CHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

DIPLOMARBEIT

A coherent framework for full, fast and
parametric detector simulation for the FCC
project

ausgefithrt am

Atominstitut
der Technischen Universitat Wien

unter der Anleitung von
Privatdoz. Dipl.-Ing. Dr.techn. Michael Benedikt

(Atominstitut, TU Wien)
Dr. Andreas Salzburger (CERN)

durch

Julia Stefanie Hrdinka
2721 Bad Fischau-Brunn, An der Wasserleitung 26

September 14, 2015

Abstract

The outstanding success of the physics program of the Large Hadron Collider (LHC),
including the discovery of the Higgs boson, shifted the focus of part of the high en-
ergy physics community onto the planning phase for future collider projects. The FCC
(Future Circular Collider) is a five year international design study to explore post-LHC
possibilities. Hadron and electron-positron based collider technologies are considered as
potential LHC successor project branches.

Common to both branches is the need of a coherent software framework, in order to
carry out simulation studies to establish the potential physics reach or to test different
technology approaches.

Detector simulation is a particularly necessary tool needed for both, design studies for
different detector concepts and the establishment of relevant performance parameters.
In addition, it allows to generate data as input for the development of reconstruction
algorithms needed to cope with the expected future environments.

A coherent framework will be presented, that combines full, fast and parametric detector
simulation embedded in the Gaudi framework and based on the FCC Event Data Model.
Detector description is based on DD4hep and the different simulation approaches are
centrally steered through the Geant4 simulation.

A geometry for reconstruction was integrated into the framework. This geometry will
also be used for fast simulation. The DD4hep geometry is automatically translated into
the different geometries needed by the different simulations. A prototype example of a
simple tracking detector is demonstrated for the different simulation approaches and the
detector geometries together with the materials are compared. Furthermore, a potential
workflow to use full simulation based on Geant4 and fast simulation techniques alongside
is presented and the results are compared.

Acknowledgments

My diploma thesis was only possible with the help of many people and I want to thank
at this point to all my colleagues and my family.

Special thanks to:

The FCC Software group for the support and the pleasant working environment.

The ATLAS group, for the excellent collaboration and working climate.

I want to thank Michael Benedikt, my university supervisor, for guidance and for making
this whole experience possible for me.

Thank you Andreas Salzburger for being a great supervisor, giving me interesting tasks
and promoting me into the right direction. I learned a lot this year and I am looking
forward to working with you in my doctors.

Another person who made this project possible is Werner Riegler. He supported me in
the context of the FCC detector group.

Benedikt Hegner was a big help for many tasks and always gave me good advice.
Thanks to Anna Zaborowska, for being a good co-worker and helping me in various
situations.

Thank you Michael and Andi for the great Tea-Times.

Mama, thank you for your unconditional love and for raising me to a strong, femi-
nist woman.

Thank you Papa for the moon-landing-bedtime stories and our endless talks about the
universe and ”the nothing”.

Patrick, thank you for trying to hold me back from ”vakopfa”.

Contents

Introduction 1
Acknowledgments 2
1 Introduction 5
1.1 FCC - Future Circular Collider 5

1.2 Detector Simulation 7
1.2.1 Simulation Framework Requirements 8

2 FCC-Software 11
2.1 A Gaudi Based Framework, 11
2.1.1 Job Configuration 13

2.2 The Geometry Input 14
2.3 The Simulation Environment 16
2.4 The Event Data Model 17
2.4.1 The Tracking Event Data Model 18

2.5 Integration of the Components in the Framework 18

3 Reconstruction Geometry 21
3.1 Frame Definitions 22
3.2 Helper Classes and Utilities 22
3.3 The Surface Classes 23
3.3.1 Sensitive Surfaces and Readout Segmentation 24

3.3.2 BoundarySurfaces oo 25

3.4 The Layer Classes 26
3.5 The Volume Classes 26
3.6 Material Description Lo 27

4 Common Geometry Building 30
4.1 Translation from DD4hep Geometry into the Reconstruction Geometry . 30
4.2 A Test Tracker 35
4.3 Geometry Build & Validation 36
4.3.1 Comparison of Material Budget 37

5 Towards a Fast Track Simulation 40
5.1 Navigation of Geometry L. 40
5.2 Fast Simulation Principle 41

Contents

5.3 Monte Carlo Based Material Effects
5.3.1 Multiple Scattering

6 Summary and Outlook

Bibliography

Chapter 1

Introduction

The Standard Model of particle physics (SM) is one of the most established theories in
science. Over more than forty years it has been very successfully applied to describe the
interactions and types of fundamental particles and has been tested to extremely high
precision. No experiment has managed to conclusively disprove the SM to date. The
recently discovered Higgs boson, announced by the ATLAS [2] and CMS [3] collabora-
tions at the Large Hadron Collider (LHC) [1] located at CERN, Switzerland, has filled
the puzzle piece of electro-weak symmetry breaking and confirmed the existence of the
Higgs-mechanism.

However, phenomena as for instance the baryon asymmetry, quark confinement or the
nature of dark matter raise questions that can not be addressed within the Standard
Model. Moreover, the SM can only describe three out of the four fundamental forces
and since masses remain free parameters within the SM, it includes a huge set of model
parameters [11].

Since so-called Beyond Standard Model (BSM) phenomena have not been discovered in
Runl at the LHC, future experiments focus on higher energy scales to search at a new
energy frontier for rare processes and new particles.

As high-energy experiments require decades of planning and construction, attention
is drawn to experimental facilities for the post-LHC era in order to adress the open
questions that may not be answered with the LHC physics program. This led to the for-
mulation of a common european strategy for the future of High Energy Physics beyond
2025 when the LHC is planned to be decommissioned.

Based on the huge success of the LHC and its predecessor, the Large Electron-Positron-
Collider (LEP 1989-2000) [5], the focus is drawn onto a new circular collider factory.

1.1 FCC - Future Circular Collider

The FCC (Future Circular Collider) is an international five-year design study to explore
post-LHC particle accelerator options. Until the end of 2018 a conceptual design report
will be delivered as an outcome of this study. This report will consider all technical
aspects, concerning the machine and infrastructure as well as the physics opportunities,
the discovery potentials, the experimental concepts and the detector designs. First cost
estimates will be included in this design report [7].

Extrapolations of the current available technology, together with the need to keep the

Chapter 1 Introduction

synchrotron radiation under control, require an effective increase of the circumference of
the accelerator with respect to the current LHC in order to reach the desired energies
and luminosities. Building the tunnel with a circumference of 80-100 km in the Geneva
area, with the LHC as an injector is being considered as an option, aiming to make best
use of already existing facilities (see Fig 1.1). The first step would be the realization of

Schematic of an

80 - 100 km

Figure 1.1: Possible realization of the FCC in the Geneva area, using the LHC as an
injector.

an electron-positron collider with a center of mass energy of 90-400 GeV. The ultimate
goal is a proton-proton (FCC-hh) collider, which will be installed in the same tunnel,
with a center of mass energy of 100 TeV and a peak luminosity of 5% 103*em=2s71. The
option of a positron-electron is also being considered (FCC-he), which could operate at
the same time as FCC-ee/FCC-hh [6].

The main physics goals for the FCC-hh are the exploration of electro-weak symmetry
breaking by studying the Higgs boson in high precision (higher luminosity, much in-
creased rates, access to very rare processes) and the exploration of BSM phenomena.
An emphasis is also put on better understanding W /Z physics and Quantum chromody-
namics (QCD). However, also the exploration and high precision measurement of known
Standard Model particles, such as the top quark, the bottom quark or the tau lepton is
intended [8].

Chapter 1 Introduction

1.2 Detector Simulation

Monte Carlo (MC) simulation, in general, is needed to allow studies that demonstrate
the physics reach of future facilities. It is used to explore e.g. the possible interactions,
the cross sections or possible production rates. Moreover, detector simulation is essen-
tial for the exploration of possible detector concepts in the upcoming environment. It
simulates the interactions of the particle with the detector material and the response of
the readout electronics.

The first step of the MC chain (see Fig 1.2) is the generation of the process induced

v -

(827
(NP
tawﬂ“ 9 ¥

Detector
Simulation

:

' EERERN

soc

Analysis

Digitization

Figure 1.2: Illustration of the Monte Carlo simulation chain in high energy physics:
physics event generators are used to simulate the primary process from the
beam-beam collision. This input is successively processed by detector simu-
lation, digitization and reconstruction modules, before finally being used for
analyses.

by the initial beam-beam interaction. This is usually carried out by external physics
event generators such as PYTHIA [9], HERWIG [10]. The particles are then handed
over to the detector simulation, which emulates the interaction of the particle with the
detector. When a particle passes through the detector, it interacts with the material.
All kinds of interactions can occur, depending on the particle type and energy: Charged
particles can undergo multiple scattering, can cause ionization and excitation or can lose
energy due to Bremsstrahlung or the Cherenkov effect. Basically three effects dominate
the interactions of photons with matter: the photoelectric effect, Compton scattering
and pair production. Hadrons underlie the strong interaction and can undergo nuclear
interactions and neutrinos only interact weakly [11].

One usually distinguishes between passive and sensitive material in the detector. Passive
elements are used to describe support structures, cooling facilities, readout electronics
or simply cables. Sensitive material, on the other hand, describes the detection devices,
such as e.g. the silicon sensors in a pixel detector, or the ionization gas in gas-filled
detectors. In detector simulation, energy deposits of particles in sensitive detectors are
recorded, as they are used to emulate the readout signal of the detector. This detector
response is then described by the digitization and aims to transform the raw simulation
input into signals as being read out by the detector readout system. The last step is
the reconstruction, which describes the set of algorithms that are responsible to build

Chapter 1 Introduction

meaningful physics objects, such as particles or jets from the detector output. Recon-
struction algorithms often perform local or global pattern recognition to find associate
hit patterns and to connect them to build higher level objects.

