TECHNISCHE
l\df_, H E P H Y UNIVERSITAT
%ﬂﬁ WIEN

Inshitute of High Energy Physics Vienna University of Technology
Diplomarbeit

Beam test data analysis and resolution studies for the
Belle Il Silicon Vertex Detector

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines
Diplom Ingenieurs unter der Leitung von

Doz. DI Dr. CHRISTOPH SCHWANDA
Institut fir Hochenergiephysik

Betreuer: DI DR. THOMAS BERGAUER
Institut fiir Hochenergiephysik

eingereicht an der Technischen Universitat Wien
Fakultat fiir Physik

von
BENEDIKT WURKNER, BSc.

Matrikelnummer: 0826633
Korblereck 26
8380 Jennersdorf

Wien im Sommer 2015

(1.4.1 Requirements|
(1.4.2 Layout|.
|l,4,;i g:QIlS“!l(:llQIll
(1.5 Silicon strip sensors|
(1.5.1 Working principle|
[1.5.2 Readout Chip|
[1.5.3 Clustering and charge sharing|
(1.5.4 Hybrd|
[1.5.5 Signal to noise ratiol

2__Construction databasel
2.1 Requirements|
2.2 Implemented features| L.

[3.1.1 Layout|.
[3.1.2 Signal readout|.
....................................
...............................
[3.2.2 Beam telescopel Lo

[4 Data analysis|
[4.1 Basic sensor properties|
[4.1.1 Signal & Noise|

11
11
12
12
16
17
19
20
21

23
23
23
26
26
27
28
30
32

[4.1.2 Signal to Noise behavior| 38

4.2 Preprocessing of the data. 38
2.1 TuxOAl.o 39
[4.2.2 Strip-hit correlation|.o 40

(4.3 EUTelescopel.o 41
[4.3.1 Analyzing with EUTelescope|. 43
[4.3.2 Merging two separate data sources| 43
[4.3.3 Alignment| 44
134 PEstimation of resolution| oL 46
[4.3.5 Resolution of each separate module and comparisons| 49

M4 Conclusion|. 52

(Bibliography| 63

Abstract

The Institute of High Energy PHYsics (HEPHY), which is a part of the Austrian
Academy of Sciences (OA, contributes to several high energy physics exper-
iments around the world. Omne of these experiments is Belle II stationed at the
KEKB particle accelerator in Tsukuba, Japan. Belle II is the upgrade to the Belle
experiment which ran successfully from 1999 till 2009 and experimentally confirmed
CPPlviolation. The upgrade of the accelerator to a 40 times higher luminosity re-
quires an equal increase in detector performance to cope with the higher particle
rate.

One part of the upgraded detector is the SVD, the innermost vertex tracking de-
tector, with sensor layout, readout electronics design and manufacturing, ladder
assembly and sensor testing being contributed by HEPHY.

As part of my masters thesis I improved and extended the database keeping track
of all the parts that will make up the detector as well as determining the resolution
of the silicon strip detectors that will be used in the SVD. To this aim beam test at
the SPS at CERN were performed, where the sensors were measured with a beam
telescope, the AIDA telescope, to gain insight on the sensor resolution.

1Osterreichische Akademie der Wissenschaften
2Charge-Parity, short for charge-parity-conjugation

Kurzfassung

Das Institut fiir HochEnergiePHYsik (HEPHY) der Osterreichische Akademie der
Wissenschaften beteiligt sich an etlichen Hochenergiephysik Experimenten weltweit.
Eines dieser Experimente ist Belle II das am KEKB Teilchenbeschleuniger in Tsu-
kuba, Japan stationiert ist. Belle II ist das Upgrade des Belle Experiments, das von
1999 bis 2009 erfolgreich lief und den experimentellen Nachweis zur CPP}Verletzung
lieferte. Das Upgrade des Beschleunigers auf eine 40-fach héhere Intensitéat benotigt
auch eine gleichzeitige, entsprechende Verbesserung der Detektorleistung um mit
der erhohten Anzahl an Teilchen umgehen zu konnen.

Ein Teil dieses verbesserten Detektors ist der SVD, der innerste Spurdetektor, fiir
den unter anderem Sensor Layouts, Ausleseelektronik (sowohl Design als auch Pro-
duktion), Ladder Montage und Sensortests vom HEPHY beigesteuert werden.

Als Teil meiner Masterarbeit habe ich Verbesserungen und neue Funktionalitéten fiir
die Datenbank, die zur Verwaltung aller Teile des Detektors verwendet wird, beige-
steuert. Desweiteren habe ich die Auflosung der im Detektor verwendeten Silizium-
Streifen-Detektoren untersucht. Um diese durchzufiihren nahm ich an Strahltests
am SPS, CERN teil. Hierfiir wurden die Detektoren mit einem Strahlteleskop, dem
AIDA Teleskop untersucht und ihre Auflésung bestimmt.

3Charge-Parity-conjugation, auf Deutsch Ladungs-Paritits-Erhaltung

Chapter 1

Belle Il and its new SVD

1.1 Physics motivation

ParityE] was believed to be one of the fundamental conservation laws (along with
energy and momentum conservation) until 1956 when a review of existing experi-
mental data revealed that it had only been verified for strong and electromagnetic
interactions. This led to experiments investigating parity conservation for the weak
interaction with the first one (based on the beta decay of %°Co) already showing
that parity was not conserved for the weak interaction.

Following from quantum mechanics, symmetry can be restored if a second symmetry
can be found leading to the combined symmetry not being broken. The property that
was postulated was the charge of a particle, theoretically leading to the assumption
that if one replaces all particles in a mirrored reaction with their antiparticles the
reaction should have the same behavior.

This was proven wrong in 1964 in the K, meson system where it was observed,
that the likelihood of a neutral kaon transforming into its antiparticle, by replacing
each quark with its anti-quark, is not equal to the likelihood of the anti-particle
transforming into the particle. This led to a series of experiments in search of this
effect with other particles than kaons. Part of this new generation of experiments
was the Belle experiment with its B-factory where CPP}-violation for B mesond| was
investigated. CP-violation within the standard model is predicted by the CKM
matrixlﬂ by a complex phase that describes quark mixing but requires the presence
of (at least) three generations of quarks.

According to current theories in the early days of the universe a process called
baryogenesis is the reason for the asymmetry between matter and anti-matter and
leads to the existence of the universe as we know it. Since matter and anti-matter
annihilate on contact only an asymmetry during the creation of particles from energy

!Parity symmetry: Mirrored reactions of particles occur at the same rate as the original reac-
tions.

2Charge-Parity conjugation

3Mesons containing the b-quark

4Cabibbo-Kobayashi-Maskawa matrix

1.2. BELLE CHAPTER 1

could have led to more matter than anti-matter, thereby leading to an amount of
matter that cannot be annihilated due to a lack of anti-matter counter particles.

To investigate CP-violation for B mesons, the probabilities of different decay paths
are analyzed. The experimental challenge is that the branching ratio for decays
containing CP-violation are rather low e.g. B® — k7~ ~ 2 x 107°. It is therefore
necessary to have a high number of collisions resulting in reasonably good statistics
regarding the events with low occurrence.

The experimental lifetime of B mesons is around 75 ~ 1.5 x 107125 which is equiva-
lent to a maximal flight distance of ¢7 ~ 450 pm. As a consequence only the decay
products of a B meson reach the detector, therefore requiring a very high precision
measurement to be able to reconstruct the primary interaction. [I]

1.2 Belle

The Belle experiment, which was recording data from 1999 till 2009, was designed
to precisely measure the decay vertices of B mesons to confirm the prediction of
CP-violation. To achieve this, the Belle detector consisted of multiple parts, each
fulfilling a specific role in the reconstruction of the particles. The inner components
were:

e Silicon Vertex Detector (SVD): Aiming to precisely reconstruct the decay ver-
tices of B mesons

e Central Drift Chamber(CDC): Main tracking detector measuring the tracks as
well as the momenta of the particles.

e Silica-Aerogel Cherenkov Counter (ACC): Distinguishes mainly between pions
and kaons.

e Time-of-Flight Counter (TOF): Identifies particles by their velocity and pro-
vides precise timing signals for triggering and gating.

The experiment was constructed and operated at the KEKB particle accelerator,
which is operated by the High Energy Accelerator Research Organization
known as KEKE] in Tsukuba, Japan. KEKB is an asymmetric electron-positron
collider with a center of mass energy equivalent to the Y(4S) meson excitation
level. The asymmetry of the particle beams leads to a moving center of mass of the
created particles, thereby allowing for a measurement of the B meson decay times
by determining the distance between the decay origin, as calculated from the decay
vertices, and the collision point, which is known.

Following from the improvements planned and currently in progress for the KEKB,
which will lead to an increase in luminosity by a factor of 40, the detector needs to
be upgraded as well, to cope with the increase in decays and background radiation
and other effects. Therefore the decision was reached to upgrade the Belle detector
to Belle II with all new detectors.

SKEK is the abbreviation of its Japanese name

CHAPTER 1 1.3. BELLE II

1.3 Belle ll

The main design changes introduced in Belle IT are:

e Addition of two layers of pixel detectors as the two innermost layers of the
detector.

e Extension of the four silicon strip detector layers to a greater radius since the
inner space is now occupied by the pixel detector.

e The readout chip of the silicon strip detector is changed from the VA1ITA chip
to the APV25 chip which has a much shorter shaping time.

e The drift chamber surrounding the silicon layers is replaced with a new one
containing smaller drift cells and extending to a larger radius.

e A new data acquisition system that meets the requirements of the higher event
rate was developed.

The full description can be found in [2] chapter 1.3.

| 2 | 3 4 5 6 |

n ‘ 12
SIDE VIEW

A ArC Barrel
| w Belleli — w«n
Super conducting coil

SVD PXD(2 layers)

310 570

g
3 e
¢ / ¥ acs| g ISt g

—_— = TsvD =i
. IP Chamber -

Belle «wwv L

Parameters are not fixed yet [=igimiiten o5

3 4 5 6 7 T B T B I 0

Figure 1.1: Comparison of the Belle II detector (top) with the Belle detector (bot-
tom) taken from [2]

The detector is built by a collaboration around the world with institutes participat-
ing from the following countries (in alphabetic order): Australia, Austria, Germany,
India, Italy and Japan.

The participation of HEPHY includes: construction and assembly of parts for the
silicon strip detector, readout electronics design and main programming work, de-
velopment of the data acquisition and online analysis software as well as integration
of the relevant parts into the slow control structure.

1.4. THE SVD OF BELLE II CHAPTER 1

Furthermore HEPHY also helps develop the mechanical mounting structure, per-
forms sensor testing in the lab as well as during beam tests including analysis of the
results and provides infrastructure like the construction database.

1.4 The SVD of Belle Il

SVD is the abbreviation of silicon vertex detector. A vertex detector is designed to
determine the point in space where a particle decayed by reconstructing the tracks
particles took as they made their way through the detector back to their origin. This
SVD consists of four layers of DSSDEE] with strips on each side which are orthogonal
to each other.

1.4.1 Requirements

The increase of luminosity with the upgrade of the KEKB leads to a higher event
rate, thereby enabling a higher trigger rate for the detector. The maximum trigger
rate of a system is influenced heavily by the time it takes to read out all the sen-
sors, since a trigger can only be used if the system is ready to be read out. Any
particle that would activate the trigger during the readout of the detector cannot
be measured and is lost.

In the design of Belle II the old readout chip was replaced with a different one, that
was previously developed for the CMS experiment, called APV25. The shaping time
of the input channel is only 50 ns and with an implementation of hit-time-finding
it can even be reduced to 3ns with a time over threshold of only 20ns[3]. The
integration time of the SVD of Belle II is about 1/100st of the integration time of
the old SVD used in Belle which should be sufficient for the expected event rate.
This is also required to keep the occupancy at an acceptable level. Occupancy is
the amount of strips that registered a signal within one integration period.

1.4.2 Layout

The whole design of the SVD for Belle II only consists of three different types of
sensors [4], one type required for the innermost layer, with a smaller pitch for a
higher resolution, and the other two types for the outer layers (fig. .

The design of the sensors themselves is determined mainly by the requirement for a
minimal material budget. To achieve this the largest commercially available sensors
are used, thereby reducing the amount of support structure required per active
sensor area. The sensors are double-sided because this enables measuring a particle’s
position in two dimensions without increasing the thickness of the sensor. On the
other hand this increases the cost per sensor as well as the complexity of the design
of the surrounding structure like the readout electronics. In this case a method,
called origami method, is used to have the readout electronics of each central ladder

6Double Sided Silicon Detectors

CHAPTER 1 1.4. THE SVD OF BELLE II

20— e Rectangular (122.8 x 38.4 mm?, 160 / 50 um pitch)
F Rectangular (122.8 x 57.6 mm?, 240 / 75 um pitch)
rlem [~ layers 16y [om]
r 5 . P 12 N
10— AAT e TN ®
- 4 e 8 S +z
/ /
A XK/ 6
B s Vi
r 142 - =L e \ 1 \
o z [om] s RN/ » AW R
Lol b e b e ey R \TRES /8 [J0] [is xlem]

Figure 1.2: Layout of the new silicon detector for Belle II, including the two pixel
layers (14-2) and the four strip detector layers (3-6) commonly dubbed SVD [4]

sensor on the side which is further away from the collision point to reduce the
material budget in front of the readout area.

The standard wafer size for current production runs is 150mm in diametexﬂ This
enables sensor sizes with outer dimensions of 12 x 6 cm? while using most of the
available area. The wafer is standard high resistivity n-bulk material, as it is common
in the semiconductor industry, and has a thickness of 300 — 320 pm.

The sensing strips are implanted into the n-type bulk either with acceptors or donors,
depending on the sensor side, thereby creating an n-side (donor in n-type bulk) and a
p-side (acceptor in n-type bulk). The implanted strips are then coupled capacitively
to an aluminium strip placed on the surface of the substrate for readout. Between
each of the coupled strips there is an additional implanted strip which is not read
out but helps to increase the resolution by also attracting charges and then coupling
capacitively to the neighboring strips, thereby increasing the charge there. These
strips are also not considered when discussing strip numbers, pitch and other strip
relevant parameters since they don’t need to be wire bonded or considered in the
readout software.

The innermost SVD layer, known as Layer3 consists of ladders that contain only
two sensors. They are identical but differ slightly from the rectangular sensors used
in the layers four to six. The main difference is that the sensors are only 38.4 mm
(and not 57.6 mm) wide but contain the same amount of strips as the wider sensors,
leading to a smaller pitch of only 50 pm and thereby to a higher resolution.

1.4.3 Construction

The construction of parts for the Belle IT detector is performed by different insti-
tutes all over the world. For example HEPHY builds the ladders for the fifth layer
which includes two rectangular modules in the so-called “origami” configuration,
one backward rectangular module and one forward wedge module. All forward and
backward modules for all ladders are constructed in Pisa and then sent to the as-
sembly sites where they are combined with the other modules and fixed onto the
support structure.

Once they are finished and tested, all the parts are sent to KEK for storage until

7150 mm = 5.91 inches leading to a wafer of this size commonly being dubbed 6 inch

1.5. SILICON STRIP SENSORS CHAPTER 1

the detector is put together.

1.5 Silicon strip sensors

1.5.1 Working principle

When an ionizing particle passes through silicon substrate it deposits energy within
the material, thereby creating electron hole pairs. An intrinsic silicon substrate
contains several orders of magnitude more free charge carriers than are generated
by this particle. Therefore the number of free charge carriers needs to be reduced
to enable usage as a detector. One way of doing this would be cooling to very
low temperatures which is not feasible for large detector applications. The second
possibility is to use p- and n-type silicon in a reverse-biased pn-junction configuration
to deplete the silicon volume of free charge carriers.

Silicon detectors consist of a bulk material, in this case of type n and implanted
strips which are doped the other way, in this case p+. A high bias voltage is applied
between the p+ strips and the back of the sensor creating a charge free zone within
the bulk and a strong electric field moving the charges (electrons or holes) to the
respective attracting side creating an electrical signal in the strips. This signal is
transferred over the capacitive coupling to a parallel strip on the surface of the sensor
which is present for every readout strip and the coupled signal is then received by
the readout chip’s input.

The capacitive coupling prevents the dark current within the silicon substrate from
entering the readout chip’s input since a direct current is not capable of passing
over the capacitor. Still fluctuations within the dark current can couple over the
capacitor contributing to the noise of a strip.

1.5.2 Readout Chip

A readout chip measures the charge deposited on each connected strip and transmits
the signal on request.

The chip used in Belle II is called APV25 and is the same as used in the CMS
experiment. It has 128 analog input channels where the charge that is received at
the input is integrated over a shaping time of 50ns and then shaped by a CR-RC
shaper into a pulse, where the amplitude is proportional to the collected charge.
The processed signals are then stored into a per-strip 192 cell big ring buffer. Via
an I12C command the APV25 can be instructed to transmit 1,3,6,9...32 of the stored
values. This method of readout allows for a considerable trigger delay since the
APV25 can return previous values of each strip on request. [5]

To have a reference of the charge deposited by one particle the APV25 is capable of
calibrating itself by injecting a defined amount of charge into the electrode connected
to the pre-amplifier. The amount of charge is configurable by an I2C command. The

6

CHAPTER 1 1.5. SILICON STRIP SENSORS

calibration command is generally used to determine defects in the readout channel
and the connected sensor.

