
Transparent Application
Adjustment for Efficient and

Elastic Execution in the Cloud

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Rostyslav Zabolotnyi
Registration Number 1128386

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.Prof. Schahram Dustdar

External reviewers:
Adam Barker. University of St Andrews, England.
Frank Leymann. University of Stuttgart, Germany.

Vienna, 24th August, 2015
Rostyslav Zabolotnyi Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Declaration of Authorship

Rostyslav Zabolotnyi
Tigergasse 23-27 20/2, Wien, Austria

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 24th August, 2015
Rostyslav Zabolotnyi

iii

Acknowledgements

This PhD thesis defines an ultimate accomplishment of my academic research career in
the Distributed Systems Group at TU Wien. Looking back over the last four years, I can
clearly confirm that it was an interesting experience that broadened my understanding
of computer science and university life.

First, I would like to thank my aunt Oksana Senchuk for finding and recommending me
such an interesting opportunity. Likewise, I would like to thank Prof. Hannes Werthner,
Prof. Hans Tompits and Ms. Clarissa Schmid for welcoming me as a participant of the
Vienna PhD School of Informatics and helping me with any study- or research-related
issue I had. Equally, I would like to express my gratitude to Prof. Schahram Dustdar
that agreed to work with me, accepted me in the Distributed Systems Group, and guided
me through my research and studies.

Furthermore, I want to thank all my colleagues from the Distributed Systems Group
and the PhD School for the fruitful discussions, support and collaboration. Notably, I
appreciate Philipp Leitner, Waldemar Hummer, Vitaliy Liptchinsky, Benjamin Satzger,
and Alessio Gambi for the help in shaping my research and a fruitful cooperation that
developed into the results that I am presenting in this thesis. Similarly, I am thankful
to Philipp Hoenisch who served me as the good example in almost every research and
development-related activity. I am also immensely grateful to Ass. Prof. Stefan Schulte,
whose facilitation and guidance over the last two years were perhaps the main reason I
actually completed my research work at all.

My special thanks are devoted to my family and friends, particularly to Serwah Sa-
betghadam, Konstantin Selyunin, and Maryna Kostikova, who supported me emotionally,
added colors, and adventures during my stay in Vienna.

Finally, I am grateful for financial support from the Vienna PhD School of Informatics
and European Community’s Seventh Framework Programme under grant agreement
318201 (SIMPLI-CITY).

v

Abstract

Cloud computing rapidly surpassed the phase of initial adoption and quickly gains
momentum on the market of information technologies. Companies, startups and regular
users leverage the cloud to avoid infrastructure or middleware costs, to gain flexibility in
computing usage and to obtain unlimited computational or storage resources available
on demand. However, along with cloud computing’s benefits, new challenges arrived. In
order to achieve the advantages of the cloud, developers have to redesign their existing
applications and build new ones with scalability and elasticity in mind. Additionally,
as the market of cloud providers developed, two competing application development
paradigms emerged. When bringing an application to the cloud, developers have to
decide if they follow the Infrastructure as a Service model, which provides flexibility and
software architecture freedom, or the Platform as a Service model that offers a higher
level of abstraction and a simpler application development process.

This thesis addresses emerging cloud computing challenges presenting a transparent
application distribution approach based on the JCloudScale middleware. The described
cloud application development approach hides boilerplate cloud interaction code from
developers and allows focusing on the business logic of the application instead. Providing
benefits common to Platform as a Service solutions, the discussed approach allows keeping
flexibility and freedom that is missing in alternatives. However, this approach brings
in a set of distinctive challenges, that are targeted in this work. To solve the issue of
transparent application code integrity and synchronization, a solution for seamless code
distribution was built. To simplify the complexity of elastic application management, a
scaling definition language based on complex event processing application architecture
was designed. Finally, targeting effective cloud resource usage, a profiling-based task
scheduling solution was proposed. Each solution and framework, presented in this thesis,
denote the steps on the ongoing road to achieve the declared goal of transparent cloud
application distribution.

Developed approaches and solutions were thoroughly validated using accomplished
user studies and performance evaluations. The obtained results show that the presented
transparent cloud application development approach is appealing to developers, increases
productivity and simplifies cloud migration or cloud application construction without
significant performance costs.

vii

Contents

Acknowledgements v

Abstract vii

Contents ix

List of Figures xiii

List of Tables xiv

List of Listings xv

Earlier Publications xix

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Research Questions . 4
1.4 Scientific Contributions . 6
1.5 Structure of the Work . 8

2 Background 9
2.1 Cloud Computing . 9

2.1.1 Definition of Cloud Computing . 9
2.1.2 Elastic Computing . 10
2.1.3 Cloud Computing Service Models 11

2.2 Cloud Computing Communication . 11
2.2.1 Communication Middleware . 12
2.2.2 Communication in the Cloud . 13

2.3 Event-Driven Architecture . 14
2.4 Aspect-Oriented Programming . 15

3 Related Work 19
3.1 Related Work on Transparent Distribution Frameworks 19

ix

3.2 Related Work on Transparent Code Distribution 23
3.3 Related Work on Scaling Behavior Definition 24
3.4 Related Work on Profile-Based Task Scheduling 25

4 Case Study 27

5 The JCloudScale Middleware 31
5.1 Basic Notions . 31

5.1.1 Interacting With Cloud Objects . 34
5.1.2 Static Fields and Methods in Cloud Objects 35
5.1.3 Passing Data Objects . 36
5.1.4 Fault Handling . 37

5.2 Application Code Distribution Framework 38
5.2.1 Program Code Distribution Challenges 38
5.2.2 Code Distribution Framework Overview 39
5.2.3 Missing Code Detection . 40
5.2.4 Communication Middleware . 41
5.2.5 Trusted Code Storage Location . 42
5.2.6 Code Versioning . 42
5.2.7 Code Caching . 43
5.2.8 Batch Loading . 44
5.2.9 Summary . 45

5.3 Target Application Development Process 45
5.3.1 Target Application Setup . 45
5.3.2 COs Selection . 46
5.3.3 Configuring JCloudScale . 48
5.3.4 Development Process . 50

6 Scaling Behavior 53
6.1 Autonomic Elasticity via Complex Event Processing 53
6.2 Cloud Targeting and Bursting . 57
6.3 A Declarative Event-Based Scaling Policy Language 59

6.3.1 Language Design Considerations 60
6.3.2 SPEEDL Overview . 61
6.3.3 Top-Level Language Grammar . 62
6.3.4 Event-Driven Elasticity . 63
6.3.5 Task Management . 64

Task Scheduling Rules . 64
Task Migration Rules . 65

6.3.6 Resource Management . 66
Scale-Up Rules . 67
Scale-Down Rules . 67

6.3.7 Summary . 69

7 Profiling-Based Task Scheduling and Execution 71
7.1 Resource-Aware Task Scheduler . 71
7.2 JSTaaS as a Factory-Worker Application 72
7.3 Resource Types and Control Limitations 73
7.4 Approach Overview . 74
7.5 Resource Profiling . 75

7.5.1 Resource Profiling Modes . 76
7.6 Task Scheduling . 78
7.7 Summary . 80

8 Evaluation 83
8.1 Evaluation Setup . 83
8.2 Usability and Usefulness Evaluation . 83

8.2.1 Comparison with Other Platforms 84
8.2.2 User Study . 86

Study Setup and Methodology . 86
Comparison of Development Efforts 88
Comparison of Developer-Perceived Qualities 90

8.2.3 SPEEDL Evaluation . 92
Evaluation Setup . 92
Results and Discussion . 92

8.3 Performance Evaluation . 94
Experiment Setup . 95
Experiment Results . 95

8.4 Threats to Validity . 96

9 Conclusions 99
9.1 Summary . 99
9.2 Research Questions Revisited . 100
9.3 Future Work . 101

Bibliography 105

JCloudScale Documentation 121
Introduction . 121

What Kind of Applications Can Profit from JCloudScale? 121
Required Software . 122
Javadocs . 122
Current Version . 122

Basic Usage . 122
Using JCloudScale without Maven . 124

Introduction . 125
Adding JCloudScale dependency . 125
Applying AspectJ Aspects . 126

Compile-time weaving . 126
Post-compile weaving . 127
Load-time weaving . 127

Interacting With Cloud Objects . 128
Passing Parameters By-Value and By-Reference 131

Restrictions on Cloud Objects and By-Reference Classes 131
JCloudScale Configuration . 133

Creating Configuration . 133
Specifying Configuration . 133
Configuration Structure . 135

Writing Scaling Policies . 136
Local vs. Cloud Deployment . 138

Configuring Message Queue Server . 138
JCloudScale-based Application Architecture 139
Using Openstack Cloud Platform . 139
Deployment in EC2 . 141

Event-Based Monitoring . 142
Available Default Events . 142
Triggering Custom Events . 143
Scaling Based on Events . 144

JCloudScale API . 146
Advantages and Disadvantages . 146

File Dependencies . 147
Dynamic File Dependency Handling . 148

JCloudScale Application Development Tutorial 151
Obtaining JCloudScale source code . 151
Introduction . 151
Step 1: Applying JCloudScale to the Application 152

Adding JCloudScale Dependency . 152
Applying JCloudScale Aspects . 153

Step 2: Selecting Cloud Objects . 154
Step 3: JCloudScale Configuration . 157

Specifying configuration . 157
Logging Configuration . 158
Scaling Policy . 158
Cloud Platform Selection . 158
Using File Dependency . 160

SPEEDL Grammar Definition 163

Curriculum Vitae 169

List of Figures

2.1 Cloud computing service models stack . 12
2.2 Comparison of event stream applications to typical 3-tier applications 15
2.3 Structure of the method implemented using usual and aspect oriented pro-

gramming techniques. 16

4.1 JSTaaS usage model and behavior . 28
4.2 Extended model of JSTaaS service infrastructure 29

5.1 Basic interaction with cloud objects . 32
5.2 System deployment view . 33
5.3 Overview of program code distribution model 40
5.4 Code loading strategy . 41
5.5 Conceptual development process . 51

6.1 Autonomic elasticity . 54
6.2 Monitoring event hierarchy . 56
6.3 Supported deployment environments . 57
6.4 Basic three-phase cloud bursting model . 58
6.5 Using SPEEDL for elasticity control . 62
6.6 Simplified hierarchy of predefined events . 63

7.1 Host memory usage in case of memory peaks overlapping 72
7.2 Overview of the profiling-based scheduling approach 74
7.3 The measured memory usage profile for a specific task execution 76
7.4 Averaging of measured memory usages to obtain aggregated memory usage

profile . 77
7.5 Comparison of active and passive profiling technique on highly dispersing task

execution . 77
7.6 Architecture overview of the profiler-based scaling 79
7.7 Overview over the task scheduling heuristic 82

8.1 Length comparison of evaluated scaling policies 94

xiii

List of Tables

3.1 High-level comparison of distributed and cloud computing systems. 20

5.1 JCloudScale interaction semantics . 36
5.2 Data object passing strategies . 37
5.3 Summary of code distribution challenges . 39
5.4 Cache deployment selection tradeoff . 43

7.1 Resource types summary . 73

8.1 Feature comparison of JCloudScale and alternative IaaS and PaaS solutions 85
8.2 Relevant background for each participant of the study. 87
8.3 Solutions sizes in lines of code. 88
8.4 Development time spent in full hours. 89
8.5 Subjective participant ratings from 1 (very good) to 5 (insufficient). 91

xiv

List of Listings

5.1 Declaring COs in target applications . 34
5.2 Introducing JCloudScale dependency 46
5.3 Referencing infosys maven repository . 46
5.4 Applying JCloudScale post-compilation processing 47
5.5 The skeleton of the test execution class . 48
5.6 An example of JCloudScale configuration provider 49
5.7 A scaling policy example . 50
6.1 Example round-robin scaling policy . 55
6.2 Example of defining monitoring metrics via CEP 55
6.3 Greedy scheduling rule . 65
6.4 Optimizing migration rule . 66
6.5 A scale-up rule based on a domain-specific metric 68
6.6 A scale-down rule based on task count . 69
8.1 Snippet from real-life scaling code . 93
8.2 Complete example of a SPEEDL scaling policy 93
1 Maven configuration to include JCloudScale dependency 123
2 Maven configuration to reference TU Wien maven repository 123
3 Maven configuration to enable AspectJ post-compilation 124
4 An example of cloud object class . 125
5 An example of using cloud object . 125
6 An example of method that shuts down JCloudScale 125
7 Compile-time aspect weaving . 126
8 Compile-time aspect weaving example . 127
9 Application starting after the compile-time aspect application 127
10 Post-compile aspect weaving . 127
11 Post-compile aspect weaving example . 127
12 AspectJ configuration for load-time weaving 128
13 Application startup with load-time aspect weaving 128
14 Interaction examples with JCloudScale 129
15 Static fields access from cloud object . 129
16 Static fields access with @CloudGlobal annotation 130
17 Parameters passing examples in JCloudScale 132
18 Creating custom configuration for JCloudScale 133
19 Serializing and deserializing configuration from file 133

xv

20 Manually defining the configuration to JCloudScale 133
21 Defining JCloudScale configuration through system property 134
22 Defining JCloudScale configuration through system property from code 134
23 Defining JCloudScale configuration through pom.xml file 134
24 Defining JCloudScale configuration through system property without

maven . 135
25 Implementing custom scaling policy in JCloudScale 137
26 Selecting local deployment mode . 140
27 Selecting local deployment mode with additional configuration 140
28 Selecting openstack deployment mode . 140
29 Selecting openstack deployment mode using properties-based configuration 141
30 Selecting openstack deployment mode using properties-based configuration

from file . 141
31 Selecting openstack deployment mode with additional configuration . . . 141
32 Defining AWS properties file . 142
33 JCloudScale configuration that enables monitoring 142
34 Java library path definition using custom JVM arguments 143
35 Custom JCloudScale event definition 144
36 Custom JCloudScale event registration 144
37 Custom JCloudScale event creation . 145
38 Expected JCloudScale custom metric registration 145
39 Received event values retrieval . 145
40 Custom metric unregistration . 145
41 Creating cloud object through API . 146
42 Destruction of cloud object through API 146
43 File dependencies enumerated within the annotation 147
44 File dependencies enumerated within the dependency provider class . . . 148
45 Manual file loading through classloader . 148
46 Maven configuration to collect all JCloudScale dependencies 150
47 JCloudScale source code loading using git 151
48 JCloudScale compilation and test execution 151
49 JCloudScale dependency definition . 153
50 JCloudScale repository reference . 153
51 AspectJ post-compilation processing plugin 154
52 Adding @CloudObject annotation on top of the class 155
53 Adding @DestructCloudObject annotation on top of the method 155
54 Adding @JCloudScaleShutdown annotation on top of the method 156
55 Adding @ByValueParameter annotation to method parameters 156
56 Adding @ByValueParameter annotation to the class 157
57 Defining configuration providing method 157
58 Defining the source of the configuration 158
59 Application output from cloud host . 158
60 Simple custom scaling policy example . 159

61 Openstack cloud platform selection . 159
62 Prime numbers searching class that uses cache for small prime numbers . 160
63 Lazy cache loading method . 161
64 Cache-aware prime searching method implementation 162
65 File capturing through file dependency annotation 162

Earlier Publications

This thesis is based on previous work published in scientific conferences, workshops,
books and journals. For reasons of brevity, these core papers, which build the foundation
of this thesis, are listed here once, and will generally not be explicitly referenced again.
Parts of these papers are contained in verbatim. Please refer to Appendix 9.3 for a full
publication list of the author of this thesis.

• Rostyslav Zabolotnyi, Philipp Leitner, Waldemar Hummer, Schahram Dustdar
“JCloudScale: Closing the Gap Between IaaS and PaaS”, Transactions on Internet
Technology (TOIT), vol. 15, no. 3, Jul. 2015.

• Rostyslav Zabolotnyi, Philipp Leitner, Stefan Schulte, Schahram Dustdar “SPEEDL
– A Declarative Event-Based Language for Cloud Scaling Definition”, The Future of
Software Engineering FOR and IN Cloud visionary track of IEEE World Congress
on Services, pp. 71–78, 2015.

• Rostyslav Zabolotnyi, Philipp Leitner, Schahram Dustdar “Profiling-Based Task
Scheduling for Factory-Worker Applications in Infrastructure-as-a-Service Clouds”,
40th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), pp. 119–126, 2014.

• Rostyslav Zabolotnyi, Philipp Leitner, Schahram Dustdar “Building Elastic Java
Applications in the Cloud: A Middleware Framework” in Handbook of Research
on Architectural Trends in Service-Driven Computing, Volume II, IGI Global, pp.
661–685, 2014.

• Philipp Leitner, Rostyslav Zabolotnyi, Alessio Gambi, Schahram Dustdar “A Frame-
work and Middleware for Application-Level Cloud Bursting on Top of Infrastructure-
as-a-Service Clouds”, 6th IEEE/ACM Utility and Cloud Computing Conference
(UCC), pp. 163–170, 2013.

• Rostyslav Zabolotnyi, Philipp Leitner, Schahram Dustdar “Dynamic Program Code
Distribution in Infrastructure-as-a-Service Clouds”, 5th International Workshop
on Principles of Engineering Service-Oriented Systems (PESOS), co-located with
International Conference on Software Engineering (ICSE), pp. 29–36, 2013.

xix

CHAPTER 1
Introduction

In recent years, the cloud computing paradigm [1] has provoked a significant push
towards more flexible provisioning of IT resources, including computing power, storage
and networking capabilities. Cloud computing simplifies the implementation of innovative
ideas for small companies or individuals, and lowers production and maintenance costs
for industrial applications [2].

Usage of provided hardware or platform simplifies company organization and allows
avoiding private infrastructure management and hiring additional personnel that is not
directly related to core business activities [3]. Applications designed with the cloud in
mind (so-called cloud-native applications) allow developers elastically adapting to market
changes and optimizing resource consumption.

Even huge companies that maintain their own data centers, benefit from cloud
computing: it allows them performing rapidly small or temporal demonstration projects
in situations when standard resource obtaining and usage reporting procedures may cause
intolerable delays [3].

At the same time, not only software developing companies benefit from cloud com-
puting. Cloud platform providers successfully compete against in-house infrastructure
solutions by focusing resources on the single task of mass infrastructure resource provi-
sioning, thus offering cheaper and better resource provisioning solutions controlled by
professional staff with higher level of expertise.

Cloud computing usually implies pay-as-you-go pricing, which allows users of the
cloud to view IT costs as expenses rather than investments [4]. This is closely related
to the advantage most commonly associated with the cloud: IT costs can be kept low
by reducing the upfront infrastructure investments close to zero, and paying only what
is actually used [1]. The flexibility offered by the cloud is particularly interesting for
start-ups. In the words of Amazon’s Jinesh Varia: “In the past, if you got famous and
your systems or your infrastructure did not scale, you became a victim of your own success.
Conversely, if you invested heavily and did not get famous, you became a victim of your
failure” [5]. Besides economic factors, the core driver behind this cloud computing hype

1

is the idea of elastic computing. Elastic applications are able to increase and decrease
their resource usage based on the current application load, for instance by adding and
removing computing nodes. Optimally, elastic applications are cost and energy efficient,
while still providing the expected level of application performance [6].

Elastic applications are typically built using either the IaaS (Infrastructure as a
Service) or the PaaS (Platform as a Service) paradigm [2]. In IaaS, users rent virtual
machines from the cloud provider, and retain full control (e.g., administrator rights) over
the virtual machines. In PaaS, the level of abstraction is higher, as the cloud provider is
responsible for managing virtual resources, while users utilize provided APIs in order to
focus on the business goal of a developed application.

1.1 Motivation

However, despite all benefits that come with the cloud, developers have to face new
set of challenges that come with this modern technology. In order to use the cloud,
programmers need to adapt existing applications to work in the new environment. While
application adaptation allows running code in the cloud and thus decreases infrastructure
costs, simple execution of legacy software in the cloud is not the ultimate goal of cloud
application development. Instead, in order to fully benefit from the cloud, programmers
need to redesign their applications to be elastic and dynamic by design [7], what often is
a challenge on its own.

While developing cloud native applications, one has to decide which cloud paradigm
(i.e., IaaS or PaaS) to follow. PaaS offers a higher level of abstraction, therefore allows for
more efficient cloud application development, as less boilerplate code (e.g., for creating and
destroying virtual machines, monitoring, load balancing or application code distribution)
is required. However, practice has shown that today’s PaaS offerings (e.g., Windows Azure,
Google AppEngine, or Amazon’s Elastic Beanstalk) come with significant disadvantages,
which render this option infeasible for many developers.

These disadvantages include:

1. strong vendor lock-in [8], as one is typically required to program against a proprietary
API;

2. limited control over the elastic behavior of the application (e.g., developers have
very little influence on when to scale up and down);

3. no root access to the virtual servers running the actual application code, what com-
plicates remote debugging, operating system tweaking, network traffic monitoring
or software management on cloud hosts [9];

4. little support for building applications that do not follow the basic architectural
patterns assumed by the PaaS offering [10] (i.e., usually Apache Tomcat based web
applications are expected).

2

All in all, developers are often forced to fall back to IaaS for many use cases, despite
the significant advantages that the PaaS model promises.

Building IaaS-based elastic cloud applications is not an easy task, and makes developers
face an entire new range of challenges. While programmers get full software development
freedom, they also become responsible for the complete application execution stack.
This slows down application development and requires broader software development
knowledge. Also programmers need to be ready to face the following challenges:

1. a significant amount of platform-dependent boilerplate code to control rented virtual
machines;

2. home-made cloud host state monitoring and fault recovery systems are needed;

3. domestic scaling policy behavior and elasticity enforcement components are required;

4. the vendor lock-in caused by proprietary APIs that provides basic cloud management
mechanisms.

These tasks are orthogonal to the applications’ mission, but introduce significant
complications and bury the applications’ actual business logic deep under a mountain of
platform-dependent code, what has to be developed over and over again for each new
application or platform version.

1.2 Problem Statement
The challenges described above expose a significant variety of possible research questions
and issues to solve. To narrow down the set of challenges we address and to define the
scope of this thesis, we outline the core problem statement in this section.

The main decision that cloud application developers currently have to settle before
designing the cloud application, is the cloud paradigm they want to target. Whenever a
new cloud application is developed or some old solution needs to start running in the
cloud, developers have to clearly understand whether they target IaaS or PaaS. The
reason why this decision has to be done so early is that cloud applications developed for
each cloud paradigm differ significantly in their architecture, capabilities and design.

The Existing separation into PaaS and IaaS paradigms is not a coincidence. Even
though there are some drawbacks of each approach, both of them appeared as the result of
a progressive evolution of the existing application and framework design paradigms. Each
cloud paradigm attempts to provide a generic solution for a broad range of applications,
while having different priorities and targeting a different niche of the cloud usage. IaaS
provides full access to the virtual infrastructure, granting a control layer which is as
thin as possible [11]. PaaS usually provides an environment for comfortable and flexible
application development and management, concealing all infrastructure administration
from the cloud developers [11].

While currently developers have to make a distinctive choice between the available
cloud paradigms, in this thesis an alternative option is explored.

3

The main goal of this thesis is to provide transparency and development convenience
of cloud applications as in modern PaaS solutions, while maintaining the flexibility and
complete control over the developed cloud application.

The defined research statement means that the developed solution has to be capable
of:

1. simplifying or even completely eliminating the need to define cloud-specific code
which is not related to the business logic of the designed application, thus allowing
developers to focus on the business logic of the developed product;

2. hiding platform-specific APIs behind the unified and developer-controlled code,
thus avoiding a vendor lock-in;

3. allowing flexible application design and enforcing minimum code or architecture
restrictions;

4. granting full access to the cloud solution code during development, testing and
execution;

Such a solution would be attractive from multiple perspectives. On the one side,
such approach should be easy to use and fast to start experiencing the benefits of the
cloud computing as most of cloud-specific code would be handled by the platform. On
the other side, developers should have the complete control over the application, used
technologies and execution environment in case some advanced tweaking is necessary or
some particular application component has to behave differently from the rest of the
application.

1.3 Research Questions

The research performed within this thesis was mainly aligned along the following main
research questions:

RQ 1: How can an application be transparently distributed over the cloud?

In the most general sense, an application becomes a cloud application only when it is
distributed over a set of cloud hosts and its components are communicating with each
other. Therefore, in order to function properly, cloud applications need to be aware of
the cloud and be able to leverage dynamic cloud resources to solve a predefined task.
However, this leads to the cloud-related issues discussed in Section 1.1 and the need
to design applications accordingly to the IaaS or PaaS cloud paradigm. Therefore, the
solution we target has to provide a way to distribute applications within the cloud as
transparently as possible in order to decrease the amount of changes required to switch to
another cloud platform or distribution approach. This can be achieved by the efficient and
robust middleware that supports multiple cloud platforms and allows abstracting from

4

the underlying API. However, in order to avoid having just another lock in, discussed
middleware has to be as lightweight and transparent as possible.

Some simple cases or partial solutions are already available in the field (see Chapter 3
for more details), while there is no general and elastic solution that would provide both,
transparent code distribution and cloud elasticity.

RQ 2: Which instruments and capabilities allow efficient, flexible and elastic execution
of transparent cloud applications?

Whenever a new cloud application is designed, developers have to focus heavily on
mastering the tools that allow leveraging cloud resources efficiently. During the process of
designing a transparent and efficient cloud platform, automatic application distribution
and management tools are usually coming to mind. However, even though such tools
should be a solid ground for the reasonable defaults, application developers usually
deeply relay on the powerful and flexible gears of cloud control. Therefore, an application
distribution solution should be able to provide an adaptable platform-independent way to
state the rules that control application distribution and behavior in the cloud. These rules
should be generic enough to cover most of the algorithms that are usually used in cloud
computing, while they should also allow specifying sophisticated and domain-specific
behaviors and actions in a developer-friendly manner.

Efficient resource usage in the cloud is usually understood as the minimal amount of
hosts used by an application while satisfying performance requirements [12]. However,
a problem of efficient task ordering and execution within a single cloud host is usually
overlooked: As the resources of a single cloud machine are limited, only a limited amount
of tasks may be assigned to run there at any particular point of time. Additionally, as the
resource usage of each task fluctuates over execution time, resources for each task have to
be allocated considering a maximal resource usage spike. This allows having functional
application even in situations when resource usage spikes of all concurrent tasks overlap.
This does not happen frequently. Therefore, such reserved resources usually remain
unused. If the designed solution could provide a method to efficiently avoid these resource
usage spike overlaps, the system could schedule more tasks to the same amount of hosts.

Even though the field of code distribution and resource management in the cloud
is a hot research and industrial topic, the work there is mainly focused on the areas
of load balancing [13] and auto scaling [14]. Such approaches usually cover simple or
specific scenarios of cloud applications. Additionally, there was hardly any work on task
organization within the cloud hosts. In our work we focused on providing a generic
solution that tightly integrates with developed applications and simplifies cloud behavior
specification for sophisticated and advanced use cases.

RQ 3: How to verify if the designed transparent application distribution approach is
useful and fits developers’ needs?

Whenever a new middleware, platform or framework is designed, its ideas and APIs
usually are highly influenced by former experience of the architects [15]. However, even

5

if the architects are experienced cloud developers or researchers, their vision of the final
solution might be completely different from the one expected by users. Due to this, the
designed solution may be of no interest to practitioners, independently of the quality of
ideas or benefits it provides. Similarly, even if the core idea is sound and finds positive
feedback within the target audience, the designed solution might still fail to attract people
due to some small misconceptions or design faults that were missed by the architects.

In order to surpass this issue, a transparent cloud application distribution solution
has to be constantly validated by a reasonable set of future users. Evaluation has to
be organized to validate every important aspect of user experience, as each of them is
crucial for product success. Therefore, evaluation should determine not only if users were
able to design an application, but should also measure their convenience, satisfaction,
and interest in the proposed solution. Following this approach, designers can ensure that
the result of their work is indeed interesting to the target audience and will solve the
problems users are currently facing while using alternative approaches.

1.4 Scientific Contributions

In order to solve the research questions formulated in Section 1.3, the following contribu-
tions were carried out in the scope of this thesis.

Contribution 1: A middleware for dynamic transparent application dis-
tribution in the cloud. Targeting to provide a transparent application distribution
solution, the conceptual middleware named JCloudScale, initially presented in [16],
was extended with configuration, communication and discovery components in order to
become a fully-functional and transparent platform. Similar to PaaS, JCloudScale
takes over virtual machine management, application monitoring, load balancing, and
code distribution. However, given that JCloudScale is a client-side solution instead of
a complete hosting environment, programmers retain full control over the developed appli-
cation. Furthermore, the selected application distribution method allows JCloudScale
to support a wider range of applications than common PaaS platforms. JCloudScale
applications run on top of any IaaS cloud, making JCloudScale a viable solution
to implement applications for private or hybrid cloud settings [17]. In summary, we
claim that the JCloudScale model is a promising compromise between IaaS and PaaS,
combining many advantages of both worlds.

Details on JCloudScale middleware are discussed in Chapter 5. Contribution 1
has originally been presented in [16] and further extended in [18, 19].

Contribution 2: A transparent dynamic application code distribution
framework. During the development and evaluation of JCloudScale, we faced
the issue of code integrity and synchronization between cloud hosts. Whenever cloud
software developers are making any changes in developed code, they have to ensure
that old and new components are interface-compatible or tear down all running cloud
instances and rebuild virtual machine images to include only updated code. While this
may be a reasonable approach for slowly-changing projects with a few updates every
week, it is unacceptable for fast-paced applications.

6

An alternative way to achieve program code distribution is to include facilities for
dynamic code search and distribution in the underlying framework. Therefore, in order
to solve the issue of frequent code updates, a solution for transparent program code
distribution was developed. Developed approach transparently distributes program
updates over a set of cloud hosts in order to ensure that a compatible version is used
by every user and application component. Additionally, the developed code distribution
solution encapsulates each component or client in a separate container, thus allowing
multiple code versions of the same component running in parallel at the same cloud host.
While the discussed code distribution solution was developed for JCloudScale, it is
highly independent and can be used separately as well.

Details on discussed transparent code distribution approach are discussed in Sec-
tion 5.2. Contribution 2 has originally been presented in [20].

Contribution 3: An application scaling and cloud management definition
language. Cloud platform management and application distribution logic have the key
role in cloud applications development process. In order to achieve elastic and efficient
resource usage, developers need to describe application behavior in a developer-friendly
and cloud platform-agnostic form. To simplify this task, the SPEEDL (Scaling Policy
Extensible Event-based Declarative Language) language was designed. SPEEDL is a
declarative and extensible domain-specific language [21] (DSL) that simplifies the creation
of elastic, application-specific cloud scaling behavior on top of IaaS clouds. SPEEDL
allows the definition of scaling policies, i.e., a set of event-condition-action (ECA) rules
managing the amount and types of resources (e.g., VM instances) acquired from the
cloud, as well as the mapping of incoming tasks to these resources for processing. Unlike
existing industrial solutions, SPEEDL tightly integrates and communicates with the
developed application. Additionally, SPEEDL is extensible and highly favors domain
and application specific rules and behaviors.

Details on SPEEDL language are presented in Chapter 6. Contribution 3 has
originally been presented in [22].

Contribution 4: Profiling-based task scheduling for factory-worker appli-
cations. Addressing the issue of effective cloud resource usage, a task scheduling approach
for uniform tasks based on profiling data was designed. The developed scheduler aims to
avoid overlapping peak resource usages of running tasks, hence allowing to execute more
tasks in parallel on the same virtual machine. This is achieved with a task scheduler
that monitors task resource consumption and constantly improves future resource usage
estimations for each used host. These predictions allow for the effective scheduling of
subsequent tasks and forecasting when an application should scale up or down, thus
improving elastic system behavior in the cloud and optimizing resource usage. Designed
solution proved to be efficient and effective on factory-worker applications (also known
as the producer-consumer pattern, and strongly related though not identical to the
master-slave pattern [23]), but the approach may be partially useful for other applications
as well.

Details on profiling-based task scheduling are presented in Chapter 7. Contribution 4
has originally been presented in [24].

7

Contribution 5: A qualitative and quantitative user study that validates
the developed cloud application development middleware. In order to evaluate
the developed solution for application distribution in the cloud, a user study was performed.
In this user study, JCloudScale and its components were compared to both, existing
IaaS (OpenStack and Amazon EC2) and PaaS (Amazon Elastic Beanstalk) solutions.
The main goal of the user study was to validate the original claims and expectations as
well as to evaluate development productivity and user acceptance.

The discussed user study, along with JCloudScale performance evaluation, is
presented in Chapter 8. Contribution 5 has originally been presented in [19].

1.5 Structure of the Work
The rest of this thesis is organized as follows:

• Chapter 2 provides fundamental information about technologies and concepts used
in the remainder of this thesis. Particularly, the concepts of cloud and elastic
computing (Section 2.1), communication in the cloud (Section 2.2), event-driven
architecture (Section 2.3), and aspect-oriented programming (Section 2.4) are
described.

• Chapter 3 presents scientific and industrial aspects of work related to the contribu-
tions presented in the thesis.

• Chapter 4 discusses the case study of JavaScript testing cloud service JSTaaS
(“JavaScript Testing-as-a-Service”) that serves as the illustrative example for each
contribution discussed in this thesis.

• Chapter 5 describes the fundamental contribution of the thesis, the JCloudScale
middleware.

• Chapter 6 focuses on the most important aspect of JCloudScale middleware,
discussing how cloud solutions can leverage JCloudScale in order to optimize
application resource usage in the cloud.

• Chapter 7 dives into a particular problem of task scheduling within the cloud
host, where the problem of efficient task execution within limited host resources is
discussed and the designed solution is presented.

• Chapter 8 provides the evaluation of the designed transparent cloud application
development middleware. Particularly, the presented work is evaluated using an
extensive user study (Section 8.2.2) that validates user perception of the designed
middleware, followed by the performance evaluation which validates performance
and functionality of the presented solution.

• Chapter 9 concludes the thesis and presents a glance over the future research
directions that emerged due to this work.

8

CHAPTER 2
Background

This chapter brings in some basic concepts that are crucial for understanding the remaining
of the thesis. First of all, Section 2.1 presents the concept of cloud computing, which
is the target environment and basement for every presented contribution of this thesis.
The notion of elasticity, discussed in this section, is one of the essential characteristics
of cloud computing [25, 26] and plays a vital role and main motivation for the scaling
behavior contributions presented in this work. Following, Section 2.2 presents the concept
of distributed system communication and discusses the available alternatives for cloud
communication middleware. This section presents also the messaging and messaging-based
architecture that was intentionally selected as the reliable and efficient communication
infrastructure for the JCloudScale middleware. Afterwards, Section 2.3 describes the
concept of monitoring events, event reaction and event-driven software architecture that
allow building reactive and adaptive cloud applications. Finally, Section 2.4 presents
the idea of aspect-oriented programming, the software development technique that
allows application post-processing, permitting to achieve transparent cloud application
distribution that is the foundation of this thesis.

2.1 Cloud Computing
Even though the concept of cloud computing can be traced back to 1995 [27], establishing
and framing of cloud computing is still an ongoing process. The notion of cloud computing
is fuzzy and spans from the computation distributed over Internet [28] through utility
computing [2] up to Web 2.0 concepts [29].

2.1.1 Definition of Cloud Computing

The US National Institute of Standards and Technology (NIST) defines cloud computing
as “...a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications,

9

and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction.” [25].

This definition is quite general to include most of the concepts behind the cloud
computing trend. Within this thesis, the concept of cloud computing will mainly follow
the idea of utility computing available on demand [2]. Therefore, the following aspects of
cloud computing, coined out in [2] will be most prominent and important in the following
text:

1. “The illusion of infinite computing resources available on demand.”

2. “The elimination of an up-front commitment by cloud users.”

3. “The ability to pay for use of computing resources on a short-term basis as needed.”

The promise of infinite resources is critical for cloud computing. In reality it is
fulfilled by the enormous scale of cloud providers data centers that make almost any
reservation of computing resources possible. The ability to obtain additional host at any
point of application execution time shapes the behavior of cloud applications and defines
the reactions on increasing demand. While in the past, applications had to know the
upper limit of resources they could obtain and developers were programming distribution
solutions knowing this limit in advance, with cloud computing, developers tend to develop
infinitely scaling applications [30] that can scale from a few hosts up to hundreds and
thousands.

The elimination of an up-front commitment allows cloud computing users to avoid
thinking of the required amount of resources ahead of time. This approach opens
possibilities and eliminates the risks for applications and start-ups when popularity or
resource requirements are not known beforehand. While previously developers would
need to risk by defining estimates in advance [5], cloud computing allows obtaining and
releasing resources whenever it is required.

The ability to pay for computing use on a short-term basis brings in the “pay-as-you-
go” concept [2]. Cloud applications are usually billed on a regular basis depending on
their actual use. This allows avoiding sophisticated advance resource booking algorithms
and brings in the monitoring and planning mechanisms that predict resource usage on
a short notice. Additionally, this allows treating infrastructure as operational expenses
rather than investments as it is used to be prior to cloud computing.

2.1.2 Elastic Computing

The key aspects of cloud computing, coined out above, fostered a new trend of “elastic
computing” [31]. While the term “elasticity” is commonly referenced to economics [32]
or physics [33], practitioners and scientists tend to notice a similar behavior in cloud
computing applications [31]. In cloud computing, elasticity is usually defined as the
degree to which a system autonomously adapts its capacity to workload over time [34].
However, this definition defines only the elasticity of used resources, while similar behavior

10

in cloud applications is also observed for operation costs or quality of service [26]. In the
scope of this thesis, only the resource elasticity is usually in the focus.

2.1.3 Cloud Computing Service Models

Cloud computing resources may be provided under different terms and business models.
Currently the most popular approach is to use either “Public Cloud” or “Private Cloud” [2].
The public cloud provisioning model assumes that computational resources are publicly
available and shared equally among users following the “pay-as-you-go” model. Contrary,
private cloud usually refers to internal data centers functioning similarly to public clouds,
but not available to the public [2]. NIST defines [25] two additional cloud deployment
models “Community Cloud”, that defines infrastructure that is shared within a specific
community of customers, and “Hybrid Cloud”, which stands for computational resources
that are implemented as composition of multiple cloud infrastructures [25].

Considering the flexibility and tooling, cloud solutions can be categorized into three
distinct categories [25]:

• Software as a Service (SaaS) represents consumer applications executing on the
cloud infrastructure. Consumers, contrary to traditional software usage model,
do not control or own the software, but rather exploit it on demand, mainly
on subscription basis. While the term itself appeared prior to cloud computing
popularization [2], the concept of SaaS is perfectly aligned with the cloud computing
paradigm and architecture.

• Platform as a Service (PaaS) defines the cloud-based middleware that allows
customers to deploy onto the cloud infrastructure customer-created or acquired
applications. While application developers do not control PaaS and underlying
infrastructure, they get the comfortable and easy to use API that simplifies the
creation of cloud applications [25].

• Infrastructure as a Service (IaaS) delimits the provisioning of processing, storage,
networks or other fundamental computing resources where consumers are able to
deploy their software or data [25]. Customers do not control or manage physical
machines, while they are provided with API to obtain and release virtual resources
on demand.

The presented cloud solution categories, often referenced as “Service Models” [25],
are usually considered as the cloud software development stack. Figure 2.1 illustrates the
relations of these layers and presents some popular examples of the software operating
on each service model.

2.2 Cloud Computing Communication
The moment applications became distributed, the need for communication between
components emerged. Over the past decades, a significant amount of distributed archi-

11

Figure 2.1: Cloud computing service models stack

tectures [35] and communication protocols appeared [36], but all of them can be placed
between the two theoretical extremes: client-server and peer-to-peer architectures [37].

Distributed application development practices gradually evolved adapting to the
changing communication environment, increasing computing performance and shifting
software requirements. Initial distributed applications were usually executed in closed
corporate or university environments and were highly heterogeneous [38]. The appearance
of the Internet and worldwide communication brought in the need of standardization and
unification of communication protocols. These trends finally resulted in standardization
and Service Oriented Architecture (SOA), which is described in more details in [39].
However, resulting standard appeared to be too generic, heavy-weight and slowly adapting
to the changing conditions of the market, what caused alternative concurrent wave of
communication simplification to gain an increasing amount of recognition. The trend of
communication simplification lead to the development of Representational State Transfer
(REST) software architecture and RESTful web services definition [40].

2.2.1 Communication Middleware

The growing heterogeneity of the distributed computing environment, caused by the need
to communicate with external services, resulted in exponential growth of communication
complexity. This exponential growth, along with other requirements such as reliability,
traceability, and distribution of communication, caused the appearance of the Enterprise
Service Bus (ESB) [41] software architecture. This architecture brought in a central
component, named ESB, that was responsible for communication routing, simplification
and harmonization.

While conceptually similar, Message Oriented Middleware (MOM) and Enterprise
Messaging System (EMS) [42] emerged out of different reasoning. The EMS architecture
also introduces the middleware component that is responsible for communication, but
the design focus is on messaging protocols instead of the service implementation, as in
SOA. EMS focuses on guarantees of message delivery, secure communication, message
routing, and pattern-based subscription. While EMS systems are also capable of handling

12

multiple communication protocols at the same time, this is not the main goal of such
systems. Therefore, usually MOM is based on a single protocol that all components
understand and are able to process.

MOM introduces a conceptual change into distributed system communication paradigm.
While originally the communication was performed in a synchronous, “request-response”
mode, MOM brought in the asynchronous message passing communication. Asynchronous
communication significantly increases performance, as each component does not have to
wait for a message to be sent, delivered and responded to. Instead, the communication
tends to happen in a “fire and forget” mode, when the task is considered completed if
the resulting message is scheduled for sending. Mainly this is possible due to delivery
guarantees of MOM, as most of such systems ensure that once the message enters the
middleware, it will be delivered to the endpoint, except of configured dead message
handling situations. Such approach allows building loosely coupled systems that are not
taking responsibility for communication issues at all. Additionally, this simplifies creation
of the data stream processing applications [43], where application components are built
in a chain or a tree around incoming data flows.

However, not every communication can be performed asynchronously. Whenever
EMS applications require to have a synchronous communication between components,
they have to imitate synchronous communication with the available means of MOM.
Even though most of existing MOM implementations have specific APIs that simplify
simulation of synchronous calls, this may bring in additional performance overhead and
communication delay in comparison to direct communication methods.

