressors denoted by the index j ∈ [1, 2, . . . , ni].
The compressor states si of the RC i are

si =
[

si,1 si,2 . . . si,ni

]

. (2.1)
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The values of si,j describe the state of the compressor j of the RC i and can vary
between three discrete values

si,j =







0 if compressor j is off

1 if compressor j is on

−1 if compressor j is not available

(2.2)

The value si,j = −1 is a result of different system disturbances, such as a defect com-
pressor, switching prohibition due to latency time or an iced up evaporator.
The states of all compressors in the RS are

s =
[

s1 s2 . . . snRC

]

. (2.3)

Each compressor can have variable speed ωi,j, therefore, different cooling capacities
become possible. The rotational speeds ωi of all compressors of the RC i are

ωi =
[

ωi,1 ωi,2 . . . ωi,ni

]

. (2.4)

The compressor speeds of all compressors in the RS are

ω =
[

ω1 ω2 . . . ωnRC

]

. (2.5)

Further actuating variables for each RC i are the condenser fan speed ωFC,i, the evap-
orator fan speed ωFE,i and the position of the EXV vi, where the value of vi describe
the normalized valve opening position.
All these continuous variables of the RC i are collected in a decision vector Ψi, Fig. 2.3,

Ψi =
[

vi ωFC,i ωFE,i ωi

]

, (2.6)

The decision vector for all RCs is

Ψ =
[

Ψ1 . . . ΨnRC

]

. (2.7)

If the compressors have only single speeds or discrete values for the speeds, then the
compressor speed is a discrete value like the compressor states. The same applies to
the condenser and evaporator fan speeds.
Depending on the operation mode and measurable environmental conditions zenv, such
as ambient temperature and current temperature in the ICB

zenv =
[

ϑamb ϑICB

]

, (2.8)

the RS provides a cooling capacity u. The cooling capacity is the sum of all cooling
capacities from the active RCs,

u =
nRC∑

i=1

ui. (2.9)
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The heating capacity Q̇H,i from each RC i is delivered to the ambient.
The total electrical power consumed by the compressors is

P =
nRC∑

i=1

Pi. (2.10)

An RS with multiple RCs and compressors can generate different cooling capacities. Not
only due to different capacities of the compressors but also utilizing multiple RCs a fine
discretization of the cooling capacity can be realized. For example if two compressors
in one RC are running, the cooling capacity is smaller than the cooling capacity of two
compressors each running in a separate RC (assuming identical compressors and RCs).
The reason is that the condenser and evaporator surface is doubled for the second case,
in contrast to the first case which uses the same RC and therefore, has no additional
surface.
The redundancy of the RCs also enables supply of the same u using several different
combinations of switching and continuous variables. Hence, the redundant system leads
to a higher system availability but at the same time requires a more complex control
strategy.

2.3.3 Admissible operating regions

All actuating variables are subject to limitations, which are specified by the system
architecture and the individual components. These limitations define the possible op-
erating envelope of the RCs:

si,j ∈ Z
+
0 : si,j = {−1, 0, 1} (2.11)

vi ∈ R
+
0 : 0 ≤ vi ≤ 1

ωFC,i ∈ R
+
0 : 0 ≤ ωFC,i ≤ ωFC,max,i

ωFE,i ∈ R
+
0 : 0 ≤ ωFE,i ≤ ωFE,max,i

ωi ∈ R
+
0 : 0 ≤ ωi ≤ ωmax,i.

(2.12)

To ensure that the RC operates in a secure range, further system constraints are defined.
Typical constraints are defined for the superheat TSHi

, the suction pressure pSi
, the

discharge pressure pDi
, the discharge temperature TDi

and the evaporator temperature
Tevapi

, Fig. 2.2. It is however possible to include additional constraints.

TSHi
≥ TSH,min,i

pSi
≥ pS,min,i

pDi
≤ pD,max,i

TDi
≤ TD,max,i

Tevapi
≥ Tevap,min,i

(2.13)
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The constraints yield a reduced time-variant feasible operating envelope. As a result,
also the actuating variables, eq. (2.12), are bounded by

Ψconstr,i =

[

vmin,i ωFC,min,i ωFE,min,i ωmin,i

vmax,i ωFC,max,i ωFE,max,i ωmax,i

]

. (2.14)

The system constraints, eq. (2.13), have monotonous characteristics, and thus the
feasible operating envelope is limited to the region where no constraint is violated. The
feasible operating envelope also varies depending on the number of active compressors.
In this work applications with small latency time are focused. Therefore, the gradient
of the temperature trajectory is small. The latency time is considered by the state
of the compressor, eq. (2.2). In the case of large latency times minimal off-time and
minimal on-time for each compressor would be necessary as additional constraints.

2.3.4 Redundancy

All sets of active components which achieve the same cooling capacity are termed
a permutation. Hence, different cooling capacities are always provided by different
permutations. Note that a specific permutation with the index κ ∈ [0, nκ], where nκ

is the number of possible permutations, can be realized by different actually active
compressor combinations ̺ (for example in the case of identical compressors one active
compressor will provide a certain cooling capacity regardless in which RC it is running).
Consequently, the permutation contains no information which compressor of which RC
should be used best.
Each permutation within the feasible operating envelope provides a range of cooling
capacity which is defined by the smallest umin,κ and largest umax,κ possible cooling
capacity. All permutations are sorted ascending by umin,κ, Fig. 2.4.
Depending on the constraints, eq. (2.13) and zenv, the feasible operating envelope is
time-variant, and thus also the possible cooling capacities. The range of cooling capacity
uκ = [umin,κ umax,κ] which can be provided with all permutations can be collected to
the set

uΣ = {u1 u2 . . . unκ
} =

⋃

κ

uκ. (2.15)

The system can provide cooling capacity ranges which are partially overlapping, Fig. 2.4.
This degree of freedom is used to achieve different optimization targets (operational
modes). The index set of possible permutations κ which can provide a given cooling
capacity Q̇req can be formulated as

κ = {κ
∣
∣
∣ Q̇req ∈ uκ}. (2.16)

In κ permutations which are currently not available, eq. (2.2), are already considered,
therefore, the corresponding permutations are not part of κ.
In the case of discrete speed values for the compressors or fans, the number of continuous
variables is reduced and the number of possible permutations will increase.
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Figure 2.4: Cooling capacity range of all permutations for constant environ-
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capacity Q̇req.

2.3.5 Modeling RCs

Modeling an RC with all dynamic behavior requires a complex model, whereas control
design requires a simple model. Therefore, a balance between complexity and accuracy
must be considered.
The RS is modeled by nonlinear static relations gu, gP between the control variables
s and Ψ and the stationary cooling capacity u0 and the stationary electrical power
consumption P0, respectively. The nonlinear static part is followed by a linear dynamic
state-space model which captures actuator dynamics. This is a so-called Hammerstein
structure [58], see Fig. 2.5, which has also been used in [27] to model an RS.
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Stationary RC model

For controlling a cooling load the transient behavior of the RS is not crucial. The
reason for this assumption is that the time constant of an ICB compared to the RS is
substantially larger. Accordingly the method replaces the complex models of the RS
with look-up tables, therefore, a quasi static model of the RS is used.
The data of the look-up tables gu,i and gP,i are generated with an RC model in the
modeling language Modelica and validated with measurement data. It is also possible
to generate the look-up tables by measured data from different use cases, then the
method is independent of complex RS simulations.
Each look-up table is a sampled representation of a function in different variables. The
input variables are si, Ψi and zenv, see Fig. 2.5.
Each RC has it’s own look-up tables. RCs with multiple compressors have look-up
tables for all possible combinations of running compressors. As mentioned before, an
RC with two running compressors has different characteristics then two parallel RCs
each with one running compressor. The look-up tables provide exactly this information.
In steady state the i-th RC provides u0,i = gu,i(si, Ψi). The sum of all cooling capacities
of the active RCs u0 is

u0 =
nRC∑

i=1

u0,i =
nRC∑

i=1

gu,i(si, Ψi) = gu(s, Ψ). (2.17)

The steady state electrical power consumed by the active compressors in the i-th RC is
denoted by P0,i = gP,i(si, Ψi). The sum of the power consumptions of the active RCs
P0 is

P0 =
nRC∑

i=1

P0,i =
nRC∑

i=1

gP,i(si, Ψi) = gP (s, Ψ). (2.18)

Dynamic RC model

Furthermore, a linear dynamic part transforms u0 and P0 to the actual outputs u and
P . The RS’s linear continuous-time dynamics are given by

ẋA = AAxA + BAuA,

yA = CAxA + DAuA, (2.19)

where uA = [u0 P0]
T is the output of the static RS maps, and the outputs of the

RS are the actual cooling capacity u to the ICB and the actual power consumption
P which is an input to the optimization. Note that the RS’s dynamic description has
an input-output gain of one, and no disturbance is assumed to act directly on the RS.
Direct feedtrough described by DA = [0 dA] affects only the power P0 to P .
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2.4 Insulated cool box

The behavior of the ICB is approximated with a first order linear differential equation

mcp
dϑICB

dt
= −u + α(t)AICB(ϑamb − ϑICB) + Q̇sol, (2.20)

with the total thermal capacity mcp of the ICB and content, the time-varying heat
transfer coefficient α(t), the surface area AICB of the ICB, the ambient temperature
ϑamb, the ICB temperature ϑICB, the cooling capacity u and the solar irradiation Q̇sol,
see Fig. 2.6. Note that the humidity inside the ICB is usually not considered by the
control.
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Figure 2.6: Model of the insulated cool box with refrigeration system.

The ICB model, eq. 2.20, can be rewritten as

mcp
dϑICB

dt
= −u +

Q̇α0
︷ ︸︸ ︷

α0AICB(ϑamb − ϑICB)

+ α1(t)AICB(ϑamb − ϑICB)
︸ ︷︷ ︸

Q̇α

+Q̇sol, (2.21)

where α0 is the known heat transfer coefficient of a new ICB and α1(t) is the deterio-
ration of α over time.
In eq. (2.21) the plant output is ϑICB, the control variable is given by u, Q̇α0

is the heat
input which arises by α0, and the additional heat flow Q̇α depends on the deterioration
of α. Typically only sensor signals for ϑICB and ϑamb are available, and therefore the
estimation of irradiation and deterioration of α is desirable. The total disturbance Q̇z

is defined as
Q̇z = Q̇α + Q̇sol. (2.22)

However, both Q̇sol and Q̇α are simultaneously acting as an unknown disturbance Q̇z

with the same impact to the plant output and therefore cannot be separated by a
standard disturbance observer. Nevertheless, Q̇z can be estimated by a disturbance
observer, and α(t) can be fit to Q̇z using a parametric aging model. In consequence an
estimate of Q̇α is available and Q̇sol can be reconstructed by Q̇sol = Q̇z − Q̇α.
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The general plant’s linear continuous-time dynamics are given by

ẋP = AP xP + BP u + EP z,

yP = CP xP + dP u + F T
P z, (2.23)

where the input u ∈ R is the actual cooling capacity of the RS, the state and output
of the plant yP = xP = ϑICB ∈ R is the actual temperature of return air of the ICB,
and the disturbance z ∈ R

2 is typically constituted by ambient temperature ϑamb and
irradiation Q̇sol. The coefficients AP ∈ R, BP ∈ R, CP = 1 and EP ∈ R1×2 are the
system-, input-, output- and disturbance coefficients, where EP =

[

Em, Eo

]

with the
disturbance coefficient Em of the measured disturbances and the disturbance coefficient
Eo of the non measured disturbances, and dP ∈ R, F T

P ∈ R1×2 are the direct input-
output gain and disturbance input vector. Note that in a thermodynamic system the
input and the disturbance cannot affect the output instantaneously. Thus, dP = 0 and
F T

P =
[

0, 0
]

hold in the plant model, eq. (2.23).

2.4.1 Composition of total disturbance

As seen in eq. (2.22) the heat inputs Q̇α and Q̇sol have an additive effect on the measured
output, where Q̇α is the heat input which arises by the deviation of α. The deviation
of α is assumed to be very slow, therefore it can be seen as constant for the dynamics
of the ICB on a short-term perspective, Q̇sol changes very fast and during night time
Q̇sol ≈ 0. The knowledge of the different time constants enables to split up those two
terms.

2.4.2 Model of α deterioration

For the life-cycle of the ICB the time-varying α is an important parameter. Over time
the insulation of the ICB absorbs moisture, the increase of water content in the insula-
tion material leads to an increase of α. The deterioration leads to a higher heat input
and consequently the energy efficiency declines. Therefore, in long-term perspective the
estimation of α is desirable.
In literature different models for deterioration of thermal insulation are discussed. In
[29] different types of insulation panels and their aging over years are presented. A
parametric model of the deterioration of α can be described as

α(t) = α0 + fα(θα, t), (2.24)

where α0 is the known heat transfer coefficient of a new ICB, θα are the unknown
parameter of the α aging model and fα(θα, t) denotes the monotonously increasing
deterioration.
The nonlinear model requires a complex optimization, nevertheless it describes the
aging model more accurate than a linear model. Also other parametric aging models
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can be used, e.g. different aging models depending on the type/operating conditions of
the ICB are possible.

2.5 Combined Linear Dynamics

The combined linear dynamics of the RS and the ICB are defined in this Section. The
previously derived models are combined into one linear state-space model of higher
order and the already introduced static RS maps, Fig. 2.7.
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Figure 2.7: Combined dynamics of the RS and the ICB.

The combined dynamics of the RS and the ICB are described by the stacked state
vector x = [xT

A xP ]T , and the corresponding state space system is given by

ẋ = Ax + Bu0 + Ez,

y = Cx, (2.25)

where y = ϑICB, and

A =

[

AA 0
BP CA AP

]

, B =

[

BA

0

]

,

E =

[

0
EP

]

, C =
[

0 CP

]

.

The dynamics of the ICB are much slower than that of the RS. Depending on mcp, it
typically takes hours to cool down the ICB by 1°C. In contrast, the RS with compressor
switching has to work at a higher frequency (typically one minute) to produce a desired
cooling capacity.



Chapter 3

Numerically efficient control
allocation

In this Chapter a strategy for a numerically efficient optimization for the CA prob-
lem is presented. This is achieved by solving the computationally most expensive part
of the problem off-line and storing the result in look-up tables. The numerically ef-
ficient part of the optimization is made on-line. Therefore, important contradicting
optimization goals such as power consumption, wear, disparity of operating hours be-
tween compressors, and the coefficient of performance (COP) can be considered. A
hierarchic solution procedure for the above mentioned optimization goals is proposed.
The solution procedure effectively eliminates ambiguity in the decision variables while
respecting the system’s constraints. The generic structure allows for application to RSs
with any controller, multiple RCs and multiple compressors, regardless if the compres-
sors are identical or not. The possibility to implement this strategy in an inexpensive
micro-controller is an important advantage to methods where a complex mixed-integer
optimization problem has to be solved on-line. The method and the results of this
Chapter have been published in [42].

3.1 State of the art

One method of achieving higher efficiency of an RS is through cooling capacity control.
Cooling capacity control methods commonly employed are optimal on-off control, hot
gas bypass, suction pressure control, multiple compressor control and variable speed
control. The most energy efficient method is the variable speed control and the multiple
compressor strategy, [70].
Several studies have demonstrated the potential savings associated with the use of
variable speed control. In [60] the potential electricity savings by using a variable speed
compressor and a controller for air conditioning systems is shown. In [35] a feed-forward
control for a variable speed refrigeration system is introduced. A PI controller manages
the thermal capacity and superheat independently for saving energy and to improve
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the COP.
An optimal on-off control strategy is developed in [34], based on the time domain
analysis of the temperature variations. The strategy determines the optimal upper and
lower temperature bounds by minimizing the temperature variations from the set-point,
energy consumption and average compressor on-off cycling frequency. In [14] different
on-off switching control methods are compared. It presents an on-off control method
with low complexity and computational requirements. Based on a heuristic method,
sub-optimal on-off control strategies for a chilled water cool storage system, where
an optimal control problem is formulated to determine optimal control trajectories is
developed in [30].
In [17] a comparison of different controllers for a variable speed compressor and an
EXV is made. An example which utilizes the EXV as a continuous actuator for cooling
capacity control is demonstrated in [105]. In [98] an EXV control-loop is used to achieve
a reference superheat value.
Also multiple compressors in an RS are well known, which may be cycled on and off
to vary the cooling capacity of the system. Depending on the load requirement the
system increases or decreases the number of active compressors to match the system
load changes, [64]. In [97] an optimal compressor operation for energy efficiency was
developed. The objective was to minimize power consumption, provided that the to-
tal refrigeration load requirement was met. The optimization model is a simple static
model, which integrates only the power and the cooling capacity. The paper presents
only the formulation of the objective function, but gives no details about the imple-
mentation and results of the optimization. A linear programming model was developed
to give the optimized operation for each compressor in the system.
Finding optimal solutions to nonlinear (hybrid) RSs with redundant components is a
difficult and computationally extensive search problem. To solve this kind of problems
mixed integer optimization is widely used, [7, 31]. With large latency time constraints
it is necessary to solve an unit commitment problem, [83]. Furthermore, on-line im-
plementation poses severe limitations on the use of optimal strategies and requires
expensive hardware for successful implementation. Therefore, off-line optimization is
advantageous.

3.2 Problem description

3.2.1 Closed-loop structure

Fig. 3.1 shows the structure of the closed-loop system. The topic of this Chapter is
the gray optimization block, where the optimal discrete ̺⋆ (which compressors should
run, etc.) and continuous Ψ⋆ (valve position, fan speed, etc.) variables for the RCs are

calculated such that the RS provides the cooling capacity u
!

