
Unterschrift des Betreuers

DIPLOMARBEIT

Study of potential improvements of the CMS
H → τ+τ− analysis using artificial neural

networks with multiple layers

AUSGEFÜHRT AM

Atominstitut Wien
in Verbindung mit dem Institut für Hochenergiephysik (HEPHY)

der Österreichischen Akademie der Wissenschaften (ÖAW)

UNTER DER ANLEITUNG VON

Univ.Doz. Dr.techn. Rudolf Frühwirth
Dr. Martin Flechl

EINGEREICHT AN

der Technischen Universität Wien
Fakultät für Physik

VON

Spanring Markus
Hauslehen 78

3342, Opponitz, Österreich

Ort, Datum Unterschrift (Student)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

After the discovery of a boson with a mass of approximately 125 GeV in 2012, the next
step is to test whether this boson is the Standard Model Higgs boson, e.g. by measuring
its couplings to fermions and gauge bosons. One of the fermion couplings is measured
by looking at the Higgs → τ+τ− decay channel. One way to reach the traditional
discovery significance of 5σ for this decay is to increase the amount of data. Another
way is to find a good signal-versus-background classifier to extract the desired events
from the recorded data more efficiently. To obtain this classifier a standard way is to
use machine learning models, for instance neural networks. Recent advances in the
field of deep learning have shown that deep neural networks are able to retrieve more
information out of a given set of input functions than other machine learning methods.
The main goal of this thesis is to use deep-learning techniques on a simulated Higgs→
τ+τ− dataset and to compare the performance with other current Machine Learning
(ML) techniques. The training is performed with a GPU-accelerated python library.
For the tuning of the hyperparameters, a Bayesian optimization algorithm is used. The
obtained result is that deep neural networks trained on this simulated dataset can not
compete with the other ML techniques used as a benchmark. A possible explanation
is that the training set is by far too small to train the deep neural network at a
competitive level.

Kurzzusammenfassung

Nachdem ein Boson mit einer Masse von ungefähr 125 GeV im Jahr 2012 entdeckt
wurde, ist der nächste Schritt zu beweisen, dass es sich dabei um das Standardmodell-
Higgs-Boson handelt. Dies kann erreicht werden indem man z.B. die Kopplungen dieses
Bosons zu Fermionen misst. Eine dieser Kopplungen kann durch die Messung des Zer-
falls Higgs → τ+τ− erfolgen. Eine Möglichkeit um die in der Teilchenphysik übliche
Signifikanz von 5σ für diesen Zerfall zu erreichen, ist die Menge an Daten zu erhö-
hen. Eine weitere Möglichkeit ist es, eine geeignete Methode zu finden mit welcher
dieses Signal effizienter von Hintergrundereignissen unterschieden werden kann. Eine
übliche Herangehensweise an ein solches Problem ist der Einsatz von maschinellem
Lernen (ML) wie zum Beispiel neuronaler Netze. Der Fortschritt im Bereich von “De-
ep Learning”, unter anderem bei vielschichtigen neuronalen Netzwerken, zeigte, dass
diese Art von Netzwerken deutlich mehr Information aus einem Datensatz extrahie-
ren kann als andere im maschinellem Lernen eingesetzte Methoden. Die Hauptaufgabe
dieser Arbeit besteht darin, solche vielschichtigen neuronalen Netze mithilfe eines si-
mulierten Higgs→ τ+τ− Datensatzes zu trainieren und mit anderen ML-Methoden zu
vergleichen. Hierfür wird eine GPU-beschleunigte Python-Bibliothek verwendet. Um
die optimalen Werte der Hyperparameter des neuronalen Netzwerkes zu finden, wurde
ein Bayesscher Optimierungsalgorithmus verwendet. Daraus resultierend konnte fest-
gestellt werden, dass dieses Netzwerk, welches mit dem simulierten Datensatz trainiert
wurde, nicht mit anderen ML-Methoden konkurrieren kann. Ein möglicher Grund ist,
dass der verwendete Datensatz für die Anwendung von vielschichtigen neuronalen
Netzwerken zu klein ist um diese auf ein konkurrenzfähiges Niveau zu trainieren.

Table of Contents

1 Introduction 1

2 The Standard Model of particle physics 3
2.1 Particles of the Standard Model . 4

2.1.1 Quarks . 4
2.1.2 Leptons . 4
2.1.3 Gauge bosons . 5

2.2 The four fundamental interactions . 6
2.2.1 Electromagnetism . 6
2.2.2 Weak interaction . 7
2.2.3 Strong interaction . 7
2.2.4 Gravitation . 8

2.3 Higgs mechanism . 8
2.3.1 Global symmetry breaking and Goldstone bosons 8
2.3.2 Local symmetry breaking and the Higgs boson 10
2.3.3 Higgs boson production modes 11
2.3.4 Higgs boson decay . 11
2.3.5 Evidence for a Higgs boson decaying into a pair of tau leptons . 14

3 Experimental setup at CERN 17
3.1 Large Hadron Collider . 17
3.2 The CMS detector . 18
3.3 Detector components . 19

3.3.1 Detector overview . 20
3.3.2 Inner Tracking System . 20
3.3.3 Electromagnetic Calorimeter (ECAL) 22
3.3.4 Hadronic Calorimeter (HCAL) 22
3.3.5 Magnet . 23
3.3.6 Muon System . 24

4 Artificial neural networks 25
4.1 The artificial neuron . 25
4.2 Activation functions . 26

4.2.1 Linear function . 26
4.2.2 Rectified linear function . 26
4.2.3 Sigmoid . 26
4.2.4 Hyperbolic tangent . 26

4.3 Multilayer perceptron . 28
4.3.1 The perceptron . 28

Table of Contents

4.3.2 The multilayer perceptron . 29
4.3.3 Supervised learning . 31
4.3.4 Stochastic gradient descent . 32
4.3.5 Backpropagation of error . 33

4.4 Deep learning . 34

5 Multivariate analyses with deep neural networks 37
5.1 Framework . 37

5.1.1 Theano — A math expression compiler 37
5.1.2 Pylearn2 — A machine learning library 38
5.1.3 Spearmint — A Bayesian optimization algorithm 38

5.2 Dataset . 39
5.2.1 Preselection . 39
5.2.2 Input variables . 40

5.3 Figure of Merit - Approximate Median Significance 45
5.4 Tunable hyperparameters . 45

5.4.1 Network architecture . 45
5.4.2 Training algorithm . 46
5.4.3 Overtraining . 47

6 Multivariate analysis of H → ττ using the simulated 8 TeV dataset 49
6.1 Training deep neural networks using grid search 49

6.1.1 Combinations of learning rate and decay factor 49
6.1.2 Combinations of learning rate and decay factor with momentum 53

6.2 Training deep neural networks using Spearmint 56
6.2.1 Necessary Spearmint iterations to reach optimum 56
6.2.2 Input variable selection . 58
6.2.3 Performance of neural networks with multiple hidden layers . . 60
6.2.4 Preprocessing of input variables 62

7 Multivariate analysis of H → ττ using the simulated 13 TeV dataset 65
7.1 Performance with different activation functions 66

7.1.1 Tanh activation function . 66
7.1.2 Rectified linear activation function 68
7.1.3 The rectified log activation function 70

7.2 Influence of dataset size on network performance 73

8 Summary and conclusions 75

Appendices 77

A Acronyms 79

B Framework setup 81

Bibliography 85

viii

1 Introduction

The Higgs mechanism was first introduced in 1960 to explain massive gauge bosons
and how particles such as fermions and massive gauge bosons gain mass. The disco-
very of the massive W- and Z-bosons, which are postulated by the Higgs mechanism,
was a strong indication that this theory is correct. The Standard Model was tested
with various precision measurements and continuously verified, e.g. by the discovery
of the top quark in 1994, during the last decades. In 2012 the discovery of a boson
with a mass of 125 GeV as well as spin and CP properties compatible with the Higgs
boson was announced by CERN. To identify this boson as the Standard Model Higgs
boson, among other things, its couplings to fermions, which are generated via Yukawa
interaction, need to be confirmed. One suitable candidate for this task is the decay of
this boson to a tau-antitau lepton pair (Higgs→ τ+τ−).

In this thesis a study is conducted on whether a deep neural network is able to enhan-
ce the performance of extracting Higgs→ τ+τ− events from a collected dataset. For
this purpose such a deep neural network is trained and compared to other Machine
Learning (ML) approaches as well as to a cut-based approach which is the standard
analysis technique in high energy physics. Since deep neural networks are a relatively
new field of study, especially in high energy physics, only the framework on which a
deep neural network can be constructed is available. The actual software as well as a
suitable hardware is built from scratch.

First, a short overview of the Standard Model of particle physics is given, with the
emphasis on spontaneous symmetry breaking and the Higgs Boson (Chap. 2). The-
reafter, the Large Hadron Collider (LHC) at CERN is introduced with focus on the
CMS detector and its subdetectors (Chap. 3). Chapter 4 deals with the theoretical
framework of an artificial neural network including training algorithms and properties
of the network architecture as well as the definition of a deep neural network. The
following chapter (Chap. 5) outlines the software and hardware as well as the data-
sets used to construct and train a deep neural network and introduces the Figure of
Merit (FoM) used to evaluate the performance of the neural network. In chapter 6 a si-
mulated dataset for 8 TeV corresponding to an integrated luminosity of L = 19.7 fb−1

is used to train and optimize a deep neural network. Two optimization approaches are
put into practice and compared with each other. The last optimization step for the
simulated 8 TeV dataset is the reduction of the input variables to a smaller, better
performing subset and the application of preprocessing on these input variables. In
chapter 7 a simulated dataset for 13 TeV corresponding to an integrated luminosity of
L = 10 fb−1 is used.

For 13 TeV, significantly more simulated events are available than in the 8 TeV da-
taset and can in addition be used to study the influence of the dataset size on the
performance of a deep neural network. Finally the results obtained with the 8 TeV and
13 TeV dataset are discussed and compared with other ML approaches in Chap. 8.

Throughout this thesis the particle mass is given in natural units (the units are chosen
such that c = ~ = 1) and therefore in electron Volt (eV). The charge is given in units
of the elementary charge e0.

2

2 The Standard Model of particle physics

The Standard Model of particle physics (SM) is the theory of fundamental particles
and their interactions. These interactions are responsible for the electromagnetic, weak
and the strong force. Despite the fact that special relativity is incorporated in this
theory, general relativity is not. Thus, the fourth fundamental force, gravitation, is not
included in this theory. Although the SM describes all its particles and the resulting
phenomenons nearly perfectly, it still has a lot of shortcomings some of which are
listed below:

1. Why are there exactly 3 quark and lepton generations?

2. How can dark matter and dark energy be explained?

3. Is it possible to combine the electromagnetic, weak and the strong force to a
Grand Unified Theory (GUT)?

The fundamental particles are divided into quarks, leptons, gauge bosons and the
Higgs boson. Whereas quarks and leptons are the building blocks of matter, gauge
bosons are the mediator particles of the forces. In addition, all of them have a counter
particle called anti-particle. Anti-particles have the same physical properties except
for the opposite sign of the charge. In the following sections the properties of these
particles as well as their interactions are outlined.

u
≈2.3 MeV

2/3

1/2

Up

H
≈125 GeV

0

0

Higgs
boson

Tau
neutrino

Muon
neutrino

νe
Electron
neutrino G

au
ge

 B
os

on
s

Le
pt

on
s

Q
ua

rk
s

Mass

Charge

Spin t
TopCharm

c

b
≈4.18 GeV

-1/3

1/2

Bottom

s
≈95 MeV

-1/3

1/2

Strange

d

e μ
105.7 MeV

-1

1/2

Mu
lepton

νμ
<170 keV

0

1/2

τ
1.777 GeV

-1

1/2

Tau
lepton

ντ
<15.5 MeV

0

1/2

γ
Photon

g
≈1.275 GeV

2/3

1/2

≈173.5 GeV

2/3

1/2

Gluon

Z
Z

boson

W
80.4 GeV

±1

1

W
boson

Electron

<2.2 eV

0

1/2

Down

511 keV

-1

1/2

≈4.8 MeV

-1/3

1/2

91.2 GeV

0

1

0

0

1

0

0

1

Fig. 2.1: The particles of the Standard Model.

2.1 Particles of the Standard Model

2.1 Particles of the Standard Model

2.1.1 Quarks

A quark is an elementary particle with spin 1/2 (fermion) which can only be observed
with other quarks in a composite particle called “hadron”. The reason for not observing
isolated quarks will be given in Section 2.2.3. Quarks come in six different types (also
called flavors) as shown in Table 2.1. There are two kinds of hadrons which can be
subdivided into particles with three quarks called baryons, and into particles with a
quark-antiquark pair called mesons. Besides the electric charge, quarks also have a
color charge (Red, Blue, Green and the corresponding anticolor). Quarks are the only
particles in the Standard Model which interact via all four fundamental interactions
(see Section 2.2). Out of the many particles consisting of quarks the proton and the
neutron are the ones with the longest lifetime: The proton is believed to be stable,
and the neutron decays (if it is not in a bound state) with a mean lifetime of about
15 min. All other hadrons decay significantly faster.

Name Mass Charge Symbol

Up 2.3+0.7
−0.5 MeV +2

3 u

Down 4.8+0.7
−0.3 MeV −1

3 d

Charm 1.275± 0.025 GeV +2
3 c

Strange 95± 5 MeV −1
3 s

Top 173.5± 0.6± 0.8 GeV +2
3 t

Bottom 4.18± 0.03 GeV
(
MS

)1 −1
3 b

Tab. 2.1: Properties of the different quark flavors [1].

2.1.2 Leptons

Like quarks, leptons are elementary particles with spin 1/2 and therefore fermions.
Leptons can be subdivided further into three families, each consisting of a charged
and a neutral particle. The best known representative of the charged leptons is the
electron, which together with quarks makes up all visible matter in the universe. The
neutral leptons are called neutrinos.
Charged leptons interact via the weak, electromagnetic and gravitational force. Neu-
trinos interact only weakly and gravitationally since they have no electric charge. Since
neutrinos and anti-neutrinos have no charge, it is possible that the neutrino is its own
anti-particle.
1The minimal subtraction scheme or MS-scheme was introduced by t’Hooft [2] in 1972 which is a
renormalization scheme that only absorbs the divergent part of perturbative calculations beyond
leading order. The more widely used MS-scheme [3] absorbs the divergent part and also a universal
constant.

4

2 The Standard Model of particle physics

Name Mass Charge Symbol

Electron 511 keV −1 e

Electron neutrino < 2.2 eV 0 νe

Mu lepton 105.7 MeV −1 µ

Muon neutrino < 170 keV 0 νµ

Tau lepton 1.777 GeV −1 τ

Tau neutrino < 15.5 MeV 0 ντ

Tab. 2.2: Properties of the different lepton flavors [1].

Since the tau lepton is the most important particle in this thesis (besides the Higgs)
it is discussed separately.

Tau lepton

The tau lepton is the heaviest member of the lepton family, as one can see in Tab. 2.2,
and has a mean lifetime of about 2.9 · 10−13 s [1]. The tau lepton was first observed
in electron-positron2 collision experiments from 1974 to 1977 at Stanford [4]. In these
experiments event signatures of the form

e+ + e−
?−→ e± + µ∓ + at least two undetected particles (2.1)

were found. This was explained by the production of two tau leptons during the
e−e+-collision which decay to an electron or mu lepton and four neutrinos via weak
interaction.

e+ + e−
collision−−−−−→ τ+ + τ−

decay−−−→ e± + µ∓ + 2ν + 2ν (2.2)

Since the tau lepton is heavier than some hadrons it can decay into a hadron and a tau
neutrino. About 2/3 of the decays are hadronic and 1/3 decays either into an electron
and two neutrinos or a muon and two neutrinos. The fact that the tau can decay both
leptonically and hadronically plays an important role in collider physics because in
contrast to electrons and muons hadronic taus are more difficult to reconstruct. For
simplicity τ+ + τ− is denoted as ττ from now on.

2.1.3 Gauge bosons

Gauge bosons are the carrier particles of the electromagnetic, weak and strong interac-
tion. These interactions, described by so-called gauge theories, define how elementary
particles interact with each other. The gauge boson of the fourth fundamental inter-
action, gravitation, is only hypothetical and has not been found yet. Forces acting
between different particles are treated as the exchange of gauge bosons. The strength
of these forces is determined by so-called coupling constants. These constants arise
naturally in the quantum field theory describing the respective interaction. Usually,

2The positron is the anti-particle of the electron

5

2.2 The four fundamental interactions

Interaction Name Mass Charge Spin Coupling Symbol

Electromagnetism Photon 0 0 1 1
137 γ

Weak W±-Boson 80.385 GeV ±1 1 ∼ 10−6 W±

Z-Boson 91.188 GeV 0 1 Z

Strong 8 Gluons 0 0 1 1 g

Hypothetical particle
Gravitation Graviton 0? 0 2? ∼ 10−39 G

Tab. 2.3: Properties of the three experimentally confirmed gauge bosons and the hypothetical
gauge boson of gravitation [1, 6].

the formalism used to describe such a theory (e.g. Lagrange formalism [5]) can be se-
parated into a kinetic and an interaction part. The couplings determine the strength
of the interaction part with respect to the kinetic part. The coupling constants in
Tab. 2.3 are given with respect to the coupling constant of the strong interaction.

