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draulic engineers who observed things that could not be explained and mathematicians who
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Kurzfassung

Die vorliegende Dissertation ist durch den Absorptionskälteprozess motiviert und be-

handelt numerisch die durch Oberflächenwellen bedingte Erhöhung des Stoff- und/oder

Wärmeübergangs an einem Fallfilm. Aus Sicht der Numerik ist die Aufgabe eine Heraus-

forderung, da die zeitabhängige Strömung der freien Oberfläche und die typischerweise sehr

großen Längen-zu-Filmdickenverhältnisse einen enormen Einsatz an Rechnerressourcen

bedingen. Um die Untersuchung so systematisch wie möglich zu gestalten, werden nur

zweidimensionale, laufende Wellen unter der Annahme, dass das Strömungsfeld vom Ab-

sorptionsvorgang unbeinflusst bleibt, betrachtet. Diese Annahmen reduzieren die Kom-

plexität erheblich, da sich so die Impulsgleichungen und die Gleichungen für den Wärme-

und Stofftransport nacheinander lösen lassen. Die laufenden Wellen, als Lösungen der

Navier–Stokes-Gleichungen mit scharf definierter freier Oberfläche, folgen schließlich als

stationäre Zustände innerhalb eines bewegten Bezugssystems. Die a-priori unbekannte

Wellengeschwindigkeit und die unbekannte Form der freien Oberfläche sind ebenso Teil

der unter Einbeziehung von zwei zusätzlichen Bedingungen abgeleiteten Lösung. Das Sys-

tem von nichtlinearen Gleichungen wird durch Verwendung des Newton-Verfahrens in der

Finiten-Volumen-Formulierung auf einem versetzten Gitter, das durch eine Koordinaten-

transformation an die freie Oberfläche angepasst ist, gelöst. Ausgewählte Lösungen für

das Strömungsfeld dienen weiters als Grundlage für die weiteren Untersuchungen.

Die erste Folgestudie ist erneut im bewegten Bezugssystem durchgeführt und betrachtet

den thermischen Film, definiert durch eine isotherme Wand und einer isothermen freien

Oberfläche. Der Einfluss der Konvektion wird aus der gemittelten Nusseltzahl ersichtlich,

berechnet für einen weiten Bereich der Prandtlzahl. Darüber hinaus sind die lokalen

Nusseltzahlen an der Wand und an der freien Oberfläche für verschiedene Prandtlzahlen

dargestellt und zeigen die Wirkung der effektiven Filmdickenabnahme (film-thinning), den

Einfluss des Ablösegebiets innerhalb des primären Wellenberges (im bewegten Bezugssys-

tem) und der Rückströmgebiete (im Laborsystem).

Die finale Studie befasst sich mit dem absorbierenden, welligen Fallfilm. Ausgewählte

Lösungen aus der ersten Untersuchung dienen als Basis, um den zeitabhängigen, gekop-

pelten Wärme- und Stoffübergang mit Hilfe einer einfachen Fortschrittstechnik zu lösen.

Die numerische Behandlung der Rückströmgebiete erweist sich als kompliziert, da diese

zur Vorwärts-Rückwärts-Wärmeleitungsgleichung führen. Zur Überwindung des Problems

wird ein probates Mittel eingesetzt und Lösungen für mehrere Parametersätze vorgestellt.

Vorab zu dieser Untersuchung wird zum Vergleich noch der absorbierende, ebene Fall-

film diskutiert, insbesondere wird die Auswirkungen der einseitigen Diffusion im Detail

analysiert.
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Abstract

The present dissertation is motivated by absorption refrigeration and aims to reveal nu-

merically the source for mass and/or heat transfer enhancement caused by the presence

of surface waves on a falling liquid film. The targeted task is a numerical challenge since

massive computational cost originate from the transient free surface flow in combination

with, typically, vast length-to-film thickness ratios. To make the investigation as system-

atic as possible, only two-dimensional traveling waves are considered under the assump-

tion that the flow field remains unaffected by the absorption process (one-way-coupling).

These preconditions reduce the complexity significantly, since one can solve the momen-

tum equations and the equations for heat and species transport consecutively. Finally,

Navier–Stokes sharp-interface traveling-wave solutions are derived as steady states within

a co-moving frame of reference. The a priori unknown wave celerity and the unknown

shape of the free surface are also part of the solution derived with the inclusion of two ad-

ditional constraints. The system of non-linear equations is solved by employing Newton’s

method in the finite-volume formulation on a staggered grid which is adapted to the free

surface by a coordinate transformation. Certain solutions of the flow field then serve as

basis for further investigations.

The first subsequent study is again done in the moving frame of reference and accounts

for the thermal film, which is defined through an isothermal wall and an isothermal free

surface. The influence of convection is deduced from the average Nusselt number, shown

for a wide range of Prandtl numbers. In addition, the local Nusselt numbers at wall and

free surface, given for different Prandtl numbers, reveal the effect of film-thinning, the

influence of the separation zone within the main hump (moving frame) and the backflow

regions (laboratory frame).

The final study addresses the absorbing wavy film by choosing certain traveling wave so-

lutions from the initial investigation as input to solve the transient, coupled heat and mass

transfer by a simple marching technique. The numerical treatment of the backflow regions

turn out to be difficult since the resulting problem leads to the forward-backward heat

equation. Nonetheless, a proper remedy is introduced and solutions for several parameter

sets are presented. Prior to the study, the absorbing flat film is discussed as benchmark

and certain modeling aspects, especially the impact of one-sided diffusion, are discussed

in detail.
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Nomenclature

To maintain readability, non-dimensional quantities are distinguished from their corre-

sponding dimensional equivalents by an asterisk only if this is necessary. In case that a

quantity appears in its dimensional and non-dimensional form, the units in the table below

belong to the dimensional one.

Latin letters

Symbol Quantity Units

A Picard matrix 1

A apparatus parameter 1

∆A surface length increase m

a thermal diffusivity m2 s−1

B non-dimensional enthalpy of evaporation 1

b rhs of linearized system 1

C mass fraction (concentration), C := C ′
1 1

C0 reference concentration: C0 = C(T0, P0) 1

Cs film inlet concentration 1

Cα concentration of constituent α 1

∆C characteristic concentration difference 1

∆Cx local concentration difference 1

c wave celerity m s−1

cp specific heat capacity J kg−1 K−1

D binary diffusion coefficient m2 s−1

d characteristic length m

f wave frequency s−1

ff forcing frequency s−1

fn residual vector at iteration n 1

g gravitational acceleration m s−2

gx gravity in streamwise direction m s−2

Hc coolant channel width m

h height of the liquid film m
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h̄ averaged film thickness m

hc half coolant channel width m

hNu film thickness of Nusselt solution m

hs specific enthalpy of solution J kg−1

hα specific enthalpy of constituent α J kg−1

∆h enthalpy of absorption J kg−1

i species flux density of α = 1, i.e. i := i1 kg m−2 s−1

iα species flux density of constituent α kg m−2 s−1

J Jacobian matrix 1

j diffusive flux density –

k wavenumber m−1

L length of the wave m

Lth thermal entrance length m

L0 length of the plate m

Mα molar mass of constituent α kg mol−1

m mass of solution kg

mα mass of constituent α kg

ṁ local mass flux density kg m−2 s−1

ṁ length-averaged mass flux density kg m−2 s−1

NA Avogadro constant mol−1

Nα number of particles of constituent α 1

Nη number of cells in wall-normal direction 1

Nξ number of cells in streamwise direction 1

n̂ unit normal vector 1

n normalization in unit normal vector 1

nα amount of constituent α mol

P pressure Pa

P0 reference pressure, system pressure Pa

p perc. of convectively induced heat transfer enhancement 1

q source density –

q̇ local heat flux density W m−2

q̇ length-averaged heat flux density W m−2

R cell aspect ratio 1

rn residual at iteration n 1

S stress tensor N m−2

S placeholder for scalar quantity, i.e. S = T,C –

s specific entropy of solution J kg−1 K−1

T temperature field of the liquid film K

xii



T mixing temperature of liquid film K

T0 reference temperature: film inlet temperature K

∆T characteristic temperature difference K

∆Tx local temperature difference K

u velocity component, streamwise m s−1

uNu Nusselt solution m s−1

ūNu averaged velocity of Nusselt solution m s−1

V volume m3

v velocity component, crosswise m s−1

w boundary velocity m s−1

X placeholder for any quantity –

x Cartesian coordinate, downstream m

xn solution vector at iteration n 1

y Cartesian coordinate, wall-normal m

Greek letters

Symbol Quantity Units

α local heat transfer coefficient W m−2 K−1

α length-averaged heat transfer coefficient W m−2 K−1

αm molar mass ratio 1

β local mass transfer coefficient m s−1

β length-averaged mass transfer coefficient m s−1

βT thermal expansion coefficient K−1

βC solutal expansion coefficient 1

Γ mass flux per unit length in spanwise direction kg s−1 m−1

γ concentration coefficient K−1

∆i cell length at face i 1

δS reduced Reynolds number 1

ε0 aspect ratio of the domain 1

εc coolant aspect ratio 1

εS viscous dispersion number 1

ζ deviation of inlet concentration from equilibrium 1

η surface fitted coordinate, wall normal 1

η̄ dynamic viscosity Pa s

Θ coolant temperature K

Θ coolant mixing temperature K

Θc coolant inlet temperature K

xiii



θ inclination angle of plate 1

κ curvature of free surface m−1

Λ ratio of thermal conductivities 1

λ thermal conductivity W m−1 K

µ chem potential of solution J kg−1

µα chem potential of constituent α J kg−1

ν kinematic viscosity m2 s−1

Ξ scaled reference concentration 1

ξ surface fitted coordinate, downstream 1

ρ density of solution kg m−3

ρα density of constituent α kg m−3

̺ gas-to-fluid density ratio 1

σ surface tension N m−1

τ viscous part of stress tensor N m−2

Φ dissipation function W m−3

ϕm non-dimensional mass flux density (linear/linear) 1

φ relative volume flux density m s−1

φm non-dimensional mass flux density (linear/non-linear) 1

φ†m non-dimensional mass flux density (non-linear) 1

φq non-dimensional heat flux density 1

φq,f non-dimensional heat flux density (film/wall) 1

φq,i non-dimensional heat flux density (free surface) 1

χ parameter for arclength continuation 1

ψ transport quantity in standard transport equation –

xiv



Non-dimensional products

Symbol Denotation see Eq.

Fr Froude number (2.11a)

Ka Kapitza number (2.13)

Le Lewis number Le = a/D

Nu Nusselt number (general) (2.21a)

Nu averaged Nusselt number (general) (2.21b)

Nuc coolant Nusselt number (2.26b)

Nu∗c reduced coolant Nusselt number (6.18)

Nui Nusselt number free surface (2.25a)

Nuf Nusselt number film/wall (2.25b)

Nuw wall Nusselt number (6.13)

Pe Péclet number Pe = RePr

Pec coolant Péclet number Pec = Rec Prc

Pe∗c reduced coolant Péclet number (6.28)

Pr Prandtl number Pr = ν/a

Prc coolant Prandtl number Prc = νc/ac

Re film Reynolds number (2.8)

ReC film Reynolds number (CFC) (2.15a)

Rec coolant Reynolds number (2.26a)

ReS Reynolds number employed by Salamon et al. (1994) Tab. 2.2

Sh Sherwood number (2.29a)

Sh averaged Sherwood number (2.29b)

We Weber number (2.11b)

WeC Weber number (CFC) (2.15b)

WeS Weber number employed by Salamon et al. (1994) Tab. 2.2

Abbreviations

Acronym Denotation

BL boundary layer

bc boundary condition

CFC closed flow condition

LMTD logarithmic mean temperature difference

ODE ordinary differential equation

OFC open flow condition

PDE partial differential equation

xv



Subscripts

Symbol Quantity refers to

C closed flow condition

c wall/coolant interface, coolant, cooling channel

D quantity defined by Dietze (2010)

f film/wall interface

i liquid free surface

Nu Nusselt solution

p plate

S quantity defined by Salamon et al. (1994)

w wall

c, n, s, e, w location within numerical cell: center, north, south, east, west

α constituent α

α = 1 absorbent (e.g. LiBr)

α = 2 refrigerant (e.g. H2O)

α = 3 non-absorbable gas (e.g. air)

Mathematics

Symbol Denotation Definition

∂x partial derivative operator ∂/∂x

∂n normal derivative operator n̂ ·∇
∇s tangential derivative operator (1− n̂n̂) ·∇
Dt material derivative operator ∂t + u ·∇
D bulk normal derivative operator (4.22b)

1 unity matrix

||�||2 Euclidian norm
√
∑

i �
2
i

�T matrix/vector transpose

J�K jump of quantity at an interface �′ −�′′

⌈�⌉ ceiling function

δD Dirac-delta distribution

θ Heaviside step function

ℑ imaginary part of complex number

xvi



1. Introduction

The laminar falling liquid film has attracted the interest of researchers since decades. As

simple as the concept of the falling film appears, as complex its characteristics are. Due

to the interesting fluid dynamics, the isothermal falling film is an outstanding problem for

theoretical studies. Moreover, the thermal falling film represents an important concept

for industrial applications and is, therefore, subject to applied research activities. From

this applied point of view the falling film is typically subject to heating/cooling, conden-

sation/evaporation or absorption/desorption. The latter case can be further divided into

wall-sided absorption and absorption through the liquid free surface which may be either

isothermal or coupled to heat transfer.

1.1. Motivation

One important field of application of falling films is absorption refrigeration. The present

dissertation aims to numerically investigate the falling film dynamics and the influence

of the film waviness on the absorption process. Despite enormous computer power and

numerous simulation tools the numerical treatment of this particular problem, even for-

mulated in just two dimensions, is still an enormous challenge. This is primarily due to

the well-known inherent instability of the flat film interface. Therefore, one has to neces-

sarily deal with a transient free surface flow. Capturing the free surface position calls for

elaborate numerical techniques and since the absorption process (coupled heat and mass

transfer) is located at the free surface, the accuracy by which the interface is represented

numerically is crucial. Moreover, a tremendous number of cells can be expected resulting

from thin concentration boundary layers at the free surface in combination with typically

vast length-to-film thickness ratios of the domain. All these conditions already indicate the

hopelessness, to perform an accurate numerical simulation (even for 2D) of the absorbing

falling film just by using first principles. It is therefore inevitable to reduce the numerical

effort by suitable approximations. Authors typically simplify the governing equations by

exploiting boundary layer theory or they relax the requirement of having a sharply defined

free-surface position. The present treatise aims to avoid both of these common approxima-

tions in order to present more accurate results which can be further used as benchmarks.

To that end, we compute sharp-interface solutions of the Navier–Stokes equations. How-
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Introduction

ever, to reduce the afore mentioned numerical effort, we firstly search for traveling-wave

solutions in a moving frame of reference and employ these as a basis for the subsequently-

solved non-stationary absorption problem. To reduce the large parameter space that is

related to the setup we shall focus on LiBr–H2O due to its practical importance. The

drawback of this particular fluid, however, is its thermophysical properties, i.e. a very low

Kapitza number and a very large Schmidt number (Ka ≈ 500, Sc ≈ 3000, definitions to

be given below) which represents another difficulty for the numerical treatment.

1.2. Related work

The overwhelming amount of literature regarding the falling liquid film can be primarily

divided into theoretical studies of the isothermal and of the thermal film which are es-

pecially devoted to stability analysis and applied studies which are focusing on transport

mechanisms. The following, non-exhaustive overview, presents selected relevant contribu-

tions to the respective sub-fields.

Isothermal wavy film It is widely accepted that the seminal work on the wavy falling

film is due to Kapitza & Kapitza (1949) in which the Nobel laureate and his son ex-

perimentally characterized the waves appearing on the falling film. This was followed

by the important theoretical contribution of Benjamin (1957), showing that the (verti-

cally) falling film is unstable at all Reynolds numbers. Further theoretical investigations

are dedicated to the solution-branching behavior and to the stability of boundary-layer-

related model equations based on a long-wave assumption. This approach is extensively

discussed in Chang (1994); Chang et al. (1994); Chang & Demekhin (2002); Chang et al.

(1993); Cheng & Chang (1995). A recent and comprehensive monograph is given by

Kalliadasis et al. (2012) with focus on the deduction of several model equations including

stability analysis for isothermal and non-isothermal conditions including the Marangoni

effect. Preceding works leading to the mentioned monograph are Scheid et al. (2006),

Ruyer-Quil et al. (2005) and Scheid et al. (2005) for instance.

Some work is available based on full Navier–Stokes simulations which are typically per-

formed by using the Volume of Fluid (VOF) method, see e.g Gao et al. (2003). Recently,

Albert et al. (2012) applied the VOF method to the falling film and compared several

surface-tension models. They conclude that only the balanced Continuum Surface Force

(bCSF) approach yields correct results for the falling film. Another extensive VOF simula-

tion by employing Fluent is done by Dietze (2010) and Dietze et al. (2008) with attention

to the backflow region. We shall refer to their results in greater detail below. In Trifonov

(2012) two different integral approaches are compared with the results from Navier–Stokes

simulations. Sharp-interface Navier–Stokes solutions are rare. Probably the most impor-

2



Related work

tant one is the work by Salamon et al. (1994) and Salamon (1995). There, the Finite

Element Method (FEM) is used to find stationary solutions within a moving frame of refer-

ence. They compare the solution branching with the branching of solutions resulting from

the first-order boundary layer equations given by Chang et al. (1993) and found a great

sensitivity to the parameter that is called viscous dispersion number by Kalliadasis et al.

(2012). Therefrom, Salamon et al. (1994) conclude that the predictions of the first-order

boundary layer equations would not agree with the Navier–Stokes results for water at

moderate Reynolds numbers. This shortcoming was removed in Kalliadasis et al. (2012)

by using their so-called simplified second order model. Prior to Salamon et al. (1994),

Bach & Villadsen (1984) have already applied the FEM method to the falling film and

solved, quite uncommon, for the Lagrangian velocities. Transient FEM-simulations are

presented in Malamataris et al. (2002) and Malamataris & Balakotaiah (2008).1

Thermal wavy film The thermal wavy falling film with a constant temperature difference

across the film is a very instructive case since it reveals the primary physical effect behind

the heat-transfer enhancement that is induced by waves. A numerical investigation was

made by Miyara (1999) where he shows the insignificance of convection compared to the

so called film thinning effect. The same conclusion is drawn by Aktershev & Alekseenko

(2013) for a condensing film at an isothermal wall. In contrast to Miyara (1999) they

account for a varying film thickness (due to the condensing mass) and find that the en-

hancement of the heat transfer is dominated by film thinning. An implementation of the

energy equation into OpenFOAM (VOF) and the application to the falling film is provided

by Raach et al. (2011).

Besides the thermal falling film one can also assume the mathematically equivalent

isothermally absorbing falling film. The equivalence holds true for the case of an infinitely

dilute (and non-reactive) solute. For this case Henry’s law acts as the species boundary

condition at the free surface. Recently, Albert et al. (2014) presented a numerical investi-

gation using VOF on the interfacial mass transfer to a wavy falling film. They use a subgrid

model to capture the concentration boundary layer at the free surface. Supplementary,

wall-sided heat and species transfer to a liquid film on a spinning disc is investigated in

Prieling & Steiner (2013a ,b) by employing an unsteady integral boundary layer approach.

Absorbing flat film An excellent overview on the strategies in modeling the absorbing

falling film until 2001 can be found in Killion & Garimella (2001). They give a detailed

review of the most important works and pay particular attention to the assumptions made

by each individual publication. Probably, the first substantial investigation was due to

1Interestingly, Malamataris & Balakotaiah (2008) mention the average time for a simulation to range
between 5 to 50 days.
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Grigor’eva & Nakoryakov (1977). Some of the approximations introduced by them are

still common practice. Grossman (1983) further improved the existing model by replacing

the uniform velocity by the parabolic velocity profile. He obtained approximate solutions

for the temperature and concentration fields in form of a series expansion considering an

adiabatic and an isothermal wall. Since that time the model has been extended by several

authors by including film-thickness variations, a non-linear vapor–liquid equilibrium condi-

tion, shear stress at the free surface, the Eckert–Schneider condition, a non-isothermal wall,

as well as an energy equation including interdiffusion, variable thermophysical properties

and the differential enthalpy of solution. Another major factor for the absorption effi-

ciency is the presence of non-absorbable gases as shown by Grossman & Gommed (1997)

and Yang & Jou (1998). Recent numerical studies considering the flat film were carried

out by Bo et al. (2010); Karami & Farhanieh (2009, 2011); Yoon et al. (2005). The first

and the second work are dealing with a fully dimensional formulation and treat the influ-

ence of several operating conditions and variable thermophysical properties, respectively,

on the heat- and mass-transfer coefficients. The latter investigators included a transverse

velocity component in the flat-film model and studied the dependence of the averaged

Sherwood and Nusselt numbers on the Reynolds number and the inclination angle. Most

recently, Mittermaier et al. (2014) present a detailed numerical study by accounting for

interdiffusion, variable thermophysical properties, the differential enthalpy of solution and

show that the non-linear equilibrium condition at the interface leads to different results

for absorption and desorption.

Absorbing wavy film The particular case of the absorbing wavy film is less represented

in the literature so far. Some early investigations are summarized by Killion & Garimella

(2001) in their table 4, where simplifying assumptions are made regarding the interfacial

deformation and the flow field. Morioka & Kiyota (1991), for instance, construct a simple

sinusoidal (capillary) wave and predict the absorption to be enhanced by a factor of 1.7–

2.4. In turn, Patnaik & Perez-Blanco (1996) use a model for roll waves and finally present

values for the averaged Sherwood number that may exceed the corresponding smooth-film

values by a factor of 3.75–10. Since they define a complicated formula for the averaged

Sherwood number it remains unclear how this averaged Sherwood number correlates with

the mass flux. In Yang & Jou (1998) the influence of non-absorbable gases combined with

the appearance of waves is given.

The absorbing wavy film is also related to bubble dynamics where the solubility of the

gas of a bubble in a surrounding liquid poses a two-phase flow problem with interfacial mass

transfer. Numerical work by using VOF can be found, to name just one, in Bothe et al.

(2003). Additionally, the simulation of a bubble with soluble surfactants is given by

Tuković & Jasak (2008) in the framework of OpenFOAM’s ALE solver.
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2. Basic considerations

The present chapter introduces some basic considerations used throughout this dissertation

and discusses some of the most important results which are related to the topic.

2.1. Notation

1. We assume a typical absorber device that works with a binary liquid solution, called

mixture in the following. The components of a binary mixture are called solute and

solvent in general. However, the terms absorbent and absorbate are more applicable,

where the absorbate plays the role of the refrigerant (cooling liquid). Two of the

most popular working-pairs are water–ammonia (H2O–NH3) and lithium bromide–

water (LiBr–H2O). Note that for these cases H2O acts either as absorbent or as

absorbate (refrigerant).

working pair absorbent refrigerant

water–ammonia H2O NH3

lithium bromide–water LiBr H2O

2. The present model is derived for working pairs with a non-volatile absorbent (e.g.

LiBr). This consideration excludes H2O–NH3, where both components are volatile.

3. Since we assume the absorbent to be non-volatile, the gaseous phase consists of the

vaporized refrigerant (e.g. H2O, vapor) and in general of some non-absorbable gas

(e.g. air). Both gases are assumed to be ideal and the total pressure P0 (system

pressure) is assumed to be constant.

4. We introduce the subscript α = 1, 2, 3 for any quantity Xα where α = 1 stands for

the absorbent, α = 2 for the refrigerant and α = 3 for the non-absorbable gas. If

necessary, quantities from the liquid phase are primed (X ′
α) and those of the gaseous

phase are double primed (X ′′
α).

5. The system consists of three components and two phases, where each phase is a

binary mixture and only the refrigerant is present in both phases. An intuitive

sketch of the penetrability of the free surface is given in Figure 2.1 indicating the
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absorbed mass flux density ṁ. All concentration variables (to be defined later) are

listed in Table 2.1.

α = 1
absorbent

α = 2
refrigerant

α = 3
gas

ṁ
gaseous

liquid

free surface

Figure 2.1.: Illustration of the penetrability of the liquid free surface.

Table 2.1.: Concentration variables within the system under consideration.

α = 1 α = 2 α = 3 mixture

liquid phase C ′
α C ′

1 C ′
2 0 C ′

1 +C ′
2 = 1

gaseous phase C ′′
α 0 C ′′

2 C ′′
3 C ′′

2 +C ′′
3 = 1

6. At the liquid free surface we assume local thermodynamic equilibrium. This condi-

tion results in a continuous change of temperature and vapor pressure(s).

7. After presenting a general model for film absorption we will concentrate on the

particular working pair LiBr–H2O, since this is of practical importance and numerical

correlations for all important material parameters are well documented.

8. For any binary mixture it is convenient to deal with just one concentration variable.

Since we are primarily interested in the concentration field of the refrigerant (α = 2),

it seems to be obvious to define C ′ = C ′
2 for the liquid phase. However, since this

is more common, we shall employ the concentration field of the absorbent, thus

C ′ := C ′
1.

9. Whenever necessary we shall distinguish dimensional from non-dimensional quanti-

ties by indicating the dimensional ones with an asterisk, thus X∗.
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2.2. Nusselt film

The flat film solution, referred to as Nusselt film1 from now on, is the solution of the steady

and incompressible Navier–Stokes equations for a stratified flow over a plate inclined with

respect to the horizontal by the angle θ, hence

ν∂yyu = −g sin θ := −gx, (2.1a)

v = 0, (2.1b)

u|y=0 = 0, (2.1c)

(∂yu)|y=hNu
= 0, (2.1d)

where the downstream coordinate is denoted by x, the wall-normal coordinate by y and

the film thickness by hNu. In addition we have introduced the kinematic viscosity ν and

the gravity in streamwise direction gx. The boundary conditions are no-slip at the wall

(y = 0) and no shear stress at the free surface (y = hNu). Figure 2.2 shows a sketch of the

Nusselt film with its most important quantities. The solution of (2.1) is given by

uNu =
gx
ν

(

yhNu −
y2

2

)

ex. (2.2)

g

ūNu
x

y

θ

hNu

Figure 2.2.: Sketch of the Nusselt film which is inclined by θ with respect to the horizontal.

1As it is most common we call it Nusselt film or Nusselt solution even though his work (Nusselt, 1916)
contains more than just the flat film solution.
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The averaged velocity ūNu and the maximum velocity at the free surface uNu,max are

ūNu =
gxh

2
Nu

3ν
, (2.3a)

uNu,max =
gxh

2
Nu

2ν
(2.3b)

with the ratio

uNu,max

ūNu
=

3

2
. (2.4)

By using the incoming mass flux Γ (per unit length in spanwise direction)

Γ = ρhNuūNu, (2.5)

having introduced the fluid density ρ, the Nusselt film thickness hNu derives as

hNu =

(
3Γν

ρgx

)1/3

. (2.6)

In the following we will choose, as this is most common, hNu and ūNu as the scales for

non-dimensionalization, thus

y0 := hNu , u0 := ūNu (2.7)

so that the film Reynolds number is

Re :=
u0y0
ν

=
ūNuhNu

ν
=

Γ

ρν
. (2.8)

The film thickness can also be written in terms of Re, hence

hNu =

(
3ν2

gx
Re

)1/3

. (2.9)

Other scales are the surface velocity uNu,max and (ν2/gx)
1/3 as the length scale. Note that

some authors include the factor 4 in their definition of Re which seems to originate from

using the hydraulic diameter of the liquid film as length scale.
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2.3. Scaling

The following scaling is applied to the later introduced momentum equations.

x =
x∗

y0
, y =

y∗

y0
, t = t∗

u0
y0

, u =
u∗

u0
, v =

v∗

u0
, P =

P ∗

ρu20
(2.10)

Here, the pressure P was introduced and the asterisks indicate the dimensional quantities.

