
Hybrid Tracking Technology for
Virtual Rock Climbing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medieninformatik

eingereicht von

Ludwig Steindl, Bsc
Matrikelnummer 00542071

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Wien, 1. Mai 2018
Ludwig Steindl Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Hybrid Tracking Technology for
Virtual Rock Climbing

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Media Informatics

by

Ludwig Steindl, Bsc
Registration Number 00542071

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Vienna, 1st May, 2018
Ludwig Steindl Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Ludwig Steindl, Bsc
Johnstraße 61/25
1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Mai 2018
Ludwig Steindl

v

Acknowledgements

At this point, I would like to express my deepest gratitude to Prof. Eidenberger. Not
only for his outstanding supervision and guidance through this diploma thesis, but for
introducing me into the world of machine learning. I want to acknowledge Dipl.Ing.
Vonach who provided valuable insights during concept development and performed the
3D printing of the marker enclosures. On a personal note, I want to honor my wife and
my mother for their indispensable support throughout the years.

vii

Kurzfassung

Virtual Reality (VR) Anwendungen entkoppeln die Benutzer von der realen Welt, indem
sie vollständig in eine künstliche Umgebung eingehüllt werden. Mithilfe einer VR-Brille
und schallisolierter Kopfhörer wird die visuelle und auditive Wahrnehmung auf den
virtuellen Inhalt der Simulation beschränkt. Die meisten Applikationen unterlassen die
Darstellung der Gliedmaßen innerhalb des virtuellen Erlebnisses. Sobald die Anwendung
jedoch die Interaktion mit realen Objekten erfordert, muss die Simulation um dieses
Merkmal erweitert werden. Ermöglicht wird dies durch ein Motion Capture System,
welches die Position und Pose der Hände und Füße in Echtzeit bestimmt und an die
Applikation übergibt.

Diese Diplomarbeit beschreibt die Entwicklung des VreeTrackers, eines hybriden Tracking-
Systems, das optische Positionserkennung mit sensorbasierter Lagebestimmung kombi-
niert. Weiters ermittelt der entwickelte Prototyp die Handpose mithilfe eines markerlosen
Ansatzes. Der VreeTracker ist Teil einer virtuellen Kletteranwendung namens VreeClimber.
Der VreeClimber ist eine VR-Kletterwand, welche die Sicherheit einer Simulation und
die haptische Interaktion mit realen Objekten verknüpft. Als Grundvoraussetzung wird
bestimmt, dass alle Hardwarekomponenten günstige und leicht verfügbare Geräte sind.
Erforderliche Modifikationen an gekauften Produkten und die eigenständige Neuentwick-
lung individueller Hardwarekomponenten sind neben der Implementierung der Tracking-
Software zwei grundlegende Aufgabenbereiche des Projekts.

Der entwickelte Prototyp wird gemäß gängiger räumlicher und zeitlicher Leistungskenn-
zahlen evaluiert. Da optische Tracking-Systeme grundsätzlich von Verdeckungsproblemen
beeinträchtigt werden können, wird die Robustheit des Tracking-Prozesses ebenfalls
analysiert. Alle Ergebnisse werden mit der HTC Vive verglichen. Dieses Virtual Reality
System nutzt ein hochmodernes Tracking-Verfahren, welches auf Lasertechnologie basiert.
Die markerlose Ermittlung der Handpose wird mittels qualitativer Methoden evaluiert.

Aufgrund der hohen Komplexität des Themas ist die Entwicklung eines hybriden Motion
Capture Systems im Rahmen einer Diplomarbeit ein ambitioniertes Unterfangen. Dennoch
erzielen die Komponenten der Positions- und Lagebestimmung Ergebnisse, die durchwegs
mit den Werten der HTC Vive verglichen werden können. Die Ermittlung der Handpose
durch Erkennung von Merkmalspunkten gelingt präzise und stabil. Die Berechnung der
Werte kann annähernd in Echtzeit durchgeführt werden.

ix

Abstract

Virtual reality applications detach the user from the real world by fully immersing
the person into an artificial environment. With the help of a head-mounted display
and soundproof headphones, the visual and auditory senses are limited to the virtual
content provided by the simulation. Most applications refrain from representing the
user’s limbs in the virtual experience. However, if the application requires the participant
to interact with real objects, this feature can no longer be omitted. To allow an accurate
representation of the extremities within the simulation, the position and pose of the
hands and feet need to be determined in real-time by a motion capture system.

This diploma thesis discusses the development of the VreeTracker, a hybrid tracking system
that combines optical position tracking with inertial orientation sensing. Furthermore, the
resulting prototype estimates the hand pose by a markerless approach. The VreeTracker
is embedded in a virtual rock climbing adventure called VreeClimber. The VreeClimber
consists of an indoor climbing wall that couples the safety of a virtual simulation and
the haptic interaction with real objects. As a prerequisite, all necessary hardware
components of the tracking system need to be affordable, easily available off-the-shelf
devices. Therefore, in addition to implementing the tracking software, the development
process includes all necessary modifications of said consumer products as well as the
development of individual hardware components.

The developed prototype is evaluated by common spatial and temporal performance
metrics. Since optical tracking technology often suffers from occlusion issues, the tracking
robustness is also analyzed. All results are compared to the HTC Vive, a virtual reality
system that uses laser-based state-of-the-art tracking technology. The markerless hand
pose estimation component is evaluated by qualitative measures.

Considering the complexity of the chosen topic, developing a hybrid motion capture
system in the course of a diploma thesis is an ambitious endeavor. Still, the optical
position tracking and the inertial orientation sensing components achieve competitive
results. The feature point detection algorithm of the hand pose estimation component
calculates precise and steady hand pose values almost in real-time.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement & Aim of the Work 3
1.3 Methodological Approach . 3
1.4 Structure of the Work . 4

2 State of the Art 5
2.1 Fundamental Principles . 5

2.1.1 Optical Sensing . 5
2.1.2 Inertial Sensing . 8

2.2 Practical Applications . 9
2.2.1 ioTracker . 9
2.2.2 Oculus Rift . 10
2.2.3 HTC Vive . 11

3 Theoretical Background 15
3.1 Optical Tracking . 15

3.1.1 Light . 15
3.1.2 Computer Vision . 17

3.2 Inertial Tracking . 23
3.2.1 Inertial Sensors . 23
3.2.2 Sensor Fusion . 24
3.2.3 Sensor Calibration . 25
3.2.4 Data Representation . 26

3.3 Digital Image Processing . 27
3.3.1 Color Models . 27
3.3.2 Image Morphology . 28

xiii

4 System Design 31
4.1 Requirements . 31

4.1.1 Tracking Scenario . 31
4.1.2 Quality Characteristics . 32
4.1.3 Sensing Technologies . 32
4.1.4 Conclusion . 34

4.2 System Overview . 35
4.3 Optical Position Tracking Component 36

4.3.1 System Setup . 36
4.3.2 Hardware Components . 37
4.3.3 Software Architecture . 37

4.4 Visual Hand Pose Estimation Component 40
4.4.1 Problem Definition . 40
4.4.2 System Setup . 40
4.4.3 Software Architecture . 40

4.5 Inertial Orientation Tracking Component 42
4.5.1 Hardware Architecture . 42
4.5.2 Software Architecture . 43

4.6 Conclusion . 43

5 Implementation 45
5.1 Hardware Development . 45

5.1.1 Camera Rig . 45
5.1.2 Wearable Tracker . 50

5.2 Software Development . 55
5.2.1 Position Tracking . 55
5.2.2 Hand Pose Estimation . 61
5.2.3 Orientation Tracking . 63

5.3 Virtual Environment . 64
5.4 Conclusion . 65

6 Evaluation 67
6.1 Setup and Methodology . 67

6.1.1 Spatial Performance Metrics 67
6.1.2 Temporal Performance Metrics 68
6.1.3 Tracking Robustness . 68

6.2 Spatial Performance . 69
6.2.1 Positional Accuracy . 69
6.2.2 Positional Precision . 69
6.2.3 Orientational Precision . 72

6.3 Temporal Performance . 74
6.3.1 Update Rate . 74
6.3.2 Latency . 74

6.4 Robustness . 74

6.4.1 Occlusions . 74
6.4.2 Packet Loss . 75

6.5 Hand Pose Estimation Component . 76
6.6 Conclusion . 76

7 Conclusions and Future Work 77

List of Figures 79

List of Tables 81

Acronyms 83

Bibliography 85

CHAPTER 1
Introduction

1.1 Motivation

The commercial launch of affordable Virtual Reality (VR) technology in the entertainment
sector enabled the general public to experience a highly immersive way of playing video
games in their own homes. This allows the player to undergo dangerous adventures in
an almost tangible fashion without risking severe injury. The Climb [19] illustrates how
realistic and accordingly exciting the 360° graphics can be despite standing firmly on the
ground and operating the avatar1 with a handheld controller. However, to fully perceive
the thrill of climbing a mountain, a more sophisticated way of user interaction needs to
be implemented.

In the late 90s, Hoffmann [26] introduced the concept of passive haptics and discussed
how the interaction with real objects can benefit the virtual experience. Based on
this proposition, Biggs [9] argues that augmenting the Virtual Environment (VE) with
physical objects ”can improve the user’s sense of presence” and thereby further increases
the immersion. These suggestions are the theoretical foundation for the following project.

The VreeClimber is a novel climbing simulator that combines state of the art VR
technology with the haptic interaction possibilities of a real climbing wall. In many
respects, the provisional test setup displayed in Figure 1.1a resembles a traditional indoor
climbing wall. Nonetheless, the integration of VR introduces exciting new opportunities
that have not been possible before. For instance, the user can enjoy the atmosphere of a
beautiful alpine scenery without traveling to a high mountain region.

In contrast to similar research projects [36], the VreeClimber attempts to go even further.
A rigid climbing wall poses multiple problems. First of all, it needs to be several meters
high in order to be reasonably attractive for climbing. This limits the field of application

1virtual character

1

1. Introduction

tremendously. Secondly, the inclination of the wall is predetermined by its construction
which narrows the creative possibilities of the virtual content.

Figure 1.1b illustrates the next evolutionary stage of the VreeClimber. It adds the
principle of a vertical treadmill where the wall elements move downwards to counteract
the person’s ascent. Thereby, the climber could continue his endeavor indefinitely while
staying only a few feet above the floor. Furthermore, the wall can be pivoted along its
horizontal axis which adds an additional Degree of Freedom (DoF). With this new set of
features, the possibilities are only limited by the content developer’s imagination. The
player could witness surreal adventures like climbing the inside of a volcano or ascending
the outer walls of a cathedral without facing certain death or criminal prosecution.

(a) Rigid test wall. (b) Rough sketch of revolving wall.

Figure 1.1: Evolutionary stages of the VreeClimber.

One fundamental principle of VR is to fully encapsulate the user in an artificial envi-
ronment by equipping the person with a Head-Mounted Display (HMD) and soundproof
headphones. As a result, the visual and auditory perception is limited to the virtual
content provided by the simulation. Understandably, when augmenting the virtual
experience with the help of physical objects, those need to be accurately re-created in
the virtual world. With the help of existing solutions, for instance [51], a high quality
replica of the physical climbing wall can be created. It acts as the basis for the virtual
content and can be embedded in any conceivable setting.

Furthermore, depicting the user’s extremities needs to be considered. For one thing,
portraying the limbs can improve the player’s feeling of immersion in the simulation.
More importantly, when reaching for an object, the eyes guide the movement by providing
vital spatial information [44]. In order to intuitively interact with the wall, the user must
be presented an accurate representation of the hands and feet. To do so, those need to
be tracked in real-time by a motion capture system. This is where this thesis comes into
play.

2

1.2. Problem Statement & Aim of the Work

1.2 Problem Statement & Aim of the Work
Body Tracking is an immensely popular research area with numerous fields of application,
ranging from clinical research [18] to entertainment purposes [64]. As one might expect,
several products, partly highly sophisticated systems, are available on the market. How-
ever, a thorough research reveals that they are either extremely expensive [63], associated
with a particular technology [60] or simply not suitable for a virtual climbing simulator.

The aim of this thesis is to develop an affordable motion capture system called VreeTracker
that is completely composed of easily replaceable, off-the-shelf components. It should
first detect, then track the limbs of an inexperienced climber on a revolving climbing wall.
In addition to determining the three-dimensional (3D) position and orientation of all
four extremities, the poses of the hands need to be estimated. These features can later
be used to control the virtual character. Since the player will experience the simulation
from a first-person perspective, collecting tracking data of the torso is of little interest.
Still, the system should be expandable to meet potential future requirements. Although
the precision of the tracking system is of paramount importance, its usability has top
priority. Necessary hardware components must not interfere with the user’s mobility and
should be simple to manage for the operator.

Following the work of Ribo et al. [70], five formal requirements are specified:

• Accuracy: The tracking system needs to accurately determine the position and
orientation of multiple objects. The margin of error should be within a few
millimeters.

• Jitter: When repeatedly measuring the position of a resting object, the resulting
values should be identical. Deviations between individual measurements should not
exceed the sub-millimeter range.

• Robustness: As long as reasonable movements are performed, the detection of an
object should not be disrupted.

• Mobility: If tracking technology needs to be attached to the user, it must not hinder
the person’s range of motion.

• Prediction: If the timespan between two measurements exceeds acceptable limits,
intermediate values need to be estimated.

1.3 Methodological Approach
The methodological approach to implementing the proposed application is composed
of two distinct phases. At first, a profound literature review is conducted in order to
determine which techniques have been successfully deployed in similar projects. This step
also includes an evaluation of commercially available products that could be utilized for
the tracking system. Based on the findings of the research phase, a prototype is designed

3

1. Introduction

and subsequently implemented. Similar to [21], the development of the motion capture
system is "physically test-driven". After realizing a feature, the component is immediately
evaluated on the physical test wall with the help of suitable metrics. Eidenberger and
Mossel [21] describe this approach as "rapid evolutionary prototyping". After finishing
the implementation, the quality of the complete tracking system is evaluated.

1.4 Structure of the Work
Chapter 2 of this thesis introduces basic principles and gives an overview of the latest state
of the art. The main focus lies on tracking systems that relate to current VR technology.
Chapter 3 establishes the theoretical foundation of this work. It elaborates the areas of
optical and inertial sensor tracking and imparts necessary background knowledge about
hand detection techniques. In Chapter 4, the design process is illustrated. After defining
the requirements and outlining the motion capture system, deeper insights into the
hardware and software components are provided from a design standpoint. Its structure
corresponds to the three cornerstones positional tracking, orientation tracking and visual
hand detection. Chapter 5 discusses the implementation of the prototype. In Chapter 6,
the final prototype is evaluated primarily on quantitative metrics. Finally, Chapter 7
critically reflects on the results, debates the prototype’s limits and identifies avenues for
future research.

4

CHAPTER 2
State of the Art

2.1 Fundamental Principles

3D tracking systems determine the position and orientation of an object [12]. Several
highly different approaches have been introduced over the years. Each concept presents
certain advantages and drawbacks. Selecting the best solution is no trivial task and
strongly depends on the concrete use case.

Modern VR applications primarily focus on tracking human motion. Typical scenarios
range from rotational head tracking in confined spaces to full skeleton tracking in large
areas. Judging from commercially available products [27, 60], optical and inertial sensing
have become the most popular techniques in this territory. Most vendors combine
both concepts and form hybrid sensing methods [12]. The following chapter introduces
basic concepts used by human pose tracking technologies associated with room-sized VR
applications. More detailed information on these topics can be found in the corresponding
literature [12].

2.1.1 Optical Sensing

Marker-Based Tracking

The fundamental principle of optical marker-based tracking systems is to detect an
artificial landmark, also referred to as a marker, with one or more optical sensors [12].
State-of-the-art technologies commonly avoid the visible light spectrum and use the Near
Infrared (NIR) spectrum instead. This circumvents issues with low or varying lighting
conditions. A band pass filter removes the visible bandwidth of the light spectrum before
it arrives at the optical sensor. Thereby, it becomes solely sensitive to infrared (IR) light
[66]. As shown in Fig. 2.1, the sensor identifies the markers as bright spots that can be
easily separated from the dark background.

5

2. State of the Art

(a) RGB image. (b) IR image.

Figure 2.1: Comparison of corresponding RGB and IR images (different camera angles).

When placing the landmark on an object of interest, the object itself is indirectly detected.
This drastically improves the capabilities of an optical tracking system in comparison to
a markerless technique since it renders the computationally expensive recovery of natural
features [59] unnecessary.

Outside-In vs. Inside-Out Tracking

Optical tracking systems usually pursue one of two converse strategies. In an outside-in
tracking system, the sensors are placed at fixed locations in the room [12]. In a typical
setup, they are either mounted on the wall or positioned around the area in which the
object moves around. In contrast, an inside-out system attaches the sensor to the movable
object itself and determines its position with the help of fixed reference points that are
situated in the room [12].

Active Markers

Markers can be classified into two categories. Active tracking systems use light emitting
landmarks [12]. In many cases, light diffusing spheres are fitted on simple IR LEDs to
uniformly emit IR light in every direction. The diffuser is necessary because most IR
LEDs only emit a narrow light beam. The spherical shape makes the marker impervious
to perspective distortion and therefore optimizes the spatial precision of the tracking
system.

Some systems can uniquely identify each marker by controlling its individual high
frequency blinking pattern [12, 31]. This can be a major advantage compared to less
elaborate systems but implies the use of expensive high speed cameras and complex
synchronizing methods. The biggest drawback of active markers is their need for electrical
current. Depending on the use case, either every marker is equipped with its own power

6

2.1. Fundamental Principles

source or multiple markers are connected to a joint battery pack via cables. While the
former is far more comfortable for the user, it can be very time consuming to regularly
equip a high number of markers with new (rechargeable) batteries. The latter scenario
can significantly limit the user’s range of motion.

Passive Markers

Passive markers follow an opposite approach. Instead of evenly emitting light in every
direction, they only reflect IR light back towards its origin [66]. Passive tracking setups
use external IR lamps that are positioned in close proximity to their corresponding
optical sensor [68]. When this unit is directed towards a marker, the sensor registers
the reflection of the landmark as a bright spot. Most vendors use small spheres that
are coated with a retro-reflective material [67]. In contrast to active markers, these
spheres can be built at low cost, are very lightweight, and do not require a power source.
Nevertheless, problems occur when optical sensors are facing each other since the sensors
register the IR lamps on the opposite side.

Position Tracking

In optical tracking systems, it is common standard to calculate the 3D position of an
object via Projective Triangulation [66]. In most cases, the position of a single marker
can only be computed if it is detected from at least two different perspectives. However,
if multiple markers are placed on a rigid body in a strategic pattern, sometimes called
constellation, a single perspective can suffice [31].

Orientation Tracking

To additionally determine an object’s spatial orientation, also known as Pose Estimation
[66], multiple markers need to be arranged in a pre-defined geometric configuration acting
as a single Rigid-Body Target [67]. The challenge behind this idea is to successfully
detect the pre-calibrated targets within the discovered markers. This feature is often
called Model-Fitting [66]. The complexity of this task increases tremendously with a
rising number of targets. By creating different marker arrangements, each target can be
uniquely identified by the tracking system.