2.2 The four fundamental interactions

2.2.1 Electromagnetism

Besides gravitation, nearly all phenomena of everyday life are based on electromagne-
tism. This includes all chemical phenomena and all forms of light.
The first complete classical theory of electromagnetism was given by James Clerk
Maxwell [7]. He was able to unify electricity, magnetism and light into one theory,
resulting in the Maxwell equations:

∂iE
i =

ρ

ε0
, (2.3)

εijk∂jE
k − Ḃi = 0, (2.4)

∂iB
i = 0, (2.5)

εijk∂jB
k − ε0µ0Ė

i = µ0J
i, (2.6)

where Ei is the elctric field, Bi is the magnetic field, ρ is the charge density and J i is
the current density. The electromagnetic field described by this equations exerts the
so-called Lorentz force F iLorentz on a charged particle q:

F iLorentz = qEi + qεijkv
jBk. (2.7)

These equations also imply that the speed of light in vacuum is constant.
In Maxwell’s theory light is treated as a wave and propagates at a constant speed, an
assumption which has led to the discovery of special relativity by Albert Einstein [8]
at the beginning of the 20th century. This view had to be revised after the discovery
of the photoelectric effect [9]. Paul Dirac was the first to describe the interaction

6

2 The Standard Model of particle physics

between radiation and matter by using quantum theory [10]. Based on this work it
was possible to develop a theory of quantum electrodynamics which is a relativistic
quantum field theory. It is the first theory fully consistent with special relativity and
has served as template for all future quantum field theories such as for the weak
and strong interaction. Quantum electrodynamics explains the electromagnetic force
between charged particles through the exchange of a photon.

2.2.2 Weak interaction

The weak interaction acts on all known left-handed fermions. It is responsible for
radioactive decay and nuclear fusion and is the only interaction which is able to change
flavors of quarks (see Sec. 2.1.1). It is also the only interaction which does not produce
bound states like gravitation, electromagnetism and the strong interaction. The weak
nuclear force is caused by the emission and absorption of W±- and Z-bosons. These
three bosons have a mass much larger than the mass of the proton, and the W -bosons
also carry an electric charge. The weak interaction has a very short range of about
10−17 m due to the heavy mass and therefore short lifetime of the mediator particles
which is below 10−24 s. At low energies the Standard Model treats the electromagnetic
and the weak interaction as two different forces. Glashow, Weinberg and Salam [11,
12] were able to show that these interactions are only two aspects of the more general
electroweak interaction. The electroweak interaction is a SU(2) × U(1) gauge group
with four massless gauge bosons. At low energies spontaneous symmetry breaking (see
Sec. 2.3.2) of the SU(2) symmetry results in three massive (W±, Z) and one massless
boson (photon). This breaking of the electroweak symmetry is caused by the Higgs
mechanism [13]. Furthermore, the weak interaction is the only fundamental interaction
which breaks parity- and also charge-parity-symmetry [14].

2.2.3 Strong interaction

The strong interaction is responsible for the binding force between quarks and gluons.
The theory describing this interaction is quantum chromodynamics, which is based
on a SU(3) symmetry group. The strong force is mediated by eight gluons and acts
on particles with color charge. A composite of such particles, held together by the
strong force, is called a hadron. A hadron must have zero total color charge because
of a phenomenon called confinement. Confinement states that color-charged particles
like quarks are only observable in their bound states and not as isolated particles. The
explanation is that the energy needed to separate two quarks is high enough to create
a new pair of quarks. The attempt to separate two quarks therefore results in the
production of new hadrons. The strong interaction is furthermore responsible for the
binding force between nucleons (e.g. proton and neutron). Since nucleons are hadrons
and do not have a color charge, no attractive force should be present between two of
them. However, the gluon-field inside the nucleus is not completely saturated which
leads to a fluctuating color charge. This remnant causes a nuclear force between nuclei
which is mediated through an exchange of a virtual pion.

7

2.3 Higgs mechanism

2.2.4 Gravitation

Gravitation is an attractive force between two masses m1 and m2 and can be written
in the form

F i = G · m1 ·m2

r2
eir, (2.8)

where G stands for the gravitational constant and r is the distance between the two
masses m1 and m2. The vector eir is the unit vector in radial direction. Gravitation
is the weakest of all four forces when described in terms of coupling constants (see
Sec. 2.1.3). This means that gravitation can be neglected when describing the beha-
viour of subatomic particles. This is the reason why the Standard Model works so well
on a microscopic scale even though it does not include all four forces. On a macros-
copic scale however, gravitation becomes the dominant force. In a possible quantum
field theory of gravitation the force is mediated through the Graviton (see Tab. 2.3).
However, this particle is only hypothetical and has not been discovered so far.

2.3 Higgs mechanism

The Higgs mechanism [13] introduces the concept of spontaneous symmetry breaking
and is used to explain why the gauge bosons of the weak interaction are massive.
Furthermore, it is possible to show that the breaking of the SU(2) symmetry of the
elektroweak interaction leads to the electromagnetic and weak interaction with their
respective gauge bosons. The following description of the Higgs mechanism is derived
according to Cottingham [5].

2.3.1 Global symmetry breaking and Goldstone bosons

For a complex scalar field Φ =
(

1√
2

)
· (φ1 + iφ2) a possible Lagrangian density is

L =
(
∂µΦ†

)
∂µΦ−m2Φ†Φ, (2.9)

with ∂µ = ∂t −∇. The term
(
∂tΦ

†) (∂tΦ) can be regarded as the kinetic energy and(
∇Φ†

)
· ∇Φ + m2Φ†Φ as the potential energy. If Φ is a constant field in space and

time the derivatives vanish. The only contribution to the energy is m2Φ†Φ. Since m2

is positive the energy will have a minimum at φ1 = φ2 = 0, meaning that Φ = 0
corresponds to the ’vacuum’ state. One can now modify the Lagrangian density by
introducing a potential term V (Φ†Φ),

V (Φ†Φ) =
m2

2φ2
0

[
Φ†Φ− φ2

0

]2
, (2.10)

where φ2
0 is a real parameter. The form of the potential V (Φ†Φ) is shown in Fig. 2.2.

The obtained Lagrangian is given by

L =
(
∂µΦ†

)
∂µΦ− V (Φ†Φ), (2.11)

and does have a ground state at Φ†Φ = |Φ|2 = φ2
0. This ground state is not unique

8

2 The Standard Model of particle physics

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
|Φ|
φ0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

2
V

m
2
φ

2 0

Fig. 2.2: Mexican hat potential V (Φ†Φ) where Φ is a classical scalar field.

since there exists an infinite number of solutions, defined by a point on the circle
|Φ| = φ0 =

√
φ2

1 + φ2
2. Even though the Lagrangian density is invariant to rotations

in the state space (φ1, φ2) the ground state does not show such symmetries. A similar
example is the occurrence of ferromagnetism where the corresponding Hamiltonian
may have rotational symmetry, but in its ground state it is magnetized in some parti-
cular direction and the rotational symmetry is lost. This is an example for spontaneous
symmetry breaking. The Lagrangian has a U(1)-symmetry:

Φ→ Φ′ = e−iαΦ (2.12)

where α is a real number. This transformation can also be written as:

φ′1 = +φ1 cosα+ φ2 sinα (2.13)

φ′2 = −φ1 sinα+ φ2 cosα (2.14)

This is a rotation in the state space (φ1, φ2), where |Φ|2 is constant. If one is looking
at the real ground state (φ0, 0), the U(1) symmetry is broken. It is now possible to
expand the Lagrangian density around this ground state introducing the following
notation of Φ

Φ = φ0 +

√
1

2
(χ+ iψ). (2.15)

We get for the Lagrangian density

L =
1

2
∂µχ∂

µχ+
1

2
∂µψ∂

µψ − m2

2ψ2
0

[√
2φ0χ+

1

2
χ2 +

1

2
ψ2

]2

. (2.16)

9

2.3 Higgs mechanism

In place of the complex scalar field there are now two coupled scalar real fields. The
Lagrangian density can now be divided into a free and an interaction part

L = Lfree + Lint, (2.17)

with
Lfree =

1

2

[
∂µχ∂

µχ− 2m2χ2
]

+
1

2
∂µψ∂

µψ. (2.18)

yielding a scalar field χ with mass
√

2m and a massless scalar field ψ. The remaining
part of the Lagrangian density contains the interactions between free particles and
higher order corrections to their motion

Lint = −2m2

8φ2
0

χψ2
[
χ− 2

√
2φ0

]
+

2m2

16φ2
0

[
χ4 + 4

√
2φ0χ

3 + ψ4
]
. (2.19)

The field ψ corresponds to a spin-0 particle with vanishing mass. Such massless fields
arise as a result of global symmetry breaking and are called Goldstone bosons [15].

2.3.2 Local symmetry breaking and the Higgs boson

The next step is to construct a Lagrangian density that is invariant under a local U(1)
gauge transformation.

L =
[
(∂µ − iqAµ)Φ†

]
[(∂µ + iqAµ) Φ]− 1

4
FµνF

µν − V (Φ†Φ), (2.20)

where Fµν = ∂µAν−∂νAµ is the electromagnetic field strength tensor, q is the electro-
magnetic coupling constant and V (Φ†Φ) the potential from eq. 2.10. The Lagrangian
density L is invariant under local gauge transformation for a vanishing field Aµ and a
constant field Φ defined by a point on the circle |Φ| = φ0.

Φ(x)→ Φ′(x) = e−iqθΦ(x) (2.21)

Aµ(x)→ A′µ = Aµ(x) + ∂µθ(x) (2.22)

This again yields an infinite number of vacuum states. With a given Φ, θ(x) can
always be chosen such that Φ′(x) = e−iqθ(x)Φ(x) is real. When θ(x) is fixed, symmetry
is broken since one is not free to make further gauge transformations. As already
shown in Sec. 2.3.1, the potential Φ can be developed around the vacuum state φ0

Φ′(x) = φ0 +
1√
2
h(x), (2.23)

where h(x) is real. Inserting into the Lagrangian density yields,

L =

[
(∂µ − iqA′µ)(φ0 +

1√
2
h(x))

] [
(∂µ + iqA′µ)(φ0 +

1√
2
h(x))

]

−1

4
F ′µνF

′µν − m2

2φ2
0

[√
2φ0h+

1

2
h2

]2

. (2.24)

10

2 The Standard Model of particle physics

This Lagrangian density can now again be separated into a free and an interaction
part L = Lfree + Lint with

Lfree =
1

2

[
∂µh∂

µh− 2m2h2
]
− 1

4
FµνF

µν + q2φ2
0AµA

µ, (2.25)

Lint = q2AµA
µ

(√
2φ0h+

1

2
h2

)
− m2h2

2φ2
0

(√
2φ0h+

1

4
h2

)
. (2.26)

The free Lagrangian density describes a scalar boson field h(x) of mass
√

2m and
a vector field Aµ which is equivalent to a vector boson of mass

√
2qφ0 with three

independent components. This mechanism leads to massive bosons and was introdu-
ced amongst others by Peter Higgs [13]. The field h(x) is called Higgs field. When
the SU(2) symmetry of the electroweak SU(2)× U(1) gauge group is broken one ob-
tains a Lagrangian describing the three massive gauge bosons (W±, Z) of the weak
interaction, a massless photon field Aµ and the massive Higgs boson h:

L =
1

2

(
∂µh∂

µh−M2
Hh

2
)

− 1

4
ZµνZ

µν +
1

2
M2
ZZµZ

µ

− 1

4
AµνA

µν

− 1

2

[(
DµW

+
ν

)∗ − (DνW
+
µ

)∗] [
DµW

+
ν −DνW+µ

]
+M2

WW
+
µ W

−µ (2.27)

2.3.3 Higgs boson production modes

Since the colliding particles at the LHC are hadrons, which are bound together by glu-
ons, the dominating Higgs boson production mode is via gluon-gluon-Fusion (ggF)(see
Fig. 2.3a). The Higgs boson does not couple directly to gluons; instead, the coupling
is achieved through a top quark loop. The second-most-common production mode at
the LHC is via Vector Boson Fusion (VBF)(Fig. 2.3b). In VBF, two quarks are each
radiating a W± or Z0 boson which combine to produce a Higgs boson. VBF events
have a unique signature of two well-separated hadronic jets with large η gap (with
the pseudo-rapidity η = ln [tan (θ/2)], where θ is the angle between particle and be-
am axis). Due to this clear signature the VBF events are studied in this thesis. The
two remaining production modes are the least likely ones at the LHC (Fig. 2.3c and
2.3d). They are called associated production modes. There, the Higgs boson is either
produced together with a tt̄-pair or radiated off a W±/Z0 boson.

2.3.4 Higgs boson decay

The probability (branching ratio) to which particles the Higgs boson is decaying accor-
ding to the Standard Model (see Fig. 2.4) is strongly dependent on its mass. However,
the mass is a priori not fixed in the SM and needs to be determined experimentally. In
2012 the ATLAS and CMS collaboration announced the discovery [16–18] of a boson

11

2.3 Higgs mechanism

g

g

t

t

t

H

(a) Gluon-gluon fusion

H

W,Z

W,Z

q q'

q q'

(b) Vector-boson fusion

t

t

H

t

t

g

g

(c) tt̄ fusion

* *

q

q

H

W,Z

W,Z

(d) Higgs strahlung

Fig. 2.3: Feynman diagrams of the dominant SM Higgs production modes at the LHC.

12

2 The Standard Model of particle physics

with a mass of mH = 125 GeV. Spin and CP properties comply with those of the SM
Higgs boson [19]. This leads to the branching ratios listed in Tab. 2.4. The most com-
mon decay for a Higgs boson with a mass ofmH = 125 GeV is into bottom-antibottom
(bb) quarks with a branching ratio of 0.577. The branching ratio of the decay to a tau-
antitau (ττ) pair, which is 0.0637, is about one magnitude smaller than the branching
ratio for bb. It is the second most common fermion decay mode. The discovery of the
Higgs boson was announced after measuring an excess in the H → γγ and H → ZZ
channels. The decay H → γγ has a very small branching ratio. However, it is very
important since the energy of a photon can be measured very precisely yielding an
accurate mass reconstruction of the decaying particle.

Decaymode bb ττ γγ Zγ WW ZZ
Branching ratio 0.578 0.0637 0.0023 0.0016 0.216 0.0267

Tab. 2.4: Predicted branching ratios [20] for a Higgs boson with mass mH = 125 GeV.

[GeV]HM
90 200 300 400 1000

H
ig

gs
 B

R
 +

 T
ot

al
 U

nc
er

t

-410

-310

-210

-110

1

LH
C

 H
IG

G
S

XS
 W

G
 2

01
3

bb

ττ

µµ

cc

gg

γγ γZ

WW

ZZ

125

tt

Fig. 2.4: Higgs boson decay branching ratios as a function of the Higgs boson mass mH [21].

13

2.3 Higgs mechanism

2.3.5 Evidence for a Higgs boson decaying into a pair of tau leptons

The fermion masses are generated via the Yukawa couplings [22] between the Higgs
field and the fermionic fields in the SM. The measurements of these couplings is
essential to identify the new boson as the SM Higgs boson. The most promising decay
mode to measure one of these couplings isH → ττ . The ATLAS and CMS experiments
found evidence [23, 24] for this decay. The experimental results as well as the analysis
strategies are discussed in the following.

ATLAS search

The search at the ATLAS experiment [25] for the SM Higgs boson decaying to a pair
of tau leptons was performed in the H → ττ → LL′ final states (where L denotes
an electron e, muon µ or hadronically decaying tau lepton τh) using the complete
dataset collected at

√
s = 8 TeV which corresponds to an integrated luminosity of

L = 20.3 fb−1 [23]. After preselection and categorization of the H → ττ events by
production mode a Boosted Decision Tree (BDT) Multivariate Analysis (MVA) tech-
nique is used to extract the signal from the remaining background events [26–28]. For
the analysis the signal strength parameter µ is used which is defined as the ratio of the
measured cross section times the branching ratio normalized to the SM cross section
times the branching ratio for H → ττ . A value of µ = 1 corresponds to the presence of
an SM Higgs boson signal and µ = 0 to the absence of the Higgs boson. The final re-
sult is a signal strength parameter of µ = 1.43+0.31

−0.29(stat.)+0.41
−0.30(syst.) for a Higgs boson

mass of mH = 125 GeV. This corresponds to a deviation from the background-only
hypothesis of 4.1σ.