2.2.2 Communication in the Cloud

Building applications in the cloud brings in a different set of requirements and limitations
to communication protocols and middleware. However, often these requirements are
conflicting and require developers to make some compromise between them. For instance,
the requirement to build an infinitely scaling application requires to avoid any single
central components as they may lead to bottlenecks. However, the need to build fail-safe
application in unreliable environments requires to have replicated components and some
monitoring and routing service that is responsible for message guidance and transmission.

Depending on cloud application specifics and architecture, developers can select
peer-to-peer communication with RESTful services, classic SOA design or message-
based communicating components. Each of the architectures has its advantages and
disadvantages, and none of them fits every cloud application. Modern cloud applications
tend to fall into two categories. If reliability is the key feature of the application,
developers have to design some central, often duplicated, component that ensures reliable
execution. Such applications usually develop around messaging middleware that provides
delivery and execution guarantees. Whenever the application key requirement is rapid
and unlimited scaling, developers should consider peer-to-peer architectures, that are
nowadays in the cloud tightly relevant to the idea of “micro-services” [44].

The JCloudScale middleware, discussed in this thesis, also required to decide
which communication architecture will it follow. While initially the idea was to select

13

a micro-services architecture using RESTful web services for communication [16], after
an extensive period of usage in the actual cloud environment, the decision was made to
follow a more reliable, while less scaling approach. This allowed improving reliability of
the distributed system on a relatively small cost of performance overhead. However, in
future releases of JCloudScale, this may be configurable to allow developers deciding
what is more important to them.

2.3 Event-Driven Architecture

In order to define truly adaptive behavior for distributed application under dynamic load,
developers have to take into account the concept of application state monitoring. However,
it is insufficient to provide a method for host or component state retrieval that will be
periodically queried by some specific component. Such “active monitoring” approach
increases the load on each component of the distributed system, raises the amount of
traffic circulating in the network and does not assist application scalability [45]. Instead,
distributed applications are usually designed using a “passive monitoring” approach [45],
where each component periodically reports state information to some predefined channel,
usually named “stream”. Neither the active nor the passive monitoring approach forbids
additional monitoring configuration or adaptation. Both approaches support configuring
the notification frequency or the amount of provided information. However, applications
implemented with passive monitoring should be aware that the monitoring information
stream is rather reactive, thus requested changes will not result in immediate change of
the monitored components behavior.

Each monitoring notification from the remote component is usually considered as an
“event”. An event is a thing that happens, especially one of importance [46]. Within this
work, it will be assumed that event is an object that encodes some important situation,
action or state change of an application. On each incoming event, the monitoring
component that processes events from an event stream, adapts information about the
current state of an application. This information is used to adapt the future application
execution or resource usage.

Usually information from a single monitoring event should not influence application
execution much. A single event is vulnerable to monitoring or application execution
anomalies, thus a set of sequential events has to be aggregated. An “event processing” [47]
mechanism, using statistical functions and algorithms, generates “complex events” that
contain much more valuable information than in a single event. Even a simple aver-
aging of the subsequent events values significantly increases usefulness of performance
measurements in comparison to the data from a single event.

Additionally, complex event processing allows the creation of other events that are
more important to an application. Such “application-specific events” [48] represent a
high-level application behavior or a state that is hard to observe using simple events
obtained from the monitored components. For example, traffic monitoring application
can be interested in “accident” complex events, which are produced when the amount of
simple events about cars moving slowly increases at some location.

14

The idea of events and event processing significantly influences an application ar-
chitecture. In order to experience the full power of event processing, cloud application
developers have to design their solutions or monitoring components around the streams
of events that flow through an application, as it is shown in Figure 2.2. Such application
architecture, usually named “event-driven architecture” [49] significantly differs from the
classic 3-tier architecture [50] as the analyzed data is dynamic and constantly changing,
what requires different information processing apparatus.

Typical 3-tier Application

Data
storage

Application

Q
u

er
ie

s

R
es

u
lt

s
Event Stream Application

Event-processing Engine

Queries

Application

Data flow
R

es
u

lt
s

Figure 2.2: Comparison of event stream applications to typical 3-tier applications

Addressing the issue of state monitoring and effective adaptation of cloud applications
to the load and resource requirements, the solutions presented in this thesis follow the
ideas of complex event processing and event-driven application behavior.

2.4 Aspect-Oriented Programming

Software development is a complex process during which programmers have to keep in
mind a significant amount of loosely coupled objects and relations between them. Even
though during the whole history of software development programmers and theoreticians
favored decoupling and modularization [51], in reality this is not always achievable. Some
loosely coupled processes such as payment and product shipment are easy to separate.
However, other activities are so much entangled together that it is impossible to split
them neither from the programming nor from the architectural point of view.

Consider the example of an abstract method implementation, shown in Figure 2.3. In
addition to the business logic, which is the reason of the method creation, a programmer
has to perform a significant amount of other activities that are not directly related
to the business logic that needs to be coded. For example, a developer has to check
input parameters, handle execution errors and log method invocation. While each of

15

myMethod(parameters)

Parameters checking

Method invocation logging

Exception handling

Method completion logging

Business logic
Logging aspect

Parameters checking aspect

Exception handling aspect

myMethod(parameters)

Business logic

Implementation
without AOP

Implementation
 with AOP

Figure 2.3: Structure of the method implemented using usual and aspect oriented
programming techniques.

these activities is usually just a few lines of relatively simple code, together they form
a significant portion of the method body. Even though this code is simple and easy to
understand, it hides the business logic of the method, what may significantly slow down
method understanding and modification by another programmer.

While the cost of all these side activities may be bearable for a single method, on the
scale of an application this accumulates to a significant amount of code that dramatically
influences code readability and refactoring. However, programmers can not simply discard
all this additional code. While it usually does not solve the main goal of an application,
it needs to be in place to simplify application debugging, reaction to extraordinary
situations, execution control or error handling.

In order to solve this problem, the concept of “Aspect Oriented Programming” (AOP)
was introduced. This patented [52] programming paradigm increases modularity in
situations when multiple sideways activities are mixing into the main application execution
flow. Such activities (in terms of AOP, – “cross-cutting concerns”) are extracted into a
separate entity named “aspect” (see Figure 2.3). Aspects contain only the functionality
related to the described concern (e.g., “logging”, “parameter checking”, etc.) and are
usually represented in a form of a common entity for the used programming language
(in case of Java it is usually a separate class). In addition, aspects are associated with
“pointcuts” : the statements in a special domain-specific language that declare the places
in an application where the particular part of an aspect (i.e. “advice”) has to be injected.
For example, such pointcut may declare that at the beginning of every method within
some specific package or class startLogging advice from Logging aspect has to be
injected.

AOP does not change the source code of an application, thus a developer is not
distracted from the business logic implementation. Instead, AOP platforms provide the
runtime application modification or the post-compilation step that applies all necessary

16

aspects at the predefined places.
From the one side, such approach cleans up the source code of an application as it

allows extracting repetitive and distractive code from the main flow of the application
execution. However, it also makes an application harder to understand for developers
that are unfamiliar with AOP or work with an Integrated Development Environment
(IDE) that has no AOP assistance. Therefore, AOP is another technology that provides
an interesting solution to the existing and important problem of code decoupling and
separation of concerns, but brings along a new set of challenges and issues that developers
have to be aware of before starting using AOP in any application.

Addressing the issue of transparent application execution in the cloud, concepts of
AOP appeal to be an interesting starting point. However, with the time it became
clear that AOP is not a solution, but just an instrument that still requires significant
amount of work in order to obtain a holistic solution to the problem of the transparent
code distribution. Solutions presented in this thesis form around the JCloudScale
middleware, which uses AOP paradigm to distribute applications and inject cloud
management code.

17

CHAPTER 3
Related Work

In the following chapter, a survey of the related research work is presented. Primarily
the focus is on the scientific and industrial work that is related to the JCloudScale
middleware in general. Secondly, the current research trends that are related to the
important parts of the thesis are discussed as well.

3.1 Related Work on Transparent Distribution
Frameworks

There are essentially two schools of thought of how one should build a distributed
system. On the one hand, many approaches aim at hiding the complexity of distribution
behind convenient abstractions, such as remote procedure call systems. On the other
hand, some claim that such abstractions always have to be leaky, and, hence, should
be avoided altogether (for just one example of this argument, see [73]). JCloudScale
follows the former school of thought. Essentially, JCloudScale provides an abstraction
that makes elastic applications running on top of an IaaS cloud seem like regular, non-
distributed Java applications. Hence, JCloudScale implements the ideal for building
elastic applications mentioned in [74], a “single shared global memory space of mostly
unbounded capacity”. In doing so, JCloudScale is complementary to a number of
related commercial platforms and research works.

A comprehensive starting point for research work on elastic cloud application develop-
ment is provided by the survey in [75]. According to the taxonomy used in this paper, our
work clearly falls into the category of container-level scalability in the platform layer (the
container being JCloudScale in this case). The group of container-based scalability
systems mainly consists of PaaS solutions, that typically provide an environment or a
sandbox for customer code execution.

The main disadvantage of all such systems is that they imply a significant loss of control
for the developer. They typically require the usage of a given public cloud (typically

19

Table
3.1:

H
igh-levelcom

parison
ofdistributed

and
cloud

com
puting

system
s.

T
ransparent

R
em

oting
T

ransparent
E

lasticity
L

ocal
T

est-
ing

U
nrestricted

A
rchitec-

ture

T
ransparent

V
M

M
an-

agem
ent

C
loud

P
rovider

Indep
en-

dence
R

em
oting

Fram
ew

orks
Java

R
M
I

yes
no

yes
yes

no
no

E
nterprise

Java
B
eans

(E
JB

)
yes

partial
yes

yes
no

no
E
lastic

R
em

ote
M
ethods

[10]
yes

yes
no

yes
yes

yes
A
neka

[53][54]
partial

no
no

yes
yes

yes
A

2-V
M

[55]
partial

yes
no

yes
yes

yes
P

aaS
System

s
G
oogle

A
ppE

ngine
[56]

yes
yes

partial
no

yes
no

A
m
azon

E
lastic

B
eanstalk

[57]
yes

yes
no

no
yes

no
H
eroku

[58]
yes

yes
partial

no
yes

no
A
ppScale

[59][60]
yes

yes
no

no
yes

yes
C
onP

aaS
[61][62]

yes
yes

no
partial

yes
yes

B
O
O
M

[63]
yes

yes
no

no
no

yes
G
oogle

C
loud

D
ataflow

[64]
yes

yes
no

no
no

no
E
sc

[65]
yes

yes
no

no
no

yes
G
ranules

[66]
yes

yes
yes

no
no

yes
E
lasticT

hrift
[67]

yes
partial

no
no

yes
yes

E
lasticJava

[67]
yes

partial
no

yes
yes

yes
C

loud
D

eploym
ent

&
T

est
Fram

ew
orks

JC
louds

[68]
no

no
no

yes
no

yes
D
ocker

[69]
no

no
yes

yes
no

yes
C
afe

[70]
no

no
yes

no
no

yes
M
A
D
C
A
T

[71]
no

no
yes

no
no

yes
O
penT

O
SC

A
[72]

no
partial

no
yes

yes
yes

JC
loudScale

yes
partial

yes
yes

yes
yes

20

provided by the same vendor), imply the usage of proprietary APIs, and restrict the types
of applications that are supported (typically, these platforms support only Tomcat-based
Online Transaction Processing (OLTP) style systems). JCloudScale, on the other hand,
allows application developers to retain full control over their application and influence
application behavior on any level starting from cloud operating system configuration.
JCloudScale applications are not bound to any specific cloud provider, are easy to
migrate, work well in the context of private or hybrid clouds, and support a wider variety
of applications, while still providing an abstraction comparable to commercial PaaS
solutions.

As the scope of JCloudScale is rather wide, there is a large number of systems
that are partially related to JCloudScale. The main dimensions used to compare all
mentioned below frameworks are:

1. to what extent they transparently handle remoting and elasticity;

2. whether they handle scaling up and down;

3. how easy it is to locally test and debug applications;

4. whether the framework restricts types and architectures of applications that can
be built;

5. whether the framework handles and manages cloud virtual machines;

6. whether the framework is bound to one specific cloud provider.

A high-level comparison of the various frameworks along these dimensions is demon-
strated in Table 3.1. All systems are evaluated along discussed dimensions, and assigned
“yes” (strong support), “no” (no real support), or “partial” (some support). All evaluations
are based on tool documentations or publications.

Firstly, JCloudScale can be compared to traditional distributed object middle-
wares [76], such as Java RMI or EJB. These systems provide transparent remoting features,
but clearly do not provide any support for cloud specifics, such as VM management. It
can be argued that EJB provides some amount of transparent elasticity, as EJB containers
can be clustered. However, it is not easy to scale such clusters up and down. A recent
work [10] has introduced the idea of Elastic Remote Methods, which extends Java RMI
with cloud-specific features. This is comparable in goals to our contribution. However,
the technical approach is quite different. Aneka [53, 54], a well-known .NET based cloud
framework, is a special case of a cloud computing middleware that also exhibits a number
of characteristics of a PaaS system. It is arguable if Aneka’s abstraction of remoting is
perfect, as developers still need to be rather intimately aware of the underlying distributed
processing. To the best of our knowledge, Aneka does not automatically scale systems,
and provides no local testing environment. [55] also presented an approach that can be
considered related to JCloudScale. Their A2-VM framework schedules Java threads
over a compute cluster.

21

Secondly, many of JCloudScale’s features are comparable to common PaaS systems
(e.g., Google AppEngine, Amazon Elastic Beanstalk, or Heroku). All of these provide
transparent remoting and elasticity, and take over virtual machine management for the
user. However, they usually tie the user tightly to one specific cloud provider. Support
for local testing is limited, although most providers nowadays have at least some tooling
or emulators available for download.

In addition to these commercial PaaS systems, there are also multiple platforms
coming out of a research setting. For instance, AppScale [59, 60] is an open-source
implementation of the Google AppEngine model. AppScale can also be deployed on any
IaaS system, making it much more vendor-independent than other PaaS platforms. This
is similar to the ConPaaS open source platform [61, 62], which originates from a European
research project of the same name. ConPaaS follows a more service-oriented style, treating
applications as collections of loosely-coupled services. The recent IBM concepts named
ElasticJava and ElasticThrift [67], that originate from Elastic Remote Methods [10],
are more similar to JCloudScale as the stated goal is also to achieve transparent
application distribution. However, instead of transparent application adaptation, authors
propose Java language extensions and alternative Java compiler that are supposed to
bring in transparent application distribution. Due to this, the approach advocated in
this thesis is preferable, as developers do not need to learn new programming concepts
and redesign their applications following the new syntaxis.

In scientific literature, there are also a number of PaaS systems which are more geared
towards data processing, e.g., BOOM [63], Esc [65], or Granules [66]. These systems are
hard to compare with JCloudScale, as they generally operate in an entirely different
fashion as compared to JCloudScale or the commercial PaaS operators. However, they
typically only support a very restricted type of (data-driven) application model, and
often do not actually interact with the cloud by themselves. This makes them cloud
provider independent, but also means that developers need to implement the actual
elasticity-related features themselves.

A particularly interesting case of data processing solutions is the recently announced
Google Cloud Dataflow platform [64]. This Big Data processing cloud platform was
presented as a further development of the map/reduce paradigm [77]. This platform
presents a convenient tooling to operate with the big amounts of data with the paradigm
of pipes and filters and is based on previously announced Google internal technologies
Flume and MillWheel [77].

Thirdly, there is a need to compare JCloudScale to a number of cloud computing
related frameworks, which cover a part of the functionality provided by JCloudScale
middleware. JClouds 1 is a Java library that abstracts from the heterogeneous APIs of
different IaaS providers, and allows decoupling Java applications from the IaaS system
that they operate in. JCloudScale internally uses JClouds to interact with the multiple
cloud providers. However, by itself, JClouds does not provide any actual elasticity.
Docker 2 is a container framework geared towards bringing testability and portability

1https://www.docker.com/
2https://www.docker.com/

22

https://www.docker.com/
https://www.docker.com/

to cloud computing. Essentially, Docker has similar goals to the local test environment
of JCloudScale and may be used as testing or portable cloud environment in the
future. However, Docker should be treated more as a tool that is highly useful in cloud
environment rather than as a complete cloud middleware.

JCloudScale also has some relation to the various cloud deployment models and
systems that have recently been proposed in literature, e.g., Cafe [70], MADCAT [71], or
OpenTOSCA [72], which is an open source implementation of an OASIS standard. These
systems do not typically cover elasticity by themselves (although TOSCA has partial
support for auto-scaling groups), but they are usually independent of any concrete cloud
provider.

By design, JCloudScale supports most of the characteristics we discuss here. How-
ever, especially in comparison to PaaS systems, developers of JCloudScale applications
are not entirely shielded from issues of scalability.

Architecture restrictions of different solutions require more discussion. Industrial
PaaS systems (e.g., AppEngine, Beanstalk, Heroku) are generally geared towards a very
specific type of application (transaction-based Web applications). These systems assume
that requests are (to a large extent) independent, and take very little time to process
(AppEngine, for instance, has a hard upper limit of 30 seconds of processing time per
request). This model is useful for many typical use cases in a Web context, e.g., blogs or
Web shops. However, developers aiming to build other kinds of applications (e.g., the
JSTaaS example discussed in Chapter 4, banking solutions, video streaming platforms,
etc.) have to switch to IaaS or struggle with the architectural and technical restrictions
imposed by those PaaS systems. Other remoting and cloud frameworks (e.g., Java RMI
or Docker) do not have such restrictions (e.g., Docker is useful for more or less arbitrary
applications), however, these systems are also not concerned about providing automated
scaling and elasticity. JCloudScale, as well as the related ANEKA framework [53]
and the Elastic Remote Methods proposed by [10], strive for a middle ground. They
do not inherently assume a specific, narrow type of application, and can in principle be
used to implement a wide range of elastic applications. However they are mostly suitable
for applications with durable request- or task-processing activities, such as, for instance,
video-audio encoding, web-crawling, sentiment analysis, or image rendering.

Additionally, JCloudScale provides significant benefits for applications that use
cloud resources only to cover activity bursts [78]. JCloudScale is less suitable for
connection-oriented and latency-sensitive applications, such as streaming services or
online games. Further, for big data centric applications, JCloudScale is arguably less
intuitive to use than state-of-the-art models (e.g., Hadoop or Spark SQL).

3.2 Related Work on Transparent Code Distribution

The problem of code distribution, discussed in Section 5.2, is not a novel topic [79]. The
trivial solution would be to update code manually prior to execution. This solution is
good enough for systems that update rarely, or in situations when the network speed is
insufficient for code transmission or version verification at runtime. However, with further

23

development of networking and network-aware applications, automated code updating
has become common. Nowadays, applications often check for updates periodically or at
startup, and download updated code versions when necessary. This approach is suitable
and becomes a standard for common user-oriented applications, but in other cases more
sophisticated methods are needed.

One scientific area that inherently faces the problem of code distribution is grid
computing [80, 81]. Software development in grid is usually focused on parallelization
and computation-intensive execution [82]. Therefore, it is applicable to distribute code
to the appropriate grid nodes prior to execution either manually or automatically. Some
approaches to distribute program code and additional data on-a-fly were proposed
in [83]. Still, code distribution in grid computing is different from the taken approach
in presented work. In grid computing, developers solve the problem of initial long-
running code distribution or “hot patching” [84]. Instead, discussed approach focuses on
running different code versions in parallel. This is important for development, testing
and multi-tenancy scenarios [85].

The transparent code distribution approach presented in Section 5.2 is more similar to
the idea of mobile agents in agent-based computing. With this paradigm, applications are
able to migrate from one computer to another autonomously and continue their execution
on the destination computer [86]. Code distribution is a vital concept for such applications
and a lot of research has been conducted to achieve different goals and improve code
migration [87, 88, 89, 90, 91]. However, in contrast to JCloudScale, mobile agents are
active and choose themselves where and if to migrate between computers at any time
during their execution [92].

In JCloudScale, the application is distributed transparently and is not aware that
the code is being distributed. From this point of view, the presented approach is more
similar to the idea of remote code evaluation [93], when a task is transmitted to the
server to execute. Also, transparent code distribution in the frames of JCloudScale
exhibits some features of the code on demand approach [89], when missing code and
related files can be fetched from the remote location on demand.

Finally, it should be noted that the code distribution solution, presented within this
thesis, falls into the larger class of weak code mobility [90], as both code and data is
transmitted, but not the application state.

3.3 Related Work on Scaling Behavior Definition

The problem of task scheduling did not originate in the cloud computing area. Clearly, the
workload distribution challenge is present in any distributed or parallel system [94]. With
the appearance and maturing of common scheduling algorithms [95], DSLs for scheduling
and distributed systems started to appear. Nowadays task scheduling, often in a form of
DSLs, is researched for instance within the fields of high performance computing [96]
and embedded systems [97].

In the area of cloud computing, scheduling is usually performed in a form of balanc-
ing [95] or greedy [98] workload distribution in order to parallelize execution or optimize

24

resource usage. Such approaches satisfy data processing or classic three-tier [99] cloud
applications, and usually do not require complex DSLs or special scheduling frameworks.
However, when task distribution needs to address such dynamic or domain-specific fea-
tures as data locality [100] or system heterogeneity [101], the necessity of an additional
layer of abstraction becomes more plausible. The work presented in Section 6.3 does not
focus on advances in cloud task scheduling. Instead, a holistic approach is developed that
contains a significant amount of common algorithms and allows developers to address
their workload management needs as easy and clear as possible.

Resource management in general, and the elasticity concept particularly play a vital
role in cloud computing. Mainly, research is focusing on SLA-conformance [102], cost
optimization [103] and “green” computing [98]. However, there are multiple DSLs and
frameworks that are facilitating the problem of resource management by providing a
user-friendly API and a predefined set of behaviors [104]. Nevertheless, these DSLs
and frameworks are either completely outside of the developed application and provide
some uniform means of resource management like TOSCA [105], or have a limited set
of access APIs from within the developed application that allow passing information
to some external decision module [104]. Instead, scaling solution presented within this
thesis focuses on providing a tightly-integrated, extensible, cloud management framework
that is running within the developed application and does not require any standalone
components.

The major difference between the discussed solutions and scaling definition approach
presented in Section 6.3 is that we are aiming at providing a cloud management component
that (1) does not enforce any specific application design or architecture, (2) allows
developer-friendly configuration and extension using the same language as the developed
application, and (3) performs all actions within the developed application, allowing full
usage of application-specific knowledge.

3.4 Related Work on Profile-Based Task Scheduling

Effective scheduling in cloud computing influences dramatically the overall performance of
an application as well as resource usage [106]. Smart resource usage is clearly important
since the pay-as-you-go model is an intrinsic feature of cloud computing [1]. However,
resource usage optimization research in the area of cloud scheduling is mainly focused on
QoS [107, 108] cost-awareness [102, 109, 110] or SLA-conformance [111, 112].

Research works about QoS-based task scheduling usually focus on user perception of
the service execution and performance [113]. QoS became an important characteristic
with the invention and popularization of telephony [114] where it was used to define the
perceived quality of communication between users. In cloud computing area, research that
is focusing on QoS usually discusses service composition [115], workflow execution [107],
and IaaS or PaaS application organization [116]. Similar areas of research are explored
within the SLA-conformance [111] area [117, 118, 119]. The main difference between QoS
and SLA-oriented research is in perspective: QoS research focuses on user perception,
while the research targeting SLA conformance assumes to have a formal agreement

25

between a service provider and consumers that can be formally verified [120]. SLA-based
formal agreement is not contradicting or excluding QoS analysis. Instead, it is often
considered as an extension or a formal method to ensure the provided service qualities
expected by a user [121, 122].

The issue of cost-aware application execution is more specific to the cloud environment
as it exploits the idea of dynamic cloud pricing [123]. Despite of that, the scope
of topics explored in cost-aware cloud computing is similar to the ones of QoS and
SLA [124, 125, 126].

Relatively new, but nevertheless a quite prominent topic in cloud computing is
energy-efficiency or “green” workload scheduling [127, 128], that focuses more on effective
power usage and operation in data centers or application adaptation in order to require
a minimal amount of resources.

Another scheduling approach that focuses more on reliability and guaranteed task
completion in faulty environments is redundant scheduling [129, 130] approach. Research
in this direction targets the issue of fault detection, prevention, and recovery, while in
Chapter 7 the main issue is the effective usage of the particular host resources.

From the perspective of profiling, in the cloud computing domain it is common to
use it in order to develop elastic applications [131, 132] that adapt themselves to varying
loads. This is usually treated in a broader way than the approach presented in Chapter 7:
usually profiling is used to determine under-utilized or over-utilized machines, in order
to balance existing load or manage the amount of used resources.

Each of the discussed approaches operates on higher levels of business requirements,
resource usage and service quality, rather than the approach presented in Chapter 7.
While most of the research mentioned here abstracts from the actual historical resource
usage measurements, presented approach manages actual and predicted task resource
usage values in order to achieve smooth and controlled resource usage curve on the level
of a single host. This approach allows lowering resource requirements for planned jobs
and allows executing more tasks in parallel on the same amount of cloud hosts.

26

CHAPTER 4
Case Study

Every contribution of this thesis is illustrated using the JSTaaS (“JavaScript Testing-as-
a-Service”) case study. JSTaaS is a JavaScript application testing cloud service, inspired
by the real-life service provided by the New York based startup Codeship1. Even though
the Codeship company and the service they provide is real, the details discussed below
are not related to the real architecture or implementation of the Codeship product.

The role of JavaScript is rapidly increasing in the modern software development
world [133]. JavaScript is a dynamic weakly-typed scripting language [133], therefore the
main way of ensuring that particular code is correct, is to invest more efforts in code
testing. However, in order to continuously test significant amounts of code, developers
have to spend a substantial amount of money on computing infrastructure and personnel
designated only for this purpose. Due to this situation, an imaginary team of developers
decided to provide a standard, scalable and convenient infrastructure for JavaScript code
testing.

Clients interested in automated code testing have to register their code repositories
with the unit and integration tests in JSTaaS. Afterward, provided test suites are
launched periodically following customer requirements. Test execution reports, accompa-
nied by billing information, are sent back to the code owners.

Such business model allows companies to have automated continuous testing with
minimum efforts required from their side. A very rough illustration of JSTaaS service is
given in Figure 4.1.

As the developers had limited initial funding and unclear perspectives, it has been
decided that the preliminary version of JSTaaS will be deployed in a small private
cloud, sharing available infrastructure with other cloud applications. However, JSTaaS
appeared to be a success, and soon grew out of available resources in this private data
center.

1https://codeship.com

27

https://codeship.com

JSTaaS Infrastructure

Repository

Repository

Repository

Fr
o

n
te

n
d

Lo
ad

 B
al

an
ce

r Test Executor 1

Test Executor 2

...

Test Executor n

R
ep

o
rt

in
g Results and Usage

Storage

Monitoring and Governance

Te
st

 R
u

n
n

er

M
as

te
r

Figure 4.1: JSTaaS usage model and behavior

In order to facilitate further service enlargement, developers decided to incorporate
resources of the Amazon EC2 public cloud, so that infrastructure costs will only grow
in line with the actual demand. Furthermore, to save costs, local and remote virtual
machines, which will be used to launch actual tests, should be utilized to the highest
degree possible. This means that tests should be co-located on the same virtual machines
as far as possible, and idle machines should be released if they are not required any
longer. To this end, the core of JSTaaS needs to continuously monitor the utilization of
all hosts, as well as the execution time of tests, in order to decide which hosts to keep
online and which to tear down.

In order to address these ideas, the JSTaaS service infrastructure had to continuously
extend over the available private and public cloud infrastructure, as it is shown in
Figure 4.2. However, infrastructure management and monitoring APIs are completely
different for each environment, what requires from JSTaaS developers to rewrite a
significant amount of infrastructure management code in order to encapsulate and handle
this difference.

Using standard tools, this application is not trivial to implement. Developers need
to split the application into task manager, load balancer and workers to execute the
tests, setup virtual machines, install the respective application components on these
virtual machines and, at runtime, monitor to make sure that the application is not
over- or under-provisioned. Tools such as AWS Elastic Beanstalk (deployment) or
CloudWatch (monitoring) can be used to ease these tasks to some extent. However, such
tools are available only for the respective provider’s environment (i.e., Amazon) and
handcrafted aggregating infrastructure and applications to merge data from multiple
platforms are still required. Additionally, developers have to solve the issues related
to ongoing JSTaaS development. Previously they used the same infrastructure for
production and development of JSTaaS, but now they need to develop an algorithm
to define how their changes will propagate to the public cloud. Similarly, if some client
relays on the previous version of JSTaaS, developers have to ensure that the code of
such client is executed within the right version of JSTaaS.

28

Back-end Host

JSTaaS

Back-end Host

JSTaaS

Cloud

Back-end Host

JSTaaS

Back-end Host

JSTaaS

Back-end Host

JSTaaS

JS Tests JS Tests

CustomersCustomers

JS Tests

JS Tests

Front-end Host

JSTaaS

jCloudScale

Figure 4.2: Extended model of JSTaaS service infrastructure

Hence, the developers decide to use the JCloudScale middleware to build JSTaaS.
The team hopes that JCloudScale will help its few developers to efficiently write this
elastic application, quickly master unfamiliar cloud APIs, and devise good scaling and
scheduling policies. Furthermore, the integrated event-based monitoring of JCloudScale
will also be useful for customer billing. Additionally, building their application on top
of the JCloudScale abstraction, allows the team to easily migrate or extend their
application, e.g., to an OpenStack-based private cloud, should they decide to move away
from Amazon EC2 in the future. Finally, JCloudScale requires minimum changes to the
existing solution and much less efforts from developers to have a first functional prototype
than alternatives. This also allows JSTaaS developers to try out the distribution
approach provided by JCloudScale really fast and easily fall back to any alternative
solution in case they are not satisfied with the result.

In the remainder of this thesis, it will be shown:

1. How an application can be migrated or designed using JCloudScale middleware;

29

2. How code changes can be propagated over the infrastructure;

3. How JCloudScale allows defining application elasticity;

4. How unit tests can be efficiently scheduled over the booked resources;

30

CHAPTER 5
The JCloudScale Middleware

In this chapter, the basis for all contributions of this thesis is presented. While a basic
version of the JCloudScale middleware itself was initially introduced before [16], this
chapter discusses the main concepts and focuses on the work done within this thesis. The
descriptions and code listings in this and following chapters use the case study discussed
in Chapter 4 for practically explaining ideas. Structurally, this chapter starts with the
basic concepts and notions, introducing more advanced features and internal details as
they become related.

5.1 Basic Notions

JCloudScale is a Java-based middleware for building elastic IaaS applications. The
ultimate aim of JCloudScale is to facilitate developers to implement cloud applications
(in the following referred to as target applications) as local, multi-threaded applications,
without even being aware of the actual cloud deployment. That is, the target application
is not aware of the underlying physical distribution, and does not need to care about
technicalities of elasticity, such as program code distribution, virtual machine instantiation
and destruction, performance monitoring, and load balancing. This is achieved with
a declarative programming model (implemented via Java annotations) and with AOP
techniques, provided by AspectJ 1 framework that allows injecting required bytecode
modifications into the target application. To a developer, JCloudScale appears as
an additional library (e.g., a set of jar-files in classpath or Maven2 dependency) plus
a post-compilation build step. This puts JCloudScale in stark contrast to most
industrial PaaS solutions, which require applications to be built specifically for these
platforms. Such PaaS applications are usually not executable outside of the targeted
PaaS environment. Contrary, JCloudScale encourages developers to build applications

1https://eclipse.org/aspectj/
2https://maven.apache.org/

31

https://eclipse.org/aspectj/
https://maven.apache.org/

that not only execute, but also achieve a stated goal with or without JCloudScale
post-compilation processing enabled. This paradigm simplifies application development
and testing, as developers can develop and verify application business logic using familiar
local development environment.

The primary entities of JCloudScale are cloud objects (COs). COs are object
instances which execute in the cloud. COs are deployed to, and executed by, so-called
cloud hosts (CHs). CHs are virtual machines acquired from the IaaS cloud, which run
a JCloudScale server component. They accept COs to host and execute on client
request.

Furthermore, in order to follow the traditional cloud application development paradigm,
CHs are currently not shared between the different target applications. They are acquired
or instantiated by a single JCloudScale client application, and are only usable from
this application. However, this limitation is more ideological than technical, as most of
JCloudScale components support multi-tenancy [85] by default what will be shown in
the following.

The program code responsible for managing virtual machines, dispatching requests
to the virtual machines, class loading, and monitoring is injected into the target appli-
cation as a post-compilation build step via bytecode modification. Optimally, COs are
highly cohesive and loosely coupled to the rest of the target application, as, after cloud
deployment, every further interaction with the CO constitutes a remote invocation over
the network.

Application Cloud Host

Target Application CloudObject
co.myMethod(params)

CloudObject
Proxy

JCloudScale
Cloud

Manager

JCloudScale
Server

1: proxy.myMethod(params)

2:
invoke(coID,
‘myMethod’,

params)
3: ch = lookupCH(coID)

4: ch.invoke(coID,
‘myMethod’, params)

5: co = lookupCO(coID)

6:
co.myMethod(params)

Figure 5.1: Basic interaction with cloud objects

In the JSTaaS example, implementations of test runners are good candidates for
COs. Test execution potentially produces high computational load, and little interaction
between the test runner and the rest of the application is necessary during test execution.
Figure 5.1 illustrates the basic operation of JCloudScale in an interaction diagram.
Whenever application invokes the myMethod on an object, JCloudScale middleware
transparently intercepts the call and forwards it to the correct cloud host through the

32

internal proxy. The gray boxes indicate the code that is injected. Hence, these steps are
transparent to the application developer. However, note that Figure 5.1 is simplified
for readability. Some technicalities, such as classloading or data marshalling, have been
omitted, but will be discussed in more detail later in this section.

C
lo

u
d

 H
o

st
s

Remote JVM

A
p

p
lic

a
ti

o
n

 J
V

M
Target Application

JCloudScale
Client

Middleware

Remoting Interface

Host
Repository

Monitoring
Repository

Code
Cache

Remoting Interface

Cloud Object
Execution

Environments

Figure 5.2: System deployment view

Figure 5.2 shows a high-level deployment view of a JCloudScale application. The
gray box in the target application JVM also indicates injected components. Note that CHs
are conceptually “thin” components, i.e., most of the actual JCloudScale business logic
is running on the client side in the target application JVM. Such activities as cloud host
management (illustrated by Host Repository component) and monitoring data collection
and analysis (Monitoring Repository) are happening within the target application JVM.
In its current version, JCloudScale does not support target applications that are
themselves distributed.

CHs consist mainly of a small server component that accepts requests from clients, a
code cache used for classloading, and sand boxes for executing COs. In order to achieve
efficient yet light-weight encapsulation, these sand boxes are currently implemented via
custom Java class loaders. On the client side, the JCloudScale middleware collects
and aggregates monitoring data, and maintains the list of CHs and COs. Further, the
client-side middleware is responsible for scaling up and down based on user-defined
policies.

33

5.1.1 Interacting With Cloud Objects

Listing 5.1: Declaring COs in target applications
1 @CloudObject
2 pub l i c c l a s s MyTestExecutor {
3
4 @CloudGlobal
5 pr i va t e s t a t i c S t r ing myTestExecutorName ;
6
7 @EventSink
8 pr i va t e EventSink eventSink ;
9

10 @DataSource (name = " t e s t r e s u l t s ")
11 pr i va t e s t a t i c Datastore da ta s to r e ;
12
13 pub l i c MyTestExecutor (){}
14
15 @Local // Constructed ob j e c t w i l l execute l o c a l l y .
16 pub l i c MyTestExecutor (boolean l o c a l){}
17
18 pub l i c TestResult execute (@ByValueParameter TestSu i te t e s t s) {
19 . . .
20 }
21
22 @DestructCloudObject
23 pub l i c void cleanup (){}
24 }

Application developers declare and adjust COs in their application code via simple
Java annotations. These annotations serve as markers for JCloudScale to hint the
places of target application that should be altered in order to successfully and efficiently
distribute application code over the CHs. In the following, we refer to the minimal
example given in Listing 5.1. A more comprehensive example, which also includes a
step-by-step tutorial, is available in Appendix 9.3.

The main annotation that declares a class as a CO is @CloudObject. Any instance
of the class, which is annotated with this annotation, is typically considered a CO. This
means that every creation of an object of this class is altered to deploy the CO to the
particular CH instead. However, in some cases not all instances of a class annotated
with @CloudObject annotation should become COs. In order to support alternative
behaviors, JCloudScale allows annotating a particular constructor with @Local
annotation (see Listing 5.1, lines 15-16). This declares that all objects constructed using
this constructor will execute locally as if there is no @CloudObject annotation on the
class. Occasionally even this approach is not granular enough and only a certain set of
class instances should be moved to the cloud. In this case, a programmatic interface (see
Appendix 9.3) for proxy object creation can be used instead of the @CloudObject class
annotation.

Another concern that target application developers should be aware of is the specifics
of the code executed within the constructor of CO. In order to create a proxy object
that will be used for interaction with an actual cloud object running in the cloud (see

34

Figure 5.1), JCloudScale creates a dynamic sub-class of the CO. However, to instantiate
this proxy class, JCloudScale has to execute the parent constructor (i.e., the initially
invoked constructor of the CO). Similarly, the constructor code of the CO will be executed
on creation of the CO within the designated CH. Therefore, developers should be aware
that the constructor code will be executed twice during CO creation. Usually this is fine
as constructor code should only prepare the object itself for execution. However, if the
constructor code is not idempotent or is computation-intensive, developers should move
such code into a separate initialization method that application will invoke after the CO
is already instantiated.

As is the case for any object in Java, the target application can fundamentally interact
with COs in two different ways: invoking CO methods, and getting or setting CO member
fields. In both cases, JCloudScale intercepts the operation, executes the requested
operation on the CH, and returns the result (if any) back to the target application. In
the meantime, the target application is blocked (more concretely, the target application
remains in an “idle wait” state while it is waiting for the CH response). Fundamentally,
JCloudScale aims to preserve the functional semantics of the target application after
bytecode modification. That is, every method call or field operation behaves functionally
identical to a regular Java program, except of the issues described above.

Finally, developers should be aware of the resource cleanup behavior of JCloudScale.
By default, JCloudScale tries to follow default Java behavior and destroys COs
whenever they are collected by the garbage collector within the target application.
While this behavior is a reasonable default and should fit most applications, it may
cause unnecessary resource consumption in the cloud and postpone resource cleanup,
resulting in higher application operation costs. In order to improve this behavior, the
@DestructCloudObject annotation allows declaring the point in application execution
sequence when the particular CO can be removed from the appropriate CH. Note that
after the method annotated with @DestructCloudObject is executed, every following
interaction with the CO will result in a JCloudScaleException.

5.1.2 Static Fields and Methods in Cloud Objects

Another interesting topic is the behavior of the classes annotated as CO that contain static
fields and methods. Operations on those are by default not intercepted by JCloudScale
for performance reasons, as this would introduce a significant overhead even if the target
application only reads from such static fields, what is usually the case. However, in some
situations skipping interceptions may lead to a problem that we refer to as JVM-local
updates: if code executing on a CH (for instance a CO instance method) changes the
value of a static field, only the copy in this CH JVM will be changed. Other COs, or the
target application JVM, will not be aware of the change. Hence, in this case, the value
of the static field is tainted, and the execution semantics of the application changes after
JCloudScale bytecode injection. To prevent this problem and preserve standard Java
language semantics, static fields can be annotated with the @CloudGlobal annotation
(see Listing 5.1, lines 4-5). Changes to such static fields are maintained in the target

35

application JVM, and all CH JVMs are operating on the target application JVM value
via callback.

Particularly interesting is the problem of static method invocation if they are declared
in a CO. If such a method is invoked from the target application, JCloudScale does
not intercept the call and invokes it locally. The main reason for this behavior is that
such invocation can not be associated with any particular CO, thus JCloudScale does
not know on which CH this method should be invoked. However, if the static method is
invoked from an instance of a CO, this method invocation will be associated with the
particular CO and thus will execute on the CH that hosts this CO. While this approach
improves performance of utility method invocation (what is usually the case with static
methods), this may break synchronization patterns in user code. A summary of CO
interaction semantics is shown in Table 5.1.

Table 5.1: JCloudScale interaction semantics

Target application . . . JCloudScale . . .
. . . invokes CO constructor . . . intercepts this method call, creates a new CO and deploys

it on the CH.
. . . invokes CO constructor with @Local anno-
tation

. . . does not intercept the object creation and local object is
created.

. . . invokes a (non-static) CO method . . . intercepts this method call and schedules its execution on
the CH copy.

. . . invokes a static method . . . does not intercept this operation. The static method will
execute in the invoking application VM.

. . . gets or sets a (non-static) CO field . . . intercepts this operation and gets or sets the value on the
CH copy instead.

. . . gets or sets a static field . . . does not intercept this operation. The static field value of
the invoking VM will be used.

. . . gets or sets a static field with
@CloudGlobal annotation

. . . intercepts this operation and uses the value from the target
application VM.

5.1.3 Passing Data Objects

Evidently, most JCloudScale applications require parameter objects to be passed from
the target application to the COs, or between COs. As the purpose of these objects is
typically to transport data, we refer to them as data objects. JCloudScale supports
data object passing via three common strategies, as summarized in Table 5.2. If small,
primitive data objects (e.g., identifiers or numerical parameters) need to be passed, the
common strategy is to pass them using copy-by-value. This strategy is simple and
has a low overhead for small objects. However, it requires the objects to be marshallable.
Technically, this means that they need to support standard Java serialization mechanisms.
by-reference is more powerful, but should be used with care, as any interaction with
the by-reference proxy results in additional remoting. Target applications often use
by-reference to implement callback mechanisms, allowing for flexible asynchronous
programming models. Furthermore, the by-reference mechanism allows COs to get
access to a proxy of a different CO instance, hence, enabling communication between
different COs. Finally, JCloudScale also supports the shared strategy, in which
(serialized) data objects are stored in a persistent data store. This data store is shared

36

Table 5.2: Data object passing strategies

Strategy Description
copy-by-value Sends a deep copy of the object. Changes in the copy will not be reflected in the

original object.
by-reference Sends a proxy object (by-reference proxy) instead of a copy. Invocations of the proxy

are redirected back to the original object.
shared Data objects are exchanged by storing them in a shared data store. All CHs and the

target application operate on the same copy of the data (ensured by transactional
mechanisms and concurrency control).

among all CHs and the target application. This approach is commonly used if large
chunks of data need to be passed around multiple times, as is the case for many scientific
computing applications [134]. The shared strategy is also helpful if the JCloudScale
application is expected to interface with the external data producers or consumers.

copy-by-value and by-reference are defined on Java method and field level,
i.e., by annotating a parameter of a CO method, or a CO member field. In Listing 5.1,
TestResult is a by-reference parameter, while the actual test suite is passed
copy-by-value.