There are different types of detector simulation strategies concerning accuracy and time
consumption. To study the detector design or to undertake technology studies, a detailed
simulation is needed. This so-called full simulation uses the full and very detailed detec-
tor geometry. The particles are transported through the material taking the magnetic
field into account. Interactions of the particle with the detector material are simulated
precisely. This simulation technique is the most accurate kind of simulation, but on the
other hand also the most time consuming one. The full simulation needs to be followed
by digitization and reconstruction. Full simulation describes the data from the LHC
experiments with an outstanding accuracy. Figure 1.3 shows an example of the ATLAS
experiment for the good agreement between data and simulation.

However, the use of full simulation was already limited by the available computing re-
sources during Run-1 of the LHC data taking campaign and fast simulation techniques
had to be used in order to achieve the necessary statistics needed for certain analyses.
Fast simulation techniques try to emulate the full simulation output by applying differ-
ent approaches. They usually implement simplifications or parameterisations of the full
simulation effect. The simplification can be done for the geometry, the physics processes
or can be implemented by skipping certain steps or parameterising the whole process.
In the parametric simulation approach the different detector regions are described by
simple envelopes. Different fast simulation models are attached to this detector regions,
using the parameters of the full simulation as an input. The particle is transported from
the entry to the exit point of the envelope, while its momentum or energy and track
resolutions are smeared. For each detector model, new resolutions need to be obtained
from the full simulation, however this can be done with a reasonable smaller number of
events.

Other fast simulation approaches (used in ATLAS and CMS) use the reconstruction ge-
ometry. This is a simplified detector geometry, consisting of the sensitive material and
a simplified material description. Hence, a material approximation is needed. In this
way the simulation is much faster and less precise but still reflects the detector effects
accurately.

Fast simulation can produce higher level output data, which does not need to be fol-
lowed by digitization and can be directly used for reconstruction. The fast simulation
can create the needed track parameters already during the simulation.

An example of a fast simulation approach from the ATLAS experiment is ATLFAST-II.
It gains one order of magnitude in speed compared to the full Geant4 simulation by
using a fast simulation approach in the calorimeter (FastCaloSim) [13]. In Fig 1.4 one
can see a validation plot of ATLFAST-II in comparison with the full Geant4 simulation
and data [14].

1.2.1 Simulation Framework Requirements

To facilitate the analysis and the comparison of the data, a coherent simulation frame-
work that allows the combination of the different simulation types is essential. This
simulation framework should only have one input for the detector geometries, needed

8

Chapter 1 Introduction

x 10_\| TT TTTT TTTT | T T TT ‘ T T T ‘ TTTT T T T T TT TTTT T \I_
@ : ATLAS .
5 95F \s=7TeV E
o - i
2 . nch22:|n|<2'5]
= 9 100 < p_ < 500 MeV E
'6 n T]
¢» 85 [meno -
S : .
5 8__ —8- Data 2010
0 N
g -
3 75

7} N

1111 | 1 IIII | | | 111 IIIII III 111 | IIIIII 111 | 11 IIIIIII:

25 -2 15 1 05 0 05 1 15 2 25
n

Figure 1.3: Comparison between data and simulation at sqrt(s) = 7 TeV for tracks with
transverse momentum pr between 100 and 500 MeV for the ATLAS experi-
ment: the average number of silicon hits on reconstructed tracks as a function
of pseudo rapidity n in the Semiconductor Tracker (SCT) is shown. The pr
distribution of the tracks in non-diffractive MC is re-weighted to match the
data and the number of events is scaled to the data [12].

by the different simulation types and an identical analysis event data model. We aim
to create a flexible framework, following the approach of the ATLAS ISF (Integrated
Simulation Framework) [16]. This method allows to mix different kinds of simulations
for different parts of the detector in one event by special particle routing algorithms.
Thus, accuracy and speed can be balanced in different combinations, using the detailed
full simulation where needed and a fast simulation for regions of less interest for physics
studies.

Chapter 1 Introduction

8 3000_I T T T | T T T T | T T T T | T T T T T T T T T T T T T T T I_
S — ATLAS Preliminary N
» 2500/Data 2010, \'s=7 TeV, [Ldt=40 pb” -
'..azj N Z—ee .
g - — » Data -
W 2000 0 b 1G4.02 -
N []1G4.9.4, new geo.
1500 | o CIAFN .
1000:_ _._- _:
B —— .
500:_ _:
- } e]

B | | | | | | 1 | | | | | | | | | 1 | | |

1 1.5 2 2.5 3 3.5

o

|

Wstot

Figure 1.4: Distribution of the particle shower width wg,; in the high granularity strip
layer 1 of the electromagnetic calorimeter of ATLAS. Data taken from 2010
with a center-of-mass energy of 7 TeV is compared with Geant4 full simula-
tion (yellow) and ATLFASTII (dashed red), for Z — ee events [15].

10

Chapter 2
FCC-Software

The FCC-Software group was formed to establish a common software suite usable for the
three rather diverse FCC projects (FCC-ee, FCC-hh and FCC-eh). Many components
for the event processing (including simulation and reconstruction) already exist as part
of the software of either the LHC experiments or of other future collider studies, e.g. a
future linear collider. In order to optimise the workload, a thorough review of existing
software had initially been done to identify usable components for the FCC project.

To contribute to the development of the FCC software framework was a major part of
this thesis, especially the integration of the components in a coherent way 2.5 to enable
common steering of full, fast and parametric detector simulation. A single source of
detector information and a common output guarantees consistency and comparability.
The focus of this work is on tracking detectors, however, the overall design chosen
is compatible with all detector technologies. In this Chapter an overall view of the
framework and a short introduction to the main components is given.

To execute the event loop, an event processing framework is needed, which was chosen
to be the Gaudi framework [17] (see Section 2.1). The geometry description of the
detector, which is done in DD4hep [18] (Section 2.2) is a basic input for all detector
descriptions used in simulation, digitization and reconstruction. Geant4 [22] is used as
the simulation environment in which full and fast simulation is embedded (Section 2.3).
The Event Data Model (EDM) is described in Section 2.4, which is essential for storing
and accessing the data and finally for the event analysis. In Fig 2.1 the overall picture
of the framework with a simplified work flow is displayed.

2.1 A Gaudi Based Framework

The FCC community agreed on using Gaudi as the event processing framework. Gaudi
is an experiment independent software architecture and framework for building high
energy physics data applications for simulation, reconstruction and analysis. It has a
long tradition in serving as a data processing framework for LHCD [4] and as part of the
Gaudi-Athena framework for the ATLAS experiment. Currently, a concurrent version
of Gaudi, GaudiHive, is developed, to exploit modern processing architectures.

Gaudi is realised with an object oriented design pattern and follows the rules of C++
programming. The architecture consists of components, which have well defined in-
terfaces, functionality and interactions with another. Single components can be easily

11

Chapter 2 FCC-Software

Common event
processing framework:

Gaudi/GaudiHive event
loop

generator input

Detector
description
input:
DD4Hep

xml input file

reconstructed job configuration, . '
event data initialisation, common service with
event loop translators into specific

geometry/event data

Figure 2.1: The overall picture of the simulation framework. Gaudi is used as event
processing framework, which is configured by a job option file. For the
geometry input DD4hep is used. Geant4 serves as a simulation kernel for all
kinds of simulations (picture: A. Salzburger).

replaced or updated.

Gaudi has a central event data store, which distinguishes between transient and persis-
tent data. The EvtDataSvc manages storing and retrieving objects in the event data
store.

Gaudi distinguishes between objects and algorithms manipulating them. Every algo-
rithm has to be invoked explicitly by the framework or other algorithms. This allows
to structure the algorithms in a hierarchy. In this way top algorithms, invoking sub-
algorithms can be created. The IAlgorithm base class represents the interface for every
algorithm, providing the virtual methods initialize(), execute() and finalize().
Derived algorithms have to implement these three methods: the initialize () method
is generally used to prepare the algorithm before the first execution. This can involve
the retrieval of other components needed in the execution, or the setting of certain pa-
rameters. It is only called once in the program flow. The execute () method, however,
is called once per event by the framework and thus usually carries the main processing
code. Clearup and final statistics, e.g. are done in the finalize () method.

Services are components which provide the different features or data needed by algo-
rithms throughout the job execution. Gaudi provides common services e.g. the services
for managing the different transient stores (event data service, detector data service,...)

12

Chapter 2 FCC-Software

or the job options service, histogram service and the message service. Apart from these
basic services, Gaudi offers also the possibility to introduce particular services, inherit-
ing from the base class IService. Examples for services would be, e.g. a magnetic field
service or access services to the conditions database.

Often, the same functionality is needed by several algorithms, probably with different
configurations. For this purpose tools are provided [17].

A single event is processed by executing a sequence of algorithms. These algorithms
read at first event data from the event data store and after the execution write back
data to the store. In f Fig 2.2, an example for an event is illustrated.

Eventstore

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Algorithm 5

Figure 2.2: Simplified example for event processing in Gaudi. The algorithms read
and write events via the EvtDataSvc in the Gaudi store gate, during the
execute () call. Tools are encapsulated code blocks, which can be used by
several algorithms.

2.1.1 Job Configuration

The job option service offers the possibility to configure the program behavior via job
option files. These are written in Python. In these files all services, tools and algorithms
which should be used for the job have to be declared. The input and output of the event
is also defined in this file. Furthermore, it offers the possibility to set the number of
events or parameters and limits for algorithms [17].

13

Chapter 2 FCC-Software

2.2 The Geometry Input

Simulation, digitization and reconstruction need dedicated detector descriptions. Simu-
lation needs a (more or less) detailed description of the detector to simulate the interac-
tions of the particles with passive and sensitive detector material. The digitization, on
the other hand, mainly needs access to detector readout properties. For the reconstruc-
tion the position of the detecting elements and a simplified description of the detector
as a whole are essential. In order to facilitate the workflow for the different simulation
approaches, digitization and reconstruction, a common detector description source is
highly beneficial.

