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Kurzfassung

Aufgrund der Fortschritte auf dem Gebiet der Miniaturisierung von optischen

Elementen, ist es möglich Laser mit Abmessungen im Bereich hunderter Na-

nometer bis zu mehreren Mikrometern herzustellen, welche kohärentes Licht

unterschiedlichster Wellenlänge emittieren können. Diese werden als Mikrola-

ser bezeichnet. Die Laserresonatoren sind nicht beschränkt auf einfache Geo-

metrien wie zum Beispiel die eines Fabry-Perot Resonators, sondern können

komplizierte Formen annehmen. Mittlerweile ist nicht nur die Form der Laser-

kavitäten ein wichtiges Element für das Design der Lasereigenschaften: Auch

der Einsatz von absorbierenden Materialien innerhalb der Kavität kann neben

den verstärkenden Materialien dazu verwendet werden um ein spezielles La-

serverhalten zu induzieren.

Wie wir im Rahmen dieser Dissertation zeigen, können solche

nicht-Hermiteschen Systeme sogenannte Ausnahmepunkte(“Exceptional

Points”) aufweisen. Exceptional Points können in Mikrolasern mit einem hier

vorgestellten Pumpschema induziert werden und bewirken, dass der Laser ein

ungewöhnliches und kontraintuititives Verhalten aufweist.

Um sowohl Mikrolaser mit kompliziert geformten Resonatoren, als auch Re-

sonatoren mit verstärkenden, beziehungsweise absorbierenden Materialien si-

mulieren zu können, modellieren wir diese Systeme mit der “Steady-state ab-

initio laser” Theorie (SALT), welche die zeitunabhängigen stationären Lösun-

gen der Maxwell-Bloch Gleichungen beschreibt. Hierfür haben wir einen gut

skalierbaren und effizienten Löser auf Grundlage der Finiten Elemente Metho-

de entwickelt, um die nichtlinearen und nicht-Hermiteschen partiellen Diffe-
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rentialgleichungen der SALT zu lösen. Weiters haben wir den Anwendungs-

bereich der SALT auf Resonatoren erweitert welche entartete und leicht nicht-

entartete Eigenmoden aufweisen. Diese Systeme konnte die bisherige Theorie

bis dato nicht eindeutig beschreiben.

Wir wenden diesen neuartigen Löser auf ein Lasersystem mit Exceptional

Points an, um deren Auswirkungen auf das Laserverhalten zu verstehen. Das

Hauptergebnis dieser Arbeit ist ein kontraintuitiver Anstieg der Leistung des

Lasers trotz einer Erhöhung der Absorption im Lasersystem nach Passieren des

Exceptional Points. Weiters zeigen wir, dass bei Mikrolasern die bereits bekann-

te Linienverbreiterung in der Nähe des Exceptional Points nur eingeschränkt

messbar sein kann, da das System für Halbleiterlaser instabil wird.

Nachdem ursprünglich veröffentlichteten theoretischen Ergebnissen zur Be-

handlung von Exceptional Points in Lasern, haben wir mit zwei experimentel-

len Gruppen zusammengearbeitet, die die theoretischen Ergebnisse experimen-

tell verifiziert haben. Sowohl am Institut für Photonik der TU Wien, als auch an

der Washington University in St. Louis, wurden unsere theoretischen Vorher-

sagen mittlerweile in zwei völlig unabhängigen Experimenten nachgewiesen.

Beide dieser experimentellen Realisierungen werden kurz beschrieben und mit

den theoretischen Beschreibungen verglichen.



Abstract

Recent advances in fabrication techniques have given rise to a great variety of

novel and very small laser systems ranging from nano-scale devices to micro-

lasers operating in different wavelength regimes. The cavities of these lasers are

not limited to the standard Fabry-Perot type, but can be fabricated in complex

shapes. In addition to these complex geometries a further design element has

recently been brought forward: The concept of deliberately using both gain and

loss in a laser system. As we will show in this thesis, such non-Hermitian sys-

tems can easily be tuned to exhibit so-called exceptional points at which the sys-

tem generally features very uncommon and counter-intuitive lasing behavior.

In particular, we present a pump-protocol that allows to conveniently observe

such an atypical phenomenon in a so-called “photonic molecule laser”.

In order to simulate both the complicated geometries of these microlasers as

well as their gain/loss distribution, we model these systems using the steady-

state ab-initio laser theory (SALT), which is a steady-state approach to solve

the Maxwell-Bloch equations. For this we have developed a new scalable and

efficient solver based on the finite element technique to tackle these nonlinear

non-Hermitian partial differential equations. Furthermore we have extended

SALT to broaden the range of its applicability to resonators with degenerate or

slightly non-degenerate modes, for which a rigorous treatment so far has been

missing.

We apply this solver to investigate the influence of exceptional points on

the characteristics of the laser output. The key result of this work is a counter-

intuitive loss-induced enhancement of the laser output power when passing
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an exceptional point. Close to the exceptional point we show that the laser

linewidth is enhanced by orders of magnitude and the laser becomes unstable.

After the original theoretical proposal for studying exceptional points in

lasers we provided theoretical support to two experimental groups at the Pho-

tonics institute at TU Wien, as well as at the Washington University in St. Louis,

which resulted in two independent experimental verifications of our theoretical

predictions. Both experimental realizations are reviewed and compared to the

theoretical descriptions.
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CHAPTER 1
Introduction

Early laser theory typically treated laser resonators by assuming a closed cav-

ity [1]. This approximation has the advantage that the Maxwell-operator is Her-

mitian and hence the eigenmodes of a resonator are orthogonal to each other.

However, such a simple treatment of the boundary conditions does not correctly

capture the openness of the laser and its concomitant non-Hermitian nature.

The most dramatic effect of such non-Hermitian contributions arises at so-called

exceptional points (EPs) also known as “non-Hermitian degeneracies”. In con-

trast to a degeneracy point of a closed Hermitian systems where two or more

eigenfrequencies become identical and the degenerate eigenmodes can always

be constructed to be orthogonal to each other, at an EP not only two or more

eigenfrequencies become the same, but the corresponding eigenmodes coalesce

as well. As a consequence such non-Hermitian systems can feature non-trivial

behavior in the vicinity of an EP [2]. This has recently lead to a number of exper-

iments and theoretical studies on the topic of EPs [3–14]. In particular, research

on parity-time (PT) symmetric systems for which the EPs occur at real eigen-

frequencies have been a driving factor behind recent progress [15]. In practical

realizations of such PT-symmetric systems, coupled resonators or waveguides

with balanced gain and loss were used, where the EP can be induced by tun-

ing the values of the coupling and gain/loss-strength, respectively [16]. Here,

3



CHAPTER 1. INTRODUCTION 4

it was shown that when steering a system through an EP by parametric vari-

ation of one of these parameters the system can radically change its behavior.

The central topic of this thesis is to investigate, whether such a scenario can also

be observed in lasers, how it can be conveniently induced and in which way it

manifests itself in the experiment.

In order to correctly model EPs in lasers we need to correctly model the

non-Hermiticity of the problem which is both due to the amplification of light

within the system as well as due to the openness of the system. For this we use

semiclassical laser theory, where the electric field of the system is treated clas-

sically and the interaction of the field with an amplifying medium described

as an ensemble of two-level atoms is treated quantum mechanically. The fun-

damental equations of this theory are given by the time-dependent Maxwell-

Bloch equations which describe the dynamics of the electric field, the polariza-

tion and the inversion density of the laser. Since we are primarily interested

in the steady-state operation of a laser we use the steady-state ab-initio laser

theory (SALT) [17–19]. SALT provides an efficient method for determining the

time-independent solutions of the Maxwell-Bloch equations.

Using this formalism we study in particular the appearance of exceptional

points in coupled laser systems. For this we extend SALT by developing a

more efficient solution method which is no longer based on the concept of con-

stant flux states [17, 18], but solves the nonlinear set of partial differential equa-

tions directly on top of a finite element framework. Furthermore, we extend

SALT such that it can be applied to resonators featuring degenerate or near-

degenerate modes. We study the appearance of exceptional points both below

as well as above the laser threshold. Whereas in the first case the system nat-

urally does not lase at the EP, in the latter case, we determine the stability and

the linewidth of the laser at the EP.
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1.1 Structure of the Dissertation

In chapter 2 we are going to introduce the concept of exceptional points with a

simple 2x2 toy model and show how this directly corresponds to a two-mode

approximation of coupled-mode theory with two coupled cavities. In order to

be able to rigorously describe the steady-state lasing of such a coupled system

we introduce the steady-state ab-initio laser theory (SALT) in chapter 3. There,

we give a short overview on its derivation and involved approximations to the

case of multi-mode lasing. Furthermore, we introduce a novel method for effi-

ciently solving SALT without relying on a basis expansion in terms of constant

flux states. In chapter 4, we apply SALT to the case of an exceptional point oc-

curring below the laser threshold. We consider both a 1D toy model, as well

as a realistic 2D setup based on coupled microdisk lasers. One deficiency of

SALT is that the two active near-degenerate modes, which occur in this setup

could originally not be described in the context of SALT. Hence, in chapter 5

we show how SALT can be extended to cover this case by noting that nonlinear

self-interactions of the modes lead to the formation of hybridized modes. For

proving the stability of these solutions we introduce a linear stability analysis

for SALT. As a last step we apply this new formalism to the near-degenerate

modes of the coupled microdisk lasers of the previous chapter. In chapter 6

we investigate steady-state lasing in the vicinity of exceptional points above the

laser threshold and its influence on both the stability as well as on the linewidth

of the laser. In chapter 7 we discuss theoretically how exceptional points can be

studied in whispering-gallery-mode resonators by coupling fiber-tapers to the

system. In chapter 8 we review two experimental verifications of the predicted

EP-induced laser shutdown and revival.



CHAPTER 2
Exceptional Points

2.1 Mathematical definition

Exceptional points are specific points in the parameter space of a non-Hermitian

matrix or, in general, an operator where not only two or more of its eigenvalues

become identical in a branch-cut singularity, but also the corresponding eigen-

vectors or eigenfunctions coalesce [20–22]. This is in contrast to a degeneracy

point of a Hermitian matrix at which only the degenerate eigenvalues become

the same, but the corresponding eigenvectors may still be chosen such as to

remain orthogonal to each other.

In more mathematical terms, at an EP the geometric multiplicity is no longer

equal to the algebraic multiplicity and as a consequence the matrix is no longer

diagonizable. However, it can be brought into a Jordan Normal form. The

matrix is said to become defective and the eigenvalue is a defective eigenvalue

[23, 24].

The occurrence of an EP of a parametrized matrix can already be demon-

strated with a simple 2x2 matrix, such as

H =

(
ω1 − iκ1 γ

γ∗ ω2 − iκ2

)
, (2.1)

6
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κ2 ω2

0.95

1.05
−0.4

0.1

Re(Ω1,2)

κ2

ω2

−0.4
0.1

0.95

1.05

Im(Ω1,2)

Figure 2.1: Dependence of the complex eigenvalues Ω1,2 on the parameters ω2

and κ2. The real and imaginary part of Ω1,2 are shown in the left and right panel
respectively. The parameters for ω1, κ1, and γ are given by 1.0, −0.1, and 0.15,
respectively. The EP is reached when ω2 = 1.0 and κ2 = 0.2.

which has the following eigenvalues

Ω1,2 =
1

2
(ω1 − iκ1 + ω2 − iκ2 ±D) (2.2)

with the discriminant

D =
√

(ω1 − iκ1 − (ω2 − iκ2))2 + 4|γ|2. (2.3)

The (non-normalized) eigenvectors are given by

u1,2 =

(
ω1 − iκ1 − (ω2 − iκ2)±D

2γ∗

)
. (2.4)

The EP occurs when the discriminant (2.3) vanishes, which, for example, is the

case when ω1 = ω2 and κ1 − κ2 = 2|γ|. At this point the eigenvectors (2.4)

become collinear and the eigenspace of H collapses. In general a variation of at

least two parameters of the matrix is necessary in order to reach an EP [25]. In

Fig. 2.1, the real and imaginary part of the eigenvalue sheets, Ω1,2, are shown

under variation of the parameters ω2 and κ2 with the EP located directly at the

center of the two plots. Note, the strong dependence of Ω1,2 on the parameters



CHAPTER 2. EXCEPTIONAL POINTS 8

ω2 and κ2. In fact the derivative of Ω1,2 with respect to any of the parameters

becomes infinite at the EP.

The eigenvalue sheets around an EP display the typical structure of two in-

tersecting Riemann surfaces that are connected to each other via the EP. As a

consequence when tracking an eigenstate around the EP one does not come

back to the original eigenstate that one started from, but instead to the second

eigenstate and the eigenstates interchange. When going around the EP twice,

the original eigenstate is recovered albeit with an additional phase of π. Only

by going around the EP four times the original eigenstate is restored [26, 27]. In

a truly time-dependent encircling of the EP additional corrections to this picture

appear [28–31].

2.2 Physical interpretation

In general, one can interpret the toy Hamiltonian of Eq. (2.1) as the interaction

between two coupled resonator modes. Here, ω1 and ω2 represent the eigen-

frequencies of these modes, which are coupled to each other with a complex

coupling strength of γ and which decay or grow, depending on the sign, at a

rate of κ1 or κ2, respectively.

The physical manifestation of the presence of EPs has been studied in a mul-

titude of systems over the past years [2]. The first experimental studies that

explored EPs were performed in microwave cavities [27,32,33], where EPs have

not only been observed, but also their properties with respect to encircling the

EP have been studied [26]. EPs have been investigated in coupled electronic

systems [34–36], chaotic optical microcavities [11], in an open composite quan-

tum systems of a high-Q cavity and a single atom [37]. Furthermore, EPs have

been suggested for highly accurate optical-sensing applications [9].

As discussed in the introduction, an interesting class of systems which promi-

nently features EPs and which has given rise to a significant amount of re-

search in recent years is the class of parity-time (PT ) symmetric systems [16,38].

Here, the EP is associated with a PT -symmetry breaking transition. This can
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already be easily demonstrated with the toy Hamiltonian of Eq. (2.1) wherePT -

symmetry implies thatH should be invariant under exchange of the two modes

and complex conjugation. This symmetry condition is realized for ω1 = ω2 = ω,

and κ1 = −κ2 = κ. For κ < |γ|, the eigenstates are PT -symmetric. The corre-

sponding eigenvalues of the system are real. For κ > |γ|, the eigenstates are no

longer PT -symmetric and the eigenvalues become complex. The EP at κ = |γ|,
at which both eigenstates coalesce thus constitutes the symmetry breaking point

of the system.

Experimentally the PT -symmetry breaking transition at an EP has first been

demonstrated in optics [16]. Here, for a system of coupled wave guides the PT -

symmetry condition needs to be fulfilled by the index of refraction whose real

(imaginary) part needs to feature an even (odd) symmetry with respect to the

symmetry axis [39]. Since then the concept of PT -symmetry in optics has been

widely extended: Leaving the realm of strict mapping to the Schrödinger equa-

tion, PT -symmetric laser absorbers have been suggested which act both as a

laser and as a coherent perfect absorber at the lasing threshold [40, 41]. PT -

symmetry has since then been investigated in (passive) whispering gallery mi-

crocavities [42,43] and as a source of single mode lasing in activePT -symmetric

microring lasers [44, 45]. However, already one of the first works on the subject

showed that strict PT -symmetry is not necessary for observing an EP with an

associated symmetry breaking [46].

2.3 Coupled mode theory for optical resonators

In this thesis we will investigate the influence of EPs on optical resonators with-

out necessarily enforcingPT -symmetry. In this context we can already interpret

the 2× 2 matrix toy model of Eq. (2.1) as a coupled mode theory description of

two coupled one-dimensional resonators as shown in Fig. 2.3. Here, ω1,2 cor-

respond to the resonance frequencies of two individual resonators and 2κ1,2 to

the corresponding decay rates. The parameter γ defines the coupling strength

between the two resonators. The coupling leads to the formation of two super-
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0.8 0.9 1.0 1.1 1.2

Re(Ω1,2)

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

Im
(Ω

1
,2

)

a

0.8 0.9 1.0 1.1 1.2

Re(Ω1,2)

b

0.4

0.3

0.2

0.1

−0.0

−0.1

κ
2

Figure 2.2: Movement of the complex eigenfrequencies Ω1,2 of matrix H in de-
pendence of a variation of the decay/growth rate κ2 of resonator 2. The rest
of the parameters are the same as given in Fig. 2.1. (a) Here, ω1 = ω2 = 1 and
the EP is reached exactly for κ2 = −0.2. (b) Here, we set ω2 = 1.02 6= ω1 and no
longer reach the EP exactly, however, the overall behavior of the system remains
the same.

modes of the system with complex frequencies Ω1,2.

As one typically does not have full access to both easily control the reso-

nance frequency as well as the decay rate of a single resonator, we first study

on how only a variation of the decay rate κ2 influences the complex frequencies

Ω1,2. In case that both resonators feature the same individual frequency ω1 = ω2

we observe that the EP can still be reached exactly (see Fig. 2.2a). At this point it

is suitable to discuss the exact choice of parameters we have made for this cal-

culation: The first resonator is fixed with a “growth rate” of κ2 = −0.1, i.e. , the

mode of the isolated resonator in this linear model would grow exponentially.

In reality this exponential growth would saturate through spatial hole burn-

ing and the system would lase at a real frequency close to ω1 (see chapter 3).

The laser threshold of the system is given by Im(Ω1,2) = 0 and is displayed in

Figs. 2.2a as a black dashed line. When the second resonator with a strongly

decaying mode of κ2 = 0.4 is coupled to the first resonator, the system keeps

lasing as the resonators are only weakly coupled (the green dot in Fig. 2.2a is

above the real axis). When decreasing the decay rate κ2 of the second resonator

the resonance Ω1 is pulled below the real axis and the system stops lasing as the
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coupling between the two resonators is increased. At κ2 = 0.2 an EP is reached

where both supermode frequencies Ω1,2 are the same, indicated by a red dot in

Fig. 2.2. When further decreasing the loss κ2, the real parts of the complex fre-

quencies Ω1,2 split and their decay rates given by Im(Ω1,2) become the same. At

κ2 = 0.1 the system reaches the laser threshold and the system starts lasing at

the corresponding frequencies Ω1,2.

Note, that although the overall loss in the system as determined by κ1,2 was

continuously decreased, at first the laser shut off and only with a further strong

decrease of the loss started lasing again. This is in contrast to common sense

which suggests that a decrease of loss or additional gain should lead to an in-

crease of the laser power output. This counterintuitive phenomenon does not

rely on the exact encounter of an EP, but is also present when the EP is not

reached exactly: In Fig. 2.2b it is assumed that the two individual resonances of

the individual resonators are not exactly the same but feature a slight resonance

frequency mismatch, i.e. , ω2 = 1.02 6= ω1. Although the EP is not reached ex-

actly, the overall behavior of the system remains the same, i.e. , with a decrease

of the overall loss in the system the coupled modes stop lasing and only recover

when the gain given by −κ1 compensates the losses of κ2. Note, that the death

of the laser and later recovery is typical for an EP in the system. Interestingly,

loss-induced lasing has already been demonstrated for DFB lasers, which were

engineered such that the loss was only added at the nodes of an existing mode

in the system which effectively promotes this single mode over all other modes

of the system [47,48]. These earlier studies did, however, not make a connection

to EPs as we will show in Sec. 4.3.