The shared model needs to be triggered explicitly by requesting JCloudScale to
inject a connection handle to a shared database (data store in JCloudScale terms) into
the Java application via dependency injection. For example, in Listing 5.1, a CouchDB
NoSQL data store [135] is injected. The application code then explicitly reads from
or writes to this data store. JCloudScale internally uses a custom data mapping
framework, which allows to serialize arbitrary “Plain Old Java Objects” to a wide array of
relational and non-relational data stores, including CouchDB, Riak, HBase and any SQL
database compatible with the Java Persistence API (JPA). The shared approach also
has the additional advantage that conflicts are detectable on database level via optimistic
concurrency control [136]. Optimistic concurrency control essentially implies that each
revision of a data object is associated with a numerical version flag. Whenever the data
object is updated, the version flag is incremented. Whenever a data object should be
updated, and the version flag in the data store is higher than the version of the object
that should be written, a conflicting change is detected and reported back to the user
via a DataStoreException. For by-reference and copy-by-value, developers
need to make sure that different COs do not override changes of other COs manually,
just as it is the case for any other multi-threaded Java application.

5.1.4 Fault Handling

Distributing applications with JCloudScale can potentially introduce faults, which
are not apparent as long as the target application is executed locally. For instance,
transient network outages can mean that a subset of COs is temporarily not available, or
a terminated CH can lead to a permanent loss of COs. At this stage, JCloudScale does
not provide sophisticated features to deal with these situations. However, JCloudScale
notifies the target application via a custom exception type (JCloudScaleException)

37

and a more detailed exception message about such problems, and hence allows developers
to deal with these issues as required in the target application.

Fundamentally, JCloudScale is most suitable for applications where the loss of
individual COs or CHs is non-critical. This is in line with standard cloud architectures,
which typically promote designing for failure, e.g., by adopting statelessness and redun-
dancy [137]. Built-in support for redundancy is not part of the current JCloudScale
release, but is part of our future research. Additionally, approaches for autonomous fault
detecting [138] are considered as an option.

5.2 Application Code Distribution Framework

When an IaaS application has to scale up (i.e., use more virtual machines than before), one
problem is how the availability of the current version of the application code, configuration
files and other resources can be ensured on the new host. In the following, we will use the
term “program code” as the shorthand for the application code and all dependent files.
The trivial approach is to either send the correct version of the code to each machine
on every request or to include the program code in the virtual machine base image.
The first approach introduces significant overhead for application performance, while
the second one is reasonable only in situations when the program code is entirely static
and will not be modified during application lifetime. However, real-life applications are
typically different. The program code often evolves over time, and developers would need
to rebuild all cloud images related to the developed application. In such scenarios, hard
coding the program code and other files into the virtual machine images becomes hard or
even impossible. Additionally, it becomes even more problematic if we consider situations
when multiple different code versions can be operating at the same CH over some time
or even in parallel. The only alternative way to achieve the program code distribution in
such conditions is to include facilities for dynamic code search and distribution on the
middleware level.

This section introduces a framework for transparent runtime program code distribution.
While this framework was developed within the JCloudScale, it is independent enough
to be used separately in a different setup or use case that requires dynamic and transparent
code distribution in the cloud environment.

5.2.1 Program Code Distribution Challenges

Dynamically distributing program code in a real-life IaaS cloud requires a number of
aspects to be addressed. (1) Firstly, the framework needs to detect when the code that
is to be executed is not available at all, and request the code from a code server (the
machine that has the correct version of the application binaries). For instance, if the
JSTaaS application described in Chapter 4 wants to delegate the generation of a test
report to a CH, the required program code needs to be available at this virtual machine.
(2) If this is not the case, the CH has to find a trusted code storage where appropriate
code can be retrieved from. In our case, usually the application itself will act as a

38

Table 5.3: Summary of code distribution challenges

Challenge Name Challenge Synopsis
1 Missing Code Detection CHs need to be able to dynamically detect if program code

needs to be loaded on demand.
2 Trusted Code Storage CHs need to be able to locate a code storage service (typically

the target application or a dedicated code server in the cloud).
3 Communication Middleware CHs need to have access to a suitable communication middle-

ware that allows them to dynamically load code.
4 Communication Protocol CHs and target applications need to use an efficient proto-

col for minimizing the communication overhead incurred by
dynamic code loading.

5 Code Versioning CHs need to be aware that program code can change, and that
the loaded program code is not valid indefinitely.

code server and deliver the required program code on demand, including the correct
versions of all missing dependencies that are required to execute this code. Alternatively,
it is possible to install a specific dedicated code server in the cloud, which then takes
over this task from the target application to reduce its load. Evidently, it is possible
to hard-code all required program code directly into the virtual machine images used
by JCloudScale, but this drastically reduces the flexibility of the system and makes
maintenance of the system cumbersome and time-consuming. (3) Thirdly, some means of
communication need to be established which allow program code to be transferred at
runtime from the trusted code storage to the cloud virtual machines. This communication
can be handled either in a point-to-point fashion (e.g., via Web services technology, such
as SOAP) or via a messaging middleware. (4) Fourthly, for practical performance reasons,
the middleware needs to optimize the communication protocol between application and
the CHs. For instance, it is typically not feasible to initiate dynamic code exchange
routines separately for each missing class of application code. Instead, the middleware
needs to smartly decide which additional code and non-code resources (e.g., images,
configuration files) will also be required in addition to the already detected missing code.
These dependencies should be distributed over the cloud at the same time to minimize
the overhead of the code distribution. (5) Fifthly, after dynamically loading the program
code, the middleware needs to decide how long this code and its dependencies can now
be considered as valid. To this end, it is required that the JCloudScale middleware is
able to detect when a different version of the program code is needed.

These challenges are summarized in Table 5.3. In the remaining of the section, we
will discuss our approach to solve these challenges within the JCloudScale middleware
and discussed code distribution framework.

5.2.2 Code Distribution Framework Overview

Whenever a CH in the JCloudScale middleware has to execute a new task, the system
has to ensure that all necessary resources are available and schedule the execution of the
task. Now we will describe our approach and show how we try to achieve efficient and
seamless code distribution, solving the challenges described above.

39

When the target application approaches a code segment that can be delegated to the
cloud, it schedules the execution on the CHs that are available at the moment. On the
CH, the scheduled code starts executing, while a special class loader on the platform
level maintains and fetches all required program code and other relevant resources, such
as configuration files. The architecture of our solution is visualized in Figure 5.3, where
the target application started from the application host can be seen. This application
is distributing the work to the set of CHs that retrieve necessary code from the cloud
code cache, code storage or directly from the target application. Due to this architecture,
code that is being executed does not have to care about code availability and version, as
the underlying infrastructure handles these problems seamlessly and transparently.

IaaS Cloud

JVM

Cloud Scale Server

Class loader

JVM

Cloud Scale Server

Class loader

Application host

JVM

JCloudScale client

Client code storage

Cloud host 1

JVM

JCloudScale server

Class loader

Target application

Application

Cloud host 2

JVM

JCloudScale server

Class loader

Application

Program codeProgram code Program codeProgram code

Code cache

Code
storage

Figure 5.3: Overview of program code distribution model

5.2.3 Missing Code Detection

In most programming languages (including Java, as used by JCloudScale), detection
of missing resources (both of code and non-code nature) can be handled by the developer
through a special APIs. However, in order to avoid misbehaviors, solve stated challenges,

40

and be able to control code availability and load sequence, we implemented, basing on
the available APIs, a special module in our middleware to intercept all requests for a
program code at cloud hosts. Concretely, we intercept the class loading mechanism of the
programming language to check against a set of already resolved classes. If the required
code has already been loaded, it can be provided again without any additional work
required from the class loader. If the required code has not been loaded before during
this execution, the class loader checks a code cache for it, as shown in Figure 5.4. The
details of this mechanism will be explained later. If the code was not found in the cache,
the class loader requests the code from the target application (or from a trusted code
storage), and waits for the response (see Figure 5.3).

Missing code load
attempt

Check cache
for code

Verify code with
code storage

Code is
in cache

Query code from
code storage

Code is missing
in cache

Register new code
in cache

Verification failed,
correct code provided

Resume execution

Verification
succeeded

Figure 5.4: Code loading strategy

5.2.4 Communication Middleware

Our code loading system does not have any specific requirements for a particular com-
munication channel, and usually can be used over the same communication facilities as
used by the rest of the application or parent middleware (i.e., JCloudScale). Resource
loading works based on simple blocking calls and may require the ability to initiate
communication with the trusted code storage facility. The only communication channel
properties that are important for this use case are reliability and a reasonable data transfer
speed. Channel speed is very important as communication delay is directly influencing
the application performance on the cloud. Evidently, any network communication is
slow as compared to local code retrieval, and the slower communication is, the lower the

41

performance benefits that can be reached by distributing the application over the cloud
in the first place are.

Reliability is also vital. Transfer errors, which CH can detect with the help of check
sums, can dramatically impact communication speed due to code retransmission. In case
of a communication failure, the application has to shutdown gracefully, as there is no
code to continue executing the task.

In the current version of JCloudScale, a JMS-compatible message queue is used
(i.e., Apache ActiveMQ3) to provide the communication channel for all client-host
communication, including dynamic code loading.

5.2.5 Trusted Code Storage Location

While the creation of a dedicated code server may improve reliability and performance of
the code distribution framework, for some cases this solution is not desirable. Sometimes
it is required to be able to fetch actual code directly from the target application. For
example, during software development or testing, it makes more sense to use the target
application startup machine for code distribution instead of a dedicated server that has
to be updated prior to every run. In such situations, code distribution service has to be
provided from within the target application. Moreover, the target application is typically
the most reliable source of the code, as the target application codebase contains exactly
the code that the developer expects to run. Therefore, by default, the target application
always runs the code distribution service, even in situations when a dedicated code server
is expected to be used. This simplifies framework configuration and allows using the
target application to update or verify code on the code server, or as a fallback option in
case the code server is off line or overloaded.

The code distribution service within the target application has to be able to provide
the code to the CHs without interrupting the main application thread. To achieve this,
the service is started in a dedicated thread. When the code distribution service receives
a request, it checks for an availability of the requested code and decides what to send.
The code provided by the trusted source is then stored in the cache on the CH and
execution is resumed. Additionally, inside the cache it is mapped to the appropriate
target application in order to enable multi-tenancy and fast code verification for the
following requests.

5.2.6 Code Versioning

To solve the challenges related to the code version control and updated code propagation,
a code verification system was implemented as a part of the JCloudScale class loading
mechanism. In case the code is available in cache, the class loader still has to ensure that
the code has the same version as the target application expects. Therefore, the class
loader carries out the code verification based on the last modification date and the size of
the code files, as depicted in Figure 5.4. Evidently, some other alternatives to implement

3http://activemq.apache.org/

42

http://activemq.apache.org/

code verification are feasible as well (e.g., using hash-codes, explicit versioning via version
numbers, or partial transfer), but we deemed the selected heuristic approach to be the
fastest, while still being reliable enough for practical applications. This point of view is
supported by the fact that similar approaches are used in other state-of-the-art solutions,
e.g., RSync,4 Apache Ant,5 GNU Make6 and others.

As code is stored in the cache, not only the required program code itself, but rather
all files that were provided previous time for the same code request are verified. For each
file in this set, the client either confirms that this is the expected code or provides the
file that should be used. After this, the class loader delivers the correct code for the
execution and, if necessary, updates the cached version.

5.2.7 Code Caching

In JCloudScale, CHs execute each separate request in a particular sand box. To this
end, the code retrieval infrastructure on each CH resolves all resources for each target
application separately. This allows parallel execution of different requests using different
code bases, and restricts any possible influence between requests. However, evidently this
approach introduces some redundant code transmission, because if the same program
code should be used more than once, still it will be transmitted separately for each target
application. To avoid this redundancy, we introduce a smart code caching mechanism.

For the first code request, when the required code is not yet cached, it has to be
downloaded from a trusted code storage, while each of the following requests only uses
the code available from the cache (if code verification is successful). When changes are
detected during verification, the outdated code is either replaced or used in parallel to
the updated version, depending on the cache usage and configuration policy. When
there are no changes, the cached code can be used without transmission through the
communication channel.

Table 5.4: Cache deployment selection tradeoff

Host Private Cache Cloud Cache

Cloud-Based Code
Storage

+ code access speed
- low cache hit rate

- no speed up
+ good cache hit rate

External Code Stor-
age

+ code access speed
- low cache hit rate

+ code access speed
+ good cache hit rate

The main task of the caching mechanism is to provide faster code fetching in situations
when the same code is requested multiple times. Therefore, code from the cache has to
be accessible faster than from a trusted code storage (e.g., the target application). The
fastest possible location of the cache is the hard drive or even memory of the CH. This
will give ideal access speed, but will reduce the cache hit rate, as each CH will have to

4http://rsync.samba.org/
5http://ant.apache.org/
6http://www.gnu.org/software/make/

43

http://rsync.samba.org/
http://ant.apache.org/
http://www.gnu.org/software/make/

maintain its own cache. In case of some distributed applications, this approach may give
no benefits at all, as it is shown in Table 5.4. Another possible approach is to create a
dedicated cache server or share one cache between multiple CHs. This is a good solution
if the code is initially transmitted through an unreliable or slow channel. But if the
application is already using a dedicated code service, a shared cache in the cloud hardly
makes any sense, as access speed will be almost identical as to the code server.

From the situation described above, it is clear that we face a trade-off illustrated
in Table 5.4. Depending on the environment configuration and situation, different
approaches will be more efficient and, hence, preferable. Therefore, to achieve the best
performance, it makes sense to allow the target application to decide on the preferred
caching strategy.

5.2.8 Batch Loading

When the class loading infrastructure receives a request for new classes or resources to
be loaded, there is not much information available to make some assumptions about the
data that should be loaded. The only thing that is available is the name of the resource
that should be retrieved. Therefore, the cloud host has to send a request to the storage
facility with only required resource name specified (as described above, the situation
is slightly different when there is code already available in the cache; for the sake of
simplicity, we will omit this case now).

When the code retrieval request arrives at the storage facility, an appropriate service
has to find the required piece of code and decide what to send along with it. Of course,
the simplest scenario would be to send only the requested resource, but this would
increase the cost of dynamic code loading and slow down an application, especially at
the startup. Another extreme would be to send the complete application code at the
first request: this would decrease the amount of messages, but might introduce even
longer delay for the very first request, when the entire set of libraries and code base is
transmitted even if most of them are not necessary at all for CO execution. Considering
the fact that usually not all code would be required on each cloud host, this option may
introduce even more overhead than the first one.

One possible option to solve this trade-off would be to allow the target application to
configure the amount of code that should be transferred for each request. However, this
approach would be rather cumbersome for the developers and against the primary design
goals of JCloudScale (making it transparent and easy to build cloud applications).
Another choice would be to use heuristics, which would propose a satisfying solution for
common usage scenarios.

For example, if the requested class belongs to a library (e.g., a jar file), it makes sense
to send the entire library instead, as the chances that other resources from that library
will be requested are high. Similarly, if the class belongs to a package, it makes sense to
consider sending the entire package. Also, if the class has some dependencies or belongs
to a hierarchy of classes or interfaces, other classes are very likely to be needed as well.

All of these heuristics have their own benefits and problems and it is complicated
to determine which of them should be used as the default behavior. To determine the

44

influence of these factors on real-life applications, we included a number of different batch
loading algorithms in our numerical evaluation, presented in the original work [20].

5.2.9 Summary

Summarizing said above, the transparent code distribution framework allows for distribut-
ing code to the cloud on demand and transparently to the target application. Presented
approach targets seamless application execution in a distributed environment and permits
alternative code versions running on each cloud host in parallel. The framework was
evaluated in a real-life application and the overhead of different code distribution and
caching strategies were compared and analyzed. The evaluation showed that selected
code distribution approach provides a list of benefits over alternatives and minimum
overhead for the users, while requiring insignificant amount of time to configure and use.

5.3 Target Application Development Process
To show how the development process of JCloudScale-based applications looks like, we
go through the set of steps necessary to bring a Maven-based application (as introduced
in Chapter 4) to the Amazon EC2 cloud. In this section, only the core elements of
application development process are highlighted. This should allow reader to understand
the level of complexity and intrusion that target application developers have to face
in order to start using JCloudScale. In more details this process is described in
Appendix 9.3.

While here we focus on Maven-based applications, JCloudScale allows building
target applications without Maven as well. Differences from the Maven-based sequence
are highlighted in Appendix 9.3.

The target application development process consists of the following three fundamental
steps:

1. The project setup has to be changed to reference JCloudScale;

2. COs have to be selected and necessary annotations have to be added;

3. JCloudScale has to be configured to efficiently and elastically scale the target
application.

5.3.1 Target Application Setup

The first step on a way to build a JCloudScale-based cloud application requires the
modification of a pom.xml file to reference JCloudScale and to apply post-compilation
processing required to inject JCloudScale behavior code into the target application.

In order to add a reference to JCloudScale, target application developers have
to add another dependency block which is shown in Listing 5.2. This dependency
references the current version of JCloudScale and provides the core JCloudScale
functionality that is required for almost any JCloudScale-based application. In case

45

developers want to leverage some additional JCloudScale functionality (e.g., application
bursting, database interaction, or scaling behavior definition modules), developers would
need to add corresponding dependencies as well.

Listing 5.2: Introducing JCloudScale dependency
1 <dependency>
2 <groupId>j c l o u d s c a l e</groupId>
3 <a r t i f a c t I d>j c l o u d s c a l e . core</ a r t i f a c t I d>
4 <ver s i on>0 . 4 . 0</ ve r s i on>
5 </dependency>

If developers build the target application now, they will see that the build process
fails with a dependency resolution error. This happens because by default Maven
locates dependencies in local or central repositories. However, none of them contains
JCloudScale artifacts. While we are continuously working on the JCloudScale
inclusion into a Maven central repository, currently the JCloudScale project is just a
research prototype and does not match every requirement necessary to be included into
the Maven central repository. Until this process is successfully completed, developers
need to reference a private repository that contains JCloudScale artifacts and all
necessary dependencies. In order to do this, the code from Listing 5.3 has to be included
into a pom.xml file. This code defines that Maven has to include external repository
into the artifact discovery process.

Listing 5.3: Referencing infosys maven repository
1 <r e p o s i t o r i e s>
2 <repo s i t o r y>
3 <id>in f o sy s−r e p o s i t o r y</ id>
4 <ur l>ht tp : //www. i n f o s y s . tuwien . ac . at /mvn</ ur l>
5 </ r epo s i t o r y>
6 </ r e p o s i t o r i e s>

After the correct repository is referenced, the target application should successfully
load the necessary dependencies and compile the available source code of the target ap-
plication. Finally, concluding this step, developers need to add the code post-compilation
processing definition, as defined in Listing 5.4. The plugin description presented in
Listing 5.4 alters the usual application build process in order to include additional step
of AspectJ processing. AspectJ is an aspect-oriented framework (see Section 2.4) that
allows post-compilation modifications of Java applications. JCloudScale uses AspectJ
to apply necessary code modifications that allow application distribution in the cloud.

5.3.2 COs Selection

The idea of JCloudScale is based on the notion of cloud objects, as introduced in
Section 5.1. As the most common and resource-intensive task of JSTaaS application is

46

Listing 5.4: Applying JCloudScale post-compilation processing
1 <plug in>
2 <groupId>org . codehaus . mojo</groupId>
3 <a r t i f a c t I d>aspec t j−maven−p lug in</ a r t i f a c t I d>
4 <ver s i on>1 .4</ ve r s i on>
5 <con f i gu r a t i on>
6 <source>1 .7</ source>
7 <ta rg e t>1 .7</ ta r g e t>
8 <compl ianceLeve l>1 .7</ compl ianceLeve l>
9 <verbose>true</ verbose>

10 </ con f i gu r a t i on>
11 <execut i on s>
12 <execut ion>
13 <con f i gu r a t i on>
14 <XnoInl ine>true</XnoInl ine>
15 <asp e c tL i b r a r i e s>
16 <aspec tL ibra ry>
17 <groupId>j c l o u d s c a l e</groupId>
18 <a r t i f a c t I d>j c l o u d s c a l e . core</ a r t i f a c t I d>
19 </ aspec tL ibra ry>
20 </ a sp e c tL i b r a r i e s>
21 </ con f i gu r a t i on>
22 <goa l s>
23 <goa l>compile</ goa l>
24 <goa l>te s t−compi le</ goa l>
25 </ goa l s>
26 </ execut ion>
27 </ execut i on s>
28 <dependenc ies>
29 <dependency>
30 <groupId>org . a sp e c t j</groupId>
31 <a r t i f a c t I d>a s p e c t j r t</ a r t i f a c t I d>
32 <ver s i on>1 . 7 . 0</ ve r s i on>
33 </dependency>
34 <dependency>
35 <groupId>org . a sp e c t j</groupId>
36 <a r t i f a c t I d>a s p e c t j t o o l s</ a r t i f a c t I d>
37 <ver s i on>1 . 7 . 0</ ve r s i on>
38 </dependency>
39 </dependenc ies>
40 </plug in>

to execute customers’ tests, the class MyTestExecutor that wraps the separate test
suite execution is a good candidate. Furthermore, this class is strongly decoupled and
requires minimal interaction with other components of the application, what perfectly
fits the notion of an ideal CO.

Listing 5.5 shows the test execution class that is being distributed by JCloudScale.
Mainly it consists of application-specific business logic with a number of JCloudScale an-
notations added. As the MyTestExecutor class is annotated with an @CloudObject
(see line 1 in Listing 5.5), all interactions with the instances of this class are intercepted
by JCloudScale and scheduled to the appropriate CH. In addition, to optimize perfor-
mance, some method parameters and return values are annotated with the appropriate
parameter passing annotations that allow treating parameters either as copy-by-value

47

Listing 5.5: The skeleton of the test execution class
1 @CloudObject
2 pub l i c c l a s s MyTestExecutor {
3 @CloudObjectId
4 pr i va t e UUID coId ;
5
6 @DataSource (name = " t e s t r e s u l t s ")
7 pr i va t e Datastore da ta s to r e ;
8
9 pub l i c @ByValueParameter UUID get Id () {

10 r e turn coId ;
11 }
12
13 pub l i c void s e t Su i t e (@ByValueParameter TestSu i te su i t e , i n t t e s t I d){
14 . . .
15 }
16
17 pub l i c void execute (TestSui teExecut ion s ta tu s e s , i n t su i t eNr){
18 . . .
19 }
20
21 @DestructCloudObject
22 pub l i c void cleanup (){}
23 }

(see lines 6 and 13 in Listing 5.5) or as by-reference (see line 17 in Listing 5.5). For
example, as the statuses parameter of the execute method (line 17 in Listing 5.5) is
not annotated by any specific annotation, it is treated as by-reference and all changes
applied to this object in CH are retransmitted back to the target application.

Another important annotation is @DestructCloudObject on the cleanupmethod
(see line 21 in Listing 5.5) . This annotation specifies that this is the last invocation on
this CO and, after invocation of this method is finished, this CO can be destructed. This
allows optimizing resource usage and cleaning unnecessary objects from the CHs.

Separately we would like to note the dependency injection feature of JCloud-
Scale. Two fields of this class (coId (line 4 in Listing 5.5) and datastore (line 7
in Listing 5.5)) are annotated with appropriate annotations to allow additional inter-
action with the JCloudScale middleware. For example, the coId field annotated
with @CloudObjectId annotation allows using JCloudScale-defined CO Id of this
particular object.

5.3.3 Configuring JCloudScale

At this point, the JSTaaS application is already distributed by JCloudScale. However,
the distribution is happening in the so-called “debug” mode: instead of using separate
cloud hosts, JCloudScale spawns new JVMs on the same host the target application
is started. This mode is perfect for debugging and ensuring that everything works
as expected prior to deploying the application to the cloud. In order to deploy the
application on a real cloud, an appropriate configuration has to be provided.

48

There is a number of ways to configure JCloudScale, described in more details in
Appendix 9.3. In this section, system properties will be used to configure the developed
target application. An example of such code-based JCloudScale configuration provider
is shown in Listing 5.6. The system property jcloudscale.configuration has to
define either the path to an XML file containing a serialized JCloudScale configuration,
or the name of a class that has a static method with the
@JCloudScaleConfigurationProvider annotation (see line 1 in Listing 5.6) that
returns an instance of JCloudScaleConfiguration class (see line 2 in Listing 5.6).
Within this method, developer can either load configuration from some application-specific
storage or build configuration on the fly using JCloudScaleConfigurationBuilder
class, as it is shown in lines 4–15 of Listing 5.6. During the application run-time,
JCloudScale will load configuration from the configured location on demand.

Listing 5.6: An example of JCloudScale configuration provider
1 @JCloudScaleConf igurat ionProvider
2 pub l i c s t a t i c JCloudSca leConf igurat ion ge tCon f i gura t i on ()
3 {
4 r e turn new JCloudSca l eConf igurat ionBui lder (
5 new EC2CloudPlatformConfiguration ()
6 . withAccessKey (EC2_ACCESS_KEY)
7 . withSecretKey (EC2_SECRET_KEY)
8 . withAwsEndpoint (AWS_ENDPOINT)
9 . withInstanceType (INSTANCE_TYPE)

10 . withSshKey (SSH_KEY)
11)
12 . withMQServerHostname (serverAddres s)
13 . with (new Sca l i ngPo l i c y ())
14 . withLogging (Level . INFO)
15 . bu i ld () ;
16 }

If an appropriate Amazon EC2 configuration is specified, the application can already
be distributed in the Amazon EC2 cloud. However, the default host managing policy
will not be optimal for this particular target application. In order to adjust it, a custom
scaling policy based on the monitoring information or domain-specific logic has to be
developed.

It is challenging to design an elastic and effective scaling policy. To address this issue,
JCloudScale provides a configurable scaling policy definition language, described in
Chapter 6. This language is available as an JCloudScale extension, but a custom
scaling policy can be defined without it. Fundamentally, every scaling policy has to
answer a set of questions to define how target application should behave in the cloud. The
basic requirements for each custom scaling policy are presented in Listing 5.7. Developers
have to implement the method selectHost (see lines 9–13 in Listing 5.7) that defines
to which CH each CO has to be deployed. Additionally, developers should also define
when each CH is not needed any more and may be terminated. This has to be defined
in the scaleDown method (see lines 15–18 in Listing 5.7) that is periodically invoked
for each active CH. Finally, programmers may implement the initialize (lines 3–7

49

in Listing 5.7) and the close (lines 20–24 in Listing 5.7) methods that are invoked on
JCloudScale initialization and shutdown accordingly. These methods are intended
for initialization and termination of any background activities, such as performance
monitoring, related to the core scaling policy behavior.

Listing 5.7: A scaling policy example
1 pub l i c c l a s s S ca l i ngPo l i c y extends Abs t rac tSca l i ngPo l i cy {
2
3 @Override
4 pub l i c void i n i t i a l i z e (IHostPool hostPool){
5 . . . // here we de f i n e how cloud environment
6 // should be prepared on app l i c a t i o n s ta r tup .
7 }
8
9 @Override

10 pub l i c synchron ized IHost s e l e c tHo s t (
11 ClientCloudObject cloudObject , IHostPool pool){
12 . . . // here we de f i n e where to deploy the new cloud ob j e c t .
13 }
14
15 @Override
16 pub l i c boolean scaleDown (IHost sca ledHost , IHostPool hostPool){
17 . . . // here we de f i n e i f the s p e c i f i e d host should be shut down .
18 }
19
20 @Override
21 pub l i c void c l o s e (){
22 . . . // here we de f i n e how environment should
23 // be c leaned up on app l i c a t i on shutdown .
24 }
25 }

After completing these changes, our JSTaaS application is fully capable of running
over the Amazon EC2 cloud, where we can further adapt it to achieve the required
performance and resource consumption level.

5.3.4 Development Process

As JCloudScale makes it easy to switch between different cloud environments, the
middleware supports a streamlined development process for elastic applications, as
sketched in Figure 5.5. The developer typically starts by building an application as
a local, multi-threaded Java application using common software engineering tools and
methodologies. Once the target application logic is implemented and tested, the developer
adds the necessary JCloudScale annotations, as well as scaling policies, monitoring
metric definitions, and JCloudScale configuration as required. Using configuration, the
developer specifies a deployment in the local environment first. This allows application
testing and debugging within the developer’s machine, including tuning and customizing
the scaling policy. Finally, once the developer is satisfied with the target application
behavior, the application can be configured to run in an actual cloud environment.

50

Implement
Target

Application

Implement
Scaling

Policy etc.

Test In Local
Environment

Test In Cloud
Environment

Figure 5.5: Conceptual development process

The presented process aims to significantly decrease the amount of difficulties that
developers experience when building cloud applications, as it allows fixing errors and
issues on the stage where they appear, decreasing time-consuming application testing on
an actual cloud. Following this process, developers can fix issues related to business logic
while the application is still running in the preferable IDE. Similarly, the solid part of
distribution problems are already visible in a simulated local distribution environment.

However, of course this process is idealized. Practical usage shows that developers
will have to go back to a previous step in the process on occasion. For instance, after
testing the scaling behavior in the local environment, the developer may want to slightly
adapt the target application to better support physical distribution.

51

CHAPTER 6
Scaling Behavior

While the previous chapter presented the basic notions and internal activities of JCloud-
Scale, this chapter focuses on building elastic applications and the instruments that
JCloudScale provides for cloud application developers.

Transparent application distribution on its own is not the main feature of JCloud-
Scale middleware. Transparent code distribution for JCloudScale is only a method
that allows for elastic and efficient application execution in the cloud. The presented
architecture and paradigm of JCloudScale permits developers to completely separate
the target application distribution logic from the business logic of the application. This
approach simplifies the development of an independent and compact scaling behavior
that is only weakly dependent on the core application. Therefore, application elasticity
can be programmed by a separate team of developers or easily shared between multiple
applications. Additionally, scaling behavior can be easily substituted during any stage of
application execution, what allows for multiple independent scaling strategies improving
or competing with each other.

Targeting to have as few restrictions as possible, JCloudScale on its own provides
a very generic and abstract API for scaling behavior definition. Target application
distribution behavior has to be presented in the form of a Scaling policy that allows
defining used host management activities and task distribution. While such an API is
flexible enough to develop a scaling policy of almost any complexity and behavior, it
requires from developers significant efforts to develop even a simple scaling algorithm.
To address this issue and to simplify the creation of a scaling behavior, the approaches
and frameworks, presented in this chapter, were developed.

6.1 Autonomic Elasticity via Complex Event Processing
One central advantage of JCloudScale in comparison to modern PaaS platforms, is
that it allows for building elastic applications by manually mapping requests to a dynamic
pool of CHs. This encompasses three related tasks:

53

1. Performance monitoring;

2. CH provisioning and de-provisioning;

3. CO-to-CH scheduling and CO migration.

One design goal of JCloudScale is to abstract from technicalities of these tasks,
but still grant developers the necessary low-level control over the elasticity behavior of
the target application.

Target
Application

Monitoring
Repository

Scaling
Policy

Cloud Manager

Monitoring
Metrics
Monitoring

Metrics

Monitoring
Metric

Definitions

Schedule / Migrate

Message
Queue

A
pp

lic
at

io
n

JV
M

Ia
aS

 V
irt

ua
l M

ac
hi

ne

CE
P

En
gi

ne

External
Event

Source
Planning

Analysis Execution

Ia
aS

 In
fr

as
tr

uc
tu

re

Start / Stop

Cloud
Object
Cloud
Object
Cloud
Object

R
em

ot
e

JV
M

Monitoring

Figure 6.1: Autonomic elasticity

An overview over the JCloudScale components related to elasticity, and their
interactions, is given in Figure 6.1. Conceptually, JCloudScale implements the
well-established autonomic computing control loop of monitoring-analysis-planning-
execution [139] (MAPE). The base data of monitoring is provided using event messages.
All components in a JCloudScale system (COs, CHs, as well as the middleware it-
self) trigger a variety of predefined lifecycle and status events, indicating, for instance,
that a new CO has been deployed or that the execution of a CO method has failed.
Additionally, JCloudScale makes it easy for target applications to trigger custom
(application-specific) events. Finally, events may also be produced by external event
sources, such as an external monitoring framework. All these events form a consolidated
stream of monitoring events in a message queue, by which they are forwarded into a
complex event processing (CEP) engine [140] for analysis. CEP is the process of merging
a large number of low-level events into high-level knowledge, e.g., many atomic execution
time events can be merged into meaningful performance indicators for the system in
total.

Developers steer the scaling behavior by defining a scaling policy, which implements
the planning part of the MAPE loop. This policy is invoked whenever a new CO needs
to be scheduled, and is also responsible for deciding whether to de-provision an existing
CH at the end of each Billing Time Unit (BTU). A simplistic example that demonstrates
how round-robin task scheduling policy is implemented, is shown in Listing 6.1. This
policy schedules COs in a round-robin fashion among existing CHs, and never scales up.

54

Listing 6.1: Example round-robin scaling policy
1 pub l i c c l a s s RoundRobin extends Abs t rac tSca l i ngPo l i cy {
2
3 i n t index = 0 ;
4
5 pub l i c IHost s e l e c tHo s t (Cl ientCloudObject newCloudObject , IHostPool hostPool) {
6 r e turn hostPool . getHosts () . get ((index++) % hostPool . getHostsCount ()) ;
7 }
8
9 pub l i c boolean scaleDown (IHost host , IHostPool hostPool) {

10 r e turn host . getCloudObjects () . s i z e () == 0 ;
11 }
12 }

The policy terminates a host if it is unused (that is, there are no COs deployed at it) at
the end of the CH BTU.

Clearly, most real scaling policies are more complex than the one in Listing 6.1. Using
the ClientCloudObject, IHostPool, and IHost APIs, defined in Appendix 9.3,
developers are able to schedule the provisioning of new CHs (optionally asynchronously),
migrate existing COs between CHs, and schedule COs to a CH. Oftentimes, these decisions
will be based on monitoring data. Hence, developers can define any number of monitoring
metrics. Metrics are simple 3-tuples <name, type, cep-statement>. CEP-statements
are defined over the stream of monitoring events. An example, which defines a metric
AvgEngineSetupTime of type java.lang.Double as the average duration value
of all EngineSetupEvents received in a 10 second batch, is given in Listing 6.2.

Listing 6.2: Example of defining monitoring metrics via CEP
1 Monitor ingMetr ic metr ic =
2 new Monitor ingMetr ic () ;
3 metr ic . setName ("AvgEngineSetupTime ") ;
4 metr ic . setType (Double . c l a s s) ;
5 metr ic . s e tEpl (
6 " s e l e c t avg (durat ion)
7 from EngineSetupEvent . win
8 : time_batch (10 sec) "
9) ;

10 EventCorre lat ionEngine . g e t In s tance ()
11 . r e g i s t e rMe t r i c (metr ic) ;

Monitoring metrics range from very simple and domain-independent (e.g., calculating
the average CPU utilization of all CHs) to rather application-specific ones, such as the
example given in Listing 6.2. Whenever the CEP-statement is triggered, the CEP engine
writes a new value to an in-memory monitoring repository. Scaling policies have access
to this repository, and make use of its content in their decisions. In combination with
monitoring metrics, scaling policies are a well-suited tool for developers to specify how
the application should react to changes in its workload. Hence, sophisticated scaling
policies that minimize cloud infrastructure costs or that maximize utilization [141] are

55

easy to integrate. As part of the JCloudScale release, we provide a small number
of default policies that developers can use out of the box. However, these policies are
usually too simplistic to be used in an actual application. Therefore, they are mainly
assumed to serve as an example, while developers will write their own domain-specific
scaling policies. This has proven necessary as, usually, no generic scaling policy is able to
cover the needs of every application and the only way to achieve effective application
distribution is to integrate application-specific parameters and criteria into the scaling
policy.

Finally, the cloud manager component, which can be seen as the heart of the
JCloudScale client-side middleware and the executor of the MAPE loop, enacts the
decisions of the policy by invoking the respective functions of the IaaS API and the CH
remote interfaces (e.g., provisioning of new CHs, de-provisioning of existing ones, as well
as the deployment or migration of COs).

Event

Predefined
Event Custom Event

Object Event

Execution
Started Event

Execution
Ended Event

Execution
Failed Event

Object Created
Event

Object
Destroyed

Event

Host Event

Host State
Event

CPU Utilization
Event

RAM Utilization
Event

Figure 6.2: Monitoring event hierarchy

Figure 6.2 depicts the type hierarchy of all predefined events in JCloudScale.
Dashed classes denote abstract events, which are not triggered directly, but serve as
classifications for groups of related events. All events further contain a varying number
of event properties, which form the core information of the event. For instance, for
ExecutionFailedEvent, the properties contain the CO, the invoked method, and
the actual error. Developers and external event sources can extend this event hierarchy
by inheriting from CustomEvent, and writing these custom events into a special event
sink (injected by the middleware, see Listing 5.1). This process is described in more
detail in [48].

56

6.2 Cloud Targeting and Bursting
As all code that interacts with the IaaS cloud is injected, the JCloudScale programming
model naturally decouples Java applications from the cloud environment that they are
physically deployed to. This allows developers to re-deploy the same application to a
different cloud simply by changing the respective parts of the JCloudScale configuration.
JCloudScale currently contains three separate cloud backends, supporting OpenStack-
based private clouds, the Amazon EC2 public cloud, and a special local environment.
The local environment does not use an actual cloud at all, but simulates CHs by starting
new JVMs on the same physical machine as the target application. Support for more
IaaS clouds, for instance Microsoft Azure’s virtual machine cloud, is an ongoing activity.
Moreover, we aim to introduce systematic testing to ensure reliable deployment of CHs,
which is a key requirement for elasticity [142]. Figure 6.3 illustrates the different types of
environments supported by JCloudScale.

Target Application

CH CH CH

Target Application

CH CH CH

Local Environment
(e.g., developer machine)

Single Cloud
Environment

(e.g., OpenStack)

Target Application

CH

CH

CH

Hybrid Cloud Environment
(e.g., OpenStack and EC2)

Key:

Virtual or
Physical

Computer

JVM

IaaS Cloud

Figure 6.3: Supported deployment environments

Modern cloud applications are usually developed targeting one of two possible in-
frastructures. Some applications target private clouds, which are usually represented by
virtualized private data centers of a limited size under the complete jurisdiction of the
same entity as the developed application; or public clouds, which are usually represented
by independent extra-large shared virtualized data centers [1].

Nowadays the decision to execute applications in a public or private cloud usually has
to be taken prior to application deployment. Moreover, in order to change this decision,
developers usually may need to update application behavior to address the peculiarities
of the selected cloud platform.

57

The ability to switch the targeting platform with a simple change in the configuration
allows JCloudScale-based applications avoiding these problems at all. Furthermore,
JCloudScale unlocks opportunities for cloud bursting application development.

The cloud bursting concept [143] targets the idea of building applications that are
able to spread over multiple cloud environments (i.e., “burst”) whenever resources in
one environment are insufficient or inappropriate. This incorporates the concept of
migration between multiple environments in order to decrease execution costs and the
ability to execute different types of jobs in different environments addressing security or
performance concerns. Nowadays cloud bursting is mostly a research idea[144].

Private Cloud

Public Cloud

Single Node

Burst
Consolidate

Burst
Consolidate

Figure 6.4: Basic three-phase cloud bursting model

Figure 6.4 illustrates the idea of cloud bursting in a model that will be referenced
further. This approach is in line with the existing research on the concept of cloud
bursting [144].

Describing cloud bursting using the use case from Chapter 4, initially the JSTaaS
application runs in a single host. Actually, up to some amount of tests to execute,
the performance of such deployment is higher than of a distributed application, what
is mainly caused by the communication overhead which is avoided when everything
runs within a single host. However, once the amount of tests exceeds the capabilities
of a single host, JSTaaS has to burst into a private cloud. At this point JSTaaS is
already distributed, but all communication happens over a fast local area network, thus
performance is still good and the impact of networking is still comparable to a single host
deployment. Finally, when the load exceeds the capabilities of a private cloud, JSTaaS
has to burst into a public cloud. Whenever this happens, the JSTaaS application has
to take into account the workload transmission costs and the communication overhead.
Additionally, at this point developers have to consider privacy issues, as not every user
would like to have its private code to be accessible, even theoretically, by someone in a

58

public cloud.
Such JSTaaS behavior may be an interesting trade-off between the resource utilization,

application performance and execution costs. The presented approach allows JSTaaS
accessing unlimited resources of the public cloud, while providing offers for privacy-
concerned customers and being able to execute critical short-running tests within the
private infrastructure.

Unfortunately, designing cloud bursting behavior is quite challenging nowadays. There
are no standardized tools that take care of managing multiple environments at once, thus
developers have to develop code distribution, application monitoring and environment
management code for each used cloud over and over again. Moreover, developers have to
manually design cloud bursting behavior that fits particularly their application, what
significantly holds back the global adaptation of the cloud bursting idea.

In order to address this issue, the cloud bursting extension to JCloudScale was
developed [78]. The resulting framework provides a transparent application performance
monitoring and automatically decides when to burst or retreat from every used environ-
ment. Additionally, the presented framework provides an API that allows developing
custom cloud bursting scaling policies of varying complexity. The developed cloud burst-
ing policy and framework are presented in more details and evaluated in the original
work [78].

6.3 A Declarative Event-Based Scaling Policy Language
As the development of an elastic and effective scaling policy is an important part of
cloud application development, tools provided by a cloud platform should allow crafting
an efficient scaling behavior as easy as possible. Designing such tools, cloud providers
face an important trade off between the functionality and ease to use. From the one
side, the idea to design a generic and transparent solution that “just works” without
any labor required from a cloud application developer should definitely satisfy everyone.
However, such universal application will either fit only a subset of cloud applications
or fail to achieve the desired productivity due to the generality of approach. Therefore,
some developers will still need to have a powerful mechanism to design a custom scaling
behavior that achieves better performance than the generic approach.