The detector construction of the the FCC project uses DD4hep (detector description for
high energy physics) as a geometry input. It is being developed by the AIDA (Advanced
European Infrastructures for Detectors and Accelerators) community [18] in the context
of the linear collider experiment. DD4hep is a generic toolkit for the full detector de-
scription, including the geometry, the used material, visualization attributes, detector
readout information, alignment, calibration and environmental parameters.

The basic input for building the detector are a detector description in the XML file for-
mat and a corresponding detector constructor written in C+-+. These two components
have to be changed accordingly. The compact detector description allows a straightfor-
ward and simple declaration of the detector in the XML format. Detector constructors,
supported in C++ or Python, use these XML files as an input and construct a detector
in the DD4hep geometry format. The whole detector is segmented into different detec-
tor parts, e.g. barrels and endcaps which describe different sub-detectors. Since these
sub-detectors are built differently, they need different detector constructors. In this way
one detector description in XML can use various detector constructors, needed for the
different kinds of detector parts.

The separation of the description in XML and the actual geometry building modules,
implemented within the framework, has the advantage that geometry parameters can be
quickly changed without the need of recompiling the detector builders. Furthermore, if
the basic detector concept has been chosen and the constructors are made in a generic
way, sub-detectors, layers, modules or components can be added easily without changing
the code.

The different parts and properties of the detector are described and identified by tags
in the XML file. Several sub-detectors, for example, are each described in the detector
section, enclosed by the detectors tag (see Fig 2.3).

The sensitive components of a detector are segmented into smaller readout channels.
This readout segmentation needs to be described within the detector description in order
to assign the hits to a position on the component. In the XML file this is described in
the section segmentation within the readout tag (see Fig 2.4). It can be described in
several cartesian grids (zy, xz, yz, xyz), in a polar grid or in a cylindrical grid. In the
XML file bit fields have to be reserved for the different kinds of detector elements and
the grid. These bit fields are later combined to identify each detector element uniquely.
DD4hep reuses already existing components. The geometry, e.g. is based on the ROOT
[21] geometry package, using logical volumes as a basis and partly extending it for fur-

14

Chapter 2 FCC-Software

<detectors=
<detector id="1" name="Tracker@®" type="Barrel" readout="TrackerReadout"=
<status id="1"/=
<dimensions rmin="Rmin" rmax="Rmax" z="Barrel_length" material="Air"/=
<layer id="@" inner_r="Rminl" cuter_r="Rmax1l" dr="@.6xmm" z="Barrel_length" material="Air"=
=slice z="zpos" repeat="zrepeat"/>
=module name ="Box" width="width" length="1length" thickness="@.3*mm" repeat="rrepeat"
material="Air"=>
<module_component width="width" length="1length" thickness="@.1lxmm" z ="-8.2*mm"
material="Silicon" sensitive="true" wvis="comp@"/>
<module_component width="width" length="1length" thickness="8.1xmm" z ="@.2%=mm"
material="Carbon" sensitive="false" wvis="compl"/>
=module_component width="width" length="1length" thickness="@8.1l*mm" z ="@.=mm"
material="Tungsten" sensitive="false" vis="comp2"/=
=/modules
</ layer=
</detectors=

Figure 2.3: Code fragment of a detector description. The different parts of the subde-
tector are enclosed by tags (detector, layer, module, component,...). The
type of the detector identifies, which detector constructor should be used.

ther functionality. Hence, an easy visualization of the DD4hep geometry is guaranteed
via the ROOT visualization displays. In addition, a straight forward integration of the
geometry in Geant4, which is used for the full simulation is already provided (see Section
2.5). The DD4hep geometry needs also to be translated into the simplified detector ge-
ometry used for the reconstruction and potentially for the fast simulation. An automatic
translation mechanism between the geometry representations has been implemented and
is further described in Chapter 4.1.

For this conversion the full detector information and the geometry information needs
to be accessed. DD4hep has implemented the Detector Description Data Hub (LCDD),
which provides management, bookkeeping and ownership to the model instances.

In the detector description model of DD4hep any detector is a tree of instances of the
so-called DetElement class. This DetElement class provides all needed detector infor-
mation, e.g. readout segmentation, geometrical information, environmental conditions.
This tree is parallel to the volume tree, which provides the TGeoVolumes and their place-
ments. The relation between these two trees is one-directional, i.e. every volume can be
accessed via its corresponding DetElement, but not vice versa (see Fig 2.5). Not every

=readouts=
=readout name="TrackerReadout'=
=segmentation type="CartesianGridX¥" grid_size_x="@.85%mm" grid_size_y="0.@85=mm" />
=id=system:3, layer:2,module: 1@, component:2,x:32:-16,y:-16=/1d>
=/ readout=
=/readouts=

Figure 2.4: Code fragment of a readout description. The bit fields to uniquely identify
every position on a sensitive component have to be reserved in the section
id.

15

Chapter 2 FCC-Software

supporting material will be declared as a detector element, hence, the geometrical tree
can have a deeper hierarchy structure. In order to access both, detector and geome-
try information, one has to navigate through the detector tree during the translation
process. The DetElement can also be extended, to add specific features or to access
information. This extension mechanism is provided from DD4hep to attach additional
information to certain objects to allow customized use for certain implementations. The
LCDD, the SensitiveDetector class, describing the sensitive detector parts, and the
DetElement can be extended. An essential tool for the geometry is the VolumeManager

) Logical Volume (TGeoVolume)
Placed Volume (TGeoNode) ,,

| Detector Element

. TPC

Placement

Placement

TPCEndCap

IPIacemant

Figure 2.5: On the left side one can see the DetElement tree which holds the hierarchy
of the detector elements. On the right the volume tree is illustrated, where
nodes (volumes with placement) hold logical volumes. From the DetElement
the placement and herewith the logical volume can be accesssed but not vise
versa [19].

which combines the unique volume identifier with the placement of the certain volume.
In this way it allows to access volumes by its volume ID [19].

2.3 The Simulation Environment

To enable common steering of full, fast and parametric simulation, Geant4 is used as
the simulation kernel. The simulation kernel is steering the simulation by receiving the
particles and sending them to the different simulations depending on the detector region
and particle type defined by the user via the job configuration. It manages the particle
stack and does bookkeeping within the Geant4 structure.

In Geant4 the entire simulation is managed via the so-called G4RunManager. It controls
the Geant4 kernel, the program flow, the run and the event loop. A G4Run represents
the highest instance in the process hierarchy and can contain several events.

To run a simulation in Geant4, one must create an instance of the run manager in the

16

Chapter 2 FCC-Software

user’s main program. It is responsible for the initialization of a run, including detector
construction, the physics processes, primary particle generation and afterwards the in-
vocation of the run.

To integrate the simulation into the Gaudi based framework and to enable also external
simulation toolkits to be used (based on other geometries and using different software)
within the Geant4 environment, a dedicated run manager, inheriting from G4RunManager
was implemented. It is embedded as Gaudi algorithm in order to invoke the simulation
from Gaudi. The choice to make the whole simulation handling within the Geant4 en-
vironment was to allow a most coherent simulation and taking advantage of the already
existing feature of detector envelopes, i.e. detector regions.

In the Geant4 environment a fast simulation can be realized by attaching a G4Fast-
SimulationManager to different regions of the detector. It manages the different sim-
ulation models for the different particles. All daughter volumes of the defined detector
region will use the parameterizations defined for certain particles from the current
G4FastSimulationManager [23].

2.4 The Event Data Model

A coherent simulation framework only unfolds its full benefit, if it is supported by a com-
mon Event Data Model that is shared between the different simulation approaches. Even
when fast simulation is used and higher level output objects such as tracks particles or
jets are emulated, it is necessary that those objects are created in the standardized output
format one would expect from running the full simulation—digitization—reconstruction-
chain. This facilitates the switching between the simulation techniques while having
little effect on the analysis chain.

For FCC, the Event Data Model consists of a description of the data structures stored in
an event. These data structures are simple C structs or C++ classes, called POD (Plain
Old Data). ROOT is used for handling the file input/output and event persistency [24].
The FCC software community has decided to implement a very clean, minimal EDM
that allows every extension and flexibility at one hand, but also fulfills necessary per-
formance figures on the other. The actual EDM classes are auto-generated, after being
defined on user input: The classes within the data model are defined in yaml-file. A
code generator translates them in the C++ code and the directory structure. For ev-
ery datatype, there are three classes generated automatically: the POD itself, a handle
(containing a pointer to an existing POD) and a collection of handles. The PODs are
always accessed via its handles. References to another POD can be stored in a POD as
handles.

The Collections inherit from the Gaudi class DataObject in order to make the data
model compatible with the EvtDataSvc of Gaudi [24].

17

Chapter 2 FCC-Software

2.4.1 The Tracking Event Data Model

Track reconstruction requires in general the most complex Event Data Model of all re-
construction steps. Based on the experience of the EDMs of the LHC experiments and
on the LCIO (Linear Collider I/O) a tracking Event Data Model has been proposed (see
Fig 2.6) and the implementation of a first setup was part of this master thesis.
Extending the BareHit class, a TrackHit has been proposed, which has a start and
an end point of the track hit in the sensitive material, plus a transient pointer to the
corresponding Surface of the reconstruction geometry (described in Section 3.3). The
latter is to enable local to global transformations and vice versa.

The TrackCluster class, extending the BareCluster, holds containers of TrackHits
grouped together by a clustering algorithm, a local measurement and a local error co-
variance matrix. After a calibration the CalibratedTrackCluster, extending the un-
touched track cluster can hold a container of TrackClusters or one TrackCluster.
Calibrated measurements have been proven to be a very good concept during LHC op-
eration: they may take detector conditions, local deformations or even misplacements
into account.

A Track class exists, holding a container of TrackStates. Each TrackState has a
TrackParameterisation, describing the parameters needed for a track. This includes a
local measurement on the surface, the charge in terms of momentum, the spatial angles
f and ¢ which describe the global orientation of the track and a covariance matrix to
describe the uncertanties and correlations of the track parameters. Finally this leads to
the TrackParticle, which is composed of a BareParticle and a Track.