When considering the target design [67], it is important to avoid similarities between
different targets. Otherwise, the targets would not be distinguishable. In addition,
self-similarities must be evaded to correctly estimate the target’s pose.

Occlusions

By definition, optical tracking technologies are organized as distributed systems where
a clear line-of-sight between the sensors and the landmarks must be maintained. As
a result, occlusions are a chief concern [12]. In a real-life scenario, markers can easily
be obscured by other objects. To keep this common issue under control, some systems

7

2. State of the Art

are highly scalable and allow the integration of several sensors to facilitate room sized
applications where multiple objects can be tracked simultaneously from various angles
[66].

Performance Metrics

Some key characteristics need to be established to assess the quality of an optical tracking
system. More detailed information can be gathered in Burdea and Coiffet’s work on
Virtual Reality Technology [13].

The most common spatial parameters are accuracy and precision. Although both terms
are often used as synonyms, there must be made a clear distinction. Accuracy describes
how close a calculated data point is to its actual value [10]. In other words, it expresses the
’correctness’ of a measurement. In contrast, precision indicates if multiple measurements
lead to the same result [10]. Thereby, it shows how robust the readings are in fact.
Precision is often referred to as jitter [13] because a poor precision value lets an object
appear trembling.

Two additional characteristics are settled in the time domain. The update rate states
how many values are generated per second [13]. High update rates are necessary to
depict smooth movements of an object. Latency is known as the time delay between the
occurrence of an event and its detection [13]. According to current believe [35], latency
is the primary cause for motion sickness within VR environments. Common terms for
this issue are Simulator Sickness [62] or Cyber Sickness [20].

2.1.2 Inertial Sensing

Sensor-Based Tracking

As the name suggests, inertial tracking systems apply inertial measurement technologies
to determine an object’s spatial position and orientation. Typically, the sensor data of a
3-axis accelerometer and a 3-axis gyroscope is combined to form an Inertial Measurement
Unit (IMU) [12]. The accelerometer measures the linear acceleration of an object. The
gyroscope contributes its angular velocity. In principle, the data of these two sensors is
sufficient to calculate the position and orientation of an item. However, accelerometers
and gyroscopes only deliver relative changes referring to an arbitrary origin [12]. An
Attitude and Heading Reference System (AHRS) further integrates a 3-axis magnetometer
which provides the necessary heading reference for a full-featured orientation tracking.

At this point, the positional data is still just the relative shift from a random starting
point [12]. Without additional information, inertial tracking systems cannot calculate
an object’s absolute position. In the context of VR, inertial sensing technologies are
primarily used for orientation tracking in hybrid sensing solutions [40].

8

2.2. Practical Applications

Data Transmission

Inertial trackers operate as autonomous units. Therefore, the size of the tracking area
depends only on the technology used for data transmission [12]. Basic systems simply
use cables to send the tracking data to a processing unit. Elaborate systems connect the
sensor array directly to a small microcontroller which processes the raw sensor data and
transmits the computed tracking information over a wireless network.

Error Accumulation

Inertial sensors are prone to error accumulation due to sensor bias [12]. This characteristic
is known as drifting [13]. By design, inertial sensors only register angular or directional
change. Any measurement inaccuracy, however small, is gradually added up until the
discrepancy can no longer be neglected. Accelerometers are especially vulnerable to
drifting [12]. This is another reason why inertial sensing is mainly used for orientation
tracking. While optical sensing technology can calculate an object’s position with
millimeter-level accuracy [66], inertial navigation systems often have a margin of error
within several hundred meters [12]. Gyroscopes are also susceptible to error accumulation.
However, this gyroscopic drift can be compensated by including the magnetometer’s
sensor data into the calculations [12].

2.2 Practical Applications
The following chapter introduces three distinct tracking systems which are deployed in
various VR applications. While Pintaric and Kaufmann scientifically documented their
work on the ioTracker [66, 67], the exact procedures of the Oculus Rift [31, 61, 32, 1] or
the HTC Vive [37, 50, 31, 32, 1] are not officially disclosed. Consequently, details on the
latter technologies are primarily based on high-value online articles.

2.2.1 ioTracker

Sensors

The ioTracker [68] is an optical marker-based outside-in tracking system [66]. It consists
of 4-8 monochrome IR cameras which are operating in a synchronized framework. Each
camera has a video resolution of 640x480 pixels, a field of view of 90 degrees, and delivers
60 frames per second. Aside of the camera itself, each sensor enclosing holds an IR
bandpass filter in front of the camera lens and an integrated IR strobe light right next to
it (see Fig. 2.2a).

Landmarks

The system uses passive retro-reflective spheres as landmarks [67]. The position of each
marker can be triangulated if it is detected by at least two cameras. Multiple markers
are combined to a single target via carbon-fiber rods (see Fig. 2.2b). These targets can

9

2. State of the Art

then be mounted on to any object of interest. Using pose estimation algorithms, the
system is able to compute the orientation of 12 independent targets within an area of 4m
x 4m x 3m [66].

(a) IR sensor. (b) Rigid-body target.

Figure 2.2: Components of the ioTracker [68].

Evaluation

The ioTracker is designed as a highly versatile tracking technology. Due to the flexible
applicability of the targets, any object or body part can be indirectly detected as long
as it has a landmark attached to it. With the capability of installing 8 cameras, the
ioTracker handles the fundamental line-of-sight constraint of optical systems very well.
Still, target occlusions or even self-occluding targets are key issues. The update rate
of 60 frames per second is high enough to guarantee smooth movements. The system’s
latency of 18ms – 40ms, depending on the number of targets that need to be identified
[66], is hardly noticeable in typical applications [40]. The ioTracker achieves excellent
results in the spatial properties precision (±0.1mm) and accuracy (±5mm) [66].

2.2.2 Oculus Rift

Head Tracking

The Rift [60] is an HMD that was originally developed by Oculus VR.1 HMDs are
head-worn displays that resemble diving goggles. Their intention is to fully immerse
the user in a virtual environment. In VR games, the player can intuitively change the
viewport by turning the head in the appropriate direction. Room-sized applications also
adapt the perspective in accordance to the user’s movement. The key prerequisite for
these features is an accurate tracking of the HMD [12].

1Since 2014, the company is owned by Facebook [65].

10

2.2. Practical Applications

Sensing Technology

The Rift uses a hybrid sensing technology that combines an optical marker-based outside-
in tracking system with inertial sensors [40, 31]. In a so-called ’seated application’, where
the player does not change the position during the game, only the orientation tracking
of the head is performed. The Rift utilizes an integrated IMU to determine the head
pose without the help of external components [40]. This allows an easy and fast setup in
simple environments.

To facilitate room-sized applications, the Rift has several IR LEDs strategically spread
across the surface. As shown in Fig. 2.3, the LEDs are forming a distinctive pattern called
constellation [31]. By individually controlling their high frequency blinking patterns,
each LED can be clearly identified. Based on the detected formation, the Rift is able to
calculate the HMD’s position with a single IR camera [31]. Only to improve occlusion
issues in 360° setups, the use of three independent cameras is recommended [61].

(a) Constellation pattern (front). (b) Constellation pattern (back).

Figure 2.3: Constellation pattern on the Oculus Rift [29].

Evaluation

Both tracking components are of high quality [38]. The IMU-based orientation tracker
has an update rate of 1.000 measurements per second and a latency of only 2ms. The
optical position tracker shows an update rate of 60 frames per second. According to their
own specification [61], the Oculus Rift can manage a tracking area of 10 feet x 10 feet.

2.2.3 HTC Vive

Overview

The Vive [27] is an HMD that was developed by HTC in cooperation with Valve. Like the
Oculus Rift, it uses a hybrid sensing technology that reconciles inertial sensors with an
optical tracking system to determine the position and orientation of the headset [37, 50].
In contrast to the Rift, the HTC Vive incorporates an optical inside-out tracking system
[12]. This means that the landmarks are situated outside the tracking area and the

11

2. State of the Art

sensors are mounted on the HMD. Instead of IR LEDs, the Vive uses synchronized laser
sweeps to calculate the relative position and orientation to the landmarks [37, 50].

Lighthouse

The tracking system utilizes two highly sophisticated landmarks called lighthouses (see
Fig. 2.4) [37, 50]. Each unit consists of two orthogonally aligned IR lasers and an IR flash.
The lasers are used to project a horizontal respectively vertical line into the tracking area.
By rotating both lasers around their own axes in an interleaved fashion, the laser lines
are alternately sweeping through the room at a constant velocity. Since the tracking
system cannot handle two simultaneous laser sweeps, both lighthouses take turns. This
procedure is coordinated by a periodic IR flash. The following pattern is repeated 30
times per second:

1. flash – horizontal sweep from lighthouse A

2. flash – vertical sweep from lighthouse A

3. flash – horizontal sweep from lighthouse B

4. flash – vertical sweep from lighthouse B

(a) Enclosure [27]. (b) Electronics [28].

Figure 2.4: HTC Vive’s Lighthouse.

Sensing Technology

As shown in Fig. 2.5, the surface of the HMD is strategically covered with IR sensitive
photodiodes acting as sensors. The system calculates the relative angle to the lighthouses
by measuring the time difference between an IR flash and the moment when the laser

12

2.2. Practical Applications

hits a sensor [1]. The exact position and orientation of the headset can be calculated if
at least 5 photodiodes detected the laser beam [50].

The HMD additionally uses inertial sensing data of an integrated IMU to update its
position and rotation in-between laser sweeps [37, 50]. This drastically increases the
update rate and equally decreases the latency because the IMU delivers over 1.000 new
data samples per second [37]. Common drift issues that usually accompany inertial
sensor readings do not apply in this case since the inertial data gets corrected by the
laser tracking every couple milliseconds.

(a) HMD. (b) Photodiodes.

Figure 2.5: HTC Vive’s HMD [28].

Evaluation

Due to these innovative techniques, the tracking system shows an accuracy of ±1mm, a
precision of ±0,15mm, a latency of 1ms, and an update rate of over 1.000 Hz [37]. Like
similar systems, the Vive allows a 360° tracking area of approximately 4m x 4m [1].

13

CHAPTER 3
Theoretical Background

3.1 Optical Tracking

3.1.1 Light

Light represents an essential building block of optical tracking systems since it carries
visual information in form of electromagnetic waves [33]. Depending on the wavelength,
light can be categorized into ultraviolet (UV) light (15nm to 380nm), visible light (380nm
to 780nm), and infrared (IR) light (780nm to 1mm) [33].1 Fig. 3.1 depicts these areas
within the electromagnetic spectrum.

Figure 3.1: The electromagnetic spectrum [24].

Near Infrared (NIR) Light Spectrum

The IR band adjacent to the visible spectrum is known as Near Infrared (NIR) and
ranges from 780nm to 1400nm. In the context of machine vision, this area is of particular
interest because common CCD and CMOS camera sensors are sensitive to NIR radiation
up to a wavelength of 1100nm [33]. Therefore, ordinary image sensors can be used for
NIR applications. However, the simultaneous detection of visible and NIR light is usually
undesirable. With the help of optical filters, the range can be limited as required.

1The limits, which are not consistent among various sources, are based on DIN 5031.

15

3. Theoretical Background

Optical Filters

Three types of optical filters can be distinguished [33]. Short-wavelength pass filters
pass light with a wavelength shorter than the cut-off value and filter light with a longer
wavelength. Long-wavelength pass filters pass light with a wavelength longer than the
cut-off value and filter light with a shorter wavelength. Bandpass filters only pass light
with a wavelength around a specified value.

In most cases, one of two filters is used to confine the responsive bandwidth of an image
sensor. IR suppression filters are bandpass filters that cut out UV and IR light and let
visible light through [33]. They are integrated in most RGB cameras to enhance the
image quality. Daylight suppression filters are long-wavelength pass filters that remove
visible light before it arrives at the camera sensor [33]. They are typically deployed in
NIR applications.

Spectral composition of common light sources

As Fig. 3.2 shows, the spectral composition of common light sources vary significantly
[71]. Natural daylight and incandescent lamps have a very broad distribution that reaches
far into the IR spectrum. This characteristic has a disruptive influence on certain NIR
applications where ambient light jeopardizes the correct detection of IR light emitting or
reflecting objects. In this context, fluorescent lights and white LEDs are preferred. They
show a much narrower composition that is mostly limited to the visible range and does
not interfere with NIR applications.

Figure 3.2: Emission spectra of common light sources [71].

16

3.1. Optical Tracking

3.1.2 Computer Vision

Pinhole Camera Model

Camera models are used to project a section of the 3D world onto a 2D plane [25]. The
pinhole camera model offers a simple design and is implemented in many computer vision
frameworks [52]. It describes the mapping of a point from 3D 7→ 2D space with the help
of central projection [25].

Fig. 3.3a illustrates the the operational pinciple of the pinhole camera model [25]. The
camera center C, also known as the optical center [59], corresponds to the origin of the
Euclidean coordinate system and acts as the center of projection. The Z-axis of the
coordinate system is called principal axis. The plane perpendicular to the principal axis is
named principal plane. The image plane lies parallel to the principal plane at a distance
Z = f from the camera center. The junction p between the image plane and the principal
axis is called principal point. The 3D point is defined as X(x, y, z)T . The projected 2D
point x(u, v)T lies at the intersection of the image plane and the line segment CX.

(a) Overview. (b) Geometric relationships.

Figure 3.3: The pinhole camera model [59].

Fig. 3.3b indicates that the point X(x, y, z)T is projected to (fxz ,
fy
z , f)T . Since (u, v)T

is a 2D point, the third coordinate can be omitted. The mathematical expression reads
as follows:

(
u
v

)
=

xy
z

 7→ (
fx
z
fy
z

)
(3.1)

As Mossel points out in [59], this perspective scaling operation is undesirable and can be
circumvented by using projective geometry instead of Euclidean geometry.2 Following
this conclusion, Eq. 3.1 can be expressed as a matrix multiplication of homogenous
coordinates with the homogenous scaling factor λ = z (see Eq. 3.2).

2Refer to [59] for further information on the mapping between Euclidean and projective spaces.

17

3. Theoretical Background

λ

uv
1

 =

x
y
z
1

 7→
fxfy
z

 =

f 0 0 0
0 f 0 0
0 0 1 0

︸ ︷︷ ︸

P

·

x
y
z
1

 (3.2)

The homogenous 3× 4 matrix shown in Eq. 3.2 is called camera projection matrix P [25].
Eq. 3.3 illustrates that the camera projection matrix can be deconstructed into the camera
calibration matrix K and the canonical projection matrix P0 [14]. The camera calibration
matrix holds the intrinsic camera parameters [59]. They describe the internal camera
properties of the central projection. The canonical projection matrix constitutes the
principal form of the extrinsic camera parameters which describe the spatial relationship
between the camera coordinate system and the world coordinate system.

P =

f 0 0 0
0 f 0 0
0 0 1 0

 =

f 0 0
0 f 0
0 0 1

︸ ︷︷ ︸

K

·

1 0 0 0
0 1 0 0
0 0 1 0

︸ ︷︷ ︸

P0

= K · P0. (3.3)

Intrinsic Camera Parameters

At this point, the camera projection matrix contains only one intrinsic camera parameter
called focal length f . As mentioned in Ch. 3.1.2, it is defined as the distance between the
image plane and the camera center [59].3 However, the pinhole camera model considers
only the theoretical operating principle of the center projection and neglects common
irregularities of real cameras. Consequently, the camera calibration matrix includes
additional intrinsic camera parameters [59].

So far, it has been assumed that the principal point lies in the center of the image pane.
In reality, many computer vision frameworks set the origin of the coordinate system at
the top left corner of the image. The actual position of the principal point is stated
by the offset values px and py [59]. Ideally, the pixels of the image sensor are perfectly
square, i.e. their sides are of equal length and are perpendicular to each other. Any flaws
in these regards can be corrected with the scale factors mx and my, as well as the skew
coefficient s [59]. Eq. 3.4 shows the complete camera calibration matrix.

K =

fmx s px
0 fmy py
0 0 1

 (3.4)

3In the field of optics, the camera center is called focal point [42] and the image plane is known as
the focal plane [25].

18

3.1. Optical Tracking

Extrinsic Camera Parameters

The pinhole camera model assumes that the position and orientation of the camera
coordinate system corresponds to the world coordinate system, i.e. the camera center is
aligned with the origin of the world coordinate system. Since this is usually not the case,
the extrinsic camera parameters specify the transformation between both coordinate
systems [14]. They consist of a 3× 3 rotation matrix R and a 3× 1 translation vector t.
Both parameters can be merged into a single 4 × 4 or 3 × 4 matrix that expresses a
rotation followed by a translation [14].4

Considering the intrinsic and extrinsic parameters, the projection X(x, y, z)T 7→ x(u, v)T
can now be mathematically described as follows [14]:

λ

uv
1

 =

fmx s px
0 fmy py
0 0 1

︸ ︷︷ ︸

K

·

 r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

︸ ︷︷ ︸

(R|t)

·

x
y
z
1

 (3.5)

Lens Distortion

Lens distortion is another common issue of optical systems that the pinhole camera model
does not account for. It can be distinguished between radial distortion and tangential
distortion [59]. Radial distortion occurs when entering rays of light are refracted unevenly
across the lens. In consequence, straight lines are either warped inwards or outwards.
The former defect is called pincushion distortion, the latter deformity is named barrel
distortion (see Fig. 3.4). Tangential distortion happens when the image plane and the
camera lens are not parallel to one another [59]. The correct mapping between the
distorted coordinates (u′, v′)T and their corresponding image coordinates (u, v)T is a
non-trivial mathematical problem that can only be approximated [59].

(a) Pincushion distor-
tion. (b) Barrel distortion.

Figure 3.4: Types of radial lens distortion [59]

4The mathematical derivation is explained in [14].

19

3. Theoretical Background

Camera Calibration

Camera calibration is the process of calculating the intrinsic and extrinsic camera pa-
rameters as well as estimating the radial and tangential lens distortion [59]. Various
approaches meeting different requirements have been developed. Most of them derive
the geometric relationship between the 3D world and the 2D image with the help of a
predetermined calibration pattern.

Zhang [81] implemented a highly popular calibration algorithm that is used in many
computer vision frameworks [52]. It suggests the use of a planar pattern like the
checkerboard whose geometric characteristics are known. After capturing this reference
target from multiple angles, its feature points, i.e. the intersections between black an
white areas, are detected (see Fig. 3.5). Based on these, the camera parameters can be
calculated and stored in a projection matrix. In his original paper [81], Zhang summarizes
his work as follows:

1. Print a known calibration pattern on a planar surface.

2. Capture multiple images of the planar pattern from various angles.

3. Detect the pattern’s feature points in the images.

4. Estimate the intrinsic and extrinsic parameters.

5. Model the lens distortion.

6. Refine all parameters.

Figure 3.5: Calibration pattern showing detected feature points.

