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Abstract
Let Sg,n be a surface of genus g > 1 with n > 0 punctures equipped with a complete
hyperbolic cusp metric. Then it can be uniquely realized as the boundary metric of an ideal
Fuchsian polyhedron. In the present paper we give a new variational proof of this result. We
also give an alternative proof of the existence and uniqueness of a hyperbolic polyhedral
metric with prescribed curvature in a given conformal class.
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Mathematics Subject Classification 57M50 · 52B70 · 52B10 · 52C26

1 Introduction

1.1 Theorems of Alexandrov and Rivin

Consider a convex polytope P ⊂ R
3. Its boundary is homeomorphic to S2 and carries the

intrinsic metric induced from the Euclidean metric on R
3. What are the properties of this

metric?
A metric on S2 is called polyhedral Euclidean if it is locally isometric to the Euclidean

metric on R
2 except finitely many points, which have neighborhoods isometric to an open

subset of a cone (an exceptional point is mapped to the apex of this cone). If the conical angle
of every exceptional point is less than 2π , then this metric is called convex. It is clear that the
inducedmetric on the boundary of a convex polytope is convex polyhedral Euclidean.One can
ask a natural question: is this description complete, in the sense that every convex polyhedral
Euclidean metric can be realized as the induced metric of a polytope? This question was
answered positively by Alexandrov in 1942, see [2,3]:
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Theorem 1.1 For every convex polyhedral Euclidean metric d on S2 there is a convex polytope
P ⊂ R

3 such that (S2, d) is isometric to the boundary of P. Moreover, such P is unique up
to an isometry of R3.

Note that P can degenerate to a polygon. In this case P is doubly covered by the sphere.
The uniqueness part follows from the modified version of Cauchy’s global rigidity of

convex polytopes. The original proof by Alexandrov of the existence part is not constructive.
It is based on some topological properties of the map from the space of convex polytopes
to the space of convex polyhedral Euclidean metrics. Another proof was done by Volkov in
[30], a student of Alexandrov, by considering a discrete version of the total scalar curvature.

A new proof of Theorem 1.1 was proposed by Bobenko and Izmestiev in [4]. For a fixed
metric they considered a space of polytopes with conical singularities in the interior realizing
this metric at the boundary. In order to remove singularities they constructed a functional
over this space and investigated its behavior. Such a proof can be turned into a practical
algorithm of finding a polytopal realization of a given metric. It was implemented by Stefan
Sechelmann. One should note that this algorithm is approximate as it uses numerical methods
of solving variational problems, but it works sufficiently well for practical needs.

We turn our attention to hyperbolic metrics on surfaces. By Sg,n we mean the surface Sg

of genus g with n marked points. Let d be a complete hyperbolic metric of a finite volume
with n cusps at the marked points (in what follows we will call it a cusp metric). In [21] Rivin
proved a version of Theorem 1.1 for cusp metrics on the 2-sphere:

Theorem 1.2 For every cusp metric d on S0,n there exists a convex ideal polyhedron P ⊂ H
3

such that (S0,n, d) is isometric to the boundary of P. Moreover, such P is unique up to an
isometry of H3.

Rivin gave a proof in the spirit of Alexandrov’s original proof. Very recently, in [28]
Springborn gave a variational proof of Theorem 1.2.

1.2 Ideal Fuchsian polyhedra and Alexandrov-type results

It is of interest to generalize these results to surfaces of higher genus. We restrict ourselves
to the case g > 1 and to cusp metrics. Define G := π1(Sg). Let ρ : G → Iso+(H3) be a
Fuchsian representation: an injective homomorphism such that its image is discrete and there
is a geodesic plane invariant under ρ(G). Then F := H

3/ρ(G) is a complete hyperbolic
manifold homeomorphic to Sg ×R. The image of the invariant plane is the so-called convex
core of F and is homeomorphic to Sg . Themanifold F is symmetric with respect to its convex
core. The boundary at infinity of F consists of two connected components.

A subset of F is called convex if it contains every geodesic between any two its points.
It is possible to consider convex hulls with respect to this definition. An ideal Fuchsian
polyhedron P is the closure of the convex hull of a finite point set in a connected component
of ∂∞F . It has two boundary components: one is the convex core and the second is isometric
to (Sg,n, d) for a cusp metric d . We will always refer to the first component as to the lower
boundary of P and to the second as to the upper boundary. The following result can be
considered as a generalization of the Alexandrov theorem to surfaces of higher genus with
cusp metrics:

Theorem 1.3 For every cusp metric d on Sg,n, g > 1, n > 0, there exists a Fuchsian manifold
F and an ideal Fuchsian polyhedron P ⊂ F such that (Sg,n, d) is isometric to the upper
boundary of P. Moreover, F and P are unique up to isometry.
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This theorem was first proved by Schlenker in his unpublished manuscript [24]. Another
proof was given by Fillastre in [10]. Both these proofs were non-constructive following
the original approach of Alexandrov. One of the purposes of the present paper is to give a
variational proof of Theorem 1.3 by turning it to a finite dimensional convex optimization
problem in the spirit of papers [4,11,28]. In contrast with the previous proofs, it can be
transformed to a numerical algorithm of finding the realization of a given cusp metric as a
Fuchsian polyhedron.

Several authors studiedAlexandrov-type questions for hyperbolic surfaces of genus g > 1
inmore general sense. They are collected in the following result of Fillastre [10]. Let Sg,n,m be
Sg with n marked points andm disjoint closed discs removed. Consider a complete hyperbolic
metric d on Sg,n,m with cusps and conical singularities at marked points and complete ends of
infinite area at removed disks, i.e. boundary components at infinity. One can see an example

in the projective model as the intersection of H
3
with a cone having the apex outside of H

3

(hyperideal point). Then (Sg,n,m, d) can be uniquely realized as the induced metric at the
upper boundary of a generalized Fuchsian polyhedron (with ideal, hyperideal and conical
vertices). It would be interesting to extend the variational technique to this generalization.
This requires a substantial additional work.

The case of general metrics and g = 0 was proved by Schlenker in [23]. The case of
g > 1 with only conical singularities was first proved in an earlier paper of Fillastre [9]
and with only cusps and infinite ends in the paper [25] by Schlenker. The torus case with
only conical singularities was the subject of the paper [11] by Fillastre and Izmestiev. The
last paper also followed the scheme of variational proof. All other mentioned works were
done in the framework of the original Alexandrov approach. Recently another realization
result of metrics on surfaces with conical singularities in a Lorentzian space was obtained by
Brunswic in [6]. Although, he worked in a different setting, his methods were close to ours:
he also used the discrete Hilbert–Einstein functional and Epstein–Penner decompositions.

1.3 Discrete conformality

There is a connection between convex realizations of polyhedral metrics and discrete uni-
formization problems (see [5] for a detailed exposition).

Denote the set of marked points of Sg,n by B. Similarly to Euclidean case, we say that a
metric d on Sg,n is hyperbolic polyhedral if it is locally hyperbolic except points of B where
d can be locally isometric to a hyperbolic cone. Thus, the set of conical singularities is a
subset of B. For Bi ∈ B we define the curvature κd(Bi ) to be 2π minus the cone angle of Bi .
Note that if T is a geodesic trianglulation of (Sg,n, d)with vertices at B, then d is determined
by the side lengths of T .

We say that T is Delaunay if when we develop any two adjacent triangles to H
2, the

circumbscribed disc of one triangle does not contain the fourth vertex in the interior. We call
two polyhedral hyperbolic metrics d ′ and d ′′ discretely conformally equivalent if there exists
a sequence of pairs {(dt , Tt )}m

t=1, where dt is a polyhedral hyperbolic metric on Sg,n , Tt is a
Delaunay triangulation of (Sg,n, dt ), d1 = d ′, dm = d ′′ and for every t either

(i) dt = dt+1 in the sense that (Sg,n, dt ) is isometric to (Sg,n, dt+1) by an isometry isotopic
to identity with respect to B, or

(ii) Tt = Tt+1 and there exists a function u : B → R such that for every edge e of Tt with
vertices Bi and B j we have
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sinh

(
lendt (e)

2

)
= exp(u(Bi ) + u(B j )) sinh

(
lendt+1(e)

2

)
,

where lendt (e) is the length of e in dt . The following theorem is proved in [13]:

Theorem 1.4 Let d be a polyhedral hyperbolic metric on Sg,n and κ ′ : B → (−∞; 2π) be
a function satisfying ∑

Bi ∈B
κ ′(Bi ) > 2π(2 − 2g). (1)

Then there exists a unique metric d ′ discretely conformally equivalent to d such that κd ′(Bi ) =
κ ′(Bi ) for all Bi ∈ B.

We point out that a similar statement for polyhedral Euclidean metrics was proved in the
preceding paper [14].

The condition (1) is necessary by the discrete Gauss-Bonnet theorem:∑
Bi ∈B

κ ′(Bi ) = 2π(2 − 2g) + area(Sg,n, d ′).

Corollary 1.5 Every polyhedral hyperbolic metric on Sg,n is discretely conformally equivalent
to a unique hyperbolic metric.

The existence of d ′ is proved in [13] in indirect way close to the Alexandrov method.
After that it is noted that d ′ can be found as the critical point of an appropriate strictly convex
functional, although the authors do not provide an explicit formula of it. The authors of [13]
also observe that Corollary 1.5 (discrete uniformization) in fact is equivalent to Theorem 1.3.
In Sect. 3 we reformulate Theorem 1.4 in terms of Fuchsian polyhedra with singularities. We
establish the existence and uniqueness in a different way using explicit variational approach
combined with geometric observations.