2.3.1 Maxwell’s equation

The coupled mode theory as described in the previous section is typically a

good model for understanding the effect of an EP on the complex eigenfrequen-

cies of the coupled resonator system. However, in order to apply coupled mode

theory to an actual setup of coupled cavities one first needs to obtain the sin-

gle cavity frequencies ω1 + iκ1 and the coupling rate γ. For this we solve the
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Figure 2.3: Two coupled 1D resonators.

harmonic Maxwell equation for the eigenmodes, Eµ(x), of the electric field and

corresponding (complex) eigenfrequencies, ω̄µ,

(~∇× ~∇×− εc ω̄2
µ) ~Eµ(x) = 0. (2.5)

Note, that we set c = 1 in this thesis such that the wave number kµ and the eigen-

frequency ωµ can be used interchangeably. Furthermore, complex frequencies,

ω̄µ, will be denoted with overbars throughout this thesis. In one dimension

and for TM-polarized fields in two dimensions Eq. (2.5) reduces to the scalar

Helmholtz equation

(∇2 + εc ω̄
2
µ)Eµ(x) = 0. (2.6)

We solve Eq. (2.6) for the eigenfrequencies ω̄µ with outgoing boundary condi-

tions (Sommerfeld radiation condition)

lim
r→∞

r
d−1
2 (

∂Eµ
∂r
− iωµEµ) = 0, (2.7)

where d is the spatial dimension. The vectorial variant of these boundary con-

ditions, which need to be applied for Eq. (2.5) is the Silver-Müller radiation

condition [49],

lim
r→∞

r [(∇× Eµ)× x̂− iωµEµ] = 0, (2.8)

where x̂ = x/|x|.
We verify that the Helmholtz Eq. (2.6) for a one-dimensional toy system of

two coupled cavities as displayed in Fig. 2.3 indeed shows the same behavior

as demonstrated by the results from coupled mode theory. Since the Maxwell

equations are scale-invariant we provide all dimensions of the system in terms

of a length scale L̃. Correspondingly, the frequencies will be given in dimen-

sionless units in terms of 1/L̃, since we set c = 1. The toy model, which we are
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Figure 2.4: Dependence of the two resonances of frequency ωµ near ωa = 10 on
the pump applied to the two-coupled cavity system of Fig. 2.3 with dimension
as described in the text. The shutdown effect as demonstrated with the results
from coupled mode theory (see Fig. 2.2) is present.

also going to use in the following chapters when applying semiclassical laser

theory, consists of two one-dimensional cavities of length L̃ and an index of re-

fraction of n = 3.0 + 0.13i of the passive (unpumped) system surrounded by air,

where n = 1. A gap of 0.1L̃ separates the two cavities. Here, we simply model

the pump via a change of the imaginary part of the permittivity

ε(x) = n2(x) + i(D1 +D2), (2.9)

where D1, and D2 correspond to the pump applied to cavity 1 and 2, respec-

tively. Similar to Fig. 2.2 we assume that cavity 1 is pumped such that the iso-

lated cavity would be above threshold and choose D1 = 1.2. The pump in the

second cavity, D2 is scanned from 0 to 1.2. In Fig. 2.4, we demonstrate that the

EP induced shutdown of the laser is achieved in a pump range of D2 from 0.67

to 0.792.

Note, that although these initial results already provide a good understand-

ing of the laser shutdown effect caused by the EP, the simple models presented

here are still only very rough models of a laser. For example, they feature expo-

nentially “growing” resonances with complex frequencies with an imaginary
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part larger than 0 and they do not capture the full nonlinearity of the laser.

Hence, they cannot correctly predict the output power of a laser. Furthermore,

a flat gain curve is assumed and no modal interactions are taken into account.

To remedy these limitations we will introduce the steady-state ab-initio laser

theory in the next chapter.



CHAPTER 3
Steady-state ab-initio laser theory

In this chapter we are going to review the semiclassical laser theory in order

to rigorously simulate the loss-induced suppression and revival of lasing due

to the occurrence of an EP. For this we first introduce the Maxwell-Bloch equa-

tions as the basis for formulating the steady-state ab-initio laser theory (SALT).

Next, we give a short outline on how to derive SALT and go into detail on the

required assumptions and approximations needed for describing steady-state

multi-mode lasing.

In the second part we will present an efficient strategy for solving the nonlin-

ear SALT equations. For this we have developed a novel and efficient numerical

scheme for solving the resulting non-Hermitian nonlinear SALT equations di-

rectly on top of a finite element discretization without the need of introducing

a so-called constant-flux basis.

3.1 Maxwell-Bloch equations

The foundations of semiclassical laser theory are the Maxwell-Bloch equations,

which have independently been derived by Arecchi and Bonifacio [50,51]. Here,

the electric field is described classically via Maxwell’s equations and the gain

material is modeled as an ensemble of identical two-level atoms with a level

15
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spacing of ~ωa. These two-level atoms are pumped via an external sourceD0(x),

which leads to a population inversion D(x, t) of the two level atoms. The inter-

action of the electric field and the ensemble of two-level atoms is treated quan-

tum mechanically [1]. The resulting Maxwell-Bloch equations (in SALT units)

are given by

∇×∇× E +
1

c2
εcË = − 1

c2
P̈ (3.1a)

Ṗ = − (iωa + γ⊥) P− iγ⊥ED (3.1b)

Ḋ = γ‖

[
D0 −D +

i

2
(E ·P∗ −P · E∗)

]
, (3.1c)

where E(x, t), P(x, t), and D(x, t) correspond to the electric field, the polariza-

tion, and the inversion, respectively. The passive permittivity of the system is

given by εc. γ⊥ and γ‖ are the relaxation rates of the polarization and inver-

sion. D0(x) denotes the external pump applied to the system. Note, that in

Eq. (3.1c) the rotating wave approximation has already been applied. In ad-

dition to Eq. (3.1a), the electric field, E, needs to satisfy outgoing boundary

conditions (see section 2.3.1).

3.1.1 SALT units

Equations (3.1) are given in SALT units, however, one can easily retrieve the SI

units by transforming E, P, and D as follows

ESI =
2g

~√γ‖γ⊥
E = eSIE (3.2)

PSI =
2g

~ε0
√
γ‖γ⊥

P = pSIP (3.3)

DSI =
g2

~γ⊥ε0

D = dSID, (3.4)

where g is the transition dipole moment of the two-level system.
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3.2 Ansatz and approximations

The coupled system of nonlinear, non-Hermitian, and time-dependent equa-

tions (3.1) can in general only be integrated numerically. Such calculations are,

however, computationally very demanding, even with the power of today’s

computers [52–54]. However, often one is not interested in the full laser dy-

namics as described by the Maxwell-Bloch equations, but only in the steady-

state lasing behavior. For this case, the electric field is primarily composed of a

superposition of modes with discrete frequencies ωµ. Hence, under the assump-

tion that the polarization follows the electric field instantaneously, we can make

the following ansatz for the electric field and the polarization

E(x, t) =
N∑

µ=1

Eµ(x) e−iωµt

P(x, t) =
N∑

µ=1

Pµ(x) e−iωµt,

(3.5)

where both the real frequencies ωµ, as well as the actual number of lasing modes

N are yet to be determined. Inserting this ansatz into Eq. (3.1b) one immediately

notices that a simple solution only exists when the inversion D(x, t) does not

depend on time. However, when inserting ansatz (3.5) into the MWB equation

for the inversion, Eq. (3.1c), we get

Ḋ = γ‖

[
D0 −D +

i

2

N∑

µ=1

N∑

ν=1

(
Eµ ·P∗νe−i(ωµ−ων)t − c.c.

)
]
, (3.6)

which shows that the inversion can only be approximately independent of time

when the beating terms of the electric field and the polarization are neglected.

In order to estimate when this is allowed in the long-term limit, i.e., for t→∞,

we make the following ansatz for the inversion

D(x, t) = D̃(x, t)e−γ‖t, (3.7)
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which we insert into Eq. (3.6) and integrate over time yielding

D̃(x, t) = D̃(x, 0) + γ‖D0(x)

∫ t

0

dτeγ‖τ+

+
iγ‖
2

∑

µ,ν

[
Eµ ·P∗ν

∫ t

0

dτe−i(ωµ−ων)τ+γ‖τ − c.c.
]
. (3.8)

By evaluating the integrals and inserting the resulting D̃(x, t) back into Eq. (3.7)

we get

D(x, t) = D̃(x, 0)e−γ‖t +D0(x)[1− e−γ‖t]

+
iγ‖
2

[∑

µ,ν

Eµ ·P∗ν
e−i(ωµ−ων)t − e−γ‖t
γ‖ − i(ωµ − ων)

− c.c.
]
. (3.9)

From here we can obtain the long-term limit of the inversion D(x, t) by taking

the limit t→∞,

D(x, t)
t→∞
= D0(x)− 1

2

[∑

µ,ν

Eµ ·P∗ν
γ‖

ωµ − ων + iγ‖
e−i(ωµ−ων)t + c.c.

]
. (3.10)

From this solution we can estimate that the beating terms with µ 6= ν can only

be neglected if γ‖ � |ωµ − ων |. Under the assumption that all modes Eµ fea-

ture a roughly similar intensity one can extend this criterion even further to

γ‖ � min(|ωµ − ων |)/N since the sum contains N(N − 1) beating terms and N

stationary terms. When these criteria are fulfilled one can simplify the Maxwell-

Bloch equation for the inversion under the stationary inversion approximation

(SIA), i.e., Ḋ = 0, to

D(x, t) ≈
SIA

D0(x) +
i

2

[∑

µ

Eµ ·P∗µ − c.c.
]

(3.11)

Note, that for single-mode lasing there are no beating terms and this approx-

imation is in fact exact. For the case that the mode beating cannot be ignored

entirely, one can extend SALT to include the beating terms while only disre-

garding further sidebands of the laser as we will show in Sec. 5.5.
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3.3 SALT equations

When the SIA holds we can obtain the modal polarization Pµ from Eq. (3.1b) as,

Pµ = ΓµEµD, (3.12)

where

Γµ =
γ⊥

ωµ − ωa + iγ⊥
. (3.13)

Inserting this expression for Pµ back into (3.11) the expression for the inversion

can be simplified to

D(x) =
D0(x)

1 +
∑N

µ=1 |ΓµEµ|2
. (3.14)

Substituting this term back into Eq. (3.12) and inserting the result together with

the SALT ansatz (3.5) into Eq. (3.1a) yields the SALT equations
{
∇×∇×−

[
εc +

γ⊥
ωµ − ωa + iγ⊥

D0(x)

1 +
∑N

µ=1 |ΓµEµ|2

]
ω2
µ

}
Eµ = 0. (3.15)

The SALT equations are a set of N non-Hermitian, nonlinearly coupled partial

differential equations. Note, that a priori the number of modes N , the (real)

frequencies ωµ, as well as, the electric field modes Eµ are all unknown and need

to be determined self-consistently when solving Eq. (3.15). Note that Eq. (3.15)

is still very similar to a non-Hermitian Maxwell/Helmholtz equation similar to

the one we have used in section 2.3.1. However, it contains a modified electric

permittivity ε, which not only includes the passive dielectric constant of the

cavities εc, but in addition an active nonlinear part. This latter term accounts

both for gain pulling as well as for gain saturation via spatial hole burning.

The only approximation necessary, as discussed above, for deriving the SALT

equations is the stationary inversion approximation. Note in particular that

the slowly varying envelope approximation, which reduces the accuracy of the

Maxwell-Bloch equations, is not necessary for SALT as it doesn’t provide any

speedup when solving the SALT equations numerically and [53].

Since the nonlinear term in the SALT equation only involves the sum of the

absolute squares of all modes, a SALT solution consisting of N modes is in-

dependent of the individual phases of any mode of the solution. Hence, for
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arbitrary real values of the phase ϕµ, the transformation,

Eµ → eiϕµEµ, (3.16)

on each mode Eµ of a SALT solution is still a valid solution of Eq. (3.15).

Furthermore, since SALT treats the full spatial fields of the laser modes it

can accurately model both the nonlinear interactions of the modes as well as

all spatial variations of the pump D0(x). Especially the latter property is of

interest for accurately modeling the pump-induced EP as outlined in chapter

2. In general, we can define a pump parameter d, which in addition to varying

the overall pump strength can represent diverse experimental pump protocols

evolving along a “pump trajectory” D0(x, d). Note, that when not all parts of

the gain medium of the laser are pumped, the unexcited parts of the medium

will be strongly absorbing - a situation, which can be modeled in SALT by using

negative values for D0(x, d) in these parts of the system.

3.4 Modal output power

A laser mode is typically characterized both by its frequency ωµ and by its out-

put power Pµ. While the first quantity is directly obtained in the process of

solving the SALT Eqs. (3.15), the latter one is extracted from the electric field

Eµ in a postprocessing step. The output power of a single SALT mode can be

obtained from Poynting’s theorem [55] as

Pµ =

∫

∂V
Sµ = ωµ

∫

V
Im(ε)|Eµ|2, (3.17)

where Sµ is the Poynting vector. The output power is here determined as the

energy flowing through the boundary ∂V of a volume V surrounding the laser.

By inserting the electric permittivity ε from Eq. (3.15) into (3.17) we obtain

Pµ = ωµ

∫

C

[
|Γµ|2D0

1 +
∑

µ |ΓµEµ|2
− Im(εc)

]
|Eµ|2. (3.18)

Since both the pump D0 as well as the imaginary part of the dielectric constant

are only non-zero within the laser cavity, the integral can be limited to the cor-

responding region C. The modal output power Pµ is here given in SALT units
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(c.f. 3.1.1) and the output power in SI units can be recovered by multiplying

with ε0e
2
SI.

3.5 Solution strategy

In this section we will give an overview on how to solve the nonlinear SALT

equations. In principle one can separate the solution procedure for the SALT

equations into two parts:

• Finding the number of active laser modes N and checking the stability of

the SALT solution

• Solving the nonlinear SALT equations (3.15) for a given number of N ac-

tive laser modes

Both of these tasks are intertwined with each other. Once the SALT equations

have been solved for a given number of modes N , the output, comprised by

the set of laser modes Eµ and corresponding frequencies ωµ, is used to check if

any additional mode might be lasing in the system. If this is the case, the check

will provide an estimate for the mode that is assumed to lase and it is used as a

guess for the nonlinear solver of the SALT equations. In the following we will

outline both procedures in detail.

3.5.1 Finding the number of active laser modes N

In addition to the active laser modes an infinite number of additional eigen-

modes exists. Since, however, these modes do not contribute to the steady-state

behavior of the system they should be exponentially decaying modes, which are

characterized by a complex frequency ω̄µ with negative imaginary part. These

modes are affected through spatial hole burning from the active laser modes,

which saturate the available gain particularly at the active modes’ anti-nodes.

The idea behind checking for additional lasing modes of the system is therefore

to calculate all eigenmodes of the system under the influence of the spatial hole



CHAPTER 3. STEADY-STATE AB-INITIO LASER THEORY 22

burning. If not all other eigenmodes of the system decay, then the system is

assumed to be unstable as the other modes would grow exponentially in time

when excited. A more rigorous way to determine the stability will be given in

chapter 5.

For calculating the eigenmodes of the system we assume that we have al-

ready found a solution Eµ, ωµ of N modes which solves the SALT equations.

From this solution one can calculate the spatial hole burning contributions and

subsequently the steady-state inversion D(x, d) via Eq. (3.14). When fixing the

spatial hole burning contributions in the SALT Eqs. (3.15), one effectively re-

duces the problem to a nonlinear eigenvalue problem
{
∇×∇×−

[
εc +

γ⊥
ω̄µ − ωa + iγ⊥

D0(x, d)

1 +
∑N

µ=1 |ΓµEµ|2

]
ω̄2
µ

}
Ēµ = 0, (3.19)

with eigenmodes Ēµ and in general complex eigenfrequencies ω̄µ, which we

denote by a overbar. Note, that this eigenvalue problem is only nonlinear in

the eigenvalues and not in the eigenvectors. These complex eigenfrequencies

correspond to the poles of the scattering matrix for a system which is described

by the active electric permittivity ε(x) including both the dielectric function εc

as well as an amplifying term with the spatial hole burning contributions of the

active modes. Note, that all active eigenmodes Eµ with a (real) eigenfrequency

ωµ are eigensolutions of Eq. (3.19) as well. In general, it is sufficient to only

calculate the eigensolutions of Eq. (3.19) in a small complex region around the

peak gain frequency ωa. In the real part, this region is bounded approximately

by the gain width ωa ± γ⊥. Since Γ̄µ = γ⊥
ω̄µ−ωa+iγ⊥

is singular for ω̄µ = ωa − iγ⊥,

the imaginary part of the region needs to be bounded from below by γ⊥.

After solving the nonlinear eigenvalue problem, a SALT solution is consid-

ered to be valid when all eigenvalues ω̄µ except for the lasing modes satisfy

Im(ω̄µ) < 0. If this is not the case the mode with the greatest imaginary part can

be used as the initial guess for an additional mode by feeding it back into the

solver for the SALT equations.

Note, that the same procedure can also be applied when the system is be-

low the laser threshold. Here, however, only the trivial solution Eµ = 0 of the
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SALT equation exists and, therefore, the inversion is simply given by the exter-

nal pump D0(x). The above procedure can, however, still be applied and used

to check for the threshold of the first active laser mode.

3.5.2 Solving the SALT equation

The SALT Eqs. (3.15) are a system of nonlinearly coupled partial differential

equations. They are both nonlinear in the fields Eµ as well as in the laser fre-

quencies ωµ. As we have discussed in the previous section, when an originally

inactive mode crosses the laser threshold, the corresponding field of the mode,

Eν , and the real part of its complex frequency, ω̄ν , are already a good approxi-

mation for the active mode close above threshold since its spatial hole burning

contributions will be small. With such a suitable guess, the SALT equations can

be solved using a standard multi-dimensional Newton-Raphson solver. How-

ever, there are two minor hitches:

The SALT equations including the outgoing boundary conditions do not

provide enough information to solve for both the fields Eµ and the frequen-

cies ωµ. This can easily be circumvented by using the fact that for a solution

of the SALT equation every mode Eµ is invariant with regard to a global phase

ϕµ. By fixing the global phase for each of the modes Eµ one obtains an addi-

tional constraint, which enables us to solve for both the fields Eµ, as well as the

frequencies ωµ [56].

Furthermore, note that the trivial solution Eµ = 0 always solves the SALT

equations. When solving the SALT equations numerically, this fact can be a

nuisance for modes very close to threshold. Here, the amplitude of the cor-

responding mode is small such that the solver may wrongly converge to the

trivial solution. In order to avoid this problem, we rewrite the SALT equation

such that the amplitude of the mode is determined as an additional quantity

similar to the frequency ωµ. In order to solve the problem in this case, an ad-

ditional necessary constraint needs to be applied to the set of equations. This

constraint is obtained by not only fixing the global phase of each mode Eµ, but

instead fixing the global (complex) amplitude of the mode. For this we rewrite
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Eµ = aµFµ, where aµ is the complex amplitude for mode µ. The SALT equations

for the field Fµ then read
{
∇×∇×−

[
εc +

γ⊥
ωµ − ωa + iγ⊥

D0(x)

1 +
∑N

µ=1 |ΓµaµFµ|2

]
ω2
µ

}
Fµ = 0. (3.20)

In order to be able to solve Eq. (3.20) for the N solutions {Fµ, ωµ, aµ}, we use

the additional constraints that ‖Fµ‖∞ = 1.0 and Fµ(xmax) = 1.0, where the latter

fixes the global phase of Fµ such that the imaginary part of Fµ(x) is zero at the

mode’s maximum.