The given scales lead us to the Reynolds number (2.8) and to the Froude and Weber

numbers in their common definitions

Fr :=

√

u20
gy0

, (2.11a)

We :=
σ

ρy0u20
. (2.11b)

If we employ u0 and y0 from the Nusselt solution (2.7), the square of Fr can be expressed

through Re and θ as

Fr2 =
Re

3
sin θ. (2.12)

Correspondingly, by defining the Kapitza number2

Ka :=
σ

ρg1/3ν4/3
(2.13)

the Weber number can also be written in terms of Re, θ and Ka, thus

We =

(
3Ka3

Re5 sin θ

)1/3

. (2.14)

Instead of choosing the natural triple {Re,We,Fr} one may also chose the alternative

triple {Re,Ka, θ} where the equations (2.12) and (2.14) are used for conversion. The

first-mentioned set of parameters is suitable for purely theoretical studies that vary Re,

Fr and We independently from another. However, choosing an inclination angle θ, a

Kapitza number Ka (representing a fluid) and varying the Reynolds number Re mimics

the situation that an experimentalist would encounter.

In the following investigations we will refer to the results presented by Salamon et al.

(1994) and Dietze (2010). Table 2.2 summarizes their definitions of the non-dimensional

numbers. The present study employs the so-called open flow condition (OFC) and the

2Some authors use the streamwise gravitational acceleration gx instead of g. However, the given definition
is very convenient since it depends on fluid properties only. For H2O at ambient conditions one finds
Ka ≈ 3000 and roughly Ka ≈ 500 for LiBr–H2O.
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closed flow condition (CFC), both discussed in detail at the end of Section 4.1.1. Using

the CFC implies a different definition of length and velocity scale, so that Reynolds and

Weber number become for the CFC

ReC =
ūh̄

ν
, (2.15a)

WeC =
σ

ρh̄ū2
(2.15b)

with the later introduced averaged thickness of the wavy film h̄ and the corresponding

averaged velocity ū.

Table 2.2.: Conversion of the non-dimensional parameters used in the literature given in
the first row. The subscripts S and D refer to the corresponding author, the
subscript C indicates the reference to the closed flow condition (CFC).

present study Salamon et al. (1994) Dietze (2010)
OFC CFC

Kapitza number Ka Ka – KaD = Ka/(sin θ)1/3

Reynolds number Re ReC ReS = 3ReC/2 Re

Weber number We WeC WeS = 3WeC/ReC We

inclination θ θ θ = π/2 θ

2.4. Boundary layer equations

Since the boundary layer (BL) equations are the model equations of choice for the present

problem we shall briefly comment on our decision to employ Navier–Stokes simulations.

Basically, the derivation of the BL equations includes two important steps.

1. Long wave assumption: introduction of a perturbation parameter ε≪ 1

2. Boundary layer approximation: elimination of the pressure by integrating the cross-

stream momentum equation

For the long wave assumption one introduces ε = hNu/x0 ≪ 1 with some characteristic

length scale in streamwise direction x0. Following Kalliadasis et al. (2012), ε shall be

understood as an ordering parameter since the streamwise length scale x0 is a priori

unknown. All variables are then expanded as usual in powers of ε and terms of O(ε3)

and higher are neglected. Since the cross stream inertia terms turn out to be of second

order, the terms are also neglected so that the cross stream momentum equation can be
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Figure 2.3.: Left: Weber number We vs. Reynolds number Re for const. Kapitza number
Ka = 3000 (full), Ka = 500 (dashed) and θ = π/2. Right: Plot of We−1/2 ∼ ε
vs. Re for the given Kapitza numbers.

integrated across the film to eliminate the pressure, as in Prandtl’s boundary layer theory.

Finally, surface tension effects contribute to the pressure at O(1) only if one assumes

ε2We = O(1) (2.16)

which is known as the strong surface tension limit which becomes the cornerstone of the

long wave assumption for the boundary layer approximation (Kalliadasis et al., 2012). The

result are the second-order boundary layer equations including the perturbation parameter

ε (up to ε2) and the non-dimensional triple {Re,We, θ}. In a subsequent step the BL-

equations are again rescaled by using the Shkadov scale ∝ We1/3 leading to a corresponding

triple of reduced BL-parameters, the reduced Reynolds number, the viscous dispersion

number and the reduced inclination number.

Figure 2.3 shows the relation between Re and We for Ka = 500 (LiBr–H2O), Ka = 3000

(H2O) and θ = π/2. It becomes evident that the relation dictated by the strong surface

tension limit ε ∼ We−1/2 together with the long wave assumption ε ≪ 1 can only be

satisfied for very small Reynolds numbers. It is, therefore, questionable whether the BL-

equations are the adequate choice for investigations focusing on LiBr–H2O. From this

result we decide to solve the Navier–Stokes equations.

2.5. Stability

The stability of the falling film has attracted enormous interest of many investigators since

decades. The first important theoretical contributions to the stability problem were due

to Yih (1955) and Benjamin (1957) analyzing the stability of the flat film by using the
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Figure 2.4.: Schematic representation of the four wave regions I-IV. The localized wave
spectra, with ω being the wave frequency, is also shown. The image is taken
from Chang (1994).

Orr-Sommerfeld equation. As the most interesting result Benjamin (1957) has shown that

film flow down the vertical plate (θ = π/2) is unstable for all Reynolds numbers. This first

transition where the flat film becomes unstable is known as the primary (linear) instability.

As a result of the instability waves grow on the interface.

The spatial evolution of film flows is typically divided into several stages or regions

called in the following. It is further important to distinguish whether the waves evolve

from an unperturbed inlet, i.e. just from the presence of natural/artificial noise, or from a

perturbed inlet where a monochromatic excitation is added to the incoming flow. Finally,

forcing frequency and forcing amplitude are also important parameters for the evolution

of the film. The spatial evolution of the liquid film flow is explained by Chang (1994),

Chang et al. (1994) and Kalliadasis et al. (2012), summarized below. The schematic rep-

resentation given by Chang (1994) is shown in Figure 2.4.

1. Region I: The primary instability leads to an amplification of inlet perturbations

which are growing downstream (convective instability). Depending on the type of

the perturbations at the inlet one finds the following scenarios.

• infinitesimal, broadband natural (or artificial) noise: a linear filtering process

selects a unique frequency,

• infinitesimal, monochromatic perturbation: the forcing frequency is inherited

to the flow,

• finite, monochromatic excitation: the first waves that appear are those of region

III with a wave frequency close to the forcing frequency.
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2. Region II: The exponential growth of the monochromatic wave of region I is ar-

rested by non-linear effects. A subsequent non-linear interaction leads to a nearly

monochromatic wave which persists a few wavelengths before it becomes subject to

another transition, which strongly depends on the forcing frequency.

• periodic forcing with low frequencies =⇒ region III, i.e. evolution into two-

dimensional solitary waves,

• periodic forcing with high frequencies =⇒ region IV, i.e. evolution into three-

dimensional waves.

3. Region III: For low forcing frequencies, the saturated waves of region II undergo

a secondary instability and form two-dimensional solitary waves. The instability

mechanisms behind this secondary transition are the subharmonic and the sideband

instability, leading to spatio-temporal chaos, see Liu & Gollub (1993). As already

mentioned, the solitary waves can also be formed directly by large monochromatic

excitations which circumvent region I and region II.

4. Region IV: Kalliadasis et al. (2012) collect three different three-dimensional states

within this region. For large forcing frequencies the saturated waves of region II

are subject to two different transitions, called the synchronous instability and the

herringbone pattern instability. The third state applies to the solitary waves of

region III which are in general unstable to spanwise perturbations and, therefore,

become three-dimensional.

The present investigation will focus on the solitary waves out of region III.

2.6. Nusselt and Sherwood number

Discussions in the literature on absorbing falling films are rather ambiguous regarding

the definition of the transfer coefficients and the driving potentials, respectively. For the

driving potentials several definitions are possible and almost all combinations can be found.

Therefore, we shall introduce the common definitions that account for the characterization

of heat and mass transfer and discuss some difficulties arising in the present system.

2.6.1. Basic setup

By neglecting the gas phase, the present system consists of the coupled temperature fields

of the absorbing falling film T (x, y) and the temperature field of the liquid coolant Θ(x, y),

as sketched in Figure 2.5.
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q̇n

q̇s

Θ(x, y)

T (x, y)

L0

Θ(x)

Tw(x)

T (x)

Ti(x)

∆Tf(x)

∆Tc(x)
∆Tt(x)

∆Ti(x)

αi

αf

αc

αt

TA TB

ΘA ΘB

liquid film

coolant

Figure 2.5.: Meridional cut of a film absorber to illustrate the thermal conditions.

The dash-dotted lines in the center of the domains symbolize the respective mixing tem-

peratures

S(x) =
1

Aū

∫

A
uS dA , S = T ,Θ, (2.17)

with the averaged velocity ū and the flow cross section A. Further, we have indicated the

wall temperature Tw(x) and the temperature at the free surface of the liquid film Ti(x).

The heat flux density due to absorption is q̇n and the heat flux density to the coolant q̇s.

The boundary values represent the mixing temperatures at the in- and outlets, thus

TA := T |x=0 , TB := T |x=L0
,

ΘA := Θ|x=0 , ΘB := Θ|x=L0
.

2.6.2. Nusselt number

As it is most common, we define the local (boundary) heat flux density q̇ in y-direction as

q̇ := α∆Tx (2.18)

with the local heat transfer coefficient α and a (in general local) driving potential ∆Tx.
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The heat flux Q̇, corresponding to L0, or the length-averaged3 heat flux density q̇ reads

q̇ =
Q̇

L0
=

1

L0

∫ L0

0
q̇ dx. (2.19)

In addition we define the (length-)averaged heat transfer coefficient α, i.e.

α :=
1

L0

∫ L0

0
α dx =

1

L0

∫ L0

0

q̇

∆Tx
dx. (2.20)

Furthermore, we introduce the local Nusselt number Nu by choosing a characteristic length

scale d and we define the corresponding (length-)averaged Nusselt number Nu, thus

Nu :=
αd

λ
=

q̇d

λ∆Tx
, (2.21a)

Nu :=
αd

λ
=

1

L0

∫ L0

0
Nudx. (2.21b)

with the thermal conductivity λ.

Absorber From the thermal conditions sketched in Figure 2.5 we can define three local

heat transfer coefficients: αi for the free surface, αf for the wall/film interface and αc for

the wall/coolant interface, which are related to the respective heat flux densities as

q̇n = αi∆Ti = αi(Ti − T ), (2.22a)

q̇s = αf∆Tf = αf(T − Tw), (2.22b)

q̇s = αc∆Tc = αc(Tw −Θ), (2.22c)

where we have introduced appropriate local temperature differences (driving potentials)

for every single heat flux density. Furthermore, one may eliminate the wall temperature

Tw to express a heat transfer coefficient αt with respect to the driving potential ∆Tt, i.e.

q̇s = αt∆Tt = αt(T −Θ). (2.23)

By accounting for the additional resistance of the plate between coolant and liquid film

the heat transfer coefficient αt becomes

αt =

(
1

αf
+
dp
λp

+
1

αc

)−1

, (2.24)

where dp and λp represent thickness and thermal conductivity of the plate, respectively.

3Since the problem is two-dimensional, (length-)averaged stands for streamwise-averaged.
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Film flow The Nusselt numbers regarding the liquid film are commonly defined with the

Nusselt film thickness hNu as the length scale, hence

Nui :=
αihNu

λ
, (2.25a)

Nuf :=
αfhNu

λ
(2.25b)

where the subscripts account for the respective interface, corresponding to the transfer

coefficients (2.22a) and (2.22b). For the laminar, fully developed, non-absorbing flat film,

Dietze (2010) summarizes four scenarios where either the wall or the free surface is assumed

to be diabatic or adiabatic and where the diabatic boundary is either represented by a

Dirichlet or a Neumann boundary condition (bc). The results for Nuf and Nui are given

in Table 2.3.

Table 2.3.: Nusselt numbers for the laminar, fully developed, non-absorbing flat film for
different scenarios. Taken from Dietze (2010) (his Table 2.7).

wall / free surface Dirichlet bc Neumann bc

adiabatic / diabatic Nui = 3.41 Nui = 140/33 ≈ 4.24
diabatic / adiabatic Nuf = 1.88 Nuf = 35/17 ≈ 2.06

For the absorbing flat film, Grossman (1983) derived numerically the asymptotic values

for the Nusselt numbers4 which are given in Table 2.4 for two different wall boundary

conditions. The non-absorbing case with the adiabatic wall and the diabatic free surface

with Neumann bc shows almost the same value for Nui even if the bc at the absorbing

free surface is a Robin bc rather than a Neumann bc.

Table 2.4.: Nusselt numbers for the laminar, fully developed absorbing flat film (Grossman,
1983).

free surface wall/film interface

adiabatic wall Nui = 4.23 Nuf = 0
isothermal wall Nui = 2.65 Nuf = 1.60

Coolant flow We assume the coolant flow as a duct flow with a corresponding hydraulic

diameter of dc. The coolant Reynolds number Rec and the coolant Nusselt number Nuc

4Contrary to the commonly used mixing temperatures, Grossman (1983) employed the bulk temperature
in his definitions of the Nusselt numbers, which is the temperature at the half width of the liquid film.
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are then defined by

Rec :=
ūcdc
νc

, (2.26a)

Nuc :=
αcdc
λc

, (2.26b)

with the kinematic viscosity and thermal conductivity of the coolant νc and λc, respec-

tively. Literature provides numerous correlations for the Nusselt number which depend on

the thermal wall boundary condition, on whether the streamwise position lies within the

thermal entrance length or within the fully developed region and on whether the flow is

laminar or turbulent. For a laminar, fully developed plane channel flow, for instance, where

the lower boundary is adiabatic, Shah & London (1978) present Nuc = 4.861 (their Table

43) for an isothermal (upper) boundary and Nuc = 5.385 (their Table 44) for a boundary

with a constant heat flux density. Furthermore, the VDI Heat Atlas (VDI-GVC, 2010)

provides several relations to derive the Nusselt number for fully developed turbulent flow

(Rec > 104) and transient flow (2300 < Rec < 104).

2.6.3. Sherwood number

In accordance to the local heat flux density, one introduces the local mass flux density as

ṁ := ρβ∆Cx (2.27)

with the mass transfer coefficient β and a (in general local) driving potential for mass

transfer ∆Cx. Additionally, one defines the length-averaged mass transfer coefficient

β :=
1

L0

∫ L0

0
β dx =

1

L0

∫ L0

0

ṁ

ρ∆Cx
dx. (2.28)

The corresponding local Sherwood number Sh and the (length-)averaged Sherwood number

Sh then read

Sh :=
βd

D
=

ṁd

ρD∆Cx
, (2.29a)

Sh :=
βd

D
=

1

L0

∫ L0

0
Shdx, (2.29b)

again with a characteristic length d and the binary diffusion coefficient D.
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2.6.4. Non-dimensional fluxes

For the case of a constant driving potential (∆T = const.) the equations (2.19) and (2.20)

lead us to q̇ = α∆T in accordance to the definition of the local quantity q̇ = α∆T .

Therefore, it seems to be obvious to again define

q̇ := α∆T , (2.30)

where ∆T represents a compatible averaged driving potential. At this point we shall

mention the important result for the laminar flow in a duct, as sketched in Figure 2.5, with

the local driving potential ∆T = Tw−Θ and a const. wall temperature Tw = const. For this

case the averaged driving potential ∆T is the well known logarithmic mean temperature

difference (LMTD5) (Shah & London, 1978)

∆T = ∆Tlm =
∆T0 −∆TX

ln ∆T0

∆TX

(2.31)

with ∆T0 = Tw −Θ0, ∆TX = Tw −ΘX , the inlet temperature Θ0 and the mixing temper-

ature at X, thus ΘX = Θ(X). Again, this holds true only for the isothermal wall, other

wall boundary conditions need a thorough discussion of ∆T . Altogether, for cases where

the driving potential is a local quantity which is in addition itself part of the solution,

definition (2.30) bears the difficulty that the calculation of the averaged heat flux density

q̇ from α is only possible by also knowing ∆T . This leads to the situation that (2.30)

generates two quantities for the determination of q̇, where ∆T is in general a non-trivial

quantity which is most likely not accessible in an experiment. For practical reasons it is

therefore more advantageous to introduce a transfer modulus based on a characteristic

outer potential difference. Guided by the definition of the Nusselt and Sherwood numbers

we define the non-dimensional heat flux density φq and the non-dimensional mass flux

density φm, thus

φq :=
q̇d

λ∆T
, (2.32a)

5 The LMTD is also an important value for designing heat exchangers. By assuming an adiabatic free
surface (q̇n ≡ 0), the film–coolant arrangement of Figure 2.5 is equivalent to an ordinary heat exchanger.
The averaged heat flux density exchanged by the fluids is given for αt = const. by q̇s = αt∆Tlm again
with the LMTD

∆Tlm =
∆TB −∆TA

ln ∆TB

∆TA

,

with the temperature differences at both ends, thus ∆TA = ΘA − TA and ∆TB = ΘB − TB. It is
important to note that the present LMTD results by assuming a constant heat transfer coefficient
αt = const. in contrast to the LMTD in the duct (2.31) following from a constant wall temperature.
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φm :=
ṁd

ρD∆C
. (2.32b)

It is essential that the employed driving potentials represent some outer (characteris-

tic), constant temperature or concentration difference. These definitions allow an easy

conversion between non-dimensional and dimensional flux densities. However, the non-

dimensional flux densities (2.32) are to distinguish from Nu and Sh representing non-

dimensional transfer coefficients, i.e. (2.32) do no longer represent a conductance for the

respective flux densities (Shah & London, 1978). From the given definitions we find the

non-dimensional relations

φq = Nu∆Tx, (2.33a)

φm = Sh∆Cx. (2.33b)

2.6.5. Thermal entrance length

A quantity that is used further below is the non-dimensional thermal entrance length Lth,

which is commonly defined as the length where the local Nusselt number Nu reaches 1.05

times the Nusselt number of the fully developed state. Values for Lth can be found in

Shah & London (1978) for several laminar flow configurations in ducts and are given in

terms of the hydraulic diameter d∗ and the Péclet number Pe, i.e.

Lth =
1

Pe

L∗
th

d∗
. (2.34)

For the hydrodynamically developed plane channel flow Shah & London (1978) present

the thermal entrance length as Lth ≈ 0.008 . . . 0.01 depending on the boundary condition.
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3. Governing equations

This chapter presents a detailed derivation of the governing equations and boundary con-

ditions for momentum, heat and species transport, an extensive discussion of the most im-

portant physical effects and their relevance in the considered system. We further present

a discussion of several coupling effects to justify a one-way coupled formulation of the

problem. One-way coupled means that the scalar quantities (temperature and concentra-

tion) do not influence the flow field but the flow field influences the scalar transport by

convection.

3.1. Bulk equations

3.1.1. Momentum equations

Since we have concluded that the BL-equations might not be a good choice for our purpose,

we employ the (two-dimensional) incompressible Navier–Stokes-equations

ρ(∂t + u ·∇)u = ∇ · S + ρg, (3.1a)

∇ · u = 0 (3.1b)

with the fluid velocity u = uex + vey, the fluid density ρ, the gravitational acceleration g

and the stress tensor

S = −P1+ τ = −P1+ η̄
(
∇u+ (∇u)T

)
(3.2)

that holds true for an incompressible flow of a Newtonian fluid. Here, P stands for the

pressure, 1 for the unity matrix, τ for the viscous part of the stress tensor and η̄ for the

dynamic viscosity.

For the present non-isothermal flow, we may investigate the relevance of the Boussinesq

approximation. We therefore assume thermally and solutally induced density variations

by including the first order terms of the Taylor series approximation

ρ(T, P0, C) ≈ ρ0[1− βT (T − T0)− βC(C − C0)] (3.3)

into the Navier–Stokes equations. Here we have introduced a reference state (T0, P0, C0),
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Governing equations

the corresponding reference density ρ0 := ρ(T0, P0, C0) and the thermal and solutal ex-

pansion coefficients

βT := −1

ρ

(
∂ρ

∂T

)

P,C

, (3.4a)

βC := −1

ρ

(
∂ρ

∂C

)

T,P

. (3.4b)

Comparing the Boussinesq terms with the convective term yields

gxβS∆Sy0
u20

=
gxβS∆Sy

3
0

ν2
1

Re2
=

GrS

Re2
(3.5)

with the Grashof numbers GrS . For convenience we have introduced the subscript S, stand-

ing for T and C, respectively. By employing the Nusselt film thickness y30 = 3Re ν2/gx one

finds GrS = 3ReβS∆S. Below we will introduce the concentration coefficient γ connecting

the scales as ∆C = γ∆T so that (3.5) becomes

GrT

Re2
∝ βT

∆T

Re
,

GrC

Re2
∝ γβC

∆T

Re
. (3.6)

The values for βS and γ can be extracted numerically from the Gibbs energy equation

of state and are shown in Appendix A.2 to be βT ≈ 4 × 10−4 K−1, βC ≈ −1 and γ ≈
5×10−3 K−1. Therefrom, we conclude that the solutally induced body force is one order of

magnitude larger than its thermal counterpart. However, as long as ∆T/Re is sufficiently

small, we may safely conclude that buoyancy has no relevance for the present system.

3.1.2. Species and energy transport in a binary mixture

Since there are many ways to define a concentration measure, we shall firstly present a

detailed derivation of the species transport equation to introduce all important termini. In

a certain volume of the binary mixture (solution) V one finds the mass m of the solution

and the mass mα of its components (constituents) α = 1, 2. The mass concentration is

then defined as ρα := mα/V and the mass conservation for every component reads

∂tρα +∇ · (ραuα) = 0 , α = 1, 2 (3.7)

where uα is the velocity field of the corresponding constituent. The density of the solution

trivially derives as ρ = ρ1+ρ2 and the (barycentric) fluid velocity of the solution u derives

from ρu = ρ1u1 + ρ2u2. The total mass balance, the sum of (3.7) over α, certainly brings

us to the continuity equation of the solution ∂tρ+∇ · (ρu) = 0.
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Bulk equations

The mass fraction is defined as

Cα :=
ρα
ρ

=
mα

m
, [Cα] = 1 = 100wt% (3.8)

and frequently labeled with the unit wt% (percentage by weight). With ρα = ρCα and

the fluid velocity u we rewrite (3.7) to

∂t(ρCα) +∇ · (ρCαu) = −∇ · (ρα(uα − u)) = −∇ · iα. (3.9)

The term iα = ρα(uα−u) represents the diffusive species flux density. With the continuity

equation of the solution, the material derivative D/Dt := Dt = ∂t +u ·∇ and by defining

C := C1 and i := i1 the species transport equation becomes

ρ
DC

Dt
= −∇ · i. (3.10)

For the discussion of the energy transport in a binary mixture we start from the first

law of thermodynamics

ρ

(
De

Dt
− P

ρ2
Dρ

Dt

)

= Φ−∇ · q̇ (3.11)

with the specific internal energy e, the pressure P , the dissipation function Φ = τij∂iuj

and the heat flux density q̇. The following demonstration is strongly orientated to the

derivation shown in Landau & Lifshitz (1987).

We use the fundamental thermodynamic relation dE = TdS − PdV +
∑

α µαdNα with

the internal energy E, the entropy S, the volume V , the chemical potential µα and the

number of particles Nα. Dividing by the mass of the solution m yields the relation for the

specific values, thus

de = Tds+
P

ρ2
dρ+NA

∑

α

µα
Mα

dCα (3.12)

where we have introduced the molar massMα, the Avogadro constant NA and made use of

mα =Mαnα =Mα
Nα

NA
= mCα =⇒ dNα

m
=
NA

Mα
dCα

introducing the amount of constituent nα. Since we assume a binary mixture we employ

C2 = 1−C1 and define the chemical potential of the solution µ again with C := C1, thus

NA

2∑

α=1

µα
Mα

dCα = NA

(
µ1
M1

− µ2
M2

)

dC1 := µ dC. (3.13)
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We now rewrite the first law of thermodynamics (3.11) as ρ(TDts + µDtC) = Φ −∇ · q̇,
replace the material derivative of the mass fraction ρDtC by using (3.10) and find

ρT
Ds

Dt
= Φ−∇ · q̇ + µ∇ · i. (3.14)

The diffusive flux densities are presented by Landau & Lifshitz (1987) as

i = −ρD
[

∇C +
kT
T

∇T +
kP
P

∇P

]

, (3.15a)

q̇ = −λ∇T +

[

kT

(
∂µ

∂C

)

T,P

]

i+

[

µ− T

(
∂µ

∂T

)

P,C

]

i. (3.15b)

The fraction of the species flux density i which is driven by the concentration gradient

represents ordinary diffusion, while those parts that are driven by the temperature and

pressure gradients are called thermodiffusion and barodiffusion, respectively. Thermodif-

fusion is also known as the Soret effect. The associated non-dimensional coefficients are

the thermal diffusion ratio (Soret coefficient) kT and the ratio for barodiffusion kP . As

mentioned in Landau & Lifshitz (1987), barodiffusion is only of relevance for systems with

large pressure gradients and can be dropped for the present problem.

The heat flux density q̇ is also composed by three parts and the first term is easily

identified as thermal conduction. The second term refers to inverse thermodiffusion, also

known as the Dufour effect. The third part accounts for the energy transport induced by

species diffusion and is referred to as interdiffusion by Grossman (1987). We shall rewrite

the interdiffusion term by defining the specific enthalpy of the solution hs := Hs/m and

insert the relation for the Gibbs energy G =
∑

α µαNα into the Gibbs–Helmholtz equation

Hs = G− T (∂G/∂T )P,C , thus

hs :=
Hs

m
=
∑

α

Nα

m

[

µα − T

(
∂µα
∂T

)

P,C

]

. (3.16)

By using hs =
∑

α Cαhα, with the specific enthalpy of the constituents hα = Hα/mα, we

can easily identify hα from (3.16) as

hα =
NA

Mα

[

µα − T

(
∂µα
∂T

)

P,C

]

. (3.17)

By using the definition (3.13) for µ and (3.17), the interdiffusion term finally becomes

[

µ− T

(
∂µ

∂T

)

P,C

]

i =

2∑

α=1

NA

Mα

[

µα − T

(
∂µα
∂T

)

P,C

]

iα =

2∑

α=1

hαiα. (3.18)
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From there it is obvious that the interdiffusion term (3.18) represents the enthalpy flux

which is caused by the species flux, thus (h1 − h2)i, so that

[

µ− T

(
∂µ

∂T

)

P,C

]

= h1 − h2. (3.19)

To reorder the energy equation further we expand the specific entropy

ds =

(
∂s

∂T

)

P,C

dT +

(
∂s

∂P

)

T,C

dP +

(
∂s

∂C

)

T,P

dC

and employ the relations

(
∂s

∂T

)

P,C

=
cp
T
,

(
∂s

∂P

)

T,C

= −
(
∂ρ−1

∂T

)

P,C

=
1

ρ2

(
∂ρ

∂T

)

P,C

= −1

ρ
βT ,

(
∂s

∂C

)

T,P

= −
(
∂µ

∂T

)

P,C

,

with the thermal expansion coefficient βT from (3.4a). The substitution of all terms yields

ρT
Ds

Dt
= ρcp

DT

Dt
− βTT

DP

Dt
+ (∇ · i)T

(
∂µ

∂T

)

P,C

. (3.20)

We now use (3.20) and (3.15) in (3.14) and obtain

ρcp
DT

Dt
− βTT

DP

Dt
= Φ+∇ · (λ∇T )−∇ ·

[

kT

(
∂µ

∂C

)

T,P

i

]

− i ·∇(h1 − h2). (3.21)

So far, almost no simplifications have been made and we shall now identify those terms

showing only negligible effects. Firstly, we presume that T and C vary only little within

the domain, such that we can understand λ and D to be constant. The assumed small

impact of varying thermophysical properties is strongly supported by the findings of

Mittermaier et al. (2014).

The comparison of the viscous dissipation term Φ with the diffusion term λ∇2T returns

the Brinkmann number Br = η̄u20/(λ∆T ) which is very small, so that dissipation can be

dropped as expected.