1.4 Related work and perspectives

In [16] Leibon gave a characterization of convex ideal Fuchsian polyhedra in terms of their
exterior dihedral angles. More precisely, consider Sg,n and a triangulation T with vertices at
marked points. Assign a real number θe to each edge e of T . We call the assignmentDelaunay
if all θe ∈ (0;π). We call it non-singular if the sum of θe around a vertex is equal to 2π .
Finally, we call it feasible if for every subset X of triangles of T we have

∑
e∈X

(π −θe) > π |X |.
Then the main result of [16] can be reformulated as follows:

Theorem 1.6 There exists an ideal Fuchsian polyhedron with the face triangulation T and
exterior dihedral angles of the upper edges equal to θe if and only if the assignment θe is
Delaunay, non-singular and feasible.

This is similar to the characterization of the dihedral angles of convex ideal polyhedra in the
hyperbolic 3-space given by Rivin in [22]. However, the methods of [16] are different from
[22] (although they develop the ideas of another paper of Rivin [20]). For an assignment
θe Leibon defines a conformal class of angle structures on a pair (Sg,n, T ), which can be
parametrized as an open bounded convex polytope in a Euclidean space. He explores the
volume functional on this space, which turns out to be strictly concave. Then Leibon shows
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that critical points of this functional correspond to ideal Fuchsian polyhedra and that under
his conditions it attains the maximum in the interior.

Our approach to Theorem 1.3 can be informally considered as a dual to thementioned one.
Instead of angle structures we consider the space of ideal Fuchsian polyhedra with conical
singularities in the interior. In order to remove the singularities we use the so-called discrete
Hilbert–Einstein functional. There are numerous differences between these two frameworks.
For instance, Leibon considers a fixed boundary combinatorics of a polyhedron, but in our
case it is allowed to change. There is a hope that it will be possible to use one of these
methods in order to provide a new proof of the hyperbolization of 3-manifolds relying on
finite dimensional variational methods only.We refer the reader to the article [12] considering
angle structures in this context and to the survey [15] discussing perspective applications of
the discrete Hilbert–Einstein functional to various geometrization and rigidity problems.

It may be of interest to investigate the following generalization of Theorem 1.3. Define
a double ideal Fuchsian polyhedron P as the convex hull of n > 0 ideal points in one
component of ∂∞F and m > 0 ideal point in the other one. The boundary of P consists
of two components isometric to (Sg,n, d1) and (Sg,m, d2) for two cusp metrics d1 and d2.
One can ask if for any two cusp metrics metrics there is a double ideal Fuchsian polyhedron
realizing both metrics at its boundary? The answer to this naive question is no. A double
ideal Fuchsian polyhedron can be cut into two ideal Fuchsian polyhedra, which have the same
metric at their lower boundary. But Theorem 1.3 implies that (Sg,n, d) uniquely determines
it. Take two cusp metrics such that the corresponding metrics on the lower boundaries are
not isometric, then these cusp metrics can not be simultaneously realized by a double ideal
Fuchsian polyhedron (and clearly Theorem 1.3 implies that otherwise they can). However,
we may consider polyhedra in so-called quasifuchsian manifolds.

A representation ρ of G := π1(Sg) in Iso+(H3) is called quasifuchsian if it is discrete,
faithful and the limit set at the boundary at infinity is a Jordan curve. A hyperbolic manifold
F is quasifuchsian if it is isometric toH3/ρ(G). As in the Fuchsian case, F is homeomorphic
to Sg × R and has the well-defined boundary at infinity. The convex core of F is the image
of the convex hull of the limit set under the projection of H3 onto F . It is 3-dimensional
if F is not Fuchsian. An ideal quasifuchsian polyhedron is the convex hull of n > 0 ideal
points in one component of ∂∞F and m > 0 ideal point in the other one (as the convex
core is 3-dimensional, the case of vertices belonging to only one boundary component has
no significance in contrast to the Fuchsian case).

To state an analog of the uniqueness part of Theorem 1.3 we need a way to connect Teich-
müller spaces for surfaces with different number of punctures. A marked cusp metric is a
cusp metric on Sg,n together with a marking monomorphism π1(Sg) ↪→ π1(Sg,n). A quasi-
fuchsian manifold F has a canonical identification π1(F) � π1(Sg). For every quasifuchsian
polyhedron P it induces monomorphisms ι+ and ι− of π1(Sg) to the fundamental groups of
the upper and lower boundary components of P respectively.

Conjecture 1.7 Let d1 and d2 be two marked cusp metrics on Sg,n and Sg,m respectively,
n, m > 0. Then there is a unique ideal quasifuchsian polyhedron P such that one component
of its boundary is isometric to (Sg,n, d1), the other one is isometric to (Sg,m, d2) and the
compositions of marking monomorphisms with the maps induced by these isometries coincide
with ι+ and ι−.

A similar problem for metrics with conical singularities without uniqueness part was done
in the PhD thesis of Slutskiy [26] by the method of smooth approximation. Later he extended
this result to the more general case of metrics of curvature K � −1 in Alexandrov sense
[27].
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It is interesting to adapt our proof of Theorem 1.3 to this conjecture. As a next step,
manifolds with more complicated topology can be considered. It is a perspective direction
of further research.

1.5 Overview of the paper

In Sect. 2 we overview some hyperbolic geometry that will be used in the rest. In Sect. 3 we
define our main objects, which are called convex prismatic complexes. These are ideal Fuch-
sian polyhedra with conical singularities around inner edges incident to cusps and orthogonal
to the lower boundary. We formulate the characterization of convex prismatic complexes in
terms of their conical angles. This appears to be equivalent to Theorem 1.4. The proof of
equivalence is postponed to Sect. 4.3.

The rest can be divided into four major parts. First, we show that convex prismatic com-
plexes can be parametrized by the “lengths” of inner edges. This is done in Sect. 4.1. Then we
prove that in fact any lengths define a complex. To this purpose we investigate a connection
with Epstein-Penner decompositions of decorated cusp surfaces in Sect. 4.2. In Sect. 5.1 we
introduce the discrete Hilbert–Einstein functional and explain how its (unique) critical point
gives a convex prismatic complex with prescribed conical angles. Section 5.2 is devoted to
a proof of the existence of the critical point. To this purpose we study the behavior of the
functional “near infinity” by geometric means.

2 Hyperbolic geometry

2.1 Hyperboloidmodel of hyperbolic space

In this section we fix some notation and mention results from basic hyperbolic geometry that
will be used below.

Let R1,3 be the 4-dimensional real vector space equipped with the scalar product

〈x, y〉 := −x1y1 + x2y2 + x3y3 + x4y4.

By letters with lines above x we denote points of R1,3. Identify

H
3 = {x ∈ R

1,3 : 〈x, x〉 = −1; x1 > 0}.
By H

3
we denote the union of H3 with its boundary at infinity. We identify R1,2 with the

plane {x : x4 = 0} and H
2 with H

3 ∩ R
1,2.

Define the three-dimensional de Sitter space

dS3 = {x ∈ R
1,3 : 〈x, x〉 = 1}

and a half of the cone of light-like vectors

L = {x ∈ R
1,3 : 〈x, x〉 = 0; x1 > 0}.

There is a natural correspondence between ideal points of H
3
and generatrices of L. An

horosphere is the intersection ofH3 and an affine plane L with light-like normal vector. Then
define its polar dual l ∈ L by the equation

〈l, x〉 = −1,
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for all x ∈ L . Slightly abusing the notation, we will use the same letter both for an horosphere
and for the defining plane.

A hyperbolic plane M inH3 is the intersection ofH3 with a linear two-dimensional time-
like subspace of R1,3 with a space-like unit normal vector m. Again, in our notation we will
not distinguish these planes in R

1,3 from the corresponding planes in H
3. (The same also

holds for hyperbolic lines in H2.) However, for points we do distinguish: if A ∈ H
3, then its

defining vector in the hyperboloid model is denoted by x A.
We will need the following interpretation of scalar products between vectors of R1,3 in

terms of distances in H
3 (see [19] or [29]):

Lemma 2.1 1. If x A ∈ H
3 and l ∈ L, then

〈x A, l〉 = −edist(A,L)

where the distance is signed: it is positive if x A is outside of the horoball bounded by L and
negative otherwise.

2. If m ∈ dS3 and l ∈ L, then

〈m, l〉 = ±edist(M,L)

where the distance between a plane and a horosphere is the length of the common perpen-
dicular taken with the minus sign if the plane intersects the horosphere. The sign of the right
hand side depends on at which halfspace with respect to M the center of L lies.

3. If l1 ∈ L and l2 ∈ L, then

〈l1, l2〉 = −2edist(L1,L2)

where the distance between two horospheres is the length of the common perpendicular taken
with the minus sign if these horospheres intersect.

From now on we assume that ideal points under our consideration are always equipped
with (fixed) horospheres. Under this agreement, we use the word distance between two points
even in the cases when one of them or both are ideal. In the latter case, by the distance we
mean the signed distance between the corresponding horospheres: we write it with the minus
sign if the horospheres intersect. In the former case, the distance means the signed distance
from the non-ideal point to the horosphere at the ideal point. Similarly, we speak about the
length of a segment even if one or two of its endpoints are ideal.

Lemma 2.2 Let ABC be an ideal hyperbolic triangle with side lengths a, b and c respectively
and αA be the length of the part of the horosphere at A inside the triangle. Then

α2
A = ea−b−c.

A proof can be found in [18], Proposition 2.8. For the differential formulas in Sect. 5 we
will need a semi-ideal version of this lemma:

Lemma 2.3 Let ABC be a hyperbolic triangle with ideal vertices A and B, non-ideal vertex
C, side lengths a, b and c respectively and αA be the length of the part of the horosphere at
A inside the triangle. Then

α2
A = ea−b−c − e−2b.
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Fig. 1 To the proof of Lemma 2.3

Proof Consider the hyperboloidmodel. Let C̃ be the intersection of the ray AC with boundary
at infinity and put the horocycle at C̃ passing through C (see Fig. 1). Denote the side lengths
of this new ideal decorated triangle by ã, b̃ = b and c̃ = c. From Lemma 2.2 it follows that
α2

A = eã−b̃−c̃ = eã−b−c. Hence, we need to calculate ã.
We have

lC̃ = λxC + μl A,

〈lC̃ .l A〉 = −λeb = −2eb.