Since all lasing modes are coupled together through the spatial hole burning

term, the SALT equations need to be solved for all modes simultaneously. In

general such a system of nonlinear equations can be written as

f(v) = 0, (3.21)

where v includes all unknowns Fµ, ωµ, aµ. We then solve this type of nonlinear

problem using a Newton-Raphson method [57]. The idea behind this method

is, that given a suitable guess v0, which in our case comes from the nonlinear

eigenvalue problem discussed in the previous section, one can estimate

v − v0 = −J (v0)−1f(v0) +O(|v − v0|2), (3.22)

where J is the Jacobian of f(v) at v0. By iterating only the linear terms of

Eq. (3.22), v converges “quadratically” if the initial guess v0 is sufficiently close

to the actual solution v [54].

3.5.3 Example: slab cavity laser

In order to demonstrate the scheme for solving the SALT equations let us con-

sider the simplest laser system consisting of a one-dimensional slab cavity of

index of refraction n = 1.2, length L̃, and a perfect mirror on one side of the slab.

The gain medium is given by the Lorentzian gain curve with a peak gain fre-

quency of ωa = 10.0 L̃ and a half width half maximum (HWHM) of γ⊥ = 1.0 L̃.

The slab is uniformly pumped such thatD0(x, d) = dwithin the laser cavity and
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Figure 3.1: Example solution of the SALT for a simple 1D slab cavity. (left panel)
Complex frequencies ωµ in dependence of the pump strength p. (right panel)
Modal power of the laser mode Eµ.

D0(x, d) = 0 outside. We assume that the pump d of the system is adiabatically

increased starting from a value of 0.1 at which point the system is still below

threshold. Here, the system does not lase as the loss due to the open boundary

condition is not compensated by the gain in the system. Therefore only the triv-

ial solution Eµ=0 exists for Eq. (3.15) and the system is below threshold. Hence,

the nonlinear eigenvalue problem of Eq. (3.19) yields only decaying solutions.

The corresponding complex eigenfrequencies of the three inactive modes clos-

est to the gain center ωa are shown in the left panel of Fig. 3.1. The labels of

the modes are ordered by their threshold pump strength. When increasing the

pump strength d above ≈ 0.27 the complex eigenvalue ω̄1 of mode 1 crosses

the real axis and therefore the laser threshold. At this point, one uses the cor-

responding mode Ē1 and the real part of ω̄1 as a guess for the lasing solution

{E1, ω1} to solve the nonlinear SALT Eq. (3.15). While increasing the pump

strength d in small steps, we solve the SALT Eq. (3.15) at each step with the

solution of the previous step as a guess. The modal power of the SALT modes

above threshold are shown in the right panel of Fig. 3.1. In addition to the SALT

equation we solve the nonlinear eigenvalue problem of Eq. (3.19) for which the

SALT solution at the current pump step is used to check for another mode with

Im(ων) ≥ 0. This occurs at a pump strength of d ≈ 0.37, such that the corre-
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sponding mode has to be included in the nonlinear SALT Eq. (3.15) to find a

two-mode SALT solution. The pump is then further increased while tracking

the SALT solutions.

This procedure will be used throughout this thesis in order to calculate the

lasing behavior of the system while modifying the pump in the system. Note,

however, that this procedure can be applied to the variation of any input pa-

rameter of the system. In chapter 5, we will refine this procedure by taking into

account the linear stability of the SALT.

3.6 Numerical implementation

So far we have given a general overview on how to deal with the nonlinearity

of the SALT equations while varying the pump parameter d. In this section,

we will present a method for implementing this procedure numerically. At first

we will give a short review of the approach for solving the SALT equations by

expanding the laser modes in constant flux states [18] and explain its shortcom-

ings. Next, we show how to efficiently implement the outgoing boundary con-

ditions in such a way that the computational domain can be truncated to a small

region surrounding the laser cavities of interest. Finally, we will describe how

to implement both the nonlinear eigenvalue problem of Eq. (3.19) as well as the

full nonlinear system of PDEs given by the SALT equations (3.15) numerically

using a finite element method.

3.6.1 Review: constant-flux state approach

In the original formulation of SALT, which originated as the ab-initio self-

consistent (AISC) laser theory [17–19], the SALT equations were not discretized

directly but instead the modes Eµ were expanded in a constant flux (CF) state

basis. CF-states have originally been formulated by Kapur and Peierls for the

problem of neutron decay [58], but have subsequently been reintroduced in the

context of SALT [18]. Similar to quasi-bound states these states are the eigen-

states of a harmonic Maxwell’s equation with outgoing boundary conditions
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(c.f. Eq. (2.5) in section 2.3.1). However, in contrast to the QB states the fre-

quency does not correspond to the eigenvalue of the mode, but is instead given

as an input parameter. In the most recent formulation, these states are deter-

mined by the linear non-Hermitian eigenvalue problem,

[
−∇×∇× + ω2εc(x) + ω2ηn(ω)f(x)

]
un(x, ω) = 0, (3.23)

which defines the set of CF-states un(x, ω) with eigenvalues ηn(ω) that is optimal

for a pump profile given by D0(x, d) = d f(x) [19]. One advantage of using

CF-states in comparison to, for example, the QB-states is that these states are

biorthogonal with respect to each other
∫
f(x) un(x, ω) · um(x, ω)dx = δnm. (3.24)

In addition, since the frequency outside the laser cavity is always real, the CF-

states feature a constant flux outside the cavity, hence their name. This is in con-

trast to QB-states, where the flux increases exponentially with the distance from

the laser cavity due to the negative imaginary part of their complex frequency

outside the cavity. Note, that the spatial profile f(x) of the external pump is

only non-zero within the laser cavity and as such the integral in Eq. (3.24) can

be constrained to the laser cavity. A laser mode Eµ can then be expanded in

terms of CF-states as

Eµ(x) =

NCF∑

n=1

cµn un(x, ωµ). (3.25)

For high-Q cavities and weak pump strengths D0(x) the sum can be truncated

to only a small number NCF as here typically one CF-state is already a relatively

good approximation of the laser mode, which has been used in the context of

the single pole approximation (SPA) of SALT [19]. The expansion of laser modes

in Eq. (3.25), however, already shows a weakness of the approach. Neglecting

the few cases where CF-states and the corresponding eigenvalues can be calcu-

lated analytically, the eigenvalue problem determining the CF-states need to be

solved for every frequency ωµ. One can circumvent this problem, by calculating

the CF-states at multiple steps in the frequency interval [ωa − αγ⊥, ωa + αγ⊥]
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and by interpolating the CF-states in between to obtain the CF-states at arbi-

trary frequencies within this interval. For large cavities, where the Lorentzian

gain curve is much wider than the free spectral range, and especially for three-

dimensional systems, however, this procedure is problematic with regard to the

memory consumption of the stored CF-states and quickly becomes the limiting

factor for increasing the system size.

When solving the SALT equation, the Newton-Raphson method requires the

calculation of the Jacobian of the nonlinear problem with regard to the coeffi-

cients cµn. The Jacobian corresponds to a dense matrix with (N × NCF)2 matrix

entries. Although a convoluted analytic expression for the Jacobian exists, the

Jacobian is typically calculated numerically using a finite difference scheme,

which for an increasing number of modes and CF-states becomes computation-

ally expensive.

Due to these restrictions the CF-state basis is therefore not ideal for solving

the SALT equations and we will instead solve the SALT equations directly on

top of a finite element discretization. However, first we will discuss how the

outgoing boundary conditions (see 2.3.1) can be implemented for this case.

3.6.2 Perfectly matched layer

We implement outgoing boundary conditions using a perfectly matched layer

(PML). Here, an absorptive medium is placed around the laser cavity and ab-

sorbs incident electromagnetical waves in all directions with practically no back

reflections [59]. For this we use a uniaxial PML, which for the Helmholtz-type

SALT equation can be implemented by using an artificial dielectric function ¯̄εs

and magnetic permeability ¯̄µs inside the PML [60]. The corresponding station-

ary Maxwell equation for a vectorial field Ψµ is given by

∇× (¯̄µs)
−1∇× Eµ − ω2

µ
¯̄εsEµ = 0. (3.26)

Inside the cavity and surrounding regions but not within the PML ¯̄εs is a 3 ×
3 diagonal matrix and each entry is given by the (scalar) nonlinear dielectric

function of SALT as discussed above. Inside the PML, both ¯̄µs and ¯̄εs are defined
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Figure 3.2: Sketch of the perfectly matched layer as implemented by the SALT
solver.

as 3× 3 matrices,

¯̄εs = ¯̄εs =




sysz
sx

0 0

0 sxsy
sy

0

0 0 sxsy
sz
,


 (3.27)

where the PML scale factors sw, for w = x, y, z, are given by

sw =

{
1− i σ

ωch
inside the PML ⊥w,

1 elsewhere
. (3.28)

Here, σ is the PML-loss parameter and ωch the characteristic wave frequency to

be absorbed by the PML. For SALT calculations this can be typically chosen to

be ωa, since the width of the gain curve, γ⊥, is typically narrow in comparison

to ωa. For ease of notation, we will refer to the magnetic permeability ¯̄µs and

dielectric function ¯̄εs, by µ and ε, respectively. The PML can be neglected for the

nonlinear active part of the electric permittivity since this term is by definition

constrained to the laser cavity and as such vanishes inside the PML.

3.7 Finite element discretization of SALT

We have implemented the solver for solving the SALT equations on top of a

finite element discretization. For this we use the finite element method as im-

plemented by the FEniCS software collection [61]. Compared to the CF-state
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approach we discretize the SALT equations directly without the need of first

projecting the modes of the system on a constant flux basis [18, 54].

3.7.1 Solving the SALT equation (3.15)

For a finite element discretization of the SALT Eqs. (3.15), we first need to find

the corresponding weak form of this set of partial differential equations. Note,

that we assume here that a PML is used and therefore already include the

artificial magnetic permeability, which is needed for incorporating the outgo-

ing boundary conditions. The weak form of SALT is obtained by multiplying

Eq. (3.15) by a test function v(x), using the identity

∇ · (a× b) = (∇× a) · b− a · (∇× b) (3.29)

and applying Green’s theorem. The resulting term with the surface integral

along the boundary of the geometry can be neglected as the mode vanishes

there due to the presence of the PML. The weak form of the SALT equations is

then given by
∫

Ω

(µ−1 · ∇ × Eµ)(∇× v)−

−
[
ε+

γ⊥
ωµ − ωa + iγ⊥

D0(x)

1 +
∑N

ν=1 |ΓνEν |2
]
ω2
µ Eµ · v dx = 0.

(3.30)

As outlined in section 3.5.2, we need to take the symbolic derivative of Eq. (3.30)

with respect to Eµ and ωµ for solving the equation using a Newton-Raphson

scheme. For this we need to separate Eq. (3.30) into two equations for the real

and imaginary part of Eµ, respectively, since the SALT equations are not dif-

ferentiable in the complex fields due to the absolute square of the modes Eµ

in the spatial hole burning denominator. In comparison to reference [54], we

perform this separation already on the level of the weak form as this simplifies

the implementation with FEniCS. The complex form (3.30) can be rewritten as

two real forms by splitting the modes Eµ = Eµ,r + iEµ,i, as well as the inverse

of the artificial magnetic permeability µ−1 = µ−1
r + iµ−1

i and the dielectric func-

tion ε = εr + iεi into their real and imaginary components and collecting the
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imaginary unit into an imaginary test function vi = iv. In addition we relabel the

remaining real test function as vr = v. This results in two real forms
∫

(µ−1
r ∇× Eµ,r)(∇× vr)− (µ−1

i ∇× Eµ,i)(∇× vr)+

+ (
ωµ
c

)2
[γ⊥(ωµ − ωa)DEµ,r + γ⊥Eµ,i

(ωµ − ωa)2 + γ2
⊥

+ Eµ,rεr − Eµ,iεi
]
· vr dx = 0

(3.31)

and∫

Ω

(µ−1
r ∇× Eµ,i)(∇× vi) + (µ−1

i ∇× Eµ,r)(∇× vi)+

+ (
ωµ
c

)2
[γ⊥(ωµ − ωa)DEµ,i − γ⊥Eµ,r

(ωµ − ωa)2 + γ2
⊥

+ Eµ,rεi + Eµ,iεr
]
· vi dx = 0.

(3.32)

For both equations one still needs to insert the (real) inversionD from Eq. (3.14).

The advantage of using FEniCS for solving this coupled nonlinear set of equa-

tions is that from these expressions FEniCS can automatically symbolically de-

rive the Jacobian necessary for the Newton Raphson solution procedure. It

therefore eliminates the tedious task of manually assembling the Jacobian [54,

62]. In comparison to the CF-state method as reviewed in section 3.23 the Jaco-

bian is no longer a dense, but instead a sparse matrix.

In our numerical calculations, where we use the FEniCS software collection,

we use the PETSc library [63] in order to solve the sparse linear system in each

iteration of the Newton-Raphson solver.

3.7.2 Solving the nonlinear eigenvalue problem of Eq. (3.19)

In order to find a suitable guess for the SALT equations (3.15) and to check

for the threshold of a laser mode, we need to solve the eigenvalue problem of

Eq. (3.19). Here, we can assume that the inversion D(x, d, {,Eµ, ωµ}) is fixed by

a given solution of the SALT equations. This also includes the case when the

system is not lasing, where the inversion is simply given by the pump D0.

In contrast to the SALT equation, the nonlinear complex eigenvalue problem

of Eq. (3.19) is only nonlinear in the complex frequency ω̄µ, but linear in the

eigenvector Ēµ. The resulting eigenvalue problem is thus of the form

T (ω̄µ)Ēµ = 0. (3.33)
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Several different strategies for solving this problem exist [64, 65]. In the fol-

lowing we will present several of these and discuss their advantages and dis-

advantages. First, we note, that the nonlinear eigenvalue problem, which we

consider here, is in fact a rational eigenvalue problem. One way to solve this

problem is to divide Eq. (3.19) by Γµ, which effectively results in a cubic eigen-

value problem. However, solving the cubic eigenvalue problem as such has the

disadvantage of increasing the size of the problem threefold and the resulting

matrix is possibly ill-conditioned. Furthermore, it is important to note, that the

problem features a singularity at the point ωa−iγ⊥, which can result in spurious

numerical solutions.

The only eigenvalues relevant in SALT calculations are located close to the

center of the gain curve ωa. Hence, it is sufficient to restrict the calculation of

eigenvalues to a cropped region of the complex plane given by {z ∈ C|Im(z) >

−γ⊥ ∧Re(z) ∈ [ωa − γ⊥, ωa + γ⊥]. One way to find all eigenvalues within such a

region of the complex plane is a contour integral method developed in [66, 67].

There the calculation of eigenvalues is restricted to a confined region with a

smooth contour. Making use of the residue theorem, all poles of T −1, which

correspond to the eigenvalues of T , are found within the contour. This method

has the advantage that all eigenvalues within the contour can easily be found,

however, it is computationally relatively expensive as one needs to solve N ×
M linear systems of the fully discretized system, where N corresponds to the

number of eigenmodes within the contour andM to the integration points along

the contour.

In most calculations, however, only a couple of relevant inactive modes close

to threshold need to be considered. Furthermore, for the case of resonators with

a high Q factor, the spatial fields of these modes are only weakly affected by the

spatial hole burning contributions of the active modes. Hence, one strategy for

calculating only the relevant inactive modes is the following: One first starts by

calculating the quasi-bound modes of the system close to the center of the gain

curve, which we have already discussed in section 2.3.1. Next, each of these

modes is used as a guess for a nonlinear solver in order to find a solution to
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Eq. (3.19). For this one can again use Newton’s method, which we have already

discussed for the case of solving the SALT equation [68]. In comparison to the

SALT equations, this has the advantage that since the problem is differentiable

in all unknowns, one can work with the complex fields and frequencies directly1

and the convergence of the problem is “quadratic”.

In most cases, we are not only interested in the SALT solution for a fixed set

of parameters, but instead we want to study the behavior of the laser system

under variation of one of the parameters as, e.g., the pump strength or pump

parameter. One then typically scans this parameter in discrete steps. In this

case, it is not necessary to recalculate the QB-states in each step, but one can

then simply use the inactive modes from the last step and track the inactive

modes along with the full SALT solutions {Eµ, ωµ} of the system.

1As of this writing, the FEniCS software collection unfortunately does not yet support com-
plex finite element spaces. Hence, when implementing the solver for the inactive modes, we
still need to split the complex fields into the corresponding real and imaginary parts as shown
for the case of the SALT equations in section 3.7.1



CHAPTER 4
Study of exceptional points in

coupled cavity lasers with SALT

In this chapter we will revisit the system of two coupled 1D cavities from section

2.3 and study the influence of the EP on the system’s lasing behavior in more

detail with the help of SALT. Furthermore, we will demonstrate that the EP is

not specific to the case of one-dimensional coupled cavities but also occurs for

a realistic system of two coupled microdisk lasers and a distributed feedback

laser with a loss grating.

4.1 Two coupled cavities in 1D

The system of coupled cavities as discussed in section 2.3 (see also the two in-

sets of Fig. 4.1) consists of two one-dimensional cavities of length L̃ with index

of refraction n = 3.0 + 0.13i surrounded by air, where n = 1. Note, that the

unpumped cavities are strongly absorbing when the system is not pumped. A

gap of 0.1L̃ separates the two cavities. For the SALT calculations we used the

following parametrization of the pump: For 0 < d < 1, the pump in the left

cavity is linearly increased in the range 0 < D < 1.2, and, for 1 < d < 2, the

same is done in the right cavity while keeping the pump in the left cavity at 1.2.

34
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Figure 4.1: Lasing behavior as determined by SALT for a system of two coupled
1D cavities with dimensions as given in the text. (a) Dependence of the power
output on the pump parameter d. The results are shown for three different gain
curves at ωaL̃ = 9.46, 9.24, and 9.63, which correspond to the red, yellow, and
blue curves, respectively. Note, that for all curves the power reduces around d ≈
1.6. The dots represent the results obtained from a full Maxwell-Bloch solver
and show excellent agreement with the SALT results [69, 70]. The insets depict
the cavity setup together with the field of the lasing mode for ωaL̃ = 9.46 at the
pump parameters d = 1 and d = 2. (b) Movement of the complex frequencies
of the two modes closest to the center of the gain curve under variation of the
pump parameter d. Only the results for ωaL̃ = 9.46 are shown. Note, that in
comparison to Fig. 2.4 the results have been obtained using SALT such that all
active lasing modes feature a real frequency ωµ due to the contributions from
spatial hole burning. Complex frequencies with Im(ω̄µ) < 0 represent inactive
modes.

Outside of the cavities the pump D0 has been chosen to be 0. The gain curve

describing the homogeneously broadened amplifying gain medium has a half

width at half maximum of γ⊥L̃ = 0.1 and a central gain frequency of ωaL̃ = 9.46.

The results obtained from the SALT calculations are shown in Fig. 4.1 and

confirm the results from the coupled mode theory in section 2.3, i.e., the laser

power output strongly decreases close to an EP. The pump has been chosen

such that the system starts lasing even for the case when only one of the cav-

ities is pumped. Here, only the left cavity is pumped in a pump parameter

range 0 < d < 1, where the cavity is pumped up to a maximum pump strength

of D0 = 1.2. For ωaL̃ = 9.46, the output power of the system is given by the red
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curve in Fig. 4.1a. At pump parameter d ≈ 0.92 the system reaches threshold. At

this point the dominant weight of the lasing mode is primarily located within

the amplifying cavity and decreases exponentially in the other cavity (see inset

in Fig. 4.1a, where the amplitude of the electric field of the corresponding mode

is shown). The complex frequency of the corresponding mode is depicted in

Fig. 4.1b. Below the laser threshold of d ≈ 0.92, the complex frequency of the

dark blue mode moves towards the real axis for increasing values of d. After

reaching the threshold the mode’s frequency ω1 remains real due to the nonlin-

ear spatial hole burning interaction. This is in contrast to the results from the

simple frequency-domain Maxwell equations in section 2.3.1, where the mode’s

self-interaction was not taken into account.