2.5 Integration of the Components in the Framework

In this Section the communication between the different components and the combina-
tion to one coherent framework, which was a main task of this thesis, is described.

For retrieving the geometry input within the Gaudi framework a geometry service was
created. This service GeoSvc inheriting from an interface IGeoSvc provides both, the
Geant4 and the DD4hep geometry. The geometries are built in the initialization of the
service, i.e. as soon as one component evokes this service, the geometry is built auto-
matically.

After creating an instance of the LCDD, which is the interface to the DD4hep geometry
and applying the XML file, the DetElement of highest order (world) is accessed via
this instance, allowing to access the entire detector tree. In addition an instance of the
volume manager is applied to set the unique volume identification.

To create the Geantd geometry, the Geant4DetectorConstruction of DD4hep is in-
voked via the LCDD instance. It is then internally converted into the Geant4 geometry
using the Geant4Converter, which is also a DD4hep class. The Geant4Detector-—
Construction inherits from the Geant4 G4VUserDetectorConstruction, in order to
satisfy the necessary integration into the Geant4 data flow.

For building the reconstruction geometry (see Chapter 3) a dedicated service was de-

18

Chapter 2 FCC-Software

Tracking Event Data Model

TrackParticle

BareParticle
——p transient + Track
pointer to surface in reconstruction
geometry

Figure 2.6: The current version of the FCC tracking Event Data Model. The bare classes,
holding the basic information of the FCC EDM are extended by track classes,
adding members needed especially for tracking. The Surface is the link to
the reconstruction geometry.

signed (ClassicalRecoGeoSvc), which translates the DD4hep geometry into a simplified
reconstruction geometry. The reconstruction geometry is built upon request. In order to
build and access the reconstruction geometry the method getRecoGeometry () has to be
called. It returns a pointer to a ContainerVolume, which is a class of the reconstruction
geometry (see Section 3.5).

Since a complete general translation mechanism into the reconstruction geometry was
not possible, the service is implemented with an interface (IRecoGeoSvc). In this way
other implementations of a translation for other detector types can be introduced. For
the current implementation (ClassicalRecoGeoSvc), special conventions have to be met
(described in Chapter 4.1).

If only the reconstruction geometry is used in an algorithm, only the ClassicalRecoGeo-
Svc has to be instantiated. It invokes the service for building and retrieving the DD4hep
geometry itself (see Fig 2.7).

19

Chapter 2 FCC-Software

GeoSvc
Detector Description
Initializef)

DDdhep

Geantd
Classical
RecoGeoSvc

getRecoGeometry()
Recozeometry

Figure 2.7: The Geant4 geometry can be received from the GeoSvc, which builds the
DD4hep and the Geant4 geometry in the initialization phase. To obtain
the reconstruction geometry an algorithm has to explicitly request to the
ClassicalRecoGeoSvc. The DD4hep geometry is then internally retrieved
and translated.

To fully understand the concepts of the translation an introduction into the general
reconstruction geometry is needed, which follows in the next Chapter. A more detailed
description of the translation mechanism is described in Chapter 4.1.

20

Chapter 3

Reconstruction Geometry

The reconstruction geometry is a simplified geometry which is used during reconstruc-
tion and for fast simulation. While in detector simulation an accurate description of
the detector geometry is needed to correctly follow the path of the particle through the
detector regions and to simulate its interaction with passive and active material, in the
reconstruction application, geometry features can usually be simplified. This is done to
improve the execution speed and to take into account, that only stochastic effects can
be considered for reconstruction purposes. In simulation, e.g. when tracking a particle
through the detector, it is a great importance where the particle hits what kind of ma-
terial, while in (track) reconstruction only an averaged picture of the detector is needed
in order to include potential disturbances from material interactions as process noise.
In general, the reconstruction geometry describes the sensitive material to exact detail
in order to interpret hits and measurements. Passive material, however, is usually ap-
proximated. Having a fast navigation scheme through the reconstruction geometry is
essential, since it is a very repetitive task and can end up easily in taking significant
CPU resources. For this reason, having an initial design where the navigation is built
into the geometry structure is highly beneficial.

The sensitive detector parts are described as surfaces (Section 3.3) in the reconstruc-
tion geometry. These are infinitesimal thin objects allowing intersection and build the
reference frame for track parameterisation. On each surface the supporting material is
described approximately, to enable material effects, e.g. energy loss or multiple scatter-
ing. Layers (Section 3.4) hold these surfaces at their specific position and the layers are
surrounded by volumes. Volumes (Section 3.5) are enclosed by boundary surfaces, which
fulfill two purposes. First, the possibility to describe material of supporting structures
and second, navigation between the volumes can be enabled, because these boundary
surfaces point to their next/previous volume. To navigate within one volume, the layers
are pointing to their next/previous layer.

The main concepts of the reconstruction geometry have been taken from the ATLAS
Tracking Geometry [25], but have been adapted to fit into the FCC software framework.
To enable the translation from the TGeo based DD4hep geometry and to have a first
simple setup, the general geometry has been implemented.

In order to ease the translation from the DD4hep geometry into the reconstruction ge-
ometry all the classes can be constructed of TGeoShapes (describing the shape) and
TGeoNodes (describing the placement). For coherency reasons the readout segmentation

21

Chapter 3 Reconstruction Geometry

of DD4hep will be used.
For a proper memory management only std: :shared_ pointers of the standard C++
library to the instances of the geometry are used.

3.1 Frame Definitions

In this Chapter the following frame definitions are used: The global frame is a 3D
cartesian frame with origin at the center of the detector. The z-axis was chosen to
be the beam tube—axis. The azimuthal angle 6 describes the angle of a particle (i.e. its
momentum vector) relative to the beam axis and the polar angle ¢ describes the rotation
angle around the beam axis. The pseudo rapidity is described by n = —In tang 27],
which almost corresponds to rapidity and is easier to sustain in measurements.

Each geometrical node has a local frame and a transformation matrix which describes the
relative positioning of this node to the global frame. A transformation matrix is a 4x4
matrix containing a 3x3 matrix, which describes the rotation of the object with respect
to the global frame and a three dimensional vector which describes the translation of
the node relative to the origin of the global frame. Local to global transformations
transform a local vector or point into the global frame by applying the rotation of the
transformation matrix to the vector and translate the point by the translation vector.
The global to local conversion uses the inverse of the transformation matrix to transform
directions and positions into the local frame of a placed geometrical object.

3.2 Helper Classes and Utilities

In this Section the basic classes needed later by the geometry classes are described.
In the Alg (Algebra) namespace the algebra library and the geometric transformation
library are declared, which were taken directly from ROOT. These include vector defi-
nitions, matrix representations and other algebra classes.

In order to store and access geometrical objects on a certain position the classes BinUtil-
ity and BinnedArray were directly implemented from the ATLAS software. The Bin-
Utility is used to generate a given number of bins in an interval. The bins can be
equidistant, bi-equidistant or arbitrary. In latter case, a vector with the bin values has
to be provided to the constructor, which defines the boundaries of the array.

Out of a vector of objects together with the center position of this object and a cor-
responding BinUtility a BinnedArray can be created. Different implementations of the
BinnedArray class, concerning the dimension have been provided, for one (BinnedArray-
1D) or two dimensional (BinnedArray2D) binning as well as for anti-symmetric two
dimensional binning (BinnedArray1D1D). Every object in the binned array can be ad-
dressed over its bin. This two classes are basic components for the following classes.

22

Chapter 3 Reconstruction Geometry

Surface
(from Reco)

#m_center: mutable Alg::Point3D*

#m_normal: mutable Alg::Vector3D*

#m_transform: std::shared_ptr<const Alg::Transform3D>
FMatenalMap*: m_materialmap
#s_onSurfaceTolerance: static double

#s zerolimit: static double

#s onigin: static Alg:Point3D

#s idTransform: static Alg:Transform3D

+Surface(node: TGeoNode®)

+Surface(node: TGeoNode?®, material: MaterialMap*)

+Surface(transf: std::shared_ptr<const Alg:Transform3D>)

+Surface(materialmap: MatenalMap®*, transf: std::shared_ptr<const Alg::Transform3Dz)

+Surface(surface: const Surface&)

+virtual ~Surface()

+clone(): Surface®

+operator=(surface: const Surface&): Surface&

+transform(): const Alg::Transform3D&

+setTransform(transf: std::shared_ptr<const Alg:Transform3D=>)

+center(): const Alg::Point3D&

+normal(): const Alg::Vector3D&

+normal(locpos: const Alg:Point2D&): const Alg::Point30*

+materialmap(): MaterialMap*

+material(locpos: Alg:Point2D&): Material*

+matenal(glopos: const Alg::Point3D&): Matenial*

+isInside(locpos: const Alg::Point2Dé&, toll: double, tol2: double): bool

+localToGlobal{locpos: const Alg::Point2D&, mom: const Alg::Vector3D&, glopos: Alg::Point3D&)

+globalToLocal(glopos: const Alg::Point3D&, mom: const Alg-Vector3D&, locpos: Alg::Point2D&): bool

+isSensitive(): bool

+halfthickness(): double

+pathlength(dir: const Alg::Vector3D&): pathlength

+pathlength(glopos: const Alg::Point3D&, dir: const Alg:Vector3D&): double

+pathcorrection(dir: const Alg::Vector3D&): double

+createTrackParameters(: double, : double, : double, : double, : double, cov: Alg::AmgSymMatrix<5>*): const Trk::Parametersbase<5,Charged>*
+create TrackParameters(: const Alg::Point3D&, : const Alg::Vector3D&, : double, cov: Alg::AmgSymMatrix<5=*): const Trk::ParametersBase<5,Charged=*
+createNeutralParameters(: double, : double, : double, : double, : double, cov: Alg::AmgSymMatrix<5>*): const Trk::ParametersBase<5 Neutral=*
+createNeutralParameters(: const Alg::Point3D&, : const Alg::Vector3D&, charge: double, cov: Alg:AmgSymMatrix<5>*): const Trk::ParametersBase<5 Neutral>*
+straightLinelntersection(pos: const AlgPoint3D&, dir: const Alg:-Vector3D&, forceDir: bool): Intersection

#Surface()

Figure 3.1: The Surface class of the reconstruction geometry, the surface builds the
core geometrical node of the tracking geometry. All other objects are either
extensions of surfaces or built from those.