Hence, we obtain that λ = 2. Now calculate

〈lC̃ .xC 〉 = −1 = −λ − μeb.

We obtain μ = −e−b. We need only to evaluate

〈lC̃ .l B〉 = −2eã = −2ea + 2ec−b.

We get eã = ea − ec−b. Finally, α2
A = ea−b−c − e−2b. ��

2.2 Epstein–Penner decompositions

We recall the concept of Epstein-Penner ideal polygonal decomposition of a decorated cusped
hyperbolic surface (see [8,17,18]).

Let (Sg,n, d) be a hyperbolic cusp surface. Fix a decoration, i.e. an horocycle at every cusp.
Then the space of all decorations can be identified with R

n . A point r ∈ R
n corresponds to

the choice of horocycles at the distances r1, . . . , rn from the fixed ones.
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Consider the hyperboloid model of H2. Represent (Sg,n, d) as H2/� where H2 ⊂ R
1,2

and � is a discrete subgroup of Iso+(H2) isomorphic to π1(Sg). Take the decoration defined
by r ∈ R

n . By L1
i , L2

i , . . . denote horocycles in the orbit of the horocycle at i-th cusp under

the action of �. By L denote the union of their polar vectors l
k
i .

Let C be the convex hull of the set {l j
i } in R1,2. Its boundary ∂C is divided into two parts

∂lC �∂t C consisting of light-like points and time-like points. Belowwe describe well-known
properties of this construction. For proofs we refer to [17], Chapter 5.1.7, [8] and [18].

Lemma 2.4 • The convex hull C is 3-dimensional.
• The set ∂lC = C ∩ L is the set of points αl

k
i for α � 1.

• Every time-like ray intersects ∂t C exactly once.
• The boundary ∂t C is decomposed into countably many Euclidean polygons. The sup-

porting plane containing each polygon is space-like. This decomposition is �-invariant
and projects to a decomposition of Sg,n into finitely many ideal polygons.

Definition 2.5 This decomposition is called the Epstein-Penner decomposition of (Sg,n, d)

with the decoration r.

Definition 2.6 An Epstein–Penner triangulation of (Sg,n, d) is a geodesic triangulation with
vertices at cusps that refines the Epstein–Penner decomposition for some decoration r.

2.3 Trapezoids and prisms

Definition 2.7 A trapezoid is the convex hull of a segment A1A2 ⊂ H
2
and its orthogonal

projection to a line such that the segment A1A2 does not intersect this line. It is called ultra-
parallel if the line A1A2 is ultraparallel to the second line. It is called semi-ideal if both A1

and A2 are ideal. If some vertices are ideal, then they are equippedwith canonical horocycles.

By Bi denote the image of Ai under the projection, i = 1, 2. We refer to A1A2 as to the
upper edge, to B1B2 as to the lower edge and to Ai Bi as to the lateral edges. The vertices
Ai sometimes are also called upper and Bi are called lower. We denote by l12 the length of
A1A2, by a12 the length of B1B2, by ri the length of the edge Ai Bi , by α12 and α21 the angles
at vertices A1 and A2 (or the lengths of horocycles if the vertices are ideal) and by ρ12 the
distance from the line A1A2 to the line B1B2 in the case of ultraparallel trapezoid (Fig. 2).

Fig. 2 A semi-ideal ultraparallel trapezoid. Ideal vertices are equipped with horocycles
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Fig. 3 A semi-ideal prism. Ideal vertices are equipped with horospheres

Definition 2.8 A prism is the convex hull of a triangle A1A2A3 ⊂ H
3
and its orthogonal

projection to a plane such that the triangle A1A2A3 does not intersect this plane. It is called
ultraparallel if the plane A1A2A3 is ultraparallel to the second plane. It is called semi-ideal if
all A1, A2 and A3 are ideal. If some vertices are ideal, then they are equipped with canonical
horospheres.

Similarly to trapezoids, by Bi we denote the image of Ai under the projection, i = 1, 2, 3,
and we distinguish edges and faces of a prism into upper, lower and lateral. The lateral faces
of a prism are trapezoids. The dihedral angles of edges Bi B j are equal π/2. The dihedral
angles of edges A1A2, A2A3 and A3A1 are denoted by φ3, φ1 and φ2 respectively. The
dihedral angle of an edge Ai Bi is denoted by ωi (Fig. 3).

In Sect. 3 we will use semi-ideal prisms to construct our main objects: convex prismatic
complexes. In most cases we need only semi-ideal ultraparallel prisms and trapezoids. The
only place, where not ultraparallel prisms appear, is Lemma 3.6 where we prove that actually
convex prismatic complexes consist only from ultraparallel ones. The only place, where not
semi-ideal prisms are used, is the proof of Lemma 4.1. In order to prove this lemma, we need
to show that ultraparallel prisms (not necessarily semi-ideal) are uniquely determined by the
lengths of lateral and upper edges.

Lemma 2.9 Let A1A2B2B1 be an ultraparallel trapezoid with A1, A2 ∈ H
2 and α21 = π/2.

Then

sinh(r1) = sinh(r2) cosh(l12),

tanh(a12) = tanh(l12)

cosh(r2)
.
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The proof can be found in [7], Theorem 2.3.1, Formulas (v) and (iv). We need to prove
its analogue with one ideal vertex. It will be used further in this subsection to obtain some
formulas necessary for Sects. 4 and 5.

Lemma 2.10 Let A1A2B2B1 be an ultraparallel trapezoid with A1 ∈ ∂∞H
2, A2 ∈ H

2 and
α21 = π/2. Then

er1 = sinh(r2)e
l12 ,

tanh(a12) = 1

cosh(r2)
.

Proof Consider the point A ∈ A1A2 inside the horodisk at A1. Let B be the projection of A
to B1B2, l be the length AA2 and r be the length AB. Then from Lemma 2.9 we have

sinh(r2) = sinh(r)

cosh(l)
.

Now let l ′ be the modulo of the length AA1, hence l = l ′ + l12. Extend (if necessarily)
AB to the intersection point A′ with the horocycle at A1, let r ′ be the length AA′, r ′′ be the
length A′ B taken with the minus sign if B is inside the horodisk, then r = r ′ + r ′′. Move the
point A to A1 and consider the limit of the expression:

sinh(r2) = lim
A→A1

sinh(r ′) cosh(r ′′) + cosh(r ′) sinh(r ′′)
cosh(l ′) cosh(l12) + sinh(l ′) sinh(l12)

=

= lim
A→A1

(sinh(r ′′) + cosh(r ′′))er ′

(cosh(l12) + sinh(l12))el ′ = er1−l12 .

This is because r ′ − l ′ tends to zero and r ′′ tends to r1.
The second formula is obtained similarly. ��
The first two corollaries will be used in Sect. 3 to justify the definition of a prismatic

complex and in the proof of Lemma 4.1:

Corollary 2.11 In an ultraparallel trapezoid A1A2B1B2 the length of the lower edge is
uniquely determined by the lengths of the upper edge and the lateral edges.

Proof Consider A ∈ A1A2 that is the closest point to the line B1B2. Let B be its orthogonal
projection to B1B2. Apply Lemmas 2.9 or 2.10 to the trapezoids AA1B1B and AA2B2B. ��
Corollary 2.12 An ultraparallel trapezoid or an ultraparallel prism is determined up to isome-
try (mapping canonical horocycles/horospheres, if any, to canonical horocycles/horospheres)
by the lengths of the upper edges and the lateral edges.

Next one is crucial for Sect. 5.2:

Corollary 2.13 For a semi-ideal ultraparallel trapezoid we have

cosh(a12) = 1 + 2

sinh2(ρ12)
.

Proof Let A ∈ A1A2 be the closest point to the line B1B2 and B its projection to this line.
Apply the second formula of Lemma 2.10 to the trapezoid AA1B1B and get tanh (a12/2) =

1
cosh(ρ12)

. Then use the formula

cosh(a12) = 1 + tanh2 (a12/2)

1 − tanh2 (a12/2)

and obtain the desired. ��
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Using the first formula of Lemma 2.10 and Corollary 2.13 it is straightforward to derive
another one, which is necessary for the proof of Lemma 4.18:

Corollary 2.14 For a semi-ideal ultraparallel trapezoid we have

cosh(a12) = 1 + 2el12−r1−r2 .

From this and Lemma 2.3 we also deduce the key fact used in Sect. 5:

Corollary 2.15 For a semi-ideal ultraparallel trapezoid we have

α2
12 = er2−r1−l12 + e−2r1 .

3 Prismatic complexes

Let (Sg,n, d) be a hyperbolic cusp-surface with n cusps and T be an ideal geodesic triangu-
lation of Sg,n with vertices at cusps. By E(T ) and F(T ) denote its sets of edges and faces
respectively. The set of cusps is denoted by A = {A1, . . . , An}. We fix an horodisk at each
Ai and until the end of paper we will refer to it as to the canonical horodisk at Ai and to its
boundary as to the canonical horocycle.

We consider triangulations in a general sense: there may be loops and multiple edges.
It is also possible that some triangles have two edges glued together. But without loss of
generality, when we consider a particular triangle (or a pair of distinct adjacent triangles),
we denote it as Ai A j Ah (or Ai A j Ah and A j Ah Ag respectively).

Suppose that a real weight ri is assigned to every cusp Ai . Denote the weight vector by
r ∈ R

n .

Definition 3.1 A pair (T , r) is called admissible if for every decorated ideal triangle
Ai A j Ah ∈ F(T ) there exists a semi-ideal prism with the lengths of lateral edges Ai Bi ,
A j B j , Ah Bh equal to ri , r j and rh .