CMS search

The search for a Higgs boson decaying into a pair of tau leptons with the CMS ex-
periment is, similar to the ATLAS experiment, performed in all six LL′ final states
(eτh, µτh, τhτh, eµ, ee and µµ) from a Higgs boson produced via VBF and ggF.
Furthermore, the associated vector boson production mode (see Fig. 2.3d) is included
by requiring additional leptons in the final state. These originate from a decaying W
or Z boson. For the analysis the entire dataset collected in 2011 and 2012 is used which
corresponds to an integrated luminosity of L = 4.9 fb−1 for 7 TeV and L = 19.7 fb−1

for 8 TeV [24]. To maximize sensitivity the events are classified according to a number
of kinematic quantities and by the number of jets in the final state. The signal is
extracted from the invariant mass distribution of the tau lepton pair obtained from
the four momenta of L and L′ as well as the missing transverse energy vector. The
final result, as shown in Fig. 2.5, for a Higgs boson decaying into a pair of tau leptons
is an excess of events compared to the background-only hypothesis corresponding to
a significance of 3.2σ for a Higgs boson mass of mH = 125 GeV.

14

2 The Standard Model of particle physics

[GeV]ττm
0 100 200 300

[1
/G

eV
]

ττ
S

/(
S+

B
)W

ei
gh

te
d

dN
/d

m

0

500

1000

1500

2000

2500

ττ→SM H(125 GeV)
Observed

ττ→Z
tt

Electroweak
QCD

[GeV]ττm
0 100 200 300-40

-20

0

20

40 ττ→SM H(125 GeV)
Data - background
Bkg. uncertainty

at 8 TeV-1at 7 TeV, 19.7 fb-1CMS, 4.9 fb

µ, ehτhτ, hτ, e
h
τµ

Fig. 2.5: Combined observed and predicted mττ distributions for the µτh, eτh, τhτh and eµ
channels [24].

15

3 Experimental setup at CERN

3.1 Large Hadron Collider

The accelerator complex at CERN is at the moment the most powerful particle collider
in the world. Its main goal is to test predictions, made by theories of particle and high-
energy physics like electroweak symmetry breaking, supersymmetry or dark matter.
Since the establishment of CERN in 1954, several groundbreaking achievements were
made.

• 1983: Discovery of the W and Z bosons [29].

• 1995: Creation of antihydrogen atoms for the first time [30].

• 1999: Discovery of direct CP violation [14].

• 2012: Discovery of the Higgs boson [16–18].

Fig. 3.1: Map of the CERN accelerator complex [31]. The acronyms of the individual particle
accelerators are described in the text.

The LHC, which is short for Large Hadron Collider, is only the last element of a
chain of particle accelerators as one can see in Figure 3.1. Each element accelerates

3.2 The CMS detector

the particles to a higher energy until they reach their maximum energy in the LHC
itself. The individual accelerators are:

• LINAC 2, Linear Accelerator, 50 MeV.

• PSB, Proton Synchrotron Booster, 1.4 GeV.

• PS, Proton Synchrotron, 25 GeV.

• SPS, Super Proton Synchrotron, 450 GeV.

• LHC, Large Hadron Collider, up to 13 TeV.

The first four acceleration processes take about 20 min. Afterwards, it takes another
20 min to reach the maximum beam energy. The maximum center-of-mass energy was
increased step by step from 7 TeV in 2010 and 2011 to 8 TeV in 2012 and to 13 TeV
in 2015 after the first long shutdown. At full operating power the LHC is designed to
reach a center of mass energy of 14 TeV. In Tab. 3.1 the complete timetable including
the corresponding luminosities is shown. Inside the 27 km long accelerator ring, two
beams consisting of either protons or heavy ions travel in opposite direction. The
beams consist of small proton bunches that cross at four different interaction points
every 25 ns. This is where the four detectors are located.

• ALICE, A Large Ion Collider Experiment.

• LHCb, LHC beauty.

• ATLAS, A Toroidal LHC Apparatus.

• CMS, Compact Muon Solenoid.

Year Energy [TeV] Pile-Up1 Instantaneous Luminosity [cm−2s−1]

2011 7 7 0.3 · 1034

2012 8 21 0.7 · 1034

2015− 18 13− 14 43 1.6 · 1034

2020− 22 14 50− 80 2− 3 · 1034

2025− 28 14 140− 200 5− 7 · 1034

Tab. 3.1: Past and future development of the center-of-mass energy at the LHC including the
corresponding luminosity.

3.2 The CMS detector

The CMS experiment, like ATLAS, is one of two multipurpose particle physics detec-
tors. The detector requirements can be summarized as follows [32, 33]:
1Average number of concurrent proton-proton interactions in a single beam crossing.

18

3 Experimental setup at CERN

• A good muon identification and momentum resolution over a wide range of trans-
verse momenta and a good dimuon mass resolution of at least 1% at 100 GeV is
required.

• The inner tracking system needs a good charged particle momentum resolution
and reconstruction efficiency. For efficient high-level triggering and offline iden-
tification of τ leptons and b-jets, pixel detectors close to the interaction region
are required.

• The Electromagnetic Calorimeter (ECAL) needs a good energy resolution and
a good diphoton and dielectron mass resolution of around 1% at 100 GeV. Fur-
thermore, a wide geometric coverage of |η| < 3 is needed.

• To get a good EmissT (transverse missing energy) and dijet resolution, the Ha-
dronic Calorimeter (HCAL) needs a large geometric coverage of |η| < 5 and a
fine lateral resolution of ∆η < 0.1 and ∆φ < 0.1 (where φ is the azimuthal angle
)

3.3 Detector components

Fig. 3.2: Overview of the CMS detector [32].

19

3.3 Detector components

3.3.1 Detector overview

As one can see in Fig. 3.2, the CMS detector shows the typical onion-like structure of
most particle detectors. The main features of CMS are a silicon-based inner tracking
system, the scintillating-crystal electromagnetic calorimeter and the hadron calorime-
ter, a high magnetic field solenoid as well as the muon system. In the Secs. 3.3.2 –
3.3.6 an overview of the different subdetectors is given. Figure 3.3 shows different par-
ticle types propagating through the CMS detector and interacting with the individual
detector parts.

Fig. 3.3: Tracks through the CMS detector of different particles [34].

3.3.2 Inner Tracking System

The innermost subdetector of CMS is the tracking system. It is responsible for measu-
ring the trajectories of charged particles as well as reconstruction of secondary vertices.
To satisfy the requirements on granularity, speed and radiation hardness, coming with
the intense particle flux, the inner tracking system is solely based on silicon detector
technology. Since the magnetic field created from the superconducting solenoid can be
considered homogeneous, the momenta of these particles can be obtained directly from
the curvature of their trajectories. To obtain the trajectory, the position of the particle
is measured several times. The flux of the particles decreases with 1/r2, therefore, the
highest precision is needed close to the beam pipe. The innermost part of the inner
tracker consist of three barrel pixel detectors (see Fig. 3.4) located at radii of 4.4 cm,
7.3 cm and 10.2 cm. The pixel detectors are surrounded by the Tracker Inner Barrel
and Disks (TIB/TID) and the Tracker Outer Barrel (TOB), as illustrated in Fig. 3.5,
extending the outward radius to 110 cm. The pixel detector as well as the TIB and
TOB are completed by the endcaps (TEC+ and TEC-) extending the acceptance up
to a pseudorapidity of η < 2.5 [32, 33].

20

3 Experimental setup at CERN

Fig. 3.4: Layout of the barrel pixel detector extended by endcaps [32].

TEC+TEC-

TOB

TOB

PIXEL

-2600 -2200 -1800 -1400 -1000 -600 -200 200 600 1000 1400 1800 2200 2600
-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

1200

z (mm)

r (mm)

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

1.7

1.9

2.1
2.3
2.5-2.5

-2.3
-2.1

-1.9

-1.7

-1.5 -1.3 -1.1 -0.9 -0.7 -0.5 -0.3 -0.1 0.1

η

TIB

TIB

TID TID

TID TID

Fig. 3.5: Schematic of the inner tracker [33].

21

3.3 Detector components

3.3.3 Electromagnetic Calorimeter (ECAL)

The ECAL is the next layer after the inner tracking system. It is designed to measure
electrons and photons as well as charged hadrons. For this purpose it uses scintillating
lead-tungstate crystals. They emit 80% of the scintillation light in 25 ns which is
in the same order of magnitude as the bunch crossing time. This light is detected
by Avalanche Photodiodes (APD) in the barrel region (EB), which covers the region
|η| < 1.479; Vacuum Phototriodes (VPT) are installed to cover the rapidity range from
1.479 < |η| < 3 in the endcap (EE). In front of the endcap, a preshower system is
installed for π0 rejection. In Fig.3.6 the transverse section of the ECAL is shown [32,
33].

y

z

Preshower (ES)

Barrel ECAL (EB)

Endcap

= 1.65
3

= 1.4
79

= 2.6

= 3.0
ECAL (EE)

Fig. 3.6: Transverse section of the electromagnetic calorimeter [32].

3.3.4 Hadronic Calorimeter (HCAL)

The HCAL is important for the measurement of hadron jets as well as missing energies
associated to neutrinos or other not detectable particles. The HCAL is split into four
subsystems which are the hadronic barrel (HB), the hadronic endcap (HE), hadronic
forward (HF) and the hadronic outer barrel (HO) calorimeter. The HB is located
between the ECAL and the superconducting solenoid and covers a range up to |η| <
1.3. It consists of 16 brass alloy absorber layers interspersed with plastic scintillator
tiles which are read out by embedded wavelength-shifting fibers. Brass was chosen
as absorber material because of its short hadron interaction length. The HE extends
the coverage up to |η| < 3 and is similarly segmented and read out as the HB. The
HF is especially designed to measured the energetic forward flux and covers a range
3 < |η| < 5. The HO is located outside the solenoid and its purpose is to compensate
the lack of absorber material in the HB [32, 33].

22

3 Experimental setup at CERN

HF
HE

HB

HO

Fig. 3.7: Transverse section of the hadronic calorimeter [33].

3.3.5 Magnet

In order to unambiguously determine the sign of charged particles, a momentum reso-
lution ∆p/p of approximatly 10% at 1 TeV is needed. This can be achieved with a large
bending power, i.e. a large magnetic field. For this task, a superconducting solenoid,
specifically a high-purity aluminium-stabilised conductor with indirect cooling, was
chosen. The conductor is placed around the calorimeter and is surrounded by a 10 t
steel yoke which closes the magnetic field lines. The weight of the steel yoke is the
main contribution to the overall weight of the CMS detector. In Tab. 3.2 the main
parameters of the solenoid are summarized [32, 33].

Magnetic flux density 3.8 T

Inner bore 5.9 m

Length 12.9 m

Number of turns 2168

Current 19.5 kA

Stored energy 2.7 GJ

Tab. 3.2: Summary of the main parameters of the solenoid [32]

23

3.3 Detector components

3.3.6 Muon System

Since muons are an essential part of nearly all signatures from physical signals interes-
ting for the CMS experiment, it is crucial to determine muons and their momentum
unambiguously. The layout of the muon system is given in Fig. 3.8. In the muon system,
three types of gaseous detectors are used. The detector types are chosen because of
the large surface to be covered and the different radiation regions. In the barrel region
(|η| < 1.2), Drift Tubes (DTs) are installed. In the endcap region (0.9 ≤ |η| ≤ 2.4) the
DTs are superseded by Cathode Strip Chambers (CSCs). Additional to these two de-
tectors, in both the barrel and in the endcap region, Resistive Plate Chambers (RPCs)
are installed for |η| < 1.6 [32, 33].

Fig. 3.8: Layout of one quarter of the CMS muon system [32].

24

4 Artificial neural networks

4.1 The artificial neuron

The artificial neuron is the basic building block of the neural network used in this
thesis. The neuron is a computational unit which calculates the output or activation
h(x) based on the values of units it is connected to. For a single neuron, as shown
in Fig. 4.1, the input is given by the vector xi. The connections between the input
variables xi and the neuron are called weights wi. The actual value used for the
calculation of the activation h(x) is the sum of the products of the input variable
xi and the corresponding weight wi. This product is called pre-activation p(x). The
pre-activation can be written as

p(x) = b+
N∑
i=1

wixi, (4.1)

where b is called neuron bias. The bias can be used to set a specific offset on the pre-
activation and is usually a constant. The neuron uses the value of the pre-activation
p(x) and applies the so called activation function a to get the actual activation h(x)
of the neuron:

h(x) = a(p(x)) = a

(
b+

N∑
i=1

wixi

)
(4.2)

In Sec. 4.2 a short overview of the most popular activation functions is given.

X
1

X
N

1

...

b
w

1 w
N

h(x)

Input variables

Pre-activation

Activation Function

Activation

p(x)

Neuron

Fig. 4.1: Components of a single neuron.

4.2 Activation functions

4.2 Activation functions

4.2.1 Linear function

The linear or identity function (see Fig. 4.2a) simply takes the value of the pre-
activation p and reproduces it. Since it does not introduce any non-linearities in the
computation it is rarely used in a neural network. However, it is often used as the
neuron of the input variables:

a(p) = p. (4.3)

The linear activation function does not have any lower or upper boundaries.

4.2.2 Rectified linear function

The rectified linear function (see Fig. 4.2b) as described by Glorot and Bengio [35] in-
troduces sparsity in the network architecture. For positive values of the pre-activation
p it is simply the linear function. For negative values it is always 0 which leads to the
above mentioned sparsity. This means, that for negative values of the pre-activation
the connections from such a neuron to other neurons are omitted:

a(p) =

{
p if p ≥ 0

0 else
. (4.4)

4.2.3 Sigmoid

The sigmoid activation function (see Fig. 4.2c) takes the value of the pre-activation p
and transforms it according to eq. 4.5. The activation a(p) can take values between
the lower and upper bound of 0 and 1. Therefore, it is always positive and strictly
monotonously increasing:

a(p) =
1

1 + e−p
. (4.5)

4.2.4 Hyperbolic tangent

The Hyperbolic tangent (Tanh) (see Fig. 4.2d) is similar to the sigmoid function but
the activation a can take values between the lower and upper bound of −1 and 1. It
is also strictly monotonously increasing but can be positive or negative:

a(p) =
e2p − 1

e2p + 1
. (4.6)

26

4 Artificial neural networks

4 2 0 2 4
pre-activation

4

2

0

2

4

ac
tiv

at
io

n

(a) Linear activation function

4 2 0 2 4
pre-activation

4

2

0

2

4

ac
tiv

at
io

n

(b) Rectified linear activation function

4 2 0 2 4
pre-activation

0.0

0.2

0.4

0.6

0.8

1.0

ac
tiv

at
io

n

(c) Sigmoid activation function

4 2 0 2 4
pre-activation

1.0

0.5

0.0

0.5

1.0

ac
tiv

at
io

n

(d) Hyperbolic tangent activation function

Fig. 4.2: Illustration of commonly used activation functions.

27

4.3 Multilayer perceptron

4.3 Multilayer perceptron

4.3.1 The perceptron

Prior to introducing the multilayer perceptron, it is necessary to discuss the capacity
of a single neuron and its application in a perceptron [36]. In fact, one of the simplest
perceptrons is a single neuron as shown in Fig. 4.1 with N = 2 input variables. If
x1 and x2 are binary inputs this perceptron can be used for binary classification. An
example for such a binary classification is given in Fig. 4.3 with the logic AND function.
As one can see it is possible to separate the output in two classes by drawing the bold
dashed line. The first problem occurs when trying to represent the logic XOR with

AND(X1,X2)

X2

1

0

X110

AND(X1,X2)

X2

1

0

X110

Fig. 4.3: Karnaugh diagrams of an AND function where one of the two inputs x1, x2 is negated.

such a simple perceptron. As shown in Fig. 4.4, it is not possible to separate the two
classes by a single straight line. Thus, a single neuron is not capable of representing the
XOR function. The solution is to transform the problem into a better representation
yielding a combination of two AND functions in this case, as shown in Fig. 4.4. What
happens is that the values for x1 = x2 = 0 and x1 = x2 = 1 collapse to a single
point and the problem again becomes linearly separable. The actual transformation

XOR(X1,X2)

X2

1

0

X110

XOR(X1,X2)

A
N
D
(X

1
,X

2
) 1

0

AND(X1,X2)
10

Transformation

Fig. 4.4: Karnaugh diagram of the XOR function with the inputs x1, x2 (left) and of the XOR
function with two AND functions as input (right).

performed to solve this problem was the insertion of an additional layer (see Fig. 4.5)

28

4 Artificial neural networks

X1 X2

AND
(X1,X2)

AND
(X1,X2)

Y

 Input

Transformation
X
O

R
(X

1 ,X
2)

Fig. 4.5: Neural network with one hidden layer which is able to represent the XOR function
by combining two AND functions.

between input and output. This leads to the definition of the multilayer perceptron.

