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Abstract

Electric vehicles represent a promising alternative to traditional internal combustion

engine vehicles that might support the attainment of settled climate and energy targets.

The widespread adoption of electric vehicles is complicated, however, by their need for

frequent recharging and the rather long charging duration. Moreover, charging facilities

are still relatively scarce and power constraints imposed by the electric grid have to be

respected.

We consider the problem of scheduling the recharging of a fleet of electric vehicles at

multiple facilities with limited resources. The goal is to recharge as many vehicles as

possible. Every vehicle that is scheduled for charging needs a parking spot during the

entire time of its stay and shall be recharged as much as possible before departure.

Facilities only have a limited number of parking spots and charging machines and a

limited amount of power available for charging. Machines can work at several charging

rates, but higher ones should be avoided, since they reduce battery lifetime more.

First, we formulate this problem as a mixed-integer programming (MIP) model, which

is a standard approach for discrete optimization problems. Moreover, a simple greedy

heuristic, which quickly finds a feasible solution, is presented.

The main objective of this thesis is to investigate an alternative method for solving the

problem. The so-called logic-based Benders decomposition solves optimization problems

iteratively on basis of systematic trial and error. For this purpose, the problem is

decomposed into a master and a subproblem. In every iteration, the master problem

assigns trial values to some of the variables. Assuming those fixed, optimal values of

the remaining variables are determined in the subproblem, which should be much easier

to solve than the original one. From the subproblem solution we deduce constraints

that are added to the master problem, in order to obtain better trial values in the next

iteration.

Logic-based Benders algorithms for two different decompositions of the considered prob-

lem are formulated. The subproblems of the first one are mere feasibility problems,

while in the second one they are optimization problems as well. Additionally, heuristic

boosting strategies are proposed, in which either the master or subproblems are solved

heuristically.
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The evaluation of all algorithms on randomly generated test instances shows that the

MIP model and the first decomposition work quite well. On instances with homogeneous

facilities and enough resources available, the first Benders algorithm often terminates

after a few iterations and achieves far better results than the compact MIP model. On

the other hand, the MIP model frequently has a shorter runtime on instances with other

specifications. The second decomposition shows a rather bad performance. In many

cases, the algorithm does not find an optimal solution within the time limit. Heuristic

boosting leads to an improved runtime on some instances, but for most offers no real

advantage. Regarding larger instances, the MIP model cannot be solved at all due

to high memory requirements, while the logic-based Benders algorithms at least return

bounds on the optimal value. The first Benders algorithm even finds an optimal solution

on many of the larger instances.
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Kurzfassung

Elektrofahrzeuge stellen eine vielversprechende Alternative zu herkömmlichen Fahr-

zeugen mit Verbrennungsmotor dar und könnten dabei helfen, die gesetzten Klimaschutz-

und Energieziele zu erreichen. Der großflächige Umstieg wird jedoch dadurch erschwert,

dass sie häufig aufgeladen werden müssen und das Laden relativ lange dauert. Außer-

dem gibt es noch immer wenige Ladestationen, und auch die begrenzten Netzkapazitäten

müssen berücksichtigt werden.

Wir betrachten das Problem, einen optimalen Plan für das Aufladen einer Flotte von

Elektrofahrzeugen bei mehreren Elektrotankstellen mit begrenzten Ressourcen zu finden.

Das Ziel ist, so viele Fahrzeuge wie möglich aufzuladen. Jedes Fahrzeug, das einer

Tankstelle zugewiesen wird, benötigt während seines gesamten Aufenthalts einen Park-

platz und soll vor seiner Abfahrt so weit wie möglich aufgeladen werden, wobei ein

minimaler Energiebedarf erfüllt werden muss. Die Tankstellen haben nur eine begren-

zte Anzahl an Parkplätzen und Ladestationen zur Verfügung, und auch die verfügbare

Energie ist beschränkt. Die Ladestationen können mit verschiedenen Raten betrieben

werden. Höhere Raten sollten jedoch vermieden werden, da sie die Lebensdauer der

Batterien stärker beeinträchtigen.

Als Erstes formulieren wir dieses Problem als ein gemischt-ganzzahliges lineares Opti-

mierungsproblem (engl. mixed-integer programming, MIP), was eine Standardmethode

für diskrete Optimierungsprobleme darstellt. Des Weiteren wird ein einfacher Greedy-

Algorithmus präsentiert, der sehr schnell eine gültige heuristische Lösung findet.

Das Kernziel dieser Diplomarbeit ist, eine alternative Lösungsmethode für das Pro-

blem zu untersuchen. Die so genannte logikbasierte Benders-Dekomposition löst Op-

timierungsprobleme iterativ auf Grundlage von systematischem Versuch und Irrtum.

Dazu wird das Problem in ein Master- und ein Subproblem zerlegt. Im Masterproblem

werden in jeder Iteration einigen der Variablen Versuchswerte zugewiesen. Im Bezug

auf diese Zuordnung werden dann im Subproblem optimale Werte für die restlichen

Variablen bestimmt. Dieses sollte deutlich einfacher zu lösen sein als das ursprüngliche

Problem. Aus der Lösung des Subproblems werden Bedingungen abgeleitet, die in das

Masterproblem eingefügt werden, um in der nächsten Iteration bessere Versuchswerte

zu bestimmen.

Wir formulieren logikbasierte Benders-Algorithmen für zwei verschiedene Dekomposi-

tionen des betrachteten Problems. In den Subproblemen der ersten Zerlegung muss
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nur eine gültige Lösung gefunden werden, während es sich bei der zweiten Dekompo-

sition auch hier um ein Optimierungsproblem handelt. Zusätzlich werden heuristische

Beschleunigungsstrategien für die Benders-Algorithmen vorgestellt, bei denen entweder

die Master- oder Subprobleme heuristisch gelöst werden.

Die Evaluierung der Algorithmen auf zufallsgenerierten Testinstanzen zeigt, dass das

MIP-Modell und die erste Zerlegung recht gut funktionieren. Auf Instanzen mit gleich-

artigen Tankstellen und ausreichend verfügbaren Ressourcen terminiert der Benders-Al-

gorithmus oft schon nach wenigen Iterationen und erzielt deutlich bessere Ergebnisse als

das kompakte MIP-Modell. Andererseits hat das MIP-Modell auf Instanzen mit anderen

Spezifikationen häufig eine kürzere Laufzeit. Die zweite Dekomposition weist ein relativ

schlechtes Verhalten auf. In vielen Fällen findet der Algorithmus keine optimale Lösung

innerhalb der vorgegebenen Zeit. Die heuristischen Beschleunigungsversuche führen auf

manchen Instanzen zu verbesserten Laufzeiten, bringen für die meisten aber keinen

wirklichen Vorteil. Auf den größeren Instanzen kann das MIP-Modell wegen des hohen

Speicherbedarfs gar nicht gelöst werden, während man durch die logikbasierten Benders-

Algorithmen zumindest Schranken für den optimalen Wert erhält. Der erste Benders-

Algorithmus findet sogar für viele der größeren Instanzen eine optimale Lösung.
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Kritik haben sie einen großen Teil zum Gelingen dieser Arbeit beigetragen.
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Chapter 1

Introduction

1.1 Motivation and Background

Creating a sustainable environment has become a prominent issue around the world and

poses great challenges to our current society. The attainment of settled climate and

energy targets requires a contribution from all existing economic sectors. The trans-

portation sector can support this aim by deployment of alternative propulsion systems

for both passenger and transport vehicles. Dargay [9] estimates an increase from about

800 million vehicles worldwide in 2002 to over 2 billion in 2030. This will intensify en-

vironmental problems regarding the emission of pollutants and greenhouse gases as well

as dependence on fossil fuels. [18]

To address these issues, electric vehicles (EV) could represent a promising alternative

to traditional internal combustion engine vehicles. The electrification of transporta-

tion would reduce both fuel consumption and emissions, and also improve air quality,

particularly in urban areas. [10]

In Austria, road transport consumes 91% of the total energy used in the transportation

system. Therefore, a large-scale EV penetration in road transport would imply a sig-

nificant reduction of emissions. A complete substitution of passenger cars with electric

vehicles charged with renewable energy would result in an emission reduction of about

75% (93 million tons of carbon dioxide equivalent). [18]

The main disadvantage of electric vehicles compared to conventional ones is their still

quite limited cruising range, resulting in the need of frequent recharging [21]. More-

over, the battery charging process takes significantly longer than refueling an internal

combustion engine vehicle. Furthermore, recharging facilities are still relatively scarce
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and have a limited number of charging stations, and power constraints imposed by the

electric grid have to be respected. [4]

Therefore, charging stations must be used efficiently. At public facilities one possibility

is to allow customers to reserve a charging station during or before their trip. Knowing

the planned parking duration and required amount of energy of all vehicles arriving in

the near future, the charging service provider can schedule the charging times and rates

efficiently, respecting the constraints imposed by the limited resources and satisfying as

many customers as possible. [5]

Also companies with a fleet of electric vehicles with known routes and timetables, e.g., a

public transportation company or a carrying business, could optimize the use of available

charging stations by scheduling the recharging of vehicles efficiently.

The focus of this work is the scheduling task that has to be completed in this kind of

scenarios.

1.2 Problem Description

We consider the problem of scheduling the recharging of a fleet of electric vehicles. Multi-

ple charging facilities, to which the vehicles might be assigned, are available. Figure 1.1

illustrates the scenario. From the point of view of a customer it makes no difference

to which facility his or her vehicle gets allocated, since it is assumed that all facilities

can be reached in about the same time. At the facility it was assigned to, each vehicle

requires a free parking spot during the entire time of its stay and needs to be scheduled

at a free charging station. Each vehicle must be recharged with some minimum amount

of energy, in order to enable it to reach its next destination.

Scheduling the electric vehicles assigned to a facility, one must respect the constraints

resulting from the resource limits. Each facility has a distinct number of parking spots

and charging stations. There are at least as many parking spots available as charging

stations. Moreover, the facility’s power limit has to be respected at all times.

Vehicles can be charged with different rates. It is assumed that all charging machines are

identical, which means that they offer the same choice of charging rates. Higher rates

result in shorter charging durations but they reduce battery lifetime more. Therefore,

they should be used more carefully.

The aim is to find a recharging schedule that satisfies as many customers as possible,

while respecting all constraints.
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Figure 1.1: Electric vehicles get assigned to different charging facilities, each with an
individual number of available parking spots and charging stations.

1.3 Related Work

Planning, coordinating and scheduling the recharging of electric vehicles has received

much attention in the last years and a lot of work has been done in the field.

Many authors focus on the influence the large-scale adoption of electric vehicles would

have on the electric grid and propose scheduling methods in order to avoid grid conges-

tion and to minimize the cost of electricity. Clement et al. [7] consider the charging of

multiple electric vehicles at home and the impact on the residential network. While un-

coordinated power consumption can lead to grid problems, the coordination of charging

can improve power losses and voltage deviations by flattening out peak power. In the

model each vehicle is associated with one of four charging periods during the day at the

end of which it must be fully recharged. Sundström and Binding [20] try to find the

optimal charging schedule for a fleet of vehicles with given connection times and energy

demands, while respecting the grid capacity and minimizing the total cost of electricity.

Sánchez-Mart́ın and Sánchez [19] focus on the optimal management of recharging elec-

tric vehicles at parking garages. A control system is defined that manages the power

capacity and decides when each vehicle should start charging. The impact of the sys-

tem on the total cost is analyzed, taking into account hourly energy prices, daily power

capacity prices and non-supplied energy penalties.

Other works also take into account the possibilities offered by a smart grid. Here,

vehicles not only take power from the grid by charging their batteries, but are also able

to send electricity back into the grid by so-called vehicle-to-grid (V2G) operations. Mal
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et al. [15] propose an algorithm that effectively schedules recharging and V2G operations

in order to save cost and reduce peak loads. To maximize profit, the algorithm chooses

intervals with a cheap electricity price to charge a vehicle and intervals with a high price

to send energy back into the grid. Before departure, the vehicle’s energy demand must

be fulfilled. Zakariazadeh et al. [24] also consider a smart distribution system allowing

charging and discharging of electric vehicles. Their scheduling model not only includes

technical constraints and profit optimization, but also aims to reduce the emission of air

pollutants.

All of the previous models assume that a vehicle is connected to the electric grid during

the whole parking time and, therefore, only schedule the time and rate of recharging.

They did not consider the number of available charging stations as a limited resource.

Timpner and Wolf [21] focus on the efficient use of scarce charging resources rather

than the impact on the power grid. They propose different scheduling algorithms for

assigning charging stations upon request, taking the specific requirements of the driver

into account. Also, Qin and Zhang [16] want to improve travel efficiency and driver

comfort. They aim to minimize the charging waiting time. To achieve this goal, charging

stations are networked and collaborate. Vehicles interact with charging stations when

approaching them to determine where they should be charged next.

Bessler and Grønbæck [3] also address the efficient operation of a public charging facil-

ity. In contrast to other works, they associate a parking time window with each vehicle

during which it needs a parking place and recharging has to be completed. Under the

assumption that all charging machines are identical, the problem can be split into two

subproblems. First, vehicles are allocated to charging machines that they occupy during

their whole parking time window, which can be done optimally by a greedy heuristic.

Then, the recharging of vehicles is scheduled during the time windows, selecting a charg-

ing rate and a starting time for each vehicle while respecting a given power limit at all

times. After the allocation step, this can be done independently at each charging sta-

tion, reducing the task to a one machine problem. Different methods for solving this

problem have been analyzed by Bučar [4, 5].

This thesis considers a scheduling task that is similar to the problem formulated by

Bessler and Grønbæck [3] but generalizes it in several ways. Instead of scheduling

vehicles at a single charging facility with a common power limit for all charging stations,

vehicles can be allocated to different facilities, each with a specific power limit and

number of charging stations. As a result, the problem cannot easily be split into an

allocation and a scheduling part. Additionally, this work makes a distinction between

parking and charging spots. Every facility has a number of parking spots, but there are

sometimes less connection possibilities for recharging. Each vehicle needs a free parking
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spot during the entire time of its stay, whereas it only occupies a charging station

when being currently recharged. Another generalization is that vehicles do not have a

fixed energy demand that must be fulfilled, but rather an interval of possible amounts of

energy they might be charged with. Instead of merely maximizing the number of fulfilled

charging requests, we aim to optimize the amount of energy a vehicle gets charged with.

As in [3], high charging rates are avoided. This is, however, not done by including this

goal in the objective function, but by defining limits for the number of vehicles allowed

to be charged with a specific rate per facility.

To our knowledge, the problem considered in this thesis and described in more detail in

chapter 3 is formulated and studied for the first time.

1.4 Objectives

The objectives of this work are:

• Introducing the Electric Vehicles Recharge Scheduling Problem and formulating it

as a MIP model.

• Describing logic-based Benders decomposition and applying it to the problem.

• Heuristic boosting of the logic-based Benders algorithms.

• Evaluating the algorithms on different sets of test instances.

1.5 Thesis Outline

The thesis is organized in the following way:

• Chapter 2 introduces all methods and modeling techniques used in this work. This

includes linear and integer programming as well as Benders decomposition with a

special focus on its generalization to logic-based Benders decomposition.

• In Chapter 3 the Electric Vehicles Recharge Scheduling Problem (EVRSP) stud-

ied in this thesis is formulated, first in a general way, then as a mixed-integer

programming model. Subsequently, a simple greedy heuristic to solve the problem

is presented.

• Chapter 4 focuses on the application of logic-based Benders decomposition to the

EVRSP. Two different decompositions are presented and described in detail.
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• Chapter 5 proposes an approach for heuristic boosting of the logic-based Benders

algorithms and explains the necessary adaptations.

• Chapter 6 gives details of the implementation of the algorithms, describing how

this can be done efficiently.

• In Chapter 7 the results of computational experiments, which were conducted on

different sets of randomly generated instances, are presented and analyzed.

• Finally, Chapter 8 provides a summary of the thesis and discusses possible future

work.



Chapter 2

Methods

In this thesis two different methods are applied to the problem of scheduling the recharg-

ing of electric vehicles, which is formulated in detail in Chapter 3. Mixed-integer

programming (MIP) is a powerful modeling framework for discrete optimization prob-

lems [2]. As it has become a standard modeling tool, various commercial solvers are

available. Benders decomposition [1] was proposed for large MIP problems of a special

structure. The idea was extended to logic-based Benders decomposition (LBD) [13] that

allows a much larger class of problems including combinatorial optimization problems.

Both modeling techniques are introduced in this chapter.

2.1 Linear and Integer Programming

We give a short introduction to the concepts of linear and integer programming. The

first two sections are mainly based on the book of Bertsimas and Tsitsiklis [2], and the

third one on the book of Wolsey [22].

2.1.1 Linear Programming

In a linear programming (LP) problem, or linear program, the goal is to maximize or

minimize a given linear function, called the objective function, subject to a set of linear

equality and inequality constraints.

In particular, let x = (x1, x2, ... , xn)T ∈ Rn be the vector of variables of the problem

whose values shall be assigned in an optimal way. They are referred to as decision

variables. A given cost vector c = (c1, c2, ... , cn)T ∈ Rn defines the objective function

7
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cTx =
∑n

i=1 cixi. Every constraint is defined by a vector a ∈ Rn and a scalar b ∈ R and

has one of the following forms:

aTx =
n∑
i=1

aixi ≤ b, aTx =
n∑
i=1

aixi = b or aTx =
n∑
i=1

aixi ≥ b.

A vector x satisfying all constraints is called a feasible solution. The aim is to find an

optimal solution, i.e., a feasible solution x∗ which, depending on the problem, maximizes

or minimizes the objective function.

An equality aTx = b can be reformulated with two inequality constraints aTx ≤ b and

aTx ≥ b. On the other hand, any constraint of the form aTx ≥ b can be rewritten as

−aTx ≤ −b. Hence, the feasible set of a linear program can be formulated only with

inequalities of the form aTx ≤ b. Moreover, minimizing an objective function cTx is

equivalent to maximizing −cTx.