Modern Platform-as-a-Service solutions (e.g., Google Appengine1 or IBM Bluemix2)
provide simple automated, rule-based solutions to this problem, which e.g., add and
remove servers based on CPU utilization thresholds. Those simple solutions are a perfect
fit for many three-tier web applications [99]. However, there are many real-life applications
that do not fit this model. For some applications, incoming tasks differ substantially
in resource usage per request, or the architectural design requires non-trivial mapping
of tasks to resources [145]. Similarly, problems appear when legislative rules regarding
data handling apply. For example, the European Union establishes specific rules for how
medical data is to be handled by service providers [146].

1https://appengine.google.com/
2http://www.ibm.com/software/bluemix

59

https://appengine.google.com/
http://www.ibm.com/software/bluemix

In these situations, cloud developers generally fall back to Infrastructure-as-a-Service
clouds, which allow more fine-grained elasticity control. However, choosing IaaS also
implies that developers have to create their own cloud management solutions, which are
both, cumbersome and error-prone. Further, manual development of elasticity behavior
is repetitive, as conceptually the same kind of abstract behavior needs to be implemented
in many different applications.

Similarly to IaaS, the JCloudScale scaling capabilities presented above target
to provide a powerful environment to design a custom scaling policy rather than an
universal scaling behavior. After a while, it became clear that scaling policy definition
in JCloudScale is a time-consuming process that is hardly different from the custom
solution, which developers have to create for an IaaS-based application. The discussed
JCloudScale scaling definition approach was intentionally selected to have minimum
limitations on developers and to collect some usage statistics and best practices to design
a scaling behavior for JCloudScale-based applications.

For this, the SPEEDL language was developed. SPEEDL is a declarative and
extensible domain-specific language [21] (DSL) that simplifies the creation of elastic,
application-specific cloud scaling behavior on top of IaaS clouds. SPEEDL allows for
the definition of scaling policies in form of a set of event-condition-action (ECA) rules
managing the amount and types of resources (e.g., VM instances) acquired from the
cloud, as well as the mapping of incoming tasks to these resources for processing. Unlike
existing industrial solutions, SPEEDL is extensible and allows for application-specific
rules development.

While SPEEDL is designed to be a generic and universal scaling policy definition
language, it is based on our previous experience with JCloudScale scaling policy
definitions. Moreover, the reference implementation of SPEEDL is presented as a
JCloudScale plug-in3 and can be transparently integrated into the core scaling definition
architecture of JCloudScale. Nevertheless, the reference implementation of SPEEDL
is not hard-wired to JCloudScale and can be easily used stand-alone or as part of a
third-party solution as well.

6.3.1 Language Design Considerations

While every cloud application has its own specifics and unique requirements, cloud
applications typically all make use of a number of general constructs defining how
cloud resources should be acquired and used. With SPEEDL, these requirements were
structured, formalized, and represented as a declarative DSL. The design and architecture
of SPEEDL, as well as the concrete out-of-the-box rules provided, are influenced by
existing industrial cloud systems and platforms, ongoing parallel research activities
in the field [104, 110] and our former experience with building and supporting elastic
applications [16, 19, 24].

Existing cloud research typically models elasticity either in the form of a control
loop (e.g., in the sense of autonomic computing [139]), or, more reactively, as a set of

3https://github.com/xLeitix/jcloudscale/tree/master/ext

60

https://github.com/xLeitix/jcloudscale/tree/master/ext

ECA rules [147]. While the former approach is often preferred in scientific work, those
solutions often struggle with being narrow for a specific domain and challenging to reuse
or adapt to fit different applications. The ECA-based approach avoids this problem [147].
Hence, SPEEDL was built on the notion of CEP [140], which provides reactiveness and
responsiveness to complex scenarios and application behaviors. An additional advantage
is that the basic declarative event-based model used by SPEEDL is conceptually close
to how practitioners define elasticity behavior in common PaaS services [148]. Hence,
we argue that the SPEEDL approach integrates better with current cloud developer’s
mindsets.

6.3.2 SPEEDL Overview

Scaling behavior in SPEEDL is defined by the developer as a scaling policy SP . Every
application makes use of exactly one scaling policy, which can be understood as a 2-tuple
SP =< TM,RM >, with TM being a set of task management rules, and RM a set
of resource management rules. Both, TM and RM are allowed to be the empty set
(TM,RM = {}). In this case, SPEEDL does not consider request scheduling, or does
not actually scale up or down. Every concrete rule r ∈ TM ∪RM is in turn a 3-tuple
r =< E,C,A >, with E, C and A being sets of triggering events, guarding conditions,
and resulting actions correspondingly. Actions differ for task and resource management
rules. For example, task management actions often entail scheduling a task to one specific
resource. The notion of “task” in this scope represents any workload or application
component that needs to be executed on a cloud resource. Resource management actions
may, for instance, entail starting a new resource of a specific type. The ECA structure of
SPEEDL defines a distinct responsibility of each part of the scaling policy and provides
clear and effective ways to configure the behavior of each rule. Additionally, this allows
applications to quickly react to changes in the system state, without requiring periodic
background checks as it is common in other approaches [147].

The implementation is technically realized as a fluent interface [149]. This makes
the actual DSL concise, expressive, and easy to understand. Using method cascading,
developers can simply invoke required rules separated by dots and produce compact and
tidy code that can be read like a declarative sentence.

Figure 6.5 gives a high-level overview over the main components and interactions of a
SPEEDL-based application. SPEEDL integrates with the actual application business
logic as a third-party component (i.e., a library in the Java implementation). The
SPEEDL implementation mainly executes a defined scaling policy, which consists of
task and resource management rules. All rules are triggered via events from an event bus.
This bus receives and correlates, in the sense of CEP, events from the cloud resources,
the application, and SPEEDL itself. Task management rules instruct the application to
execute specific tasks on specific hosts, while resource management rules interact with
the cloud to acquire and release resources. For both, events and rules, SPEEDL contains
a set of predefined constructs, which were defined based on requirements and features of
other literature and existing products. Additionally, developers have the opportunity to
extend these sets of predefined events and rules with application-specific ones.

61

Public'Cloud

Applica.on

Event&Bus

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&Applica0on&Business&Logic

Scaling
Policy Task'Management'

Rules
Resource'

Management'Rules

Event'Flow
Instruc.on'Flow

SPEED
L

Im
plem

entation

Acquire'/'Release'
Resources

Schedule'Task

Execute'Task

Figure 6.5: Using SPEEDL for elasticity control

Categorizing rules to scale up, scale down, task scheduling and task migration sets
allows defining the behavior of a cloud application clearly and intuitively. Any typical
action in the cloud can be assigned to one of these groups or separated on a few components
that fall into the presented categories. Defining SPEEDL rules, common patterns and
actions observed in the related literature and our previous experience were incorporated.
While this covers a broad spectrum of possible scaling scenarios, SPEEDL was designed
with extensibility in mind. Therefore, even in unique cases, developers can leverage
SPEEDL to achieve the desired application behavior.

6.3.3 Top-Level Language Grammar

We discuss the formal SPEEDL grammar using the Backus Normal Form (BNF). In this
section, we focus only on the most important details, while the full grammar is available
in Appendix 9.3. The top level of a SPEEDL definition, shown in Grammar 6.1, consists
of a rules sequence, followed by the optional validation section and the terminal
statement (build). Rules are split into Scale Up, Scale Down, Scheduling and
Migration sets.

The validation section allows triggering an optional consistency validation of the
scaling policy. SPEEDL distinguishes two types of validation: (1)internal rule validation
warns about rules that are internally inconsistent (e.g., scaling up validates that the
number of hosts to spawn is larger than −1), while (2) external validation checks for
inter-rule inconsistencies. Out-of-the-box, SPEEDL currently only supports internal rule
validation. External validation logics need to be provided by the developer, if required.

62

Grammar 6.1: Top-level formal language specification of SPEEDL

〈ScalingPolicy〉 ::= 〈SPConfigElements〉

〈SPConfigElements〉 ::= 〈Rule〉 〈SPConfigElements〉
| 〈Validation〉 〈SPTerminalStatement〉
| 〈SPTerminalStatement〉

〈SPTerminalStatement〉 ::= ‘build’

〈Rule〉 ::= 〈ScaleUpRule〉
| 〈ScaleDownRule〉
| 〈SchedulingRule〉
| 〈MigrationRule〉

In the following, we discuss each group of the rules in more detail and introduce
the available out-of-the-box constructs. The focus is on the most central and inter-
esting features of the language and code examples based on the JCloudScale Java
implementation of SPEEDL.

6.3.4 Event-Driven Elasticity

Event

Predefined Event Custom Event

Task Event

Task Created Event
Scheduling Started

Event
Scheduling Completed

Event

Execution Started
Event

Execution Completed
Event

Execution Failed Event

Task Destroyed Event

Host Event

Host State Event

CPU Utilization
Event

RAM Utilization
Event

Host Started Event
Host Destroyed

Event

Figure 6.6: Simplified hierarchy of predefined events

Events form the basis of all rules in SPEEDL. Naturally, different systems and
implementations make available different predefined events. In the Java implementation of
SPEEDL, the events depicted in the event hierarchy in Figure 6.6 are available. SPEEDL
predefined events are based on the monitoring event hierarchy from JCloudScale core
(see Figure 6.2). However, the core hierarchy was extended and improved in order to
provide more flexible and adaptive application monitoring and evolution.

Predefined events are mainly produced and consumed within the framework itself
and cover a range of common elasticity-related situations, such as task scheduling or
execution, host lifetime and resource usage. Additionally, application developers can
implement custom, domain-specific events, which are typically triggered either in custom

63

rules or directly in the application. In the JSTaaS scenario from Chapter 4, a potential
domain-specific event may be the creation of a test suite that is not allowed to be
scheduled to a public cloud due to privacy reasons.

6.3.5 Task Management

Task management rules focus on how to map tasks to resources. While these rules
may take into account the state of the cloud infrastructure, the only actions that are
initiated is that one or more tasks are assigned to exactly one host for execution. Task
management rules come in two flavors, the task scheduling or the task migration rule sets.
Task scheduling represents the initial mapping of a new task to a resource, while task
migration re-maps an already-existing task. Task migration controls the dispersion and
load of each resource by arranging and moving tasks in order to maintain overall system
stability.

Grammar 6.2: Formal specification of task scheduling rules

〈SchedulingRule〉 ::= ‘Schedule’ 〈ScheduledTaskType〉 〈SchedulingHostFilter〉
〈SelectedSchedulingRule〉

| 〈customSchedulingRuleImplementation〉

〈ScheduledTaskType〉 ::= ‘task’ 〈allowedTaskType〉
| ‘task’ 〈allowedTaskPredicate〉
| ‘’

〈SchedulingHostFilter〉 ::= ‘allHosts’
| ‘onRandom’ 〈hostCount〉
| ‘onHosts’ 〈hostToBooleanPredicate〉
| ‘onHosts’ 〈hostTaskToBooleanPredicate〉
| ‘’

〈SelectedSchedulingRule〉 ::= ‘greedy’ 〈GreedyRule〉
| ‘balance’ 〈BalancingRule〉

Task Scheduling Rules

There are two prevailing approaches to distribute tasks in the cloud. (1) Balancing
rules [95] aim to evenly distribute tasks over all available hosts, with the ultimate goal of
achieving a close-to-uniform distribution of tasks over hosts, while (2) greedy rules [98]
aim to saturate a single resource before using the next. Both of these behaviors have
merits, and domain- and application knowledge is required to select which of those
fundamental strategies is more suitable.

Additionally, each balancing or greedy rule is further shaped by a set of restrictions.
Developers can specify a criterion that selects the set of hosts that should be considered.
Alternatively, developers can specify which type of tasks this scheduling rule applies

64

Listing 6.3: Greedy scheduling rule
1 Schedule
2 . t a sk s (MyTestExecutor . c l a s s)
3 . onHosts (
4 (host , task)−>
5 host . getType () == (canRunInCloud (task) ?
6 PUBLIC_CLOUD : PRIVATE_CLOUD))
7 . greedy ()
8 . maxTasks (4) ;

to, as well as a maximal amount of concurrent tasks running per host. Finally, specific
scoring criteria, comparable to a fitness function in optimization, can be specified for
each host or scheduled task. This criterion allows developers to balance tasks depending
on application-specific task properties, thus achieving better, domain-specific, scheduling
results by exploiting data locality [100] or achieving cost-effectiveness.

The formal definition of a scheduling rule is provided in Grammar 6.2. An illustrative
example of a rule that distributes test execution tasks between private and public cloud
depending on a custom developer-defined predicate is shown in Listing 6.3 using the
syntax of the SPEEDL Java implementation.

Task Migration Rules

In many applications, especially those with long-running tasks (e.g., scientific computing),
it may often make sense to re-assign tasks that have already been started to execute on a
cloud host. The technical process of task migration is out of scope of SPEEDL. However,
SPEEDL provides a set of rules that allow the definition of a migration strategy as part
of the scaling policy, if the underlying application is able to suspend and move tasks, as
it is the case in JCloudScale. The formal structure and main rule categories are again
defined using BNF in Grammar 6.3.

Grammar 6.3: Formal specification of migration rules

〈MigrationRule〉 ::= ‘migration’ 〈MigrationType〉
| 〈customMigrationRuleImplementation〉

〈MigrationType〉 ::= 〈MigrationHostFilter〉 ‘integrate’ 〈IntegrationRule〉
| 〈MigrationHostFilter〉 ‘optimize’ 〈OptimizationRule〉

〈MigrationHostFilter〉 ::= ‘allHosts’
| ‘hosts’ 〈hostToBooleanPredicate〉
| ‘’

The process of task migration consists of four distinct phases. At first, situations that
require migration need to be detected (detection phase). As SPEEDL is based on the
notion of ECA rules, this phase is implemented via events. Next, tasks that should be

65

migrated are selected (task selection phase). By default, SPEEDL prefers to migrate
tasks that have been started last, but oftentimes an application developer will want
to substitute this behavior with application-specific logic. After that, the destination
host to which the task should be migrated, needs to be selected (host selection phase).
By default this is controlled by the same metric as the migration condition (e.g., when
high RAM usage is detected, objects are migrated to hosts with the least RAM usage).
However, again developers are able to customize this selection strategy or provide their
own implementation. Finally, the actual migration needs to be performed (migration
phase).

An example of an optimization migration rule that allows decreasing the load on the
private JSTaaS infrastructure by moving some tasks to the public cloud during working
hours is shown in Listing 6.4.

Listing 6.4: Optimizing migration rule
1 Migrat ion .
2 . hos t s (host −> host . getType () == PRIVATE_CLOUD)
3 . opt imize ()
4 . withMoreTasks (4)
5 . migrateTo (host −> host . getType () == PUBLIC_CLOUD)
6 . i fV i o l a t edFo r (ofMinutes (5))
7 . minAct ionInterva l (ofMinutes (10))
8 . canMigrate (task −> canRunInCloud (task))
9 . arrangeTasks (task −> task . getStartTime () , DESCENDING)

10 . i sEnabled (WorkingSchedule . isWorkingTime (now ())) ;

6.3.6 Resource Management

Resource management rules provide a mechanism to control and adapt the resources that
the application requests from the cloud infrastructure. While rules may take into account
CO resource usage, task executions or the application state, the main outcome of all
resource management rules is a change in the number and/or types of available resources.
This happens primarily through the scale-up and scale-down rule sets. Industrial PaaS
platforms usually take scale up and scale down decisions based on resource usage metrics,
e.g., average CPU load. This generic approach is also supported by SPEEDL. However,
resource-based scalability is reactive, cumbersome to write and hard to tweak [150],
as all decisions have to be based on the current resource usage. Therefore, SPEEDL
provides additionally an alternative approach that allows taking resource management
decisions based on application-specific events and conditions [48]. This allows adapting
cloud resource usage in advance, e.g., based on domain-specific predictions of future load.
For example, in the JSTaaS motivating scenario, application developers often know in
advance when a large batch of unit tests is going to appear, based on their development
schedule.

66

Scale-Up Rules

Scaling up is usually controlled via one or more application-dependent metrics (e.g.,
CPU/RAM usage, task throughput, predictions of future load). The behavior of all those
rules is similar – if a metric threshold is exceeded, a scale-up action is executed. Hence,
we created a single configurable behavior policy that accepts a controlled metric and
additional configuration that allows defining the actual action, e.g., how many and which
resources to start. The event-based nature of SPEEDL gives us the ability to flexibly
adjust thresholds and actions, depending on an application’s needs. Further, by leveraging
CEP, developers have access to powerful means of data aggregation and analysis when
defining metrics. However, in addition to these metric-threshold based rules, SPEEDL
also contains other rules for scale-up. For long-running applications, SPEEDL also
provides time-based scale-up rules. These rules do not trigger based on changes in the
actual or predicted load, but ensure that a proper amount of hosts is running at specified
points in time. This model is suitable for applications with well-known periods of high
usage. A formal definition of SPEEDL scale-up rules is given in Grammar 6.4.

Grammar 6.4: SPEEDL scale up rules specification.

〈ScaleUpRule〉 ::= ‘scale up’ 〈ScaleUpHostFilter〉 〈SelectedScaleUpRule〉
| 〈customScaleUpRuleImplementation〉

〈ScaleUpHostFilter〉 ::= ‘allHosts’
| ‘hosts’ 〈hostToBooleanPredicate〉
| ‘’

〈SelectedScaleUpRule〉 ::= 〈CPUBasedScaleUpRule〉
| 〈RAMBasedScaleUpRule〉
| 〈TaskCountScaleUpRule〉
| 〈TimeBasedScaleUpRule〉
| 〈TaskQueueLengthScaleUpRule〉
| 〈CustomMetricScaleUpRule〉

A sample scale-up rule that scales from 1 to 20 cloud hosts when we have more
scheduled test suites over the next hour than we have processing resources, is shown in
Listing 6.5.

Scale-Down Rules

While scaling up is often based on a current or predicted load, scaling down in contem-
porary IaaS cloud systems should be aligned with the BTU of the cloud provider. In
IaaS cloud systems, computing resources are typically billed periodically (e.g., hourly
in Amazon EC24, per minute after the first 10 minutes in Google5). Economically, it

4http://aws.amazon.com/ec2/
5https://cloud.google.com/compute/pricing

67

http://aws.amazon.com/ec2/
https://cloud.google.com/compute/pricing

Listing 6.5: A scale-up rule based on a domain-specific metric
1 ScaleUp
2 . hos t s (host −>
3 host . getType () == PUBLIC_CLOUD)
4 . when(hos t s −>
5 countTaskCapacity (hos t s) < TestsSchedule
6 . scheduled (now () , ofHours (1)))
7 . checkEvery (ofMinutes (5))
8 . minHosts (1)
9 . maxHosts (20)

10 . scaleUpStep (1)
11 . newHostType ("PUBLIC_CLOUD" , "m1. smal l ")
12 . minScaleUpInterval (ofMinutes (1 0)) ;

makes little sense to release a resource while it is still paid for. Hence, the evaluation
whether resources should be scaled down or not in SPEEDL is triggered briefly before
the resource would enter the next billing period. A second peculiarity of scaling down
is that it often needs to integrate with migration (see Section 6.3.5) in order to move
tasks still scheduled to a host that is about to be scaled down. Aside from those aspects,
scaling down is conceptually similar to scaling up. A formal definition of scale-down rules
in BNF is presented in Grammar 6.5.

Grammar 6.5: SPEEDL scale down rules specification.

〈ScaleDownRule〉 ::= ‘scale down’ 〈SelectedScaleDownRule〉
| 〈customScaleDownRuleImplementation〉

〈SelectedScaleDownRule〉 ::= 〈CPUBasedScaleDownRule〉
| 〈RAMBasedScaleDownRule〉
| 〈TaskCountBasedScaleDownRule〉
| 〈TaskQueueLengthScaleDownRule〉
| 〈HostIdleTimeScaleDownRule〉
| 〈TimeBasedScaleDownRule〉
| 〈CustomMetricScaleDownRule〉

An example of a scale-down rule that releases cloud resources when no longer needed
during public holidays is shown in Listing 6.6.

Hosts that are currently running tasks may also be scaled down. In some cases,
it is safe to restart the aborted task on another host. This is a common assumption
in many state-of-the-art PaaS platforms, which primarily deal with HTTP requests as
tasks. However, this is not always the case. Sometimes, tasks cannot be aborted due
to high startup costs, or the possibility of introducing state inconsistencies. In such
cases, the host either has to be left running until the tasks are finished or, if this is
possible, the tasks have to be migrated to another host. In SPEEDL this is controlled
by the ifWithTasks condition. It defines whether tasks can be discarded, left running

68

Listing 6.6: A scale-down rule based on task count
1 ScaleDown . runningTasks (0)
2 . checkAdvance (ofMinutes (1))
3 . minHosts (
4 host −> host . getType () == PUBLIC_CLOUD, 1)
5 . i sEnabled (
6 host −> host . getType () == PUBLIC_CLOUD &&
7 WorkingSchedule . i sHo l i day (now ()))

or migrated to another host. In more sophisticated cases, developers can perform any
custom actions with a particular host (including task migration or abortion) within the
custom isEnabled predicate that allows determining if particular scale down rule is
applicable to this host. As an example, such custom predicate is used in Listing 6.6 to
release only hosts from a public cloud during official holidays.

6.3.7 Summary

The rapid elasticity of cloud applications is an essential characteristic of cloud com-
puting [25]. However, development of an effective and self-adjusting scaling behavior
is connected with the significant amount of such purely programming challenges as
distributed communication, event correlation, and thread-safe development. In order to
address these challenges and provide a useful tool for a comfortable scaling policy defini-
tion, the SPEEDL language was developed. The domain-specific declarative language
SPEEDL simplifies defining advanced task and resource management policies for IaaS
cloud applications. Contrary to existing approaches, SPEEDL is aiming to provide cloud
management abilities as the part of the cloud application rather than via an external
system, thus allowing developers to incorporate domain-specific information and flexible
application design. SPEEDL categorizes typical scaling behaviors into four distinctive
sets (i.e., Scale Up, Scale Down, Scheduling, and Migration) and provides a
collection of typical customizable algorithms within each of the sets.

69

CHAPTER 7
Profiling-Based Task Scheduling

and Execution

While the previous chapters introduced the core and elasticity components of JCloud-
Scale, this chapter presents the automatic task scheduling and execution management
approach that improves resource consumption and task management within a single
cloud host.

Different types of applications require different approaches to task scheduling and
monitoring. The scheduling approach proposed in this chapter is most useful for factory-
worker applications (also known as the producer-consumer pattern, and strongly related
though not identical to the master-slave pattern [23]). In factory-worker, a single host or
a set of hosts (named “factory” hosts) create tasks while a (typically large) number of
worker hosts processes them. This architectural pattern is commonly used in situations
where the system has to process a set of tasks generated from user requests or by splitting
the bigger problem into smaller chunks. Applications designed this way often achieve
high scalability and performance while keeping interaction code simple. These advantages
make the factory-worker architectural pattern a common choice for applications that run
in a distributed environment or the cloud. Another distinctive feature of factory-worker
systems is that the set of possible tasks is usually homogeneous or limited. This allows
predicting future resource usage based on previously gathered profiling data.

7.1 Resource-Aware Task Scheduler

Usually, tasks executed within the cloud do not use resources (e.g., memory, CPU or
network bandwidth) uniformly. Instead, over the task run, resource usage varies, causing
usage peaks and valleys. In order to achieve effective and predictable execution times,
developers have to reserve resources considering the maximum expected usage [12]. This
causes resource over-provisioning for, often significant, parts of the task execution time.

71

If multiple tasks are to be processed on the same machine, resource over-provisioning
is even higher, as developers have to reserve resources accordingly to the worst-case
scenario, when resource usage peaks overlap. For instance, to process multiple tasks in
the cloud, with a 1GB peak memory usage each, developers have to either use hosts with
1GB of RAM, and execute tasks sequentially on each host, or reserve machines with more
memory, thus allowing parallel task execution. However, if this memory usage peak takes
only a short period of the task processing time (e.g., during data serialization), while
remaining memory usage is much lower, all reserved memory for that peak demand is
wasted most of the time, as it is shown in Figure 7.1.

0

5

10

15

20

25

30

35

40

45

M
e

m
o

ry
 U

sa
ge

, M
B

Task Execution Progress, time (mm:ss)

Free Reserved Memory

Task 3 Memory Usage

Task 2 Memory Usage

Task 1 Memory Usage

Figure 7.1: Host memory usage in case of memory peaks overlapping

The task scheduling approach presented in this chapter allows effective resource
usage for uniform tasks based on profiling data. In order to achieve this, a scheduler
that monitors task execution and constantly improves future resource usage estimations
for each used host was developed. These predictions allow the effective scheduling of
subsequent tasks, thus improving elastic system behavior in the cloud and optimizing
resource usage. Additionally, the discussed scheduler aims to avoid overlapping peak
resource usages of tasks, hence allowing to run more tasks in parallel on the same virtual
machine.

7.2 JSTaaS as a Factory-Worker Application

JSTaaS can be partially considered as such factory-worker application. At its core,
JSTaaS collects the tests that need to be executed and schedules them over the available
computation resources. Thus, its behavior is similar to factory-worker pattern. Even
though it is hard to predict and categorize resource usage of a set of abstract tests, it is

72

Table 7.1: Resource types summary

Resource Name Measuring Units Resource
Type

Description

CPU operations per second Competitive Specifies application execution speed
within existing environment.

Memory bytes Cumulative Specifies amount of used memory
within machine.

Network Traffic Us-
age

bytes Cumulative Specifies amount of data transferred
over the network.

Network Band-
width

bytes per second Competitive Specifies current throughput of the net-
work.

Storage bytes Cumulative Specifies amount of occupied storage
within available disk space.

Storage Read-
/Write

bytes per second Competitive Specifies speed of read/write opera-
tions of the storage.

Database Read-
/Write

transactions per second Competitive Specifies amount of successful transac-
tions between system and database.

fair to assume that resource usage is not uniform over the test execution. There may be
some memory spikes for test configuring or result collecting, test executions may include
busy-waitings or sleeping and network data may be retrieved or sent during different
tested activities. Additionally, a significant amount of tests do a similar job (i.e., invoking
some short-running activity and analyzing result), thus their resource usage patterns
should be similar. Even if this similarity is insufficient to obtain an accurate and usable
resource usage history, JSTaaS developers can generate a distinctive profile for each
test. As all tests are executed periodically, resource usage of each test usually stays the
same, while the changes caused by tested code modifications can be handled by error
correction algorithms, presented below.

7.3 Resource Types and Control Limitations

At first, before diving into the details of our approach, it is necessary to discuss the
nature of different computational resources and possible ways to control their usage. On
the highest level of abstraction, cloud-provided computational resources (see Table 7.1)
in the following text are divided into two classes: competitive and cumulative.

On the one hand, cumulative resources can be profiled and predicted relatively easily
and confidently. For example, if memory allocation is required and we are handling
multiple tasks in parallel, we can assume that the total amount of used memory is the
sum of each task usage. However, it is not trivial to reduce cumulative resource usage
at a specific point of time. For example, when some task will need more memory than
available in the system, we cannot reduce memory usage of other tasks, therefore, we have
to suspend our task until the total memory usage decreases. Additionally, whenever we
suspend the execution of a task, the usage of cumulative resources remains constant (i.e.,
the usage of cumulative resources does not decrease when suspending a task), limiting
the effectiveness of task suspension for such resources.

On the other hand, competitive resources are easy to manage with task suspension

73

and resuming. For example, when we are approaching some timing-critical CPU-intense
computation stage of one task, we can suspend other tasks on the same host and thus
ensure that all computational resources are allocated to the critical task. However,
competitive resources usage profiling is not as predictable as for cumulative resources.
For example, when two tasks are competing over the CPU of a virtual machine, their
execution time is hardly predictable because of concurrency issues. This can be somehow
managed by task or thread priorities, but mainly concurrency performance depends on
operating system implementation and state.

Additionally, we need to keep in mind that resource usage on application level is
not entirely predictable in practice. For instance, some requests or request sequences
can significantly influence the overall usage and productivity of some resource. For
example, database queries of different complexity can take different amounts of time. If
concurrent requests work with completely distinctive parts of a database, an execution
may significantly slowdown due to the frequent cache misses. Such behavior is hard to
predict during profiling, therefore, our approach relies on a profiling error correction
system, which improves prediction accuracy over time.

7.4 Approach Overview
The system we present in this chapter provides a fine-grained scalability and adaptability
of an application as decisions are based on the actual application behavior and current
activities, instead of general resource usage trends as utilized in related approaches [151,
152, 153, 154]. This is achieved by using a specifically designed distributed profiling
solution that allows collecting runtime information from the distributed application in
the key points of task execution. Whenever an application schedules a task, it invokes
the discussed task scheduling system. The global overview of the task scheduling and
execution process is presented in Figure 7.2.

Resource
Usage

Profiles

Scheduling Module

Tasks to
Schedule

Cloud Hosts

Task
Executor

Profiling
Module

Scheduled
Tasks

Profiling Data

User Application

Figure 7.2: Overview of the profiling-based scheduling approach

To have current and accurate information on application behavior from each used
worker (CH), an application is monitored via a special Profiling Module. The profiler is
running within an application on each used CH, profiles the resource consumption of a
Task Executor, and collects the information necessary for scaling decisions. Currently,
this information includes memory usage by objects related to the tasks executed on this

74

CH and CPU usage of the machine. Extension to other types of resources is part of our
ongoing work.

Collected information is matched to the tasks executed on this node and their progress,
either via push notifications sent by the task that is being executed, or after each task is
finished. The Profiling Module is mainly responsible for information collection, but also
handles starting and suspending tasks, in order to prevent overlapping and to avoid peak
load aggregation. Collected profiling data is accumulated in a Resource Usage Profiles
storage. All profile data processing and the creation of task schedules is happening
in a separate Scheduling Module, which is a conceptually independent component that
processes information collected from Profiling Modules. The Scheduling Module is a
central planner for the approach, and can be easily deployed to a separate cloud host to
not interfere with an application or workers performance.

7.5 Resource Profiling
As described above, the Scheduling Module relies on resource usage information obtained
from profiling previous runs of similar or identical tasks. During each task execution,
Profiling Modules are collecting resource usage traces and periodically send this infor-
mation to Scheduling Module. For a profiled task τ we measure the current usage or
the usage delta (ui) of each resource (∀ρ ∈ P). Therefore, the task execution trace (U)
is a mapping of resource usage measurements to the time when the measurement was
performed for each measurement point 0..n, as shown in Equation 7.1:

U ≡ ∀ρ ∈ P,∀i ∈ [0..n] :< ti, ui > (7.1)
This trace information, for each resource, can be visually represented as in Figure 7.3
(the figure exemplifies a trace for memory usage).

After receiving multiple of these task execution traces, the Scheduling Module can
build an estimated Aggregated Resource Profile (Iτ,ρ ≡ t ∈ [t0; tx], (ιτ,ρ,t0 . . . ιτ,ρ,tx)) by
averaging collected traces (U). After x executions (e) of a task of type τ , we hence end
up with x traces for each resource ρ, which we describe via a set Uτ,ρ = {U1, U2, . . . , Ux}.
Each resource usage trace may be not completely accurate and may represent only partial
information or may provide distorted data due to external system activity, network
problems, or other unpredictable events. To improve the predicted profile, all separate
traces must be compared and analyzed to minimize side-effects and minimize statistical
errors.

For example, for a memory execution profile (ρ =memory), a statistically plausible
way to build the average is to take the arithmetic mean of all traces for each point in time
t, as shown in Equation 7.2. As the calculation of each point is generally independent,
the algorithm does not have to wait for the whole trace to become available (e.g., wait for
all executions to finish). Instead, the Aggregated Resource Profile can be calculated and
further improved with each new measurement point of next task executions (ui ∈ Uτ,ρ),
if the measured value diverges from the predicted one more than a configured error rate
(ξ). The graphical representation of the trace averaging is shown in Figure 7.4.

75

0

2

4

6

8

10

12

14

16

00:00 00:02 00:04 00:06 00:08 00:10 00:12 00:14 00:16 00:18 00:20

M
e

m
o

ry
 U

sa
ge

, M
B

Task Execution Progress, time (mm:ss)

Figure 7.3: The measured memory usage profile for a specific task execution

Iτ,ρ ≡ ∀t ∈ [t0; tx] : ιτ,ρ,t =
∑Ux
U=U1

ut

x
(7.2)

This Aggregated Resource Profile allows predicting the future load for new tasks of
type τ . Therefore, if the scheduling infrastructure knows the current execution point of
each task on a specific worker in the system, the Scheduling Module is able to estimate
the future load of each worker and to adapt the task execution schedule to fit the required
resource usage limitations within each host.

7.5.1 Resource Profiling Modes

From an implementation point of view, profiling can be performed in active or passive
mode. In passive mode, profiling is happening seamlessly to the profiled application.
The Profiling Module is configured to perform resource measurements in fixed intervals
and has no knowledge of the profiled task execution state. This approach gives more
freedom to profiled application developers as it does not require any awareness of task
profiling. However, it does not provide fine-grained profile information, and may miss some
resource usage spikes or misinterpret an application profile because of the interpolation of
periodical measurements (see Figure 7.5). For example, if a task is periodically acquiring
and releasing memory, profiling may provide some random memory usage curve because
measurements happened on different stages of the periodic process. While an aggregated
task profile should improve after multiple task executions, the passive mode is still more
appropriate for resources that do not exhibit significant short-term spikes and profiling
long-running tasks that only gradually vary their resource usage.

76

0

2

4

6

8

10

12

14

16

18

00:00 00:02 00:04 00:06 00:08 00:10 00:12 00:14 00:16 00:18 00:20

M
e

m
o

ry
 U

sa
ge

, M
B

Task Execution Progress, time (mm:ss)

Execution Trace 1

Execution Trace 2

Execution Trace 3

Execution Profile

Figure 7.4: Averaging of measured memory usages to obtain aggregated memory usage
profile

0

2

4

6

8

10

12

14

16

00:00 00:02 00:04 00:06 00:08 00:10 00:12 00:14 00:16 00:18 00:20

M
e

m
o

ry
 U

sa
ge

, M
B

Task Execution Progress, time (mm:ss)

Actual Memory Usage

Active Profiling Trace

Passive Profiling Trace

Figure 7.5: Comparison of active and passive profiling technique on highly dispersing
task execution

In situations when passive profiling is not appropriate or shows insufficient results, the
active profiling mode should be used. In this mode, the profiled task is actively triggering
the Profiling Module to measure resource usage at crucial execution points. This allows
obtaining a context-aware resource usage profile that exposes actual task behavior,
leading to more confident and reliable scheduling actions. However, this approach has a

77

bigger impact on application performance, requires full awareness of developers and often
needs some amount of iterations to achieve the required granularity. It is preferable for
short-running tasks or applications with short resource usage spikes that can be missed
in passive profiling mode.

Another important benefit of active profiling is that it allows the Profiling Module
to suspend task execution on profiling points. This opens up additional scheduling
possibilities for the Scheduling Module, allowing for better resource usage results. In case
of passive profiling, task executions, once started, cannot be suspended in our system.
However, when active profiling is used, the Profiling Module can pause some tasks to wait
for a specific execution point of other tasks, therefore achieving better resource usage at
the minimal cost of overall application execution speed.

7.6 Task Scheduling

Whenever the Profiling Module on any worker reports host resource usage (see Figure 7.6),
it also includes information about the execution progress of each currently running task.
This allows to scale and align executions of multiple tasks from multiple machines to
one Aggregated Resource Profile for each distinctive task type existing in the profiled
application (see Figure 7.4). In addition, this profile is further refined to correspond to
new measurements, thus improving the overall quality of prediction and adapting the
Aggregated Resource Profile if resource usage changes gradually over time.

Based on the currently available profiling data and the task execution state of each
worker, the Scheduling Module can construct resource usage predictions for each worker.
These predictions play a key role in the process of scheduling new tasks. Every time new
tasks need to be scheduled, the Scheduling Module constructs the current prediction for
each worker and tries to schedule each new task to start as soon as possible. Generally,
the scheduling problem is isomorphic to the well-studied bin-packing problem, which is
known to be an NP-hard problem [155]. Hence, our scheduling approach is currently
based on a heuristic greedy algorithm. We will consider other implementations, for
instance, based on evolutionary algorithms [156] in our future research.

In order to formally define our scheduling goal, we need to define some additional
preliminaries. The algorithm schedules instances of different types of tasks (τn ∈ Ti),
where each type of task Ti has known or previously measured expected resource usage
profiles for each profiled resource ρ ∈ P (∀ρ ∈ P : Iρ), as explained in Section 7.5.
Additionally, each type of the tasks has an expected duration (tTi), which is the minimal
constraint for each task instance execution time (tτi ≥ tTi). The expected task execution
time (tτi) is determined during the scheduling process and is caused by delays because
of inter-task competition over computational resources or deliberate task suspension.
Each profiled resource ρx on each cloud host hi ∈ H has a usage limitation ρ′x, after
which either task execution slows down due to competition with concurrent tasks if
resource is competitive (e.g., if multiple tasks are competing for a single CPU), or an
application runs out of available resources and crashes if resource is cumulative (e.g.,
with an OutOfMemoryError for Java applications). Additionally, if some obtained

78

C
lo

u
d

 In
frastru

ctu
re

Scaled Nodes

Factory Node

Scheduling Module

ApplicationApplication

2. Task Scheduling

Profiling
Module

Worker Nodes

Task ExecutorTask Executor

Profiling
Module

Scaled Nodes
Worker Nodes

Profiling
Module

Task Executor

1. Profiling
Data

1.Profiling
Data

3. Task Assignment

3. Task Assignment

Figure 7.6: Architecture overview of the profiler-based scaling

cloud resource is not utilized above some boundary value ρbx , the corresponding host
is assigned a penalty p(ρx, ρbx). Based on this formal model, our scheduling approach
aims to minimize the total task processing time after the initial startup time t0, while
keeping resource wasting (as captured via penalties) as low as possible (see Equation 7.3).
Effective resource usage and task execution time often represent conflicting choices, hence,
application developers can additionally specify which of these criteria is more important
via the coefficients (A,B).

S = A
∑
hi∈H

(
∑
ρx∈P

(phi
(ρx, ρbx))) +B(max(tn ∈ T)− t0)→ min (7.3)

The greedy scheduling approach is shown in Figure 7.7. First, the Scheduling Module
sorts all new tasks in correspondence to their deadline (sooner first) and expected
resource usage (larger tasks first). This allows to schedule and run more prioritative and

79

demanding tasks sooner while there are more scheduling options available (less tasks
currently running or scheduled). After this ordering, for each new task, an appropriate
host and starting time is selected. To do this, the Scheduling Module tries to determine
how soon the current task can be started on each available host, while satisfying all
defined resource usage constraints. This is done by including the current task into the
execution plan of the host and detecting if any resource constraint is violated. If this
is the case, the Scheduling Module tries to postpone the task further by moving only
the first point when the resource constraint was hit. If the required delay for this point
is found, a new schedule is calculated using the newly shifted startup time. Note that
the scheduling algorithm cannot use the current time as task startup time, as it has to
postpone the current task for at least the amount of time required to transfer the task
over the network to the worker and start the execution there. This time is a parameter
of our approach, and can be either measured on startup (e.g., via the round-trip of a
packet of appropriate size plus task initialization time), detected by observing previous
scheduling results, or preconfigured by an application developer. Additionally, if the
task arrives at the host later than it was scheduled, the task is returned back to the
Scheduling Module for re-scheduling. After a worker and task startup time is defined
by the heuristic, the task is sent directly to the worker for execution to not miss the
scheduled start time.

One additional scheduling technique available to the Scheduling Module if active
profiling is used, is task suspension. The task that is being scheduled can be suspended
at developer-defined points of execution (checkpoints) to allow other tasks to pass their
resource usage pikes, therefore allowing to fit task execution within the resource constraint
even in situations when a non-suspending Scheduling Module would need to postpone
the task startup time after a resource usage peak.

On each task checkpoint, the Scheduling Module determines whether the following
task execution can violate resource usage constraint or not. In case it does, the Scheduling
Module pauses the task execution and starts awaiting the moment when the task execution
can be resumed without resource usage constraint violations. In order to minimize the
impact of task suspensions on the task execution time, the Scheduling Module actively
manages a state of each task whenever they reach the next checkpoint. On each checkpoint,
the Scheduling Module analyzes the execution profile of the current task few steps ahead
and decides how the upcoming execution of the task influences the overall resource usage.
Whenever the task is going to increase resource usage, it is suspended (unless this is the
last task to execute). In case the resource usage decreases, the Scheduling Module decides
if any of the suspended tasks can be resumed, preferring the ones that were suspended
earlier and have higher resource usage upcoming.

7.7 Summary

While cloud computing brings the ability to acquire and release resources according to
application needs, common resource usage patterns may lead to resource over-provisioning
and wastage. In this chapter, the focus was on a specific subset of cloud computing

80

applications that consist of known sets of uniform tasks with non-uniform resource usage
patterns. In order to optimize resource usage of each used cloud host, a task scheduling
and execution approach was developed. This approach is based on task execution profiles
and resource usage restrictions defined by application developers. The presented task
scheduling and execution management approaches allow concurrent task execution with
resource usage constraints in applications that support task suspension or not.

In the original work [24], the profile-based task scheduling approach is presented
and evaluated in more details. The evaluation results indicate that the approach allows
controlling the resource usage, while not influencing drastically the overall performance
of an application. In case of the evaluation application, presented approach managed to
cut 33% memory usage while adding only 1% of execution time overhead.

81

New Tasks
To Schedule
New Tasks

To Schedule

Constructing
Resource Usage

Predictions

Application
Execution

State

Scaled NodesWorker Nodes

Task ExecutorTask Executor

Profiling
Information

Profiling
Module

Current Tasks
Progress

Ordering Tasks

For each Task and Host

Schedule Task
ASAP

Has Resource
Violations?

Shift Task to
Remove
Violation

Yes

Select Nearest
Scheduling

Option

No

Save as
Scheduling

Option

Faster than
New Host

Start
Threshold?

Schedule Task
to New Host

No

Schedule Task
to Selected Host

Yes

Figure 7.7: Overview over the task scheduling heuristic

82

CHAPTER 8
Evaluation

In this chapter, the contributions presented in this thesis are evaluated. Addressing the
research questions discussed in Section 1.3, a user study and performance evaluations
were performed. The results show that the developed JCloudScale middleware and its
extensions solve the problems addressed by this thesis.