Let (T , r) be an admissible pair. For each ideal triangle Ai A j Ah ∈ F(T ) consider a prism
from the last definition. By Corollary 2.12 it is unique up to isometry. Canonical horocycles
coming from (Sg,n, d) detetmine canonical horospheres at each ideal vertex of the prism.

Definition 3.2 A prismatic complex K (T , r) is a metric space obtained by glying all these
prismsvia isometries of lateral faces.Wechoose glying isometries in such away that canonical
horospheres at ideal vertices of prisms match together.

For the sake of brevity, in what follows we will write just complex instead of prismatic
complex.

If K (T , r) exists, then it is uniquely determined due to Corollary 2.12. The solid angle
of a prism at an ideal vertex cuts a Euclidean triangle out of the canonical horosphere at this
vertex. In a complex K these triangles around an ideal vertex Ai are glued together to form
a Euclidean conical polygon, which we call the canonical horosection at Ai in K .

Every complex is a complete hyperbolic cone manifold with polyhedral boundary. The
boundary consists of two components. The union of upper faces forms the upper boundary
coming with a natural isometry to (Sg,n, d). This isometry is an important part of the data of
K . Formally, a complex is not only ametric space, but a pair: metric space plus an isometry of
its upper boundary to (Sg,n, d). For convenience, in what follows we will just write (Sg,n, d)
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for the upper boundary of K . The union of lower faces forms the lower boundary, which
is isometric to (Sg,n, d ′) for a polyhedral hyperbolic metric d ′ with conical singularities
at points Bi . We consider T as a geodesic triangulation of both components. The dihedral
angle φ̃e of an edge e ∈ E(T ) is the sum of dihedral angles in both prisms containing e
and θ̃e = π − φ̃e is its exterior dihedral angle. (We use tilde in our notation to highlight
when we measure angles not in particular prism, but in the whole complex.) The total conical
angle ω̃i of an inner edge Ai Bi is the sum of the corresponding dihedral angles of all prisms
containing Ai Bi and κ̃i = 2π − ω̃i is the curvature of Ai Bi . The conical angle of the point
Bi in the lower boundary is also equal to ω̃i .

Definition 3.3 A complex K is called convex if for every upper edge its dihedral angle is at
most π . If K = K (T , r), then the pair (T , r) is also called convex.

Our main aim is to give a variational proof of the following result:

Theorem 3.4 For every cusp metric d on Sg,n, g > 1, n > 0 with the set of cusps A and a
function κ ′ : A → (−∞; 2π) satisfying∑

Ai ∈A
κ ′(Ai ) > 2π(2 − 2g)

there exists a unique up to isometry convex complex with the upper boundary isometric to
(Sg,n, d) and the curvature κ̃i of each edge Ai Bi equal to κ ′(Ai ).

Proposition 3.5 Theorem 3.4 implies Theorem 1.3.

Proof By Theorem 3.4, there exists a complex K with all curvatures κ̃i = 0. We need to
show that it is isometric to a Fuchsian polyhedron in a Fuchsian manifold. By Corollary
3.5.3 in [17], there exists a unique up to isometry complete hyperbolic 3-manifold F without
boundary containing K with π1(F) = π1(K ) = π1(Sg) = G. By Proposition 3.1.3 in
[17], there exists a discrete and faithful representation of ρ : G → Iso+(H3) such that
F = H

3/ρ(G). The lower boundary of K is lifted to a totally umbilical ρ-invariant plane
in H

3. Thus, ρ is a Fuchsian representation. It is straightforward that K in F is equal to the
closure of the convex hull of the points Ai .

Conversely, if P is a Fuchsian polyhedron, then it is isometric to a convex complex K
with all curvatures κi = 0. Thereby, the uniqueness in Theorem 3.4 implies the uniqueness
in Theorem 1.3. ��

In Sect. 4.3 we will show that Theorem 3.4 is equivalent to Theorem 1.4. In the rest of
this section we prove the following lemma:

Lemma 3.6 Let K be a convex complex. Then each prism of K is ultraparallel.

Proof Embed a prism Ai A j Ah Bh B j Bi ⊂ K in H
3. First, we show that the plane Ai A j Ah

(denote in by M1) can not intersect the plane Bi B j Bh (denote it by M2) in H
3.

Suppose the contrary. Let these two planes intersect and l be the line of intersection.
The intersection of M1 with ∂∞H

3 is a circle. The line l divides it into two arcs. All points
Ai , A j and Ah belong to the same arc and one of them lies between the two others. Assume
that this point is Ai . Then we call the edge A j Ah heavy and two other edges light (see Fig. 4).

Let χ be the dihedral angle between M1 and M2. For every x ∈ M1, we have

sinh dist(x, M2) = sinh dist(x, l) sin(χ),
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Fig. 4 To the proof of Lemma 3.6

by the law of sines in a right-angled hyperbolic triangle.
It follows that the distances from the light edges to M2 are both strictly bigger than the

distance from the heavy edge. For the dihedral angles of the upper edges we have φi > π/2
and φ j , φh < π/2.

Indeed, let x ∈ A j Ah be the nearest point from this edge to M2, x ′ ∈ M2 and x ′′ ∈ l be
the bases of perpendiculars from x to M2 and to l. Then ∠xx ′x ′′ = π/2, ∠x ′xx ′′ < π/2 and
φi = π −∠x ′xx ′′ > π/2. Next, we consider the ideal vertex A j . Using that the sum of three
dihedral angles at one vertex is equal π we obtain

ω j + φi + φh = π.

It implies that φh < π/2. Similarly, φ j < π/2.
Edge A j Ah can not be glued in T neither with the edge Ai A j nor with Ai Ah because these

edges have bigger distances to the lower face than A j Ah . Therefore, there is another triangle
A j Ah Ag ∈ T containing A j Ah . Embed the corresponding prism A j Ah Ag Bg Bh B j ⊂ K
in H

3 in such a way that it is glued with the former prism over the face A j Ah Bh B j via an
orientation-reversing isometry. Then Bg ∈ M2.

The total dihedral angle at A j Ah is less or equal than π . Hence, the plane A j Ah Ag also
intersects M2. Therefore, the light edges and the heavy edge are defined for the new prism
in the same way. Moreover, it is clear that in this prism the edge A j Ah is light. Hence, we
see that the distance from the new heavy edge to M2 is strictly less than the distance from
A j Ah . Now for this edge we choose the next prism containing it and continue this process.
The distances from the heavy edges to M2 are strictly decreasing in the obtained sequence
of prisms. But the number of prisms in K is finite. We get a contradiction.
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It remains to consider the case when the upper face is asymptotically parallel to the lower
face. It is clear that the contradiction is just the same. ��
Remark 3.7 This is equivalent to the following statement in the language of [13] (Theorem
14): if T is a Delaunay triangulation of a hyperbolic polyhedral metric d on Sg,n , then each
triangle has a compact circumcircle (i.e. not horocyclic or hypercyclic).

4 The space of convex complexes

Denote by K the set of all convex complexes with the upper boundary isometric to (Sg,n, d)

considered up to marked isometry (an isometry between K1 and K2 is called marked if it
induces an isometry from (Sg,n, d) to itself isotopic to identity with respect to A). In this
section we are going to give K a nice parametrization.

Every K ∈ K can be represented as K (T , r). Clearly, if K ′ = K (T ′, r′), K ′′ = K (T ′′, r′′)
and r′ = r′′, then complexes K ′ and K ′′ are not marked isometric. This defines a map, which
we denote by r : K → R

n abusing the notation. In Sect. 4.1 we prove

Lemma 4.1 Let (T ′, r) and K ′′ = (T ′′, r) be two convex pairs. Then the complexes K ′ =
K (T ′, r) and K ′′ = K (T ′′, r) are marked isometric.

Corollary 4.2 The map r : K → R
n is injective.

Hence, K can be identified with a subset of Rn . In Sect. 4.2 we show that

Lemma 4.3 The image r(K) = R
n.

4.1 The proof of Lemma 4.1

First, we introduce some machinery. Recall that the upper boundary of a convex complex
K = K (T , r) is identified with (Sg,n, d). Define a function

ρK : Sg,n → R>0

to be the distance from X ∈ Sg,n to the lower boundary of K .

Definition 4.4 The function ρK is called the distance function of K .

We need an explicit expression for ρK . Let s : [x0; x1] → Sg,n be a geodesic segment
parametrized by length such that its image is contained in a triangle of T . Consider a trapezoid
obtained from the segment s and its projection to the lower boundary. Develop it to H

2 and
extend its upper and lower boundaries to two ultraparallel lines ψ1 and ψ2 respectively. The
first formula of Lemma 2.9 shows that ρK ◦ s has the form

arcsinh(b cosh(x − a)) (2)

for some real number a and positive real number b. Indeed, b is the hyperbolic sine of the
distance between ψ1 and ψ2 and (x − a) is the distance from a point of ψ1 to the closest
point on ψ1 to ψ2.

Definition 4.5 The function ρ : R → R of the form (2) is called a distance-like function.
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We establish some basic properties of distance-like functions that we need for the proof
of Lemma 4.1.

Proposition 4.6 Let

ρ1(x) = arcsinh(b1 cosh(x − a1)),

ρ2(x) = arcsinh(b2 cosh(x − a2))

be two distance-like functions such that the pair (a1, b1) is distinct from the pair (a2, b2).
Then the equation ρ1(x) = ρ2(x) has at most one solution.