3.3 The Surface Classes

The surface representation is fundamental for the reconstruction and the simulation.
They are needed to produce hits and to generate tracks. It will also be stored as a
transient pointer in the Event Data Model, to enable local to global transformations
and backwards.

The Surface class is a virtual class which serves as a parent for certain surface imple-
mentations. It contains a three dimensional global center position, a three dimensional
global normal vector to the surface and a transformation matrix, describing the global
orientation, containing the rotation and the translation of the surface.

The surface contains a material map, which is a two dimensional grid, offering the pos-
sibility to describe an existing material distribution with a good approximation. It is
constructed from a three dimensional transformation matrix or to simplify the trans-
lation from the DD4hep geometry, from a ROOT TGeoNode. If the surface contains
material also the material map must be provided at construction.

The Surface class provides the basic functionalities needed for tracking. It implements

23

Chapter 3 Reconstruction Geometry

the transformation functions which transform local to global coordinates and vice versa.
A method checks whether a local given two dimensional position is inside the surface. It
provides methods for creating track parameters. A straight line intersection method has
been provided. It finds the closest possible intersection in a straight line, from the given
global position in a specific global direction. The struct Intersection is returned,
which contains the path length (the length from the given point to the surface), the
global intersection position and a boolean, returning whether the position actually is on
the surface.

Geometrically, a surface is a two dimensional construct, however in the detector de-
scription it can represent a physical volume, a sensor or detector module. Therefore a
thickness can be assigned to the Surface. When a particle is traversing through the
surface it passes a certain amount of material. The method pathlength() has been
implemented to calculate this distance depending on the direction.

A detector module will have sensitive parts, i.e. sensors, which have electronic readout
elements and are detecting the particles. To describe these sensitive parts the class
SensitiveSurface has been introduced, described in the next Section. In order to dis-
tinguish between sensitive and non sensitive surfaces a boolean method isSensitive ()
has been introduced.

The basic Surface class has currently four implementations, for four different shapes:
PlaneSurface, CylinderSurface, DiscSurface, and TrapezoidSurface. These classes
hold their boundary description as additional members and are implementing the vir-
tual methods of the Surface class in their local coordinate system. The plane and the
trapezoid surface class are using cartesian coordinates x and y. The CylinderSurface
uses a combination of cylindrical coordinates r - ¢ and z and the DiscSurface uses polar
coordinates r and . All of these four classes can either be constructed by its dimensions
or specially for the translation mechanism, directly from the ROOT TGeoShape classes.
A PlaneSurface can be constructed from a TGeoBBox, a trapezoid from a TGeoTrd2 and
for the CylinderSurface and the DiscSurface a TGeoConeSeg is used.

3.3.1 Sensitive Surfaces and Readout Segmentation

The SensitiveSurface classes represent the sensitive (measuring) parts of the detector.
This parts have a readout structure, i.e. depending on the kind of detector module and
the granularity, they are divided into grids. Planar detectors are usually segmented as
pixels or strip detectors, hence, they are segmented in two or one dimensional bins. Ev-
ery bin has a unique identification on this surface, the so-called cellID, while the surface
itself is also uniquely identified in the detector by its volumelD. In this way, when the
detector receives a signal in a certain readout channel, one can automatically determine
the position and the module where the signal occurred.

The global unique identification is a 64 bit integer. The first 32 bits are used for the
global identification of the surface in the detector, the other 32 bit remain for the channel
identification on the surface.

For coherence reasons, the readout segmentation was directly taken from DD4hep. The
SensitiveSurface class holds a pointer to the DD4hep Segmentation class [20].This

24

Chapter 3 Reconstruction Geometry

SensitiveCylinderSurface |

CylinderSurface

DiscSurface SensitiveDiscSurface |

PlaneSurface SensitivePlaneSurface |

I

| SensitiveTrapezoidSurface |

TrapezoidSurface

SensitiveSurface

Figure 3.2: The SensitiveSurface, has four geometrical implementations, inheriting as
well from the Surface class to realize a surfaces with a readout structure.

instance of the readout segmentation is retrieved over the translation mechanism, de-
scribed in the next Chapter.

The sensitive surface class implements methods to calculate the cellID by its local posi-
tion on the surface and to obtain the local position by providing the associated celllD.
Furthermore, one can retrieve all surrounding neighbor celllDs by calling the method
neighbors(). This is usefull for e.g. channel clustering.

The SensitiveSurface class is a virtual class. It has currently four implementation,
which again represent the geometries plane, cylinder, disc and trapezoid. This im-
plementations are inheriting as well from the basic Surface class (see Fig 3.2), for
instance the class SensitivePlaneSurface is inheriting from SensitiveSurface and
PlaneSurface. In this way a surface can have a readout structure.

3.3.2 BoundarySurfaces

A Surface can be extended to be used as a boundary of a volume, described in the
Section 3.5. This classes are needed for enabling navigation within the geometry. The
boundary surfaces hold pointers to the next and previous volume. In case there is more
than one volume attached, a BoundarySurface holds one dimensional BinnedArrays to
the next and previous volumes attached.

Within a detector the direction to the next volume points always from the inside (the
center point) to the outside — this was chosen as a convention.

It has methods to access these volumes. The BoundarySurface is as well realized in
different geometrical shapes: disc, plane, cylinder and trapezoid. It contains a pointer
to Material (see Section 3.6), to enable boundary surfaces to have support material.

25

Chapter 3 Reconstruction Geometry

3.4 The Layer Classes

The Layer class was introduced for navigation reasons. It contains Surfaces (detector
modules) and pointers to the next and previous layer. The surfaces are held by a
BinnedArray of a standard vector of surfaces. In this way it is possible to place more
than one surface layered in one bin.

Methods to retrieve the surfaces have been implemented. Therefore the specific surfaces

Layer
(from Reco)

#m_surfaces: cons Trk::BinnedArray<std:vector<std::shared_ptr<const Reco:Surface>>>*
#m_nextlLayer: mutable std::shared_ptr<const Layer=
+m_previousLayer: mutable std::shared ptr<const Layer=

+Layer(sf: Trk::BinnedArray<std::vector<std::shared_ptr<const Reco:Surface>=>)
+Layer(layer: const Layer&)

+virtual ~Layer()

+clone(): Layer*

+getModules(glopos: const Alg::Point3D&): std:vector<std::shared_ptr<const Reco::Surface>>
+getModules(locpos: const Alg::Point2D&): std::vector<std::shared ptr<const Reco::Surface==
+compatibleSurfaces(glopos: const Alg::Point3D&): std::vector<std::vector<std::shared ptr<const Reco::Surface»=>
+sethextLayer(layer: std::shared ptr<const Layer>)

+setPreviousLayer(layer: std::shared_ptr<const Layer=)

+getMextLayer(): const Layer*

+getPreviousLayer(): const Layer*

+getMextLayer(dir: const Alg::Vector3D&): const Layer*

+getPreviousLayer(dir: const Alg::Vector3D&): const Layer*

+onLayer(glopos: const Alg::Point3D&, tol: double): bool

+type(): LayerType

+surfaceRepresentation(): const Reco::Surface*

ZLayer()

Figure 3.3: The Layer Class of the reconstruction geometry. Layers are used for storing
surfaces to access them at every given point and needed for navigation.

at a given global position as well as a vector of compatible surfaces, around a given global
position can be accessed. It provides also a Surface representation, since the derived
classes DiscLayer and CylinderLayer inherit from the Layer and the Surface class
(see Fig 3.4). In this way the functionalities of the Surface class, e.g. the straight line
intersection, the transformations, the normal vector, or the access to the center position
are guaranteed. Finally a NavigationLayer class has been implemented. This shapeless
class serves for navigation only, by holding pointers to the next and previous layers.

3.5 The Volume Classes

The Volume (Fig 3.5) class is the base class to describe geometrical volumes. It contains
basic members like a transformation matrix, which exactly locates the volume globally
to a world volume and also a rotation matrix. It is bordered by BoundarySurfaces,
pointing to the next and previous Volume, stored in a vector of BoundarySurfaces. A

26

Chapter 3 Reconstruction Geometry

CylinderSurface CylinderLayer

L NavigationLayer

Figure 3.4: The Layer class has currently three implementations, representing the geo-
metrical shapes disc and cylinder and a shapeless implementation for navi-
gation reasons. These inherit as well from the Surface implementations to
give layers surface functionality.

Volume can contain layers, implemented as a BinnedArray of Layers. To enable naviga-
tion at every position in the volume, the volume has to be completely filled with layers.
The empty spaces between the material layers (layers containing modules), should be
filled with navigation layers. The purpose of the navigation layers is, that every single
point in the detector can be associated to a layer and embedding volume. This is nec-
essary to guarantee that the navigation through the entire detector can be done.

Basic methods returning the center position, the transformation matrix, the dimensions
or a check whether a global position is inside a volume, within a certain tolerance, have
been implemented. It is also possible to access and set the boundary surfaces. For the
simulation the method materialLayersOrdered() is needed. It returns all material
layers in a vector, starting from a point in a given direction.

To enable the translation from the DD4hep geometry (see Chapter 4.1), the volume can
have a translation type. This type can currently be a barrel, an endcap at the negative
or the positive side of the barrel or a container. It is needed to distinguish the different
kinds of volumes during the translation phase.

Currently there only exists one shape implementation of the basic volume class, the
CylinderVolume. This volume is sufficient to describe most classical collision experi-
ments. The class ContainerVolume allows to group together several sub-volumes in one
container volume. After nesting the sub-volumes in several containers the whole detector
geometry can be accessed over one world volume, which will be a ContainerVolume. It
inherits from the Volume base class to provide the basic volume functionalities and holds
a BinnedArray of volumes. Furthermore the class ContainerCylinderVolume, inherit-
ing from ContainerVolume and from CylinderVolume has been implemented (see Fig

3.6).