In the second pump range, 1 < d < 2, only the pumpD0 in the right cavity is

linearly increased from 0 to 1.2, and the pump in the left cavity is kept constant

at a value of D0 = 1.2. As seen in Fig. 4.1 the output power of the laser at first

slightly decreases despite an overall increase of the pump applied to the sys-

tem and the real frequency of ω1 changes only slightly. In contrast to that, the

imaginary part of a second mode with complex frequency ω̄2 increases quickly

and enters Fig. 4.1 at d ≈ 1.64. In the same manner as described in section 2.3.1

an avoided crossing between modes 1 and 2 induces the shutdown of the first

laser mode for the pump parameter range from 1.55 to 1.7. After the avoided

crossing mode 1 starts lasing again. The spatial hole burning interaction then

not only keeps the frequency of mode 1 real, but also affects the non-interacting

complex eigenfrequency of mode 2 as can be seen by a kink in its complex eigen-

frequency trajectory. For the chosen parameters, the second mode doesn’t reach

threshold and the system stays single-mode.

The same SALT calculations were repeated for two additional gain center

frequencies, which are displayed as the yellow and blue curve in Fig. 4.1a, re-

spectively. All other input parameters were not modified. The blue curve shows

the results for ωaL̃ = 9.63. Here, the laser doesn’t completely shut down, but

only features an output power minimum close to d ≈ 1.6. For ωaL̃ = 9.63, the

results of which are shown in Fig. 4.1a by the yellow curve, the laser only starts



CHAPTER 4. STUDY OF EXCEPTIONAL POINTS IN COUPLED CAVITY
LASERS WITH SALT 37

lasing after passing the EP.

In order to verify that the results are stable, our colleague Alexander Cer-

jan from Yale University has tested the SALT calculations against a full time-

dependent Maxwell-Bloch solver. We have found an excellent agreement be-

tween the SALT results and the full Maxwell-Bloch results. The latter results

are shown in Fig. 4.1a as white dots on top of the SALT results.

So far the calculations have shown that for a couple of different gain curve

parameters, ωa and γ⊥, a shutdown or loss in the power output occurs. How-

ever, the EP to which we have attributed this phenomenon in chapter 2.3 was

not directly accessible in the SALT calculations. To alleviate this issue we are go-

ing to use constant flux states, which we have introduced in section 3.23 to find

a measure that is both independent of the gain curve parameters and shows an

EP directly.

The CF-states are defined by the non-Hermitian eigenvalue problem in

Eq. (3.23) with eigenvalues ηn(ω, d). These states are parametrized by the fre-

quency ω outside the system as well as by the pump parameter d. In addition,

these states depend on the same parameters as the full SALT calculations except

for the definition of the gain curve defined by ωa and γ⊥. When comparing the

definition of the CF-states, Eq. (3.23), with the SALT Eq. (3.15), we observe that

at threshold, i.e. , when the spatial hole burning contributions are negligible,

a CF-state exactly corresponds to a threshold laser mode when the following

condition is satisfied [19, 69]

ηn(ω, d) =
γ⊥

ω − ωa + iγ⊥
. (4.1)

For a specific gain curve the first laser mode is determined out of the countably

infinite set of eigenvalues ηn(ω, d) as the one which satisfies Eq. (4.1) for the

smallest value of dµ, which in turn also yields the threshold lasing frequency ωµ.

The lasing mode Eµ(x) at the threshold is then just given by the corresponding

eigenstate un(ωµ, dµ; x).

In order to exactly reach an EP of the system, it is in general required to

tune two parameters [20]. Since the linear non-Hermitian eigenvalue problem
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Figure 4.2: Contour plot of the function f(k, d), which indicates the parameter
regions of k and d where the laser in 4.1 is above threshold (green, inside black
contour) or below threshold (red, outside black contour). The threshold condi-
tion, f(k, d) = 0, is satisfied at the solid black contour. The EP in the center of
the plot pulls the laser below the threshold in its vicinity. The frequency depen-
dence of the solutions of the nonlinear SALT equations (dashed lines) and the
corresponding laser thresholds (dots on the solid black contour) are provided
for the same gain curves (shown in the top panel) as in Fig. 4.1. The evaluation
of f(k, d) involves two interconnected Riemann sheets (see Fig. 4.3), resulting
in a cut between the two sheets (see the white line right above the EP). The two
black dots at the upper edge of the plot represent the resonance frequencies of
the passive cavity system.

of Eq. (3.23), can, however, be solved for arbitrary values of the frequency ω and

pump parameters d, we are thus naturally provided with such two continuous

parameters. This brings us to the central insight that Eq. (3.23), which deter-

mines the lasing thresholds, can already contain the EPs that control the lasing

behavior shown in 4.1.

To show this explicitly, we rewrite the complex Eq. (4.1) as two real condi-

tions which neatly separate the role of the CF-spectrum and the gain curve

|ηn|2 + Im(ηn) = 0 (4.2a)

ω − ωa
γ⊥

=
Im(ηn) + 1

Re(ηn)
. (4.2b)

(4.2c)
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Equation (4.2a) has the remarkable property of being entirely independent of

the gain curve parameters ωa and γ⊥. Hence, it defines a threshold boundary in

the ω, d plane dividing lasing and nonlasing regions, solely based on the values

of {ηn}. To conveniently capture the entire ω, d landscape of possible lasing

solutions, we define a function

f(ω, d) ≡ min
n

[ |ηn|2 + Im(ηn) ], (4.3)

which has the property that the contour f(ω, d) = 0 is the locus of all possible

lasing thresholds. The actual lasing thresholds on this contour are then de-

termined by the gain curve parameters in Eq. (4.2b). In Fig. 4.2, we show the

relevant regions of f(ω, d) above (f < 0, green, within black contour) and below

(f > 0, red, outside black contour) threshold, as well as the threshold boundary

(f = 0, black contour). When f < 0, the CF-states do not give the full lasing

solutions and the nonlinear SALT is needed to find the output power and fre-

quency, as was done for the curves showing the modal output power in Fig. 4.1,

as well as for the frequency curves in Fig. 4.2.

The most striking feature of the contour plot shown in Fig. 4.2 is the exis-

tence of a substantial inclusion of a subthreshold region (red, outside black con-

tour) in the midst of the superthreshold region (green, within black contour).

At the center of this inclusion is a local maximum of f ; this point corresponds

to an EP of Eq. (3.23). For the middle gain curve (red), there are three thresh-

old solutions, two very near the EP. If we order these solutions according to

increasing pump, d, we find that ∂f/∂d < 0 at the first and third thresholds

and ∂f/∂d > 0 at the second. As a function of d, the laser thus turns on-off-on,

just as found in Fig. 4.1. Hence, nonlinear effects play no role in the qualitative

behavior of this laser; they only determine the amplitude of the lasing emission

in the green region. All the interesting behavior is controlled by the EP: It com-

pletely suppresses lasing in its vicinity of ω and d-parameters, thereby causing

the reentrant lasing (red curve) as well as the nonmonotonic but continuous

lasing emission (blue curve), which is influenced by its proximity to the EP.

In the entire ω and d range shown in Fig. 4.2, exactly only two eigenvalues

η1,2 contribute to f(ω, d). In the coupled cavities studied here, these two eigen-
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Figure 4.3: (a) Real and (b) imaginary parts of the two CF-eigenvalues η1,2(ω, d)
which are closest to the threshold in the ω and d parameter region around the
laser turn-off observed in Figs. 4.1 and 4.2. The eigenvalue surfaces display the
typical structure of intersecting Riemann surfaces, centered around an EP.

values are associated with a symmetric-antisymmetric doublet of passive cav-

ity resonances (see black dots in Fig. 4.2). If both cavities are uniformly pumped

with the same gain curves as in Fig. 4.2, the laser emits in modes each of which

can be associated with one of the passive resonances (not shown). However,

no EP and hence no pump-induced inclusion or nonmonotonic laser emission

appears. Only when nonuniform pumping is applied may a pair of eigenvalues

coalesce at an EP.

In Fig. 4.3, we plot the ω and d dependence of the real and imaginary part

of the two eigenvalues η1,2. Focusing on the parameter region around d = 1.55,

where the laser turns off, we find that the parametric dependence of the eigen-

values on ω and d shows the typical topological structure of two intersecting

Riemann sheets around an EP located at ωL̃ ≈ 9.5, d ≈ 1.6. Away from the EP,

the laser can always “choose” the lower threshold solution for lasing (upper

part of the Riemann sheet), but at the EP only one solution is available, which is

a compromise between the low and high threshold solution. This gives rise to a

local minimum in the effective gain and inhibits lasing in the vicinity of the EP.

In this way, the essential physics of an EP directly translates into the physical

effects observed in Fig. 4.1.
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4.2 Photonic molecule

Since the laser shutdown effect close to an EP could already be demonstrated

using coupled mode theory in chapter 2.3 the same effect is certainly not limited

to the 1D toy model of the previous section. Therefore we will next investigate

the realization of EPs for a more realistic setup involving two coupled microdisk

lasers. Such lasers are ubiquitous in photonic labs and are used as cavities for

lasers ranging from the THz regime [71, 72] up to infrared and optical frequen-

cies [42, 73, 74].

In the following we will consider a laser system with a configuration based

on the photonic molecule laser described in reference [71]. The system con-

sists of two microdisk lasers both of which have diameters smaller than the

freespace wavelength. In dimensionless units the radii of both disks are given

by 0.45L̃ and the gap between the disks amounts to 0.1L̃. The gain material

is modeled with a gain curve defined by a peak gain frequency ωaL̃ = 5.92

and a HWHM of γ⊥L̃ = 0.6. The index of refraction of the unpumped disks

is given by n = 3.67 + 0.09i. When considering only a single microdisk, the

modes with the lowest thresholds are degenerate pairs of whispering gallery

modes [73,74]. Any superposition of these modes is an eigenstate of the under-

lying harmonic Maxwell equations (2.5) with outgoing boundary conditions.

Hence, both clockwise- and counter-clockwise traveling modes, as well as two

standing-wave modes with interlaced spatial intensity patterns can be formed

out of a degenerate eigenpair. When coupling two of these disks the two degen-

erate eigensolutions of the problem form quadruplets of modes whose degener-

acy is slightly broken. Since the rotational symmetry is no longer preserved, the

traveling wave solutions are no longer solutions of the linear harmonic Maxwell

equations. Instead super-modes with a standing wave pattern are formed from

combinations of the single disk modes. A sketch of the system including the

spatial intensity pattern of one of these modes is shown in the inset of Fig. 4.4a.

In the following we will apply the same pumping scheme as for the one-

dimensional system. Here each of the disks is in sequence pumped up to a

pump strength of D0 = 0.71. The results as obtained with SALT are shown in
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Figure 4.4: Modal power output (a) and mode frequencies (b) for a photonic
molecule laser in dependence of the pump parameter d. The same pumping
scheme is used as for the coupled 1D.

Fig. 4.4, where both the modal power output, as well as the mode frequencies

are plotted with respect to the pump parameter d. Due to the near-degeneracy

of the modes, not only a single mode, but two of the four near-degenerate

modes start to lase according to SALT. However, both of the modes demon-

strate the expected counterintuitive behavior, i.e. , a laser shutdown occurs de-

spite a continuous increase of the overall applied pump strength. In addition

the lasing frequency shifts significantly between the lasing shutdown and the

reemergence of lasing.

The intensity pattern of the two modes is depicted in Fig. 4.5 for pump pa-

rameters d = 1 and d = 2. Here, it is clearly visible that the EP can be interpreted

as a transition from modes localized in the individual disks (at d = 1) to modes

that extend over both resonators (at d = 2).

Note, that in the calculations presented here, we have so far neglected the

relaxation rate of the inversion, γ‖, since it does not explicitly appear in the

SALT calculations. However, its value has to be considered in order to check

the validity of the stationary inversion approximation, for which the frequency

splitting between any two active modes |ωµ − ων | of the laser has to be greater

than γ‖. For the case of the photonic molecule laser shown here and, in general,

for any resonator that features nearly-degenerate modes, this condition is not
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Figure 4.5: Intensity pattern |Eµ|2 of the two active modes of the photonic
molecule laser calculation presented in Fig. 4.4 for pump parameters d = 1.0
(left panels) and d = 2.0 (right panels).

fulfilled since the splitting can be arbitrarily small. A possible route in order

to remedy this shortcoming will be presented in the following chapter. Note,

however, that the central result of this chapter, namely the shutdown of the

laser system close to the EP, is not affected by this issue, as close to the EP the

system is not lasing.

4.3 Distributed feedback laser

In all systems that we have considered so far, we have been able to link the

counterintuitive phenomenon of a laser shutdown for increasing pump values

or, alternatively, an increased laser output power for decreasing pump values

to the presence of an EP. As has recently been emphasized in the literature [48],

similar lasing phenomena have already been described theoretically by Kogel-

nik and Shank for distributed feedback (DFB) lasers with a loss grating in the

early seventies [47]. However, their theoretical description of loss-induced las-
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ing did not involve exceptional points. In these references a simple 1D waveg-

uide has been considered, which at first is uniformly pumped. By imposing a

loss grating on this waveguide it is shown that despite increasing the overall

loss of the system the system shows a strong increase in lasing intensity. The

intuitive explanation for this phenomenon is that the lasing mode will adjust

its shape such that the nodes of the electric field coincide with the maxima of

the loss grating whereas the field’s antinodes coincide with the gain maxima.

In this section we revisit this problem and show that in contrast to assertions

made in [48] this lasing behavior can indeed also be attributed to the presence

of an EP.

For this we consider the same model for the DFB laser as in [48], featuring a

one-dimensional system with a refractive index of

n(x) = n0 − igth + Λ(1− cos(2ω0xn0)), (4.4)

in the region where the laser is pumped and with a background index of n0

outside the pumped region. The modulation of the grating is determined by

the Bragg frequency ω0 and furthermore we assume that the pumped region

is of an integer multiple of the Bragg-wavelength 2πc
n0ω0

such that no additional

reflections occur at the edge of the waveguide due to the grating. The (spatially

constant) gain is only present in those sections where the grating is defined.

Hence, small reflections can occur at the interfaces due to an index mismatch,

which, even when no grating is present, already provides sufficient feedback

for reaching the laser threshold. In the following calculations, the gain is chosen

such that the system is at threshold for the mode closest to the Bragg frequency

ω0 when no grating is present. At first we investigate a loss grating, which is

modeled by a purely positive imaginary grating parameter Λ similar to what

has been done in [48]. For this we consider a system where the background

index of refraction is given by n0 = 1, and the Bragg frequency by ω0L̃ = 100.

The grating has a length of 40 Bragg wavelengths and the laser threshold of this

system is gth ≈ 0.0185.

In Fig. 4.6 we show the numerically calculated complex frequencies of the

QB states of the system under variation of the loss parameter Im(Λ), which is



CHAPTER 4. STUDY OF EXCEPTIONAL POINTS IN COUPLED CAVITY
LASERS WITH SALT 45

97 98 99 100 101 102 103

Re(ωµ)L̃

−1.0

−0.5

0.0

0.5

1.0

Im
(ω
µ
)L̃

0.000

0.005

0.010

0.015

0.020

Lo
ss

pa
ra

m
et

er
Im

(Λ
)

Figure 4.6: Evolution of the QB mode eigenfrequencies in a DFB laser with a
pure loss grating.

increased from 0 to 0.02. For the mode located closest to the the Bragg frequency,

ω0L̃ = 100, we observe a stark increase of the imaginary part of the correspond-

ing quasibound state eigenfrequency. In addition the real part of the frequency

shifts towards the Bragg frequency. The imaginary part of this mode reaches a

maximum for a loss parameter of Im(Λ) ≈ 0.008 after which it decreases again.

In contrast to the preceding results of loss-induced lasing in coupled cavities,

here the progression of the eigenvalues does not show an avoided crossing,

which could hint at the presence of an EP. However, as we have mentioned

earlier, the only general way to find an EP is to scan two parameters of the

system. The quantity, which is best suited for this in this context, is the real part

of the grating parameter Λ since in an actual experiment one can typically not

precisely control only the imaginary part of the grating.

Hence, we extend the calculations to include the real part of the grating pa-

rameter Λ. In Fig. 4.7 we plot the dependence of the mode closest to the Bragg

frequency ω0 on the real and imaginary part of Λ. In Figs. 4.7a and b, we plot

the real and imaginary part of the eigenvalue, respectively. The dashed red

line corresponds to the result tracked in Fig. 4.6 for increasing values of Im(Λ).

Note, that we only varied a very small parameter range of Λ as compared to
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Figure 4.7: Real and imaginary part of the QB-mode eigenfrequency associated
with the dominant mode of the DFB laser under variation of the real and imag-
inary part of the DFB grating in the index of refraction. The EP is marked by a
white point.

Fig. 4.6. In this calculation we find an EP at Λ ≈ (−1.1 + i0.27) · 10−3, which

is marked by a white dot in Fig. 4.7 connecting two Riemann sheets with each

other. Furthermore we can clearly observe in Fig. 4.7b that in the vicinity of

the EP the imaginary part of the eigenvalue ω features a minimum. Hence, the

effect of loss-induced lasing for the loss-grating in a DFB laser can be explained

in exactly the same manner as we have already done in chapter 2.3, however,

here, no avoided crossing is visible as the EP connects “neighboring” modes of

a single cavity instead of individual modes of neighboring resonators.

4.4 Open questions

In this chapter we have shown that the prediction that a laser system shuts

down in the vicinity of an EP can indeed be verified with the full nonlinear

model of the steady-state ab-initio laser theory. In addition we have shown

that even for the case of the DFB laser with a loss grating the counterintuitive

loss-induced lasing phenomenon can be attributed to the presence of an EP.

However, a couple of questions remain to be answered. For the system of

two coupled cavities we have shown that the results of the SALT have to be
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taken with a grain of salt since the presented results above the laser threshold

do not fulfill the stationary inversion approximation for typical values of the

relaxation rate of the inversion, γ‖. Since this will pose a problem for arbitrary

cavities with degenerate or near-degenerate modes, we will investigate in the

next chapter how such systems can, in general, be treated in the context of SALT.

Furthermore, we have so far only looked at the case where the parameters

were chosen such that the EP occurred when the system is actually below the

laser threshold (compare Fig. 4.2) which has significantly simplified the analy-

sis. One such issue, which has already been discussed in the literature on EPs, is

that the linewidth should tend towards infinity due to a divergence of the Peter-

mann factor [14,75]. Furthermore, since two active modes merge at an EP above

the laser threshold, the stationary inversion approximation cannot be fulfilled

either.

Due to these difficulties it is important to check for the stability of the system

close to the EP. In this chapter, this has been done by explicitly comparing the so-

lutions from SALT with the solutions of the full Maxwell-Bloch equations. How-

ever, numerically integrating the computationally demanding time-dependent

Maxwell-Bloch equations defeats the efficiency of the SALT approach. Hence,

finding a more efficient tool for determining the stability directly from the SALT

solution is of importance.



CHAPTER 5
Linear stability analysis in SALT

and its application for

near-degenerate modes

In this chapter we will enhance the steady-state ab-initio laser theory in order

to be able to treat laser resonators featuring degenerate and near-degenerate

modes where the traditional SALT algorithm fails as the stationary inversion

approximation is not fulfilled. In this case the (near-)degenerate modes may

form a single hybridized mode, which doesn’t fulfill the traditional criterion

for the stability of a SALT solution, i.e. ∀νIm(ω̄ν) < 0. Hence, in order to test

the stability of such a mode we develop a linear stability analysis. This work

has been executed together with my colleagues S. Burkhardt and D. Krimer and

parts of the shown results have been published in [76].