Suppose that there are m inequality constraints aTi xi ≤ bi, indexed by i = 1, ...,m. Let

b = (b1, b2, ... , bm)T and let A be the m × n matrix whose rows are the vectors aTi . It

follows from the remarks above that every linear program can be written compactly as

maximize cTx

subject to Ax ≤ b.
(2.1)

Regarding the solution of linear programs, various effective algorithms have been for-

mulated. The most prominent one is the simplex method developed by Dantzig [8]. It

is incorporated in most commercial linear programming solvers. Although the simplex

method itself has in principle exponential worst case runtime, modern implementations

are highly efficient in practice. There are also polynomial time algorithms for linear

programming, e.g., the ellipsoid method [14] or so-called interior point methods [23].

2.1.2 Duality

Every linear program can be associated with a related linear program, called its dual.

Consider the linear program (2.1), which we will refer to as primal problem. Let x∗ be

an optimal solution, which is assumed to exist. Replacing the set of constraints Ax ≤ b

with a penalty term −uT(Ax − b) in the objective function, where u ≥ 0 is a price

vector, leads to a relaxed version of the problem:

maximize cTx− uT(Ax− b)

subject to u ≥ 0.
(2.2)
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The optimal cost g(u) of the relaxed problem, as a function of the price vector u,

represents an upper bound on the optimal cost cTx∗ of the primal problem, since x∗ is

a feasible solution to (2.1) and thus (Ax∗ − b) ≤ 0:

g(u) = max
x

cTx− uT(Ax− b) ≥ cTx∗ − uT(Ax∗ − b) ≥ cTx∗.

The dual problem then consists in searching for the tightest upper bound of this type.

For g(u) we further get

g(u) = max
x

cTx− uT(Ax− b) = uTb + max
x

(cT − uTA)x.

Minimizing g(u), we can omit those values of u for which (cT − uTA) 6= 0, because

the respective g(u) is equal to ∞. Therefore, the dual problem of (2.1) can be simply

written as

minimize uTb

subject to uTA = cT

u ≥ 0.

(2.3)

The strong duality theorem states that if a linear program has an optimal solution, so

does its dual, and the respective optimal costs are equal (for a proof see [2]).

2.1.3 Integer Programming

A wide range of real-world problems could be formulated as linear programs, except

that in many cases we would have to add the restriction that some or all of the variables

must be integers. These problems are referred to as integer programs.

Similarly to the linear programming formulation (2.1), any general integer program can

be written as

maximize cTx + dTy

subject to Ax +By ≤ b

y integer,

(2.4)

where x is the vector of real decision variables and y is the vector of integer variables. If

all variables are integers, the problem is called an integer programming (IP) problem or

integer program. A mixed-integer programming (MIP) problem denominates a problem,

where some variables may take real values.
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Although integer programs seem quite similar to linear programs, they are in general

much harder to solve. Many integer programs belong to the class of NP-hard problems

for which no polynomial-time algorithm has been found so far.

Various algorithms for integer programming have been formulated, either solving the

problem exactly, approximately or heuristically. Exact algorithms are guaranteed to

find an optimal solution but may have exponential runtime. [2]

A common way to solve integer programs are branch and bound algorithms. They use a

divide-and-conquer approach to explore the set of feasible solutions. Upper bounds (for

a maximization problem), also called dual bounds, are obtained by solving a relaxed

version of the problem, usually dropping the integrality constraints and thus leading to

a linear program. To split the feasible set, a variable yi is chosen for which the optimal

solution y∗i of the linear program is not integer and either of the two inequalities

yi ≤ by∗i c and yi ≥ dy∗i e

is added, essentially dividing the problem into two smaller subproblems, which is called

branching. One after the other, the open subproblems, or nodes, are examined, solving

the corresponding linear program. If the solution happens to be integer, we have found

a feasible integer solution to the problem and can update the value of the incumbent

solution, acting as a lower, also called primal, bound. Otherwise, new subproblems are

created by branching. To avoid searching the whole feasible set, branches are pruned

whenever possible, depending on the current lower and upper bounds.

Various strategies can be used to perform the different steps of the algorithm such as

how to choose a node or a branching variable. Commercial systems additionally include

a preprocessor which simplifies the problem by reducing the number of constraints and

variables.

2.2 Benders Decomposition

Benders decomposition, as introduced in [13], is a method of solving optimization prob-

lems iteratively on a trial and error basis. In every iteration, some variables get assigned

trial values. Assuming those fixed, optimal values of the remaining variables are deter-

mined. From this solution we might deduce information about the quality of other trial

solutions. It is used in form of new constraints, called Benders cuts, that are added to

the original problem. New trial values consistent with all Benders cuts are determined.

The algorithm terminates when a trial solution was found to be optimal. In the ideal

case, it enumerates only a few of the possible trial values.
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The method, first proposed by Benders [1], was suggested for large MIP problems with

“complicating variables” in the sense that by assuming them fixed the problem becomes

significantly easier to solve, e.g., it decouples into multiple independent problems. Clas-

sical Benders decomposition requires the subproblem to be linear (with only continuous

variables) because Benders cuts are generated by solving its dual. Geoffrion [11] general-

ized Benders’ algorithm to certain non-linear problems by employing non-linear convex

duality theory. Hooker and Ottosson [13] extended the approach to an even larger class

of problems by defining a generalized concept of duality for any optimization problem.

This method is called logic-based Benders decomposition (LBD).

In the following section, which is based on [13], first, classical Benders decomposition

is presented. Then, the inference dual of an optimization problem is defined, required

for the logic-based Benders algorithm, which is subsequently formulated. Finally, it is

shown that the procedure always terminates with the optimal solution value.

2.2.1 Classical Benders Decomposition

Benders decomposition partitions the variables of an optimization problem into two

vectors x ∈ Rn and y ∈ Dy, e.g., the continuous and the integer variables of a MIP

problem. It applies to problems of the form

maximize cTx + f(y)

subject to Ax + g(y) ≤ b

x ∈ Rn, y ∈ Dy

(2.5)

with vectors c ∈ Rn, b ∈ Rm, a matrix A ∈ Rm×n, a real-valued function f(y) and a

m-component vector-valued function g(y). Assuming y fixed to some trial value ȳ ∈ Dy,

the following linear subproblem remains:

maximize cTx + f(ȳ)

subject to Ax ≤ b− g(ȳ)

x ∈ Rn.

(2.6)

The classical dual problem (2.3) is

minimize uT(b− g(ȳ)) + f(ȳ)

subject to uTA = cT

u ≥ 0.

(2.7)
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If the feasible set of (2.7) is bounded and non-empty, the dual problem has some finite

solution u∗. Its optimal value not only provides a valid bound on the objective value z

of (2.5) if y = ȳ, but it also generates a valid cut for any value of y,

z ≤ (u∗)T(b− g(y)) + f(ȳ) =: βȳ(y),

which is called a Benders cut, or in particular an optimality cut. In the case of an

infeasible subproblem (an unbounded dual) a feasibility cut is derived that cuts away

the current ȳ from the feasible set of (2.5). An unbounded subproblem implies that the

original problem is likewise unbounded.

In every iteration of the algorithm the so-called master problem is solved whose con-

straints include the Benders cuts generated so far. In iteration h′ we have

maximize z

subject to z ≤ βyh(y) ∀h ∈ {1, ... , h′ − 1}

y ∈ Dy,

(2.8)

where y1, ... , yh
′−1 are the solution values of the previous master problems. Solving

master problem (2.8), we get the next trial value ȳ for subproblem (2.6). The solution

of its dual leads to a new Benders cut that is added to the master problem and the

procedure repeats.

The algorithm terminates if the optimal value z∗ of the current master problem is equal

to the optimal value β∗ of the resulting subproblem dual (2.7). It is summarized as

Algorithm 2.1.

2.2.2 Inference Duality

We now consider a general optimization problem

maximize f(x)

subject to x ∈ S

x ∈ D

(2.9)

with domain D, feasible set S and where f is a real-valued function. The domain D

might be, for example, the set of real vectors or binary vectors of dimension n. The

feasible set S is defined by a collection of constraints.

Let P (x) and Q(x) be two propositions whose truth value is a function of x. We say

that P (x) implies Q(x) with respect to D, if Q(x) is true for any x ∈ D for which P (x)
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Algorithm: Benders Decomposition

1 choose an initial ȳ ∈ Dy;

2 z∗ :=∞; h := 0;
3 while the subproblem dual has a feasible solution β∗ < z∗ do
4 derive a bounding function βȳ(y);
5 h := h+ 1;

6 yh := ȳ;
7 add the Benders cut z ≤ βyh(y) to the master problem;

8 solve the master problem;

9 if the master problem is infeasible then
10 return "infeasible";

11 else
12 let ȳ be an optimal solution of the master problem

13 with objective value z∗;

14 end
15 solve the subproblem dual;

16 end
17 return z∗;

Algorithm 2.1: The generic Benders algorithm.

is true, and denote this by

P (x)
D−−→ Q(x).

We can now define the inference dual of (2.9):

minimize β

subject to x ∈ S D−−→ f(x) ≤ β.
(2.10)

The dual searches for the smallest β ∈ R for which f(x) ≤ β can be inferred from

the set of constraints, i.e., the tightest possible upper bound on the objective function

f(x), which is obviously identical with the optimal objective value. This implies that an

optimization problem (2.9) always has the same optimal value as its inference dual (2.10),

which is referred to as strong duality property.

It is convenient to let the optimal objective value of a maximization problem be ∞ when

it is unbounded and −∞ when it is infeasible, and vice versa for a minimization problem.

Hooker and Ottosson [13] have shown that the classical dual problem of a linear program

has the same optimal value as its inference dual.
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2.2.3 Logic-Based Benders Decomposition

By means of the inference dual, we can now extend Benders decomposition to general

optimization problems. As in the classical case, the variables of problem (2.9) are par-

titioned into two vectors x and y that belong to the domains Dx and Dy, respectively.

This leads to an optimization problem of the form

maximize f(x, y)

subject to (x, y) ∈ S

x ∈ Dx, y ∈ Dy

(2.11)

with objective function f and feasible set S. Fixing y to some trial value ȳ ∈ Dy, we

get the following subproblem,

maximize f(x, ȳ)

subject to (x, ȳ) ∈ S

x ∈ Dx,

(2.12)

with inference dual

minimize β

subject to (x, ȳ) ∈ S Dx−−−→ f(x, ȳ) ≤ β.
(2.13)

Solving the dual consists in finding the tightest upper bound β∗ on the objective value

that can be inferred from the constraints, assuming y is fixed to ȳ. The solution can

be viewed as a proof that β∗ is the tightest bound, given that y = ȳ. The basic idea

of logic-based Benders decomposition is to use the same line of argument to deduce a

function βȳ(y) that gives a valid upper bound on the objective value of the original

problem (2.11) for any fixed value of y. This results in a generalized Benders cut

z ≤ βȳ(y),

where the subscript ȳ denotes which trial value of y has led to the bounding function.

Otherwise, logic-based Benders decomposition proceeds in the same way as the classical

algorithm of Section 2.2.1.

2.2.4 Correctness

The following theorems ensure that, in the case of a feasible problem, the logic-based

Benders algorithm always terminates with the optimal value if all Benders cuts satisfy



15

certain properties and Dy is finite.

Theorem 2.1. Suppose that in every iteration of the logic-based Benders algorithm, the

bounding function βȳ(y) satisfies the following property:

(B1) βȳ(y) is a valid upper bound on f(x, y), i.e., βȳ(y) ≥ f(x, y), for any feasible so-

lution (x, y) of (2.11).

Then, if the algorithm terminates with an optimal solution y∗ and objective value z∗ in

the master problem, the original problem (2.11) has an optimal solution (x∗, y∗) with

objective value f(x∗, y∗) = z∗.

If it terminates with an infeasible master problem, then (2.11) is infeasible. If it termi-

nates with an infeasible subproblem dual, then (2.11) is unbounded.

Proof. The optimal value of each subproblem (2.12) always provides a lower bound on

the optimal value of the original maximization problem (2.11), since it is the same prob-

lem, only with the additional constraint that y is fixed to some trial value ȳ. Due to

strong duality, the same holds for the optimal value of each subproblem dual (2.13).

On the other hand, (B1) implies that the objective values of all feasible solutions of (2.11)

respect the constraints of every master problem (2.8) (corresponding to the Benders

cuts). Hence, the optimal value of every master problem constitutes an upper bound on

the optimal objective value of (2.11).

Now, first suppose that the algorithm has terminated with an optimal solution y∗ and

corresponding objective value z∗ ∈ R in the master problem. Then, because of the

termination criterion, z∗ is equal to the optimal value β∗ of the last subproblem dual.

It follows from the considerations above that z∗ is an upper bound and β∗ is a lower

bound on the optimal value of (2.11). Thus, z∗ = β∗ is the optimal value of the problem.

Since the last subproblem dual was feasible, the primal subproblem has some optimal

solution x∗ with objective value β∗. Then, (x∗, y∗) is an optimal solution of (2.11).

An infeasible master problem implies infeasibility of the original problem, since all Ben-

ders cuts are valid.

In the case of an infeasible subproblem dual, the primal subproblem is unbounded.

Hence, (2.11) is also unbounded.

Theorem 2.2. Suppose that in every iteration of the logic-based Benders algorithm, the

bounding function βȳ(y) satisfies (B1) and

(B2) βȳ(ȳ) = β∗, where β∗ is the optimal value of the subproblem dual for trial value ȳ.

Then, if the subproblem dual is solved to optimality and Dy is finite, the logic-based

Benders algorithm terminates.
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Proof. Since Dy is finite, there is only a finite number of possible subproblems (2.12),

each one arising from fixing y to some ȳ ∈ Dy. In the worst case, the algorithm iterates

over all values ȳ ∈ Dy. We show that any subproblem never gets examined twice, except

maybe in the last iteration.

If the same subproblem is ever solved a second time, the solution y∗ of the current master

problem must be equal to the solution yh of an earlier iteration. Therefore, the master

problem must already contain a Benders cut z ≤ βyh=y∗(y). Due to (B2), the objective

value z∗ of the current master solution y∗ must fulfill z∗ ≤ βy∗(y
∗) = β∗, where β∗ is

the optimal value of the corresponding subproblem. Therefore, z∗ must be equal to β∗,

which is the termination criterion of the algorithm.



Chapter 3

The Electric Vehicles Recharge

Scheduling Problem (EVRSP)

This chapter provides a formal definition of the Electric Vehicles Recharge Scheduling

Problem (EVRSP) studied in this thesis. First, it is formulated in a general way. Then,

a MIP model of the problem is described and finally a greedy heuristic to solve the

EVRSP is presented.

3.1 General Problem Formulation

We consider a set J of n electric vehicles to be recharged, a set I of m charging facilities,

a set R = {rmin, ... , rmax} of possible charging rates and a time horizon [0, tmax]. In the

models the time horizon is discretized in tmax + 1 time intervals, T := {0, 1, ... , tmax}.

Each electric vehicle j ∈ J has a specific parking time and energy demand. Vehicle j

will arrive at a facility at time tarr,j and will depart at time tdep,j . These are the same

for all charging facilities. During the whole time interval [tarr,j , tdep,j ] the vehicle needs

a parking spot. Vehicle j needs to be charged with an energy amount of at least emin,j

and at most emax,j , the latter corresponds to the amount of energy required to recharge

the vehicle completely.

Each charging facility i ∈ I is characterized by its limited number of resources. There

are ai parking spots and bi charging spots available, with bi ≤ ai. The maximum total

power available at facility i is Pi, which is assumed to be constant over time.

A solution to the problem consists of a subset of vehicles Ĵ ⊆ J to be recharged and a

feasible charging schedule for each of them. This schedule defines the facility i, to which

17



18

Figure 3.1: Example of charging schedules of five vehicles assigned to the same facility.

the vehicle is assigned, the starting time s and duration d of charging, as well as the

charging rate r. An example of charging schedules is depicted in Figure 3.1.

Starting time s and duration d have to be chosen in such a way that the vehicle is charged

during its parking time [tarr,j , tdep,j ]. Charging periods are necessarily contiguous. For

each facility it has to be ensured that there are sufficient parking and charging spots for

all assigned vehicles. The minimum energy demand of each vehicle j that was assigned

to some facility has to be satisfied. It is assumed that this is theoretically possible for

all vehicles j ∈ J , i.e., they must satisfy rmax · (tdep,j − tarr,j) ≥ emin,j .

All charging machines offer the same choice of charging rates. During a charging process

the rate cannot be changed, which means that each vehicle is recharged with a specific

rate. The sum of currently used charging rates must not exceed the total power limit of

a facility at all times.

To avoid high charging rates, the number of vehicles charged with rate r at each facility

is limited by the value ρ(r) of some monotonically decreasing function ρ : R → [0, n],

which is the same for all facilities. We define ρ(r) as

ρ(r) :=

 n if r = rmin

max
(

1,
(
−(1−α)·r
rmax−rmin

+ 1 + (1−α)·rmin

rmax−rmin

)
· nm
)

else

with 0 ≤ α ≤ 1. The second term in the maximum function defines a decreasing affine

function with value n
m at rmin and value α · nm at rmax. This means that about (α ·100)%

of all vehicles are allowed to be charged with the highest rate, while quotas are equally

divided between all facilities. If the second term is lower than 1, the function takes 1

as value instead. In this way, every rate can be used at least once. As we do not want

to limit the number of vehicles charged with the lowest rate, the value of ρ(rmin) is set

to n.
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A solution fulfilling all the constraints defined above is called feasible. It is not necessary

that all vehicles are being scheduled. The aim is to assign as many vehicles as possible

and to satisfy their energy demands as much as possible. Let ej be the fulfilled energy

demand of vehicle j. The profit earned for charging vehicle j ∈ Ĵ is defined as

pj :=
ej

emax,j
.

The goal is to find a feasible solution with maximum total profit

max
∑
j∈Ĵ

pj .

Table 3.1 summarizes the notation of variables and parameters.

