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Kurzfassung

Wir présentieren einige Resultate aus [Gerhold et al. 2018, arXiv:1801.09458v3|. Hierbei
ist das Hauptresultat und Motivation fiir weitere Anwendungen die Tatsache, dass die
Explosionszeit der Momente im sogenannten Rough Heston Modell in der Variante, die
von El Euch und Rosenbaum [El Euch, Rosenbaum 2016, arXiv:1609.02108] benutzt wird,
genau dann endlich ist, wenn dies auch im gewdhnlichen Heston Modell der Fall ist. Moti-
viert ist dieses Resultat bzw. der Versuch es zu erlangen durch eine ,schone* Darstellung
der charakteristischen Funktion, die jener im gewohnlichen Heston Modell dhnelt. Herge-
leitet wurde diese Darstellung von El Euch und Rosenbaum in ihrem Paper von 2016. Um
das Resultat aus Gerhold et al. zu erreichen, miissen wir die Losung einer fraktionellen
Riccati-Differentialgleichung untersuchen. Diese kann auch als Volterra-Integralgleichung
zweiter Art mit schwach singuldrem Kern geschrieben werden. Die Autoren machen sich
die Miihe rigoros zu zeigen, dass diese Losung der Volterra-Integralgleichung genau dann
explodiert, wenn das Moment bzw. die Momentenerzeugende des Log-Preises dies tut.
Nachdem das gesichert ist, wird fiir einen Spezialfall mittels Potenzreihenansatz ein effi-
zienter Algorithmus zur numerischen Berechnung der Explosionszeit hergeleitet. Weiters
wird in dieser Arbeit auch kurz eine empirische Methode zur Bestimmung der Explosions-
zeit vorgestellt, um die numerischen Tests mit dem Algorithmus vergleichen zu kénnen.
Ist nun eine Approximation fiir die Explosionszeit bestimmt, so kann man die Losung
der Riccati-Gleichung iiber eine Approximation mit Hilfe von Polylogarithmen darstellen,
was auch numerisch tiberpriift wird. Leserinnen und Leser, die Berechnungen nachvollzie-
hen wollen, werden sich freuen, denn wider den Usus wird eine detaillierte Darstellung des
Source Codes in R, der Implementierung und der dabei aufgetretenen Probleme gegeben.


https://arxiv.org/pdf/1801.09458v3.pdf
https://arxiv.org/pdf/1609.02108.pdf

Abstract

We present the results of |Gerhold et al. 2018, arXiv:1801.09458v3|, showing that the
moment explosion time in the rough Heston model in the version introduced by El Euch
and Rosenbaum |[El Euch, Rosenbaum 2016, arXiv:1609.02108| is finite if and only if it
is finite for the classical Heston model. This is mainly motivated by a representation of
the characteristic function of the rough Heston model analogous to the classical Heston
model by El Euch and Rosenbaum. Therefore, we need to do some analytics on the
(not explicit) solution of a fractional Riccati equation which can be transformed into a
weakly singular Volterra integral equation of the second kind. Gerhold et al. rigorously
show that this solution explodes if and only if the moment generating function of the
rough Heston model explodes. Following Gerhold et al., this fact is used to derive an
algorithm to approximate the explosion time through a power series ansatz for a special
case. Furthermore, an empirical method to identify the explosion time is presented to be
able to compare the results. Having computed an approximation of the explosion time
we get an approximation of the solution of the Riccati equation via polylogarithms. The
reader’s sake for reproduction will be satisfied, since detailed insight is given into the
implementation and the used source code in R, as well as comments on issues the author
was confronted with during the implementation process.


https://arxiv.org/pdf/1801.09458v3.pdf
https://arxiv.org/pdf/1609.02108.pdf
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1. Introduction

In modeling financial markets the easiest models, e.g. models with log-normal distribution
as Black Scholes and others, provide thin tails which is not very appropriate for modeling
real markets. In many models, according to | |, tails of power law type have been
proposed. Since these models provide moment explosions thorough analysis has been
done on the existence of moments for a various range of classical models; Gerhold et
al. emphasize the work of Keller-Ressel | | on affine stochastic volatility models.
Knowing about the critical moments resp. the explosion time—note that we want to
model the price as stochastic process Sy, such that E[(S;)"] can explode in ¢ for u fixed—is
of great interest, since, according to | |, it allows to approximate the wing behavior
of the volatility smile, to assess the convergence rate of some numerical procedures, and
to identify models that would assign infinite prices to certain financial products. Gerhold
et al. refer to | , , | for further details and references.