Proof Note that if a1 = a2, then the function
cosh(x−a1)
cosh(x−a2)

has the derivative sinh(a2−a1)
cosh2(x−a2)

, which

has constant nonzero sign. Therefore, the equation ρ1(x) = ρ2(x), which is equivalent to
b2
b1

= cosh(x−a1)
cosh(x−a2)

, has at most one solution.
If a1 = a2, but b1 = b2, then for all x , ρ1(x) = ρ2(x). ��

Proposition 4.7 Let

ρ1(x) = arcsinh(b1 cosh(x − a1)),

ρ2(x) = arcsinh(b2 cosh(x − a2))

be two distance-like functions such that for x0 ∈ R we have ρ1(x0) = ρ2(x0) and ρ′
1(x0) >

ρ′
2(x0). Then a2 > a1.

Proof We have

ρ′
1(x0) = b1 sinh(x0 − a1)√

b21 cosh
2(x0 − a1) + 1

>
b2 sinh(x0 − a2)√

b22 cosh
2(x0 − a2) + 1

= ρ′
2(x0).

Using ρ1(x0) = ρ2(x0) and the fact that b1, b2 are positive we obtain that this is equivalent
to

tanh(x0 − a1) = sinh(x0 − a1)

cosh(x0 − a1)
>

sinh(x0 − a2)

cosh(x0 − a2)
= tanh(x0 − a2).

The function tanh is strictly increasing. This shows the desired statement. ��
Proposition 4.8 Let ψ1 and ψ2 be two distinct geodesic lines in H

2 meeting at a point
A ∈ ∂∞H

2 and ultraparallel to a line ψ0. Let A be decorated by an horocycle and ψ1, ψ2 be
parametrized by the (signed) distance to this horocycle. Denote the distance functions from
ψ1 and ψ2 to ψ0 by

ρ1(x) = arcsinh(b1 cosh(x − a1)),

ρ2(x) = arcsinh(b2 cosh(x − a2))

respectively. Then ρ1(x) − ρ2(x) has a constant nonzero sign. Besides, if ρ1(x) > ρ2(x),
then a2 > a1.

Proof The first claim is straightforward. For the second claim, let Ci ∈ ψi be the closest
point from ψi to ψ0 for i = 1, 2. Recall that bi is the hyperbolic sine of the distance from ψi

to ψ0 and ai is the distance from Ci to the horocycle. Observe that the sign of ρ1(x) − ρ2(x)

is the sign of b1 − b2. Also note that a1 = a2 if and only if b1 = b2 (if and only if lines ψ1

and ψ2 coincide) and ai decreases as bi grows. ��
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Fig. 5 Graphics of distance-like and piecewise distance-like functions

Consider K = K (T , r) and a geodesic s : R → Sg,n joining two cusps (or, possibly, a
cusp with itself), distinct from the edges of T and parametrized by (signed) distance to the
horocycle decorating one of its endpoints. Let

R = (−∞; x0] ∪ [x0; x1] ∪ . . . ∪ [xk;+∞)

be the subdivision induced by intersections of s with the strictly convex edges of T . For
convenience, we set x−1 = −∞ and xk+1 = +∞. For every i = 0, . . . , k +1, the restriction
of ρK ◦ s to (xi−1; xi ) has the form (2): arcsinh(bi cosh(x − ai )). As our subdivision is
induced by intersections with only strictly convex edges of T , each pair (ai , bi ) is distinct
from the pair (ai+1, bi+1). The intersection points x0, . . . , xk are kink points of ρK ◦ s in
the sense that ρK ◦ s is not differentiable at these points, but both the left derivative and the
right derivative exist. It is clear that convexity of K means that at every kink point xi the left
derivative of ρK ◦ s is strictly greater than the right derivative. We call a function of this type
a piecewise distance-like function (Fig. 5).

Proposition 4.9 Let ρ(x) = arcsinh(b cosh(x − a)) be a distance-like function and ρ̃(x)

be a piecewise distance-like function. By ρi (x) we denote the distance-like function, which
coincides with ρ̃(x) on (xi−1; xi ). Assume that for some i and for all x ∈ R we have
ρ(x) > ρi (x). Then ρ(x) > ρ̃(x) for all x ∈ R.

Proof If i = 0, then using Proposition 4.6 for any x ∈ [xi−2; xi−1) we obtain ρi (x) >

ρi−1(x). Similarly, if i = k + 1, then for any x ∈ (xi ; xi+1], ρi (x) > ρi+1(x). By induction,
for any x /∈ [xi−1; xi ] we get ρi (x) > ρ̃(x). Then for all x ∈ R we have ρ(x) > ρ̃(x). ��

Now we can prove Lemma 4.1:

Proof Let A be the intersection point of an edge e′ of T ′ with an edge e′′ of T ′′. The edge
e′ is a geodesic in (Sg,n, d), we parametrize it by the distance to the horocycle at one of its
endpoints and look at the restriction of the distance function ρK ′ . We denote the resulting
distance-like function by ρ. Consider also the piecewise distance-like function ρ̃(x) obtained
from the restriction of the distance function ρK ′′ to e′. We prove that ρ̃(x) � ρ(x) for every
x ∈ R.

As before, R = (−∞; x0] ∪ [x0; x1] ∪ . . . ∪ [xk;+∞) is the decomposition for ρ̃, and ρi

is a distance-like function, which coincides with ρ̃ on (xi−1; xi ). By Proposition 4.8, the sign
of ρ(x) − ρ0(x) is constant. Suppose that ρ0(x) < ρ(x). Then, by Proposition 4.8, we have
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a < a0. By Proposition 4.9, we see that for all x ∈ R, ρ̃(x) < ρ(x) and by Proposition 4.7
and induction we get a0 < a1 < . . . < ak+1. Therefore, a < ak+1. On the other hand,
consider the parametrization of e′ by distance to the horosphere at another endpoint. Then
the new distance functions are ρ(le′ − x) and ρ̃(le′ − x), where le′ is the length of edge e′.
We apply Proposition 4.8 one more time and obtain le′ − a < le′ − ak+1. This is equivalent
to ak+1 < a and gives a contradiction. We also obtain the same contradiction, if we suppose
that ρk(x) < ρ(x).

Now suppose that for 1 � i � k and a point y ∈ [xi−1; xi ] we have ρ̃(y) < ρ(y). By
Proposition 4.6 and induction we know that ρi is strictly bigger than ρ̃ outside of [xi−1; xi ].
Also by Proposition 4.6 we see that either for all x ∈ (−∞; y] or for all x ∈ [y;+∞) we
have ρ(x) > ρi (x). Altogether this gives us that either ρ0(x) < ρ(x) or ρk(x) < ρ(x). In
any way we reduced ourselves to a previous case.

Thereby, ρ̃(x) � ρ(x) and we infer that ρK ′′(A) � ρK ′(A). Similarly, we obtain that
ρK ′(A) � ρK ′′(A) if consider the distance functions restricted to the edge e′′. Therefore,
ρK ′(A) = ρK ′′(A).

Let A∗ be the set of all cusps and all intersection points of the edges of T ′ with the
edges of T ′′. The union E(T ′) ∪ E(T ′′) decomposes Sg,n into convex geodesic polygons.
We subdivide each polygon into geodesic triangles and obtain a triangulation T with the
vertex set A∗ refining both T ′ and T ′′. This triangulation induces a subdivision of both K ′
and K ′′ into prisms (not all semi-ideal). Two corresponding prisms are isometric because of
Corollary 2.12. In turn we extend these isometries to a marked isometry of K ′ to K ′′.

��
From now on we denote by K (r) the convex complex defined by r ∈ R

n if it exists. If
K = K (T , r), we call an edge of T flat in K if its dihedral angle is equal to π . Otherwise,
we call it strictly convex in K . Lemma 4.1 implies

Corollary 4.10 If (T ′, r) and (T ′′, r) are two convex pairs, then each strictly convex edge of
T ′ in K (r) is an edge of T ′′ and vice versa. Hence, T ′ and T ′′ differ only in flat edges of
K (r).

Definition 4.11 Let K be a complex. We say that two point of its upper boundary lie in the
same face if they can be connected by a path that does not intersect strictly convex edges of K .
This defines an equivalence relation. A face of K is the union of all points in an equivalence
class.

Thereby,we obtain the decomposition of the upper boundary of K into faces. By definition,
a point of a strictly convex edge does not belong to any face. A pair (T , r) is convex if and
only if T refines the face decomposition of K (r).

Lemma 4.12 A face � of a convex complex K is simply connected.

Proof First, we prove that if � is not simply connected, then there is a closed geodesic in �.
Let T be a triangulation such that K = K (T , r). Choose a simple homotopically nontrivial

closed curve ψ in � that is transversal to interior edges of �. Develop all triangles of T that
intersect ψ to H

2 (each triangle is developed once). We obtain an ideal polygon P . The
triangulation T is lifted to a triangulation of P . All inner edges of P are lifts of flat edges of
K .

Let τ : P → � be the projection. It is injective in the interior, but glue at least two
boundary edges of P to a flat edge of �. Denote them by AB and C D: τ(AB) = τ(C D),
τ(A) = τ(C) and τ(B) = τ(D) (note that A may coincide with C and B may coincide
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with D). For a point X ∈ AB there is a unique point Y ∈ C D such that τ(Y ) = τ(X). A
hyperbolic segment XY projects to almost a geodesic loop in�. It can have a kink point only
at τ(X) = τ(Y ). Clearly, τ(XY ) is a closed geodesic if and only if ∠B XY + ∠XY D = π .
It is clear that as X tends to B, the point Y tends to D and this sum tends to 2π . Similarly,
as X tends to C , this sum tends to 0. Therefore, there exists X such that this sum is equal to
π . In this case τ(XY ) is a closed geodesic ψ ′ ⊂ �.

Consider the distance function ρK . Its restriction to ψ ′ must be periodic, because ψ ′ is
a closed geodesic. On the other hand ψ ′ intersects no strictly convex edges. Therefore, the
restriction of ρ to ψ ′ has the form (2), which is not periodic. We obtain a contradiction. ��
Corollary 4.13 For every r ∈ R

n there are finitely many triangulations T such that the pair
(T , r) is convex.