20

3.1. Optical Tracking

Epipolar Geometry

Calculating the 3D position of an object from two corresponding camera views is a
fundamental requirement for any stereo vision application. The underlying model for
this projective triangulation is based on epipolar geometry [59].

Fig. 3.6 illustrates the operating principle of epipolar geometry [59]. The camera centers
C and C ′, and the 3D point X̃ span the epipolar plane. Following the pinhole camera
model, the 2D points x and x′ are the projections of the point X̃ on the image planes I
and I ′. The line segment between both optical centers is called baseline. The points of
intersection between the baseline and the image planes are called epipoles e respectively
e′. They represent the projection of the opposite camera center on the respective image
plane. The epipolar lines l and l′ are formed by the intersections of the epipolar plane
and the image planes. They connect the image points with their relating epipoles.

(a) Epipolar plane. (b) Epipoles and epipolar lines.

Figure 3.6: The epipolar geometry [59].

The stereo correspondence problem describes the task of correctly matching the corre-
sponding image points x and x′ [59]. This can be highly challenging when many points
need to be allocated in real time. However, the epipolar constraint states that for any
point x on the image plane I, the corresponding point x′ must lie on the epipolar line
l′. This fact drastically simplifies the correspondence problem since the search for the
correct image point can be restricted to candidates along the appropriate epipolar line.5

After solving the stereo correspondence problem and performing the camera calibration,
epipolar geometry can be used to triangulate the 3D position of the point X̃ in world
coordinates. The triangulation problem states that the two rays −→Cx and

−−→
C ′x′ intersect at

X̃ if x and x′ fulfill the epipolar constraint [59]. However, small inaccuracies that are
not adequately covered by the camera calibration lead to a slight deviation between the
actual 3D point and its calculated counterpart. This can be shown if the calculated point
is re-projected onto the image planes. The distance between the original projection and
the re-projection on the image plane is called re-projection error [25].

5Since epipolar geometry cannot distinguish between multiple points that lie on the same epipolar
line, it cannot fully solve the stereo correspondence problem [59].

21

3. Theoretical Background

Predictive Filtering

When the triangulation process is repeated periodically, the position of X̃ can be tracked
over time. In an ideal scenario, where the calculated position of X̃ matches its real
position perfectly and the intervals between two measurements are virtually zero, a
continuous movement of X̃ can be mapped precisely. As one might expect, this is usually
not the case in practical applications. As mentioned before, optical triangulation contains
slight inaccuracies which result in some amount of jitter. Secondly, since optical readings
are always subject to a certain degree of digital image processing, the time intervals
between data points can never be zero. If the update rate exceeds a reasonable threshold,
the application exhibits a noticeable latency and fast movements cannot be depicted
smoothly. These issues can be handled with the help of predictive filters [59].

Predictive filters like the Kalman filter6 [34] estimate the value of a signal that cannot be
measured or is corrupted by noise [54]. The Kalman filter’s operating principle is based on
a simple feedback loop that consists of two stages [11]. In the Time Update stage, the filter
predicts a future value of the signal based on past measurements. In the Measurement
Update stage, the filter improves this prediction by including a new measurement. In
other words, the algorithm uses its knowledge about prior measurements to predict a
future value and consequently adapts its estimation with every new measurement.

Figure 3.7: The Kalman filter’s feedback loop (based on [11, 80]).

As Fig. 3.8 illustrates, the Kalman filter can also be applied to handle object occlusions.
In this scenario, the trajectory of a rolling ball is successfully recovered by the Kalman
filter despite being momentarily concealed by another object.

(a) Tracking scenario. (b) Raw tracking data. (c) Filtered tracking data.

Figure 3.8: Occlusion handling using the Kalman filter [55].

6The Kalman filter is a versatile algorithm that has been successfully implemented in many safety-
critical applications for almost 60 years [43]. For instance, NASA used it in the 1960s to estimate the
trajectories of spacecrafts during the Apollo missions [22]. Since then, the Kalman filter has lost none of
its importance. Today, it is applied in many ubiquitous technologies including radar and GPS [53].

22

3.2. Inertial Tracking

3.2 Inertial Tracking

Inertial tracking systems are based on the principle of inertia, also known as Newton’s
first law of motion. It states that an object will maintain its state of motion unless it is
influenced by an external force [8]. Consequently, when measuring this force, an object’s
motion can be mapped.

3.2.1 Inertial Sensors

Accelerometer

Accelerometers specify the linear acceleration of an objects along one axis by measuring
the forces affecting a proof mass [8]. When three accelerometers are combined and
aligned orthogonally, the 3D acceleration can be determined. Translative motion can be
derived from linear acceleration by numerically integrating each individual value twice
[8]. On principle, the sensor detects gravity as an acceleration since it constitutes a force.
Consequently, the influences of gravity on the sensor need to be compensated to provide
accurate results.

Among others, two types of error accompany accelerometers and need to be considered [8].
Due to the zero offset error a resting accelerometer might show a linear acceleration other
than zero. The scale error indicates an inaccuracy in the mapping between force and
acceleration. These discrepancies are causing an error accumulation which is commonly
known as drifting.

Gyroscope

Gyroscopes meter the angular rate of rotation around a single axis [8]. While traditional
gyroscopes are based on a rotating disc within movable gimbals, modern sensors observe
the behavior of a resonating proof mass. Similar to accelerometers, three gyroscopes are
orthogonally combined to form a 3-axis gyroscope. By numerically integrating each value
once, the 3D rotation angle of an object can be calculated [8]. Gyroscopes are vulnerable
to the same sources of error as accelerometers. Thereby, the concepts of the zero offset
error and the scale error can be relayed.

Magnetometer

A Magnetometer can be described as a digital compass. It measures the surrounding
magnetic field to calculate the direction of Earth’s magnetic north [8]. By design, the
magnetometer is affected by electro-magnetic fields. As a consequence, two common
effects are distorting the results of the measurements [8]. The hard iron effect describes
the constant influence of electromagnetic materials that are part of the measurement
device. The soft iron effect is characterized by varying influences from disruptive elements
in close proximity.

23

3. Theoretical Background

3.2.2 Sensor Fusion

Inertial Measurement Unit (IMU)

The combination of a triaxial accelerometer with a triaxial gyroscope is called Inertial
Measurement Unit (IMU) [8]. If the initial position and rotation of an object is known, an
IMU can be used to map an object’s motion through space. Hybrid navigation systems
often apply IMUs to enhance the robustness of the tracking system. For instance, most
GPS navigation devices incorporate IMU readings into the position calculation to ensure
a continuous operation in difficult environments.

IMUs have a fundamental weak point. As mentioned before, the initial position and
orientation cannot be calculated based on inertial forces alone and thereby must be
known in advance. Since inertial sensors simply have no way of determining their absolute
spatial position, this issue can only be handled in hybrid sensing solutions [8]. The
challenge of determining the absolute orientation is more complex. As mentioned earlier,
accelerometers detect gravity as an inertial force. Consequently, the direction of the
gravitational acceleration can be used as a vertical reference for the gyroscope. However,
an additional horizontal reference is necessary to compute the horizontal orientation, also
known as the heading. This is where the magnetometer comes into play.

Attitude and Heading Reference System

An Attitude and Heading Reference System (AHRS) builds on the data from the IMU
and assimilates the magnetometer measurements to calculate the absolute orientation of
an object successfully [8]. In addition, these horizontal and vertical references can be
used to reduce gyroscopic drifting since rotational deviations are corrected continuously
[16]. Every AHRS is based on a sensor fusion algorithm that transforms the raw sensor
data into positional and orientational information. The Madgwick filter [47, 48], the
Mahony filter [49], and the Kalman filter [34] represent the most popular techniques and
are widely used for inertial navigation [16]. AHRS algorithms handle the following three
aspects of sensor fusion:

1. Data Smoothing: Raw sensor readings are usually fluctuating heavily due to signal
noise and other varying factors [16]. Therefore, the sensor data needs to be smoothed
first.

2. Pose Calculation: The positional shift and the absolute orientation is computed
by fusing the sensor readings from the accelerometer and the gyroscope with the
gravity calculations from the accelerometer and the heading information from the
magnetometer [8].

3. Drift Correction: By matching the gyroscope readings with the results from the
sensor fusion calculations, the parameters causing rotational drift can be located
and adjusted [16].

24

3.2. Inertial Tracking

3.2.3 Sensor Calibration

Factory Calibration

Inertial sensors need to be calibrated in order to keep the inevitable error accumulation
to a minimum. Many sensor manufacturers perform a factory calibration that covers
known and constant influences. This involves minimizing the zero offset and scale
errors in accelerometers and gyroscopes since those parameters are independent from the
environment. However, some uncertainties remain and need to be addressed by the user
before adequate measurements can be carried out. Accelerometers need to determine the
direction of gravity to counteract its force. This can be done easily by placing the sensor
on a solid surface. In this connection, the sensor might also revise the accelerometer’s
and gyroscope’s zero offset errors.

Magnetometer Calibration

The calibration of the magnetometer, i.e. modeling the hard iron and soft iron effects, is
a little more complex. The task can be classified as a sphere fitting problem [16]. At first,
the sensor needs to be rotated randomly until every conceivable pose has been taken into
account. Every pose represents a data point in a point cloud that an algorithm attempts
to fit on a sphere. Fig. 3.9 shows the point cloud during and after sensor calibration.

(a) Point cloud during calibration [69]. (b) Point cloud after calibration [2].

Figure 3.9: Magnetometer calibration.

25

3. Theoretical Background

3.2.4 Data Representation

Euler Angles

Euler angles describe the pose of an object by specifying the angles (θ, φ, ψ) with regard
to the coordinate system’s axes (x, y, z) [17]. As Eq. 3.6 illustrates, the 3D rotation Rxyz
through an Euler angle e = [θ, φ, ψ]T consists of three sequentially executed rotations
Rx(θ), Ry(φ), Rz(ψ) [17].

Rxyz =

1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

︸ ︷︷ ︸

Rx(θ)

·

cos(φ) 0 −sin(φ)
0 1 0

sin(φ) 0 cos(φ)

︸ ︷︷ ︸

Ry(φ)

·

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1

︸ ︷︷ ︸

Rz(ψ)

(3.6)

Gimbal Lock

Euler angles suffer from an anomaly called gimbal lock where minor angular changes
may result in erratic output changes of ±180◦ [23]. The term originates from gimbal-
based gyroscopes (see Fig. 3.10). Similar to Euler angles, they derive the orientation
of an object by combining the rotation angles of the individual axes. However, if the
orientations of two gimbals coincide, the system looses the ability to rotate around a
certain axis, i.e. the gimbals are locked. To circumvent this issue, most AHRS algorithms
base their calculations on quaternions [39] which represent orientation data in form of
4-dimensional vectors.

FUNDAMENTALS OF INERTIAL NAVIGATION 25

HEADING

ROLL

PITCH
HOST

VEHICLE FRAME

Fig. 2.6 Gimbals reading attitude Euler angles.

Design of gimbal torquing servos is complicated by the motions of the gimbals
during operation, which determines how the torquing to correct for sensed rotation
must be applied to the different gimbal bearings. This requires a bearing angle
sensor for each gimbal axis.

The gimbal arrangement shown in Fig. 2.2 and 2.6, with the outer gimbal axis
aligned to the roll (longitudinal) axis of the host vehicle and the inner gimbal
axis maintained in the vertical direction, is a popular one. If the ISA is kept
aligned with locally level east–north–up directions, the gimbal bearing angles
shown in Fig. 2.6 will equal the heading, pitch and roll Euler angles defining the
host vehicle attitude relative to east, north, and upward directions. These are the
same Euler angles used to drive attitude and heading reference systems (AHRSs)
(e.g., compass card and artificial horizon displays) in aircraft cockpits.

Advantages The principal advantage of both gimbaled and floated systems is
the isolation of the inertial sensors from high angular rates, which eliminates
many rate-dependent sensor errors (including gyro-scale factor sensitivity) and
generally allows for higher accuracy sensors. Also, gimbaled systems can be
self-calibrated by orienting the ISA with respect to gravity (for calibrating the
accelerometers) and with respect to the earth rotation axis (for calibrating the
gyros), and by using external optical autocollimators with mirrors on the ISA to
independently measure its orientation with respect to its environment.

The most demanding INS applications for “cruise” applications (i.e., at ≈ 1 g)
are probably for nuclear missile-carrying submarines, which must navigate sub-
merged for about 3 months. The gimbaled Electrically Supported Gyro Naviga-
tion (ESGN, DOD designation AN/WSN-3 [34]) system developed in the 1970s
at the Autonetics Division of Rockwell International for USN Trident-class sub-
marines was probably the most accurate INS of that era [129].

(a) Euler angles.

24 FUNDAMENTALS OF SATELLITE AND INERTIAL NAVIGATION

NO ROTATIONAL
ISOLATION ABOUT
THIS AXIS

90 deg PITCH-UP

Fig. 2.5 Gimbal lock.

vibration isolators to dampen the vibrational torques and forces transmitted to
the inertial sensors. These isolators are commonly made from “lossy” elastomers
that provide some amount of damping, as well.

2.2.2.2 Gimbaled Systems Two-axis gimbals were in use in China (for carry-
ing liquids with less sloshing) around the beginning of the Current Era. Gimbaled
inertial navigation systems using feedback control technology were first devel-
oped around the middle of the twentieth century, when computers were too slow
for strapdown calculations and too heavy for inflight applications.

Gimbals are nested ringlike structures with orthogonal rotation bearings (also
called gimbals) that allow isolation of the inside from rotations of the outside. As
illustrated in Fig. 2.2, three sets of gimbal bearings are sufficient for complete
rotational isolation in applications with limited attitude mobility (e.g., surface
ships), but applications in fully maneuverable hosts require an additional gimbal
bearing to avoid the condition shown in Fig. 2.5, known as gimbal lock , in
which the gimbal configuration no longer provides isolation from outside rotations
about all three axes. The example shown in Fig. 2.5 cannot isolate the INS from
rotations about the axis illustrated by the rotation vector.

Gyroscopes inside the gimbals can be used to detect any rotation of that frame
due to torques from bearing friction or load imbalance, and torquing motors in
the gimbal bearings can then be used to servo the rotation rates inside the gimbals
to zero. For navigation with respect to the rotating earth, the gimbals can also be
servoed to maintain the sensor axes fixed in locally level coordinates.

(b) Gimbal lock.

Figure 3.10: Euler angles demonstrated on an triaxial gimbal [23].

26

3.3. Digital Image Processing

3.3 Digital Image Processing

3.3.1 Color Models

Color models are used to characterize the structure of color images [15]. Different color
models can be used to extract varying features from image data. Consequently, the choice
of the optimal color model depends on the individual use case.

RGB Color Model

The RGB color model is used to display color on television screens and computer monitors.
It is based on the principle of additive color mixing where many colors, although not
every one, can be formed by combining the three primary colors red, green and blue. Fig.
3.11 illustrates an RGB image and its individual color channels.

Figure 3.11: An RGB image splitted into individual color channels (based on [78]).

YCbCr Color Model

The Y CbCr color model is primarily used for digital television encoding and image
compression [15]. It is composed of a luminance channel Y and two chroma channels
Cb and Cr (see Fig. 3.12). The chroma channels describe the difference between the
luminance and the blue respectively red color. An R′G′B′ image7 can be easily converted
into an Y ′CbCr image by using the following linear transformation [75]:

Y ′Cb
Cr

 =

 0.299 0.587 0.144
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

 ·
R′G′
B′

+

 0
128
128

 (3.7)

Figure 3.12: An Y CbCr image composed of the luminance and chroma channels [78].

7An R′G′B′ image is defined as the gamma-corrected counterpart to a conventional RGB image [75].

27

3. Theoretical Background

3.3.2 Image Morphology

Mathematical Morphology is a simple image processing technique that can be used for
noise removal, edge detection and other types of image enhancements [72]. The basic
idea is to eliminate or emphasize certain aspects of the image in order to obtain necessary
information. In most cases, morphology is performed on binary images. In contrast to
common color images, every pixel of a binary image stores a binary state, i.e. 1 or 0,
instead of a color value. There are various ways to convert a greyscale image to a binary
image. Thresholding offers a simple but effective solution where all pixel values below a
threshold are set to 0 and all values equal or above are set to 1. A pixel that stores a
logical 1 is called foreground pixel. Consequently, elements containing a value of logical 0
are named background pixels [72].

The fundamental principle of image morphology is to compare the pixels of a binary
image with a binary reference object called structuring element [72]. Like the binary
image, the structuring element is a two-dimensional array containing logical pixel values.
Depending on the size of the array and which of its pixels store a logical 1, different
shapes can be depicted. As Fig. 3.13 illustrates, the most common shapes are discs,
rectangles or lines. The most central data entry of the structuring element is called center
pixel and denotes its origin. The pixels around the origin containing a value of logical 1
are called neighborhood.

centre pixel when both dimensions are odd (e.g. in 3! 3 or 5! 5 structuring elements).
When either dimension is even, the centre pixel is chosen to be that pixel north, north-west
or west (i.e. above and/or to the left) of the geometric centre (thus, a 4! 3, 3! 4 and a 4! 4
structuring element would all have centre pixels at location [2,2]).1 If we visualize the centre
pixel of the structuring element being placed directly above the pixel under consideration in
the image, then the neighbourhood of that pixel is determined by those pixels which lie
underneath those pixels having value 1 in the structuring element. This is illustrated in
Figure 8.3.

In general, structuring elements may consist of ones and zeros so as to define any
neighbourhood we please, but the practicalities of digital image processing mean that they
must be padded with zeros in an appropriate fashion to make them rectangular in shape
overall. As we shall see in the examples and discussion that follow, much of the art in
morphological processing is to choose the structuring element so as to suit the particular
application or aim we have in mind.

Figure 8.2 Some examples of morphological structuring elements. The centre pixel of each
structuring element is shaded

Figure 8.3 The local neighbourhood defined by a structuring element. This is given by those shaded
pixels in the image which lie beneath the pixels of value 1 in the structuring element

8.3 STRUCTURING ELEMENTS AND NEIGHBOURHOODS 199

1 In Matlab, the coordinates of the structuring element centre pixel are defined by the expression floor((size

(nhood)þ 1)/2), where nhood is the structuring element.

Figure 3.13: Overview of structuring elements [72].

Primitive Operations

Image morphology defines two primitive operations called dilation and erosion (see Fig.
3.14). The dilation of a binary image A with a structuring element B, formally described
as A⊕B, consists of two nested steps [72].

1. Slide the structuring element over the binary image by successively superimposing
every background pixel of A with the center pixel of B.

2. For each step, determine if any pixels of B’s neighborhood coincide with a foreground
pixel of A. In that case, the background pixel superimposed by B’s center pixel is
changed to a foreground pixel.

28

3.3. Digital Image Processing

The erosion of a binary image A with a structuring element B proceeds in a similar
fashion [72]. It is formalized as A	B. In contrast to dilation, each foreground pixel of
A is superimposed with the center pixel of the structuring element B and switched to a
background pixel if any pixels of B’s neighborhood coincide with a background pixel of
A.