Calibration

5
3
signal [ADC]

o 100 200 300 400 500 :\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\I‘\\\‘\I\‘\\I‘\
20 40 80 80 100 120 140 160 180 200
Time [arbitrary units]

(b) taken from [6]

(a) taken from the database
Figure 1.3: Examples of calibration curves of one strip

The data from one APV25 is transferred using a multiplexer before transmitting
the signals in analog peaks, preceded by a header and closing with a signaling bit
(see fig. [1.4). The signals are not transmitted in consecutive order, but follow
a different scheme which prevents high signals from influencing the signal of strips
directly adjacent on the sensor during transmission which would create false clusters
otherwise.

— | il
H 400) 3 header bits
< 360 F tICkk il 8 address bits
- mar .
T 320} / \ Il 1 error bit
=) .
w280 128 not consecutive
240 b strip data \
200 F
AN A A A A
120 |
80 B . A 1 A 1 LS 1
0 40 80 120 160 200 240

time [clock cycles]

Figure 1.4: Example of one data packet transmitted from one APV25 upon request.
Taken from [0]

The DAQﬂ system is capable of performing a multitude of different commands on the
connected sensors. One of these commands is the calibration run whose goal it is to
find defective strips and also estimate the gain of each strip. To that aim a predefined
voltage, usually corresponding to 22400 electrons, is injected in the preamplifier of
the APV25. The result is a shaper pulse with the maximum proportional to the
injected charge and a resolution of one eighths of a clock cycle.

Another important piece of information required about the sensor before one can
start measuring particles with it is how the sensor behaves without particle interac-

8Data AQisition

1.5. SILICON STRIP SENSORS CHAPTER 1

tion. This so-called ”Software Run” is performed using software generated random
triggers, thereby on average not coinciding with a particle hit.

At the beginning of every run a number of events are taken using the software trigger
to calculate the pedestal of each strip. The pedestal is calculated from the mean
signal height of each strip and subtracted from each strip signal to compensate for
the differences between the strips.

After the pedestal correction the common mode correction is calculated. Common
mode is the name for the fluctuations of the 128 strips of one APV25 around their
pedestal values. To compensate for this, the strips are usually split into four groups
of 32 strips whose pedestal values are then sorted, the top and bottom 25% are
cut off and the remaining values are used to calculate a mean for common mode
correction. The calculated value is then also subtracted from the signal received.

To calculate the signal to noise ratio which, amongst other things enables the re-
moval of faulty strips from the analysis automatically, the noise of each strip is
calculated. It is defined as the standard deviation of the gauss distribution after
already removing the pedestal and common mode correction from the signal. Strips
with a noise of 2.5x the mean noise of the corresponding APV25 are marked as bad
and removed from the analysis.

For a more detailed explanation of these corrections performed on the signal refer
to [6].

1.5.3 Clustering and charge sharing

The free charges created by a particle are in most cases not attracted by only one
strip but create a signal on multiple strips, thereby forming a cluster. Since the
charge of a cluster is spread over multiple strips only clusters below a certain size can
be detected because the separate charges fall below the limit of hit recognition. Once
a strip is recognized to be over the hit limit, a lower limit is applied to neighboring
strips to improve cluster recognition.

Intermediate strips

The number of channels that can be read out simultaneously is limited by the amount
of chips that can be physically placed near the sensor as well as the amount of cables
required for the data to be transmitted to the readout system. To help minimize
the number of electronic channels required intermediate strips are implanted into
the sensor while omitting the readout strip. The implanted strip then couples ca-
pacitively to its neighboring readout strips giving an improved resolution without
the requirement of additional readout channels.

Eta distribution

To determine the position of a particle that passed through the sensor, thereby
creating a cluster, a center of gravity distribution is used. The charges detected

8

CHAPTER 1 1.5. SILICON STRIP SENSORS

at each strip of the cluster are weighted with respect to their distance and then
normalized. The result is called n-distribution and gives insight on the behavior of
a sensor and its resolution.

The shape of the n-distribution depends on the pitch, the existence (and amount)
of intermediate strips and the precision and energy of the particle beam.

n-Distribution

Al 0.50: 3

n-Distribution

es

3500

c

Entri

3000

2500
2000

1500

1000

500[z

(a) BW module, n-side, 240 pm pitch (b) BW module, p-side,75 pm pitch

Figure 1.5: Comparison of two n plots at different pitch sizes. The colors denote
the different cluster sizes. One can see, that the central peak is created exclusively
by cluster size two. When looking at the sum of the parts, the influence of the pitch
becomes quite apparent.

The n-distribution is used to increase the resolution of a sensor by means of a
correction factor. For a detailed description of the calculation of the factor please
refer to [6], chapter ”position of the particle”.

1.5.4 Hybrid

The readout chips are mounted on a PCB known as hybrid(fig. . Each strip is
connected via a wire bond to a pitch adapter whose main purpose is to change the
pitch of the strips on the sensor to the pitch of the inputs of the readout chip while
also bridging varying distances between the connection pads on the sensor and the
pads on the hybrid. The connection from the pitch adapter to the chip input is
again a wire bond. Additionally the pitch adapters are also used to connect strips
from the one side of the sensor to the readout chips on the other side since they are
quite flexible. Ideally the distance between the strip and the chip input should be
as short as possible to reduce the series resistance.

1.5.5 Signal to noise ratio

A fully depleted sensor bulk volume still contains sources of statistical free charge
fluctuations. Since they are statistically distributed they hinder signal recognition
by adding noise to the signal. As mentioned before the signal of a silicon sensor
depends solely on the thickness of the sensor and it is therefore in most cases more
reasonable to reduce the sensor noise than to increase the thickness which has ad-
ditional negative implications such as a higher material budget.

1.5. SILICON STRIP SENSORS CHAPTER 1

Figure 1.6: Image of a hybrid board with all six APV25 chips already in place.

The main contributions to a sensors noise are load capacity Cy, leakage current I,
parallel and series resistances Rp and Rg. Within this the load capacity is mostly
comprised of the capacity between the implanted and readout strips and the strip
to backplane capacitance.

Noise is commonly expressed as Equivalent Noise Charge (ENC) giving the number
of electrons contributing to the noise.

ENC = /ENC%+ ENC}, + ENC}, + ENC},

The most significant contribution to the combined noise tends to be the capacitive
contribution wich can be represented by

ENCC:(Z+b'Cd

with a and b preamplifier-specific parameters.

For example the readout chip used for Belle I was the VA1 with parameters a = 165
and b = 6.1 which leads to only a weak dependance on the capacitance. Since
b is inversely proportional to the shaping time a low shaping time, such as the
APV25s 50ns leads to a high dependance on the charge based noise wich can be
seen in the parameters for the APV25: a = 250 and b = 36. Therefore the noise
depends strongly on the capacitance which in turn depends on the strip length. As
a consequence the sensor specifications need to be adapted to the used readout chip
to reduce the capacitive noise, in this case limiting the strip length and thereby the
strip capacity if such a short shaping time is required.

As an example the difference in noise using the APV25 for a strip with a length
of 38.42mm is 420e~. For comparison, a strip length of 57.59 mm causes 504 e~ in
capacitive noise, a 20% increase in noise for a 34% increase in strip length. The
strip length values taken for the example are used in the Belle II detector.

10

Chapter 2

Construction database

As described in the previous chapter, the detector consists of many parts manufac-
tured by many different institutes at many different locations. To keep track of all
these parts and also the information associated with each, a database was started
for the project[7]. The basic system and main structure was developed by Bernhard
Leit]l as a part of his master’s thesis. Over the course of my work I added some
additional functionality, improved some of his and implemented a lot of bugfixes.

2.1 Requirements

The main requirement for the database was the possibility to track items that are
used throughout the project and the actions performed on them. Furthermore it
needs to be possible to combine items to composites (virtual assembly) as well as
create items (e.g. wafers) that can be disassembled and then attached separately to
other items.

Another aspect is the logistics part of the database keeping track of the items and
their locations, transferring them between locations, thereby trying to (as closely as
possible) mimic the actions done in the real world. The whole database is centered
around this logistics aspect, always presenting the user with the item inventory of
their location right after login.

Additionally it was proposed to also store measurement data in the database, thereby
making it the central point for all information relevant for assembly. This was my
main task for the continued development of the database.

The basis of the database already existed and uses a php framework (cakePHPﬂ with
MySQL) and the above mentioned requirements were mostly already implemented,
with the exception of the measurement storage system.

Over the course of this master’s thesis, especially before the beam test, I took
over the work of implementing the measurement storage(2.2.1) as well as tags for
items(2.2.2)). Additionally I completely reworked two existing features, namely the

stock items([2.2.4) and the transfers(2.2.5)).

!Cakephp Framework, website http://cakephp.org

11

http://cakephp.org

2.2. IMPLEMENTED FEATURES CHAPTER 2

2.2 Implemented features

Next to the larger feature implementations, I also implemented many bugfixes and
helped an additional developer, Federico Pilo, from another institute implement
another feature, the checklists.

During the final phase of my feature development an additional developer reworked
the search selector, the main interface of the item overview which also required my
participation on the backend.

2.2.1 Measurements

During the development and construction of a big physics experiment many mea-
surements need to be performed on the components to make sure they are working
correctly, weren’t damaged during transport and so on.

Depending on the item type, this leads to many different measurements performed
using different probe stations and acquisition software. This therefore requires a
flexible as well as intelligent system to recognize different file formats and associate
them with the correct location and measurement type.

Importing of measurement data

Each measurement performed generates an ASCII file, usually using the file suffix
.tzt which is easy to open with php using simple file reading commands. Following
from this, the whole import procedure was implemented completely in php. If data
files had been in a raw data format, external (i.e. non-PHP-)code would have been
required to interpret them.

Although all files are simple ASCII files, the data format within the files varies
greatly between the different probe stations, requiring a rather complicated code
to differentiate between the different formats and how to interpret them. This is
due to the fact that the file formats were already in use for some time when the
programming for the measurement import in the database was started. As a con-
sequence, the current implementation of the import system is sometimes hardcoded
and requires some advanced knowledge and access to the source code to be adapted.
There have been thoughts about an implementation to enable the definition of file
layouts using the database interface but this was put on hold due to manpower
issues.

The current implementation uses a combination of string comparison and regular
expressions to identify a file using its first few rows. In some cases these differ only
slightly which makes long comparison clauses necessary. This is a rather rudimen-
tary approach and can fail easily if somehow an unexpected character is inserted
somewhere in the header of the file leading to the file not being recognized.

For newly created measurement files, a standard was defined using the popular CSV[]

2 American Standard Code for Information Interchange
3CommaSeparated Values

12

CHAPTER 2 2.2. IMPLEMENTED FEATURES

format with section markings and a standardized two-row header of key-value pairs.
This format is mainly used for data recorded with APVDAQ which is still being
updated and therefore it was easy to work together with the developer. Currently
there are plans that a future functionality of measurement exports will also use this
format to reduce the code required for a new file format.

The definition for this default file format looks like this:

[info]
ID,Type, Operator ,StartDateTime , StopDateTime , MeasurementParameter1l
3048 —2_Wedge, measurement _name , UserName,’2014 —-01—-27 11:47:057,’2014 —-01—-27 14:08:22’,1234

[tags]
n—side ,tested in Vienna

[parameters]
ItemParameterl,ltemParameter2,ItemParameter3
85, 35, O

[measurement _name]
coll, col2, col3
146, 0, O,

In the case of the APVDAQ there are three different measurement types (software,
hardware and calibration) that each require some special treatment. Especially the
calibration run creates large text files (about 5 MB uncompressed) that contain a lot
of data. Importing these calibration files requires a lot of time due to the amount
of database requests required to store the data. The current database scheme is
relational leading to each value being inserted separately. Since the calibration
measurement of one strip gives a signal for 208 times three parameters (chip, strip
and time) the required number of insert operations for one strip is 208 x4 = 832 (four
because an additional insert is required to define each data row). One calibration
measurement is usually performed on a sensor with 512 or 768 strips leading to
around 425 000 and 639 000 insert operations respectively. This calculation shows
that for a high amount of measurement values or parameters the amount of insert
operations becomes rather high. On the current server hardware the import of one
calibration measurement takes between 15 and 20 minutes which already uses all
optimizations (like parallelization) I could think of.

Data storage and problems

At first this didn’t seem to be too much of a problem, but then the realization came
that requesting that many elements from the database also takes a long time, not
just the insertion. Therefore I implemented a caching for the measurements so the
request only has to be performed once. Later on I also added, that the cache is
already generated by the import, thereby not requiring the user to wait on the first
view (although the import now of course takes longer).

The current system also uses an external daemon, written in Python, that handles
the import, thereby not blocking the user and the web server and enabling parallel
processing as a benefit. This on the other hand makes the system even more complex
than it already is.

All these negative side effects were overlooked or not considered important enough
during the design of the program. Since the problems became apparent, some addi-
tional improvements were implemented, like the caching, but due to time constraints
they are still not resolved.

13

2.2. IMPLEMENTED FEATURES CHAPTER 2

One possible solution would be to not store the data in the database at all and
always read it out from files stored on the file-system. This would limit the code to
be only php and, given a database flag that is set during the import that defines the
file type, would only require the execution of the file interpreter and not the whole
recognition chain when a measurement is requested, thereby speeding up the process.
This method seems feasible because most of the import time is actually required
by the insertion into the database and not by the readout of the measurement
file. A caveat of this system is that the data is not stored in the same format for
all measurements and is also not automatically backed up with the database but
requires special treatment. This could be dealt with by writing a container class
that always returns the same data format and handles the differences between file
formats internally.

Another possibility would be to convert each uploaded file to a generic format,
preferably the already used CSV format and use these files as storage. This again
creates the problem of backing up the data but it removes the differences between
files and the measurement display would be more generic. Additionally downloading
of the measurement data would always return a file with the same overall format
without additional conversion.

The differences between these approaches should be weighted before implementation
and also some time should be invested into future-proofing the system and backward
compatibility. This should prevent a redesign requirement of the system again after
only a couple of months.

Displaying of stored data

To plot the stored data directly in the browser, an external library was used. After
some investigation the choice fell on the jqPlot libraryﬂ mainly because it uses the
jQuery framework which is already used throughout the project. Furthermore it
allows for plugins to be added to enable additional functionalities and different plot
types like bar, line, stacked and others.

Using a javascript plotting library also has the benefit of the plotting being done
in the browser which enables interactivity in the plotting window like zooming and
changing the axis to logarithmic or absolute values.

Since many different measurement types are available, different presets for measure-
ments are required. For example an APVDAQ measurement is usually performed
on a sensor using multiple chips. It is therefore reasonable to plot all chips at once in
different colors and to separate by the channel number of the chip, thereby enabling
a comparison of different chips over the same sensor(fig. .

Interactivity is given using right and left mouse button interactions on multiple
objects. For example in the data table one can select the parameter for the y-axis
(which is usually of interest) using the left mouse button, likewise using the right
mouse button one can select the parameter for the x-axis.

4jpPlot homepage: http://www.jgplot.com

14

http://www.jqplot.com

CHAPTER 2 2.2. IMPLEMENTED FEATURES

In the plot window one can select the option to show only one chip (left click on the
name in the legend) or toggle the visibility of one specific plot (right click on the

name in the legend) (fig. [2.1b]).

1 1 1
wwwwwwwww 15 Chip O Noise | 15
" 14 3 -
Chip 1 13 chi 13
" 12 15 " bt

Chip2 chip
100
chip3 " "
t

chip

(a) All four chips (b) One chip

Figure 2.1: Examples of an APVDAQ measurement with different amounts of chips
plotted. The x-axis is the number of the channel on each chip while the y-axis is
selected by the user to be in this case the Noise value.

Another special case is the APVDAQ calibration measurement which generates a
graph for each channel. Therefore a selector was implemented for these measure-
ments to allow selection of chip and strip before plotting them. It is, of course, also
possible to plot all strips of a chip at the same time to see in one glance if there is
a faulty calibration on this chip(fig. [2.2)).

Chips Strips ‘

0 0 N
1 w .

2 2

3 3
4
5

(a) Chip and strip selector (b) Plot of all 128 strips

Figure 2.2: Calibration scan plot method

Using stored data with parameters to generate additional information

Strip scans are performed on the sensors to gain information about each strip. This
information is given in electric values (e.g. resistance, current, capacity, ...) which
vary slightly between strips. To make this information easier to understand, espe-
cially since one is usually only interested in strips behaving differently, a functionality
was implemented that allows checking if strip values are in a defined range. The
result of this process is an additional measurement that contains a list of strips
outside the range and the range definition. This makes it easier to get information
about different errors (e.g. pinholes) at a glance.

The grading can be done for one or multiple items at once, the only requirement is
that they are of the same subtype version. The current implementation allows this
action only for administrators since it is a process that requires a lot of knowledge
of the sensors.