One model, where we have many explicit results, is the well-known Heston model
(| |) which follows the dynamics

dS; = S;\/Vi dWy, Sy >0,

t t
V=Yoot [ Ao-Vods+ [ eVTidB.,
0 0

where A\, 7, &,V > 0, and the integrators are two Brownian motions which are correlated
with p € (=1,1), i.e. (dWy,dBy;) = pdt. According to El Euch and Rosenbaum in | 1,
it is shown in | | that for a very wide range of assets, historical volatility time-
series exhibit a behavior which is much rougher than that of a Brownian motion, which
is provided by the Heston model. Hence, they suggest, according to | , |,
to use a fractional Brownian motion with small Hurst parameter (see | |) and they
give a microstructural foundation for their model since it is a limiting case of modeling
the price via Hawkes processes. The “rough” version of the Heston model, which will be
called rough Heston model in this thesis, is then given via the dynamics

dS; = Sy\/VidWy, Sy > 0,
1 ¢ a—11y /— 1 ! a—1
Vim Vot s [ =0 A0V dst s [0t ey ViaB,
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where W and B are correlated Brownian motions, p € (—1,1), A, £, 7, Vp > 0 and smooth-
ness parameter o € (1/2,1). This model features a characteristic function that can be
evaluated numerically in an efficient way (see | , , ]), by solving a frac-
tional Riccati equation. This is equivalent to solving a weakly singular Volterra integral
equation of the second kind (see Chapter 3). Gerhold et al. rigorously show in | |
that the solution of this equation explodes if and only if the moment generating function
of the rough Heston model explodes. Following Gerhold et al., this fact is used to derive
an algorithm to approximate the explosion time through a power series ansatz for a spe-
cial case. Furthermore, an empirical method to identify the explosion time is presented
to be able to compare the results. Having computed an approximation of the explosion
time we get an approximation of the solution of the Riccati equation via polylogarithms.
The reader’s sake for reproduction will be satisfied, since detailed insight is given into
the implementation and the used source code in R, as well as comments on issues the
author was confronted with during the implementation process.

The content of this work is structured as follows. Chapters 2 and 3 present some main
results of the theory of Volterra integral equations and fractional calculus, where the main
reference for them is | , , | and | , |. This provides the
tools for our analysis of the explosion time. In Chapter 4 the analytical treatment of the
model can be found. Motivated by the results of El Euch and Rosenbaum | , ],
we discuss some properties of the solution of a fractional Riccati equation, according to
Gerhold et al. | |, to find out more about the explosion behavior. We get ana-
lytical bounds for the explosion time of this function and, furthermore, the connection
between the explosion time of this solution and the moment generating function of the
log-price of our model is established, which was done rigorously in detail by Gerhold
et al. Now knowing that explosion of the solution of a Riccati equation leads to ex-
plosion of the moment generating function, we establish some algorithms for computing
the explosion time in Chapter 5. First, the fractional Adams method, proposed by El
Euch and Rosenbaum in | |, is used to compute a numerical solution of the Riccati
equation. Second, some asymptotics that were established by Gerhold et al. in | |
are tested and then an algorithm to reliably compute the explosion time in a special case
is tested. Another approach, to approximate the solution of the Riccati equation via
polylogarithms, is established and numerically tested as well. In Chapter 6 there is not
an “only source code appendix”, but a detailed description of the implementation and
further numerical analysis. The reason is that the results in this thesis should be well
reproducible for graduate or possibly interested undergraduate students. Furthermore,
the detailed description can be seen as a trigger for the readers to test the algorithms by
themselves.



2. Volterra Integral Equations

In this chapter I want to give a very short introduction to Volterra integral equations
and the objects we use out of this environment. Almost all the definitions and notations
of this chapter are from | , Chapter 2 and 6] and | , Chapter 12 and 13].

2.1. Linear Volterra integral equations

Let V: C(I) — C(I) denote the linear Volterra integral operator defined by

(Vé)(t) = /0 Kt 8)6(s)ds, tel:=[0,T],

with T' < oo, where the kernel K = K (¢, s) is continuouson D := {(t,s) : 0 < s <t < T}.