Symbol Meaning

J set of vehicles
n number of vehicles
I set of charging facilities
m number of charging facilities
R set of charging rates (in kW)
nR number of charging rates
rmin lowest charging rate available
rmax highest charging rate available

[0, tmax] considered time horizon
T set of discrete time intervals {0, 1, ... , tmax}
tarr,j arrival time of vehicle j
tdep,j departure time of vehicle j
emin,j minimum energy demand (in kWh) of vehicle j
emax,j maximum energy demand (in kWh) of vehicle j
ai number of parking spots at facility i
bi number of charging spots at facility i
Pi available power (in kW) at facility i
ρ(r) maximum number of vehicles charged with rate r per facility

Ĵ ⊆ J subset of vehicles scheduled for recharging
ij facility to which vehicle j is allocated for recharging
sj starting time of charging vehicle j
dj duration of charging vehicle j
rj charging rate for vehicle j

Table 3.1: Notation overview.

3.2 Mixed-Integer Programming Formulation

We now formulate the Electric Vehicles Recharge Scheduling Problem (EVRSP), which

was defined in the last section, as a mixed-integer program.
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3.2.1 Variables and Domains

The model will be formulated in terms of binary variables xijrds which indicate whether

vehicle j ∈ J is scheduled to be charged at facility i ∈ I, starting at time s ∈ T with

duration d ∈ T and charging rate r ∈ R. Therefore, the number of decision variables is

O(|I| · |J | · |R| · t 2
max).

Not all variables xijrds need to be considered in the model. We can immediately exclude

a great number of infeasible combinations from the indices’ domains. For each vehicle j

and fixed charging rate r, the charging duration (rounded to the next integer) must lie

in Djr := {d ∈ T | demin,j/re ≤ d ≤ demax,j/re}. Now, let d be fixed additionally, then

the only possible starting times are in Sjd := {s ∈ T | tarr,j ≤ s ≤ tdep,j − d}.

In addition to the binary variables xijrds, auxiliary variables ej ∈ R that represent the

fulfilled energy demand of vehicle j are needed to formulate the model.

To summarize, the variables of the model are

xijrds ∈ {0, 1} ... vehicle j is charged at facility i, starting at time s

with duration d and charging rate r,

ej ∈ [0, emax,j ] ... amount of energy vehicle j gets recharged with,

where i ∈ I, j ∈ J, r ∈ R, d ∈ Djr and s ∈ Sjd.

3.2.2 Mixed-Integer Programming Model

Let J(t) := {j ∈ J | tarr,j ≤ t ≤ tdep,j} ⊆ J be the set of vehicles parked at time t

and Sjd(t) := {s ∈ T | max(0, t − d) ≤ s ≤ t} ⊆ Sjd the set of possible starting times

so that t lies within the charging time of vehicle j, fixed to be of duration d. The

values of constants e∗jr ∈ R, which are used in the model, will be defined later. We can

then formulate our problem as the following compact mixed-integer program, referred

to as (MIP1):

maximize
∑
j∈J

ej
emax,j

(3.1)

subject to
∑

i∈I, r∈R,
d∈Djr, s∈Sjd

xijrds ≤ 1 ∀j ∈ J (3.2)

∑
j∈J(t), r∈R,
d∈Djr, s∈Sjd

xijrds ≤ ai ∀i ∈ I, t ∈ T (3.3)
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∑
j∈J, r∈R,

d∈Djr, s∈Sjd(t)

xijrds ≤ bi ∀i ∈ I, t ∈ T (3.4)

∑
j∈J, r∈R,

d∈Djr, s∈Sjd(t)

xijrds · r ≤ Pi ∀i ∈ I , t ∈ T (3.5)

emin,j ·
∑

i∈I, r∈R,
d∈Djr, s∈Sjd

xijrds ≤
∑

i∈I, r∈R,
d∈Djr, s∈Sjd

xijrds · r · d ∀j ∈ J (3.6)

∑
i∈I, r∈R,

d∈Djr, s∈Sjd

xijrds · r · d ≤
∑

i∈I, r∈R,
d∈Djr, s∈Sjd

xijrds · e∗jr ∀j ∈ J (3.7)

ej ≤
∑

i∈I, r∈R,
d∈Djr, s∈Sjd

xijrds · r · d ∀j ∈ J (3.8)

∑
j∈J, d∈Djr,
s∈Sjd

xijrds ≤ ρ(r) ∀i ∈ I, r ∈ R (3.9)

xijrds ∈ {0, 1} ∀i ∈ I, j ∈ J, r ∈ R, d ∈ Djr, s ∈ Sjd (3.10)

ej ∈ [0, emax,j ] ∀j ∈ J. (3.11)

The objective function (3.1) sums up the relative values of fulfilled energy demand of

all vehicles. As the contribution of each vehicle to the sum is at most 1, it is bounded

from above by the total number of vehicles n. This value is reached when all vehicles

in J get fully recharged.

The first set of inequalities (3.2) states that every vehicle can be scheduled at most once.

The following inequalities (3.3)-(3.5) ensure that for all facilities i and all time intervals t

the facility’s resource limits are respected. Firstly, the number of vehicles parked at

facility i at time t must not exceed the number of parking spots ai. Secondly, the number

of vehicles currently charged, which are those for which t lies within the planned charging

time {t′ ∈ T | s ≤ t′ ≤ s+ d}, must not be greater than the number of charging spots bi.

Thirdly, the sum of currently used charging rates r must not exceed the facility’s power

limit Pi.

The set of inequalities (3.6) states that for every vehicle j, which is scheduled for recharg-

ing, the minimum energy demand emin,j has to be satisfied.

Recharging should be stopped when a vehicle’s battery is fully charged, i.e., when its

maximum energy demand emax,j is fulfilled. Formulating the corresponding inequality

constraint, one must pay attention to the fact that only integer values are allowed for the

duration of charging d in the model. However, the exact duration to satisfy a vehicle’s

maximum energy demand emax,j might not be integer. In this case d should take the
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next integer value, i.e., be rounded up. Then, the amount of theoretically charged energy

might be a bit higher than emax,j , namely
⌈ emax,j

r

⌉
· r =: e∗jr for charging with rate r.

This value is used instead of emax,j as upper limit for the amount of recharged energy

in (3.7).

To measure the profit generated by a vehicle, we, however, need to set emax,j as upper

bound for the fulfilled energy demand in order to ensure that the objective value for a

single vehicle, corresponding to its relative value of fulfilled energy demand, is less than

or equal to 1. This is why we need the auxiliary variables ej that represent the actually

fulfilled energy demand of vehicle j. The value of ej is the minimum of emax,j and the

amount of theoretically charged energy of vehicle j (corresponding to the sum on the

right-hand side of (3.8)).

In the last set of inequalities (3.9), for all rates r the maximum number of vehicles

allowed to be charged with this rate is limited by ρ(r) at all facilities.

3.3 Greedy Heuristic

A greedy heuristic for solving the EVRSP was designed in order to be able to compare

the results of the other algorithms developed in this thesis with a much simpler approach.

We need to check whether the additional time spent on solving the problem really leads

to a better solution.

The greedy heuristic solves the EVRSP in a straightforward way. In a preliminary step,

the vehicles get sorted in such a way that the algorithm first tries to allocate the most

“difficult” ones, which are those vehicles j where the minimum energy demand is high

in comparison to the parking duration, i.e., where the value (tdep,j − tarr,j)/emin,j is low.

The algorithm then considers the vehicles one by one, trying to assign a feasible charging

schedule.

Since high charging rates should be avoided, the lowest possible rate is assigned to each

vehicle. For vehicle j this is the lowest r ∈ R, for which the minimum energy demand

can be fulfilled during the parking time, i.e., (tdep,j − tarr,j) · r ≥ emin,j , and which has

not been used too often yet. We start at the first facility and check whether there are

still enough parking spots available. If not, we try to allocate the vehicle to the next

facility. As its energy demand should be satisfied as much as possible, the algorithm

searches for a charging schedule of longest possible duration. For each charging duration

d ∈ Djr = {d ∈ T | demin,j/re ≤ d ≤ demax,j/re} (starting with the longest one), for one

starting time s ∈ Sjd after the other, it is tested whether there are still enough charging

resources available during the corresponding charging time. If a feasible schedule is
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found, we assign the vehicle and update the resource limits. If none is found, we go on

to the next facility and search for a feasible charging schedule there. The next vehicle

is considered when the current one was successfully assigned or it was not possible to

charge it at any of the facilities.

The complete procedure is given as Algorithm 3.1. It will be referred to as (GREEDY).

Algorithm: Greedy Heuristic

1 initialize variables for the resource limits (parking and charging

spots, power) ∀i ∈ I, t ∈ T;
2 sort list of vehicles J by (tdep,j − tarr,j)/emin,j in ascending order;

3 for j ∈ J do
4 schedule found := false;

5 determine lowest rate rj ∈ R for which (tdep,j − tarr,j) · rj ≥ emin,j and

which has not been used up to the limit yet;

6 for i ∈ I do
7 if not enough parking spots at facility i then
8 continue;

9 end
10 for d := demax,j/re, ... , demin,j/re do
11 for s ∈ Sjd do
12 if all resource limits are respected for this charging

schedule of vehilce j then
13 schedule found := true;

14 sj := s;
15 break;

16 end

17 end
18 if schedule found then
19 dj := d;
20 break;

21 end

22 end
23 if schedule found then
24 ij := i;
25 break;

26 end

27 end
28 if schedule found then
29 allocate vehicle j to facility ij and assign charging rate rj,

duration dj and starting time sj;
30 update resource limits;

31 end

32 end

Algorithm 3.1: Greedy heuristic for solving the EVRSP.





Chapter 4

Logic-Based Benders

Decomposition of the EVRSP

Hooker [12] explored how logic-based Benders decomposition can be applied to planning

and scheduling problems and achieved substantial speedups relative to the state of the

art. In this chapter, we develop logic-based Benders algorithms for solving the EVRSP.

Two different decompositions are proposed and described in detail.

In the first one, vehicles get allocated to a facility and also get a charging rate and

duration assigned in the master problem, while the subproblem merely determines fea-

sible starting times for the given assignment. In the second decomposition, the master

problem only allocates vehicles to facilities. Optimal recharging schedules are calculated

in the subproblem.

For both decompositions, first the master problem and the subproblem are formulated.

Then, Benders cuts are derived and finally a relaxation of the subproblem is given that

can be included within the master problem to strengthen it.

4.1 Decomposition 1

In the first decomposition of the EVRSP vehicles get assigned a facility, a charging

rate and a charging duration in the master problem. It only remains to calculate the

starting times of charging in the subproblem. Since the resulting total profit is already

determined in the master problem, the subproblem is a mere feasibility problem, where

a feasible schedule needs to be calculated for each facility. The algorithm corresponding

to this decomposition will be referred to as (LBD1).

25
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4.1.1 Master Problem

The decision variables of the master problem are xijrd ∈ {0, 1} indicating whether

vehicle j is assigned to facility i with charging rate r and duration d. We consider

the master problem of iteration h′. Let H := {1, 2, ... , h′ − 1} be the set of previous

iterations. We get the following problem,

maximize z (4.1)

subject to
∑
j∈J

ej
emax,j

= z (4.2)

∑
i∈I, r∈R,
d∈Djr

xijrd ≤ 1 ∀j ∈ J (4.3)

∑
j∈J(t), r∈R,

d∈Djr

xijrd ≤ ai ∀i ∈ I, t ∈ T (4.4)

emin,j ·
∑

i∈I, r∈R,
d∈Djr

xijrd ≤
∑

i∈I, r∈R,
d∈Djr

xijrd · r · d ∀j ∈ J (4.5)

∑
i∈I, r∈R,
d∈Djr

xijrd · r · d ≤
∑

i∈I, r∈R,
d∈Djr

xijrd · e∗jr ∀j ∈ J (4.6)

ej ≤
∑

i∈I, r∈R,
d∈Djr

xijrd · r · d ∀j ∈ J (4.7)

∑
j∈J, d∈Djr

xijrd ≤ ρ(r) ∀i ∈ I, r ∈ R (4.8)

z ≤ βxh(x) ∀h ∈ H (4.9)

z ∈ R (4.10)

ej ∈ [0, emax,j ] ∀j ∈ J (4.11)

xijrd ∈ {0, 1} ∀i ∈ I, j ∈ J, (4.12)

r ∈ R, d ∈ Djr,

where the domain Djr, the set J(t) and the constants e∗jr are defined as in Section 3.2.

The set of inequalities (4.3) states that every vehicle can be allocated at most once. The

parking spots limit of all facilities is provided by (4.4). Inequalities (4.5)-(4.7) ensure

that the energy demands of all vehicles that are allocated to some facility are fulfilled.

As explained in Section 3.2.2, the sum on the right-hand side of (4.7) corresponds to

the amount of energy vehicle j is theoretically recharged with during the whole charging



27

duration, whereas the variables ej represent the actually fulfilled energy demand (addi-

tionally bounded above by emax,j). The set of inequalities (4.8) enforces the limit on the

number of charging rates being used at each facility.

The value of the objective function (4.1) corresponds to the sum of relative values of

fulfilled energy demand per vehicle (4.2). The Benders cuts (4.9) generated in the

previous iterations of the algorithm provide a valid bound on the objective value. They

are formulated in Section 4.1.3.

A solution to the master problem corresponds to an allocation of vehicles to facilities and

an assignment of charging rates and durations to each of these vehicles that generates

the highest possible profit (vehicles get recharged as much as possible) among those

not proven to be infeasible yet (excluded by a Benders cut). Feasibility of this trial

assignment is examined in the subproblems.

4.1.2 Subproblems

Assuming that in iteration h every vehicle j of a subset Ĵh ⊆ J was allocated to a

facility and was assigned a charging rate rhj and a duration dhj in the master problem,

the remaining problem decouples into multiple independent subproblems, one for each

facility.

We consider the subproblem of facility i. Let Jhi be the set of vehicles assigned to i in

iteration h. It remains to determine starting times of charging for all vehicles j ∈ Jhi
in such a way that the facility’s resource limits are not exceeded. We formulate the

subproblem in terms of binary variables xjs indicating whether the charging of vehicle

j ∈ Jhi is scheduled to start at time s ∈ Shj := {s ∈ T | tarr,j ≤ s ≤ tdep,j − dhj }. The

subproblem of facility i can then be written as

maximize
∑
j∈Jh

i

min(rhj · dhj , emax,j)

emax,j
(4.13)

subject to
∑
s∈Sh

j

xjs = 1 ∀j ∈ Jhi (4.14)

∑
j∈Jh

i , s∈Sh
j (t)

xjs ≤ bi ∀t ∈ T (4.15)

∑
j∈Jh

i , s∈Sh
j (t)

xjs · rhj ≤ Pi ∀t ∈ T (4.16)

xjs ∈ {0, 1} ∀j ∈ Jhi , s ∈ Shj , (4.17)
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where Shj (t) := {s ∈ T | max(0, t−dhj ) ≤ s ≤ t} ⊆ Shj is the set of possible starting times

so that time t lies within the charging time of vehicle j.

The objective function (4.13) is constant since the profit of facility i is already determined

in the master problem. It is sufficient to find a feasible schedule. If the subproblem is

infeasible its optimal objective value is −∞ by convention.

The set of equalities (4.14) states that every vehicle j ∈ Jhi must get exactly one starting

time s ∈ Shj assigned. Inequalities (4.15) ensure that not more vehicles are being charged

than there are charging spots available at all times. Finally, the power limit constraint

of facility i is provided by the set of inequalities (4.16).

4.1.3 Benders Cuts

In iteration h the decision variables of the master problem xijrd are fixed to values xhijrd,

which are obtained by solving the current problem. Then, the resulting subproblem for

each facility is solved. For the subproblem of some facilities we get a feasible solution,

whereas others prove to be infeasible.

From the solution of the subproblems we must infer a Benders cut of the form

z ≤ βxh(x)

with a linear bounding function βxh(x), where z is the objective value of the master

problem, x denotes the array of decision variables (xijrd)i∈I, j∈Jh
i , r∈R, d∈Djr

and xh the

array of trial values in iteration h.

To be valid, the cut must satisfy properties (B1) and (B2) of Section 2.2.4. In particular,

it has to fulfill the following conditions:

(B1) For all feasible values of x the term βxh(x) provides a valid upper bound on the

objective value z.

(B2) βxh(xh) = β∗, where β∗ is the optimal value of the subproblem (in our case the

sum of optimal values of all subproblems) in iteration h.

Since we have independent subproblems, we derive a bounding function βxh
i
(xi) for every

facility i and combine them to a bounding function on the total profit,

z ≤ βxh(x) :=
∑
i∈I

βxh
i
(xi), (4.18)
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where xi denotes the array of variables (xijrd)j∈Jh
i , r∈R, d∈Djr

and xhi the array of trial

values for facility i in iteration h.

We define bounding functions similar to those in [12]. In the case of a feasible subproblem

at facility i we get the following trivial bound,

βxh
i
(xi) :=

∑
j∈Jh

i

ej
emax,j

,

which is the profit generated at facility i for the assignment xi. If the subproblem is

infeasible, the most obvious cut simply excludes the assignment that led to this subprob-

lem from the feasible set of the master problem. The corresponding bounding function

is

βxh
i
(xi) :=

{
−∞ if xi = xhi ,∑

j∈Jh
i

ej
emax,j

else.

This bound cannot be satisfied in the case xi = xhi and is trivial otherwise.

Let Ih ⊆ I be the set of facilities for which the corresponding subproblem is infeasible

in iteration h. We can then rewrite the Benders cut (4.18) as the following set of

inequalities,

∑
j∈Jh

i

(1− xijrhj dhj ) ≥ 1 ∀i ∈ Ih, (4.19)

which requires that the assignment of at least one vehicle must be changed at each

facility where the subproblem was infeasible.