8.4 Dilation and erosion

The two most important morphological operators are dilation and erosion. All other morpho-
logical operations canbedefined in termsof these primitive operators.Wedenote a general image
by A and an arbitrary structuring element by B and speak of the erosion/dilation of A by B.

Erosion To perform erosion of a binary image, we successively place the centre pixel of the
structuring element on each foreground pixel (value 1). If any of the neighbourhood pixels are
backgroundpixels (value 0), then the foregroundpixel is switched to background. Formally, the
erosion of image A by structuring element B is denoted A! B.
Dilation To perform dilation of a binary image, we successively place the centre pixel of the
structuring element on each background pixel. If any of the neighbourhood pixels are
foreground pixels (value 1), then the background pixel is switched to foreground. Formally,
the dilation of image A by structuring element B is denoted A" B.

The mechanics of dilation and erosion operate in a very similar way to the convolution
kernels employed in spatial filtering. The structuring element slides over the image so that
its centre pixel successively lies on topof each foregroundorbackgroundpixel as appropriate.
The new value of each image pixel then depends on the values of the pixels in the
neighbourhood defined by the structuring element. Figure 8.4 shows the results of dilation

Figure 8.4 The erosion and dilation of a simple binary image. Erosion: a foreground pixel only
remains a foreground pixel if the 1s in the structuring element (in this example, a cross) are wholly
contained within the image foreground. If not, it becomes a background pixel. Dilation: a background
pixel only remains a background pixel if the 1s in the structuring element are wholly contained within
the image background. If not, it becomes a foreground pixel. The foreground pixels are shaded and
the background pixels are clear. In the diagram demonstrating dilation, the newly created foreground
pixels are shaded darker to differentiate them from the original foreground pixels

200 CH 8 MORPHOLOGICAL PROCESSING

Figure 3.14: Primitive operations of image morphology [72].

Advanced Operations

A variety of advanced operations can be executed by combining primitive operations [72].
The morphological opening operation performs an "erosion followed by a dilation with the
same structuring element" [72]. It is formally described as A ◦B = (A	B)⊕B. This
operation can be used to remove small foreground objects from the binary image. When
a dilation is performed before an erosion using the same structuring element, formally
denoted as A •B = (A⊕B)	B, the operation is called closing. It is used to fill small
holes in a foreground object. Based on this concept, further features like skeletonization
or region filling can be implemented [72].

29

CHAPTER 4
System Design

So far, an overview of the current state-of-the-art has been presented and the theoretical
background of the applied methods has been established. The following chapter initiates
the practical part of this thesis. As stated in Chapter 1, aim of this work is to implement a
human motion capture system for a novel VR rock climbing application called VreeClimber.
The developed prototype is named VreeTracker. At first, this chapter describes the
tracking scenario and its requirements in more detail. It continues by evaluating acclaimed
sensing techniques for suitability. Finally, the VreeTracker’s principle design is illustrated.

4.1 Requirements

4.1.1 Tracking Scenario

The VreeClimber is a three meters wide and three meters high indoor rock climbing
wall. It incorporates moving wall elements that shift downwards as the user ascends
on the wall. Thereby, the upwards motion of the user is counteracted and the climbing
experience can be prolonged indefinitely despite the limited height of the climbing wall.
With the help of an HMD and soundproof headphones, the user is immersed in a virtual
world (see Fig. 4.1). As stated before, the climber’s visual and auditory perception
is restricted to the virtual content provided by the application. Virtual models of the
user’s hands and feet provide the necessary visual feedback for climbing the wall. The
VreeTracker controls these models. It detects the user’s extremities in the real world,
describes their position and pose in form of numeric values, and streams the resulting
data to the VR application.

While the position of the limbs is self-explanatory, the term "pose" needs to be clarified.
The pose of a foot is described as its absolute orientation in the real world. Naturally,
humans can change the form of their feet by moving their toes. However, since the
climbing adventure requires the use of footwear, the pose of the toes is irrelevant.

31

4. System Design

(a) Tracking scenario. (b) Virtual view from user’s perspective.

Figure 4.1: Comparison of the real world and the virtual view.

The pose of the hands is a different matter. For one thing, the human hand can assume
various shapes, i.e. poses, by moving the fingers. Further on, it is important to take
the pose of the hand into account since the climber continuously opens and closes the
hand when gripping a climbing handle. Therefore, the pose of a hand is interpreted as
its absolute orientation in the real world in combination with its shape.

4.1.2 Quality Characteristics

In order to evaluate quality of the implemented prototype, certain characteristics need to
be established. Firstly, mathematical metrics like accuracy, precision, latency and update
rate can be used to determine the quality of the measurement itself. The robustness of
the system indicates if continuous measurements can be performed without interruptions
by disruptive factors. The third cornerstone describes the usability of the motion capture
system. On the one hand, the climber’s mobility must not be impaired by wearable
devices in case they are needed. Reasonable metrics are the size and weight of the object
as well as the point of application. In addition, the system needs to be easily manageable
for the operators. The setup should be simple and fast and no cumbersome procedures
should be necessary during active operation.

4.1.3 Sensing Technologies

Chapter 2 illustrated that the current state of the art favors optical and inertial sensing
techniques. Since many systems combine both approaches to form various hybrid solutions,
it is necessary to analyze the advantages and disadvantages of both methods in order to
form an individual solution that meets the VreeClimber’s needs.

32

4.1. Requirements

Optical marker-based Sensing

• Quality of Measurements: The biggest advantage of optical marker-based sensing
techniques is the quality of the position detection. Most systems are capable of
determining the absolute position of an object within a margin of error of only
a few millimeters. Since the markers are easily detected by optical sensors, the
method works highly efficient and usually achieves adequate update rates.

• Robustness: A potential drawback of optical tracking is the need for a direct line of
sight between the markers and the sensor. This makes occlusions a common issue
that affects the robustness of the tracking system negatively. By strategically placing
multiple sensors around the markers, occlusions can be handled satisfactorily.

• Mobility: Judging the mobility of an optical marker-based tracking system is more
complex. Optical markers are usually very small and lightweight which makes
them a preferred choice in many situations. However, depending on the point
of application, the sheer necessity of a marker can be an exclusion criterion. In
addition, if the optical system is used to determine the orientation of the object,
a rigid-body target consisting of multiple markers needs to be applied. In many
cases, the size of the rigid-body target exceeds the designated limits.

• Calibration: The intrinsic calibration can be cumbersome, but only needs to be
performed once per camera. As long as the internal camera parameters stay the
same, a re-calibration is not necessary. An extrinsic re-calibration is mandatory
when the cameras are moved. To optimize the quality of measurements, it is
recommended to re-calibrate the external parameters prior to each tracking session.
Nevertheless, this task can be performed within minutes and might be executed
automatically by the tracking system.

Optical markerless Sensing

• Quality of Measurements: In contrast to optical marker-based tracking systems,
markerless techniques detect natural features in image data. This approach is
computationally far more expensive and usually produces results that are inferior
in terms of accuracy, precision, and update rate. Depending on the necessary image
processing, latency can become a fatal issue in real-time applications.

• Robustness: Optical markerless tracking systems are based on the same principles
as marker-based systems. Therefore, occlusions are equally problematic.

• Mobility: The key benefit of optical markerless tracking systems is the fact that
they operate without the need for artificial landmarks. Thereby, the user’s mobility
is not affected by any wearable tracking devices.

• Calibration: Optical markerless tracking systems use the same calibration algorithms
as marker-based systems. Consequently, the same calibration directives apply.

33

4. System Design

Intertial Sensing

• Quality of Measurements: Inertial sensors are capable of delivering high quality
orientation data with update rates that simply cannot be matched by optical
systems. However, due to error accumulation, inertial techniques are a poor choice
for determining the position of an object. Additionally, since the sensors only
deliver a positional shift relative to an arbitrary origin, the absolute position cannot
be determined.

• Robustness: Since inertial sensors solely base their readings on inertial forces, they
operate completely autonomous and are independent of external components. Still,
strong electromagnetic fields in close proximity might affect the readings.

• Mobility: Depending on the concrete scenario, inertial sensors might impair the
user’s mobility. They can be built relatively light and have a reasonable size, but
still might be too large or heavy for certain use cases.

• Calibration: Inertial sensors need to be regularly re-calibrated. Some vendors apply
black-box calibration algorithms that are automatically performed by an integrated
sensor chip. Other sensors lack this feature and need to be re-calibrated manually
at regular intervals.

4.1.4 Conclusion

Based on these findings, the developed prototype combines the beneficial properties of all
three approaches and forms a new hybrid sensing technique. It uses optical marker-based
sensing to determine the position of the climber’s extremities and inertial sensors to
calculate their absolute orientation. Both tasks can be performed with the help of small
wearable devices that are mounted on the user’s wrists and feet.

Estimating the shape of the climber’s hands is a far more challenging task. Any device
capable of detecting or marking the position and orientation of the fingers would dramat-
ically impair the user during the ascend. Consequently, only a markerless design meets
the requirement of reasonably unrestricted mobility. However, the detection of natural
features is complex and the quality of measurements is usually inferior. That being said,
the following two assumption justify the compromise between quality and mobility.

• The climber only executes simple climbing motions: Since the climber is engaged in
a thrilling adventure, the likelihood of an unnatural hand pose is minimal. In most
cases, the user will restrict the hand poses to simple gripping motions. Therefore,
the complexity can be reduced.

• The human brain accepts a slightly different hand pose as the truth: The precise
depiction of the hand pose is of secondary importance since the brain has no visual
information about the real hand pose. It is the author’s assumption that it might
accept a slightly different pose as the truth.

34

4.2. System Overview

4.2 System Overview

The motion capture system consists of three mostly independent components:

• Optical Position Tracking: Two stereoscopic IR cameras capture a total of four
active IR markers which are attached to the climber’s limbs. A computer vision
algorithm detects the markers in the IR images, calculates their 3D positions from
the 2D camera views, assigns all markers to their corresponding extremity, and
transmits the position data to the VR game engine1. Furthermore, the hands’
position data is sent to the visual hand pose estimation component.

• Visual Hand Pose Estimation: Two RGB cameras are used to visually search
for the hands in close proximity to their corresponding IR marker position. An
image processing algorithm extracts visual features from the images, describes the
estimated hand poses with numeric values and relays the information to the VR
game engine.

• Inertial Orientation Tracking: Wrist- and foot-worn inertial sensors calculate their
absolute orientation with the help of a sensor fusion algorithm and broadcast the
orientation data to the VR game engine.

Figure 4.2: System overview.

1The VR game engine is the software framework in which the virtual simulation runs. Content
developers use it to create virtual environments. The game engine applies the tracking data to control a
virtual character.

35

4. System Design

4.3 Optical Position Tracking Component

The position tracking component is based on an optical marker-based outside-in tracking
system. Four cameras, acting as two stereoscopic cameras, are capturing a set of four
active IR markers. The markers are attached to the climber’s limbs and thereby tag
these targets in the IR images. A computer vision algorithm detects the markers in the
2D views, calculates the 3D position of each marker and outputs the position data.

4.3.1 System Setup

As mentioned before, occlusions are a chief concern of optical tracking systems. Early
designs showed that regardless of the set-up location, a single stereoscopic camera is not
capable of facilitating a robust tracking scenario where all four markers are simultaneously
detected. The biggest challenge is to maintain a clear line-of-sight between the cameras
and the hands. The visual connection is lost as soon as the climber places the hands in
front of the body (see Fig. 4.3a). Therefore, the optical tracking component utilizes two
cooperating camera sets. Fig. 4.3b illustrates the applied room setup. The left camera
set has a clear line-of-sight to the left extremity markers while the right camera set can
trace the right limbs without interruptions.

Due to performance issues that are discussed at a later point, each camera set runs on its
own host computer. This means that two instances of the position tracking algorithm are
executed independently on different machines. Therefore, the computer vision algorithm
needs to differentiate between the left and right side of the body since the left camera set
should only track the left extremities and vice versa.

(a) Single camera setup. (b) Double camera setup.

Figure 4.3: Horizontal projection of the tracking area.

36

4.3. Optical Position Tracking Component

4.3.2 Hardware Components

Stereoscopic Camera System

The stereoscopic camera system provides the raw IR image data for the computer vision
algorithm. Using a commercially available IR stereo camera poses two major issues.
Firstly, high quality IR cameras are very expensive. Secondly, most manufacturers of
stereoscopic cameras place the camera lenses very close to each other. While this narrow
constellation has advantages in situations where the object is close to the camera, it is
not suitable for large scale tracking scenarios.

Instead, in the present application each camera set is composed of two common 2D RGB
webcams. This has the advantage that the distance between the cameras can be chosen
freely. Obviously, the cameras need to be converted into IR cameras. This means that
instead of being sensitive to visible light, the cameras need to react solely to IR light.
When both cameras are interconnected firmly, they act as a single stereoscopic camera.
This combination is henceforth referred to as camera rig.

Active Infrared Markers

The camera system detects four active IR markers that are placed on the climber’s wrists
and feet. Each active marker uses an IR LED that emits NIR light towards the cameras.
A diffusing sphere on top of the LED guarantees a uniform light distribution in any
direction. Naturally, the active marker needs a power supply to operate.

Camera Calibration

The optical tracking component needs to be calibrated before it can operate properly. As
with any optical system, the calibration process consists of an intrinsic and an extrinsic
calibration. The intrinsic calibration determines the camera’s inner optical parameters
and corrects possible inaccuracies in the camera’s optical path. The extrinsic calibration
calculates the camera’s position and orientation relative to a specified point of reference.
The intrinsic camera calibration only needs to be performed once for each camera since
the concerned parameters do not change over time. In contrast, the extrinsic calibration
needs to be repeated every time the cameras are repositioned. To ensure optimal tracking
accuracy, it is best practice to re-calibrate the extrinsic parameters at the beginning of
every tracking session.

4.3.3 Software Architecture

The computer vision algorithm responsible for calculating the 3D positions of the markers
is composed of several modules. Each module fulfills a specific task in the computer vision
pipeline. As a result, the software architecture is a highly flexible structure where every
module can easily be replaced by a different implementation as long as the specifications
are met. Fig. 4.4 illustrates the modular design.

37

4. System Design

Figure 4.4: Software architecture of the optical position tracking component.

Image Acquisition

The image acquisition module is responsible for receiving and forwarding a pair of IR
images. It simultaneously collects the current image frame from both cameras and stores
them in a data structure. In addition, it manages camera identification, maintains the
camera connections, and conducts the extrinsic camera calibration.

38

4.3. Optical Position Tracking Component

Interference Filtering

Ambient light usually contains a significant portion of IR radiation that interferes with
the proper detection of the IR markers. The interference filtering module detects these
interferences in the image frames and filters these regions accordingly.

Blob Detection

The blob detection module receives two filtered images from the previous module and
separates the markers from the dark background. This process is also known as foreground
segmentation. The foreground objects are often called blobs. This module determines the
centroid of every blob and stores their 2D positions in a list. Since the module operates
on a stereoscopic set of images, two lists result.

Stereo Correspondence

The sequential orders of the centroid positions do not necessarily match across the image
sets. Ideally, every list entry of the first image relates to the corresponding list entry of
the second image, i.e. both entries describe the 2D position of the same marker from two
different perspectives. However, due to perspective distortion and partial occlusions, this
best case scenario cannot be guaranteed. Therefore, the stereo correspondence module
determines corresponding list entries and stores them in two new lists.

Perspective Triangulation

Based on the corresponding centroid position pairs, the perspective triangulation module
calculates the 3D positions of the markers and stores them in a list.

Marker Allocation

After calculating the 3D position of the markers, their affiliation to a specific limb
must be determined. In other words, each marker position needs to be allocated to the
corresponding extremity. The marker allocation module addresses this task.

Predictive Filtering

The frame rate of the IR cameras is not high enough to map fast movements smoothly.
Therefore, the predictive filtering module interpolates the position of the markers in-
between two consecutive frames to double the algorithm’s update rate.

Data Transmission

The data transmission module provides a continuous data stream of labeled position
datasets. It alternately transmits the detected or the interpolated position data to the
VR game engine and the hand pose estimation component.

39

4. System Design

4.4 Visual Hand Pose Estimation Component

The visual hand pose estimation component is based on an optical markerless outside-in
tracking system. In contrast to the position tracking system, it does not rely on the
detection of artificial IR landmarks. Instead, it searches for natural features that are
characteristic for the object of interest.

4.4.1 Problem Definition

The hand pose is characterized by the palm and the fingertips. In an ideal scenario,
the pose of the hand is determined by identifying each fingertip as well as the center of
the palm. Based on these features, a virtual model of the hand could mimic the pose
of its real counterpart precisely. However, the implementation of such a sophisticated
markerless hand pose detection component exceeds the scope of a diploma thesis by far.2
Two major issues are partial occlusions of the fingers and general image blurring during
fast movements. In order to facilitate a robust pose tracking algorithm, the problem
definition needs to be slightly adapted.

As a pre-condition, the hand pose estimation algorithm assumes that the climber only
performs a grasping movement that ranges from a fully opened to a firmly closed hand.
During this movement, all fingers carry out a mutual motion. Therefore, it is not necessary
to map each finger individually. Instead, it is sufficient to determine the general opening
width of the hand. In this context, the opening width is defined as the distance between
the fingertips and the center of the palm.

4.4.2 System Setup

To minimize occlusions, each hand is captured from its own perspective. Therefore, a
single RGB camera is integrated in each camera rig. Both cameras cover the full width
of the VreeClimber but only recognize their designated extremity. Just like before, each
perspective is managed by its own software instance running on its own host machine.
Both RGB cameras are calibrated to the same reference point as the IR cameras using
the same calibration algorithm.

4.4.3 Software Architecture

Similar to the optical position tracking component, the hand pose estimation component
is comprised of independent modules that are interconnected via specified interfaces. Fig.
4.5 depicts the algorithmic structure.

2Due to the complexity of optical markerless sensing, even well funded commercially oriented projects
like [41, 30, 73] have been attempting to develop a robust markerless hand detection system for years.

40

4.4. Visual Hand Pose Estimation Component

Figure 4.5: Software architecture of the visual hand pose estimation component.

Image Acquisition

The image acquisition module handles all camera-related tasks of the hand pose estimation
component. It interfaces with an RGB camera and provides the current image frame to
subsequent modules. In addition, it is responsible for the extrinsic camera calibration.
The RGB camera is calibrated with the same reference pattern as the IR camera rigs.

Window Selection

Since the image processing algorithm runs in real-time, every task must be executed as
efficiently as possible. A key factor is the number of pixels that the algorithm operates
on. Therefore, the area in which the hand is searched needs to be reduced to a small
region.

The window selection module receives the 3D position of the concerning hand marker
from the position tracking component. Since all cameras are calibrated to the same
reference point, this 3D position can be mapped directly to a pixel in the RGB image.
The algorithm selects a search area around this pixel and discards the remaining image.

41

4. System Design

Pose Estimation

The pose estimation module contains the image processing algorithm that performs the
markerless hand pose detection. It is comprised of the following tasks.

1. Foreground Segmentation: Separate the hand from the background.

2. Feature Detection: Search for the fingertips and the center of the hand’s back, and
store the image coordinates of these landmarks in a list.