4.3.2 The multilayer perceptron

As seen in the previous section, it is possible to solve more complex problems by
introducing a so-called hidden layer. The basic idea is that this hidden layer performs
a transformation from a complex problem to a simpler one. The number of neurons
inside the hidden layer (they will be referred to as nodes from this point on) depends
on the complexity of the problem. The multilayer perceptron is a so called feed-forward
neural network. In a feed-forward network the output of one layer is only connected to
the input of the next deeper layer. Additionally no loop connections and no connections
in the same layer are allowed. In Fig. 4.6 an example of a multilayer perceptron is shown
where the input layer is only connected to the first hidden layer and the hidden layer
is only connected to the output layer. The connections are again described by weights.
In a more formal way, analogous to Russel and Norvig [37], the transformation to the

X1 X2 XN-1 XN

h(1)
1 h(1)

2 h(1)
j-1 h(1)

j h(1)
j+1 h(1)

D-1 h(1)
D

Y

Input
Layer

Hidden
Layer

Output
Layer

Xi

1
b(2)

1 b(1)
j

W(1)
ji

w(2)
j

Fig. 4.6: General form of a perceptron with one hidden layer.

29

4.3 Multilayer perceptron

new representation can now be written as

h
(1)
j (x) = a

(1)
j

(
p

(1)
j (x)

)
= a

(1)
j

(
b
(1)
j +

N∑
i=1

W
(1)
ji xi

)
, (4.7)

where the output activation of the node h(1)
j (x) is calculated similarly to eq. 4.2 by

applying the activation function a
(1)
j on the pre-activation p

(1)
j (x) . The activation

function a(1)
j can be any of the functions introduced in Sec. 4.2 and may be different

for each single node. However, usually one specific activation function is chosen for
all hidden layers reducing a(1)

j to a. Furthermore, it is possible that each node has a

different bias b(1)
j . Nevertheless, in most multilayer perceptrons the bias is completely

omitted in the whole network. The weights connecting two layers are described by the
matrix W (1)

ji . The last step is to calculate the activation y(x) of the complete network

y(x) = a(2)

b(2) +

D∑
j=1

w
(2)
j h

(1)
j (x)

 , (4.8)

where a(2) is the activation function of the output layer and h(1)
j (x) is the activation

of the hidden layer. For the sake of completeness, the bias was also included in eq. 4.8.
Since the output is only a single node, the weights reduce again from matrix to vector
form w

(2)
j . This equations allows to perform a forward propagation meaning that the

calculation of the activation h(1)
j (x) of all nodes as well as the activation of the output

layer y(x) is possible. Thus the concept of a perceptron with one hidden layer can now
be generalized to a multilayer perceptron.

Assuming a multilayer perceptron with L hidden layers an index k is introduced
which takes values from 1 . . . L. The numbers N (k) represent the number of nodes in
the specific layer k. The output activation of the input layer is defined as

h
(0)
i = xi. (4.9)

The output activation of all hidden layers can now be written as:

h
(k)
j (x) = a

(k)
j

b(k)
j +

N(k)∑
j=1

N(k−1)∑
i=1

W
(k)
ji h

(k−1)
i (x)

 . (4.10)

The final step is to calculate the activation y(x) of the complete network:

y(x) = h(L+1)(x) = a(L+1)

b(L+1) +
N(L)∑
i=1

w
(L+1)
i h

(L)
i (x)

 . (4.11)

The activation function of the output layer is frequently different from the activati-
on functions in the hidden layers. Therefore, it is convenient to write the activation
function of the output layer a(L+1) = o and all other activation functions a(k)

j = a.

30

4 Artificial neural networks

With this assumption, and also omitting all biases, one gets a very compact form of
the multilayer perceptron forward propagation:

h
(0)
i = xi,

h
(k)
j (x) = a

N(k)∑
j=1

N(k−1)∑
i=1

W
(k)
ji h

(k−1)
i (x)

 , (4.12)

y(x) = o

N(L)∑
i=1

w
(L+1)
i h

(L)
i (x)

 .

4.3.3 Supervised learning

Consider a given training set which consists of N example input-output pairs(
x(j), y(j)

)
. The output y(j) was generated by an unknown function F

(
x(j)

)
= y(j)

and is called target output or label. The task of supervised learning is to discover a
function H which approximates the unknown function F . The function H is called
hypothesis and corresponds to a configuration of weights and biases of a multilayer
perceptron. In fact, multilayer perceptrons are universal appriximators in the sense
that any non-pathologic (measurable) function F can be approximated to arbitrary
precision by a hypothesis H, as long as the network has at least one hidden layer
with a sufficient number of hidden neurons and a bounded activation function. The
theorem in its original form [38] does not tell us how many neurons are actually
required to reach a certain precision or what a good activation could look like. Still,
it is a powerful argument for using neural networks to approximate functions F for
which no closed form is available. The search through the space of possible hypotheses
for one that only performs well not on the training set but also on examples beyond
this set is called learning or training. To measure the accuracy of a hypothesis a test
set is used which is distinct from the training set. To this end a cost function [39]

C(θ) =
1

n

n∑
j=1

L
(
ŷ

(j)
θ , y(j)

)
(4.13)

is introduced, where the parameter θ =
(
W (1), b(1), . . . ,W (L+1), b(L+1)

)
represents the

weights and biases of the neural network and is therefore the representation of all
interconnections inside the network. The functional L is called loss functional. The
parameter ŷ(j)

θ is computed from the input vector x(j) using the configuration θ by
performing a forward propagation. The parameter ŷ(j)

θ is identical to the activation of
the output layer in a multilayer perceptron. The value y(j) represents the target value
of the output layer one would expect from a forward propagation of x(j) by an ideal
multi-layer perceptron that reproduces the function F exactly. The loss functional
compares the output ŷ(j)

θ after a forward propagation with the target output y(j) and
provides information on how well these two values agree with each other. The cost
function is the average over the loss functionals of all

(
ŷ

(j)
θ , y(j)

)
pairs and is therefore

31

4.3 Multilayer perceptron

a measure of the accuracy of the hypothesis. The optimum of the neural network
configuration is obtained by finding the minimum of the cost function with respect to
the parameter θ:

∂C(θ)

∂θ
= 0. (4.14)

Training of the neural network by finding the minimum of the cost function is equal
to finding the best hypothesis for the given problem. However, if the neural network
is trained in such a way that the training set is approximated to carefully a problem
called overtraining occurs which will be discussed in Sec. 5.4.3.

4.3.4 Stochastic gradient descent

In general it is not possible to find the solution to the cost function minimizati-
on problem analytically. Therefore, numerical optimization methods are needed. The
simplest one is called gradient descent, represented by the equation

θl+1 = θl − εl
∂C(θl)

∂θl
, (4.15)

where the parameter θl is the configuration θ at the iteration step l. The factor εl
is a scalar called learning rate. It determines what fraction of the gradient in either
eq. 4.15 or eq. 4.16 is used to update the parameter θ. The learning rate can either
be chosen during training as constant or to decrease over time. If the learning rate is
chosen too large, the iterations will lead away from the minimum. But if the learning
rate is chosen too small, training will be slow since it takes long to reach convergence.
Since the gradient is always directed to the steepest descent, this method guarantees
the finding of a local minimum as long as the learning rate is chosen well. A fast and
stable variation of the gradient descent is the Stochastic Gradient Descent (SGD):

θl+1 = θl − εl
∂L (ŷθl , y)

∂θl
. (4.16)

This method exploits the fact that the cost function is the average of the loss functio-
nals. The SGD is calculated after each example. The SGD algorithm is typically much
faster then the gradient descent since it is calculated after each example and therefore
updates θ more frequently. Whereas the update direction of the SGD is fluctuating
more than for the gradient descent the expectation value of these updates yields the
same update as for the later. A good tradeoff between gradient descent and stochastic
gradient descent is the minibatch stochastic gradient descent. Instead of calculating
the gradient after each example, it evaluates the gradient of a small subset (mini-
batch) from the complete set of examples. This yields a less noisy gradient, but due
to the high number of updates convergence is obtained more quickly than for gradient
descent.

Kullback-Leibler divergence

The loss functional used in this thesis is the Kullback-Leibler divergence [40] which
measures the difference between two probability distributions. The Kullback-Leibler

32

4 Artificial neural networks

divergence KL(P ||Q), where P is defined by the estimated values ŷθ and Q is defi-
ned by the target values y, is the mean of divergences KL(ŷθ||y) calculated for each
example:

KL(P ||Q) =
1

N

∑
KL(ŷθ||y), (4.17)

KL(ŷθ||y) = ŷθ log ŷθ − ŷθ log y + (1− ŷθ) log(1− ŷθ)− (1− ŷθ) log(1− y). (4.18)

Momentum

Momentum, as introduced by Hinton [41], is useful when the training algorithm is
only slightly improving because it reaches a plateau or when the training algorithm is
stuck in a local minimum. One can think of the training process as a heavy ball rolling
down a hill (see Fig. 4.7). The momentum term αvl adds an additional value based
on previous updates. The parameter α is used to control the amount of momentum
added to the update of θ. Similar to the learning rate, the momentum can be either
chosen constant or as increasing over time:

vl+1 = αvl − εl
∂L (ŷθl , y)

∂θl
(4.19)

θl+1 = θl + vl+1 (4.20)

Tr
ai

n
in

g
 E

rr
o

r

Training Time

Plateau

θl v
l+1

Local
Minimum

Fig. 4.7: Adding a momentum during a plateau helps reaching the minimum faster

4.3.5 Backpropagation of error

Up to now the algorithm to perform a forward propagation on a multilayer perceptron
has been derived. The stochastic gradient descent is a procedure to optimize the
performance of such a neural network. Thus, the only thing left is an effective algorithm
to update the parameter θ which has already been introduced in Sec. 4.3.4 as the
representation of all interconnections inside the neural network. Updating θ requires
an update of all weights and biases. The underlaying algorithm performing this task

33

4.4 Deep learning

is called backpropagation of error [37]. Backpropagation is strictly speaking an inverse
forward propagation with the main difference that during propagation from the Lth

to the (L− 1)th hidden layer the weights and biases are updated (see Fig. 4.8).

• At first a forward propagation is performed yielding all activations of all nodes
in the neural network.

• The next step is to calculate the loss functional L (ŷθ, y) at the output layer and
the error which is the gradient of the loss functional.

• This error is used to update the weights and biases between the output layer
and the Lth hidden layer yielding a new error of the output of the Lth hidden
layer.

• From this new error the gradient is computed which is used to update the weights
and biases between the Lth hidden layer and the (L− 1)th hidden layer.

• This procedure is repeated until all weights and biases are updated.

p(1)(x)

W(1) b(1)

h(1)(x)

p(2)(x)

W(2) b(2)

YX

ŷ (x)

S
te

p
 1

Forward Propagation

W(1) b(1)

h(1)(x)

W(2) b(2)

ŷ (x)

L(ŷ , y)

S
te

p
 4

S
te

p
 3

S
te

p
 2

Backpropagation

Weight and Bias
Update

Weight and Bias
Update

Computation of
Error

p(2)(x)

Computation of
Error

p(1)(x)

Loss functional

Fig. 4.8: Training of a neural network by applying forward and backpropagation

4.4 Deep learning

The concept of deep learning includes, amongst others, the research of neural networks
with many hidden layers. Thus, all multilayer neural networks (including the multi-
layer perceptron) can be summarized as Deep Neural Network (DNN). In this thesis,

34

4 Artificial neural networks

a neural network with one hidden layer will be referred to as shallow network, neural
networks with more than one hidden layer as Deep Neural Networks. The idea of deep
learning is derived from the way the human brain extracts complex information from
e.g. visual or audible input. For example, the first information extracted from a picture
could be low-level features such as lines and edges. This features are then transformed
to geometric forms and afterwards to complex high-level features like faces and ob-
jects. After each step the information gets more complex until the complete picture is
obtained. In a deep neural network something similar happens during training. Each
additional hidden layer represents a more complex combination of features e.g.:

• 1st hidden layer → lines, edges

• 2nd hidden layer → geometric forms

• nth hidden layer → faces, objects

• output layer → description of the picture

In the late 1980s [42] first attempts to train a Deep Neural Network (DNN) with
backpropagation were made, but without great success. The main problem was the
vanishing gradient problem [43] arising from the fact that the backpropagated er-
ror decays exponentially from layer to layer yielding smaller updates every time. To
compensate the vanishing gradient problem it is necessary to train sufficiently long.
Thus, one needs considerable computation power to shorten training time. Insufficient
computation power in the late 1980s was the bottleneck and the reason why research
on DNNs was dropped back then. With the drastically increasing chip performance
of CPUs and Graphics Processing Units (GPUs) as well as the availability of large
training sets, deep learning has become feasible.

In high-energy physics a possible dataset of low-level features contains momenta,
angles and energies of particles that are visible for the detector in use. However,
this low-level data does not provide enough information to extract the desired signal
events directly. Therefore, particles that are invisible for the detector (such as neutri-
nos) but crucial for the classification of an event need to be reconstructed by using
the information provided by the low-level data. An example of a high-level feature
is the reconstructed invariant mass of an unstable particle. By combining such high-
level features it is possible to separate the desired events (signal events) from all other
events (background events). It was shown [44] that a DNN is capable of extracting
such high-level features directly from a dataset of low-level features, making it unne-
cessary to calculate them in the first hand. In summary the following scheme for a
DNN in high-energy physics emerges:

• 1st hidden layer → momenta, angles, energies,. . .

• nth hidden layer → missing energy, invariant mass,. . .

• output layer → classification signal/background

35

5 Multivariate analyses with deep neural
networks

The purpose of this chapter is to summarize all relevant informations necessary to
perform multivariate analysis with a deep neural network. First, the software used
to realize and optimize the neural network is introduced and the simulated datasets
used for training are outlined. This is followed by a short summary of all tunable
hyperparameters. Finally a well known problem occurring in machine learning, under-
and overtraining, is described and the approach to minimize the effect is discussed.

5.1 Framework

Three software packages are used in this thesis to perform two main tasks, namely
training a neural network and optimizing its hyperparameters. Training is performed
with a machine learning library called Pylearn2 [45] which provides all necessary algo-
rithms. The actual computation is performed by Theano [46, 47], a compiler on which
Pylearn2 is built on top of. The optimization of hyperparameters is performed with
a software package called Spearmint [48] which is a Bayesian optimization algorithm.
The procedure to setup the complete framework is explained in App. B. All packages
have been installed on a custom built workstation with the following specifications:

• CPU: AMD FX-8320 Octa-Core 3.5 GHz (GigaHertz)

• GPU: Nvidia GeForce GTX 770

• RAM: 32 GB (GigaByte)

5.1.1 Theano — A math expression compiler

Theano [46, 47] is a compiler for mathematical expressions built to speed up machine
learning algorithms in Python. It works with symbolic representations of the mathe-
matical expressions provided by the user. Prior to computation, Theano optimizes the
given expression and translates the code either into C++ or CUDA1. Since Theano
has access to the full computational graph, it can correct slow or unstable numerical
expression patterns by performing a local graph transformation. Therefore, it is able
to compute expressions such as log(1 + ex) even for small values of x numerically
correct. It is also able to perform symbolic differentiation which is a crucial part in
the stochastic gradient descent algorithm (see Sec. 4.3.4). Algorithms implemented
with Theano are 1.6− 7.5 times faster on CPU (6.5− 44 times faster on GPU) than
competitive implementations in e.g. C/C++ or MATLAB [46].
1A programming technique developed by Nvidia to run programs on a Graphics Processing
Unit (GPU).