= Q̇req. Solar radiation and
deterioration of α is not considered in this Chapter. Depending on the deviation of the
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ICB temperature ϑICB from the ICB set temperature ϑref
ICB a controller calculates the

required cooling capacity Q̇req. This controller can be a classical PI controller or also an
MPC, [20]. The calculation of Q̇req is not part of this Chapter and can be implemented
as shown in [32].
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Figure 3.1: Closed-loop system with a controller, the optimization, the refrig-
eration system (RS) and the insulated cool box (ICB). The opti-
mization block is the main part of this Chapter, where the optimal
discrete ̺⋆ and continuous Ψ⋆ variables for the RS are calculated.

3.2.2 Advantage over heuristic methods

Note that the redundancy of the RS defined in Fig. 3.1 enables supply of the same
u using several different combinations of discrete and continuous decision variables,
respectively. Hence, the choice of Ψ⋆ and ̺⋆ is not unique.
Simple heuristics may resolve this fact, however, three main drawbacks will result: 1)
optimality in the sense of minimum power consumption and wear or maximum COP
cannot be guaranteed, 2) time-varying constraints will be difficult to consider, and
3) balancing trade-offs between optimization goals will be difficult if not impossible.
Furthermore, practically important optimization goals are typically contradicting (e.g.
minimizing just switching of compressors for reducing wear will lead to prolonged run-
ning in unfavorable operating points thus increasing power consumption), which makes
finding a suitable trade-off even more complex.

3.2.3 Optimization problem and solution procedure

Hierarchical optimization

The main contribution of this Chapter is the optimization of the discrete decision
variables ̺ (which compressors should run, etc.) and continuous decision variables
Ψ (valve position, fan speed, etc.) of the RS for a given Q̇req.
A hierarchic optimization is proposed, first determining the discrete decision variables ̺

and then maximizing COP using the look-up tables for the continuous decision variables



3.2 Problem description 18

Ψ. Note that the ̺ may be determined in a sequential optimization depending on the
uniqueness of the solution, see Fig. 3.2.
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objective JD: min power consumption, wear, etc.
decision var: number of active RCs and compressors
constraints: u = Q̇req, system constraints

objective JD1: min number of switches
decision var: selection of compressors ̺⋆

constraints: no constraints

objective JD2: min disparity operating hours
decision var: selection of compressors ̺⋆

constraints: no constraints

objective JC: max COP
Look-up table: Ψ⋆

Figure 3.2: Solution procedure of the optimization. Once a discrete optimiza-
tion leads to a unique solution the consecutive discrete optimiza-
tions can be skipped.

A necessary condition for the RS is posed by guaranteeing the required cooling capacity
u = Q̇req. However, the redundant RCs lead to multiple solutions for providing Q̇req.
This degree of freedom is used to fulfill different conflicting optimization goals JD, such
as minimizing the power consumption or the wear. This is the topmost goal for the
optimization, it utilizes ̺ and considers zenv and all system constraints, eq. (2.13), see
top box in Fig. 3.2.
Because of the redundant RCs the solution need not be unique in which case another
optimization can be realized. The optimization goal JD1 is to minimize the number
of switches, because it increases the wear of the compressors, see second from top box
in Fig. 3.2. Consequently, life expectancy is optimized independent of the topmost
optimization goal.
Again, this solution need not be unique, and another optimization can be made. This
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optimization JD2 balances the operating hours of the compressors. As a result, no
compressor is overly used, and wear is evenly distributed, see bottom box in the discrete
optimization block of Fig. 3.2.
The optimization goals JD, JD1 and JD2 are selected in the specified order because
minimizing the power consumption is considered most important for industrial appli-
cations. Nevertheless, the order can be changed according to the requirements of the
application.
After determining the discrete variables ̺⋆ the continuous variables Ψ⋆ have to be set.
Here the optimization goal JC is to maximize COP under consideration of the system
constraints, see bottom box in Fig. 3.2. With this optimization it can be guaranteed
that all RCs work in the most effective operating point. This optimization is made
off-line and the solution is saved in look-up tables.

Formal definition

A formal definition of the hierarchical optimization is given by the optimization of the
discrete decision variables

criterion : JD(κ) = RW W (wS

∣
∣
∣κ) + RP P + ROJO,

constraint : u(κ) = Q̇req.
(3.1)

In eq. (3.1) κ is any permutation of active compressors that fulfills the constraint,

W (wS

∣
∣
∣κ) is the probability that some compressor switching is necessary, P is the elec-

trical power consumption, JO is some optional criterion, and RW , RP , RO are suitable
weighting factors. If the solution of JD is not unique, it is augmented with further
discrete optimizations

criterion : JD1(̺) = cl (κ⋆, ̺), (3.2)

criterion : JD2(̺) = Hl (̺). (3.3)

The criterion JD1 for minimal switching, eq. (3.2), depends on the solution to eq. (3.1)
denoted by κ⋆, and cl is the number of compressor switches necessary to obtain a new
combination l of active compressors denoted by ̺. If this solution is still not unique,
criterion JD2, eq. (3.3), is evaluated, where the disparity of operating hours in the
compressors Hl is minimized.
In a last step the optimal continuous decision variables are set using the look-up table.
Note that JD and JC are always executed while JD1 and JD2 are optional goals only
available if more redundant decision variables exist, see also Fig. 3.2.
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3.3 On-line optimization of discrete variables

3.3.1 Fundamental procedure

The optimization of the mode selection can be divided into independent optimization
goals, allowing to solve the optimization problems independently. The overall target
is to determine the best permutation with the index κ⋆. If the permutation has been
fixed the next decision is made, which compressor combination ̺⋆ should represent κ⋆.
The optimizations presented in this Section correspond to the three boxes contained in
the discrete optimization block in Fig. 3.2.
Note that the optimization of the discrete variables depends on the past decisions
and has to be solved on-line. However, the optimization of the discrete variables is
independent of high computational costs and can be calculated on an inexpensive micro
controller.

3.3.2 Optimization of the permutation

The topmost box in Fig. 3.2 corresponds to the following optimization. If the desired
cooling capacity Q̇req can be provided by different permutations, it is possible to opti-
mize the choice of permutation. The main targets for an RS are minimizing the wear
and minimizing the power consumption.
The cost function to be minimized is

JD = RW · JW + RP · JP + RO · JO, (3.4)

with JW and JE the cost functions for the wear and the power consumption and JO for
other criteria. The weighting factors RW , RP , RO in the cost function constitute the
flexibility of the approach to meet different requirements.
The best permutation κ⋆ is given by the corresponding optimization problem

κ⋆ = arg
[

min
κ

(JD)
]

(3.5)

s.t.

δeq(Ψ) = u(Ψ) − Q̇req = 0, (3.6)

with κ⋆ the best permutation of the set of possible permutations κ, eq. (2.16). The
hard constraint in eq. (3.6) can also be formulated as soft constraint. This ensures that
a valid solution can always be found.

Minimizing wear

Mostly the wear depends on the on-off cycling of the compressors, therefore, the number
of cycles has to be minimized. The decision of κ⋆ is made with the probability distri-
bution of operating points. The appropriate probability density function p(u), which
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can be varying by time, location, season, etc. is used to define the best permutation.
The shape of p(u) can be based on historical data. It is possible to use data from ser-
vice memory to generate the statistics about the probability distribution of operating
points. The method is demonstrated in Fig. 3.3.
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Figure 3.3: Probability density function, describing the operating point prob-
ability p(u), with the permutations and cooling capacity ranges for
one operating point with constant environmental conditions zenv.
Three different permutation indices (κ − 1, κ and κ + 1) can pro-
vide the required cooling capacity Q̇req. To minimize the wear, the
permutation index κ is used.

The switching probability W (wS

∣
∣
∣κ) of the permutation set κ defines the probability

that a permutation has to change if the cooling capacity is varying. The switching
probability Wκ(wS

∣
∣
∣κ) of κ is defined as

Wκ(wS

∣
∣
∣κ) =

umin,κ∫

−∞

p(u) du +

+∞∫

umax,κ

p(u) du. (3.7)

where S is the switching event and with umin,κ and umax,κ as the left and right edge of
the cooling capacity range of the permutation with index κ. The switching probability
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W (wS

∣
∣
∣κ) can be formulated as

W (wS

∣
∣
∣κ) = {Wκ(wS|κ) ∈ κ}. (3.8)

The permutation index κ⋆ with the minimal switching probability is utilized to provide
the cooling capacity.
The cost function to be minimized is

JW = W (wS

∣
∣
∣κ). (3.9)

The corresponding optimization problem is formally stated as

κ⋆ = arg
[

min
κ

(JW)
]

. (3.10)

After choosing the best permutation, the permutation is active until it cannot provide
the desired cooling capacity Q̇req any more.

Minimizing power consumption

To minimize the power consumption the electrical power should be minimized. There-
fore, the permutation which leads to the minimal electrical power is used. The cost
function to be minimized is

JP = P. (3.11)

The corresponding optimization problem is formally stated as

κ⋆ = arg
[

min
κ

(JP)
]

. (3.12)

In the case of using an internal combustion engine (ICE) as primary source, minimizing
the brake specific fuel consumption is an important aspect. A specific fuel consump-
tion map, can be considered in the optimization problem to decide which permutation
achieves the lowest brake specific fuel consumption. Another criteria of using an ICE
can be to minimizing the noise impact.

Other criteria

If there are other criteria which also should be optimized, they can be implemented
with JO to be also considered in the optimization problem, eq. (3.5).
For example if the set point often changes, an optimization of the control settling time
tcst can be made. The tcst is defined as the time required for ϑICB to slew to the vicinity
of the final value ϑref

ICB determined by a range of certain percentage of the final value.
The cost function to be minimized is

Jo = tcst. (3.13)



3.3 On-line optimization of discrete variables 23

3.3.3 Optimization of the compressor combination

Minimizing compressor switching c

This optional optimization is depicted in Fig. 3.2 in the second box from the top. After
the selection of the best permutation, the decision which compressors should repre-
sent the permutation have to be made. Out of all possible compressor combinations a
subset ̺act which fulfill the required κ⋆ is selected. To compute the number of com-
pressor switching c the compressor states s which is currently active is used. If the
current compressor combination can still be used, no switching is necessary and the
current compressor combination remains, ̺⋆ = s. If switching is necessary the com-
pressor combination which requires minimal switches has to be found. The compressor
switching cl is calculated by

cl =
∑∣

∣
∣s − ̺act,l

∣
∣
∣, (3.14)

with l the index of the subset ̺act. The compressor switching of all ̺act is given by

c =
[

c1 c2 . . . cnl

]T
. (3.15)

where nl is the number of all compressor combinations in the subset ̺act.
The cost function to be minimized is

JD1 = cl. (3.16)

The corresponding optimization problem is formally stated as (index of the smallest
element of c)

̺⋆ = ̺act

(

index
∣
∣
∣
∣

∣
∣
∣
∣

1

c

∣
∣
∣
∣

∣
∣
∣
∣
∞

)

. (3.17)

If the solution is unique the best compressor combination ̺⋆ is found. If there are
more compressor combinations with the same minimal count of switching a further
optimization problem is solved. The optimization goal is to balance the operating
hours of the compressors, which is described in the next section.

Minimizing disparity of operating hours h

The last potential optimization of discrete decision variables is also depicted in Fig. 3.2
as the bottom box in the discrete optimization block. The hours of operation of the
compressor j is calculated by

hi,j =
∑

t∫

0

fh(s, t) dt, (3.18)

with

fh =







1 if si,j = 1

0 else
. (3.19)
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The operating hours of all compressors of the RS are collected in the vector h,

h =
[

h1,1 . . . h1,n1
. . . hnRC ,nnRC

]T
. (3.20)

The sum of the operating hours H of the active compressors is calculated by,

H = ̺act h, (3.21)

where ̺act are only the compressor combinations with minimal compressor switching,
̺⋆ of eq. (3.17), which ensures minimal count of switching. The cost function JD2 to
be minimized is

JD2 = Hl, (3.22)

with l the index of the subset ̺act. The corresponding optimization problem is formally
stated as (index of the smallest element of H)

̺⋆ = ̺act

(

index
∣
∣
∣
∣

∣
∣
∣
∣

1

H

∣
∣
∣
∣

∣
∣
∣
∣
∞

)

. (3.23)

3.4 Off-line computation of continuous variables

The optimization of the continuous variables, bottom box in Fig. 3.2, is made based on
the COP,

COP (Ψ, zenv) =
u(Ψ, zenv)

P (Ψ, zenv)
. (3.24)

Different Ψ lead to the same cooling capacity but with different COP. To optimize Ψ
the value with the maximal COP is utilized.
To find the best Ψ⋆ a constraint optimization problem is formulated. The equality
constraint is to guarantee Q̇req and the inequality constraints make sure that the solution
is found in the feasible range of Ψ.
The cost function to be maximized is

JC = COP (Ψ, zenv). (3.25)

The corresponding optimization problem is formally stated as

Ψ⋆ = arg
[

max
Ψ ∈ χar

(JC)
]

(3.26)

s. t.

δeq(Ψ) = 0

δineq(Ψ) ≤ 0,

with

δeq(Ψ) = u(Ψ) − Q̇req, (3.27)
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δineq(Ψ) =











vmin − v

v − vmax

ωFC − ωFC,max

ωFE − ωFE,max

ω − ωmax











, (3.28)

and

χar = { vi ∈ R
+
0 : vi ≥ vmin,i ; vi ≤ vmax,i

ωFC,i ∈ R
+
0 : ωFC,i ≤ ωFC,max,i,

ωFE,i ∈ R
+
0 : ωFE,i ≤ ωFE,max,i, (3.29)

ωi ∈ R
+
0 : ωi ≤ ωmax,i },

It can be seen that the dimension of Ψ depends on the number of active RCs.
The optimization problem can be solved with Lagrange multiplier µeq and µineq, [9]:

L(Ψ, µeq, µineq) = fΨ(Ψ) + µeqδeq(Ψ) + µT
ineqδineq(Ψ) (3.30)

s.t.

∇fΨ(Ψ⋆) + ∇δeq(Ψ⋆)µ⋆
eq + ∇δineq(Ψ⋆)µ⋆

ineq = 0

µ⋆
ineq ≥ 0

δT
ineq(Ψ⋆)µ⋆

ineq = 0

δineq(Ψ⋆) ≤ 0

The optimization of Ψ⋆ requires high computational costs. Therefore, the optimization
problem is solved off-line by a calculation over the whole operating envelope. The
solution Ψ⋆ is saved in look-up tables, these can be easily stored in the memory of
a micro controller. The input variables from the look-up tables are the measurable
environmental conditions zenv, the best permutation κ⋆ and the desired cooling capacity
Q̇req.

3.5 Illustrative example

The illustrative example utilizes an RS which includes three RCs each with two com-
pressors all with identical capacity, Fig. 3.4. To facilitate the explanations, further
assumptions are made. All compressors are single speed compressors with the same ca-
pacity. The fan speeds of the condenser and the evaporator have only one fixed speed.
Therefore, eq. (2.6) is reduced to Ψi = [vi] and the decision vector for all RCs, eq.
(2.7), is Ψ = [v1 v2 v3].
Fig. 3.5 shows two diagrams of the operating hours h for all compressors. The left
diagram shows the current states of the compressors s, the right diagram shows the
new compressor combination ̺⋆ under consideration of the optimization criteria.
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Figure 3.4: The structure of the refrigeration system with three RCs, each with
two compressors.
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Figure 3.5: Best solution for minimizing compressor switching and disparity
of operating hours. White bars denote compressors which are off,
gray bars demonstrate compressors which are active.

Assumed Q̇req can be realized by the permutation indices κ = {2, 3}, eq. (2.16), where
for example κ = 2 means one RC with two compressors is active and κ = 3 means two
RCs are active, one with two compressor and the other one with only one compressor.
Assumed that P should be minimized (JD = JE), eq. (3.4), and P 2 < P 3, where P κ

defines the electrical power of the permutation with index κ.
With κ⋆ = 2, eq. (3.5), the possible compressor combinations are

̺act =






1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1




 .

Assumed that the state vector, Fig. 3.5, is

s =
[

1 0 1 0 0 0
]

.
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Thus it appears that the compressor switching c = [2 2 4]T , (criterion JD1). It can
be seen that the first two compressor combinations of ̺act need the minimum possible
compressor switches,

̺⋆ =

[

1 1 0 0 0 0
0 0 1 1 0 0

]

.

Therefore, ̺⋆ is not unique and the new combination is chosen such that the disparity
of operating hours is minimized, (criterion JD2).
Assumed the operating hours of all compressors are defined by

h =
[

1.75 2 5 0.5 1.25 1
]

,

with eq. (3.20) and eq. (3.23) leads to H = [3.75 5.5]T .
In the first compressor combination the sum of the operating hours of all active com-
pressors H is smaller than the second one, therefore, the first combination is selected
(criterion JD2),

̺⋆ =
[

1 1 0 0 0 0
]

.

With the assumption v⋆
1 = 0.3 the optimal continuous decision vector, (criterion JC), is

defined Ψ⋆ = [0.3 0 0].
The combination [0 0 0 0 1 1] in fact, would have the smallest operating hours (H =
2.25) but needs four compressor switches (compressors one and three have to be turned
off and compressor five and six have to be turned on. Therefore, it is not an option for
the optimization JD2.

3.6 Simulation results

The simulation results are demonstrated with the same RS which is already mentioned,
at the beginning of Section 3.5. All simulation results have been published in [42].

3.6.1 Comparing conventional control method with optimized
method

This example shows the advantage of using redundant RCs with multiple compressors
and continuous decision variables in comparison to the conventional on-off method with
no continuous decision variables.

Effect of redundant compressors

Fig. 3.6 shows the conventional temperature control, method A. The RS consists of
one RC with one large compressor. For a suitable comparison, it is assumed that the
RC with one compressor provides the same cooling capacity as the RCs with all six
compressors active.
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Figure 3.6: Method A: Conventional method with one compressor leads to a
high compressor switching frequency.