We furthermore present an extension to SALT where we self-consistently

incorporate the mode beating terms in the inversion and which can be used to

apply SALT to input parameters where the beating terms cannot be neglected

entirely.

48
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5.1 Linear stability

In section 4 the stability of the SALT solutions close to the EP was determined

by comparison with the results from a full time-dependent Maxwell-Bloch cal-

culation. However, one central reason for using SALT is to avoid these compu-

tationally demanding calculations.

One possible route to avoid such expensive numerics is to perform a rigor-

ous linear stability analysis on the SALT solutions [76]. For this, we linearize

the Maxwell-Bloch Eqs. (3.1) around a given SALT solution and we check if all

possible perturbations to the SALT solution are decaying. In the following we

give a short overview of the derivation of this linear stability analysis.

We first extend the SALT ansatz from Eq. (3.5) as

E(x, t) =
N∑

µ=1

[Eµ(x) + δEµ(x, t)]e−iωµt

P(x, t) =
N∑

µ=1

[Pµ(x) + δPµ(x, t)]e−iωµt

D(x, t) = D(x) + δD(x, t),

(5.1)

where we have added small perturbations δEµ(x, t), δPµ(x, t), and δD(x, t)

around the SALT solution, the corresponding polarizations Pµ and inversion

D. Note, that although the polarization Pµ induced by each mode and the in-

version D are not directly obtained in the process of solving the SALT equation,

one can easily obtain these quantities from the SALT solution {Eµ, ωµ} as fol-

lows

D(x) =
D0(x)

1 +
∑N

µ=1 |ΓµEµ(x)|2

Pµ(x) = ΓµD(x)Eµ(x).

(5.2)

In comparison to [77], the ansatz (5.1) does not only capture perturbations in

the amplitude of the electric field, the polarization and the inversion, but in-

stead all spatial perturbations are taken into account. Next we insert the ansatz

into the MB equations (3.1). Here, we have to differentiate between single and
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multi-mode lasing. When only a single mode is active the single-mode SALT so-

lution is also an exact solution of the Maxwell-Bloch equations. Using this and

furthermore neglecting any higher-order terms of δEµ, δPµ, and δD, we can

obtain a set of partial differential equations, which rigorously describe the lin-

earized dynamics of the perturbations for single-mode lasing. For multi-mode

lasing, however, we need to neglect the beating of the modes’ perturbations by

applying the stationary inversion approximation similar to the original SALT

approach. As a consequence, since neither a solution of the multi-mode SALT

is an exact solution of the Maxwell-Bloch equations nor the perturbations are

driven by the exact Maxwell-Bloch equations, spurious instabilities can occur

which we will briefly discuss in section 6.2.

Inserting the ansatz, Eqs. (5.1), into the Maxwell-Bloch equations and as-

suming the SIA for the case of multi-mode lasing, leads to the following set of

partial differential equations for the perturbations δEµ, δPµ, and δD,

ε δËµ =−∇×∇× δEµ − δP̈µ + ω2
µ(δPµ + ε δEµ) + 2iωµ(δṖµ + ε δĖµ) (5.3)

δṖµ = [i(ωµ − ωa)− γ⊥] δPµ − iγ⊥(Eµ δD + δEµD) (5.4)

δḊ =− γ‖ δD +
iγ‖
2

N∑

µ=1

(
δEµ P∗µ + Eµ δP

∗
µ − δE∗µPµ − E∗µ δPµ

)
. (5.5)

This set of equations corresponds to 2 × N equations for the perturbations of

the electric fields, δEµ, and corresponding polarizations, δPµ, of each mode and

one equation for the perturbation of the inversion δD. Although the system of

equations is linear in the perturbations, Eq. (5.5) contains the terms δE∗µ and

δP∗µ, which can not be expressed by a linear combination of δEµ, δPµ, and δD.

Hence, in order to produce a fully linear system, we split the perturbed fields

and polarizations, as well as the dielectric function εc into their respective real

and imaginary parts in order to obtain a purely real set of equations. Note, that

since the perturbation of the inversion has already initially been real-valued,

the corresponding equation can remain as it is. This procedure yields a set of

4 × N + 1 real partial differential equations for the fields Re(δEµ), Im(δEµ),

Re(δPµ), Im(δPµ), and δD. Since the system of equations is now completely
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linear we can summarize them as a single vector

~F (x, t) =




Re[δEµ(x, t)]

Im[δEµ(x, t)]

Re[δPµ(x, t)]

Im[δPµ(x, t)]

δD(x, t)



. (5.6)

A solution of the SALT equations is considered to be stable when all possible

perturbations of the solutions decay. Hence, we make the following ansatz,
~F (x, t) = ~F (x)eσt. By inserting this ansatz back into Eqs. (5.3)-(5.5) we obtain an

eigenvalue problem with eigenvalues σj and eigenvectors ~Fj . When all eigen-

values have a real part smaller than 0, i.e. Re(σj) < 0, then the solution is con-

sidered to be stable. The eigenvalue problem is given by the following set of

equations

(δPµ,r − εiδEµ,i + εrδEµ,r)σ
2 + 2(δPµ,i + εiδEµ,r + εrδEµ,i)ωµ σ− (5.7a)

−(δPµ,r − εiδEµ,i + εrδEµ,r)ω
2
µ +∇×∇× δEµ,r = 0

(δPµ,i + εiδEµ,r + εrδEµ,i)σ
2 − 2(δPµ,r − εiδEµ,i + εrδEµ,r)ωµσ− (5.7b)

−(δPµ,i + εiδEµ,r + εrδEµ,i)ω
2
µ +∇×∇× δEµ,i = 0

δPµ,rσ + γ⊥(δPµ,r −DδEµ,i − δDEµ,i) + (ωµ − ωa)δPµ,i = 0 (5.7c)

δPµ,iσ + γ⊥(δPµ,i +DδEµ,r + δDEµ,r)− (ωµ − ωa)δPµ,r = 0 (5.7d)

δDσ + γ‖(δD +
N∑

µ=1

Pµ,rδEµ,i + δPµ,rEµ,i − δEµ,rPµ,i − Eµ,rδPµ,i) = 0. (5.7e)

In order to keep the equations compact, we have abbreviated Re(·) and Im(·)
through the sub-indices r and i, respectively. Note, that the problem is quadratic

in the eigenvalue σj . In the numerical calculations the quadratic dependency

can be linearized by introducing two additional fields δGµ = σjδEµ and δQµ =

σjδEµ such that one ends up with 8×N + 1 real-valued equations for the eigen-

value problem. In order to be able to solve the eigenvalue problem defined by

Eqs. (5.7), we need to impose outgoing boundary conditions on δEµ similar as

for the SALT equations. We have implemented this approach using a perfectly
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matched layer as described in section 3.6.2. Note, that this requires an addi-

tional artificial magnetic permeability, which is not yet included in Eqs. (5.7)

but is straightforward to add. We discretize the eigenvalue problem using a

finite element method for which we use the FEniCS toolkit to assemble the gen-

eralized linearized eigenvalue problem [61]. The eigenvalue problem itself is

solved using the numerical software libraries PETSc and SLEPc [78, 79].

Whereas the real part of an eigenvalue σj determines the growth/decay rate

of a perturbation, the imaginary part corresponds to the frequency relative to

the original modes Eµ at which the perturbation is oscillating. When we de-

tect an eigenvalue with Re(σj) greater than 0, then the corresponding SALT

solution Eµ is considered to be unstable. Hence, it would be sufficient to only

calculate the eigenvalue with the largest real part. However, in the current im-

plementation due to a frequency-independent perfectly matched layer spurious

numerical solutions with Re(σj) can occur for eigenvalues with |Im(σj) > ωµ|.
Instead of calculating the whole eigenvalue spectrum {σj}, we instead limit the

calculation of eigenvalues to a range from 0 to max(ωµ) in the imaginary part

and to real values close to the imaginary axis. The first restriction can be jus-

tified in the sense that beyond Im(σj) = ωµ the rotating wave approximation

is no longer valid. For 1D systems this procedure has been validated using an

explicit comparison with time-dependent calculations [76].

For every active laser mode one always finds an eigenvalue at zero in the

spectrum of eigenvalues σj . The reason for this is that the solutions of the SALT

equations are only unique up to a global phase factor. Hence, a perturbation

corresponding to such a phase shift leads to a valid solution. This eigenvalue,

however, does not affect the stability of the problem. For the case of multi-

mode lasing one obtains further eigenvalues with Re(σj) = 0, but with Im(σj)

corresponding to all possible combinations of frequency splittings Ωµ−Ων . This

can be attributed to the fact that the labeling of the SALT solutions is arbitrary.

Hence, a SALT solution with the corresponding two modes Eµ and Eν inter-

changed is still a solution of the SALT. Similar to the eigenvalue at σj = 0 these

eigenvalues do not affect the stability of the SALT solution although they are
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located exactly on the stability threshold Re(σj) = 0.

Note, that since we neglect mode beating in the standard SALT Eqs. (3.15),

the SALT solutions do not depend on the relaxation rate of the inversion γ‖.

The governing equations of linear stability on the other hand depend on this

parameter. Hence, we can calculate the stability of a SALT solution for different

values of this relaxation rate without the need to recalculate the SALT solution

itself. Note, however, that in an actual experiment γ‖ is intrinsic to the gain

material and hence can’t be varied easily.

5.2 SALT for degenerate and near-degenerate

modes

One deficiency of SALT is that it can’t be straightforwardly applied to a res-

onator with degenerate or near-degenerate modes of which both are active. In

this case the frequency difference ∆ = |ωµ − ων | between the two (near-) de-

generate modes can be much smaller than or of the same order of magnitude as

the relaxation rate of the inversion γ‖ such that the stationary inversion approx-

imation does not hold. From experiments it is evident that such systems show

stable stationary laser action such that SALT should be applicable [72].

In order to show how such systems can be solved with SALT we consider a

2D microdisk laser whose rotational symmetry is broken by a small wedge. The

outline of such a cavity is shown in Fig. 5.1 by the white curve. The small wedge

is annotated by a red arrow. The disk has a radius of 1L̃, a refractive index of

n = 2 + 0.01i and the wedge on the right side of the disk has a depth of 0.05L̃

and a width of 0.05L̃. The gain parameters are ωaL̃ = 4.83 and γ⊥L̃ = 0.1 and

have been chosen such that only a single pair of near-degenerate modes, which

in the following are labeled as mode A and B, need to be considered for a large

pump range above threshold. The wedge has the effect that the two originally

degenerate threshold modes of the microdisk split slightly with a frequency

difference of ∆ωL̃ ≈ 1.4·10−3. Therefore, the condition for the validity of the SIA

given by the condition, γ‖ � ∆ω, cannot be satisfied for reasonable values of
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Figure 5.1: Single-mode lasing states for a 2D microdisk cavity perturbed by
a wedge. The cavity is outlined in white with arrows marking the position of
the wedge. The spatial intensity pattern of two stable single-mode solutions are
shown: (a) Standing wave modeB at pump strengthD0 = 0.0773 with regularly
spaced nodes of intensity zero; (right) dominantly traveling wave solution C1

at pump strength D0 = 0.15.

γ‖ and the traditional SALT algorithm cannot be applied for the case when both

modes would become active [56]. In Fig. 5.1a, the intensity pattern of one of

the two degenerate passive modes is shown. The second mode features nearly

the same intensity pattern, but in comparison to the mode shown in Fig. 5.1a, is

rotated by a quarter wavelength such that one of its antinodes is situated right

on top of the small wedge. Hence, the mode shown in Fig. 5.1a has a slightly

lower threshold since the mode is less affected by the wedge. However, since

both modes are nearly degenerate, their thresholds are very close to each other.

When naïvely using the solution method for SALT as described in section

3.5.2, the solution is only valid up to the pump strength where the threshold

of the second mode is reached. The frequency dependence of the single mode

solution on the pump parameter D0 of mode B is, among others, shown in

Fig. 5.2. Using the linear stabilty analysis developed in the previous section

we find that there is only a tiny pump range between 0.077 and 0.078, where

this single mode solution corresponding to mode B is stable before the near-
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degenerate partner mode reaches threshold. However, beyond this threshold

the two-mode solution is not valid due to the failure of the SIA.

It is well-known that for ring and microdisk lasers with a perfect rotational

symmetry the active mode corresponds to a traveling wave mode [76, 80, 81]

running either in clockwise-, or counterclockwise direction. Since the perturba-

tion induced by the wedge on the mode structures is weak, one could therefore

assume that an active mode of the perturbed microdisk should be dominantly

traveling in one direction as well. This, however, is in stark contrast to the

passive modes of the system. As evident from the intensity pattern shown in

Fig. 5.1a, the corresponding passive mode is a standing-wave mode. In the un-

perturbed case, the passive standing-wave modes can be superimposed to form

a traveling wave mode which still corresponds to an eigenmode of the passive

system. For the perturbed case, however, this is not possible since the degener-

acy is slightly broken. Furthermore, since the wedge is symmetric with respect

to the x-axis in Fig. 5.1, the modes have to be symmetric or anti-symmetric with

respect to this symmetry axis as well. When the laser is active and the system is

sufficiently pumped, however, the modes no longer have to fulfill this symme-

try condition, since a broken symmetry in the modes can spontaneously break

the symmetry of the electric permittivity through the spatial hole burning term.

This suggests the following approach to solve for a single mode solution of

the system above threshold: One can form a superposition of modes A and B

as EA± iEB to create a traveling wave mode C1,2, which depending on the sign

travels either clockwise or counter-clockwise. This mode can then be used well

above threshold as a guess for the nonlinear SALT solver. Here, the mean value

of the real parts of the frequencies of the passive modes can be used as an initial

guess for the frequency ωC1,2 . Using this procedure we were indeed able to find

two additional modes at a pump strength of D0 = 0.15. The intensity pattern of

one of these modes is shown in Fig. 5.1b. In comparison to an unperturbed disk,

the modes are not fully traveling into one direction, but also have contributions

traveling into the opposite direction as evident from the slight beating in the

intensity pattern. Both modes are mirror-symmetric to each other with respect
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to the x-axis and either solution is a single-mode solution of the SALT equations.

Once such a solution is found, we need to determine if the solution is a valid,

stable solution. In the solution strategy discussed in section 3.5.2, we argued

that a solution to the SALT equations is only accepted as a valid solution of the

SALT if for a fixed spatial hole burning contribution all inactive eigenmodes of

the SALT operator feature an imaginary part of their complex frequency which

is less than 0. Otherwise such an inactive mode would grow exponentially in

time. If this was the case, this is taken as a hint that this inactive mode is in

fact active and needs to be included as an additional laser mode in the SALT

calculation.

When applying this strategy to either of the active modes C1,2, we indeed

find that one of the inactive modes features a positive imaginary part. However,

when trying to include this mode as an additional mode in the SALT solver,

the calculation does not converge. Furthermore, since this additional mode is

separated in frequency by less than the frequency splitting ∆ we would have

the same problem as for a superposition of two active modes A and B, namely,

that the SIA could not be used here.

The situation can be repaired by noticing that the original argument for eval-

uating the stability/validity of a SALT solution only takes into account the dy-

namics of a simple wave equation. The dynamics of the problem at hand is,

however, determined by the Maxwell-Bloch equations. Hence, it is suggestive

to use the linear stability formalism developed in the previous section to check

the stability of a SALT solution.

The linear stability analysis takes into account the relaxation rate of the in-

version, γ‖, for which we choose a value of 10−3 as is a reasonable value for a

semiconductor microlaser with γ⊥ = 0.1 [53]. Solving for the linear stability

eigenvalues σj of Eq. (5.7) we find that the solution shown in Fig. 5.1b is indeed

stable. Since the SALT algorithm has already been shown to agree well with full

time-dependent calculations [52–54,70,76,82] this opens the question when it is

necessary to perform such a full linear stability analysis compared to the sim-

pler argument based purely on the imaginary part of the complex frequencies
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Figure 5.2: Laser frequencies of single-mode SALT solutions for the cavity
shown in Fig. 5.1. Curves A (orange) and B (red) correspond to two standing
wave solutions, which have even and odd symmetry with respect to the x-axis.
The two modes represented by curve C1,2 (blue) feature a broken symmetry, but
are mirror-symmetric to each other. Solid (dotted) lines denote a stable (unsta-
ble) solution for γ‖ = 0.01. Note, that the pump axis is separated into three
regions of different linear scaling for the sake of clarity. The dotted gray curves
represent further nonlinear single-mode SALT solutions which are never stable.

of the inactive modes.

In order to be able to answer this question it is instructive to investigate the

system we have discussed so far in more detail. Since each of the one-mode

SALT solutions C1,2 cannot appear out of nowhere they have to be connected

somehow to the single-mode solutions A and B corresponding to the original

near-degenerate passive modes. In order to study this connection it is therefore

instructive to track all these single-mode solutions while disregarding the pre-

vious condition that all inactive modes need to feature an imaginary part less

than 0. Instead we will replace this check by a linear stability analysis in each

step.

In Fig. 5.2 we show the laser frequency of all single-mode solutions of the

SALT equation that we have found for this system close to the original near-

degenerate frequency doublet. Solid curves depict stable lasing whereas dotted



CHAPTER 5. LINEAR STABILITY ANALYSIS IN SALT AND ITS
APPLICATION FOR NEAR-DEGENERATE MODES 58

curves correspond to an unstable solution of the SALT equations as determined

with a linear stability analysis for γ‖ = 10−2. We find that at D0 ≈ 0.124 the pair

of solutions C1,2 (blue) branches off from the solution B (red). We have men-

tioned before that whereas mode B and mode A feature a perfect even and odd

symmetry with respect to the x-axis, the solutions C1,2 do not possess this sym-

metry, but rather are mirror images of each other. We can therefore relate this

branch point to the point at which the symmetry of the system is spontaneously

broken. A similar phenomenon has previously been observed in simulations as

well as in experiments [83].

Furthermore, note that in order to track the various single-mode solutions

in Fig. 5.2, it is not sufficient to track modes for continuously increasing values

of the pump D0. Instead one needs to track these solutions by both increasing

and decreasing the pump strength D0. As an example the modes C1,2 are first

tracked backward in pump strength starting from the branching point at D0 ≈
0.124 (see Fig. 5.2). When further reducing the pump strength, we observe that a

sharp bend occurs in the frequency dependence of solutions C1,2 at D0 ≈ 0.086,

where each of the modes C1,2 has evolved into a dominantly traveling wave

mode. Beyond this turning point, the solutions C1,2 become stable in a large

interval of the pump strength D0. Note, that we have uncovered the whole

branch of modes C1,2 by simply tracking the corresponding solution starting

from the guess atD0 = 0.15 as discussed above as we have yet to find an efficient

mechanism to detect the branch point directly while tracking solution B.

At D0 ≈ 0.8 both (unstable) modes A (orange) and B (red) feature two fur-

ther branches. These can be understood as follows: Since the wedge of the two

dimensional cavity only represents a small perturbation to the system, the sym-

metry with respect to the y-axis is only slightly broken, and, hence, modes A

and B are nearly symmetric with respect to this axis (see left panel of Fig. 5.1

for the intensity pattern of mode B). At D0 ≈ 0.8, this near-symmetry no longer

holds. However, since the modes have never been fully symmetric, there is not

a single point at which the symmetry of these modes spontaneously breaks, but

rather a smooth transition (as compared, e.g., to the symmetry breaking transi-
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Figure 5.3: Stability diagram of the single-mode standing wave solution B for
D0 < 0.078 and of the single-mode traveling wave solutions C1,2 for D0 > 0.078.
The stability results are shown with respect to the pump strength D0 and the
relaxation rate of the inversion, γ‖. Green regions denote stable lasing, whereas
red regions denote an unstable SALT solution.

tion with respect to the x-axis atD0 ≈ 0.124). For modeB, this smooth transition

is clearly visible in Fig. 5.2. For mode A this transition occurs in a much smaller

pump interval, since mode A has a node directly located at the wedge of the 2D

cavity and its symmetry is therefore only very slightly distorted.