Definition 2.1 (| ). The integral equation

Vy)(t) = g(t), tel, g(0)=0, (2.1)

is called a (linear) Volterra integral equation of the first kind for the unknown function
¥ (t) and a given continuous function g(t) on I.

Definition 2.2 (| |)- The integral equation
b(t) =g(t) + (VP)(), tel, (2:2)

is a (linear) Volterra integral equation of the second kind for the unknown function ¢ =
¥ (t). The function g = ¢(t) is a given continuous function on I.

As we are going to deal with a linear Volterra integral equation in Chapter 4 we need
to know about the concept of the resolvent kernel in order to “eliminate” the solution
function itself from the integrand.

Definition 2.3 (| |). Let 9 be the solution of a linear Volterra integral equation of
the second kind as in (2.2). Further, let
t

R(t,s) = K(t,s) +/ K(t,v)R(v,s)ds, (t,s)€ D, (2.3)
t

R(t,s) = K(t,s) +/ R(t,v)K(v,s)ds, (t,s)€ D. (2.4)
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Then for K € C(D), the (unique) resolvent kernel R = R(t, s) corresponding to the given
kernel K in the linear Volterra integral equation (2.2) is (formally) defined by either of
the resolvent equations (2.3) and (2.4).

The existence and uniqueness of solutions to the linear Volterra integral equation (2.2)
is established in Theorem 2.4.

Theorem 2.4. Let K € C(D), and let R denote the resolvent kernel associated with K.
Then for any g € C(I), the second-kind Volterra integral equation (2.2) has a unique
solution v € C(I), and this solution is given by

»(t) = g(t) —|—/0 R(t,s)g(s)ds, tel. (2.5)

Proof. See | , Theorem 2.1.2]. O

Note that in many situations this is very helpful, since maybe we know some more
about the properties of g(¢) alone than about the properties of the solution (). Later
on, in Lemma 4.14, we will use this representation to show that the solution (t) is
negative resp. positive, with arguing with the sign of ¢(t) and R(t,s). As next, we
have the result, that the regularity of the kernel K transfers to the regularity of the
corresponding resolvent kernel R, which we actually do not need in this work, but should
be mentioned nevertheless.

Theorem 2.5. Assume that K € C™(D). Then its resolvent R has the same degree of
reqularity, namely R € C™(D). Thus, for any g € C™(I) the solution of the Volterra
integral equation (2.2) satisfies 1 € C™(I).

Proof. See | , Theorem 2.1.3]. O

Now let V, : C(I) — C(I) be the linear Volterra integral operator defined by

(Va)(t) := /0 pa(t — 8)K(t,8)p(s)ds, tel:=][0,T], (2.6)

with K € C(D), K(t,t) # 0 for ¢t € I, and

t—s)7% O0<a<l,
pa(t —s) = ( )
log(t—s), a=1.

The kernel of the corresponding linear Volterra integral equation

P(t) =g@) + Vab)(t), tel, (2.7)



2. Volterra Integral Equations

is given by Hy(t,s) := pa(t — s)K(t,s). This integral kernel is called weakly singular
since the explosion at the singularity is “weaker” than it would be for (t — s)~! resp. the
kernel is too weak to let the integral explode. While in Theorem 2.4 we need the kernel
to be continuous on D, which is not satisfied for (2.7), we get from | | a workaround
for this problem, if the kernel is weakly singular, i.e. if the kernel is of the form in (2.6),
then we get the analogous result to Theorem 2.4.

Theorem 2.6. Assume that K € C(D) for K from (2.6), and let 0 < a < 1. Then
for any g € C(I) the linear, weakly singular Volterra integral equation (2.7) possesses a
unique solution ¢ € C(I). This solution is given by

P(t) = g(t) —i—/o R, (t,s)g(s)ds, tel. (2.8)

Here, the resolvent kernel R, corresponding to the kernel Hy(t,s) := po(t — s)K(t,s)
inherits the weak singularity (t — s)~% and has the form

Ru(t,s) =(t—s)"Q(t,s;a), 0<s<t<T, (2.9)
where
Q(t,s;0) =Y (t— )" V=N, (¢, 57).
n=1

The functions ®,, are defined recursively by
1
D, (t,s;) := / (1—2) VU= (4 s 4 (8 — $)2)Bp_1(s+ (t — 8)z, 5;0) dz
0

forn > 2, with ®1(t,s; ) == K(t,s) and ®,(-,;a) € C(D). Moreover, Q(-,-;a) solves
the resolvent equations