3. Pose Detection: Calculate the hand’s opening width based on the detected features.

Data Transmission

The data transmission module sends the hand pose data to the VR game engine.

4.5 Inertial Orientation Tracking Component
The orientation tracking component uses inertial sensors that are attached to the ex-
tremities to determine their absolute orientation. The sensor unit is connected to a
micro-controller that fuses the raw sensor readings into a 3D orientation value and
transmits this data wirelessly to the VR game engine.

4.5.1 Hardware Architecture

The orientation tracking component has a very simple hardware design (see Fig. 4.6).
It uses an inertial sensor array to measure the inertial forces acting on the device. The
sensor array consists of a 3D accelerometer, a 3D gyroscope and a 3D magnetometer.
It is connected to a micro-controller that calculates the 3D orientation based on the
raw sensor readings. Afterwards, the micro-controller broadcasts the orientation data
wirelessly to the VR game engine.

Figure 4.6: Hardware architecture of the inertial orientation tracking component.

42

4.6. Conclusion

4.5.2 Software Architecture

The software architecture is equally straightforward. At first, the raw sensor data is read
and forwarded to a sensor fusion algorithm which converts the sensor readings into a 3D
orientation value. This value is then transmitted to the VR game engine.

Figure 4.7: Software architecture of the inertial orientation tracking component.

4.6 Conclusion
This chapter presented the design aspects of the VreeTracker. It can be concluded that
the VreeTracker aims at being a high-quality yet cost-effective motion capture system. Its
modular architecture guarantees flexible operating capabilities. The use of off-the-shelf
components ensures an easy replacement of malfunctioning equipment. The double
camera setup facilitates a robust tracking operation.

43

CHAPTER 5
Implementation

The following chapter describes the implementation of the VreeTracker. It is divided
into three distinct sections. The first segment discusses the hardware development
of the camera rig and the wearable markers. The second part presents the software
implementation of the prototype. The third part briefly introduces the VR game engine
and illustrates the interface between the tracking system and the virtual content.

5.1 Hardware Development

5.1.1 Camera Rig

The camera rig consists of multiple optical sensors that capture the user on the VreeClimber.
It contains two IR cameras that operate as a single stereoscopic group. They deliver the
necessary images for the 3D position tracking. Additionally, the camera rig includes an
RGB camera which is used by the visual hand pose estimation component.

IR Cameras

The VreeTracker uses the Logitech C920 webcam [45] as an IR camera. Obviously, a
common RGB webcam does not seem to be an ideal choice. Admittedly, it would be
easier to use a native IR camera. However, aside of the far higher costs, high quality IR
cameras are relatively hard to come by. In contrast, the Logitech C920 can be bought at
almost any electronics store and is offered at a reasonable price. Furthermore, this camera
model performs admirably in terms of quality. It provides high resolution images at an
acceptable frame rate and allows control over many camera parameters. Ultimately, this
webcam is an ideal candidate for a prototypical implementation. Table 5.1 summarizes
its technical specification.

45

5. Implementation

Video Resolution 360p, 480p, 720p, 1080p
Frame Rate 1080p@30fps

Diagonal Field-of-View 78°
Camera Parameters Exposure, Gain, Brightness,

Contrast, Focus, Saturation
Focus Type Auto/Manual

Connection Type USB 2.0

Table 5.1: Logitech C920’s technical specification [46].

The RGB webcam needs to be transformed into an IR camera. As a first step, its IR
suppression filter must be removed. The filter of the C920 is placed directly in front of
the camera sensor behind the camera lens. After carefully removing all screws from the
camera enclosure and cautiously disassembling the webcam piece by piece, the camera
lens needs to be unsoldered from the circuit board. Now, the filter can be cut out gently
with a very fine blade. It is crucial not to damage the image sensor in any way. Even a
small dust particle on the sensor would impair the image quality drastically. Once the
filter is successfully removed, the camera lens can be re-soldered on the circuit board and
the webcam can be re-assembled. Fig. 5.1 illustrates the process.

(a) Original webcam [45]. (b) Circuit board [5]. (c) IR suppression filter [5].

Figure 5.1: Disassembly of the webcam.

At this stage, the image sensor is sensitive to visible and IR light. As a result, ambient
light sources are captured by the cameras which interferes with the correct detection of
the IR markers. Therefore, the visible range of the light spectrum needs to be blocked
with a daylight suppression filter. Fig. 5.2b demonstrates the operation principle. The
VreeTracker uses simple IR pass-filters [6] that are usually attached to SLR cameras
(see Fig. 5.2a). The filter has a cut-off wavelength of approximately 850nm. Fig. 5.2c
depicts a typical filter transmittance curve.

46

5.1. Hardware Development

(a) IR pass-filter [6]. (b) Operation prinicple [77]. (c) Filter transmittance.

Figure 5.2: Characteristics of a daylight suppression filter.

Stereoscopic Camera Group

Two IR cameras are firmly interconnected on an aluminum rail. Together, they form
a stereoscopic camera group. The distance between the cameras defines the baseline
of the projective triangulation. Consequently, the chosen value influences the quality
of the position measurements. The VreeTracker places the cameras at a distance of
approximately two meters to maximize the disparity between both camera views. The
cameras are tilted inwards to capture the same area from two different perspectives.
The camera rig films the VreeClimber from a high and low angle. Both cameras are
intentionally rotated 90° to maximize the coverage of the climbing wall. Fig. 5.3 shows
the camera rig. Fig. 5.4 depicts the resulting image views from the IR cameras.

(a) High angle camera. (b) Low angle camera.

Figure 5.3: Stereoscopic camera group.

47

5. Implementation

(a) High angle view. (b) Low angle view.

Figure 5.4: Stereoscopic camera views.

RGB Camera

In addition to the IR cameras, the camera rig incorporates an unmodified C920 webcam.
This camera is installed at a height of approximately 140cm and covers the whole width
of the climbing wall. Since the camera is only used to capture the user’s hands, the floor
area is not covered by the camera’s field of view. Fig. 5.5 presents the RGB camera’s
perspective.

Figure 5.5: RGB camera view.

48

5.1. Hardware Development

Room Setup

The VreeTracker deploys two mirrored configurations of the camera rig to maximize the
robustness of the optical position tracking component. Both rigs are placed in front of the
climbing wall at a distance of approximately 2.5m. The camera placement corresponds
to the horizontal projection presented in Fig. 4.3b. Fig. 5.6 illustrates the camera rigs in
front of the prototypical test wall.

Figure 5.6: Prototypical setup of the camera rigs.

Intrinsic Camera Calibration

After re-assembling the modified IR cameras and fitting daylight suppression filters to
the camera lenses, the intrinsic camera parameters need to be calibrated. Needless to say,
the same applies to the unmodified RGB cameras. In both cases, Matlab’s Single Camera
Calibration App is used to perform the intrinsic camera calibration. The application
guides the user through a series of steps [56] which are described in the following.

49

5. Implementation

1. Preparation: The camera calibration app uses a checkerboard pattern to calculate
the intrinsic parameters of a connected camera. The application accesses the
live camera feed and takes snapshots at a constant interval. The user needs to
present the pattern to the camera and change the position and orientation of the
checkerboard after every iteration. For optimal results, the algorithm requires
around 20 images. Fig. 5.7a depicts a selection of the captured images.

2. Loading: The user chooses the images that are used in the calibration step. After
specifying the size of the checkerboard elements, the algorithm detects the pattern
in the loaded images and presents the results to the user (see Fig. 5.7b).

3. Calibration: The application calculates the intrinsic camera parameters based on
Zhang’s technique [81].

4. Evaluation: After successfully completing the previous step, the user can evaluate
the results of the calibration. A graph displaying the reprojection errors1 helps
identifying images that deteriorate the quality of the calibration (see Fig. 5.8a).

5. Adjustment: Images with a mean reprojection error higher than one pixel should
be removed from the selection and the calibration step should be repeated without
them. Fig. 5.8b shows the reprojection error graph after refining the image selection.

6. Export: If the calibration passes the evaluation criteria, the computed camera
calibration matrix can be exported and saved as a file.

(a) Calibration images. (b) Detected feature points.

Figure 5.7: Snapshots of the intrinsic camera calibration.

5.1.2 Wearable Tracker

The optical position tracking and inertial orientation tracking components rely on wearable
devices that need to be attached to the user’s wrists and feet. Firstly, the position of the
limbs is tagged with active IR markers. Secondly, the orientation of the extremities is
calculated by inertial sensors. Both features are implemented in one single appliance.

1The reprojection error has been introduced in Ch. 3.1.2. Refer to [56] for additional information on
the reprojection error in connection with intrinsic camera calibration.

50

5.1. Hardware Development

(a) Graph before image exclusion. (b) Graph after image exclusion.

Figure 5.8: Reprojection error graphs.

Active IR Marker

Essentially, the active IR marker consists of an IR LED and a battery. The chosen LED
emits IR light at a wavelength of 940nm. This value is slightly higher than the cut-off
wavelength of the camera’s daylight suppression filter. Consequently, the LEDs are fully
visible to the camera’s image sensor but invisible to the human eye. A series resistor
compensates the voltage mismatch between the LED’s permissible operating voltage and
the supply voltage provided by the battery. A switch interrupts the electric circuit if
required. Fig. 5.9a illustrates the circuit diagram of the active IR marker.

The LED has a viewing angle of approximately 90°. To ensure that the diode is visible
from any direction, the emitted light needs to be scattered evenly with a diffuser. The
company Staedtler produces a white translucent modeling clay called Fimo Effect. It can
be shaped into a small sphere with a silicone form and hardened in an oven at 110°C.
When the LED is inserted into the sphere, the clay gets illuminated from the inside and
uniformly glows in all directions. Fig. 5.9b shows a prototypical IR marker with and
without the diffusor sphere that was developed in the course of a preceding project.

Inertial Orientation Tracker

The inertial orientation tracker is based on Adafruit’s NXP Precision 9DoF breakout
board [4]. It incorporates the FXOS8700, which is a combined triple-axis accelerometer
and magnetometer, and the FXAS21002 triple-axis gyroscope. The raw sensor data
is sent to the Adafruit Feather ESP8266 WiFi micro-controller [3] which performs the
AHRS calculations and wirelessly transmits the orientation data to the VR game engine.
An 800mAh Li-Ion battery powers the sensor module and the micro-controller.

51

5. Implementation

(a) Circuit diagram. (b) Diffuser sphere.

Figure 5.9: Active IR marker.

In addition to the presented hardware components, a rotary encoder determines the ID
of the orientation tracker. The selected value corresponds to the limb that the tracker is
attached to. Consequently, the VR game engine is able to identify the origins of the four
concurrent data streams and allocates the orientation data to the virtual hand or foot
models accordingly. A power switch disconnects the battery from the micro-controller if
needed. Fig. 5.10 illustrates a schematic overview of the inertial orientation tracker.

VR Game Engine

Li-Ion Battery

Inertial Sensors Micro-Controller

Rotary Encoder

Power Switch

Figure 5.10: Schematic overview of the inertial orientation tracker.

Six-Degrees-of-Freedom (6DoF) Tracker

The features of the active IR marker and the inertial orientation tracker are combined into
one single six-degrees-of-freedom (6DoF)2 tracker. In accordance with the requirements,
this appliance needs to be small, light and easy to operate. As a result, minimizing the
outer measurements of the device and choosing very small components are chief concerns.
Fig. 5.11 documents the evolutionary stages of the wearable 6DoF tracker.

2The six-degrees-of-freedom relate to the 3D position and the 3D orientation of the wearable device.

52

5.1. Hardware Development

(a) Proof of concept. (b) First prototype. (c) Final prototype.

Figure 5.11: Evolutionary stages of the wearable 6DoF tracker.

The first stage was an initial proof of concept that helped to evaluate the suitability
of the applied components. The second stage took several findings into account. For
instance, some components were still too large and needed to be replaced. The final
stage streamlined the unit’s complexity. Some features were omitted during this step
because they exceeded the requirements. Fig. 5.12 depicts the circuit diagram of the
final prototype.

Figure 5.12: Circuit diagram of the 6DoF tracker.

As a next step, a 3D model of the tracker’s enclosure was developed. It consists of a top
and bottom element, as well as a universal bracket. Fig. 5.13 illustrates the designs. Fig.
5.14 shows the final enclosure after 3D printing and assembling. For convenience, the
brackets of the hand trackers are sewed directly into sweatbands. The foot markers are
attached to the user with velcro straps.

53

5. Implementation

(a) Top element. (b) Bottom element. (c) Bracket element.

Figure 5.13: 3D models of the tracker’s enclosure.

(a) Tracker enclosure. (b) Hand tracker. (c) Foot tracker.

Figure 5.14: Final 6DoF tracker.

Inertial Sensor Calibration

Inertial sensors need to be calibrated to provide reliable measurements. The sensor model
in use applies factory calibrated gyroscopes and accelerometers. Only the magnetometer
needs to be calibrated by the operator. Since the magnetometer is affected by varying
disruptive factors in close proximity, it needs to be re-calibrated before each tracking
session.

The VreeTracker uses Stoffregen’s motion sensor calibration tool called MotionCal [74].3
The 6DoF tracker’s ID needs to be set to channel 0. At this configuration, the wearable
tracker capsules the raw sensor data in UDP packets and transmits them wirelessly over
the local network to a specifically defined UDP port. The orientation data is encoded in
a simple message that has the following form:

”Raw :< accelraw >,< gyroraw >,< magraw >; ”
3The calibration process has been described in Ch. 3.2.3.

54

5.2. Software Development

It is important to notice that the sensor calibration tool expects the sensor data as a serial
data stream. Therefore, the network packets are sent to an additional microcontroller that
receives the UDP packets, translates them into serial data and forwards the information
to MotionCal. Fig. 5.15 illustrates the data pipeline.

6DoF Tracker

Inertial Sensors

Micro-Controller

Microcontroller

Power Switch

UDP
Packet

Serial Data

MotionCal

Serial
Data MotionCal

Figure 5.15: Data pipeline of the inertial sensor calibration.

5.2 Software Development

5.2.1 Position Tracking

The position tracking component calculates the markers’ 3D position from the stereoscopic
camera views and broadcasts this information over the local network. The source code is
completely written inMatlab, a proprietary programming language licensed byMathWorks
[57]. Matlab provides an image processing toolbox that facilitates the development of the
prototypical software component. Furthermore, Matlab supplies a support package for
USB webcams [58] that allows the algorithm to control the webcams’ camera parameters
and to access the live camera feeds.

Class Diagram

Class Class2

+main()
VreeTracker (UI)

-cameraRig
-markerDetector
-pointTracker
-kalmanFilter
-vrTransmitter
-rgbTransmitter
+ControllerIR(cameraSettings, colorSettings, guiSettings)
+update()

ControllerIR

-camLeft
-camRight
-camMatrix
+CameraRigIR(cameraSettings, colorSettings, recalibrate)
-calibrate()
+setCameraMode(mode)
+getCurrentFrames()

CameraRigIR
-filterMask
-roiMask
-blobAnalyser
+MarkerDetector3D(snapshot, setNewROI)
+setFilter(cameraRig)
-setRoi(snapshot)
+detectMarkers(snapshot)

MarkerDetector3D

-points3D
-tolerance
-isInitialized
+PointFilter3D(tolerance, side)
+initFilter(points3d)
+updateFilter(points3d)

PointFilter3D

-attr ibute
+KalmanFilter()
+updateKalman(points3d)

KalmanFilter

-udpHand
-udpFoot
+NetworkTransmitterVR(ipAddress, portHand, portFoot)
+send(hand3d, foot3d)

NetworkTransmitterVR
-udpHand
+NetworkTransmitterRGB(ipAdress, port)
+sendPosition(hand3d)
+sendPose(value)

NetworkTransmitterRGB

-pointFilter
-cameraMatrix
+PointTracker3D(pointFilter, cameraMatrix)
+trackExtremities(centroids)
+resetPointFilter()

PointTracker3D

Powered By Visual Paradigm Community Edition

Figure 5.16: Class diagram of the position tracking component.

55

5. Implementation

Fig. 5.16 illustrates the class diagram of the position tracking component. The starting
point of the application is the VreeTracker (UI) class. It calls the ControllerIR class
for every iteration of the tracking algorithm. The ControllerIR is responsible for the
algorithmic process. It requests the current camera frames from the CameraRigIR class
and forwards them to the MarkerDetector3D class which returns a list of detected 2D
centroid positions. The controller then hands this list to the PointTracker3D class
which calculates the 3D positions of the markers and keeps track of them individually
with the help of the PointFilter3D class. The labeled 3D positions are passed to the
NetworkTransmitterVR and NetworkTransmitterRGB classes which transmit the position
data to their designated receivers. The position data is also handed to the KalmanFilter
class which interpolates a new set of position values. Like before, this estimated dataset
is then forwarded to the transmitter classes.

User Interface

Figure 5.17: Graphical User Interface (GUI) of the optical position tracking component.

VreeTracker’s position tracking component can be controlled via two different user
interfaces, a GUI and a script-based user interface. As shown in Fig. 5.17, the GUI
offers an intuitive way to interact with the application. It implements the following four
features:

• Camera Rig: As mentioned before, each camera rig runs on its own host computer.
The Camera Rig section lets the operator specify the connected camera rig. As
a result, certain parameters that vary between camera rigs are loaded by the
application.

56

5.2. Software Development

• Camera Mode: The tracking algorithm consists of two stages. In the calibration
stage, the extrinsic parameters of the camera rig are calculated. In the tracking
stage, the tracking algorithm is executed until the user stops the operation. Both
stages apply different camera settings that can be set independently by the operator
in the calibration and tracking sections.

• Calibration Control: The control section provides additional options for the cali-
bration process. A checkbox determines if the calibration settings are loaded from
a file or if the application should re-calibrate the optical tracking system. Similarly,
a second checkbox decides if the Region of Interest (ROI) is loaded from file or
should be re-selected by the operator. The ROI determines the area in front of the
VreeClimber in which the user should be detected.

• Status Signals: Three signal elements indicate the status of the tracking algorithm
(see Fig. 5.18). An orange signal suggests that the algorithm is currently performing
the corresponding step. A green signal indicates that the relating step has been
completed successfully. Accordingly, a red signal reports an error. Steps that have
not been started yet are marked by a grey signal. If all three elements show green
signals, the algorithm has reached the tracking stage.

Figure 5.18: Status signals of the position tracking algorithm.

The script-based user interface provides the same functionality as the GUI. The application
applies predefined parameters and runs automatically after starting the script. If necessary,
these parameters can be adjusted directly in the script. Instead of showing graphical
signals, the script prints the current status to the console.

Calibration Stage

After starting the application, the algorithm calibrates the position tracking system. This
stage consist of the extrinsic camera calibration, the ROI selection and the IR interference
filtering.