8.1 Evaluation Setup

The evaluation of contributions presented in this thesis consists of two parts. Section 8.2
starts with comparison of essential cloud application development features provided by
JCloudScale and popular IaaS and PaaS platforms. This is followed by a comprehensive
user study that validates these claims.

After that, Section 8.3 provides a performance evaluation of JCloudScale. The
main question addressed in this section is the overhead that developers experience using
JCloudScale. The performance of JCloudScale-based applications is compared to
the performance of cloud-native equivalent IaaS applications.

Finally, the evaluation is concluded with a discussion about open issues and an
analysis of possible validity threats.

8.2 Usability and Usefulness Evaluation

JCloudScale is designed to simplify the task and boost productivity of the higher-level
developers. In order to verify how JCloudScale is achieving its goals, one can observe
over time how popular it is, how real developers tend to use it and what is their opinion
about the discussed software. While this may be a reasonable approach for advanced
industrial solutions, research prototypes can not follow this methodology due to numerous
reasons. The main reason for this is that research prototypes mainly assess the quality of
the presented ideas or discovered principles, rather than the completeness and quality of

83

the solution in general. Therefore, research prototypes hardly ever provide the level of
quality, performance, advertisement and support that users are expecting from a popular
middleware.

An alternative evaluation approach that provides the desired answers while allowing
focusing on the noteworthy parts of the developed functionalities are usability and
usefulness evaluations.

Usability evaluations usually focus on the theoretical ability of developers to achieve
their goal using presented technology [157]. This approach allows verifying how much time
developers spent solving the stated task and how complete and effective their solution
was. Usefulness evaluations focus on developers’ perception of the presented tool or
the middleware [157]. Usefulness evaluations allow assessing how effective or constraint
developer feel while using the evaluated technology, how eager developer will be to use it
again or to recommend it to others.

In this section the usability and usefulness of JCloudScale middleware and its
separate components are validated. At first, we quickly recap the core difference between
JCloudScale and state-of-the-art IaaS and PaaS solutions, followed by the user study
discussion and analysis.

8.2.1 Comparison with Other Platforms

In the following, we briefly compare application development using JCloudScale with
building an IaaS application directly on top of Amazon EC2 (without specific tooling
except for the EC2 API) and using a PaaS service, such as Amazon Elastic Beanstalk
(AEB) or Google AppEngine. The main goal here is to show what advantages an
in-between solution such as JCloudScale has.

Starting with API complexity, JCloudScale requires knowledge of a reasonably small
amount of API functions, while offering large capabilities for application development.
This is mainly caused by the way how applications are built on top of JCloudScale
and the amount of necessary changes to the target application. While both, EC2 and
AEB assume developers to develop a new application for this platform specifically,
and based on the provided APIs, JCloudScale aims at seamless development and
ease of bringing existing distributed applications to the cloud. In addition to that,
JCloudScale provides specific tools and methodologies for cloud application debugging,
which are missing for EC2 or AEB. This is mostly provided by the special local execution
environment of JCloudScale, which scales applications in a sandbox on a local machine,
while developers of applications for EC2 or AEB can only debug application while the
target platform is available and only through a limited set of tools available for the
selected platform.

A core advantage of any IaaS approach is that it provides freedom regarding supported
frameworks and application architecture designs. JCloudScale, on the other hand,
is by its nature restricted to the Java programming language. Other than that, the
restrictions imposed by JCloudScale are minimal. AEB, on the other hand, induces
quite significant limitations on application design, and restricts the application developer
significantly, both with regard to what API functions can be used and what architecture

84

Table 8.1: Feature comparison of JCloudScale and alternative IaaS and PaaS solutions

Feature Amazon EC2 JCloudScale AEB
Complexity of API Small Small Significant
Amount of Platform Interaction Code Significant Small Small
Application Debugging Simplicity Manual/None Simple Reasonable
Architecture Limitations None Small Significant
Scaling Configuration Convenience Manual/None Good Basic
Code Distribution and Update Manual/None Semi-Automatic Automatic
Monitoring Features Manual/None Advanced Basic
Backend Server Access Unrestricted Unrestricted None
Hybrid Cloud Support Manual Built-in None
Developer Lock-in Small Small Significant
Programming Language Support Any Java Java, Python,

PHP, JavaScript,
Ruby, .NET

an application needs to follow. Another thing that the generic IaaS approach is good for is
for having full access to the back-end servers, providing developers complete flexibility and
control over the resource usage and operating system configuration. JCloudScale aims
to hide the complexity of virtual machines and developers can build cloud applications
without even controlling virtual machines, however, it does not forbid developers to
modify the virtual machine as long as the core components of JCloudScale are still
running.

The generic PaaS model has significant advantages as well. One example of such a
benefit of PaaS is code distribution and application scalability. While PaaS approaches
scale applications mostly automatically, for EC2-based applications, developers have to
create their own rules and approaches to achieve elastic application scaling. From this
point of view, JCloudScale provides a reasonable alternative. Scalability is achieved
by injected code and appears to be seamless to developer, while additional scaling rules
can be provided separately. Provided rules leverage the flexible monitoring framework
that allows controlling not only basic parameters such as CPU load and memory usage,
but also a high-level application-specific metrics.

Finally, JCloudScale offers support for applications that are scaling over multiple
clouds (forming so-called “hybrid clouds”), what allows minimizing application operating
costs and extends application flexibility beyond the limits of one cloud provider. This
model is not supported by AEB or Google AppEngine at all. Using an IaaS service
such as EC2, it is possible to implement hybrid clouds, but this requires a significant
amount of development and configuration work. In contrast, setting up a hybrid cloud
with JCloudScale comes at almost no effort to the developer.

Table 8.1 demonstrates a qualitative summary of the features that were considered
as important for application development. Compared to other systems, JCloudScale
significantly simplifies the application development process, hides complexity of code
distribution and cloud management, while providing convenient and configurable debug-
ging and development experience. Therefore, it is plausible to believe that developers
(especially the ones new to cloud computing) will benefit from using JCloudScale and
will be able to develop applications and bring them to the cloud faster than with existing

85

tools.

8.2.2 User Study

In order to verify the claims asserted in Section 8.2.1 and evaluate the usability and
usefulness of JCloudScale, a user study with 14 participants was performed in order to
assess the developers’ experience with JCloudScale as compared to using standard tools.
Following the general ideas of action research [158], we aimed at a study methodology
that focused on how real developers would actually use our middleware to build two
separate, non-trivial cloud applications.

Note that JCloudScale is deliberately not compared to more domain-specific
platforms (such as Apache Hadoop, which is a state-of-the-art implementation of the
map/reduce idea [159]). JCloudScale aims to be more general with regard to the use
cases that it can support, hence, such comparison would necessarily be unfair.

Study Setup and Methodology

The user study was conducted with 14 male master students of computer science at TU
Vienna (participants P01 to P14), and based on two different non-trivial implementation
tasks. The first task was to develop a parallel computing implementation of a genetic
algorithm (T1). The second task required the participants to implement a service that
executes JUnit test cases on demand (T2). Both tasks required solutions that were
elastic, i.e., participants needed to demonstrate that their solutions were able to react
to changes in load dynamically and automatically by scaling up and down in the cloud.
Both T1 and T2 required roughly one to two developer weeks of effort (assuming that
the respective participant did not have any particular prior experience with the used
technologies).

The study ran in two phases. In Phase (1), JCloudScale running on top of
OpenStack was compared with programming directly via the OpenStack API, without
any specific middleware support. This phase reflected a typical private cloud [8] use case
of JCloudScale. In Phase (2), JCloudScale on top of Amazon EC2 was compared
with AEB. This reflects a common public cloud usage of the middleware. In both study
phases, the participating developers were asked to build solutions for both tasks using
JCloudScale and the respective comparison technology, and to compare the developer
experience based on quantitative and qualitative factors. The choice of OpenStack and
Amazon EC2 was motivated by the fact that those two platforms currently form the most
well-known, as well as most widely used, private and public IaaS systems. Especially
EC2 has established a quasi-standard in terms of API support, which many other IaaS
systems also adhere to. Consequently, AEB was chosen as a PaaS system in order to
stay within the same cloud ecosystem, so as to keep results as comparable as possible.

Phase (1) of the study lasted two months. We initially presented JCloudScale
and the comparison technologies to the participants, and randomly assigned which of
the tools each participant should be using for T1. Participants then had one month of
time to submit a working solution to the task along with a short report, after which they

86

Table 8.2: Relevant background for each participant of the study.

ID Phase Java Exp. Cloud Exp. JCS/OS OS JCS/EC2 AEB
P01 Phase (1) + + T1 T2 – –
P02 Phase (1) + + T1 T2 – –
P03 Phase (1) ∼ ∼ T2 T1 – –
P04 Phase (1) - - T1 T2 – –
P05 Phase (1) ∼ - T2 T1 – –
P06 Phase (1) + - T2 T1 – –
P07 Phase (1) + + T2 T1 – –
P08 Phase (1) + ∼ T2 T1 – –
P09 Phase (1) + ∼ T2 T1 – –
P10 Phase (2) + + – – T2 T1
P11 Phase (2) + ∼ – – T1 T2
P12 Phase (2) + - – – T1 T2
P13 Phase (2) + ∼ – – T2 T1
P14 Phase (2) + + – – T2 –

could start working on T2 with the remaining technology. Similar to T1, participants
were given one month of time to submit a solution and a short report. Based on the
lessons learned from Phase (1), we slightly clarified and improved the task descriptions
and gave participants more time (1.5 months per task) for Phase (2). Other than that,
Phase (2) was executed identically to Phase (1).

After one month, each participant submitted his solution via mail, and wrote a
semi-structured report summarizing his experience. In the second phase, each participant
that was using JCloudScale for the first phase was assigned with one of the comparison
technologies, and vice versa. All participants had again one month of time to implement
and submit T2. This time, we asked not only for a report of the second task, but also for
a qualitative comparison of the used technologies across both tasks.

Table 8.2 summarizes the relevant background for each participant of the study. To
preserve anonymity, we classify the self-reported background of participants related to
their Java or cloud experience into three groups: relevant work experience (+), some
experience (∼), or close to no experience (-). The last four columns indicate whether
the participant submitted solutions for JCloudScale running on top of OpenStack
(JCS/OS), OpenStack directly (OS), JCloudScale running on top of EC2 (JCS/OS),
or AEB, as well as which tasks the participant solved.

For the OpenStack-related implementations, we used a private cloud system hosted
at TU Vienna. This OpenStack instance consists of 12 dedicated Dell blade servers with
2 Intel Xeon E5620 CPUs (2.4 GHz Quad Cores) each, and 32 GByte RAM, running
on OpenStack Folsom (release 2012.2.4). All servers are redundantly connected through
3 GBit switches. For the study, each participant was alloted a quota of up to 8 small
cloud instances (1 virtual CPU, and 512 MByte of RAM), which they could use to
implement and test their solutions. For the AWS-related implementations, participants
were assigned an AWS account with sufficient credit to cover their implementation and
testing with no particular limitations. More information regarding the questionnaires
and anonymized participant reports is available in an on line appendix 1 to the work

1http://www.infosys.tuwien.ac.at/staff/phdschool/rstzab/papers/TOIT14/

87

http://www.infosys.tuwien.ac.at/staff/phdschool/rstzab/papers/TOIT14/

where the user study was originally introduced [19].

Comparison of Development Efforts

Table 8.3: Solutions sizes in lines of code.

Phase (1) Phase (2)
JCS/OS OS JCS/EC2 AEB
Ã σA B̃ σB Ã− B̃ C̃ σC D̃ σD C̃ − D̃

T1
Business Logics 200 176 552 215 -352 388 152 825 947 -437

Cloud Management 100 112 180 86 -80 163 24 676 742 -513
Other Code 170 157 286 226 -116 1590 1203 897 1127 693

Entire Application 400 416 1050 434 -650 2141 1331 2790 2660 -649
T2

Business Logics 450 292 375 669 75 800 434 208 280 592
Cloud Management 100 48 250 364 -150 118 745 223 38 -105

Other Code 325 213 300 297 25 140 2240 1290 972 -1150
Entire Application 1025 461 1500 901 -475 1000 3328 2184 968 -1184

In order to perform a quantitative evaluation of developer efforts, we asked participants
to report on the size of their solutions (in lines of code, without comments and blank lines).
The results are summarized in Table 8.3. Ã to D̃ represent the median size of solutions,
while σA to σD indicate standard deviations. It can be seen that using JCloudScale
generally reduces the total source code size of applications. Most importantly, the size of
the entire application was substantially smaller when using JCloudScale than in the
comparison cases. Going into the study, we expected JCloudScale to mostly reduce the
amount of code necessary for interacting with the cloud. However, our results indicate
that using JCloudScale also often reduced the amount of code of the application
business logics, as well as assorted other code (e.g., data structures). When investigating
these results, we found that participants considered many of the tasks that JCloudScale
takes over as “business logics” when building the elastic application on top of OpenStack
or AEB. To give one example, many participants counted code related to performance
monitoring towards “business logics”.

Note that, due to the open nature of our study tasks, the standard deviations are
all rather large (i.e., solutions using all technologies varied widely in size). Further,
the large difference in T1 sizes (for JCloudScale on top of OpenStack and EC2)
between Phase (1) and Phase (2) solutions can be explained by clarifications in the
task descriptions. In Phase (1), some formulations in the tasks led to much simpler
implementations, while our requirements were formulated much more unambiguously in
Phase (2), leading to more complex (and larger) submissions. Hence, we caution the
reader to not compare results from Phase (1) with those from Phase (2).

Summarizing, the median JCloudScale solution across both tasks is only a little
over 80% of the size in lines of code as the median OpenStack based solution. Furthermore,
7 out of 9 participants reported that their JCloudScale solution is smaller than their
OpenStack solution, independent of which task they used which technology for. 1
participant reported that both solutions are about the same size, and for 1 participant

88

Table 8.4: Development time spent in full hours.

Phase (1) Phase (2)
JCS/OS OS JCS/EC2 AEB
Ã σA B̃ σB Ã− B̃ C̃ σC D̃ σD C̃ − D̃

T1
Tool Learning 7 2 12 5 -5 28 18 16 1 12

Coding 4 10 30 17 -26 42 25 54 23 -12
Bug Fixing 7 7 18 12 -11 14 8 20 14 -6

Other Activities 13 9 14 14 -1 5 0 6 6 -1
Entire Application 31 25 76 33 -45 127 25 121 36 6

T2
Tool Learning 8 6 2 1 6 15 10 23 18 -8

Coding 30 11 25 17 5 36 5 30 14 6
Bug Fixing 10 11 10 7 0 16 16 5 0 11

Other Activities 7 4 11 10 -4 5 0 9 9 -4
Entire Application 62 13 46 17 16 125 40 102 13 23

the outcome of the JCloudScale solution was significantly larger than the solution he
built directly on OpenStack.

However, looking at lines of code alone is not sufficient to validate our hypothesis, as
it would be possible that the JCloudScale solutions, while being more compact, are
also more complicated (and, hence, take longer to implement). That is why we also asked
participants to report on the time they spent working on their solutions. The results are
compiled in Table 8.4. Ã to D̃ represent the median time spent, while σA to σD indicate
standard deviations.

The work hours were classified into a number of different activities: initially learning
the technology, coding, testing and bug fixing, and other activities (e.g., building Open-
Stack cloud images). The results indicate that the initial learning curve for JCloudScale
is lower than for working with OpenStack directly. However, in comparison with AEB,
some participants reported equal or even more complexity of JCloudScale, mainly
because less information about JCloudScale is available on Internet. For coding,
JCloudScale appeared to be the much faster tool for participants who had at least
some prior experience with cloud computing. Generally, for task T2, JCloudScale
proved troublesome for some participants. In this task, JCloudScale generally did not
improve productivity over either OpenStack or AEB. Further research will be required
to analyze why the results between task T1 and T2 vary in this regard.

Summarizing, our results indicate that JCloudScale indeed improves developer
efficiency. We also analyzed qualitative feedback by the participants in their reports.
Multiple developers have reported that they felt more productive when using JCloud-
Scale. For instance, P01 has stated that “the coolest thing about JCloudScale is
the reduction of development effort necessary, to host applications in the cloud (. . .)
[there] are a lot of thing you do not have to care about in detail.” P03 also concluded
that using JCloudScale “went a lot smoother than [using OpenStack directly]”. P07
also seemed to share this sentiment and stated that “[After resolving initial problems]
the rest of the project was without big problems and I was able to be very productive in
coding the solution.” In comparison to AEB, participants indicated that the core idea

89

behind JCloudScale is easier to grasp for starting cloud developers than the one behind
state-of-the-art PaaS systems. For example, P13 indicated that “the API is easier to
understand and more intuitive to use. Also it fits more into a Java-like programming
model, instead of the weird request based approach of the Amazon API”. However, some
participants noted that the fact that AEB is based on common technology also appeals
to them. For instance, P10 specified that “[In case of AEB,] Well-known technology is
the basis for everything (Tomcat/Servlet)”. Hence, the participant argued that this allows
developers who are already familiar with these platforms to become productive sooner.

Summarizing the qualitative study results, the data suggests that JCloudScale
indeed allows for higher developer productivity for task T1. For T2, JCloudScale
solutions are indeed more compact, but it took participants longer to implement them.
More research is required to substantiate the underlying reasons for this discrepancy.

Comparison of Developer-Perceived Qualities

It should be noted that both metrics reported so far (lines of code and work hours) do
not consider whether JCloudScale, AEB and OpenStack solutions differ in quality or
features. While this is hard to judge objectively, most participants commented that they
think their OpenStack solutions are more basic than their JCloudScale submission.
Participants that were comparing JCloudScale with AEB mainly could not clearly
state which solution is more advanced. Mainly this was caused by the time constraints
and development speed on each platform. Hence, it is possible that the metrics reported
here are pessimistic, i.e., that actual savings in lines of code and development time are in
fact larger than reported in our study.

In order to analyze the qualitative experience with JCloudScale, we were interested
in the participant’s subjective evaluation of the used technologies. Hence, we asked
them to rate the technologies along a number of dimensions from 1 (very good) to 5
(insufficient). We report on the dimensions “simplicity” (how easy is it to use the tool?),
“debugging” (how easy is testing and debugging the application?), “development process”
(does the technology imply an awkward development process?), and “stability” (how
often do unexpected errors occur?). A summary of our results is shown in Table 8.5. Ã
to D̃ represent the median ratings, while σA to σD indicate standard deviations.

For T1, participants rated all used technologies similarly, while JCloudScale was
appreciated more for T2. However, JCloudScale was rated worse than the comparison
technologies in terms of “stability”. This is not a surprise, as JCloudScale still is a
research prototype in a relatively early development stage. Participants indeed mentioned
multiple stability-related issues in their reports (e.g., P10 mentions that “When deploying
many cloud objects to one host there were behaviors which were hard to reason about”).
Further, some technical implementation decisions in JCloudScale were not appreciated
by our study participants. To give an example, P11 noted that “It is confusing in the
configuration that the field AMI-ID actually expects the AMI-Name, not the ID”. In
contrast, JCloudScale has been rated slightly better in terms of simplicity and ease-of
use, especially for T2. For example, participant P09 claimed that “JCloudScale is the
clear winner in ease of use. If you quickly want to just throw some Objects in the cloud,

90

Table 8.5: Subjective participant ratings from 1 (very good) to 5 (insufficient).

Phase (1) Phase (2)
JCS/OS OS JCS/EC2 AEB
Ã σA B̃ σB Ã− B̃ C̃ σC D̃ σD C̃ − D̃

T1
Simplicity 3 0.6 3 1.2 0 2 0 2 1.4 0
Debugging 3 1.5 3 1 0 4 0 3.5 0.7 0.5

Development Process 4 1.7 3.5 0.5 0.5 2 1.4 3 0 -1
Stability 2 1.4 2 0.8 0 2 1.4 1.5 0.7 0.5
Overall 3 0.6 3 0.8 0 2 0 2 1.4 0

T2
Simplicity 2 0.4 3 1.4 -1 2 1.5 3 1.4 -1
Debugging 2 0.7 4 1.4 -2 4 0 4 0 0

Development Process 2 0.6 3 1.4 -1 2 0 2.5 0.7 -0.5
Stability 2 1.5 1 0 1 3 0.5 2.5 0.7 0.5
Overall 2 0.4 3 0 -1 3 0.5 3 1.4 0

it’s the clear choice.” Similarly, P12 reported “[JCloudScale is] programmer friendly.
All procedure is more low level and as a programmer there are more things to tune and
adjust.”. In terms of debugging features, all used technologies were not rated overly
well. JCloudScale was generally perceived slightly better (arguably due to its local
development environment), but realistically speaking, all compared systems are currently
deemed too hard to debug if something goes wrong. Finally, in terms of the associated
development process, JCloudScale is generally valued highly, with the exception of T1
and JCloudScale on OpenStack. We assume that this is a statistical artifact, as the
development process of JCloudScale is judged well in all other cases. Concretely P01
stated that with JCloudScale, “You are able to get application into the cloud really
fast. You are not forced to take care about a lot of cloud-specific issues.”

Independently of the subjective ratings, multiple participants stated that they valued
the flexibility that the JCloudScale concept brought over AEB. Particularly, P11
noted that “[JCloudScale provides] more flexibility. The developer can decide when
to deploy hosts, on which host an object gets deployed, when to destroy a host, etc”.
Additionally, participants favored the monitoring event engine of JCloudScale for
performance tracking over the respective features of the PaaS system. For example, P12
specified as an JCloudScale advantage that “programmatic usage of different events
with a powerful event correlation framework [is] in combination with listeners extremely
powerful.”

Concluding our discussion regarding qualitative results, we note that JCloudScale
indeed has some way to go before it is ready for industrial usage. The general concepts
of the tool are valued by developers, but currently, technical issues and lack of docu-
mentation and technical support make it hard for developers to fully appreciate the
power of the JCloudScale model. One aspect that needs more work is how developers
define the scaling behavior of their application. Both tasks in our study required the
participants to define non-trivial scaling policies, e.g., in order to optimally schedule
genetic algorithm executions to cloud resources, which most participants felt unable to
do with the current API provided by JCloudScale. Overall, in comparison to working

91

directly on OpenStack, many participants preferred JCloudScale, but compared to a
mature PaaS platform, AEB still seems slightly preferable to many. However, it should
be noted that JCloudScale still opens up use cases for which using AEB is not an
option, for instance for deploying applications in a private or hybrid cloud [78].

8.2.3 SPEEDL Evaluation

Participants of the user study presented above were using only the core functionality
of JCloudScale without any extensions. The main reason for this was that the
user study was organized to evaluate the core principles behind the JCloudScale
middleware. Additionally, the complexity of the stated tasks did not explicitly require
any functionalities provided in the JCloudScale extensions. However, during the user
study, participants complained about the complexity of scaling policy defining as they
had to define rather complex scaling behaviors using plain Java language. This caused a
lot of problems with event management, synchronization and scaling policy debugging.

Because of these reasons, solutions developed within the user study are applicable
to be used as a baseline for evaluation of SPEEDL scaling language, presented in
Section 6.3.

Evaluation Setup

In order to prepare the basis for the SPEEDL evaluation, the code that was responsible
for scaling and task distribution was extracted from the anonimized solutions of the user
study participants. After that, code formatting was unified and unnecessary elements
were removed. The obtained scaling code differed dramatically in size and complexity.
The shortest was only 27 Lines of Code (LoC), while the longest one was 177 LoC
(median length was 75 LoC). Informal inspection of these code snippets revealed that
many study participants indeed struggled with getting the scaling behavior right, and
ended up building rather fragile, “hacky” Java solutions (see Listing 8.1 for an example).
After detailed analysis of the used algorithms and behaviors, the equivalent code in
the SPEEDL DSL was implemented. Both, extracted scaling code and the equivalent
SPEEDL scaling policies are available on line2 within the supportive materials of the
original publication [22].

Results and Discussion

Comparing the original Java-based solutions to SPEEDL, the most interesting points
are the amount of code necessary to represent the same behavior using both methods
and to what extend the out-of-the-box rules of SPEEDL are useful for expressing the
scaling behavior that the participants of our study wanted to implement.

In terms of LoC, the SPEEDL representations indeed turned out to be substantially
shorter than the equivalent pure Java code (shortest was 8 LoC, longest was 21 LoC,
with a median of 11.5 LoC). This is illustrated in Figure 8.1, which depicts the LoC for

2http://www.infosys.tuwien.ac.at/staff/phdschool/rstzab/papers/SERVICES15/

92

http://www.infosys.tuwien.ac.at/staff/phdschool/rstzab/papers/SERVICES15/

Listing 8.1: Snippet from real-life scaling code
1 synchron ized (l ock)
2 {
3 t ry {
4 // d i r t y hack to get c o r r e c t
5 // host . getCloudObjectsCount ()
6 Thread . s l e e p (1000) ;
7 } catch (Inter ruptedExcept ion e) {
8 e . pr intStackTrace () ;
9 }

10 whi le (s e l e c t edHos t == nu l l) { . . . }
11 }

each scaling behavior next to the size of an equivalent SPEEDL policy. Additionally,
it is arguable that the more compact SPEEDL equivalents are also easier to read and
comprehend. For instance, it appeared to be possible to replace a complex 90-line
multi-method scaling behavior, which included “sleep” statements, nested iterations, and
global locking for synchronization, with the SPEEDL policy shown in Listing 8.2.

Listing 8.2: Complete example of a SPEEDL scaling policy
1 SmartPolicy
2 . c r e a t e (Schedule . greedy ()
3 . maxTasks (
4 s chedu l e rCon f i g . getMaxCloudObjects ()))
5 . add (ScaleUp
6 . queueLength (
7 s chedu l e rCon f i g . getMaxCloudObjects ())
8 . maxHosts (s chedu l e rCon f i g . getMaxNodes ())
9 . newHostsType (s chedu l e rCon f i g . getFlavor ()))

10 . add (ScaleDown . runningTasks (0))

As a second step, the coverage of real-life application developers’ needs by the default
SPEEDL rules was evaluated. The analysis showed that equivalent versions of 71% of
all scaling behaviors in the used dataset could be built using out-of-the-box rules alone.
100% of all behaviors could be represented with a small amount of custom rules. The
scaling behaviors that required custom rules are plotted in darker color in Figure 8.1.

Finally, another interesting observation was that 4 of the scaling behaviors in the
dataset contained minor errors (29%). 3 scaling behaviors are not correctly synchronized
and can potentially fail due to race conditions. Similarly, another code has (based on
the intent shown in a code comment) incorrectly defined “if”-conditions, which would
lead to unwanted scaling in edge cases. Hence, the usage of the out-of-the-box rules of
SPEEDL does not only simplify the definition of scaling behavior, but also reduces the
potential for developer errors.

the original scaling policies were received as the result of a long development and
testing process, what is clearly visible in the code. For example, the author of scaling
policy 3 adapted an initially complex approach to behave much simpler. Similarly, scaling

93

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Li
n

e
s

o
f

C
o

d
e

Solution Number

Native Solutions
SPEEDL Solutions

Figure 8.1: Length comparison of evaluated scaling policies

policy 4 and 5 use multiple inefficient sleep-waits to wait for some condition, instead of
using an event-based approach.

It is plausible to conclude that SPEEDL indeed provides a noteworthy improvement
in scaling policy readability and length. While the existing out-of-the-box rules provided
by SPEEDL cannot cover everything a developer would want to express, it was still
possible to re-implement 71% of all scaling behaviors using out-of-the-box rules alone.
Including custom rules, all scaling behaviors were possible to implement in a much more
shorter and precise way. Finally, we have seen that the complications of building real-life
scaling behavior can easily lead to hard-to-detect bugs, such as race conditions. Using
the out-of-the-box rules of SPEEDL greatly reduces the risk of such bugs.

8.3 Performance Evaluation

Finally, we investigated whether the improved convenience of JCloudScale leads
to significantly reduced application performance. Therefore, the main goal of these
experiments was to compare the performance of the same application built on top of
JCloudScale and using an IaaS platform (OpenStack or EC2) directly.

94

Experiment Setup

To achieve this, we built a simple sample implementation of the JSTaaS case study
application on top of Amazon EC2 and our private OpenStack cloud. For OpenStack, we
used the same private cloud as for the user study. For EC2, we deployed our application
in the eu-west-1 region and used instances of size t1.micro. Initial experiments
with AEB have shown that there is no substantial performance difference between EC2
and AEB. Hence, we omit AEB in our discussions here.

Secondly, we also implemented the same application using JCloudScale. As the
main goal was to calculate the overhead introduced by the JCloudScale, we designed
both implementations to have the same behavior and reuse as much business logic code as
possible. In addition, to simplify our setup, to focus on execution performance evaluation
and to avoid major platform-dependent side effects, we limited ourselves to a scenario,
where the number of available cloud hosts is static. The source code of both applications
is available on line 3.

All four solutions (directly on OpenStack, directly on EC2, and using JCloudScale
on both, OpenStack and EC2) follow a simple master-slave pattern: a single node (the
master) receives tests through a SOAP-based web service and schedules them over the
set of available worker nodes. All solutions were tested with a test setup that consisted
of 40 identical parallelizable long-running test suites (each suite execution takes around
30 seconds in our OpenStack cloud environment), scheduled evenly over the set of
available cloud machines. Each test suite consisted of a set of dummy JavaScript tests
calculating Fibonacci numbers. During the evaluation, we measured the total time of an
entire invocation of the service (i.e., how long a test request takes end-to-end, including
scheduling, data transmission, result collection, etc.). A single experiment run consisted
of 10 identical invocations of the testing web service, each time with a different number
of CHs (ranging from 2 to 20 CHs). In all experiment setups, our evaluation shared a
physical cloud environment with other tenants, as would be the case in real-life usage. To
reduce the performance impact of other tenant’s activities, we repeated each experiment
10 times over the course of a day.

Experiment Results

Figure 8.2a and Figure 8.2b show the median total execution time for different numbers of
hosts, including error bars indicating standard deviations. In general, both applications
show similar behavior in each environment, meaning that both approaches are feasible
and have similar parallelizing capabilities with minor differences in overhead. In both
environments, there is an overhead of JCloudScale that is proportional to the amount
of used CHs and approximately equal to 2 to 3 seconds per introduced host for a
multiple minutes running evaluation application. This overhead may be significant for
performance-critical production applications, but it is a reasonable price to pay in the
current development stage of the JCloudScale middleware. Furthermore, how large
this overhead is, depends largely on how much the target application is required to

3http://www.infosys.tuwien.ac.at/staff/phdschool/rstzab/papers/TOIT14/

95

http://www.infosys.tuwien.ac.at/staff/phdschool/rstzab/papers/TOIT14/

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

Te
st

 R
u

n
 T

im
e

(m
in

u
te

s)

Cloud Hosts Used by System

Pure Openstack
JCloudScale on Openstack

(a) Execution time on OpenStack plat-
form

0

1

2

3

4

5

6

7

8

2 4 6 8 10 12 14 16 18 20

Te
st

 R
u

n
 T

im
e

(m
in

u
te

s)

Cloud Hosts Used by System

Pure Amazon EC2
JCloudScale on Amazon EC2

(b) Execution time on EC2 platform

communicate with the CHs. The main reason for this is that messaging in JCloudScale
is more expensive in comparison to a pure OpenStack or EC2 solution, as JCloudScale
appends some platform-specific metadata to remote invocations (e.g., which CH or CO
to address, which code to run, etc.). The evaluation application required a substantial
amount of coordination between target application and CHs, hence there are reasons
to believe that these overhead measurements are relatively conservative. However,
detailed investigations (and, subsequently, reductions) of the overhead introduced by
JCloudScale is planned for future releases of the middleware.

Another important issue that is visible in Figure 8.2a and Figure 8.2b is the cloud
performance stability and predictability. With an increasing number of hosts, the total
execution time is expected to monotonously decrease, up to a limit when the overhead of
parallelization is larger than the gain of having more processors available. This indeed
happens in case of Amazon EC2. However, starting with 10 used hosts in OpenStack,
the overall application execution time remains almost constant or even increases. This
is mainly caused by the limited size of the used private cloud. Starting with 10 hosts,
physical machines start to get over-utilized, and virtual machines start to compete for
resources (e.g., CPU or disk IO).

8.4 Threats to Validity

The major threat to validity, with the results relating to the usability and usefulness
evaluation (see Section 8.2), is that the small sample size of 14 study participants,
along with relatively open problem statements, does not allow establishing statistical
significance. However, due to the reports received from participants, as well as due to
comparing the solutions themselves, we are convinced that the result that JCloudScale
lets developers build cloud applications more efficiently was not a coincidence.

Further, another threat is that participants were aware that JCloudScale is our
own system. Hence, there is a chance that participants gave their reports a more positive
spin. However, given that all reports contained both negative and positive aspects for all
evaluated platforms, we are confident that most participants reported truthfully.

96

There is also the possibility that the study design, which required all participants to
work on two projects, skewed the results, as it can be expected that participants learned
from the first project for the second one. This has been mitigated by letting a subset of
the participants work with JCloudScale first, and the remainder start with one of the
comparison platforms.

Finally, there is the threat that JCloudScale solutions, while being implemented
more efficiently, are also of lower quality. This threat was mitigated by (partially) auto-
matic testing of solutions against defined requirements, as well as by manual inspection
and comparison of solutions.

In terms of external validity, it is possible that the two example projects that were
chosen for the user study are not representative of real-world applications. However, we
argue that this is unlikely, as the projects have specifically been chosen based on real-life
examples that the study organizers are aware of or had to build themselves in the past.
Another threat to external validity is that the participants of the study are all students
at TU Vienna. While most of them have some practical real-life experience in application
development, none can be considered senior developers.

In terms of performance evaluation (see Section 8.3), the major threat to external
validity is that the application that was used to measure overhead on is necessarily
simplified, and not guaranteed to be representative. Real applications are hard to
replicate in exactly the same way on different systems, hence comparative measurements
amongst such systems are always unfair. To minimize this risk, the core features of cloud
applications were carefully preserved, even in the simplified measurement application.

Similarly, there is a threat to the generalizability of our study related to user study.
It is possible that the results of our study would have been substantially different if we
had chosen different comparison systems, e.g., Microsoft Azure or Google App Engine.
However, we consider this threat small, as at the time we executed the study, the core
features provided by most IaaS and PaaS providers were comparable, to the extent
required by our study.

97

CHAPTER 9
Conclusions

The final chapter summarizes the results achieved during the work on this thesis. Sec-
tion 9.1 outlines the research results and solutions presented in this work. In Section 9.2
the research questions formulated in Section 1.3 are aligned with the contributions pre-
sented in this thesis. Finally, Section 9.3 presents an outlook on future research that can
be performed using the results achieved here.

9.1 Summary

The work within this thesis significantly extended the JCloudScale middleware. Now,
JCloudScale is a fully-functional Java-based middleware that eases the development of
elastic cloud applications on top of an IaaS cloud. JCloudScale follows a declarative
approach based on Java annotations, which removes the need to actually adapt the
business logics of target applications to use the middleware. Hence, JCloudScale
support can easily be turned on and off for an application, leading to a flexible development
process that clearly separates the implementation of the target application business logics
from implementing and tuning the scaling behavior.

However, such approach brings up problems that are not apparent in other cloud
application platforms and solutions. In order to provide an extensive and fully-functional
cloud application distribution middleware, the contributions presented in this thesis
target eliminating these problems and achieving transparent application distribution.

In order to solve the issue of application code distribution and versioning, a transparent
application distribution framework was developed and integrated into JCloudScale.
To simplify application bursting and distribution over different clouds, a cloud bursting
solution was presented. To face the problem of scaling behavior definition complexity, a
declarative and extensive scaling policy definition language was developed. To address
the issue of effective resource usage in the cloud, a profile-based task scheduling and
distribution framework was implemented.

99

Finally, the JCloudScale architecture and approach were evaluated through a
qualitative and quantitative user study and a performance evaluation. The results
indicate that JCloudScale is well received among initial developers. The results
support the claim that the general JCloudScale model has advantages in comparison
to both, working directly on top of an IaaS API or on industrial PaaS systems.

9.2 Research Questions Revisited
The research questions, introduced in Section 1.3, are revisited here. In the following,
it is summarized how the research questions were addressed within this work and what
limitations are still remaining despite the development of the JCloudScale middleware.

RQ 1: How can an application be transparently distributed over the cloud?

Chapter 5 introduced the APIs and the usage of the JCloudScale middleware
with the main focus on transparent application distribution over the cloud. Addressing
this issue, JCloudScale limits the impact on the target application by avoiding any
constructs and requirements that change default application behavior or architecture.
This allows keeping the application execution flow intact, while providing the ability
to distribute application code over a set of CHs. This is achieved by using the means
of aspect-oriented programming (see Section 2.4), which allows modifying the target
application binary code after the application is compiled. As the source code and
execution flow stays mostly the same, application distribution happens transparently
to application developers. Finally, following the idea of transparency, JCloudScale
presents the means to distribute and update on demand the application binary code
and data files, thus hiding target application distribution from developers in code and
dependency management as well.

However, this is not the end of the JCloudScale middleware development and
there are still some places where the transparency can be increased. Currently target
application developers have to manually select the code that needs to be distributed.
Also developers have to manually figure out where data has to be transferred by-value
and where – by-reference; manually detect and annotate the cut-points where application
can be split with less harm to performance. These tasks still remain unsolved in the
journey of providing truly transparent application distribution platform.

RQ 2: Which instruments and capabilities allow efficient, flexible and elastic execution
of transparent cloud applications?

While working on distributed and cloud applications it becomes clear that application
distribution and elastic behavior are challenging to achieve. Every IaaS and PaaS
solution offers some means to control application distribution. Some are leaning towards
simplicity, some are extending the means of control. However, on every platform, the
target application developer has to develop his own scaling whenever the behavior of the
application falls out of the default assumptions stated by platform designers.

100

Trying to build best approach for application scaling while following the main goal of
transparent application distribution is not an easy task. Over some time the scalability
assisting tools were developed and JCloudScale received an individual set of instruments
that simplify scaling definition. Some of these tools, such as the cloud bursting platform,
the SPEEDL language, and the profiling-based task scheduling approach, were presented
in Chapter 6 and Chapter 7. However, as it was shown in the evaluation (see Section 8.2),
provided tools allow achieving transparent application distribution often easier and more
convenient than using conventional distribution strategies. Despite that, there is still a
long road ahead in a process of finding the balance between the functionality, flexibility
and convenience in defining instruments for elastic application distribution programming.

RQ 3: How to verify if the designed transparent application distribution approach is
useful and fits developers’ needs?

The flexible, functional, transparent, while still convenient for developers solution
can not be designed solely following someone’s initial idea and personal experience. In
order to design a middleware that is of use to actual developers, designers have to be in
a constant dialog with the target audience and listen and adapt to the market needs and
preferences.

Following this concept, JCloudScale was evaluated in an extensive user study,
presented in Section 8.2, during which participants were asked to design mature cloud
applications using JCloudScale and modern IaaS or PaaS platforms. Results of this
user study allowed us determining the actual issues that users face during application
development and the next steps in JCloudScale development that will further improve
developers’ experience. The next step would be to involve an even wider circle of actual
cloud developers to participate in JCloudScale-based application development.

9.3 Future Work
While this thesis presented solutions to a number of important issues, there are still
some questions that were missed or initially stated by this work. These questions define
the starting point for the ongoing research and further improvement of JCloudScale
middleware and transparent application distribution in general.

• An automatic CO detection seems to be the biggest issue. While developing
a transparent application distribution solution, one expects to have a tool that
distributes any or at least some applications without any efforts from the application
developer. While this approach is possible in general, usually it brings up a trade-off
between the universality of supported applications and the performance impacts.
Transparent code and data distribution was studied in the past [160, 161, 162, 163],
but JCloudScale takes an alternative path and requires developers to hint the
places where an application can be distributed with minimum effect on performance
and stability. This allows achieving better distribution in comparison to completely
automatic approaches because someone who has a solid understanding of the

101

source code and application behavior assists in this process. However, often this
approach is unclear and puzzling for developers as they do not fully understand
which components of their application should be distributed. Targeting to improve
this behavior, some profiling tool or algorithm that hints or benchmarks provided
CO selection should be developed in future.

• Scaling policy definition is a complex process of measuring, tweaking and adapting
distribution code. Usually this process runs in parallel to application business logic
development. As the user study showed, usually this is the hardest part in the whole
process of cloud application development. Future work on transparent application
distribution needs to explore the abilities to automatically consider the costs and
penalties of application scaling and CO scheduling. Additionally, extended usage
of aspect-oriented programming may improve and simplify scheduling performance,
application monitoring and seamless code distribution. In addition to these internal
tweaks, the developed high-level SPEEDL API has to be evaluated and extended in
order to cover more scaling policy patterns and common cloud application behaviors.
Finally, the profile-based task scheduling approach, presented in Chapter 7, needs
to be improved and integrated as the default JCloudScale cloud management
solution.

• While JCloudScale provides some basic fault handling techniques, currently this
area is a weak point of the middleware. Designing an application for the cloud
is usually tightly connected with “design for failure” [164]. This means that a
distributed application needs to be designed assuming that the hardware will fail
often, what is completely different to local application execution. This approach
influences the whole design of the application, therefore it is hardly possible to
achieve it transparently for the application developer. However, JCloudScale
can bring in some aspects of “design for failure” into distributed application. For
example, automated fault detection, that is actively discussed in research [138, 165]
can be incorporated into the JCloudScale middleware. Additionally, redundant
deployment, transactional memory, data storage management behavior or automatic
connectivity recovery can be transparently injected into an application.

• The Internet of things (IoT) [166] is gaining more attention as the performance and
capabilities of IoT devices significantly increase. Moreover, recently appeared the
trend of IoT and cloud computing convergence [167, 168] and now it is gaining sig-
nificant attention. Considering these tendencies, JCloudScale may be of interest
in this area. Particularly, transparent application distribution, cloud management
and elastic resource usage, that are already integrated into JCloudScale, are
actively discussed in this raising domain [169].

• Continuing the process of further JCloudScale refinement and improvement,
following user studies and external middleware evaluations are necessary. While the
presented user study allowed showing the usefulness of JCloudScale, following
studies are required to strengthen these claims, as the limited scale of the initial

102

study was not sufficient to clear all doubts about the viability of the system. Also
there are plans to extend the initial user study using a more heterogeneous and
larger group of developers, in order to resolve the threats to validity identified in
Section 8.4. An alternative way to evaluate and popularize JCloudScale is to try
migrating to the cloud some popular or third-party developed applications. This
approach allows determining how the designed middleware behaves in unexpected
situations and how flexible it is. Initial tests allowed determining that load tester
Apache JMeter or the service composition engine JOpera [170] may be good
applications to start with.