In Fig 3.7 the RS consists of three RCs each with two compressors but no continuous
decision variables, method B.
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Figure 3.7: Method B: With multiple RCs and compressors the temperature
gradients during the cooling process are smaller and the switching
frequency is significantly reduced.

It can be seen that a cooling capacity closer to the demand value can be delivered. As
a result, the compressor switching frequency is considerably reduced, because of more
but smaller compressors, which leads to a finer discretization.
Note that right after the ICB temperature step the maximum available u is time-varying
due to the decreasing ICB temperature.

Balancing of optimization goals

With the cost function
JD = RW · JW + (1 − RW ) · JO, (3.31)

a balancing between minimizing compressor switching and the control settling time can
be achieved.



3.6 Simulation results 29

In Fig. 3.8, method C, it can be seen that only optimizing the compressor switching
(RW = 1) is not effective for a step change in ϑICB. This leads to no switching and
just variation of the continuous decision variables but causes only a small achievable
gradient in ϑICB. Therefore, an excessively long time is necessary to achieve the new
set temperature. A mixed optimization of minimizing compressor switching and the
control settling time achieves an equally fast time-performance with slight performance
loss in minimizing compressor switching. In Fig. 3.8 it can also be seen that minimizing
only the control settling time (RW = 0) leads to a a high cooling power demand and
more compressor switches.
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Figure 3.8: Method C: Different weighting factors between minimizing com-
pressor switching and time-performance.

Table 3.1 shows the relevant values for the different methods. These are the total
consumed energy E over the whole simulation span of 12 h, the average cooling capacity
u and the control settling time tcst. It can be seen that with the proposed method the life
cycle costs can be reduced. The number of switches is reduced significantly. Compared
with the conventional method savings of more than 12 % are possible.

Method A B C C C
Fig. 3.6 3.7 3.8 3.8 3.8
RW - - 1 0.5 0
nc 1 6 6 6 6

# Switches 83 43 1 3 9
COP/COPB 1.02 1 0.93 0.92 0.96

E/EB 1.04 1 0.9 0.92 0.97
u/uB 1.02 1 0.97 1.003 1.02

tcst/tcst,B 1 1 17.73 4.14 0.976

Table 3.1: All relevant reference values, normalized by the values of the second
column (method B), denoted by B.
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3.6.2 Power consumption versus switching

This example shows a special case where it can be seen that minimizing only the
electrical power can lead to poor performance. In this simulation Q̇req is a time-varying
trajectory (e.g. due to external disturbances).
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Figure 3.9: Minimizing power consumption (dashed line), method a, versus
compressor switching (line), method b. Second plot: κ = 1: one
compressor active, κ = 2: two compressors in one RC active.

Minimizing the compressor switching (method b), the variability can be managed most
of the time by just varying a continuous decision variable. However, if only the electrical
power is minimized (method a), one compressor is switched off every time the desired
cooling capacity can be provided by a combination with smaller electrical power con-
sumption. This also leads to a worse COP because the RC cannot work in the optimal
operating point. In the first plot of Fig. 3.9 the cooling capacities of both methods are
shown, Q̇req is plotted for both methods. The second plot shows the permutations (a
change represents switching) and the third plot shows the ICB temperature.
Table 3.2 shows the relevant values. These are the number of switching, E over the
whole simulation span of 5.5 h, u and the root-mean-squared error (RMSE),

RMSE =

√
√
√
√

1

N

N∑

k=1

(Q̇req(k) − u(k))2,

with N the simulation time and k the index of the simulation time. It can be seen
that minimizing the electrical power causes only small energy savings but the number
of switches is significantly increased. From Table 3.2 it is clear that a combination of
both criteria will deliver a good compromise.
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Method a b
# Switches 13 2
COP/COPb 0.97 1

E/Eb 0.94 1
u/ub 0.98 1

RMSE 0.18 0.06

Table 3.2: Relevant reference values, normalized with the values of the second
column, (method b), denoted by b.

3.7 Summary

The overall goal of the presented optimization is providing a desired cooling capacity
u = Q̇req while optimizing several conflicting goals. Because of the redundant sys-
tem, such conflicting goals can be achieved as minimizing power consumption and wear
(represented by switching instances) while maximizing COP and disparity the operat-
ing hours of the compressors. The optimization reliefs the operator from heuristically
choosing operating variables from a multitude of possible operation modes caused by
the redundant components.
In contrast to existing on-line optimization methods the computationally expensive part
can be done off-line. Thus, only the storage of the solution in simple look-up tables
is necessary. It is therefore perfectly suited for implementation in a micro-controller
based control unit of an industrial refrigeration system.
Due to the hierarchic structure the topmost optimization is always performed, ensuring
an optimal compromise between power consumption, wear, and other possible goals.
The outcome of the optimization can be easily shifted by the user towards one or the
other goal by simple scalar weighting factors.
Simulation results show that the proposed method yields similar or even better perfor-
mance (measured as settling time after a step in set point temperature) as conventional
operating strategies while drastically reducing switching of the compressors and con-
suming less energy. Another result demonstrates the ability to achieve almost the same
performance for tracking a time-varying Q̇req (measured as root mean square error be-
tween u and Q̇req and also in terms of power consumption) while reducing the switching
instances to less than a sixth.



Chapter 4

Hierarchical model predictive
control

Temperature control of an ICB can be efficiently provided by model predictive con-
trol. The design of MPC temperature control completes the overall control concept
introduced in Chapter 3. In this Chapter a hierarchical MPC for temperature control
is combined with two alternative predictive CA methods for the RS. However, if the
cooling capacity u is supplied by redundant RCs with both continuous and switched
control variables, the overall control design becomes complex: 1) Time constants of the
ICB and RCs differ by a factor of approximately 100. 2) Switched and continuous con-
trol variables require mixed-integer optimization. 3) Power consumption, wear, control
performance and output tracking call for multi-objective optimization.

4.1 State of the art

The theory of linear MPC can be considered mature, [10]. In the last few years, the
application of MPC for energy management in buildings, heating, ventilation, and air
conditioning (HVAC) systems and supermarket RS has received significant attention
from the research community. In [84] an MPC formulation framework is defined and the
outcomes of different existing MPC algorithms for building and HVAC system manage-
ment is critically discussed. An MPC for a large temperature difference refrigerating
station with ice cold thermal energy storage is developed in [15]. The optimization
problem is solved with a nonlinear dynamic optimization algorithm based on neural
networks and compared to a PID controller. A stochastic MPC of a air conditioning
(AC) system is proposed in [23], where three control approaches are compared.
Several different solutions exist for a mixed integer MPC (MI-MPC) as the CA of the
RCs. Approaches based on exact methods have been used, such as dynamic program-
ming, [88], mixed-integer programming, [49], Lagrangian relaxation, [91], and branch
and bound methods, [50]. The main drawbacks of these techniques are the large com-
putational time and memory requirements for large complexity and dimensionality
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problems. More recently, several meta-heuristic methods, such as simulated annealing,
[86], evolutionary programming, [72], particle swarm optimization, [104] and genetic
algorithms, [79] have been proposed. For further discussion and comparison of these
methodologies, with special focus on meta-heuristic methods, see [78]. One drawback
of heuristics is that they typically lack information on the quality of the found solu-
tions compared to the global optimal solution. In [87] a sub-optimal MPC approach for
handling both switched and continuous control has been proposed. The MI-MPC was
not directly tackled, instead, a separation into logical variables with an ad hoc control
design and continuous variables for the MPC was done.
In [7] a framework for hybrid systems is proposed. The optimization problem is defined
as a mixed integer quadratic programming (MIQP) problem. One disadvantage of this
formulation is that it is computationally complex. A framework which uses a simpler
set of quadratic programming problems instead of the MIQP problem is presented in
[54]. However, the problem of vastly differing time constants is not covered in these
publications. A review of a number of decentralized, distributed and hierarchical control
architectures for large-scale systems can be found in [80].
Early applications of hybrid MPC to supermarket refrigeration systems can be found
in [32] and [89]. Whereas in [32] a mixed logical dynamic plant formulation is directly
utilized in the MPC design, a high-level nonlinear MPC in combination with a low-level
process control is proposed in [89]. A general approach to MPC for hybrid systems is
given in [11], where a piece-wise affine model for the hybrid system is proposed. The
application to a solar AC plant demonstrates that the hybrid MPC optimally switches
between operating modes and computes the continuous control variables. In [85] an
MPC for hybrid thermal systems in transport refrigeration is presented. It is shown that
MPC can be successfully utilized for hybrid systems with both switched and continuous
control variables. In [26] different MPC variants are designed for an automotive air-
conditioning/refrigeration system, and it is shown that an adaptive hybrid MPC is the
best performing concept.
Solutions similar to the proposed hierarchical MPC control structure have been pub-
lished in [16], where a mixed-integer linear programming (MILP) and an MPC is used
for optimal control of HVAC system, in [52] for a AC system, and [90, 61, 53, 16],
where building heating and cooling control are provided by a similar control structure.
However, in [52] the upper layer is an open loop controller which optimizes the energy
cost of the AC system and the lower layer is a MPC which is in charge of tracking the
tradeoff steady state calculated by the upper layer. In [90] only simple PI-controllers
have been considered in the lower hierarchical level, in [61] binary variables have been
approximated by continuous variables (resulting in a classical MPC problem), in [53] hi-
erarchical MPCs solve for continuous control variables only at identical sampling times,
and in [49] also identical sampling times apply at both layers although the hierarchical
structure is similar to the concept proposed here. In [49, 61, 53, 41] identical sampling
frequencies are used, thus strongly simplifying the communication, and no results on
stability are included. In [41] the idea of different horizon lengths is also used and



4.2 Hierarchical control concept 34

recursive feasibility is proven. However, the lower-level MPC only solves a continuous
optimization problem, and redundant supplies are not considered. In [16] an MPC-
MILP control scheme for HVAC control was presented. Redundant components in the
RS are considered, but all layers communicate with the same sampling frequency and
stability is not considered. A decentralized control structure can also be implemented
for redundant RCs, [56].
A theoretical work leading to a different strategy is given in [81]. On both levels
robust MPCs with different sampling rates are employed, where the high-level MPC
provides not only control variables but also admissible deviations to retain stability
and performance. In contrast to that approach, in the proposed solution the high-level
MPC has a simple linear structure and stability is guaranteed only by constraints on
the switching action of the underlying CA. In an extension [69], the concept is adapted
for independent systems with joint constraints, which would be applicable to the CA
for the redundant RCs. In [102] a similar framework is presented, but it is again limited
to a continuous optimization in the lower-level MPC.

4.2 Hierarchical control concept

Because of the vastly differing time constants the optimization problem is separated
into two layers: The global MPC optimizes the temperature control of the slowly act-
ing linear ICB system with a large sampling time Ts (samples denoted by K). The
CA computes the fast acting input variables of the RS with a small sampling time ts

(samples denoted by k), and the integer ratio is defined as λ = Ts

ts
, λ ∈ N. Hence,

a multi-sampling rate control results, where the upper-level controller runs at a lower
sampling frequency, [4].
The global MPC utilizes long prediction Np and control Nc horizons, respectively. In
general Np > Nc holds. The prediction horizon np and control horizon nc of the complex
CA are chosen relatively small. Therefore, the CA uses only a few samples of the global
MPC optimization.
In Fig. 4.1 the overall hierarchical concept is presented. Note that the input to the CA
varying by the different concepts and there constraints.
Two concepts are presented: In the first concept the global MPC is designed to compute
a desired cooling capacity while the CA which is realized by a MI-MPC provides u with
the constraint that u is in the large sample time always identical to the desired cooling
capacity. This constraint leads to a temperature deviation between the ICB temperature
and the predicted temperature of the global MPC, see [45]. To avoid this effect, a second
concept is presented, where the CA is realized by a mixed-integer optimizer (MIO). The
input of the MIO is the predicted ICB temperature of the global MPC. A constraint
forces the result of the MIO to obtain exactly the same ICB temperature at the end of
the large sample as predicted by the global MPC.
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frigeration system (RS) and the insulated cool box (ICB).

4.3 Concept 1: Cooling capacity constraint

4.3.1 Model assumptions

The RS which is used in the following concept is already shown in Fig. 3.4. All assump-
tions according to the RS can be seen at the first paragraph in Section 3.5. Furthermore
the RS doesn’t include a dynamic part, therefore only static maps are used to model
the RS, see Section 2.3.5. In this Section the solar irradiation and the α deterioration
is not considered.

4.3.2 Control structure

In Fig. 4.2 the conceptual architecture with a MI-MPC as realization for the CA is
presented. The purpose of the global MPC is to control the temperature in the ICB and
to reject disturbances. In order to guarantee the reference ICB temperature trajectory
ϑref

ICB, the global MPC with the underlying dynamic linear ICB model, eq. (2.20),
and predicted disturbance trajectory, ϑ

pred
amb , calculates the optimal cooling capacity

trajectory U(K).
For the MI-MPC the supply of U(K), while minimizing the cooling costs as well as
minimizing the wear are important control goals. Hence, the MI-MPC is used for
optimizing these goals by utilizing the redundancy of the RS. The MI-MPC receives
U (K) from the upper-level global MPC and optimizes the switched control variables
(which correspond to the compressor states s from the RS) and the continuous control
variables (which correspond to the valve positions v of the active RCs) to provide U(K).
Only the first sample of the optimal control sequences s and v is transferred to the RS
and the resultant cooling capacity u(k) is used to achieve the reference temperature
in the ICB, see Fig. 4.3. Subsequently, the horizon is shifted one sample and the
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optimization is restarted.
With the ratio λ a sampling rate conversion in both directions is possible. Note that a
suitable anti-aliasing filter must be applied for correct sampling rate conversion.

4.3.3 Global MPC for temperature control

Standard MPC formulations are well-known and given in [10]. To use the dynamic ICB
model, eq. (2.20), it is discretized with the zero order hold method and formulated as a
linear state-space model. This model can be augmented to provide offset-free control,
[94]

xMPC(K + 1) = AaxMPC(K) + Ba∆U(K) + Ea∆Z(K), (4.1)

, y(K) = CaxMPC(K) (4.2)

with K the sampling instance of the global MPC, Aa, Ba, Ca, Ea the augmented
system-, input-, output- and disturbance matrices and

∆U(K) = U(K) − U(K − 1), (4.3)

∆Z(K) = ϑpred
amb(K) − ϑpred

amb(K − 1), (4.4)

xMPC(K) =
[

∆xT
MPC(K), y(K)

]T
, (4.5)

where ∆xMPC = xP (K) − xP (K − 1), see eq. (2.23).
Based on the state-space model the future state variables are calculated sequentially
using the set of future control changes ∆U ,

∆U (K) =
[

∆U(K), ∆U(K + 1), . . . , ∆U(K + Nc − 1)
]T

. (4.6)

The dimension of ∆U (K) is (Np x 1). If Nc < Np the remaining Np − Nc values of
∆U (K) are filled with the value of ∆U(K + Nc − 1).
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TS. The MI-MPC generates u(k) (red) with the sampling time tS.

The prediction is given by

Ŷ (K) = F xxMPC(K) + F u∆U(K) + F z∆Z(K), (4.7)

where

Ŷ (K) =
[

ŷ(K + 1|K), ŷ(K + 2|K), . . . , ŷ(K + Np|K)
]T

, (4.8)

∆Z(K) =
[

∆Z(K|K), ∆Z(K + 1|K), . . . , ∆Z(K + Np − 1|K)
]T

, (4.9)

and the matrices F x, F u and F z are computed by

F x =
[

CaAa, CaA2
a, CaA3

a, . . . , CaANp

a

]T
, (4.10)

F u =












CaBa 0 0 . . . 0
CaAaBa CaBa 0 . . . 0
CaA2

aBa CaAaBa CaBa . . . 0
...

CaANp−1
a Ba CaANp−2

a Ba CaANp−3
a Ba . . . CaANp−Nc

a Ba












, (4.11)
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and

F z =












CaEa 0 0 . . . 0
CaAaEa CaEa 0 . . . 0
CaA2

aEa CaAaEa CaEa . . . 0
...

CaANp−1
a Ea CaANp−2

a Ea CaANp−3
a Ea . . . CaEa












. (4.12)

The reference trajectory Y ref is defined as

Y ref(K) =
[

ϑref
ICB(K + 1) ϑref

ICB(K + 2) . . . ϑref
ICB(K + NP)

]T
. (4.13)

The optimization criterion is chosen as

J1 = (Y ref − Ŷ )T R1(Y ref − Ŷ ) + ∆U T R2∆U (4.14)

s.t.

− Umin ≤ −U (K) ≤ −Umax, (4.15)

where R1 and R2 are positive semi-definite weighting matrices, which are used for
tuning.
The time-variant constraints Umin and U max, eq. (4.15), depend on the system con-
straints of the RCs, ϑamb and ϑICB and limit the control sequence to the feasible range
of the MI-MPC.
The corresponding optimization problem is formally stated as

J⋆
1 = min

∆U
J1. (4.16)

The optimal control sequence over the whole horizon Np is given by

∆U(K) = arg min
∆U

J⋆
1 , (4.17)

and U(K) can be calculated by

U(K) =
[

U1(K − 1) + ∆U (K)
]

, (4.18)

where U1(K − 1) is the first entry of U(K − 1).