Qt,s;a) = K(t,s) + (t — s)a/ (t—v)"%(v—29)""K(t,v)Q(v,s;a)dv,

Qt,s;a) = K(t,s) + (t — s)o‘/ (t—v)"%(v—25)"Q(t,v;a)K (v, s) dv

on D.
Proof. See | , Theorem 6.1.2]. O

Remark 2.7. Note that for the model in Chapter 4 we will use (t — s)*~! as part of the
kernel. Brunner mentions that it will have certain advantages in his analysis to choose
the weak singularity as (¢ — s)~®. We need to just have this in mind when we apply the
theorems of this part later on, since we will have to use the transformation & = 1 — « to
exactly apply the theorem to our situation.
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2.2. Nonlinear Volterra integral equations

Definition 2.8 (| , Chapter 2|). A standard non-linear VIE of the second kind has
the form

w(t):f(t)+/0 k(t,s,0(s))ds, €= [0,T], (2.10)

where f and k are given functions. The underlying non-linear Volterra integral operator

W)(t) = /0 K(t,5,(s)) ds

is usually referred to as the Volterra-Urysohn integral operator. If k = k(¢,s,u) in (2.10)
is of the form k(t, s,w) = K(t,s)G(s,w), the corresponding Volterra integral equation

b(t) = f(t) +/0 K(t,$)G(s,9(s))ds, tel, (2.11)

is called a Volterra- Hammerstein integral equation. It corresponds to the Volterra-Ham-
merstein integral operator

(M) (1) = /0 K (t, 5)G(s,10(s)) ds.

Since our analysis in Chapter 4 is done without explicitly knowing the solution of
the Volterra integral equation, we need a result to be able to rely on the existence and
uniqueness of continuous solutions. Therefor we have the following.

Theorem 2.9. Let a € (0,1), g € C([0,00)), and suppose that H : R — R is locally
Lipschitz continuous. Then there is T* € (0, 00] such that the Volterra integral equation

B(t) = g(t) + /0 (t — ) H((s)) ds (2.12)

has a unique continuous solution 1 on [0,T*), and there is no continuous solution on
any larger right-open interval [0, T™).

Proof. See | , Theorem 2.3]: Uniqueness and existence can be found in | ,
Theorem 3.1.4]. The discussion how the solution can be continued to a maximal right-
open interval of existence can be found at the beginning of | , Chapter 12| where
it is explained how to prove | , Theorem 12.1.1]. O

Definition 2.10 (| ). Let J C R be an interval. A function k : J? — C™*" is
called a kernel of continuous type on J if k is measurable, if for every t € J the function
s — k(t,s) is integrable, and if the function ¢ — (s — k(t,s)) is a continuous function
from J into L!(.J, C™*™).
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Lemma 2.11. Let a(t, s) be the kernel of a Volterra integral equation. If a(t,s) = k(t—s)
for 0 < s <t with k € L{ _([0,T),R™"), then a is of continuous type on [0,T).

loc

Proof. See the remark after | , Theorem 12.1.1]. O

Now let us introduce a parametric version of (2.11), i.e. for some A\ € R, we have

w(A,t):f(A,t)+/0ta()\,t,s) v s, 00N 8)) ds, £ 0. (2.13)

If we formally differentiate with ¥y (A,t) := Ox\p(A, t), we get

Ua(A ) = fa(\ t) + / {a,\()\,t, s)h(A, s,1(N, s)) + a(A t,s) 1h(N, s,1(N, )
0 (2.14)

+a(\ t,8) Osh(\, s,1(\, 8)) Ya(A, s)} ds, t>0.

The next theorem shows that this intuition is not too bad and we are really able to
differentiate 1(\, t) and attain the representation (2.14).