15

2.2. IMPLEMENTED FEATURES CHAPTER 2

Table | Errors by Strip F r Typ

Error strip(s)

I_strip [A] > 7.2e-9 3,7,9,11,13, 25,27, 38, 77, 78, 244, 245, 246, 354, 408, 678, 679, 680, 727, 740, 768

R_poly [Ohm] > 25.5e+6 5, 102, 104, 142, 206, 226, 363, 365, 367, 369, 373, 377, 380, 381, 387, 391, 393, 395, 397, 401, 407, 409, 669, 670, 672, 673, 674, 675, 676, 677, 678, 679,
680, 713, 717, 719, 721, 725, 741, 743, 745, 747, 749, 759

C-ac_100Hz [F] < 8, 15, 65, 66, 67, 72, 76, 83, 89, 98, 102, 104, 107, 111, 117, 127, 142, 206, 220, 226, 266, 287, 289, 309, 334, 340, 372, 376, 380, 390, 393, 399, 411, 413,
93.9e-12 415, 533, 557, 575, 583, 588, 633, 670, 678, 680, 713, 715, 717, 719, 721, 725, 734, 739, 740, 741, 742, 743, 744, 745, 746, 747, 749, 752, 754, 755, 759,
761, 765

Rp_cac [Ohm] < 8, 15, 24, 26, 66, 74, 80, 83, 89, 98, 100, 107, 115, 117, 127, 131, 132, 142, 144, 156, 186, 192, 194, 206, 212, 220, 226, 245, 246, 266, 287, 289, 299, 307,
34.5e+6 321, 333, 336, 340, 358, 368, 372, 376, 380, 390, 393, 394, 406, 409, 410, 415, 452, 492, 516, 533, 557, 583, 633, 654, 666, 695, 715, 735, 736, 743, 745,
748, 749, 753, 755, 761, 764, 767

R_poly [Ohm] < 8.5e+6 11, 13, 15, 25, 27, 98, 244, 245, 246, 390, 403

1_strip [A] < 2.4e-9 15, 102, 104, 363, 365, 367, 369, 377, 381, 387, 390, 391, 393, 395, 397, 401, 407, 409, 411, 413, 415, 713, 715, 717, 721, 725, 729, 741, 743, 745, 747, 749,
759

Rp_cac [Ohm] > 67, 72, 76, 102, 104, 111, 334, 411, 413, 670, 678, 679, 680, 713, 717, 721, 725, 734, 739, 740, 742, 744, 746, 747, 752, 754, 765

103.4e+6

I_dark [A] < 4.1e-6 98, 390, 409, 411, 413, 415

I_diel [A] < -183.9e-12 375, 376, 439, 533, 638

Figure 2.3: Results of one measurement grading. Usually fewer strips are outside of
the parameters.

The result of such a grading can be seen in fig. [2.3] It is also possible to not use all
measured parameters for a grading. If one wants to re-grade a sensor it is possible
to remove the grading measurement by simply deleting it, thereby reactivating the
grading checkbox.

2.2.2 Tags

Tags are widely used on the internet as defining properties of things while also
making them selectable by their similar properties. This same concept was thought
of and then applied to items in the database, thereby allowing the assignment of
different properties to items while making them groupable and searchable as well.
Tags are now used for a wide variety of properties, including, but not limited to,
wafer numbers(e.g. APV wafer XF4B4AT), error descriptions(e.g. broken lines on
PA, higher dark current), optical descriptions(e.g. severe scratches) and electrical
definitions (e.g. electrically functional). An item can theoretically have an unlimited
amount of tags assigned to it but no tag can be assigned more than once.

Shortly after implementing the tags into the database it became apparent that some
sort of grouping would have to be applied since not all tags make sense for all items.
Mechanical structures, for example, are not really capable of being ’electrically func-
tional’. Therefore the grouping of tags for each combination of an item type and a
project was implemented. Admins can select which tags are available for each com-
bination of an item type and a project by means of a drag'n’drop interface dubbed
"Tag Cloud’. In this interface tags can be added and assigned to configurable com-
binations of projects and item types (fig. [2.4)).

In the main search selector, items can also be filtered by tags. Here all tags are
always available since it was not deemed worth the effort to remove tags from the
list if a project and item type are selected. Tags that are not possible to set for an
item are ignored anyways.

Tags can be assigned to items in multiple locations and in different ways. One
possibility is to assign them during item creation. Another is of course in the
item view where a separate page is opened showing only the available tags for this
item(based on its item type and project). There is also the possibility to change

16

CHAPTER 2 2.2. IMPLEMENTED FEATURES

10c0&DHP l 1m M 1shore l 15ws | 10 m W 127.21 MHz oszillator J 15m i 3 m [N 4 DcDs & bHps W 4 swes working Jl 5 m J 6 swss W analog @ 160 MHz M analog OK il APV rotated W APV shifted

APV wafer X448v8T [APV wafer XE4B48T W APV wafer XF4B4AT l APV wafer XG4B49T Wl APV wafer xH4848T I APV wafer X14847T [APV wafer X)4808T M APV wafer xK4807T W APV wafer xk4845T W APV wafer XL4BOGT

CET) CETD CREENED CE ED €D C Cb Crm

e) n—- a—- Y Y. Y. ¥ ¥
Baby Sensor Cable Computer Halfmoon

Hybrid Ladder Measurement Device Measurement setup Mechanical Component

Pitch Adapter

Pitch Adapter

WaferSlice x Wafer

Hybrid

Figure 2.4: Screenshot of the tag cloud interface

tags for multiple items by selecting them in the search selector and using the ’change
tags for these items’ button to be presented with a drag’n’drop interface that allows
fast assigning of tags to multiple items by dragging the tag to the grouping header
or just assigning multiple tags to different items in one interface without requiring
one to go back and forth all the time. If items of different item types are selected
they are grouped accordingly so only possible tags can be assigned.

2.2.3 Item creation

Creating an item in the database is an important step as many properties defined
during creation cannot be changed later on in the user interface, especially the item
subtype version. Therefore the idea is to reduce the possibility for error by only
presenting the user with possibilities that make sense for different items.

When I started working on the database there were three completely separated
interfaces that could be used to create different types of items.

1. Register: Used to register wafers and all the components on the wafer in the
database

2. Assemble: Used to create just a single item or put multiple components
together to form a new item

3. Register stock item: Used to register an amount of stock items following
the old system (see [2.2.4])

This nonintuitive separation, especially made worse by the lack of description within
the database and the generic names for the menu items, led to much confusion for
people. In conjunction with the reworking of the stock items (see it was
decided to streamline this interface reducing the possible confusion.

17

2.2. IMPLEMENTED FEATURES CHAPTER 2

I thought about the dependences during item creation and decided to split the
item creation into four in-order steps that all depend on the previous step(s) and
prevent changes to the previous fields when continuing to the next. I used AJ AXE] to
prevent having to reload the page constantly, which amongst other things increases
the responsiveness and makes the webpage feel more like an application running
locally.

The first step allows for the selection of a location, which is independent of the
other parameters, and then, in the following order: the selection of project, item
type, item subtype and item subtype version. Once an item subtype version and
a location have been selected it is possible to continue to the second step, thereby
finalizing the first selection.

The second step allows the user to enter either one or multiple unique codes to
create distinct items or a number that defines the amount of stock items to create.
Additionally it is required to select an item quality from the dropdown. It is also
possible to add a comment and select tags, with the displayed tags depending on
the selected item type-project combination.

For an administrator there exist some additional options. One allows forcing the
register option, thereby allowing to create all items that should normally be attached
to an item type instead of selecting them from the inventory. The second one allows
changing the naming behavior by adding the short name in the middle of the item
names during registration.

For a user the system decides based on the item type what the required course of
action is. For wafers the default action is to create a wafer with several objects on it
that are automatically named based on their type and can be taken off of the wafer
while still maintaining the connection to the wafer number. For almost every other
item type the action is to create the item by assembling it from two or more items
or by simply adding it by name.

The third step now totally depends on the selections before and mainly differs be-
tween the ’registering’ and ’assembling’ ways of item creation. In both cases a
tabbed selector with all item codes entered in the second step is shown.

In case of registering, each item is displayed with a checkbox allowing the user
to decide if it should be created, including a collapsable section for the respective
subitems. It is also possible to change the name of items to something other than the
standard convention, although this is not recommended. Furthermore it is possible
to select if the items should still be attached to the wafer or detached, thereby
reducing the user effort to do this later on manually.

In case of assembling, each item receives a button that allows one to select a matching
item from the inventory and attach it already during creation. This is optional and
should match the real world actions. Attaching is, of course, still possible later on
and so is registering but the latter requires more effort since the usage of the 'post
creation’ method is required.

After finalizing the selections for each item code (if applicable) the ’create item’
button creates all items and attaches the items (if applicable).

% Asynchronus Javascript And XML

18

CHAPTER 2 2.2. IMPLEMENTED FEATURES

The chain differs only slightly for the creation of stock items, since there are no
selections possible for them; There is only a message displayed telling the user what
will happen. For example clicking on ’Create item’ will create 20 Stock Items with
the current configuration.

This change replaced all three menu items with a single 'Create’ button and has led
to way less confusion than previously, especially with new users of the database.

2.2.4 Stock items

Not all items that exists within the detector are distinguishable nor do they need
to be. Items that fulfill this description are called ’a stock of items’, usually just
dubbed ’stock item’ and are described by their item subtype version, their quality,
the assigned tags and the amount present at the relevant locations. One example
for a stock item would be the APV25 chip that is used for sensor readout. The
only difference that can be between APVs of the same version is the wafer number.
Aside from that they are interchangeable, and if they break, the amount of stock
just needs to be reduced by the amount destroyed.

In the previous system stock items were handled completely differently than 'normal’
items, requiring additional tables for lots of information that on second thought was
redundant but could not be merged at first. This also led to complications while
implementing the tags since I basically had to implement the tags twice, once for
items and once for stock items. This also would have led to problems in the search
selector, since two tables of different definitions would need to be searched at the
same time, which would have become even more complicated if the tags were added,
since they already required some tinkering with the search algorithm to work.

All these considerations led to the decision that the whole stock item system would
need to be redesigned, in principle simplified, by merging stock items into items and
just storing the additional information required for stock items in a separate table.
This solved a lot of the problems with the surrounding system and streamlined the
process. The current system generates a generic name for a stock item to be used as
code, making sure that it is unique by using the automatically incremented item id,
and just replacing the automatically generated name during display with the generic
term ’stock item’ and a count of the existing items at the relevant location.

The additional information that needs to be stored for a stock item is saved in a
table linking the stock information to the item ID. The required information only
contains the columns ’location’ and "amount’, everything else is stored (as for every
other item) in the items table.

During this work it became apparent that previously, it was not possible to send
stock items via a transfer and the necessary changes for that were also planned to
be implemented in conjunction with the redesign of the stock items. Details can be

found in section 2.2.5]

With the new system treating stock items like items in most regards, the item view
had to be adapted to recognize the difference and display the relevant information
on request. This includes showing the locations and the amount at each location in

19

2.2. IMPLEMENTED FEATURES CHAPTER 2

case it is a stock item in the place where usually only the current location of the
item is displayed. Furthermore the ’Measurements’, ’‘Components’ and 'Check list’
tabs are hidden for stock items as they are never necessary.

The result is that for the user the difference in the view is only marginal and the
code actually was simplified by reducing the amount of complexity involved with
two separate tables that pretty much contained the same information.

2.2.5 Transfers

As mentioned in the previous section transferring of stock items was not possible
before the rework. Since this functionality was requested, the rework of the stock
items included a rework of transfers. This also led to talks and ideas on how to
further improve the transfers and finalized on the following changes.

e Transfer selectable amount of stock items

Start transfer from inventory

Allow multiple users to participate in one transfer

Added user standard location

Group transfers depending on users standard location

Group transfers depending on status

Only display transfers relevant for a user

The first big change was to remove the requirement for a separate inventory page
where items for a transfer can be selected. It was decided that it is more reasonable
to start a transfer from the inventory since the possibility to select items there was
already implemented and working well. Therefore dynamic buttons were added to
the inventory that depend on the selection of items and the location selected. If only
one location is selected in the search selector, it is possible to start a transfer from
said location by selecting items and pressing the ’add to new transfer from ”current
location”” button. If a user is adding a stock item to a transfer, a dropdown is
displayed in the transfer configuration window allowing the selection of the amount
of stock items to be added.

Another change is that transfers now have a status defining if they are 'pending’,
'in transit’ or ‘completed’” and are stored on the server and not in the users browser,
thereby enabling multiple users to add items to the same transfer that is pending
from the same location.

Along with these transfer states now defined for a transfer a user now has to ’send’
a transfer, thereby preventing the further addition items and changing the state of
the transfer to 'in transit’. This intermediate state requires the receiver to actively
‘receive’ the transfer to change the location of the items in the transfer to the target
location. The receivers standard location needs to be set to the transfers destination
for the functionality to work. This intermediate status was a much requested feature
since before this change, upon submitting the transfer items would be moved to the
target location and show up in the inventory of that location although the items

20

CHAPTER 2 2.3. STATUS AND OUTLOOK

were not already physically there. To enable this functionality, a 'virtual location’
called 'In Transfer’ was added to the database that hosts all items that are currently
in transit from one location to another before they are received. A side-effect of this
is that, if one views a stock item where some amount is in a transfer, the table
showing the locations of the stock items actually lists 'In Transfer’ as a possibility.

Additional to this implementation, the concept of a ’standard location’ for each user
was invented, giving way to a location that is selected by default in the search selec-
tor, displayed in the top right corner of the interface and determining the possible
actions for transfers for the user.

The overview of transfers was grouped into four sections:

e Pending: Transfers at the currently selected standard location that are yet
to be sent. Can be sent

e In Transit: Transfers on their way to the selected standard location. Can be
received

e Other transfers currently in Transit: Transfers to or from other locations
assigned to the current user that are not his standard location. No interaction
(except viewing) possible

e Completed: Transfers to or from locations assigned to the user that are
completed. Only viewing possible.

Additionally, two indicators were added in the menu, displaying the current user
relevant incoming and outgoing transfers in correspondence with the standard loca-
tion.

With the addition of the standard location came some confusion for users that were
used to working with multiple locations, especially with them all selected by default
in the search selector, and therefore some items now not being shown at first due
to the standard location being the only selected location by default. Following up
on this some additional warning messages were implemented in the inventory telling
the user that there are items matching the search criteria in other locations assigned
to him. A link is provided allowing the user to quickly repeat the query, this time
including all available locations.

2.3 Status and outlook

The current status of the database can be described as stable with a lot of known
(mostly design based) issues. The bug tracking system currently lists mostly issues
regarding small changes, a few are bigger improvements with the included time
requirements. Some problems are not even mentioned there but known to the people
responsible.

One of the bigger problems was already described in the Measurement section ,
a redesign of the way measurements are stored and handled on the file system to
improve performance and reduce complexity. This is, in my opinion, a rather big
task that would require about four to six weeks to be done properly.

21

2.3. STATUS AND OUTLOOK CHAPTER 2

Another issue, which is not really apparent to the user but might become a problem
for the admins, is the fact that many parameters cannot be set from the user interface
but are hardcoded in the source code and require at least a basic understanding of
the system to be changed.

The current system enforces unique item codes even if the items are in different
projects. This might become a problem at some later point in the database when
multiple projects are running in parallel and a user cannot create an item because
of a duplicate item code but has no way of seeing the item due to no access of the
project where the duplicate item belongs to.

22

Chapter 3

Beam test

To gain information about sensor properties beyond the possibilities offered by a
typical lab setup, it is common in high energy particle physics to perform beam
tests at particle accelerator laboratories. Multiple particle accelerators offer the
possibility for research groups to reserve a beam test area and perform experiments
with the provided beam.

The type of beam provided depends on the accelerator type and therefore on the
location visited.

All measurements discussed in this thesis were performed during beam tests for the
Belle II group at the SPSH which is located at CERNE] in Geneva, Switzerland.

3.1 Sensors

For this thesis only sensors designed for layer four and above were tested.

3.1.1 Layout

Rectangular sensor

The rectangular sensor is designed for the barrel of the detector. The parameter
specifications for the sensors designated for the layers 4-6 type are given in the tables
and [3.2] A visual representation of the geometry can be found in fig. 3.2

For both beam tests the sensors were assembled in Pisa, put into a transport casing
and taken to CERN for testing(fig. |3.1]).

The strips on each side of this sensor are straight and parallel but perpendicular
to the strips on the other side. On the n-side the strips are parallel to the short
side of the sensor and have a pitch of 240 pm measured from the center of one strip
to the center of the next. Each strip is connected to one input of an APV25 on

'Super Proton Synchrotron
2Conseil Européen pour la Recherche Nucléaire (European Organization for Nuclear Research)

23

3.1. SENSORS CHAPTER 3

Quantity Value
strips n-side 512
strips p-side 768
Pitch n-side 240 pm
Pitch p-side 75 pm
Area (total) 7442.85 mm?
Area (active) | 7029.88 mm? (94.5 %)

Table 3.1: Geometric parameters of the rectangular sensor[2]

Quantity Value
Base material n-type Si, 8k cm
Full depletion voltage Vip <120V
Breakdown voltage > Vrp +50V
Polysilicon resistor 4 MQ(min.), 10 MQ(typ.)
Coupling capacitance > 100 pF
Breakdown voltage of AC coupling > 20V
Bias dark current of Vgp 1 pA(typ.), 10 pA(max.)

Table 3.2: Electrical parameters of the rectangular sensor|[2]

Figure 3.1: Picture of the SFB993 in the transport casing taken at the november
beam test.

a hybrid board via wire bonds and a pitch adapter. On the p-side the strips are
parallel to the long side of the sensor and have a pitch of 75 um. Aside from that
the configuration is the same as on the n-side.