For a triangulation T denote by K(T ) ⊂ K = R
n the set of all r ∈ R

n such that the
pair (T , r) is convex. This defines a subdivision of Rn into cells corresponding to different
admissible triangulations. It is evident that the boundary of K(T ) is piecewise analytic.

4.2 Proof of Lemma 4.3

Lemma 4.14 The pair (T , r) is convex if and only if T is an Epstein–Penner triangulation
for r ∈ R

n.

Clearly, this lemma implies Lemma 4.3. Moreover, the face decomposition of K (r) is
exactly the Epstein–Penner decomposition of (Sg,n, d) with decoration defined by r and the
subdivision K = ⋃K(T ) is the Epstein–Penner subdivision of Rn .

Proof Let r ∈ R
n and let T be one of its Epstein–Penner triangulations. Represent Sg,n as

H
2/� and lift T to a triangulation T̂ of H2. As in Sect. 2.2, we denote the polar vector

to a horosphere L by l̄, the Epstein-Penner convex hull by C and the set of vertices of C
by L. Let � = Ai A j Ah be a triangle of T̂ , Li , L j and Lh be the horocycles at Ai , A j

and Ah defined by r, i.e. at distances equal to ri , r j , rh from the canonical ones. The affine
plane M = M(�) ⊂ R

1,2 spanned by the points li , l j and lh is a supporting plane of C .
By Lemma 2.4, M is space-like, which means that its normal m (in the direction of C) is
time-like. Let LM = M ∩ L. As M is a supporting plane to C , for l ∈ L we have

〈m, l〉 =
{

−1 if l ∈ LM ,

< −1 otherwise.

Now assume that R1,2 ↪→ R
1,3 as {x ∈ R

1,3 : x4 = 0} and H
2 is embedded in H

3

respectively. Extend each horocycle to an horosphere. We continue to denote them by Li .
Let n be the intersection point of dS3 with the ray m + λe4, λ > 0.

By construction we have

〈n, l〉 =
{

−1 if l ∈ LM ,

< −1 otherwise.

Let N = N (�) ⊂ H
3 be the plane obtained from the time-like linear plane in R

1,3

orthogonal to n. From Lemma 2.1 we see that each horosphere L (with l ∈ L) lies in the
closed halfspace N− and N is tangent to L if and only if l ∈ LM (otherwise N does not
intersect L). We summarize it in the following description (we proved only in one direction,
but the converse is clear):
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Proposition 4.15 A triangle Ai A j Ah is contained in a face of the Epstein–Penner decom-
position if and only if all canonical horospheres are on one side from the common tangent
plane to the horospheres Li , L j and Lh.

By Bi , B j and Bh denote the tangent points of N with Li , L j and Lh respectively. We
see that the prism Ai A j Ah Bh B j Bi is a semi-ideal prism with lateral edges ri , r j and rh . It
follows that the pair (T , r) is admissible. We construct the complex K = K (T , r).

It remains to check the convexity. Take two adjacent triangles �′ = Ai A j Ah , �′′ =
A j Ah Ag of T̂ and corresponding semi-ideal prisms. In the construction above, points Ai ,
A j , Ah and Ag lie in the same plane and the lateral faces of the prisms are not glued. To
glue them, we should bend these prisms around the edge A j Ah . The question is in which
direction do we bend.

Clearly, lg ∈ LM(�′) if and only if the plane N ′ = N (�′) coincides with the plane
N ′′ = N (�′′), which is equivalent to the condition φi + φg = π (edge A j Ah is flat). From
now on assume that N ′ and N ′′ are distinct planes.

Let Y be the intersection point of Ai Ag and A j Ah . Parametrize the geodesic line Ai Ag

by length and let y be the coordinate of Y . By ρ denote the distance function ρK restricted to
Ai Ag . It has a kink point at y and we need to check that it is concave. Let ρ1(x) and ρ2(x) be
the distance functions from Ai Ag to the planes N ′ and N ′′ respectively. Hence, ρ1 coincides
with ρ over (−∞; y] and ρ2 coincides over [y;+∞). We have not proved yet that N ′ and
N ′′ are ultraparallel toH2. However, both Ai and Ag are in the same halfspaces N ′− and N ′′−.
Therefore, the whole line Ai Ag belongs to these halfspaces and ρ1, ρ2 have the form (2). By
Proposition 4.6, the function ρ1(x) − ρ2(x) has constant sign over the segments (−∞, y)

and (y,+∞). If it is positive for x > y, then ρ is concave at y and K is strictly convex at
the edge A j Ah .

Consider x approaching+∞. Take a sphere centered at the corresponding point X ∈ Ai Ag

(i.e. the set of points ofH3 equidistant to X ) tangent to N ′′. This sphere tends to the horosphere
Lg at Ag as x approaches +∞. This horosphere belongs to the interior of N ′−, hence for
some sufficiently large x , the sphere at X does not intersect N ′. It implies that ρ2(x) < ρ1(x)

and A j Ah is strictly convex.
We proved that if T is Epstein-Penner for r, then (T , r) is a convex pair. Assume that T ′ is

another face triangulation of K (r). According to Corollary 4.10, T and T ′ can differ only in
flat edges. By Lemma 4.12, faces of K are ideal polygons, hence T and T ′ can be connected
by a sequence of flips of flat edges. Let Tk be an Epstein–Penner triangulation for r and Tk+1

be obtained from Tk by flipping an edge A j Ah to Ai Ag . We saw before that an edge A j Ah

between triangles Ai A j Ah and A j Ah Ag is flat if and only if all l̄i , l̄ j , l̄h , l̄g are in the same
face of C . This means that then Tk+1 also is Epstein–Penner for r. ��

4.3 Equivalence to Theorem 1.4

Here we show that Theorem 3.4 is equivalent to Theorem 1.4. We need two facts. The first
one is due to Akiyoshi [1]:

Theorem 4.16 For each hyperbolic cusp metric d on Sg,n there are finitely many Epstein-
Penner triangulations of (Sg,n, d).

We remark that for our purposes it is enough to establish a weaker and easier fact that
the number of triangulations is locally finite. For the sake of completeness we sketch a proof
here. For r in a compact domain R ⊂ R

n the distance function ρK of K = K (r) is bounded
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from below by a constant depending on R. By Corollary 2.13, the length of an upper edge
of K is bounded from above. But the lengths of geodesics between cusps on (Sg,n, d) form
a discrete set (see e.g. [18], Lemma 4.1).

Let d ′ be a polyhedral hyperbolic metric on Sg,n and T be its geodesic triangulation.
Denote the set of marked points by B = {B1, ..., Bn}. Take a triangle Bi B j Bh . Clearly, there
is a unique up to isometry semi-ideal prism that have Bi B j Bh as its lower face. Glue all
such prisms together and obtain a complex K (d ′, T ) with the lower boundary isometric to
(Sg,n, d ′). Gluing isometries are uniquely defined if we fix the horosphere at each upper
vertex passing through the respective lower vertex and match them together: one can see that
this is the only way of gluing to obtain a complete metric space.

Lemma 4.17 The complex K (d ′, T ) is convex if and only if T is a Delaunay triangulation of
(Sg,n, d ′). Besides, any two convex complexes with isometric lower boundaries are isometric.

Proof In [16], Section 3, Leibon provides a geometric observation showing that the intersec-
tion angle between circumscribed circles of two adjacent triangles Bi B j Bh and B j Bh Bg is
equal to the dihedral angle of the upper edge A j Ah . Clearly, a triangulation is Delaunay if
and only if all these intersection angles are at most π . This gives us the first claim. Besides,
if a diagonal switch transforms a Delaunay triangulation to Delaunay, then it is done in an
inscribed quadrilateral and the Leibon observation shows that it switches a flat edge in the
upper boundary and, thereby, does not change the complex. The fact that two Delaunay
triangulations of (Sg,n, d ′) can be connected by a sequence of diagonal switches through
Delaunay triangulations is proved in [13], Proposition 16. This settles the second claim.

However, we remark that another proof of the second claim follows from similar ideas as
our proof of Lemma 4.1. Indeed, for a point X /∈ B in the lower boundary of K = K (d ′, T )

let σK (X) be the length of the segment from X to the upper boundary of K orthogonal to
its lower boundary. This is the same as distance function ρK in Sect. 4.1, but now defined
on the lower boundary. We observe that the restriction of σK to a geodesic parametrized by
length has the form

σ(x) = arctanh(b cosh(x − a))

for 0 < b < 1 and analogues of all propositions for ρ(x) of Sect. 4.1 can be obtained
for σ(x). The only difference is that σ(x) is defined over an open bounded segment of R,
hence we should keep track on the domains of definition. Nevertheless, it does not provide
substantial new difficulties and we omit the details. After that we can see that an ultraparallel
prism is defined by its lower boundary and the lengths of lateral edges for non-ideal upper
vertices. Therefore, the proof of the second claim can be finished in the same way as the
proof of Lemma 4.1. We note that together with other observations of Sect. 4.1 it provides an
alternative proof of Proposition 16 in [13] and of the fact that each Delaunay triangulation
refines the Delaunay decomposition (see [13], Section 2.4). ��

Thus, we denote by K (d ′) the (unique) convex complex that has (Sg,n, d ′) as its lower
boundary.

Lemma 4.18 Theorem 1.4 is equivalent to Theorem 3.4.

Proof It is enough to show that d ′ is discretely conformally equivalent to d ′′ if and only if
the upper boundaries of K (d ′) and K (d ′′) are isometric.