3.6 Material Description

A material description is needed to describe the physical interaction processes. Multiple
scattering needed in reconstruction and simulation is described by thickness in terms of

27

Chapter 3 Reconstruction Geometry

Volume
(from Reco)

#m_center: mutable Alg::Point3D*

#m_transform: std::shared_ptr<const Alg:: Transform3D=>

#m_layers: Trk:BinnedArray<Layer>

#m_boundarySurfaces: mutable std::vector<std::shared_ptr<const BoundarySurface=>
#m_volumeType: VolumeType

#m_translationType: mutable TranslationType

#m_coordinates: std:vector<double>

#s ongin: static Alg::Point3D

#s idTransform: static Alg::Transform3D

+Volume(transf: std::shared_ptr<const Alg::Transform3D=)

+Volume(layers: Trk:BinnedArray<Layer>*)

+Volume(transf: std::shared_ptr<const Alg::Transform3D=, layers: Trk::BinnedAmay<Layer>*)
+Volume(layers: Trk::BinnedArray<Layer=*, node: TGeoMode®)

+Volume(node: TGeoMNode*)

+Volume(volume: const Volume&)

+virtual ~Volume()

+clone(): Volume*

+operator={volume: const Volume&): Volume&

+center(): const Alg::Point3D&

+ransform(): const Alg::Transform3Dé&

+islnside(glopos: const Alg:Point3D&, tol: double): bool

+materialLayersOrdered(glopos: const Alg::Point3D&, mom: const Alg::Vector3D&, charge: double): std::vector<const Reco::Layer*=
+NumberOfSurfaces(): int

+boundarySurfaces(): std::vector<std::weak_ptr<const Reco::BoundarySurface==>
+getBoundarySurface(n: size_t): BoundarySurface*

+setBoundarySurface(n: size_t, boundarysurface: std::shared_pftr<const Reco::BoundarySurface=): bool
+ype(): VolumeType

+setTranslationType(volumeType: TranslationType)

+getTranslationType(): TranslationType

+getCoordinate(n: size_t): double

+getLayer(glopos: const Alg::Point3D&): const Layer*

#Folume()

Figure 3.5: The Volume class of the reconstruction geometry. Volumes describe sub
detector elements which surround detector modules belonging to a certain
part of the detector.

radiation length t/Xq (energy loss through radiative effects). Hadronic interactions are
described in the simulation by thickness in units of the nuclear interaction length ¢/A,
(mean free path), they are not taken into account at reconstruction, but serve as input
for fast simulation. Finally the mass number A, the atomic number Z and the density
are used to calculate the energy loss in the material.

The Material class describes the basic properties of material: A, Z, density, t/Xq, t/Ag
and the percentage of sensitive material.

A MaterialMap serves for describing the material distribution of a Surface on a two
dimensional grid. It is implemented as a standard map of a pair of bins and the corre-
sponding material. One can access the material on the surface by its local position.
Two implementations of the MaterialMap class exist, MaterialMap2D and
MaterialMap1D1D. MaterialMap2D, for symmetric binning, must be constructed by a
two dimensional BinUtility and a map of a pair of bins and a pointer to its correspond-
ing material. The MaterialMap1D1D containing a one dimensional leading BinUtility
and a vector of BinUtilities, for every bin of the leading BinUtilities, can be used
for asymmetric two dimensional binning.

28

Chapter 3 Reconstruction Geometry

CylinderVolume

| ContainerCylinderVolume

ContainerVolume

Figure 3.6: The virtual Volume class has currently one shape implementation, the
CylinderVolume. The class ContainerVolume extends the Volume, to
allow to group volumes together in one surrounding volume, with the
ContainerCylinderVolume as a shape implementation.

29

Chapter 4

Common Geometry Building

In order to facilitate detector prototyping without the need for work-intensive adaptions,
a single source geometry input for full, fast simulation and reconstruction is essential.
Since the different steps require different geometry descriptions, dedicated converters
from the DD4hep input have to be provided. For the Geant4 simulation toolkit, a
converter into the Geant4 geometry library already exists as part of the DDG4 imple-
mentation, see Section 2.5. For the reconstruction geometry, however, this conversion
had to be established. This Chapter describes the translation from the DD4hep geom-
etry to the reconstruction geometry. To test this translation a first simple test tracker
was introduced. Finally, the geometry is compared with the DD4hep and the full Geant4
geometry.

4.1 Translation from DD4hep Geometry into the
Reconstruction Geometry

As mentioned in Section 2.5 the translation from the full DD4hep geometry into the
simplified reconstruction geometry is done by the ClassicalRecoGeoSvc, which imple-
ments the IRecoGeoSvc interface. Since a complete general translation without any
convention is not possible, specializations of the IRecoGeoSvc may exist for different
detector designs. The only requirement for the geometry is, however, that it fulfills
the navigation aspects as described in Chapter 3. The ClassicalRecoGeoSvc hereby
allows building traditional tracker designs with cylindrical barrel and disc-like endcap
structures. This translation can be extended or later be replaced by other translations,
for other detector types, as long as the same interface is implemented and the layer and
volume structure kept compatible with the concepts described in Chapter 3.

In the DD4hep geometry, volume and detector trees are parallel to each other (see Fig
2.5). To access both, the geometry and the detector specific information, the converter
module has to parse the detector tree. Beginning at the world DetElement, it scans
through the volumes, the layers, the modules, the components and translates them into
the according objects of the reconstruction geometry. For this reason, every detec-
tor using this conversion has to have this structure, consisting of volumes containing
layers, which hold modules and are made of components (see Fig 4.1). In order to
distinguish between the different detector element types while scanning through the

30

Chapter 4 Common Geometry Building

Tracker
neg Edeap Barre_\l pos End_Cap
Layr.arr o | E Layer Layer Laypfr_ Laygr “eea o
/ TN /%
Module Caes i e Module Module Module ... Module

Companent Companent Component Component Companent

Figure 4.1: To use the ClassicalRecoGeoSvc every hierarchy of the tracker has to be
composed of a barrel with its corresponding endcaps. These volumes itself
are made of layers, modules and components.

volumes the DD4hep: :DetElement was extended by volume, layer and module classes.
All these classes have a common interface IDetExtension. The DD4hep geometry is
based on ROOT TGeo classes. There is no possible distinction between a volume used
as a barrel or a volume used as an endcap (both are implemented as TGeoConeSeg).
Therefore, two different extension types for these kind of volumes have been imple-
mented (DetCylinderVolume and DetDiscVolume). For the same reason the exten-
sion classes DetCylinderLayer and DetDiscLayer were introduced. For a module, the
DetModuleExtension should be used and finally for a sensitive component of the de-
tector the class DetSensComponent was created. The DetSensComponent must be con-
structed with the DD4hep class Segmentation. In this way the readout segmentation
is provided to the reconstruction geometry. If there is no matching class, the general
DetExtension must be used.

These extensions have to be applied to the DetElement during construction time of
the DD4hep geometry. In the constructors of the various sub detectors of the de-
tector one has to call the template function addExtension() (see Fig 4.2). In the

JfDetector envelope of subdetector

DetElement tracker(det_name, x_det.id(]));

f/7add Extension to Detlement for the RecoGeometry
Det::DetCylinderVolumes detwolume = new Det::DetCylinderVolume({status);
tracker.addExtension=Det::IDetExtension={detvolume);

Figure 4.2: Code snippet, showing how to add an extension to the DetElement at con-
struction time.

ClassicalRecoGeoSvc the extensions are accessed via their interface and can then be
casted into the various types (Fig 4.3).
When an algorithm calls getRecoGeometry () of the ClassicalRecoGeoSvc it first re-

31

Chapter 4 Common Geometry Building

Det::IDetExtension+ ext = detelement.extension=Det::IDetExtension=({);
Det::DetCylinderVolumes detcylindervolume = dynamic_cast=Det::DetCylinderVolumes={ext);

Figure 4.3: Access of the DetExtension in the conversion module, the dynamic cast is
used for distinguishing the different DetElement types.

trieves the DD4hep geometry from the GeoSvc and afterwards calls translateDetector ()
with the world DD4hep: :DetElement as an input parameter. Beginning from this
DetElement volume, at highest hierarchy level, the service scans the modules. At this
stage, the simplification from the full into the reconstruction geometry takes place.

One module (consisting of different components) equals a Surface in the reconstruction
geometry. Within the translation, an approximation of the detector material is needed
in order to describe the material distribution of the components in a two dimensional
grid (class MaterialMap) on every Surface. In every bin of the material map the ma-
terial parameters are calculated as mean values of the parameters of the components in
this bin (see Fig 4.4).:

t t;
S - 4.1
=2 (4.1
t =t
A il 4.2
" ; N (4.2)
o tips
Dz ti
nooa
A= iz pidh (4.4)
Zizl Pi
i1 PiZi
7 = &n;p (4.5)
§:¢:1pz
i Vi
fsens = iz sensi (4.6)

2 i Vi

t...thickness, Xj...radiation length, Ag...interaction length, p...density, A...mass number,
Z...atomic number, fsens...sensitive fraction, fsensV;...fraction of sensitive volume

The density is averaged with the thickness to obtain the right weighting, since the
different components can have different thicknesses. The mass and atomic number are
weighted with p to take into account that the different atoms occur in different quantity
according to their density. The sensitive fraction describes the percentage of the module,
which is sensitive. This is useful for fast simulation, when the energy/charge deposit
within the sensitive detector component has to be simulated. The module surfaces have
to be structurally ordered on a layer in order to allow navigation towards them. For

32

Chapter 4 Common Geometry Building

Module A
30mm x 8.4mm x 0.6mm

-Copper (30.4mm % 8.4mm x 0.2 mm)
-Silicon (15.2mm x 8.4mm x 0.2mm)
-Tungsten (30.4mm x 4.2mm x 0.2mm)

/ Thickness in x0 \ / Thickness in lambda0 \

Figure 4.4: Example for the material approximation of a module consisting of Tung-
sten, Silicon and Copper, on a 2D grid on a Surface of the reconstruction
geometry.

this reason they are sorted and binned in r and ¢ for DiscLayers and in ¢ and z for
Cylinderlayers. It is possible to put more than one surface at one bin — layered in z
for disc layers and layered in r for cylinder layers. A BinnedArray of a vector of surfaces
is handed over to the belonging layer. After the creation of the layers, the functions
binCylinderLayers() and binDiscLayers() order the layers, and generate navigation
layers (class NavigationLayer) in every empty space of the volume. Once the full layer
set of a volume is built, the pointers to the previous and next layers are set. In this
way, navigation is enabled between the layers within a volume. A distinction between
cylinder and disc layers is done, as the layers in the barrel are binned in the r and the
layers in the endcaps are binned in z.