5.1 Framework

5.1.2 Pylearn2 — A machine learning library

Pylearn2 [45] is a machine learning research library built on top of Theano. It is
developed at the Université de Montréal by LISA2. The philosophy of Pylearn2 is to
be flexible and extendable in order to make nearly any machine learning idea feasible.
Since it is a research library it is not built for easy use but for easy understanding
what each code segment is doing. This often comes with the cost of requiring an
experienced machine learning user who understands how the algorithms are working.
The main parts of Pylearn2 are the Dataset, Model and TrainingAlgorithm classes.
The Dataset class stores the data to train on. The Model class itself does not perform
any numerical computations, but stores parameters concerning e.g. a neural network.
For example, it provides the symbolic expression to calculate the forward propagation
in a multilayer perceptron (see Sec. 4.3.2). The TrainingAlgorithm class performs
actual numerical calculations. It takes the parameters from Model and adapts them to
the given Dataset. Each of the three classes has many different subclasses. They can
be combined in any way the user wants to build his machine learning model. A possible
combination of subclasses to create a deep neural network could look as follows:

• Dataset

– Customized set of input data

• Model

– 5 hidden layers

– 300 nodes with Tanh activation function in each layer

– output layer with one node and sigmoid activation function

• TrainingAlgorithm

– SGD training algorithm

5.1.3 Spearmint — A Bayesian optimization algorithm

Machine learning often involves delicate tuning of hyperparameters. Such parameters
are for instance the learning rate, the number of hidden layers and the number of no-
des per layer. Tuning of these hyperparameters often requires expert experience, rule
of thumb or brute force. Therefore, an automated approach which is able to find a
good combination of these parameters has a great appeal. Spearmint [48] is a software
package to perform Bayesian optimization with Gaussian process priors [49]. As in
other optimization problems the focus is on finding the minimum of a given functi-
on f (x). In Bayesian optimization a probabilistic model for f (x) is constructed. This
model is used to make decisions about which point x of the function f (x) should be
evaluated next. The procedure used by Spearmint does not rely on the local infor-
mation, e.g. a gradient, but on the complete information available from all previous
evaluated points. Thus it is able to find the minimum with fewer evaluations of f (x).
The drawback of this procedure is that the computation time to decide which point
2Laboratoire d’Informatique des Systèmes Adaptatifs
(Informatics Laboratory of Adaptive Systems)

38

5 Multivariate analyses with deep neural networks

should be next increases with the number of already computed points. In machine
learning, however, the evaluation of f (x) is usually time-consuming. The extra com-
putation time is therefore justified by making better decisions in choosing the next
point resulting in fewer evaluations of f (x) to reach a minimum.

5.2 Dataset

The 8 TeV and 13 TeV datasets are simulated using the following steps. First, event
are generated using the mathematical formalism and models describing the Standard
Model. For signal event generation Powheg [50–54] and Pythia6 [55] where used and
for background event generation Madgraph [56] and Pythia8 [55, 57]. The next step
is to simulate the detector as well as its response on the generated events which is done
with Geant4 [58]. The last step is the reconstruction of the events according to the
information gained from the detector response. The training is performed separately
for the 8 TeV and 13 TeV datasets. The 8 TeV dataset corresponds to an integrated
luminosity of L = 19.7 fb−1 and the 13 TeV dataset to an integrated luminosity of
L = 10 fb−1. On both datasets a preselection is applied after simulation which sets
requirements or cuts on certain quantities (see Sec. 5.2.1). Two differences between the
8 TeV and 13 TeV, concerning the training, are the number of events and the number
of input variables, which will be explained in Sec. 5.2.2.

5.2.1 Preselection

Only events are taken where the final state of the H → ττ decay contains one muon
µ and one hadronically decaying tau lepton τh. The transverse momenta pT of the
isolated µ and τh need to be above 20 GeV. In the VBF production mode the two
leading jets originate from quarks (see Fig. 2.3b). It is therefore required that there are
at least 2 jets in the final state above pT thresholds of 45 GeV and 30 GeV, respectively.
Furthermore, a minimum η gap of 2.0 is required between the leading jets. A summary
including all requirements is listed in Tab. 5.1.

39

5.2 Dataset

Symbol Definition Requirement Baseline
pT(jτ) isolated τh above pT threshold 20 GeV 20 GeV
pT(µ) isolated muon above pT threshold 20 GeV 20 GeV
pT(j1,2) ≥ 2 jets above pT thresholds 45/30 GeV 30/30 GeV
∆η(j, j) min. η gap between leading jets 2.0 3.5
mjj min. mass of the two-leading-jets-system − 500 GeV
mvis min. mass of µ-τ -system 30 GeV −
mT max. transverse mass of µ-Emiss

T -system 80 GeV 30 GeV
CJV central jet veto − yes
q(µ) · q(τ) product of muon and τh charge < 0 < 0
b veto veto on b-tagged jet in the event yes yes
lepton veto veto on additional lepton in the event yes yes

Tab. 5.1: Summary of the preselection. The requirements are looser than for the baseline,
which is the preselection of the LHC run-1 analysis, with the exception of two items
(pT(j1), mvis) which are almost 100% efficient for the signal.

5.2.2 Input variables

Table 5.2 contains all input variables used to train a deep neural network. All of
them are included in the dataset for 8 TeV as well as in the 13 TeV dataset with the
exception of psv

T which is only included in the former. Therefore, only the distributions
of the 12 variables available in both datasets are illustrated in Figs 5.1 – 5.3. The
signal events used for training originate from a Higgs boson produced through VBF
and decaying to ττ according to the requirements of the previous section. In case of
the 8 TeV dataset the events used for testing also include a small amount of events
originating from ggF. The background events are from Drell-Yan (in this case Z → ττ)
processes. The number of signal and background events in each dataset as well as the
weighted number of simulated events are listed in Tab. 5.3. The weighted number of
events correspond to the number of events produced by the simulated 8 TeV or 13 TeV
collision according to the Standard Model after preselection. The weights of the events
are solely used to calculate the Figure of Merit (see Sec. 5.3).

40

5 Multivariate analyses with deep neural networks

Symbol Definition
msv mττ estimator SVFit [24]
∆η(j, j) pseudorapidity gap between leading jets
pT(sum) scalar pT sum of τ , µ and the two jets
pT(tot) magnitude of the vector pT sum of τ , µ, the two jets and Emiss

T

∆R(µ, τ) ∆R between µ and τ
mvis visible mass of µ-τ system
Emiss

T centrality relative angular Emiss
T position with respect to µ and τ [59]

µ centrality lepton pseudorapidity with respect to the two jets [59]
mjj mass of the two-leading-jets system
ηj1 · ηj2 product of the leading jet pseudorapidities
S sphericity – 3D isotropy of the energy flow
mT transverse mass of the µ-Emiss

T system
psv

T (only 8 TeV) pT of the ττ resonance estimated by SVFit [24]

Tab. 5.2: List of observables used as input variables. Here, τ always refers to the reconstructed
visible products of a hadronic τ lepton decay.

8 TeV 13 TeV

Test Train Weighted Test + Train Weighted
Signal 5449 + (669) 5446 35 89764 22

Background 5899 5916 1420 78404 960

Tab. 5.3: The number of signal events in the 8 TeV test dataset include, beside the VBF
events, a small amount of ggF (number written in brackets). All other signal events
are exclusively from VBF. The weighted events are the total signal or background
events multiplied with a weight factor respectively.

41

5.2 Dataset

 [GeV]SVm
0 50 100 150 200 250 300

0

0.01

0.02

0.03

0.04

0.05 Signal 13 TeV
Background 13 TeV

(a) msv

(sum) [GeV]
T

p
0 100 200 300 400 500 600 700 800 900 1000

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 Signal 13 TeV
Background 13 TeV

(b) pT(sum)

(tot) [GeV]
T

p
0 20 40 60 80 100 120 140 160

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04 Signal 13 TeV
Background 13 TeV

(c) pT(tot)

Sphericity
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Signal 13 TeV
Background 13 TeV

(d) Sphericity S

Fig. 5.1: Distributions of the variables msv, pT(sum), pT(tot) and Sphericity S [60].

42

5 Multivariate analyses with deep neural networks

 [GeV]vism
20 40 60 80 100 120 140 160
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Signal 13 TeV
Background 13 TeV

(a) mvis

 [GeV]Tm
0 10 20 30 40 50 60 70 80

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02 Signal 13 TeV
Background 13 TeV

(b) mT

 [GeV]jjm
0 500 1000 1500 2000

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08 Signal 13 TeV
Background 13 TeV

(c) mjj

 centralityT
missE

1.5− 1− 0.5− 0 0.5 1 1.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Signal 13 TeV
Background 13 TeV

(d) Emiss
T centrality

Fig. 5.2: Distributions of the variables mvis, mT, mjj and Emiss
T centrality [60].

43

5.2 Dataset

 centralityµ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Signal 13 TeV
Background 13 TeV

(a) Lepton centrality

j2
η⋅

j1
η

20− 15− 10− 5− 0 5 10
0

0.02

0.04

0.06

0.08

0.1

Signal 13 TeV
Background 13 TeV

(b) ηj1 · ηj2

(j,j)η∆
1 2 3 4 5 6 7 8 9 10

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07 Signal 13 TeV
Background 13 TeV

(c) ∆η(j, j)

)τ,µR(∆
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.005

0.01

0.015

0.02

0.025

0.03

Signal 13 TeV
Background 13 TeV

(d) ∆R(µ, τ)

Fig. 5.3: Distributions of the variables µ centrality, ηj1 · ηj2, ∆η(j, j) and ∆R(µ, τ) [60].

44

5 Multivariate analyses with deep neural networks

5.3 Figure of Merit - Approximate Median Significance

While the loss function is sufficient to compare the performance of different neural
networks it is not very useful when comparing the neural network with other machine
learning approaches. Therefore, the Figure of Merit (FoM) chosen to achieve compa-
rability between different approaches is the Approximate Median Significance (AMS)

AMS(s, b) =

√
2

[
(s+ b+ breg) log

(
1 +

s

b+ breg

)
− s
]
, (5.1)

where s is the number of signal-like events and b is the number of background-like
events. The regularization term breg is a constant and prevents the denominator in
the log-function from becoming too small for very few background-like events which
would lead to an overestimation of the AMS value. Equation 5.1 is a simplified version
since no statistical or systematic errors are included. Nevertheless, the AMS evaluation
in the analysis uses the complete computation.

The first step to calculate the FoM is to train a neural network on the training dataset.
This neural network is then used to classify the examples given in the test dataset. Each
example in the test dataset is labeled as either signal or background event accordingly.
The output value of each network used in this thesis is a real number between 0 – 1,
where 0 corresponds to a background-like event and 1 corresponds to a signal-like
event. The closer the output value is to 0 or 1 the more likely it is for this specific
example to be a background or signal event respectively. This value is used to fill
one of two histograms, one for the examples labeled as background and one for the
examples labeled as signal. The number of events b in the background histogram and
the number of events s in the signal histogram corresponding to the bin with the same
value in each histogram is then used to calculate the AMS according to eq. 5.1. The
FoM is then calculated by adding the AMS value of each bin quadratically.

5.4 Tunable hyperparameters

In this section a short summary of all tunable hyperparameters is given. In additi-
on, some parameters chosen to be constant are included in order to get a complete
parameter list of the deep neural network used in the following chapters.

5.4.1 Network architecture

The tunable parameters for the network architecture are hidden layers and nodes. The
output layer is the same for all deep neural networks trained in this thesis and uses
one node with a sigmoid activation function. Furthermore, the number of nodes is
equal in each hidden layer. In Chap. 6 only the hyperbolic tangent activation function
is used. In Chap. 7 two additional activation functions are used, the rectified linear
and the rectified log activation function (see Sec. 7.1.3).

45

5.4 Tunable hyperparameters

• Number of hidden layers

The number of hidden layers can take all positive integer values. Computation
time is mostly determined by this value. Its influence on the performance of the
neural network is discussed in Sec. 6.2.3.

• Number of nodes

The number of nodes can, as the number of hidden layers, take all positive integer
values. The nodes in combination with the connection weights are responsible
for learning the information provided by the training input.

5.4.2 Training algorithm

In this thesis, the algorithm chosen to train a given network architecture is minibatch
SGD with decaying learning rate and a momentum term. The training is either stopped
after a fixed number of iterations or if the training error starts to increase. Reasons for
a increasing training error are a bad configuration of hyperparameters or overtraining
(see Sec. 5.4.3).

• Minibatch size

For the use of minibatch stochastic gradient descent (see Sec. 4.3.4) the size of
the minibatch needs to be defined. It is chosen to have a constant value of 100
since a change in minibatch size requires a change of the learning rate. There-
fore, results achieved with different batch sizes are only comparable in network
performance but not in the chosen hyperparameter combinations. Before each
training iteration of the minibatch SGD algorithm the training set is permuted
and then split into minibatches. The training of the neural network using all
minibatches once, which is equivalent to the complete training-set, is called one
training epoch.

• Number of training epochs

Each epoch the gradient of all minibatches is calculated and used to update the
weights and biases. If the number of training epochs is too small the training
will stop before reaching a minimum. If the number is too large the training will
start to overfit. In this thesis a upper threshold of epochs is chosen. In order to
prevent the training from overfitting early stopping is used, which is discussed
in Sec. 5.4.3.

• Learning rate

The learning rate is a real positive number. It determines how fast the learning
algorithm (such as SGD) converges to a minimum and is responsible for the
quality of this minimum. The performance of a neural network with different
combinations of learning rate and decay factor is discussed in Sec. 6.1.1

• Decay factor of the learning rate

With a decaying learning rate it is possible to choose a rather large initial lear-
ning rate. This leads to a fast progressing learning algorithm at the beginning

46

5 Multivariate analyses with deep neural networks

of training. A small learning rate towards the end ensures that a more precise
value of the minimum is reached. The decay factor is a real positive number and
always larger than 1. The learning rate is divided by this factor after each epoch
yielding an exponential decay. To prevent the learning rate from decaying to 0
a minimal learning rate of 10−7 is chosen.

• Initial and final value of the momentum

The initial and final values of the momentum are real numbers between 0 and
1. A standard choice is a momentum increasing from 0.5 to 0.99.

• Number of epochs from initial to final momentum value

It determines how fast the momentum should increase from the initial to the
final value.

Fine tuning of the three momentum parameters (inital momentum, final momentum
(FM) and number of epochs) in combination with the learning rate and its decay
factor leads to the best possible result for a given network architecture.

5.4.3 Overtraining

Prior to optimizing a neural network it is useful to determine how long one has to
train a neural network to obtain the best possible result. For a non-ideal training
time there are two possible outcomes, undertraining and overtraining. Undertraining
(see Fig. 5.4) occurs when the time is too short for the neural network to learn the
underlying model of a given training dataset. Overtraining, on the other hand, occurs
when the training time is too long and the neural network learns the examples in
the training dataset “by heart”. Although the overtrained neural network classifies
the training dataset nearly perfectly it performs poorly on slightly different datasets
such as the test dataset. The first step to prevent under- and overtraining is to split
the training dataset into a validation set and a training set. The validation set is
used to monitor the classification error during training and contains about 10− 20%
of the examples from the training dataset. The training set contains the rest of the
examples and is used, as the name already suggests, to train the neural network. As
long as the classification error on the validation set is decreasing training is continued
in order to prevent undertraining. This corresponds to the steep decreasing region at
the beginning of Fig. 5.5. To prevent overtraining a simple method is to use “early
stopping”. This method monitors the training progress and stops training as soon as the
classification error is not improving further. The interesting region for early stopping
is the one denoted with “optimum” in Fig. 5.5. In this region the classification error
is only decreasing slowly which indicates that the training is near the best possible
result and can be stopped. In the presented example it is best to perform training
between 50 and 800 epochs to avoid under- and overtraining, respectively.

47

5.4 Tunable hyperparameters

Good Approximation

Signal Background

Undertraining Overtraining

Fig. 5.4: Decision boundaries for a under- and overtrained neural network as well as for a
network trained to a optimum.

0 1000 2000 3000 4000
Number of epochs

0.3

0.4

0.5

0.6

0.7

C
la

ss
if
ic

a
ti

o
n
 E

rr
o
r

Optimum

Fig. 5.5: Classification error depending on the number of epochs and therefore on the training
time.

48

6 Multivariate analysis of H → ττ using
the simulated 8 TeV dataset

In this chapter the hyperparameters of a deep neural network realized with Pylearn2
are studied by using the simulated 8 TeV dataset. For this purpose the parameters
are optimized with two different approaches. The first approach is to use grid search
followed by an optimization algorithm. Using grid search, different learning rate and
decay factor combinations are used on several neural network architectures followed
by the inclusion of a momentum term in the learning algorithm. The optimization
algorithm is used to perform the same task and is compared to the grid search approach
afterwards. Finally, the best subset of input variables is selected and the influence of
different numbers of hidden layers is discussed.

6.1 Training deep neural networks using grid search

Without expert knowledge in training neural networks one possible choice is to use
grid search in order to find good combinations of hyperparameters. In Sec. 5.4 a total
list of 7 tunable hyperparameters, consisting of 2 parameters for the architecture of
the network and 5 parameters for the learning algorithm, is given. Thus, one has to
solve a 7-dimensional optimization problem with grid search.