By using the pressure scale ∆P = ρu20 and by approximating T with a characteristic

mean temperature T0, thus T ≈ T0, the ratio of the material derivative terms becomes

proportional to βTT0 Ec. Here we have introduced the Eckert number Ec = u20/(cp∆T )

which is related to the Brinkmann number by the Prandtl number Pr = ν/a, with a being
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Governing equations

the thermal diffusivity a = λ/(ρcp), as Ec = Br/Pr. Since Ec < Br ≪ 1 and βTT0 ≪ 1

we conclude that the pressure transport term can be neglected without concern.

The last term in (3.21) accounts for interdiffusion and its significance in film absorption

was discussed by Grossman (1987). Even if his approximation hs ≈ cp(T −T0) results in a

relatively large error for LiBr–H2O (see Figure A.1 in Appendix A.2) we follow his argu-

ments, assume i = −ρD∇C for a moment, employ hs = Ch1 + (1−C)h2 to approximate

∂hs/∂C ≈ h1 − h2 and find

−i ·∇(h1 − h2) ≈ ρD(∇C) · (∇T )

(
∂cp
∂C

)

T,P

. (3.22)

By employing the scales for length, temperature and concentration x0, ∆T and ∆C, the

non-dimensionalized diffusion terms become

a∆T

x20

[

∇
2T +

Z

Le
(∇C) · (∇T )

]

(3.23)

where we have introduced the Lewis number Le = a/D and the interdiffusion parameter

Z =
∆C

cp

(
∂cp
∂C

)

T,P

. (3.24)

Again, by exploiting the Gibbs equation of state for LiBr–H2O, we can easily evaluate the

interdiffusion parameter and find Z ≈ −2∆C, as shown in Figure A.1. From there, with

∆C < 1, the interdiffusion term becomes negligible compared to thermal diffusion since

the terms are related by Le−1 where the Lewis number for LiBr–H2O is typically Le ≈ 102.

Finally, only the terms accounting for Soret and Dufour effect remain. Generally, for

small concentrations one finds that kT → 0 and both effects can be neglected. However,

for the present problem this is in general not true, since the mass fraction of LiBr in H2O

is typically C ≈ 50wt%. Even if we do not have any knowledge about the Soret coefficient

for LiBr–H2O, Elperin & Fominykh (2008) gives us the hint that the error in the absorbed

mass flux made by neglecting thermodiffusion is 0.1% for LiBr–H2O. We finally assume

that the Dufour effect is again smaller than the Soret effect and dropping both seems to

be a defensible assumption. Finally, since most physical effects turned out to be of no

relevance for the present problem, we end up at the well established equations for heat

and species transport

ρcp
DT

Dt
= λ∇2T, (3.25a)

ρ
DC

Dt
= ρD∇

2C. (3.25b)
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Bulk equations

3.1.3. Standard transport equation

The considerations above allow us to present the dimensional governing equations in form

of the standard transport equation for the quantity ψ

d

dt

∫

V

ρψ dV +

∮

O

ρφψ dO = −
∮

O

n̂ · j dO +

∫

V

ρq dV (3.26)

with the control volume V and its boundary O = ∂V , the fluid density ρ, the relative

volume flux density φ, the diffusive flux density j and the source density q that are

associated with the transport quantity ψ. Further, we have introduced the unit normal

vector n̂ (the hat indicates normalization) on O, thus

n̂ =
1

n

(

−∂xh
1

)

with n :=
√

1 + (∂xh)2. (3.27)

The integral version of the transport equation is necessary since we are dealing with a

free-surface flow where the control volume V or its boundary O moves itself. Therefrom,

one has to account for the volume flux created by the movement of O by employing the

relative volume flux density

φ = n̂ · (u−w) (3.28)

with the fluid velocity u and the boundary velocity w. The (volume) flux that is generated

through the boundary velocity w is related to the temporal change of the control volume

by the space conservation law (Ferziger & Perić, 2002)

d

dt

∫

dV =

∮

n̂ ·w dO. (3.29)

In case of the liquid film, the boundary velocity w is simply the temporal change of the

free-surface position h = h(x, t), thus

w = ∂they := ḣey (3.30)

being consistent with the space conservation law (3.29) since one can easily verify that

d

dt

∫

dV =

∫

ḣ dx. (3.31)

All quantities needed for the present model are deduced from (3.1) and (3.25), summa-

rized in Table 3.1.
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Table 3.1.: Transport quantity ψ with associated diffusive flux density j and source den-
sity q that are used in the standard transport equation (3.26) to formulate the
conservation laws.

ψ j q

mass 1 0 0
momentum u −S g

energy cpT −λ∇T 0
species C −ρD∇C 0

The final bulk equations are obtained by using the standard transport equation (3.26)

with the quantities from Table 3.1, hence

d

dt

∫

udV +

∮

n̂ · (u−w)u dO = −1

ρ

∮

n̂P dO + ν

∮

n̂ ·∇udO +

∫

g dV (3.32a)
∮

n̂ · udO = 0 (3.32b)

d

dt

∫

T dV +

∮

n̂ · (u−w)T dO = a

∮

n̂ ·∇T dO (3.32c)

d

dt

∫

C dV +

∮

n̂ · (u−w)C dO = D

∮

n̂ ·∇C dO (3.32d)

where dividing by ρ and ρcp, respectively, results in the kinematic viscosity ν = η̄/ρ and

the thermal diffusivity a. The original continuity equation

d

dt

∫

dV +

∮

n̂ · (u−w) dO = 0 (3.33)

was reduced by using the space conservation law (3.29) to become (3.32b).

3.2. Boundary conditions

From the standard transport equation one can derive a very powerful formulation to deduce

the corresponding boundary conditions. The jump condition, also known as Kotchine’s

theorem (Truesdell & Toupin, 1960), reads

n̂ · J−jK = JφρψK. (3.34)

As convention for the jump at the free-surface we define JXK := X ′ −X ′′ where the prime

refers to the liquid phase and the double prime to the gaseous phase.
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Boundary conditions

3.2.1. Mass flux jump

Applying the quantities from Table 3.1 regarding mass conservation to the jump condition

(3.34) yields at the free-surface JφρK = φ′ρ′ − φ′′ρ′′ and by inserting (3.28)

ṁ := n̂ · (u′ −w)ρ′ = n̂ · (u′′ −w)ρ′′ (3.35)

with the mass flux density due to absorption ṁ. Since the mass flux jump must vanish,

thus JφρK = JṁK = 0, the general jump condition (3.34) can be rewritten as

n̂ · J−jK = ṁJψK. (3.36)

By introducing the relative normal velocity ur,n := n̂ · (u−w) we conclude from (3.35)

u′r,n
u′′r,n

=
ρ′′

ρ′
:= ̺≪ 1. (3.37)

For a system pressure of P0 ≈ 1 kPa one finds ρ′′ ≈ 10−2 kg/m3 for H2O and ρ′ ≈ 103 kg/m3

for LiBr–H2O giving a typical density ratio of ̺ ≈ 10−5.

Kinematic condition The kinematic boundary condition is deduced from (3.35) and by

using the boundary velocity w = ḣey, thus

ṁ =
ρ′

n

(

−∂xh
1

)

·
(

u′

v′ − ḣ

)

so that the kinematic condition becomes

−ṁn
ρ′

= ḣ+ u′∂xh− v′. (3.38)

3.2.2. Momentum jump

The dynamic boundary conditions at the free-surface derive from the jump condition

(3.36) for momentum (see Table 3.1), hence n̂ · J−P1+ τ K = ṁJuK. In addition one has

to account for the Laplace-pressure σκn̂ with the surface tension σ and the curvature of

the free-surface

κ = −∇ · n̂ =
∂xxh

(1 + (∂xh)2)3/2
=
∂xxh

n3
. (3.39)

As the surface tension depends in general on temperature and concentration, σ = σ(T,C),

there is also the term resulting from the Marangoni-force ∇sσ with the tangential deriva-
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tive at the free-surface ∇s = (1− n̂n̂) ·∇. This leads to the complete stress balance

n̂ · J−P1+ τ K = ṁJuK + σκn̂ +∇sσ. (3.40)

As we assume no-slip at the free-surface, the velocity jump affects the normal velocity

component only such that JuK = n̂ · JuKn̂. Since the inclusion of the boundary velocity

w does not affect the jump condition, i.e. JuK = Ju −wK we find JuK = n̂ · Ju−wKn̂ =

(u′r,n − u′′r,n) n̂ and, therefore,

ṁJuK = ṁ(u′r,n − u′′r,n) n̂ = −ṁu′′r,n (1− ̺) n̂ ≈ −ṁ
2

ρ′′
n̂ (3.41)

where we have exploited ̺ ≪ 1 and (3.35). This pressure, which is induced by the phase

change, is known as the vapor thrust (Oron et al., 1997).

Dynamic conditions As long as the system pressure P0 is low, we can neglect the shear

stress from the ambient gas and assume a constant gas pressure P0. The normal and

tangential stress balances are obtained from a projection of (3.40) onto the unit normal

vector n̂ and the unit tangential vector t̂ = n−1(1, ∂xh)
T, thus

P0 − P + n̂ · τ · n̂ = −ṁ
2

ρ′′
+ σκ, (3.42a)

n̂ · τ · t̂ = t̂ ·∇σ. (3.42b)

3.2.3. Scalar fields – Jump conditions

From the Navier–Stokes equations we have already deduced that JṁK = 0. For all species

we need in addition JṁαK = 0. Since the absorbent (α = 1) is non-volatile and the gas

(α = 3) non-absorbable, we find ṁ1 = ṁ3 = 0 and therefore ṁ = ṁ2, stating that the

mass flux through the free-surface consists of the refrigerant only.

Species flux The absorbed mass flux density ṁ can be readily found from the species

jump conditions n̂ · J−iαK = J−iαK = ṁJCαK by using in addition the species flux densities

of the binary liquid mixture i′1 + i′2 = 0, the species flux densities of the binary gaseous

mixture i′′2 + i′′3 = 0 and the relations from Table 2.1, thus

ṁ = − Ji1K

JC1K
= − i′1

C ′
1

=
i′2

1− C ′
2

ṁ = − Ji3K

JC3K
= − i′′3

C ′′
3

=
i′′2

1− C ′′
2
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We identify i2 = −ρD∂nC2 and find the Eckert–Schneider condition for unidirectional

(single-sided) diffusion (Schlichting & Gersten, 1997)

ṁ = −(ρD∂nC2)
′

1− C ′
2

= −(ρD∂nC2)
′′

1− C ′′
2

. (3.43)

Heat flux From a straightforward use of (3.36) together with the corresponding quantities

of Table 3.1 the heat flux balance at the free-surface becomes Jλ∂nT K = ṁJcpT K. This

is not true since the phase change also contributes to the balance by the release of the

enthalpy of evaporation. To account for the phase change we rewrite

JcpT K → h′ − h′′ := −∆h (3.44)

where we have introduced the enthalpy of absorption ∆h. Together with the mass flux

density from (3.43) the heat flux condition finally reads

(λ∂nT )
′ − (λ∂nT )

′′ = −∆h ṁ = ∆h
(ρD∂nC2)

′

1− C ′
2

. (3.45)

3.2.4. Scalar fields – Equilibrium conditions

Thermal equilibrium The local thermodynamic equilibrium condition requires a vanish-

ing jump in the temperature, thus JT K = 0 and therefore

T ′ = T ′′. (3.46)

Vapor pressure equilibrium For local thermodynamic equilibrium we assume that the

partial pressure of the vapor within the gas phase P ′′
2 equals its vapor pressure within the

liquid mixture P ′
2, hence

P ′
2 = P ′′

2 . (3.47)

The refrigerant’s vapor pressure within the mixture P ′
2 is in general a function of the

mixture temperature T ′ and the refrigerant concentration C ′
2 and must be given with the

particular working pair.

We now deduce the relation between the partial pressure of the vapor P ′′
2 and its con-

centration within the gas phase C ′′
2 . We therefore use the definition of the mass fraction

(concentration) for the vapor within the gaseous phase, thus

C ′′
2 =

ρ′′2
ρ′′2 + ρ′′3

, [C ′′
2 ] =

kg refrigerant

kg gaseous phase
.
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As we assume both to be ideal gases, we use PV = nRT , m = nM = ρV with the amount

of substance n, the gas constant R and therefrom ρxRT = MxPx such that the densities

satisfy

ρ′′2 =M2
P ′′
2

RT
, ρ′′3 =M3

P ′′
3

RT
=M3

P0 − P ′′
2

RT

where we have included the constant system pressure P0 which is the sum of the partial

pressure of the vapor P ′′
2 and the partial pressure of the gas P ′′

3 , thus P0 = P ′′
2 + P ′′

3 . The

refrigerant concentration within the gas phase C ′′
2 finally becomes

C ′′
2 =

αmP
′
2

P0 − (1− αm)P ′
2

with P ′
2 = P ′

2(T
′, C ′

2) (3.48)

where we have introduced the molar mass ratio αm :=M2/M3.
1

3.2.5. Coupling effects and summary for the free-surface

Even if the coupling effects within the bulk turned out to be of minor importance for the

present system, the impact of the coupling effects at the free-surface is more delicate. The

Marangoni effects influence the fluid dynamics already for the non-absorbing case whereas

the absorption process gives rise to the source term in the kinematic condition and the

vapor thrust in the dynamic condition. The source term ∝ ṁ in (3.38) accounts for the

increase of the film thickness and since we assume only small absorption rates we can also

expect that neglecting the increase of the film thickness is a reasonable approximation.

The same argument applies to the vapor thrust which will be also neglected.

The remaining Marangoni effects do have a significant influence to the stability of the

film (Kalliadasis et al., 2012). However, it is worthwhile to aim for an one-way coupled

formulation since it reduces the numerical effort drastically and, even more important, it

opens the possibility to alternative approaches to solve the problem.

Therefore, we neglect all mentioned boundary coupling effects so that the free-surface

boundary conditions for the Navier–Stokes equations, given by (3.38) and (3.42), finally

reduce to

ḣ+ u∂xh− v = 0, (3.49a)

P − P0 = n̂ · τ · n̂− σκ, (3.49b)

n̂ · τ · t̂ = 0. (3.49c)

1For humid air, for instance, one finds the well known value αm = 18.02/28.95 ≈ 0.6225.
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Boundary conditions

For the coupled heat and mass transfer the set of boundary conditions is composed of the

two equilibrium conditions (3.46), (3.48) and the two flux conditions (3.43), (3.45), hence

T ′ = T ′′, (3.50a)

C ′′
2 =

αmP
′
2

P0 − (1− αm)P ′
2

with P ′
2 = P ′

2(T
′, C ′

2), (3.50b)

(ρD∂nC2)
′

1− C ′
2

=
(ρD∂nC2)

′′

1− C ′′
2

, (3.50c)

(λ∂nT )
′ − (λ∂nT )

′′ = ∆h
(ρD∂nC2)

′

1− C ′
2

. (3.50d)

The relation for the vapor pressure P ′
2 = P ′

2(T
′, C ′

2) must be given with the particular

working pair. The inlet, outlet and wall boundary conditions need further attention and

will be discussed below since they are subject to the solution strategy.

Literature does not fully agree with the presented boundary conditions for the coupled

heat and mass transfer which is briefly demonstrated in the following.

1. As already mentioned by Killion & Garimella (2001), some authors ignore the Eckert–

Schneider condition for unidirectional diffusion, see for instance (Bo et al., 2010;

Kim & Ferreira, 2009; Yang & Jou, 1998; Yoon et al., 2005).

2. Most authors employ vapor pressure equilibrium but do not provide an explicit

relation for the vapor pressure.

3. Dai & Zhang (2004) include additional (differential) terms in their flux conditions

which are not explained in their paper.

4. Besides ignoring unidirectional diffusion, Yang & Jou (1998) also ignore ρD in their

species flux condition.
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4. The isothermal wavy film

From the dimensional equations, the given scaling (2.10) including the scales from the

Nusselt film (2.7) we are now able to formulate the non-dimensional set of governing

equations for the fluid dynamical problem

d

dt

∫

udV +

∮

n̂ · (u−w)udO = −
∮

n̂P dO +
1

Re

∮

n̂ ·∇udO +
3G

Re

∫

dV (4.1a)
∮

n̂ · udO = 0 (4.1b)

ḣ+ u∂xh− v = 0 (4.1c)

P − P0 = Re−1 n̂ · τ · n̂−We κ (4.1d)

n̂ · τ · t̂ = 0 (4.1e)

which are the incompressible Navier–Stokes equations (neglecting buoyancy), the kine-

matic boundary condition (neglecting the mass flux density due to absorption), the normal

stress balance at the free-surface (neglecting the vapor thrust) and the tangential stress

balance at the free-surface (neglecting Marangoni effects). In the momentum equations

we have introduced the modified gravity vector

G :=
ĝ

sin θ
= ex − cot θey. (4.2)

The boundary velocity w is discussed in the next section. By introducing the aspect ratio

of the domain

ε0 =
hNu

L0
(4.3)

the present fluid mechanical problem is defined by the four non-dimensional parameters

ε0 , Re , Ka , θ (4.4)

where We and Ka are related in (2.14). To reduce the number of free parameters, we

restrict ourselves to the vertical plate, i.e. θ = π/2 and to a certain Kapitza number

representing a particular fluid. With this given set of non-dimensional equations one may

think of two strategies to solve the problem.
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The isothermal wavy film

1. Laboratory frame: Solving the equations (4.1) as they are, representing a time-

dependent problem within the laboratory frame. All transient phenomena are cap-

tured, including spatio-temporal chaos (Liu & Gollub, 1993). However, the free-

surface flow calls for elaborate numerical techniques and we want to briefly recapit-

ulate two of the most important ones. We also present qualitative results which had

been found by using the open source CFD-toolbox OpenFOAM.

a) VOF – Volume of fluid method: This method is very common for two-phase

flows, fairly easy to implement and relatively robust. The method operates on

an Eulerian grid, which appears to be its major advantage. Since only one

Navier–Stokes equation must be solved (one-fluid-approach) it is unavoidable

to simulate also some fraction of the secondary (gas) phase. The location of

the interface is determined from an advected color function with the drawback

of a smeared interface. However, another important advantage of the method

is its ability to treat topology changes. Even though VOF works for a wide

range of gas-to-fluid density ratios certain limits exist. For the coupled heat

and mass transfer one would also have to reformulate the free-surface boundary

conditions into bulk terms, as done for the Laplace pressure in the Navier–

Stokes equations by Brackbill et al. (1992). Figure 4.1 shows a naturally excited

isothermal liquid film as a result of a VOF-simulation with the OpenFOAM-

solver interMixingFoam. The fuzziness of the interface is clearly visible due to

the relatively coarse grid. To reduce the thickness of the numerically smeared

interface an adaptive mesh refinement would be desirable.

For the present problem we are neither interested in the dynamics of the gas

phase nor in topology changes. With our extremely low gas density it is further

likely to reach the limitation of the gas-to-fluid density ratio. The large Lewis

number also indicates the appearance of a thin concentration boundary layer at

the free-surface and a large number of computational cells seem to be necessary

to resolve the physics of absorption accurately. Altogether, it is questionable

whether the application of the VOF-method is the appropriate choice for the

present task.

Figure 4.1.: Exemplary result of an isothermal VOF-simulation with interMixingFoam

from OpenFOAM. Crosswise coordinate is scaled by 5.
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c) ALE – Arbitrary Lagrangian Eulerian method: This method operates on

a mesh, that is continuously adjusted to the boundaries. One can further distin-

guish between problems with a forced boundary movement and problems with

an a priori unknown boundary movement. The latter case is found for almost

all free-surface flows and fluid-structure-interaction (FSI) problems. Needless

to say, most difficult are those problems where the location of the boundaries

are not defined a priori (at the new time step). In transient flows the moving

boundaries generate additional fluxes (n̂ ·w) that enter into the Navier–Stokes

equations, giving a tight coupling between the mesh and the fluid flow. For

the present case, the boundary velocity is w = ḣey. Given a structured mesh

where the vertical grid lines (normal to the wall) are fixed, the velocity of the

horizontal grid lines may be distributed linearly, so that

w → y

h
ḣey. (4.5)

The OpenFOAM extended project provides the ALE-solver interTrackFoam

(see e.g. Jasak & Rusche (2009)). A particular C++ class to move the struc-

tured mesh of the liquid film was provided by Tuković (2011). Figure 4.2 shows

the result for an isothermal liquid film where the inlet velocity was perturbed

sinusoidally.

Figure 4.2.: Exemplary result of an isothermal ALE-simulation with interTrackFoam from
OpenFOAM. Crosswise coordinate is scaled by 5, the grayscale indicates the
pressure P . The parameters are different from the ones in Figure 4.1.

2. Moving frame: For a more systematic investigation it seems to be advantageous to

restrict ourselves to traveling wave solutions. This limitation allows us to transform

the system into a moving frame of reference where only the stationary equations for

one single wavelength have to be solved. This results in an enormous reduction of

computational costs.
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The isothermal wavy film

4.1. Moving frame

Since we are interested in traveling wave solutions only, we assume a moving frame of

reference (related quantities are primed if necessary) where the flow is steady. The trans-

formation velocity is the wave celerity c = cex.

4.1.1. Transformation to the moving frame

The transformation to the moving frame is done in the following steps.

1. We account for the control volume moving with c.

2. Transformation to the moving coordinates x = x′ + ct.

3. Transformation to the velocities within the moving frame, thus u = u′ + c.

4. Introduction of additional constraints arising due to the transformation.

Moving control volume Firstly, we account for the moving control volume. We use

Reynolds’ transport theorem to rewrite the volume integral for any quantity ψ = ψ(x, t)

d

dt

∫

ψ dV ≡
∫

∂tψ dV +

∮

n̂ ·wψ dO.

The lhs of the transport equation (3.26) can then be rewritten into the equivalent form

d

dt

∫

ψ dV +

∮

φψ dO =

∫

∂tψ dV +

∮

n̂ · uψ dO (4.6)

where we have used the relative volume flux density φ = n̂ · (u − w). It is important

to note that all quantities are given in the coordinate system where w is measured, i.e.

(4.6) holds in the laboratory frame. For a transient flow the discretization of the time

derivative, given in the rhs of (4.6), may not be possible since it is not necessarily defined

in the vicinity of the moving boundary.

Moving coordinates From the coordinates transform x = x′ + ct we obtain the trans-

formation rule for the time derivative ∂t → ∂t − c · ∇. Equation (4.6) then becomes, in

the moving frame of reference,

∫

∂tψ dV +

∮

n̂ · uψ dO →
∫

∂tψ dV −
∫

c ·∇ψ dV +

∮

n̂ · uψ dO =

=

∫

∂tψ dV +

∮

n̂ · (u− c)ψ dO (4.7)

where we have used c ·∇ψ = ∇ · (cψ) due to c = const.
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Moving frame

Velocities in the moving frame The fluid velocity transforms as u = u′ + c, such that

the continuity equation becomes

∮

n̂ · udO =

∮

n̂ · (u′ + c) dO =

∮

n̂ · u′ dO +

∮

n̂ · cdO = 0.

As one can simply verify, the flux generated by the constant velocity c vanishes, such that

the continuity equation simplifies to

∮

n̂ · u′ dO = 0. (4.8)

By using ψ = u in (4.7) we get for the lhs of the momentum equation

∫

∂tudV +

∮

n̂ · (u− c)
︸ ︷︷ ︸

u′

udO =

∫

∂t(u
′ + c)

︸ ︷︷ ︸

:=0

dV +

∮

n̂ · u′(u′ + c) dO =

=

∮

n̂ · u′ u′ dO + c

∮

n̂ · u′

︸ ︷︷ ︸

=0

dO =

=

∮

n̂ · u′u′ dO. (4.9)

Here we have used that the transient term has to vanish1 within the moving frame and

we have used the continuity equation (4.8).

Phase constraint The above transformation is done with the a priori unknown wave

celerity c so that the determination of c calls for an additional equation for closure. This

additional equation was introduced by Salamon et al. (1994) by defining the phase of the

interface deflection. To derive the constraint, the interface deflection h = h(x′) is firstly

expanded into the Fourier series

h(x′) = a0 + a1 sin(k1x
′ + ϕ1) +

∞∑

n=2

[
an cos(knx

′) + bn sin(knx
′)
]

, kn =
2π

L
n.

To then uniquely pinpoint the solution within our periodic window, one defines ϕ1 := 0.

This can be achieved by taking advantage of orthogonality, thus

∫ L

0

(
∂h

∂x′

)

sin(k1x
′) dx′ = 0. (4.10)

The equation is called phase constraint2 in the following.

1By definition, since we restrict ourselves to flows which are steady in the moving frame.
2We shall point out that the equation does not explicitly return c, but it is needed for closure due to the
additional unknown c that stems from the transformation into the moving frame of reference.
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The isothermal wavy film

Ambient pressure Due to the periodic boundary conditions we are dealing with a quasi-

closed system and it is therefore necessary to define a reference pressure somewhere in the

domain. However, by defining an internal reference pressure, the ambient gas pressure

P0 is no longer determined and another constraint is needed, called volume constraint in

the following. Literature distinguishes between two different conditions which we shall

call, according to Kalliadasis et al. (2012), open flow condition and closed flow condition,

where both conditions define a value for the averaged film thickness h within the moving

frame, where

h =
1

L

∫ L

0
hdx′. (4.11)

Volume constraint A – Open flow condition For the discussion of the volume constraint

it is advantageous to firstly deduce the open flow condition. We start with the continuity

equation within the laboratory frame (3.33), hence

d

dt

∫

V
dV =

∫ h0

0
u0 dy −

∫ hA

0
uA dy = Γ0(t)− ΓA(t) (4.12)

where u0 = u(0, y, t) is the inlet velocity distribution, h0 the height of the inlet and the

corresponding quantities at the position x = A, thus uA = u(A, y, t) and the film thickness

hA = h(A, t). Most experiments and many (unsteady) numerical simulations prescribe a

sinusoidal flux at the inlet to enforce the growth of waves since slow growth rates result

in a long entrance region just covered by the flat film. The perturbation is defined by

the forcing frequency ff and the perturbation amplitude af, so that the inlet flux typically

reads

Γ0(t) = Γ 0[1 + af sin(2πff t)]. (4.13)

Since the time-periodic inlet flow induces rapidly developing traveling waves, we may

assume that the entire flow is time-periodic. Averaging (4.12) over one period of time

τf = 1/ff by applying τ−1
f

∫
dt yields

τ−1
f (V (τf)− V (0))
︸ ︷︷ ︸

:=0

= Γ 0 − ΓA (4.14)

where the lhs vanishes due to the assumed time-periodicity of the flow, stating that the

total flow entering the domain is also leaving the domain within one period τf. To get a

relation for ΓA = Γ 0 we change into the moving frame, thus

Γ ′(x′) =

∫ h

0
u′(x′, y) dy =

∫ h

0
u(x, y, t) dy − ch(x, t) (4.15)

40



Moving frame

where continuity imposes Γ ′(x′) = const. We now additionally assume that the forcing

frequency is inherited to the flow so that the average over one wavelength L = 2π/k

within the moving frame is equivalent to the time average within the laboratory frame,

i.e. L−1
∫
dx′ = τ−1

f

∫
dt and averaging (4.15) yields

Γ ′ = Γ 0 − ch (4.16)

with the x′-averaged film thickness h defined by (4.11). With the imposed t-averaged

(inlet) volume flux Γ 0 ≡ 1 we obtain the open flow condition

h =
1− Γ ′

c
. (4.17)

The assumptions for the derivation of the open flow condition were an entirely time periodic

flow and that the forcing frequency is inherited to the flow. From (4.17) one may guess

that the averaged film thickness h is not equal to the Nusselt film thickness, i.e h 6= 1. We

will show later that the averaged film thickness is in general lower than one, i.e h < 1.

Volume constraint B – Closed flow condition In contrast, Salamon et al. (1994) employ

the closed flow condition in their investigation, thus

h := 1. (4.18)

Using this condition implies that h serves as length scale instead of hNu. This leads to

the situation that the Reynolds number of the closed flow condition is defined differently

from the one related to the closed flow condition, see (2.15). To indicate the solutions

that are found by using the closed flow condition we add the subscript C to the relevant

non-dimensional parameters, i.e. ReC and WeC.