4.3.4 MI-MPC for cooling capacity control

The RS model of the MI-MPC has no dynamic state, the problem is formulated as
a mixed-integer optimal control problem, with both switched control variables and
continuous control variables. Latency periods for the compressor switching can also be
considered, note that then a unit commitment problem has to be solved, [25].
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The switched decision variables are the active RCs and compressors s, the continuous
decision variables are the valve positions v. The fact that two RCs, each running
one active compressor, provide different values of u and P compared to two active
compressors in one RC is considered in the optimization.
Only the first three samples, denoted by U1(K), U2(K) and U3(K) of U (K) are used
to compute the up-sampled reference values of U(k),

U(k) =
[

U1(K) · I, U2(K) · I, U3(K) · I
]

, (4.19)

where I ∈ R
( np

2
,1), which are used by the MI-MPC to calculates the optimal decision

variables. The third part of U(k) in eq. (4.19) is required to guarantee that all values
within the moving horizon are well defined. During the large sampling interval TS of the
global MPC the MI-MPC is executed λ times. The first sample of the resulting optimal
cooling capacity trajectory u(k) is the actual cooling capacity input to the ICB.
To ensure that the RCs operate in a feasible range, the optimization problem of the MI-
MPC includes constraints. The admissible valve position is defined by the time-variant
trajectories vmin(k) and vmax(k). The time-variant valve position limits depend on the
system constraints of the RCs. Constraints are defined for the superheat temperature,
the suction pressure, the discharge pressure and the discharge temperature. These
constraints limit the valve position depending on the number of active compressors
(one or both active), ϑamb and ϑICB.
The optimization problem of the MI-MPC is formulated as follows:

J2 = (U(k) − u(k))T R3(U(k) − u(k)) + P T R4P + R5u∆Σ + R6S (4.20)

s.t.

GAA(q−1)u(k) = U(K) for (k mod λ) == 0 (4.21)

vmin ≤ v ≤ vmax,

where R3, R4, R5 and R6 are positive semi-definite weightings, which are used for
tuning. The constraint, eq. (4.21), ensures stability of the global MPC, where GAA(q−1)
is the pulse transfer function of the anti-aliasing low-pass filter. The constraint (4.21)
guarantees that the down-sampled signal of u(k) is always identical to U(K).
The first term in eq. (4.20) guarantees that U(k) is tracked as closely as possible, the
second term minimizes P , the third term ensures that the average of u(k) within one
large sample of the global MPC represents U(k), and the last term penalizes excessive
compressor switching S, which is the main reason for compressor wear. If −u < −umin

the quadratic term in eq. (4.20) yields the constant value of umin as an optimal solution.
This can be avoided by adding the third term u∆Σ which enforces switching action of
the cooling capacity.
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The third term of eq. (4.20) is defined as follows:

u∆Σ =

∣
∣
∣
∣
∣

λ · U1(k) − upast −
a−1∑

i=1

u(i)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

b−1∑

i=a

U(i) −
b−1∑

i=a

u(i)

∣
∣
∣
∣
∣

+ǫ1

∣
∣
∣
∣
∣

np
∑

i=b

U(i) −
np
∑

i=b

u(i)

∣
∣
∣
∣
∣
, (4.22)

where U1(k) is the first value of U(k), a and b define the position of step changes in
U (k), see Fig. 4.4, ǫ1 indicates the existence of three constant sections for U(k) and
upast is the sum of all already implemented values of u(k) in the sequence,

ǫ1 =







1 if (k mod λ) 6= 0

0 else,
(4.23)

and

upast =







k−1∑

i=
np

2
−a

u(i) if (k mod λ) 6= 0

0 else.

(4.24)
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Figure 4.4: Moving horizon of the MI-MPC, U(K) is shifted λ times during
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U (K) appear in the horizon np, therefore ǫ1, eq. (4.23), and upast,
eq. 4.24, are zero.

The corresponding optimization problem is formally stated as

J⋆
2 = min

s,v
J2. (4.25)

4.3.5 Stability

To study closed-loop stability, the following additional assumptions are made:

Assumption 1 All disturbances stay constant during all iterations at time step k.
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Assumption 2 The closed-loop control system of the unconstrained global linear MPC
without the MI-MPC is globally asymptotically stable.

Assumption 3 The error between the switched control u(k) of the MI-MPC and the
control U(k) of the global MPC is uncorrelated with U(k).

Assumption 2 is guaranteed to hold for well-known conditions, [51]. Assumption 3
is reasonable due to the constraint (4.22), which guarantees zero mean error between
sampling instances, and the fact that the MI-MPC constructs the switched control u(k)
solely based on available compressor combinations and the constant inter-sample value
of U(K).
As a direct consequence of Assumption 2 the following Theorem holds:

Theorem 1 Identical control input
If the cooling capacity supplied by the MI-MPC is exactly equal to the reference cooling
capacity of the global MPC the closed-loop is asymptotically stable.

Proof 1 In this case the closed-loop transfer function of the inner loop with the MI-
MPC is the identity. Therefore, stability is only affected by the global MPC. Due to
Assumption 2 the overall control system is asymptotically stable.

Obviously, Theorem 1 does not apply during switching operation, when a specific cool-
ing capacity cannot be supplied by continuous operation. In that case the following
Theorem holds:

Theorem 2 Switched control input
If the set of equality constraints

u(k) = U(K), ∀
k

λ
= K, k ∈

[

t

tS

,
t

tS

+ n
c

− 1

]

is fulfilled by the MI-MPC’s solution u(k), the closed-loop control system will be robustly
stable in the sense of being asymptotically ultimately bounded, [48].

Proof 2 The down-sampled version of the MI-MPCs optimal control input is based on
the low-pass filtered continuous signal ũ(t). This signal is given by

ũ(t) = gAA(t) ∗ u(t), (4.26)

where gAA(t) is the weighting function of the (continuous) anti-aliasing low-pass filter
and ∗ denotes the convolution operator, u(t) is the continuous version (zero-order hold)
of the switched control input u(k). By sampling ũ(t) at t = KTS, the correctly down-
sampled control ũ(K) results, [63]. Due to Theorem 2 ũ(K) = U(K) holds, and the
predicted control U(K) of the global linear MPC does not change when the horizon is
shifted. Hence, the prediction U(K) is invariant to the specific u(k).
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However, there will arise an error eϑICB
in the prediction of the plant’s output ϑICB:

The actual control input is not that of an ideal zero-order hold (U(t) = U(K) = const.
for KTS ≤ t < (K + 1)TS), but instead it is that of the MI-MPC’s switched control
input u(k). The resulting prediction error eϑICB

is given by

eϑICB
(k) = GICB(q−1)(u(k) − U(k)), (4.27)

where GICB(q−1) is the plant’s pulse transfer function for tS and U(k) is the correctly
up-sampled control of the global MPC. Using eq.(4.27) the actual plant output can be
written as

ϑICB(k) = GICB(q−1)u(k)

= GICB(q−1)U(k) + eϑICB
(k).

Because of Assumption 3 eϑICB
(k) will be uncorrelated with U(K), due to the constraint

(4.22) it will also be of zero mean. Furthermore, the error eϑICB
will be bounded since

available control inputs u(k) are limited. As the error is bounded, the ICB’s tempera-
ture will be confined to some neighborhood of the set-point. Hence, the system will be
asymptotically ultimately bounded.

4.3.6 Simulation results

Results of a closed-loop simulation are used to demonstrate the control method. The
mixed-integer optimization problem is solved with the Gurobi Optimizer. All simulation
results have been published in [45].
The sampling time is chosen as TS = 8 min in the global MPC and as tS = 1 min
in the MI-MPC and ICB. The prediction and control horizon of the global MPC are
chosen as Np = 30 and Nc = 10. The prediction and control horizon of the MI-MPC
are set to np = nc = 16.

Comparison with conventional control

The proposed controller is compared to a perfect MPC solution, denoted with a ⋆, where
only the global MPC (without the MI-MPC) is simulated, and an industry standard
PI-controller method with a switching look-up table.
In Fig. 4.5 the solution is plotted over 6.67 h. After 2.5 h the reference ICB temperature
ϑref

ICB changes. After 5 h a step in the ambient temperature ϑ
pred
amb occurs. For a fair

comparison between the proposed method and the PI-controller, the ϑref
ICB and ϑ

pred
amb

steps are not included in the predictions of the global MPC. However, it can be seen
that the performance of the MI-MPC is significantly better than that of the traditional
PI-controller.
The first plot shows the cooling capacities and the constraints of Umin and Umax, which
are plotted in gray. Switching is necessary if U(k) < Umin(k). It can also be seen that
the MI-MPC only minimally affects the performance of the global MPC.
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Figure 4.5: Comparison conventional control method with optimized method.

The last plot shows the total electrical power consumed by the MI-MPC compared with
the PI controller. In this specific simulation the MI-MPC needs 17 % less power than the
standard PI controller. Note that the deviation of the electrical power occurs because
the MI-MPC utilizes the redundancy of the RCs and optimizes the active compressor
combination according to the optimization problem, eq. (4.20), where minimization of
the electrical power is defined. In contrast, the PI controller uses the next compressor
combination in a static look-up table, which provides U(k) independent of the electrical
power consumption.

Robustness check

To demonstrate the robustness of the control concept a simulation based on an incorrect
prediction of the ambient temperature ϑ

pred
amb is made. A random disturbance dn, with

increasing variance is added to ϑ
pred
amb every K-th sample. In Table 4.1 the RMSE

between the reference and actual ICB temperatures are listed.

RMSE =

√
√
√
√

1

N

N∑

k=1

(

ϑICB(k) − ϑref
ICB(k)

)2

,

where N is the number of simulation steps.
It can be seen that increasing variances affect the RMSE. Nevertheless, even for large
prediction errors the temperature remains in an acceptable region around the reference
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σ2 0 1 2 3 4
RMSE 0.2166 0.2449 0.2472 0.2759 0.2879

Table 4.1: RMSE values for different variances.
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Figure 4.6: Cross-covariance function for U(k) and U(k) − u(k) together with
95 % confidence intervals for zero value. The correlation coefficient
between the two signals is 13.10−4.

temperature value. Typically an acceptable value for the region of tolerance is defined
by ϑref

ICB ± 0.5°C.
For σ2 = 1 the cross-covariance function and the 95 % confidence interval for zero are
plotted in Fig. 4.6. It can be seen that Assumption 3 is fulfilled in the given application
example.
Fig. 4.7 demonstrates the robustness of the control concept. The random disturbance
dn is shown in the first plot, colored in green. As reference value the global MPC without
the MI-MPC is used (second and third plot, denoted with ⋆, colored in magenta). It
can be seen that the MI-MPC (second and third plot, colored in blue) is able to handle
the random disturbance and never exceeds the region of tolerance.
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4.4 Concept 2: Predicted temperature constraint

4.4.1 Model assumptions

The RS which is used in the following concept is already shown in Fig. 3.4. All as-
sumptions according to the RS can be seen at the first paragraph in Section 3.5. In this
Section the RS includes a static and a dynamic part, see Section 2.3.5 and also solar
irradiation as an unknown disturbance. However, α deterioration is not considered.

4.4.2 Control structure

In Fig. 4.8 the conceptual architecture with a MIO as realization for the CA is presented.
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Figure 4.8: Conceptual architecture where the CA is realized by a mixed-
integer optimizer (MIO) and the RS is modeled by a Hammerstein
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The global MPC with the underlying dynamic linear ICB model, eq. (2.20), calculates
the optimal cooling capacity trajectory U(K) and predicts the temperature of the

ICB ϑ̂ICB under consideration of the known disturbance trajectory ϑ
pred
amb and the ICB

temperature reference trajectory ϑref
ICB. Unknown disturbances on the ICB like Q̇sol are

compensated by the integral behavior of the global MPC. The predicted temperature
of the ICB is then used to formulate an output constraint for the MIO.
The MIO defines the switched control variables s and the continuous control variables
(valve positions v). Future constraints Umax(K) are computed and sent back to the
global MPC. This optimization is constrained such that at the end of the large sampling
interval ϑICB = ϑ̂ICB holds, see Fig. 4.9.
As the MIO gets new information only every λ-th fast sample, the MIO is also only
performed at the large sampling instance K. For the following λ − 1 small samples the
computed solution for s and v is preserved and sent to the RS.
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Figure 4.9: Principle of model predictive control, with two different sampling
rates. The trajectory U(K) (blue) is defined at the sampling time
Ts. The MIO generates u0(k) (black) with the sampling time ts.
The continuous temperature signal ϑICB(t) (red) is correctly sam-

pled to ϑ̂ICB(K) (blue).

4.4.3 Global MPC for temperature control

The offset-free MPC formulation is already mentioned in Section 4.3.3 , eqns. (4.1-4.13).
The optimization criterion is chosen as

J1 = (Y ref − Ŷ )T R1(Y ref − Ŷ ) + ∆U T R2∆U + V (xMPC(K + Nc)) (4.28)

s.t.

eq. (4.1) and (4.2)

0 ≤ −U (K) ≤ −Umax(K),

where R1 and R2 are positive semi-definite weighting matrices, which are used for
tuning and the terminal cost V (xMPC(K + Nc)):

V (xMPC(K + Nc)) =
1

2
(xref

MPC − xMPC(K + Nc))
T P L(xref

MPC − xMPC(K + Nc)), (4.29)

where the steady state is defined by xref
MPC. The terminal cost corresponding to the solu-

tion of an infinite horizon LQ-controller is weighted by the solution of the corresponding
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discrete-time Riccati equation

P L = −(AT
a P LBa)(BT

a P LBa + R2)
−1(BT

a P LAa) + AT
a P LAa + R1, (4.30)

which corresponds to a dual-mode MPC concept [75].
The time-varying constraint Umax(K) depends on the system constraints of the RCs,
ϑamb and ϑICB and limits the control sequence to the feasible range of the MIO.
The corresponding optimization problem is formally stated as

J⋆
1 = min

∆U
J1 (4.31)

s.t.

constraints of eq. (4.28),

and the optimal control sequence over the whole control horizon Nc is given by

∆U = arg min
∆U

J1. (4.32)

4.4.4 State Transition

The state transition of a system, eq. (2.23), with state equation

ẋP = AP xP + BP u (4.33)

from initial state xP (t = t0) to final state xP (t = t1) is given by

xP (t1) = eAP (t1−t0)xP (t0) +

t1∫

τ=t0

eAP (t1−τ)BP u(τ)dτ. (4.34)

For KTs ≤ t < (K + 1)Ts with fixed sampling time Ts and u(t) = U(K) = const eq.
(4.34) is transformed to

xP (K + 1) = eAP TsxP (K) + U(K)

(K+1)Ts∫

KTs

eAP ((K+1)Ts−τ)BP dτ

= ΦP xP (K) + ΓP U(K). (4.35)

In eq. (4.35) the terms ΦP xP (K) and ΓP U(K) denote the free and the forced response
of the system, eq. (4.33), for the constant input U(K), respectively. Note that ΦP and
ΓP are constant matrices depending only on AP , BP and Ts. Furthermore, the effect of
constant disturbances z(K) over one large sample K would be given by an additional
additive term MP z(K), where M P is computed as ΓP in eq. (4.35) with BP replaced
by EP .
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For the smaller sampling time ts and the state-space system, eq. (2.25), the transition
over one small sample ts is given by

x(k + 1) = eAtsx(k) + u0(k)

(k+1)ts∫

kts

eA((k+1)ts−τ)Bdτ = Φx(k) + Γu0(k). (4.36)

Again, the effect of constant disturbances z(k) over one small sample k would be given
by an additional additive term Mz(k), where M is computed as Γ in eq. (4.36) by
replacing B with E.

4.4.5 Constraint formulation

The basic idea for the constraint formulation is the requirement that at the end of the
large sample time the prediction of ϑICB by the global MPC x(K + 1) based on the
input u(K) must be identical to the result of λ control inputs u0,j, j = 1...λ, by the
MIO based on the inputs u0(k):

CP xP (K + 1) = Cx(k + λ). (4.37)

Let Cx(k) = CP xP (K) then xP (K + 1) according to eq. (4.35) with the additional
disturbance z(K) is given by

xP (K + 1) = ΦP xP (K) + ΓP U(K) + MP z(K), (4.38)

and x(k + λ) is computed by recursive evaluation of eq. (4.36) using the combined
linear dynamics of RS and plant given in eq. (2.25):

x(k + λ) = eλAtsBx(k) + u0(k)eA(λ−1)ts

(k+1)ts∫

kts

eA((k+1)ts−τ)Bdτ

+ u0(k + 1)eA(λ−2)ts

(k+2)ts∫

(k+1)ts

eA((k+2)ts−τ)Bdτ + · · · +

+ u0(k + λ − 1)

(k+λ)ts∫

(k+λ−1)ts

eA((k+λ)ts−τ)Bdτ + η(A, E, z(K)). (4.39)

The term η(A, E, z(K)) in eq. (4.39) denotes the effect of the disturbances for which
z(k + j) = z(K) holds (z is constant over one large sample). Setting eλAts = (eAts)λ =
Φλ eq. (4.39) can be written as

x(k + λ) = Φλx(k) + Γ1u0(k) + Γ2u0(k + 1) + . . . + Γλu0(k + λ − 1)

+ M 1z(K) + M 2z(K) + . . . + Mλz(K)
︸ ︷︷ ︸

MΣz(K)

, (4.40)
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where Γi, M i, and MΣ are constant coefficients for the given plant. Therefore,

CP xP (K + 1) = Cx(k + λ) ⇔

CP (ΦP xP (K) + ΓP U(K)) + [CP MP − CHΣ]z(K)

= CΦλx(k) + C (Γ1u0(k) + . . . + Γλu0(k + λ − 1)) . (4.41)

Inserting eq. (2.17) in eq. (4.41) and observing that [CP MP − CHΣ] ≡ 0 yields the
final form of the nonlinear equality constraint

CP (ΦP xP (K) + ΓP U(K)) = CΦλx(k) + C(Γ1gu(s(k), v(k))

+ . . . + Γλgu(s(k + λ − 1), v(k + λ − 1))). (4.42)

4.4.6 MIO for cooling capacity control

Because of the redundancy of the RCs the MIO targets different goals. minimizing
the wear which results from excessive compressor switching S, or the electrical power
consumption P can be considered in the optimization.
The optimization problem of the MIO is formulated as follows:

J2 = (U(k) − u(k))T R3(U(k) − u(k)) + P T R4P + R6S (4.43)

s.t.

s ∈ {0, 1}

vmin ≤ v ≤ vmax

Eq. (2.19)

Eq. (4.42),

where R3, R4 and R6 are positive semi-definite weightings used for tuning.
The first term in eq. (4.43) guarantees that U(k), which is the finely sampled U(K),
is tracked. The time-variant inequality constraints ensure that the RCs always operate
in a feasible range.
The corresponding optimization problem is formally stated as

J⋆
2 = min

s,v
J2 (4.44)

s.t.

constraints of eq. (4.43),

and the optimal control sequence u0 over the whole horizon np is given by

u0(k) = gu(arg min
s,v

J2). (4.45)

The MIO is executed only once at the beginning of each large sample K of the global
MPC. Latency periods for compressor switching can also be considered; in this case a
unit commitment problem has to be solved, see e.g. [25].
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4.4.7 Stability and feasibility

Stability of the closed-loop system is discussed based on the stabilizing behavior of the
global MPC. Due to the constraint for the MIO derived in Section 4.4.5 the global MPC
shows asymptotic convergence to the set point in the large sampling interval K. The
behavior of the continuous-time trajectory x(t) between the large samples is shown to
be bounded, and the condition for existence of a limit cycle passing through the set
point is given.