Trapezoidal sensor

The trapezoidal sensor, sometimes called wedge, is designed for the forward, angled
part of the SVD and the same layout is used for all layers with a forward sensor
(layers 4-6). The parameter specifications can be found in tables and

These sensors are also assembled in Pisa and taken to CERN in a transport casing
(fig. 13.3)).

The strips on this sensor have a more complicated design than the ones of the
rectangular sensor. The strips on the n-side are parallel to the short side of the
sensor with a constant pitch of 240 pm, but the length of the strips varies from

24

CHAPTER 3 3.1. SENSORS
122,9 mm
€
€
S = S
o g S
N ©
S 3
0,99 mm
25 mm
124,88 mm

Figure 3.2: Geometric dimensions (not to scale) of the rectangular sensor for layers
4 to 6. Dark blue: outer dimensions. Light blue: active area. Red: additional pad

row.[2]

Quantity Value
strips n-side 512
strips p-side 768
Pitch n-side 240 pm
Pitch p-side 75 ...50 pm
Area (total) 6382.6 mm?

Area (active)

5890.0 mm? (94.5 %)

Table 3.3: Geometric parameters of the trapezoidal sensor[2]

Quantity

Value

Base material
Full depletion voltage Vip
Operation voltage
Breakdown voltage
Polysilicon resistor
Interstrip resistance, p-side
Interstrip resistance, n-side

n-type Si, 8k{2cm
40 V(typ.),70 V(max.)
VD2 X VD
> 2.5 X VFD
10 MQ(min.), 15(5) MQ(max.)
100 MQ(min.),1 GQ(typ.)
10 MQ(min.),100 MQ(typ.)

Table 3.4: Electrical parameters of the trapezoidal sensor[[2]]

38.42mm to 57.59 mm. On the p-side

the pitch of the strips varies from 75 pum on

the wider side to 50 pm on the slimmer side leading to the strips not being parallel.
This is easily visible in fig. [3.4, Again each strip is connected to the input of an
APV25 chip via wire bonds and pitch adapters on both sides.

25

3.2. SETUP CHAPTER 3

Figure 3.3: Picture of the SFW993 in the transport casing taken at the november

beam test.

1.39 mm 122.76 mm

60,63 mm
57.59 mm
38.42 mm
41,02 mm

125,58 mm

Figure 3.4: Geometric dimensions (not to scale) of the trapezoidal sensor. Dark
blue: outer dimensions. Light blue: active area.[2]

3.1.2 Signal readout

The signal is stored analog in the readout chip (APV25) and then transmitted as
a series of multiplexed analog signals to the DAQ. For a more detailed description

please refer to section [1.5.2

3.2 Setup

The overall measurement setup during the beam test consisted of the following parts
(fig. [3.5)):

e EUDET Telescope, provided by CERN

e TLU and control computers running EUDAQ), provided by CERN

e x-y stage, dubbed DESY table, provided by CERN

26

CHAPTER 3 3.2. SETUP

DUTs to be tested, provided by the Belle II collaboration
SVD3 readout system, brought with us from HEPHY
SVD3 dock box, brought with us from HEPHY

SVD3 voltage supplies, brought with us from HEPHY

SVD3 readout system
(FADC'including power supply)

Figure 3.5: Overview of the beam test setup in November 2014.

3.2.1 SVD3

The SVD3 (Silicon Vertex Detector 3) readout system was a prototype system for
an upgraded SVD of Belle before a complete redesign of the detector into Belle
IT was decided. It has been functional for a long time and is still used in smaller
variants for sensor tests performed in laboratories and also during beam tests for
other APV25 based sensors.

Dock box DAQ PC

parallel copper cable parallel copper cable twisted pair copper cable optical fiber

Figure 3.6: The readout chain of the SVD3 setup as it was for the SVD. For beam test
setups only one junction box was used which is capable of connecting a maximum
of 16 APV25 chips on both n- and p-side.

27

3.2. SETUP CHAPTER 3

Since it is only a prototype system it requires some in-depth knowledge of the system
and a lot of components to work. The main components are

e VME-crate with one Buffer, one NECO and two FADC (n and p sides)

Junction Box

Two standard SMU HV power supplies with cables

Five standard power supplies for various voltages (8 total voltages required)

About 12 long cables for data communication

Custom made cables for voltage supply and HV cables for HV supply

3.2.2 Beam telescope

A beam telescope is intended to be used as a baseline to analyze the behavior of a
sensor against. It is usually provided by the beam test location.

EUDET /AIDA Telescope

The development of the EUDET Pixel Telescope is part of the efforts of the EU-
DET project, supported by the "European Union” in the "6 Framework Pro-
gram” (FP6), named sub-project JRA1. It is designed as a six-plane telescope with
an area for DUTSEI between each set of three planes. Each telescope plane contains
a MIMOSAZ26 pixel sensor within a water-cooled aluminum structure and a readout
hybrid(EUDET Data Reduction Board) which creates zero-suppressed data. For a
more detailed description please refer to [§].

The telescope is designed to be a stand-alone solution for beam test analysis and
comes with all six sensor planes including the mounting structure, a DAQ called
EUDAQ for data storage, an analysis framework called EUTelescope for data analy-
sis and a trigger logic unit(TLU, see next section) for a common trigger for telescope

and DUT.

In fig. [3.7]the whole setup is shown with the six aluminum squares being the telescope
planes and the DUTs in the center from left to right: Old Wedge, SFW993 and
SBW993. The DUTs are mounted on an x-y stage capable of movements with a
precision of a few pm.

TLU

The Trigger Logic Unit was developed for the telescope and is designed to act as a
common trigger for the telescope planes and any DUTs placed within the telescope.

It can operate in three different modes with the third one being used by the telescope
planes and also being recommended for other devices since it allows for the trigger
number to be stored along with the trigger.

3DUT: Device Under Test

28

CHAPTER 3 3.2. SETUP

Figure 3.7: Picture of the modules after they were placed inside of the telescope.

The three modes are:

e Without handshake: Trigger is sent by the TLU whenever the trigger con-
dition is fulfilled

e With handshake: Allows connected DAQ systems to raise a busy signal to
prevent triggers from being sent when they cannot process it.

e With handshake and data: Allows, additionally to the blocking signal, for
the trigger number to be sent along with the trigger impulse so the DAQ can
store it along with the data.

Storing the trigger number (TLUEventNr) along with the data is important to make
sure that the events of both data-streams are synchronized.

The SVD3 system contains space in the raw data format for this TLUEventNr and is
therefore capable of storing it along with the data. The TLUEventNr is transmitted
using a 16 bit field with the first bit being an error bit, therefore only 15 bits are
available leading to a maximum trigger value of 32767. After this the TLUEventNr
again starts at 0. This needs to be considered when interpreting the data since the
values stored in the raw data need to be transformed using something like

T LU EventNr = int(previous Event Nr/32767) - 32767 + T' LU Event Nr;
previousEvent Nr = T LU EventNr;

to actually represent the real value. The corrected value is calculated during the
analysis with TuxOA(4.2.1)) and stored in the root files.

29

3.2. SETUP CHAPTER 3

Figure 3.8: Picture of the TLU that was used.

3.2.3 Beam test November 2014

Leading up to this beam test the plan was to measure the two sensors SFW993 and
SBW993 using the new readout system that was also planned to be tested during
the beam test. Due to complications with the new system the plan was changed for
the FW[] and BW]| sensors to be tested only with the old SVD3 system but inside
of a beam telescope. The beam telescope was only available for one afternoon and
as a consequence the amount of data that was taken is limited to one calibration,
one pedestal and three hardware runs. It also became apparent during analysis that
there are some problems with the recorded runs and that the information that can
be gained from them is limited.

The aim was to perform resolution studies on the sensors, especially the wedge
sensors where the pitch changes across the sensor and noise studies with respect to
the changing strip length.

The expectation would be an increase in resolution with smaller pitch for the p-
side while also gaining a better SNR on the n-side in that area. As described in
section [1.5.5) a strips SNR increases with strip capacity, mainly length which in turn
leads to shorter strips having a lower noise while still having the same signal strength
which depends mostly on the thickness of the sensor.

To investigate these phenomena it would have been necessary to record data from
different areas on the sensor where the different effects are visible, in this case moving
the sensors from the left to the right. Due to time constraints and the short notice
of the availability of the telescope, these considerations weren’t made during the
beam test leading to measurements taken in three different areas while moving the
sensors from the top to the bottom.

Furthermore due to the usage of the old SVD3 readout system, which only allows
a maximum of four APV25s per sensor side, two of the six APV25s of the p-side

4The wedge sensors are usually dubbed ForWard sensor due to their position in the detector.
>BackWard

30

CHAPTER 3 3.2. SETUP

\

Scintillator
Telescope Planes Back

Scintillator
Front

Figure 3.9: Layout of the telescope with DUTs (not to scale) during the first beam
test

could not be connected and their data therefore was not recorded. The first of the
three runs therefore basically only contains a small slice of particles instead of a full
beam spot.

Despite all this, the opportunity was taken to install and use the EUTelescope
framework and understand how it can be used to analyze the data taken with our
DAQ and to get prepared for future measurements involving the telescope.

The sensors used during this beam test were one of the rectangular 122.8 x 57.6 mm?
(SBW993) and one of the wedge 122.8 mmx57.6 to 38.4 mm (SFW993) sensors. The
sensors were classified as ”"Class B”, electrically working with some minor errors.
Additionally an older sensor was used for comparison, dubbed ”Old Wedge”, which
is identical to the FW sensors, with the exception of some minor improvements
introduced later, hence ”old”.

As mentioned before, this setup was only available on the last day. This thankfully
led to all configuration required to make APVDAQ—FADCﬁ work with the TLU and
the telescope already being done. It was only required to replace the DUTs and
configure them in APVDAQ-FADC.

Measurements conducted

Aside from the default software and calibration runs three hardware runs with TLU
triggering and telescope data were recorded.

Run ‘ Position ‘ Number of Events ‘ Useable
03 | bottom center 100 000 No, because area not read out
04 | middle center 60 000 Yes, best run available
05 top center 10000 Yes, but very few events

Table 3.5: Runs during the first beam test

During the analysis the flaws with the measurements became apparent and the
second beam test was included in the schedule for this sensor analysis.

6APVDAQ-FADC is the data acquisition software developed for the SVD3 hardware which
consists of FADC boards hence the name.

31

3.2. SETUP CHAPTER 3

3.2.4 Beam test June 2015

A beam test scheduled for June of 2015 was taken as an additional opportunity to
take data this time as the sole user of the telescope and with lots of time available.
This allowed for plenty of measurements of the DUT at many positions and addi-
tionally gave the opportunity to use an additional pixel sensor with a readout time
equal to the readout time of our DUTs which was thought to maybe improve the
resolution calculations since the DUT track would be well defined.

Setup differences

FEI4 Planes

Beam

\

Scintillator
Back

/

Scintillator
Front

FW BW

Telescope Planes

Figure 3.10: Layout of the telescope with DUTs (not to scale) during the second
beam test

Fundamentally the setup of the second beam test doesn’t differ much from the first
one. The readout system and voltage supplies were built up in a different place and
some different power supplies were used.

Regarding the DUTs the used modules were different ones but again class B and
manufactured in Pisa. Again one FW and one BW module were used in the alu-
minum casing intended for transportation.

A change to the setup was, that an additional pixel plane was provided. This pixel
plane contains one of the ATLAS experiment’s pixel sensors (FE-14) with rectangular
pixels. In table the geometrical details of the sensor are given.

[tem ‘ Value ‘ Units
Pixel size 50 x 250 pum?
Pixel array size 80 x 336 | Col x Row
Hit-trigger association resolution 25 ns

Table 3.6: Selected parameters of the FE-I4 ATLAS pixel sensor [9]

The most important detail is the low readout time of only 25ns that equals the
readout time of the APV25 chip since they were both designed for LHC timing. It
should therefore be possible to use the FE-I4 plane to select the track within all the
telescope tracks that equals the one stored by the DUT.

32

CHAPTER 3 3.2. SETUP

Measurements conducted

To have many points of comparison multiple spots on the wedge sensor were defined
and then measured. The spots can be found in figure[3.11. Each spot was measured
once without using the FE-14 and then all but 6 and 9 again with the FE-14.

At least 50000 Events were recorded for each run, sometimes more overnight and
then analyzed starting already during the beam test. The results can be found in
the next chapter. The first run from this beam test has the number 49 with the
following numbered consecutively.

n-side

Posk

° APV1 “APV2 APV3

Poss Poss

- SALEVE

Pos3 Posé Pos3 \|\ poss

| | Pos? Pos2 | Post Pos | Pos7 Pos2 Post |\ Posg

Posi0 Posto

Pos9 Pos9

Figure 3.11: Drawing of the forward module with the 10 points measured on it.
This picture can also be used to find the reference points on the backward sensor
since they were almost perfectly aligned.

Being more knowledgeable about the telescope software also helped with investi-
gating additional phenomena such as the influence of the aluminium casing on the
beam and the amount of secondary particle emission. As can be seen in fig. [3.12
the plane right after the DUTs in their aluminum casing contains more than twice
as many hits than the one in front of the DUTs.

Pixel Index Hit Map Pixel Index Hit Map
hitMap_d2
{Entries 141173 323545
600.7 620.3
258.7 279.3
304.9
155.2

¥ Index [#]
Y Index [#]

298.1

200 400 600 800

1000 1000
X Index [#] X Index [#]

(a) 3rd plane (in front of DUT) (b) 4th plane (behind DUT)

Figure 3.12: Comparison of the hitmaps of telescope planes in front and behind the
DUTs and their aluminum casing.

As a comparison a run was taken after the DUTs had been removed again whose
results can be seen in fig. [3.13] Here the plane after the DUT area contains only
about 85% more hits than the one in front of the DUT area which can be attributed

33

3.2. SETUP CHAPTER 3

to the different noise levels of the sensors. Additionally a visual comparison shows
that also the shape of the trigger window is better visible without the scattering
induced by the DUT casing.

Pixel Index Hit Map Pixel Index Hit Map
_ hitMap_d2 _
K { Entries 198386 =
§ Meanx 623.7 é
B | Meany 254 500
> 329.4 >
160.5
4 400
30 300
20 200
10 100
1000 0 200 400 600 800 1000
X Index [#] X Index [#]
(a) 3rd plane (in front of DUT) (b) 4th plane (behind DUT)

Figure 3.13: Comparison of the hitmaps of telescope planes in front and behind the
DUT space without a DUT in between.

Pixel Index Hit Map

hitMap_d30
E " .[Entries 28366
goof Mean x 41.26
Faad ™ | Meany 206.3
> [“|RMSx 15.08
. RMS}// 82.00

50

LI I B B

'V\ \'\'127\7 TS I s - PE BN
0 10 20 30 40 50 60 70
X Index [#]

o

Figure 3.14: The hitmap of the FE-I4 plane with its lower integration time.

34

Chapter 4

Data analysis

During each beam test two separate streams of data were recorded, one with the
EUDAQ of the telescope planes and one with APVDAQ-FADC for the SVD3 system
of the DUTs. Each DAQ has different requirements on data processing before the
data can be analyzed.

The first section describes the APVDAQ-FADC data and what processing needs to
be performed to get actual hit signals.

In the second section I give an explanation of the actions performed by TuxOA and
the transformations required before the analyzed data can be used with EUTele-
scope.

4.1 Basic sensor properties

The results of a run performed with the SVD3 setup are recorded by APVDAQ-
FADC and stored in a raw data file. In order to find particle hits on the sensor the
raw data needs to be processed, noise reduced and then have limits applied to it to
determine if a strip detected a particle.

4.1.1 Signal & Noise

The signals recorded are amounts of charge deposited at an APV25 entrance as
described in The APV25 can mark multiple cells for readout which can be
used during a hardware run to gain more data samples. In this case a subset of six
samples was used which translates to one particles interaction being recorded in six
subsamples with the maximum of the curve calibrated between the second and third

peak (fig. [4.1).

Using six data packets allows for a more precise measurement of the maximum peak
because the shaping curve can be fitted over the data to calculate the peak from
the six data points. Additionally the position of the maximum could be used to
distinguish particle hits from ghost hits.

35

4.1. BASIC SENSOR PROPERTIES CHAPTER 4

Subevent Signals

15
135

12 |

Signal [ADC]

10.5

7.5

0 1 2 3 4 5 5] 7
Subevent Number

Figure 4.1: Sample plot of 6 subevents with the maximum at the third peak

The analysis of the APVDAQ-FADC data can be performed with multiple programs
that were programmed with different goals in the past. The one used by me is called
TuxOA and is designed to be used by Belle II for online analysis. It is also capable
of offline analysis of two different raw data formats, one of which is the APVDAQ-
FADC raw data format.

In fig. [4.6) I give an overview over the steps required to perform a full analysis of the
raw data files recorded by APVDAQ-FADC to generate a root file containing only
recognized hits for each recorded event. One hit in this context equals a single strip
or cluster of strips on one sensor plane identified by the strip number. The data
can be plotted using TuxRoot[6] to generate a wide variety of plots like noise maps,
pedestal maps and calibration constant maps.