Theorem 2.12. Let 0 < To, < 00, let f € C(Rx[0,T); R™) be continuously differentiable
with respect to its first variable, and let h € C(R x [0,T) x R™R"™) be continuously
differentiable with respect to its first and third variables. Furthermore, assume that, for
each X\ € R, the function a(X,-,-) is a Volterra kernel of continuous type on [0,T) that is
differentiable with respect to X\ in the sense that there exists a Volterra kernel ax(\,-,-)
of continuous type on [0,Tw) satisfying, for each T € [0,Tw),

t
sup / la(A 4+ €,t,5) —a(\ t,s) —eax(\t,s)| ds =o(e), €—0. (2.15)
te[0,7]J0

Then, for each A € R, there is a unique solution (X, -) of equation (2.13), defined on
the mazimal interval of existence [0, Tmax(\)). Moreover, (A, t) is continuously differ-
entiable with respect to A on the set {(\,t)|A € R,t € [0, Tmax(N))}, and the derivative
P satisfies (2.14) on [0, Tmax(N)).

Proof. See | , Theorem 13.1.2], it is a direct corollary of | , Theorem 13.3.1].
O

2.3. Asymptotics for the solution of special Volterra integral
equations
In Chapter 5 we will develop an algorithm to compute the explosion time in a special case.

Therefor we need an asymptotic result for the solution of a Volterra integral equation
which can be represented in a special way.
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Lemma 2.13. Let @ be the unique continuous solution of the nonlinear Volterra integral
equation

t
111(15):/ k(t — s)G(s,¥(s)) ds, (2.16)

to

where

G(s,9(s)) = r(s)g(u(s) + h(s)).

Assume that the following conditions hold:

g(w),g'(w),g"(w) >0, w>0, (2.17)
glw) ~w™, m>1 w— oo, (2.18)
k(t—s)>0,K(t—s)<0, ty<s<t, (2.19)
1
k(t—s)~ko(t—s)= —(t—s)*L, O0<pu<l, s-—t, 2.20
(t—s) ~ko(t —s) F(u)( ) (2:20)
r.h € CY([to, T)), r(t), h(t) > 0, ¥'(t), K (t) > 0, t > to, (2.21)
Y(t) = 00, t—t< oo (2.22)
Then we get for the solution 1 (t) of (2.16) the asymptotics
() \7
(e m =R u .
Y(t) ~ | ——t (F—t) m1, t—t (2.23)
r(t)0(75)
Proof. See | , Section 3: (3.2)]. O
Remark 2.14. Note that according to | |, the proof is not rigorous. Still, there is

hope that the statement holds, since there is at least numerical evidence for our special
case of the statement, see e.g. Figure 5.2. We use Lemma 2.13 only as a motivation for
an algorithm to compute the explosion time which is only verified numerically, so this
should not be a great problem.
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Definition 3.1. The (left-sided) Riemann-Liouville fractional integral I{* of order o €
(0,00) of a function f is given by

50 = g [ =9 ) ds (3.1)

whenever the integral exists, and the (left-sided) Riemann-Liouville fractional derivative
DY of order av € [0,1) of f is given by
« d -
DEf(t) = ST (1) (3.2)
whenever this expression exists.
Remark 3.2. Note that I} is the usual integral, as

110 = w5 =l s = [ r)as

The fractional derivative Df* can be defined for o > 1 as well, but this is not needed in
our context.

Remark 3.3. The motivation for the integral concept of Definition 3.1 is the desire for
generalizing the differential reps. the integral concept to orders a € (0,00). Hereby we
denote as integral of order n € N the n-fold integral

/Otds/otds.../otf(s)ds:(nil)!/gt@_s)n—lf(s)ds
1

t
= [ (t—=9)"""f(s)ds,
I'(n) /0
from which the idea can be well seen; see e.g. | , Section 1.2.3].
Lemma 3.4. Let T > 0.

(i) The fractional integral and derivative of power functions can be easily calculated via

I'v+1)

It =t —— 7 -1 0 3.3

t F(y—l—a—i—l)’ V> 7056(?00)7 ( )
o T(v+1)

D&t =tV —1 0,1). 3.4

t F(V—Ct—i—l)’ v > —l—Ot,OéE[,) ( )
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(ii) The fractional integral operators satisfy the semigroup property on C([0,T1]), i.e.
IfTP =177 for o, B € (0,00). (3.5)
(1) For f € C([0,T)) and o € (0,1) the equation
DRI f(t) = f(2) (3.6)
holds.
(iv) For f € C(]0,T]) such that Dy f € C([0,T]) with o € (0,1) the equation