6.1.1 Combinations of learning rate and decay factor

For this purpose the training is performed with a decaying learning rate only. Therefo-
re, the values for the initial and final momentum are set to 0. The idea is to determine
the network performance for different combinations of learning rate and decay factor
by performing a grid search. The minimum and maximum values for the learning ra-
te as well as for the decay factor used for grid search are shown in Tab. 6.1. These
intervals are split logarithmically equidistant into 20 points resulting in a grid of 400
combination overall. All learning rate and decay factor combinations are calculated
for neural networks with 3 or 5 hidden layers with either 300 or 500 nodes in each
layer yielding 4 different network architectures. In Fig. 6.1a and 6.1b the results for
the neural network with 3 hidden layers and in Fig. 6.2a and 6.2b the results for the

Minimum Maximum
Learning Rate 10−5 3 · 10−2

Decay Factor 1 + 10−6 1 + 10−3

Tab. 6.1: Parameter space of the learning rate and the decay factor for grid search.

6.1 Training deep neural networks using grid search

neural network with 5 hidden layers are shown. By comparing the performance for
different learning rate and decay factor combinations of all four network architectures,
it appears that the region for a learning rate > 10−2.5 is dominated by a low FoM.
For a learning rate between 10−4.5 and 10−2.5 the highest FoM can be found. The
influence of the decay factor is mostly dominant in this region yielding the curved
shape of the high FoM region visible in all four figures. Summarizing one can say that
after performing the grid search all four network architectures show nearly the same
behavior for all combinations of learning rate and decay factor. Looking at the FoM
(see Tab. 6.2) the biggest difference can be found between the networks with 3 and 5
hidden layers, the network with 5 hidden layers performing better than the network
with 3 hidden layers. In the network with 3 hidden layers the number of nodes leads
to slightly different FoM while in the network with 5 hidden layers the FoMs are al-
most equal. The learning rate and decay factor values are similar for the best neural
networks. The FoM therefore depends mostly on the number of hidden layers and the
number of nodes.

Hidden Layers Nodes Learning Rate Decay Factor FoM
3 300 10−3 1 + 2 · 10−4 1.48

3 500 4 · 104 1 + 10−4 1.55

5 300 10−3 1 + 10−4 1.67

5 500 10−3 1 + 2 · 10−4 1.68

Tab. 6.2: Highest FoM obtained after performing a grid search for different learning rate and
decay factor combinations. The deep neural networks used 3 or 5 hidden layers with
either 300 or 500 nodes in each hidden layer.

50

6 Multivariate analysis of H → ττ using the simulated 8 TeV dataset

10−5.0 10−4.5 10−4.0 10−3.5 10−3.0 10−2.5 10−2.0

Learning Rate Initialization

10−6.0

10−5.5

10−5.0

10−4.5

10−4.0

10−3.5

10−3.0

De
ca

y
Fa

ct
or

 -
1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fo
M

(a) 300 nodes.

10−5.0 10−4.5 10−4.0 10−3.5 10−3.0 10−2.5 10−2.0

Learning Rate Initialization

10−6.0

10−5.5

10−5.0

10−4.5

10−4.0

10−3.5

10−3.0

De
ca

y
Fa

ct
or

 -
1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Fo

M

(b) 500 nodes.

Fig. 6.1: FoMs for a grid search using different learning rate and decay factor combinations.
The deep neural networks used 3 hidden layers and either 300 or 500 nodes in each
layer.

51

6.1 Training deep neural networks using grid search

10−5.0 10−4.5 10−4.0 10−3.5 10−3.0 10−2.5 10−2.0

Learning Rate Initialization

10−6.0

10−5.5

10−5.0

10−4.5

10−4.0

10−3.5

10−3.0

De
ca

y
Fa

ct
or

 -
1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fo
M

(a) 300 nodes.

10−5.0 10−4.5 10−4.0 10−3.5 10−3.0 10−2.5 10−2.0

Learning Rate Initialization

10−6.0

10−5.5

10−5.0

10−4.5

10−4.0

10−3.5

10−3.0

De
ca

y
Fa

ct
or

 -
1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Fo

M

(b) 500 nodes.

Fig. 6.2: FoMs for a grid search using different learning rate and decay factor combinations.
The deep neural networks used 5 hidden layers and either 300 or 500 nodes in each
layer.

52

6 Multivariate analysis of H → ττ using the simulated 8 TeV dataset

6.1.2 Combinations of learning rate and decay factor with momentum

Similar to Sec. 6.1.1 the optimization is performed with a grid search. The main
difference is that a momentum term is included in the training algorithm. The neural
network architecture chosen to train with the additional momentum term is the one
with the best result in the previous section (see Tab. 6.2) and has 5 hidden layers and
500 nodes. The momentum extension of the SGD training algorithm is determined by
three hyperparameters as discussed in Sec. 5.4. The momentum is chosen to increase
from 0.5 to 0.99. The values for the initial and final momentum are constant during
this section since more combinations would only result in a much longer computation
time without providing more information on the influence of the momentum term. The
grid for the learning rate and decay factor is chosen equal to the previous section (see
Tab. 6.3). In Fig. 6.3 and 6.2 the results for a momentum increasing from the initial to
the final value after either 20, 50, 100 or 200 epochs are shown. Similar to the results

Minimum Maximum
Learning Rate 10−5 3 · 10−2

Decay Factor 1 + 10−6 1 + 10−3

Initial Momentum 0.5 0.5

Final Momentum (FM) 0.99 0.99

Epochs to FM 20 200

Tab. 6.3: Parameter space of the hyperparameters used for grid search.

obtained without momentum (see Fig. 6.1 and Fig. 6.2) the region with a learning
rate > 10−2.5 is dominated by a low FoM and is independent of the number of epochs
after which the momentum reaches the final value. Figures 6.3a and 6.3b favor a fast
increasing momentum yielding an aggressive training behavior. Therefore, a high FoM
is only obtained when the initial learning rate is already small and decays fast to
the absolute minimum value. In this case, training is dominated by the momentum
term. For a slower increasing momentum, as in Fig. 6.4a and 6.4b, learning rate and
momentum are equally important for training leading to a similar shape of the high
FoM region as in the previous section. Nevertheless, the maximum FoM is only slightly
higher than for the training without momentum (compare Tab. 6.2 and Tab. 6.4).

Learning Rate Decay Factor Momentum saturation FoM
1.5 · 10−5 1 + 5 · 10−4 20 1.56

10−6 1 + 2 · 10−4 50 1.61

3 · 10−4 1 + 3 · 10−4 100 1.62

1.5 · 10−5 1 + 10−3 200 1.70

Tab. 6.4: Highest FoM obtained after performing a grid search for different learning rate and
decay factor combinations. The deep neural networks used 5 hidden layers and 500
nodes in each hidden layer. The momentum term increased from 0.5 to 0.99 after
either 20, 50, 100 or 200 epochs.

53

6.1 Training deep neural networks using grid search

10−5.0 10−4.5 10−4.0 10−3.5 10−3.0 10−2.5 10−2.0

Learning Rate Initialization

10−6.0

10−5.5

10−5.0

10−4.5

10−4.0

10−3.5

10−3.0

De
ca

y
Fa

ct
or

 -
1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fo
M

(a) Momentum saturating after 20 epochs.

10−5.0 10−4.5 10−4.0 10−3.5 10−3.0 10−2.5 10−2.0

Learning Rate Initialization

10−6.0

10−5.5

10−5.0

10−4.5

10−4.0

10−3.5

10−3.0

De
ca

y
Fa

ct
or

 -
1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Fo

M

(b) Momentum saturating after 50 epochs.

Fig. 6.3: FoMs for a grid search using different learning rate and decay factor combinations.
The deep neural networks used 5 hidden layers and 500 nodes in each layer. The
momentum term increased from 0.5 to 0.99 after either 20 or 50 epochs.

54

6 Multivariate analysis of H → ττ using the simulated 8 TeV dataset

10−5.0 10−4.5 10−4.0 10−3.5 10−3.0 10−2.5 10−2.0

Learning Rate Initialization

10−6.0

10−5.5

10−5.0

10−4.5

10−4.0

10−3.5

10−3.0

De
ca

y
Fa

ct
or

 -
1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fo
M

(a) Momentum saturating after 100 epochs.

10−5.0 10−4.5 10−4.0 10−3.5 10−3.0 10−2.5 10−2.0

Learning Rate Initialization

10−6.0

10−5.5

10−5.0

10−4.5

10−4.0

10−3.5

10−3.0

De
ca

y
Fa

ct
or

 -
1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Fo

M

(b) Momentum saturating after 200 epochs.

Fig. 6.4: FoMs for a grid search using different learning rate and decay factor combinations.
The deep neural networks used 5 hidden layers and 500 nodes in each layer. The
momentum term increased from 0.5 to 0.99 after either 20 or 50 epochs.

55

6.2 Training deep neural networks using Spearmint

6.2 Training deep neural networks using Spearmint

The bottleneck of optimization with grid search as performed in Sec. 6.1 is the com-
putation time for each combination of hyperparameters. In order to find the global
maximum the density of points and the dimension of the grid to evaluate in a grid
search has to be high, resulting in a computation time in the order of several days. The-
refore, a favorable choice is to use a sophisticated optimization algorithm which is able
to find a good combination of hyperparameters in a shorter time. The optimization
algorithm used in this thesis is called Spearmint (see Sec. 5.1.3)

6.2.1 Necessary Spearmint iterations to reach optimum

The most interesting information about an optimization algorithm is the number of
iterations required to a maximum and the quality of this maximum. To obtain this
information a neural network with 5 hidden layers and 500 nodes is optimized with
Spearmint. As training algorithm a decaying learning rate with a momentum term
using the same minimum and maximum values as in Sec. 6.1.2 is used. Spearmint
is allowed to perform 200 iterations during which all parameters listed in Tab. 6.5
are optimized at once. The optimization process is repeated 5 times with differently
initialized weights in order to monitor the optimization process and not the training
for a specific initialization. Figure 6.5 shows how the FoM is increasing after a certain

Minimum Maximum
Learning Rate 10−5 3 · 10−2

Decay Factor 1 + 10−6 1 + 10−3

Initial Momentum 0.01 0.8

Final Momentum 0.5 0.99

Epochs to FM 20 200

Tab. 6.5: Parameter space of the hyperparameters used to optimize with Spearmint.

number of iterations. The steepest ascend can be found between 1 and 50 iterations
and the maximum FoM is reached after 128 iterations. However, a value close to
the maximum was already found after about 60 iterations. Summarizing one can say
that Spearmint needs at least 50 iterations to get near the maximum value but is
only slightly improving afterwards. In Sec. 6.1.2 four different values of epochs to
reach the final momentum were used in a grid of 400 learning rate and decay factor
combinations yielding 1600 points to compute. To obtain the best FoM with grid search
a much longer computation time was necessary than with Spearmint (see Tab. 6.6)
even though the parameter space for learning rate, decay factor and epochs to reach
the final momentum was chosen equal and the dimension of the optimization problem
was increased by adding the initial and final momentum to the parameter space when
using Spearmint. The higher FoM obtained with Spearmint is mostly due to the fact
that the values for initial and final momentum were also optimized.

56

6 Multivariate analysis of H → ττ using the simulated 8 TeV dataset

Grid Search Spearmint
Hidden Layers 5 5

Nodes 500 500

Learning Rate 1.5 · 10−5 10−4

Decay Factor 1 + 10−3 1 + 1.8 · 10−4

Initial Momentum 0.5 0.8

Final Momentum 0.99 0.99

Epochs to FM 200 200

FoM 1.70 1.76

Tab. 6.6: Comparison of the highest FoM and the hyperparameters used for grid search and
Spearmint.

0 50 100 150 200
Number of Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fo
M

Fig. 6.5: Number of iterations after which Spearmint reaches a maximum. The red crosses
represent the current maximum value during the optimization. The black points
represent the FoM obtained at a certain iteration step.

57

6.2 Training deep neural networks using Spearmint

6.2.2 Input variable selection

In Sec. 6.1 – 6.2.1 the complete set of input variables, as listed in Tab. 5.2, is used.
This ensemble of variables is chosen to contain highly discriminative features to dis-
tinguish between signal and background. However, for some analysis techniques it is
possible that a smaller subset of this ensemble yields better results [61] due to the fact
that irrelevant and redundant input variables are removed. The effect of redundant
variables is to increase the number of local optima during training since there are more
combinations of parameters that can yield locally optimal training results. Irrelevant
variables add noise to the input and therefore hinder the training process. A straight
forward approach of finding the best subset would be to try all possible combinations.
A computationally more feasible way is to iteratively remove one feature starting with
the complete set of N variables. In the first iteration step N combinations of N − 1
variables are computed. The combination of N − 1 variables obtaining the best result
is the starting point for the next iteration step. This time N − 1 combinations of
N − 2 variables are computed and as before the combination yielding the best result
is kept. This is repeated until only one variable is left. This feature gets the highest
rank since it has the most discriminative power, whereas the feature already removed
in the first step gets the lowest rank. While trying all possible combinations from 1 to
13 input features would take about 8200 iterations, the second approach is about 90
times faster.

In Fig. 6.6 the FoM as a function of the number of variables is plotted, and in Tab. 6.7
the ranking after selection of the input variables available in the 8 TeV dataset is lis-
ted. The result is that a subset of 9 variables yields a significant improvement of the
FoM compared to the result obtained with all variables.

Rank Feature
1 msv

2 psv
T

3 µ centrality
4 S
5 pT(tot)

6 mT

7 ∆η(j, j)

8 mvis

9 ∆R(µ, τ)

10 ηj1 · ηj2
11 pT(sum)

12 Emiss
T centrality

13 mjj

Tab. 6.7: Ranking of the input variables where 1 is the highest and 13 is the lowest rank.

58

6 Multivariate analysis of H → ττ using the simulated 8 TeV dataset

0 2 4 6 8 10 12 14
Number of variables

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Fo
M

Fig. 6.6: Highest FoM as a function of the number of input variables for the 8 TeV dataset.

59

6.2 Training deep neural networks using Spearmint

6.2.3 Performance of neural networks with multiple hidden layers

In Sec. 6.1 – 6.2.2 the upper and lower limits of the training algorithm hyperparameters
as well as the best combination of input variables are explored. The final hyperpa-
rameter to potentially improve the performance of a neural network, the number of
hidden layers, is discussed here. Neural networks with different numbers of hidden
layers, ranging from 1 to 8, are optimized with Spearmint and compared afterwards.
The hyperparameters used to optimize these networks are listed in Tab. 6.8. In Fig. 6.7

Minimum Maximum
Nodes 100 700

Learning Rate 10−5 3 · 10−2

Decay Factor 1 + 10−6 1 + 10−3

Initial Momentum 0.01 0.8

Final Momentum 0.5 0.99

Epochs to FM 20 200

Tab. 6.8: Parameter space of the hyperparameters used to optimize with Spearmint. The
neural networks use 1 to 8 hidden layers.

the best result after optimizing the hyperparameters for a specific number of hidden
layers is illustrated. The performance improves considerably for each additional hid-
den layer up to seven hidden layers and decreases slightly for eight hidden layers. A
possible explanation why the FoM is not increasing further when using more than 7
hidden layers is the vanishing gradient problem (see Sec. 4.4).

To overcome the vanishing gradient the training has to be performed longer for every
additional layer since the backpropagated error decays exponentially [43]. Longer trai-
ning can be achieved either by training more epochs when using a “small” dataset or
by using a “large” dataset since one epoch is defined as one iteration over the complete
dataset. Thus, training with a small dataset takes more epochs than training with a
large dataset to achieve a comparable result. Training with a small dataset for too
many epochs will result in overtraining yielding the conclusion that the size of the
dataset is a limiting factor for the performance of a deep neural network. Therefore,
using a large dataset is essential when training a DNN. However, what dataset is too
small and what dataset is large enough depends strongly on the given problem.

Since the training algorithm uses early stopping, as introduced in Sec. 5.4.3, to detect
overtraining, a decrease in performance when using more than 7 hidden layers suggests
that these deeper network starts to become sensitive to overtraining because of a too
small dataset size and is therefore stopped early. The highest FoM depending on the
number of hidden layers and the optimized hyperparameters for the 8 TeV dataset are
listed in Tab. 6.9.