Pedestal map

The first step in the analysis chain is the calculation of the pedestal values for each
strip. The pedestal is defined as the mean signal height of a number of events
recorded with a random trigger and represents the signal height of a strip without
any particle interaction. The pedestal value should not change much over one APV25
but can vary between different APV25s. In fig. two pedestal maps are given as
examples.

Noise map

To find damaged strips, the noise of each strip is calculated and if it is above a
threshold, the strip is marked as noisy and excluded from the analysis. To calculate
the noise for each strip, a gaussian fit is performed within the FWHME] of the signal
after pedestal and common mode correction. If the calculated noise is greater than
2.5x the mean noise of the chip, the strip is marked as noisy and excluded from
future analysis.

1Full Width Half Maximum

36

CHAPTER 4 4.1. BASIC SENSOR PROPERTIES

Pedestal Map Pedestal Map

Pedestal [ADC]
Pedestal [ADC]

S e

6ad stps
149,33 ADC 40 mean

157.85 ADC
7.01991 ADC

sid. dev. 14968 ADC

3

8
T g

e 151287 ADC

L L L sl.dev. 13.1672 ADC L L L sid dev. 125089 ADC

00 200 300 700 500 00 200 300 400 500
Strip Number Strip Number

(a) BW module, n-side (b) FW module, n-side

Figure 4.2: Two pedestal maps. Note the linearity except the jumps at 128 steps
where the APV25 changes. Red vertical lines are strips that have been marked as
faulty and are excluded from further calculations.

Noise Map Noise Map

bad sps

957767 ADC 3

&

mean 87318 ADC
std. dev. 7.94734 ADC
504 good stips
mean 179185 ADC.
St.dov. 0229191 ADC

bl

| , n I I I I I
200 300 400 500 AL 200 300 700 500

Strip Number Strip Number

(a) BW module, n-side (b) FW module, n-side

sid. dev. 576169 ADC
507 good strips

mean 195336 ADC
std. dev. _0.22441 ADC

©

;

Noise [ADC]

Noise [ADC]

i

o.

&

E

Figure 4.3: Two noise maps. Red vertical strips mark deactivated strips

Calibration constant map

During a calibration run specific charge amounts are injected into each APV25 and
the result is recorded generating calibration values for each strip. Using this file
TuxOA calculates the calibration values and generates a TuxOA calibration file.
The analysis generates a calibration file which contains the calibration curve for
each strip in fitted parameters that define the amount of AD(ﬂ units one defined
charge deposit generates on each APV25 input. The calibration constant map shows
the amount of electrons deposited, divided by the maximum of the calibration curve
for each strip.

Calibration Constant Map Calibration Constant Map

Calibration Maximum [ASC]
Calibration Maximum [ASC]

5bad stips Sbad sirps
mean mear 610291 e/ADC.
std. dev. 87.5216 6/ADC

537111 /ADC.
sid. dev. 958004 e/ADC. 200

504 good strips
mean 570287 e/ADC 100 590,381 /ADC
| | | Std dev. 16,8348 /ADC | | | sid.dev. 790565 e/ADC
00 200 300 400 500 700 200 300 700 500

Strip Number Strip Number

(a) BW module, n-side (b) FW module, n-side

Figure 4.4: Two calibration maps.

2 Analog Digital Charge, the amount of charged particles required to increase the digital count
by one.

37

4.2. PREPROCESSING OF THE DATA CHAPTER 4

4.1.2 Signal to Noise behavior

As described in section the noise depends heavily on the capacity of a channel
and therefore on the strip length. It is therefore interesting to look at the differences
in SNR on the n-side where the strip length varies over the sensor. The expected
result would be, that on the wide side the SNR is worse than on the narrow side
since the strips are longer (57.59mm vs 38.42mm) which is exactly the received

result as can be seen in fig. 4.5 and table [4.1

o F Signal to Noise Ratio Signal to Noise Ratio

(0]
£ 2200
& 2000
1800
1600
1400
1200
1000
800
600
400
200
0

wwwwwwwwwwwwwwwwwwwwwwwwwwww

99999

T T T T T O T
| B LR R R LA |
—

L LLL L Ly LLL LR LA LU AR LA LAl L

i A o
70 80 90 100
Signal to Noise Ratio 10 20 30 40 50 60 70 80 90 100

Signal to Noise Ratio
(a) SNR plot of the wide side. The Landau

fit fails for this narrow shape. (b) SNR plot of the narrow side.

Figure 4.5: Wedge sensor comparison. It is easily visible that the SNR for the
narrow side is a lot better due to the shorter strips.

Position | Strip length | SNR (Cluster width 1) | SNR (Cluster width 2)
d 97 mm 19.2 10.1
7 57 mm 19.8 9.8
9 57 mm 19.8 10.1
3 53 mm 19.8 9.8
2 48 mm 22.3 10.5
1 45 mm 24.2 10.7
4 41 mm 29.7 12.8
6 40 mm 29.6 12.6
8 40 mm 29.6 12.7
10 40 mm 29.8 12.8

Table 4.1: Comparison of the signal to noise ratios for different positions (fig. |3.11])
on the n-side of the wedge sensor. The strip length is just an approximation as a
reference.

4.2 Preprocessing of the data

In order to gain information about the resolution of the sensors the data needs to
be converted, analyzed, correlated and analyzed again. To this end multiple steps
need to be performed with a lot of parametrization possibilities along the way. In
this section I will give an overview of the steps performed, the order they need to
be performed in and the tools used.

38

CHAPTER 4 4.2. PREPROCESSING OF THE DATA

In short the following steps need to be performed
e Loading of raw APVDAQ-FADC data
e Analysis of APVDAQ-FADC data, gives zero-suppressed hits

Correlation of strip signals to pixel signals, gives hits on sensor in mm

e Conversion of raw EUDAQ data to telescope data

Analysis of telescope data

Combining of telescope data and APVDAQ-FADC (DUT) data

Combined analysis of all data for resolution plots

421 TuxOA

Developed by Hao Yin as part of his master’s thesis [6] TuxOA is an analysis software
designed for online monitoring of the Belle II data but it is also capable of doing

offline analysis of raw data files created by either TuxDAQ or APVDAQ-FADC. It
is therefore capable of performing the analysis required for the recorded data.

Due to the data format changing between APVDAQ-FADC and TuxDAQ additional
actions are required to analyze data originating from APVDAQ-FADC with TuxOA.
Fig. gives an overview over all the actions required to convert raw APVDAQ-
FADC data files to root files containing the analyzed data.

followed by followed by followed by exports

Figure 4.6: Analysis chain performed by TuxOA to get from the raw APVDAQ data
to a root file containing analyzed events.

The first step is to generate a noise file for TuxOA. This file contains pedestal and
gauss fitted noise values for each strip of each APV25 and also marks each strip as
good or bad. During a noise run this file is generated for the run and the strips are
automatically graded depending on the parameters set for the noise run. After doing
the calibration run it is also possible to do a hardware run using the pedestal run
file as input file. Since the data should be statistically evenly spread, faulty strips
that could not be determined with the algorithm can then be marked as defective
by the user and the noise file updated.

After the creation of a noise file a calibration run needs to be performed. This
requires the APVDAQ-FADC calibration file and the TuxOA noise file. In this step
a calibration curve is fitted over the values returned by the APV25 after a defined

39

4.2. PREPROCESSING OF THE DATA CHAPTER 4

electron injection (3.1.2)) resulting in calibration values that are then stored in the
TuxOA calibration file.

As mentioned before one can now perform a hardware run using the pedestal file as
input to mark additional strips as bad that weren’t detected by the noise algorithm.
After this is done the final hardware run can be performed.

The hardware run uses the raw hardware run data file created by APVDAQ-FADC
and the noise and calibration files created in the previous steps to analyze the
recorded data and determine hits, their cluster width and 1 values. This analyzed
data can be stored in root files that can then be used by multiple scripts. Another
script (TuxRoot) allows to generate all the standard plots from the root file; samples
can be seen in section 4.1}

The root file generated by TuxOA was the starting point for my analysis. I im-
plemented an additional parameter to be stored in the root file, the TLUEventNr,
that was previously only read in by TuxOA but not stored in the root file. This
parameter gives the event number as it is used by the EUDAQ data format and
therefore enables matching the DUT events with the telescope events.

4.2.2 Strip-hit correlation

The usage of double sided strip sensors allows for a pixel interpretation of hits by
correlating the x and y coordinates gained from each respective side to one set of
data. This is mainly possible because the readout time of the APV25 is so low that
multiple hits per event don’t occur often enough to hinder the analysis(see fig. .
In case of more than one hit being recognized during one event, this event needs to
be discarded for this analysis since it is not possible to determine which of the hits
on one side correlates with the hit(s) on the other side.

NumberOfHits NumberOfHits
htemp htemp
Entries 57840 Entries 57840
50000— Mean 1.701
[RMS 0.8244

Mean 1.701
RMS 0.8244

40000 —
[10*

30000—

20000 10°

10000

o
i
(=]
R

Gl b b
8 9 10
NumberOfHits NumberOfHits

Ll
N

w

~F
o
ol
~

P T
1 2 3 4 5 6 7 8 9 10

(a) Not logarithmic (b) Logarithmic

Figure 4.7: Histograms of run004 showing the frequency of occurrence of events with
more than one hit. In this case, 54340 of the 57840 events recorded contained only
one hit which amounts to a loss of about 6% of the events.

40

CHAPTER 4 4.3. EUTELESCOPE

TuxOA stores a separate root file for each hybrid board(section and therefore,
the two root files for one sensor need to be opened at the same time and then looped
over the events calculating the exact hit position whenever there is exactly one hit
per event on both planes.

To calculate a more precise location for each hit, the eta distribution of all values
is calculated and then used to correct the position of hits that created a cluster of
two or more strips.

To perform all these actions several scripts were developed using Python. Different
approaches to the problems were tested with the end result being a sequence of four
scripts that could perform all the steps required if one managed to configure them
all correctly and called them in the correct order.

Once it was clear that the functionality was given, all scripts were condensed into
two: One that now performs all the actions that are specific to the root output file
format of TuxOA and the way our sensors work, and the other, that is used as a
module by the first script, that can be used standalone to store correlated hits in
the .slcio files used by EUTelescope.

An overview of the interactions between the programs and the required inputs are

given in fig.
Root File

takes as
paramete; EUTelescope
4

[correlateNandP.py] jobsub hitmaker greates

LCIO hitmaker file
P - uses as
orrelated text file module
configured in file|header

takes folder as argument
configured in file header [GenericTelescopeConverter.py]

saves intol
LCIO hitmaker file

Figure 4.8: Analysis chain correlating the hits and inserting them into the .slcio file
created by EUTelescope

All required parameters and configuration options need to be set in the header
section of the correlateNandP.py script.

4.3 EUTelescope

The EUTelescope (http://eutelescope.web.cern.ch) is ”A Generic Pixel Telescope
Data Analysis Framework” maintained and supported by DESY. It was originally
developed for the EUDET telescopes such as the one used during this beam test and
is part of the ILCsoft framework that is being developed by the IL(ﬂ community.

3International Linear Collider

41

eutelescope.web.cern.ch

4.3. EUTELESCOPE CHAPTER 4

The core elements of the framework are the Linear Collider I/O (LCIO)
data model, the Geometry API for Reconstruction (GEAR) markup lan-
guage and the event processor Modular Analysis Reconstruction for the
LINear collider (Marlin).

(EUTelescope 'About’ page)

The structure of the framework is modular with a multitude of processors that
can be called to act on data and perform various actions. For example, there is a
simple processor that just displays the number of the event that is currently being
processed, intelligently increasing the step size as the numbers get larger. One
processor converts the raw data of each pixel into hit/no hit signals depending on
thresholds. Another takes this data and forms clusters of pixels next to each other.
Again another identifies clusters that are constantly giving a signal and marks them
as noisy.

These processors can be selected and configured using so-called ’steering-files” using
XMIJ] Marlin then takes these steering-files as input and calls the required proces-
sors in the order specified and provides the data each processor requires from the
input files. Each steering-file is usually considered as performing a ’job’ e.g. con-
verter, hitmaker, fitter, ... and contains several processors and their configuration.

To perform geometric reconstruction, the layout of the experimental setup needs to
be provided for the framework to use. This is done by using GEARJ] files. Each
plane of the setup needs to have a unique SensorID, x,y and z-coordinates as well as
a rotation matrix describing the rotation with respect to the z-axis. Additionally,
the size of the active sensor area and the (calculated) spacial resolution in x and y
direction need to be provided.

To allow for a more flexible usage, jobs are usually not submitted directly to Marlin
but via a job submitting program called ’jobsub’. It takes the configuration file
and a file containing parameters for each run as parameters as well as the name of
the job to be performed. Jobsub then replaces all variables defined in the steering
file with the values defined in the config files and generates a finished Marlin XML
file. If not prevented by a parameter, it then executes Marlin with the completed
steering file and shows the output of the processors.

Event data calculated by the framework is stored in a file format known as [cio. It
is event based and contains named ’collections’ for each event. These collections can
be read and written by Marlin processors. One can have a look at the content of a
Icio file by performing a dumpevent command on it.

Additionally some processors that perform analyses create ROOT files containing
their output data so the information can be further processed using the extensible
ROOT data analysis framework provided by CERN.

The possibilities offered by the framework are theoretically only limited by the
existing processors. Currently there are 90 processors available when installing the
framework. Some of them are not state of the art anymore, some have different

4eXtensible Markup Language
>Geometry API for Reconstruction

42

http://eutelescope.web.cern.ch/content/about-eutelescope

CHAPTER 4 4.3. EUTELESCOPE

approaches for the same goal, but everything that is required for standard track and
resolution analysis is provided.

4.3.1 Analyzing with EUTelescope

After installing EUTelescope, following the guidance on the homepage, and set-
ting the environment variables required for analysis, the following steps need to be
performed. I will go into detail on some of them in following sections.

Converter Standard EUTelescope tool to convert EUDAQ raw data to lcio files.
Clustering Searches for clusters in the converted data.

Hitmaker Calculates hits from the found clusters considering noisy pixels. Creates
a lcio file containing all hits on the telescope planes.

correlateNandP.py My script that takes the DUT data and stores the hits recog-
nized there into the lcio file generated by the hitmaker. See section for
details.

Prealign The second part of the standard hitmaker script now performing pre-
alignment on the telescope and DUT data.

Align Performs a DAH| fitting algorithm as well as a Millepede algorithm using
both the telescope and the DUT hits. See section for details

Fitter Uses the GEAR file generated by the alignment processor to again perform
a DAF fitter, this time not using the DUT planes, and stores the residual plots
in a root file. See section [£.3.4] for details and results.

4.3.2 Merging two separate data sources

Although it is possible to directly store the measurement data of the DUT during a
run into a lcio file by writing a producer for EUDAQ), this was not done during the
beam test. Therefore it was necessary to add the DUT events to the Icio files during
analysis. To this end I wrote the GenericTelescopeConverter.py module in Python
using a similar program simply called TelescopeConverter.py as a point of reference.
The final script can now be used standalone by providing a text file containing at
least three columns (TLUEventNumber,x-coordinate(in mm),y-coordinate (in mm))
and the path to the lcio hitmaker file to which the data should be added.

The requirements for the GenericTelescopeConverter are all included in the EUTele-
scope installation and are based on the pyLCIO implementation. It uses the Fvent-
Loop to loop over the lcio file and the standard EventMarkerDriver and WriteLcio-
Driver to display the progress and write the output file. To store the DUT events in
the collection during the loop, I wrote an additional driver called AddHitsDriver. It
requires a dictionary containing all DUTs with each DUT value being a dictionary
that contains a tuple of 3 values (x,y,z) for each event number.

6Deterministic Annealing Filter

43

4.3. EUTELESCOPE CHAPTER 4

In principle the script loops over the the events, reading in the input collection
(default: local hit), copies the collection, loops over the DUTs and searches for a
matching eventNr in each DUT dictionary. If such a set of values exists, it adds
them to the new collection and upon completion, the new collection is stored into
the event (default: hit_with_ DUT hits). During development some complications
arose, some following from the usage of a python interface for a C library, others
from the requirements for the implementation of the required classes.

For example, when copying the collection some parameters are not copied and need
to be set manually again afterwards. Amongst these parameters are the id encod-
ing string, the properties and of course the sensorID. This looping over the events
led to some weird behavior that I attribute to some error in the python interface
implementation. This led to me changing the code to just create a new TrackerHit
collection from scratch and set the parameters by reading them from the old collec-
tion. Then I looped over the existing collection and created a copy of each hit within
the event and saved that to the new collection. After this I looped over the events
stored in the DUT dictionary and added them as well before storing the collection
within the event. This process is less efficient than the intended one and requires
more computation time, but under the circumstances I considered it the faster way
to get to a result.

In the case of my analysis I use the GenericTelescopeConverter as a module to my
main script, where the coordinates are calculated, and just pass the data to the
converter without requiring a text file.