Redefinition From now on all considerations are within the moving frame of reference

and we will therefore omit the prime.

4.1.2. Transformation to the computational domain

Within the moving frame of reference it is apparent to replace the Cartesian coordinates

(x, y) by the surface-fitted coordinates (ξ, η). This is done by mapping the free-surface

h(x) to η = 1 and for reasons dictated by the later introduced arclength continuation we

additionally map the end of the domain x = L to ξ = 1, thus

ξ =
x

L
, η =

y

h(x)
. (4.19)
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The isothermal wavy film

The resulting computational domain is a square with a side length of 1. We shall note

that the length of the domain L is not to confuse with the total length of the plate L0. A

sketch of the resulting coordinate lines within the (x, y) space is shown in Figure 4.3. The

vertical lines represent x = const. or ξ = const. The free-surface is indicated by η = 1 and

all curvilinear levels below correspond to η = const.

η = 1

x, ξ

y

Figure 4.3.: Curvilinear coordinate levels (ξ, η) within the physical moving frame (x, y).

The transformation rules for the derivatives become

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η

∂

∂y
=
∂ξ

∂y

∂

∂ξ
+
∂η

∂y

∂

∂η

so that the operators read in the new coordinates

∂x =
1

L

(

∂ξ −
ηh′

h
∂η

)

(4.20a)

∂y =
1

h
∂η (4.20b)

where we will use from now on h′ := ∂ξh and also h′′ := ∂ξξh.

4.1.3. Governing equations on the computational domain

The final non-dimensional momentum and continuity equations within the moving frame

of reference on the computational domain (ξ, η) are

∮

φudO = −
∮

n̂xP dO +
1

Re

∮

DudO +
3

Re

∫

dV (4.21a)
∮

φv dO = −
∮

n̂yP dO +
1

Re

∮

Dv dO − 3

Re

∫

cot θ dV (4.21b)
∮

φdO = 0 (4.21c)

42



Moving frame

with the volume flux density φ, the (bulk) normal derivative operator D and the differential

volume element dV

φ = n̂ · u = n̂xu+ n̂yv (4.22a)

D = n̂ ·∇ =
n̂x
L
∂ξ −

(
n̂xηh

′

Lh
− n̂y

h

)

∂η (4.22b)

dV = dxdy = Lhdξ dη (4.22c)

where the unit normal vector n̂ will be given below with the discretization. The normal

and tangential stress balances at the free surface become

P − P0 =
2h′

ReL(L2 + h′2)

(
h′∂ξu− L∂ξv

)
− 2

ReLh

(
h′∂ηu− L∂ηv

)
−

− WeLh′′

(L2 + h′2)3/2
(4.23a)

−2h′∂ξu+
L2 − h′2

L
∂ξv +

L2 + h′2

h
∂ηu+

h′(L2 + h′2)

Lh
∂ηv = 0. (4.23b)

The remaining boundary conditions

{h,u, P}|ξ=0 = {h,u, P}|ξ=1 (4.24a)

u|η=0 = −c (4.24b)
(
uh′ − Lv

)
|η=1 = 0 (4.24c)

imply periodicity, no-slip at the wall and the kinematic boundary condition. The phase

constraint reads

∫ 1

0
h′ sin (2πξ) dξ = 0. (4.25)

As volume constraint either the closed flow condition

∫ 1

0
hdξ = 1 (4.26)

or the open flow condition

h|ξ0
∫ 1

0
u|ξ0 dη + c

∫ 1

0
hdξ = 1 (4.27)

is used. The open flow condition (4.27) is evaluated at some arbitrary position ξ0. We will

employ the closed flow condition (4.26) for the verification of our code with the data given

by Salamon et al. (1994) whereas the open flow condition (4.27) will be used for further

43



The isothermal wavy film

investigations. Since this is common sense in the relevant literature we will replace the

length of the domain L by the corresponding wave vector k, thus

k =
2π

L
. (4.28)

4.2. Numerics

The following section gives a detailed overview of the numerical treatment of the system

(4.21 – 4.27). Basically the present solver is a monolithic implementation of the Finite

Volume formulation using Newton’s method including an arclength continuation in the

directions of k and Re. The flow field variables are arranged in a staggered manner and

the discretization is done by using central schemes and linear interpolation, leading to a

method of second order accuracy. The solver was developed by the author in MATLAB

for the present monograph. The basic strategy for the implementation of the solver into

MATLAB is adopted from Wesseling (2001) and some further details are taken from

Lanzerstorfer (2012).

4.2.1. Mesh

The coordinate transformation (4.19) already implies a structured grid, which seems to

be the natural choice to mesh the present problem. The expected geometry of the film

interface calls for a local mesh refinement in order to save computational costs. However,

to limit the complexity of the solver to a certain level we distribute the cells equidistantly

in both directions. With the number of cells in streamwise direction Nξ and in crosswise

direction Nη the cell lengths are ∆ξ = 1/Nξ and ∆η = 1/Nη . Instead of defining the

number of cells in streamwise direction Nξ we introduce the cell aspect ratio

R =
∆ξL

∆η
=
NηL

Nξ
(4.29)

so that Nξ = ⌈LNη/R⌉ where the brackets represent the ceiling function. With the given

meshing strategy, every cell in physical space is a trapezoid as shown in Figure 4.4 (a).

The notation n, e, s, w for the four cell faces and c for the cell center is indicated. Also,

the unit normal vectors n̂i are shown, which read in Cartesian coordinates

n̂e/w = ±
(

1

0

)

, n̂n/s = ± ∆ξ

∆n/s

(

−h′cηn/s
L

)

(4.30)

with ∆n/s standing for the respective face area.
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n̂e

n̂s

Figure 4.4.: (a) Sketch of a single trapezoidal cell (see Figure 4.3) showing the face nota-
tion and the face normal vectors. (b) Staggered variable arrangement of the
Cartesian velocity components u, v and the pressure P . The cross fluxes are
indicated by the dashed arrows.

4.2.2. Variable arrangement

As it is also done in the MATLAB examples of Wesseling (2001), we employ the staggered

variable arrangement to circumvent the well known problems of pressure checker-boarding.

The staggered variable arrangement is shown in Figure 4.4 (b), where the pressure P is

located at the cell center (c), the streamwise velocity component u at the center of the

vertical faces (w, e) and the crosswise (Cartesian) velocity component v is located at the

center of the upper and lower faces (n, s). The choice of the Cartesian velocity components

is desirable to keep the momentum equations in their conservative form. The drawback

of using Cartesian instead of grid-oriented velocity components (covariant, contravariant),

which would be orthogonal to the (ξ, η) grid lines, is the appearance of cross fluxes ∼ u at

the northern and southern boundaries. Since the velocities for these cross fluxes us and

un, indicated by the dashed arrows in Figure 4.4 (b), are not available at the positions

needed, we interpolate them by using the arithmetic mean of the nearest neighbor values.

Nonetheless, Ferziger & Perić (2002) do not recommend a staggered arrangement on a

non-orthogonal grid and declare the combination as inapplicable for cases where the grid

lines change their direction significantly. However, since we do not expect such a behavior

(see Figure 8.5 of Ferziger & Perić (2002)) for the present problem, their argument is less

stringent.

Figure 4.5 illustrates, for convenience on an orthogonal grid, the control volumes for

the conservation equations which are indicated by shaded boxes. The control volumes
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The isothermal wavy film

for continuity, streamwise momentum and crosswise momentum equation are chosen such

that the pressure P , the streamwise velocity u and the crosswise velocity v lie in center of

the respective control volume.

continuity

momentum u

momentum v

Figure 4.5.: Location of the control volumes (shaded) for the respective conservation equa-
tion. The squares indicate the location of u, the triangles the location of v
and the circles the location of P .

The free-surface is treated differently since the respective boundary conditions (4.23)

and (4.24c) require the introduction of all variables as shown in Figure 4.6. The free-

surface is allocated by h, u, v and P so that four equations are needed. Three of them

are the already mentioned dynamic and kinematic conditions and the fourth equation is

found as the crosswise momentum balance over the upper half cell, which has not been

used for the bulk equations. The respective control volume is indicated as shaded box in

Figure 4.6.

η = 1

Figure 4.6.: Sketch of the variable arrangement at the free-surface. The diamond ⋄ at the
free-surface indicates the joint location of h, v and P . As for the bulk, the
square at the free-surface indicates the location of u.
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4.2.3. Discretization

Continuity equation The continuity equation is discretized in terms of the fluxes across

the cell faces, i.e.

∮

φdO =

∮

(n̂xu+ n̂yv) dO = 0 →
4∑

i=1

φi∆i = 0 (4.31)

with the volume flux φi∆i across the cell face i and the respective face area ∆i. With the

face unit normal vectors (4.30) the fluxes are

φe∆e = uehe∆η (4.32a)

φw∆w = −uwhw∆η (4.32b)

φn∆n = (Lvn − h′c ξnun)∆ξ (4.32c)

φs∆s = −(Lvs − h′c ξsus)∆ξ (4.32d)

Convective terms The convective terms of the momentum equations are again discretized

by using the fluxes, hence

∮

φuj dO →
4∑

i=1

(φi∆i)uj,i (4.33)

where uj means uj = u, v.

Pressure gradient The pressure forces become

∮

n̂xP dO → ∆η(hePe − hwPw)− h′c∆ξ(ηnPn − ηsPs) (4.34a)
∮

n̂yP dO → L∆ξ(Pn − Ps) (4.34b)

Gravity term The gravity force trivially derives from (4.22c) as

∫

dV → Lhc∆ξ∆η (4.35)

Diffusive terms With the bulk normal derivative operator D given in (4.22b) the diffusive

term reads for uj = u, v

∮

Duj dO =

∮ [
n̂x
L
∂ξ −

(
n̂xηh

′

Lh
− n̂y

h

)

∂η

]

uj dO
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Discretization and collection of all terms yields

∮

Duj dO → ∆η

L
[he(∂ξuj)e − hw(∂ξuj)w]−

h′c∆ξ

L
[ηn(∂ξuj)n − ηs(∂ξuj)s]−

− ηc∆η

L

[
h′e(∂ηuj)e − h′w(∂ηuj)w

]
+

+
L∆ξ

hc

(

1 +
h′2c η

2
n

L2

)

(∂ηuj)n − L∆ξ

hc

(

1 +
h′2c η

2
s

L2

)

(∂ηuj)s (4.36)

Bulk derivatives All derivatives in (4.32) - (4.36) are discretized by the central finite

differencing scheme of second order accuracy and intermediate values are found by linear

interpolation. The overall order of accuracy will be verified below.

Normal stress balance The centers for discretization of (4.23a) are the cell centers i

(diamonds in Figure 4.6), so that the ξ-derivatives become

h′ → hi+1 − hi−1

2∆ξ
, (4.37a)

h′′ → hi+1 − 2hi + hi−1

∆2
ξ

, (4.37b)

∂ξu → ue − uw
∆ξ

, (4.37c)

∂ξv → vi+1 − vi−1

2∆ξ
, (4.37d)

with the interfacial streamwise velocities uw and ue at the western and eastern cell face

(squares in Figure 4.6), respectively. For the η-derivatives, one-sided three-point schemes

are employed, thus

∂ηu → auuf,i + buuf−1,i + cuuf−2,i, (4.38a)

∂ηv → avvf,i + bvvf−1,i + cvvf−2,i, (4.38b)

with the subscript f indicating the location at the free surface, the coefficients

au =
8

3∆η
, bu = − 3

∆η
, cu =

1

3∆η
, (4.39a)

av =
7

6∆η
, bv= − 4

3∆η
, cv =

1

6∆η
, (4.39b)

and with uk,i being the streamwise velocity at the cell center i, derived as the arithmetic

mean of uw and ue.
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Tangential stress balance The discretization of (4.23b) is done in full accordance to the

discretization of (4.23a) before, but the centers of discretization are the cell faces (squares

in Figure 4.6).

Kinematic boundary condition The discretization of (4.24c) is done at the cell centers i

(diamonds in Figure 4.6) and reads

uw + ue
2

hi+1 − hi−1

2∆ξ
− Lvi = 0. (4.40)

Phase constraint, Volume constraint CFC For discretization of (4.25) and (4.26), the

values at the cell centers i are employed (diamonds in Figure 4.6), thus

Nξ∑

i=1

hi+1 − hi−1

2∆ξ
sin (2πξi)∆ξ = 0, (4.41a)

Nξ∑

i=1

hi∆ξ = 1. (4.41b)

Volume constraint OFC To discretize the volume constraint for the open flow condition

(4.27), the location ξ0 is defined at ∆ξ, i.e. on the eastern border of the first cell (second

square in Figure 4.6), yielding

h1 + h2
2

Nη∑

k=1

uk,2∆η + c

Nξ∑

i=1

hi∆ξ = 1. (4.42)

4.2.4. Full set of equations

Continuous We collect all equations (4.21) - (4.25) including (4.26) or (4.27) and write

them as F [X] = 0. Here, F [X ] is the vector valued non-linear functional with the solution

vector X representing the set of unknown functions and unknown scalars, thus

X =














X1

X2

X3

X4

X5

X6














=














h(ξ)

u(ξ, η)

v(ξ, η)

P (ξ, η)

c

P0














. (4.43)

Discretized By discretizing F [X] = 0 one finds the discrete equivalent f(x) = 0 which

can be linearized and written as A ·x = b with the Picard matrix A. Since we are dealing
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with a non-linear problem, it is clear that x also enters in the Picard matrix and x has to

be found iteratively, i.e.

A(xn) · xn+1 = bn. (4.44)

For the convergence measure we introduce the residual vector

fn := A(xn) · xn − bn (4.45)

and define the residual rn (at iteration step n) as the Euclidean norm || · ||2 of the residual

vector fn weighted by the number of elements N , thus

rn :=

√
∑N

i=1(f
n
i )

2

N
=

||fn||2
N

. (4.46)

The solution of the discretized system f(x) = 0 is assumed to be converged if the residual

rn is below a certain tolerance εt, thus r
n < εt. As expected, the simple Picard iteration

cannot be applied to the present problem, since convergence is in general not achievable.

4.2.5. Newton’s method

The given problem contains a large number of non-linear terms, since the unknown location

of the interface h determines the metric terms of the coordinate transformation entering

everywhere in the equations. The first choice for such a problem is Newton’s method which

becomes inevitable anyway for the arclength continuation introduced later. Nonetheless,

Newton-like techniques are rarely used in CFD (Ferziger & Perić, 2002). This is mainly

because of the costs for the (numerical) generation of the Jacobian and the costs for solving

the system of linear equations. We have circumvented the first restriction with a hard-

coded implementation of the Jacobian by exploiting the structured mesh and by using

the highly efficient sparse commands of MATLAB. Finally, the costs for the Jacobian-

setup becomes negligible compared to the costs for solving the system of linear equations.

However, the remaining drawback of the method is the enormous demand of memory so

that the scalability is limited by the available memory.

Fréchet derivative For the construction of a Newton iteration we employ the Taylor

series expansion of the functional F [X ] around X0, hence

Fi[X ] = Fi[X
0 + δX ] = Fi[X

0] + δFi = Fi[X
0] +

∫

F ′
ij [X

0] δXj dx
′ + . . . (4.47)
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with δXj = δXj(x
′), x′ = (ξ, η) and the Fréchet derivative evaluated at X0, thus

F ′
ij [X

0] =
δFi

δXj

∣
∣
∣
∣
X

0

. (4.48)

For convenience we write the first variation δFi in terms of the linear, in general partial

differential, operator Tij [X
0]

δFi =

∫

F ′
ij [X

0] δXj dx
′ := Tij[X

0] δXj . (4.49)

Note that F ′
ij [X

0] and Tij [X
0] may be used interchangeably (Thurston, 1980). The so-

lution to the problem F [X] = 0 is determined by the iterative procedure 0 = Fi[X
n] +

Tij[X
n] δXj and by solving the system of linear differential equations

Tij [X
n] δXj = −Fi[X

n] (4.50)

for the correction δXj yielding the solution at iteration step (n+ 1) as

Xn+1 = Xn + δX . (4.51)

Evaluation of the Fréchet derivative The implementation of the given formulation shall

be briefly demonstrated on the curvature term of the dynamic boundary condition (4.23).

We therefore define the functional

G[h] :=
h′′

(L2 + h′2)3/2
.

The Fréchet derivative derives (by using a computer algebra system like Mathematica) as

G′[h(x)] :=
δG[h(x)]

δh(x′)
=

[

− 3h′h′′

(L2 + h′2)5/2
d

dx
+

1

(L2 + h′2)3/2
d2

dx2

]

δD(x− x′)

with the Dirac-delta distribution δD so that the first variation becomes

∫

G′[h(x)] δh(x′) dx′ =

[

− 3h′h′′

(L2 + h′2)5/2
d

dx
+

1

(L2 + h′2)3/2
d2

dx2

]

δh

where the spatial derivatives are passed to δh through an integration by parts.

Discretization The discretized version of (4.50) corresponds to a system of linear alge-

braic equations where the discretized differential operator Tij[X
n] becomes the Jacobian
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matrix J(xn) leading finally to the Newton–Raphson method

J(xn) · (xn+1 − xn) = −f(xn). (4.52)

Linear equation solver Any system of linear algebraic equations is solved by using the

internal MATLAB-routine mldivide (backslash operator). Basically the algorithm chooses

a proper routine out of the Linear Algebra Package (LAPACK) depending on the structure

of the matrix whereas for sparse matrices specific packages are incorporated (MATLAB,

2010).

4.2.6. Arclength continuation

For the continuation of the solution branches it is inevitable to implement an arclength

continuation method (Keller, 1977). We therefore introduce the parameter χ indicating

the direction of continuation. For the present case, the wave vector k and the Reynolds

number Re had been implemented as continuation directions, thus χ ∈ {k,Re}. With the

new variable χ the solution vector x is extended to the new solution vector x̂ = (x, χ)T.

We introduce the arclength ∆s measuring the distance between two consecutive solutions

in the Euclidian norm, thus

∆s2 = ||x̂− x̂∗||22 = ||x− x∗||22 + (χ− χ∗)2

where x̂ = (x, χ)T represents the new (unknown) solution on the solution branch, whereas

x̂∗ = (x∗, χ∗)T stands for the recent (known) solution. We shall point out that one may

not confuse the recent solution of the arclength continuation x̂∗ with the recent result of

the Newton iteration x̂n. The arclength constraint is defined as

g(x̂) := ||x− x∗||22 + (χ− χ∗)2 −∆s2 = 0. (4.53)

Including this constraint yields the extended functional f̂(x̂) := (f , g)T, the extended

Jacobian

Ĵ(x̂n) :=
∂f̂i
∂x̂j

∣
∣
∣
∣
x̂
n

, (4.54)

and finally the corresponding extended system of linear equations

Ĵ(x̂n) · (x̂n+1 − x̂n) = −f̂(x̂n). (4.55)
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For further use it is convenient to denote (4.55) in the bordered form

(

J l

mT o

)

x̂
n

·
(

−∆x

−∆χ

)

=

(

f

g

)

x̂
n

(4.56)

with the difference between two consecutive iterations

∆x = xn+1 − xn, (4.57a)

∆χ = χn+1 − χn, (4.57b)

and the blocks of the extended Jacobian

J =
∂fi
∂xj

, l =
∂fi
∂χ

, m =
∂g

∂xj
, o =

∂g

∂χ
. (4.58)

Predictor step A new step along the solution branch is initialized by a predictor step.

We therefore derive the tangential vector T̂ of the functional f at the recent solution x̂∗

from the condition for the directional derivative

(T̂ · ∇̂)f(x̂∗) = 0. (4.59)

Rearranging yields T̂j ∂̂jfi = (∂̂jfi)T̂j := Mij T̂j = 0 where the matrix Mij is represented

by the upper two blocks J and l of the extended Jacobian evaluated at x̂∗. A unique

solution is found by additionally defining the length of the tangential vector and as long

as the vector is subject to normalization, one may define any component to an arbitrary

value, say T̂1 := 1, leading to

(

J l

eT1 0

)

x̂
∗

· T̂ =

(

0

1

)

(4.60)

with eT1 = (1, 0, . . . , 0). Finally, we have to deduce the peripheral direction of the continua-

tion process corresponding to the sign of ∆s. Figure 4.7 shows that the recent continuation

direction t∗ is set by the two latter solutions x̂∗ and ŷ∗. The tangent vector at x̂∗ within

the ck-plane reads t0 = (T̂c, T̂k)
T so that the sign for ∆s is found from sgn(t∗ · t0). The

initial state for the Newton iteration (predictor step) then reads

x̂0 = x̂∗ +
T̂

||T̂ ||2
sgn(t∗ · t0)∆s. (4.61)

Simple strategies for the control of ∆s can be found in Seydel (1994).
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x̂∗

ŷ∗

x̂0

T̂c

T̂k

c

k

γ

t∗

t0

Figure 4.7.: Sketch of a predictor process with solution branch γ, already converged so-
lutions x̂∗ and ŷ∗, tangent vector at the recent solution t0 = (T̂c, T̂k)

T and
predicted initial guess x̂0.

4.2.7. Bordering algorithm

Figure 4.8 shows the structure of the extended Jacobian (4.56). The discretized equations

(rows) and the unknowns (columns) are also indicated. The additional blocks arising with

the arclength continuation (l, m, o) lead to an unfavorable matrix allocation resulting in

an enormous increase of computational costs for solving the linear system. This increase

can be substantially reduced by using the bordering algorithm (Keller, 1986). Instead of

solving the system (4.56) directly, we introduce the auxiliary vectors y and z and solve

J · y = l, (4.62a)

J · z = f . (4.62b)

The solution of (4.56) then becomes

−∆χ =
g −m · z
o−m · y , (4.63a)

−∆x = z − (−∆χ)y. (4.63b)

By means of efficiency it is indispensable to implement the bordering algorithm, since

(4.62) making use of J twice is considerably less expensive to solve than (4.56) including Ĵ

just once.
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h u v P c, P0, χ

continuity

momentum u

momentum v

wall bc

periodic bc

free-surface bc

constraints

Figure 4.8.: Data allocation of the extended Jacobian Ĵ . The horizontal ledger lines sep-
arate the discretized equations and the vertical ledger lines separate the dis-
cretized field variables from another.

4.2.8. Tests

Verification of the Jacobian For a verification of the Jacobian matrix we employ the

strategy proposed by Squire & Trapp (1998). We, therefore, create the Jacobian numeri-

cally column by column where the n−th column jn derives from

jn =
ℑf̂(x̂0 + ibên)

b
(4.64)

with the imaginary unit i and a small increment bên in the direction of the n−th unit

vector ên where b is (numerically) small, say b = 10−14. For the evaluation of f̂ we

employ the Picard matrix, thus f̂ = Â · x̂− b̂. The resulting Jacobian

Ĵ(x̂0) = [. . . , jn, . . . ] (4.65)

is then compared to its hard-coded equivalent. From a positive test result we can conclude

that the hard-coded Jacobian fits to f̂ and to the Picard matrix Â, respectively. However,

Â could still be incorrect, but this cannot be derived from the present test.
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Basic convergence test A very basic convergence test of the solver is shown in Figure 4.9.

The left image shows the residuum r̂n versus the iteration index n with n = 0 standing

for the start residuum of the initial guess and n = 8 representing the residuum of the

finally converged solution. We introduce the offset of the iterated state x̂n from the exact

solution x̂, hence

δn = ||x̂n − x̂||2. (4.66)

The right image of Figure 4.9 shows the offset δn+1 versus the previous offset δn by

approximating the unknown exact solution by the one with the highest resolution, thus

x̂ ≈ x̂8. By comparing the result with the dashed line representing δn+1 = (δn)2 the

quadratic convergence of the Newton iteration becomes evident.

r̂n

n δn

δn
+
1

0 2 4 6 8

10−2

10−2

10−4

10−4

10−5

10−6

10−8

10−10

10−15

10−20

100

100

102

102

104

104

(a) (b)

Figure 4.9.: Convergence of a Newton iteration (a) Residuum r̂n vs. iteration index n. (b)
Offset δn+1 vs. previous offset δn. The dashed line represents quadratic con-
vergence and the arrow indicates the direction of increasing iteration index n.

Grid convergence The present paragraph provides a grid convergence check which is

performed for several cell aspect ratios R and different Reynolds numbers. The wave

celerity c is assumed to serve as representative quantity to measure the convergence. We

introduce dn as the deviation of wave celerity of the n-th discrete solution cn from the

exact value c, hence

dn = cn − c. (4.67)
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Again, since the exact value is unknown, c has to be approximated by the value from

the solution with the highest resolution c†, so that dn = cn − c†. The images of Figure

4.10 show the offset dn as function of the vertical resolution Nη for the cell aspect ratios

R = 1, . . . , 5. The left image corresponds to (ReC,WeC) = (5, 49) and the right image to

(ReC,WeC) = (20, 4.9), where the Weber numbers derive from Ka = 500. The dashed line

indicates exact second order accuracy and as expected from the discretization schemes,

the algorithm provides second-order accuracy. We clearly notice that the cell aspect ratio

R has a negligible effect on the accuracy of the result for ReC = 5 in contrast to ReC = 20.

This difference is mainly caused by the decrease of the Weber number indicating a reduced

resistance to interface deflections by surface tension.

d
n

d
n

Nη Nη

10−1 10−1

10−2 10−2

10−3 10−3

10−4 10−4

100100

100 100101 101102 102

(a) (b)

Figure 4.10.: Grid convergence check showing the offset dn as function of the vertical grid
resolution Nη for the cell aspect ratios R = 1, . . . , 5, Ka = 500, (a) ReC = 5
and (b) ReC = 20. The arrow indicates the direction of increasing R and the
dashes lines indicate second-order accuracy.

Verification To verify the current calculation we use the data given by Salamon et al.

(1994). Figure 4.11 shows the solution branches γ1 (slow family) and γ2 (fast family)

in the ck-plane for ReC = 7.6 (11.4) and WeC = 214.7 (544). The bracketed values are

the parameters in the scales of Salamon et al. (1994), see Table 2.2. From the figure the

excellent agreement becomes apparent. For kC → 0 the computational domain extends to

infinity, thus L→ ∞, so that the continuation of the solution branch has to be terminated

at a certain point for computational reasons. These points, at the lower ends of both

branches, are marked by arrows indicating that the branches continue. The origin of the
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slow branch γ1 is indicated by the bullet and represents the Hopf bifurcation associated

with the primary instability of the flat film. The circle at the emanation point of the fast

branch γ2 indicates a period doubling bifurcation (Salamon et al., 1994).

cC

k
C

γ1

γ2

0.15

0.1

0.05

0
2 2.5 3 3.5 4 4.5

Figure 4.11.: Comparison of the result given by Salamon et al. (1994) for (ReS,WeS) =
(11.4, 544) corresponding to our (ReC,WeC) = (7.6, 214.7). The branches
composed by the asterisks represent the extracted data from Salamon et al.
(1994), the black curves represent the current calculation. The arrows indi-
cate that the branches continue, the bullet marks the Hopf bifurcation and
the circle the period doubling bifurcation.

The left block of Table 4.1 presents the data given by Salamon et al. (1994) (their

Table I) where they show the maximum height of the film hmax and the wave celerity cS =

cC/1.5 for their parameter set (ReS,WeS, k) = (9.1, 76.4, 0.07) and several FEM-resolutions

with (Nx, Ny) representing the number of bi-quadratic elements in each direction. Since

they use bi-quadratic basis functions for u, v and bi-linear basis functions for P , the value

for their degrees of freedom may be deduced from

NFEM = 2(2Nx + 1)(2Ny + 1) +NxNy + 2Nx (4.68)

and represents the number of unknowns3. To get to a FVM-resolution that is comparable

3Their value 29 922 for (Nx, Ny) = (160, 20) does not fit to our given calculation yielding 29 842.
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Table 4.1.: Left: FEM-data taken from Salamon et al. (1994) for (ReS,WeS, k) =
(9.1, 76.4, 0.07). Right: Corresponding FVM-study for (ReC,WeC, kC) =
(6.06̇, 37.78, 0.07).