Using similar superpositions of already known modes as starting points for

the nonlinear solver, we can find several more branches of non-linearly induced

single-mode SALT solutions within the plotted frequency range of Fig. 5.3 which

are shown as gray curves. Note, however, that these solutions are never stable

according to linear stability analysis.

In Fig. 5.2 we have only shown the stability of all single mode laser solutions

for a fixed value of γ‖. Although γ‖ can not easily be varied dynamically in an

actual experiment as it is specific to the used gain material, it is instructive to

investigate the dependence of the stability of the found solutions with respect to

both the pump strength D0, as well as γ‖. The corresponding stability diagram

is shown in Fig. 5.3, where the green regions denote stable lasing and the red

ones unstable lasing as found by the linear stability analysis.
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The solution corresponding to mode B is found to be stable for a tiny in-

terval of pump strength D0 on the left side of the stability diagram in Fig. 5.3.

Although this stable region depends slightly on both the pump strength D0 and

on γ‖, it roughly corresponds to the original stability criterion ∀νIm(ω̄ν) ≤ 0,

which is fulfilled (independently of γ‖) for values of D0 < 0.0773. This is in

contrast to the traveling wave solutions C1,2, which are stable only for values of

γ‖ > 2 · 10−5. This highlights the importance of taking into account the value

of γ‖ for assessing the stability of a SALT mode which is not possible when

only looking at the imaginary parts of the eigenmodes of the system. Further-

more we observe that even the solutions C1,2 only remain stable until a pump

strength of D0 ≈ 1.3. This instability can be attributed to an additional mode,

not included in the pair of near-degenerate modes, which would start to lase

at this point. By including this additional mode as an active mode in the SALT

calculations we can, similarly as in the traditional SALT algorithm, find a stable

SALT solution.

5.3 Discussion

The results of the previous section show that stable SALT solutions can also exist

for the case of multiple inactive laser modes featuring a QB mode frequency

with a positive imaginary part. Hence, for a correct interpretation of the SALT

results, it is required to modify the SALT algorithm such that a linear stability

analysis is performed for every SALT solution. This step replaces the calculation

of the inactive eigenmodes of the system. The disadvantage of this additional

check is, however, that numerically it is relatively expensive to calculate the

stability eigenvalues σj .

Hence, we will give a short argument on when a full linear stability analysis

is strictly required: In the results shown in Fig. 5.3, we observe that the stability

for the traveling wave mode strongly depends on the value for the relaxation

rate of the inversion γ‖. Since only the perturbation of the inversion δD directly

depends on this quantity in the linear stability analysis (compare Eq. (5.5)), it is
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evident that the coupling to the inversion is crucial for stabilizing the traveling

wave solution. This can also be checked explicitly by decoupling the equation

for the perturbation of the polarization [Eq. (5.4)] from the inversion by neglect-

ing the term containing δD. The resulting stability eigenvalues then give the

same results as the original SALT stability criterion. In order for the inversion

to be able to influence the stability of a mode, it is necessary that the time-scales

of the fields are of the same order of magnitude as γ‖. Since the linear stability

analysis as presented in section 5.1 considers all spatial perturbations, a crite-

rion for when a linear stability analysis is strictly required when |ωµ − ω̄ν | is of

the same order of magnitude or smaller than γ‖, which means that whenever the

frequency spacing of an active mode µ and any other active or inactive mode ν

is of the same order of magnitude as γ‖, a linear stability analysis has to be done

to ensure the stability of the solution.

5.4 Application: Photonic molecule laser

At this point we can revisit the system of two coupled microdisk cavities of

section 4.2. For two uncoupled microdisks the whispering gallery modes of the

combined disks feature a four-fold degeneracy, which in our setup is slightly

broken due to the coupling. The coupling is so weak that the frequency spacing

∆ ≈ 10−4 of the near-degenerate modes is smaller than the relaxation rate of

the inversion for which we assume γ‖ ≈ 10−3. In section 4.2 we have used the

unmodified SALT algorithm as presented in chapter 3, which resulted in two of

the four near-degenerate passive modes lasing when the system is not close to

the EP. For an easier comparison we show the corresponding data for the modal

power output and laser frequency of the active modes once more as gray curves

in Fig. 5.4.

Following the discussion in the previous section we expect to see the emer-

gence of traveling wave single mode solutions when the system is pumped

above threshold. In order to find this correct and stable solution we similiarly

make an educated guess for the traveling wave mode from the superposition of



CHAPTER 5. LINEAR STABILITY ANALYSIS IN SALT AND ITS
APPLICATION FOR NEAR-DEGENERATE MODES 62

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Pump parameter d

0

1

2

3

4

5

6

M
od

al
po

w
er
P
µ

[a
rb

.u
ni

ts
]a

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Pump parameter d

5.950

5.955

5.960

5.965

5.970

5.975

Fr
eq

ue
nc

y
ω
µ
L̃

b

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Pump parameter d

10−5

10−4

10−3

γ
‖

c

Figure 5.4: Dependence of the modal power (a) and the laser mode frequency
(b) on the pump parameter d for the sequential pump sequence applied to a
photonic molecule laser as discussed in Sec. 4.2. Both the results for the invalid
traditional SALT algorithm (gray curves), and the stable traveling wave mode
solution (red curves) are shown. In (c) the linear stability diagram for the trav-
eling wave mode solution is shown in dependence of the relaxation rate of the
inversion γ‖.
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Figure 5.5: Intensity pattern |E|2 of one of the two traveling wave mode solu-
tions for the photonic molecule laser evaluated at the pump parameters d = 1.0
and d = 2.0. The same geometry and gain parameters are used as in section 4.2.

the invalid SALT solution by using E1±iE2. Note, that each of these modes will

feature the same power as well as frequency output such that we only describe

one of these modes here, the other one is mirror-symmetric with respect to the

symmetry axis of the system. We use this guess to solve the nonlinear SALT

equations at pump parameters d = 1 and d = 2 for the traveling wave solu-

tion. The intensity pattern of the solution at these two pump steps are shown in

Fig. 5.5.

From the solution at these two pump parameters we then track the traveling

wave solution back to the branch points close to the laser threshold where they

merge with the solutions from the original calculation. This can be seen in both

the power output as well as the lasing frequency displayed in Fig. 5.4a,b where

the traveling wave mode solution is shown by the red curve. As shown in the

linear stability diagram of Fig. 5.4c we found that the traveling wave mode is

in general stable for values of γ‖ ≈ 10−3. Only for much smaller values of

γ‖ the traveling wave mode becomes unstable. Note, that the laser thresholds

of the standing-wave and traveling wave SALT solutions match such that the

discussion of chapter 4 on the shutdown of the laser in the vicinity of the EP

remains fully valid.
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5.5 SALT beyond the stationary inversion

approximation

In this chapter we have so far extended the regime in which SALT is valid

from the case in which mode beating can be completely neglected γ‖ � |∆|
to a regime where an extremely small frequency spacing of modes enables the

formation of hybridized modes due to nonlinear self-interactions. In between

these two regimes, typically a great wealth of time-dependent phenomena can

be observed in the laser output ranging from self-pulsations to an entire chaotic

lasing behavior [1] all of which are out of reach for a steady-state model. How-

ever, another regime can be found to which SALT can be extended, i.e. , when

the ratio of γ‖
|∆| is not sufficiently close to 0. Here, the mode beatings can yield

a significant time-dependence in the inversion, but the laser sidebands, which

stem from the interaction of the beatings with the modes, can still be neglected.

In the following we give a short derivation of this extended theory.

Following a similar strategy as developed in [53] for a perturbative treat-

ment of the beating terms but going beyond the two-mode simplification we

extend the SALT ansatz for the electric field E and the polarization P from

Eq. (3.5) with an ansatz for the inversion D that includes all mode beatings

D(x, t) = Ds(x) +
N∑

µ=1

N∑

ν=µ+1

dµν(x)e−i∆µνt + d∗µν(x)ei∆µνt, (5.8)

where ∆µν = ωµ − ων . Furthermore, all diagonal terms dµµ vanish, i.e., dµµ = 0

for 1 ≤ µ ≤ N . Note, that one could take the second sum in Eq. (5.8) from 1 toN

as well. This would have the advantage that the resulting equations become a

bit simpler, but at the cost of twice the number of beating terms in the inversion.

Next, we insert ansatz (5.8) into the MB-equation for the inversion, Eq. (3.1c),

and match the time-dependent and time-independent terms, which yields

dµν = −1

2

γ‖
∆µν + iγ‖

(Eµ ·P∗ν − E∗ν ·Pµ) (5.9)

Ds = D0 −
N∑

µ=1

Im(Eµ ·P∗µ). (5.10)
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Similarly, we insert the SALT ansatz, Eq. (3.5), together with Eq. (5.8) into the

MB-equation for the polarization, Eq. (3.1b) which yields

N∑

µ=1

−iωµPµe
−iωµt =− (iωa + γ⊥)

N∑

µ=1

Pµe
−iωµt − iγ⊥

N∑

µ=1

Eµe
−iωµtDs

− iγ⊥
N∑

µ=1

N∑

α=1

N∑

β=α+1

(
Eµe

−i(ωµ+∆αβ)tdαβ + Eµe
−i(ωµ−∆αβ)td∗αβ

)
.

(5.11)

In the last term of Eq. (5.11) the polarization is driven by the product of the

electric field and the beating terms of the inversion. If we considered all of

these terms, we would need to include the sideband modes in the ansatz for

the polarization P and the electric field E. However, for γ‖
∆µν
� 1 these can

be safely omitted. Thus, we will only consider the beating terms in Eq. (5.11),

which contribute back to the mode frequencies ωµ. In general, we will therefore

overestimate the beating terms dµν since the coupling to the sidebands of the

system is neglected. The last term in Eq. (5.11) is hence approximated as

N∑

µ=1

N∑

α=1

N∑

β=α+1

(
Eµe

−i(ωµ+∆αβ)tdαβ + Eµe
−i(ωµ−∆αβ)td∗αβ

)
(5.12)

≈
N∑

α=1

N∑

µ=α+1

Eµe
−iωαtdαµ +

N∑

µ=1

N∑

β=µ+1

Eµe
−iωβtd∗µβ (5.13)

=
N∑

µ=1

N∑

α=µ+1

Eαe
−iωµtdµα +

N∑

µ=1

µ−1∑

β=1

Eβe
−iωµtd∗βµ, (5.14)

which reduces the polarization of each mode to

Pµ =
γ⊥

ωµ − ωa + iγ⊥︸ ︷︷ ︸
Γµ

(
EµDs +

N∑

α=µ+1

Eαdµα +

µ−1∑

α=1

Eαd
∗
αµ

)
. (5.15)

Inserting the polarization back into the MB equation for the electric field, Eq. (3.1a),

and into the equations for the inversion, Eqs. (5.9) and (5.10), yields the refined

SALT equations which treat the beating in the inversion in a self-consistent man-

ner. The set of refined equations is given by
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∇×∇× Eµ −
[
εcEµ + Γµ(DsEµ +

N∑

α=µ+1

Eαdµα +

µ−1∑

α=1

Eαd
∗
αµ)

]
ω2
µ = 0, (5.16)

dµν = −1

2

γ‖
∆µν + iγ‖

[
Γ∗νEµ(DsE

∗
ν +

N∑

α=ν+1

E∗αd
∗
να +

ν−1∑

α=1

E∗αdαν)−

−ΓµE
∗
ν(DsEµ +

N∑

α=µ+1

Eαdµα +

µ−1∑

α=1

Eαd
∗
αµ)

]
, (5.17)

Ds =
D0 −

∑N
µ=1 Im

[
Γ∗µEµ(

∑N
α=µ+1 E∗αd

∗
µα +

∑µ−1
α=1 E∗αdαµ)

]

1 +
∑N

µ=1 |ΓµEµ|2
. (5.18)

Similar to when solving the SALT equation, there are no assumptions made, a

priori about the modal fields Eµ, the laser frequencies ωµ, as well as the beating

terms dµν . In comparison to the SALT equations, this refined set of equations

explicitly depends on the relaxation rate of the inversion γ‖. In particular, the

ratio γ‖
∆µν+iγ‖

determines the overall amplitude of the beating terms relative to

the modes Eµ and in the limit of dµν → 0 the original SALT equations are recov-

ered.

Whereas the original SALT solutions are invariant with respect to the global

phase of each mode, this is no longer the case here. Instead, the phase of each

mode is coupled to every other mode via the beating terms dµν .



CHAPTER 6
Exceptional points

above the laser threshold

So far we have only discussed exceptional points in laser systems that have been

designed such that the EP occurs below the laser threshold. In this chapter, we

extend the discussion of EPs to laser systems where the EP actually occurs above

the threshold.

Such a scenario entails several further questions. One issue, which has been

investigated only by using linear models for describing a laser system [14, 75]

involves the linewidth of the emitted laser emission. One quantity, which can

significantly increase the linewidth, is the Petermann factor. It stems from the

non-power-orthogonal nature of the resonator modes of a laser system due to

the outcoupling [84]. In particular the Petermann factor predicts that exactly at

the EP the linewidth should diverge.

Furthermore, since both modes coalesce directly at the EP, this poses a fur-

ther question with regard to the stability of the laser close to the EP. Since close

to the EP the stationary inversion approximation cannot be fulfilled the stability

of the system needs to be investigated as well. For the latter case we apply the

linear stability theory developed in the previous chapter.

The chapter is arranged as follows: First we are going to review how the

67
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linewidth of laser modes as obtained with SALT can be calculated. Next, we

are going to apply both the linewidth calculation and the stability analysis to

an adapted version of the coupled cavity system of section 4.1 which comes

significantly close to an EP above threshold.

6.1 Linewidth calculation in SALT

The first account on the linewidth of a laser mode has been given by Schawlow

and Townes in their seminal paper [85] in which they derived the following

equation for the linewidth

δωST =
~ω0γ

2
c

2P
(6.1)

Here, ω0 is the frequency of the laser, γc the decay rate of the passive cavity

and P the output power. Since the publication of this paper several correction

factors to this linewidth formula have been found: The incomplete inversion

factor, the Petermann factor, the α factor, and the bad cavity factor [52, 86–88].

The incomplete inversion factor is due to an incomplete inversion of the popu-

lation of the upper and lower level of the lasing transition. The α factor, which

for semiconductor lasers is also known as the Henry α factor, is due to a cou-

pling of amplitude fluctuations to the phase dynamics. The bad cavity factor

arises in low-Q cavities where the passive cavity resonances are of comparable

order to the gain width γ⊥ such that strong dispersion effects can occur when

the laser is pumped to threshold. For a complete account on these corrections

see, e.g. , [52,88]. For the particular case, which we are considering in this thesis,

i.e. , when the laser system is close to an EP, the Petermann factor K is of par-

ticular importance. Whereas the original linewidth formula, (6.1), was derived

for closed cavities, the Petermann factor takes into account the openness of the

cavity and is a measure of the non-orthogonality of the modes and is given by

K =

∣∣∣∣
∫
dx |E(x)|2∫
dxE(x)2

∣∣∣∣
2

. (6.2)

Since at the EP the corresponding eigenmode becomes self-orthogonal the Pe-

termann factor would diverge.
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Semiclassical laser theory and therefore SALT as described in chapter 3

does not include noise due to quantum fluctuations and hence the intrinsic

linewidth is not captured. Recently, however, two approaches for calculating

the linewidth based on SALT have been developed and enable the calculation

of the linewidth in a post-processing step. In the first approach [86, 87], Chong

and Stone used input-output theory together with a scattering matrix formal-

ism of the quantum fluctuations to calculate the linewidth of a SALT mode. This

approach, in contrast to earlier theories, works for arbitrary shaped geometries

and can fully take into account the nonlinear terms due to spatial hole burning.

However, it only takes into account the Petermann factor and the bad cavity

factor. In [88], Pick et al. have derived a similar linewidth formula for SALT

by coupling the full Maxwell-Bloch equations to an atomic gain medium com-

bined with random currents whose statistics are described by the fluctuation-

dissipation theorem. Here, all correction factors are included and it is shown

that all correction factors are intertwined with each other and often can not be

calculated seperately. Recently, this linewidth formula has been successfully

quantitatively compared to a full time-dependent model [52].

Both derivations of the linewidth are based on the expansion of the Green’s

function in eigenmodes. Hence, these formulas are not valid when a mode is

exactly at an EP since the eigenvectors do not form a complete basis of the space

such that the Green’s function expansion is no longer valid [89]. We can thus

only calculate the linewidth of a laser mode that passes in the vicinity of an EP

without, however, reaching it exactly.

Since we are primarily interested in the linewidth enhancement due to the

Petermann factor we will use the formula given in [87] for calculating the gen-

eralized decay rate γL. This generalized decay rate replaces γc in the Schawlow-

Townes formula of Eq. (6.1) and is given by

γL =

∫
C

dx Im[ε(x, ωµ)ω2
µ]|E2

µ|
| ibT b

2
+
∫
C

dx[ω ε(x, ω) + ω2

2
dε
dω

]ωµE
2
µ|
. (6.3)

Here, ε(x) is the full nonlinear electric permittivity as given in Eq. (3.15), and
dε
dω

is the derivative of the electric permittivity with respect to the frequency
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dependence in Γ(ω) = γ⊥
ω−ωa+iγ⊥

. The integrals are performed within a domainC

surrounding the laser cavity. The coefficients b are the expansion coefficients for

expanding the electric field Eµ in terms of outgoing eigenmodes by connecting

it to the interior solution Eµ , as determined by SALT, at the interface δC.

6.2 Stability close to an exceptional point

In order to steer the coupled laser system, which we have studied in section

4.1, closer to an EP above threshold, we slightly modify the parameters of the

system. For this we will increase the maximum pump strength applied to each

of the cavities from 1.2 to 1.6. Furthermore, we shift the center of the gain curve

to ωaL̃ = 9.49 to get significantly close to an EP.

In the left column of Fig. 6.1 we show the traditional SALT solution for this

laser configuration, encompassing, from top to bottom, the power output of the

laser, the mode frequencies, as well as a stability diagram. Here, a clear signa-

ture of an EP can be observed at a pump parameter of 1.67 when considering

the mode frequencies. First, the active mode (red curve) approaches the EP

without any significant alteration of its frequency. At the EP a second mode

(blue curve) becomes active and the frequencies of the two modes now rapidly

diverge from each other. For the power output of this system we surprisingly

observe a very different behavior compared to the system with the EP below

threshold. Instead of a drop we observe a continuous rise of the total power

output! Furthermore, when the second mode becomes active after the system

has passed the EP, we see an almost instantaneous equilibration of the power

emitted from each mode which is expected due to the coalescence of the two

modes at the EP. Hence, the modes are almost identical when the second mode

starts lasing.