Global MPC

The global MPC presented in Section 4.4.3 has been designed as a dual mode MPC (see
e.g. [75], pp. 142). For the case of an active input constraint U(K) = Umax = const.
the linear and stable plant will show stable behavior: If the setpoint ϑref

ICB is feasible for
some realizable U(K) = U ref , the plant’s trajectory will develop along an exponential
time series according to eq.(4.46)

xP (K + 1) = ΦxP (K) + ΓUmax, (4.46)

and eventually the trajectory will enter a neighborhood of the setpoint with uncon-
strained closed-loop dynamics. These dynamics are equal to a stable state-feedback
controller with feedback gain −GFB ([75], p.24). Thus, if the setpoint is feasible and
constraint (4.42) is always fulfilled, the region of attraction for the global MPC is un-
bounded.

Intersample Boundedness of x

The results of Section 4.4.7 guarantee that x(K) converges to the setpoint under some
conditions. However, it remains to be shown that x(t) is stable between large samples
K. The general description of x(t) between large samples K and K + 1, KTs ≤ t <
(K + 1)Ts, is given by

x(t) = Φλ(t)x(K) + Γ1(t)u0,1 + . . . + Γλ(t)u0,λ + M 1(t)z(K) + . . . + Mλ(t)z(K),
(4.47)

where Φ(t), Γi(t), and M i(t) can be obtained from eq. (4.39) by replacing the fixed
value of ts by the independent variable of t. As the control inputs u0,j of the MIO are
bounded x(t) will also be bounded for all K. A conservative estimate for such a bound
is given in A.

Existence and stability of a limit cycle

In steady state (i.e. when x(K) = xref , ∀K) the continuous-time trajectory of the
combined dynamics x(t) need not contract to the setpoint. Such an asymptotic behavior
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will only occur for u0,j = U(K). Under the assumption that the control sequence u0(k)
of the MIO is the result of a deterministic program, a cyclo-stationary sequence u∗

0(k +
j), j = 1, . . . , λ results for holding the set point yyP (K)=yset

, ∀K. As a consequence the
continuous-time state trajectory must be a limit cycle described by

x∗(t) = Φ(t)xref + Γ1(t)u∗

0,1 + Γ2(t)u∗

0,2 + . . . + Γλ(t)u∗

0,λ, (4.48)

with initial condition x(t0) = xref , t0 ≤ t < λts.
The main obstacle for proving the stability of such a limit cycle with period Ts is the
possibly discontinuous objective function of the MIO. It need not be differentiable in
the vicinity of xref , and as a consequence the switching pattern u0(k) may exhibit large
changes between consecutive samples even with constraint eq. (4.42) fulfilled.
However, if the objective function of the MIO is assumed to be differentiable in the
vicinity of xref , a stable limit cycle can be proven by the following reasoning: Let
S ǫ Rn−1 be a locally differentiable transversal section of x(t) through xref in the state-
space Rn and U ǫ Rn an open connected neighborhood of xset. Then

xq+1 = P(xq) (4.49)

defines a Poincaré map P for the fixed-point x = xref (hence P(xref) = xref). Note
that xq does not denote sampling in the time domain but occurrence of an intersection
of x(t) with S.
The computation of P is not always possible but the local Jacobian JP = ∂P

∂x
in xset

can be evaluated numerically. Choosing S to be an orthogonal plane o through xset:

S : o(x − xset) = [o1 o2 . . . on−1 0](x − xset) = 0 (4.50)

gives such a local linearization of P with the proper choice of the normal vector n.
In this case lim

q→∞
xq = lim

K→∞
x(K) = xref , and more importantly, spatial and temporal

sampling approximately coincide: xq ≈ x(K). Hence, xq has the same asymptotic
stability properties as x(K) and the limit cycle exists and is stable.

4.4.8 Feasibility

Hard equality constraints such as eq. (4.42) in MPC raise the question if the constrained
optimization problem is feasible. It is important to note that the equality constraint,
eq. (4.42), is a scalar equation, so only one degree of freedom is lost in the optimization
of the MIO. This poses minimal restrictions on feasibility as still at least λ − 1 degrees
of freedom remain. Even if in the critical case ts = Ts, λ = 1, and the value of u(k)
is fixed by u(k) ≡ U(K), the MIO typically has some degrees of freedom due to the
redundant RS. As long as u(k) ≡ U(K) can be provided by the RS the constrained
problem is feasible.
An additional complication is the state dependency of the constraints on u0(k). The
problem of feasibility can therefore be tackled by a constraint communication between
global MPC and MIO:
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1. The global MPC solves the problem, eq. (4.28), for some fixed but relaxed Umax.

2. In the MIO a sequence of u0,max(k) is computed for each K in the control horizon.
This must be done sequentially i.e. u0,max(k) is given by the initial state x(k) and
defines xmax(k + 1), u0,max(k + 1) is given by xmax(k + 1) etc. Thus, the right
hand side of eq. (4.41) is defined and ΦP xP,max(K) is also known. This allows eq.
(4.41) to be explicitly solved for Umax,MI(K).

3. This value is communicated back to the global MPC and a second optimization
with Umax(K) = Umax,MI(K) is done.

However, due to the state dependency of the u0,max(k) actually an iteration of the
sequence described above would be necessary, and convergence of such an iteration is
hard to prove. In the application to an RS all simulations have shown that a single
evaluation suffices.
For practical application one effective way to handle feasibility is the implementation of
the the equality constraint as a soft constraint. Since the global MPC is designed with
integral action, no steady-state error is to be expected anyway. Another way would be
to precompute the feasible operating envelope of the RS and store a multidimensional
look-up table for Umax in the global MPC. This is current state of the art but requires
RS-characteristics to be implicitly stored in the global MPC.

4.4.9 Simulation results

Results of closed-loop simulations are presented and discussed to demonstrate the func-
tionality and effectivity of the proposed control scheme. A comparison with conven-
tional PI-control, compensation of an unmeasured disturbance (solar irradiation), ro-
bustness with respect to RS-model errors and faulty disturbance predictions are pre-
sented. Additionally, a limit cycle in steady state operation is shown and discussed.

Simulation setup

The nonlinear static models gu and gP of the RS consists of high-dimensional look-
up tables, provided by the manufacturer. The linear dynamic model of the RS is
represented by simple and decoupled dynamics for u and P for demonstration purposes.
The respective transfer functions are:

GA,u =
1

1 + 30s
, GA,P =

1 + 5s

1 + 10s

Parameters for the simulation results are given in Table 4.2. In all figures u and P is
shown in kW, all temperatures are shown in degree Celsius and the time is given in sec.
The mixed-integer optimization problem is solved with Yalmip [40], and the Gurobi
optimizer [19].
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Parameter Value Parameter Value
Ts 8 min Np 30
ts 1 min Nc 10

AICB 163.5 m2 np 16
α 0.4 W/m2K nc 16

mcp 8.8e6 J/K R3 1

R1

[

1 0
0 107

]

R4 0.1

R2 10−5 R5 100

Table 4.2: Parameters for the simulations

Comparison with conventional control

The controller proposed in this Chapter for three RCs with six compressors (MIO6)
is compared to an MIO with three large compressors (MIO3) (one in each each RC),
a perfect MPC solution (MPC), where only the global MPC without the MIO is sim-
ulated, and an industry standard PI-controller method combined with a hysteresis
switching scheme (PI). The PI-controller was tuned such that no overshoot occurred in
the constrained case (KP = 15000, KI = 155), see Fig. 4.5. The hysteresis controller is
activated whenever the PI-control is smaller than umin(k). Either u = 0 or u = umin(k)
are activated in this case. The hysteresis is defined by ±0.0005 as switching values
for the control error; although these values achieve approximately the same switching
count as the proposed method.
In Fig. 4.10 the solution is plotted over 19200 sec. At 12200 sec a step in ϑamb occurs
(15◦C to 30◦C). For a fair comparison between the proposed method and the PI-
controller, the ϑamb step is not included in the predictions of the global MPC. The
first plot shows the ICB temperature. It can be seen that the MIO does not affect the
performance of the global MPC as the blue, black, and green lines coincide.
The second plot shows the cooling capacities u and the feasible range of stationary cool-
ing capacity u0, which is plotted in gray. The constraint for the method with three large
compressors is plotted as black dashed line. Note that the constraint directly affects
only u0, due to the dynamics of the RS u reaches the constraint only asymptotically.
The last plot in Fig. 4.10 shows the total electrical power consumed by the different
methods.
In Fig. 4.11 a detailed plot of Fig. 4.10 is shown. After the ambient step the limit
cycle vanishes for the MIO6. This is caused by a larger feasible range for u0 shown
in gray in the second plot. The necessary cooling capacity after the step is no longer
in the constrained region. However, the minimal u0 for the MIO3 with three large
compressors is always smaller (denoted with the dotted line in gray) and therefore this
method switches into another limit cycle.
The root-mean-squared-error (RMSE) between the reference temperature and the ac-
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(MPC-green), and PI-control plus hysteresis (PI-red).
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tual ICB temperatures is defined as (N being the number of simulation steps)

RMSE =

√
√
√
√

1

N

N∑

k

(

ϑICB(k) − ϑref
ICB(k)

)2

. (4.51)

In Table 4.3 the normalized RMSE for t ≥ 8000 sec is listed. It can be seen that
the RMSE value of MPC is minimal, and MIO6 outperforms MIO3 and PI-control.
The PI-controller shows the least effective disturbance compensation as can be seen in

MIO6 MIO3 MPC PI
RMSE 1 2.44 0.51 9.11

E =
∫

P dt 1 1.19 1.00 0.99
S 29 84 - 16

sim. time 66.6 16.6 3.87 1.68

Table 4.3: Normalized RMSE and energy consumption E (normalized with
MIO6) and switching count S for t ≥ 8000 sec, and simulation
time for the different control methods.

Fig. 4.11 after the ambient step. This performance could be improved at the cost of
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higher power consumption, but in principle some deviation will remain. This puts the
minimal switching count and shortest simulation time of the PI-control into perspective
as disturbance compensation is the main task of ICB temperature control.
In this specific simulation the MIO3 needs roughly 20% more energy than the other
methods. This is mainly due to the poor COP when a large compressor is operated
in its minimum power range. Note that the MIO6 utilizes the redundancy of the RCs
and solves the control allocation problem by minimizing eq. (4.43), where electrical
power is included. In contrast, the PI controller uses a fixed compressor combination
stored in a static look-up table, which provides U(k) independent of the electrical power
consumption.
The 66.6 sec simulation time of the proposed method for 40 large samples are equivalent
to 1.7 sec average computation time for MIO6. This corresponds to 0.3% of the large
sample time which can be considered acceptable for real-time implementation.

Solar irradiation

Typically, the ICB is exposed to the sun. Without an irradiation prediction and a
irradiation sensor the global MPC has to compensate the heating of the ICB. In Fig. 4.12
measured solar irradiation on a sunny day is shown in the first plot. In the second plot
the actual cooling capacity u is shown. The third plot shows that the proposed concept
can compensate Q̇sol and the temperature remains in an acceptable region around the
reference temperature value, which is typically ϑref

ICB ± 0.5°C. In this simulation the
compressor switching count is 740 times in 12h.
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Figure 4.12: Impact of solar irradiation. First plot: A measured irradiation
profile for a sunny day. Second plot: The feasible region of u0 is
shown in gray. Third plot: ϑref

ICB is plotted in red.
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RS model errors

Time constant TA,u and the gain KA,u of the RS model are varied to demonstrate
the robustness of the controller. A simulation over 19200 sec with two steps in ϑamb

(15°ր 30° ց 0°) at each third of the simulation time is performed. The output of the
perfect model (model 1) is denoted by ϑ⋆

ICB(K) and the output error of all other models
is defined as

emodel(K) = ϑICB,model(K) − ϑ⋆
ICB(K). (4.52)

Table 4.4 shows the root mean squared output error (RMSE) and the switching count
S of the different models. It can be seen that poor modeling of the RS can lead to a
significant increase in switching but is compensated effectively by the proposed concept
(RMSE always smaller than 0.1).

Model
∆TA,u ∆KA,u RMSE S

in % in %
1 0 0 0 62
2 0 30 0.05 116
3 0 -30 0.08 164
4 30 0 0.01 141
5 -30 0 0.01 54
6 30 30 0.05 97
7 -30 -30 0.08 148
8 30 -30 0.09 192
9 -30 30 0.06 91

Table 4.4: RMSE and S for different errors in the RS model.

Robustness with respect to faulty predictions

To demonstrate the robustness of the control concept with respect to faulty predictions
a simulation based on an incorrect prediction of ϑ

pred
amb is made. A random disturbance

dn, with increasing variance is added to ϑ
pred
amb every K-th sample. In Table 4.5 the

different variances and the RMSE between the constant reference temperature and the
actual ICB temperatures, eq. (4.51), are listed:

σ2 0 4 25 100
RMSE 0.0074 0.0128 0.0179 0.0364

Table 4.5: RMSE values for different variances.

It can be seen that increasing variances affect the RMSE. Nevertheless, even for large
prediction errors the temperature remains in an acceptable region around the reference
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temperature value. Typically an acceptable value for the region of tolerance is defined
by ϑref

ICB ± 0.5°C.
Fig. 4.13 demonstrates the robustness of the control concept. The simulation is plotted
over 8 h. After 9600 sec a disturbance dn with σ2 = 25 is added to ϑ

pred
amb . After 19200 sec

the variance of dn is increased to σ2 = 100, shown in the first plot. In the second plot
can be seen that dn influences the switching pattern of the MIO, nevertheless the fault is
effectively compensated. The third plot shows the ϑICB which never exceeds the region
of tolerance.
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Figure 4.13: Robustness against faulty prediction of ϑ
pred
amb . The third plot

shows that ϑICB stays in a region of −15◦C ± 0.1◦C.

4.4.10 Limit Cycle

As already visible during steady state in the figures above, a limit cycle occurs in all
simulations. In Fig. 4.14 the ICB is cooled from initial condition ϑICB = −14°C to the
set-point ϑref

ICB = −15°C. The upper plot shows temperature ϑICB(t) in blue and ϑICB(K)
in black. The lower plot shows u0(k) in red and the actual cooling capacity u(t) in blue.
In the lower plot it can be seen that from t = 5000 sec on a regular switching pattern
is visible. Only amplitudes of u0(k) and accordingly u(t) are consequently slightly
adjusted.
In Fig. 4.15 part of the state trajectory xcl(t) is plotted in blue. The complete state
vector of the closed loop is plotted: xcl = [u, ϑICB, ∆ϑICB ]T . Note that the internal
state of the global MPC ∆ϑICB is only sampled at K and is assumed to be constant
between samples. Black circles denote xcl(K) and the limit cycle x∗

cl(t), eq. (4.48), is
plotted in red. The green box represents the estimate for a bound on the limit cycle
according to Sections 4.4.7 and A. A zoom into the limit cycle is plotted in Fig. 4.16.
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Figure 4.14: Transient simulation to steady-state limit cycle.
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Figure 4.16: Continuous trajectory xcl(t) (blue), sampled values xcl(K) (black
circles), Poincaré samples xq (pink crosses), and set-point xref (red
circle). The Poincaré section S is a vertical plane plotted in pink.

The set-point is plotted as a red circle, and the asymptotic behavior of the overall
system dynamics near the limit cycle is clearly visible. In Fig. 4.16 a Poincaré section
S is plotted in pink: It is a vertical plane through xref, and the Poincaré samples xq

(intersection of xcl(t) with S) are plotted as pink crosses. It can be seen that in the
vicinity of the set-point the Poincaré samples coincide with the xcl(K), proving the
stability of the limit cycle. As can bee seen in Fig. 4.17 the Poincaré section S has been
selected orthogonal to the (u/ϑICB)-plane and tangential to the evolution of the xcl(K)
(black circles). For t → ∞ the sequence xcl(K) actually comes to lie on the sequence
xq.