Extrinsic Camera Calibration: As a first step, the algorithm calculates the extrinsic
parameters of the IR cameras. Similar to the intrinsic calibration, a checkerboard
pattern is used to determine the relative position and orientation of the cameras. In
contrast to the intrinsic calibration, neither the pattern nor the cameras are moved
during the calibration process. Consequently, a single image from each camera does

57

5. Implementation

suffice. It is important to notice that both camera rigs need to be calibrated to the
identical checkerboard and that the pattern must not be moved until both camera
rigs are fully calibrated. As a result, the position of the checkerboard’s upper left
corner defines the spatial origin for both camera rigs (see Fig. 5.7b).
The calibration pattern only reflects a small amount of surrounding IR light and
does not emit any IR light directly. Therefore, the camera parameters need to be
adjusted. The exposure, contrast and gain settings are set to a level where the
cameras can capture the pattern clearly. Fig. 5.19 illustrates the resulting images.

Figure 5.19: Stereoscopic IR camera views during the calibration stage.

ROI Selection: The images from the extrinsic camera calibration are sequentially
presented to the operator, so that the ROI can be selected (see Fig. 5.20). The
operator simply marks the corners of the designated tracking area with the mouse
cursor. Every image pixel outside the ROI is set to black. Thereby, potentially
disruptive factors outside the designated tracking area are removed.

Figure 5.20: ROI selection.

IR Interference Filtering: IR interferences within the tracking area also need to be
filtered. The camera parameters are set to a level where only strong ambient IR
light and IR emitting light sources are visible to the image sensors. The calibration
algorithm automatically detects IR interferences by assuming that every detection
of IR light during the calibration stage constitutes an interference.

58

5.2. Software Development

The empty tracking area is captured for several seconds and a stereoscopic binary
image is calculated from every camera frame. The foreground pixels in the binary
image correspond to detections of IR light. The foreground pixels are dilated slightly
and summed up across all image frames. By inverting the resulting stereoscopic
binary image, the detected interferences are expressed as small black spots on an
otherwise white canvas. Fig. 5.21 depicts the stereoscopic filter mask that combines
the ROI selection with the IR interference filter.

Figure 5.21: Filter mask that combines the ROI selection with the IR interference filter.

During the tracking stage, every stereoscopic image frame is multiplied with the filter
mask. As a result, the area outside the ROI and the static IR interferences are filtered
successfully.

Tracking Stage

If the system calibration was successful, the application enters the tracking stage. The
following section describes the algorithmic process which is orchestrated by the IR
Controller. The controller class acts as a link between the user interface and the business
logic.

Marker Detection: After requesting the current image frames from the stereoscopic
camera group, the controller instructs the Marker Detector to perform the blob
detection. The detector binarizes the IR images at a very low threshold to separate
the markers from the dark background. In addition, it filters the previously detected
IR interferences and removes all blobs that lie outside the ROI. Consequently, all
remaining blobs can be safely classified as markers. The marker detector calculates
the centroid of every remaining blob in the stereoscopic image and stores these 2D
position values as stereoscopic list entries.

Projective Triangulation: As a next step, the projective triangulation needs to be
performed by the Point Tracker. In this context, solving the stereo correspondence
problem is essential. Based on the fact that each camera rig only tracks one side of
the user’s extremities, this challenge can be handled with a brute force approach.

59

5. Implementation

Depending on the camera rig’s side, the point tracker selects the two left (or right)
centroids from both camera frames and calculates the projective triangulation for
all four combinations. Wrong combinations can then be excluded by detecting two
types of defects:

• High Reprojection Error: A wrong combination of stereoscopic centroids
typically shows a high reprojection error. The point tracker excludes all
combinations that exhibit a reprojection error of more than a few millimeters.

• Invalid 3D Position: If two stereoscopic centroids lie on the same epipolar
line by coincidence, they exhibit a negligible reprojection error despite being
unrelated. However, their projective triangulation results in a 3D position
that lies outside the tracking area. For instance, the calculated 3D position
might lie behind the climbing wall. These combinations can also be excluded.

Marker Allocation: The calculated 3D positions need to be allocated to their cor-
responding limbs. The Point Filter distinguishes two possible scenarios. If the
markers have been detected for the first time, then the point filter assumes that the
upper point relates to the hand and the lower point corresponds to the foot. These
position values are stored for future reference. In subsequent iterations, the point
filter compares the new 3D points to their last known positions. If the distance
between the old and the new point falls below a tolerance threshold, the 3D point
can be allocated and the stored value is updated. Consequently, if a specific marker
is temporarily occluded during tracking, the point filter expects it to reappear in
close proximity.

Predictive Filtering: Every calculated 3D position value is transmitted to a Kalman
Filter which predicts a new position value in-between two consecutive camera
frames. This motion-compensated frame interpolation doubles the update rate of
the optical tracking system and guarantees smooth motions.

Data Transmission: The labeled position data is broadcasted over the local network
by the Network Transmitters. Similar to the inertial sensor calibration process, each
3D position is encoded in a message and encapsulated in a UDP packet. The VR
Transmitter sends the position data of the hand and foot to the VR game engine.
By using pre-assigned UDP ports, the game engine can easily allocate the data to
the corresponding extremity.4 The RGB Transmitter sends the hand position data
to the hand pose estimation component.

4As an example, the left hand position data is transmitted over UDP port 2005 and the left foot
position data is transmitted over UDP port 2006.

60

5.2. Software Development

5.2.2 Hand Pose Estimation

The hand pose estimation component determines the opening width of the climber’s hand.
Initially, it was intended to integrate this feature in the position tracking component.
Due to performance issues, the modules needed to be separated. As a result, both
components show many similarities. For instance, the hand pose estimation component
is also written in Matlab, it consists of a calibration and a tracking stage, and has an
analogous algorithmic structure. In addition, it also offers a GUI as well as a script-based
user interface.

Class Diagram

Class Class2

+main()
VreeTracker (UI)

-cameraRig
-rgbTracker
-rgbReceiver
-vrTransmitter
+ControllerRGB(cameraSettings, colorSettings, guiSettings)
+update()

ControllerRGB

-rgbCamera
-camMatrix
+CameraRigRGB(cameraSettings, colorSettings, recalibrate)
-calibrate()
+getCurrentWindow(point3d)

CameraRigRGB
-udpHand
+NetworkReceiverRGB(remHost, localPort)
+receive()
+decodeMessage()

NetworkReceiverRGB

-udpHand
+NetworkTransmitterRGB(ipAdress, port)
+sendPosition(hand3d)
+sendPose(value)

NetworkTransmitterRGB

-handCenter
-fingerTips
+RgbTracker(windowSize)
+updateHandpose(window)

RgbTracker

Powered By Visual Paradigm Community Edition

Figure 5.22: Class diagram of the hand pose estimation component.

Fig. 5.22 illustrates the class diagram of the hand pose estimation component. Similarly
to the position tracking component, the entry point of the application is the VreeTracker
(UI) class. At startup, it initializes the ControllerRGB class, which then instructs the
NetworkReceiverRGB class to wait for incoming UDP messages. As soon as a new
packet arrives, the receiver extracts the position data from the message and hands
the information to the controller. The controller requests the RGB window around
the received 3D point from the CameraRigRGB class and forwards the image to the
RgbTracker class. The RGB tracker processes the image and returns a numeric hand
opening width parameter to the controller. The controller forwards the value to the
NetworkTransmitterRGB class which sends the pose information to the VR game engine.

Calibration Stage

In the calibration stage, the application performs the extrinsic calibration of the RGB
camera. The webcam is calibrated to the identical pattern as the IR cameras. This fact
becomes relevant in the tracking stage. It is important that the checkerboard is not
moved between the calibration of both components. Despite them running on different
host computers, they should be considered a single unit.

61

5. Implementation

Tracking Stage

Data Reception: When the application enters the tracking stage, it waits for incoming
UDP packets from the position tracking component. The expected packets contain
the 3D position of a single hand. As soon as a packet arrives, the Network Receiver
extracts the position data from the message and forwards the information.

Window Selection: The RGB Controller uses the 3D hand marker position to narrow
down the search area for the hand. As mentioned before, all cameras are calibrated
to the same checkerboard pattern. Therefore, the 3D position of the hand marker
can be translated directly to an image pixel in the RGB image. The controller
requests a small image section around the received 3D position from the Camera Rig
and sends it to the RGB Tracker. This image detail is henceforth called window.

Skin Segmentation: The RGB tracker is responsible for estimating the hand’s opening
width. The implemented algorithm is largely inspired by the work of Yeo et al.
[79]. As a first step, the hand must be detected in the color image. The algorithm
transforms the RGB window into the Y CbCr color model to detect the skin of the
climber’s hand. As Fig. 5.23 shows, the Cb color channel successfully separates the
hand from the climbing wall, but also highlights the climbing grips and the user’s
clothing. In contrast, the Cr color channel highlights everything except the climbing
grips and the clothing. After combining both color channels and performing some
minor morphological operations, the hand can be separated from the background
efficiently.

(a) RGB image. (b) Cb color channel. (c) Cr color channel. (d) Binary image.

Figure 5.23: Comparison of the original image with the Y CbCr color channels.

Palm Detection: Several natural landmarks, also known as feature points, are detected
in the binary image. First of all, the center of the palm acts as a base point. It
can be determined by selecting the foreground pixel with the highest Euclidean
distance to any background pixel.5 The palm radius, which is defined as the
Euclidean distance from the palm center to the nearest background pixel, is the

5This assumption might be incorrect if the arm runs through a corner of the image. Therefore, a
binary circular mask is used to remove the corners from the image. When inspecting Fig. 5.23d closely,
the edge of the circular mask can be discovered at the bottom of the image.

62

5.2. Software Development

second important feature point. The line segment between the palm center and the
IR marker6 defines the orientation of the arm. This detail will be important in the
next step. Fig. 5.24a illustrates these palm features.

Fingertip Detection: The fingertips need to be detected in the window. The algorithm
uses the morphological thinning operation to reduce the hand to a network of single-
pixel lines (see Fig. 5.24b). The endpoints of this network represent the humps of
the foreground object (see Fig. 5.24c). To exclude false positive detections, the
hand is rotated counter clockwise by the orientation of the arm.7 As a result, all
fingertips lie above the palm center regardless of the original orientation of the arm.
By eliminating all endpoints below the palm center, only the fingertips remain. Fig.
5.24d shows the final result.

Hand Pose Estimation: The VreeTracker expresses the hand pose as the opening
width of the hand. In the context of this thesis, the opening width is defined as
the median distance from the palm center to the fingertips minus the palm radius.
Thereby, a closed fist has an opening width of almost zero. The maximum opening
width is stated in pixels.

Data Transmission: Like the 3D position data, the hand pose value is transmitted to
the VR game engine in form of UDP packets.

(a) Palm features. (b) Morph. thinning. (c) Endpoints. (d) Fingertips.

Figure 5.24: Feature points detection.

5.2.3 Orientation Tracking

The orientation tracking component reads the raw sensor data from the inertial sensor
array, fuses the readings into a 3D orientation value and transmits this information
wirelessly over the local network to the VR game engine. Since the 6DoF tracker uses an
Arduino-compatible micro-controller, the source code of the component is written in the

6Since the window is selected around the hand marker, it is per definition located at the center of the
binary image.

7In fact, only the feature points are rotated by the orientation of the arm. Rotating the binary image
would be computationally expensive and is performed for demonstration purposes only.

63

5. Implementation

Arduino language [7]. The orientation tracking algorithm is very simple. It is composed
of the following stages:

Initialization: After switching on the 6DoF tracker, several hardware components are
initialized. The magnetometer is calibrated based on the values from the inertial
sensor calibration. The micro-controller connects itself to the local wireless network.
Finally, the tracker’s ID is read from the rotary encoder.

Tracking: As soon as the hardware components are set up, the algorithm starts reading
raw sensor values from the inertial sensors. The data is forwarded to the Mahony
Filter which calculates the 3D orientation from the raw sensor readings and outputs
the information as quaternions.

Data Transmission: Like the 3D position data and the hand pose, the 3D orientation
data is encoded in a message, encapsulated in a UDP packet, and sent to the VR
game engine over the local network. The tracker ID determines the UDP port of
the transmission.

5.3 Virtual Environment

The VreeClimber utilizes Unity [76] as its VR game engine. Generally speaking, the
game engine forms the link between the real world and the virtual environment and is
the central component of every VR application. It serves as a tool to create the virtual
content and lets the climber immerse in the artificial world. Furthermore, it applies the
VreeTracker’s motion data to control the virtual avatar. Fig. 5.25 illustrates the GUI.

In the course of implementing the VreeTracker, a rudimentary environment was developed
to demonstrate the tracking system. Simple hand and shoe models mimic the movements
of the climber. The following features are realized by the game engine:

Data Reception: A multi-threaded UDP receiver decodes incoming messages from the
VreeTracker and translates the information into position, orientation, and hand
pose values. Every data stream runs in its own thread and is expected on an
individual UDP port. As a result, ten concurrent data streams can be processed
simultaneously.

Model Control: Every data stream manages one aspect of a single object. Each shoe
model is operated by two data streams. One controls the position of the model,
the other one determines its orientation. In addition, each hand model receives the
hand pose information via a third data stream.

64

5.4. Conclusion

Figure 5.25: Unity’s GUI.

5.4 Conclusion
This chapter discussed the implementation of the VreeTracker. It elaborated on the
hardware modifications that converted four common RGB webcams into a set of two
stereoscopic IR cameras rigs and described the development of the wearable trackers.
Furthermore, the algorithmic interplay of the tracking processes was illustrated and the
interface between the VreeTracker and the VR game engine was outlined.

65

CHAPTER 6
Evaluation

After concluding the implementation of the VreeTracker, the quality of the motion capture
system is evaluated. To ensure an objective assessment of the results, the HTC Vive is
used as a state-of-the-art reference system. Common spatial and temporal performance
metrics form the core of the analysis. Furthermore, the robustness of the VreeTracker is
inspected. Finally, the performance of the hand pose estimation component is discussed.

6.1 Setup and Methodology

6.1.1 Spatial Performance Metrics

Accuracy and precision form two major performance metrics of the tracking system. The
positional accuracy is determined by placing an IR marker in a resting position and
comparing the calculated 3D positions from both camera rigs.1 The positional precision
is verified by tracking a resting marker for the duration of one minute and analyzing the
recorded data. The orientational tracking component is evaluated similarly. The 6DoF
tracker is placed on a resting platform and the angular output over time is inspected.
Since there is no technique at hand that is capable of measuring the angular accuracy
within the sub-degree range, this metric should be evaluated qualitatively in a subsequent
project.

Furthermore, the behavior of moving tracking components is evaluated. A rotating
platform, which the author of this thesis developed as part of a side project, ensures
a consistent and repeatable movement. By placing the IR marker on the edge of the
platform (see Fig. 6.1a), a circular movement is performed and the resulting position
data can be recorded. If the 6DoF tracker is placed at the center of the platform (see
Fig. 6.1b), the continuous rotation around its own axis is registered.

1By definition, the output of both stereoscopic camera systems should be identical since they are
calibrated simultaneously to the same checkerboard pattern.

67

6. Evaluation

(a) Positional setup. (b) Orientational setup.

Figure 6.1: Marker setup during spatial performance evaluation.

6.1.2 Temporal Performance Metrics

The update rate and the latency are important temporal metrics that need to be evaluated.
The update rates of the tracking components are predetermined by the update rates of
the position tracking and sensor fusion algorithms. The latency is calculated by taking
timestamp measurements in-between individual steps of the corresponding algorithm.

6.1.3 Tracking Robustness

The tracking robustness is affected by two potential issues. Firstly, occlusions are a chief
concern with any optical tracking system. In the case of the VreeTracker, the climber’s
hands might be obscured by the torso. Therefore, the borders of this dead zone are
experimentally established and marked at multiple positions of the climbing wall (see
Fig. 6.2). Secondly, potential packet loss during the network-based data transmission is
analyzed by sending a predefined number of data packets over the wireless network and
counting the number of received packets at the second endpoint.

Figure 6.2: Subject determining the area of occlusion in front of the body.

68

6.2. Spatial Performance

6.2 Spatial Performance

6.2.1 Positional Accuracy

The mean distance between the calculated 3D positions of both camera rigs is 3.2mm.
This value corresponds to an accuracy of ±1.6mm. Further analysis reveals that the
mean horizontal and vertical distances between both data sets are only 1.4mm. However,
the distance along the depth axis amounts to 2.6mm. These values indicate that the
depth calculation of the position tracking component operates slightly worse than the
horizontal and vertical position tracking. In comparison, the HTC Vive shows an accuracy
of ±1mm [37].

6.2.2 Positional Precision

The jitter along the horizontal, vertical and depth axes amount to ±0.4mm, ±0.26mm
and ±0.75mm. These values result in a 3D jitter of ±0.8mm. Again, the depth calculation
of the optical tracking system marginally deteriorates the overall precision. According to
[37], the Vive shows a precision of ±0.15mm. However, tested under the same condition
as the VreeTracker, the HTC Vive controller appears to have a jitter of ±0.88mm,
±0.68mm and ±0.42mm along the horizontal, vertical and depth axes. Puzzled by these
contradicting statements, the distribution of the individual measurements is investigated.
As Fig. 6.3 shows, most measurements of the VreeTracker’s position tracking component
accumulate in 2-3 discrete values. This surprising effect is probably caused by a rounding
error during the blob detection when the 2D centroid positions of the blobs in the
2D image views are calculated. In contrast, the Vive’s measurements are distributed
continuously (see Fig. 6.4). As the second figure further shows, most measurements of
the Vive’s tracking system are accumulated in a small neighborhood. Still, based on the
available data, the precision value stated by [37] cannot be re-created.

Fig. 6.5 illustrates the position data of the IR marker on the rotating platform. Fig. 6.5a
depicts the data recorded during a horizontal rotation. It corresponds to a horizontal
projection which omits the vertical axis by definition. Fig. 6.5b illustrates the data
recorded on a vertically rotating platform. Therefore, the second image conforms to a
vertical projection that ignores the depth axis. As a result, the figure removes the depth
component from the illustration. The first image confirms the VreeTracker’s elevated
jitter values along the depth axis. When comparing both circles, the line in Fig. 6.5b
shows a sharper contour.

A close examination of the Vive’s horizontal rotation (see Fig. 6.6) reveals two facts. On
the one hand, the Vive provides a higher update rate than the VreeTracker which lets
the data points appear as a solid line. Furthermore, the blue circle drawn by the Vive
appears to suffer from less jitter than the VreeTracker. An overlay of both circles2 proves
the Vive’s superiority in terms of precision while moving (see Fig. 6.7). The reason for
the Vive’s poor accuracy results while resting remains unclear.

2To allow a direct comparison, both circles have been scaled to a radius of 1.

69

6. Evaluation

Figure 6.3: 3D histogram of VreeTracker’s positional tracking data.

Figure 6.4: 3D histogram of Vive’s positional tracking data.

70

6.2. Spatial Performance

(a) Horizontal rotation. (b) Vertical rotation.

Figure 6.5: VreeTracker’s positional data while moving on a rotating platform.

Figure 6.6: Vive’s positional data while moving on a horizontally rotating platform.

(a) Overview. (b) Section.

Figure 6.7: Comparison of the VreeTracker’s and Vive’s positional data.