(Nx, Ny) NFEM hmax cS (Nξ, Nη) NFVM hC,max cC/1.5

(20, 5) 1 042 1.9503 2.4616 (40, 10) 1 476 1.8266 2.5013

(40, 10) 3 882 1.9112 2.4987 (80, 20) 5 346 1.8652 2.5051

(80, 20) 14 962 1.8822 2.5033 (160, 40) 20 286 1.8769 2.5036

(160, 20) 29 922 1.8815 2.5031 (320, 40) 40 446 1.8808 2.5037

Table 4.2.: Extended convergence check for (ReC,WeC, kC) = (6.06̇, 37.78, 0.07) and a cell
aspect ratio of R = 10.

(Nξ, Nη) NFVM hC,max cC/1.5

(89, 10) 3 240 1.8724 2.5098

(179, 20) 11 880 1.8787 2.5050

(359, 40) 45 360 1.8810 2.5037

(718, 80) 176 874 1.8816 2.5034

(1436, 160) 698 382 1.8818 2.5033

(2872, 320) 2 775 318 1.8818 2.5033

to the FEM-resolution of Salamon et al. (1994) we simply employ the doubled number of

bi-quadratic elements (Nx, Ny) as the number of cells (Nξ, Nη) in our FVM-simulation.

The results for the corresponding parameters (ReC,WeC, kC) = (6.06̇, 37.78, 0.07) are given

in the right block of Table 4.1 where our degrees of freedom NFVM are typically larger due

to a different variable arrangement. An extended convergence study is shown in Table 4.2

where we have fixed the cell aspect ratio to R = 10 and varied the cross-stream resolution

Nη
4. From Table 4.1 we see that a precision of three significant digits for cC is reached

already with a resolution of Nη = 40. The side-by-side comparison in Table 4.1 shows that

the accuracy of both methods is practically the same, although the FEM results seem to

be slightly better.

4The case with the highest resolution already requires about 24GB memory, very close to the maximum
available.
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4.3. Results

4.3.1. Solution branching

The analysis of the problem in the boundary layer approximation presented in literature

has already indicated the rich solution structure of the present system. The principle

branching behavior was given by Chang et al. (1993). By increasing the reduced Reynolds

number they show that the γ1-branch remains qualitatively unaltered and the γ2-branch

successively coalesces with the γn-branches through pinching bifurcations to form new

branches, so that γ2 and γ3 form γ′2 for instance. However, the pinching of the branches γ1

and γ2 cannot be predicted by the first order boundary layer approximation employed by

Chang et al. (1993). This result was found by Salamon et al. (1994) by fixing the reduced

Reynolds number δS and varying the viscous dispersion number εS, both are defined as

δS =
2ReS

45We
1/3
S

, (4.69a)

εS =
1

15We
2/3
S

. (4.69b)

All parameters are collected in Table 4.3 where the first column indicates the label of

Figure 19 in Salamon et al. (1994). We see that decreasing εS by keeping δS = const.

yields an increase of ReC with a simultaneous increase of WeC and Ka. The path in terms

of the reduced parameters (δS, εS) results in a somewhat inappropriate path in terms of

the Navier–Stokes parameters (ReC,WeC). Thus, to mimic experimental conditions, we

instead vary ReC by keeping Ka = const.

Figure 4.12 shows the solution branches for Ka = 500 and ReC = {3, 3.5, 4, 4.5}. From

the figure we clearly identify the pinching between γ1 and γ2 in qualitative agreement with

the Navier–Stokes study of Salamon et al. (1994).

Table 4.3.: Path taken for δS = 0.062 in Salamon et al. (1994) (their Figure 19) and cor-
responding Navier–Stokes parameters in the present scaling.

εS ReS WeS ReC WeC Ka

(f) 0.005 5.10 48.7 3.40 55.2 294

(e) 0.004 5.70 68.0 3.80 86.1 553

(d) 0.0035 6.09 83.1 4.06 113 806

(c) 0.0034 6.18 86.8 4.12 119 875

(b) 0.003 6.58 105 4.39 154 1251

(a) 0.001 11.4 544 7.60 1378 28 072
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Figure 4.12.: Solution branches γ1 and γ2 for Ka = 500 and ReC = {3, 3.5, 4, 4.5}. The
arrow indicates that the branch continues, the bullet marks the Hopf bifur-
cation and the circle the period doubling bifurcation.

Increasing ReC further yields another pinching, where γ′2 is created by the coalescence

of γ2 and γ3. The process is shown in Figure 4.13. This agrees qualitatively well with

the BL-prediction given by Chang & Demekhin (2002) and also with the investigation

by Kalliadasis et al. (2012). Representative wave shapes are given in Figure 4.14 for

ReC = 10, and in Figure 4.15 for ReC = 12.
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Figure 4.13.: Coalescence of γ2 and γ3 to form γ′2 for Ka = 500 and ReC =
{10, 11, 11.5, 12}. The arrow indicates that the branch continues and the
bullet marks the Hopf bifurcation.
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along branch γ2. Lower row: Solutions along branch γ3.
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4.3.2. Relation to unsteady simulations

Experiments and transient simulations typically employ a sinusoidal perturbation at the

inlet corresponding to (4.13). It is known that the forcing frequency ff is inherited to the

flow if the perturbation amplitude a is sufficiently large. Due to this synchronization we

equate the forcing frequency ff with the wave frequency f = kc/(2π), thus ff = f . We

shall then check whether the solutions of our steady simulations within the moving frame

compare with the solutions of unsteady simulations within the laboratory frame. For a

comparison we use the results presented by Dietze (2010) who employed the VOF-method

to solve the non-stationary Navier–Stokes equations. As already mentioned, the closed-

flow condition used by Salamon et al. (1994) is rather impractical, so that we switch to

the open flow condition from now on. From the data given by Dietze (2010) we obtain his

time scale as

t0 =
hNu

ūNu
=

(
9ν

g2xRe

)1/3

. (4.70)

Therefrom the non-dimensional frequency is f = f∗t0. Table 4.4 summarizes most of the

2D-cases defined by Dietze (2010), where block A refers to a constant Re with different

forcing frequencies, block B collects different Re with constant (dimensional) forcing fre-

quency and block C contains the inclined cases. The case numbers used by Dietze are

adopted and are given in the respective column. His Kapitza number KaD is related to

the present one by KaD = Ka/(sin θ)1/3, so that our Kapitza number becomes Ka = 116.1

for the inclined cases.

Table 4.4.: Selected two dimensional cases defined by Dietze (2010).

block case Re KaD θ/deg ν/10−6 m2 s−1 f∗/s−1 hNu/µm f × 103

6 10.7 509.5 90 2.85 16.0 298 46.73
A 10 10.7 509.5 90 2.85 18.0 298 52.57

9 10.7 509.5 90 2.85 20.0 298 58.41

5 8.6 509.5 90 2.85 16.0 277 50.26
B 7 12.9 509.5 90 2.85 16.0 318 43.90

8 15.0 509.5 90 2.85 16.0 334 41.75

4 21.4 139.8 35 5.21 11.3 677 46.39
C 3 21.4 139.8 35 5.21 17.7 677 72.67

2 21.4 139.8 35 5.21 24.0 677 98.54

Before we concentrate on the particular solutions for the cases given in Table 4.4, we

construct the relevant solution branches in the ck-plane by employing the open flow con-

dition. The results for Re = {8.6, 10.7, 12.9, 15}, Ka = 509.5 and θ = π/2 are shown in
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Figure 4.16 (top). Firstly, we see that the branches look qualitatively different from the

ones that are constructed with the closed flow condition. Using the notation from above

we find that the branches for Re = {8.6, 10.7} are members of the γ2−family since the

respective solution at the upper end of the branch is almost sinusoidally shaped. Between

Re = 8.6 and Re = 10.7 the branches change their shape significantly. A bifurcation took

place in between similar as in Figure 4.13. The branches for Re = {12.9, 15} are therefore

of γ′2−type. For the inclined case, the solution branches γ2 and γ′2 will be important later,

both shown in Figure 4.16 (bottom).

A detailed analysis of the relevant solution branches is given in Figures 4.17 – 4.21 for

all (Re,Ka)−combinations of Table 4.4. All figures hold four images and are structured

as follows.

• Northwest: The (relevant) solution branches are presented in the ck-plane, as in

Figure 4.16.

• Northeast: The ck-plane is mapped to the fc-plane. This is more intuitive, since the

frequency f serves as independent variable. In addition, the forcing frequencies from

Table 4.4 are given as vertical, dashed lines and the resulting intersection points are

drawn as bullets.

• Southwest: The averaged height h is presented in this image as function of f .

• Southeast: This image shows the surface length increase ∆A, which is defined as

∆A :=

∫ 1

0

√

1 + h′2 dx− 1. (4.71)

In general we can conclude that the surface length increase ∆A is small for all cases so that

we do not expect a relevant influence for the absorption process. In turn, the averaged

height h is reduced significantly for many cases and a more detailed analysis concerning

absorption enhancement will be given in the next chapters. Regarding the intersection

points we find different scenarios.

• Figure 4.17 (Re = 8.6) indicates a unique intersection with the solution branch γ2.

We shall note that the chosen frequency is located in a region with a steep slope so

that a small variation of f leads to a relatively large deviation of c.

• Figure 4.18 (Re = 10.7) shows three intersections with γ2 for the largest frequency, in-

dicating a non-unique solution. This is nothing outstanding since the non-uniqueness

is the rule rather than the exception for the present system.

• Figure 4.19 (Re = 12.9) and Figure 4.20 (Re = 15) show the same scenario. Practi-

cally two solutions are found on γ′2 for every case even if only one intersection point is
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drawn. The second intersections are not realized on the images since we have aban-

doned to continue the γ′2−branch into the region of small c. This is motivated by

the comparison of Figure 4.15 (a) with 4.15 (d), showing qualitatively very different

solutions at the ends of the branch.

• Figure 4.21 (Re = 21.4 inclined) shows beside all other cases that the intersection

for the largest frequency is only possible with the γ2−branch. Intersections that are

not indicated by a bullet are simply not relevant for our purpose.

Once the intersection points are found we extract the respective wave celerity c and obtain

the non-dimensional wave number k = 2πf/c with the given non-dimensional forcing

frequency f . Finally, the scale hNu leads us to the dimensional wavelength L∗ = hNu2π/k

which we compare with the wavelength L∗
D that has been extracted from Dietze (2010). All

data are summarized in Table 4.5. We find a good agreement for most cases between the

dimensional wavelength of our solution branch L∗ and the wavelength from the transient

simulation L∗
D. However, case 9 has a noticeable variation in L∗

D. We speculate that this

is caused by the non-uniqueness. Also, case 4 shows a significant error in contrast to the

remaining inclined cases.

Table 4.5.: Data at the intersection points.

block case Re c k L∗/mm L∗
D/mm

6 10.7 2.718 0.1080 17.36 17.35
10 10.7 2.535 0.1303 14.39 14.35

A 9 10.7 2.487 0.1476 12.70
2.475 0.1483 12.65 11.3 . . . 12.4
2.348 0.1563 12.00

5 8.6 2.709 0.1166 14.95 14.75
B 7 12.9 2.686 0.1027 19.43 19.40

8 15.0 2.660 0.0986 21.28 21.13

4 21.4 2.533 0.1151 36.94 32.80
C 3 21.4 2.154 0.2120 20.05 19.56

2 21.4 1.922 0.3221 13.20 13.11

The Figures 4.22 – 4.24 present the qualitative comparisons for all cases showing an

excellent agreement except for the cases 4 and 9. The variation of L∗
D in case 9 is also

reflected in Figure 4.22 where a clear matching, which is easily possible for the other cases,

is difficult to obtain. Is seems obvious that the non-uniqueness of this case is responsible

for this issue and we speculate that the wave train contains more than only one of the

possible solutions. The excellent overall agreement is somewhat irritated by the poor

comparison of case 9. However, since the remaining inclined cases compare very well, we
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are able to rule out an erroneous code for inclination angles other than θ = π/2. At the

end, the reason for the deviation remains unclear.
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Figure 4.16.: Top: Relevant solution branches for Re = {8.6, 10.7, 12.9, 15}, Ka = 509.5
and θ = π/2. The arrow indicates the direction of increasing Re. Bottom:
Solution branches γ2 and γ′2 for Re = 21.4, Ka = 116.1 (KaD = 139.8) and
θ = 35◦.
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Figure 4.17.: Results for the parameter set Re = 8.6, Ka = 509.5 and θ = π/2. (a)
Solution branch γ2 in the ck-plane and (b) in the fc-plane. The vertical line
indicates the forcing frequency from Table 4.4. (c) Averaged height h and
(d) surface area increase ∆A vs. wave frequency f .
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Figure 4.19.: Results for the parameter set Re = 12.9, Ka = 509.5 and θ = π/2. (a)
Solution branch γ2 in the ck-plane and (b) in the fc-plane. The vertical line
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Figure 4.20.: Results for the parameter set Re = 15, Ka = 509.5 and θ = π/2. (a) Solution
branch γ2 in the ck-plane and (b) in the fc-plane. The vertical line indicates
the forcing frequency from Table 4.4. (c) Averaged height h and (d) surface
area increase ∆A vs. wave frequency f .
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Figure 4.22.: Comparison for the cases of block A defined in Table 4.4 employing Re =
10.7. The red graphs represent the solutions at the corresponding intersection
points and the black graphs correspond to the data extracted from Dietze
(2010). Uppermost image: Case 6, f∗ = 16Hz, Central image: Case 10,
f∗ = 18Hz, Lowermost image: Case 9, f∗ = 20Hz. The two additional
solutions are given in green and blue.
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Figure 4.23.: Comparison for the cases of block B defined in Table 4.4 employing f∗ =
16Hz. The red graphs represent the solutions at the corresponding inter-
section points and the black graphs correspond to the data extracted from
Dietze (2010). Uppermost image: Case 5, Re = 8.6, Central image: Case 7,
Re = 12.9, Lowermost image: Case 8, Re = 15.
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Figure 4.24.: Comparison for the cases of block C defined in Table 4.4 employing Re =
21.4 (inclined). The red graphs represent the solutions at the corresponding
intersection points and the black graphs correspond to the data extracted
from Dietze (2010). Uppermost image: Case 4, f∗ = 11.3Hz, Central image:
Case 3, f∗ = 17.7Hz, Lowermost image: Case 2, f∗ = 24Hz.
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4.3.3. Backflow phenomenon

As it was shown by Dietze (2010) and Dietze et al. (2008) the falling film exhibits backflow

regions for certain parameter ranges. Figure 4.25 shows again all solution branches where

the solutions without backflow are indicated as thick segments. From the figure it becomes

evident that the majority of the solutions are those with at least one backflow region.

Certainly, this statement holds true only for the given parameter set and has no general

character. However, we can expect that the fraction of backflow solutions reduces in

general for decreasing Re and/or increasing Ka corresponding to an increase of We.
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Figure 4.25.: Solution branches for Re = {8.6, 10.7, 12.9, 15}, Ka = 509.5 and θ = π/2
where all solutions without backflow are indicated as thick segments.

Figure 4.26 shows the result of case 8 as an exemplary solution with two backflow

regions. The bounds associated with u = 0 are shown in red, the upper image depicts the

pressure distribution and lower image the velocity field. From the figure it is clear that the

pressure (grayscale) is almost constant across the film and that the streamwise velocity

seems to retain a semi-parabolic profile, at least for the regions outside the backflow. Both

observations are clear indicators that the BL-approach may still be a good approximation

for this parameter set. For a test we use our solution and extract h(x) and Γ (x) =
∫ h
0 u(x, y) dy. With these data we then evaluate the self-similar velocity distribution that
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Figure 4.26.: Exemplary solution with two backflow regions for Re = 15, Ka = 509.5,
θ = π/2 and k = 0.0986 (case 8). Upper image: Pressure (grayscale) and
bounds of the backflow regions u = 0 (red). Lower image: Close up with
velocity field (within the laboratory frame) and again with the bounds of the
backflow regions (red).
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Figure 4.27.: Isolines of the streamwise velocity component u(x, y) from the present simu-
lation (case 8 - black) and from the Kapitza–Shkadov assumption uKS(x, y)
(red).

is known as the Kapitza–Shkadov approach (Kalliadasis et al., 2012)

uKS = 3
Γ

h

[
y

h
− 1

2

(y

h

)2
]

. (4.72)

In Figure 4.27 we compare the isolines of the streamwise velocity component u(x, y) from

our Navier–Stokes simulation in black with the ones of the Kapitza–Shkadov assumption

uKS(x, y) in red. In view of the simplicity of the approach the result is very good. We shall

note that we have employed Γ (x) and h(x) from the Navier–Stokes-solution so that we

can just argue that (4.72) is a reasonable approximation to the Navier–Stokes-solution (for

the present parameter set). The given evaluation cannot verify whether Γ (x) and h(x),

resulting from a reduced order model, are in agreement with the Navier–Stokes solution.

4.3.4. Variation of the Reynolds number

We finally present the solution path within the k-c-Re−space for Ka = 3000 and k = 0.0365

by varying the Reynolds number starting from Re = 11 up to Re = 100. To that end we

used the solution {Re,Ka, k} = {10.7, 509.5, 0.1} as initial guess, increased Re → 11

manually, used the arclength continuation to follow the path until k = 0.0365, increased

Ka → 3000 manually and used the arclength continuation again for Re → 100. The

evolution of the height h(x) along Re is shown in Figure 4.28. The most obvious qualitative

results of the image are the appearance of a maximum for hmax and that the wavelength

of the capillary waves decrease with increasing Re. The left image of Figure 4.29 shows

the variation of the maximum height hmax and the celerity c versus Re where we find the

maximum of hmax at Re ≈ 45. The right image presents the averaged height h̄ versus Re

showing a minimum at Re ≈ 31.
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Figure 4.28.: Contours of the height h(x) as function of Re and x for θ = π/2, Ka = 3000
and k = 0.0365.

ReRe

h
m
a
x
,
c

h̄

hmax

c

00 2020 4040 6060 8080 100100
0.86

0.88

0.9

0.92

1.5

2

2.5

3

3.5
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Averaged height h̄ vs. Re. The remaining parameters are θ = π/2, Ka =
3000 and k = 0.0365.
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4.4. Interim summary

We briefly summarize the results of this Chapter 4.

• The implemented numerical method including the bordering algorithm works fast

and the solution branches can be efficiently tracked by the arclength continuation

even for relatively large Reynolds numbers.

• The comparison of our results with Salamon et al. (1994) (steady, closed flow con-

dition) is outstanding.

• We have shown that our steady-solutions can be matched with the forced, transient

solutions given by Dietze (2010) by using the open flow condition. Again, the agree-

ment is excellent for almost all cases presented. The prediction of the wave form

by intersecting the solution branch with the forcing frequency works also excellent.

The construction of the entire solution branch(es) is tedious but it represents a rich

source for experimentalist to properly choose the forcing frequencies. For instance,

one could avoid/choose values leading to non-unique solutions that lie closely to-

gether.

• For Kapitza number Ka = 509.5 regions of backflow are the rule rather than the

exception, even for small Re.

• The variation of Re for a given k leads to a continuously decreasing celerity c, a

maximum for hmax and a minimum for h̄. Also, the wavelength of capillary waves

decreases for increasing Re.

We may draw the following interim conclusions for our further analysis regarding absorp-

tion.

• The surface increase ∆A is generally small, i.e. ∆A < 1% for the cases shown.

Therefrom we can conclude that ∆A is not relevant for significant absorption en-

hancement.

• The averaged height of the liquid film h is reduced significantly so that an impact

on absorption enhancement is expected.

• Convective heat and mass transport due to the backflow regions may also contribute

to absorption enhancement.
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5. The thermal wavy film

The present chapter briefly discusses the evaporating/condensing falling film with a van-

ishing evaporation/condensation rate, thermal film called in the following. We assume

one-way coupling, an isothermal wall and a free surface being in local thermodynamic

equilibrium. The latter assumption yields an isothermal free surface with the evaporation

temperature as temperature level. Due to the assumption of one-way coupling we are free

to employ the solutions of the isothermal wavy film so that u = u(x, y, t) and h = h(x, t)

are known in the thermal transport equation. Therefrom, the discussion can be done

within the moving frame of reference. The numerical treatment is very simple, since we

can employ the convective and diffusive terms from Chapter 4, i.e. we adapt (4.21a) by

replacing the streamwise velocity u with the temperature T , yielding

∮

φT dO =
1

Pe

∮

DT dO (5.1)

with the the Péclet number Pe = RePr, as product of film Reynolds number Re and

Prandtl number Pr, the volume flux density φ and the (bulk) normal derivative operator

D given in (4.22). The boundary conditions

T |ξ=0 = T |ξ=1 (5.2a)

T |η=0 = 0 (5.2b)

T |η=1 = 1 (5.2c)

are the periodic boundary condition, the isothermal wall and the isothermal free surface.

5.1. Flow field

For the investigation we reproduce the results given by Miyara (1999). In this paper, the

transient Navier–Stokes and energy equations are solved on a fixed grid employing the

HSMAC method. The surface waves are triggered by a sinusoidal inlet perturbation. The

simulations cover the domain (x × t) = (600 × 700) in non-dimensional units, where the

Nusselt film thickness hNu serves as length scale and hNu/uNu,max as time scale with the

surface velocity uNu,max. At t = 700 Miyara (1999) identifies, depending on the distance
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from the inlet, the developing wave, the semi-developed wave and the fully-developed wave.

From the parameters given by Miyara (1999) (scaled by the Nusselt surface velocity),

we obtain for our simulation Re = 100/1.5 ≈ 66.7, θ = π/2 and Ka = 3400. With the

given celerity c = 1.72 (for the fully developed wave) and the frequency f = 0.01, the

wave number becomes k = 2πf/c = 0.0365. The parameters for the mesh are chosen as

Nη = 80 (crosswise resolution) and R = 3 (cell aspect ratio).

The streamlines within the moving frame of reference are shown in Figure 5.1 and shall

represent the fully developed wave of Miyara (1999). Also, the backflow regions within

the laboratory frame are indicated by red curves. Our maximum height is hmax = 2.67

and compares excellent with the value one can extract from the figures given by Miyara

(1999). From our simulation we find h̄ = 0.90 and h−1 = 1.35 where the latter is very

close to the value given by Miyara (1999). Also, our celerity c = 2.48 is very close to his

rescaled value c = 1.72 × 1.5 = 2.58.

Figure 5.2 presents our result (black) with his semi-developed wave (red) and his fully

developed wave (blue), where the phase is adjusted such that maximum heights merge.

From the figure we see that the shape of our main hump compares well with the main

hump of his fully-developed wave. However, the comparisons of the capillary wave regions

are poor for both development stages of the wave given by Miyara (1999). Since we

compare the results of a transient simulation on fixed grid with a high-resolution steady

simulation on a boundary-fitted grid, the cause for this shortcoming may be related to

numerical reasons. The numerics employed by Miyara (1999) may suffer from a more

pronounced numerical diffusion, damping the capillary waves due to their large curvature.

This speculation is also supported by the observation, that the shape of the main hump,

the celerity and the maximum height are in excellent agreement, i.e. that the effect is

local and related to the large curvature.
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20 40 60 80 100 120 140 160

Figure 5.1.: Streamlines (within the moving frame) for Re = 100/1.5 ≈ 66.7, θ = π/2,
Ka = 3400 and k = 0.0365. The red curves represent u = 0 (within the
laboratory frame) to indicate the backflow regions. The celerity results as
c = 2.48 and the average reciprocal height as h−1 = 1.35.
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Figure 5.2.: Wave shapes for the present simulation (black), semi developed wave (red)
and fully developed wave (blue) of Miyara (1999).

5.2. Nusselt numbers

We evaluate the local Nusselt numbers as defined in (2.25) by using (2.22a) and (2.22b),

but with the constant temperature difference between film surface and wall1, thus

Nuf = (∂yT )y=0 =
∂ηT

h

∣
∣
∣
∣
η=0

, (5.3)

Nui = (∂nT )y=h =
n∂ηT

h

∣
∣
∣
∣
η=1

(5.4)

where we made use of the normal derivative operator at the free surface

∂n := n̂ ·∇ = −h
′

n
∂ξ +

n

h
∂η. (5.5)

The averages over the respective surfaces are

Nuf =
1

L

∫ L

0
Nuf dx, (5.6)

Nui =
1

L

∫ L

0
Nuin dx (5.7)

with the free surface increment n dx. It is advantageous to average both Nusselt numbers

over L so that we end up at the same value due to conservation, hence

Nu := Nuf = Nui. (5.8)

The value of Nu coincides with the asymptotic (far downstream) time average NuMiyara

given by Miyara (1999). For a more systematic analysis we decompose the temperature

1Note that the mixing temperature is no longer used in the temperature difference.
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profile along η into a conductive and a convective part, thus T (ξ, η) = η + T ′(ξ, η). We

obtain the (wall) Nusselt number decomposition

Nuf =
∂η(η + T ′)

h
=

1

h
+
∂ηT

′

h
:= Nu0 +Nu′ (5.9)

where Nu0 represents the conductive and Nu′ the convective part of the heat transfer.

Averaging finally yields

Nu = h−1 + (∂ηT ′)h−1 = Nu0 +Nu′. (5.10)

The case of pure conduction (Pr → 0) leads to Nu → Nu0 = h−1. Since we can assume

h−1 > 1/h̄ (even for h̄ = 1) and in general h̄ < 1 for the present system, a heat transfer

enhancement is observed just by the temporal variation of the film thickness. For the

present setup and by employing the temperature difference between the boundaries, the

Nusselt number of the thermally developed flat film becomes Nuflat ≡ 1. We, therefore,

define the film-thinning effect as the deviation of Nu0 from unity for Pr → 0.

5.3. Results

5.3.1. Benchmark case

The upper images of Figures 5.4 - 5.7 show the contours of the temperature fields for the

flow discussed in 5.1 and for Pr = {0.1, 1, 10, 100}. The results compare qualitatively very

well with the fully-developed cases shown by Miyara (1999). The only difference can be

found for the case Pr = 100 where the cold area within the wave hump is not reproduced.

The lower images of Figures 5.4 - 5.7 show the quantitative result regarding heat transfer,

which are the film height h(x) given in black, the reciprocal height h−1 in green, the local

Nusselt number at the bottom Nuf in blue, the local Nusselt number at the free surface

Nui in red and the average Nusselt number Nu is shown as dashed line.

For Pr = 0.1 the distributions of the local Nusselt numbers Nuj clearly correlate with the

reciprocal height h−1 since diffusion is dominant and the temperature profile is, therefore,

almost linear in y for all x. The larger the Prandtl number (or Péclet number to be more

precise), the more Nuj deviate from h−1. In addition, the general trends of Nuj with

respect to h−1 show in the opposite directions.

The wall Nusselt number Nuf approaches Nu for all x as Pr → ∞, indicating that the

wave shape is not relevant for the wall-sided heat transfer for large Pe. The local analysis

shows, that the wall-sided heat transfer typically increases under the main hump as Pe is

increased. This is caused by the fact that diffusion is less dominant than convection (large

Pe), so that the diffusive transport across the separation streamline is not fast enough
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to cool the fluid elements that are trapped in the vortex. In other words, the larger the

Péclet number, the more the vortex acts as thermal insulator at the free surface, reducing

Nui locally. In turn, the vortex compresses the thermal boundary layer near the wall,

increasing Nuf locally under the main hump. In the capillary wave region, the Nusselt

number at the free surface Nui gets more pronounced as Pr → ∞. Since Nui > h−1 holds

also in the residual layer, the strong increase at the wave troughs cannot be attributed

to the backflow regions only. Thus, we have to declare the deviation of Nui from h−1 as

result of the more pronounced convective effect.

Table 5.1 summarizes the values for the average Nusselt number NuMiyara given by

Miyara (1999) and our result Nu with its fractions Nu0 and Nu′, see (5.10), and the

percentage of the convectively induced heat transfer enhancement

p =
Nu′

Nu− 1
. (5.11)

The agreement between NuMyara and Nu is good as long as Pr is small. This is due to

the fact that h−1 is almost the same even if the wave shapes differ from another in the

capillary region. The more the convective effect become significant, the more the deviation

between the average Nusselt numbers becomes evident.