4.5 Comparison of the concepts

In Table 4.6 the differences between the two proposed concepts are shown:
The first concept uses a MI-MPC with moving horizon for the optimization of the
control variable. After each small sampling time the solution is calculated again which
has higher computational costs then the MIO in concept 2 where the optimization is
made once during a large sample. The RS of the concept 1 only has the nonlinear
static part of the RS, nevertheless it can easily extended with the dynamic part. In
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Figure 4.17: Continuous trajectory xcl(t) (blue), sampled values xcl(K) (black
circles), Poincaré samples xq (pink crosses), and set-point xref (red
circle). The Poincaré section S is a projecting plane visible as pink
line.

Concept 1: Concept 2:
Cooling capacity constraint Predicted temperature constraint

CA mixed-integer MPC mixed-integer optimizer
RS model static nonlinear Hammerstein
MPC output cooling capacity U(K) predicted temperature ϑICB(K + 1)
MPC constraints fixed variable
Q̇sol not considered considered

Table 4.6: Differences of the two concepts: Cooling capacity constraint and
predicted temperature constraint.

concept 2 the nonlinear static and dynamic part is used in the form of a Hammerstein
model. Another difference of the concepts is the output of the MPC. In the first concept
the necessary cooling capacity is the output of the MPC. The MI-MPC has to ensure
that the average cooling capacity is fulfilled. This control can be easily implemented,
nevertheless a deviation of the ICB temperature is possible. A wrong model would also
lead to a deviation of the ICB temperature. To avoid these problems, in the second
concept the output of the MPC is the predicted temperature at the end of a large
sample. The constraint forces the result of the MIO to obtain exactly the same ICB
temperature at the end of the large sample as predicted by the global MPC. For a
straight forward implementation the MPC of the first concept has fixed constraints
for the maximal possible cooling capacity. But the maximal possible cooling capacity
depends on the environmental conditions, therefore in concept 2 there is a feedback loop
between the MIO and the MPC. The MPC calculates the optimal cooling capacity. If
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the constraint is violated, the MI-MPC returns the maximal possible cooling capacity
and the MPC calculates the solution again under consideration of the actual constraint.
For simplicity the first concept does not include a solar irradiation. Concept 2 has the
solar irradiation as unknown disturbance, it can be seen in the simulation results of
Section 4.4.9 that the MPC can handle the disturbance without offset.

4.6 Summary

The presented hierarchical MPC control scheme enables the global linear MPC to utilize
a long prediction horizon at low computational costs, while the CA provides a predictive
multi-objective optimization of the required cooling capacity with both continuous and
switched variables. One advantage of the CA compared to Section 3 is the predictive
realization of the CA. The main drawback is the higher computational cost. However,
due to the hierarchical scheme the computational load of the remaining CA is reduced
significantly in comparison to the overall problem. Two different control concepts,
constraint formulation, and the communication between the two layers with different
sampling times have been presented. Stability and feasibility is discussed, and for the
second concept the existence of a limit cycle for steady-state operation has been shown.



Chapter 5

Observer and estimation

In Chapter 4 an MPC for effective temperature control is introduced. However, the
strong disturbance of irradiation by the sun can be rarely measured. Furthermore, the
aging of the ICB’s insulation is a parameter of vital interest for logistic and economic
planning although it cannot be directly measured. An important complication is the
fact that both of these estimates have the same effect on the measured outputs, and
only the use of a proper aging model for α enables the separate reconstruction of the
solar irradiation and α, respectively.
Therefore, in this Chapter a unknown input observer (UIO) is used to design a fast
sampled disturbance compensation obtaining a fast response of the system. Two spe-
cific characteristics of the disturbance are utilized to estimate α: 1) During nighttime
solar irradiation has its minimum. 2) α declines at a very slow rate. The MPC, irradi-
ation estimation, and α estimation are implemented with different sampling rates. The
separation of the disturbances is obtained by first estimating the excess heat loss of the
ICB, and then with the knowledge of the aging model for α splitting up this heat loss
into an irradiation part and a part due to aging of the ICB’s insulation.

5.1 State of the art

Using an UIO to estimate non-measurable disturbances is well known in literature.
Classical state-observers like the Kalman-filter have been used for state-feedback con-
trol of a refrigeration system in [82]. In [46] the theory of the Luenberger basic observer
is introduced. In [95] a full-order state observer is employed for temperature control of
power electronics. The observer concept can also be combined with fault detection and
isolation (FDI) methods: A Kalman-filter based FDI concept is presented in [99] for a
supermarket refrigeration system; the observer is not only employed to estimate the full
state vector but also to estimate the unknown disturbance composed of solar irradiation
and declining insulation. A similar approach is presented in [100] where the unknown
disturbance is the non-measurable heat input due to ambient air. This enables effective
decoupling of the FDI residuals from the non-measurable disturbance. In [12] an UIO
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and fault detection filter is combined to ensure that the residual vector has robust and
directional properties. A FDI technique for complex power systems is proposed in [1],
where where the load fluctuation and output power variation of renewable energy re-
sources are modeled as unknown inputs of the power system. In [106] a fault diagnosis
method of an intelligent hydraulic pump system based on a nonlinear unknown input
observer is proposed. Different from factors of a full-order Luenberger-type unknown
input observer, nonlinear factors are considered in this method. A nonlinear jet en-
gine system is used to illustrate the robust fault isolation approach. In [103] unknown
disturbance and model mismatch of a boiler-turbine unit are estimated using an un-
known input observer. However, all the aforementioned references do not consider the
simultaneous estimation of a model parameter. A hybrid fixed-time observer for state
estimation of linear systems is presented in [76], where linear system with unknown in-
puts and linear system with unknown inputs and parametric uncertainty are analyzed.
A unknown input observer and a time-varying parameter estimation is used in [57] to
on-line estimate the unknown torque of a vehicle engine.
Parameter estimation in refrigeration or HVAC systems has been presented in [96, 18,
77, 71]. In [18] and [77] only off-line parameter estimation is performed for a refrig-
eration system and a cold water chiller, respectively. An artificial neural network is
utilized in [18] and in [77] different linear models are compared in their validation per-
formance. On-line parameter estimation has been applied to HVAC systems by [96]
where recursive least squares with a variable forgetting factor was used to estimate
model parameters. In [2] the thermal load of an HVAC system which is treated as
a constant unknown disturbance is observed. A similar approach for a building with
multiple zones is presented in [62]. An unscented Kalman-filter was used to estimate
the thermal parameters of a building model in [71]. In [65] a method for estimating
food temperature in supermarket display cases on measurements of air temperature and
knowledge of the EXV opening degree. Parameter estimation of heat transfer coeffi-
cients for a vehicle has been done in [24]. There an estimation of the heat capacity and
heat transfer coefficient for a rail vehicle is provided. The estimation is however based
on experimental data from a climatic wind tunnel, which requires special experiments
with considerable effort. A complex estimation scheme for a heat transfer coefficient
inside an ICE is given in [21]. The method is based on a nonlinear thermodynamical
model together with Bayesian estimation schemes and specifically tailored to an ICE.
The aging of insulation materials has been mainly investigated for buildings [29, 3] and
pipes [13, 101]. These references contain experimental data and partly also analytical
models. In [23] a Markov chain based velocity predictor is used to provide a sense of
the future disturbances over a stochastic model predictive controller of AC system. The
sensitivity of electrified AC plant to solar radiation, ambient temperature, and relative
air flow speed is quantitatively analyzed from an energy efficiency perspective.
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5.2 Observer and estimation concept

Two different concepts are presented. The first concept has a parallel MPC and observer
in feedback loops. Therefore, the estimated disturbance is an additional input to the
ICB. The fast sampled observer compensates the disturbance before it affects the MPC.
A linear aging model for α is assumed, see [43].
In the second concept the observer estimates the disturbance and a zero order prediction
calculates the predicted disturbance. The MPC uses the disturbance prediction for the
optimization. The aging model for α is assumed to be a parametric and nonlinear
scheme. The concept is extended with predictive maintenance, which is an important
feature for managing fleet logistics. Additional, all measured values are affected by
measurement noise, see [44].
In both concepts the cooling capacity U which is necessary to hold the desired reference
temperature ϑref

ICB is calculated by the MPC. It is assumed that the desired cooling
capacity can always be realized by the RS, therefore U = u. Note that a control design
for u with the compressor state and electronic expansion valve of the RS as additional
control variables is much more involved, see Section 3 and 4.

5.3 Concept 1: Disturbance compensation with

Luenberger observer

5.3.1 Overall control structure

In Fig. 5.1 the conceptual architecture of the control structure is shown. The ambient
temperature ϑamb is measured as well as predicted and therefore known for the finite
horizon of the MPC. The additional disturbance Q̇z is not measurable and consequently
not available as a predictive disturbance for the MPC. However, with the disturbance
observer the current Q̇z can be estimated and is therefore available for fast sampled
disturbance compensation.
The dynamics of the ICB are comparatively slow. Depending on mcp, typically hours
pass by to cool down the ICB by 1°C. In contrast Q̇sol is highly variably during day
time. Therefore, the MPC and the disturbance observer utilize two different sampling
times.
The MPC optimizes the temperature control of the linear ICB system at a slow sampling
rate (samples denoted by K) and provides the required cooling capacity UMPC for the
RS. The detailed presentation of the MPC can be found in Section 4.3.3, eqns. (4.1 -
4.32).
The disturbance observer utilizes the fast sampling rate (samples denoted by k) and
estimates the state ϑICB as well as the disturbance heat flow Q̇z, where Q̇sol is included;

this estimate ˆ̇Qz is added to the control variable u = UMPC − ˆ̇Qz which is the input to
the ICB.
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Last, a dedicated estimator identifies the deterioration of α1. This update is done at
widely spaced time intervals (e.g. once in a week) so that the value of α̂1 is assumed to
be constant during normal operation. This is justified as the deterioration of α proceeds
slowly over time. Thus, α̂1 is developing a step-wise fashion, and for constant α̂1 no
adaptive control methods need to be applied.

5.3.2 Disturbance Observer

The main task of the disturbance observer is to estimate the additional heat flow Q̇z

into the ICB. A discrimination between the contribution of solar irradiation Q̇sol and a
deterioration of the heat transfer coefficient α1 is not possible.
A classical discrete-time Luenberger observer is used [46], with the following structure

ϑ̂ICB(k + 1) = AP ϑ̂ICB(k) + BP u(k) + Emϑamb(k) + GHCP (ϑICB(k) − ϑ̂ICB(k)),

where ϑ̂ICB(k + 1) and GH the observer gain matrix.

The Luenberger observer, eq. (5.1), is augmented with ˆ̇Qz to

ϑ̂ICB(k +1) = AP ϑ̂ICB(k)+BP u(k)+Emϑamb(k)+GHCP (ϑICB(k)− ϑ̂ICB(k))+Eo
ˆ̇Qz(k),
(5.1)

and
ˆ̇Qz(k + 1) = ˆ̇Qz(k) + GSCP (ϑICB(k) − ϑ̂ICB(k)), (5.2)

where GS is the gain for the estimated disturbance, Fig. 5.2.
The estimated disturbance is used as additional control input, Fig. 5.1. Combined with
the feed-back control the performance over simple feed-back control is significantly
improved whenever there is a major disturbance that can be observed before the slower
MPC can react.
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Figure 5.2: Block diagram of the disturbance observer.

5.3.3 Estimation of α

Utilizing the assumption that α is slowly increasing over time and that the heat input
of Q̇sol varies between known maximum and minimum values it is possible to estimate
α1 by a dedicated scheme. Because of the slow increase the estimation is done only
once in a week or on a monthly basis.
In order to demonstrate the principle of α-estimation in the remainder the linear model
of the AF-50 type [29] is assumed:

α(t) = α0 + α1t; α0, α1 ∈ R (5.3)

with α1 being the constant slope of α(t) over time.
The linear time-discrete model of aging is given by

α(k) = α0 + α̂1kto, (5.4)

where k is the sampling index for the time and to is the associated sampling time of

the disturbance observer. The estimated disturbance ˆ̇Qz can be split up into

ˆ̇Qz = ˆ̇Qsol + α̂1ktoAICB(ϑamb − ϑICB). (5.5)

The second term of eq. (5.5) affects ˆ̇Qz in such a way that ˆ̇Qz exhibits a linear trend
due to the increase of α. Thus, the terms of eq. (2.21) can be superimposed as shown
in Fig. 5.3.

As the minima of solar irradiation occur during nighttime, a local minimum of ˆ̇Qz for
every 24 hours can be found. These minima constitute a linear model which corresponds
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to the term α̂1AICB(ϑamb − ϑICB) in eq. (5.5), see Fig. 5.3. For an accurate estimation
the whole measured data of the ICB operation are used.
To find the local minimum per day, in the whole measured data every 24h a local
minimum is defined. Data for day r are defined as

ˆ̇Qr
z =

[
ˆ̇Q(r−1)c+1

z , ˆ̇Q(r−1)c+2
z , . . . ˆ̇Qrc

z

]T
, (5.6)

where c = 14440 is the number of measurements for one day (to = 1min). The local
minimum of day r is given by

ˆ̇Qr
z,min = min( ˆ̇Qr

z), (5.7)

and the corresponding index is

kr
min = arg min( ˆ̇Qr

z). (5.8)

The vector of all local minima over n days is defined as

ˆ̇Qz,min =
[

ˆ̇Q1
z,min, ˆ̇Q2

z,min, . . . , ˆ̇Qn
z,min

]

, (5.9)

with the corresponding vector for the index

kmin =
[

k1
min, k2

min, . . . , kn
min

]

. (5.10)

For every minimum the following equation with the associated index k results

ˆ̇Qz,min(k)
!

= α̂1ktoAICB(ϑamb(k) − ϑICB(k)), (5.11)

which is written in vector notation for the whole measured data
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α̂1. (5.12)

The linear increase of α1 is estimated by least squares (LS)

α̂1 = (XT X)−1XT ˆ̇Qz,min, (5.13)

where (XT X)−1 is proportional to the parameter-error covariance.
Note that if α0 is unknown it can also be estimated with a slight adaptation. Instead
of eq. (5.13) the recursive least squares algorithm may be used.

5.3.4 Robust estimation

The prediction interval (pi) can be used to identify outliers in ˆ̇Qz,min so the estimation

of α̂1 is not biased. Also already included data ˆ̇Qr
z,min can be tested a posteriori with

the same method.
The prediction interval of the model output ˆ̇Q0

z,min of a regression model at index k0 is
given with a confidence level of 1 − β as

pi( ˆ̇Q0
z,min, n) = ˆ̇Q0

z,min ± tβ/2,ν σ̂e

√

kT
0 (XT X)−1k0, (5.14)

where ν = ns − p with p the number of parameters in the regression model and the
estimated residual σ̂e

σ̂e =
( ˆ̇Qz,min)T ˆ̇Qz,min − α̂1X

T ˆ̇Qz,min

ns − p
=

SSE

ns − p
, (5.15)

where SSE denotes the sum squared error.
Note that constraints αmin ≤ α̂1 ≤ αmax for α̂1 can also improve the robust estimation;
in that case Lagrange multipliers would be needed in the LS optimization.

5.3.5 Stability of the overall control system

Stability is first shown for the overall system with the single sampling frequency of the
MPC (denoted by K). The augmented state equation of the ICB is given by eq. (4.1).
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Setting ϑamb = 0 and adding the additional control input from the disturbance observer
ˆ̇Qz the following state equation results:

xMPC(K + 1) = AaxMPC(K) + Ba∆U(K) + Ea
ˆ̇Qz(K). (5.16)

In the unconstrained case the control input of the MPC ∆UK = U(K) − U(K − 1) can
be written as

∆U(K) = KMPCx(K), (5.17)

where the constant feedback matrix KMPC is defined by the controller matrices, [94]:

KMPC = [1 0](F T
u F u + R2)

−1F T
u F x. (5.18)

Reformulating the observer dynamics introduced in Section 5.3.2 with the estimation
error x̃P (K) = xP (K) − x̂P (K) yields

x̃P (K + 1) = (AP − HCP )x̃P (K), (5.19)

and the dynamics of the unknown disturbance are

ˆ̇Qz(K + 1) = ˆ̇Qz(K) + GSCP x̃P (K). (5.20)

Thus, using state vector xcl = [xMPC x̃P
ˆ̇Qz]T the closed-loop state equation of the

overall system is given by

xcl(K + 1) =






(Aa + BaKMPC) 0 Ea

0 (AP − GHCP ) 0
0 GSCP 1




xcl(K). (5.21)

Matrices KMPC, H , and S can be chosen such that the closed-loop eigenvalues yield a
stable system with desired dynamics. Eq. (5.21) is just the basis for a stability analysis,
a design procedure for guaranteed stability would require further work.
The actually higher sampling frequency of the disturbance observer will not pose a
problem if 1) the MPC output is kept constant until the next K, and 2) the estimated
ˆ̇Qz is correctly down-sampled at time instances K. Then the above given derivation
will hold as the disturbance observer must be designed stable anyways.
Note that α is kept constant for most of the time and does not pose a stability problem.
Only during the small step-wise changes of α stability could be an issue; however,
methods for piece-wise affine systems exist, which can be used for stability analysis,
[37].
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5.3.6 Simulation results

Results of closed-loop simulations are used to demonstrate the concept. The method
and the results have been published in [43].
Note that typically durations for a food transport system are less than a week, never-
theless to see the effect of aging the simulation is made over a longer time span. The
model parameters for the simulation results are given in the Table 5.1.