Assume that the upper boundaries of K (d ′), K (d ′′) are both isometric to (Sg,n, d) for
a cusp metric d . Let K be the set of convex complexes realizing (Sg,n, d). Choose a dec-
oration on (Sg,n, d) and identify K with R

n using Lemmas 4.1 and 4.3. First, assume that
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K (d ′), K (d ′′) ∈ K(T ) for a triangulation T . By Lemma 4.17, T is Delaunay for both d ′
and d ′′. Take e ∈ E(T ) and denote its lengths in d ′ and d ′′ by a′ and a′′ respectively. By
r ′

i and r ′
j denote the weights of its endpoints in K (d ′), by r ′′

i and r ′′
j in K (d ′′). Then from

Corollary 2.14 we see that

sinh

(
a′

2

)
= sinh

(
a′′

2

)
exp

(
r ′′

i − r ′
i

2
+ r ′′

j − r ′
j

2

)
.

Thus, d ′ is discretely conformally equivalent to d ′′.
Assume that d ′ and d ′′ are in the different cells K(T ′) and K(T ′′). The decomposition

K = ⋃K(T ) is finite due to Theorem 4.16 and the boundaries of cells K(T ) are piecewise
analytic as subsets ofRn . Then K (d ′) and K (d ′′) can be connected by a path inK transversal
to the boundaries of all cells and intersecting themm times. All intersection points correspond
to distinct convex complexes. Denote their lower boundaries metrics by d1, . . . , dm . Define
also d0 = d ′, dm+1 = d ′′. A segment between di and di+1 of the path belongs to K(Ti ) for
some triangulation Ti . By Lemma 4.17, Ti is Delaunay for both di and di+1. By the previous
argument, they are discretely conformally equivalent. Then so are d0 and dm+1.

In the opposite direction, assume that d ′ and d ′′ are discretely conformally equivalent and
have a common Delaunay triangulation T . Then there exists a function u : B → R such that
for each edge e of T with endpoints Bi and B j we have

sinh

(
lend ′(e)

2

)
= exp(u(Bi ) + u(B j )) sinh

(
lend ′′(e)

2

)
.

Consider K (d ′) and K (d ′′), then T is a face triangulation of both these complexes due to
Lemma 4.17. Metric spaces (Sg,n, d ′) and (Sg,n, d ′′) come with a homeomorphism between
them isotopic to identity on Sg,n with respect to B. This allows us to identify the upper
boundary metrics of K (d ′) and K (d ′′) with elements of the Teichmuller space of hyperbolic
cusp metrics on Sg,n . Choose an horosection at each vertex of the upper boundaries in
both K (d ′), K (d ′′). Let r ′

i and r ′′
i be the distances from the horosections at Ai ∈ A to Bi

in K (d ′) and K (d ′′) respectively. We can choose the horosections such that for every i ,
r ′′

i −r ′
i

2 = u(Bi ). Then Corollary 2.14 shows that for each e ∈ E(T ) its length in the upper
boundary of K (d ′) is the same as in the upper boundary of K (d ′′) (with respect to the chosen
horosections). Therefore, the upper boundary metrics of K (d ′) and K (d ′′) together with the
chosen decorations have the same Penner coordinates, hence they are isometric.

The case, when d ′ and d ′′ are discretely conformally equivalent and do not have a common
Delaunay triangulation T , is inductively reduced to the last case. ��

5 The variational approach

In this section we prove Theorem 3.4. From a function κ ′ we construct a functional Sκ ′ such
that its critical points in R

n are precisely complexes with curvatures prescribed by κ ′. Then
we show that it is strictly concave and that the Gauss-Bonnet condition on κ ′ implies that it
attains the maximal value in Rn .
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5.1 The discrete Hilbert–Einstein functional

For r ∈ R
n let T be any face triangulation of the convex complex K (r). We introduce the

discrete Hilbert–Einstein functional over the space of convex complexes K identified with
R

n :

S(r) := −2vol(K (r)) +
∑

1�i�n

ri κ̃i +
∑

e∈E(T )

le θ̃e. (3)

The curvatures κ̃i and exterior angles θ̃e are measured in K (r). The value S(r) does not
depend on the choice of T , because two face triangulations of K (r) are different only in flat
edges, for which θ̃e = 0.

Consider a function κ ′ : A → (−∞; 2π). We write κ ′
i instead of κ ′(Ai ). Define the

modified discrete Hilbert–Einstein functional:

Sκ ′(r) := S(r) −
∑

1�i�n

riκ
′
i . (4)

Lemma 5.1 For every r ∈ R
n, S(r) is twice continuously differentiable and

∂S

∂ri
= κ̃i . (5)

Proof Assume that r is an interior point ofK(T ) for some triangulation T . Then T is the face
decomposition of the upper boundary of K (r′) for every r′ sufficiently close to r. Hence,
combinatorics of complexes does not change in some neighborhood of r and every total
dihedral angle can be written as the sum of dihedral angles in the same prisms. Clearly,
a dihedral angle in a non-degenerated prism is a smooth function of its edges. Moreover,
by generalized Schläffli’s differential formula (see [20], Theorem 14.5) for a prism P =
Ai A j Ah Bh B j Bi ⊂ K we have

−2dvol(P) = ri dωi + r j dω j + rhdωh + l jhdφi + lihdφ j + li j dφh .

Summing these equalities over all prisms we obtain

−2dvol(K (r)) = −
∑

1�i�n

ri d κ̃i −
∑

e∈E(T )

led θ̃e.

Thus,

d S(r) =
∑

1�i�n

κ̃i dri +
∑

e∈E(T )

θ̃edle =
∑

1�i�n

κ̃i dri .

This gives (5). Since dihedral angles in a prism are smooth functions of edges, we obtain
that S is twice continuously differentiable at r.

Nowconsider the casewhen r belongs to the boundary of someK(T ). Let ei be a coordinate
vector. As the boundary of K(T ) is piecewise analytic, r + λei ∈ K(T ) for some T and
all small enough λ. Therefore, we can compute the directional derivative of S(r) in the
direction ei using the formula (5). For every coordinate direction they are continuous, hence
S is continuously differentiable. In Lemma 5.3 we show that the derivatives of κi are also
continuous, which will finish the proof that S is twice continuously differentiable. ��
Corollary 5.2 For every r ∈ R

n, Sκ ′(r) is twice continuously differentiable and

∂Sκ ′

∂ri
= κ̃i − κ ′

i .
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Corollary 5.2 implies that if r is a critical point of Sκ ′ , then for all i , κ̃i = κ ′
i . In order to

find it we investigate the second partial derivatives of Sκ ′ . It is sufficient to calculate them
for a fixed triangulation T .

Lemma 5.3 Define Xi j := ∂2S
∂ri ∂r j

= ∂κi
∂r j

. Then for every 1 � i � n:

(i) Xii < 0,
(ii) for i = j , Xi j > 0,

(iii) for every 1 � i � n,
∑

1� j�n
Xi j < 0,

(iv) the second derivatives are continuous at every point r ∈ R
n. In particular, this implies

that Xi j = X ji .

Note that a matrix satisfying the properties (i)–(iii) is a particular case of so-called diag-
onally dominated matrices.

Proof Let A1A2A3B3B2B1 be a semi-ideal prism. The solid angle at the vertex A cuts a
Euclidean triangle out of the canonical horosphere at A with side lengths equal to α12, α13

and λ; its respective angles are φ13, φ12 and ω1. Then by the cosine law we have

cos(ω1) = α2
12 + α2

13 − λ2

2α12α13
.

We calculate the derivatives of ω1:

∂ω1

∂α12
= −cot(φ12)

α12
,

∂ω1

∂α13
= −cot(φ13)

α13
.

Calculate the derivatives of α12 from Corollary 2.15:

∂α12

∂r1
= −α2

12 − e−2r1

2α12
,

∂α12

∂r2
= α2

12 − e−2r1

2α12
.

Consider a deformation of this prism fixing the upper face. Then

∂ω1

∂r1
= ∂ω1

∂α12

∂α12

∂r1
+ ∂ω1

∂α13

∂α13

∂r1
=

= cot(φ12)

2α2
12

(α2
12 + e−2r1) + cot(φ13)

2α2
13

(α2
13 + e−2r1), (6)

∂ω1

∂r2
= ∂ω1

∂α12

∂α12

∂r2
= cot(φ12)

2α2
12

(−α2
12 + e−2r1),

∂ω1

∂r3
= ∂ω1

∂α13

∂α13

∂r3
= cot(φ13)

2α2
13

(−α2
13 + e−2r1). (7)

Now consider a complex K = K (T , r). Let Eor (T ) be the set of oriented edges of T :
every edge e ∈ E(T ) gives rise to two oriented edges in Eor (T ). By Eor p

i (T ) ⊂ Eor (T )

denote the set of oriented edges starting at Ai , but ending not in Ai . By Eorl
i (T ) ⊂ Eor (T )

denote the set of oriented loops from Ai to Ai (thereby, every non-oriented loop is counted
twice). By Eor

i denote the union Eor p
i (T )∪ Eorl

i (T ). For an oriented edge �e ∈ Eor
i (T ) denote

by α�e the length of the arc of horosphere at Ai between Ai Bi and �e. To calculate ∂ω̃i
∂ri

we
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consider ω̃i as the sum of angles in all prisms incident to Ai and take their derivatives. If there
are no loops among the upper edges of a prism, then this prism makes a contribution of the
form (6). If there are some loops, the derivative is obtained by summing a contribution of the
form (6) with contributions of the form (7). Combining together the summands containing
the terms α�e we get

∂ω̃i

∂ri
= −Xii =

∑
�e∈Eor p

i (T )

α2
�e + e−2ri

2α2
�e

(cot φ�e+ + cot φ�e−) +

+
∑

�e∈Eorl
i (T )

e−2ri

α2
�e

(cot φ�e+ + cot φ�e−),

where φ�e+ and φ�e− are the dihedral angles at �e in two prisms containing �e.
For every e ∈ E(T ) we have

φ�e+ + φ�e− = φ̃e � π,

where e is �e forgetting orientation. Hence (cot φ�e+ + cot φ�e−) � 0 and ∂ω̃i
∂ri

= −Xii � 0.
Also, equality here means that the total dihedral angle of every edge starting at Ai is equal
to π . But in this case we obtain a non-simply connected face of K , which is impossible by
Lemma 4.12. Similarly, for i = j denote by Eor p

i j (T ) ⊂ Eor p
i the set of all oriented edges

starting at Ai and ending at A j . Then using Corollary 2.15

∂ω̃i

∂r j
= −Xi j =

∑
�e∈Eor p

i j (T )

e−2ri − α2
�e

2α2
�e

(cot φ�e+ + cot φ�e−) =

= −
∑

�e∈Eor p
i j (T )

er j −ri −le

2α2
�e

(cot φ�e+ + cot φ�e−) < 0.