71

6. Evaluation

6.2.3 Orientational Precision

The inertial orientation tracking component of the VreeTracker shows a precision of
±0.25°, ±1.15° and ±0.44° along the x-, y- and z-axes. In contrast, the Vive exhibits
a precision of ±0.18°, ±0.12° and ±0.2°. As Fig. 6.8 indicates, the VreeTracker’s
orientational jitter is more or less uniform along the time axis. The high jitter value
illustrated by the green line might be caused by an electromagnetic field that interferes
with the magnetometer readings. When analyzing the Vive’s measurements over time
(see Fig. 6.9), it becomes clear that the precision result is influenced by a continuous drift
along all three axes. The actual jitter appears to be even better than the measurement
over the course of one minute indicates.

Figure 6.8: VreeTracker’s orientational tracking data while resting still.

Figure 6.9: Vive’s orientational tracking data while resting still.

72

6.2. Spatial Performance

The orientational tracking data of the moving, i.e. rotating, 6DoF tracker supports the
hypothesis of the previous experiment. While the Vive’s data shows a continuous rotation
around the controller’s axis (see Fig. 6.11), Fig. 6.10 indicates that the orientation
tracking component of the VreeTracker might be influenced by an electromagnetic field.
As the image illustrates, the tracking data suddenly drifts away from the expected course
for several measurements before eventually returning to a regular state.

Figure 6.10: VreeTracker’s orientational tracking data while rotating around an axis.

Figure 6.11: Vive’s orientational tracking data while rotating around an axis.

73

6. Evaluation

6.3 Temporal Performance

6.3.1 Update Rate

The IR cameras used by the optical position tracking component deliver a frame rate of
30fps. With the help of predictive filtering, the VreeTracker outputs 60 new position
values per second. The orientation tracking component calculates approximately 75
values per second. In comparison, the controller of the HTC Vive delivers an update rate
of 366Hz [37]. However, the attentive reader needs to bear in mind that the Vive’s HMD
and the VR game engine have a frame rate of only 90Hz. Therefore, the high update
rate of the controller primarily offers advantages in terms of data stabilization.

6.3.2 Latency

The VreeTracker’s position tracking component has an algorithmic latency of approxi-
mately 7.5ms. A closer examination reveals that the blob detection takes 6ms to calculate.
Consequently, the remaining steps of the algorithm require only 1.5ms of time. However,
since the cameras’ frame rate is only 30Hz, the algorithm waits for approximately 24ms
before it receives new images from the cameras. The orientation tracking component
requires 2ms to process the raw sensor data.

The second source of latency is the network transmission itself. The duration of a
transmission roundtrip over the localhost is essentially zero. The roundtrip between
two hosts connected over a wired network connection takes 1ms on a state-of-the-art
gigabit router and 3ms on an entry-level 100-mbit device. A roundtrip over a wireless
connection takes approximately 7ms. Therefore, the transmission of the position data
from the VreeTracker to the VR game engine is free of any additional latency as long
as both applications run on the same host. If the game engine runs on a different host
that is connected over wired ethernet, a latency of approximately 0.5ms is added due to
the transmission over the network. Since the orientation data is transmitted wirelessly
between the 6DoF trackers and the VR game engine, a latency of 3.5ms is added to the
overall latency.

6.4 Robustness

6.4.1 Occlusions

If the climber places the hand in front of the torso, the line-of-sight between the IR
marker and the IR cameras might be blocked. As Fig. 6.12 illustrates, the area in which
the marker is no longer detected depends on the user’s position on the climbing wall.
The yellow outline marks the contour of the climber’s body. The green area indicates
that a marker is detected by the right camera rig. The red area states that a marker
is visible to the left camera rig. Consequently, markers that lie in the orange area are
detected by both camera rigs. The black area marks the dead zone where both camera
rigs lost their line-of-sight. When standing centrally in front of the wall, the dead zone

74

6.4. Robustness

is symmetrically in front of the torso and amounts to approximately one third of the
shoulder width. When moving to the sides of the climbing wall, the dead zone shifts
outwards. While the width of the dead zone decreases significantly on the right side, it
remains unchanged on the left side. This might be caused by a slightly asymmetrical
positioning of the camera rigs.

Figure 6.12: Areas of occlusion in front of the climbing wall.

As with any optical tracking system, Vive’s tracking robustness strongly depends on
the positioning of the lighthouses as well as the concrete application site. Extensive
experimentation, during wich any feasible combination of lighthouse positions is tested3,
reveals one major drawback of the motion capture system. Due to the fact that the Vive
currently only supports the simultaneous use of two lighthouses, maintaining a direct
line-of-sight to all four extremities and the HMD is not possible. Even when performing
regular and simple climbing motions, either the HMD or at least one of the limb trackers
looses the direct line-of-sight at some point during the evaluation.

6.4.2 Packet Loss

Packet loss, especially when transmitting UDP packets wirelessly over the network, is one
final source of error. In contrast to TCP, the communication over UDP does not involve
any error control. 60 UDP packets per second are sent wirelessly from a 6DoF tracker
to the VR game engine for ten minutes. In total, 36.000 data packets are transmitted
without any packet loss.

3Tested configurations include multiple setups where both lighthouses are above, below, or laterally
next to the climber, a diagonal line-up where one lighthose is above and the other one is below the user
as well as a constellation where both lighthouses are situated behind the participant.

75

6. Evaluation

6.5 Hand Pose Estimation Component
Although the hand pose estimation component showed promising results during develop-
ment and early testing, it turned out that the image processing algorithm is not efficient
enough to run in real-time. Consequently, the hand pose estimation component cannot
handle the workload dictated by the position tracking component and rapidly falls behind.
As a result, the latency of the hand pose data increases with every frame.4 After one
minute of tracking, the latency already amounts to over a second. Therefore, the hand
pose estimation component is not operational at this point of development.

However, aside of this temporal constraint, the hand pose estimation algorithm performs
admirably in terms of skin detection as well as the subsequent feature point identification.
At this point, the color-based skin detection is only tested with caucasian participants.
Deviating results are to be expected with different skin tones and should be investigated
in future works.

With the help of the binary circlular mask, the palm center is steadily detected by the
algorithm and proves to be a stable anchor point. The palm radius successfully subtracts
the size of a closed fist from the calculation. As a result, the difference between a closed
fist and a fully opened hand is maximized. At least three different endpoints, i.e. fingers,
are successfully recognized most of the time. Problematic situations which deteriorate
the success rate occur during fast movements5 and partial hand occlusions by foreign
objects.

6.6 Conclusion
This chapter presented the evaluation of the VreeTracker. It objectively compared
the VreeTracker’s key metrics with a state-of-the-art motion capture system. As a
conclusion, it can be stated that the VreeTracker shows satisfactory results in many
concerns. Especially the quality of the optical position tracking component must be
emphasized. As an unresolved issue, the temporal constraint of the hand pose estimation
component has been portrayed.

4The increasing latency is caused by the fact that the pose estimation component attempts to
determine a new hand pose for every hand position received from the position tracking component.
Naturally, the pose estimation component could only process the latest data entry from the position
tracker and discard the rest. However, the update rate would still be far too low for reasonably fast pose
adaptions.

5Based on minor testing with different webcams, affordable cameras generally appear to suffer from
image blurring during fast object movements.

76

CHAPTER 7
Conclusions and Future Work

This thesis discussed the development of the VreeTracker, a hybrid motion capture
system that detects a user’s movements on a revolving climbing wall. Following the latest
state-of-the-art, a novel solution was presented that not only combines optical position
tracking with inertial orientation sensing, but also attempts to determine the climber’s
hand poses by a markerless approach. The resulting prototype is embedded in a VR
climbing application that fuses the opportunities of a virtual climbing adventure with
the haptic interaction on a real climbing wall.

All hardware components are based on highly affordable, easily available, off-the-shelf de-
vices. Nevertheless, the evaluated performance metrics demonstrate that the VreeTracker
is able to keep up with commercially available products in many regards. Especially the
performance of the optical position tracking system exceeded the author’s expectations.
Understandable hardware deficiencies are successfully compensated by well-established
algorithms. An independent double camera setup minimizes the area in which occlusions
affect the robustness of the tracking application.

During the development phase, noteworthy restrictions induced by the applied consumer
hardware emerged as multiple cameras were connected to the same host computer.
Despite extensive testing, all efforts to run all four IR cameras on one computer proved
futile. As soon as three or more cameras were connected via USB, the frame rate delivered
by the webcams fluctuated increasingly. As a consequence, the 2D image views from
the individual cameras did no longer match which rendered the precise 3D position
calculation impossible. In the spirit of evolutionary prototyping, the system architecture
was adapted and a distributed system was developed.

The greatest difficulties during hardware development were caused by the magnetometer.
The initial proof-of-concept used a different motion sensor that outputted highly stable and
very precise orientation data. However, as soon as all necessary hardware components were
arranged in close proximity, the magnetometer was strongly affected by electromagnetic

77

7. Conclusions and Future Work

interferences. Since said sensor performed all calibrations autonomously, this issue could
not be resolved satisfactorily. The AHRS that was ultimately used could not compete in
terms of precision or output stability but was less vulnerable for interfering influences.

Unfortunately, the implementation of the markerless hand pose estimation component
reached its limits when the software module was integrated in the overall process. The
developed feature point detection algorithm was not efficient enough to achieve the
expected update rate. Apart from this temporal performance constraint, the approach
showed promising results and should be pursued further.

Due to the complexity of the chosen topic, this thesis can only establish a baseline within
a state-of-the-art computer vision field. Especially the development of a stable markerless
hand pose detection solution presents an interesting problem definition that will be the
focus of many future projects. Without any claim of completeness, the following research
questions come to mind:

Color-based skin detection: Does the color-based skin detection deviate among dif-
ferent skin tones? If so, can the skin detection algorithm autonomously calibrate
itself to the current participant?

Performance optimization: How can the general processing performance of the hand
pose estimation component be improved? Would a shape-based hand detection
algorithm offer advantages regarding partial occlusion and motion blur handling?

3D hand pose detection: Is it feasible to estimate the hand poses with the help of
stereoscopic depth cameras?

78

List of Figures

1.1 Evolutionary stages of the VreeClimber. 2

2.1 Comparison of corresponding RGB and IR images (different camera angles). 6
2.2 Components of the ioTracker [68]. 10
2.3 Constellation pattern on the Oculus Rift [29]. 11
2.4 HTC Vive’s Lighthouse. 12
2.5 HTC Vive’s HMD [28]. 13

3.1 The electromagnetic spectrum [24]. 15
3.2 Emission spectra of common light sources [71]. 16
3.3 The pinhole camera model [59]. 17
3.4 Types of radial lens distortion [59] . 19
3.5 Calibration pattern showing detected feature points. 20
3.6 The epipolar geometry [59]. 21
3.7 The Kalman filter’s feedback loop (based on [11, 80]). 22
3.8 Occlusion handling using the Kalman filter [55]. 22
3.9 Magnetometer calibration. 25
3.10 Euler angles demonstrated on an triaxial gimbal [23]. 26
3.11 An RGB image splitted into individual color channels (based on [78]). . . 27
3.12 An Y CbCr image composed of the luminance and chroma channels [78]. . 27
3.13 Overview of structuring elements [72]. 28
3.14 Primitive operations of image morphology [72]. 29

4.1 Comparison of the real world and the virtual view. 32
4.2 System overview. 35
4.3 Horizontal projection of the tracking area. 36
4.4 Software architecture of the optical position tracking component. 38
4.5 Software architecture of the visual hand pose estimation component. 41
4.6 Hardware architecture of the inertial orientation tracking component. . . 42
4.7 Software architecture of the inertial orientation tracking component. . . . 43

5.1 Disassembly of the webcam. 46
5.2 Characteristics of a daylight suppression filter. 47
5.3 Stereoscopic camera group. 47

79

5.4 Stereoscopic camera views. 48
5.5 RGB camera view. 48
5.6 Prototypical setup of the camera rigs. 49
5.7 Snapshots of the intrinsic camera calibration. 50
5.8 Reprojection error graphs. 51
5.9 Active IR marker. 52
5.10 Schematic overview of the inertial orientation tracker. 52
5.11 Evolutionary stages of the wearable 6DoF tracker. 53
5.12 Circuit diagram of the 6DoF tracker. 53
5.13 3D models of the tracker’s enclosure. 54
5.14 Final 6DoF tracker. 54
5.15 Data pipeline of the inertial sensor calibration. 55
5.16 Class diagram of the position tracking component. 55
5.17 GUI of the optical position tracking component. 56
5.18 Status signals of the position tracking algorithm. 57
5.19 Stereoscopic IR camera views during the calibration stage. 58
5.20 ROI selection. 58
5.21 Filter mask that combines the ROI selection with the IR interference filter. 59
5.22 Class diagram of the hand pose estimation component. 61
5.23 Comparison of the original image with the Y CbCr color channels. 62
5.24 Feature points detection. 63
5.25 Unity’s GUI. 65

6.1 Marker setup during spatial performance evaluation. 68
6.2 Subject determining the area of occlusion in front of the body. 68
6.3 3D histogram of VreeTracker’s positional tracking data. 70
6.4 3D histogram of Vive’s positional tracking data. 70
6.5 VreeTracker’s positional data while moving on a rotating platform. 71
6.6 Vive’s positional data while moving on a horizontally rotating platform. . . 71
6.7 Comparison of the VreeTracker’s and Vive’s positional data. 71
6.8 VreeTracker’s orientational tracking data while resting still. 72
6.9 Vive’s orientational tracking data while resting still. 72
6.10 VreeTracker’s orientational tracking data while rotating around an axis. . 73
6.11 Vive’s orientational tracking data while rotating around an axis. 73
6.12 Areas of occlusion in front of the climbing wall. 75

80

List of Tables

5.1 Logitech C920’s technical specification [46]. 46

81

Acronyms

3D three-dimensional. 3, 17, 20, 21, 23, 26, 35–37, 39, 41–43, 45, 52, 53, 55, 56, 60–64,
67, 69, 77, 78

6DoF six-degrees-of-freedom. 52, 54, 63, 64, 67, 73–75

AHRS Attitude and Heading Reference System. 8, 24, 26, 51, 78

DoF Degree of Freedom. 2

GUI Graphical User Interface. 56, 57, 61, 64, 65, 80

HMD Head-Mounted Display. 2, 10–13, 31, 74, 75

IMU Inertial Measurement Unit. 8, 11, 13, 24

IR infrared. 5–7, 9, 11, 12, 15, 16, 35–41, 45–52, 57–59, 61, 63, 65, 67, 69, 74, 77, 80

NIR Near Infrared. 5, 15, 16, 37

ROI Region of Interest. 57–59, 80

UV ultraviolet. 15, 16

VE Virtual Environment. 1

VR Virtual Reality. 1, 2, 4, 5, 8–10, 31, 35, 39, 42, 43, 45, 51, 52, 60, 61, 63–65, 74, 75,
77

83

Bibliography

[1] A. Davies. Oculus Rift Vs. HTC Vive Vs. PlayStation VR.
http://www.tomshardware.co.uk/vive-rift-playstation-vr-
comparison,review-33556-6.html, Accessed: 2017-12-15.

[2] Adafruit. Magnetometer Calibration. https://learn.adafruit.com/
ahrs-for-adafruits-9-dof-10-dof-breakout/magnetometer-
calibration, Accessed: 2018-01-06.

[3] Adafruit. Adafruit Feather HUZZAH with ESP8266 WiFi. https://
www.adafruit.com/product/2821, Accessed: 2018-02-25.

[4] Adafruit. Adafruit Precision NXP 9-DOF Breakout Board. https://
www.adafruit.com/product/3463, Accessed: 2018-02-25.

[5] ALCS. Logitech C910 and C920 IR (Infrared) conversion for nightvi-
sion. http://www.alcs.ch/logitech-c910-infrared-conversion-for-
nightvision.html, Accessed: 2018-02-18.

[6] Amazon. Neewer 58mm Infrared IR 850nm Filter For Canon Digital
Rebel. https://www.amazon.co.uk/Neewer-Infrared-850Nm-Filter-
Digital/dp/B003TY3CQS, Accessed: 2018-02-19.

[7] Arduino. Arduino IDE. https://www.arduino.cc/en/Main/Software, Ac-
cessed: 2018-03-17.

[8] D. Bartlett. Essentials of positioning and location technology. Cambridge University
Press, 2013.

[9] S. J. Biggs and M. A. Srinivasan. Haptic interfaces. In Handbook of Virtual
Environments, pages 93–116. Taylor & Francis, 2002.

[10] BiPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. International vocabulary
of metrology – basic and general concepts and associated terms, 2008. JCGM, 200,
2008.

[11] G. Bishop and G. Welch. An introduction to the kalman filter. Proc of SIGGRAPH,
Course, 2001.

85

http://www.tomshardware.co.uk/vive-rift-playstation-vr-comparison,review-33556-6.html
http://www.tomshardware.co.uk/vive-rift-playstation-vr-comparison,review-33556-6.html
https://learn.adafruit.com/ahrs-for-adafruits-9-dof-10-dof-breakout/magnetometer-calibration
https://learn.adafruit.com/ahrs-for-adafruits-9-dof-10-dof-breakout/magnetometer-calibration
https://learn.adafruit.com/ahrs-for-adafruits-9-dof-10-dof-breakout/magnetometer-calibration
https://www.adafruit.com/product/2821
https://www.adafruit.com/product/2821
https://www.adafruit.com/product/3463
https://www.adafruit.com/product/3463
http://www.alcs.ch/logitech-c910-infrared-conversion-for-nightvision.html
http://www.alcs.ch/logitech-c910-infrared-conversion-for-nightvision.html
https://www.amazon.co.uk/Neewer-Infrared-850Nm-Filter-Digital/dp/B003TY3CQS
https://www.amazon.co.uk/Neewer-Infrared-850Nm-Filter-Digital/dp/B003TY3CQS
https://www.arduino.cc/en/Main/Software

[12] D. Bowman, E. Kruijff, J. LaViola, and I. Poupyrev. 3D User Interfaces: Theory
and Practice. Addison Wesley Longman Publishing Co., Inc., 2004.

[13] G. Burdea and P. Coiffet. Virtual Reality Technology. John Wiley & Sons, Inc.,
second edition, 2003.

[14] W. Burger. Zhang’s camera calibration algorithm: In-depth tutorial and imple-
mentation. Technical Report HGB16-05, University of Applied Sciences Upper
Austria,School of Informatics, Communications and Media, Dept. of Digital Media,
Hagenberg, Austria, may 2016.

[15] W. Burger and M. J. Burge. Digitale Bildverarbeitung: Eine Einführung mit Java
und ImageJ. Springer Berlin Heidelberg, 2005.

[16] A. Cavallo, A. Cirillo, P. Cirillo, G. De Maria, P. Falco, C. Natale, and S. Pirozzi.
Experimental comparison of sensor fusion algorithms for attitude estimation. IFAC
Proceedings Volumes, 47(3):7585–7591, 2014.