The ordered layers, containing the navigation layers are then handed over to the belong-
ing volume. The aim is to get a tree structure held by the world volume and a navigation
through the entire tracker. A relation between the volumes has to be created. Therefore
the volumes are grouped together in ContainerVolumes. Beginning from the lowest
hierarchy, the volumes are grouped alternating in r and in z and the pointers to the
next/previous volumes are set during this phase (see Fig 4.5). Finally, the pointers to

33

Chapter 4 Common Geometry Building

the beam tube are set. For enabling this translation a few assumptions had to be met.
For example one convention for this translation type is, that every sub-volume consists
of a barrel and two endcap volumes. All volumes must be attached to each other with
no empty space in-between and the barrel of the next hierarchies surrounds the whole
sub-detector of the last. The list of conventions to use the current implementation of

B2

nE2 nE1 B1 pE1 pE2

B2

Figure 4.5: The embedding of volumes, enabling navigation between the volumes by

setting the pointers of the boundary surfaces to the next/previous volumes.

the ClassicalRecoGeoSvc is given below (at the moment this translation was made for
a simple prototype and will be extended for more complex detector types):

every hierarchy of a sub-detector is composed of one barrel and two endcaps

the detector has to be symmetric around the origin (barrel is placed at zero, one
endcap at positive, the other at the negative side)

all volumes have to be exactly attached to each other, with no empty space in-
between (whereas the volumes can be empty)

one must also create a beam pipe
every endcap volume is attached to the beam pipe

every detector has to have the tree like structure, composed of volumes, layers,
modules and components, shown in Fig 4.1

volumes have to surround the layers, the layers have to surround the modules and
the modules have to surround their components

In the detector constructor every DetElement has to be extended by its proper
extension (see Fig 4.2)

34

Chapter 4 Common Geometry Building

Currently only box and trapezoid shapes for modules and components and cylinders for
volumes are implemented in the reconstruction geometry and the translation mechanism.
The translation also offers the possibility to place as many hierarchies, layers, modules
and components as wanted. The components can be rotated against each other and it
is also possible to stagger modules over each other in one layer.

4.2 A Test Tracker

To test the first setup of the framework and the translation between the different ge-
ometries a test tracker was build. Since the development of the FCC detector designs
are still in progress, a general tracker design, has been chosen. This model can later be
replaced by a specific tracker design.

The current structure of the first tracker model is built from a barrel and two endcaps.

Figure 4.6: A first simple test tracker composed of two hierarchies of barrel with its
corresponding endcaps an a beam tube. The detector modules are composed
of three components: Silicon (red), Carbon(yellow) and Aluminium (violet).

This structure is embedded into another barrel-endcap setup. An arbitrary number of
barrels with endcaps can be nested into each other, with the implemented translation
mechanism.

Each barrel is centered at the origin, hence, the endcaps are placed accordingly on the
negative/positive side of the barrel. A beam tube, placed innermost inside all volumes,
is also part of the model.

Five cylindrical layers are placed concentrically inside each barrel. The endcaps consist
of four disc layers, placed along the z-axis. The number of layers, inside the volumes is
arbitrary.

The layers are filled with modules, which are composed of an arbitrary number of com-
ponents. Currently, the modules in the cylindrical layers are chosen to be simple box
volumes, composed of three box-shaped components and the modules in the disc layers
are trapezoid volumes, with trapezoidal components.

35

Chapter 4 Common Geometry Building

4.3 Geometry Build & Validation

In order to check the geometrical structure, a simple test algorithm was written. Begin-
ning from the center of the detector, straight line trajectories in an arbitrary direction
are calculated through the detector, using the internal navigation of the reconstruction
geometry to intersect layers and sensitive surfaces, using the guiding technology of the
boundary surfaces to move from one volume to the next. Whenever a geometrical node
of the reconstruction geometry is intersected, the material is retrieved and recorded.
Since this resemble to tracking the particle through the detector of the full simulation
by Geant4, a comparison of the geometry used for full and fast simulation can be done.
At first, a comparison of the traversed path through the detector components can be
seen in Fig 4.7.

=
o 12—
EJ B T -
= [Fvs reconstruction geometry
© L -
= 1 $ full geometry
N r
08—
- ")
— \".‘ | |
06—
u * . |
- K ls
— - 4
04— B .
g g o o
o ’ - >
0.2 _— L
G B 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
4 3 2 -1 0 1 2 3 4
n
o 2
s
15—
1+—‘+| I|-!-| | e ||| J—
P AEEREE S E AN
05
0 L] 1 1 L 1
-4 2 1 1 5 1
3 0 3 i

Figure 4.7: Comparison of the path length through the detector as seen by the full and
the fast simulation.

In Fig 4.8 the comparison of the DD4hep geometry, displayed with ROOT, with the
geometries retrieved for the fast simulation (reconstruction geometry) and the Geant4

36

Chapter 4 Common Geometry Building

geometry is shown. These are hit plots as well. Everytime a module was hit the posi-
tion was written out in a file. Afterwards this points where displayed with ROOT and
compared with the DD4hep geometry.

Figure 4.8: Comparison of the DD4hep geometry, with hit plots of the geometries used
for fast and full simulation.

Figure 4.9 shows the structure of the detector in the reconstruction geometry, by printing
out the position whenever a module, a layer or a boundary surface was hit.

4.3.1 Comparison of Material Budget

A further test compares material seen in the full simulation and in the fast simulation. A
coherent description of the material in the reconstruction geometry is not only essential
for controlling the occuring disturbance/noise terms in reconstruction, but is inevitable
for using the reconstruction geometry as the basis of fast simulation. A Gaudi algorithm
retrieves the DD4hep geometry and the Geant4 geometry over the GeoSvc and invokes
detector building in the reconstruction geometry with the ClassicalRecoGeoSvc. After-
wards it invokes a small Geant4 simulation and a simulation through the reconstruction
geometry. Both simulations are stepping through their detector and writing out the

37

Chapter 4 Common Geometry Building

sqri{x*x+y"y)
»

Figure 4.9: Hit plot of the reconstruction geometry, done by straight line intersection
with the modules (black), the layers (blue) and the boundary surfaces (pink),
displayed in r over z.

thickness in units of the radiation length over 1. The results are displayed in ROOT
and compared (see Fig 4.10).

The slight discrepancy between the thickness in terms of radiation length passed in the
full simulation and passed in the fast simulation occurs due to the use of different inter-
nal material parameter definitions. The fast simulation is build from the TGeo geometry
of ROOT and uses the material parameters defined in ROOT, while the full simulation
uses the Geant4 geometry and the definitions defined in the Geant4 environment. The
difference occurs beginning from the third decimal place which allows a rather good
agreement for low eta, however the more modules are passed the greater the error gets
and therefore grows with 7. A possibility to avoid this effect would be to turn off the
automatic search of material given by name in the geometry conversion from DD4hep
to Geant4 (Geant4Converter) and to create completely new materials with the given
ROOT parameters.

38

Chapter 4 Common Geometry Building

%,

0.08 t

0.06

0.04—)

0.02—

ratio

15—

reconstruciion geametry

full geometry

05—

1
FHF

2 3 4
n

Figure 4.10: Comparison of the thickness in terms of radiation length seen from the full
and the fast simulation. The slight dicrepancy between the thickness in
terms of radiation length passed in the full simulation and passed in the
fast simulation occurs due to the use of different internal material parameter
definitions in the different simulation environments.

39

Chapter 5

Towards a Fast Track Simulation

As outlined in Section 1.2, full simulation is often too CPU and work intensive for test-
ing reasons or if large statistics samples are needed for certain studies. Therefore fast
simulation approaches are essential. One possibility to speed up the simulation, is to
simplify the geometry.

The reconstruction geometry uses a simplified geometry, describing the detector mod-
ules as infinitesimal thin surfaces and the material approximately on this surface. The
reconstruction geometry is directly translated from the full DD4hep geometry and is
thus changed accordingly to the geometry used for full simulation. A navigation to fol-
low the particle through the detector and enable material effects in the reconstruction
has been implemented. Given these advantages, it is only natural to implement a fast
simulation based on the reconstruction geometry. Furthermore, this fast simulation can
easily create data formats that are directly usable for the reconstruction, making an easy
integration in the simulation chain (see Fig 1.2) possible.

In this Chapter the basic concepts of the fast simulation based on the reconstruction
geometry are explained and first results are shown.

5.1 Navigation of Geometry

To run a simulation, a navigation to emulate particles traversing through the detector
is essential. The purpose of the navigation is to create relations between the different
volumes, layers and surfaces so that first a continuous movement through the detector is
possible. Second, every geometrical object can be accessed at every point allowing the
simulation to start at any given point in the detector.

The navigation through the detector is enabled by two basic concepts:

1. Volumes are bordered by BoundarySurfaces (see Section 3.5). These boundary
surfaces point to their next and previous volumes.

2. Volumes are fully packed with layers — either filled with detector surfaces or empty,
only implemented for navigation reasons. These layers point to their next and
previous layer and enable navigation within one volume.