As explained in [12], the bound for facility i can be strengthened in many cases by

identifying a subset J̃hi ⊂ Jhi of vehicles assigned to i that is responsible for infeasibility

and cannot be reduced further. To calculate such a subset, we iteratively reduce the

set using a simple greedy heuristic which is formulated as Algorithm 4.1. Replacing Jhi

by J̃hi in (4.19), the Benders cut remains valid. One must pay attention to the fact that

the subset J̃hi of vehicles responsible for infeasibility is not unique. The set computed by

Algorithm 4.1 depends on the order in which it iterates over Jhi . We might also calculate

multiple subsets J̃hi ⊂ Jhi and add a cut (4.19) for each of them in iteration h. Details

are given in Section 6.3.

If all subproblems are feasible, the sum of their objective values is equal to the optimal

value of the current master problem, which means that the termination criterion of the

algorithm is met. Indeed, we have found a feasible recharging schedule that generates

the highest possible profit.
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Algorithm: Subset of Vehicles Responsible for Infeasibility

1 J̃hi := Jhi ;

2 for j ∈ Jhi do
3 resolve the subproblem of facility i over the set of

vehicles J̃hi \{j};
4 if the subproblem is still infeasible then

5 J̃hi := J̃hi \{j};
6 end

7 end

8 return J̃hi

Algorithm 4.1: Computing a subset J̃h
i ⊆ Jh

i of vehicles responsible for infeasibility
of subproblem i.

4.1.4 Strengthening the Master Problem

Hooker [12] suggests that the master problem can frequently be strengthened by includ-

ing inequalities derived from a relaxation of the subproblem within the master problem.

First, we consider the subproblems’ charging spots limit (4.15). For t1, t2 ∈ T , let

J(t1, t2) := {j ∈ J | [tarr,j , tdep,j ] ⊆ [t1, t2]} be the set of vehicles to be scheduled within

the time window [t1, t2]. A charging duration of d indicates that the vehicle occupies

a charging spot for d time intervals. Altogether, there are bi · (t2 − t1) slots available

within the time window [t1, t2], since facility i has bi charging stations. Following these

considerations, we can formulate an aggregated charging spots constraint for each time

window [t1, t2] with 0 ≤ t1 < t2 ≤ tmax and every facility i ∈ I:

∑
j∈J(t1,t2),
r∈R, d∈Djr

xijrd · d ≤ bi · (t2 − t1). (4.20)

A relaxed version of the power limit constraint (4.16) can be defined in a similar way.

A vehicle that was assigned a charging rate r and a duration d is recharged with an

energy amount of r · d. Resulting from the power limit Pi at facility i, the maximum

amount of energy that can be consumed within the time window [t1, t2] is P2 · (t2 − t1).

This leads to the following aggregated power limit constraint for time window [t1, t2]

with 0 ≤ t1 < t2 ≤ tmax and facility i ∈ I:

∑
j∈J(t1,t2),
r∈R, d∈Djr

xijrd · r · d ≤ Pi · (t2 − t1). (4.21)
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It is not necessary to add the inequalities (4.20) and (4.21) for all t1, t2 ∈ T to the master

problem. For t1 we only need to consider the distinct values of the set of arrival times

{tarr,j | j ∈ J} and for t2 the departure times {tdep,j | j ∈ J}.

Moreover, many inequalities may be redundant with the others. We define

T icspots(t1, t2) :=
1

bi

∑
j∈J(t1,t2),
r∈R, d∈Djr

d− t2 + t1 and (4.22)

T ipower(t1, t2) :=
1

Pi

∑
j∈J(t1,t2),
r∈R, d∈Djr

r · d− t2 + t1 (4.23)

as the tightness of inequality (4.20) and (4.21), respectively.

Lemma 4.1. The relaxed charging spots (4.20) or power limit constraint (4.21) for time

window [t1, t2] is dominated by the same constraint for a different time window [u1, u2],

if [u1, u2] ⊆ [t1, t2] and if the inequality corresponding to [u1, u2] has a higher tightness.

Proof. We provide a proof for the relaxed charging spots constraint. The statement for

the power limit constraint follows analogously. Let (4.20) hold for time window [u1, u2],

let [u1, u2] ⊆ [t1, t2] and let the tightness (4.22) be higher for [u1, u2]. We will show that

inequality (4.20) for time window [t1, t2] is then also fulfilled.

Since the tightness is higher for [u1, u2], we get

1

bi

∑
j∈J(t1,t2),
r∈R, d∈Djr

d− t2 + t1 ≤
1

bi

∑
j∈J(u1,u2),
r∈R, d∈Djr

d− u2 + u1,

which we can rewrite as

∑
j∈J(t1,t2),
r∈R, d∈Djr

d−
∑

j∈J(u1,u2),
r∈R, d∈Djr

d ≤ −bi · (u2 − u1) + bi · (t2 − t1). (4.24)

We note that J(u1, u2) ⊆ J(t1, t2) and thus J(t1, t2) = J(u1, u2) ∪̇ (J(t1, t2)\J(u1, u2)).

The proof can now be completed as follows:

∑
j∈J(t1,t2),
r∈R, d∈Djr

xijrd · d =
∑

j∈J(u1,u2),
r∈R, d∈Djr

xijrd · d+
∑

j∈J(t1,t2)\J(u1,u2),
r∈R, d∈Djr

xijrd · d

≤
∑

j∈J(u1,u2),
r∈R, d∈Djr

xijrd · d+
∑

j∈J(t1,t2)\J(u1,u2),
r∈R, d∈Djr

d
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=
∑

j∈J(u1,u2),
r∈R, d∈Djr

xijrd · d+ (
∑

j∈J(t1,t2),
r∈R, d∈Djr

d−
∑

j∈J(u1,u2),
r∈R, d∈Djr

d )

(4.20)

≤ bi · (u2 − u1) + (
∑

j∈J(t1,t2),
r∈R, d∈Djr

d−
∑

j∈J(u1,u2),
r∈R, d∈Djr

d )

(4.24)

≤ bi · (u2 − u1)− bi · (u2 − u1) + bi · (t2 − t1) = bi · (t2 − t1).

All dominated inequalities are removed in a preprocessing step (see Section 6.2).

4.2 Decomposition 2

In the second decomposition the master problem simply allocates vehicles to charging

facilities. An optimal charging schedule for each vehicle is determined in the subproblem.

This can be done independently for each facility. The algorithm corresponding to this

decomposition will be referred to as (LBD2).

4.2.1 Master Problem

The master problem is formulated in terms of binary variables xij indicating whether

vehicle j is allocated to facility i. Additionally, continuous variables pi represent the

maximum profit that can be generated at facility i. In iteration h′ the master problem

takes the following form,

maximize
∑
i∈I

pi (4.25)

subject to
∑
j∈J

xij ≥ pi ∀i ∈ I (4.26)

∑
i∈I

xij ≤ 1 ∀j ∈ J (4.27)

∑
j∈J(t)

xij ≤ ai ∀i ∈ I, t ∈ T (4.28)

pi ≤ βxh
i
(xi) ∀h ∈ H (4.29)

pi ∈ [0, n] ∀i ∈ I (4.30)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J, (4.31)
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where H := {1, 2, ... , h′ − 1} is the set of previous iterations and J(t) is defined as in

Section 3.2.

The objective function (4.25) is the sum of the maximum profit values pi generated at

the facilities i ∈ I. Firstly, these profits are bounded by the number of vehicles assigned

to the facility, as expressed by the inequalities (4.26). Secondly, the Benders cuts (4.29)

that were derived in the previous iterations of the algorithm (see Section 4.2.3) provide

an upper bound.

Every vehicle is allocated to at most one facility, as stated by the set of inequalities (4.27).

It is only possible to check the parking spots limit (4.28) in the master problem. All

other resource constraints have to be verified in the subproblems.

4.2.2 Subproblems

Having assigned vehicles to facilities in the master problem, the rest of the problem

decomposes into a set of independent subproblems, one for each facility. For the given

allocation of vehicles we search for charging schedules that maximize the profit at each

facility.

We consider the subproblem of facility i in iteration h. Let Jhi be the set of vehicles

assigned to i. Variables xjrds indicate whether vehicle j starts charging at time s with

duration d and rate r. The subproblem of facility i is then formulated as follows,

maximize
∑
j∈Jh

i

ej
emax,j

(4.32)

subject to
∑

r∈R, d∈Djr,
s∈Sjd

xjrds = 1 ∀j ∈ Jhi (4.33)

∑
j∈Jh

i , r∈R,
d∈Djr, s∈Sjd(t)

xjrds ≤ bi ∀t ∈ T (4.34)

∑
j∈Jh

i , r∈R,
d∈Djr, s∈Sjd(t)

xjrds · r ≤ Pi ∀t ∈ T (4.35)

emin,j ≤
∑

r∈R, d∈Djr,
s∈Sjd

xjrds · r · d ∀j ∈ Jhi (4.36)

∑
r∈R, d∈Djr,

s∈Sjd

xjrds · r · d ≤
∑

r∈R, d∈Djr,
s∈Sjd

xjrds · e∗jr ∀j ∈ Jhi (4.37)
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ej ≤
∑

r∈R, d∈Djr,
s∈Sjd

xjrds · r · d ∀j ∈ Jhi (4.38)

∑
j∈Jh

i , d∈Djr,
s∈Sjd

xjrds ≤ ρ(r) ∀r ∈ R (4.39)

ej ∈ [0, emax,j ] ∀j ∈ Jhi (4.40)

xjrds ∈ {0, 1} ∀j ∈ Jhi , r ∈ R, (4.41)

d ∈ Djr, s ∈ Sjd,

where the domains Djr and Sjd, the set Sjd(t) and the constants e∗jr are defined as in

Section 3.2.

The formulation of the subproblem is quite similar to the model (MIP1) of Section 3.2.

The major changes are that the variable index i is fixed (and therefore omitted) and

that only the vehicles j ∈ Jhi are considered. Moreover, since all assigned vehicles must

be scheduled, the sum on the left-hand side of the constraint of (MIP1) corresponding

to (4.36) does not need to be included here.

4.2.3 Benders Cuts

After solving the master problem, in iteration h the variables xij are fixed to values xhij .

Subsequently, for each facility an optimal schedule for the given allocation of vehicles is

computed in the subproblems.

Since the subproblems are independent of one another, we derive a Benders cut that

consists of several inequalities, one for each facility,

pi ≤ βxh
i
(xi) ∀i ∈ I,

where xi denotes the vector of decision variables (xij)i∈I and xhi the vector of trial

values (xhij)i∈I in iteration h.

The bounding function of subproblem i needs to fulfill the following requirements:

(B1) For all feasible values of xi the term βxh
i
(xi) provides a valid upper bound on the

maximum profit pi of facility i.

(B2) In particular, βxh
i
(xhi ) = phi , where phi is the optimal value of subproblem i in

iteration h.
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4.2.3.1 Feasibility Cuts

In the case of an infeasible subproblem i, we derive cuts similar to those in Section 4.1.3.

We infer the valid inequality

∑
j∈Jh

i

(1− xij) ≥ 1, (4.42)

which states that at least one of the currently assigned vehicles must be removed from

facility i.

As in (LBD1), this bound can be strengthened by replacing Jhi with a subset J̃hi of

vehicles responsible for the infeasibility of the problem.

4.2.3.2 Optimality Cuts

If subproblem i is feasible with optimal profit value phi , we get the trivial bound pi ≤ phi ,

if xi = xhi . We also want to derive a bound for other values of xi.

The profit pi is increased by at most 1 if we add a vehicle to facility i. This can be

formulated by the following inequality:

pi ≤ phi +
∑

j∈J\Jh
i

xij .

Although this seems reasonable, the cut is not valid in some special cases. It is possible

that the profit of a facility increases when we remove a vehicle. This is due to the

definition of the objective function and can happen when the vehicle occupies resources

that are required by other vehicles to get charged more. Since the vehicles differ in their

energy demand and the profit generated by the charging of a vehicle only depends on

the ratio of fulfilled demand and maximum demand, the profit generated by a certain

amount of energy consumed for recharging need not be the same for different vehicles.

Therefore, if we remove a vehicle, others might use the freed resources more efficiently

and in total a higher profit is generated. An example is given in Figure 4.1.

To overcome this problem, we resolve subproblem i with the modification that not all of

the vehicles must be scheduled. The equality sign in constraint (4.33) is changed to “≤”

and the left-hand side of the minimum energy demand constraint (4.36) is adapted in

analogy to (3.6) of (MIP1). We denote the objective value of this relaxed subproblem

by qhi . It holds that phi ≤ qhi , in most cases they are equal. We use qhi instead of phi to
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Figure 4.1: Example of recharging schedules of three vehicles assigned to the same
facility, where the removal of the second vehicle would result in an increase in profit.
When all three vehicles must be charged, the total profit is 1.5. Removing the second
vehicle (the recharging of which could only be half completed during its parking time),

the other vehicles can be fully recharged, resulting in a profit of 2.

get a valid bound:

pi ≤ qhi +
∑

j∈J\Jh
i

xij . (4.43)

If qhi 6= phi the bounding function does not fulfill property (B2). Therefore, in this case

we must add an additional inequality of the form

pi ≤ β̃xh
i
(xi)

with β̃xh
i
(xhi ) = phi . Otherwise, the algorithm might not terminate. We use the following

inequality:

pi ≤ phi +
∑

j∈J\Jh
i

xij · n+
∑
j∈Jh

i

(1− xij) · n. (4.44)

It becomes pi ≤ phi if exactly the same set of vehicles is allocated to facility i again and

is trivially fulfilled for all other assignments.

To strengthen inequality (4.43), we consider how the profit changes when a vehicle j ∈ Jhi
is unallocated. It is reduced by at most min(dhj · rhj , emax,j)/emax,j , which is the vehicle’s

contribution to the profit function. As explained above, this value is not subtracted in

general, as the removal of a vehicle can even lead to an increase in profit. Only if the

vehicle does not occupy any resources that can be used by other vehicles, its removal

leads to a decrease of the profit by min(dhj · rhj , emax,j)/emax,j . Two sufficient conditions

for this are:

1. All other vehicles are fully recharged in the current solution of the subproblem.

2. All resources used by vehicle j (charging rate, charging spot and power) are not

consumed up to the limit, i.e., neither of the concerned resource constraints is
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tight. This can be expressed as follows:

rhj = rmin or ρ(rhj ) −
∑

k∈Jh
i , d∈Djr,
s∈Sjd

xkrhj ds
≥ 1

Pi −
∑

k∈Jh
i , r∈R,

d∈Djr, s∈Sjd(t)

xksdr · r ≥ rmax ∀t ∈ T hj

bi −
∑

k∈Jh
i , r∈R,

d∈Djr, s∈Sjd(t)

xksdr ≥ 1 ∀t ∈ T hj ,

where rhj is the charging rate that was assigned to vehicle j in iteration h and

T hj := {t ∈ T | shj ≤ t ≤ shj + dhj } the set of time intervals during which vehicle j is

scheduled to be charged.

If either of the two conditions is fulfilled we add

−(1− xij) ·min(dhj · rhj , emax,j)/emax,j

to the right-hand side of inequality (4.43).

4.2.4 Strengthening the Master Problem

As in Section 4.1.4, we formulate relaxed versions of the subproblem constraints which

can be included within the master problem to strengthen it.

Similar to (4.21) of (LBD1), an aggregated power limit constraint for time window [t1, t2]

and facility i can be written as follows,

∑
j∈J(t1,t2)

xij · emin,j ≤ Pi · (t2 − t1), (4.45)

where J(t1, t2) := {j ∈ J | [tdep,j , tdep,j ] ⊆ [t1, t2]} is the set of vehicles to be sched-

uled within time window [t1, t2]. In contrast to (LBD1), the master problem does not

determine how much power will be consumed by charging vehicle j, only the vehicle’s

minimum energy demand emin,j is known.

We define the tightness of (4.45) as

T ipower(t1, t2) :=
1

Pi

∑
j∈J(t1,t2)

emin,j − t2 + t1.



38

Again, only those inequalities (4.45) with t1 ∈ {tarr,j | j ∈ J} and t2 ∈ {tdep,j | j ∈ J}
need to be added to the master problem, which are not dominated by others, i.e., there is

no such constraint for a time window [u1, u2] with a higher tightness and [u1, u2] ⊆ [t1, t2].

Furthermore, we formulate a relaxation of the charging spots limit. If the minimum

charging duration of a vehicle is longer than half of its parking duration, then there

is a non-empty time interval, in which it must be charged when allocated to some

facility. Let dmin,j := demin,j/rmaxe be the minimum charging duration of vehicle j and

C(t) := {j ∈ J | tdep,j − dmin,j ≤ t ≤ tarr,j + dmin,j} be the set of all vehicles that must

be charged at time t. We can then define a relaxed charging spots limit,

∑
j∈C(t)

xij ≤ bi ∀i ∈ I, t ∈ T, (4.46)

that can be added to the master problem.

4.3 Hierarchy of Facilities

In Sections 4.1.3 and 4.2.3 individual bounds were derived for every facility as Benders

cuts, since the subproblems are independent. They are, however, not unrelated. Having

computed the optimal profit for a given assignment at one facility, we might infer a

bound on the maximal profit for the same assignment at other facilities.

We call a facility i dominated by another facility ī, if all resources are at least as limited,

i.e., it has less or the same number of parking and charging spots, and less or the same

amount of power available. This defines a partial order on the set of facilities. Every

feasible charging schedule for a given assignment at facility i would also be feasible at

facility ī. Hence, the optimal profit for a given assignment of vehicles to facility ī is an

upper bound on the optimal profit for the same assignment at facility i.

In a preprocessing step, we determine for all facilities the set of dominated ones. In the

case of homogeneous facilities, these sets simply contain all other facilities. Whenever

we add a Benders cut with respect to facility i to the master problem, we also add the

same inequality for all facilities dominated by i.



Chapter 5

Heuristic Boosting of Logic-Based

Benders Decomposition

There are different strategies for trying to improve the performance of decomposition

algorithms like those described in the last chapter. One approach is to solve either the

master or subproblems heuristically, getting a possibly suboptimal solution for them.

By adapting the algorithms in an appropriate way, we ensure that they still return an

optimal solution eventually.