60

6 Multivariate analysis of H → ττ using the simulated 8 TeV dataset

Hidden Layers 1 2 3 4
Nodes 413 500 500 500
Learning Rate 10−5 10−5 10−5 9 · 10−4

Decay Factor 1 + 4.4 · 10−6 1 + 10−6 1 + 1.4 · 10−6 1 + 10−3

Initial Momentum 0.47 0.44 0.08 0.66
Final Momentum 0.84 0.50 0.50 0.94
Epochs to FM 200 20 63 20
FoM 1.63 1.68 1.74 1.75

Hidden Layers 5 6 7 8
Nodes 500 500 500 500
Learning Rate 1.2 · 10−4 3.4 · 10−4 1.4 · 10−4 10−4

Decay Factor 1 + 1.7 · 10−4 1 + 2.7 · 10−4 1 + 3.5 · 10−4 1 + 2 · 10−4

Initial Momentum 0.80 0.01 0.50 0.50
Final Momentum 0.81 0.65 0.78 0.80
Epochs to FM 46 26 200 200
FoM 1.80 1.92 2.04 1.99

Tab. 6.9: Highest FoM and optimal hyperparameters for neural networks with 1 to 8 hidden
layers.

0 1 2 3 4 5 6 7 8 9
Number of Hidden Layers

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Fo
M

Fig. 6.7: Improvement of the FoM when using more hidden layers.

61

6.2 Training deep neural networks using Spearmint

6.2.4 Preprocessing of input variables

For many machine learning algorithms it is necessary that the input variables have
the same range, e.g. values between 0 and 1. This guarantees that the training is not
distorted by large input values [61]. The distributions of the input variables listed in
Sec. 5.2.2 have different minimum and maximum values. Therefore, the last optimiza-
tion step for the classification of the 8 TeV dataset is to subtract the mean of the input
variable distribution from each variable respectively and scale it to have unit variance.
Centering and scaling is done independently for each variable after computing the
relevant statistics on the events in the training set. In Tab. 6.10 the hyperparameters
of the deep neural network with the highest FoM are listed. Due to the preprocessing,
the FoM improved by 0.1 compared to the highest FoM of the deep neural network in
Sec. 6.2.3. Another consequence of this preprocessing is that fewer nodes are required
in each layer compared to neural networks trained on the unscaled input variables.

Hyperparameter Value
Hidden Layers 7

Nodes 20

Learning Rate 2 · 10−3

Decay Factor 1 + 10−6

Initial Momentum 0.50

Final Momentum 0.99

Epochs to FM 20

FoM 2.14

Tab. 6.10: Highest FoM and optimal hyperparameters for the 8 TeV dataset when using pre-
processed input variables.

62

6 Multivariate analysis of H → ττ using the simulated 8 TeV dataset

In Fig. 6.8 the distribution of the signal and background events after classification
by the deep neural network is shown. Since there is only one node with a sigmoid
activation function in the output layer the output of the DNN ranges from 0 to 1,
where 0 corresponds to background-like events and 1 to signal-like events. The FoM
is calculated by adding the AMS values of each bin quadratically. The biggest contri-
bution to the FoM is made by the last bin because of the excess of expected signal
events compared to the background events. The breg term in eq. 5.1 is set to breg ≈ 0
for the computation of the final FoM.

Fig. 6.8: Signal and background distributions after classification of the 8 TeV dataset corre-
sponding to a FoM of 2.14.

63

7 Multivariate analysis of H → ττ using
the simulated 13 TeV dataset

The hyperparameters of the deep neural networks trained on the 13 TeV dataset are
optimized with Spearmint. The main difference for training a neural network with
either the 8 TeV or the 13 TeV dataset is the number of events in each dataset and
one missing input variable, psv

T , in the latter. Since this variable got a high ranking
when selecting the optimum subset of input variables in Sec. 6.2.2 this ranking needs to
be revised. For this purpose the same procedure as in Sec. 6.2.2 is used. Additionally,
the input variables are preprocessed as in Sec. 6.2.4. Figure 7.1 shows that the FoM
is almost constant for any number of input variables greater or equal to 6. For fewer
than 6 variables the FoM starts to decrease. Therefore, it is best to keep all variables
since computation time is mostly independent from the number of input variables
when using a GPU-accelerated library.

0 2 4 6 8 10 12 14
Number of variables

0.5

1.0

1.5

2.0

2.5

Fo
M

Fig. 7.1: Highest FoM as a function of the number of input variables for the 13 TeV dataset.

7.1 Performance with different activation functions

7.1 Performance with different activation functions

In the following section the performance of deep neural networks with different num-
bers of hidden layers and activation functions is discussed. The Tanh and rectified
linear activation function have already been introduced in Sec. 4.2. The rectified log
activation function has been designed for this thesis and is introduced in Sec. 7.1.3.
The parameters which are optimized (see Tab. 7.1) are equal to the parameters in
Sec. 6.2.3. The reason for using fewer nodes compared to Chap. 6 is that the per-
formance is not improving when using more as soon as preprocessing is used on the
input variables. The only significant effect of more nodes when training on the 13 TeV
dataset is an increased computation time.

Minimum Maximum
Nodes 20 150

Learning Rate 10−5 3 · 10−2

Decay Factor 1 + 10−6 1 + 10−3

Initial Momentum 0.5 0.8

Initial Momentum 0.8 0.995

Epochs to FM 20 200

Tab. 7.1: Parameter space of the hyperparameters used to optimize with Spearmint. The
neural networks use 1 to 9 hidden layers and different activation functions.

7.1.1 Tanh activation function

Figure 7.2 shows the FoM as a function of the number of hidden layers when using
the Tanh activation function. The main difference between this result and the one
obtained for 8 TeV is that already 1 hidden layer leads to a high FoM. The FoM
is increasing slightly when using up to 4 hidden layers but stays almost constant
afterwards. The largest FoM is obtained with the maximum number of 9 hidden layers.
The configuration used to obtain this result is listed in Tab. 7.2.

Hyperparameter Value
Hidden Layers 9

Nodes 100

Learning Rate 3 · 10−3

Decay Factor 1 + 10−5

Initial Momentum 0.66

Final Momentum 0.995

Epochs to FM 100

Figure of Merit 2.12

Tab. 7.2: Highest FoM and optimal hyperparameters when using the Tanh activation function.

66

7 Multivariate analysis of H → ττ using the simulated 13 TeV dataset

0 2 4 6 8 10
Number of Hidden Layers

1.90

1.95

2.00

2.05

2.10

2.15

2.20

Fo
M

Fig. 7.2: Figure of Merit obtained with different numbers of hidden layers using the Tanh
activation function.

67

7.1 Performance with different activation functions

7.1.2 Rectified linear activation function

The rectified linear activation function is 0 when the pre-activation is negative which
leads to sparsity in a neural network. This means that not all neurons are active at
a certain input. The advantage of a sparse representation in a deep neural network is
the so-called information disentangling [62]. The objective of a deep neural network is
to disentangle the components explaining the data. A dense representation is highly
entangled and already small changes in the input lead to changes in the representa-
tion. When sparsity is introduced this entanglement is broken and the representation
becomes more robust to small changes.

In Fig. 7.3 the results obtained with the rectified linear activation function are shown.
The hyperparameter configuration leading to the highest FoM for the rectified linear
activation function is listed in Tab. 7.3. The FoM is increasing when using more hid-
den layers and reaches the maximum when using 9 hidden layers. The lower FoM for
6 and 7 hidden layers is related to the optimization algorithm getting stuck in a local
maximum.

Hyperparameter Value
Hidden Layers 9

Nodes 85

Learning Rate 10−3

Decay Factor 1 + 3 · 10−5

Initial Momentum 0.65

Final Momentum 0.995

Epochs to FM 70

Figure of Merit 2.14

Tab. 7.3: Highest FoM and optimal hyperparameters when using the rectified linear activation
function.

68

7 Multivariate analysis of H → ττ using the simulated 13 TeV dataset

0 2 4 6 8 10
Number of Hidden Layers

1.90

1.95

2.00

2.05

2.10

2.15

2.20

Fo
M

Fig. 7.3: Figure of Merit obtained with different numbers of hidden layers using the rectified
linear activation function.

69

7.1 Performance with different activation functions

7.1.3 The rectified log activation function

The rectified log activation function (see Fig. 7.4)

a(p) =

{
log(1 + p) if p ≥ 0

0 else
, (7.1)

is intended to introduce sparsity similar to the rectified linear activation function in
the deep neural network but also a non-linearity for a positive pre-activation. The
rectified log has no upper bound and is increasing more slowly than any polynomial
function towards positive infinity. The rectified log achieved the highest FoM of all
three tested activation functions. However, the difference between the three results is
not statistically significant. This value was not reached with the maximum number
of 9 hidden layers but already with 7 layers as shown in Fig. 7.5. The hyparameters
used to obtain this FoM are listed in Tab. 7.4. The distribution of the signal and
background after classification is shown in Fig. 7.6. The breg term in eq. 5.1 is set to
breg ≈ 0 for the computation of the final FoM.

4 3 2 1 0 1 2 3 4
pre-activation

2

1

0

1

2

ac
tiv

at
io

n

Rectified Log
Tanh
Rectified Linear

Fig. 7.4: Rectified log activation function compared to the Tanh and the rectified linear acti-
vation function.

70

7 Multivariate analysis of H → ττ using the simulated 13 TeV dataset

Hyperparameter Value
Hidden Layers 7

Nodes 108

Learning Rate 3 · 10−3

Decay Factor 1 + 10−5

Initial Momentum 0.66

Final Momentum (FM) 0.995

Epochs to FM 112

Figure of Merit 2.15

Tab. 7.4: Highest FoM and optimal hyperparameters when using the rectified log activation
function.

0 2 4 6 8 10
Number of Hidden Layers

1.90

1.95

2.00

2.05

2.10

2.15

2.20

Fo
M

Fig. 7.5: Figure of Merit obtained with different numbers of hidden layers using the rectified
log activation function.

71

7.1 Performance with different activation functions

Fig. 7.6: Signal and background distributions after classification of the 13 TeV dataset. The
deep neural network used the rectified log activation function and achieved a FoM
of 2.15.

72

7 Multivariate analysis of H → ττ using the simulated 13 TeV dataset

7.2 Influence of dataset size on network performance

In Sec. 6.2.3 the FoM did not increase further for 8 hidden layers which suggested that
the 8 TeV dataset is too small. The 13 TeV dataset is much larger (see Tab. 5.3), and it
is therefore possible to investigate the influence of the dataset size on the performance
of the deep neural network. For this purpose the configuration in Tab. 7.4 is used.
This network is trained on subsets of the 13 TeV dataset with different sizes. Training
is performed several times for each subset with differently initialized weights. The size
is increased step by step up to the total number of events in the dataset. In Fig. 7.7
the FoM for different numbers of events in the training is shown. The points represent
the mean value of the results obtained with differently initialized weights. The error
bars correspond to the standard deviation. The FoM shows no clear dependency on
the training set size. One possible explanation is that the deep neural network is not
able to perform any better even when the dataset size is increased. Another, more
likely, explanation is that the size of the 13 TeV dataset, like the 8 TeV dataset, is
too small to achieve optimum performance. This conclusion is based on a lecture
of Peter Norvig [63] who stated that deep neural networks typically need much more
training events than provided in the 13 TeV dataset to start improving in performance.
Below this threshold the performance of a deep neural networks is independent of the
dataset size and shows no “discrete” improvement when using larger datasets as one
would assume.

0 20000 40000 60000 80000 100000 120000
Number of Training Events

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Fo
M

Fig. 7.7: Performance of a deep neural network when trained with different dataset sizes.

73

8 Summary and conclusions

Deep Learning is the current state-of-the-art machine learning approach in speech
and image recognition. It is therefore reasonable to assume that deep learning can
improve the classification of data in high energy physics as well. For this purpose a
deep neural network is tested in order to classify signal and background events given
in a simulated H → ττ dataset for 8 TeV corresponding to an integrated luminosity
of L = 19.7 fb−1 and a simulated dataset for 13 TeV corresponding to an integrated
luminosity of L = 10 fb−1.
The 8 TeV dataset is mainly used to investigate different optimization approaches. At
first grid search is used to optimize the hyperparameters for network architecture and
learning algorithm. The main struggle with grid search is the missing computation
power even though a custom built workstation is used which used a mid-range GPU
to accelerate computations. Therefore, a Bayesian optimization algorithm is chosen
to optimize the hyperparameters leading to better results in a shorter time. Using
this optimization algorithm the next step is to find the best subset of input variables.
Finally, preprocessing is used on the input variables resulting in the best FoM for the
8 TeV dataset (see Tab. 8.1).
The insight gained during optimization of the 8 TeV dataset is then used on the 13 TeV
dataset. Additionally three different activation functions are tested on this dataset.
The last step after optimizing all hyperparameters and specifying the best activation
function is to determine the influence of the dataset size on the deep neural network
training.
Parallel to this thesis two other machine learning approaches were tested on the same
datasets. These were Boosted Decision Trees (BDTs) [26–28] and NeuroBayes [64,
65] which are available in the multivariate analysis implementation (TMVA [66]) of
ROOT [67]. Also a cut-based approach is tested to which all three machine learning
approaches are compared to.
The best FoM obtained with deep neural networks, NeuroBayes, BDTs and cut-based
are listed for both datasets in Tab. 8.1. A comparison shows that NeuroBayes and
BDTs perform much better than the remaining approaches while deep neural networks
only perform equal to slightly better than the cut-based approach.

Approach cut-based Deep Learning NeuroBayes BDT
8 TeV 2.16 [68] 2.14 2.96 [69] 3.54 [68]
13 TeV 1.94 [68] 2.15 3.12 [70] 3.81 [68]

Tab. 8.1: Highest FoM for different analysis techniques, assuming an integrated luminosity of
L = 19.7 fb−1 for the 8 TeV dataset and an integrated luminosity of L = 10 fb−1 for
the 13 TeV dataset. The breg term in eq. 5.1 is set to breg ≈ 0 for the calculation of
the final FoM.

While deep neural networks are the cutting-edge technology in the field of speech and
image recognition it is not obvious that this applies to the data analysis performed
in this thesis as well. However, other studies [44, 71] already showed that deep neural
networks are able to outperform shallow neural networks significantly. The datasets
used in these studies are each about 100 – 1000 times larger than the simulated 13 TeV
dataset used in this thesis. Furthermore, a high-end GPU especially designed for data
analysis is used which made it possible to use such large datasets for training in the
first place. In comparison, the shallow neural networks trained on the 13 TeV dataset
in this thesis perform almost as well as a deep neural network with many hidden
layers. A possible explanation why more hidden layers do not lead to a significantly
better performance is based on the vanishing gradient problem and therefore indirectly
on the size of the training dataset. Hochreiter [43] showed in 1991 that the back-
propagated error decays exponentially from layer to layer. Therefore, to train all layers
of a deep neural network sufficiently one needs to train the network long enough. A
large dataset is therefore necessary when training deep neural networks since it leads
automatically to a large number of training updates while preventing overtraining.
Furthermore, Peter Norvig stated during the Vienna Gödel Lecture 2015 [63] that deep
neural networks require a very large dataset in order to get an actual improvement
in performance when using more hidden layers compared to shallow neural networks.
The performance on sub-samples of the 13 TeV dataset showed no dependency on the
size of this sub-samples. This suggests that the 13 TeV dataset size is well below the
threshold above which more hidden layers lead to an improvement in performance.

The final conclusion of this thesis is that the effort to optimize a deep neural network
and the resulting performance on the available datasets is not comparable to the high
“out-of-the-box” performance delivered by BDTs. Without a much larger dataset and
the necessary computation power to handle this amount of data the true prowess of
deep neural networks compared to other approaches cannot be explored.

76

Appendices

A Acronyms

AMS Approximate Median Significance

APD Avalanche Photodiodes

BDT Boosted Decision Tree

CPU Central Processing Unit

CMS Compact Muon Solenoid

CSC Cathode Strip Chamber

DNN Deep Neural Network

DT Drift Tube

ECAL Electromagnetic Calorimeter

eV electron Volt

FM Final Momentum

FoM Figure of Merit

GPU Graphics Processing Unit

ggF gluon-gluon-Fusion

GUT Grand Unified Theory

HB Hadronic Barrel Calorimeter

HCAL Hadronic Calorimeter

HE Hadronic Endcap Calorimeter

HF Hadronic Forward Calorimeter

HO Hadronic Outer Barrel
Calorimeter

LHC Large Hadron Collider

ML Machine Learning

MLP Multilayer Perceptron

MVA Multivariate Analysis

RPC Resistive Plate Chamber

SGD Stochastic Gradient Descent

SM Standard Model of particle
physics

Tanh Hyperbolic tangent

TEC Tracker Endcap

TIB Tracker Inner Barrel

TID Tracker Inner Discs

TOB Tracker Outer Barrel

VBF Vector Boson Fusion

VPT Vacuum Phototriodes

B Framework setup

In the following section the required python packages and necessary settings in order
to run the code available at the following link is summarized:

• https://github.com/MarkusSpanring/hepDnn.git

The packages where installed on Ubuntu Linux 14.04 LTS 64-Bit with superuser
rights. The instructions should be followed step by step to get a working framework.
Alternatively one can follow the instructions given at:

• http://deeplearning.net/software/pylearn2

• https://github.com/HIPS/Spearmint

Step 1) Installing Theano

Command Version
apt-get install python-dev 2.7.5
apt-get install python-numpy 1.8.1
apt-get install python-scipy 0.13.3
apt-get install python-pip 1.5.4
apt-get install python-git 1.9.1
apt-get install python-nose 1.3.1
apt-get install g++ 4.8.2
apt-get install libopenblas-dev 0.2.8

The package python-pip is necessary to use pip install

pip install theano 0.6.0

https://github.com/MarkusSpanring/hepDnn.git
http://deeplearning.net/software/pylearn2
https://github.com/HIPS/Spearmint

Step 2) Installing CUDA

The installation of CUDA is necessary to enable GPU capabilities of theano. If only
the CPU is used this step is not needed.