[17] S. R. Chapala, G. S. Pirati, and U. R. Nelakuditi. Determination of coordinate
transformations in uavs. In Cognitive Computing and Information Processing (CCIP),
2016 Second International Conference on, pages 1–5. IEEE, 2016.

[18] T. Cloete and C. Scheffer. Benchmarking of a full-body inertial motion capture
system for clinical gait analysis. In Engineering in Medicine and Biology Society,
2008. EMBS 2008. 30th Annual International Conference of the IEEE, pages 4579–
4582. IEEE, 2008.

[19] Crytek GmbH. The Climb – A VR Climbing Game. http://
www.theclimbgame.com, Accessed: 2017-10-16.

[20] S. Davis, K. Nesbitt, and E. Nalivaiko. Comparing the onset of cybersickness using
the oculus rift and two virtual roller coasters. In 11th Australasian Conference on
Interactive Entertainment (IE 2015), volume 167, pages 3–14. ACS, 2015.

[21] H. Eidenberger and A. Mossel. Indoor skydiving in immersive virtual reality with
embedded storytelling. In Proceedings of the ACM Symposium on Virtual Reality
Software and Technology (VRST), pages 9–12. Proceedings of the 21st ACM Sym-
posium on Virtual Reality Software and Technology, 2015. talk: ACM Symposium
on Virtual Reality Software and Technology (VRST), Beijing, China; 2015-11-13 –
2015-11-15.

[22] M. S. Grewal and A. P. Andrews. Applications of kalman filtering in aerospace 1960
to the present [historical perspectives]. IEEE Control Systems, 30(3):69–78, 2010.

[23] M. S. Grewal, L. R. Weill, and A. P. Andrews. Global positioning systems, inertial
navigation, and integration. John Wiley & Sons, 2007.

86

http://www.theclimbgame.com
http://www.theclimbgame.com

[24] P. R. Gringer. Image of EM Spectrum. https://commons.wikimedia.org/
w/index.php?title=File:EM_spectrumrevised.png&oldid=258493882,
Accessed: 2017-12-30.

[25] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, second edition, 2000.

[26] H. G. Hoffmann. Physically touching virtual objects using tactile augmentation
enhances the realism of virtual environments. In Proceedings. IEEE 1998 Virtual
Reality Annual International Symposium (Cat. No.98CB36180), pages 59–63, Atlanta,
GA, USA, 1998.

[27] HTC Corporation. HTC Vive. https://www.vive.com/eu/product/, Accessed:
2017-12-15.

[28] iFixit. HTC Vive Teardown. https://de.ifixit.com/Teardown/HTC+Vive+
Teardown/62213?lang=en, Accessed: 2017-12-15.

[29] iFixit. Oculus Rift CV1 Teardown. https://de.ifixit.com/Teardown/
Oculus+Rift+CV1+Teardown/60612, Accessed: 2017-12-15.

[30] Intel. RealSense. https://www.intel.com/content/www/us/en/
architecture-and-technology/realsense-overview.html, Accessed:
2018-03-18.

[31] S. Islam, B. Ionescu, C. Gadea, and D. Ionescu. Full-body tracking using a sensor
array system and laser-based sweeps. In 2016 IEEE Symposium on 3D User Interfaces
(3DUI), pages 71–80, 2016.

[32] D. Jagneaux. HTC Vive vs. Oculus Rift With Touch – Which Is The Better
Roomscale Experience? https://uploadvr.com/vive-vs-oculus-rift-
touch-roomscale/, Accessed: 2017-12-15.

[33] I. Jahr. Lighting in machine vision. In Handbook of Machine Vision, chapter 3,
pages 73–203. Wiley Online Library, 2007.

[34] R. E. Kalman et al. A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35–45, 1960.

[35] E. Kolasinski. Simulator sickness in virtual environments. Number Bd. 4, Nr. 1027
in Technical report (U.S. Army Research Institute for the Behavioral and Social
Sciences). U.S. Army Research Institute for the Behavioral and Social Sciences, 1995.

[36] F. Kosmalla, A. Zenner, M. Speicher, D. Daiber, N. Herbig, and A. Krüger. Exploring
rock climbing in mixed reality environments. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA
’17, pages 1787–1793, New York, NY, USA, 2017. ACM.

87

https://commons.wikimedia.org/w/index.php?title=File:EM_spectrumrevised.png&oldid=258493882
https://commons.wikimedia.org/w/index.php?title=File:EM_spectrumrevised.png&oldid=258493882
https://www.vive.com/eu/product/
https://de.ifixit.com/Teardown/HTC+Vive+Teardown/62213?lang=en
https://de.ifixit.com/Teardown/HTC+Vive+Teardown/62213?lang=en
https://de.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612
https://de.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://uploadvr.com/vive-vs-oculus-rift-touch-roomscale/
https://uploadvr.com/vive-vs-oculus-rift-touch-roomscale/

[37] O. Kreylos. Lighthouse tracking examined. http://www.doc-ok.org/?p=1478,
Accessed: 2017-12-15.

[38] O. Kreylos. Oculus Rift DK2’s tracking update rate. http://www.doc-
ok.org/?p=1405, Accessed: 2017-12-15.

[39] J. B. Kuipers. Quaternions and Rotation Sequences: A Primer with Applications to
Orbits, Aerospace and Virtual Reality. Princeton University Press, 2002.

[40] S. M. LaValle, A. Yershova, M. Katsev, and M. Antonov. Head tracking for the
oculus rift. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 187–194, 2014.

[41] Leap Motion Inc. Leap Motion. https://www.leapmotion.com, Accessed: 2018-
03-18.

[42] K. Lenhardt. Optical systems in machine vision. In Handbook of Machine Vision,
chapter 3, pages 73–203. Wiley Online Library, 2007.

[43] Q. Li, R. Li, K. Ji, and W. Dai. Kalman filter and its application. In 2015 8th
International Conference on Intelligent Networks and Intelligent Systems (ICINIS),
pages 74–77, 2015.

[44] H. Liesker, E. Brenner, and J. B. J. Smeets. Combining eye and hand in search is
suboptimal. Experimental Brain Research, 197(4):395–401, Aug 2009.

[45] Logitech. Logitech HD Pro Webcam C920 Product Page. https://
www.logitech.com/de-at/product/hd-pro-webcam-c920, Accessed: 2018-
02-18.

[46] Logitech. Logitech HD Pro Webcam C920 Technical Specification. http://
support.logitech.com/en_us/product/hd-pro-webcam-c920/specs,
Accessed: 2018-02-18.

[47] S. O.H. Madgwick. An efficient orientation filter for inertial and inertial/magnetic
sensor arrays. Report x-io and University of Bristol (UK), 25, 2010.

[48] S. O.H. Madgwick, A. J.L. Harrison, and R. Vaidyanathan. Estimation of imu and
marg orientation using a gradient descent algorithm. In Rehabilitation Robotics
(ICORR), 2011 IEEE International Conference on, pages 1–7. IEEE, 2011.

[49] R. Mahony, T. Hamel, and J.-M. Pflimlin. Nonlinear complementary filters on the
special orthogonal group. IEEE Transactions on automatic control, 53(5):1203–1218,
2008.

[50] A. Malventano. SteamVR HTC Vive In-depth – Lighthouse Tracking System
Dissected and Explored. https://www.pcper.com/reviews/General-Tech/
SteamVR-HTC-Vive-depth-Lighthouse-Tracking-System-Dissected-
and-Explored/SteamV, Accessed: 2017-12-15.

88

http://www.doc-ok.org/?p=1478
http://www.doc-ok.org/?p=1405
http://www.doc-ok.org/?p=1405
https://www.leapmotion.com
https://www.logitech.com/de-at/product/hd-pro-webcam-c920
https://www.logitech.com/de-at/product/hd-pro-webcam-c920
http://support.logitech.com/en_us/product/hd-pro-webcam-c920/specs
http://support.logitech.com/en_us/product/hd-pro-webcam-c920/specs
https://www.pcper.com/reviews/General-Tech/SteamVR-HTC-Vive-depth-Lighthouse-Tracking-System-Dissected-and-Explored/SteamV
https://www.pcper.com/reviews/General-Tech/SteamVR-HTC-Vive-depth-Lighthouse-Tracking-System-Dissected-and-Explored/SteamV
https://www.pcper.com/reviews/General-Tech/SteamVR-HTC-Vive-depth-Lighthouse-Tracking-System-Dissected-and-Explored/SteamV

[51] Materialise NV. 3D Scanning Tutorial for Microsoft Kinect and 3D
Builder. https://i.materialise.com/blog/3d-scanning-tutorial-
microsoft-kinect-and-3d-builder, Accessed: 2017-10-16.

[52] Mathworks. What Is Camera Calibration? https://de.mathworks.com/help/
vision/ug/camera-calibration.html, Accessed: 2018-01-01.

[53] Mathworks. Design and use Kalman filters in MATLAB and Simulink. https:
//www.mathworks.com/discovery/kalman-filter.html, Accessed: 2018-
01-04.

[54] Mathworks. Understanding Kalman Filters. https://www.mathworks.com/
videos/series/understanding-kalman-filters.html, Accessed: 2018-
01-04.

[55] Mathworks. Using Kalman Filter for Object Tracking. https:
//de.mathworks.com/help/vision/examples/using-kalman-filter-
for-object-tracking.html, Accessed: 2018-01-04.

[56] Mathworks. Matlab – Single Camera Calibration App. https:
//de.mathworks.com/help/vision/ug/single-camera-calibrator-
app.html?s_tid=gn_loc_drop, Accessed: 2018-03-03.

[57] Mathworks. Matlab. https://www.mathworks.com/products/matlab.html,
Accessed: 2018-03-10.

[58] Mathworks. Matlab Support Package for USB Webcams. https://
de.mathworks.com/help/supportpkg/usbwebcams/index.html, Accessed:
2018-03-10.

[59] A. Mossel. Robust Wide-Area Tracking and Intuitive 3D Interaction for Mixed
Reality Environments. PhD thesis, Institute of Software Technology and Interactive
Systems, 2014.

[60] Oculus VR, LLC. Oculus Rift. https://www.oculus.com/rift/, Accessed:
2017-10-16.

[61] Oculus VR, LLC. Oculus Roomscale—Tips for Setting Up a Killer VR
Room. https://www.oculus.com/blog/oculus-roomscale-tips-for-
setting-up-a-killer-vr-room/, Accessed: 2017-12-15.

[62] Oculus VR, LLC. Simulator Sickness. https://developer.oculus.com/
design/latest/concepts/bp_app_simulator_sickness/, Accessed:
2017-12-15.

[63] OptiTrack. Costs of a small VR Motion Capture Setup. https://
www.optitrack.com/systems/#virtual-reality/prime-41/6, Accessed:
2017-10-16.

89

https://i.materialise.com/blog/3d-scanning-tutorial-microsoft-kinect-and-3d-builder
https://i.materialise.com/blog/3d-scanning-tutorial-microsoft-kinect-and-3d-builder
https://de.mathworks.com/help/vision/ug/camera-calibration.html
https://de.mathworks.com/help/vision/ug/camera-calibration.html
https://www.mathworks.com/discovery/kalman-filter.html
https://www.mathworks.com/discovery/kalman-filter.html
https://www.mathworks.com/videos/series/understanding-kalman-filters.html
https://www.mathworks.com/videos/series/understanding-kalman-filters.html
https://de.mathworks.com/help/vision/examples/using-kalman-filter-for-object-tracking.html
https://de.mathworks.com/help/vision/examples/using-kalman-filter-for-object-tracking.html
https://de.mathworks.com/help/vision/examples/using-kalman-filter-for-object-tracking.html
https://de.mathworks.com/help/vision/ug/single-camera-calibrator-app.html?s_tid=gn_loc_drop
https://de.mathworks.com/help/vision/ug/single-camera-calibrator-app.html?s_tid=gn_loc_drop
https://de.mathworks.com/help/vision/ug/single-camera-calibrator-app.html?s_tid=gn_loc_drop
https://www.mathworks.com/products/matlab.html
https://de.mathworks.com/help/supportpkg/usbwebcams/index.html
https://de.mathworks.com/help/supportpkg/usbwebcams/index.html
https://www.oculus.com/rift/
https://www.oculus.com/blog/oculus-roomscale-tips-for-setting-up-a-killer-vr-room/
https://www.oculus.com/blog/oculus-roomscale-tips-for-setting-up-a-killer-vr-room/
https://developer.oculus.com/design/latest/concepts/bp_app_simulator_sickness/
https://developer.oculus.com/design/latest/concepts/bp_app_simulator_sickness/
https://www.optitrack.com/systems/#virtual-reality/prime-41/6
https://www.optitrack.com/systems/#virtual-reality/prime-41/6

[64] OptiTrack. OptiTrack for Animation. https://www.optitrack.com/motion-
capture-animation, Accessed: 2017-10-16.

[65] K. Orland. Facebook purchases VR headset maker Oculus for 2 billion dollars.
https://arstechnica.com/gaming/2014/03/facebook-purchases-vr-
headset-maker-oculus-for-2-billion/, Accessed: 2017-12-15.

[66] T. Pintaric and H. Kaufmann. Affordable infrared-optical pose tracking for virtual
and augmented reality. In G. Zachmann, editor, IEEE VR Workshop on Trends and
Issues in Tracking for Virtual Environments, pages 44–51. Shaker Verlag, 2007.

[67] T. Pintaric and H. Kaufmann. A rigid-body target design methodology for optical
pose-tracking systems. In Proceedings of the 2008 ACM Symposium on Virtual
Reality Software and Technology, pages 73–76. ACM Press, 2008.

[68] T. Pintaric and H. Kaufmann. ioTracker. http://www.iotracker.com, Accessed:
2017-12-15.

[69] PJRC. Prop Shield With Motion Sensors. https://www.pjrc.com/store/
prop_shield.html, Accessed: 2018-01-06.

[70] M. Ribo, A. Pinz, and A. L. Fuhrmann. A new optical tracking system for virtual
and augmented reality applications. In IMTC 2001. Proceedings of the 18th IEEE
Instrumentation and Measurement Technology Conference. Rediscovering Measure-
ment in the Age of Informatics (Cat. No.01CH 37188), volume 3, pages 1932–1936,
2001.

[71] D. Smith. Calculating the Emission Spectra from Common Light
Sources. https://www.comsol.com/blogs/calculating-the-emission-
spectra-from-common-light-sources/, Accessed: 2017-12-30.

[72] C. Solomon and T. Breckon. Fundamentals of Digital Image Processing: A Practical
Approach with Examples in Matlab. John Wiley & Sons, Inc., 2011.

[73] StereoLabs. ZED 2K Stereo Camera. https://www.stereolabs.com, Accessed:
2018-03-18.

[74] P. Stoffregen. MotionCal – Motion Sensor Calibration Tool. https://
github.com/PaulStoffregen/MotionCal, Accessed: 2018-03-04.

[75] R. Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[76] Unity Technologies. Unity 3D. https://unity3d.com/de, Accessed: 2018-03-17.

[77] Unmanned Systems Source. BP850 Near-IR Bandpass Filter. https:
//www.unmannedsystemssource.com/shop/aerial-imaging/bp850-
near-ir-bandpass-filter/, Accessed: 2018-02-19.

90

https://www.optitrack.com/motion-capture-animation
https://www.optitrack.com/motion-capture-animation
https://arstechnica.com/gaming/2014/03/facebook-purchases-vr-headset-maker-oculus-for-2-billion/
https://arstechnica.com/gaming/2014/03/facebook-purchases-vr-headset-maker-oculus-for-2-billion/
http://www.iotracker.com
https://www.pjrc.com/store/prop_shield.html
https://www.pjrc.com/store/prop_shield.html
https://www.comsol.com/blogs/calculating-the-emission-spectra-from-common-light-sources/
https://www.comsol.com/blogs/calculating-the-emission-spectra-from-common-light-sources/
https://www.stereolabs.com
https://github.com/PaulStoffregen/MotionCal
https://github.com/PaulStoffregen/MotionCal
https://unity3d.com/de
https://www.unmannedsystemssource.com/shop/aerial-imaging/bp850-near-ir-bandpass-filter/
https://www.unmannedsystemssource.com/shop/aerial-imaging/bp850-near-ir-bandpass-filter/
https://www.unmannedsystemssource.com/shop/aerial-imaging/bp850-near-ir-bandpass-filter/

[78] Wikimedia Commons. Barns grand tetons YCbCr separation.
https://commons.wikimedia.org/w/index.php?title=File:
Barns_grand_tetons_YCbCr_separation.jpg&oldid=151926874, Ac-
cessed: 2018-01-04.

[79] H. S. Yeo, B. G. Lee, and H. Lim. Hand tracking and gesture recognition system
for human-computer interaction using low-cost hardware. Multimedia Tools and
Applications, 74(8):2687–2715, 2015.

[80] P. Yonak. How To Determine Location If You have A Roof Over Your
Head. http://blog.lemberg.co.uk/how-determine-location-if-you-
have-roof-over-your-head, Accessed: 2018-01-04.

[81] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on
pattern analysis and machine intelligence, 22(11):1330–1334, 2000.

91

https://commons.wikimedia.org/w/index.php?title=File:Barns_grand_tetons_YCbCr_separation.jpg&oldid=151926874
https://commons.wikimedia.org/w/index.php?title=File:Barns_grand_tetons_YCbCr_separation.jpg&oldid=151926874
http://blog.lemberg.co.uk/how-determine-location-if-you-have-roof-over-your-head
http://blog.lemberg.co.uk/how-determine-location-if-you-have-roof-over-your-head

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement & Aim of the Work
	Methodological Approach
	Structure of the Work

	State of the Art
	Fundamental Principles
	Optical Sensing
	Inertial Sensing

	Practical Applications
	ioTracker
	Oculus Rift
	HTC Vive

	Theoretical Background
	Optical Tracking
	Light
	Computer Vision

	Inertial Tracking
	Inertial Sensors
	Sensor Fusion
	Sensor Calibration
	Data Representation

	Digital Image Processing
	Color Models
	Image Morphology

	System Design
	Requirements
	Tracking Scenario
	Quality Characteristics
	Sensing Technologies
	Conclusion

	System Overview
	Optical Position Tracking Component
	System Setup
	Hardware Components
	Software Architecture

	Visual Hand Pose Estimation Component
	Problem Definition
	System Setup
	Software Architecture

	Inertial Orientation Tracking Component
	Hardware Architecture
	Software Architecture

	Conclusion

	Implementation
	Hardware Development
	Camera Rig
	Wearable Tracker

	Software Development
	Position Tracking
	Hand Pose Estimation
	Orientation Tracking

	Virtual Environment
	Conclusion

	Evaluation
	Setup and Methodology
	Spatial Performance Metrics
	Temporal Performance Metrics
	Tracking Robustness

	Spatial Performance
	Positional Accuracy
	Positional Precision
	Orientational Precision

	Temporal Performance
	Update Rate
	Latency

	Robustness
	Occlusions
	Packet Loss

	Hand Pose Estimation Component
	Conclusion

	Conclusions and Future Work
	List of Figures
	List of Tables
	Acronyms
	Bibliography