When solving a MIP model with a branch and bound algorithm, it can happen that an

optimal integer solution is already found after a while, but the procedure takes quite a

long time to prove its optimality. For a maximization problem, branches are explored

and pruned until the global lower bound, which is the value of the best integer solution

found so far, and the local upper bound coincide at the optimal value. In practice, due

to numerical reasons, a solution is accepted when the difference between upper and lower

bounds falls below a previously specified threshold, called the optimality gap. One can

try to set this gap to a higher value to obtain a solution more quickly, which is, however,

not guaranteed to be optimal. Using appropriate extensions that reconsider heuristic

results in a later phase, we can use this approach for the master or subproblems but still

get an optimal solution in the end.

This is just one possibility for solving the master or subproblems heuristically. For

the same purpose, other heuristics or advanced metaheuristics could be used as well.

We confine ourselves, however, to the method described above. Furthermore, we want

to emphasize that our focus lies on finding provably optimal solutions to the original

problem instead of just solving it heuristically.
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5.1 Increasing the Master Problem Optimality Gap

of (LBD1)

In the first decomposition we only consider the master problems since the subproblems

are mere feasibility problems that are solved rather quickly. At the beginning we set the

optimality gap for solving the master problems to a higher value. Consequently, they are

solved faster but the solutions are not guaranteed to be optimal. Instead of terminating

the algorithm when all subproblems turn out to be feasible, we reset the optimality gap

to zero (or in practice a very small constant) and restart the iterations. Only when also

this final exact phase terminates we can be sure to have obtained an optimal solution.

We will refer to this variant as (LBD1BoostM).

5.2 Increasing the Master or Subproblem Optimality Gap

of (LBD2)

The same approach that was used for boosting (LBD1) can be applied to the second

decomposition as well. We increase the initial optimality gap for solving the master prob-

lems. When the termination criterion of the logic-based Benders algorithm is met, itera-

tions are restarted with the gap reset to zero. This will be referred to as (LBD2BoostM).

Furthermore, in the second decomposition the subproblems are rather large. We can

also try to set the optimality gap for solving them to a higher value instead. This might

lead to a substantial speedup, but we only get lower bounds on the optimal profit of a

subproblem. The Benders cuts that are derived might be invalid, possibly cutting away

an optimal solution.

To counter this problem, we have to adapt the Benders cuts derived from the subopti-

mally solved subproblems. This only concerns the optimality cuts since feasibility is not

affected by a change of the optimality gap. The MIP solver not only returns the best

integer solution found so far, which is a lower bound on the optimal solution value, but

also the maximum objective value of all remaining unexplored nodes, which is an upper

bound. In (4.44) we replace the solution value phi of subproblem i of iteration h and

in (4.43) the optimal value qhi of the modified subproblem, in which not all vehicles have

to be scheduled, with the corresponding upper bounds. In this way, the cuts remain

valid but might be weaker than those inferred from subproblems that were solved to op-

timality. This possibly leads to more iterations of the algorithm and it might terminate

even when no optimal solution was found since only upper bounds are used for the profit

values of the subproblems. We can, however, easily handle this problem by resetting
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the optimality gap to zero and restarting the iterations. This variant will be referred to

as (LBD2BoostSU).

Alternatively, we could just use an increased optimality gap for solving the subprob-

lems without further adapting the algorithm. Eventually, it will terminate with a

solution, which is not guaranteed to be optimal anymore. The hope is, however, to

find a reasonably good heuristic solution in shorter time, since the Benders cuts are

stronger than those of the adaptation described above. We will refer to this approach

as (LBD2BoostSL).

In order to obtain provably optimal solutions with this method as well, one could proceed

by exactly verifying and possibly correcting all heuristically derived Benders cuts, as it

was done in [17]. Since this approach did, however, not produce good results for the

given problem, it will not be considered further in this thesis.





Chapter 6

Computational Aspects

This chapter provides details about the implementation of the models that were defined

above.

First, we explain how to avoid adding trivially valid inequalities to the model. Then, an

algorithm is described which removes redundant inequalities from the relaxed subprob-

lems. Afterwards, details are given on how to compute a subset of vehicles responsible

for infeasibility of a subproblem, which is needed to strengthen the feasibility cuts. Fi-

nally, a method to avoid resolving subproblems that were already considered before is

presented.

6.1 Removal of Trivial Inequalities

Some of the inequalities specified in the definitions of the models might be trivially true

for specific instances. For example, consider the parking spots limit (3.3) of (MIP1) for

a given facility i ∈ I and a given time t ∈ T :

∑
j∈J(t), r∈R,
d∈Djr, s∈Sjd

xijrds ≤ ai.

If the number of x-variables is smaller than or equal to ai, then the constraint is fulfilled

for any assignment and need not be added to the model. Implementing (MIP1) as well

as the master and subproblems of (LBD1) and (LBD2), this is checked before adding

any constraint of this form.

The same approach works for inequalities, where the sum not only contains boolean

variables but also constant coefficients. An example is the power limit constraint (3.5)
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for a given facility i ∈ I and a given time t ∈ T :

∑
j∈J, r∈R,

d∈Djr, s∈Sjd(t)

xijrds · r ≤ Pi.

Here, instead of counting the variables xijrds, we add up all the coefficients r and check

if the sum is greater than Pi. If not, once again the constraint is trivially fulfilled and

need not be added to the model.

6.2 Removal of Dominated Inequalities from the Relaxed

Subproblems

It was already mentioned in Sections 4.1.4 and 4.2.4 that, when including relaxed versions

of the subproblem constraints within the master problem, we should avoid adding redun-

dant inequalities. This applies to the aggregated charging spots (4.20) and power limit

constraints (4.21) of (LBD1), as well as to the aggregated power limit constraints (4.45)

of (LBD2).

An aggregated constraint for facility i and time window [t1, t2] is dominated by the same

constraint for time window [u1, u2], if [u1, u2] ⊆ [t1, t2] and if the constraint for [t1, t2] has

a lower tightness. The inequality is then redundant and can be removed. Let T i(t1, t2)

be the tightness of an aggregated constraint for facility i and time window [t1, t2], as

defined in Sections 4.1.4 and 4.2.4.

A procedure [12] for the removal of dominated inequalities is given as Algorithm 6.1. For

each facility i ∈ I, it returns a set Ri of time windows corresponding to undominated

inequalities. Let (arr1, ... , arrna) and (dep1, ... , depnb
) be the sorted lists of na distinct

arrival and nb distinct departure times of the vehicles j ∈ J . For each arrival time arra,

the algorithm iterates over the list of departure times depb. Only if [arra, depb] is a

proper time window and there was no tighter constraint found with an earlier departure

time, the time interval is added to the set Ri. Besides, all time windows corresponding

to constraints dominated by the one that is currently considered are removed from Ri.

6.3 Subsets of Vehicles Responsible for Infeasibility

In Section 4.1.3 it was explained how to strengthen the feasibility cut derived from sub-

problem i in iteration h by computing a subset J̃hi ⊂ Jhi of vehicles assigned to facility i

that is responsible for infeasibility. The subset computed by Algorithm 4.1 depends on
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Algorithm: Time Windows for Relaxed Inequalities

1 create sorted lists (arr1, ... , arrna) and (dep1, ... , depnb
) of unique

arrival and departure times;

2 for i ∈ I do
3 Ri := ∅;
4 for a := 1, ... , na do
5 b′ := 0;
6 for b := 1, ... , nb do
7 if depb ≥ arra and (b′ = 0 or T i(arra,depb) > T i(arra, depb′)) then
8 for [arrā, depb̄] ∈ Ri do
9 if b̄ = b and ā < a and T i(arra,depb) ≥ T i(arrā,depb̄)

then
10 Ri := Ri\{[arrā,depb̄]};
11 end

12 end
13 Ri := Ri ∪ {[arra, depb]};
14 b′ := b;

15 end

16 end

17 end

18 end

Algorithm 6.1: Generating a set of time windows corresponding to undominated
inequalities of the subproblem relaxation.

the order in which the vehicles in Jhi are considered. This can be done randomly or in

a predefined way depending on the vehicles’ attributes. Moreover, we can try to run

the algorithm several times for different orders to obtain multiple subsets J̃hi ⊂ Jhi of

vehicles responsible for infeasibility, since they are not unique. The computed sets are

minimal elements of the partial order defined by the subset relation, but need not be of

minimum cardinality. It may, however, also be the case that Jhi cannot be reduced at

all.

In our implementation of (LBD1), the set Jhi is sorted by the vehicles’ difficulty to

be scheduled, which we define as the ratio of parking duration and minimum energy

demand, i.e., (tdep,j − tarr,j)/emin,j for vehicle j (cf. Section 3.3). We run Algorithm 4.1

two times. First, the set Jhi is sorted by ascending difficulty, starting with the vehicle

that is the easiest to schedule. Then, it is sorted in the reverse order, starting with the

vehicle which is most difficult to schedule. Therefore, for facility i two inequalities of

the form (4.19), where the set Jhi is replaced by the corresponding subset, are added

to the master problem. It has been found empirically that adding a second inequality

resulting from another subset is by far better than defining just one. On the other hand,
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there is no benefit to be gained from calculating more than two subsets. Ordering Jhi

by difficulty instead of using a random order achieved slightly better results.

For (LBD2) only one subset J̃hi ⊆ Jhi is computed to define a feasibility cut (4.42) for

subproblem i in iteration h. As the subproblems are rather large, resolving them may

take quite a long time. Therefore, it is better to run Algorithm 4.1 just once. Instead

of sorting Jhi in a special way, the order of vehicles given by the problem definition was

used.

6.4 Already Solved Subproblems

In the proof of Theorem 2.2 in Section 2.2.4 it was stated that for a logic-based Benders

algorithm no subproblem gets examined twice, except maybe in the last iteration. This

only holds, however, for the subproblem as a whole and not for its individual parts when

it decomposes into multiple problems. Thus, it can happen that the current subproblem

only changes for some of the facilities and for the remaining ones stays the same as

in a previous iteration. Moreover, during the generation of a feasibility cut when the

subproblem of a facility gets resolved after removing one or more vehicles, a subproblem

that was already solved before might be solved another time.

This does not matter so much for (LBD1), since the subproblems of the first decompo-

sition are solved rather quickly. In (LBD2), however, resolving a subproblem may take

quite a long time and should, therefore, be avoided. For this purpose, the subproblem

results are stored together with the problem specification (the set of vehicles that were

assigned to the facility) in a hash table. There is an individual table for every facility. As

hash value we use the sum of indices of the assigned vehicles, i.e.,
∑

j∈Vi j. Subproblem

results with the same hash value are stored in a list.

Whenever a new subproblem is defined, we first check whether the same problem was

solved before. If this is the case, there is no need to resolve it. We simply look up the

result stored in the hash table. Furthermore, no new Benders cut needs to be generated

as it was already added before.



Chapter 7

Computational Experiments

In order to evaluate the algorithms formulated in this thesis, multiple experiments are

performed. The first section describes how instances are generated. Subsequently, results

are given in the form of several tables, for different sets of instances as well as algorithm

variants, and analyzed in detail.

All algorithms are implemented in C++ and compiled with GCC 4.8. For solving the

MIP models, CPLEX version 12.6.1 is used. Test runs are performed on a single core of

an Intel Xeon E5540 with 2.53 GHz and 24 GB RAM. The time limit is set to 2 hours.

7.1 Instance Generation

To create problem instances for testing the algorithms, a random generator is used. It

receives as input the desired number of facilities m, number of vehicles n, number of

charging rates nR and considered time horizon tmax and returns a problem instance as

defined in Section 3.1.

Regarding the choice of rates offered by the charging machines, it would not make

sense to generate them randomly. Instead, a basic charging rate rmin is chosen and all

other rates are defined to be 2 · rmin, 4 · rmin, ... , 2nR−1 · rmin. We set the minimum

charging rate to 6 kW, which (or in practice rather 6.6 kW) seems to be quite typical

for charging EVs [6]. For a cardinality of nR := 3 we get the following set of rates:

R = {6 kW, 12 kW, 24 kW}.

We choose α := 0.2 for the parameter needed to define the function ρ(r) which limits

the number of vehicles charged with rate r at each facility. Considering for example an

instance with 3 facilities, 10 vehicles and 3 rates, the lowest charging rate can be used

freely, the medium rate at most twice and the highest rate at most once per facility.
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The facilities’ resource limits are generated randomly, based on a discrete uniform dis-

tribution within reasonable limits depending on the number of facilities and vehicles

and the available charging rates. To get the number of parking spots ai and charging

spots bi of facility i, two random integers are selected from the set {1, 2, ... , 2·dn/me}, on

condition that ai ≥ bi. In this way, the expected number of parking spots of a facility is

about n/m, providing enough space for all vehicles to be recharged. The power limit Pi

is drawn randomly from the set {rmin, rmin + 1, ... , drmax · bie} with the extreme cases

being that only one vehicle can be charged with minimum rate at any time or that all

available machines are able to charge simultaneously at maximum rate.

Also, instances with tighter resource limits at each facility are generated. For this pur-

pose, the numbers of spots is chosen randomly from the set {1, 2, ... , dn/me} and the

power limits from {rmin, rmin + 1, ... , drmax · bi/2e}.

Similarly, the specifications of the vehicles to be recharged are generated randomly based

on a discrete uniform distribution. The discrete time intervals T = {0, ... , tmax} are

viewed to have a duration of 10 minutes each. Thus, if we set tmax := 60, the considered

time horizon is about 10 hours. The parking duration durj of a vehicle j is selected

randomly from the set {3, 4, ... , tmax}, which means that every vehicle is parked for at

least 30 minutes and the duration must not exceed the considered time horizon. The

arrival time tarr,j is then chosen to be a random integer between 0 and (tmax − durj).

As a result, the departure time tdep,j is set to (tarr,j + durj).

Regarding the energy demand of a vehicle j, values for emin,j and emax,j are drawn

randomly from the set {5 kWh, 6 kWh, ... , 30 kWh}, which seems to be a typical range

when considering the battery size of currently available EV models [6]. The values

for minimum and maximum energy demand of a vehicle are chosen on condition that

emin,j ≤ emax,j and rmax · (tdep,j − tarr,j) ≥ emin,j .

In the following experiments, the time horizon tmax is set to 60 and the number of

charging rates nR to 3. The numbers of facilities and vehicles vary from instance to in-

stance and are indicated by its name. For example, instance “3-10-a” specifies 3 facilities

and 10 vehicles to be scheduled. The letter at the end makes it possible to distinguish

instances with the same number of facilities and vehicles.

Experiments are performed on four different sets of instances. The set EVRSPbasic

constains instances with homogeneous facilities and normal resource limits. The number

of facilities m ranges from 3 to 20 and the number of vehicles n from 10 to 200. The

set EVRSPhet has the same specifications except that the instances have heterogeneous

facilities. EVRSPres considers homogeneous facilities, but the resource limits are tighter.

Finally, EVRSPlarge contains larger instances than the other sets, with the number of
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facilities m ranging from 20 to 50 and the number of vehicles n from 300 to 1000. The

specifications of the sets of instances are summarized in Table 7.1.

Set of Instances m n nR tmax hom. facilities resource limits

EVRSPbasic [3, 20] [10, 200] 3 60 yes normal
EVRSPhet [3, 20] [10, 200] 3 60 no normal
EVRSPres [3, 20] [10, 200] 3 60 yes tighter
EVRSPlarge [20, 50] [300, 1000] 3 60 yes normal

Table 7.1: Sets of instances.

7.2 Results

Test runs are performed on the sets of instances described above. First, the results

achieved on EVRSPbasic are analyzed for all algorithms and their variants. Then, we

evaluate their performance on the other sets as well.

If not stated otherwise, the relaxed subproblem inequalities derived in Section 4.1.4 are

not included within the master problems of (LBD1), whereas the subproblem relaxation

described in Section 4.2.4 is used for strengthening the master problems of (LBD2), since

these variants show the best performance.

7.2.1 EVRSPbasic

Table 7.2 compares the results achieved by (MIP1), (LBD1) and (LBD2) on the set

EVRSPbasic. The second column displays the optimal objective value for every instance.

If no method is able to find an optimal solution within the time limit, the best known

upper bound (“UB”) on the objective value is listed instead. The superscript “M ”

marks the bounds computed by (MIP1). For every algorithm, the optimality gap (ab-

breviated “g”), i.e., the relative difference between the best integer solution found by the

algorithm and the optimal value of the instance (or the best known upper bound), and

the total runtime are given. If termination is caused by the time limit, “TL” is written

instead. Additionally, the number of iterations (abbreviated “it”) is displayed for the

logic-based Benders algorithms. The best runtime is printed bold for every instance that

is solved to optimality.

We observe that (MIP1) and (LBD1) show a good performance on most instances, while

(LBD2) often takes a very long time to find an optimal solution.

• (MIP1) generally terminates after a reasonable amount of time, except for some

instances where it seems to be much harder to find an optimal charging schedule.