Parameter Value Parameter Value
N 131040 min umax 9 kW
tS 1 min AICB 163.5 m2

TS 8 min mcp 8.8e6 J/K

α0 0.4 W/m2K GS 10000
αNsim

0.5 W/m2K GH 2
ϑamb 30 ° C

Table 5.1: Model parameters for the simulation

It is assumed that α increases linear over time, from α0 to αNsim
, where N is the

simulation duration, which corresponds to three months. The solar irradiation data is
taken from real measured data, [59]. In Fig. 5.4 a comparison between the simulation
with disturbance estimation versus the simulation with standard MPC control is shown.
The simulation duration is 28 days. The first plot shows the cooling capacity (control
variable) in kW. The second plot shows the ICB temperature. Typically a variation of
±0.5° C is an acceptable range for the temperature control. It can be seen that the
MPC without disturbance estimation is not able to hold the desired set temperature in
the acceptable range. The same MPC with the disturbance observer can significantly
decrease the variation and remains well within the acceptable range. The third plot
shows the actual solar irradiation and the estimated solar irradiation together with the
impact of the increasing α.
The RMSE between the desired set temperature and the actual ICB temperatures is
defined as

RMSE =

√
√
√
√

1

N

N∑

k=1

(

ϑICB(k) − ϑref
ICB(k)

)2

. (5.22)

In Table 5.2 the normalized RMSE is listed. It can be seen that the RMSE is reduced
by approximately 90%.

without obs. with obs.
RMSE 1 0.097

Table 5.2: Normalized RMSE values with and without observer.
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Figure 5.4: Comparison between standard MPC and MPC with disturbance
observer.

In Fig 5.5 the solar irradiation and the observed disturbance is shown for 91 days. The
linear increase of α can be clearly seen in the estimated disturbance. Note that the

observer estimate ˆ̇Qz comprises both the effects of irradiation and increasing α.
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Figure 5.5: Solar irradiation Q̇sol and estimated disturbance ˆ̇Qz. The trend of
ˆ̇Qz is caused by the increase of α due to aging.

The estimated disturbance ˆ̇Qz over 12 days is plotted in Fig. 5.6. The local minima
identified by the method from Section 5.3.3 are denoted by a red cross. Also here the

linear trend of ˆ̇Qz can be seen. Note that in this case all minima come to lie within the
prediction interval and are therefore included in the estimation of α1.
In Fig. 5.7 the identified α̂1 value is shown together with the actual increase of α.
Because of the slow increase of α an update approximately every 14 days (2.104 min)
is accurate enough. At the update instances α is estimated quite accurately, however,
for a sufficiently performing ICB model in the MPC and observer the error in between
is completely acceptable.
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Figure 5.6: The estimated disturbance of the observer ˆ̇Qz with all local minima
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Figure 5.7: Comparison of the estimated (blue) and real (red) α.

Note that ˆ̇Qz will be estimated accurately in steady-state even for a biased α-estimate,

as the observer has integral behavior for estimating ˆ̇Qz.
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5.4 Concept 2: Full state observer with nonlinear

estimation

5.4.1 Overall control structure

The conceptual architecture can be divided into four main blocks, Fig. 5.8.
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Figure 5.8: Conceptual architecture of the control structure including an MPC,
full state observer, a zero order disturbance prediction and a non-
linear estimation of the aging parameter α̂1.

For the sake of simplicity in this Chapter the sampling frequency of the MPC is chosen
to be the same as the observer sampling frequency and therefore K = k. The observer

estimates the temperature of the ICB ϑ̂ICB and the unknown disturbance ˆ̇Qz. The inputs
for the observer are the necessary cooling capacity u of the MPC, the measured ambient
temperature ϑ̃amb and the measured temperature of the ICB ϑ̃ICB. Both measurements
are affected by measurement noise damb and dICB, respectively.
The nonlinear identification estimates the deviation of the heat transfer coefficient α̂1.

The inputs to the identification block are ϑ̃amb, ϑ̃ICB and ˆ̇Qz.

The zero order prediction block forecasts the future disturbance ˆ̇Qpred
z , which is an

input to the MPC. With ˆ̇Qpred
z , the predicted ambient temperature ϑpred

amb , the reference
temperature of the ICB ϑref

ICB and ϑ̃ICB the MPC calculates the optimal cooling capacity
u to hold the desired reference temperature of the ICB.
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5.4.2 Estimation of α

Nonlinear estimation

For the estimation of α a parametric model with a nonlinear optimization is used. The
main idea is to fit the nonlinear aging model to Q̇z, which enables the separation of Q̇α

and Q̇sol.
With eqns. (2.21) and (2.24) the estimated heat input Q̇α̂ can be written as

Q̇α̂(θα) = fα(θα, t)xα, (5.23)

where xα is the regressor vector

xα =
[

AICB(ϑ̃amb − ϑ̃ICB)
]

, (5.24)

with ϑ̃amb and ϑ̃ICB the vectors of all past values.
The optimization criterion for fα(θα, t) is defined as

Jα = γ
∑

k

‖Q̇z − Q̇α̂‖ + (1 − γ)(Q̇z − Q̇α̂)ǫ2, (5.25)

where γ is the weighting factor (0 ≤ γ ≤ 1) and ǫ2

ǫ2 =







1 Q̇z − Q̇α̂ < 0

0 else.
(5.26)

The corresponding optimization problem is formally stated as

J⋆
α = min

θα

Jα, (5.27)

and the optimal value of θα is given by

θ⋆
α = arg min

θα

J⋆
α. (5.28)

With the result of the optimization, eq. (5.28), the estimation of α̂1 is made,

α̂1 = fα(θ⋆
α, t). (5.29)

Note that eq. (5.28) defines an infimum to Q̇z if γ in eq. (5.25) is properly selected.
This infimum is assumed to be constituted by Q̇α̂. For γ = 1 the resulting Q̇α̂ will be
just some average of Q̇z, see Fig. 5.9.
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Figure 5.9: Total disturbance Q̇z and separation of Q̇sol and Q̇α̂ with two dif-
ferent weighting factor values of γ in the optimization criterion Jα.

Detection of changes

Accidental damage to the interior or exterior cover sheet of the ICB is quite common
in normal operation. Punctures and fissures allow moisture to enter and diffuse within
the isolation material at a much higher rate. This causes a significant acceleration of
the deterioration of the α-value, see Fig. 5.10. In terms of the aging model, eq. (2.24),
this means a sudden change in the parameter values θα. It is assumed, that the aging
model is also valid in this case, however the independent variable τ is now constituted
by τ = t − tch and α(t) = αch + α(τ) for t >= tch. This corresponds to a shift of the
coordinate origin to (tch, αch).
In order to detect such a change an additional local aging model can be fitted to data
from a moving window. This moving window ends at the current sample and starts at
thist in the past. The model fit in terms of the mean square error (MSE) is computed
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Figure 5.10: Deterioration of α1 and prediction of reaching the critical value at
tend or rather t̄end. The current time is denoted with tnow and the
corresponding changing time is denoted with tch, which is then
the new start point of the new global model.
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for both the global (Jglob) and the local model (Jloc):

Jglob =
1

thist

thist∑

i=1

( ˆ̇Qz − α̂1,globAICB(ϑ̃amb − ϑ̃ICB))2, (5.30)

Jloc =
1

thist

thist∑

i=1

( ˆ̇Qz − α̂1,locAICB(ϑ̃amb − ϑ̃ICB))2. (5.31)

Note that α̂1,glob and α̂1,loc is computed according to eq. (5.29). A sudden parameter
change is detected if Jloc < Jglob, and the first sample of the respective moving window is
assumed to be the associated sampling instance. Additionally, a more accurate estimate
of this sampling instance can be obtained by performing the above described comparison
on a finer sampling within the detected interval. The local model is now considered
being the new global model, and the procedure continues. Note that this extension
guarantees updated predictions for end-of-life, see Fig. 5.10 (new expected value t̄end

replacing former value tend).
A similar result could be obtained by an exponential weight decay on past data, however,
sudden changes would just lead to an asymptotic fit of the new model, and the time of
the sudden change would remain unclear.

Predictive maintenance

The aging model presented in Section 5.4.2 enables an effective application of predic-
tive maintenance. If some αcrit is defined for service, re-certification or end-of-life, a
prediction of the model can be used to estimate the respective time tend, see Fig. 5.10.
Note that the detection of changes explained in Section 5.4.2 is an important feature,
as it can timely predict a significant reduction of service life (reduction from tend to
t̄end in Fig. 5.10). This is an important feature for managing fleet logistics by reducing
costs and maximizing availability.
The prediction of the aging model is uncertain due to parameter estimation based
on noisy measurement data. Because of the generally nonlinear model structure and
the nonlinear parameter optimization no analytic estimate of the parameter and output
covariance is possible. Nevertheless, based on fleet data an estimate of a non-parametric
probability density can be obtained for both the output uncertainty and the uncertainty
of the critical point in time tend. Depending on the aging model and the available data
this uncertainty can become large especially for the critical point in time tend.

5.4.3 Plant model

As the plant model, eq. (2.20), is linear for a constant α the state, input, and dis-
turbances, respectively, are defined as absolute values: x(k) = ϑICB(k) and z =
[

zm(k), zo(k)
]

where zm(k) = ϑ̃amb(k) describes the measured disturbances and zo(k)
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describes unknown disturbances. The corresponding discrete state-space description
from eq. (2.23) is given by:

xP (k + 1) = AP xP (k) + BP u(k) + Emzm(k) + Eozo(k)

yP (k) = CP xP (k). (5.32)

5.4.4 Observer

Current observer structure

For ensure offset-free control an MPC is augmented with a disturbance model which is
used to estimate and predict the mismatch between measured and predicted outputs,
[47],

x̂P (k + 1) = AP x̂P (k) + BP u(k) + Emzm(k) + Eoẑo(k) (5.33)

ẑo(k + 1) = ẑo(k)

ŷP (k) = CP x̂P (k) + Cz ẑo(k),

where Cz is the disturbance input vector (which is zero in the specific application)
and ẑo(k) is the observed disturbance. In order to instantaneously react to a step-wise
change in zo(k) an observer formulation is used that provides a current estimator based
on the most recent measurements of yP (k), [68]

x̂P (k + 1) = AP x̄P (k) + L1(yP (k) − CP x̄P (k)), (5.34)

ẑo(k + 1) = z̄o(k) + L2(yP (k) − CP x̄P (k)), (5.35)

x̄(k + 1) = AP x̄P (k) + BP u(k) + Emzm(k) + Eoẑo(k) + AP L1(yP (k) −CP x̄P (k)), (5.36)

z̄o(k + 1) = z̄o(k) + AP L2(yP (k) − CP x̄P (k)). (5.37)

Parametrization

For the optimal pole selection of L =
[

L1 L2

]

an optimization of the RMSE of

x̂p = ϑ̂ICB is made:

JL =

√
√
√
√

1

N

N∑

k=1

(ϑref
ICB(k) − ϑ̂ICB(k))2.

The corresponding optimization problem is formally stated as

J⋆
L = min

θL

JL, (5.38)

where θL =
[

L1, L2

]T
in eqns. (5.34 - 5.37), and the optimal value of θL is given by

θ⋆
L = arg min

θL

J⋆
L. (5.39)
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A simulation with three representative solar irradiations over summer days is used for
the optimization. The simulation includes a sunny day, a sunny day with clouds and a
very cloudy day, see Fig. 5.11.
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Figure 5.11: Solar irradiation which is used for tuning the observer poles.

Note that noise dICB on the measured temperature ϑ̃ICB implicitly enters the optimiza-
tion. Thus, the optimal estimate θ⋆

L represents a trade-off between speed and noise
rejection of the observer.

5.4.5 MPC formulation

Based on the state-space model, eq. (5.32), the future state variables are calculated
sequentially using the set of future control inputs u,

u(k) =
[

u(k), u(k + 1), . . . , u(k + Nc − 1)
]T

, (5.40)

The dimension of u(k) is (Np x 1), if Nc < Np the remaining Np − Nc values of u(k)
are filled with the value of u(k + Nc − 1).
The prediction of the ambient temperature is defined as

ẑp
m(k) =

[

ϑpred
amb(k|k), ϑpred

amb(k + 1|k), . . . , ϑpred
amb(k + Np − 1|k)

]T
. (5.41)

For the prediction ẑp
o(k) a constant prediction of Q̇pred

z is assumed, which yields to

ẑp
o(k) = Q̇pred

z =
[

ẑo(k − 1), ẑo(k − 1), . . . , ẑo(k − 1)
]T

(1xNp)
. (5.42)

The reference trajectory Y ref(k) is defined in eq. (4.13).
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The optimization criterion for an offset-free MPC is chosen as, [47]

min
u(k)

||x̂P (Np) − xss||
2
PR

+
k+Np−1
∑

i=k

||x̂P (i) − xss||
2
R1

+ ||u(i) − uss||
2
R2

(5.43)

s.t.

x̂P (k + 1) = AP x̂P (k) + BP u(k) + Emẑp
m(k) + Eoẑ

p
o (k), k = 0, ..., Np

ẑo(k + 1) = ẑo(k), k = 0, ..., Np

0 ≤ u(k) ≤ umax, k = 0, ..., Np

where umax is the maximal available cooling capacity of the RS, R1, R2 are positive
semi-definite weighting factors, which are used for tuning, PR satisfies the discrete-time
Riccati equation

PR = AT
P PRAP − (AT

P PRBP )(BT
P PRBP + R2)−1(BT

P PRAP ) + R1, (5.44)

and with xss and uss given by, [47]
[

AP − I BP

CP 0

] [

xss

uss

]

=

[

−Eoẑo(k)
Y ref(k) − Cz ẑo(k)

]

. (5.45)

Note that a solar irradiation model for predicting the daily irradiation, eq. (5.42),
could also be used, e.g. the ASHRAE model [22]. However, with the data which is
used in this paper no improvement could be achieved with a model of higher order,
therefore the constant prediction is used, which is less complex and faster. If reliable
irradiation predictions from a weather service are available an improvement over the
proposed simple model can be expected. Also intelligent operation strategies, based
on stochastic MPC algorithm augmented with a probabilistic time series autoregressive
model that is used to quantify solar irradiance uncertainty using sky-cover forecasts can
be used, see [39].

5.4.6 Stability of the overall control system

The main structure of the control system according to Fig. 5.8 consists of a linear MPC
and a linear state observer. In the case of unconstrained MPC closed-loop stability is
known to exist if both characteristic polynomials of the current observer

Pobs(z, L) = det[zI − (AP − LCP AP )], (5.46)

and MPC
PMPC(z, GFB) = det[zI − (AP − BP GFB)], (5.47)

with the constant feedback matrix GFB, which is defined by the controller matrices, [94],
respectively, have eigenvalues inside the unit circle. Furthermore, due to the separation
principle dynamics of the observer and the MPC can be chosen independently, [68].
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In the case of constrained MPC stability analysis is more involved and can be based on
the concept of the terminal set, [33].

Note that the zero order prediction of the disturbance ˆ̇Qz does not contain any dynamic
behavior and therefore does not affect stability characteristics.
However, the nonlinear identification of α̂1 renders the implicit model of the MPC
time-variant. This results in an adaptive control scheme. Nevertheless, the estimate
α̂1 is kept constant for a considerable duration (e.g. 14 days) and is then set to the
current estimated value. Because of this step-wise change in the model parameter α̂1

the structure of the time-varying MPC can be interpreted as a piecewise affine system,
[55]. For such systems stability can be proven by finding a suitable common quadratic
Lyapunov function. Such a function can be found by solving an appropriate set of linear
matrix inequalities. For the system at hand the change of α̂1 within 14 days is typically
small, and all the above mentioned criteria will hold.

5.4.7 Simulation results

Results of closed-loop simulations are used to demonstrate the concept. The method
and the simulation results are also published in [44].
Model parameters for the simulation results are given in Table 5.3.

Parameter Value Parameter Value
Ts 1 min AICB 163.5 m2

α0 0.4 W/m2K mcp 8.8e+06 J/K

np 20 samples γ 0.2
nc 20 samples

Table 5.3: Model parameters

The value of Np has been increased from a small value until the further performance
increase was insignificant; for the value of Np = 20 a good compromise between perfor-
mance and computational efficiency was obtained. Selection of Nc was done in a similar
way which led to Nc = Np. Smaller values of Nc led to undesirable high control action.

Comparison with conventional control

The MPC controller with observer (MPCo) is compared to an offset-free augmented
MPC without observer (MPCc), [94]. In order to achieve a compromise between noise
attenuation and performance for MPCo weighting factors R1 and R2 where optimized
such that ϑICB,o in the simulation shown in Fig. 5.12 had minimum variance. The
obtained values have been rounded. Note that the plant model is not normalized and
therefore large numerical values for R1 and R2 result. Furthermore, the choice of one
weighting factor is arbitrary, as criterion eq. (5.43) is only affected by the quotient of
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R1 and R2. To get a fair comparison, the MPCc was tuned such that the responses of
both controllers have the same dynamics after a step change in ϑamb. The controller
parameters are given in Table 5.4.

R1 R2 PR L

MPCo 1000000 1.00e−06 1.24e+07

[

−1.7606
−19.5613

]

MPCc 100 3.85e−11 1.24e+03 -

Table 5.4: Controller parameters

In the first comparison zero-mean random measurement noise dICB with increasing
variance is added to ϑICB. For sake of clarity α is kept constant in this simulation,
therefore α(t) = α = α0 and Q̇z = Q̇sol.
In Table 5.5 the different variances of dICB and the RMSE, eq. (5.22), between the
constant reference temperature and the actual ICB temperature are listed. Only values
where solar irradiation Qsol > 0 are used for calculating the RMSE value.

Variance 0.00 0.01 0.02 0.04 0.06 0.08 0.10 0.12
MPCo 0.033 0.033 0.033 0.034 0.034 0.032 0.041 0.038
MPCc 0.0002 0.010 0.019 0.037 0.058 0.075 0.092 0.116

Table 5.5: Comparison of the RMSE values for varying variance of dICB.