The case Pr = 0.1 is clearly dominated by the film-thinning effect so that Nu ≈ Nu0

holds true to a high degree. This is also shown by Miyara (1999). For Pr ≥ 1 the

convective effect becomes more important, visualized by the measure p. Nevertheless, for

relevant values of the Prandtl number (Pr < 100) the heat transfer enhancement due to

film-thinning stays dominant since p . 0.25 so that more than 75% of the enhancement is

caused by film-thinning.

Table 5.1.: Average Nusselt number(s) of the present simulations compared to data given
by Miyara (1999).

Pr NuMiyara Nu Nu0 Nu′ p

0.1 1.37 1.36 1.35 0.01 2.1%
1 1.41 1.39 1.35 0.04 10.0%
10 1.53 1.46 1.35 0.10 22.6%

100 1.56 1.47 1.35 0.12 25.1%

As amendment to Table 5.1, Figure 5.3 shows the average Nusselt number Nu as function

of the Prandtl number Pr = {0.01, . . . , 200}. From the graph a saturation effect becomes

evident, showing that Pr = 100 is already an excellent approximation for the asymptotic

value, i.e. for Pr → ∞.
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Figure 5.3.: Average Nusselt number Nu as function of the Prandtl number Pr.
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Figure 5.4.: Temperature field for the flow given by Miyara (1999) for Pr = 0.1. Top:
Isolines of the temperature T (x, y), extracted from Miyara (1999). Central:
Contours of the temperature T (x, y) for the present simulation. Bottom:
Height h (black), reciprocal height h−1 (green), Nusselt number bottom Nuf
(blue), Nusselt number free surface Nui (red) and average Nusselt number Nu
(dashed).
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Figure 5.5.: Temperature field for the flow given by Miyara (1999) for Pr = 1. Top:
Isolines of the temperature T (x, y), extracted from Miyara (1999). Central:
Contours of the temperature T (x, y) for the present simulation. Bottom:
Height h (black), reciprocal height h−1 (green), Nusselt number bottom Nuf
(blue), Nusselt number free surface Nui (red) and average Nusselt number Nu
(dashed).
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Figure 5.6.: Temperature field for the flow given by Miyara (1999) for Pr = 10. Top:
Isolines of the temperature T (x, y), extracted from Miyara (1999). Central:
Contours of the temperature T (x, y) for the present simulation. Bottom:
Height h (black), reciprocal height h−1 (green), Nusselt number bottom Nuf
(blue), Nusselt number free surface Nui (red) and average Nusselt number Nu
(dashed).
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Figure 5.7.: Temperature field for the flow given by Miyara (1999) for Pr = 100. Top:
Isolines of the temperature T (x, y), extracted from Miyara (1999). Central:
Contours of the temperature T (x, y) for the present simulation. Bottom:
Height h (black), reciprocal height h−1 (green), Nusselt number bottom Nuf
(blue), Nusselt number free surface Nui (red) and average Nusselt number Nu
(dashed).
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5.3.2. Isothermal cases

To estimate the influence of convection we finally calculate the average Nusselt number

Nu for all solutions along the branches presented in Chapter 4. Figure 5.8 shows the result

for the solution branches given in Chapter 4, i.e. for Re = {8.6, 10.7, 12.9, 15}, Ka = 509.5

and θ = π/2. The black curves show h−1 representing the lower bound for Nu and the red

curves show the calculated average Nusselt number for Pr = 100 representing the upper

bound. Figure 5.9 shows the maximum relative measure p, see (5.11), that results from

Pr = 100, i.e. from the red curves of Figure 5.8.
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Figure 5.8.: Upper and lower bounds for Nu: Average reciprocal height h−1 (black)
and average Nusselt number Nu for Pr = 100 (red) as function of the
wave frequency f for the solution branches given in Chapter 4, i.e. for
Re = {8.6, 10.7, 12.9, 15}, Ka = 509.5 and θ = π/2.
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Figure 5.9.: Relative measure of the convectively induced heat transfer enhancement p for
the solution branches given in Figure 5.8.

5.4. Interim summary

The major influence on the (average) Nusselt number is the film-thinning effect rather

than the convective effect. This was also concluded by Aktershev & Alekseenko (2013) for

a falling film of a condensate. Hence, Nu = h−1 represents the lower bound for the (far

downstream) value of the average Nusselt number. From Figure 5.8 we see that the upper

and lower bounds for Nu typically increase as Re becomes larger. Additionally, Figure 5.9

shows that the relative measure for the convectively induced heat transfer enhancement

p also increases as Re is increased. This demonstrates that convection becomes more

significant for larger Re and reaches almost 30% of the total heat transfer enhancement.
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6. The absorbing flat film

The ideas of the following chapter are essentially published in Hofmann & Kuhlmann

(2012). However, some modifications have been introduced and the notation has been

adapted to be consistent with the present monograph.

6.1. Governing equations

We consider a typical setup of a film absorber as sketched in Figure 6.1. We assume a

flat liquid film without surface waves, corresponding to the limit of infinitely large surface

tension. The flat surface implies that the fluid dynamics induced by the absorption process

is neglected, i.e. we do not account for the crosswise velocity and the increase of the film

thickness. The binary solution (subscript s) enters the system at x = 0 with the inlet

temperature T |x=0 = T0 and with the inlet concentration (LiBr) C ′
1|x=0 = Cs. The liquid

film is cooled by a counter-current coolant flow (subscript c) entering the system with the

inlet temperature Θ = Θc.

P0
T0

Cs

Θc

g

ūNu
x

y

θ

hNu

L
0

ṁ, q̇

coolant

Figure 6.1.: Simplified model of an absorbing falling film device.
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We presume that non-absorbable gases are not present, C ′′
3 ≡ 0, such that the gaseous

phase consists of pure H2O, i.e. C ′′
2 ≡ 1. Therefore, the system pressure P0 coincides

with the partial pressure (of H2O in the gas phase) P ′′
2 and further, by assuming local

thermodynamic equilibrium, with the vapor pressure (of H2O in the liquid solution) P ′
2,

hence

P0 = P ′
2 = P ′′

2 .

Additionally, the system pressure P0 shall coincide with the saturation pressure which

again corresponds to the saturation temperature (dew point temperature) Td. Figure 6.2

shows a contour plot of the vapor pressure P ′
2 as function of the solution temperature T

in degree Celsius and the LiBr-concentration C ′
1 in wt% LiBr. The plot was generated

from the relations given by Kim & Ferreira (2006). The isolines represent isobars and the

numbers indicate the corresponding vapor pressure in kPa.
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Figure 6.2.: Contour plot of the vapor pressure P ′
2 as function of the temperature T in

degree Celsius and the LiBr-concentration C ′
1 in wt%LiBr. The labels indicate

the vapor pressure P ′
2 in kPa. The least-squares linear fits of the isobars

are shown as dashed lines. The shaded region, bounded by the thick curve
(Boryta, 1970), indicates crystallization of LiBr.

We also presume that the heat loss to the gas phase is small since the system pressure

is very low. We therefore reduce our simulation to the liquid film and do not solve for

the gaseous phase. The concentration variables can be reduced to one representative and

we define C ′
1 := C since this is most common for LiBr–H2O. Also, we are able to reduce

the boundary conditions at the free-surface (3.50), firstly by dropping the temperature

equilibrium condition (3.50a), and secondly by approximating the heat loss to the gas
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phase q̇′′ = −(λ∂nT )
′′ in (3.50c). The heat loss is estimated as the sensible heat needed

to elevate the mass flux temperature from the saturation temperature Td at the point of

vaporization to the free-surface temperature T , thus

q̇′′ = −(λ∂nT )
′′ ≈ −ṁc′′p(T − Td) ≈ −ṁc′′p(T0 − Td) := −ṁhd (6.1)

where we have again approximated the (variable) surface temperature T by the (constant)

reference temperature T0. It is then convenient to redefine the enthalpy of absorption to

∆h := h′′ − h′ − hd such that the simplified heat flux condition becomes

−(λ∂yT )
′ = ∆h ṁ. (6.2)

From now on all variables refer to the liquid phase, so that we can omit the prime and

double prime, respectively.

We notice that the isobars in Figure 6.2 can be well approximated by the linear function

C(T, P0) ≈ C0 + γ(T − T0) (6.3)

with the equilibrium concentration at the reference state C0 := C(T0, P0) and the linear

concentration coefficient

γ :=

(
∂C

∂T

)

P0

. (6.4)

This simple approach was already employed by Grigor’eva & Nakoryakov (1977) and seems

to be justified for LiBr–H2O, at least for low system pressures and a certain range of tem-

peratures. After defining a system pressure P0 (or the according saturation temperature

Td) we derive the linear concentration coefficient γ from a least-squares fit (LSQ-fit) of

the isobar representing P0(T,C) within the interval T = [25, 45]◦C. Three representative

linear fits are shown in Figure 6.2 as dashed lines. All resulting thermophysical properties

of LiBr–H2O are collected in Table 6.1 for three representative operating states A–C and

derive from the correlations provided by the authors given in the last column.

The condition (6.3) stands for the equilibrium condition (3.50b). Finally we write the

absorbed mass flux density in terms of the introduced representative concentration vari-

able C and find

ṁ =
ρD∂yC

C
≈ ρD∂yC

C0
. (6.5)

Here we have assumed that the interface concentration C is never too far away from the

reference concentration C0 so that the linearization is justified.

97



The absorbing flat film

Table 6.1.: Thermophysical properties of LiBr–H2O for the reference states A–C.

quantity A B C unit reference/remark

Td 1.9 7.0 13.1 ◦C Magnus formula, see (A.8)
P0 0.7 1.0 1.5 kPa by definition
T0 45 45 45 ◦C by definition
C0 62.3 59.6 56.4 wt% LiBr LSQ-fit

γ 5.29 5.74 6.84 10−3 K−1 Kim & Ferreira (2006)
ρ 1748 1691 1629 kg/m3 Kim & Ferreira (2006)
cp 1.84 1.91 2.00 kJ/(kg K) Kim & Ferreira (2006)
h′′ 2583 2583 2583 kJ/kg VDI-GVC (2010)
h′ 141 125 111 kJ/kg Kim & Ferreira (2006)
hd 82 72 61 kJ/kg VDI-GVC (2010)
∆h 2360 2386 2411 kJ/kg ∆h = h′′ − h′ − hd
λ 0.42 0.43 0.44 W/(m K) Patterson & Perez-Blanco (1988)
η̄ 7.32 5.49 3.95 10−3 Pa s Patterson & Perez-Blanco (1988)
D 1.50 1.71 2.07 10−9 m2/s Gierow & Jernqvist (1993)
ν 4.19 3.25 2.43 10−6 m2/s ν = η̄/ρ
a 1.31 1.33 1.36 10−7 m2/s a = λ/(ρcp)

After we have defined the system pressure P0, the inlet temperature T0 and the equi-

librium concentration C0 as reference states, we shall note that the inlet concentration Cs

does not necessarily need to be the equilibrium concentration, i.e. Cs −C0 6= 0. Below we

will account for this deviation by introducing a non-dimensional parameter.

6.1.1. Non-dimensionalization

For a further analysis we consider the non-dimensional quantities1

x =
x∗

L0
, y =

y∗

hNu
, u =

u∗

ūNu
, T =

T ∗ − T0
∆T

, C =
C∗ − C0

∆C
(6.6)

which have been scaled using the length of the plate L0, the film thickness hNu, the mean

velocity ūNu, the characteristic temperature difference of the system ∆T := T0 − Θc and

∆C := γ∆T corresponding to the maximum possible concentration variation within the

system. The non-dimensional scalar fields T and C vary within the range [−1, 0]. From

the given scales we obtain the non-dimensional transport equations

uNu∂xT =
1

ε0Pe

(
ε20∂xx + ∂yy

)
T,

uNu∂xC =
1

ε0PeLe

(
ε20∂xx + ∂yy

)
C,

1Dimensional quantities are indicated by an asterisk.
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with the non-dimensional velocity profile

uNu = 3

(

y − y2

2

)

, (6.7)

the (thermal) Péclet number Pe = RePr and the Lewis number Le = a/D. We have also

introduced the aspect ratio ε0 = hNu/L0, for which one can easily verify from (2.9)

ε0 =
1

L0

(
3ν2

gx

Pe

Pr

)1/3

=
1

L0

(
3νa

gx

)1/3

Pe1/3. (6.8)

In a typical experimental setup, the working pair (determining ν and a), the length of

the plate L0 and the inclination angle θ ∝ gx are fixed, so that the introduction of the

apparatus parameter

A =
1

L0

(
3νa

gx

)1/3

= const. (6.9)

seems to be convenient to mimic experimental conditions. Rather than performing a pure

theoretical study by varying Pe and ε0 independently, we shall focus on the experimental

reality and vary ε0 according to

ε0 = APe1/3. (6.10)

However, instead of eliminating ε0 from all equations by implementing A, we keep ε0 for

readability and include the constraint (6.10) in the model. Further, the scaled equations

indicate that streamwise diffusion is very small so that we may safely neglect it. We finally

end up with the bulk equations

uNu∂xT =
∂yyT

ε0Pe
, (6.11a)

uNu∂xC =
∂yyC

ε0PeLe
. (6.11b)

Even though we have not yet developed the thermal wall boundary condition, we shall

already present the final set of non-dimensional boundary conditions following from the

thoughts above and from Section 6.2 below,

∂yT = −B∂yC, C = T, (6.12a)

T = 0, C = ζ, (6.12b)

∂yT = Nuw(T −Θ), ∂yC = 0 (6.12c)
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where (6.12a) applies to the free-surface, (6.12b) to the inlet and (6.12c) to the wall.

The (numerical) outlet boundary condition will be given in Section 6.3. The additional

parameters

B =
γρD∆h

λC0
, ζ =

Cs −C0

∆C
, Nuw =

αchNu

λ
(6.13)

are the non-dimensional enthalpy of evaporation B, the non-dimensional deviation of the

inlet concentration from equilibrium ζ and the wall Nusselt number Nuw. Table 6.2 col-

lects the non-dimensional parameters resulting from the definitions and the data given in

Table 6.1. The coolant mixing temperature Θ derives from the heat flux balance as

Pe∗c
dΘ

dx
= Nu∗c(T −Θ) (6.14)

with the reduced coolant Péclet number Pe∗c and the reduced coolant Nusselt number Nu∗c

(both to be defined below). The presented Nusselt numbers are related by (to be shown

below)

Nuw = Nu∗cε0. (6.15)

Due to the counter-current coolant flow we employ the boundary condition for the coolant

Θ(1) = −1. (6.16)

Table 6.2.: Approximative non-dimensional parameters for the reference states A–C.

quantity A B C remark

AL0 × 105 5.5 5.1 4.6 vertical wall
Pr 32 24 18
Le 87 78 65
1/B 8 6.5 4.5

6.1.2. Involved Nusselt numbers

The introduced wall Nusselt number Nuw scales with the film thickness hNu and since we

want to avoid a change of the primary coolant Nusselt number Nuc due to a change of the

film thickness, we shall rewrite the wall Nusselt number Nuw as

Nuw =
αchNu

λ
=
αcdc
λc

L0

dc

λc
λ

hNu

L0
=

NucΛ

εc
ε0 (6.17)
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where we have used the definition for the coolant Nusselt number (2.26b) and introduced

the ratio of the thermal conductivities Λ = λc/λ and the coolant aspect ratio εc = dc/L0.

As long as we consider the model from above, simplified model called in the following,

neither Λ nor εc are explicit parameters. This is due to the reduction of the coolant flow to

the one-dimensional mixing temperature Θ. It is, therefore, convenient to merge these two

parameters with the coolant Nusselt Nuc number by defining the reduced coolant Nusselt

number Nu∗c , thus

Nu∗c :=
NucΛ

εc
=

Nuw
ε0

. (6.18)

The analogous argument applies to the reduced Péclet number Pe∗c (to be defined below).

6.2. Wall boundary condition

Since one of the driving forces for the absorption process is the cooled wall, the corre-

sponding thermal wall boundary condition is expected to have a crucial influence. Certain

limit cases, the adiabatic wall and the isothermal wall, were the first ones discussed in

literature. Some recent studies (Karami & Farhanieh, 2009, 2011; Yoon et al., 2005) have

introduced a linear temperature variation along the wall. This choice is very convenient

since it does not introduce new parameters. A more realistic thermal wall boundary was

employed by Bo et al. (2010), using a boundary condition of mixed type with a linearly

varying averaged coolant temperature (mixing temperature). Wassenaar (1996) also in-

troduced a boundary condition of mixed type but implemented an additional equation

to determine the coolant mixing temperature. In the following we construct a realistic

test case and compare the results with those resulting from the simplified thermal wall

boundary conditions which were employed in the studies mentioned. From the comparison

we will then deduce the best model.

6.2.1. Test model

Realistic conditions at the wall can only be obtained from a thermal coupling of the film

flow to the coolant flow. We therefore assume a cooling channel which is directly attached

to the liquid film at y = 0, i.e. the separating solid wall has a negligible thermal resistance.

The coolant flow is considered as plane Poiseuille flow within a channel of width H∗
c = 2h∗c .

In addition, we implement a transport equation for a coolant flow by employing (3.26) and

the identifications

u∗ → u∗Poex , ψ∗ → cp,cΘ
∗ , j∗ → −λc∇∗Θ∗ (6.19)

101



The absorbing flat film

where u∗Po is the plane Poiseuille profile, Θ∗ the coolant temperature, cp,c the specific heat

capacity and λc the thermal conductivity of the coolant. The flow is characterized by the

coolant Reynolds number corresponding to (2.26a), hence

Rec =
ū∗Po2H

∗
c

νc
=

2Γ ∗
c

η̄c
(6.20)

with the mean velocity ū∗Po, the coolant mass flux Γ ∗
c (per unit length in spanwise direction)

and the kinematic and dynamic viscosity νc and η̄c, respectively. The factor 2 has its

origin in using the hydraulic diameter which is d∗c = 2H∗
c = 4h∗c for plane channel flow.

Note that Rec becomes negative for counterflow. With the scales from the liquid film,

Θ = (Θ∗ − T0)/∆T and by dropping streamwise diffusion we find the non-dimensional

transport equation

uPo∂xΘ =
εc
ε20

∂yyΘ

Pec
(6.21)

with the coolant Péclet number Pec = Rec Prc, the coolant Prandtl number Prc, the

coolant aspect ratio εc = 2H/L0 and the non-dimensional Poiseuille profile

uPo =
3

2

(

1− (y + hc)
2

h2c

)

. (6.22)

Note that hc and y in (6.21-6.22) are scaled by hNu and the shift (y+hc) is due to the wall

position at y = 0. The non-dimensional channel width can be expressed as Hc = εc/(2ε0).

The non-dimensional wall boundary conditions are derived from the heat flux balance

−λ∂∗yT ∗ = −λc∂∗yΘ∗ and temperature matching at the wall, thus

∂yT − Λ∂yΘ = 0 , T = Θ. (6.23)

The lower boundary is assumed to be adiabatic. By considering the solution/coolant com-

bination LiBr–H2O/H2O with Prc := 6 and a plane channel flow with a critical Reynolds

number of Re ≈ 40002 the maximum coolant Péclet number for the present laminar con-

sideration becomes Pec ≈ 24000. The given model leaves us with the three additional

parameters Pec, Λ and εc (or H). However, to keep the number of free parameters to

a minimum, we define Λ := 1.4 representing LiBr–H2O/H2O. Figure 6.3 shows the re-

sults for the test model given by the coupled set (6.11)–(6.12) and (6.21)–(6.23) where

(6.23) replaces the thermal boundary condition in (6.12c). The results correspond to all

combinations given by the coolant Péclet numbers Pec = {−240,−2400,−24000} and the

2Investigations regarding stability typically employ a Reynolds number based on the half channel width
hc = Hc/2, so that a conversion factor of four arises between their Reynolds number and the present
one based on the hydraulic diameter 2Hc.
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non-dimensional channel widths Hc = {10, 50, 200}. The remaining parameters of the

liquid film are {Pe,Le, A,B, ζ} = {300, 80, 5 × 10−5, 1/8, 0}. The uppermost row of Fig-

ure 6.3 shows the wall temperature T (x) and in addition the linear temperature variation

which is indicated as dashed line. The second row shows the coolant mixing temperature

Θ =
1

Hc

∫ 0

−Hc

uPoΘ dy. (6.24)

The third and lowermost rows show the wall Nusselt number Nuw = ∂yT/(T −Θ) and the

resulting coolant Nusselt number Nuc = Nuwεc/(ε0Λ), respectively.

From Figure 6.3 we can firstly conclude that the wall temperature is in general far

from being linear. In addition, the thermal entrance length Lth increases as the coolant

Péclet number increases and/or the channel width increases, as we have expected from

(2.34). For the shortest thermal entrance length, that is for |Pec| = 240 and Hc = 10,

the thermally developed state reaches Nuc ≈ 5, in agreement with the values for laminar,

plane channel flow. However, the thermally fast developing configurations are likely of no

practical importance, so that the assumption of a constant coolant Nusselt number seems

to be invalid for real systems. Also, the presumption of a laminar coolant flow does not hold

for real systems. Nonetheless, to reduce complexity we shall assume a constant (length

averaged) coolant Nusselt number as reasonable approximation which can be utilized to

formulate a simplified model.

6.2.2. Simplified model

As stated above, we employ a boundary condition of mixed type for the wall tempera-

ture T ∗, thus

q̇∗ = −λ∂∗yT ∗ = −αc(T
∗ −Θ

∗
) (6.25)

by assuming a constant coolant heat transfer coefficient αc. The heat flux balance of the

coolant reads

q̇∗dx∗ = −Γccp,c
dΘ

∗

dx∗
dx∗. (6.26)

Using the scales (6.6) and Θ = (Θ
∗ − T0)/∆T yields

∂yT = Nuw(T −Θ), (6.27a)

Nu∗c(T −Θ) = Pe∗c
dΘ

dx
(6.27b)
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Figure 6.3.: Results for the test model as functions of the streamwise coordinate x. The
coolant Péclet numbers Pec are stated above the figures and the arrows indi-
cate the direction of decreasing channel width Hc = [200, 50, 10]. The remain-
ing parameters are Λ = 1.4 and {Pe,Le, A,B, ζ} = {300, 80, 5 × 10−5, 1/8, 0}.
Uppermost row: Wall temperature T . The linear temperature variation is
shown as dashed line. Second row: coolant mixing temperature Θ. Third
row: wall Nusselt number Nuw. Lowermost row: coolant Nusselt number
Nuc.
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Figure 6.4.: Results for the simplified model as functions of the streamwise coordi-
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and the arrows indicate the direction of increasing reduced Nusselt number
Nu∗c = {300, 600, 1200}. The remaining parameters are {Pe,Le, A,B, ζ} =
{300, 80, 5 × 10−5, 1/8, 0}. Upper row: Wall temperature T . The linear tem-
perature variation is shown as dashed line. Lower row: coolant mixing tem-
perature Θ.

with the reduced coolant Nusselt number Nu∗c (6.18) and the reduced coolant Péclet num-

ber

Pe∗c =
Λ

2
Pec =

Λ

2
RecPrc =

Γccp,c
λ

. (6.28)

Figure 6.4 presents results from the simplified model. Again, the upper row shows the

wall temperature T (x) for the reduced coolant Péclet numbers Pe∗c = {−168,−1680,−16800}
(according to Pec from above and Λ = 1.4) and for the reduced coolant Nusselt numbers

Nu∗c = {300, 600, 1200}. The lower row displays the corresponding coolant mixing tem-

perature Θ(x). Both, the wall temperature and the coolant mixing temperature from the

simplified model are, at least qualitatively, in a good agreement with those of the test

model. The simplified model includes only two instead of three new parameters and it is

considerably less expensive to solve, since the additional PDE for the coolant is reduced

to an ODE.

We conclude that the simplified model, which corresponds practically to the approach
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of Wassenaar (1996), represents a reasonable approximation to our realistic test case. In

turn, the linear variation of the wall temperature, employed by Karami & Farhanieh (2009,

2011); Yoon et al. (2005), appears to be an over-simplification. On the other hand, a linear

variation of the coolant mixing temperature in combination with a constant heat-transfer

coefficient as it was used by Bo et al. (2010), seems to be a good approximation as long

as the coolant Péclet number is not too small which is true for real applications.

6.3. Numerics

6.3.1. Method

The bulk equations (6.11) and boundary conditions (6.12) are discretized implicitly with

finite differences. We use a central scheme for the bulk equations and a one-sided three-

point scheme on the boundaries. Intermediate values are found by linear interpolation,

leading to a method of second-order accuracy. All equations are solved simultaneously

and the computation of a single parameter set typically requires only a few seconds of

computational time.

The numerical implementation of the outlet boundary conditions corresponds to a linear

extrapolation in streamwise direction of the (last) bulk value of any quantity SN at the

N -th grid point to the boundary at N + 1/2, i.e. SN+1/2 = 2SN − SN−1/2 for S = T,C.

The grid is homogeneous in x and y direction except near the in- and outlet. Within

x ∈ [0, 0.1] and x ∈ [0.9, 1] the grid is refined towards the in- and outlet such that the aspect

ratio of the four corner cells is less than two, i.e. ∆x/∆y ≤ 2. A grid convergence check

has shown that 100 grid points in y and 1000 grid points in the central block x ∈ [0.1, 0.9]

are sufficient to resolve the absorbed mass flux density accurately.

6.3.2. Verification

To verify the code we use the semi-analytical results given by Grossman (1983) for the

adiabatic and the isothermal wall. To mimic the equations used by Grossman we set

Pe = ε0 = 1, Le = 1000 and identify his parameter λ = B. In addition we have adjusted

the inlet, free-surface and wall boundary conditions. For the numerical evaluation of the

series expansion given by Grossman we have used 20 terms in the power series for the

temperature and 200 terms for the concentration. The results obtained from Grossman’s

series expansion and from our numerical solution are compared with each other in Fig-

ure 6.5 for the case of an isothermal wall. The dashed curves correspond to the solution

of Grossman with his similarity solution for small xG, shown here for xG < 1, while the

full curves represent the present numerical calculation. We have introduced the subscript

G to distinguish between the scaling used by Grossman and the scaling we are using. The
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semi-analytical solution compares very well with the numerical result. However, minor de-

viations close to the inlet arise due to the discontinuity in temperature and concentration

at (xG, y) = (0, 1). A better comparison is obtained if the cell size close to the singular

point is further decreased. More pronounced deviations are found around xG = 0.5, which

are most likely due to the missing matching of the two partial solutions given by Grossman.

(a)

T
G

xG
10310210110010−110−2

0

0.1

0.2

0.3

(b)

C
G

xG
10310210110010−110−2

0

0.25

0.5

0.75

1

Figure 6.5.: (a) Temperature TG and (b) concentration CG as functions of the stream-
wise coordinate xG for the isothermal wall. The semi-analytical results by
Grossman (1983) are shown as dash-dotted curves, the present numerical re-
sults by full curves. The upper curves indicate the solutions at the free-surface
(y = 1) and the lower curves correspond to the bulk (y = 0.5).
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6.4. Results

6.4.1. Local Nusselt and Sherwood numbers

As stated in Section 2.6.2 we evaluate the local Nusselt number for the free-surface Nui

and for the film/wall interface Nuf. Figure 6.6 shows the results for a certain parameter

set and several Pe (see caption). Firstly we see that the asymptotic values given in Table

2.4 are almost met. We have checked that the asymptotic values are clearly captured

for the isothermal wall, so that we can exclude the numerics being responsible for the

small offsets. As expected, increasing Pe results in an elongation of the thermal entrance

length so that Nui approach the asymptotic value more and more farther downstream.