50

Instance UB
(MIP1) (LBD1) (LBD2)

g[%] time[s] g[%] time[s] #it g[%] time[s] #it

3-10-a 7.72 0.00 0.94 0.00 2.53 50 0.00 5.28 17

3-10-b 7.00 0.00 0.63 0.00 0.65 23 0.00 1.84 4

3-10-c 10.00 0.00 1.41 0.00 0.07 2 0.00 0.44 1

3-30-a 28.72M 0.01 TL - TL 546 7.05 TL 330

3-30-b 30.00 0.00 3.24 0.00 0.58 4 0.00 0.76 1

3-30-c 29.92 0.00 6.41 0.00 2.74 10 0.00 1762.28 119

5-30-a 26.12 0.00 638.99 - TL 149 28.07 TL 281

5-30-b 30.00 0.00 7.85 0.00 16.97 72 0.00 1236.55 270

5-30-c 29.00 0.00 3.60 0.00 0.50 4 0.00 0.51 1

5-50-a 47.25 0.00 18.13 - TL 2631 6.23 TL 187

5-50-b 46.00 0.00 5.83 0.00 15.69 53 0.00 TL 311

5-50-c 48.43 0.00 7.55 0.00 4.26 15 0.00 595.43 225

10-50-a 35.70 0.00 27.13 0.00 5.45 15 0.00 TL 631

10-50-b 46.51 0.00 15.88 0.00 10.20 30 0.00 TL 280

10-50-c 48.21 0.00 43.43 0.00 38.14 70 2.27 TL 175

10-100-a 99.80 0.00 39.88 0.00 13.01 16 0.03 TL 359

10-100-b 99.90 0.00 42.24 0.00 8.72 10 0.11 TL 230

10-100-c 99.67 0.00 52.25 0.00 9.10 9 0.13 TL 233

10-200-a 199.78 0.00 102.65 0.00 29.57 14 0.42 TL 100

10-200-b 199.51 0.00 109.88 0.00 67.83 20 0.24 TL 135

10-200-c 198.82 0.00 92.69 0.00 34.87 14 0.54 TL 105

20-100-a 95.71 0.00 72.93 0.00 104.36 65 30.32 TL 18

20-100-b 94.95 0.00 498.58 0.00 641.82 250 38.55 TL 23

20-100-c 91.68 0.00 76.89 0.00 72.73 53 1.71 TL 36

20-200-a 198.49 0.00 222.54 0.00 58.92 15 1.71 TL 42

20-200-b 199.80 0.00 3890.90 - TL 627 38.95 TL 20

20-200-c 70.27 0.00 823.15 - TL 144 - TL 1

Table 7.2: Results of (MIP1), (LBD1) and (LBD2) on the set EVRSPbasic.

Apparently the difficulty of a problem not only depends on its size, but also on

the instance properties.

• (LBD1) outperforms the compact MIP model on the majority of instances, but for

some it takes much more time to finish. Considering the respective objective values,

we observe that (LBD1) performs especially well on instances where all or nearly all

vehicles can be fully recharged. It then only takes a few iterations to terminate. For

instances where several vehicles cannot be fully recharged, the algorithm generally

needs much more iterations. A disadvantage of this decomposition is that it only

returns a feasible solution when it finds an optimal one. It does not produce any

feasible intermediate solutions.

• As mentioned before, (LBD2) does not perform well in general. Only when it

already finishes after one iteration, the algorithm is competitive with the others.
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Unlike (LBD1), it usually returns a feasible solution when interrupted early. In

some cases it does not terminate in time, although it has found a solution with

optimal value, because the algorithm cannot yet exclude that there may exist a

feasible solution with a better value.

Table 7.3 shows the results of the greedy algorithm described in Section 3.3 on the set

EVRSPbasic. Its runtime is often less than a hundredth of a second, but it does not

find an optimal solution for any instance. In many cases the value of the heuristically

found solution is quite far from the optimal one. This shows that the EVRSP is indeed

a challenging problem that cannot be solved satisfactorily with such a simple greedy

approach.

Instance UB
(GREEDY)
g[%] time[s]

3-10-a 7.72 15.47 < 0.01

3-10-b 7.00 0.55 < 0.01

3-10-c 10.00 5.02 < 0.01

3-30-a 28.72 37.27 < 0.01

3-30-b 30.00 7.84 < 0.01

3-30-c 29.92 14.05 0.01

5-30-a 26.12 33.13 0.01

5-30-b 30.00 24.92 0.01

5-30-c 29.00 6.81 < 0.01

5-50-a 47.25 25.56 0.01

5-50-b 46.00 24.01 < 0.01

5-50-c 48.43 10.79 < 0.01

10-50-a 35.70 12.97 < 0.01

10-50-b 46.51 14.42 < 0.01

10-50-c 48.21 18.43 0.01

10-100-a 99.80 15.63 0.01

10-100-b 99.90 18.83 0.01

10-100-c 99.67 20.81 0.01

10-200-a 199.78 17.67 < 0.01

10-200-b 199.51 25.71 0.05

10-200-c 198.82 18.39 < 0.01

20-100-a 95.71 10.84 < 0.01

20-100-b 94.95 20.71 0.08

20-100-c 91.68 8.90 < 0.01

20-200-a 198.49 16.71 < 0.01

20-200-b 199.80 28.07 0.15

20-200-c 70.27 28.97 0.34

Table 7.3: Results of (GREEDY) on the set EVRSPbasic.
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7.2.1.1 Details for (LBD1) and (LBD2)

After the comparison of the algorithms, detailed results are now given for the logic-based

Benders algorithms.

Table 7.4 displays additional information about the test runs with (LBD1). It separately

lists the total time “tall” spent on either the master or subproblems, respectively, as well

as the average solving time “tavg”. The number of solved master problems corresponds to

the number of iterations. The total number of subproblems, which contains those arising

from the solution of a master problem as well as those defined during the generation of

a feasibility cut, is provided additionally. Finally, the number of feasibility cuts that are

added to the master problem is given.

Instance
(LBD1) Master Problems Subproblems Cuts

g[%] time[s] #it tall[s] tavg[s] # tall[s] tavg[s] #

3-10-a 0.00 2.53 50 1.43 0.03 796 0.87 < 0.01 98

3-10-b 0.00 0.65 23 0.22 0.01 365 0.32 < 0.01 42

3-10-c 0.00 0.07 2 0.03 0.01 16 0.01 < 0.01 2

3-30-a - TL 546 7060.80 12.93 32785 131.19 < 0.01 1530

3-30-b 0.00 0.58 4 0.12 0.03 174 0.35 < 0.01 8

3-30-c 0.00 2.74 10 0.72 0.07 432 1.82 < 0.01 18

5-30-a - TL 149 7181.15 48.20 8846 15.97 < 0.01 651

5-30-b 0.00 16.97 72 7.27 0.10 2690 8.54 < 0.01 153

5-30-c 0.00 0.50 4 0.21 0.05 118 0.16 < 0.01 8

5-50-a - TL 2631 6191.84 2.35 190858 935.85 < 0.01 7097

5-50-b 0.00 15.69 53 5.98 0.11 3061 8.42 < 0.01 98

5-50-c 0.00 4.26 15 1.69 0.11 877 2.10 < 0.01 33

10-50-a 0.00 5.45 15 4.32 0.29 430 0.35 < 0.01 34

10-50-b 0.00 10.20 30 7.38 0.25 1168 1.57 < 0.01 53

10-50-c 0.00 38.14 70 25.22 0.36 4554 9.96 < 0.01 319

10-100-a 0.00 13.01 16 8.51 0.53 1194 2.82 < 0.01 48

10-100-b 0.00 8.72 10 5.11 0.51 1070 2.30 < 0.01 44

10-100-c 0.00 9.10 9 5.66 0.63 1204 2.06 < 0.01 53

10-200-a 0.00 29.57 14 17.38 1.24 3454 8.87 < 0.01 81

10-200-b 0.00 67.83 20 27.96 1.40 4898 34.85 0.01 95

10-200-c 0.00 34.87 14 17.42 1.24 3736 14.03 < 0.01 84

20-100-a 0.00 104.36 65 90.71 1.40 3944 5.09 < 0.01 189

20-100-b 0.00 641.82 250 554.17 2.22 22628 57.01 < 0.01 1330

20-100-c 0.00 72.73 53 61.13 1.15 3680 4.25 < 0.01 196

20-200-a 0.00 58.92 15 48.77 3.25 2536 3.79 < 0.01 108

20-200-b - TL 627 6316.07 10.07 135680 714.80 0.01 5222

20-200-c - TL 144 7064.05 49.06 49934 94.57 < 0.01 2855

Table 7.4: Detailed results of (LBD1) on the set EVRSPbasic.
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For those instances which are solved to optimality, the algorithm spends a similar amount

of time on the master and subproblems. Although it takes substantially less time to solve

a single subproblem, this is offset by their large number. When the algorithm is unable

to find an optimal solution within the time limit, most time is spent on solving the

master problems. One can see that not only the relatively high number of iterations is

responsible for the long runtime of (LBD1) in these cases, but also the increased amount

of time needed to solve a single master problem.

Table 7.5 shows the same information about the test runs with (LBD2), except that for

the Benders cuts we distinguish between feasibility (“feas”) and optimality cuts (“opt”).

Instance
(LBD2) Master Problems Subproblems # Cuts

g[%] time[s] #it tall[s] tavg[s] # tall[s] tavg[s] feas opt

3-10-a 0.00 5.28 17 0.20 0.01 92 4.46 0.05 3 39

3-10-b 0.00 1.84 4 0.01 < 0.01 32 1.67 0.05 4 3

3-10-c 0.00 0.44 1 < 0.01 < 0.01 3 0.40 0.13 0 0

3-30-a 7.05 TL 330 216.83 0.66 6348 6860.44 1.08 328 633

3-30-b 0.00 0.76 1 0.01 0.01 3 0.67 0.22 0 0

3-30-c 0.00 1762.28 119 8.42 0.07 603 1736.80 2.88 0 301

5-30-a 28.07 TL 281 5827.44 20.74 7698 1304.12 0.17 645 678

5-30-b 0.00 1236.55 270 100.31 0.37 4439 1064.49 0.24 213 912

5-30-c 0.00 0.51 1 0.01 0.01 5 0.42 0.08 0 0

5-50-a 6.23 TL 187 732.73 3.92 6483 6323.09 0.98 257 561

5-50-b 0.00 TL 311 6724.34 21.62 4420 385.65 0.09 73 1295

5-50-c 0.00 595.43 225 303.33 1.35 1611 247.84 0.15 2 777

10-50-a 0.00 TL 631 6617.91 10.49 11480 480.02 0.04 48 5567

10-50-b 0.00 TL 280 6840.82 24.43 4852 297.77 0.06 14 2330

10-50-c 2.27 TL 175 6233.76 35.62 4028 921.18 0.23 122 1457

10-100-a 0.03 TL 359 5784.97 16.11 6911 1243.01 0.18 10 3312

10-100-b 0.11 TL 230 5586.66 24.29 6751 1470.37 0.22 102 2058

10-100-c 0.13 TL 233 6024.87 25.86 5593 1053.94 0.19 58 2179

10-200-a 0.42 TL 100 6127.40 61.27 3768 960.19 0.25 44 861

10-200-b 0.24 TL 135 3855.39 28.56 9797 3104.81 0.32 125 1052

10-200-c 0.54 TL 105 5928.39 56.46 3791 1112.55 0.29 32 815

20-100-a 30.32 TL 18 7124.75 395.82 1222 68.07 0.06 68 220

20-100-b 38.55 TL 23 6947.70 302.07 1859 232.11 0.12 101 258

20-100-c 1.71 TL 36 7047.11 195.75 2007 135.32 0.07 82 428

20-200-a 1.71 TL 42 6732.02 160.29 2764 410.35 0.15 57 592

20-200-b 38.95 TL 20 4172.66 208.63 2745 2965.05 1.08 88 199

20-200-c - TL 1 TL TL 0 - - 0 0

Table 7.5: Detailed results of (LBD2) on the set EVRSPbasic.

Considering the smaller instances that are solved to optimality, we observe that the

algorithm spends more time on the solution of the subproblems. In addition to the fact

that there is a higher number of subproblems, they are also more difficult to solve than

the master problems. However, for larger instances where the algorithm cannot finish

in time, the master problems are responsible for the long runtime. For the last instance,
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not even a single master problem can be solved within the time limit. In general, the

algorithm generates far more optimality cuts than feasibility cuts, which indicates that

it often finds a feasible solution after a few iterations but takes longer to compute an

optimal one or prove optimality.

Finally, Table 7.6 compares the results achieved by (LBD1) when strengthening the

master problems as described in Section 4.1.4 with those of the basic algorithm as seen

before.

Instance g[%]
(LBD1) w. Strengthened Master (LBD1)

time[s] #it
Master

time[s] #it
Master

tall[s] tavg[s] tall[s] tavg[s]

3-10-a 0.00 1.80 17 1.35 0.08 2.53 50 1.43 0.03

3-10-b 0.00 0.64 23 0.21 0.01 0.65 23 0.22 0.01

3-10-c 0.00 0.16 2 0.04 0.02 0.07 2 0.03 0.01

3-30-a - TL 534 7062.24 13.23 TL 546 7060.80 12.93

3-30-b 0.00 0.55 4 0.12 0.03 0.58 4 0.12 0.03

3-30-c 0.00 2.74 10 0.72 0.07 2.74 10 0.72 0.07

5-30-a - TL 151 7182.27 47.56 TL 149 7181.15 48.20

5-30-b 0.00 36.55 59 26.56 0.45 16.97 72 7.27 0.10

5-30-c 0.00 1.04 4 0.24 0.06 0.50 4 0.21 0.05

5-50-a - TL 2641 6171.49 2.34 TL 2631 6191.84 2.35

5-50-b 0.00 18.44 53 6.53 0.12 15.69 53 5.98 0.11

5-50-c 0.00 10.15 15 4.19 0.28 4.26 15 1.69 0.11

10-50-a 0.00 5.44 15 4.30 0.29 5.45 15 4.32 0.29

10-50-b 0.00 10.33 30 7.49 0.25 10.20 30 7.38 0.25

10-50-c 0.00 36.42 70 24.28 0.35 38.14 70 25.22 0.36

10-100-a 0.00 13.05 16 8.52 0.53 13.01 16 8.51 0.53

10-100-b 0.00 182.45 9 101.39 11.27 8.72 10 5.11 0.51

10-100-c 0.00 9.07 9 5.71 0.63 9.10 9 5.66 0.63

10-200-a 0.00 30.70 14 18.09 1.29 29.57 14 17.38 1.24

10-200-b 0.00 68.78 20 28.76 1.44 67.83 20 27.96 1.40

10-200-c 0.00 34.56 14 17.98 1.28 34.87 14 17.42 1.24

20-100-a 0.00 110.12 65 95.41 1.47 104.36 65 90.71 1.40

20-100-b 0.00 656.10 250 567.38 2.27 641.82 250 554.17 2.22

20-100-c 0.00 1501.43 52 1290.33 24.81 72.73 53 61.13 1.15

20-200-a 0.00 59.03 15 48.47 3.23 58.92 15 48.77 3.25

20-200-b - TL 642 6344.51 9.88 TL 627 6316.07 10.07

20-200-c - TL 144 7073.93 49.12 TL 144 7064.05 49.06

Table 7.6: Results of (LBD1) with and without strengthening the master problem on
the set EVRSPbasic.

We observe that (LBD1) performs better without strengthening the master problems on

nearly all instances. The introduced time overhead of the strengthened formulation is

not compensated by the only occasionally reduced number of iterations.
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7.2.1.2 Boosted Variants of (LBD1) and (LBD2)

We now compare the results of (LBD1) and (LBD2) with those achieved by the heuris-

tically boosted versions of the algorithms, as described in Chapter 5. In general, an

optimality gap of 1e-04 = 0.0001 is used for solving a MIP with CPLEX. In these alter-

native variants of the logic-based Benders algorithms the gap for solving the master or

subproblems is initially set to a higher value. In the following, results are given for an

initial optimality gap of either 0.005 or 0.05.

Table 7.7 shows the results of (LBD1BoostM) and compares them with those of the

basic version of (LBD1). The best runtime for each instance is printed bold.

Generally, increasing the optimality gap leads to a faster solution of the master problems,

resulting in a decreased average solving time. A higher number of iterations is the price

that has to be paid. This does not hold for all test runs, as an altered solution to a

master problem might lead to the formulation of different Benders cuts and thus other

trial values might be tested. We observe that for most instances eventually no benefit is

to be gained from the heuristic approach, since the total runtime is longer than for the

basic version of (LBD1). The boosted variant only performs better occasionally.

Table 7.8 compares the performance of (LBD2BoostM) with the basic algorithm. When

no optimal solution is found within the time limit, the best solution gap is printed bold

instead of the runtime.

Similarly to above, the average time for solving a master problem is generally shorter

with a higher optimality gap. Additionally, the number of iterations and the time spent

for solving the subproblems might change and this may have a significant impact on the

total runtime. Therefore, increasing the master optimality gap can result in a better

performance, but it could also be worse. For most instances, (LBD2BoostM) with an

initial optimality gap of 0.005 achieves the best results. Compared to the basic algorithm,

the runtime is substantially shorter on some instances, terminating after considerably

fewer iterations. Moreover, it finds a better feasible solution within the time limit for

most instances that are not solved to optimality.

Next, we consider the variants of (LBD2), where the initial subproblem optimality gap

is increased. Table 7.9 shows the results of (LBD2BoostSU).