103

Bibliography

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility,” Fut. Gener. Comp. Syst., vol. 25, no. 6, pp. 599–616, Jun. 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-
terson, A. Rabkin, I. Stoica et al., “A view of cloud computing,” Communications
of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[3] N. Leavitt, “Is cloud computing really ready for prime time?” Computer, vol. 42,
no. 1, pp. 15–20, 2009.

[4] A. Talukder, L. Zimmerman, and A. Prahalad, “Cloud economics: Principles, costs,
and benefits,” in Cloud Computing. Springer, 2010, pp. 343–360.

[5] J. Varia, “Cloud architectures,” White Paper of Amazon, p. 16, 2008.

[6] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q. Dang, and
K. Pentikousis, “Energy-efficient cloud computing,” The Computer Journal, vol. 53,
no. 7, pp. 1045–1051, 2010.

[7] G. Reese, Cloud Application Architectures: Building Applications and Infrastructure
in the Cloud. O’Reilly Media, Inc., 2009.

[8] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” in
24th IEEE International Conference on Advanced Information Networking and
Applications (AINA’10). Washington, DC, USA: IEEE Computer Society, 2010,
pp. 27–33. [Online]. Available: http://dx.doi.org/10.1109/AINA.2010.187

[9] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making of cloud applica-
tions an empirical study on software development for the cloud,” arXiv preprint
arXiv:1409.6502, 2014.

[10] K. Jayaram, “Elastic remote methods,” in Proceedings of Middleware 2013,
ser. Lecture Notes in Computer Science, D. Eyers and K. Schwan, Eds.,
vol. 8275. Springer Berlin Heidelberg, 2013, pp. 143–162. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-45065-5_8

105

http://dx.doi.org/10.1109/AINA.2010.187
http://dx.doi.org/10.1007/978-3-642-45065-5_8

[11] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud comput-
ing systems,” in INC, IMS and IDC, 2009. NCM’09. Fifth International Joint
Conference on. Ieee, 2009, pp. 44–51.

[12] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis, “Efficient
resource provisioning in compute clouds via vm multiplexing,” in 7th international
conference on Autonomic computing. ACM, 2010, pp. 11–20.

[13] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A comparative study into dis-
tributed load balancing algorithms for cloud computing,” in Advanced Information
Networking and Applications Workshops (WAINA), 2010 IEEE 24th International
Conference on. IEEE, 2010, pp. 551–556.

[14] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet application
deadlines in cloud workflows,” in Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM, 2011,
p. 49.

[15] P. Kruchten, R. Capilla, and J. C. Dueas, “The decision view’s role in software
architecture practice,” Software, IEEE, vol. 26, no. 2, pp. 36–42, 2009.

[16] P. Leitner, B. Satzger, W. Hummer, C. Inzinger, and S. Dustdar, “Cloudscale: a
novel middleware for building transparently scaling cloud applications,” in 27th
Annual ACM Symposium on Applied Computing (SAC ’12). New York, NY, USA:
ACM, 2012, pp. 434–440.

[17] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, “Virtual infrastructure
management in private and hybrid clouds,” IEEE Internet Computing, vol. 13, no. 5,
pp. 14–22, Sep. 2009. [Online]. Available: http://dx.doi.org/10.1109/MIC.2009.119

[18] R. Zabolotnyi, P. Leitner, and S. Dustdar, Handbook of Research on Architectural
Trends in Service-Driven Computing. IGI Global, 2014, ch. Building Elastic
Java Application Services Seamlessly in the Cloud: A Middleware Framework, pp.
661–685.

[19] R. Zabolotnyi, P. Leitner, W. Hummer, and S. Dustdar, “JCloudScale: closing the
gap between IaaS and PaaS,” ACM Transactions on Internet Technology (TOIT),
vol. 15, no. 3, Jul. 2015.

[20] R. Zabolotnyi, P. Leitner, and S. Dustdar, “Dynamic program code distribution in
infrastructure-as-a-service clouds,” in Proceedings of the 5th International Workshop
on Principles of Engineering Service-Oriented Systems (PESOS 2013), co-located
with ICSE 2013, 2013.

[21] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37, no. 4, pp. 316–344,
2005. [Online]. Available: http://doi.acm.org/10.1145/1118890.1118892

106

http://dx.doi.org/10.1109/MIC.2009.119
http://doi.acm.org/10.1145/1118890.1118892

[22] R. Zabolotnyi, P. Leitner, S. Schulte, and S. Dustdar, “SPEEDL – a declarative
event-based language for cloud scaling definition,” in The Future of Software
Engineering FOR and IN Cloud visionary track of The IEEE SERVICES 2015,
2015.

[23] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-Oriented Software Ar-
chitecture Volume 4: A Pattern Language for Distributed Computing. Wiley,
2007.

[24] R. Zabolotnyi, P. Leitner, and S. Dustdar, “Profiling-based task scheduling for
factory-worker applications in infrastructure-as-a-service clouds,” in 40th EUROMI-
CRO Conference on Software Engineering and Advanced Applications. IEEE, 2014,
pp. 119–126.

[25] P. Mell and T. Grance, “The nist definition of cloud computing (draft),” NIST
Special Publication, vol. 800, p. 145, 2011.

[26] S. Dustdar, Y. Guo, B. Satzger, and H. Truong, “Principles of elastic processes,”
Internet Computing, IEEE, vol. 15, no. 5, pp. 66–71, 2011.

[27] A. Regalado, “Who coined “cloud computing”,” Technology Review, vol. 31, 2011.

[28] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali, “Cloud computing:
Distributed internet computing for it and scientific research,” Internet Computing,
IEEE, vol. 13, no. 5, pp. 10–13, 2009.

[29] P. Neto, “Demystifying cloud computing,” in Proceeding of Doctoral Symposium on
Informatics Engineering, 2011.

[30] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling applications
in the cloud,” ACM SIGCOMM Computer Communication Review, vol. 41, no. 1,
pp. 45–52, 2011.

[31] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud computing: principles and
paradigms. John Wiley & Sons, 2010, vol. 87.

[32] G. J. Tellis, “The price elasticity of selective demand: A meta-analysis of econo-
metric models of sales,” Journal of marketing research, pp. 331–341, 1988.

[33] E. M. Arruda and M. C. Boyce, “A three-dimensional constitutive model for the
large stretch behavior of rubber elastic materials,” Journal of the Mechanics and
Physics of Solids, vol. 41, no. 2, pp. 389–412, 1993.

[34] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud computing: What
it is, and what it is not.” in ICAC, 2013, pp. 23–27.

[35] C. Leopold, Parallel and Distributed Computing: A Survey of Models, Paradigms
and Approaches. John Wiley & Sons, Inc., 2001.

107

[36] R. L. Probert and K. Saleh, “Synthesis of communication protocols: survey and
assessment,” Computers, IEEE Transactions on, vol. 40, no. 4, pp. 468–476, 1991.

[37] R. Schollmeier, “A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications,” in Peer-to-Peer Computing, 2001.
Proceedings. First International Conference on, 2001, pp. 101–102.

[38] G. R. Andrews, Foundations of parallel and distributed programming. Addison-
Wesley Longman Publishing Co., Inc., 1999.

[39] T. Erl, Service-oriented architecture: concepts, technology, and design. Pearson
Education India, 2005.

[40] L. Richardson and S. Ruby, RESTful web services. O’Reilly Media, Inc., 2008.

[41] D. Chappell, Enterprise service bus. O’Reilly Media, Inc., 2004.

[42] E. Curry, “Message-oriented middleware,” Middleware for communications, pp.
1–28, 2004.

[43] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and issues in
data stream systems,” in Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. ACM, 2002, pp. 1–16.

[44] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,” International
Journal of Open Information Technologies, vol. 2, no. 9, pp. 24–27, 2014.

[45] M. Natu and A. S. Sethi, “Active probing approach for fault localization in computer
networks,” in End-to-End Monitoring Techniques and Services, 2006 4th IEEE/IFIP
Workshop on. IEEE, 2006, pp. 25–33.

[46] O. Dictionaries, “Oxford dictionaries,” Oxford University Press, vol. 15, 2010.

[47] O. Etzion and P. Niblett, Event processing in action. Manning Publications Co.,
2010.

[48] P. Leitner, C. Inzinger, W. Hummer, B. Satzger, and S. Dustdar, “Application-level
performance monitoring of cloud services based on the complex event processing
paradigm,” in Proceedings of the 2012 5th IEEE International Conference on
Service-Oriented Computing and Applications (SOCA), 2012, pp. 1–8.

[49] B. M. Michelson, “Event-driven architecture overview,” Patricia Seybold Group,
vol. 2, 2006.

[50] W. W. Eckerson, “Three tier client/server architectures: achieving scalability, per-
formance, and efficiency in client/server applications,” Open Information Systems,
vol. 3, no. 20, pp. 46–50, 1995.

108

[51] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-oriented software develop-
ment. Addison-Wesley Professional, 2004.

[52] G. J. Kiczales, J. O. Lamping, C. V. Lopes, J. J. Hugunin, E. A. Hilsdale, and
C. Boyapati, “Aspect-oriented programming,” Oct. 15 2002, uS Patent 6,467,086.

[53] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: a software platform for .net based
cloud computing,” in Proceedings of the High Performance Computing Workshop,
2008, pp. 267–295.

[54] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya, “The Aneka
platform and QoS-driven resource provisioning for elastic applications on hybrid
Clouds,” Future Generation Computer Systems, vol. 28, no. 6, pp. 861–870, Jun.
2012. [Online]. Available: http://dx.doi.org/10.1016/j.future.2011.07.005

[55] J. Simao, J. Lemos, and L. Veiga, “A2-vm: A cooperative java vm with support
for resource-awareness and cluster-wide thread scheduling,” in Proceedings of the
19th International Conference on Cooperative Information Systems (CoopIS 2011),
September 2011.

[56] A. Zahariev, “Google app engine,” Helsinki University of Technology, 2009.

[57] J. Vliet, F. Paganelli, S. Van Wel, and D. Dowd, Elastic Beanstalk. O’Reilly
Media, Inc., 2011.

[58] N. Middleton, R. Schneeman et al., Heroku: Up and Running. O’Reilly Media,
Inc., 2013.

[59] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wolski,
“Appscale: Scalable and open appengine application development and deployment,”
in Cloud Computing, ser. Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, D. Avresky, M. Diaz,
A. Bode, B. Ciciani, and E. Dekel, Eds. Springer Berlin Heidelberg, 2010, vol. 34,
pp. 57–70. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-12636-9_4

[60] C. Krintz, “The appscale cloud platform: Enabling portable, scalable web
application deployment,” IEEE Internet Computing, vol. 17, no. 2, pp. 72–75, Mar.
2013. [Online]. Available: http://dx.doi.org/10.1109/MIC.2013.38

[61] G. Pierre, I. El Helw, C. Stratan, A. Oprescu, T. Kielmann, T. Schütt, J. Stender,
M. Artač, and A. Černivec, “Conpaas: An integrated runtime environment for
elastic cloud applications,” in Proceedings of the Workshop, Posters and Demos
Track (Middleware’11). New York, NY, USA: ACM, 2011, pp. 5:1–5:2. [Online].
Available: http://doi.acm.org/10.1145/2088960.2088965

[62] G. Pierre and C. Stratan, “Conpaas: A platform for hosting elastic cloud applica-
tions,” IEEE Internet Computing, vol. 16, no. 5, pp. 88–92, 2012.

109

http://dx.doi.org/10.1016/j.future.2011.07.005
http://dx.doi.org/10.1007/978-3-642-12636-9_4
http://dx.doi.org/10.1109/MIC.2013.38
http://doi.acm.org/10.1145/2088960.2088965

[63] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein, and R. Sears,
“Boom analytics: Exploring data-centric, declarative programming for the cloud,”
in Proceedings of the 5th European Conference on Computer Systems (EuroSys’10).
ACM, 2010, pp. 223–236.

[64] S. Krishnan and J. L. U. Gonzalez, “Google cloud dataflow,” in Building Your Next
Big Thing with Google Cloud Platform. Springer, 2015, pp. 255–275.

[65] B. Satzger, W. Hummer, P. Leitner, and S. Dustdar, “Esc: Towards an elastic
stream computing platform for the cloud,” in IEEE 5th International Conference
on Cloud Computing (CLOUD’11), 2011, pp. 348–355.

[66] S. Pallickara, J. Ekanayake, and G. Fox, “Granules: A lightweight streaming runtime
for cloud computing with support for map-reduce,” in Proceedings of the IEEE
International Conference on Cluster Computing and Workshops (CLUSTER’09).
IEEE, 2009, pp. 1–10.

[67] K. Jayaram, “Towards explicitly elastic programming frameworks,” in Proceedings
of the Internetional Conference on Software Engineering (ICSE 2015), New Ideas
and Emerging Results Track, 2015.

[68] A. Thiery, T. Cerqueus, C. Thorpe, G. Sunye, and J. Murphy, “A dsl for deploy-
ment and testing in the cloud,” in Software Testing, Verification and Validation
Workshops (ICSTW), 2014 IEEE Seventh International Conference on. IEEE,
2014, pp. 376–382.

[69] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE
Cloud Computing, no. 3, pp. 81–84, 2014.

[70] R. Mietzner, T. Unger, and F. Leymann, “Cafe: A generic configurable
customizable composite cloud application framework,” in On the Move to
Meaningful Internet Systems (OTM 2009), R. Meersman, T. Dillon, and P. Herrero,
Eds. Springer Berlin / Heidelberg, 2009, vol. 5870, pp. 357–364. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-05148-7_24

[71] C. Inzinger, S. Nastic, S. Sehic, M. Vögler, F. Li, and S. Dustdar, “MADCAT:
a methodology for architecture and deployment of cloud application topologies,”
in Proceedings of the 8th International Symposium on Service Oriented System
Engineering (SOSE), April 2014, pp. 13–22.

[72] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak, and S. Wag-
ner, “Opentosca - a runtime for tosca-based cloud applications,” in Proceedings of
the 11th International Conference on Service-Oriented Computing (ICSOC), 2013,
pp. 692–695.

[73] S. Vinoski, “Convenience over correctness,” IEEE Internet Computing, vol. 12, no. 4,
pp. 89–92, Jul. 2008. [Online]. Available: http://dx.doi.org/10.1109/MIC.2008.75

110

http://dx.doi.org/10.1007/978-3-642-05148-7_24
http://dx.doi.org/10.1109/MIC.2008.75

[74] P. Sampaio, P. Ferreira, and L. Veiga, “Transparent scalability with clustering
for java e-science applications,” in 11th International Conference on Distributed
Applications and Interoperable Systems. Springer, 2011, pp. 270–277.

[75] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling applications
in the cloud,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 1, pp. 45–52, Jan.
2011. [Online]. Available: http://doi.acm.org/10.1145/1925861.1925869

[76] W. Emmerich, Engineering Distributed Objects. John Wiley & Sons, 2000.

[77] “Mapreduce successor google cloud dataflow is a game
changer for hadoop thunder,” http://cloudtimes.org/2014/07/07/
mapreduce-successor-google-cloud-dataflow-is-a-game-changer-for-hadoop-thunder/,
Last accessed: 2015.08.04.

[78] P. Leitner, Z. Rostyslav, A. Gambi, and S. Dustdar, “A framework and middleware
for application-level cloud bursting on top of infrastructure-as-a-service clouds,” in
Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and
Cloud Computing, ser. UCC ’13. Washington, DC, USA: IEEE Computer Society,
2013, pp. 163–170. [Online]. Available: http://dx.doi.org/10.1109/UCC.2013.39

[79] J. W. Armitage and J. V. Chelini, “Ada software on distributed targets: a survey
of approaches,” ACM SIGAda Ada Letters, vol. 4, no. 4, pp. 32–37, 1985.

[80] C. Dumitrescu, I. Raicu, M. Ripeanu, and I. Foster, “Diperf: An automated
distributed performance testing framework,” in Grid Computing, 2004. Proceedings.
Fifth IEEE/ACM International Workshop on. IEEE, 2004, pp. 289–296.

[81] G. Von Laszewski, E. Blau, M. Bletzinger, J. Gawor, P. Lane, S. Martin, and
M. Russell, “Software, component, and service deployment in computational grids,”
in Component Deployment. Springer, 2002, pp. 244–256.

[82] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid computing
360-degree compared,” in Grid Computing Environments Workshop, 2008. GCE’08.
Ieee, 2008, pp. 1–10.

[83] A. Van Hoff, J. Payne, and S. Shaio, “Method for the distribution of code and data
updates,” Jul. 6 1999, uS Patent 5,919,247.

[84] S. Bratus, J. Oakley, A. Ramaswamy, S. Smith, and M. Locasto, “Katana: Towards
patching as a runtime part of the compiler-linker-loader toolchain,” International
Journal of Secure Software Engineering (IJSSE), vol. 1, no. 3, pp. 1–17, 2010.

[85] C.-P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t. Hart,
“Enabling multi-tenancy: An industrial experience report,” in Proceedings of
the 2010 IEEE International Conference on Software Maintenance (ICSM ’10).
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2010.5609735

111

http://doi.acm.org/10.1145/1925861.1925869
http://cloudtimes.org/2014/07/07/mapreduce-successor-google-cloud-dataflow-is-a-game-changer-for-hadoop-thunder/
http://cloudtimes.org/2014/07/07/mapreduce-successor-google-cloud-dataflow-is-a-game-changer-for-hadoop-thunder/
http://dx.doi.org/10.1109/UCC.2013.39
http://dx.doi.org/10.1109/ICSM.2010.5609735

[86] M. Ghorbel, M. Mokhtari, and S. Renouard, “A distributed approach for assistive
service provision in pervasive environment,” in Proceedings of the 4th International
Workshop on Wireless Mobile Applications and Services on WLAN Hotspots. ACM,
2006, pp. 91–100.

[87] J. Baumann, F. Hohl, K. Rothermel, and M. Straßer, “Mole–concepts of a mobile
agent system,” World Wide Web, vol. 1, no. 3, pp. 123–137, 1998.

[88] K. Rothermel, F. Hohl, and N. Radouniklis, “Mobile agent systems: What is
missing?” Distributed Applications and Interoperable Systems (DAIS’97), Chapman
& Hall, pp. 111–124, 1997.

[89] M. Baldi, S. Gai, and G. Picco, “Exploiting code mobility in decentralized and
flexible network management,” in Mobile Agents. Springer, 1997, pp. 13–26.

[90] G. Cabri, L. Leonardi, and F. Zambonelli, “Weak and strong mobility in mobile
agent applications,” in Proceedings of the 2nd International Conference and Exhi-
bition on The Practical Application of Java (PA JAVA 2000), Manchester (UK),
2000.

[91] A. Carzaniga, G. Picco, and G. Vigna, “Designing distributed applications with
mobile code paradigms,” in Proceedings of the 19th International Conference on
Software Engineering. ACM, 1997, pp. 22–32.

[92] V. CeronmaniSharmila and V. KomalaValli, “Enhanced security through agent
based non-repudiation protocol for mobile agents,” International Journal of Power
Control Signal and Computation(IJPCSC), vol. 3, no. 1, 2012.

[93] E. Sanchis, “Mobility and remote-code execution,” in Mobile Wireless Middleware,
Operating Systems, and Applications-Workshops. Springer, 2009, pp. 85–97.

[94] H. El-Rewini and T. G. Lewis, “Scheduling parallel program tasks onto arbitrary
target machines,” Journal of Parallel and Distributed Computing, vol. 9, no. 2, pp.
138–153, 1990.

[95] P. Naik, S. Agrawal, and S. Murthy, “A survey on various task scheduling algorithms
toward load balancing in public cloud,” American Journal of Applied Mathematics,
vol. 3, no. 1-2, pp. 14–17, 2015.

[96] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault, P. Lemarinier, and J. Dongarra,
“DAGuE: A generic distributed DAG engine for high performance computing,”
Parallel Computing, vol. 38, no. 1–2, pp. 37–51, 2012.

[97] F. Singhoff and A. Plantec, “AADL modeling and analysis of hierarchical schedulers,”
in 2007 Annual ACM SIGAda International Conference on Ada. ACM, 2007, pp.
41–50.

112

[98] C.-C. Lin, P. Liu, and J.-J. Wu, “Energy-aware virtual machine dynamic provision
and scheduling for cloud computing,” in 4th International Conference on Cloud
Computing (CLOUD 2011). IEEE, 2011, pp. 736–737.

[99] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning modeling for virtualized
multi-tier applications in cloud data center,” in 3rd International Conference on
Cloud Computing (CLOUD 2010). IEEE, 2010, pp. 370–377.

[100] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, “BAR: an efficient
data locality driven task scheduling algorithm for cloud computing,” in
The 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID ’11). IEEE, 2011, pp. 295–304. [Online]. Available:
http://dx.doi.org/10.1109/CCGrid.2011.55

[101] H. Choi, W. Choi, T. M. Quan, D. Hildebrand, H. Pfister, and W.-K. Jeong,
“Vivaldi: A domain-specific language for volume processing and visualization
on distributed heterogeneous systems,” IEEE Transactions on Visualization and
Computer Graphics,, vol. 20, no. 12, pp. 2407–2416, 2014.

[102] P. Leitner, W. Hummer, B. Satzger, C. Inzinger, and S. Dustdar, “Cost-efficient and
application sla-aware client side request scheduling in an infrastructure-as-a-service
cloud,” in Proceedings of the 2012 IEEE Fifth International Conference on Cloud
Computing (CLOUD ’12). Washington, DC, USA: IEEE Computer Society, 2012,
pp. 213–220.

[103] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provisioning cost
in cloud computing,” IEEE Transactions on Services Computing, vol. 5, no. 2, pp.
164–177, 2012.

[104] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar, “SYBL: an extensible
language for controlling elasticity in cloud applications,” in The 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID ’13).
IEEE, 2013, pp. 112–119.

[105] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, “TOSCA: portable au-
tomated deployment and management of cloud applications,” in Advanced Web
Services. Springer, 2014, pp. 527–549.

[106] J. Hu, J. Gu, G. Sun, and T. Zhao, “A scheduling strategy on load balancing of
virtual machine resources in cloud computing environment,” in Parallel Architec-
tures, Algorithms and Programming (PAAP), 2010 Third International Symposium
on. IEEE, 2010, pp. 89–96.

[107] M. Xu, L. Cui, H. Wang, and Y. Bi, “A multiple qos constrained scheduling strategy
of multiple workflows for cloud computing,” in Parallel and Distributed Processing
with Applications, 2009 IEEE International Symposium on. IEEE, 2009, pp.
629–634.

113

http://dx.doi.org/10.1109/CCGrid.2011.55

[108] H. Qi-yi and H. Ting-lei, “An optimistic job scheduling strategy based on qos for
cloud computing,” in 2010 Inter. Conference on Intelligent Comput. and Integrated
Systems. IEEE, 2010, pp. 673–675.

[109] P. Hoenisch, S. Schulte, and S. Dustdar, “Workflow Scheduling and Resource Allo-
cation for Cloud-based Execution of Elastic Processes,” in 6th IEEE International
Conference on Service Oriented Computing and Applications (SOCA 2013). IEEE,
2013, pp. 1–8.

[110] S. Schulte, D. Schuller, P. Hoenisch, U. Lampe, S. Dustdar, and R. Steinmetz, “Cost-
driven optimization of cloud resource allocation for elastic processes,” International
Journal of Cloud Computing, vol. 1, no. 2, pp. 1–14, 2013.

[111] R. Buyya, S. K. Garg, and R. N. Calheiros, “Sla-oriented resource provisioning for
cloud computing: Challenges, architecture, and solutions,” in Cloud and Service
Computing (CSC), 2011 International Conference on. IEEE, 2011, pp. 1–10.

[112] L. Wu, S. K. Garg, and R. Buyya, “Sla-based resource allocation for software as a
service provider (saas) in cloud computing environments,” in Cluster, Cloud and
Grid Computing (CCGrid), 2011 11th IEEE/ACM International Symposium on.
IEEE, 2011, pp. 195–204.

[113] C. Gronroos, “Service quality: the six criteria of good perceived service,” Review
of business, vol. 9, no. 3, p. 10, 1988.

[114] J. R. d. A. Amazonas and C. R. Barra, “Experimental characterization and modeling
of the qos for real time audio and video transmission,” Interpretation, p. 800, 1960.

[115] L. Zhao, S. Sakr, A. Liu, and A. Bouguettaya, “Qos-aware service compositions in
cloud computing,” in Cloud Data Management. Springer, 2014, pp. 119–133.

[116] A. Abdelmaboud, D. N. Jawawi, I. Ghani, A. Elsafi, and B. Kitchenham, “Quality
of service approaches in cloud computing: A systematic mapping study,” Journal
of Systems and Software, vol. 101, pp. 159–179, 2015.

[117] L. Wu, S. K. Garg, S. Versteeg, and R. Buyya, “Sla-based resource provisioning
for hosted software-as-a-service applications in cloud computing environments,”
Services Computing, IEEE Transactions on, vol. 7, no. 3, pp. 465–485, 2014.

[118] X. Zhao, L. Shen, X. Peng, and W. Zhao, “Toward sla-constrained service composi-
tion: An approach based on a fuzzy linguistic preference model and an evolutionary
algorithm,” Information Sciences, vol. 316, pp. 370–396, 2015.

[119] F. Jrad, J. Tao, I. Brandic, and A. Streit, “Sla enactment for large-scale healthcare
workflows on multi-cloud,” Future Generation Computer Systems, vol. 43, pp.
135–148, 2015.

114

[120] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,
J. Rofrano, S. Tuecke, and M. Xu, “Web services agreement specification (ws-
agreement),” in Open Grid Forum, vol. 128, 2007, p. 216.

[121] V. Stantchev and C. Schröpfer, “Negotiating and enforcing qos and slas in grid and
cloud computing,” in Advances in grid and pervasive computing. Springer, 2009,
pp. 25–35.

[122] P. Patel, A. H. Ranabahu, and A. P. Sheth, “Service level agreement in cloud
computing,” 2009.

[123] M. D. De Assunçao, A. Di Costanzo, and R. Buyya, “Evaluating the cost-benefit
of using cloud computing to extend the capacity of clusters,” in Proceedings of the
18th ACM international symposium on High performance distributed computing.
ACM, 2009, pp. 141–150.

[124] E. N. Alkhanak, S. P. Lee, and S. U. R. Khan, “Cost-aware challenges for work-
flow scheduling approaches in cloud computing environments: Taxonomy and
opportunities,” Future Generation Computer Systems, 2015.

[125] R. W. de Medeiros, N. S. Rosa, L. Ferreira Pires et al., “A metamodel for modeling
cost behavior in service composition,” in Computer Systems and Applications
(AICCSA), 2014 IEEE/ACS 11th International Conference on. IEEE, 2014, pp.
84–91.

[126] M. D. De Assuncao, M. A. S. Netto, L. Renganarayana, and C. C. Young, “System,
method and program product for cost-aware selection of stored virtual machine
images for subsequent use,” May 19 2015, uS Patent 9,038,085.

[127] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-efficient management of data
center resources for cloud computing: A vision, architectural elements, and open
challenges,” arXiv preprint arXiv:1006.0308, 2010.

[128] J. Baliga, R. W. Ayre, K. Hinton, and R. Tucker, “Green cloud computing: Balanc-
ing energy in processing, storage, and transport,” Proceedings of the IEEE, vol. 99,
no. 1, pp. 149–167, 2011.

[129] Y. C. Lee and A. Y. Zomaya, “Rescheduling for reliable job completion with
the support of clouds,” Future Generation Computer Systems, vol. 26, no. 8, pp.
1192–1199, 2010.

[130] G. Suciu, C. Cernat, G. Todoran, V. Suciu, V. Poenaru, T. Militaru, and S. Halunga,
“A solution for implementing resilience in open source cloud platforms,” in Com-
munications (COMM), 2012 9th International Conference on. IEEE, 2012, pp.
335–338.

115

[131] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: elastic
execution between mobile device and cloud,” in Proceedings of the sixth conference
on Computer systems. ACM, 2011, pp. 301–314.

[132] Z. Gong, X. Gu, and J. Wilkes, “Press: Predictive elastic resource scaling for
cloud systems,” in Network and Service Management (CNSM), 2010 International
Conference on. IEEE, 2010, pp. 9–16.

[133] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of programming
languages and code quality in github,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM, 2014,
pp. 155–165.

[134] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and G. Heber,
“Scientific data management in the coming decade,” ACM SIGMOD Record, vol. 34,
no. 4, pp. 34–41, 2005.

[135] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD
Record, vol. 39, no. 4, pp. 12–27, May 2011. [Online]. Available: http:
//doi.acm.org/10.1145/1978915.1978919

[136] H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency control,”
ACM Transactions Database Systems, vol. 6, no. 2, pp. 213–226, Jun. 1981.
[Online]. Available: http://doi.acm.org/10.1145/319566.319567

[137] J. Cito, P. Leitner, T. Fritz, and H. C. Gall, “The making of cloud applications –
an empirical study on software development for the cloud.”

[138] C. Schneider, A. Barker, and S. Dobson, “Autonomous fault detection in self-healing
systems: Comparing hidden markov models and artificial neural networks,” in
Proceedings of International Workshop on Adaptive Self-tuning Computing Systems.
ACM, 2014, p. 24.

[139] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003. [Online]. Available:
http://dx.doi.org/10.1109/MC.2003.1160055

[140] D. Luckham, The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional, May 2002.

[141] S. Genaud and J. Gossa, “Cost-wait trade-offs in client-side resource
provisioning with elastic clouds,” in Proceedings of the 2011 IEEE 4th
International Conference on Cloud Computing, ser. CLOUD ’11. Washington,
DC, USA: IEEE Computer Society, 2011, pp. 1–8. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2011.23

116

http://doi.acm.org/10.1145/1978915.1978919
http://doi.acm.org/10.1145/1978915.1978919
http://doi.acm.org/10.1145/319566.319567
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/CLOUD.2011.23

[142] W. Hummer, F. Rosenberg, F. Oliveira, and T. Eilam, “Testing idempotence for
infrastructure as code,” in ACM/IFIP/USENIX Middleware Conference, 2013, pp.
368–388.

[143] T. Guo, U. Sharma, P. Shenoy, T. Wood, and S. Sahu, “Cost-aware cloud bursting
for enterprise applications,” ACM Transactions on Internet Technology (TOIT),
vol. 13, no. 3, p. 10, 2014.

[144] S. Imai, T. Chestna, and C. A. Varela, “Elastic scalable cloud computing using
application-level migration,” in Proceedings of the 2012 IEEE/ACM Fifth Interna-
tional Conference on Utility and Cloud Computing (UCC’12). Washington, DC,
USA: IEEE Computer Society, 2012, pp. 91–98.

[145] D. Warneke and O. Kao, “Exploiting dynamic resource allocation for efficient
parallel data processing in the cloud,” IEEE Transactions Parallel and Distributed
Systems, vol. 22, no. 6, pp. 985–997, 2011.

[146] R. Fears, H. Brand, R. Frackowiak, P.-P. Pastoret, R. Souhami, and B. Thompson,
“Data protection regulation and the promotion of health research: getting the
balance right,” QJM, vol. 107, no. 1, pp. 3–5, 2014.

[147] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai, “Exploring alternative ap-
proaches to implement an elasticity policy,” in 4th International Conference on
Cloud Computing (CLOUD 2011). IEEE, 2011, pp. 716–723.

[148] G. Galante and L. C. Bona, “A survey on cloud computing elasticity,” in 2012 IEEE
Fifth International Conference on Utility and Cloud Computing (UCC 2012). IEEE,
2012, pp. 263–270. [Online]. Available: http://dx.doi.org/10.1109/UCC.2012.30

[149] M. Fowler, Domain Specific Languages. Pearson Education, 2010.

[150] J. Allspaw, The Art of Capacity Planning: Scaling Web Resources. O’Reilly Media,
Inc., 2008.

[151] F.-f. Han, J.-j. Peng, W. Zhang, Q. Li, J.-d. Li, Q.-l. Jiang, and Q. Yuan, “Virtual
resource monitoring in cloud computing,” Journal of Shanghai University (English
Edition), vol. 15, pp. 381–385, 2011.

[152] “Amazon autoscaling,” http://aws.amazon.com/autoscaling/, Last accessed:
2015.08.04.

[153] “Rackspace cloud monitoring,” http://copperegg.com/rackspace/, Last accessed:
2015.08.04.

[154] S.-k. Kwon and J.-h. Noh, “Implementation of monitoring system for cloud com-
puting environments.”

[155] S. Martello and P. Toth, Knapsack problems. Wiley New York, 1990.

117

http://dx.doi.org/10.1109/UCC.2012.30
http://aws.amazon.com/autoscaling/
http://copperegg.com/rackspace/

[156] N. Radcliffe and P. Surry, “Formal Memetic Algorithms,” Evolutionary Computing,
vol. 865, pp. 1–16, 1994.

[157] “Usefulness vs. usability – expero – simplifying complexity,” http://experoinc.com/
usefulness-vs-usability/, Last accessed: 2015.08.03.

[158] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen, “Action research,”
Commun. ACM, vol. 42, no. 1, pp. 94–97, Jan. 1999. [Online]. Available:
http://doi.acm.org/10.1145/291469.291479

[159] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[160] E. Tilevich and Y. Smaragdakis, “Transparent program transformations in the
presence of opaque code,” in Proceedings of the 5th international conference on
Generative programming and component engineering. ACM, 2006, pp. 89–94.

[161] E. Farcas, C. Farcas, W. Pree, and J. Templ, “Transparent distribution of real-time
components based on logical execution time,” ACM SIGPLAN Notices, vol. 40,
no. 7, pp. 31–39, 2005.

[162] J. I. Landman, H. N. Cofer, R. Gomperts, and D. Mikhailov, “Transparent distri-
bution and execution of data in a multiprocessor environment,” Jul. 24 2007, uS
Patent 7,249,357.

[163] T. J. Collins III, S. R. Anderson, S. J. McDowall, C. H. Kratsch, and J. P. Larson,
“System for software distribution in a digital computer network,” Dec. 1 1998, uS
Patent 5,845,090.

[164] P. Beerthuizen, “Designing for failure,” in DASIA 2003, vol. 532, 2003, p. 70.

[165] B. S. J. Costa, P. P. Angelov, and L. A. Guedes, “Fully unsupervised fault detection
and identification based on recursive density estimation and self-evolving cloud-
based classifier,” Neurocomputing, vol. 150, pp. 289–303, 2015.

[166] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer
networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[167] C. Doukas and I. Maglogiannis, “Bringing iot and cloud computing towards perva-
sive healthcare,” in Innovative Mobile and Internet Services in Ubiquitous Comput-
ing (IMIS), 2012 Sixth International Conference on. IEEE, 2012, pp. 922–926.

[168] E. Sun, X. Zhang, and Z. Li, “The internet of things (iot) and cloud computing
(cc) based tailings dam monitoring and pre-alarm system in mines,” Safety science,
vol. 50, no. 4, pp. 811–815, 2012.

118

http://experoinc.com/usefulness-vs-usability/
http://experoinc.com/usefulness-vs-usability/
http://doi.acm.org/10.1145/291469.291479
http://doi.acm.org/10.1145/1327452.1327492

[169] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things:
Vision, applications and research challenges,” Ad Hoc Networks, vol. 10, no. 7, pp.
1497–1516, 2012.

[170] C. Pautasso and G. Alonso, “JOpera: A toolkit for efficient visual composition
of web services,” International Journal of Electronic Commerce, vol. 9, no. 2,
pp. 107–141, Jan. 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1278095.1278101

119

http://dl.acm.org/citation.cfm?id=1278095.1278101
http://dl.acm.org/citation.cfm?id=1278095.1278101

JCloudScale Documentation

Introduction

JCloudScale is a framework for deploying and managing applications in an Infrastructure-
as-a-Service cloud, for instance Amazon EC2. Essentially, JCloudScale wants to allow
you to write a distributed, elastic application like a regular (local) Java app. The general
concept of JCloudScale is to use Aspect-Oriented Programming (AOP) techniques to
dynamically modify the bytecode of Java-based applications, and transparently move
designated (via annotations) parts of the application (which we refer to as cloud objects)
to virtual resources in the cloud (referred to as cloud hosts). This process is transparent
to the application developer, and is completely automated. In the end, applications built
on top of JCloudScale look like regular (local) Java applications, but are actually
executed in a distributed fashion.

What Kind of Applications Can Profit from JCloudScale?

JCloudScale is perfectly suited to help you build applications that are:

• multi-threaded: they inherently want to do multiple things in parallel.

• computation-heavy: some of the things the application wants to do take a long time
to finish and produce significant processor load.

• memory-heavy: application operations require significant amount of memory that
are hard to satisfy on a single machine.

• elastic: load on the application is not always the same, and the application should
adapt its usage of cloud resources based on current load.

How does JCloudScale help you with such applications? It lets you focus on what
matters - your business logics. All the pesky interactions with the cloud are handled by
JCloudScale. In many applications, you do not even see the cloud anymore in your
application.

121

Required Software

As the JCloudScale project and necessary infrastructure is based on Java, any operation
system may be used. We have tested JCloudScale on many versions of Windows, Mac
OS X, and Linux.

Before you start, please ensure that the following software is available or installed on
your machine (recommended version is specified in italics, however newer versions should
work as well, unless specified otherwise).

1. Java JDK (Oracle Java SE JDK 1.7)

2. Apache Maven (Maven 3.0) - JCloudScale is developed as Maven project and
is available as maven artifact. The easiest approach for you would be to base
your own application on Maven as well. Of course, this is not mandatory, but
otherwise dependency management and aspect weaving become more cumbersome
to configure correctly.

3. Optional: Apache ActiveMQ (Apache ActiveMQ 5.8.0) - JCloudScale uses
ActiveMQ service for communication between clients and cloud hosts. For produc-
tion deployment, a stand-alone ActiveMQ instance should be used. If you are just
toying around or testing your solution, you do not need an ActiveMQ installation,
as JCloudScale is able to instantiate an integrated message queue if no external
MQ is available.

Javadocs

Please find the automatically generated API documentation for JCloudScale here1.

Current Version

This documentation describes the latest stable JCloudScale release 0.4.0. As we are
continuing working on this project, latest version can be found in our maven repository2.
Note, however, that newer versions do not necessarily have the same API and behavior
may differ from the one described here.

Basic Usage
This section focuses on Maven-based projects. If you want to use JCloudScale without
Maven, read Section 9.3 first.

As a first step to get started with JCloudScale. you need to add it to your project’s
list of dependencies in your Maven pom.xml file as it is shown in Listing 1.

In addition, as JCloudScale is not yet registered in public maven repositories, you
need to add a reference to the TU Wien Infosys maven repository as well (see Listing 2).

1http://xleitix.github.io/jcloudscale/apidocs/
2http://www.infosys.tuwien.ac.at/mvn/jcloudscale/

122

http://xleitix.github.io/jcloudscale/apidocs/
http://www.infosys.tuwien.ac.at/mvn/jcloudscale/

Listing 1: Maven configuration to include JCloudScale dependency
1 <dependency>
2 <groupId>j c l o u d s c a l e</groupId>
3 <a r t i f a c t I d>j c l o u d s c a l e . core</ a r t i f a c t I d>
4 <ver s i on>0 . 4 . 0</ ve r s i on>
5 </dependency>

Listing 2: Maven configuration to reference TU Wien maven repository
1 <r e p o s i t o r i e s>
2 <repo s i t o r y>
3 <id>in f o sy s−r e p o s i t o r y</ id>
4 <ur l>ht tp : //www. i n f o s y s . tuwien . ac . at /mvn</ ur l>
5 </ r epo s i t o r y>
6 </ r e p o s i t o r i e s>

However, this is not the only required change to the build process. Additionally, as
JCloudScale uses AspectJ to weave its code into your application, you will need to
add compile-time weaving as another step of your compilation process. Many things
can be tweaked here, but for most cases it should be sufficient to simply add this plugin
configuration to your pom.xml file (into plugins subsection of a build section) (see
Listing 3).

Now it is time to actually start using JCloudScale in the application. The
key concept of the JCloudScale is the notion of cloud objects. Cloud objects are
represented by Java classes annotated with the @CloudObject annotation. Whenever
JCloudScale finds the creation of the new instance of the class using this annotation,
it replaces the constructor call with the code necessary to select a remote host for the
object and deploy it there, providing only a proxy object to the application. Following,
any invocations on this proxy object actually become remote method invocations on the
cloud object.

A simple cloud object is defined in Listing 4.
Every instance of MyCloudObject is instantiated on a remote host, and all invoca-

tions to this object are redirected to this host. As soon as the method
MyCloudObject.iAmDone() is invoked, the cloud object is destroyed on the remote
host (and any subsequent invocations to this object will trigger JCloudScaleException).

Using this cloud object in your code is simple. It is just like using any other Java
object, what is shown in Listing 5.

Note that this simple code snippet actually already triggers some serious back-and-
forth between your client application and the remote host, as indicated in Figure 5.2.

When using JCloudScale. you should also indicate when your application does
not require JCloudScale anymore and can be shut down. To do this, you can use the
@JCloudScaleShutdown annotation. After the execution of the method annotated
with it, JCloudScale will insert necessary calls to gracefully destroy all remaining

123

Listing 3: Maven configuration to enable AspectJ post-compilation
1 <plug in>
2 <groupId>org . codehaus . mojo</groupId>
3 <a r t i f a c t I d>aspec t j−maven−p lug in</ a r t i f a c t I d>
4 <ver s i on>1 .4</ ve r s i on>
5 <con f i gu r a t i on>
6 <source>1 .7</ source>
7 <ta rg e t>1 .7</ ta r g e t>
8 <compl ianceLeve l>1 .7</ compl ianceLeve l>
9 <verbose>true</ verbose>

10 </ con f i gu r a t i on>
11 <execut i on s>
12 <execut ion>
13 <con f i gu r a t i on>
14 <XnoInl ine>true</XnoInl ine>
15 <asp e c tL i b r a r i e s>
16 <aspec tL ibra ry>
17 <groupId>j c l o u d s c a l e</groupId>
18 <a r t i f a c t I d>j c l o u d s c a l e . core</ a r t i f a c t I d>
19 </ aspec tL ibra ry>
20 </ a sp e c tL i b r a r i e s>
21 </ con f i gu r a t i on>
22 <goa l s>
23 <goa l>compile</ goa l>
24 <goa l>te s t−compi le</ goa l>
25 </ goa l s>
26 </ execut ion>
27 </ execut i on s>
28 <dependenc ies>
29 <dependency>
30 <groupId>org . a sp e c t j</groupId>
31 <a r t i f a c t I d>a s p e c t j r t</ a r t i f a c t I d>
32 <ver s i on>1 . 7 . 0</ ve r s i on>
33 </dependency>
34 <dependency>
35 <groupId>org . a sp e c t j</groupId>
36 <a r t i f a c t I d>a s p e c t j t o o l s</ a r t i f a c t I d>
37 <ver s i on>1 . 7 . 0</ ve r s i on>
38 </dependency>
39 </dependenc ies>
40 </plug in>

cloud objects and shutdown any additional infrastructure created by the framework to
communicate with the remote hosts. An example of such annotation usage is shown in
Listing 6

Alternatively, you can invoke JCloudScaleClient.closeClient() in order to
shutdown all JCloudScale infrastructure manually. Don’t forget, that any interaction
with JCloudScale after shutdown will cause exceptions.