CL(0) s

IFDYf(t) = f(t .
FoEr) = 50 - (3.7
holds.
Proof. Ad (i). By substituting u = (t — s)/t we get straight forward
I ] I
It = / (t—s)* "s"ds = / u® %" (1 — uw)” du
' I'(a) Jo L'(a) Jo
vt /1 1( ) tvta ( )
= u* (1 —u)’du= B(a,v+1
() Jo I(a)
_ T () (v +1) jta I'v+1)
I'a) T(a+v+1) Fv+a+1)
By definition of the fractional derivative we get
d , 4 d _ F(v+1)
Do = = Il vy — 2 tl/-‘r]. @
t dt(t ) dt( F(u+1—a+1)>
_ tl/—a (V + 11— a)F(V + 1) _ tl/—a (V + 1-— Oé)F(l/ + 1)
B Frv+1l—a+1) v+1-a)l(v+1-a)
— tl/—a F(V + 1) .
'v—a+1)
Ad (ii). Substituting s = u + 7(¢ — u), which is suggested by | |, we get
t 1
/ (t - )71 (s — u)P~L ds = / ((t = w)(1 = 7)2 (r(t — )P L(t — u) dr
u 0
1
= t— u)o""ﬁ_l 1— ) 181 gr
X (-7 .

1
—(t—u a+p4-1 —r a—lTﬂ—l
(t—u) /0 (1-7)
= (t—u)**"7'B(a, B).

10
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Since we have f € C([0,T]), we can use Fubini and get

210 =17 (g [ =0 a)

_ F(la)/t(t_s)al <r(15) /Os(s—u)ﬂlf(u) du) ds

/ / — w1 f(u) duds

Fugm .- e /0 /u (t — )" L(s — u)P~L f(u) ds du
_ a)lrﬁ/tf(u) (/t(t )5 - u)ﬂ—lds> du
w r(a)r 5 [ = B, 5y du

= e [ )
_ w/ot(t_u)w—lf(u) du
= 1P f ().

Ad (iii). As the requirements of (ii) are fulfilled we get

d

d aTo
ST () = S = 1),

Ad (iv). See | |. O

DY f(t) =

Remark 3.5. Note that in Lemma 3.4 (iv) the term for the initial value has to be inter-
preted as

I f(0) == lim I} 7o f
¢ f(0) 81\0 t (s),
since writing formally

0
11—« _ —_ 3 a—1 s s
1 f<o>/0<o JLf(s) d

would not make any sense.

Now we establish a connection between weakly singular Volterra integral equations
from Chapter 2 and fractional calculus.

11



3. Fractional Calculus

Theorem 3.6. Let a € (0,1), T > 0 and suppose that ¢ € C([0,T]) and H € C(R).
Then 1 satisfies the fractional differential equation

Di(t) = H(1(1)), (3.9)
II(0) =0 (3.10)
if and only if it satisfies the Volterra integral equation
1 t
00 = g | (= () ds (3.11)
Proof. Here we can apply Lemma 3.4 (iv). We get
Itl_aw(o) a—1 _ rana _Ja
Y(t) — T T IPD7(t) = IFH((1))
which is equivalent to
(!
oty = PO oy ),

I(a)

and that is exactly the Volterra integral equation (3.11) due to the initial condition (3.10).
For the other direction a little bit more effort is needed. It can be found in | . O

12



4. Rough Heston Model

In order to better model typical properties of real markets, the well-known Heston model
(see | |) can be extended in a way to model “rough paths” with the use of a fractional
integral. Since for the classical Heston model, there is an explicit representation for the
moment generating function, we would be happy to get a similar result for the “rough”
model extension. Luckily, El Euch and Rosenbaum show in | | how to attain this
result, except their representation is semi-explicit due to the occurrence of a function,
that is given as the solution of a fractional Riccati differential equation which cannot
be solved analytically. Nevertheless, this helps a lot since numerical applications get
easier with this representation. In the following we are going to discuss some analytical
properties of the solution of this fractional Riccati equation that can be derived just from
the equation resp. from its representation as Volterra integral equation, in order to get
boundaries for the explosion time and furthermore we present, at least for a special case,
an algorithm to numerically compute the explosion time.

Definition 4.1. (Rough Heston model) The dynamics of the rough Heston model are
(analogous to the classical Heston model) given by

dSt = St\/thWt, S() > 0, (41)
Ve Vot —— [ (-8 @w-12) d L VV.dB
- 0+r<a)/0<‘$> (@ Vi) S+r<a>/0<‘5> ¢\/V. dB,,
(4.2)
d(W,B), = pdt, (4.3)

where W and B are correlated Brownian motions, p € (—1,1), A\, £, 7, Vp > 0 and smooth-
ness parameter « € (1/2,1).