As intended, the average time for solving a single subproblem is in general shorter for a

higher optimality gap. An increase is, however, also possible, since the adapted Benders

cuts may lead to other trial values and consequently the formulation of different sub-

problems. Additionally, the number of iterations might change considerably. Although

the results are not as clear as above, (LBD2BoostSU) with a gap of 0.005 often shows the
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Instance
(LBD1BoostM) Master

Instance
(LBD1BoostM) Master

Gap time[s] #it tavg[s] Gap time[s] #it tavg[s]

3-10-a
- 2.53 50 0.029

10-50-c
- 38.14 70 0.360

0.005 2.36 51 0.025 0.005 42.91 80 0.365
0.05 3.29 77 0.022 0.05 75.54 140 0.374

3-10-b
- 0.65 23 0.009

10-100-a
- 13.01 16 0.532

0.005 0.63 24 0.009 0.005 13.58 17 0.507
0.05 0.63 24 0.009 0.05 13.57 17 0.509

3-10-c
- 0.07 2 0.013

10-100-b
- 8.72 10 0.511

0.005 0.07 3 0.009 0.005 9.01 11 0.475
0.05 0.07 3 0.009 0.05 8.71 11 0.470

3-30-a
- TL 546 12.932

10-100-c
- 9.10 9 0.629

0.005 TL 1491 4.555 0.005 12.50 14 0.607
0.05 TL 2736 2.367 0.05 13.25 14 0.627

3-30-b
- 0.58 4 0.030

10-200-a
- 29.57 14 1.241

0.005 0.57 5 0.024 0.005 29.98 15 1.179
0.05 0.56 5 0.024 0.05 29.99 15 1.179

3-30-c
- 2.74 10 0.072

10-200-b
- 67.83 20 1.398

0.005 2.81 11 0.066 0.005 74.01 21 1.494
0.05 2.81 11 0.065 0.05 75.10 23 1.417

5-30-a
- TL 149 48.196

10-200-c
- 34.87 14 1.244

0.005 TL 232 30.907 0.005 33.97 15 1.173
0.05 TL 896 7.909 0.05 38.18 17 1.186

5-30-b
- 16.97 72 0.101

20-100-a
- 104.36 65 1.396

0.005 105.95 325 0.162 0.005 106.16 66 1.386
0.05 10.63 53 0.086 0.05 108.09 66 1.420

5-30-c
- 0.50 4 0.053

20-100-b
- 641.82 250 2.217

0.005 0.51 5 0.041 0.005 624.51 238 2.263
0.05 0.51 5 0.041 0.05 460.64 196 1.981

5-50-a
- TL 2631 2.353

20-100-c
- 72.73 53 1.153

0.005 TL 1448 4.65 0.005 75.43 54 1.171
0.05 TL 2743 2.245 0.05 75.37 56 1.128

5-50-b
- 15.69 53 0.113

20-200-a
- 58.92 15 3.251

0.005 15.60 54 0.111 0.005 60.97 16 3.148
0.05 16.05 55 0.109 0.05 61.00 16 3.141

5-50-c
- 4.26 15 0.113

20-200-b
- TL 627 10.074

0.005 4.24 16 0.106 0.005 TL 603 10.57
0.05 4.17 16 0.105 0.05 TL 699 8.84

10-50-a
- 5.45 15 0.288

20-200-c
- TL 144 49.056

0.005 5.56 16 0.277 0.005 TL 145 48.72
0.05 5.57 16 0.273 0.05 TL 148 47.767

10-50-b
- 10.20 30 0.246

0.005 9.87 30 0.235
0.05 9.88 31 0.229

Table 7.7: Results of (LBD1BoostM) on the set EVRSPbasic.
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Instance
(LBD2BoostM) Master

Instance
(LBD2BoostM) Master

Gap g[%] time[s] #it tavg[s] Gap g[%] time[s] #it tavg[s]

3-10-a
- 0.00 5.28 17 0.01

10-50-c
- 2.27 TL 175 35.62

0.005 0.00 5.42 18 0.01 0.005 1.90 TL 198 30.75
0.05 0.00 7.11 23 0.01 0.05 3.22 TL 436 8.50

3-10-b
- 0.00 1.84 4 < 0.01

10-100-a
- 0.03 TL 359 16.11

0.005 0.00 1.86 5 < 0.01 0.005 0.00 1357.90 143 4.37
0.05 0.00 1.85 5 < 0.01 0.05 0.03 TL 366 15.61

3-10-c
- 0.00 0.44 1 < 0.01

10-100-b
- 0.11 TL 230 24.29

0.005 0.00 0.44 2 < 0.01 0.005 0.04 TL 231 24.09
0.05 0.00 0.44 2 < 0.01 0.05 0.11 TL 233 24.03

3-30-a
- 7.05 TL 330 0.66

10-100-c
- 0.13 TL 233 25.86

0.005 7.27 TL 308 0.26 0.005 0.07 TL 273 21.40
0.05 6.99 TL 294 0.20 0.05 0.13 TL 248 24.00

3-30-b
- 0.00 0.76 1 0.01

10-200-a
- 0.42 TL 100 61.27

0.005 0.00 0.77 2 < 0.01 0.005 0.46 TL 99 62.38
0.05 0.00 0.78 2 < 0.01 0.05 0.46 TL 101 60.35

3-30-c
- 0.00 1762.28 119 0.07

10-200-b
- 0.24 TL 135 28.56

0.005 0.00 385.08 28 0.01 0.005 0.34 TL 161 16.07
0.05 0.00 1866.96 120 0.07 0.05 0.18 TL 161 18.26

5-30-a
- 28.07 TL 281 20.74

10-200-c
- 0.54 TL 105 56.46

0.005 28.69 TL 277 20.83 0.005 0.28 TL 103 59.69
0.05 29.32 TL 889 2.27 0.05 0.27 TL 100 63.09

5-30-b
- 0.00 1236.55 270 0.37

20-100-a
- 30.32 TL 18 395.82

0.005 0.00 236.42 65 0.08 0.005 3.40 TL 36 195.46
0.05 0.00 2474.70 488 0.60 0.05 2.34 TL 42 167.06

5-30-c
- 0.00 0.51 1 0.01

20-100-b
- 38.55 TL 23 302.07

0.005 0.00 0.51 2 < 0.01 0.005 38.55 TL 28 246.36
0.05 0.00 0.51 2 < 0.01 0.05 36.09 TL 74 84.69

5-50-a
- 6.23 TL 187 3.92

20-100-c
- 1.71 TL 36 195.75

0.005 1.95 TL 223 2.52 0.005 1.71 TL 50 139.81
0.05 10.46 TL 231 0.43 0.05 1.74 TL 178 35.89

5-50-b
- 0.00 TL 311 21.62

20-200-a
- 1.71 TL 42 160.29

0.005 0.00 TL 495 13.19 0.005 2.32 TL 81 76.59
0.05 0.00 TL 306 22.09 0.05 1.71 TL 39 173.50

5-50-c
- 0.00 595.43 225 1.35

20-200-b
- 38.95 TL 20 208.63

0.005 0.00 218.00 137 0.28 0.005 38.95 TL 24 156.58
0.05 0.00 622.83 226 1.45 0.05 38.95 TL 22 177.76

10-50-a
- 0.00 TL 631 10.49

20-200-c
- - TL 1 TL

0.005 0.00 TL 641 10.32 0.005 - TL 1 TL
0.05 0.00 TL 628 10.53 0.05 95.27 TL 14 504.11

10-50-b
- 0.00 TL 280 24.43

0.005 0.02 TL 324 20.92
0.05 0.02 TL 262 26.21

Table 7.8: Results of (LBD2BoostM) on the set EVRSPbasic.
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Instance
(LBD2BoostSU) Sub

Instance
(LBD2BoostSU) Sub

Gap g[%] time[s] #it tavg[s] Gap g[%] time[s] #it tavg[s]

3-10-a
- 0.00 5.28 17 0.049

10-50-c
- 2.27 TL 175 0.229

0.005 0.00 5.30 18 0.047 0.005 2.55 TL 157 0.258
0.05 0.00 5.35 18 0.048 0.05 1.63 TL 155 0.212

3-10-b
- 0.00 1.84 4 0.052

10-100-a
- 0.03 TL 359 0.180

0.005 0.00 2.04 5 0.053 0.005 0.00 916.48 100 0.210
0.05 0.00 2.05 5 0.053 0.05 0.03 TL 201 0.221

3-10-c
- 0.00 0.44 1 0.134

10-100-b
- 0.11 TL 230 0.218

0.005 0.00 0.87 2 0.135 0.005 2.26 TL 245 0.235
0.05 0.00 0.85 2 0.131 0.05 0.25 TL 198 0.231

3-30-a
- 7.05 TL 330 1.081

10-100-c
- 0.13 TL 233 0.188

0.005 6.49 TL 351 1.046 0.005 0.13 TL 248 0.198
0.05 9.18 TL 455 0.772 0.05 0.36 TL 208 0.181

3-30-b
- 0.00 0.76 1 0.223

10-200-a
- 0.42 TL 100 0.255

0.005 0.00 0.76 1 0.220 0.005 0.16 TL 237 0.260
0.05 0.00 0.76 1 0.222 0.05 0.09 TL 229 0.244

3-30-c
- 0.00 1762.28 119 2.880

10-200-b
- 0.24 TL 135 0.317

0.005 0.00 718.76 141 0.995 0.005 0.23 TL 137 0.299
0.05 0.00 134.48 42 0.599 0.05 0.46 TL 108 0.310

5-30-a
- 28.07 TL 281 0.169

10-200-c
- 0.54 TL 105 0.293

0.005 16.28 TL 338 0.165 0.005 0.05 TL 197 0.280
0.05 11.19 TL 313 0.181 0.05 0.16 TL 186 0.320

5-30-b
- 0.00 1236.55 270 0.240

20-100-a
- 30.32 TL 18 0.056

0.005 0.00 919.01 220 0.233 0.005 30.32 TL 18 0.056
0.05 0.00 1224.97 277 0.224 0.05 25.48 TL 18 0.058

5-30-c
- 0.00 0.51 1 0.084

20-100-b
- 38.55 TL 23 0.125

0.005 0.00 0.98 2 0.082 0.005 47.16 TL 26 0.142
0.05 0.00 1.02 2 0.084 0.05 30.62 TL 43 0.115

5-50-a
- 6.23 TL 187 0.975

20-100-c
- 1.71 TL 36 0.067

0.005 5.79 TL 217 0.904 0.005 18.62 TL 33 0.065
0.05 3.40 TL 289 0.588 0.05 17.14 TL 24 0.070

5-50-b
- 0.00 TL 311 0.087

20-200-a
- 1.71 TL 42 0.148

0.005 0.00 TL 344 0.078 0.005 1.79 TL 45 0.139
0.05 0.19 TL 302 0.084 0.05 1.02 TL 43 0.141

5-50-c
- 0.00 595.43 225 0.154

20-200-b
- 38.95 TL 20 1.080

0.005 0.00 168.49 96 0.144 0.005 38.96 TL 20 0.963
0.05 0.00 284.33 125 0.155 0.05 40.00 TL 20 0.483

10-50-a
- 0.00 TL 631 0.042

20-200-c
- - TL 1 TL

0.005 0.00 TL 638 0.042 0.005 - TL 1 TL
0.05 0.00 TL 596 0.042 0.05 - TL 1 TL

10-50-b
- 0.00 TL 280 0.061

0.005 0.00 TL 230 0.061
0.05 0.00 TL 260 0.063

Table 7.9: Results of (LBD2BoostSU) on the set EVRSPbasic.
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best performance. Again, on some instances the adapted algorithm has a substantially

shorter runtime than the basic version of (LBD2).

Table 7.10 compares the results of the third variant (LBD2BoostSL) with the basic

algorithm. Here, in contrast to the previous method, the Benders cuts are not adapted.

Instance
(LBD2BoostSL) Sub

Instance
(LBD2BoostSL) Sub

Gap g[%] time[s] #it tavg[s] Gap g[%] time[s] #it tavg[s]

3-10-a
- 0.00 5.28 17 0.049

10-50-c
- 2.27 TL 175 0.229

0.005 0.00 5.16 17 0.048 0.005 2.30 TL 168 0.258
0.05 0.00 5.17 17 0.048 0.05 3.19 TL 161 0.180

3-10-b
- 0.00 1.84 4 0.052

10-100-a
- 0.03 TL 359 0.180

0.005 0.00 1.90 4 0.054 0.005 0.00 915.83 100 0.208
0.05 0.00 1.84 4 0.052 0.05 0.03 TL 202 0.219

3-10-c
- 0.00 0.44 1 0.134

10-100-b
- 0.11 TL 230 0.218

0.005 0.00 0.45 1 0.137 0.005 0.07 TL 185 0.228
0.05 0.00 0.96 2 0.097 0.05 0.31 TL 133 0.255

3-30-a
- 7.05 TL 330 1.081

10-100-c
- 0.13 TL 233 0.188

0.005 6.49 TL 354 1.040 0.005 0.13 TL 248 0.193
0.05 9.18 TL 454 0.775 0.05 0.36 TL 206 0.185

3-30-b
- 0.00 0.76 1 0.223

10-200-a
- 0.42 TL 100 0.255

0.005 0.00 0.77 1 0.226 0.005 0.16 TL 235 0.266
0.05 0.00 0.77 1 0.226 0.05 0.17 TL 269 0.247

3-30-c
- 0.00 1762.28 119 2.880

10-200-b
- 0.24 TL 135 0.317

0.005 0.00 150.59 14 1.926 0.005 0.23 TL 136 0.302
0.05 0.00 237.62 75 0.572 0.05 0.46 TL 108 0.315

5-30-a
- 28.07 TL 281 0.169

10-200-c
- 0.54 TL 105 0.293

0.005 16.28 TL 336 0.166 0.005 0.07 TL 300 0.269
0.05 11.19 TL 317 0.181 0.05 0.23 TL 146 0.317

5-30-b
- 0.00 1236.55 270 0.240

20-100-a
- 30.32 TL 18 0.056

0.005 0.00 2425.18 521 0.226 0.005 30.32 TL 18 0.057
0.05 0.56 TL 1137 0.228 0.05 25.48 TL 18 0.058

5-30-c
- 0.00 0.51 1 0.084

20-100-b
- 38.55 TL 23 0.125

0.005 0.00 0.52 1 0.085 0.005 28.23 TL 25 0.139
0.05 0.00 0.52 1 0.085 0.05 47.20 TL 39 0.144

5-50-a
- 6.23 TL 187 0.975

20-100-c
- 1.71 TL 36 0.067

0.005 3.19 TL 232 0.834 0.005 1.71 TL 36 0.070
0.05 2.39 TL 277 0.563 0.05 3.86 TL 34 0.065

5-50-b
- 0.00 TL 311 0.087

20-200-a
- 1.71 TL 42 0.148

0.005 0.00 TL 336 0.090 0.005 0.88 TL 54 0.139
0.05 0.19 TL 310 0.085 0.05 2.48 TL 45 0.137

5-50-c
- 0.00 595.43 225 0.154

20-200-b
- 38.95 TL 20 1.080

0.005 0.00 626.70 225 0.157 0.005 38.96 TL 18 1.035
0.05 0.00 216.51 108 0.171 0.05 35.93 TL 23 0.536

10-50-a
- 0.00 TL 631 0.042

20-200-c
- - TL 1 TL

0.005 0.00 TL 630 0.042 0.005 - TL 1 TL
0.05 0.00 TL 595 0.043 0.05 - TL 1 TL

10-50-b
- 0.00 TL 280 0.061

0.005 0.00 TL 275 0.061
0.05 0.02 TL 283 0.063

Table 7.10: Results of (LBD2BoostSL) on the set EVRSPbasic.
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Although the subproblem optimality gap is increased, the average solving time is longer

for many instances. As explained above, this can be caused by the formulation of

different Benders cuts, where only a lower bound on the optimal profit of the considered

subproblems is used. For those instances where (LBD2BoostSL) finishes within the

time limit, it returns an optimal solution, even though possibly invalid Benders cuts are

generated by using suboptimal solutions of the subproblems. Since there need not be a

unique optimal solution, some optima might be cut away, but at least one remains that

is found by the algorithm. Similarly to above, heuristic boosting of (LBD2) leads to

a significantly improved performance on some instances, especially with an initial gap

of 0.005.

Finally, the three boosted variants of (LBD2), all with an initial optimality gap of 0.005,

are compared in Table 7.11.

Instance
(LBD2) (LBD2BoostM) (LBD2BoostSU) (LBD2BoostSL)

g[%] time[s] g[%] time[s] g[%] time[s] g[%] time[s]

3-10-a 0.00 5.28 0.00 5.42 0.00 5.30 0.00 5.16

3-10-b 0.00 1.84 0.00 1.86 0.00 2.04 0.00 1.90

3-10-c 0.00 0.44 0.00 0.44 0.00 0.87 0.00 0.45

3-30-a 7.05 TL 7.27 TL 6.49 TL 6.49 TL

3-30-b 0.00 0.76 0.00 0.77 0.00 0.76 0.00 0.77

3-30-c 0.00 1762.28 0.00 385.08 0.00 718.76 0.00 150.59

5-30-a 28.07 TL 28.69 TL 16.28 TL 16.28 TL

5-30-b 0.00 1236.55 0.00 236.42 0.00 919.01 0.00 2425.18

5-30-c 0.00 0.51 0.00 0.51 0.00 0.98 0.00 0.52

5-50-a 6.23 TL 1.95 TL 5.79 TL 3.19 TL

5-50-b 0.00 TL 0.00 TL 0.00 TL 0.00 TL

5-50-c 0.00 595.43 0.00 218.00 0.00 168.49 0.00 626.70

10-50-a 0.00 TL 0.00 TL 0.00 TL 0.00 TL

10-50-b 0.00 TL 0.02 TL 0.00 TL 0.00 TL

10-50-c 2.27 TL 1.90 TL 2.55 TL 2.30 TL

10-100-a 0.03 TL 0.00 1357.90 0.00 916.48 0.00 915.83

10-100-b 0.11 TL 0.04 TL 2.26 TL 0.07 TL

10-100-c 0.13 TL 0.07 TL 0.13 TL 0.13 TL

10-200-a 0.42 TL 0.46 TL 0.16 TL 0.16 TL

10-200-b 0.24 TL 0.34 TL 0.23 TL 0.23 TL

10-200-c 0.54 TL 0.28 TL 0.05 TL 0.07 TL

20-100-a 30.32 TL 3.40 TL 30.32 TL 30.32 TL

20-100-b 38.55 TL 38.55 TL 47.16 TL 28.23 TL

20-100-c 1.71 TL 1.71 TL 18.62 TL 1.71 TL

20-200-a 1.71 TL 2.32 TL 1.79 TL 0.88 TL

20-200-b 38.95 TL 38.95 TL 38.96 TL 38.96 TL

20-200-c - TL - TL - TL - TL

Table 7.11: Comparison of the results of the boosted variants of (LBD2) with an
initial optimality gap of 0.005 on the set EVRSPbasic.
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We observe that the different strategies for boosting (LBD2) all lead to similar results.

Depending on the instance, one variant or another shows a better performance. Consid-

erable improvements compared to the basic algorithm can be achieved in many cases. It

has to be mentioned, however, that the results are still much worse than those of (MIP1)

and (LBD1).

7.2.2 EVRSPhet

Having described and analyzed the results of all algorithms and their variants on the

set EVRSPbasic, we now compare the performance of (MIP1), (LBD1) and (LBD2) on

the other sets of instances. Table 7.12 shows the results on the set EVRSPhet with

heterogeneous facilities.