Using JCloudScale without Maven
While we encourage users to use Maven for the JCloudScale-based projects, it does
not mean that it is impossible to use JCloudScale without Maven. In this short

124

Listing 4: An example of cloud object class
1 @CloudObject
2 pub l i c c l a s s MyCloudObject
3 {
4
5 pub l i c S t r ing doThings () { . . . }
6
7 pub l i c void doOtherThings (S t r ing param1 , S t r ing param2) { . . . }
8
9 @DestructCloudObject

10 pub l i c void iAmDone () { . . . }
11
12 }

Listing 5: An example of using cloud object
1 System . out . p r i n t l n (" S ta r t i ng ") ;
2 MyCloudObject ob j e c t = new MyCloudObject () ;
3 System . out . p r i n t l n (ob j e c t . doThings ()) ;
4 ob j e c t . doOtherThings (" f i r s t " , " second ") ;
5 ob j e c t . iAmDone () ;
6 System . out . p r i n t l n ("Done ") ;

Listing 6: An example of method that shuts down JCloudScale
1 @JCloudScaleShutdown
2 pub l i c s t a t i c void main (St r ing [] a rgs) { . . . }

guide we will try to describe the necessary steps you need to perform in order to use
JCloudScale without Maven.

Introduction

As Maven is a project management tool, everything that needs to be performed differently
is the way JCloudScale has to be referenced and integrated into your project.

Note, that this section of documentation does not reflect the way we perform testing
or encourage others to use JCloudScale. Therefore, it may be a bit outdated or expose
some issues that do not occur with default approach. Whenever you face such situation,
be free to inform us in order to fix these issues.

Adding JCloudScale dependency

In order to access JCloudScale functionality or compile the code that references
JCloudScale. you need to add JCloudScale jars to your project setup. JCloud-
Scale jar can be obtained directly from our maven repository3, while you still might

3http://www.infosys.tuwien.ac.at/mvn/jcloudscale/jcloudscale.core/

125

http://www.infosys.tuwien.ac.at/mvn/jcloudscale/jcloudscale.core/

have difficulties finding jars that JCloudScale depends on. You can either try to figure
out all necessary for your particular use case dependencies manually (by adding missing
jars as long as you get ClassNotFoundException) or, if you do have Maven on your
machine, you can run mvn package command in the directory with the pom.xml file
with the following content to collect all dependencies of JCloudScale (some of them
might be not necessary for your particular use case, but if you include them all, you will
definitely be on the safe side). Appropriate pom.xml file is shown in Listing 46.

Applying AspectJ Aspects

As JCloudScale seamless integration depends on AspectJ, we need to apply AspectJ
aspects defined by JCloudScale to your project in order to achieve the same features as
default Maven-based setup provides. Of course, if you don’t plan to use annotation-based
features of JCloudScale and plan using JCloudScale API, you can skip this step.

AcpectJ provides 3 types of aspect weaving:

1. compile-time weaving: compile either target source or aspect classes via dedicated
AspectJ compiler;

2. post-compile weaving: inject aspect instructions to already compiled classes;

3. load-time weaving: inject aspect instructions to the byte code during class loading,
i.e. load instrumented class instead of the "raw" one;

Note, If you are using any IDE, it may have plugins or embedded features that
simplify AspectJ usage (e.g., AJDT for Eclipse, or AspectJ support in IntelliJ IDEA). In
this manual we briefly describe raw AspectJ usage independently from any IDE.

Compile-time weaving

Compile-time weaving requires source code of the application to be compiled by As-
pectJ Compiler(ajc)4 instead of default javac compiler (assuming ajc is in PATH and
aspectjrt.jar is in CLASSPATH), as it is shown in Listing 7.

Listing 7: Compile-time aspect weaving
1 a j c −aspectpath j c l o u d s c a l e . core −0 . 4 . 0 . j a r
2 −c l a s spa th <your c l a s spa th here> −1.7
3 −s ou r c e r oo t s <source f o l d e r here>
4 −out j a r <compiled j a r here>

A concrete example of this command is shown in Listing 8.
After this, application can be started from the resulting jar as it is shown in Listing 9.
4https://eclipse.org/aspectj/downloads.php

126

https://eclipse.org/aspectj/downloads.php

Listing 8: Compile-time aspect weaving example
1 a j c −aspectpath l i b / j c l o u d s c a l e . core −0 . 4 . 0 . j a r
2 −c l a s spa th " l i b /∗ " −1.7 −s ou r c e r oo t s t e s t
3 −out j a r code . j a r

Listing 9: Application starting after the compile-time aspect application
1 java −cp<your c l a s spa th here> <sp e c i f y your main c l a s s here>
2
3 java −cp code . j a r ; l i b /∗ t e s t . Main

Post-compile weaving

Post-compile weaving gives you more freedom to compile your source files the way it
is usually done, while introduces another step after compilation and before application
running. Post-compile weaving is performed by the same ajc utility as compile-time,
but with a slightly different set of parameters, as it is shown in Listing 10.

Listing 10: Post-compile aspect weaving
1 a j c −aspectpath j c l o u d s c a l e . core −0 . 4 . 0 . j a r −c l a s spa th <your c l a s spa th here>
2 −1.7 −inpath <your compiled c l a s s e s or j a r s here>
3 −out j a r <r e s u l t j a r here>

A concrete example of such invocation is shown in Listing 11.

Listing 11: Post-compile aspect weaving example
1 a j c −aspectpath l i b / j c l o u d s c a l e . core −0 . 4 . 0 . j a r −c l a s spa th " l i b /∗ "
2 −1.7 −inpath ta r g e t −out j a r code . j a r

After this, application can be started from the resulting jar as usually as it is shown
in Listing 9.

Load-time weaving

Load-time weaving does not require anything specific from the code compilation stage.
This allows working with code in any IDE or environment without any limitations.
However, load-time weaving applies some run-time application code processing and
changing, therefore influencing application performance, what might be critical.

In order to enable AspectJ runtime weaving, we need to provide an aop.xml file,
located in META-INF folder in classpath. This file for aspects defined in JCloudScale
may have the content shown in Listing 12.

127

Listing 12: AspectJ configuration for load-time weaving
1 <aspe c t j>
2 <aspec t s>
3 <aspect name=
4 " at . ac . tuwien . i n f o s y s . j c l o u d s c a l e . a spec t s . CloudObjectAspect " />
5 <aspect name=
6 " at . ac . tuwien . i n f o s y s . j c l o u d s c a l e . a spec t s . JCloudScaleManagementAspect " />
7 </ aspec t s>
8
9 <weaver opt ions="−verbose ">

10 <!−− Ignore a l l c l a s s e s with in −−>
11 <exc lude with in=" javax . . ∗ " />
12 <exc lude with in=" java . . ∗ " />
13 <exc lude with in=" org . a s p e c t j . . ∗ " />
14 <exc lude with in=" at . ac . tuwien . i n f o s y s . j c l o u d s c a l e . . ∗ " />
15
16 <!−− Process c l a s s e s with in (p lace your packages in s t ead o f ’ t e s t ’)−−>
17 <inc lude with in=" t e s t . . ∗ " />
18 </weaver>
19 </ a sp e c t j>

Additionally, you need an aspectj weaver5, that provides necessary functionality
for AspectJ runtime weaving. Finally, we need to add -javaagent JVM option to
application startup, as it is shown in Listing 13.

Listing 13: Application startup with load-time aspect weaving
1 java −javaagent : a spect jweaver . j a r −cp<sp e c i f y your c l a s spa th here>
2 <sp e c i f y your main c l a s s here>

After you run this command, your application should run with JCloudScale aspects
applied.

Interacting With Cloud Objects
As is the case for any object in Java, clients can fundamentally interact with cloud objects
in two different ways: (1) invoking methods of cloud objects, and (2) getting and setting
member fields directly. Additionally, cloud objects (more concretely, the classes defining
cloud objects) may contain static fields and static methods. It is important for users to
understand what technically happens in JCloudScale in each of those cases.

• Client invokes a (non-static) method: JCloudScale will intercept this method
call and schedule its execution on one of the remote hosts. The client will block
until the cloud host returns the result of this invocation (or signals completion in
case of void methods) (see lines 1–2 in Listing 14).

5http://repo1.maven.org/maven2/org/aspectj/aspectjweaver/1.7.0/
aspectjweaver-1.7.0.jar

128

http://repo1.maven.org/maven2/org/aspectj/aspectjweaver/1.7.0/aspectjweaver-1.7.0.jar
http://repo1.maven.org/maven2/org/aspectj/aspectjweaver/1.7.0/aspectjweaver-1.7.0.jar

• Client sets a (non-static) field: JCloudScale will intercept this set operation and
instruct the cloud host that is responsible for this object to set the value in his copy
instead. The proxy in the client VM maintains the old value. The client will block
until the value is successfully changed on the server. (see line 4 in Listing 14).

• Client gets a (non-static) field: JCloudScale will intercept this get operation
and request the current value from the cloud host that is responsible for this object.
This value is returned to the client. The proxy in the client VM does not change.
(see line 6 in Listing 14).

• Client invokes a static method: JCloudScale will not intercept this operation.
The static method will execute in the client VM.(see line 8 in Listing 14)

• Client gets or sets a static field: JCloudScale will not intercept this operation.
The static field in the client VM will be used. (see lines 10-11 in Listing 14)

Listing 14: Interaction examples with JCloudScale
1
2 CloudObject co = new CloudObject () ;
3 co . invokeMe () ;
4
5 co . pub l i cF i e l d = " hugo " ;
6
7 System . out . p r i n t l n (co . pub l i cF i e l d) ;
8
9 CloudObject . invokeMeStat i ca l l y () ;

10
11 CloudObject . s t a t i cPub l i cF i e l d = " hugo_stat ic " ;
12 System . out . p r i n t l n (CloudObject . s t a t i cPub l i cF i e l d) ;

Additionally, there is also another case that needs to be discussed in this place.
Sometimes, cloud objects (i.e., code running on a cloud host, not the client) might want
to get or set the value of static fields, as it is shown in Listing 15.

Listing 15: Static fields access from cloud object
1 @CloudObject
2 pub l i c c l a s s MyCO {
3
4 pub l i c s t a t i c S t r ing someValue ;
5
6 pub l i c void doSomething () {
7 someValue = " newValue " ;
8 }
9 }

This is somewhat problematic, as the semantics outlined so far will likely not be
what the author of this code intended. To be concrete, in this case, the static field

129

someValue is what we call JVM-local i.e., every remote host (and the client JVM, if
this is relevant) have a separate value for someValue, and the value is not synchronized
between different hosts. Put differently, the value of this field is depending on which host
a cloud object is physically deployed on. This is generally a bad thing in JCloudScale.
Hence, it is possible to explicitly demark (non-final) shared static fields in cloud objects
using the @CloudGlobal annotation (see Listing 16).

Listing 16: Static fields access with @CloudGlobal annotation
1 @CloudObject
2 pub l i c c l a s s MyCO {
3
4 @CloudGlobal
5 pub l i c s t a t i c S t r ing someValue ;
6
7 pub l i c void doSomething () {
8 someValue = " newValue " ;
9 }

10
11 }

The semantics of interacting with cloud-global fields are as follows:

• Cloud object sets a cloud-global field: JCloudScale will intercept this set operation
and instruct the client via callback that it should set this value instead. The cloud
object will block until the value is successfully changed on client-side.

• Cloud object gets a cloud-global field: JCloudScale will intercept this get operation
and request the current value from the client. This value is returned.

Likely, this will capture the intend of the author of the above code snippet better.
However, users should keep in mind that getting and setting cloud-global fields involves
remoting and is hence significantly more expensive than regular static field access.
Furthermore, note that getting and setting cloud-global fields is by default just as
unsynchronized as interaction with regular static fields. If one cloud object sets a static
field, there is no guarantee that another cloud object will not swoop in and override this
value immediately.

Warning: using the reflection API for interacting with cloud objects is problematic, as
it will partially circumvent the mechanisms we use for intercepting method invocations,
and get and set operations. Unfortunately, many libraries and third-party middleware use
reflection internally, for instance to create objects on the fly. Hence, we have gone through
some pain to make the basic uses cases of JCloudScale play nicely with reflection,
however, in some cases (especially in combination with the by-reference semantics) users
may encounter bugs and unexpected behavior when using reflection.

130

Passing Parameters By-Value and By-Reference

Whenever data is passed between regular Java objects running in the JVM of the client
application and cloud objects (for instance, as parameters or return values of method
invocations of cloud objects, or as values of fields of cloud objects), two different semantics
can be used: copy-by-value or by-reference. The following simple rules apply.

Data is passed by-value iff it is:

• a Java primitive type (int, short, etc.)

• wrapper of a primitive type (Integer, Short, etc.)

• of type String

• Enum Type

• either class, invocation or invocation parameter is annotated with @ByValueParameter

In all other cases, data is passed by-reference. Demonstration examples are shown in
Listing 17.

Note that by-value data passing requires the object to be serializable (i.e., to implement
the Serializable interface). For by-reference data, this is not required as such data
is never actually sent over the wire. However, types used for by-reference data passing
need to provide a default no-arg constructor.

Parameters that are passed by-reference continue to exist only within the client JVM.
Hence, invoking methods of by-reference parameters always leads to a callback to the
client application. Users should keep this in mind when interacting with by-reference
parameters (i.e., in general, invocations to by-reference parameters should be minimized).

Warning: at the moment, we are not providing any convenience functions for deciding
on by-reference or by-value in addition to the simple rules stated above. For instance, if
you declare a field as by-value, it will not automatically be considered by-value in other
contexts (for instance, when using this field as return value of a getter). Declare by-value
explicitly whenever you want data to be serialized or annotate declared parameter type
itself if you want it to be passed by-value in all cases.

Restrictions on Cloud Objects and By-Reference Classes

Whenever user constructs the new instance of Cloud Object or passes parameter to the
Cloud Object invocation by reference, JCloudScale constructs a proxy object that is
used to intercept all invocations to this object with the help of CGLib6. This approach
simplifies the code and extends possibilities, but has some limitations. Here’s the list of
the things that users should be aware of.

Both, Cloud Objects and objects passed by-reference:
6http://cglib.sourceforge.net/

131

http://cglib.sourceforge.net/

Listing 17: Parameters passing examples in JCloudScale
1 @CloudObject
2 pub l i c c l a s s MyCO {
3
4 @ByValueParameter
5 pub l i c MyComplexObject f i e l d 1 ; // by−value
6
7 pub l i c S t r ing f i e l d 2 ; // by−value
8
9 pub l i c MyComplexObject f i e l d 3 ; // by−r e f e r e n c e

10
11 pub l i c @ByValueParameter MyComplexObject getSomething () {
12 . . . // re turn value by−value
13 }
14
15 pub l i c void doSomething (MyComplexObject parameter) {
16 . . . // parameter by−r e f e r e n c e
17 }
18
19 @ByValueParameter
20 s t a t i c c l a s s MyParameter implements S e r i a l i z a b l e {
21 // c l a s s i s annotated with @ByValueParameter ,
22 // a l l i nvoca t i on s where t h i s type w i l l be invo lved w i l l be proce s s ed by−value .
23 }
24
25 pr i va t e MyParameter updateMyParameter (MyParameter param) {
26 . . . // re turn value and parameter are passed by−value
27 // as the c l a s s MyParameter i s annotated with @ByValueParameter
28 }
29
30 // However , even i f MyParameter w i l l be passed here ,
31 // parameter w i l l be passed by−r e f e r e n c e !
32 pub l i c void updateMyParameter (Object obj) {
33
34 }

• Must have empty (no-args) constructor. (this limitation might be loosened in
future);

• Must not use methods finalize() and clone() as they are not handled correctly.
(this limitation might be loosened in future)

• Must not use any finalized methods (e.g., getClass(), notify(), wait(), etc.
or user-defined methods with modifier final) as they won’t be intercepted at all.

• Should avoid whenever it is possible to use these objects in hash maps or sorting
lists as each invocation to methods compareTo(), equals() and hashCode()
with require remote call and will slow down execution a lot. Consider to base
sorting and hashing on some by-value passed parameter or value that identifies this
object. (e.g., String, int).

132

JCloudScale Configuration

Creating Configuration

JCloudScale can be configured either directly from code (likely the easier version), or
via an XML configuration file. Listing 18, illustrates a simple code snippet that showcases
how to create and modify the configuration.

Listing 18: Creating custom configuration for JCloudScale
1 JCloudSca leConf igurat ion con f i g = new JCloudSca l eConf igurat ionBui lder () . bu i ld () ;
2 c on f i g . common () . c l i e n tLogg ing () . s e tDe fau l tLogg ingLeve l (Leve l .OFF) ;

The configuration can also be stored to a file or loaded from a file, as it is shown in
Listing 19.

Listing 19: Serializing and deserializing configuration from file
1 c on f i g . save (new F i l e (" c on f i g . xml ")) ;
2 c on f i g = JCloudSca leConf igurat ion . load (new F i l e (" c on f i g . xml ")) ;

Specifying Configuration

After you obtained an instance of JCloudScaleConfiguration, you have to inform
JCloudScale framework to use this configuration. You can do that multiple ways, each
of them has own benefits and restrictions.

1. You can specify configuration manually. To do this, you have to provide an instance
of the JCloudScaleConfiguration class to the static method setConfiguration
of the JCloudScaleClient class. However, you have to do that prior to any
interaction with the JCloudScale framework, because otherwise some components
might be initialized with the default configuration before you provide correct one
(see Listing 20).

Listing 20: Manually defining the configuration to JCloudScale
1 JCloudSca leConf igurat ion con f i g = . . .
2 . . .
3 JCloudSca leCl i ent . s e tCon f i gu ra t i on (c on f i g) ;

2. You can specify where to get the configuration from. To do this, you have to set sys-
tem property jcloudscale.configuration (specified by the public constant
JCloudScaleClient.JCLOUDSCALE_CONFIGURATION_PROPERTY) to point

133

either to the file where configuration is stored or to the class that has the static pa-
rameterless method annotated with @JCloudScaleConfigurationProvider
annotation and returns an instance of JCloudScaleConfiguration (see List-
ing 21).

Listing 21: Defining JCloudScale configuration through system property
1 @JCloudScaleConf igurat ionProvider
2 pub l i c s t a t i c JCloudSca leConf igurat ion c r ea t eCon f i gu ra t i on () {
3 . . . // obta in c on f i g u r a t i on in s t anc e and con f i gu r e i t
4 r e turn con f i g ;
5 }

3. You can set system property from the code. This approach is illustrated in Listing 22.
However, it does not give you any benefits in comparison to the first option: anyways
you have to do that before any interaction with the JCloudScale framework.

Listing 22: Defining JCloudScale configuration through system property from code
1 System . se tProper ty (" j c l o u d s c a l e . c on f i gu r a t i on " , " c on f i g . xml ") ;

4. You can set system property before application startsThe real benefit of defining
JCloudScale configuration through system property approach is that this property
can be specified before running the application. To do this with maven, you can
apply the changes shown in Listing 23 the pom.xml (to the exec-maven-plugin
in the <plugins> configuration section). You can do that without maven as well.
In this case you have to provide mentioned above line as command-line argument
to the java process that starts your application, as it is shown in Listing 24.

Listing 23: Defining JCloudScale configuration through pom.xml file
1 <con f i gu r a t i on>
2 <executab l e>java</ executab l e>
3 <arguments>
4 . . .
5 <argument>−Djc l oudsca l e . c on f i gu r a t i on=con f i g . xml</argument>
6 . . .
7 </arguments>
8 </ con f i gu r a t i on>

The last configuration specification approach is recommended, as it minimizes amount
of possible issues and problems with configuration specification. However, in order to
ensure that your configuration is indeed used by JCloudScale. verify that your changes
to configuration influence JCloudScale behavior. For example, you can set logging
to INFO or ALL and see that the amount of logging messages significantly increased.

134

Listing 24: Defining JCloudScale configuration through system property without
maven

1
2 java −Djc l oudsca l e . c on f i gu r a t i on=con f i g . xml app . main . Class

Also you should see the following message: INFO: JCloudScale successfully loaded
configuration from <your configuration source here>.

Additionally, you may verify if your configuration is indeed used by all JCloudScale
components. If you see the following message (ensure WARNING logging is enabled in
configuration you provide), than you are either setting configuration multiple times (e.g.,
from system property and from the code) or providing configuration too late and some
components are already using default one: WARNING: JCloudScale configuration
redefinition: Replacing configuration instance. Some components might be still using the
previous version of the configuration.

Configuration Structure

To understand better what can be configured within the JCloudScale framework, here
is the complete list of the configuration modules with short explanations. Some modules
will be explained in more detail below.

1. Common Configuration: contains parameters that are shared by client and server.

a) Class Loader Configuration: contains type and configuration specific to the
appropriate class loader. Default implementation is the
CachingClassLoaderConfiguration.

b) Client Id: The unique identifier of the client that allows server to distinguish
between clients and communicate with them. For example, when application
restarts, cloud host can detect that this is already a different application run.

c) Client Logging Configuration: The configuration of the Logging of the JCloud-
Scale components that work on the client.

d) Communication Configuration: The configuration of the Message Queue
connection and data transferring parameters.

e) Monitoring Configuration: The configuration of the JCloudScale state
monitoring and events processing.

f) Scaling Policy: A user-provided Java class that specifies the rules how the
Cloud Host is selected for the new instance of the Cloud Object. By default,
HostPerObjectScalingPolicy is used.

g) UI Configuration: The configuration of the management interface, which
allows monitoring what is actually happening within the application.

135

2. Server Configuration: contains parameters that are specific for the server.

a) Cloud Platform Configuration: The configuration specific for the selected plat-
form. By default it is represented by LocalCloudPlatformConfiguration
to allow application testing on local machine. In order to make use of the real
cloud, it should be replaced by an instance of
EC2CloudPlatformConfiguration or
OpenstackCloudPlatformConfiguration.

b) Server Logging Configuration: The configuration of the Logging for the
JCloudScale components that work on the server.

3. Version: the version of the JCloudScale platform that created this configuration
object.

Writing Scaling Policies

JCloudScale framework itself cannot detect how Cloud Objects should be mapped
to the Cloud Hosts and how many hosts should be used. Hence, you should select or
write a scaling policy that fits your needs. You can use predefined scaling policies from
the package at.ac.tuwien.infosys.jcloudscale.policy.sample, but to get
really the best performance and resource usage, you might need to write your own scaling
policy that will decide which host to select based on the number of already running
machines, size of the task, planned amount of machines, current load of each machine or
some other rules that might be important for your application.

To create your own scaling policy, you have to create a class that extends
at.ac.tuwien.infosys.jcloudscale.policy.AbstractScalingPolicy class
and provide an instance of this class to JCloudScale configuration, as it is shown in
Listing 25.

As you can see, you have to implement two methods that will allow JCloudScale to
scale up and down. The first method, selectHost will be called on each Cloud Object
creation and has to answer the question "Which host should this object be deployed to"?
It receives as parameters a descriptor of the new Cloud Object (containing unique ID of
the cloud object, it’s class, and proxy object that will be used to perform all invocations
after object will be deployed to the cloud host) and reference to the cloud hosts’ pool that
allows to perform various manipulations with the set of available hosts (like, get available
hosts, start new host or shutdown existing host). JCloudScale expects this method to
return the reference to the cloud host that newCloudObject should be deployed on.

Second method from this interface has slightly different semantics. As cloud providers
usually have billing based on time periods (billing period, usually a hour) starting from
the host startup time, JCloudScale allows user to scale down similarly. Whenever
the new host is started, scaleDown method will be called periodically to determine if
the host specified by scaledHost parameter should be scaled down now or not. If the
user answers true, all objects running on this host will be destroyed and the host will be

136

Listing 25: Implementing custom scaling policy in JCloudScale
1 pub l i c ab s t r a c t c l a s s Abs t ra c tSca l i ngPo l i cy
2 {
3 /∗∗
4 ∗ S e l e c t s the v i r t u a l host f o r the new cloud ob j e c t .
5 ∗ @param newCloudObject The d e s c r i p t o r o f the new
6 ∗ c loud ob j e c t .
7 ∗ @param hostPool The host pool that conta in s the
8 ∗ s e t o f a v a i l a b l e hos t s and a l l ows
9 ∗ to perform add i t i o na l s c a l i n g ope ra t i on s on these hos t s .

10 ∗ @return The host that should be used to deploy
11 ∗ new cloud ob j e c t .
12 ∗/
13 pub l i c ab s t r a c t IHost s e l e c tHo s t (Cl ientCloudObject newCloudObject ,
14 IHostPool hostPool) ;
15
16 /∗∗
17 ∗ This method i s c a l l e d p e r i o d i c a l l y
18 ∗ (with the per iod s p e c i f i e d by scaleDownInterval
19 ∗ from common con f i gu r a t i on)
20 ∗ to perform s c a l i n g down and cloud usage opt imiza t i on
21 ∗ ta sk s .
22 ∗ @param hostPool The host pool that conta in s the s e t
23 ∗ o f a v a i l a b l e hos t s and a l l ows
24 ∗ to perform add i t i o na l s c a l i n g ope ra t i on s on these hos t s .
25 ∗ @param sca ledHost I nd i c a t e s the host that reached
26 ∗ the next scaleDownInterval .
27 ∗ @return true i f the s p e c i f i e d host should be
28 ∗ s c a l ed down . Otherwise ,
29 ∗ i f the s p e c i f i e d host has to stay on l i n e f o r another
30 ∗ s c a l i n g i n t e r va l , f a l s e .
31 ∗/
32 pub l i c ab s t r a c t boolean scaleDown (IHost sca ledHost , IHostPool hostPool) ;
33 }

terminated (therefore, you should either never terminate hosts with objects running on
them or never use objects deployed to this host after host termination). Scaling down
method invocation interval can be configured within common section of configuration.

The decision in both methods should be based on the type of the object, expected
operations on this object and current state of running cloud hosts. For each cloud host
you have following information available:

• Host ID, that allows identifying host uniquely. This property is available only when
host is online.

• Host IP Address, that gives you the IP address of the host. This property is
available only when host is online.

• Startup Time, that specifies when the host was started up (if the host is running
already).

• Last Request Time, that specifies when was the last interaction with this host.

137

• Online, that allows you to determine if host is running. If this value is false, the
host may be either still starting up or already shutting down. You can detect this
by checking Startup Time value: if host did not start yet, this value will be empty.

• Cloud Objects, that allows you to count or iterate cloud objects that are currently
deployed on this host.

• Current CPU Load/Current RAM Usage, that allow you to determine the last
measurement of CPU and RAM usage on this host. To be able to use this values,
you have to enable monitoring (see configuration section). In addition, you should
be aware that these values are not actual and show the last reported usage, what
may different from the current values. The interval to measure these and other
metrics can be configured within monitoring configuration as well.

Local vs. Cloud Deployment

Testing cloud applications can be tricky, as debugging physically disparate applications
is not an easy task. Hence, JCloudScale provides two separate modes of deployment.
Firstly, the local deployment mode is your default for building and testing applications.
In local deployment, separate JVM instances are used instead of actual remote hosts.
That is, whenever an application would normally want to request a new host from the
cloud, it starts a new JVM on localhost and deploys the cloud object there. No actual
distribution over multiple hosts happens.

If the application is working as expected in local deployment mode, you can switch
to cloud deployment mode, which will actually physically distribute the application.
Currently JCloudScale supports Openstack and Amazon EC2 as cloud deployment
platform. In this mode, all platform-specific operations (e.g., machine startup/shutdown)
will be performed over the JClouds API7, while all other communication with cloud hosts
and cloud objects will happen over the message queue.

Configuring Message Queue Server

While in local deployment mode JCloudScale manages Message Queue Server seam-
lessly for the application, in cloud deployment mode it is recommended to configure
ActiveMQ Server8 manually or use preconfigured image for selected cloud platform.
When the Message Queue server is up and running, configure JCloudScale to access
it (e.g., by using withMQServer method of JCloudScaleConfigurationBuilder
configuration class). Additionally, ensure that Message Queue server is accessible, by the
configured hostname and port, to other cloud hosts that will be started by JCloudScale
in order to scale your application, as otherwise your application will fail with timeout
exception waiting for cloud hosts to start and connect to message queue.

7http://jclouds.apache.org/
8http://activemq.apache.org/

138

http://jclouds.apache.org/
http://activemq.apache.org/

JCloudScale-based Application Architecture

In general, any JCloudScale-based solution consists of cloud workers (cloud hosts
that host and execute cloud objects), messaging server (that handles and routes all
communication between components) and initial application (that coordinates the whole
solution and starts any interaction). Generally, it is recommended (but not strictly
required) to deploy all parts of your application within the cloud, as this decreases
amount of communication that needs to be performed beyond the boundaries of the
cloud and dramatically speeds up your application.

Each cloud worker is always deployed on the separate cloud host and should be the
only resource-intensive process on that particular host. To remove any influence and
simplify solution architecture, messaging server and initial application should also be
deployed on the separate hosts. However, if initial application does not require a lot of
resources, messaging server and initial application can be co-located on the same host.
This may increase performance (as a significant part of messaging will be performed
within the localhost) and decrease overall maintenance and costs (as there’s one server
less to maintain).

Using Openstack Cloud Platform

Before you can start using Openstack from JCloudScale-based application, you have
to create a virtual machine image that has an instance of JCloudScale Server of the
same version running.

To get such an image, either refer to our tutorial on building server images, or
download our pre-built image (0.4.0).

If you don’t want to specify the name or id of the created image in the application con-
figuration explicitly, you have to name it accordingly to JCloudScale conventions. If nei-
ther name nor id of the virtual machine image is specified, JCloudScale tries to find the
image that is named "JCloudScale"+"_v"+JCloudScaleConfiguration.CS_-
VERSION (e.g., JCloudScale_v0.4.0 if application is using JCloudScale with
version 0.4.0). Additionally, an Apache ActiveMQ instance needs to be available that is
accessible both from the client and from cloud hosts.

In addition, to speedup application startup process, you can use static JCloudScale
instances. Static instance is the virtual machine that has JCloudScale service running
and is started prior to application startup. At startup, JCloudScale queries for
running cloud hosts through message queue. Hosts that answered are used as static
hosts. Therefore, to become a static instance, JCloudScale service should be properly
configured to connect to the correct message queue server.

Static instances will not be shut down on application termination unless application
shuts down them explicitly. To start a new static host, you can use JCloudScale Static
Host Management Tool that allows you to start and stop available static hosts. Note,
that this tool requires a file with serialized configuration (see configuration section) that
will be used by your main application to configure static hosts accordingly. (The tool is
under development and will be available soon)

139

Note that you do not need access to a real IaaS cloud for local deployment. However,
access credentials to an IaaS cloud are required as soon as you switch to cloud deployment.

Further note that local deployment is not meant for production. Realistically, we
cannot think of a good reason to ever write an application with JCloudScale if you
do not intend to deploy it to an actual cloud. Local deployment is a tool to ease the
development and testing process, and nothing more.

Listing 26: Selecting local deployment mode
1 new JCloudSca l eConf igurat ionBui lder ()
2 . bu i ld () ;

Selecting the deployment mode is part of JCloudScale configuration. Just selecting
local deployment without further customization can be done as in Listing 26. Local
deployment can be additionally configured as it is shown in Listing 27.

Listing 27: Selecting local deployment mode with additional configuration
1 new JCloudSca l eConf igurat ionBui lder (new Loca lCloudPlat formConf igurat ion ()
2 . w i thStar tupDirectory (" t a r g e t / ")
3 . withClasspath (" l i b /∗ ")
4 . withJavaHeapSizeInMB (6000))
5 . bu i ld () ;

Openstack mode is selected similarly, but requires some configuration properties to
be able to operate with running instances in the cloud. The simplest configuration looks
as it is shown in Listing 28.

Listing 28: Selecting openstack deployment mode
1 new JCloudSca l eConf igurat ionBui lder (
2 new OpenstackCloudPlatformConf igurat ion
3 (identityPublicURL , tenantName , imageName , log in , password))
4 . bu i ld () ;

To avoid these cumbersome and huge list of parameters, you can use another overload
that accepts instance of Properties object with all Openstack-specific parameters as it is
shown in Listing 29.

The properties that are expected are:

• OS_AUTH_URL that specifies Authentication URL.

• OS_TENANT_NAME that specifies Openstack tennant name.

• OS_USERNAME that specifies Openstack user login.

• OS_PASSWORD that specifies Openstack user password.

140

Listing 29: Selecting openstack deployment mode using properties-based configuration
1 Prope r t i e s opens tackPrope r t i e s = new Prope r t i e s () ;
2 . . . // f i l l in p r op e r t i e s here
3 new JCloudSca l eConf igurat ionBui lder (
4 new OpenstackCloudPlatformConf igurat ion (opens tackPrope r t i e s))
5 . bu i ld () ;

In addition, for testing or prototyping purposes mostly, as it hardly makes sense to
store access credentials in plain text, JCloudScale allows to specify the path to the
file where these properties can be loaded from (see Listing 30).

Listing 30: Selecting openstack deployment mode using properties-based configuration
from file

1 St r ing openstackPropert i e sF i l ename = " . . . " ;
2 new JCloudSca l eConf igurat ionBui lder (
3 new OpenstackCloudPlatformConf igurat ion (openstackPropert i e sF i l ename))
4 . bu i ld () ;

Additionally, you can conveniently specify other configuration properties of JCloud-
Scale or cloud platform as it is shown in Listing 31

Listing 31: Selecting openstack deployment mode with additional configuration
1 new JCloudSca l eConf igurat ionBui lder (
2 new OpenstackCloudPlatformConf igurat ion
3 (identityPublicURL , tenantName , imageName , log in , password)
4 . withSshKey (sshKeyName)
5 . withInstanceImage (imageName))
6 . with (s c a l i n gPo l i c y I n s t an c e)
7 . withLogging (l ogg ingLeve l)
8 . withMqServer (hostname , port)
9 . withMonitor ing (t rue)

10 . bu i ld () ;

All other parts of the application are not dependent on the selected platform and
everything should work the same way independently of selected cloud platform. However,
after switching for cloud deployment mode, the application will be actually distributed
over multiple machines with, possibly, different operation system and file system, what
might cause difference in execution and behavior.

Deployment in EC2

To the largest extend, deployment in EC2 works exactly like explained above for Openstack.
The main difference is that instead of using OpenstackCloudPlatformConfiguration,
an instance of EC2CloudPlatformConfiguration should be passed to the JCloud-

141

Scale configuration. This configuration mostly has the same property values as explained
for Openstack. The core difference is that it requires the availability of an AWS properties
file with the access and secret keys, as it is shown in Listing 32

Listing 32: Defining AWS properties file
1 accessKey = YOUR_ACCESS_KEY_IN_AWS
2 secretKey = YOUR_SECRET_KEY_IN_AWS

Furthermore, an AMI that implements the JCloudScale server component is
required. For version 0.4.0, you can use the public image ami-4f645e26 (US East, N.
Virginia region) or ami-80ce38f7 (EU, Ireland region) in EC2. Alternatively, you can
easily build your own image based on our tutorial.

Event-Based Monitoring

Writing useful scaling policies is often the hardest part of building your JCloudScale
application. For simple policies, users can use the information provided directly through
the API, as discussed in Scaling Policies documentation section. However, oftentimes,
users may want to scale based on data that is more application-specific than CPU or RAM
utilization (for instance based on the number of violations of Service Level Agreements
on each host). Such use cases are covered by JCloudScale event-based monitoring
interface.

JCloudScale integrates a powerful Esper9-based complex event processing (CEP)
engine. Via Esper, useful metrics can be defined as CEP statements on streams of
monitoring data produced by JCloudScale and the cloud objects.

Available Default Events

If monitoring is enabled via the configuration, JCloudScale automatically triggers a
set of predefined events that can be used in CEP statements. Monitoring is enabled as it
is shown in Listing 33.

Listing 33: JCloudScale configuration that enables monitoring
1 new JCloudSca l eConf igurat ionBui lder ()
2 . withMonitor ing (t rue)
3 . bu i ld () ;

The following predefined events then become available:

• State Events
9http://esper.codehaus.org/

142

http://esper.codehaus.org/

– monitoring.CPUEvent: triggered periodically, and contains the current
CPU load at a given host.

– monitoring.RAMEvent: triggered periodically, and contains the current
utilization of the Java heap space of the host JVM.

• Cloud Object Events

– monitoring.ObjectCreatedEvent: triggered whenever a new instance
of a cloud object is deployed.

– monitoring.ObjectDestroyedEvent: triggered whenever an instance
of a cloud object is destroyed.

– monitoring.ExecutionStartedEvent: triggered whenever a method of
a cloud object starts to execute.

– monitoring.ExecutionFinishedEvent: triggered whenever a method
of a cloud object completes successfully.

– monitoring.ExecutionFailedEvent: triggered whenever an execution
of a cloud object throws an exception.

Note: on server-side, the generation of State Events (CPUEvent, RAMEvent) can
be obtained in multiple ways. By default, JCloudScale tries using the best available
approach. The most precise and complete implementation is the one based on a Java-
based monitoring library called Sigar10, which uses the Java Native Interface (JNI)
to call operating system functions. If you are using the local development mode of
JCloudScale and you want to receive State Events generated by Sigar implementation,
you need to configure LocalCloudPlatformConfiguration with the path to a
correct native libsigar binaries for your platform. To do this, you have to specify
java.library.path system variable as it is shown in Listing 34. If you are building
a server image yourself, don’t forget to include this system variable into the script you
use to start JCloudScale server process.

Listing 34: Java library path definition using custom JVM arguments
1 l o ca lC loudPlat fo rmConf igurat ion . addCustomJVMArgs(
2 "−Djava . l i b r a r y . path=<fo lde r_wi th_s iga r_nat ive_ l ib ra r i e s>") ;

Triggering Custom Events

In addition to the predefined events listed above, users may want to define and trigger
their own evens from their cloud objects. To do so, users should first define their event
classes as regular Java beans, which subclass monitoring.Event. An example is given
in Listing 35.

10http://www.hyperic.com/products/sigar

143

http://www.hyperic.com/products/sigar

Listing 35: Custom JCloudScale event definition
1 pub l i c c l a s s DurationEvent extends Event {
2
3 pr i va t e s t a t i c f i n a l long se r ia lVers ionUID = 1L ;
4
5 pr i va t e long durat ion ;
6 pr i va t e S t r ing host Id ;
7
8 pub l i c DurationEvent () {}
9

10 pub l i c DurationEvent (long durat ion , S t r ing host Id) {
11 t h i s . durat ion = durat ion ;
12 t h i s . host Id = host Id ;
13 }
14
15 pub l i c long getDurat ion () {
16 r e turn durat ion ;
17 }
18 pub l i c void setDurat ion (long durat ion) {
19 t h i s . durat ion = durat ion ;
20 }
21 pub l i c S t r ing getHostId () {
22 r e turn host Id ;
23 }
24 pub l i c void setHost Id (S t r ing host Id) {
25 t h i s . host Id = host Id ;
26 }
27 }

Before this new event can be triggered and used in CEP statements, it needs to be
registered to the event engine. This is also done as the part of the configuration (see
Listing 36).

Listing 36: Custom JCloudScale event registration
1 new JCloudSca l eConf igurat ionBui lder ()
2 . withMonitor ing (t rue)
3 . withMonitoringEvents (DurationEvent . c l a s s)
4 . bu i ld () ;

Triggering such event in cloud objects is rather easy. Cloud objects can let JCloud-
Scale inject event sinks, which new events are then written to as it is demonstrated in
Listing 37.

Scaling Based on Events

Both, predefined and custom, events can be used in monitoring metrics within scaling
policies. Before usage, monitoring metrics need to be registered with JCloudScale (see
Listing 38).

144

Listing 37: Custom JCloudScale event creation
1 @CloudObject
2 pub l i c c l a s s MyCloudObject {
3
4 @EventSink
5 pr i va t e IEventSink events ;
6
7 pub l i c void myMethod () {
8 events . t r i g g e r (
9 new DurationEvent (DURATION, HOST_ID)

10) ;
11 }
12 }

Listing 38: Expected JCloudScale custom metric registration
1 Monitor ingMetr ic metr ic = new Monitor ingMetr ic () ;
2 metr ic . setName (" AvgProcessingTimeMetric ") ;
3 metr ic . s e tEpl (
4 " s e l e c t avg (durat ion) as avg_dur from Cla s s i f i c a t i onDura t i onEvent . win : time (10 sec) "
5) ;
6 EventCorre lat ionEngine . g e t In s tance () . r e g i s t e rMe t r i c (metr ic) ;

Once the metric is registered, current (as well as historical) values of the metric can
be retrieved as it is shown in Listing 39.

Listing 39: Received event values retrieval
1 HashMap mapValue = (HashMap) EventCorre lat ionEngine . g e t In s tance ()
2 . getMetr icsDatabase () . getLastValue (" AvgProcessingTimeMetric ") ;
3 double avgDuration = (Double) mapValue . get (" avg_dur ") ;

If a metric should not be monitored any longer, it should be unregistered (see
Listing 40).

Listing 40: Custom metric unregistration
1 EventCorre lat ionEngine . g e t In s tance () . un r eg i s t e rMe t r i c (" AvgProcessingTimeMetric ") ;

The epl field in MonitoringMetric can contain any valid Esper CEP statement.
At this point, we do not provide a complete documentation of what users can do with
Esper, but check the very exhaustive online documentation on the Esper web page.