In the bottom figure, the stability diagram of this two-mode configuration is

shown , which depicts the dependence of the stability on the relaxation rate of

the inversion γ‖ and the pump parameter d. For realistic values of γ‖ ≈ 10−3 [56],

we observe that the system becomes unstable close to the EP at d ≈ 1.67 as
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Figure 6.1: Modal power (upper row), mode frequencies (center row), and lin-
ear stability diagram for three different SALT solutions of a 1D coupled cavity
laser featuring an EP above the laser threshold. The first column shows the
solution as obtained from a normal SALT calculation, which at the EP, splits
into two modes. In addition, the single-mode solutions, mode A and mode B
exist as well. However, these solutions are only stable for large values of the
relaxation rate γ‖.
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indicated by the bright red shading. Hence, the continuous rise of the power

output for this particular solution cannot be observed in an experiment as the

mode is not stable. Therefore, even for an EP above threshold we should be

able to observe that the laser output is no longer multi-periodic and hence the

spectrum should change significantly.

Beyond the EP, when two modes are lasing, one has to consider the linear

stability analysis carefully. Since its derivation involved the stationary inversion

approximation, it is not possible to detect multi-mode instabilities that are due

to the beating of the modes. Hence, we have to exclude any parameter region

where γ‖ 6� |ωµ−ων |. We have marked this region in the linear stability analysis

by a dark red shade. In addition the stability analysis reveals an instability of

the system at a pump parameter of d = 2.0 for small values of γ‖. However,

this instability is spurious and the system is in fact stable at this point. This fail-

ure of the linear stability analysis can be attributed to the stationary inversion

approximation used in the derivation.

Note that this two-mode solution is not the only solution of the SALT for

this particular system. When sweeping the pump parameter d through the EP

one can simply continue tracking the single mode without activating the second

mode. The corresponding solution of the SALT is shown in the middle column

of Fig. 6.1. Similar to the two-mode solution a continuous increase of the out-

put power is observed. However, in order for this mode to be stable a very large

relaxation rate, γ‖, of the inversion is required. This mode has the exceptional

property that it can be even stable at the EP. However, the corresponding re-

laxation rate of γ‖ is not available for semiconductor lasers [90]. Note, that the

frequency behavior of this mode is very similar to one mode of the solution in

the left column. Similarly we find the second mode, which features a frequency

shift towards a higher frequency at the EP, to be a single-mode solution of the

SALT equation as well. However, it only becomes stable beyond the EP.
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Figure 6.2: Linewidth broadening as given by the generalized decay rate γL.
Close to the EP at d ≈ 1.67 a broadening of the linewidth by sixth orders of
magnitude can be observed.

6.3 Laser linewidth close to an EP

Since, the two-mode solution is not stable at the EP, we will only evaluate the

linewidth of mode A. A SALT solution, in general, is independent of the tran-

sition dipole moment g of the gain medium, which only appears as a scaling

factor for converting the field of a mode to SI units. The linewidth, however,

directly depends on this parameter. Since we are primarily interested in the

relative linewidth change close to the EP, we will instead only look at the gener-

alized decay rate γL as given by Eq. (6.3). From the Schawlow-Townes formula,

where γL replaces the passive cavity decay rate γc, we find that the linewidth

depends on the square of γL.

The generalized decay rate for mode A is shown in Fig. 6.2. Here, we ob-

serve an increase of the generalized decay rate by two orders of magnitude close

to the EP and hence an increase of four orders of magnitude of the linewidth.

This qualitatively agrees with the prediction of the Petermann factor [14, 75].

Note, that even when the EP is reached exactly, the linewidth would not be infi-

nite as this case has not been considered in the corresponding derivation of the

linewidth formula [89]. However, preliminary results, which use an adaptation

of the linewidth formula found in [88], show that the linewidth indeed stays

finite [89].



CHAPTER 7
EPs in transmission experiments

and chirality

When inducing an EP above threshold in a coupled microdisk system, the typi-

cal feature of an avoided crossing in the complex eigenvalues is strongly modi-

fied due to the nonlinear spatial-hole burning interactions. In order to be able to

study this eigenvalue progression including the EP in a linear system one can,

however, study a system below the laser threshold. For this the system has to be

probed by an external signal by coupling two wave guides to it and measuring

the transmission through the waveguides. The simplest theoretical description

of these systems is given by the temporal coupled mode theory (TCMT) [91–93],

which has already been used for the toy model in chapter 2. The results from

the TCMT are compared to full numerical calculations.

In addition to the system of two coupled microdisks where an EP is induced

by carefully adjusting gain and loss in the individual disks we will investigate

a further system featuring an EP consisting of a single microdisk. In this sys-

tem, two degenerate whispering gallery modes of the disk are perturbed by

two nanoscatterers which are positioned very close to the disk, i.e., the gap

between each of the scatterers and the disk is less than the wavelength corre-

sponding to the eigenfrequency of the system. Here, careful positioning of the
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Figure 7.1: Sketch of the setup for measuring the EP transition via a transmis-
sion setup

two nanoscatterers can lead to the collapse of the two originally left- and right-

traveling whispering gallery modes into a mode traveling into only one or the

other direction. This collapse can again be associated with an EP.

7.1 EPs in coupled microdisks

First, we study the appearance of an EP in a photonic molecule coupled to two

waveguides. In comparison to the previous chapters, here, an EP is only in-

vestigated below the laser threshold by varying the loss applied to one of the

resonators. The setup of the system is depicted in Fig. 7.1. The disks each have

a radius of 0.41 L̃ and feature an index of refraction of n = 1.444. The gap be-

tween the disks is d = 0.125L̃. The wave guides have a width of 0.0125L̃ and

are situated at a distance of 0.085L̃ from each of the disks, respectively. They

feature the same index of refraction as the two disks.

When isolated, each of the disks has a resonance at Ω1,2 ≈ 79.7291617 −
0.0001695283i. These individual resonances will be coupled to each other and

an EP is induced by varying the loss within the second resonator.
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7.1.1 TCMT model

For a simple physical description, we extend the coupled mode model of chap-

ter 2 to include the coupling to the two adiabatically coupled waveguides. Fol-

lowing Ref. [93], the TCMT gives the following equations for describing the

system

i
∂

∂t

(
Ψ1

Ψ2

)
=

(
Ω1 − iκ2 γ

γ Ω2 − iκ2 − iη

)

︸ ︷︷ ︸
Hpm

(
Ψ1

Ψ2

)
+ i
√
κ

(
a1,in

a3,in

)
, (7.1)

a2,out = −a1,in +
√
κΨ1 (7.2)

a4,out = −a3,in +
√
κΨ2 (7.3)

where Ψ1 (Ψ2) corresponds the clockwise (counter-clockwise) traveling whis-

pering gallery modes in disk 1 (2). Here, Ω1 and Ω2 are the eigenfrequencies

of the corresponding microdisks. Their imaginary part may be non-zero cor-

responding to losses due to absorption or leakage of the mode into the envi-

ronment. The loss due to coupling with the waveguide is given by κ, which

describes the coupling strength between waveguide and microdisk. γ corre-

sponds to the coupling strength between the microdisks. For this passive sys-

tem the loss within the second cavity may be tuned by the parameter η. A

fully equivalent independent set of equations can be defined for the whispering

gallery modes traveling into the opposite direction by coupling into the system

via ports 2 and 4.

When light is injected at one of the ports with a fixed frequency ωe, the elec-

tric field must oscillate everywhere at the same frequency due to the linearity of

Maxwell’s equations. Plugging Ψ1,2(t) = e−iωetΨ1,2 into Eq. (7.1) and assuming

only input from port 1, i.e. a3,in = 0, we can solve for the field amplitudes Ψ1,2

Ψ1 =
i
√
κ(ωe − Ω2 + iκ

2
+ iη)

(ωe − Ω1 + iκ
2
)(ωe − Ω2 + iκ

2
+ iη)− γ2

a1,in (7.4)

Ψ2 =
i
√
κγ

(ωe − Ω1 + iκ
2
)(ωe − Ω2 + iκ

2
+ iη)− γ2

a1,in, (7.5)
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and from Eqs. (7.2) and (7.3) the output amplitudes a2,out and a4,out are easily

obtained.

7.1.2 Numerics

In order to verify the TCMT model we compare the results to full numerical

calculations obtained with the finite element method as implemented by net-

gen/ngsolve [94,95]. In these two-dimensional simulations we assume that the

light is TM-polarized and only treat the out-of-plane component of the electric

field Ez. The central equation used in the simulations is the inhomogeneous

Helmholtz Eq.

[∇2 + n(x)2ω2
e ]Ez = fm(x, y), (7.6)

where n(x) is the index of refraction of the respective materials and ωe the fre-

quency of the injected light. The source term fm(x, y) can be used to inject light

into the system at any port m and is given by

f(x, y) = δ(x− xm)




A cos(

√
n2
wgω

2
e − β2

x(y − ywg)) y ∈WG

B exp(±
√
ω2
e − β2

xy) y 6∈WG,
(7.7)

which perfectly couples into the fundamental mode of the corresponding di-

electric waveguide (WG). Here, nwg, is the index of refraction of the wave guide

and ywg corresponds to the y-coordinate of the center of the waveguide. The

propagation constant βx, as well as one of the constants, A and B, are defined

through matching conditions at the dielectric waveguide interface [55]. The

other constant then determines the overall amplitude of the source term.

The whole setup is surrounded by a perfectly matched layer as described

in section 3.6.2 to avoid any back reflections from the boundary of the finite

computational domain. The amplitudes a1→4,{in,out} of the incoming and outgo-

ing waveguide modes are extracted from the numerical solution to Eq. (7.6) by

projecting it onto the corresponding modes f{1→4}(x, y)e±iβxx.
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Figure 7.2: (left panels) Transmission spectrum from port 1 to port 2 and (right
panels) spectrum of the sum of the mode intensities within both disks with re-
spect to the loss parameter η. The upper panels show the results obtained from
the finite element simulations, the lower panels the results from coupled mode
theory. The red lines show the eigenvalues of the resonances for the respective
methods.

In order to map the loss parameter η from the TCMT model to the index of

refraction ñ2 of the second disk we use the relation ñ2Ω2 ≈ n2(Ω2 − iη) and find

ñ2 = Re(n2)(1 + i
η

Re(Ω2)
), (7.8)

which is used in the numerical calculations.

7.1.3 Discussion

In order to determine the effect that the EP has on the system we look at two

quantities in particular: The transmission from port 1 to port 2, T1→2 = |a2,out
a1,in
|2,

and the sum of the light intensities within both resonators, I1+2 =
∫
C1∪C2 |Ez|

2d~x.

The values for the coupling strengths γ and κ in the TCMT model have been



CHAPTER 7. EPS IN TRANSMISSION EXPERIMENTS AND CHIRALITY 79

determined from the finite element calculations and are 0.00168 and 0.00035,

respectively. The corresponding results are shown in Fig. 7.2 both for the nu-

merical simulations using the finite element method, as well as for the coupled

mode theory and the results of both methods show an extremely good agree-

ment with each other. The effect of the EP can be observed both in the transmis-

sion T1→2 spectrum, as well as in the sum of the intensities I1,2. However, due

to the relatively strong coupling between the resonators and the wave guides in

comparison to the coupling between the disks, the width of the resonances are

relatively broad, such that the exact EP is not clearly visible.

From these results we can draw the conclusion that the occurrence of the EP

can easily be verified with transmission experiments and that for this particular

system the TCMT model works remarkably well. Furthermore, the EP mani-

fests itself not only in the transmission spectra, but as well in the field intensi-

ties inside the two resonators. Hence, the EP can also be observed in physical

processes which directly dependent on the intensity of light within the cavities.

One such process is for example Raman amplification such that the effect of the

EP in the injected signal can be detected in the Raman laser output of such a

coupled system as has experimentally been accomplished (c.f. chapter 8).

7.2 Chirality

So far we have used EPs in order to observe a drastic change of the behavior of

a system of coupled resonators when passing an EP. However, another option

for exploiting an EP is to make use of the fact that two or more eigenmodes of

the system collapse into a single mode at the EP. One such property is the chi-

rality. For a single microdisk resonator the two degenerate whispering gallery

modes travel into opposite directions. As has already been shown by Jan Wier-

sig in references [10,96] these two originally degenerate modes can be perturbed

with the help of two nanoscatterers which are placed in close vicinity of such

a microdisk. By carefully choosing the position of the nanoscatterers it is thus

possible to make the two whispering gallery modes collapse into a single mode
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Figure 7.3: Sketch of the setup used to explore EPs associated with the chirality
of a resonator. Two dielectric nanotips are used as scatterers to manipulate the
chirality. They are positioned on opposite sides of the microdisk and are posi-
tioned at variable distances of d1 (d2) away from the microdisk. The system is
furthermore coupled to two wave guides in order to be able to probe the system.

with a definitive chirality. This collapse indeed occurrs at an EP. In this section

we are going to investigate how such EPs, which are induced by asymmetric

scattering between the two modes, can be probed in a transmission setup by

attaching two waveguides to the microdisk.

Here, we will use a single microdisk, of which all resonances featuring a non-

zero angular momentum are degenerate corresponding to counter-clockwise

and clockwise traveling modes, ΨCCW and ΨCW respectively. By placing a sin-

gle scatterer, i.e. nanotip 1 in Fig. 7.3, close to the resonator, both modes couple

to each other in a symmetric fashion, similar to the case of the clockwise and

counter-clockwise running waves in the two microdisks discussed above. How-

ever, by placing two dissimilar scatterers right next to the microdisk, an asym-

metric coupling between the two modes is achieved. In the most extreme case,

this asymmetric scattering yields that only either the CCW or the CW mode re-

mains an eigenstate of the system. This collapse of the eigenspace can then be

associated with an EP.

In the following we will consider the system as shown in Fig. 7.3. Here, two
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dielectric nanotips are used as the scatterers, the first of which is kept fixed at

the same position. In order to probe the system in the vicinity of an EP the

position of the second nanotip is changed both with respect to its distance from

the resonator as well as with respect to the angle between the two nanotips.

7.2.1 TCMT model

The simplest model to describe this setup is given by the following equations

using the TCMT [92, 93]

i
∂

∂t

(
ΨCCW

ΨCW

)
=

(
ΩC − iκ A

B ΩC − iκ

)

︸ ︷︷ ︸
Hchiral

(
ΨCCW

ΨCW

)
+ i
√
κ

(
a1,in + a4,in

a2,in + a3,in

)
, (7.9)

a{1,4},out = −a{2,3},in +
√
κΨCCW (7.10)

a{2,3},out = −a{1,4},in +
√
κΨCW, (7.11)

which allows for injecting light at any input port. Similar to the case of the cou-

pled microdisks, κ corresponds to the coupling strength between cavity and

wave guide. The (complex) coefficient A (B) determines the backscattering

strength from the CW (CCW) to the CCW (CW) mode. The coefficients ΩC ,

A, and B are calculated through the positions of the two nano-tips and given

by [10]

ΩC = Ω1 + V1 + U1 + V2 + U2 (7.12)

A = V1 − U1 + (V2 − U2)e−2imβ (7.13)

B = V1 − U1 + (V2 − U2)e+2imβ, (7.14)

where Ω1 is the complex eigenfrequency of a degenerate eigenpair of the iso-

lated resonator. 2V1, and 2U1 are the (complex) frequency shifts that are induced

on the eigenfrequency Ω1 by the perturbation through nano-tip 1. V2, and U2 are

similarly defined for nano-tip 2. Note, that due to the cylindrical symmetry of

the resonator, these parameters depend only on the distance between the nano-

tip and the resonator. The angle β between the two nano-tips occur explicitly
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in the definition of the coefficients A and B together with the angular momen-

tum number m by which the mode corresponding to Ω1 can be identified with.

In the following we will calculate the coefficients V1, U1, V2, and U2 from finite

element calculations.

The eigenvalues of the effective non-Hermitian HamiltonianHchiral are given

by

Ω± = ΩC − iκ±
√
AB, (7.15)

and the corresponding (non-normalized) eigenvectors by

Ψ± =

( √
A

±
√
B

)
. (7.16)

The eigenvectors become colinear when either of the backscattering coefficients

A or B becomes 0. Therefore in both cases we encounter an EP. When A =

0 only backscattering from the CCW to the CW mode occurs, but not in the

other direction and for B = 0 the exact opposite holds. We can quantify the

asymmetry in backscattering using the intrinsic chirality of the resonator, which

we can define as

α =
|A| − |B|
|A|+ |B| . (7.17)

When α = 0, i.e. for symmetric scattering or when the modes are not coupled,

neither direction is preferred. For α 6= 0, both eigenvectors have a dominant

component. For |A| � |B| (|A| � |B|), the counter-clockwise (clockwise) mode

dominates over the other. If either A or B is zero then the points of maximum

internal chirality, i.e. α = ±1, are reached, each of which corresponds to an EP.

In the following we want to determine the chirality α both for the case when

the system is lasing close above threshold, as well as for the situation, when the

passive system is probed via the coupled wave guides.

For the case when the system is lasing, it is sufficient to consider how the

eigenstates (Eq. (7.16)) couple to the wave guides, since the incoming wave

guide amplitudes are zero. Note, that for lasing an additional (complex) gain

term needs to be added to the diagonal entries of Hchiral. However, as this term

affects both modes equivalently strongly, it can be neglected for describing the
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chirality of the resonator. In order to avoid tedious SALT calculations for every

scattering configuration, we only assume that the laser is close above threshold

such that the QB-states already yield a good approximation to the actual laser

modes. Furthermore, we naturally assume that the two modes also correspond

to the first laser modes in the system.

The outgoing amplitudes for this model are then given by

a{1,4},out =
√
κΨCCW =

√
κA (7.18)

a{2,3},out =
√
κΨCW =

√
κB, (7.19)

such that the chirality for the lasing system can be obtained from the outgoing

amplitudes as

αlasing =
|aCCW,out|2 − |aCW,out|2
|aCCW,out|2 + |aCW,out|2

, (7.20)

where aCCW,out (aCW,out) stands for any outgoing mode amplitude to which the

CCW (CW) traveling mode couples to, i.e. , either port 1 (2) or port 4 (3). The

same quantity has already been used in [97] under the name ‘directionality’.

When probing the passive system via a transmission experiment, the chiral-

ity needs to be modified as the system is probed with an external source. From

Eqs. (7.9) we find that for input from port 1 or port 4, which both couple into the

CW traveling mode, we obtain the following outgoing waveguide amplitudes

aCW,out =
iκ(ωe − ΩC + iκ)

(ωe − ΩC + iκ)2 − AB (a1,in + a4,in) (7.21)

aCCW,out =
iκA

(ωe − ΩC + iκ)2 − AB (a1,in + a4,in). (7.22)

Note, that when coupling into the CW traveling mode, we can only easily find

one of the EPs of the system, namely the one where A = 0, in which case there

is no backscattering from the CW to the CCW traveling mode. When we couple

into the system via port 2 or 3, i.e. , to a CCW traveling mode, we find

aCW,out =
iκB

(ωe − ΩC + iκ)2 − AB (a2,in + a3,in) (7.23)

aCCW,out =
iκ(ωe − ΩC + iκ)

(ωe − ΩC + iκ)2 − AB (a2,in + a3,in). (7.24)
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Combining Eqs. (7.22) and (7.23), the chirality α can in general be retrieved in a

transmission experiment by combining the results from two separate measure-

ments where the backscattering from the CW to the CCW traveling mode and

vice versa are probed separately. This yields the general expression

αscattering =
|aCW,in

CCW,out| − |aCCW,in
CW,out |

|aCW,in
CCW,out|+ |aCCW,in

CW,out |
, (7.25)

where we have denoted the different input channels via the superscripts. In

particular we will look at two different options for measuring the chirality when

injecting light at ports 1 and 2. First, by measuring the transmission through

the system and measuring the transmitted light at ports 3 and 4. This scenario

has the advantage that it can be easily realized in an experiment. Second, by

measuring the reflection amplitudes at ports 1 and 2.