Instance UB
(MIP1) (LBD1) (LBD2)

g[%] time[s] g[%] time[s] #it g[%] time[s] #it

3-10-a 10.00 0.00 0.65 0.00 0.19 6 0.00 2.81 4

3-10-b 10.00 0.00 0.93 0.00 0.47 15 0.00 15.62 37

3-10-c 9.88 0.00 0.95 0.00 1.41 35 0.00 15.50 36

3-30-a 29.91 0.00 3.12 0.00 6.00 50 0.00 TL 2139

3-30-b 29.69 0.00 5.81 0.00 16.69 92 0.00 TL 2589

3-30-c 28.74 0.00 6.00 - TL 1289 0.00 TL 1048

5-30-a 30.00 0.00 9.79 0.00 9.39 59 0.00 2751.87 907

5-30-b 30.00 0.00 8.87 0.00 3.37 18 0.00 117.74 76

5-30-c 29.85 0.00 4.64 0.00 6.50 49 0.00 5416.61 641

5-50-a 48.67 0.00 9.89 0.00 38.29 137 0.04 TL 102

5-50-b 49.52 0.00 10.44 0.00 28.82 121 0.00 TL 1090

5-50-c 49.54 0.00 8.03 0.00 18.52 55 0.00 3432.58 797

10-50-a 48.02 0.00 12.51 0.00 61.82 184 0.02 TL 392

10-50-b 45.63 0.00 36.09 0.00 110.40 234 0.02 TL 702

10-50-c 47.93 0.00 40.42 0.00 25.03 57 0.00 897.79 184

10-100-a 91.76 0.00 144.66 - TL 2374 0.23 TL 3

10-100-b 88.85 0.00 70.18 0.00 746.47 644 0.17 TL 188

10-100-c 88.91 0.00 86.06 - TL 2833 0.19 TL 188

10-200-a 187.19 0.00 573.75 - TL 1817 0.28 TL 58

10-200-b 185.57 0.00 135.43 - TL 1611 0.40 TL 15

10-200-c 187.03 0.00 203.65 - TL 1959 0.30 TL 86

20-100-a 93.48 0.00 329.89 0.00 1289.61 584 0.31 TL 141

20-100-b 92.13 0.00 618.67 0.00 567.72 304 0.34 TL 214

20-100-c 94.23 0.00 231.13 0.00 1009.42 468 0.39 TL 168

20-200-a 189.37 0.00 2902.55 - TL 1004 0.45 TL 36

20-200-b 186.84 0.00 1351.91 - TL 1029 0.48 TL 26

20-200-c 181.78 0.00 463.43 - TL 1454 0.27 TL 73

Table 7.12: Results of (MIP1), (LBD1) and (LBD2) on the set EVRSPhet.
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• (MIP1) clearly achieves the best results here, it solves all instances to optimality

within the time limit and has the shortest runtime for most.

• (LBD1) still performs better on some instances, but often it takes substantially

more time than (MIP1). Compared to the test runs on instances with homogeneous

facilities (see Table 7.2), the algorithm needs more iterations until it finds an

optimal solution. This is due to the fact that a Benders cut, which is derived from

the solution of a subproblem at one facility, cannot be generalized to all other

facilities, as it was previously the case. Now it can only be extended to dominated

ones. Therefore, it may be necessary to try to assign the same set of vehicles to

different facilities, which requires multiple iterations.

• Again, (LBD2) shows a poor performance, taking much more time to find an

optimal solution than the other algorithms.

7.2.3 EVRSPres

We have seen that (LBD1) performs especially well on instances where all or nearly

all vehicles can be fully recharged, which indicates that there are enough charging re-

sources available. In order to verify this assumption, the algorithms are tested on the set

EVRSPres which contains instances with tighter resource limits, with on average only

half as many parking and charging spots and half the amount of power available at each

facility compared to the instances of EVRSPbasic. Results are given in Table 7.13.

(LBD1) indeed takes much longer to find an optimal solution than for the instances of

EVRSPbasic, needing a lot more iterations until it terminates. Similarly, (LBD2) has a

significantly longer runtime or does not finish within the time limit. The performance

of (MIP1), on the other hand, does not change substantially. This shows that (MIP1) is

much more robust for instances with varying specifications than the logic-based Benders

algorithms.

7.2.4 EVRSPlarge

Finally, we analyze the performance of the algorithms on the set EVRSPlarge which

contains much larger instances than those considered before. Now an optimal schedule

for the recharging of several hundreds of vehicles shall be determined. This is a task

which is not improbable to occur in reality.

Table 7.14 compares the results of (MIP1), (LBD1) and (LBD2). Some instances are not

solved to optimality within the time limit by any of the algorithms. As mentioned before,
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Instance UB
(MIP1) (LBD1) (LBD2)

g[%] time[s] g[%] time[s] #it g[%] time[s] #it

3-10-a 8.15 0.00 1.04 0.00 5.42 113 0.00 15.93 30

3-10-b 8.52 0.00 0.86 0.00 0.77 24 0.00 13.19 36

3-10-c 5.69 0.00 1.20 0.00 3.49 61 0.00 4.81 8

3-30-a 4.28 0.00 1.36 0.00 48.82 408 0.00 3.62 12

3-30-b 8.97 0.00 2.13 - TL 386 31.32 TL 190

3-30-c 4.94 0.00 1.51 - TL 972 0.00 7.45 20

5-30-a 12.35 0.00 7.37 0.00 856.73 409 9.65 TL 35

5-30-b 7.07 0.00 3.75 - TL 632 2.56 TL 77

5-30-c 5.54 0.00 2.18 0.00 375.89 949 0.00 5.43 16

5-50-a 44.98M 1.69 TL - TL 328 7.82 TL 562

5-50-b 39.59M 0.01 TL - TL 470 3.95 TL 756

5-50-c 43.31 0.00 11.04 0.00 10.93 48 0.27 TL 394

10-50-a 42.58M 1.71 TL - TL 454 29.59 TL 75

10-50-b 44.46 0.00 63.19 0.00 11.91 23 0.57 TL 225

10-50-c 46.74 0.00 23.30 0.00 14.03 36 0.33 TL 116

10-100-a 36.15M 0.28 TL - TL 89 34.08 TL 146

10-100-b 95.06 0.00 1780.30 - TL 443 10.87 TL 208

10-100-c 94.09 0.00 103.24 0.00 97.13 94 1.32 TL 137

10-200-a 187.07 0.00 2075.32 - TL 839 1.50 TL 56

10-200-b 137.23M 3.04 TL - TL 127 82.41 TL 44

10-200-c 189.14 0.00 141.83 0.00 151.25 64 2.03 TL 61

20-100-a 96.06 0.00 2065.00 - TL 625 10.16 TL 36

20-100-b 69.15 0.00 364.81 0.00 180.42 69 1.14 TL 133

20-100-c 93.89 0.00 446.46 0.00 324.59 126 22.31 TL 23

20-200-a 67.77 0.00 1050.62 - TL 131 - TL 1

20-200-b 113.97M 0.86 TL - TL 184 92.18 TL 15

20-200-c 194.50M 3.94 TL - TL 404 35.61 TL 19

Table 7.13: Results of (MIP1), (LBD1) and (LBD2) on the set EVRSPres.

the best known upper bound on the objective value is listed instead of the optimal value

in these cases. A superscript “ L ” marks the bounds obtained by (LBD1). Furthermore,

for many instances the compact MIP model reaches a size CPLEX is not able to process

any more. The program terminates because the memory limit (“ML”) is exceeded.

Up to a certain problem size, the results are similar to those on smaller instances (see

Table 7.2 and Section 7.2.1). (MIP1) and (LBD1) perform quite well on the majority

of instances, while (LBD2) is not able to compute an optimal solution for any of them

within the time limit. In many cases, (LBD1) terminates much faster than (MIP1).

The more interesting instances are those exceeding a certain size. When the recharging

of 400 vehicles needs to be scheduled on 40 facilities, the compact MIP model becomes

too large to be solved by CPLEX. This is where a big advantage of logic-based Benders

decomposition lies. Decoupling the problem into smaller subproblems, the arising MIP
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Instance UB
(MIP1) (LBD1) (LBD2)

g[%] time[s] g[%] time[s] #it g[%] time[s] #it

20-300-a 284.83 0.00 2500.42 0 278.84 24 6.53 TL 77

20-300-b 285.96 0.00 961.80 0 575.08 68 20.05 TL 24

20-300-c 287.00 0.00 403.54 0 557.89 96 13.58 TL 38

30-300-a 299.86 0.00 1409.47 0 123.22 9 2.53 TL 25

30-300-b 299.75 0.00 649.02 0 108.43 10 2.55 TL 39

30-300-c 299.86 0.00 796.88 0 98.52 9 0.83 TL 32

30-400-a 373.87 0.00 769.10 0 1066.34 89 24.48 TL 22

30-400-b 373.05 0.00 849.19 0 931.66 75 13.81 TL 24

30-400-c 370.36 0.00 903.20 0 943.96 77 26.45 TL 34

40-300-a 249.60L 31.44 TL - TL 243 81.74 TL 6

40-300-b 278.27 - ML 0 1103.96 69 18.91 TL 12

40-300-c 248.71L 51.87 TL - TL 187 90.79 TL 6

40-400-a 398.75 - ML 0 275.09 13 8.03 TL 48

40-400-b 399.32L - ML - TL 157 70.68 TL 12

40-400-c 398.56L - ML - TL 127 74.05 TL 10

40-500-a 470.20 - ML 0 1844.75 80 23.96 TL 14

40-500-b 476.07 - ML 0 2219.11 94 9.01 TL 13

40-500-c 471.02 - ML 0 1665.18 71 37.32 TL 11

50-300-a 262.32L - ML - TL 233 65.84 TL 5

50-300-b 246.94L - ML - TL 147 68.95 TL 4

50-300-c 281.96 - ML 0 1287.56 78 18.65 TL 13

50-500-a 387.33L - ML - TL 10 18.72 TL 16

50-500-b 246.61L - ML - TL 23 42.16 TL 15

50-500-c 499.42 - ML 0 497.82 13 4.15 TL 26

50-1000-a 959.30L - ML - TL 101 37.27 TL 9

50-1000-b 955.88 - ML 0 6719.15 97 32.53 TL 9

50-1000-c 955.67 - ML 0 2795.20 39 15.69 TL 5

Table 7.14: Results of (MIP1), (LBD1) and (LBD2) on the set EVRSPlarge.

models can be solved successfully. For many instances, (LBD1) is still able to find

an optimal solution within the time limit. For the others, the logic-based Benders

algorithms at least return bounds on the optimal objective value. The value of the last

master problem solved by (LBD1) serves as an upper bound, while the best integer

solution value found by (LBD2) constitutes a lower bound.

Although (LBD2) generally shows a much worse performance than the other algorithms,

it at least gives us a feasible solution when interrupted early. This is useful for those

instances where the compact MIP model is too large to be solved and (LBD1) does

not finish within the time limit. On smaller instances it is not worth to use boosting

strategies for (LBD2), since they cannot improve the runtime to such an extent to be

comparable with the other algorithms. But for larger instances, we might obtain a better

feasible solution in this way.
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Table 7.15 compares the gap of the best feasible solution found by (LBD2) with those

of the boosted variants (LBD2BoostM), (LBD2BoostSU) and (LBD2BoostSL), all with

an initial optimality gap of 0.005. Furthermore, the results of the greedy algorithm are

given.

Instance
(LBD2) (LBD2BoostM) (LBD2BoostSU) (LBD2BoostSL) (GREEDY)

g[%] g[%] g[%] g[%] g[%]

20-300-a 6.53 6.53 6.53 6.53 20.65

20-300-b 20.05 32.86 29.74 23.37 27.62

20-300-c 13.58 13.58 13.58 13.58 21.09

30-300-a 2.53 8.05 8.75 7.01 11.31

30-300-b 2.55 1.24 2.90 2.90 11.25

30-300-c 0.83 0.83 0.83 0.83 15.17

30-400-a 24.48 7.64 24.48 24.48 17.86

30-400-b 13.81 15.87 13.81 13.81 17.07

30-400-c 26.45 25.87 26.45 26.45 15.89

40-300-a 81.74 81.74 84.40 84.40 28.61

40-300-b 18.91 18.91 18.91 18.91 21.47

40-300-c 90.79 90.79 90.79 90.79 54.47

40-400-a 8.03 13.57 10.05 10.05 11.87

40-400-b 70.68 70.68 70.72 70.76 27.45

40-400-c 74.05 68.69 74.06 69.32 31.30

40-500-a 23.96 23.96 23.96 23.96 26.51

40-500-b 9.01 9.81 5.35 13.65 15.64

40-500-c 37.32 30.13 32.41 32.41 25.66

50-300-a 65.84 69.44 69.44 64.08 23.83

50-300-b 68.95 78.23 68.95 68.95 29.79

50-300-c 18.65 18.65 18.65 18.65 5.98

50-500-a 18.72 19.65 18.15 18.15 23.08

50-500-b 42.16 42.37 42.16 42.16 46.14

50-500-c 4.15 4.15 3.50 4.15 11.72

50-1000-a 37.27 29.34 30.22 31.77 27.24

50-1000-b 32.53 22.06 21.43 21.43 31.60

50-1000-c 15.69 15.84 21.76 21.76 27.78

Table 7.15: Comparison of the results of the boosted variants of (LBD2), with an
initial optimality gap of 0.005, with the basic version and (GREEDY) on the set

EVRSPlarge.

For some instances, heuristic boosting of (LBD2) indeed yields a better feasible solution.

This is, however, not true in general. Moreover, the greedy algorithm finds a better

solution than all variants of (LBD2) for many instances, while terminating within a

few seconds. Hence, for the purpose of obtaining sufficiently good feasible solutions for

larger instances that cannot be solved by (LBD1), it seems more promising to develop

a better heuristic than trying to boost (LBD2).





Chapter 8

Conclusions and Future Work

Managing the recharging of electric vehicles poses great challenges, since the charging

process takes a relatively long time and charging facilities are still very scarce. In this

work, we considered the problem of scheduling the recharging of a fleet of electric vehicles

to multiple facilities with limited resources, designated as “Electric Vehicles Recharge

Scheduling Problem (EVRSP)”. The objective was to find a feasible charging schedule

that fulfills the vehicles’ energy demands as much as possible.

The problem was formulated as a MIP model, denoted (MIP1), and also a simple greedy

approach for solving it was presented.

The focus of this thesis, however, was to apply logic-based Benders decomposition to

the EVRSP. It decomposes the problem into a master and subproblem and solves them

iteratively. The solution of the master problem specifies a trial assignment for some of

the variables, which leads to a subproblem that is in general much easier to solve than

the original one. From the solution of the subproblem we infer bounds on the optimal

objective value for other assignments, called Benders cuts, that are added to the master

problem.

In this work, decompositions of the EVRSP were defined in such a way that the subprob-

lem decomposes into multiple independent problems, one for each facility. The master

problem of the first decomposition already determines the amount of energy a vehicle

will be charged with, while the subproblems only need to compute a feasible schedule for

the given assignment. In the second decomposition, the master problem merely allocates

vehicles to facilities. Optimal charging schedules are calculated in the subproblems. The

corresponding algorithms were designated (LBD1) and (LBD2).

Moreover, an approach for heuristically boosting the logic-based Benders algorithms

was presented. The optimality gap for solving either the master or subproblems was
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increased, obtaining possibly suboptimal solutions for them, but in a shorter time. It

was described how the algorithms can be adapted, in order to still get an optimal solution

to the whole problem eventually.

To evaluate their performance, all algorithms were tested on different sets of randomly

generated instances. (MIP1) and (LBD1) generally achieved good results, while (LBD2)

often needed much more time to find an optimal solution. (LBD1) worked especially well

on instances with homogeneous facilities and enough charging resources available. This

stems from the fact that logic-based Benders decomposition solves the problem on a trial

and error basis. When there are plenty of solutions with optimal value in the feasible

set, the algorithm finds an optimal schedule in a relatively short time. If there are,

however, only a few possible assignments with optimal profit, it generally needs much

more iterations to terminate, resulting in a longer runtime. The second decomposition

led to rather poor results. Obviously, it is more beneficial to define subproblems that

are mere feasibility problems. Although the boosted versions of the logic-based Benders

algorithms showed a better performance on some instances, they did not produce the

desired improvements in general.

While the compact MIP model exceeded the memory limit on larger instances, it was

still possible to run the logic-based Benders algorithms, as they decompose the whole

problem into smaller ones. On many of the larger instances, (LBD1) found an optimal

solution within the time limit or at least returned an upper bound on the optimal profit.

On the other hand, feasible solutions were obtained by (LBD2) for all instances.

8.1 Future Work

In this work, both master and subproblems of the EVRSP were formulated as MIP mod-

els. Hooker [12] emphasizes that one advantage of logic-based Benders decomposition is

that it enables the combination of mixed-integer programming and constraint program-

ming (CP). Their relative strengths can be exploited by applying MIP to the allocation

task of the master problem and using CP in the subproblems for scheduling. We could

use this idea for the EVRSP, formulating the subproblems as CP problems.

Another issue that can be addressed by future work are strategies for repairing the

infeasible intermediate solutions of the first decomposition, generating feasible ones. Of

course, this could easily be done by just unallocating vehicles until a feasible schedule

is found for every facility. This would, however, strongly reduce the objective value and

probably lead to solutions with low profit. It should be investigated how this can be

done more sophisticatedly, in order to produce sufficiently good feasible solutions.



Bibliography

[1] J. F. Benders. Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik, 4:238–252, 1962.

[2] D. Bertsimas and J. Tsitsiklis. Introduction to linear optimization. Athena Scien-

tific, 1st edition, 1997.

[3] S. Bessler and J. Grønbæk. Routing EV users towards an optimal charging plan.

In 2012 EVS26 Online Conference Proceedings, Los Angeles, California, 2012.
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