To access a surface at every given point in the detector, the surfaces are ordered with a
BinnedArray (Section 3.2) in a layer. The BinnedArray makes a grid on the layer and

40

Chapter 5 Towards a Fast Track Simulation

stores the surfaces according to their position, to access the correct surfaces at every
point on the layer. With the same principle the layers are stored in the volumes and
the volumes itself are stored in container volumes. In the end one can access the whole
geometry through one top ContainerVolume. The container volumes, the volumes and
the layers have methods implemented to access their stored elements at every point.

5.2 Fast Simulation Principle

Using the navigation between volumes, layers and detector surfaces, the simulation mim-
ics the straight particle trajectory through the detector and the intersections with the
sensitive material can be used as hit creation.

After the world detector volume is accessed over the IRecoGeoSvc interface, the volume
at a specific start point (point of interaction) can be accessed. Afterwards all layers of
this volume, which contain detector modules can be accessed beginning from a certain
point in a given direction. By intersecting in a straight line with the layers, the point
where the layer will be hit can be extracted. This is possible due to the fact, that the
Layer classes are implemented as Surfaces as well. This point is then used to retrieve
the surfaces which can possible be hit by this track — the surface at this specific point,
plus the surrounding surfaces. Once this surfaces are retrieved, a straight line intersec-
tion can be applied and hits can be created.

If the end of the current volume is reached, the next volume is reached by making
straight line intersections with the boundary surfaces of the volume and asking the re-
trieved BoundarySurface for the next Volume. In Fig 5.1 the number of Hits created by
the fast simulation, compared with the full simulation can be seen. When the straight
line intersection is, at later stage, replaced with a proper numerical field integration
and material interactions are simulated according to the traversal amount of material,
a rather realistic hit simulation is obtained.

5.3 Monte Carlo Based Material Effects

When a particle traverses through matter it interacts with the atoms of the material.
Relying on the material, the interaction causes deflection of the particle, energy loss or,
hadronic processes can lead to the destruction of the particle if the interaction is nuclear.
Depending on the particles mass, charge and energy it interacts with the electron shell
and can interact with the atomic nuclei. This can lead to excitations, ionization of the
material, secondary particle production and radiation losses. The particle loses energy
caused by these processes and will be scattered according to the atomic structure of the
material [11].

41

Chapter 5 Towards a Fast Track Simulation

5.3.1 Multiple Scattering

When the particle passes through the material it will be scattered many times by just
small angles, depending on the energy of the particle, it can sum up to a rather big
displacement. The main contribution is from coulomb scattering between the particle
and the nuclei of the material.

In approximation for very thin surfaces and for a first simple test, only the multiple
scattering was taken into account of all material interactions. For a test setup the func-
tion materialInteraction() was applied to the Surface class. This function changes
the direction according to the scattering angle of the particle. The Code was taken from
ATLAS and adapted. The underlying process is described by the Highland scattering
formula [26].

The projected angular distribution is described by:

13.6MeV t t
Oy = ————2z4/ yo[l 4+ 0.038 ln(f)] (5.1)

Bep 0

where fc,p and z describe the velocity, the momentum and the charge of the incident
particle and XLO is the thickness in terms of radiation length.

One can compare the final location of a deflected particle on a Surface, with a not de-
flected particle. The resulting deviations of a statistic sample is described by a gaussian
distribution. In Fig 5.2 some of these are plotted in one graph for different transverse
momenta. The higher the initial energies, the less the particle is deflected. The corre-
sponding standard deviations are plotted in Fig 5.3.

42

Chapter 5 Towards a Fast Track Simulation

Hits

16
14
12— ' 11

- & er T AT 4 N‘.
10— . o L lfll

- -

fast simulation

full simulation

0 1 1 1 | 1 1 | 1 1 1 | 1 1 1 | 1 1 | 1 1 1 1 1 1 1 | 1 1
4 3 2 -1 0 1 2 3 4

ratio

Figure 5.1: Comparison of the number of hits seen from the full and the fast simulation.
Full simulation is done using Geant4, while fast simulation is based on the
reconstruction geometry and uses the embedded navigation to intersect the
sensitive detector modules.

43

Chapter 5 Towards a Fast Track Simulation

% 50000 — |
2 L 15 000 MeV
® L [] 5000 Mev
L 2000 MeV
40000 — 1000 MeV
B [] 500Mev
L [] 250 Mev
L 100 MeV
30000 —
20000 —
10000 — |
ol O PSRN ol Ml = et S R
-0.1 -0.05 0 0.05 0.1
AR

Figure 5.2: Residual distributions of 100 000 events for muons with different energies.

04

0.3

\|F\\\‘\II’I‘

0.2

0.1

1 ‘ | 1 ‘ 1 | | | | | ‘ | 1 | | | | | 1
0 2000 4000 6000 8000 10000 12000 14000 16000
P, [MeV]

Figure 5.3: Standard deviations of the residual distributions of 100 000 events for muons
with different energies.

44

Chapter 6

Summary and Outlook

A coherent framework which allows to run full, fast and parametric simulation from a
single source of detector description and one configuration setup was established and
successfully tested. Gaudi is used as event processing framework and the framework
can be steered for all different simulations from a job configuration file. DD4hep is
used for the geometry description and is provided in the different geometries needed by
the simulations and the reconstruction. A simplified geometry for reconstruction and
fast simulation purposes was implemented. The approximation of the material and the
translation into this geometry from the full DD4hep geometry is done by an automated
transcript. The reconstruction geometry uses the same readout segmentation as the
DD4hep geometry to guarantee consistency.

Currently a more flexible translation from the DD4hep geometry into the reconstruction
geometry is in development. It allows to adapt support tubes, which give structural
support to the tracker and are needed to build a realistic tracker. Furthermore the tracker
can be created more flexible — not every hierarchy needs to have the same structure.
A new feature in DD4hep which allows to assign detector elements together to a sub
hierarchy (so-called nested detectors), allow this more flexible realization. Along the way
a more realistic tracker design will be introduced, following the first suggestions for the
dimensions of a FCC tracker.

The next steps for the fast simulations will be to apply a magnetic field. This will
be done by the creation of a magnetic field service, which returns the magnetic field
at the requested position. The magnetic field map will currently be read in from a
file. In this way charged particles will form curved tracks and it is possible to calculate
their momentum. A transportation tool will also be applied from the LHC experiments,
taking multiple scattering, energy loss and magnetic field into account.

An adaption of the reconstruction algorithms for the use in the FCC software suite is
foreseen as a further step to find particle tracks and in the end identify the particle.

A further future prospect would be an expansion of the fast simulation for a use in
calorimeters.

45

Bibliography

[10]
[11]
[12]

LHC webpage. http://home.web.cern.ch/topics/large-hadron-collider.
ATLAS webpage. http://atlas.ch.

CMS webpage. http://cms.web.cern.ch.

LHCb webpage. http://lhcb.web.cern.ch/lhcb.

LEP webpage. http://home.web.cern.ch/about/accelerators/large-electron-
positron-collider.

FCC webpage. http://cern.ch/fcc.

F. Zimmermann M. Benedikt. Future Circular Collider (FCC) Study, 2015.
https://indico.cern.ch/event /352487 /material /slides/1.pdf.

F. Gianotti. FCC-hh Workshop: 26-28 May, Introduction, May 2014.
http://indico.cern.ch/event /304759 /contribution /0 /attachments/577941 /795902
/FCChh-WS.pdt.

Torbjorn Sjostrand. PYTHIA 8 webpage, 2014. http://home.thep.lu.se/ torb-
jorn/pythia81html/Welcome.html.

HEWRIG webpage, 2014. https://herwig.hepforge.org.
H. Leeb H. Abele. Atom-, Kern- und Teilchenphysik 2. Vorlesungsskript, 2014.

The ATLAS Collaboration. Charged-particle multiplicities in pp interac-
tions measured with the ATLAS detector at the LHC , December 2010.
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2010-06.

The ATLAS Collaboartion. The simulation principle and performance of the AT-
LAS fast calorimeter simulation FastCaloSim, October 2010. ATL-PHYS-PUB-
2010-013.pdf.

W. Lukas, editor. Fast Simulation for ATLAS: Atifast-II and ISF. The ATLAS
Collaboration, IOP Science, 2012. ATL-SOFT-PROC-2012-065.

The ATLAS Collaboration. Data m/c comparison for
calorimeter shower shapes of high et electrons, October 2011.
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/EGAMMA /PublicPlots
/20111005/ ATL-COM-PHYS-2011-1299 /index.html.

46

[16]

[17]

[18]
[19]

[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

Bibliography
E. Ritsch. ATLAS Detector Simulation in the Integrated Simulation Framework
applied to the W Boson Mass Measurement. PhD thesis.

P. Maley M. Cattaneo. Gaudi Users Guide, 2001. http://lhcb-
comp.web.cern.ch/lhcb-comp /Frameworks/Gaudi/Gaudi,9/GUG /GUG .pdf.

DD4hep webpage. http://aidasoft.web.cern.ch/DD4hep.

DD4hep manual. http://svnsrv.desy.de/viewve/aidasoft /DD4hep/trunk /doc
/DD4hepManual.pdf.

DD4hep DDcore. https://svnsrv.desy.de/public/aidasoft/DD4hep/trunk/DDCore.
ROOT webpage. https://root.cern.ch.
Geant4 webpage. https://geant4d.web.cern.ch/geant4.

Geant4 User’s Guide: For Application Developers.
https://geant4.web.cern.ch /geant4.

Twiki page for FCC EDM. https://twiki.cern.ch/twiki/bin/viewauth/FCC /Fcc-
SoftwareEDM.

M. Wolter A. Salzburger, S. Todorova, editor. The ATLAS Tracking Geometry
Description. The ATLAS Collaboration, CERN, 2007. ATL-SOFT-PUB-2007-004.

K.A.Olive, editor. Passage of particles through matter 1. PDG - Particle
Data Group, 2014. http://pdg.lbl.gov/2014 /reviews/rpp2014-rev-passage-particles-
matter.pdf.

J. Beringer, editor. Kinematics. PDG - Particle Data Group, 2012.
http://pdg.1bl.gov /2013 /reviews/rpp2012-rev-kinematics.pdf.

47