Command Version
apt-get install nvidia-current 1.8.1
apt-get install nvidia-cuda-toolkit 5.5.22
apt-get update

IMPORTANT!! After downloading the current Nvidia driver with apt

it is necessary to manually load the driver in Ubuntu and reboot afterwards.
Otherwise CUDA can not be installed successfully.

To enable theano for GPU usage specific theano-flags need to be set which is done in
a .theanorc file one has to create in the home directory. This file needs the following
content:

[global]
floatX=float32
device=gpu

More information on the usage of theano-flags can be found at:

• http://deeplearning.net/software/theano/library/config.html

82

http://deeplearning.net/software/theano/library/config.html

B Framework setup

Step 3) Installing Pylearn2

Command Version
apt-get install cython 0.20.1
pip install scikit-learn 0.14.1
apt-get install python-matplotlib 1.3.1
apt-get install python-yaml 3.10
git clone git://github.com/lisa-lab/pylearn2.git 0.1
python ∼/pylearn2/setup.py develop

Step 4) Installing ROOT

Command Version
apt-get install root-system 5.34
apt-get install libroot-bindings-python-dev

Step 5) Installing Spearmint

Command Version
git clone https://github.com/HIPS/Spearmint.git 0.1
pip install -e /Spearmint

pip install pymongo 3.0.2

For further information on installing and setting up MongoDB see:

• https://www.mongodb.org

83

https://www.mongodb.org

Step 6) Setting up the environment

The most important paths are saved as environment variable in order to make the
installed python code more flexible.

Environment variable name Description
PYLEARN2_DATA_PATH Path to training and test dataset
DNN_PATH ∼/hepDnn

PYTHONPATH /usr/lib/x86_64-linux-gnu/root5.34

If theano is used in combination with a Nvidia GPU superuser rights are necessary.
However, when using sudo python to run python code the user environment variables
are no longer available. A quick way around is to add these variables in the sudoers
file.

Command Description
sudo visudo Opens the sudoers file

Lines to add in sudoers
Defaults env_keep+=PYLEARN2_DATA_PATH

Defaults env_keep+=DNN_PATH

Defaults env_keep+=PYTHONPATH

Saving file with: STRG+X

84

Bibliography

1. Beringer, J. et al. Review of Particle Physics. Phys. Rev. D 86, 010001 (2012).

2. ’t Hooft, G. & Veltman, M. Regularization and renormalization of gauge fields.
Nuclear Physics B 44, 189–213 (1972).

3. Narison, S. QCD as a Theory of Hadrons (Cambridge University Press, 2004).

4. Perl, M. L. et al. Evidence for anomalous lepton production in e+e− annihilation.
Physical Review Letters 35, 1489–1492 (Dez. 1975).

5. Cottingham, W. & Greenwood, D. An Introduction to the Standard Model of
Particle Physics (Cambridge University Press, 2007).

6. Misner, Charles W. and Thorne, K.S. and Wheeler, J.A. Gravitation (W.H. Free-
man und Company, 1974).

7. Maxwell, J. C. A dynamical theory of the electromagnetic field. Philosophical
Transactions of the Royal Society of London 155, 459–513 (1865).

8. Einstein, A. On the Electrodynamics of Moving Bodies. Annalen der Physik 17
(1905).

9. Einstein, A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden
heuristischen Gesichtspunkt. Ann. Phys. 322, 132–148 (1905).

10. Dirac, P. A. M. The Quantum Theory of the Electron. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences 117,
610–624 (1928).

11. Glashow, S. Partial Symmetries of Weak Interactions. Nucl.Phys. 22, 579–588
(1961).

12. Weinberg, S. A Model of Leptons. Phys.Rev.Lett. 19, 1264–1266 (1967).

13. Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev.
Lett. 13, 508–509 (1964).

14. Fanti, V. et al. A New measurement of direct CP violation in two pion decays of
the neutral kaon. Phys.Lett. B465, 335–348 (1999).

15. Goldstone, J., Salam, A. & Weinberg, S. Broken Symmetries. Phys. Rev. 127,
965–970 (3 Aug. 1962).

16. CMS Collaboration. Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC. Phys.Lett. B716, 30–61 (2012).

17. CMS Collaboration. Observation of a new boson with mass near 125 GeV in pp
collisions at

√
s=7 and 8 TeV. English. Journal of High Energy Physics 2013

(2013).

Bibliography

18. ATLAS Collaboration. Observation of a new particle in the search for the Stan-
dard Model Higgs boson with the ATLAS detector at the LHC. Phys.Lett. B716,
1–29 (2012).

19. CMS Collaboration. Study of the Mass and Spin-Parity of the Higgs Boson Can-
didate Via Its Decays to Z Boson Pairs. Phys.Rev.Lett. 110, 081803 (2013).

20. Dittmaier, S. et al. Handbook of LHC Higgs Cross Sections: 1. Inclusive Obser-
vables. doi:10.5170/CERN-2011-002 (2011).

21. Heinemeyer, S. et al. Handbook of LHC Higgs Cross Sections: 3. Higgs Proper-
ties: Report of the LHC Higgs Cross Section Working Group Techn. Ber. ar-
Xiv:1307.1347. CERN-2013-004 (Geneva, 2013).

22. Yukawa, H. On the Interaction of Elementary Particles. I. Proceedings of the
Physico-Mathematical Society of Japan. 3rd Series 17, 48–57 (1935).

23. ATLAS collaboration. Evidence for Higgs Boson Decays to the τ+τ− Final State
with the ATLAS Detector (2013).

24. CMS Collaboration. Evidence for the 125 GeV Higgs boson decaying to a pair of
τ leptons. JHEP 1405, 104 (2014).

25. ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron
Collider. JINST 3, S08003 (2008).

26. Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification and
Regression Trees (Wadsworth Publishing Company, Belmont, California, U.S.A.,
1984).

27. Freund, Y. & Schapire, R. E. A Decision-theoretic Generalization of On-line
Learning and an Application to Boosting in Proceedings of the Second European
Conference on Computational Learning Theory (Springer-Verlag, London, UK,
UK, 1995), 23–37.

28. Friedman, J. H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 38,
367–378 (Feb. 2002).

29. Arnison, G. et al. Experimental Observation of Isolated Large Transverse Energy
Electrons with Associated Missing Energy at

√
s = 540-GeV. Phys.Lett. B122,

103–116 (1983).

30. Baur, G. et al. Production of anti-hydrogen in relativistic collisions. Nucl. In-
strum. Meth. A391, 201–204 (1997).

31. Lefevre, C. LHC: the guide Feb. 2009.

32. CMS Collaboration. CMS Physics: Technical Design Report Volume 1: Detector
Performance and Software (CERN, Geneva, 2006).

33. CMS Collaboration. The CMS experiment at the CERN LHC. JINST 3, S08004
(2008).

34. CMS Collaboration. CMS detector overview retrieved: March. 2015. <http://
cmsinfo.web.cern.ch/cmsinfo/Detector/FullDetector/index.html>.

86

http://dx.doi.org/10.5170/CERN-2011-002
http://cmsinfo.web.cern.ch/cmsinfo/Detector/FullDetector/index.html
http://cmsinfo.web.cern.ch/cmsinfo/Detector/FullDetector/index.html

Bibliography

35. Glorot, X., Bordes, A. & Bengio, Y. Deep Sparse Rectifier Neural Networks in. 15
(Journal of Machine Learning Research - Workshop und Conference Proceedings,
2011), 315–323.

36. Minsky, M. L. & Papert, S. A. Perceptrons: An Introduction to Computational
Geometry (The MIT Press, 1990).

37. Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern Approach 2. Aufl.
(Pearson Education, 2003).

38. Hornik, K., Stinchcombe, M. & White, H. Multilayer Feedforward Networks Are
Universal Approximators. Neural Networks 2, 359–366 (Juli 1989).

39. Bengio, Y. Learning Algorithms in (2010). <http://www.iro.umontreal.ca/
~pift6266/H10/notes/contents.html>.

40. Kullback, S. & Leibler, R. A. On Information and Sufficiency. Ann. Math. Statist.
22, 79–86 (März 1951).

41. Hinton, G. E. in Neural Networks: Tricks of the Trade (2nd ed.) 599–619 (Sprin-
ger, 2012).

42. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. in Neurocomputing: Founda-
tions of Research 696–699 (MIT Press, Cambridge, MA, USA, 1988).

43. Hochreiter, S. Untersuchungen zu dynamischen neuronalen Netzen. Diploma the-
sis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität Mün-
chen 1991.

44. Baldi, P., Sadowski, P. & Whiteson, D. Searching for Exotic Particles in High-
Energy Physics with Deep Learning. arXiv: 1402.4735 [hep-ph] (2014).

45. Goodfellow, I. J. et al. Pylearn2: a machine learning research library. ArXiv e-
prints. arXiv: 1308.4214 [stat.ML] (Aug. 2013).

46. Bergstra, J. et al. Theano: a CPU and GPU Math Expression Compiler in Pro-
ceedings of the Python for Scientific Computing Conference (SciPy) Oral Pre-
sentation (Austin, TX, Juni 2010).

47. Bastien, F. et al. Theano: new features and speed improvements Deep Learning
and Unsupervised Feature Learning NIPS 2012 Workshop. 2012.

48. Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian Optimization of
Machine Learning Algorithms in Advances in Neural Information Processing Sys-
tems 25 (Dez. 2012).

49. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning) (The MIT Press, 2005).

50. Nason, P. A New method for combining NLO QCD with shower Monte Carlo
algorithms. JHEP 11, 040 (2004).

51. Frixione, S., Nason, P. & Oleari, C. Matching NLO QCD computations with
Parton Shower simulations: the POWHEG method. JHEP 11, 070 (2007).

52. Alioli, S., Nason, P., Oleari, C. & Re, E. A general framework for implementing
NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP
06, 043 (2010).

87

http://www.iro.umontreal.ca/~pift6266/H10/notes/contents.html
http://www.iro.umontreal.ca/~pift6266/H10/notes/contents.html
http://arxiv.org/abs/1402.4735
http://arxiv.org/abs/1308.4214

Bibliography

53. Alioli, S., Hamilton, K., Nason, P., Oleari, C. & Re, E. Jet pair production in
POWHEG. JHEP 04, 081 (2011).

54. Alioli, S., Nason, P., Oleari, C. & Re, E. NLO Higgs boson production via gluon
fusion matched with shower in POWHEG. JHEP 04, 002 (2009).

55. Sjöstrand, T., Mrenna, S. & Skands, P. PYTHIA 6.4 physics and manual. Journal
of High Energy Physics 2006, 026 (2006).

56. Alwall, J., Herquet, M., Maltoni, F., Mattelaer, O. & Stelzer, T. MadGraph 5 :
Going Beyond. JHEP 06, 128 (2011).

57. Sjöstrand, T. et al. An Introduction to PYTHIA 8.2. Comput. Phys. Commun.
191, 159–177 (2015).

58. Agostinelli, S. et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth.A506,
250–303 (2003).

59. ATLAS collaboration. Evidence for Higgs boson Yukawa couplings in theH → ττ
decay mode with the ATLAS detector (2014).

60. Brandstetter, J. Private conversation with Johannes Brandstetter HEPHY Vi-
enna. 2015.

61. Kotsiantis, S. B. & et al. Data Preprocessing for Supervised Learning 2006.

62. Bengio, Y. Learning deep architectures for AI. Foundations and Trends in Ma-
chine Learning 2. Also published as a book. Now Publishers, 2009., 1–127 (2009).

63. Norvig, P. How Computers learn in Vienna Gödel Lecture (2015). <http://www.
informatik.tuwien.ac.at/vienna-goedel-lectures/2015>.

64. Feindt, M. A Neural Bayesian Estimator for Conditional Probability Densities.
arXiv: physics/0402093 [physics.data-an] (2004).

65. Feindt, M. & Kerzel, U. The NeuroBayes neural network package. Nucl. Instrum.
Meth. A559, 190–194 (2006).

66. Hoecker, A. et al. TMVA: Toolkit for Multivariate Data Analysis. PoS ACAT,
040 (2007).

67. Brun, R. & Rademakers, F. ROOT: An object oriented data analysis framework.
Nucl. Instrum. Meth. A389, 81–86 (1997).

68. Schamböck, V. Private conversation with Verena Schamböck HEPHY Vienna.
2015.

69. Kloibhofer, S. Potential of the analysis of Higgs boson decays to two tau leptons
with NeuroBayes with the CMS experiment Vienna University of Technology.
2015.

70. Brondolin, E. Private conversation with Erica Brondolin HEPHY Vienna. 2015.

71. Baldi, P., Sadowski, P. & Whiteson, D. Enhanced Higgs to τ+τ− Searches with
Deep Learning. arXiv: 1410.3469 [hep-ph] (2014).

88

http://www.informatik.tuwien.ac.at/vienna-goedel-lectures/2015
http://www.informatik.tuwien.ac.at/vienna-goedel-lectures/2015
http://arxiv.org/abs/physics/0402093
http://arxiv.org/abs/1410.3469

	1 Introduction
	2 The Standard Model of particle physics
	2.1 Particles of the Standard Model
	2.1.1 Quarks
	2.1.2 Leptons
	2.1.3 Gauge bosons

	2.2 The four fundamental interactions
	2.2.1 Electromagnetism
	2.2.2 Weak interaction
	2.2.3 Strong interaction
	2.2.4 Gravitation

	2.3 Higgs mechanism
	2.3.1 Global symmetry breaking and Goldstone bosons
	2.3.2 Local symmetry breaking and the Higgs boson
	2.3.3 Higgs boson production modes
	2.3.4 Higgs boson decay
	2.3.5 Evidence for a Higgs boson decaying into a pair of tau leptons

	3 Experimental setup at CERN
	3.1 Large Hadron Collider
	3.2 The CMS detector
	3.3 Detector components
	3.3.1 Detector overview
	3.3.2 Inner Tracking System
	3.3.3 Electromagnetic Calorimeter (ECAL)
	3.3.4 Hadronic Calorimeter (HCAL)
	3.3.5 Magnet
	3.3.6 Muon System

	4 Artificial neural networks
	4.1 The artificial neuron
	4.2 Activation functions
	4.2.1 Linear function
	4.2.2 Rectified linear function
	4.2.3 Sigmoid
	4.2.4 Hyperbolic tangent

	4.3 Multilayer perceptron
	4.3.1 The perceptron
	4.3.2 The multilayer perceptron
	4.3.3 Supervised learning
	4.3.4 Stochastic gradient descent
	4.3.5 Backpropagation of error

	4.4 Deep learning

	5 Multivariate analyses with deep neural networks
	5.1 Framework
	5.1.1 Theano — A math expression compiler
	5.1.2 Pylearn2 — A machine learning library
	5.1.3 Spearmint — A Bayesian optimization algorithm

	5.2 Dataset
	5.2.1 Preselection
	5.2.2 Input variables

	5.3 Figure of Merit - Approximate Median Significance
	5.4 Tunable hyperparameters
	5.4.1 Network architecture
	5.4.2 Training algorithm
	5.4.3 Overtraining

	6 Multivariate analysis of Text using the simulated 8 TeV dataset
	6.1 Training deep neural networks using grid search
	6.1.1 Combinations of learning rate and decay factor
	6.1.2 Combinations of learning rate and decay factor with momentum

	6.2 Training deep neural networks using Spearmint
	6.2.1 Necessary Spearmint iterations to reach optimum
	6.2.2 Input variable selection
	6.2.3 Performance of neural networks with multiple hidden layers
	6.2.4 Preprocessing of input variables

	7 Multivariate analysis of Text using the simulated 13 TeV dataset
	7.1 Performance with different activation functions
	7.1.1 Tanh activation function
	7.1.2 Rectified linear activation function
	7.1.3 The rectified log activation function

	7.2 Influence of dataset size on network performance

	8 Summary and conclusions
	Appendices
	A Acronyms
	B Framework setup
	Bibliography