145

JCloudScale API
Typically, JCloudScale applications follow a declarative approach, where objects that
should be scaled are annotated with the @CloudObject annotation. In most use cases,
this approach works fine. However, occasionally, users might want to follow a more
traditional and imperative approach.

JCloudScale supports the imperative programming style via the
at.ac.tuwien.infosys.jcloudscale.api.CloudObjects API. For most users,
the most relevant method provided by this API is CloudObjects.create(...), which
allows to use an instance of arbitrary type as cloud object as it is shown in Listing 41.

Listing 41: Creating cloud object through API
1 MyRegularObject myObject = CloudObjects . c r e a t e (
2 MyRegularObject . c l a s s , " constructorParam ") ;

Note that MyRegularObject is not annotated with @CloudObject, but will
behave like an instance of an annotated type from now on. However, evidently, destruction
of such objects also needs to be triggered explicitly (see Listing 42).

Listing 42: Destruction of cloud object through API
1 CloudObjects . des t roy (myObject) ;

Advantages and Disadvantages

This syntax has a a number of advantages and disadvantages as compared to the
declarative, annotations-based programming model.

• Advantages

– Flexible: unlike the declarative model, which follows more of an all-or-nothing
mentality, the imperative programming model allows users to specify on
instance level which instances should be deployed to the cloud and which should
remain regular local Java objects. Note that this can also be implemented
(somewhat cumbersomely) in the declarative model using local constructors
(i.e., constructors with the @Local annotation).

– Supports third-party types: one disadvantage of the declarative model is that
it requires source-code access to the type used as cloud object (to add the
required annotations). The imperative model allows to deploy instances of
types which user cannot modify.

• Disadvantages

146

– Intrusive: the biggest disadvantage of this model is that it couples users
much more strongly to JCloudScale than the declarative model. Typically,
any JCloudScale application can be run without JCloudScale simply by
disabling AspectJ weaving during build. With the imperative model, this is
not quite as straight-forward anymore.

– Separation-of-concerns: one of the claims of JCloudScale is that it enables a
clean separation of concerns, with JCloudScale handling cloud deployment
and the application handling the actual business logics. With the imperative
model, this separation of concerns is somewhat more diluted, as the application
now explicitly contains code to create and destroy cloud objects.

As a general rule of thumb, we suggest using the declarative model unless users have
a specific use case that requires using the imperative programming model.

File Dependencies
If the Cloud Object’s code or any code that is invoked from the Cloud Object needs some
external files to run (e.g., configuration files, initial data or state), after the code distribu-
tion this files obviously will be missing and code will fail with FileNotFoundException.

To inform JCloudScale that this class has some additional file dependencies,
@FileDependency annotation can be used. Whenever JCloudScale detects first
usage of class annotated with this annotation, it transfers additional dependencies
specified with this annotation to the cloud host (this happens during class loading,
therefore all files should be ready at the moment of creation and deployment of the Cloud
Object).

Files that should be deployed to the cloud host can be specified in 2 different ways.

1. In case the set of files is fixed and known prior to application compilation, they
can be enumerated inside the annotation as it is shown in Listing 43.

Listing 43: File dependencies enumerated within the annotation
1 @FileDependency (f i l e s = { " 1 . txt " , " r e s ou r c e s /2 . txt " , " f i l e s /3 . txt " })
2 pub l i c c l a s s ClassWithDependencies
3 {
4 . . .
5 }

2. If the set of files that should be loaded is not known on the application compila-
tion time or developer would prefer to populate this list dynamically, dependency
provider approach can be used. To use this approach, @FileDependency anno-
tation’s property dependencyProvider should be initialized with the class that
implements IFileDependencyProvider and provides the set of files necessary
to the annotated class (see Listing 44).

147

Listing 44: File dependencies enumerated within the dependency provider class
1 @FileDependency (dependencyProvider= MyDependencyProvider . c l a s s)
2 pub l i c c l a s s ClassWithDependencies {
3 . . .
4 }
5 pub l i c c l a s s MyDependencyProvider
6 implements IFi leDependencyProvider {
7 @Override
8 pub l i c DependentFile [] getDependentFi les () {
9 List<DependentFile> dependentFi l e s =

10 new ArrayList<DependentFile >() ;
11 F i l e f i l e F o l d e r = new F i l e (" f i l e s ") ;
12 i f (f i l e F o l d e r . e x i s t s ()) {
13 f o r (F i l e f i l e : f i l e F o l d e r . l i s t F i l e s ()) {
14 i f (f i l e . i s F i l e ())
15 dependentFi l e s . add (
16 new DependentFile (f i l e . getPath ())) ;
17 }
18 }
19 r e turn dependentFi l e s . toArray (
20 new DependentFile [dependentFi l e s . s i z e ()]) ;
21 }
22 }

Note that it is preferable to keep all dependent files within application directory and
specify them with the relative path from the current working directory. However, if the
specified file is outside of the working directory, JCloudScale will still try to deploy it
on the cloud host.

Dynamic File Dependency Handling

In case you have a dynamic set of files that you need to transport to cloud hosts, and this
set of files is not known during classloading (or may change during application runtime),
the approach described above will not work.

In this case, the getResourceAsStream method of classloaders can be used to
obtain files dynamically from the client on demand.

Note that in order to be loaded successfully, the files you are trying to load have to
be on the application classpath of the client. Otherwise null will be returned.

To use this feature, you need a JCloudScale-aware classloader. The best way to
obtain such classloader in the code of a cloud object or in any dependent code is to use
classloader that loaded the cloud object as it is shown in line 1 of Listing 45.

Listing 45: Manual file loading through classloader
1 ClassLoader myClassLoader = th i s . g e tC la s s () . getClassLoader () ;
2 St r ing f i l eC l a s s p a t h = " 1 . txt " ;
3 InputStream f i l eAsStream = myClassLoader
4 . getResourceAsStream (f i l eC l a s s p a t h) ;

148

After that, application can request the input stream of the needed file and work with
it normally (see line 2-3 of Listing 45). Note that as long as file you are trying to load
is on classpath, you can use any classloader in client-side code (the code that is not
executing on remote host). However, described above approach universal and should work
for any code, thus we recommended to use it always to load resources from classpath.

149

Listing 46: Maven configuration to collect all JCloudScale dependencies
1 <pro j e c t xmlns=" h t tp : //maven . apache . org /POM/4 . 0 . 0 "
2 xmlns :x s i=" h t tp : //www.w3 . org /2001/XMLSchema−i n s t ance "
3 xs i : s chemaLocat ion=
4 " h t tp : //maven . apache . org /POM/4 . 0 . 0 h t tp : //maven . apache . org /xsd/maven−4 . 0 . 0 . xsd ">
5 <modelVersion>4 . 0 . 0</modelVersion>
6 <groupId>j c l o u d s c a l e</groupId>
7 <a r t i f a c t I d>j c l o u d s c a l e . s e r v e r</ a r t i f a c t I d>
8 <ver s i on>1 . 0 . 0</ ve r s i on>
9 <name>JCloudScale</name>

10 <de s c r i p t i o n>JCloudScale</ d e s c r i p t i o n>
11 <packaging>pom</packaging>
12
13 <prop e r t i e s>
14 <!−− Spec i f y d e s i r ed \ cs ve r s i on here −−>
15 <jCloudSca leVers ion>0 . 4 . 0</ jCloudSca leVers ion>
16 <!−− Spec i f y the f o l d e r to s t o r e a l l dependenc ies here −−>
17 <l i b r a r yD i r e c t o r y>l i b</ l i b r a r yD i r e c t o r y>
18 </ p r op e r t i e s>
19
20 <dependenc ies>
21 <dependency>
22 <groupId>j c l o u d s c a l e</groupId>
23 <a r t i f a c t I d>j c l o u d s c a l e . core</ a r t i f a c t I d>
24 <ver s i on>${ jCloudSca leVers ion }</ ve r s i on>
25 </dependency>
26 </dependenc ies>
27
28 <r e p o s i t o r i e s>
29 <repo s i t o r y>
30 <id>in f o sy s−r e p o s i t o r y</ id>
31 <ur l>ht tp : //www. i n f o s y s . tuwien . ac . at /mvn</ ur l>
32 </ r epo s i t o r y>
33 </ r e p o s i t o r i e s>
34
35 <bui ld>
36 <plug in s>
37 <plug in>
38 <groupId>org . apache . maven . p lug in s</groupId>
39 <a r t i f a c t I d>maven−dependency−p lug in</ a r t i f a c t I d>
40 <ver s i on>2 .5</ ve r s i on>
41 <execut i on s>
42 <execut ion>
43 <id>copy−dependenc ies</ id>
44 <phase>package</phase>
45 <goa l s>
46 <goa l>copy−dependenc ies</ goa l>
47 </ goa l s>
48 <con f i gu r a t i on>
49 <outputDirectory>${ l i b r a r yD i r e c t o r y }</ outputDirectory>
50 <overWriteRe leases>f a l s e</ overWriteRe leases>
51 <overWriteSnapshots>f a l s e</overWriteSnapshots>
52 <overWriteI fNewer>true</overWriteI fNewer>
53 </ con f i gu r a t i on>
54 </ execut ion>
55 </ execut i on s>
56 </plug in>
57 </ p lug in s>
58 </ bu i ld>
59 </ pro j e c t>

150

JCloudScale Application
Development Tutorial

Obtaining JCloudScale source code

If you want to experiment with the code itself, you can check out the code as it is shown
in Listing 47.

Listing 47: JCloudScale source code loading using git
1 g i t c l one https : // github . com/ xLe i t i x / j c l o u d s c a l e . g i t

Make sure to have Git, Java 7 and Maven 3 installed. You can run the end-to-end
tests of JCloudScale as in Listing 48.

Listing 48: JCloudScale compilation and test execution
1 mvn c l ean v e r i f y −P lo ca l−t e s t s

If you don’t want to mess with the JCloudScale source code, following documentation
explains how to work with the binaries using maven.

Introduction

If you want to try out JCloudScale with your own application and don’t have time for Doc-
umentation, here’s the illustrative example that shows complete JCloudScale integration
process. Our example will be an application for prime numbers searching. The original
("un-cloudified") version of this application can be found at 0.initialSampleApplication11.

This application represents a typical scalable application, which will allow us to
demonstrate the main features and usage scenarios of the JCloudScale framework. The

11https://github.com/xLeitix/jcloudscale/blob/master/docs/0.
initialSampleApplication.zip?raw=true

151

https://github.com/xLeitix/jcloudscale/blob/master/docs/0.initialSampleApplication.zip?raw=true
https://github.com/xLeitix/jcloudscale/blob/master/docs/0.initialSampleApplication.zip?raw=true

application is built with the Maven12 ideology in mind, but can be run in Eclipse13 as
well. The main goal of the application is to calculate the amount of prime numbers within
a specified integer range. With the default configuration, the application is supposed
to execute in less than 30 seconds on modern hardware, however you can play with it
and configure running time to fit your needs or wishes. You can run the application
from the console with mvn compile exec:exec or mvn test exec:exec to run
tests as well. (mvn clean compile exec:exec / mvn clean test exec:exec
in case you want to clean and recompile application first).

The application consists of two main packages: prime.searcher, which represents
the prime numbers searching algorithm, and prime.scheduler, which parallelizes the
initial task to use desired amount of threads. The application entry point is in the class
prime.Main that defines search scope and used algorithms. Look through the code and
play with it: the sample should be reasonably easy to understand. After this you should
be ready to walk through these few easy steps to move this application to the cloud. To
understand JCloudScale better, we encourage you to apply all following modifications
yourself to the clean application provided above. However, after each step there is a link
to the updated version of the application as well.

Step 1: Applying JCloudScale to the Application

The presented application is simple and nicely scalable, but whenever you try to increase
the range for prime numbers search, you hit the problem that the execution will take
very long even on a multi-core machine, independently of the amount of threads you
spawn. The only option we have to be able to scale further and receive results faster is
to scale out our application by distributing it over multiple nodes, e.g., using the cloud
computing paradigm.

To be able to use any features of JCloudScale, we should apply some modifications
to the Maven Project File (pom.xml).

Adding JCloudScale Dependency

At first, we have to add the JCloudScale dependency. To do this, we open the project’s
pom.xml file and insert the following code into the <dependencies> section. The
position of this particular dependency does not matter for maven. Also you may need
to change version to match the one you actually target. Discussed code is shown in
Listing 49.

In addition, as JCloudScale is not registered in public maven repositories, you need to
add a reference to the TU Wien Infosys maven repository (see Listing 50) to the root of the
pom.xml file (not into <dependencies> section, but create a new <repositories>
section).

12http://maven.apache.org/
13http://www.eclipse.org/

152

http://maven.apache.org/
http://www.eclipse.org/

Listing 49: JCloudScale dependency definition
1 <dependency>
2 <groupId>j c l o u d s c a l e</groupId>
3 <a r t i f a c t I d>j c l o u d s c a l e . core</ a r t i f a c t I d>
4 <ver s i on>0 . 4 . 0</ ve r s i on>
5 </dependency>

Listing 50: JCloudScale repository reference
1 <r e p o s i t o r i e s>
2 <repo s i t o r y>
3 <id>in f o sy s−r e p o s i t o r y</ id>
4 <ur l>ht tp : //www. i n f o s y s . tuwien . ac . at /mvn</ ur l>
5 </ r epo s i t o r y>
6 </ r e p o s i t o r i e s>

Now you can try to build the project again and maven should download all necessary
dependencies. As we did not change the code yet, application execution should not
change. In case you have any problems, ensure that you have access to the repository
(you can try to open the repository link in browser) and read carefully the error message
that maven provided after the build.

Applying JCloudScale Aspects

After we added necessary dependencies and ensured that everything still works, it’s time
to configure AspectJ. As mentioned in the introduction, JCloudScale is using AspectJ to
weave the appropriate cloud management code into the application. This happens as a
separate weaving step after compilation of the actual application. To allow this, we have
to add new plugin configuration to the <plugins> section within section <build> as
it is shown in Listing 51.

This section tells maven that at compile and test-compile stages it should process
code with AspectJ and apply aspects defined into the library specified by the group id
and artifact id. If you compile project again, execution should still be the same, but in
addition there should appear new tasks aspectj-maven-plugin:1.4:compile/
test-compile with some warnings of not-applied aspects. This is everything we need
to do before starting to use JCloudScale in our application. If you had some difficulties
applying changes listed here, the complete source code as it should be after successfully
performing all changes can be found in 1.Introduction14.

14https://github.com/xLeitix/jcloudscale/blob/master/docs/1.Introduction.
zip?raw=true

153

https://github.com/xLeitix/jcloudscale/blob/master/docs/1.Introduction.zip?raw=true
https://github.com/xLeitix/jcloudscale/blob/master/docs/1.Introduction.zip?raw=true

Listing 51: AspectJ post-compilation processing plugin
1 <plug in>
2 <groupId>org . codehaus . mojo</groupId>
3 <a r t i f a c t I d>aspec t j−maven−p lug in</ a r t i f a c t I d>
4 <ver s i on>1 .4</ ve r s i on>
5 <con f i gu r a t i on>
6 <source>1 .7</ source>
7 <ta rg e t>1 .7</ ta r g e t>
8 <compl ianceLeve l>1 .7</ compl ianceLeve l>
9 <verbose>true</ verbose>

10 </ con f i gu r a t i on>
11 <execut i on s>
12 <execut ion>
13 <con f i gu r a t i on>
14 <XnoInl ine>true</XnoInl ine>
15 <asp e c tL i b r a r i e s>
16 <aspec tL ibra ry>
17 <groupId>j c l o u d s c a l e</groupId>
18 <a r t i f a c t I d>j c l o u d s c a l e . core</ a r t i f a c t I d>
19 </ aspec tL ibra ry>
20 </ a sp e c tL i b r a r i e s>
21 </ con f i gu r a t i on>
22 <goa l s>
23 <goa l>compile</ goa l>
24 <goa l>te s t−compi le</ goa l>
25 </ goa l s>
26 </ execut ion>
27 </ execut i on s>
28 <dependenc ies>
29 <dependency>
30 <groupId>org . a sp e c t j</groupId>
31 <a r t i f a c t I d>a s p e c t j r t</ a r t i f a c t I d>
32 <ver s i on>1 . 7 . 0</ ve r s i on>
33 </dependency>
34 <dependency>
35 <groupId>org . a sp e c t j</groupId>
36 <a r t i f a c t I d>a s p e c t j t o o l s</ a r t i f a c t I d>
37 <ver s i on>1 . 7 . 0</ ve r s i on>
38 </dependency>
39 </dependenc ies>
40 </plug in>

Step 2: Selecting Cloud Objects

At this point you should have all necessary maven configuration applied to start using
JCloudScale and the project should still successfully run. However, still no actual
change in the behavior of the application will occur, as we have not yet designated any
cloud objects. Now we will start modifying the code of the application to start using
JCloudScale.

The whole scaling concept of JCloudScale works around the Cloud Objects: the
instances of classes that do heavy work and are deployed on the cloud hosts.

Selecting the right classes in your application to become Cloud Objects is very
important. Keep in mind that Cloud Objects are very expensive to create and invoke.

154

They may look like regular Java objects, but interacting with them from the rest of the
application always requires remoting via the message bus.

In case of our sample application it is easy to see that the searcher class
(SimpleSearcher) looks like a perfect candidate to become a Cloud Object. It has
only 2 public methods, one of which is computation-intensive, it does not rely on any
additional dependencies and depends only on 3 files within the same package (ISearcher,
SimpleSearcher and Range). Therefore, we are going to declare this class a Cloud
Object. To do this, we add the @CloudObject annotation on top of SimpleSearcher
class as it is shown in Listing 52.

Listing 52: Adding @CloudObject annotation on top of the class
1 @CloudObject
2 pub l i c c l a s s S impleSearcher implements ISea rche r
3 {
4 . . .
5 }

Now all non-static method invocations to the instance of the class MyCloudObject will
be redirected to the appropriate cloud host and executed there seamlessly for application.

In principle, this is everything we need to do to introduce all necessary cloud-related
code to deploy this object to the cloud. However, to make it work properly and not cause
any problems for our application, we need to add a few more annotations.

One important thing we should care about is the life time of the Cloud Object on the
cloud host: in case you want to control the life of the Cloud Objects on the cloud hosts,
you should annotate some method that will be the last one you call on the Cloud Object
with @DestructCloudObject annotation. After the invocation of this method, the
cloud host will be informed that this Cloud Object can be destroyed. In the case of our
demo application, getResult() can be used as such a method. Hence, we annotate it
is shown in Listing 53.

Listing 53: Adding @DestructCloudObject annotation on top of the method
1 @DestructCloudObject
2 @Override
3 pub l i c long getResu l t ()
4 {
5 r e turn r e s u l t ;
6 }

In addition to specifying when Cloud Objects should be destroyed, we have to specify
when the JCloudScale infrastructure won’t be needed any more and can be shut down.
To do this, you can use the @JCloudScaleShutdown annotation. After the execution
of the method annotated with it, JCloudScale will insert necessary calls to gracefully
destroy all Cloud Objects and shutdown any additional infrastructure created by the
framework to communicate with the cloud hosts.

155

In our demo application we can see that the whole application execution is within the
static main method from the prime.Main class. We can annotate this method with the
@JCloudScaleShutdown annotation (see Listing 54), which will cause JCloudScale
to release all resources and close all connections at the moment we exit from the main
method. In your application, however, you can annotate any method that marks the
point when JCloudScale is no longer needed or application is going to shut down. You
can even create an empty method that you will call only to shut down JCloudScale.

Listing 54: Adding @JCloudScaleShutdown annotation on top of the method
1 @JCloudScaleShutdown
2 pub l i c s t a t i c void main (St r ing [] a rgs)
3 {
4 System . out . p r i n t l n (" S ta r t i ng . . . ") ;
5 . . .
6 }

The last thing we should consider are parameters that are passed into the Cloud
Object’s method invocations and returned from them. These parameters can be delivered
in two ways: Copy-By-Value (when the object is serialized and delivered to the other side,
therefore creating the copy of this object there) or By-Reference (when only the proxy
of the object is transferred and both sides can change the object simultaneously and
observe results). By default, JCloudScale tries to mimic Java default behavior: passing
by-value primitive types and passing by-reference all class types. However, this does
not always correspond to the needs of the developers as passing by-reference introduces
communication overhead to the application execution.

To influence JCloudScale defaults and pass some complex parameters by-value instead
of by-reference approach, you can annotate your parameters in method execution with
@ByValueParameter annotation as it is shown in Listing 55.

Listing 55: Adding @ByValueParameter annotation to method parameters
1 SimpleSearcher (@ByValueParameter Range range)
2 {
3 i f (range . getFrom () <= 0 | | range . getTo () <= 0)
4 throw new RuntimeException (
5 "Range conta in s negat ive or zero parameters . ") ;
6 t h i s . range = range ;
7 t h i s . r e s u l t = 0 ;
8 }

Alternatively, we can annotate the type itself to always pass it by value as it is shown
in Listing 56. Note, that in this case cloud hosts will operate over the copy of the passed
parameter and if they change passed object, they will have to provide it back to the
client explicitly to see changes there.

Congratulations! Your application is now cloud-aware. However, for now, instead of
using any real cloud, it creates a new Java Virtual Machine to simulate the new cloud

156

Listing 56: Adding @ByValueParameter annotation to the class
1 @ByValueParameter
2 pub l i c c l a s s Range implements S e r i a l i z a b l e
3 {
4 . . .
5 }

host. This approach is called the "Local" mode of JCloudScale framework, and is used
to test the behavior of your application locally before deploying it to the cloud. As
you should have noticed, the running time actually increased. This is caused by the
added overhead needed to start virtual machines (one per object), deploy code there and
synchronize execution. We will learn how to change the default mode of the JCloudScale
framework to actually use the cloud in the following steps. The complete code that we
should have at this point can be found in 2.Cloudified15.

Step 3: JCloudScale Configuration
As you saw in the previous sections, using JCloudScale is pretty easy and does not require
applying any sophisticated changes to your application. However, when you are not
satisfied with the default behavior of JCloudScale, you should be able to change it to fit
your needs. To do this, you have to change the default configuration of the JCloudScale
framework.

Specifying configuration

To be as flexible as possible and satisfy most of the users’ needs, JCloudScale can be
configured in a few different ways.

In our demo application, we will specify configuration by creating special configuration
providing method in the prime.Main class as it is shown in Listing 57.

Listing 57: Defining configuration providing method
1 @JCloudScaleConf igurat ionProvider
2 pub l i c s t a t i c JCloudSca leConf igurat ion ge tCon f i gura t i on ()
3 {
4 r e turn new JCloudSca l eConf igurat ionBui lder ()
5 . withLogging (Level .SEVERE)
6 . bu i ld () ;
7 }

To make JCloudScale use this method, we will change application startup declared in
pom.xml file as in Listing 58.

15https://github.com/xLeitix/jcloudscale/blob/master/docs/2.Cloudified.zip?
raw=true

157

https://github.com/xLeitix/jcloudscale/blob/master/docs/2.Cloudified.zip?raw=true
https://github.com/xLeitix/jcloudscale/blob/master/docs/2.Cloudified.zip?raw=true

Listing 58: Defining the source of the configuration
1 <con f i gu r a t i on>
2 <executab l e>java</ executab l e>
3 <arguments>
4 <argument>−Djc l oudsca l e . c on f i gu r a t i on=prime .Main
5 </argument>
6 <argument>−c l a s spa th</argument>
7 <c la s spa th />
8 <argument>prime .Main</argument>
9 </arguments>

10 </ con f i gu r a t i on>

Now whenever JCloudScale will need configuration, it will check system property
jcloudscale.configuration and load it from the class specified there.

Logging Configuration

Logging is the easiest way to monitor the state of the running application and detect
errors. However, when you’re starting to use JCloudScale in your application, you don’t
have to do anything for output and logging redirection. To receive the output of your own
code, you don’t have to use JCloudScale logging infrastructure: by default, JCloudScale
redirects all standard and error output to the client application. Therefore, if you add
some output to standard or error stream from Cloud Object (SimpleSearcher), as
it is shown in Listing 59, you should see it during execution as if it was printed locally
(prefixed with the IP address of the host actually executing this object).

Listing 59: Application output from cloud host
1 System . out . p r i n t l n ("#### In "+range+" found "+ r e s u l t +" prime numbers.####") ;

You can change that behavior in the server logging configuration.

Scaling Policy

To scale application according to our needs, we need to create a scaling policy. For our
demo case it will be really simple one (similar to the SingleHostScalingPolicy
from default JCloudScale policies set), but it will give us some reasonable information on
when and how scaling policies are used. In your application you will need to write more
sophisticated scaling policies. The developed scaling policy is shown in Listing 60.

Cloud Platform Selection

For this sample application, we will limit ourselves with Local JCloudScale mode, while
you may try to extend this application to use the actual cloud machines from your cloud.
The only change that is needed for application is the change of configuration to know

158

Listing 60: Simple custom scaling policy example
1 @XmlRootElement
2 pub l i c c l a s s MyScal ingPol icy extends Abs t ra c tSca l i ngPo l i cy {
3
4 // The method i s synchron ized to avoid race cond i t i on s
5 // between d i f f e r e n t c loud ob j e c t s
6 // being scheduled f o r execut ion at the same time .
7 @Override
8 pub l i c synchron ized IHost s e l e c tHo s t (
9 ClientCloudObject newCloudObject ,

10 IHostPool hostPool) {
11 i f (hostPool . getHostsCount () > 0)
12 {
13 IHost s e l e c t edHos t = hostPool . getHosts () . i t e r a t o r () . next () ;
14 System . out . p r i n t l n (
15 "SCALING: Deploying new ob j e c t "+
16 newCloudObject . getCloudObjectClass () . getName () +
17 " on "+se l e c t edHos t . ge t Id ()) ;
18 r e turn s e l e c t edHos t ;
19 }
20 e l s e
21 {
22 System . out . p r i n t l n (
23 "SCALING: Deploying new ob j e c t "+
24 newCloudObject . getCloudObjectClass () . getName () +
25 " on the new v i r t u a l machine . ") ;
26 // Here we return a host s t a r t ed asynchronous ly
27 // to minimize time i n s i d e synchron ized s e c t i o n .
28 r e turn hostPool . startNewHostAsync () ;
29 }
30 }
31
32 @Override
33 pub l i c boolean scaleDown (IHost sca ledHost , IHostPool hostPool) {
34 // We w i l l not s c a l e down f o r t h i s sample app l i c a t i on as
35 // JCloudScale w i l l shut down a l l hos t s at the end ,
36 // but you may need that .
37 r e turn f a l s e ;
38 }
39 }

how to deploy the code into the real cloud (see Listing 61). When this configuration will

Listing 61: Openstack cloud platform selection
1 new JCloudSca l eConf igurat ionBui lder (
2 new OpenstackCloudPlatformConf igurat ion
3 (identityPublicURL , tenantName , imageName , log in , password))
4 . bu i ld () ;

be used, JCloudScale will operate on Open Stack virtual machines instead of the local
Java virtual machines.

The complete source with all discussed configuration-related changes can be found at

159

3.Configured16.

Using File Dependency

Let’s extend our completely configured application to work even faster. If you look
through the code of SimpleSearcher, you will see that the method isPrime(), that
is executed quite often, does pretty stupid job: verifies if the provided number is divisible
by each odd number. However, it would make more sense to try dividing only on prime
numbers. This leads us to the point when we need to have some sort of prime numbers
cache within which we will verify each provided number.

This prime numbers cache can be either calculated dynamically on the startup or
loaded from some file. Let’s go for the second approach, as it sounds more interesting.
You can create cache file by modifying any version of our application to write each found
number to some file (i.e., primes.txt). However, note that you should keep cache size
reasonable, as otherwise searchers will have to load more numbers from cache than they
actually need to generate.

To implement this, let’s create new class CachedNumbersSearcher, shown in
Listing 62, that uses the cache of prime numbers instead of comparing to each odd
number as SimpleSearcher does. Note that we have to declare range parameter as

Listing 62: Prime numbers searching class that uses cache for small prime numbers
1 @CloudObject
2 pub l i c c l a s s CachedNumbersSearcher extends SimpleSearcher
3 {
4 pub l i c s t a t i c f i n a l S t r ing CACHE_FILE_NAME = " primes . txt " ;
5 pr i va t e Lis t<Long> cachedPrimes = nu l l ;
6 pr i va t e long maxCachedPrime = 0L ;
7 CachedNumbersSearcher (@ByValueParameter Range range)
8 {
9 super (range) ;

10 }
11 . . .
12 }

passed by value again and annotate our class as @CloudObject.
Also we should not load cache in the constructor as current version of the JCloudScale

executes constructor code on both client and cloud machines. To load it lazily, let’s
create a helper method shown in Listing 63.

Now, when we loaded the cache, we have to override isPrime method as it is demon-
strated in Listing 64 (don’t forget to change visibility from private to protected in
the parent class). Also don’t forget to change SearcherFactory to return the new
searcher we created.

Now we came to the main point of this section: in this class we’re using an external
file, while JCloudScale is completely unaware of that. This will lead to the problem

16https://github.com/xLeitix/jcloudscale/blob/master/docs/3.Configured.zip?
raw=true

160

https://github.com/xLeitix/jcloudscale/blob/master/docs/3.Configured.zip?raw=true
https://github.com/xLeitix/jcloudscale/blob/master/docs/3.Configured.zip?raw=true

Listing 63: Lazy cache loading method
1 pr i va t e void loadCache () {
2 t ry {
3 F i l e cacheF i l e = new F i l e (CACHE_FILE_NAME) ;
4 i f (! c a cheF i l e . e x i s t s ())
5 throw new FileNotFoundException (
6 " F i l e "+CACHE_FILE_NAME+" was not found . "+
7 " CachedNumbersSearcher cannot cont inue ") ;
8 cachedPrimes = new ArrayList<Long>() ;
9 maxCachedPrime = 0L ;

10 t ry (Scanner scanner = new Scanner (ca cheF i l e)) {
11 whi le (scanner . hasNextLong ()) {
12 long nextPrime = scanner . nextLong () ;
13 cachedPrimes . add (nextPrime) ;
14 i f (nextPrime > maxCachedPrime)
15 maxCachedPrime = nextPrime ;
16 }
17 }
18 System . out . p r i n t l n (" Loaded "+cachedPrimes . s i z e ()+
19 " prime numbers . ") ;
20 }
21 catch (IOException ex) {
22 throw new RuntimeException (" Fa i l ed to load cache " , ex) ;
23 }
24 }
25 pr i va t e Lis t<Long> getCache () {
26 i f (cachedPrimes == nu l l)
27 loadCache () ;
28
29 r e turn cachedPrimes ;
30 }

that when this code will be executed on the cloud host, this file won’t be available and
application will fail with exception. To avoid this, we have to notify JCloudScale to
"capture" additional file along with the code. To do this, we add @FileDependency as
it is described in documentation and shown in Listing 65.

Now the application can run successfully in any environment as the specified file will
be provided along with the code.

In case you had some difficulties, complete source code with these changes is available
at 3.ConfiguredWithFileDependency17.

17https://github.com/xLeitix/jcloudscale/blob/master/docs/3.
ConfiguredWithFileDependency.zip?raw=true

161

https://github.com/xLeitix/jcloudscale/blob/master/docs/3.ConfiguredWithFileDependency.zip?raw=true
https://github.com/xLeitix/jcloudscale/blob/master/docs/3.ConfiguredWithFileDependency.zip?raw=true

Listing 64: Cache-aware prime searching method implementation
1 @Override
2 protec ted boolean isPr ime (long number)
3 {
4 // c a l c u l a t i n g the maximum number we have to check
5 long max = (long)Math . f l o o r (Math . s q r t (number)) ;
6 // check ing with the cached numbers
7 f o r (long i : getCache ())
8 {
9 i f (i > max)

10 break ;
11 i f (number % i == 0)
12 r e turn f a l s e ;
13 }
14
15 // i f we checked a l ready enough numbers , we ’ re done
16 i f (max < maxCachedPrime)
17 r e turn true ;
18
19 // otherwi se we need to cont inue check ing a f t e r
20 // b i gg e s t loaded prime number
21 f o r (long i = maxCachedPrime + 2 ; i < max ; i+=2)
22 i f (number % i == 0)
23 r e turn f a l s e ;
24
25 r e turn true ;
26 }

Listing 65: File capturing through file dependency annotation
1 @CloudObject
2 @FileDependency (f i l e s = {CachedNumbersSearcher .CACHE_FILE_NAME})
3 pub l i c c l a s s CachedNumbersSearcher extends SimpleSearcher
4 {
5 pub l i c s t a t i c f i n a l S t r ing CACHE_FILE_NAME = " primes . txt " ;
6 . . .
7 }

162

SPEEDL Grammar Definition

163

Curriculum Vitae

169

MSc Rostyslav Zabolotnyi

Page 1

 MSc Rostyslav Zabolotnyi

12.8.2015

Tigergasse 23-27 20/2, Vienna 1080, Austria
+43 660 166 23 19
rstzab@gmail.com
www.linkedin.com/in/rstzab

P E R S O N A L I N F O R M A T I O N

Date of birth: 17.11.1987

Place of birth: Kyiv, Ukraine

Citizenship: Ukrainian

Gender: Male

E D U C A T I O N

N a t i o n a l U n i v e r s i t y o f “ K y i v - M o h y l a A c a d e m y ”

01.09.2004 – 28.06.2008

Computer Science, Bachelor diploma.

N a t i o n a l U n i v e r s i t y o f “ K y i v - M o h y l a A c a d e m y ”

01.09.2008 – 28.06.2010

Information Control Systems and Technologies, Master Diploma with honors.

P R O F E S S I O N A L E X P E R I E N C E

.NET Developer | M o d u l e c o o p e r a t i v e , K y i v , U k r a i n e

10.01.2008 – 15.09.2011

Designing and implementing SCADA-oriented software for Windows.

Used technologies: C# .NET, VB .NET, WCF, XML, SOAP, LINQ, Win API, Enterprise

Library (Unity, Logging, Prism), Infragistics Controls, Dundas Charting, MS SQL,

Versant DB4O, SVN.

PhD Student | V i e n n a U n i v e r s i t y o f T e c h n o l o g y , A u s t r i a

10.10.2011 – 30.09.2015

PhD Student/Project Assistant in Distributed Systems Department.

Employed by SIMPLI-CITY EU WP7 project, working on jCloudScale research

prototype.

Used technologies: LaTeX, Java, OSGi, Apache CXF, JMS, AspectJ, Maven,

OpenStack, Amazon S3, Amazon EC2, Git.

MSc Rostyslav Zabolotnyi

Page 2

C O - A U T H O R O F T H E P A P E R S :

o Cloud Computing, Cloud Platform Engineering

 Rostyslav Zabolotnyi, Philipp Leitner, Hummer Waldemar, Schahram Dustdar "
JCloudScale: Closing the Gap Between IaaS and PaaS" , ACM Transactions on

Internet Technology (TOIT) journal , 2015

 Rostyslav Zabolotnyi, Philipp Leitner, Stefan Schulte, Schahram Dustdar "SPEEDL

– A Declarative Event-Based Language for Cloud Scaling Definition" ,IEEE

SERVICES, TFoSEC visionary track, 2015

 Rostyslav Zabolotnyi, Philipp Leitner, Schahram Dustdar "Profiling-Based Task

Scheduling for Factory-Worker Applications in Infrastructure-as-a-Service Clouds"

, Euromicro Conference on Software Engineering and Advanced Applications

(SEAA), 2014

 Rostyslav Zabolotnyi, Philipp Leitner, Schahram Dustdar "Dynamic Program Code

Distribution in Infrastructure-as-a-Service Clouds" Workshop on Principles of

Engineering Service-Oriented Systems (PESOS), co-located with ICSE, 2013

 Philipp Leitner, Rostyslav Zabolotnyi, Alessio Gambi, Schahram Dustdar, "A

Framework and Middleware for Application-Level Cloud Bursting on Top of

Infrastructure-as-a-Service Clouds", IEEE/ACM Utility and Cloud Computing

Conference (UCC), 2013.

 Georgia Fragkiadaki, Petro Kazmirchuk, Nattakarn Phaphoom, Ourania Smyrnaki,

Rostyslav Zabolotnyi "Wireless technologies in datacenter management", Short

Papers from the SummerSOC '12, Report Number: RC25348, Date of Report:

January 27, 2013

o Cloud Computing, Software Engineering

 Benjamin Satzger, Rostyslav Zabolotnyi, Schahram Dustdar, Martin Gaedke,

Stefan Wild, Steffen Goebel, Tobias Nestler, "Software Engineering Leveraging

the Crowd" in Economics-Driven Software Architecture, Elsevier, 2014

o Cloud Computing, Software Testing

 Alessio Gambi, Rostyslav Zabolotnyi, Schahram Dustdar "Improving Cloud-based

Continuous Integration Environments", International Conference on Software

Engineering (ICSE) 2015 (Poster)

o Cloud Computing, Hybrid Services, Human-as-a-Service

 Muhammad Z.C. Candra, Rostyslav Zabolotnyi, Hong-Linh Truong, and Schahram

Dustdar, "Virtualizing Software and Human for Elastic Hybrid Services", Web

Services Handbook, Springer-Verlag, 2013.

 Rostyslav Zabolotnyi, Hong-Linh Truong, Schahram Dustdar, "Intelligent Request

Routing in Clouds of Hybrid Services", Advanced School on Service Oriented

Computing, 2012 (Poster)

o Social Computing

 Vitaliy Liptchinsky, Benjamin Satzger, Rostyslav Zabolotnyi, Schahram Dustdar

"Expressive Languages for Selecting Groups from Graph-Structured Data" , World

Wide Web Conference, Springer, 2013

MSc Rostyslav Zabolotnyi

Page 3

C O M P U T E R L I T E R A C Y

 Operating Systems:

Windows 9x – 10: Advanced user

Linux: Basic user

Solaris: Beginner

ReactOS: Minor contributor

 Programming Languages:

Languages Experience Code Examples

C#,VB.NET: 3 years of industry experience

Java: 4 years of experience JCloudScale

C++: deep interest and a hobby UGH Burner, SEAA 2014

VB, Pascal, C: intermediate knowledge

Scala, F#, LISP: intermediate knowledge

JavaScript, Python: beginner

 Used frameworks and Technologies:

CCNA/CCNP: courses during bachelor/master studies;

MPI/OpenMP: courses during bachelor studies;

OSGi: used as the integration solution in SIMPLI-CITY.

F O R E I G N L A N G U A G E S

 Ukrainian, Russian: native.
 English: good level. (TOEFL iBT, 15 April 2011) – 100 points.
 German: fair level (TU Wien, 31 May 2012) – B1.2

E X T R A C U R R I C U L A R A C T I V I T I E S

 Member of Ukrainian Scout Organization “Plast”
 Sports: riding bicycle.

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	Earlier Publications
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Scientific Contributions
	Structure of the Work

	Background
	Cloud Computing
	Definition of Cloud Computing
	Elastic Computing
	Cloud Computing Service Models

	Cloud Computing Communication
	Communication Middleware
	Communication in the Cloud

	Event-Driven Architecture
	Aspect-Oriented Programming

	Related Work
	Related Work on Transparent Distribution Frameworks
	Related Work on Transparent Code Distribution
	Related Work on Scaling Behavior Definition
	Related Work on Profile-Based Task Scheduling

	Case Study
	The JCloudScale Middleware
	Basic Notions
	Interacting With Cloud Objects
	Static Fields and Methods in Cloud Objects
	Passing Data Objects
	Fault Handling

	Application Code Distribution Framework
	Program Code Distribution Challenges
	Code Distribution Framework Overview
	Missing Code Detection
	Communication Middleware
	Trusted Code Storage Location
	Code Versioning
	Code Caching
	Batch Loading
	Summary

	Target Application Development Process
	Target Application Setup
	COs Selection
	Configuring JCloudScale
	Development Process

	Scaling Behavior
	Autonomic Elasticity via Complex Event Processing
	Cloud Targeting and Bursting
	A Declarative Event-Based Scaling Policy Language
	Language Design Considerations
	SPEEDL Overview
	Top-Level Language Grammar
	Event-Driven Elasticity
	Task Management
	Task Scheduling Rules
	Task Migration Rules

	Resource Management
	Scale-Up Rules
	Scale-Down Rules

	Summary

	Profiling-Based Task Scheduling and Execution
	Resource-Aware Task Scheduler
	JSTaaS as a Factory-Worker Application
	Resource Types and Control Limitations
	Approach Overview
	Resource Profiling
	Resource Profiling Modes

	Task Scheduling
	Summary

	Evaluation
	Evaluation Setup
	Usability and Usefulness Evaluation
	Comparison with Other Platforms
	User Study
	Study Setup and Methodology
	Comparison of Development Efforts
	Comparison of Developer-Perceived Qualities

	SPEEDL Evaluation
	Evaluation Setup
	Results and Discussion

	Performance Evaluation
	Experiment Setup
	Experiment Results

	Threats to Validity

	Conclusions
	Summary
	Research Questions Revisited
	Future Work

	Bibliography
	JCloudScale Documentation
	Introduction
	What Kind of Applications Can Profit from JCloudScale?
	Required Software
	Javadocs
	Current Version

	Basic Usage
	Using JCloudScale without Maven
	Introduction
	Adding JCloudScale dependency
	Applying AspectJ Aspects
	Compile-time weaving
	Post-compile weaving
	Load-time weaving

	Interacting With Cloud Objects
	Passing Parameters By-Value and By-Reference
	Restrictions on Cloud Objects and By-Reference Classes

	JCloudScale Configuration
	Creating Configuration
	Specifying Configuration
	Configuration Structure

	Writing Scaling Policies
	Local vs. Cloud Deployment
	Configuring Message Queue Server
	JCloudScale-based Application Architecture
	Using Openstack Cloud Platform
	Deployment in EC2

	Event-Based Monitoring
	Available Default Events
	Triggering Custom Events
	Scaling Based on Events

	JCloudScale API
	Advantages and Disadvantages

	File Dependencies
	Dynamic File Dependency Handling

	JCloudScale Application Development Tutorial
	Obtaining JCloudScale source code
	Introduction
	Step 1: Applying JCloudScale to the Application
	Adding JCloudScale Dependency
	Applying JCloudScale Aspects

	Step 2: Selecting Cloud Objects
	Step 3: JCloudScale Configuration
	Specifying configuration
	Logging Configuration
	Scaling Policy
	Cloud Platform Selection
	Using File Dependency

	SPEEDL Grammar Definition
	Curriculum Vitae