In Fig. 5.12 the input, state, output, and disturbance values of both controllers are
shown for a simulation with a variance of dICB with 0.01. Due to the additional observer

MPCo exhibits a delay in estimating ˆ̇Qz (Fig. 5.12, bottom plot). This delayed estimate
in turn leads to a small low-pass deviation in the controlled variable ϑICB,o (Fig. 5.12,
middle plot). For small values of dICB this deviation is larger than the result for MPCc.
Nevertheless, the observer acts as a low-pass filter and the smooth ϑICB,o is almost
invariant to the amplitude of dICB. The RMSE of MPCc, however, shows a proportional
increase with the variance of dICB, Fig. 5.13 and Table 5.5.
Note that aside from the performance comparison only MPCo is capable to deliver an

estimate for ˆ̇Qz and consequently for Q̇sol and α.

α-deterioration

In order to demonstrate the estimation principle of α1 a nonlinear parametric model
of the MF2-100 type, [3], is assumed. With eq. (2.24) the nonlinear parametric model
can be described as

α(t) = α0 + θα,1tθα,2 + θα,3. (5.48)

A simulation over three months with a sudden change in α is performed. Fig. 5.14 shows
the time behavior of the input, state, output, and disturbance values, respectively.
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In Fig. 5.15 the first plot shows the total disturbance and the heat input of α, where Q̇α̂

is estimated every 14 days. The measurement noise affects the estimation, nevertheless
an acceptable estimation of α1 can be ensured, see second plot. All estimated predictions
are plotted, showing that first estimates already coincide well with later more reliable
estimates. It can be seen, that the sudden change in α is detected by the method (solid
lines of Q̇α0

+ Q̇α̂). The dashed lines represent the predicted output of the global model
if no detection of change would be included in the estimation.
In Fig. 5.16 the values of Jglob, eq. (5.30), and Jloc, eq. (5.31) are shown. The
first plot shows the values evaluated every 14 days. The second plot shows the values
evaluated every day. This finer evaluation can be used to find the correct time instant
of the change in α. As both criteria Jglob and Jloc are proportional to the estimation
error covariance, a significant deviation between both values should be evaluated by an
F -test.
In Table 5.6 the values of Jglob, Jloc and the F -test with thist = 14 days are shown.

With a one-sided hypothesis test, where the F -value =
Jglob

Jloc
has to be smaller than the

critical F -value Fcrit = 1.03 for 14 days, it can be seen that a change of α occurs after
day 42 since later F -values are larger than Fcrit.
To find the correct position of the change in α a finer evaluation, thist = 1 day in the
relevant region is made. For a robust evaluation the F -value has to be more than two
times in succession larger than the critical F -value Fcrit = 1.11 for one day. Therefore
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days after t0 Jglob · 105 Jloc · 105 F -value
14 0.87 0.87 1.01
28 1.24 1.30 0.95
42 1.31 1.31 1.00
56 1.56 1.29 1.21⋆

70 2.92 1.90 1.54⋆

84 3.06 1.79 1.71⋆

Table 5.6: The MSE values of the global and local model and furthermore the
F -value evaluated every 14 days. Values denoted by •⋆ indicate
F > Fcrit.

the correct position can be found which in this simulation is at day 46 (sample 66240),
see Table 5.7. Note that at day 43 a singular exceedance of the critical F -value occurs.

days after t0 Jglob · 105 Jloc · 105 F -value
42 1.31 1.31 1.00
43 0.09 0.08 1.15⋆

44 1.53 1.51 1.01
45 0.68 0.65 1.06
46 1.00 0.87 1.15⋆

47 1.14 0.82 1.39⋆

48 1.39 0.90 1.55⋆

49 2.01 1.36 1.48⋆

Table 5.7: The MSE values of the global and local model and furthermore
the F -value evaluated every day. Values denoted by •⋆ indicate
F > Fcrit.

Assessment of prediction uncertainty

As presented in Section 5.4.2 the uncertainty in the α model also affects the prediction
of the end-of-life. Due to the nonlinear model and optimization the probability den-
sity function (PDF) of the estimated parameter tcrit cannot be computed analytically.
Moreover, the type of PDF is unknown and is in general not normal. In order to assess
this phenomenon a Monte Carlo simulation is performed to obtain a non-parametric
estimate of the resulting PDF.
The simulation assumes that three months after a abrupt change in the aging model
parameters the end-of-life (tcrit) is predicted. All data stay the same throughout the
simulations, only a new and uncorrelated sequence of zero-mean measurement noise
with a standard deviation of 0.04 is used in each run. The whole simulation consists of
1000 runs.
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In Fig. 5.17 the actual deterioration of α is shown in red and the envelope of all
estimated α̂1 of the Monte Carlo simulation is plotted in blue. The value αnow denotes
the actual value at tnow and the corresponding PDF of the α estimate is approximated
by the histogram plotted below.
The PDF for the prediction of tcrit for reaching the critical value αcrit not only exhibits a
larger variance but also has a different shape (see top of Fig. 5.17). Note that the PDF
for the α estimate at tcrit also has a larger variance and an altered shape compared to
the current estimate αnow. A confidence interval for all the estimates can be obtained
from respective 5% and 95% percentiles. In the simulation at hand the median (50%
percentile) is obviously a good estimator for the real values of tcrit and αcrit (plotted as
red bars in the histograms).
A Kolmogorov-Smirnov test for normality of the PDFs for tcrit and αcrit results in highly
significant p-values of 4.2 · 10−50 and 1.82 · 10−67, respectively, which clearly rejects the
normality hypothesis.

5.5 Comparison of both concepts

In Table 5.8 the differences between the two proposed concepts are shown:

Concept 1: Concept 2:
Disturbance compensation Full state observer
with Luenberger observer with nonlinear estimation

Observer standard Luenberger current observer

Observer output ˆ̇Qz
ˆ̇Qz, ϑ̂ICB

ˆ̇Qz prediction none zero order prediction
estimation model linear nonlinear
estimation 24h minima nonlinear curve fitting
MPC augmented offset-free
MPC additional state integrator disturbance
Sampling rate K 6= k K = k
noise none damb, dICB

Table 5.8: Differences of the two concepts: Disturbance compensation with Lu-
enberger observer and full state observer with nonlinear estimation.

In both concepts the observer operates with a fast sampling rate. In the first concept
a standard Luenberger observer is used to estimate the unknown disturbance. Because
of the structure of the observer a delay of one sample happens. To avoid this in the
second concept a current observer which uses the most recent measurements is used. In
the first concept the estimated disturbance is directly added to the necessary cooling
capacity for the RS. In the second concept the observer estimates the disturbance and
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the ICB temperature. With the estimated disturbance a prediction of the disturbance
over the whole MPC horizon is calculated. The predicted disturbance and predicted
ICB temperature are used in the MPC to optimize the necessary cooling capacity.
For a simple implementation the first concept uses a linear estimation model for the
heat transfer coefficient. The minima over 24 hours are used to fit the linear model.
Whereas in the second concept a parametric nonlinear model with a nonlinear curve
fitting is used. The first concept includes an augmented MPC with a slow sampling
rate. The augmented state is a integrator which ensures offset-free control. However,
the sampling rate of the observer is faster and therefore reacts before the integrator of
the MPC can compensate the disturbance. In the second concept an offset-free MPC
with the disturbance as augmented state is implemented. The sampling rate of the
MPC is the fast sampling rate. The augmented state can directly be used for a physical
interpretation of the disturbance. For robustness of the observer measurement noise is
added to the ambient temperature and ICB temperature in the second concept, which
can also be easily included in the first concept.

5.6 Summary

The proposed control scheme consists of an model predictive controller, an disturbance

observer for unknown heat inputs ˆ̇Qz and the estimation of the heat transfer coefficient
α which is an indicator for the state of health of the ICB. This structure enables the
immediate compensation of solar irradiance as it reacts fast to disturbances. With the
hypotheses that α1 deteriorates slowly over time, a drift in the disturbance estimate
provides useful information about the deterioration grade of α. The correct α is an
important factor for assessing the state of health of the ICB, and it also ensures a
correct model of the MPC which leads to better performance than a predictive control
method without α estimation. Simulation results show that both concepts are able to
estimate α and Q̇sol.

The concept to use minimal values of the estimated ˆ̇Qz calls for additional measures to
ensure robustness such as hypothesis tests with the prediction interval or constrained
optimization. In the second concept also predictive maintenance and a detailed stability
proof is given.



Chapter 6

Discussion and conclusion

6.1 Scientific contributions

The following scientific contributions have been made in the thesis to answer the ques-
tions posed in Section 1.4:

1. Computation of an appropriate control allocation of the RS is realized by three
different methods. The first method is realized by separating the whole problem
formulation in smaller subproblems where the computationally expensive opti-
mization of the continuous decision variables is optimized off-line and stored in
look-up tables. The numerically efficient subproblem is optimized on-line. The
concept is presented in Chapter 3 and published in [42]. The second method uses
a computationally expensive mixed-integer MPC (MI-MPC), which is executed
every small sampling time. The third method uses a mixed-integer optimization
(MIO), which is only executed once in a large sampling step. Both methods are
presented in Chapter 4.

2. Temperature control of the ICB is provided by model predictive control and pre-
sented in Chapter 4. An augmented MPC formulation is used for optimal control
of the ICB temperature. Constraints are used to ensure that the RCs work in a
feasible range. The MPC also defines constraints for the CA. Two methods with
different constraint formulations are derived. In the first method the constraint is
the necessary cooling capacity, whereas the second method uses the predicted ICB
temperature as a constraint. The first concept including the MI-MPC is already
published in [45], whereas the second method including the MIO is submitted for
a special edition in the Journal of Process Control.

3. Disturbance and parameter estimation is done in two different ways. A simple
to implement method has been developed using a disturbance observer which
calculates an additional heat impact to the ICB with a linear parameter estimation
for the state-of-health of the ICB. An extended MPC formulation with integrated
disturbance state and a parametric nonlinear estimation is done in the second
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method. Both methods are presented in Chapter 5. The first concept is published
in [43], the second concept is published in [44].

6.2 Discussion

In order to speed up the optimization of Chapter 4 the optimal solutions for every initial
condition, set-point, and boundary condition could also be calculated off-line and stored
in look-up tables, see Chapter 3. In this case the MI-MPC would be implemented as a
static feed-forward switching control similar to a pulse width modulator but exhibiting
much more complex switching patterns. A disadvantage of this structure is that the
dimension of the look-up tables expands exponentially with the number of switching
variables and the prediction horizon. The prediction horizon of such a simplified version
of the MI-MPC could additionally be cut to one sample of the global MPC. Using this
modification no update during the prediction horizon has to be made, and consequently
a static feed-forward modulator results. Still, the memory requirements would be large
and optimal switching over the large samples would be lost.

A cascade control structure could also be used. It can potentially improve the closed
loop disturbance compensation performance for all disturbances acting directly on the
RS. The cascade control system consists of the primary control loop with the global
MPC and nested within the primary control loop is the secondary control loop with the
CA and the RS. The secondary control loop reduces the effect of a fault on the RS, like
wear of the compressor or fouling of the condenser which affects the actual u. The CA
can react before the global MPC is influenced by the faulty. The main drawback is the
need for measuring u. Measuring u directly is not possible, indirect measurement using
air flow (or a pressure difference) and temperature is expensive and sensitive to faults.
Also an analytical stability proof is not possible using the approach in this thesis. If
the cascade control is not implemented faults on the RS are compensated by the global
MPC.

The presented method in Chapter 5.4 enables offset-free tracking by estimating the
unknown disturbance Q̇z. A similar nominal performance can be obtained by an aug-
mented MPC, see Section 5.4.7. However, the additional tuning parameters in the
matrix L of the observer enable better tuning in the presence of measurement noise. In
principle it would also be possible to apply a Kalman-filter with two additional states
(irradiation and α) as a disturbance observer. By tuning the respective entries of the
process noise covariance matrix one could hope for a proper estimation result. How-
ever, no satisfying results were obtained with such a Kalman-filter, as both a state and
a parameter have to be observed simultaneously which renders the observer nonlinear
and a nonlinear estimation scheme would become necessary.

Another important issue is the true heat capacity mcp of the ICB: The exact value is
typically not known, nevertheless, the current weight of the load m can be read from
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the vehicle data bus, and depending on the freight composition an average value of
the specific heat cp can be used for computing mcp. Note that a parameter identifi-
cation of mcp would be ill conditioned as the measured temperature ϑICB of the ICB
is almost constant and the value of mcp does not affect steady-state behavior. Thus,
any estimation algorithm will suffer from the absence of a persistently excited output
signal.

Due to aging the parameter α̂1 (describing thermal conductivity of the ICB) is mono-
tonically increasing, and the system matrices defined in Sections 5.4.4 and 5.4.5 are
therefore actually also time-varying (updated every 14 days). As stated in Section 5.4.6
stability of the system can nonetheless be guaranteed. Simulation studies have shown
that the proposed system is fairly robust with respect to these changes in the system
matrices. It could therefore be possible to implement constant matrices as a simplifica-
tion in a specific application. In a first step the observer and the α estimation will be
implemented on the controller hardware; as the MPC requires more computing power
it can only be implemented after a hardware upgrade of current RS-controllers.

Possible problems concerning the stability of the nonlinear α estimate can arise from
different sources: 1) A suitable model structure, eq. (2.24), is paramount for an effective
estimate. Selecting a good model structure will depend on the ICB materials, the oper-
ating scheme, the environmental conditions and other factors. Sufficient measurement
data are necessary to validate the model structure. 2) Even if the model structure is
perfect, the parameters of the model could be continuously time-varying. In this case
the F -test, see Section 5.4.7, would indicate step-wise changes of the model parameters
which is just a rough approximation of the true parameters. 3) In the unlikely case
that the system is only operated around noon, the nonlinear estimate would be biased
as no night time measurements would be available.

6.3 Conclusion

The refrigeration systems (RSs) of food transporters which are widely used in the
world consume a substantial amount of energy. A robust and effective control of the
temperature inside an insulated cool box (ICB) is necessary to prevent degeneration of
perishable goods. In order to obtain low maintenance and energy costs and to maximize
the availability of the system, ICBs can be equipped with redundant refrigeration cir-
cuits (RC) each utilizing one or more compressors. These systems include a multitude
of both switched (compressor on/off state) and continuous (expansion valve, fan speed)
control variables, calling for a mixed-integer optimization (MIO). Therefore, in this the-
sis, an ICB with redundant refrigeration circuits (RCs) each with various compressors
was proposed.

First a method to optimize the provision of the required cooling capacity in redundant
RCs with respect to several conflicting goals is introduced. The proposed method is
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presented for a refrigeration system with redundant refrigeration circuits and multi-
ple compressors. Both discrete (compressor switching) and continuous (variable speed
drives, valve settings) decision variables are integrated in the optimization. Each mode
is characterized by the respective active components and the values of the individ-
ual continuous control variables. The resulting degrees of freedom can be utilized to
optimize additional goals such as energy consumption, wear, etc. The optimal pro-
cess operation is thus formulated as a optimization problem for a hybrid system. The
framework is very general, comprising different numbers of RCs and compressors respec-
tively, accepting compressors with both identical or different capacity within one RC,
and even incorporating the strongly nonlinear nature of an internal combustion engine
as a primary energy source for the RCs can be considered. An important highlight of
the proposed method is the computational efficiency, which allows the implementation
in an inexpensive micro-controller.

Second model predictive control (MPC) was introduced. Due to the different time
constants and complex mixed-integer optimization a hierarchical control structure is
used. Because of the slow dynamics of the ICB the global MPC can operate at a large
sampling time with a large prediction horizon. The computational expensive underlying
control allocation (CA) provides a multi-objective optimization which defines the actual
control action and is operating at a high sampling frequency and a small prediction
horizon (only the first few samples of the linear MPC). Main contributions of this work
are the formulation of a specific equality constraint for the MIO in the second concept
and the overall stability of the control scheme. It was shown, that especially for setpoints
where the required stationary cooling capacity is smaller than the minimum one a limit
cycle results.

Third, a method for model predictive temperature control with estimation of aging of
the ICB’s insulation and heat transfer due to the sun’s irradiation has been proposed.
The estimation is performed by a custom disturbance observer which first estimates the
combined heat loss of both effects and a nonlinear parameter estimation of a suitable
aging model. The observer together with a suitable MPC formulation guarantees offset-
free tracking of the set-temperature, effective compensation of irradiation, good noise
attenuation properties, and also predictive maintenance of the ICB. The last feature is
achieved by using the aging model as a predictor for estimating the end-of-life for the
ICB. In order to detect and react to sudden changes in the ICB’s operating state, a
detection of changes and a parameter update has also been proposed. Furthermore, each
subsystem (observer, MPC, α-estimation) runs at a specific sampling time to facilitate
effective operation.
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Appendix A

Intersample bound

A conservative bound for the inter-sample deviation of each state variable |xj(t) −
xj(K)| can be computed by considering at the worst case: Eq. (4.40) can be evaluated
for only one large input ũ0(m) at the small sampling interval m such that u0(k + i) =
0, ∀i 6= m. The solution of the continuous-time state trajectory x(t) is thus given by
(initial condition x(t0) = x(K), t0 ≤ t < λts)

x(k + λ) = Φλx(K) + Γmũ0(k + m) + MΣz(K),

The constraint requires x(K + 1) = x(k + λ) to hold:

x(K + 1) = Φλx(K) + Γmũ0(k + m) + MΣz(K),

and solving for ũ0 yields

ũ0 = Γ−1
m

[

x(K + 1) − Φλx(K) − M Σz(K)
]

. (A.1)

Hence, (4.47) can be computed and the vector xmin of extremal values of x(t) is given
by element-wise evaluation of

xj,min = min xj(t), t0 ≤ t < λts, (A.2)

and ∆j,max = xj(K) − xj,min is well defined. For all control sequences u0(k) of the MI-
opimiser the state trajectory x(t) will stay inside the bounding box defined by ∆j,max.
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