Additionally the local driving potentials ∆Tj , which are shown beside their corresponding

Nusselt numbers Nuj , also increase for most x with increasing Pe. Guided by (2.29a) we

define for the present case

Sh :=
∂yC

∆Ci
. (6.29)

This is convenient but not fully consistent with the original definition, since the Eckert–

Schneider condition is not included. The local Sherwood number Sh and its corresponding

driving potential ∆Ci are also presented in Figure 6.6. From a practical point of view,

the given evaluation is not very helpful and may be even misleading. This is due to

the local driving potential which makes it impossible to decide whether large or small

Pe are preferable to gain large absorption. For this question it is necessary to define a

non-dimensional mass flux density as it is shown in the next section.

6.4.2. Local flux densities

We introduce the non-dimensional heat flux densities by adopting (2.33a), thus

φq,i = Nui∆Ti, (6.30a)

φq,f = Nuf∆Tf. (6.30b)

For the non-dimensional mass flux density we use the exact version of (6.5) and employ

(2.32b) so that

φm : = − ṁ
∗hNu

ρD∆C
= − ∂yC

C0(1 + C/Ξ)
(6.31)

where we have introduced Ξ = C0/∆C. For convenience we have inverted the sign of

φm to get a positive value for the case of absorption. We call this evaluation linear/non-

linear (linearized Eckert–Schneider condition/non-linear post processing of the mass flux

108



Results

xx

xx

xx

N
u
i

∆
T
i

N
u
f

∆
T
f

S
h

∆
C

i

0

0 0
0

0
00

0
00

0.50.5

0.50.5

0.50.5

11

11

11

10

20

−0.1

−0.2

−0.3

0.05

0.15

0.1

0.1

0.2

0.3

1.6

1.6

1.8

2

2

2.4

2.8

Figure 6.6.: Local Nusselt numbers and Sherwood number with their cor-
responding local (non-dimensional) driving potentials for Pe =
{100, 200, 300, 450, 625, 875} and the parameter set {Le, A,B, ζ,Pe∗c ,Nu∗c} =
{80, 5 × 10−5, 1/8, 0,−15000, 1500}. Uppermost row: surface Nusselt number
Nui (left) and driving potential ∆Ti (right). Centered row: film/wall Nus-
selt number Nuf (left) and driving potential ∆Tf (right). Lowermost row:
Sherwood number Sh (left) and driving potential ∆Ci (right). The arrows
indicate the direction of increasing Pe.
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density). According to our linearization of the Eckert–Schneider condition in (6.5) we shall

also define the linearized mass flux density

ϕm := −∂yC
C0

= −Sh∆Ci

C0
(6.32)

implying that C/Ξ ≪ 1, called linear/linear in the following. Below we will also evaluate

the mass flux density from the fully non-linear model φ†m. To avoid confusion, Table 6.3

gives an overview of the introduced evaluations of the non-dimensional mass flux density.

Table 6.3.: Overview of the different evaluations of the non-dimensional mass flux density.

Eckert–Schneider Eckert–Schneider
linearized non-linear

linear post-processing ϕm –

non-linear post-processing φm φ†m

Figure 6.7 shows the results for the local flux densities for the parameter set that was

used in Figure 6.6. From the figure we see that the non-dimensional (linearized) mass

flux density (right image) is increasing for most x as Pe increases. Note that the product

ϕmC0 is shown for convenience. In contrast to Sh, which is diverging at the inlet, the mass

flux density is actually not largest but vanishing at the inlet due to the vanishing driving

potential. However, the diverging Sherwood number already indicates that increasing the

driving potential at the inlet (by varying ζ) will lead to a large local absorption rate.
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Figure 6.7.: Local flux densities as defined in (6.30) vs. the streamwise coordinate x. The
parameters are those from Figure 6.6. The arrows indicate the direction of
increasing Pe.
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6.4.3. Modeling errors regarding unidirectional diffusion

Since some authors neglect the Eckert–Schneider condition in their works, we shall inves-

tigate the impact of this shortcoming. Ignoring the relation either means that equimolar

diffusion is present at the free-surface or that one constituent is infinitely dilute. Both

assumptions are clearly not met for the present case, since LiBr is non-volatile and addi-

tionally far from being infinitely dilute (C ≈ 0.5). We shall compare two models in the

following.

1. A model that employs the Nusselt film (non-varying film thickness) with equimo-

lar diffusion at the free-surface is formulated consistently but it does not meet the

physical reality of the unidirectional absorption process.

2. The present model accounts for unidirectional diffusion by using the (linearized)

Eckert–Schneider condition but it neglects the effects that are induced by the ab-

sorption process (increase of film thickness, crosswise velocity) and is formulated

inconsistently therefore.

Ignoring the varying film thickness In order to illustrate this inconsistency we derive

the total mass balance of the non-volatile constituent, thus

∫

out
ρu∗C∗dy∗ −

∫

in
ρu∗C∗dy∗ +

∫

fs
ρn · u∗C∗ds∗ =

∫

fs
ρDn ·∇∗C∗ds∗ (6.33)

where out, in, and fs stand for the outlet, inlet and the free-surface respectively. We use

the stationary version of the mass flux jump, thus ṁ∗ = ρn · u∗, use the exact version of

the Eckert–Schneider condition ṁ∗C∗ = −i = ρDn ·∇∗C∗ and find

∫

out
ρu∗C∗dy∗ =

∫

in
ρu∗C∗dy∗ (6.34)

since diffusion and convection equalize at the free-surface. Consistently, the mass flux

of the non-volatile constituent does not change. Due to the varying film thickness we

introduce the local height h∗x, the local averaged velocity ū∗x and the local mass flux

Γ ∗
x = ρū∗xh

∗
x so that (6.34) reads in general Γ ∗

xC
∗
x = const. Using the scales from above

yields the condition

ΓxCx = Ξ(1− Γx) (6.35)

where we have exploited C in = 0 and Γin = 1. Our present model employs the flat film,

so that Γx = 1 holds for all x which clearly violates (6.35) since Cx 6= 0 apart from the

inlet, illustrating the mentioned inconsistency in our present model.
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However, in a post-processing step we shall deduce the non-dimensional local mass flux

Γx = 1− 1

ε0 PeLe

∫ x

0

∂yC

C + Ξ
dx′ (6.36)

that results for a concentration field C which is deduced from our model. We then define

the absolute deviation a of the constraint (6.35), thus

a := ΓxCx − Ξ(1− Γx) (6.37)

Figure 6.8 shows the result of (6.37) vs. the streamwise coordinate x for different values

of Pe. The absolute error remains acceptable small for the chosen parameter sets. This

implies that the condition (6.35) is fulfilled to a high degree. Therefrom, we conclude

that the simplifications of the present model are justified and we are thus confident that

our results are close to the results of the full model. In addition, Figure 6.9 shows the

actual film height h(x) which is deduced from the local mass flux (6.36) as h = Γx
1/3.

The decreasing film thickness with increasing Pe does not contradict the result that the

absorbed mass flux typically increases for increasing Pe. This can be explained with the

apparatus parameter A, which is kept const. so that an increase of Pe practically means

an increase of Re and therefore an increase of the film thickness. From there it is clear

that a larger Pe inplies a larger film thickness leading to a smaller relative increase of the

film thickness.
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Figure 6.8.: Absolute error function a defined in (6.37) vs. the streamwise coordinate x.
The parameters are those from Figure 6.6. The arrow indicates the direction
of increasing Pe.
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Figure 6.9.: Actual height h(x) deduced from (6.36) with the parameters given in Figure
6.6. The arrow indicates the direction of increasing Pe.

Ignoring the Eckert–Schneider condition We now compare our model with the one

mentioned at the beginning of this section assuming equimolar diffusion, comparative model

called in the following. We again use the parameters from Figure 6.6 with B = 1/8,

define Ξ = 5 and assume C0 = 0.5 for convenience. Ignoring the effect of unidirectional

diffusion implies B∗ = 1/16 and ϕ∗
m = −Sh∆Ci, where the asterisk indicates the quantities

resulting from the comparative model. The results are shown in Figure 6.10 where the

black graphs refer to ϕm (linear/linear), the blue graphs to φm (linear/non-linear) and

the red graphs refer to the model assuming equimolar diffusion. Even if the Sherwood

number Sh remains practically unaltered, the mass flux density evaluations of our model

φm and ϕm are significantly larger than the mass flux density of the comparative model

ϕ∗
m. The findings are as expected and the comparison of the mass flux densities illustrate

the importance of the Eckert–Schneider condition where our model gives an absorbed

mass flux that is roughly 1.4 . . . 1.5 times larger than the absorbed mass flux from the

comparative model. The driving potential ∆Ci and the mixing concentration C are in

general lower for our model even if the absorbed mass flux density is larger. To resolve

this apparent paradox it is necessary to employ the varying mass flux (6.36) and not the

intrinsic mass flux of our model which is Γx ≡ 1 for all x. This is justified by the fact that

condition (6.36) is fulfilled to a high degree.

Linearization of the Eckert–Schneider condition Finally, we compare the mass flux

densities φm (linear/non-linear) and ϕm (linear/linear) from the present linearized model

with the mass flux density from the non-linear model φ†m (non-linear/non-linear). To find

φ†m we use the exact version of (6.5), solve the equations iteratively and use the solution
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Figure 6.10.: Sherwood number Sh, mass flux densities φm (blue), ϕm (black), ϕ∗
m (red),

driving potential ∆Ci and mixing concentration C vs. the streamwise coor-
dinate x. The black graphs refer to the present model and the red ones to
the one assuming equimolar diffusion. The parameters are those from Figure
6.6.

to evaluate φ†m in agreement with (6.31). Figure 6.11 shows the relative errors

eφ =
φm − φ†m

φ†m
, eϕ =

ϕm − φ†m

φ†m
. (6.38)

From the figure it becomes evident that the real mass flux density φ†m (non-linear/non-

linear) lies in between φm (linear/non-linear) and ϕm (linear/linear) from the linearized

model, where the linear/linear approach underestimates and the linear/non-linear ap-

proach overestimates the real absorption rate by roughly 5% or less. We conclude that

the linear/non-linear evaluation yields slightly better results.
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Figure 6.11.: Relative errors eϕ (red) and eφ (black). The parameters are those from Figure
6.6. The arrows indicate the direction of increasing Pe.

6.4.4. Variation of the coolant Nusselt number

To deduce the most effective case with respect to Pe, we shall reduce the mass flux density

to the non-dimensional averaged mass flux density

φm =

∫ 1

0
φm dx. (6.39)

Here, in contrast to the definition of Sh, the scaling factor is no longer a locally varying

value so that an easy conversion between the non-dimensional and the dimensional mass

flux density is guaranteed. However, from φm we are still not able to deduce the most

effective case with respect to Pe since the scaling factor includes hNu ∝ Pe1/3. It might,

therefore, be more advantageous to chose an easier accessible scaling factor. If we do so, we

have to admit, that the non-dimensional formulation becomes somewhat counterproductive

and cumbersome. Nonetheless, for the task to deduce the most effective Péclet number

we define the easily accessible scaling quantity for the averaged mass flux density η̄/L0

so that the non-dimensional averaged mass flux density becomes (Hofmann & Kuhlmann,

2012)

ṁ := −ṁ∗
(
η̄

L0

)−1

= − 1

ε0PrLe

∫ 1

0

∂yC

C +Ξ
dx = Re(Γout − 1). (6.40)

Figure 6.12 shows the result for ṁ vs. the Péclet number Pe for several Nu∗c and a certain

parameter set (see figure caption). In addition we show the limiting case of the isothermal
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Figure 6.12.: Averaged mass flux density ṁ as function of the Péclet number Pe and the
reduced coolant Nusselt numbers Nu∗c = {500, 1000, 1500, 3000, 5000, 8000}.
The thick curve represents the isothermal wall (T = −1), the dash-dotted
curve the linear variation of the wall temperature (T = −x). The remain-
ing parameters are {Le, A,B, ζ,Pe∗c} = {80, 5 × 10−5, 1/8, 0,−15000}. The
Prandtl number is chosen as Pr = 30. The arrow indicates the direction of
increasing Nu∗c .

wall (T = −1) as a thick curve and the result for the linear variation of the wall temperature

(T = −x) as a dash-dotted curve. From the trend of the curves within the figure it becomes

evident that the coolant Nusselt number has a crucial influence on the quantitative result

and the linear temperature variation may only serve as a qualitative representation of the

absorption process. We can also conclude that an absorption maximum exists at relatively

low Pe. With a given apparatus parameter A, the variation of Pe implies the variation

of the aspect ratio ε0 and with a given fluid this finally means a variation of the film

thickness so that we can practically speak of an optimal film thickness. As mentioned by

Killion & Garimella (2001) already Kawae et al. (1989) noticed the existence of an optimal

film thickness.

To understand the appearance of this optimum we analyze the total heat flux balance

of the film by integrating the transport equation yielding the heat fluxes

Qs = − 1

ε0

∫ 1

0
(∂yT )|y=0 dx (6.41)

Qn =
1

ε0

∫ 1

0
(∂yT )|y=1 dx (6.42)

Qc = −Pe

∫ 1

0
(uNuT )|x=1 dy = −PeT out (6.43)
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which are the total heat flux to the coolant Qs, the total heat flux at the free-surface Qn

and the (negative) convected net fraction Qc which is related to the mixing temperature

at the outlet T out due to T in = 0. Figure 6.13 shows the total fluxes Qi vs. the Péclet

number Pe where the blue graphs represent Qs (coolant), the red graphs Qn (absorption),

the solid black graphs Qc (convection) and the dash-dotted line represents the sum of all

fluxes confirming conservation. Thus, the coolant heat flux (blue) balances the total heat

due to absorption (red) plus the convective heat transport (black). As Pe is increased,

the more cooling demand stems from the convective process (the film itself) and the less

remains for the absorption process (for the film surface). With the argument from above

we may assume that increasing Pe causes an increasing film thickness and therefore an

increasing incoming total enthalpy, where more and more cooling demand is addressed to

the film (bulk) and less remains to cool the surface to drive absorption. Finally, Figure

6.14 shows the ratio Qn/Qs for all Nu∗c that are given in Figure 6.13. This ratio is a

measure for the efficiency where the best values are gained for vanishing Pe. The most

efficient case is therefore the one with the least effectiveness since nothing is absorbed, see

Figure 6.12. Again, with a given A and Pe → 0 we conclude ε0 → 0 which implies either a

plate that approaches an infinite length or a vanishing film thickness where the latter case

is of practical relevance. A film of vanishing thickness suffers from the fact that is has no

capacity to carry the absorbate and is therefore the least effective case for absorption.

Q
i

Pe

200 400 600

0

0

−500

−1000

−1500

500

1000

Figure 6.13.: Total heat fluxes Qi as function of Pe and Nu∗c . Shown are Qn (red), Qs

(blue), Qc (solid black) and the sum of all fluxes (dash-dotted). The pa-
rameters are {Le, A,B, ζ,Pe∗c} = {80, 5 × 10−5, 1/8, 0,−15000} and Nu∗c =
{500, 1000, 1500, 3000, 5000, 8000}. Higher levels correspond to larger Nu∗c .
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Figure 6.14.: Ratio Qn/Qs as function of Pe and Nu∗c for the parameters given in Figure
6.13. The arrow indicates the direction of increasing Nu∗c .

6.5. Interim summary

We summarize the assumptions made and comment on their validity.

1. Streamwise diffusion is a higher order effect and can be safely neglected.

2. As long as the gas is very dilute and the latent heat large, the heat loss to the gas

phase can be neglected.

3. Employing a linear concentration coefficient γ seems to be justified, at least for small

operating pressures for the LiBr–H2O-system.

4. Modeling errors arising from the Eckert–Schneider condition were discussed.

a) The linearization of the Eckert–Schneider condition leads to an relatively small

error depending on the post-processing.

b) Accounting for unidirectional diffusion but neglecting the increase of the film

thickness results in an inconsistent formulation. However, the impact was shown

to be relatively small.

c) Finally, the inclusion of the Eckert–Schneider condition appears to be essential.

Among all different models for flat absorbing falling films the inclusion of the

one-sided diffusion process seems to be by far the most important aspect, since

no other simplification has a comparable impact.
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5. The heat transfer at the wall has a crucial influence to the quantitative result. A

linear temperature variation at the wall can only serve as a qualitative representation.

6. We find a maximum for the averaged mass flux density as function of Pe which is

related to an optimal aspect ratio ε0 = APe1/3 since the apparatus parameter A is

given. For a particular fluid this finally results in an optimal film thickness, Reynolds

number or incoming mass flux, respectively.

7. We have shown that the most efficient case is in turn the least effective one.
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7. The absorbing wavy film

The assumption of one-way coupling again allows to employ the solutions of the isothermal

wavy film, so that u = u(x, y, t) and h = h(x, t) are known in the equations for heat and

species transport. However, the free surface boundary conditions prohibit the numerical

treatment of the wavy absorbing film within the moving frame and we need to change

into the laboratory frame. Therefore, the problem becomes transient and a time stepping

technique has to be introduced.

7.1. Governing equations

Bulk equations The transport equation for the scalar quantity S = S(x, y, t) reads in

the laboratory frame by neglecting streamwise diffusion

[

∂t + u ·∇− 1

Pe
∂yy

]

S(x, y, t) = 0. (7.1)

We again introduce a coordinate transformation as for the Navier–Stokes equations, hence

τ = t , ξ = x , η =
y

h(x, t)
. (7.2)

Note that x and ξ represent the streamwise coordinates in the laboratory frame (we assume

no longer moving coordinates in streamwise direction). The operators transform as

∂t = ∂τ −
ηḣ

h
∂η , ∂x = ∂ξ −

ηh′

h
∂η , ∂y =

1

h
∂η. (7.3a)

We exploit the traveling wave solutions so that ḣ = −ch′. The transport equation (7.1)

for S = S(ξ, η, τ) within the computational domain reads

(

∂τ +
cηh′

h
∂η

)

S + u

(

∂ξ −
ηh′

h
∂η

)

S +
v

h
∂ηS − 1

Peh2
∂ηηS = 0.

Collection of all terms yields

[

∂τ + u∂ξ +
ηh′(c− u) + v

h
∂η −

1

Peh2
∂ηη

]

S = 0.
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Since all velocity components and the surface position are given, we define the coefficients

f(ξ, η, τ) :=
ηh′(c− u) + v

h
, (7.4a)

g(ξ, τ) := h−2, (7.4b)

and obtain

[

∂τ + u∂ξ + f∂η −
g

Pe
∂ηη

]

S(ξ, η, τ) = 0. (7.5)

Wall bc For the present study it is advising to reduce the complexity of the model to a

reasonable minimum. From this point of view we define the wall to be isothermal, thus

T |η=0 = −1. The resulting deficit of this approach is a discontinuity of the temperature at

the lower left corner connecting the inlet with the wall. Our numerical experiments have

shown that this discontinuity induces severe oscillations of the temperature derivative at

the wall. To circumvent this issue, we introduce the regularized wall boundary condition

T |η=0 = −1 + tanh[s(ξ − ξ0)]

2
(1− e−τ ) (7.6)

representing a smeared step function shifted by ξ0 from the inlet ξ = 0 and smeared by

the parameter s. The exponential term additionally guarantees a smooth onset in time.

The temporal evolution of the function is shown in Figure 7.1.

ξ

τ

T
| η=

0
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−0.8

−0.6
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−0.2

0

0 4 8 12 16 20

Figure 7.1.: Temporal evolution of the regularized wall bc for ξ0 = 5 and s = 1/2. The
arrow shows in the direction of increasing τ . The thick graph represents the
time-asymptotic state.
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Flux bc The flux boundary condition at the free surface becomes

(−hh′∂ξ + n2∂η)(T +BC) = 0 (7.7)

where we have used the normal derivative operator (5.5). For the later proposed marching

technique it is advantageous to neglect the derivative in ξ which is small compared to the

crosswise derivative so that this simplification is expected to bear no significant impact.

The flux bc finally reads

∂ηT = −B∂ηC. (7.8)

Inlet bc To avoid the steep gradient of C at the inlet, related to ζ 6= 0, we simply define

ζ = 0 so that the inlet bc becomes C|ξ=0 = 0.

7.2. Numerical approach

On a first view the parabolic character of the equations invites to employ a simple marching

technique using finite differences. Such a numerical technique works properly as long as

u ≥ 0, i.e. as long as no backflow occurs. However, for cases with a backflow region,

the problem becomes a representative of the forward-backward heat equation. For these

cases the marching technique becomes unstable if a region of backflow is entered since the

equation is integrated in its unstable direction (Aziz et al., 1999).

A potential remedy to circumvent this shortcoming is given by Phillips & Ackerberg

(1973), since their problem, integration of the unsteady boundary layer equations through

regions of backflow, seems to be very similar to the present one. They employ space-

marching in the streamwise direction which is then followed by time-marching. Central

differences are used throughout so that their method is of second order accuracy in space

and time. Depending on the direction of the streamwise velocity Phillips & Ackerberg

(1973) switch the stencil for the convective derivative. Unfortunately, the straightforward

implementation of this method turned out to be not convergent for the present problem,

so that a further modification of the backflow treatment is needed.

Several additional unsuccessful approaches to solve the numerical stability problem in-

duced by the backflow, have finally compelled us to drop the convective term u∂ξS within

the regions of backflow, i.e. to set u = 0 for u < 0. This idea was stimulated by

Cebeci et al. (1979) and is called FLARE-approximation1 from now on. Paradoxically,

this crude-looking approximation yields the most promising results. The impact of the

FLARE-approximation will be estimated by a benchmark simulation further below.

1Named after the authors Flügge-Lotz and Reyhner.
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Beyond that, our numerical experiments have shown that the application of the basic

scheme of Phillips & Ackerberg (1973) to both transport equations leads to minor tem-

poral oscillations of the temperature derivative at the wall. We have therefore decided

to use the Crank–Nicholson scheme for the discretization of T and the basic scheme of

Phillips & Ackerberg (1973) for the discretization of C.

Due to the discretization schemes used we keep the transport equation for T in its form

but transform the PDE for C into a system of PDE’s of first order by defining

w := ∂ηC (7.9)

so that the transport equations become

(∂τ + θu∂ξ)C +
(

f − g

PeLe
∂η

)

w = 0, (7.10a)

∂ηC − w = 0, (7.10b)
(

∂τ + θu∂ξ + f∂η −
g

Pe
∂ηη

)

T = 0. (7.10c)

where θ = θ(u) is the Heaviside step function to account for the FLARE-approximation,

setting u = 0 for u < 0. We shall point out that the FLARE-approximation is inconsistent

with the original transport equation already before discretization due to the introduction of

the Heaviside step function. However, for cases where the impact of the convective term is

small, we expect that the solution of the original transport equation is well approximated.

The set of boundary conditions reads

T |ξ=0 = 0, (7.11a)

C|ξ=0 = 0, (7.11b)

T |η=0 = −1 + tanh[s(ξ − ξ0)]

2
(1− e−τ ), (7.11c)

w|η=0 = 0, (7.11d)

(T − C)|η=1 = 0, (7.11e)

(Bw + ∂ηT ) |η=1 = 0. (7.11f)

As initial condition we employ the zero-state, i.e.

T |τ=0 = 0, (7.12a)

C|τ=0 = 0, (7.12b)

w|τ=0 = 0. (7.12c)
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7.2.1. Discretization of C and w

The sketch in Figure 7.2 shows a single cell in order to introduce the notation used in the

following.

nw ne

sw se

c

n

s

ew

ξ

η

τ

Figure 7.2.: Sketch of a single cell with the notation used. The open circles indicate the
shared location of C and w.

The discretization of (7.10a) is done around the center of a cell (location c) and between

the two consecutive time levels n and n+1 (the position is indicated as AC in Figure 7.3)

so that both time levels enter with a weight of 1/2, hence

∂τC ≈ Cn+1
c −Cn

c

∆τ

w ≈ wn+1
c + wn

c

2

∂ξC ≈ 1

2

[
Cn+1
e − Cn+1

w

∆ξ

]

+
1

2

[
Cn
e − Cn

w

∆ξ

]

∂ηw ≈ 1

2

[
wn+1
n − wn+1

s

∆η

]

+
1

2

[
wn
n − wn

s

∆η

]

.

Centered values are interpolated by the arithmetic mean of the corner values, thus

Cc ≈
Cne + Cse + Cnw + Csw

4
.

In terms of the corner values, the discretized version of (7.10a) becomes

∂τC ≈
[
Cn+1
ne + Cn+1

se

4∆τ

]

+

[
Cn+1
nw +Cn+1

sw

4∆τ

]

−
[
Cn
ne + Cn

se +Cn
nw + Cn

sw

4∆τ

]

(7.13a)

∂ξC ≈
[
Cn+1
ne + Cn+1

se

4∆ξ

]

−
[
Cn+1
nw +Cn+1

sw

4∆ξ

]

+

[
(Cn

ne + Cn
se)− (Cn

nw + Cn
sw)

4∆ξ

]

(7.13b)
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w ≈
[
wn+1
ne + wn+1

se

8

]

+

[
wn+1
nw + wn+1

sw

8

]

+

[
wn
ne +wn

se + wn
nw + wn

sw

8

]

(7.13c)

∂ηw ≈
[
wn+1
ne − wn+1

se

4∆η

]

+

[
wn+1
nw − wn+1

sw

4∆η

]

+

[
(wn

ne + wn
nw)− (wn

se + wn
sw)

4∆η

]

(7.13d)

where the first brackets hold the unknowns at the new time step n+1, the second brackets

hold the previously computed values at n+1 and the third brackets hold the values of the

previous time step n.

Equation (7.10b) is discretized at the new time level n + 1 around the location e. The

position is indicated as Aw in Figure 7.3. The discretized version of (7.10b) then becomes

Cn+1
ne − Cn+1

se

∆η
− wn+1

ne + wn+1
se

2
= 0. (7.14)

n

n+ 1

AC

Aw

ξ

η

τ

Figure 7.3.: Sketch of the numerical molecules for the discretization of C and w. The
position AC indicates the center of discretization for (7.10a) and Aw the center
of discretization for (7.10b). The open circles indicate the shared location of
C and w. The time levels are indicated as n and n+ 1.

7.2.2. Discretization of T

Our numerical experiments have shown that the discretization of both transport equations

with the given scheme lead to minor temporal oscillations of (∂ηT )|η=0. A damping of these

oscillations is achieved by employing the Crank–Nicholson scheme for the discretization

of T . However, keeping the introduced stencil would give us a total of 3(Nη + 1) un-

knowns for C,w, T that are faced to 3Nη +4 equations (3Nη for the bulk plus 4 boundary

conditions). Instead of solving an overdetermined system, we shift the given numerical
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molecule by ∆η/2 and end up at the numerical molecule for T , shown in Figure 7.4. The

variable T is again evaluated at the corners, indicated by the open circles in Figure 7.4.

The interpolation is carried out as in Section 7.2.1.

n

n+ 1

AT ξ

η

τ

Figure 7.4.: Sketch of the numerical molecules for the discretization of T . The position AT

indicates the center of discretization for (7.10c). The time levels are indicated
as n, n+ 1 and the location of T is represented by the open circles.

7.2.3. Interpolation of u

Since it is desirable to choose the spatial step ∆ξ and the time step ∆τ independently of

the underlying flow field resolution, the coefficients u, g and f are subject to interpolation.

We therefore decompose the coefficients into their Fourier spectra with respect to ξ′, hence

ân(η) =
1

Nξ

Nξ−1
∑

j=0

aj(η) e
−iknξ′j with kn =

2π

L
n for a = u, f, g (7.15)

where ân(η) = â(kn, η) are the Fourier coefficients of the corresponding data set aj(η) =

a(ξ′j, η) given in moving coordinates ξ′ = ξ − cτ . The number of contributors Nξ is

determined by the streamwise resolution of the underlying Navier–Stokes solution. For

the evaluation of the coefficients at any location (ξ, η, τ) (with ξ now in the laboratory
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frame) we recompose according to

a(ξ, η, τ) ≈
N∑

n=−N

ân(η) e
ikn(ξ−cτ) for â = û, f̂ , ĝ. (7.16)

The given approximation includes only wave numbers up to N , so that the high wave

number components are neglected. To find the cut off wave number, we compare the

Fourier amplitudes |ân| with the amplitude of the fundamental |â1|, thus rn := |ân|/|â1|
and set the cut off where rn < ε by defining ε := 10−4.