From this we obtain for every i ,

∑
1� j�n

∂ω̃i

∂r j
=

∑
1� j�n

−Xi j =
∑

�e∈Eor
i (T )

e−2ri

α2
�e

(cot φ�e+ + cot φ�e−),

which is greater than zero for similar reasons. It finishes the proof of Lemma 5.3. ��
Corollary 5.4 The functions S and Sκ ′ are strictly concave over Rn.

Proof We show that the Hessian X of S is negatively definite over Rn :

rT Xr =
n∑

i=1

Xii r
2
i +

∑
1�i< j�n

2Xi j ri r j = −
∑

1�i< j�n

Xi j (ri − r j )
2 +

n∑
i=1

r2i

n∑
j=1

Xi j < 0.

��
Remark 5.5 One can see that the concativity of S over a single cell K(T ) follows from the
fact that the volume of a prism is a concave function of its dihedral angles (proved in [16])
by applying of the Legendre transformation.

123



Geometriae Dedicata

We see that Sκ ′(r) has at most one maximum point. We want to prove that it exists.
To this purpose we study what happens with complexes when the absolute values of some
coordinates of r are large. First, we explore the case when all coordinates are sufficiently
negative. Second, we deal with the case when there is at least one sufficiently large positive
coordinate. Then we combine these results and get the desired conclusion.

5.2 The behavior of S�′ near infinity

Lemma 5.6 For every ε > 0 there exists C1 > 0 such that if for some i we have ri < −C1

in r ∈ R
n, then ω̃i < ε in K (r).

Proof Fix ε > 0. Recall that for �e ∈ Eor
i (T ) ending at A j (not necessarily different from

Ai ) Lemma 2.15 gives

α2
�e = er j −ri −le + e−2ri .

Hence,

α2
e � e−2ri .

Consider two consecutive edges �e1 and �e2 ∈ Eor
i (T ). Together with the line Ai Bi they

cut a Euclidean triangle out of the canonical horosphere at Ai with the side length α�e1 , α�e2
and λ. If ri < −C1, then both lengths α�e1 and α�e2 are at least eC1 and λ is bounded from
above by the total length of the canonical horocycle at Ai on (Sg,n, d). The angle ω between
sides of lengths α�e1 and α�e2 in this triangle (which is the dihedral angle of Ai Bi in the prism
containing �e1, �e2 and Ai Bi ) decreases as C1 grows. We choose large enough C1 > 0 such
that if ri < −C1, then the angle at Ai Bi in every such triangle is less than ε/(6(n +2g −2)).

Note that the number of triangles incident to one cusp is bounded from above by three
times the total number of triangles of T , which can be calculated from the Euler characteristic
and is equal to 2(n + 2g − 2). Therefore, the total dihedral angle ω̃i < ε. ��
Lemma 5.7 For every ε > 0 and C1 > 0 there exists C2 > 0 such that if for some i we have
ri � C2 and for every j we have r j � −C1 in r ∈ R

n, then at every point x ∈ Sg,n the
value of distance function ρK (x) � ε, where Sg,n is identified with the upper boundary of
K = K (r).

Proof Let Ji be the canonical horodisk at Ai on (Sg,n, d) and Gi be its boundary. Below
sd(x, G) means the signed distance from a point to an horosphere on (Sg,n, d). Our proof is
based on the following simple propositions:

Proposition 5.8 If x, y ∈ Sg,n, then ρK (x) � ρK (y) − d(x, y).

Proof Let ψ be a shortest geodesic arc connecting x and y in (Sg,n, d). Define N to be
the union of segments in K orthogonal to the lower boundary with one endpoint on ψ and
another one on the lower boundary. Then N can be developed to H

3. Let M be the plane in
H

3 orthogonal to the lower endpoints of N . Clearly,

distH3(x, M) � distH3(y, M) − distH3(x, y) � distH3(y, M) − d(x, y).

On the other hand, it is straightforward that distH3(x, M) = ρK (x) and distH3(y, N ) =
ρK (y). ��
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Proposition 5.9 Let t ∈ R and D( j, t) := {x ∈ Sg,n | sd(x, G j ) � t}. If x ∈ D( j, t), then
ρK (x) � r j − t .

Proof The set D( j, t) is a horodisk centered at A j . Let T be a face triangulation of K . First,
we consider the case when t is small enough, so D( j, t) is contained in the union of triangles
of T incident to A j . If x ∈ D( j, t), then in this case there is a triangle Ai A j Ah containing x .
Develop the prism with this triangle to H3 and let M be the plane passing through the lower
boundary. The horodisk D( j, t) is extended to the horoball E in the development and r j − t is
the signed distance from E to M . We have x ∈ E , therefore ρK (x) = distH3(x, M) � r j − t .

If D( j, t) does not meet this condition, then consider sufficiently small t0 � t such that
D( j, t0) does. For each x ∈ D( j, t) there exists y ∈ D( j, t0) such that d(x, y) � t − t0 and
ρK (y) � r j − t0. Then the desired bound follows from Proposition 5.8. ��

Define t := −C1 − ε and D := ∪ j =i D( j, t), where D( j, t) is defined in Proposition 5.9.
Then this proposition implies that if x ∈ D, then ρK (x) � ε.

Define p := sup{d(x, Ji ) : x ∈ Sg,n\D}. Note that 0 � p < ∞. Indeed, if x ∈ Ji , then
d(x, Ji ) = 0. But the closure of Sg,n\(D ∪ Ji ) is compact (possibly empty).

TakeC2 = ε+p � ε > 0. If x ∈ Ji , thenρK (x) � ri � ε due toProposition 5.9. If x /∈ D,
then there exists y ∈ Ji such that d(x, y) � p and ρK (y) � ri . Then by Proposition 5.8 we
obtain ρK (x) � ε. This finishes the proof. ��

From Corollary 2.13 we see that

Proposition 5.10 For every ε > 0 there exists C > 0 such that if the distance ρe from an
edge e in the upper boundary of a complex K to the lower boundary is greater than C, then
ae < ε, where ae is the length of the corresponding lower edge.

Next proposition is straightforward:

Proposition 5.11 For every ε > 0 there exists δ > 0 such that if in a hyperbolic triangle
every edge length is less than δ, then the sum of its angles is greater than π − ε.

Combining three last facts together we obtain

Corollary 5.12 For every ε > 0 and C1 > 0 there exists C2 > 0 such that if for some i we
have ri � C2 and for every j we have r j � −C1 in r ∈ R

n, then in K (r)∑
1�i�n

ω̃i � 2π(n + 2g − 2) − ε.

Now we are able to prove that Sκ ′ attains its maximal point at Rn .

Lemma 5.13 Consider a cube Q in R
n: Q = {r ∈ R

n : max(|ri |) � q}. If∑
1�i�n

κ ′
i > 2π(2 − 2g), (8)

then for sufficiently large q, the maximum of Sκ ′(r) over Q is attained in the interior of Q.

Proof Let μi := 2π − κ ′
i and μ := min(μi : 1 � i � n) > 0. The condition (8) can be

rewritten as

2π(n + 2g − 2) >
∑

1�i�n

μi .
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Take C1 from Lemma 5.6 for ε = μ and C2 from Corollary 5.12 for C1 and ε = ε0 where

0 < ε0 < 2π(n + 2g − 2) −
∑

1�i�n

μi .

Let q > max{C1, C2}. The cube Q is convex and compact, S is concave, therefore S reaches
its maximal value over Q at some point r0 ∈ Q. Suppose that r0 ∈ bd Q. Then there are two
possibilities: either there is i such that r0i < −C1 < 0 or for every i we have r0i � −C1.

In the first case by Lemma 5.6, ω̃i < μ � μi . Therefore,

μi − ω̃i = κ̃i − κ ′
i = ∂Sκ ′

∂ri

∣∣∣∣
r=r0

> 0.

Let vi be the i-th coordinate vector. We can see that for small enough ν > 0, Sκ ′(r0 +νvi ) >

Sκ ′(r0) and r0 + νvi ∈ Q, which is a contradiction.
In the second case consider i such that |r0i | = q . Then r0i = q > C2 (because if r0i = −q ,

then the first case holds). Therefore, by Corollary 5.12 we have∑
1�i�n

ω̃i � 2π(n + 2g − 2) − ε0 >
∑

1�i�n

μi .

Consider two sets I = {i : 1 � i � n, r0i = q} and J = [n]\I . Clearly, if j ∈ J , then
∂Sκ′
∂r j

∣∣∣
r=r0

= 0. Therefore, ω̃ j = μ j . Then we have

∑
i∈I

ω̃i >
∑
i∈I

μi .

Hence, for some i ∈ I we obtain ω̃i > μi and so ∂Sκ′
∂ri

∣∣∣
r=r0

< 0. Therefore, for small

enough ν > 0, Sκ ′(r0 − νvi ) > Sκ ′(r0) and r0 − νvi ∈ Q, which is a contradiction. ��
This finishes the proof of Theorem 3.4.
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