αtransmission =
|a1,in

4,out| − |a2,in
3,out|

|a1,in
4,out|+ |a2,in

3,out|
, (7.26)

αreflection =
|a1,in

1,out| − |a2,in
2,out|

|a1,in
1,out|+ |a2,in

2,out|
. (7.27)

In the TCMT model all definitions, Eqs. (7.26), (7.27), and (7.20), should yield

the same results. However, there are effects, which are not included within

the TCMT such as backscattering at the wave guide ports. These additional

perturbations can strongly affect the chirality as defined by the nanotips. Hence,

when the results from all these different definitions agree well with each other

we can validate that the assumptions of the TCMT model.

7.2.2 Numerical results

In order to compare the two different chirality formulas defined in Eqs. (7.26)

and (7.20) we have performed numerical calculations similar to the photonic

molecule calculations in 7.1.2. The geometry of the system is shown in Fig. 7.3.

The parameters for the waveguides and scatterers have been chosen such that

the scatterers perturb the eigenvalues of the system much stronger than the

waveguides coupled to the resonator. The microdisk resonator has a radius
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Figure 7.4: Comparison of the chirality obtained through a full numerical eigen-
value calculation by Eq. (7.20) and through a full numerical transmission calcu-
lation by Eq. (7.26). The dependence of the chirality is plotted with respect to
the position of the second nano-tip given by both the angle between the scat-
terers, β, as well as the gap between the scatterer and the microdisk, d2. Both
formulas yield very similar values for the chirality corroborating the validity of
the TCMT model.

of R = 0.41L̃. The width of the waveguides is 0.0125L̃ and the gap between

the waveguides and the resonator is 0.085L̃. The nanotips used as scatterers in

the simulations are of rectangular shape and have a length of 0.102L̃. Nano-

tip 1 has a fixed position: It is situated at an angle of π/2 with respect to the

waveguides and the gap between the tip of the scatterer and the microdisk is

0.02L̃ and its width is 0.0099L̃. Nano-tip 2 has a width of 0.0079L̃ and is situated

on the opposite side of the disk. Its position is given by the angle β between the

scatterers and the distance d2 from the resonator. In the calculations the angle

β is varied between 2.91 and 3.06, and the distance d2 between 0.01 and 0.04.

The waveguides, as well as the microdisk resonator have an effective refractive

index of n = 1.444. If not stated otherwise the shown data use a frequency of

ωeL̃ = 79.728. The calculations are performed in the same way as described in

section 7.1.2.
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7.2.3 Discussion

In Fig. 7.4 we compare the chirality as determined from the eigenvalue calcu-

lations of the system with the chirality as determined from the transmission

calculations. The chirality is obtained under variation of the two positional pa-

rameters (d2, β) of the second scatterer. We chose to vary two parameters in

order to be able to exactly reach the EPs where the chirality features an absolute

maximum, i.e. α = ±1. In the parameter range as shown in Fig. 7.4 two pairs

of EPs are depicted where each pair features two EPs of opposite chirality. The

pattern of EP pairs is roughly repetitive when extending the scanned interval

of angle β as long as the scatterer does not come close to one of the attached

waveguides.

In the calculations we observe an excellent agreement between the two chi-

rality definitions such that we can indeed assume that both methods yield a

good estimate for the internal chirality of the whispering gallery modes induced

by the presence of the two scatterers.

In a next step we explicitly compare the fully numerical results to the results

from the TCMT model. For this, we calculate the parameters U1, U2, V1, and

V2 through separate eigenvalue calculations for each of the scatterers, where no

waveguides are attached to the system, and use these to determine the coeffi-

cients A, B, and ΩC . The value for the coupling coefficient κ is determined as in

section 7.1.2.

In Fig. 7.5a the chirality definitions of Eqs. (7.17), (7.20), (7.26), and (7.27)

are compared to each other for the case that the distance of nanotip 2 is fixed

at the same distance as nanotip 1, i.e. d2 = 0.02. Here, we again observe an

excellent agreement between the numerical calculations. For the TCMT model

we find that it correctly predicts the angles at which the chirality becomes mini-

mal/maximal, but the absolute values for the chirality differ by 50 percent. The

reason for this is that the TCMT model does not include other scattering pro-

cesses as, for example, between the resonator and the waveguide.

In Fig. 7.5b it is shown that the chirality also depends relatively strongly on

the frequency ωe of the source emitter. The reason for this is that a change of
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Figure 7.5: Comparison of the chirality definitions for αTCMT, αlasing, and
αtransmission. In the calculations the nano-tip 2 has a fixed distance d2 = 0.02
from the resonator and the angle β is varied.

the wavelength results in a different ratio of the angle β and the wavelength,

thereby shifting the chirality peaks. This also explains the slight differences of

the transmission and lasing cases as observed in Fig. 7.4 since in the latter case

the ‘probe’ frequency is fixed by the resonance frequencies.

The asymmetric backscattering, which results in the intriguing chirality be-

havior in Fig. 7.5, can also be observed by looking at the normalized backscatter-

ing intensity |BCCW|2 = |accw,out|2/|acw,in|2 from the CW to CCW traveling mode

and the similarly defined |BCW|2. From Eq. (7.20) follows that an EP with its

absolute chirality maximum is reached when either of the backscattering in-

tensities, |BCCW|2 or |BCW|2, is zero. Hence, a chirality maximum (minimum)

can be found by minimizing the backscattering intensity |BCCW|2(|BCW|2). The

EPs corresponding to opposite chiralities occur at slightly different angles β

which manifests itself by shifting the two backscattering intensity patterns |B|2
with respect to the angle β as shown in Fig. 7.6. Here, the angles β at which

the backscattering |B|2 becomes minimal are indicated by dashed lines. In ad-

dition, both the results for the TCMT model and the numerical transmission

calculations are plotted and show an excellent agreement although the intensi-

ties don’t match exactly as we have already shown for the comparison of the

different chirality definitions above.
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Figure 7.6: Asymmetric backscattering intensities |B|2 from a CW to a CCW
mode (left panels) and from a CCW to a CW mode (right panels). The results
have been obtained from a full numerical transmission calculation using a finite
element method (upper panels), as well as from the TCMT model (lower pan-
els) and show a good qualitative agreement. In each panel the backscattering
intensity is shown in dependence of the injected frequency ωe and the angular
position β of the second nanotip. Here, ωe is given with respect to ω0 = 79.728L̃
at which the asymmetric backscattering intensity peaks. Dashed lines mark the
local minima of the backscattering which correspond to the chirality maxima
and minima. The asymmetric backscattering is shown by the shifted intensity
patterns with respect to the angle β.



CHAPTER 8
Experimental observations of

exceptional points in a laser

In order to verify the theoretical predictions of an EP-induced shutdown and

revival of a laser in the experiment, we have worked together with two differ-

ent experimental groups. In the following chapter we will briefly review these

results.

The first group where this effect was experimentally reproduced was the

group of Karl Unterrainer at the photonics institute at TU Wien [98]. Their setup

consisted of two-coupled microdisk quantum cascade lasers emitting light in

the THz spectrum. The second group to demonstrate the presence of an EP in a

coupled laser system was the group of Lan Yang at the Washington University.

Here, two coupled whispering-gallery-mode resonators were used to demon-

strate the effect of an exceptional point in the emission of a Raman laser.

Note, that in addition to these optical systems the effect of loss-induced

lasing has been demonstrated in a formally equivalent electrical circuit in the

group of Tsampikos Kottos at Wesleyan University [35].

89
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Figure 8.1: System of coupled quantum cascade microdisk lasers as used in the
experiments at the photonics institute at TU Wien.

8.1 EP in coupled THz quantum cascade lasers

Before the experiments at the Institute of Photonics at TU Wien were conducted,

we first needed to find an optimal laser configuration for clearly demonstrating

the presence of an EP. First of all the coupled laser system needs to lase in the

single-mode regime. If this isn’t the case, the EP-induced shutdown and revival

of the laser emission can be overshadowed by nonlinear mode-competition ef-

fects. This can be achieved by using small resonators as well as by operating the

laser only closely above threshold. Small resonators help as they thin out the

spectrum of modes under the gain curve by increasing the free spectral range.

Since the overall gain needs to be small, one needs to be able to apply strong

losses to the individual resonators in order to achieve a significant difference of

gain in one and loss in the other resonator. This already follows from the simple

2x2 matrix of chapter 2.3.

One system which is ideally suited for fulfilling these criteria is a system of

coupled microdisk quantum cascade lasers which operates in the THz regime

[71,98] and is shown in Fig. 8.1. In each of these microdisks a periodic structure

of quantum wells is used to provide the discrete energy levels levels for the las-

ing transition [99]. The active material is situated in a wave guide between two

metal layers. These metal layers also act as contacts for electrically pumping the
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device and they provide rather strong loss due to the finite conductivity of the

metal layers. Waveguide simulations have shown that a decrease of the waveg-

uide height together with an absorption layer of Ti on top of the contacts may

increase the losses of the system considerably. A disk height of 3.5µm has even-

tually been found as a good compromise of providing enough loss to suppress

multi-mode lasing and enough gain to reach the lasing threshold. Furthermore

a given minimal height of the disks is required for reaching a sufficient coupling

strength of the resonators.

The active material was designed such that it lases at a frequency of 3.2 THz

which corresponds to a wavelength of 94 µm such that the wavelength is of

comparable size to the diameter of 96 µm of the disks. The intercavity distance

is 2 µm. One advantage for using THz lasers is that due to the large geometric

sizes they feature a high tolerance with respect to geometric imperfections in

the manufacturing process. This holds especially true in comparison with lasers

emitting light in the visible part of the spectrum, where it is thus much harder

to fabricate two disks with resonator modes at the same frequencies.

In order to provide theoretical support for the experimental measurements

we have performed full vectorial 3D calculations of Maxwell’s equations

[Eq. (2.5)]. A full SALT calculation was deemed to not be necessary as the lasing

frequencies and thresholds for the devices are already sufficiently well given by

the quasi-bound states. Furthermore, since the gain curve in the experiment has

a FWHM of about 500 GHz and the maximum frequency shift observed in the

experiment was about 30 GHz a flat gain curve can be assumed. In the sim-

ulations the metal wave guides were modeled as perfect conductors with the

outgoing boundary conditions enforced with a PML. Loss and gain were mod-

eled by the imaginary part of the index of refraction. Since we expect the EP

to be below the laser threshold it is sufficient to only calculate the QB modes of

the system as these already correctly predict the thresholds. The same dimen-

sions were used as in the experiment and the calculations used the open-source

finite element framework ngsolve [95] which is developed at the Institute for

Analysis and Scientific Computing at TU Wien.
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Figure 8.2: (left panel) Measured intensity of coupled microdisk quantum cas-
cade lasers as shown in Fig. 8.1 as a function of the bias field applied to each
disk. (right panel) The numerical data as calculated from Maxwell’s equations
shows the imaginary part of the resonance frequencies ν. The data is truncated
to only show data for Im(ν) > 0 for easier comparison with the experimental
data in the left panel. (both panels) To highlight the anomalous pump depen-
dence in the vicinity of the EP, two parameter sweeps marked by the white
dashed lines in the original figures are shown in corresponding insets.

Note, that two dimensional calculations show a significant overestimation of

the coupling strength such that a direct comparison of the experimental results

with such 2D calculations was not possible. This is especially important for

identifying the correct lasing modes: For thicker devices that feature multiple

modes a comparison of the experimental data with the numerical calculations

has shown that the lasing mode are whispering gallery modes with a radial

quantization number 3.

The results for the intensity as measured in the QCL setup are compared

with the numerical results of the eigenvalue calculations in Fig. 8.2. Here, the

bias field, which determines the applied pump strength, of each of the two QCL

microdisks were individually scanned in order to expose the EP-induced lasing

shutdown, which can be observed in the upper right corner of the individual

figures. For a fixed bias field in one disk (as marked by a white dashed line

in both panels) scanning the other field revealed the typical decline in intensity
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Figure 8.3: (Left panel) Experimental spectrum as a function of the bias field of
disk A while the bias field of disk B is fixed above threshold. (Right panel) Nu-
merical results: Dependence of the complex eigenfrequency ν on the imaginary
of the index of refraction in disk B.

with a subsequent revival of lasing (see figure insets). Note, that the patterns

from the numerical calculations qualitatively match the behavior of the experi-

mental setup.

In order to further validate that an EP is behind the anomalous lasing behav-

ior observed in Fig. 8.2, a spectrum of the emitted radiation has been recorded

and is shown in Fig. 8.3a. In the experiment one observes a pronounced fre-

quency shift of the emitted laser light around the intensity minimum – in ac-

cordance with the numerical calculations of Fig. 8.3b. The frequency shift can

be attributed to the occurrence of the EP which can already be explained with

the simple coupled mode theory model from chapter 2. Whereas below the EP

the real frequencies are close to the eigenmode frequencies of a single resonator,

above the EP the observed emitted laser frequency corresponds to one of the

supermodes. The experiment only revealed a single-mode lasing even for the

case when both disks are fully pumped. This is in correspondence with the 2D

simulations in chapter 5.4 from which we can conclude that due to strong spa-

tial hole burning only a single mode of the fourfold near-degenerate modes can
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Figure 8.4: System of coupled silica whispering-gallery resonators, which are
used in the group of Lan Yang at the Washington University in St. Louis. Each
of the resonators is coupled to a nano-fiber for probing the system. The loss
in resonator 2 can be tuned by bringing a chromium coated silica-nanofiber tip
(highlighted in orange) close to the resonator.

lase. This nonlinear effect is, however, not included in the linear numerical 3D

calculations shown in Fig. 8.3.

8.2 EP in silica whispering-gallery-mode resonators

The second experiment for demonstrating a pump-induced EP in a laser system

has been performed at Washington University in St.Louis in the group of Lan

Yang [42, 100]. Their experimental setup, which is shown in Fig. 8.4, consists

of two coupled silica disk resonators where each of these disks is coupled to a

fiber-taper. The disks are Raman lasing such that when light is coupled into the

system at a wavelength of 1550nm Raman lasing will be triggered at a frequency

of 1650 nm. In contrast to the coupled THz QCL microdisk lasers from the pre-

vious experiment, the resonators are much larger than the wavelength. Hence,

the modes of the individual resonators will feature different eigenfrequencies

due to fabrication imperfections. The modes of the independent resonators are

therefore tuned into resonance by manipulating the index of refraction. Since

each of the resonators stands on a different substrate, this can be achieved by

heating one of the resonators.

In order to steer the system close to an EP two parameters were varied: the
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Figure 8.5: a Measured frequencies and decay rates of two near-degenerate
whispering-gallery-modes under variation of the loss induced on resonator 2.
b Raman lasing spectra of coupled silica microdisks under variation of the ap-
plied loss on disk 2 exhibiting the loss-induced shutdown and revival of lasing.

coupling strength κ of the two disks and the loss of the second microdisk. The

coupling strength κ was changed by controlling the distance between the two

resonators. The loss in the second resonator was manipulated by placing a

chromium-coated silica-nanofiber tip, which features strong absorption at the

wavelength of the injected light, next to the disk. This additional loss γtip was

controlled by increasing the overlap between the whispering gallery mode in

disk 2 and the nanotip.

The advantage of using this setup in comparison to the THz QCL is that

light can be coupled into the resonators via a nearby fiber and therefore en-

ables a direct measurement of the occurrence of the EP by probing the system

as we have shown theoretically in section 7.1.2. In particular, the resonance

frequencies ω′± and decay rates ω′′± of a mode pair have been extracted exper-

imentally from the transmission spectra and are shown in Fig. 8.5a. Hence,

in this experiment it was managed to connect the below-threshold behavior of

the system obtained by measuring the transmission through the waveguides

with the above-threshold behavior obtained from measuring the power output

of the laser system. The system forms two super-modes in the absence of any
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additional loss γtip (step i in Fig. 8.5a). By increasing the additional loss γtip ex-

perienced by disk 2, first the decay rates of both supermodes ω′′± increase while

the resonances frequencies ω′± approach each other. Beyond the EP (step iv in

Fig. 8.5a) the super-modes have turned into the single cavity resonator modes

with the same frequency ω0, but with two very different decay rates ω′±. Hence,

the typical avoided crossing close to the EP which we have shown, e.g. , for the

simple toy model in chapter 2, has been possible to be measured in the experi-

ment.

In Fig. 8.5b several transmission spectra are shown for increasing values of

γtip. The spectra show both the peaks from the probing light at a wavelength of

1550nm as well as the Raman laser output signal at 1650nm. Similar to the THz-

QCL measurements an increase of loss at first triggers a shutdown of Raman

lasing, but when further increasing the loss Raman lasing is recovered. Note,

however, that in the case of Raman lasing the shutdown of the laser is not in-

duced by an EP in the Raman laser mode, but due to the presence of an EP in

the pump signal. Here, the intensity of the pump signal within the whispering

gallery resonator strongly diminishes in the vicinity of the EP. Since the Ra-

man lasing process is directly proportional to the intensity of the pump signal

it therefore shows a similar shutdown effect as discussed in this thesis.



CHAPTER 9
Conclusion and Outlook

In this thesis we showed that the presence of EPs has a significant effect on the

emission characteristics of a laser. In particular, we demonstrated that by steer-

ing a laser close to an EP below the laser threshold very unconventional lasing

effects occur. For the case of coupled cavities, each of which can be individually

pumped, we observed a counter-intuitive reversal of the output power such

that an enhanced laser emission can be observed while the overall loss in the

system is increased. We have provided a clear recipe for how to observe such

loss-induced lasing in the experiment, which is relatively straightforward to im-

plement with present laser technology. Since the publication of our theoretical

predictions, two such realizations have been put forward in both of which we

were actively involved.

For the numerical calculations we have used the steady-state ab-initio laser

theory (SALT) to model the lasing behavior close to the EP. For this we have de-

veloped a new and efficient solver for SALT, which does not require expanding

the resulting laser modes in a constant flux basis, as has been done previously.

Furthermore, our calculations necessitated the development of an extension of

the SALT algorithm such that it can also be used to treat resonators featuring

near-degenerate modes. For such resonators we showed that above the laser

threshold these near-degenerate modes lock into a single mode via the nonlin-
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ear spatial hole-burning interaction. In order to prove the stability of this mode

we introduced a linear stability analysis of SALT since the original criterion for

validating a SALT solution was found to be too strict in this case.

We furthermore investigated the case of an EP above the laser threshold

where the overall pump of the system was strong enough to avoid a termi-

nation of the laser. We showed that for a typical semiconductor material the

laser becomes unstable in the vicinity of the EP. However, for systems where

the relaxation rate of the inversion is not much smaller than the relaxation rate

of the polarization we found the possibility of observing a stable laser output

with a strong increase of the laser linewidth. It is still an open question if such

a configuration is realizable experimentally.

The topic of exceptional points above the laser threshold where the nonlin-

earity of the laser equations can no longer be disregarded is certainly a topic

of interest for future studies: Adiabatically encircling an exceptional point of a

non-Hermitian but linear system is problematic as the adiabatic theorem is not

valid for these systems [31]. However, there might be a possibility to realize

such a protocol in a laser where the EP itself is influenced by the modes’ non-

linear self-interactions. As long as the system can be shown to be stable at each

point along the path around the EP an adiabatic passage is feasible and bistable

lasing could be observed.

Achieving such a bistable laser system with the help of an EP will require a

careful engineering of both geometry and pump parameters of the system. One

further system where one can expect to naturally find nonlinearly induced EPs,

but which would be much harder to control, is a random laser. Here, many

modes typically feature a very similar laser threshold [101], but the modes can

experience strong shifts in their frequencies while increasing the pump applied

to the laser due to their strong nonlinear modal interactions. If these shifts re-

liably result in two modes approaching each other in an EP remains an open

question.
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