We shall note that the resolution in η is inherited by the flow field resolution andNη = 50

is used throughout.

7.2.4. Basic verification

For a partial verification of the code we apply the introduced time-stepping method to

a flat film and compare it with the result of the stationary solver that was employed in

Chapter 6. Since we have verified the code for the flat film with data from the literature

and since the codes are fundamentally different from another, a coincidence shall indicate

that the time stepping method gives correct results.

To demonstrate the influence of the regularization of the thermal wall boundary con-

dition we employ the isothermal wall for the stationary flat film simulation. By defining

Re := 10 all parameters are given. For now, we simply assume ∆τ = ∆ξ = 1 and give

some more thoughts about choosing the step sizes subsequently.

Figure 7.5 shows the spatio-temporal evolution of the free surface temperature or concen-

tration, respectively. The parabolic character of the system becomes evident. The dashed

line indicates the surface velocity uNu,max = 1.5 and the full line represents up = 1.25

approximating the present perturbation propagation velocity. This gives us an estimate

for the time span that is needed to reach a stationary solution. We shall employ this prop-

agation velocity also for the really transient simulations to be discussed later to estimate

the time span to reach a time periodic solution.

Figure 7.6 compares the result of the stationary solver with the final result of the time

stepping method. For a better comparability we have shifted the result of the latter by

x = ξ0. The agreement is excellent so that our initial verification is successful and a basic

functionality of the solver can be guaranteed, at least for forward flow.
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Figure 7.5.: Isolines (color) of the surface temperature (or concentration) in the xt-plane
to illustrate the spatio-temporal evolution. The lines indicate the surface
velocity u = 1.5 (dashed) and u = 1.25 (full) to approximate the perturbation
propagation velocity.
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Figure 7.6.: Time-asymptotic surface temperature T (black, full) and solution of the sta-
tionary solver (red, dashed) vs. the streamwise coordinate x.
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7.3. Results for the thermal case

For the final verification we reproduce the results of the thermal film of Chapter 5. We

therefore change the boundary condition at the surface to T |η=1 = C|η=1 = 0, decoupling

the fields from another. We use T |ξ=0 = C|ξ=0 = 0 at the inlet and apply the regularized

wall boundary condition (7.6) also to C. Employing Le = 1 yields the identical problem

for T and C so that the setup is also a verification for the discretization strategies, as both

schemes shall lead to the same result. The simulation is initialized with S(ξ, η, τ = 0) = 0

for S = T,C,w. The step sizes are chosen as ∆τ = 1/8 and ∆ξ = 1/4. Figure 7.7 shows

the contours of the temperature field for Pr = 1 and Pr = 10. The qualitative agreements

with Figure 5.5 and Figure 5.6 are good. However, the case Pr = 100 does not converge

even if the employed numerical schemes are stable in general. This is due to the FLARE-

approximation and the backflow regions, respectively, since a larger Pr leads to a larger Pe

and therefore to a more dominant convective term, which suffers from the discontinuous

velocity field from the FLARE-approximation, see step function in (7.10).

For the verification of the discretization schemes we compare the results for T and C in

the ξη-plane in Figure 7.8 showing the isolines for the temperature field (red) and for the

concentration field (black). We clearly see that the different treatment of T and C in the

discretization has no influence on the solution.
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Figure 7.7.: Contours of the temperature for Pr = 1 (top) and Pr = 10 (bottom).
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Figure 7.8.: Isolines of T (red) and C (black) in the ξη-plane for Pr = 10 and t = 150.

Figure 7.9 shows the height h (black), the Nusselt number bottom Nuf (blue) and the

Nusselt number free surface Nui (red) for Pr = 1 where the dashed curves refer to the

result of Chapter 5 shown in Figure 5.5 and the solid curves are the present results from

the marching technique by using the FLARE-approximation. The overall comparison is

good, despite the minor oscillations induced by the numerical treatment of the backflow

regions.

Figure 7.10 shows h (black), Nuf (blue) and Nui (red) for Pr = 10 where the dashed

curves again refer to the results from Figure 5.6. Here, the comparison is already poor

giving an indication for the impact of the FLARE-approximation. Nonetheless, the overall

qualitative behavior is well captured.
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Figure 7.9.: Height h (black), Nusselt number bottom Nuf (blue) and Nusselt number
free surface Nui (red) for Pr = 1. The solid curves refer to the results from
time-stepping and the dashed ones refer to the results given in Figure 5.5.
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Figure 7.10.: Height h (black), Nusselt number bottom Nuf (blue) and Nusselt number
free surface Nui (red) for Pr = 10. The solid curves refer to the results from
time-stepping and the dashed ones refer to the results given in Figure 5.6.

The benchmark simulation of the thermal wavy film yields the following interim results.

• The different discretization schemes of the respective transport equations have no

influence to the solution.

• For forward flow, the time stepping method yields reliable results, shown by the

comparison with the results from the solver of Chapter 6.

• The agreements with the results of Chapter 5 show that the time stepping method

yields acceptable results with certain deviations due to the chosen approximation.

However, the backflow regions, treated within the FLARE-approximation, are sources

of numerical instability, in particular for large Prandtl numbers and large backflow

regions.

7.4. Results for the absorbing case

In this final section we shall investigate the wavy absorbing film, again within the FLARE-

approximation. The result from the previous chapter suggests that the error introduced

is acceptable. However, one has to keep in mind that the approach is limited due to the

inconsistent formulation. To mimic a system that is related to LiBr–H2O we define the

parameter set

Le := 80 , Pr := 30 , B := 1/8. (7.17)
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The boundary conditions (7.11) already imply ζ = 0. For the regularized thermal wall

boundary condition we define ξ0 := 10 and s := 0.2. The remaining free parameter is Pr

since Re is already inherited from the considered flow field.

7.4.1. Evaluation of step sizes

For the following test we employ the flow field of case 6 (see Table 4.4) and consider a

total length of 4 wavelengths, thus L0 = 4L. The step sizes ∆ξ and ∆τ are varied and

the qualitative results are examined and summarized in Table 7.1. From Table 7.1 one

can easily extract that the method calls for a CFL-number Co below one, thus Co =

u∆τ/∆ξ < 1 (for u ≈ 1). Secondly it seems most advantageous to employ the step size

combinations for which ∆τ/∆ξ = 0.5.

Table 7.1.: Qualitative results for different step size combinations. A diverged solution is
indicated by 0, a qualitatively reasonable solution by 1, n/a means that the
simulation has not been performed and wig indicates the appearance of wiggles
in T and/or C.

∆τ = 1 ∆τ = 1/2 ∆τ = 1/4 ∆τ = 1/8

∆ξ = 1 0 1 wig wig

∆ξ = 1/2 0 0 1 wig

∆ξ = 1/4 0 0 0 1

∆ξ = 1/8 n/a 0 n/a 0

7.4.2. Convergence check

With ∆τ/∆ξ = 0.5 we perform a grid refinement study again for case 6 (Table 4.4) and

L0 = 6L ≈ 350. The step sizes are chosen as ∆ξ = 1/2n and ∆τ = 1/2n+1 for n = 2, 3, 4.

The results for the negative η-derivative of the concentration at the free surface

C ′
η := −(∂ηC)|η=1 (7.18)

are shown in Figure 7.11 for the spatial evolution at the end of the simulation tend = 279,

and in Figure 7.12 for the temporal evolution at the end of the domain xend = 349. The

figures also show the instantaneous height h(x, tend) and the local height h(xend, t), respec-

tively. The overall convergence of the solution is good apart from the narrow oscillating

regions.
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Figure 7.11.: Spatial evolution of C ′
η for tend = 279, where the step sizes are chosen as

∆ξ = 1/2n and ∆τ = 1/2n+1 for n = 2 (red), n = 3 (blue) and n = 4
(black). The instantaneous height h(x, tend) is also shown (lower curve).
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Figure 7.12.: Temporal evolution of C ′
η for xend = 349, where the step sizes are chosen

as ∆ξ = 1/2n and ∆τ = 1/2n+1 for n = 2 (red), n = 3 (blue) and n = 4
(black). The local height h(xend, t) is also shown (lower curve).

7.4.3. Results for case 6

Figure 7.13 shows the temperature field and the concentration field for case 6 of Table 4.4

with the parameters given in (7.17) at the end of the simulation. In Figure 7.14 a close up

of the concentration field near the 3rd and 4th wave hump including a vector plot of the

velocity field (within the moving frame) is given. From the close up we clearly identify

the convective species transport and the influence of the tiny separation zone within the

moving frame.

The size of the separation zone can be estimated qualitatively from the central, left

image and quantitatively from the central, right image of Figure 7.24. The latter shows

the streamwise surface velocity u|y=h (in the laboratory frame) and the wave celerity c as
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dashed line, so that an intersection of the surface velocity with c means the appearance

of a separation zone (in the moving frame) (Albert et al., 2014). Correspondingly, an

intersection with the baseline indicates backflow (in the laboratory frame). Due to the

almost tangential surface velocity (in fact it is intersecting c) one finds a region (within the

moving frame) with almost no fluid movement. This becomes also clear from the vector

plot of Figure 7.14.

Figure 7.15 shows the height h and the relevant quantity for mass flux (−∂yC)y=h,

scaled by 1/8 for convenience. Due to the boundary condition and the choice of B, this

quantity is equivalent to the heat flux density at the free surface φq,i. From the graphs it

becomes evident that absorption is largest at the deepest wave trough and drops rapidly

along the steep front of the wave crest to reach its minimum at the vertex. From there it

increases again to values that are close to the maximum of the first trough in front of the

main hump. In a comparison with the film height it becomes clearly visible that the mass

flux density and heat flux density, respectively, again scales inversely with the height. This

finding agrees qualitatively very well with Albert et al. (2014). However, they present a

local Sherwood number which differs from our non-dimensional mass flux density by a

normalization with a local driving potential.
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Figure 7.13.: Solution for T (x, y, t0) (top) and C(x, y, t0) (bottom) at t0 = 279 for case 6
of Table 4.4.
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Figure 7.14.: Close up of the concentration field C(x, y, t0) at t0 = 279 shown in Figure
7.13. Left: Close up of the 3rd hump. Right: Close up of the 4th hump. The
vector plot shows the velocity field within the moving frame.
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Figure 7.15.: Heat flux density at the free surface φq,i (red) and instantaneous height
h(x, tend) (black) at t0 = 279. The region between the 3rd and 4th wave
hump is shown.

Figure 7.16 shows the instantaneous values at t = 279 as function of x for the height h,

the temperature difference across the film ∆Tx = T |y=h − T |y=0, the heat flux density at

the wall φq,f = (∂yT )|y=0 and the heat flux density at the free surface φq,i = (∂yT )|y=h (all

in black). By averaging over the last period we find the time averaged quantities of the

respective values as functions of x, which are depicted in red. Finally, the solution of the

corresponding flat film is given in blue. The enhancement of all average values becomes

evident. For a better comparability of the heat flux densities, Figure 7.17 shows again the

film height, the wall heat flux density and the heat flux density at the free surface.
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Figure 7.16.: Results for the wavy absorbing film. Local and instantaneous quantities
are given in black, time averaged quantities in red and the solution of the
corresponding absorbing flat film is depicted in blue.
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Figure 7.17.: Local and instantaneous film height h (black), wall heat flux density φq,f
(blue) and heat flux density at the free surface φq,f (red).

Figure 7.18 shows the results for case 6 by employing Le = 1 and B = 1/8. Below,

Figure 7.19 presents the same case also for Le = 1 but B = 10. The particular choice for

B stems from the flux boundary condition that may be also written in terms of the Lewis

number, i.e. B = B∗/Le. From our comparative simulation, presented in Figure 7.13,

we find B∗ = 10. This means that the first case is chosen such that Le is varied but B

kept where in turn the lower case is chosen such that Le is varied but B∗ kept. The same

strategy was repeated for Le = 10 and the results are shown in Figure 7.20 and 7.21.

• Le = 1: From a comparison of the upper and lower concentration fields we eas-

ily notice that they agree qualitatively very well but differ in their concentration

level (very roughly by a factor of 9). The temperature fields, however, differ also

qualitatively from another.

Firstly, by comparing both cases with Figure 7.13 (Le = 80) it becomes evident that

the smaller Lewis number results in a more pronounced bulk diffusion so that the

thin boundary layers vanish. Secondly, we notice that the surface temperature does

not change significantly for B = 10 in contrast to B = 1/8. This prevents the film

to absorb mass as it stays close to its equilibrium state which is given by the inlet

condition. The reason for this result is the huge difference in B representing the

enthalpy of evaporation. Thus, for B = 10, already a small amount of absorbed

mass leads to a much larger release of heat than for B = 1/8. This explains the

reduced concentration level for C of the lower case.

• Le = 10: Comparing Figure 7.20 with 7.21 brings us to the same conclusions as

before. However, the concentration boundary layer is already very much pronounced

and significantly thinner than for Le = 1. By comparing Figure 7.18 with Figure
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7.20 we notice a very good qualitative agreement for T . This is caused due to their

accordance in Pr and B.

7.4.4. Results for other cases

In the following we investigate two more cases out of Table 4.4 where we again refer to

Figure 7.24 showing the employed flow fields.

• Re = 15 (case 8): Due to convergence problems for Le = 80 we shall present a case

for Le = 10 and B = 1/8 since we expect a qualitatively similar result. From Figure

7.22 the qualitative agreement with our reference case becomes clear. The influence

of the separation zone is more pronounced but the tears in the concentration field

already indicate numerical difficulties which become critical for larger Le. Thence,

additional numerical shortcomings become manifest in the concentration field within

the separation zone. This was already visible from the oscillations in Figure 7.14.

• Re = 8.6 (case 5): We finally investigate a case where the separation zone is totally

absent and Figure 7.23 shows the result for Le = 80 and B = 1/8. The result is as

expected, showing a thin concentration boundary layer and a practically untainted

convective transport of the species through the main hump due to the absence of

the separation zone. However, the influence of the slow fluid motion at the back of

the wave crest is clearly visible.
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Figure 7.18.: Solution for T (x, y, t0) (top) and C(x, y, t0) (bottom) at t0 = 150 for case 6
out of Table 4.4 (Re = 10.7) for Pr = 30, Le = 1 and B = 1/8 (B∗ = 1/8).
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Figure 7.19.: Solution for T (x, y, t0) (top) and C(x, y, t0) (bottom) at t0 = 150 for case 6
out of Table 4.4 (Re = 10.7) for Pr = 30, Le = 1 and B = 10 (B∗ = 10).
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Figure 7.20.: Solution for T (x, y, t0) (top) and C(x, y, t0) (bottom) at t0 = 150 for case 6
out of Table 4.4 (Re = 10.7) for Pr = 30, Le = 10 and B = 1/8 (B∗ = 10/8).
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Figure 7.21.: Solution for T (x, y, t0) (top) and C(x, y, t0) (bottom) at t0 = 150 for case 6
out of Table 4.4 (Re = 10.7) for Pr = 30, Le = 10 and B = 1 (B∗ = 10).
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Figure 7.22.: Solution for T (x, y, t0) (top) and C(x, y, t0) (bottom) at t0 = 150 for case 8
out of Table 4.4 (Re = 15) for Pr = 30, Le = 10 and B = 1/8.
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Figure 7.23.: Solution for T (x, y, t0) (top) and C(x, y, t0) (bottom) at t0 = 150 for case 5
out of Table 4.4 (Re = 8.6) for Pr = 30, Le = 80 and B = 1/8.
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Figure 7.24.: Left column: Streamlines within the moving frame. Top: case 5 (Re = 8.6),
center: case 6 (Re = 10.7), bottom: case 8 (Re = 15). Right column:
Streamwise component of the fluid velocity at the free surface, thus u|y=h

(within the laboratory frame). The cases agree side by side. The dashed
lines indicate the wave celerity c and u = 0.
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8. Summary and Conclusions

The present thesis considers the falling liquid film in different manifestations, the isother-

mal and the thermal wavy film, the absorbing flat film and the absorbing wavy film. The

discussions of the numerically generated results for these four cases are given in separated

chapters in the mentioned order. Preparatory to the presentation of the numerical results,

a comprehensive analysis of the governing equations including the boundary conditions

is given to estimate the influence of several approximations. Also, the one-way coupled

formulation of the problem (the flow field remains unaffected by the species and/or heat

transport) is justified. This approximation allows to solve the Navier–Stokes equations

and the transport equations for heat and species consecutively, reducing the complexity

to a reasonable degree. Three different solvers were developed in MATLAB by the author

exclusively for this thesis.

The first discussion deals with the isothermal wavy film, where the solutions are found

as sharp-interface traveling-wave solutions of the Navier–Stokes equations, corresponding

to steady states within a co-moving frame of reference. The strongly coupled non-linear

system, including the a priori unknown wave celerity and the shape of the free surface,

is solved with Newton’s method by using the finite-volume formulation on a staggered

grid. A coordinate transformation is introduced to adapt the computational mesh to the

free surface in order to represent a sharp liquid–gas interface. An arclength continuation

method is implemented to efficiently track the solution branches, and the resulting system

of linear equations is solved using the bordering algorithm. The code is successfully verified

for the constant height formulation (closed flow condition). In addition, the constant

flux formulation (open flow condition) is implemented to compare the steady solutions

within the moving frame with available periodically-forced transient simulations within

the laboratory frame showing excellent agreements. The solutions of selected branches

are evaluated for their average film height and the surface area increase. In addition, all

solutions with backflow regions are marked in the respective solution branch to show that

this phenomenon is the rule rather than the exception for the chosen parameter set. The

falling liquid film is examined in a non-standard approach by employing Navier–Stokes-

equations rather than using boundary layer related model equations. This was motivated

by the analysis of the strong surface tension limit for liquids like LiBr-H2O. However, all

results suggest that the selection of the Navier–Stokes equations is based on a too stringent
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interpretation of the initial analysis of the strong surface tension limit. This leads to the

conclusion that common model equations might be a good approximation, even for the

parameters used in this thesis. The main conclusion of this chapter regarding heat and/or

species transfer enhancement at the free surface is that the surface increase due to the

waviness is not a relevant quantity to explain a significant transfer enhancement. It is

shown that the surface increase is not more than 1% compared to the corresponding flat

film.

The second numerical investigation addresses the thermal wavy film to identify the

significance of convection to the enhancement of heat transfer. The analysis is again done

in the moving frame of reference by employing an isothermal wall and an isothermal free

surface. The local Nusselt number is analyzed for several Prandtl numbers and the average

Nusselt number is derived for a wide range of Prandtl numbers. This chapter is closed by

showing the lower and upper bounds for the average Nusselt numbers for all solutions of

the branches generated in the preceding chapter. A measure for the convectively induced

heat transfer enhancement is introduced, showing that more than 70% of the Nusselt

number increase is related to the film thinning effect. The convective effects are thus

only of secondary importance for the cases shown. In addition, the local Nusselt number

distributions are analyzed and the vortex within the moving frame of reference is shown

to act as an insulator for the heat transfer at the free surface. In turn, it compresses the

thermal boundary layer below the main hump and enhances the heat transfer to the wall.

The enhancement of heat transfer, which is related to the backflow regions in the capillary

wave troughs, is hard to separate from the convective effect per se. From there, a selective

statement to the action of the backflow regions regarding heat transfer enhancement is

not given.

To create a benchmark for the absorbing wavy film, the absorbing flat film is discussed

in the third investigation. The corresponding code is successfully verified with literature

data. Certain modeling aspects, like the thermal wall boundary condition and the inclusion

of the Eckert–Schneider condition are analyzed in detail. The latter condition is related to

one-sided diffusion and appears to be the most important aspect in modeling the absorbing

flat film. It is shown that the two common approaches to the absorbing flat film are either

not physically sound or mathematically inconsistent. It is further proposed that ignoring

the Eckert–Schneider condition is the most relevant modeling error, leading to a deviation

of almost 50% between the two approaches for the cases shown. Another main conclusion

of this chapter is that a falling film of finite length has an optimum film thickness at

relatively low values of the Péclet number. This optimum is the result of the increasing

heat capacity of the liquid film as the film thickness is increased.

In the final step, certain traveling wave solutions from the initial investigation are em-

ployed to solve the transient, coupled heat and species transfer. In the transient formu-
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lation the appearance of backflow regions results in a forward-backward heat equation

which causes difficulties in the numerical solution. However, for simplicity, an easy to im-

plement marching technique is used and the so-called FLARE approximation is employed

as remedy for the integration through regions of backflow. For the verification of this

approximation a comparison with the thermal cases of the second numerical investigation

is given. Finally, solutions for the absorbing wavy falling film are presented for several

parameter revealing the influence of the separation zone of the wave hump.

The presented results of the absorbing wavy film are based on highly resolved Navier-

Stokes solutions with a sharp interface and assume large Prandtl and Lewis numbers.

This qualifies the results as benchmark cases for other model approaches, even if the

approximative treatment of the backflow regions is a remaining deficit. This has to be left

as open issue which might be resolved by a more sophisticated numerical method.

147





A. Thermophysical properties of LiBr–H2O

The present chapter provides properly formatted data to construct the material parameters

of LiBr–H2O numerically.

A.1. Transport coefficients, solubility

Diffusion coefficient

Table A.1 shows the data for the binary diffusion coefficient D at T = 25◦C given by

Gierow & Jernqvist (1993). As mentioned there, one can employ the Stokes–Einstein

equation to find D for other temperatures, thus

D1η̄1
T1

=
D2η̄2
T2

(A.1)

with the dynamic viscosity η̄, given by Patterson & Perez-Blanco (1988) for instance (see

next section).

Table A.1.: Diffusion coefficient D for T = 25◦C.

C / wt% LiBr D / 10−9 m2/s

1 1.321

5 1.349

11 1.440

17 1.539

23 1.655

29.15 1.739

35 1.822

41 1.826

47 1.809

53 1.488

59.27 1.041
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Dynamic viscosity

The numerical fit for the dynamic viscosity η̄ given by Patterson & Perez-Blanco (1988) is

valid between 0◦C < T < 90◦C and 5 < C < 60 with [C] = wt%LiBr. The relation reads

η̄ = 10−3
5∑

i=0

2∑

j=0

EijC
iT j , [η̄] = Pa s

where T has to be given in degree Celsius and C in wt%LiBr.1 The factor 10−3, which

is not present in Patterson & Perez-Blanco (1988), is due to the unit conversion from cP

(centipoise) to Pa s. Table A.2 represents the coefficients Eij.

Table A.2.: Coefficients Eij for the dynamic viscosity η̄.

1.488747E+0 −4.164814E−2 3.404030E−4
1.143975E−1 9.636832E−4 −2.794515E−5

−1.278729E−2 −5.981025E−5 2.580301E−6
6.999985E−4 −1.282435E−7 −9.737750E−8

−1.638074E−5 5.703002E−8 1.585609E−9
1.456348E−7 −9.842266E−10 −7.922925E−12

Thermal conductivity

The numerical fit for the thermal conductivity λ given by Patterson & Perez-Blanco (1988)

reads

λ = 1.163

4∑

i=0

2∑

j=0

DijC
iT j , [λ] =

W

mK

again with T in degree Celsius and C in wt%LiBr. The factor 4187/3600 ≈ 1.163, which is

not present in Patterson & Perez-Blanco (1988), is due to the unit conversion from kcal/h

to W. Table A.3 represents the coefficients Dij .

1Note that the input value for C = 0.60 is 60 rather than 0.6.
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Table A.3.: Coefficients Dij for the thermal conductivity λ.

4.815196E−1 1.858174E−3 −7.923126E−6
−2.217277E−3 9.614755E−6 −1.869392E−7
−1.994141E−5 −1.139291E−6 1.408951E−8
3.727255E−7 2.107608E−8 −2.740806E−10

−2.489886E−9 −1.330532E−10 1.810818E−12

Solubility

The solubility curve (onset of crystallization) is given by Boryta (1970). Table A.4 repre-

sents an excerpt for our relevant region.

Table A.4.: Solubility curve (excerpt) from Boryta (1970).

T / ◦C C / wt% LiBr

9.93 58.08

18.99 58.67

24.29 60.63

33.14 62.50

38.26 63.96

44.27 65.17

50.35 65.82

57.58 66.16

63.42 66.55

A.2. Gibbs energy equation of state

The Gibbs energy equation of state for aqueous LiBr solutions can be constructed numer-

ically from the data given by Kim & Ferreira (2006). The equation of state for G is then

used to derive the molar enthalpy H, the molar heat capacity Cp and the molar volume V

of the mixture by using

H = −RT 2

(
∂

∂T

G

RT

)

P,x

, (A.2a)

Cp = −T
(
∂2G

∂T 2

)

P,x

, (A.2b)

V =

(
∂G

∂P

)

T,x

, (A.2c)
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where x := x1 represents the mole fraction defined as xα = nα/n with the unit kmol

substance α per kmol solution. As before and in accordance to Kim & Ferreira (2006),

subscript α = 1 refers to LiBr, α = 2 to H2O and no subscript refers to the solution

(mixture). The relation to our mass fraction Cα reads

Cα =
xαMα

M
(A.3)

where we have introduced the (average) molar mass of the mixture

M =

(
C1

M1
+

1− C1

M2

)−1

(A.4)

with the molar mass of LiBr M1 = 86.85 kg/kmol and the molar mass of water M2 =

18.02 kg/kmol. The molar mass of the mixture is used to relate the molar quantities (A.2)

to the specific quantities ones, thus

hs =
H

M
, (A.5a)

cp =
Cp

M
, (A.5b)

ρ =

(
V

M

)−1

. (A.5c)

Figure A.1 shows some relevant isotherms for the specific heat capacity cp and the

specific enthalpy hs as function of the mass fraction C for the LiBr-H2O mixture derived

from G. Additionally, the absolute error of hs − cpT and Z/∆C defined by (3.24) are

given.

Figure A.2 shows the evaluation of the density for LiBr-H2O derived from G including

the expansion coefficients βT and βC , see (3.4).

A.3. Vapor pressure P2

The vapor pressure of H2Owithin the LiBr–H2O solution P2 is also given by Kim & Ferreira

(2006) and can be constructed from

P2 = exp

(

α− ln(θ +
√
θ2 − 1)

β

)

(A.6)

with the intermediate variables

θ = cosh[α− β ln(P ∗)] exp(φυmM2β), (A.7a)
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Vapor pressure P2

α =

2∑

j=0

αj

T j
, (A.7b)

β =
2∑

j=0

βj
T j
, (A.7c)

φ = 1 +
6∑

i=1

aim
i/2, (A.7d)

ai =
2∑

j=0

aij
T j
, (A.7e)

deduced from the constants given in Table A.5. The pressure term in (A.7d) is already

neglected as suggested by Kim & Ferreira (2006). We have further introduced the disso-

ciation number υ, which is υ = 2 for LiBr, the molality

m =
x1

(1− x1)M2

and the saturation pressure of pure water P ∗, which can be derived from the relation given

in Kim & Ferreira (2006) or from the simple and well known Magnus-formula

P ∗ = 0.611 kPa exp

(
17.62T

243.12 ◦C+ T

)

. (A.8)

Table A.5.: Constants given by Kim & Ferreira (2006) for the evaluation of (A.7).

j = 0 j = 1 j = 2

αj 1.1375E+01 −3.8590E+03 5.1319E+05

βj 8.6010E−01 −1.9575E+02 2.3136E+04

a1j −2.1963155E+01 +4.9372316E+03 −6.5548406E+05
a2j −3.8104752E+03 +2.6115345E+06 −3.6699691E+08
a3j +1.2280854E+05 −7.7187923E+07 +1.0398560E+10
a4j −1.4716737E+06 +9.1952848E+08 −1.1894502E+11
a5j +7.7658213E+06 −4.9375666E+09 +6.3175547E+11
a6j −1.5118922E+07 +9.8399744E+09 −1.2737898E+12
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Figure A.1.: Representative isotherms as function of the mass fraction C for (a) specific
heat capacity cp, (b) specific enthalpy hs, (c) abs. error of hs − cpT and (d)
scaled interdiffusion number Z/∆C defined by (3.24). All data is extracted
from the equation of state.
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Vapor pressure P2
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