4.3.3 Alignment

This is one of the more complicated steps in the telescope analysis. The aim is
to take one hit from each telescope and DUT plane, fit a particle track through
it and thereby calculate the offset of each telescope plane from its defined zero
point, which is at the center of the active area, and then in the end move the
zero point to the actual one to remove the offset for further calculations. What
doesn’t sound so difficult in theory becomes quite difficult when one considers the
following complications: Not every plane always records every event due to several
reasons (i.e. particle absorption, scattering, ...), some ”pixel” on the DUT could
not be calculated because of multiple hits on one side (section leaving again
one plane without a hit. Furthermore the event multiplicity of the telescopes pixel
planes is rather high as can be seen in fig. [4.9) This is due to the long readout
time of around 150 ps. The high event multiplicity leads to even more complicated
calculations.

The alignment step performs two separate alignment methods that are independent
of each other. The first is called DAF which is a Kalman Filter running iteratively
over a set of weighted measurements, reweighing the measurements after each fit
based on provided residual values. The configuration values I used for my analysis
were:

FitDuts = true
NDutHits =)
RequireNTelPlanes =5

44

CHAPTER 4 4.3. EUTELESCOPE

Event multiplicity Event multiplicity

14000
1400
12000
1200
10000
1000
8000
80(

6000
60

s

4000 40

S

2000 20

3

TTT T[T T[T I TTT]T
3
TTT T[T [T T[T T[T [TTT 17T

P Y EE o

0 40 50 60

40 50 60

=)
=)

(a) event multiplicity of run 1008 (b) event multiplicity of run 1010

Figure 4.9: Comparison of event multiplicity between runs. The plots look almost
exactly the same in spite of run 1008 having 10x as many events. Each color rep-
resents one plane. The plane with the higher multiplicity is the quite noisy 5th
plane.

TelPlanes =012 3435
DUTPIlanes =10 11 12

For a converging fit it is important that there are two fixed planes defined, usually
these are the first and last plane. I allowed a maximum of two missing hits per fitted
track which leads to at least one DUT hit being a requirement for a fit.

The second alignment method is called Millepede and uses the second iteration
of the Millepede algorithm that was initially developed by V. Blobel[I(]. It uses
linear least square fits and can deal with a large number of parameters. One of the
applications of this algorithm is the alignment of all 24 000 sensors used in the CMS
detector[L1].

The configuration values I used for my analysis were:

UseResidualCuts
ResidualXMax
ResidualXMin
ResidualYMax
ResidualYMin
DistanceMax

1
200.0 200.0 200.0 500.0 500.0 500.0 700.0 800.0 900.0
—200.0 —-200.0 —200.0 —-500.0 —500.0 —500.0 —700.0 —800.0 —900.0
200.0 200.0 200.0 500.0 500.0 500.0 700.0 800.0 900.0
—-200.0 —-200.0 —200.0 —-500.0 —500.0 —500.0 —700.0 —800.0 —900.0
500

AllowedMissingHits
ExcludePlanes
FixedPlanes

2

05

All residual parameters are in pm.

In the configuration I allowed two missing hits, thereby allowing for one DUTSs
alignment being improved even if the other two didn’t record a hit for this event
and are therefore excluded from the fit.

The parametrization of the alignment step was a lot of experimentation with different
parameters. During my analysis, the EUTelescope framework was also released as
version 1.0 with a changed way of handling alignment which actually solved a couple
of problems that happened to me in the beginning, but it also introduced a new one.

The new alignment now works with updated GEAR files and calculating the new
coordinates from the GEAR file instead of an extra database for shifted coordinates.
This reduces the amount of sources that can cause errors.

45

4.3. EUTELESCOPE CHAPTER 4

4.3.4 Estimation of resolution
Digital resolution of a sensor

The simplest method of strip readout is to check if a value exceeds a threshold and,
if yes, consider the signal a hit, otherwise discard the signal. If two neighboring
strips exceed the limit they are considered a cluster. If only one strip signal is above
the limit, the information about the position that can be gained from this is rather

limited because the particle could have passed through an area ranging from —%

to +¥ on either side of the strip center while only triggering this strip. This is
known as the digital resolution of a sensor. The maximum resolution of such a
sensor is given by the uniform distribution for this area (with p as the pitch)

1 [T5 2
o’ = —/ 2?dr = L
pJ-z 12

Following from this, the digital resolution is defined as pitf;. This formula is widely
used in high energy physics to quickly calculate the theoretical resolution of any
given sensor.

Applying this formula to the pitches of the rectangular sensor (75 pm and 240 pm)
one receives 73%“ = 21.65 pm and Q%m = 69.28 pm as results.

Improving the resolution

Using the amount of charge deposited at each strip within a cluster in relation to
each other allows for a more precise calculation of the particle position. This factor,
known as the n-value, calculated for each respective cluster creates a distribution
function that can then be used to calculate a particle’s position (see section .

In this case the eta distribution is used to calculate the position of each hit during
the correlateNandP.py script where first the distribution is created by looping over
many eta values and creating a histogram, using the numpy library which has an
optimized function for that purpose. The generated histogram is then used by
numerically integrating the histogram values up to the point of the eta value of the
strip. The bin size for this histogram was set to 100 after seeing that the influence
of a smaller bin size is non existent.

To check if my calculations are correct I changed the code to return the values
without applying the eta correction and therefore not improving the resolution above
the digital. The results (fig. are a little bit higher than the theoretical binary
resolution which is to be expected since the binary resolution would only consider
clusters containing one strip and once the cluster size is greater than that, the
resolution actually gets worse because the seed strip, which is used for this analysis,
doesn’t have to be the strip with the highest signal, it is just the first strip above
the threshold.

To further investigate this I went ahead and tried to plot the distributions separately
once for cluster width one, which should give me the central, flat distribution, and

46

CHAPTER 4 4.3. EUTELESCOPE

Residual of n-side (240um pitch), binary resolution: 69.28um, values in mm Residual of p-side (75um pitch), binary resolution: 21.65um, values in mm

25(

8

20

S

M
RMS 0.08392 500

RMS 0.02395

15(

3

3
SITTTT T[T [TTTT[TTTT]TT

10¢

@
8

IS
8
UARNRAARNRRARNRRARNRRARNRRARNRRARNNRY

| L
0.1 0 0.1 0.2 03

S
S

&
b
s
N
&
°
°
°
N

(a) n-side (b) p-side

Figure 4.10: Improvement of resolution given by using the eta distribution.

once for cluster widths two and greater. The result was unexpected (fig. and
made me question my analysis since the two green curves together should add up to
the red curve but don’t even remotely do so. Additionally the calculated RMS value
for the cluster width one residual is lower than the digital resolution and even lower
than the calculated resolution of the whole system if all cluster sizes are considered.

Residual of n-side (240pm pitch), binary resolution: 69.28um, values in mm

N With eta
250 |— Entries 20208
= Mean 0.0002016
B RMS 0.03909
N Without eta
200 +— Entries 20744
= Mean -1.598e-05
N RMS 0.08392
- CW1 without eta
150 — Entries 6422
I~ Mean -0.01337
N RMS 0.03311
- CW2+ without eta
100 — Entries 6446
B Mean 0.01802
- RMS 0.1095
50—
TN ISR | e ta U B ERTRT AV P s Vb i,
9 3 -0.2 . . . 0.3

Figure 4.11: This figure shows which cluster width makes up which part of the total
distribution. The two green curves should add together to the red curve but don’t.

I tried multiple approaches to understand this phenomenon, especially the part of
the two curves not adding up, but encountered only similarly weird results until
at some point I understood why this was happening. The first step in the right
direction was only deactivating the eta distribution for one sensor direction (i.e. x
or y) which led to better plots and made me realize that I was preventing the track
finding algorithm from finding a lot of tracks by not applying the eta correction to
any plane. This was of course reinforced by the fact that two of the three DUT
planes are not rectangular but wedge shaped. I was already only looking at the
plots of the rectangular backward sensor to exclude other influences.

The moment I activated the eta correction for all planes but the n-side of the back-
ward sensor and again split the plots between cluster widths the resulting plot was

47

4.3. EUTELESCOPE CHAPTER 4

(fig.

Residual of n-side (240um pitch) separated by cluster width

E Without eta
100 — Entries 19427
- Mean 0.00615
ol RMS 0.08381
- Cluster width 1 without eta
C Entries 9416
i Mean -0.003755
- RMS 0.03518
40 — Cluster width 2+ without eta
: Entries 10198
20— Mean 0.01532
C RMS 0.1106
3

Figure 4.12: This figure shows how the residual without eta distribution is built up
by the different cluster sizes.

Theoretically it should not be possible to get a better resolution than the digital

(%) for this kind of readout, therefore it came as a surprise that the RM for

this analysis was far below the expected value (35 pm instead of 69.28 yum).

After some investigations and talks with people I understood that the way interme-
diate strips increase the resolution is based on the fact that if an intermediate strip
absorbs charges it couples them to equal parts to the two neighboring strips which
then couple the charge to the readout strip.

This reduces the pitch by 50% since the area where only one strip sends a signal is
reduced to half of the distance between readout strip and intermediate strip on both

sides of a strip (% = % leading to the distribution ranging from —% to +
pifl—Ch = M). Therefore if one now considers the pitch to be not 240 pm but 120 pm
the expected digital resolution becomes 34.64 pm which is not too far from the
351m in the plot. Further investigations into this topic on the other side of the
sensor showed that this is actually the best case scenario. With a smaller pitch
of 75 pm the effect is much smaller with a measured resolution of 15 pm instead of
the calculated 21.65 pm an improvement of 30% over the digital resolution. For the
narrow side of the wedge sensor, where the pitch is only 50 pm the improvement is

actually lower than a micrometer.

Now for the last step it is also interesting to know what the distribution with n
correction looks like when separated into the different contributions of the cluster

widths(fig. 4.13)).

Looking at the RMS values also shows, that the resolution of clusters with a size of
one is actually better than for cluster width two and higher. Presumably this is all
due to the higher amount of ’virtual’ cluster width one hits using the intermediate
strips.

Taking a look at the same plot for the y-axis it becomes apparent that this effect is
also visible with a smaller pitch, although a lot smaller (fig. 4.13)).

"Root Mean Square

48

CHAPTER 4 4.3. EUTELESCOPE

Residual of n-side (240um pitch) separated by cluster width

250 F— With eta
- Entries 20208
- Mean 0.0002016
200 — RMS 0.03909
: Cluster width 1 with eta
150 — Entries 9416
- Mean —-0.003755
ol RMS 0.03518
- Cluster width 2+ with eta
- Entries 10626
o Mean 0.003756
- RMS 0.04186
; 1 [PR |

P

0.2 0.3

Figure 4.13: This figure shows how the residual with eta distribution is built up by
the different cluster sizes. What is especially visible is that the application of the
eta distribution onto the cluster width 1 events changed nothing in comparison to
fig. and the distribution is still uniform while the application onto the events
with a higher cluster size forms the peak that is visible in the combined distribution.

Residual of p-side (75um pitch) separated by cluster width

700 — With eta
500 F— Entries 20208
= Mean 0.003524
s00 RMS 0.01332
- Cluster width 1 with eta
400 — Entries 7368
= Mean 0.002699
300 — RMS 0.01322
E Cluster width 2+ with eta
200 = Entries 12840
100 == Mean 0.003998
= RMS 0.01336
? 1 1 1 1 1

0.2 -0.1 0 0.1 0.2 0.3

o

Figure 4.14: Residual with eta distribution built up by the different cluster sizes for
the p-side

The resolution of a sensor is not only depending on the pitch of the strips and the
existence of an intermediate strip but also on the signal to noise ratio of each sensor.
This can be attributed to the fact that a low SNR leads to a worse recognition of
clusters and can also shift the eta value away from the actual center of charge by
influencing the signal height.

4.3.5 Resolution of each separate module and comparisons

As mentioned before the data taken during the first beam test was rather limited
both in quantity as well as in knowledge that could be gained. Still some analysis
was possible using these datasets.

The plots in figure and show histograms of the resolution residual calcula-
tion as generated by EUTelescope. The resolution in given by the RMS value as it
gives the mean offset in regard to the zero point. What is mainly visible in the com-
parison is that the higher amount of events in run004(60 000) provides a smoother
histogram than the lower amount in run005(10 000). The effective influence this has

49

4.3. EUTELESCOPE CHAPTER 4

on the resolution is negligible, because the variation between the values is always in
the sub-micrometer range.

Residual of n-side (240um pitch) separated by cluster width Residual of p-side (75um pitch) of two different runs
E run04 60K Events run05 10k Events | woE run04 60k Events run05 10K Events
mo Entries 20560 Entries 3959 =M E Entries 20560 Entries 3959
E Mean -0.002254 Mean -0.002128 3 0= Mean 0.003291 Mean 0.000902
= RMS 0.03905 RMS 0.03888 = E RMS 0.01319 RMS 001341
E 3 st0F—
0~ =N =
of e -
C — w0
sof— 3 E
E —w 10—
E n " | . L 3 A= I I I | |
B8 £ £ g o o G % £ En 3 o o

Figure 4.15: Compare resolution of the Backward Module between run004 and
run005

Residual of n-side (240um pitch) of two different runs Residual of p-side (75um pitch) of two different runs
run04 60K Events run05 10k Events e 120 run04 60k Events run05 10K Events
Entries 32621 Entries 3224 Entries 32621 Entries 3224 o
Mean -0.0009015 Mean -0.0009244 s o Mean 0.001615 Mean 0.002712 120
RMS 0.04 RMS 004165 RMS 001263 RMS 001401

100

3

g

&
e

(a) n-side (b) p-side

Figure 4.16: Compare resolution of the Forward Module between run004 and run005

The plots in figure are comparisons between the old wedge and the forward
module which contain the same sensor with the difference, that the forward module
is one generation newer. Interestingly enough, the resolution for both the n and the
p-side is slightly worse for the forward module, although again the absolute values
are only in the range of sub micrometers.

Residual of n-side (240m pitch) of both wedges Residual of p-side (75pm pitch) of both wedges
30— Forward Module Old Wedge] oo Forward Module Old Wedge E

E Entries 32621 Entries. 29831 380 = Entries 32621 Entries. 29831 10
00— Mean -0.0009015 Mean -0.0008616 = o[Mean 0.001615 Mean 0.001357 .
wE- RMS 0.04 RMS 0.03959 E| E RMS 0.01263 RMS 0.01233 ER

E = o[— oo
200 = E B

E Ei = —so0
= —1so E 3
wE EM wb oo
e ER - EN

o 35 < g o o3 G Pe £ En 3 o o G

Figure 4.17: Compare resolution of Forward Module with Old Wedge in run004

The results, especially the comparison between the resolution of cluster width one
events and cluster width two and greater events (with eta), show that analog readout
at these pitches allows for wider clusters to deliver a comparable resolution to the
theoretical cluster width one digital resolution (with consideration of the smaller
pitch for these due to the intermediate strip).

The main objective for the second beam test was to check how the resolution of
the wedge sensor behaves with changing pitch. The resolution of the wedge sensor
should improve when moving from the wide to the narrow side since the pitch is
reduced by 33% from 75um to 50 pm. To quantify this change multiple points on
the sensors were measured (fig. and then compared.

50

CHAPTER 4 4.3. EUTELESCOPE

In figure [4.1§ one can see the improvements between the wide and narrow side by
comparing the resolutions of the sensor at the positions 05 and 10. The improvement
from 15.24 pm to 12.72 pm results in a relative improvement of 16.53 % so nowhere
near the theoretical improvement of 33 %.

Residual of FW p-side comparison of wide and narrow side

220 Wide side, pos05 (50pm pitch)

Entries 5103
Mean -0.001115
RMS 0.01524
Narrow side, pos10 (75um pitch)
Entries 5799
Mean 0.00138
RMS 0.01272

200

180

160

140

120

100
80
60
40
20

PR S AT SR T SR TR SO N N R P PR N S SR ST SR NN ST ST S|

-0.2 -0.1 0 0.1 0.2 0.3

w III|III|III|III|III|III|III|III|III|III|III|

lo

Figure 4.18: Comparison of the resolutions measured at the wide and narrow side
of the wedge sensor.

The SNR also has a non-negligible influence on the resolution as can be seen in
fig. where the changing SNR also changes the resolution because the center of
gravity calculation is more precise for a higher SNR.

In table the results of the analysis are given with the digital resolutions and the
resulting improvements from using the eta correction. All the values are taken with
the FE-I4 plane included and forcing EUTel to only use tracks where each DUT
plane had a hit. What can be seen from the results is, that the improvements to
the resolution diminish the smaller the pitch is. Furthermore it is visible that the
effective resolution between the wide and narrow side of the sensor differs only by
2.52 pm

Sensor side pitch | digital res. | measured res. | improvement
Wedge n-side wide 240 69.28 pm 40.84 pnm 41.05 %
Wedge n-side narrow | 240 69.28 pm 37.77 pm 45.48 %
Rectangular n-side | wide 240 69.28 pm 41.89 pm 39.53 %
Rectangular n-side | narrow | 240 | 69.28 pm 39.94 pm 42.34 %
Wedge p-side wide 75 21.65 pm 15.24 pm 29.40 %
Wedge p-side narrow | 50 14.43 pm 12.72 pm 11.80 %
Rectangular p-side | wide 75 21.65 pm 14.42 pm 33.30 %
Rectangular p-side | narrow | 75 21.65 pm 14.10 pm 34.80 %

Table 4.2: Results of the residual plots.