Remark 4.2. Note that the limiting case o« = 1 resp. a 1 would correspond to the
classical Heston model.

After | | we get a nice representation of the characteristic function of the log-price
X, :=log(S;/So) for at least p € (—1/+/2,1/v/2]. To be able to use this representation for
our purpose we need a more general result. In | | the constraint for the correlation

vanishes, so the representation holds for p € (—1,1), and we can plug in arguments
with real part different from 0 into the characteristic function, such that we also get
this representation for the moment generating function. To ensure the existence of the
moment generating function we need the following.

13



4. Rough Heston Model

Theorem 4.3 (Generalized characteristic function). Consider the rough Heston model
(4.1)~(4.3). Let t > 0 and z € C satisfying z = a + ib with a,b € R, A — pa > 0 and
a_(t) < a < ay(t), where

o= 2552)((1(? ;2@, A 2;?51(? %/W’ (4.4)
with
X(t) =X+ F(Ol‘t_aa) A(t) = 462X (1) + &1 — 4pe3 X (1).
Then we have
R(z,t) := E[e*™t] = exp(@A [} (2, 1) + VoI ~%Y(z, 1)), (4.5)

where Y(z, ) is the unique continuous solution of the fractional Riccati equation

2
Dy(z,5) = (2% = 2) + (p = Nz.5) + (e, s <t I"(z,0) =0,
(4.6)

Proof. See | , Corollary 3.1 and 3.2 with h(z,t) = 9(z,t) and 0°(s) = v. O

Corollary 4.4. For each t > 0, there is an open interval in R such that (4.5) holds for
z = u wn that interval.

Corollary 4.5 (Moment generating function of the log-price). Let t > 0 and u € R
satisfying the conditions in Theorem 4.53. Then the moment generating function of the
log-price Xy =log(S;/So) is given via

Ele"Xt] = exp(TA L (u, t) + VoIl ~%(u, t)), (4.7)
where Y(u,-) satisfies the fractional Riccati equation (4.6).

El Euch and Rosenbaum showed in | | an efficient way to compute the solution
of the Riccati equation (4.6) via the fractional Adams method in order to compute the
characteristic function if you fix the model parameters (see | , Section 5| for refer-
ence). In this section, Corollary 4.5 builds the basis for some analysis of the explosion
behavior of the moment generating function of the log-price X;, respectively the explo-
sion behavior of the solution 1 (z,-) of the Riccati equation (4.6). It mostly consists of
results that are only published in preprints so far, and at the end there is done some
numerical analysis to verify or at least to show, that for some model choices the proposed
asymptotics work out nicely.

14



4. Rough Heston Model

At first let us transform our problem (4.6) from a fractional differential equation to a
Volterra integral equation, and then we are able to use a large amount of results that
are already known for Volterra integral equations. For ease of notation and a better
understanding of the computations afterwards let us write the Riccati equation (4.6) as

Di(z,t) = R(z,9(2, 1), s<t, L “¢(z,0) =0, (4.8)
where
R(z,w) := c1(2) + e2(2)w + czw? (4.9)
with
c1(z) == %(22 —2), (4.10)
ca(2) 1= zp€ — A, (4.11)
. %gz, (4.12)

After Theorem 3.6 we can write (4.8) equivalently for fixed z as the Volterra integral
equation

Wz t) = — )/O(t—s)alR(z,w(z,s))ds, (4.13)

()

which is the equation for which the numerics at the end of this work is implemented.
Note that this equation has a unique continuous solution due to Theorem 2.9, since R
is a polynomial with respect to both of its variables and therefore locally Lipschitz (see
Lemma A.10). To ease the use of results in | |, the equation, we will mainly refer
to with u € R, is

1

t
flu,t) = F(a)/o (t— S)O‘_IG(U, f(u,s))ds, (4.14)

where
Flut) = esip(u, t) (4.15)

and
Glu,w) = csR <u :)

= (w+eo(u))® — e1(u),

(4.16)

15



4. Rough Heston Model

with
eo(u) := %CQ(U) = %(upf —A), (4.17)
e1(u) := eg(u)? — c3c1(u). (4.18)

Note that we use u € R as the argument for the generalized characteristic function
because we are interested in the moment generating function. Since c3 = £2/2 > 0 in our
model, the explosion behavior of f(u,-) is the same as of ¥ (u,-).