Improvement of resolution visible between with and without FE-I4 plane, can be
attributed to the fact that the fitter then has to use all 3 DUT planes which leads

o1

4.4. CONCLUSION CHAPTER 4

Residual of wedge n-side comparison of wide and narrow side

180 Wide side, pos05 (57.59mm)
1601~ Entries 12197
= Mean -0.005322
140[— RMS 0.04084
— Narrow side, pos10 (38.42mm)
120— Entries 13634
C Mean 0.005803
1001 RMS 0.03777
80—
60—
40—
20—
0 : 1 1 1 1 I [i
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Figure 4.19: Comparison of the residuals on the narrow and wide side of the wedge
sensor on the n-side. The change is the influence of the SNR on the resolution since
the strip-length is the only thing changing in this comparison.

to fewer entries but a narrower result range altogether since an event has to contain
a hit in all three DUT planes. An example of this can be seen in fig. The
limited amount of entries is based on the fact of how many exclusion criteria exist.
To show up in this histogram an event must contain exactly one hit in the FE-14
plane and each of the four DUT planes since otherwise correlation is not possible.
This immensely limits the amount of useable events down from the 50k taken to the
used ~5k. As can be seen in fig. the number of entries becomes a lot larger if
only one DUT is required to have a hit.

Residual of FW p-side with and without FE-14 narrow side Residual of FW p-side with and without FE-14 wide side

[e wibous P sagrsum pic
Entries 12722
Mean 0.001657
RMS 0.01613
Wide side with FE-14(75m pich)

Entries 3868 350
Mean 0.002947

4o RMS 0.01342 300
IrE——

8

Wide side it sum pich)
Entries 5103
Mean -0.001115
RMS 0.01524

Entries 5799 250
Mean 0.00138
RMS 0.01272 200

30

8

20(

10¢

! 8 8 8
GTTT T ITIT [T [TITI[17T
e
8

&
|
&
2
of
ol
2
o
|
o
@
&6
o)
&
|
&
2
of
o
2
o
|
of
@

(a) narrow side (b) wide side

Figure 4.20: Comparison of the FW n and p-side resolutions with and without the
usage of the FE-I4 sensor.

4.4 Conclusion

Two beam tests were performed to study the resolution of the sensors to be used
for the Belle II experiment. Due to the limited time that was available to take
measurement data during the first beam test, no big insights could be gained from

52

CHAPTER 4 4.4. CONCLUSION

these results which resulted in the scheduling of the second beam test. The second
beam test was aimed at investigating the change in resolution of the sensor for the
varying pitch on the p-side of the FW sensors as well as comparing the change in
SNR for the n-side of these sensors, since the strip length decreases over them which
should be visible. The fact that data from the first beam test already existed made
preparations for the second beam test a lot easier and also allowed for immediate
analysis of the data during the beam test since most of the work had already been
done for the data of the first beam test.

The data taken during the second beam test provides the information lacking from
the first beam test and allowed for a detailed analysis of the sensors and their

resolution as well as further improvements of the measurements by means of the
FE-14 sensor.

The insights gained are valuable as the results show that the resolution of the mod-
ules is similar to the expected one for a not-cooled sensor. The specifications as
defined in the Belle II TDR[2] are not fulfilled most probably because the sensors
were not cooled and therefore the SNR was not good enough. Tracking the particle
with a resolution of 13pm on the p-side(r-¢) and 40 pm on the n-side(z-axis) for
each plane could still be enough for the precise vertex reconstruction required for
the experiment since the fit needs to be performed through all six planes of the
detector which further improves the resolution.

Furthermore the investigations of the influence of the intermediate strip on binary
sensor readout are also quite significant as they prove that binary readout can be
improved by a significant margin (up to 50% for large pitches) by using intermediate
strips due to the reduced max size of cluster width one events.

As a point of comparison one can look at [I12] which investigated single-sided strip
detectors with 64 mm strip length and 50 pm pitch. Comparability is given for one
of the three investigated zones in this work, since it also had one intermediate strip.
The best resolution achieved there was around 6 pm which is a lot better than the
results achieved with these wedge sensors. Multiple differences between the works
performed make it difficult to pinpoint one exact reason for the results. Aside
from the fact that the strip length for the wedge sensors is about twice as much
(122mm) the wedge sensors are also double-sided and the analysis software used
was a completely different one. One additional work performed by another student
in parallel using the same analysis software but a different telescope setup lead to
almost identical results regarding the sensor resolution lending additional credibility
to the results presented in this thesis.

23

Acknowledgements

I would like to express my gratitude to all the people that helped me along the way
of performing my work for this master’s thesis.

First and foremost I want to thank Thomas Bergauer for his help with all the
questions and requests I bombarded him with as well as all the information he
provided during long conversations where he did his best to help me understand
complex connections between topics. Additionally I want to thank him for always
taking the time to proofread all the presentations I held during my time and all the
time he invested into this thesis becoming the document it is now.

Special thanks also goes out to my supervisor Christoph Schwanda who aside from
thesis relevant topics also took the time to talk about some less thesis relevant but
to me very interesting topics.

Moreover I would like to express my gratitude to the electronics group especially to
Markus Friedl who was always willing to explain sensor electronics to me as well
as Christian Irmler who gave me a lot of insight regarding the database and the
construction of the detector and was a valuable source of knowledge in many regards.

I also want to thank Hao Yin for all the talks we had about programming and all
the things I learned about low level programming that I never even thought about
before.

Special thanks also go to Richard Thalmeier aka. Fachi whose vast knowledge of
electronics and computer hardware kept astounding me and who was always willing

to talk to me when I required a break from programming and just walked over to
his desk.

Furthermore I want to thank Florian Buchsteiner and Lukas Bulla for making the
two beam tests a lot more enjoyable than ten full working days could have been.

My thanks also goes out to Karen Pommer for proofreading my thesis and thor-
oughly correcting my english down to the last comma.

My biggest gratitude goes out to my parents for their moral, social and financial
support during my studies without which I would surely never have managed it this
far.

Last but not least I want to thank my girlfriend Lisa Krainz for all her support
especially for dealing with me after long working days and for always listening to
me when [was rambling about what occupied my mind.

54

Appendix A - Source code

AddHitsDriver.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

)

Created on Feb 17, 2015

Qauthor: Benedikt Wiirkner
IR

from pyLCIO.drivers.Driver import Driver
from pyLCIO import IMPL, EVENT, UTIL
from time import time

import ctypes

class AddHitsDriver (Driver):
>?2 Driver to add Hits to an Event (if applicable)
Expects a dictionary containing a dictionary with a touple of x,y and z coordinates
Example: allEvents = {"DUT1":{"1":(1.2,1.1,1.3),"7":(1.1,1.2,1.3)},"DUT2":{"1":(1.2,1.1,1.3)
,"4":(1.1,1.2,1.3)3}}

def __init__(self , allEvents,configDict):
’>?? Constructor ’’°

Driver.__init__(self)

self.allEvents = allEvents
self.currentCollectionName = "local_hit"
self.targetCollectionName = "hit_with _DUT_hits"

self.configDict = configDict["DUTs"]

def processEvent(self, event):
>?? Method called by the event loop for every event ’’°
eventNumber = event.getEventNumber ()
trackerHits = IMPL.LCCollectionVec(EVENT.LCIO.TRACKERHIT)
encodingString = event.getCollection(self.currentCollectionName).getParameters().getStringVal (EVENT.
LCIO.CellIDEncoding)
trackerHits.getParameters () .setValue (EVENT.LCIO.CellIDEncoding,encodingString)
idEncoder _DUT = UTIL.CellIDEncoder (IMPL.TrackerHitImpl) (encodingString, trackerHits) #<----
requires the most amount of time
idEncoder_DUT.reset ()
idEncoder _DUT[’properties’] = 0
for iHit in range(0,event.getCollection(self.currentCollectionName).getNumberOfElements ()):
trackerHits.addElement (IMPL.TrackerHitImpl (event.getCollection(self.currentCollectionName).
getElementAt (iHit)))
for DUT in self.allEvents.keys():
if eventNumber in self.allEvents[DUT]:
idEncoder DUT[’sensorID’] = self.configDict[DUT]["sensorID"]
startTime = time ()
print "adding additional Hits:", eventNumber, time()-startTime
newHit = IMPL.TrackerHitImpl ()
idEncoder _DUT.setCellID(newHit)
newHit.setType (EVENT.LCIO.THBIT_BARREL)
hitPos = [self.allEvents[DUT][eventNumber][0],self.allEvents[DUT][eventNumber][1], self.
allEvents [DUT] [eventNumber] [2]]
pos = (ctypes.c_double * len(hitPos)) (xhitPos)
newHit.setPosition (pos)
newHit.setQuality (1)
trackerHits.addElement (newHit)
event .addCollection(trackerHits,self.targetCollectionName)
startTime = time ()

*

25

4.4. CONCLUSION CHAPTER 4

GenericTelescopeConverter.py

#!/usr/bin/env python
-*- coding: utf-8 -*-
ER)

Created on January 14th 2015

Tool to convert a file with tab separated values containing the event number and the x,y coordinates of a hit
in mm into LCIO EUTelescope format.

Qauthor: Benedikt Wiirkner

#from pyLCIO import UTIL

#from pyLCIO import EVENT,IMPL,IOIMPL, IO

from pyLCIO.io.EventLoop import EventLoop

from pyLCIO.drivers.EventMarkerDriver import EventMarkerDriver
from pyLCIO.drivers.AddHitsDriver import AddHitsDriver

from pyLCIO.drivers.WriteLcioDriver import WriteLcioDriver
from pyLCIO import IMPL

#from pyLCIO import IMPL, IOIMPL, EVENT, UTIL, IO

import sys

import ctypes

inputFileFormatConfig = {"xCol":3,"yCol":4,"zCol":5}
def addEventsToFile(allEvents,configDict):
#Create filename from run number

dataFileName = "run"+str(configDict["runNumber"]).zfill(6)+"-hitmaker_backup.slcio"
outputFileName = "run"+str(configDict["runNumber"]).z£fill(6)+"-hitmaker.slcio"

Create the event loop
eventLoop = EventLoop ()

Set the input file. The actual reader is determined from the file ending (stdhep or slcio)
eventLoop.addFile(configDict["inputDataDir"]J+dataFileName)

Add a driver to print the progress
markerDriver = EventMarkerDriver ()
markerDriver.setInterval(1000)
markerDriver.setShowRunNumber (False)
eventLoop.add(markerDriver)

Add the driver that adds my hits to the events
addHitsDriver = AddHitsDriver(allEvents,configDict)
eventLoop.add(addHitsDriver)

#Create Run Header

run = IMPL.LCRunHeaderImpl ()

run.setRunNumber (configDict["runNumber"])
run.setDetectorName ("EUTelescope")

Add the driver that saves the new collection to a file
writeLcioDriver = WriteLcioDriver ()
writeLcioDriver.setOutputFileName (outputFileName)
writeLcioDriver.setRunHeader (run)

eventLoop.add(writeLcioDriver)

Skip some events if desired
eventLoop.skipEvents(0)

Execute the event loop
eventLoop.loop(59000)
eventLoop.printStatistics ()

return

HURRRRHARARRRHARRRRRRARRRRRRARRRRRRHARARRRARRARARHRRRRARRARRRRHRRARRRRRRRRRRHRRRRARRHRRRRRRRHEHR
def usage():
print ’Tool to convert a file with tab separated values containing the event number and the x,y and z
coordinates of a hit in mm into LCIO EUTelescope format.’
print ’Usage:\n python %s <inputTextfileDir> <inputEUTelDatafileDir> <runNumber>’) (sys.argv[0])

HANRBRAHRBRARAARAABRRRARRRAHRHBRRAARBRARARRRAHBRAHRHBRRAARBRARARRERAHRBRRARBRARABRRRARRRAHHBRAHRHRAH
if __name__ == ’__main__’:
if len(sys.argv) < 4:
usage ()
sys.exit(1)

allEvents = dict()

inputDir = sys.argv[1]
inputDataDir = sys.argv[2]
runNumber = int(sys.argv[3])
offset = int(sys.argv[4])

configDict = {"DUTs":{}}
#Example: Just add rows for each of the correlation files that can be found in the folder passed as
an argument.
#configDict ["DUTs"]["fileName"] = {"runNumber":1000,"sensorID":10}
configDict ["DUTs"]["fwbw_run005_WedgeOld_correlated.txt"] = {"sensorID":10}
configDict ["DUTs"]["fwbw_run005_FW_correlated.txt"] = {"sensorID":11}
configDict ["DUTs"]["fwbw_run005_BW_correlated.txt"] = {"sensorID":12}
configDict ["inputDataDir"] = inputDataDir
configDict ["runNumber"] = runNumber
Number of the col in the input file corresponding to the respective value

56

CHAPTER 4 4.4. CONCLUSION

for fileName in configDict["DUTs"].keys():
eventsDUT = dict()
with open(inputDir+fileName) as inputTextFile:
for line in inputTextFile:
temp = line.split()
#only store required values based on the file format defined at the top
#x,y,2
eventsDUT[int (temp[0])] = (float(templ[inputFileFormatConfigl["xCol"1]),float(templ
inputFileFormatConfig["yCol"]]) ,0) #New version with z-coordinate set to O (local frame
now)
allEvents [fileName] = eventsDUT
print fileName,"lowest event Number is:",sorted(eventsDUT.keys()) [0]
print "loaded",fileName,"with",len(allEvents[fileNamel),"events"

addEventsToFile (allEvents,configDict)

correlateNandP.py

#!/usr/bin/env python
-*- coding: utf-8 -*-

)

Created on March 24th 2015

Program to create x and y coordinates in millimiters out of double sided strip sensors (DSSDs) which have
strips angled 90deg to each other.

Qauthor: Benedikt Wiirkner
IR

import sys, shutil

import csv

import os.path

import numpy as np

import ROOT as R

import resource

import time

PR

It requires to define the amount of strips on the n and p-side as well as the overall geometry of the sensor
while allowing trapezoidal shapes and automatically calculating the pitch from the given data.

It is only capable of calculating hits when there was only one hit per event number because there is no
possibility to get rid of the phantom hits.

To define the geometry some parameters are required as well.
3

longHeight = 57.590 #height of the sensor on the long (left) side in mm
shortHeight = 38.420 #height of the sensor on the short (right) side in mm
width = 122.76 #width of the sensor in mm

nStrips = 512 #Number of strips on the n-side

pStrips = 768 #Number of strips on the p-side

cnStrips = nStrips-1 #count of strips omn n-side

cpStrips = pStrips-1 #count of strips on p-side

[N

We need to define some global parameters that are used throughout the program and depend on the input file
format or on the data.

P

originalOffset = -1 #0ffset to be subtracted from the event number given by the TLU in relation to the event
number stored in the lcio event

offsetCorrectionFactor = 1 #Second offset for after 32767 events

inputDataDir = "../NewReconstruction/output/lcio/"

useEtaCorrection = True

#the Following are only avaliable if ’useEtaCorrection’ is set to False

useOnlyCW2Plus = True

useOnlyCW1l = False

PR

Furthermore we need to define the files that shall be used including if x or y coordinate need to be flipped
because of the way the sensors were geometrically positioned.

This new version directly accepts root files from Tux0A as input thereby eliminating the intermediate text
files used previously.

This leads to the requirement of knowing the name of the Module number corresponding to the module e.g. 000 =
WedgeOld_p-side

parameters reqired:
x-coordinate-file,
y-coordinate-file,

DUTName ,
flipX,
flipY,
longHeight ,
shortHeight
Make educated guess on the ResultTree name by listing all the names and then taking the one containing "
Result"?

Maybe enable general prefix parameter for files.
Tux0A standard output file name: DataFileName_ModuleNumber e.g. fwbw_run003_000.root if the datafile is
called fwbw_runO003.dat

Coordinate system definition of the telescope is standard right handed with positive z along the beam axis in
beam direction.

Following from this the positive y-axis points upwards and the positive x-axis points to the left (looking in
beam direction)

Furthermore following from the fact that the n-strips go from top to bottom they are capable of giving a
position varying left to right and therefore x-coordinate

57

4.4. CONCLUSION

CHAPTER 4

flipped. (TODO: Check that i didn’t mess that up!)

[

along with the runName

values. Recommended: 100

#Code starts here, only mess with it if you know what you’re doing!

#Checking parameters
if len(sys.argv) < 2:

sys.exit(1)

if len(sys.argv) 2:
inFileDir = sys.argv[1]
outFileDir = sys.argv[1]

else:
inFileDir = sys.argv[1]
outFileDir = sys.argv[1]

for settings in files:
if not os.path.isfile(inFileDir+settings[’fileX’]):

sys.exit ()
if not os.path.isfile(inFileDir+settings[’fileY’]):

sys.exit ()

if not os.path.isdir (outFileDir):
print "outputdir",outFileDir,"doesn’t exist, check your parameters"
sys.exit ()

startTime = time.time ()

def runtime(description="Something"):
global startTime
print description,"{:1.2f}".format(time.time()-startTime)+"s"
startTime = time.time ()

allEvents = dict()
print "Starting to process run",runName,"with EuTel run number",runNumber
for settings in files:

print "Processing DUT:",settings ["DUTName"]

xFile = R.TFile(inFileDir+settings[’fileX’])

xDict = dict()
xEtaValues = list ()

yFile = R.TFile(inFileDir+settings[’fileY’])

yDict = dict()
yEtaValues = list()

o8

xTree = xFile.Get("ResultTree_"+settings[’fileX’].split(".")[0].split("_

yTree = yFile.Get("ResultTree_"+settings[’fileY’].split(".")[0].split("_

runNumber = int(sys.argv[2])

runName = "run003" #Makes it easier to change the run number

runName = sys.argv[3]

etaSteps = 100 #amount of bins used in the eta histogram. Increases calculation time by

files = [

{
>fileX’:’fwbw_’+runName+’_006.root’,
>fileY’:’fwbw_’+runName+’_002.root’,
’oFileName’:’fwbw_’+runName+’ BW_correlated.txt’, #unused parameter
>’DUTName’:’BW’,
’flipX’:False,
’flipY’:False,
’longHeight’:longHeight,
’shortHeight’:longHeight

},

{
>fileX’:’fwbw_’+runName+’_005.roo0t’,
>fileY’:’fwbw_’+runName+’_001.root’,
’oFileName’:’fwbw_’+runName+’ _FW_correlated.txt’, #unused parameter
’DUTName’:’FW’,
>flipX’:True,
>flipY’:True,
’longHeight’:longHeight,
’shortHeight ’:shortHeight

1,

{
>fileX’:’fwbw_’+runName+’_004.root’,
>fileY’:’fwbw_’+runName+’_000.root’,
’oFileName’:’fwbw_’+runName+’ _WedgeOld_correlated.txt’, #unused parameter
’DUTName’:’Wedge01ld’,
’flipX’:False,
’flipY’:True,
’longHeight’:longHeight,
’shortHeight ’:shortHeight

},

]

print "requires at least one path as parameter (for input and output file location).
are given the first is assumed to be the input folder and the second the output folder"

print inFileDir+settings[’fileX’],"doesn’t exist, check your settings"

print inFileDir+settings[’fileY’],"doesn’t exist, check your settings"

" [-11)

" [-11)

The flip parameter needs to be considered of how the apv numbering is equivalent to the positive axis.
If the highest strip number is at the same position as the highest positive value then it does not need to be

runNumber = 1008 #EuDAQ run number, used to determine the file name of the hit file. NEEDS to be adapted

a lot for high

If two parameters

#To make sure the program doesn’t abort later om check if all input files and the output directory exist

CHAPTER 4 4.4. CONCLUSION

*

*

for event in xTree:
#if any of the values contains more than one value then the event contains multiple hits and cannot
be used because of ghost hits
if len(event.Eta)>1:
continue
xDict [event . TLUEventNumber] = {"eta":event.Eta[0],"clusterWidth":event.ClusterWidth[0],"firstStrip":
event.FirstStrip [0]}
xEtaValues.append (event.Eta[0])
runtime ("Calculating eta values x:")

for event in yTree:
#if any of the values contains more than one value then the event contains multiple hits and cannot
be used because of ghost hits
if len(event.Eta)>1:
continue
yDict [event . TLUEventNumber] = {"eta":event.Eta[0],"clusterWidth":event.ClusterWidth[0],"firstStrip":
event.FirstStrip [0]}
yEtaValues.append (event.Eta[0])
runtime ("Calculating eta values y:")

xEtaDistr = np.histogram(np.array(xEtaValues),bins=etaSteps,range=[0,1])
yEtaDistr = np.histogram(np.array(yEtaValues),bins=etaSteps,range=[0,1])
#Generate histogram of files and store them in the corresponding np.array
Fl1 = 1./np.sum(xEtaDistr [0])

F2 = 1./np.sum(yEtaDistr [0])

def x(nStrip):
return width*(0.5-float(nStrip)/(nStrips-1))

(settings[’longHeight’]-settings[’shortHeight’])/(2.0*(cnStrips))
-(settings [’shortHeight’])/(cpStrips)
(settings[’shortHeight’]-settings[’longHeight’])/((cnStrips)*(cpStrips))
= settings[’shortHeight’]1%0.5

def y(nStrip,pStrip):

return nStrip*a + pStripxb + nStrip*pStrip*c + d

a0 o
[

eventNos = set(yDict.keys()).intersection(set(xDict.keys()))#merges two lists only keeping elements in
both thereby creating a set that only contains only events where both sides had one hit

allEvents [settings ["DUTName"]1] = {}
print "starting to loop events, this may take a while"
sum0fCW1 = 0
sum0fCW2 = 0
for eventNo in eventNos:

Trial to change offset. Leads to weird side effects and not many tracks being recognized anymore. No

Idea why....

offset = originalOffset+int(eventNo/32768)*offsetCorrectionFactor

print offset

print eventNo, offset, originalOffset

#If no add it to the dictionary and increase one of the files (irrelevant which)

#cog = (leftStripPos-RightStripPos)*eta+RightStripPos

suml = 0.

for i in range(0,etaSteps):

if xEtaDistr [1][i] > float(xDict[eventNol["eta"]): #Abort loop if current eta value is larger
than loop position eta value
break
suml += xEtaDistr [0][i]
FetaX = Fl*suml

sum2 = 0.
for i in range(0,etaSteps):
if yEtaDistr[1][i] > float(yDict[eventNol["eta"]): #Abort loop if current eta value is larger
than loop position eta value
break
sum2 += yEtaDistr [0][i]
FetaY = F2*sum2
#in this case (firstStrip-firstStrip+ClusterWidth)*eta+firstStrip+ClusterWidth = firstStrip+
ClusterWidth+ClusterWidth*eta
cogl = int(filel[clusterWidth])*(1-float(filel[eta]))+int(filel[firstStrip])
cog2 = int(file2[clusterWidth])*(1-float(file2[eta]))+int (file2[firstStrip])

cogl = int(xDict[eventNo]["firstStrip"])+FetaX*xDict[eventNo]["clusterWidth"]
cog2 = int(yDict[eventNo]["firstStrip"])+FetaY*yDict[eventNo]l["clusterWidth"]
print xDict[eventNo]["clusterWidth"],x(cogl)-x(xDict[eventNo]["seedStrip"]), xDict[eventNo]["eta"]
if useEtaCorrection and yDict[eventNo]["clusterWidth"] != 0 and settings["DUTName"] == "BW":
continue
if not useEtaCorrection: #strip numbers are then rounded leading to the strip with the highest charge
being the strip used
if useOnlyCWi1:
if int(xDict[eventNo]l["clusterWidth"]) == 0:
cogl = round(cogl)
cog2 = round(cog2)
else:
continue
sum0fCW1 += 1
elif useOnlyCW2Plus:
if int(xDict[eventNo]["clusterWidth"]) != 0:# or int(yDict[eventNo]["clusterWidth"]) != 0:
cogl = round(cogl)
cog2 = round(cog2)
else:
continue
sum0fCW2 += 1
else:
cogl = round(cogl)
cog2 = round(cog2)
sum0fCW1 += 1
sum0fCW2 += 1

29

4.4. CONCLUSION CHAPTER 4

if not settings[’flipX’] and not settings[’flipY’]:
xStrip = cogl
yStrip = cog2

elif settings[’flipX’] and settings[’flipY’]:
xStrip = cnStrips-cogl
yStrip = cpStrips-cog2

elif not settings[’flipX’] and settings[’flipY’]:
xStrip = cogl
yStrip = cpStrips-cog2

elif settings[’flipX’] and not settings[’flipY’]:
xStrip = cnStrips-cogl
yStrip = cog2

allEvents [settings ["DUTName"]][(eventNo+offset)] = (float(x(xStrip)),float(y(xStrip,yStrip)),0)

print eventNo,int (xDict[eventNo]["firstStrip"]),cogl,int(yDict[eventNo]["firstStrip"]),cog2,x(xStrip)
,y(xStrip,yStrip),xDict[eventNo]["clusterWidth"]
coordinates [eventNo] = (cogl,cog2)

print "Cluster Width 1 events:",sum0fCW1
print "Cluster Width 2 events:",sum0fCW2

runtime ("Looping events took: ")
print "Memory usage: ","{:1.2f}".format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024.),"MB"
print ""

#for DUT in allEvents:
for event in allEvents[DUT]:
print event,allEvents[DUT][event]

#output data

with open(outFileDir+settings[’oFileName’], ’wb’) as csvfile:

w = csv.writer(csvfile, delimiter=’\t’, quoting=csv.QUOTE_NONE)

for eventNo in coordinates.keys():

nStrip, pStrip = coordinates[eventNo]

if not settings[’flipX’] and not settings[’flipY’]:

w.writerow ([(eventNo-offset), nStrip, pStrip, x(nStrip), y(nStrip, pStrip)])

elif settings[’flipX’] and settings[’flipY’]:

w.writerow ([(eventNo-offset), nStrip, pStrip, x(cnStrips-nStrip), y(cnStrips-nStrip, cpStrips
-pStrip)])

elif not settings[’flipX’] and settings[’flipY’]:

w.writerow ([(eventNo-offset), nStrip, pStrip, x(nStrip), y(anStrip, cpStrips-pStrip)])

elif settings[’flipX’] and not settings[’flipY’]:

w.writerow ([(eventNo-offset), nStrip, pStrip, x(cnStrips-nStrip), y(cnStrips-nStrip, pStrip)
1)

#print nStrip,pStrip,nStrips,pStrips,cnStrips-nStrip,cpStrips-pStrip

runtime ("writing "+settings[’oFileName’]J+" to disk")

import GenericTelescopeConverter as GTC

configDict = {"DUTs":{}}

configDict ["DUTs"]["Wedge01ld"] = {"sensorID":10}
configDict ["DUTs"]["FW"] = {"sensorID":11}
configDict ["DUTs"]1["BW"] = {"sensorID":12}
configDict ["inputDataDir"] = inputDataDir
configDict ["runNumber"] = runNumber

#Check if backup hitfile exists and if not create one because the GenericTelescopeConverter expects there to
be one
if not os.path.isfile(inputDataDir+"run"+str(configDict["runNumber"]).zfill(6)+"-hitmaker_backup.slcio"):
if os.path.isfile(inputDataDir+"run"+str(configDict["runNumber"]).zfill(6)+"-hitmaker.slcio"):
print "Creating backup of hitfile since it doesn’t exist already"
shutil.copyfile (inputDataDir+"run"+str(configDict ["runNumber"]).z£fill(6)+"-hitmaker.slcio",
inputDataDir+"run"+str(configDict ["runNumber"]) .zfill(6)+"-hitmaker_backup.slcio")
else:
print "No hitfile found, have you not run the hitmaker yet?"
print "Or is the path",inputDataDir,"wrong?"
sys.exit ()

GTC.addEventsToFile(allEvents,configDict)
#Move file to directory where it is expected, i.e. where the source hitfile was taken from.
print "Moving created file to correct location at ",inputDataDir+"run"+str(configDict["runNumber"]).zfill(6)+

"-hitmaker"".slcio"

shutil.move("run"+str(configDict ["runNumber"]).z£fill(6)+"-hitmaker"".slcio",inputDataDir+"run"+str(configDict
["runNumber"]) .z£fill(6)+"-hitmaker.slcio")

print ""

print "Finished without errors"

print "Memory usage: ","{:1.2f}".format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024.),"MB"

60

Appendix B - Additional plots

Run004, Forward Sensor, n-side (240um pitch) Run005, Forward Sensor, n-side (240um pitch)
350 — Entries 32621 C Entries 3224
E Mean -0.0009015 E Mean -0.0009244
E RMS 0.04 S0 RMS _ 0.04165
300— C
250; 40}
200;7 30}
150; E
E 20—
100— r
= 10
S0 [y
E | L Eevn o wn ablllll S FT TET
=03 -0.2 0.2 0.3 =03 -0.2 -0.. 0.1 0.2 0.3
(a) run004 (b) run005

Figure 4.21: Compare resolution of Forward Module between run004 and run005,
n-side

Run004, Forward Sensor, p-side (75um pitch) Run005, Forward Sensor, p-side (75um pitch)

Entries 20428
Mean 0.001817 161
RMS 0.01275

Entries 4870
Mean 0.002028
RMS 0.01416

N
8 3

9
8
8
RN RN AR RN AR AN RANRRN

IS
8
AL AN AL RN AR R RA NN

N
S
3

5
8

&
©
s
N
&
°

0.1 0.2

o
@
I
&
1y
|
)
N
o
o
o
N
o
@

(a) run004 (b) run005

Figure 4.22: Compare resolution of Forward Module between run004 and run005,
p-side

61

4.4. CONCLUSION CHAPTER 4

Run004, Old Wedge, n-side (240um pitch) Run005, Old Wedge, n-side (240pm pitch)

@
&
8

Entries 29831
Mean -0.0008616 5
RMS 0.03959

Entries 3697
Mean -0.001124
RMS 0.04057

N @ s
S 8 5 &

.
5

s | L N A | fl by un T
: X 0 01 0.2 03 3 0 0.1 0.2

I
&
@
L
)
I
&
@
L
)
2

(a) run004 (b) run005

Figure 4.23: Compare resolution of Old Wedge Module between run004 and run005,
n-side

Run004, Old Wedge, p-side (75pm pitch) Run005, Old Wedge, p-side (75um pitch)
s00— Entries 19266 20 Enties 5300
E Mean 0.002094 220~ Mean 0.0007903
700 RMS 0.0124 200 RMS 001162
600 1801
= 160—
500 140
00 120
E 100
300~ 80—
200 60—
E 40
100— E
E 20
= | | | | 1 E | | it | | |
03 02 01 0 0.1 02 03 3 02 01 0 01 02 03

(a) run004 (b) run005

Figure 4.24: Compare resolution of Old Wedge Module between run004 and run005,
p-side

62

Bibliography

1]

[9]

[10]

[11]

[12]

T. Aushev, W. Bartel, A. Bondar et al. Physics at Super B Factory. Technical
report, KEK [2009].

7. Dolezal and S. Uno. Belle II Technical Design Report. Technical report,
High Energy Accelerator Research Organization [2010].

T.Bergauer, P.Doljeschi, A.Frankenberger et al. Recent Progress in Sensor- and
Mechanics-RD for the Belle Il Silicon Vertex Detector. Technical report, In-
stitute of High Energy Physics, Nikolsdorfer Gasse 18, A-1050 Vienna, Austria
[2012].

M. Friedl, T. Bergauer, I. Gfall et al. The Silicon Vertex Detector of the Belle
II Experiment. Technical report, HEPHY [2010].

M. Friedl. The CMS Silicon Strip Tracker and its Electronic Readout. Ph.D.
thesis, Vienna University of Technology [2001].

H. Yin. Readout software for the Belle silicon vertex detector and test beam
data analysis. Master’s thesis, Vienna University of Technology [2015].

B. Leitl. Measurement and Simulation of the Interstrip Capacitance of Double
Sided Silicon Sensors. Master’s thesis, University of Vienna [2014].

J. Behr. Test Beam Measurements with the EUDET Pizel Tele-
scope. report, DESY, http://www.eudet.org/e26/e26/e27/e107291/
eudet-report-2010-01.pdf [2010].

F.-I1. Collaboration. The FE-I4A Integrated Circuit Guide. Techni-
cal report, CERN, https://espace.cern.ch/atlas-pixel-upgrade-elec/
FinalY,20Design/Reference/FE-I4A_V11.1.pdf [2011].

V. Blobel. Millepede II - Linear Least Squares Fits with a Large Number of
Parameters. http://wuw.desy.de/~blobel/Mptwo.pdf [2007].

M. Stoye. Calibration and Alignment of the CMS Silicon Tracking De-
tector. Ph.D. thesis, Universitat Hamburg, http://www-1library.desy.de/
preparch/desy/thesis/desy-thesis-07-026.pdf| [2007].

W. Kiesenhofer. Performance studies on Silicon Strip Sensors with 50 mu pitch.
Master’s thesis, Vienna University of Technology [2010].

63

http://www.eudet.org/e26/e26/e27/e107291/eudet-report-2010-01.pdf
http://www.eudet.org/e26/e26/e27/e107291/eudet-report-2010-01.pdf
https://espace.cern.ch/atlas-pixel-upgrade-elec/Final%20Design/Reference/FE-I4A_V11.1.pdf
https://espace.cern.ch/atlas-pixel-upgrade-elec/Final%20Design/Reference/FE-I4A_V11.1.pdf
http://www.desy.de/~blobel/Mptwo.pdf
http://www-library.desy.de/preparch/desy/thesis/desy-thesis-07-026.pdf
http://www-library.desy.de/preparch/desy/thesis/desy-thesis-07-026.pdf

	Belle II and its new SVD
	Physics motivation
	Belle
	Belle II
	The SVD of Belle II
	Requirements
	Layout
	Construction

	Silicon strip sensors
	Working principle
	Readout Chip
	Clustering and charge sharing
	Hybrid
	Signal to noise ratio

	Construction database
	Requirements
	Implemented features
	Measurements
	Tags
	Item creation
	Stock items
	Transfers

	Status and outlook

	Beam test
	Sensors
	Layout
	Signal readout

	Setup
	SVD3
	Beam telescope
	Beam test November 2014
	Beam test June 2015

	Data analysis
	Basic sensor properties
	Signal & Noise
	Signal to Noise behavior

	Preprocessing of the data
	TuxOA
	Strip-hit correlation

	EUTelescope
	Analyzing with EUTelescope
	Merging two separate data sources
	Alignment
	Estimation of resolution
	Resolution of each separate module and comparisons

	Conclusion

	Bibliography