Remark 4.6. Note that G(u,w) from (4.16) is a polynomial with respect to each of its
variables, since R(u,w) is obviously a polynomial in w and ¢1(u), ca(u), c3 are polynomials
in u. To have an explicit representation for later on, we can write

G(u,w) = %52112 + (wp§ — i§2> u+ (w? —wA) (4.19)
and
G(u,w) = w? + (p€u — \)w + i@u(u —1). (4.20)
Let us now write for the explosion time in the rough Heston model
T, (u) :=sup{t > 0: E[S}] < o0}, wueR. (4.21)

In the following we will distinguish between four cases for u € R.

Definition 4.7. For u real, let R be disjointed into the four cases:

As we will mainly discuss finite explosion times later on, we will just have a look at
the admissible range for © € R for the cases where the explosion time is finite. To have
a better idea how this segmentation of R looks like, we have the following Lemma.

Lemma 4.8. Let (a,b), (a,b],[a,b) be the empty set for a > b. The real number u satisfies
case (A) if and only if it is in the set

A
- sy Epld < Oa
Dy = {( S (4.22)

[ﬁ\/l,oo)7 p >0,
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4. Rough Heston Model

where the left endpoint 1 is not included for 1 > X\/(&p). The real number u satisfies case
(B) if and only if it is in the set

(%717—) U(l\/p+,00), p<07

DB =
(—oo,p_)U (1\/]94.,&), P>0

(4.23)

Proof. Note that c;(u) > 0 is equivalent to u € Da” := R\[0,1], hence this holds for
both cases, (A) and (B). Then for case (A), eg(u) > 0 is equivalent to up — A > 0. This
means v must be in Dé}), with

A — (—OO, &] p < 07
0 g p>0.

Hence, for p < 0, there is no further restriction on u and for p > 0 it has to be greater
or equal to A/(&p) as well as 1.

In case (B) we have that ep(u) < 0 is equivalent to upf — X < 0 which leads to u € D,
with
DB o (ﬁaoo)v P<07
e " A
(_007 5)7 p > 0.

The last condition is e;(u) < 0 which can be expressed as polynomial in u such that we
get,

DL :={ueR:—dei(u) = gou* + qiu + qo > 0}, (4.24)
with
g = -\ <0,
@ = &(2Ap = &),

g =31 - p*) >0.

Note that with —4e1(0) = gp < 0, the polynomial in (4.24) can get negative. As ga > 0,
the polynomial will have positive asymptotics for |u| — oo, so there have to be two roots
which bound the range of R, where case (B) is not fulfilled. We set the polynomial to
zero and get from

W Ly g

q2 q2
the roots as
1g 1/a\>
O
2q0 4\ ¢ q2 (4.25)
_ —q1/92 F /(q1/92)? — 4q0/ 2
5 )

17



4. Rough Heston Model

We know that
p— <0<py,

since this is equivalent to
a1 q1 ? q aq q1 2 q
~4 <> 42 <0< -2 4 () 4L
a2 a2 a2 a2 q2 g’

which we can write as
q 2 q 2 q
q2 q2 q2

This holds due to gg < 0 and g > 0, i.e. the second term on the right-hand side is strictly
positive. Now we can write

D = (=00,p_) U (ps, 50)-

Considering different cases with the convention (a,b) = ) for a > b we get for p < 0

€ ((~00,p-) U (py,00)) N Qp,oo) A (R\[0,1))

((( 10(52)) U ()00 ) ) n R\ 1)

_ ( A p+,00)> N (R\[0, 1])

gpap—) U (1 \/p+,oo)

and for p > 0 we get

€ (00, p_) U (py,00)) N (~ 002 A (R\[0, 1)

<< *ep > <p+, (Ooag;))>)ﬂ(R\[O,1])
mrre )

= (—o0,p-)U(1 \/p+,£p)'

Finally, we get
($7P—> U(].\/p+,OO), p<07
(—OO,p_)U (1\/])-‘,—,&) ) P>07

with the convention (a,b) = () for a > b. This is exactly the representation of Dp. O

A,B B B _
D; 7N D, ND, =

18



4. Rough Heston Model

Let us now state one of the main results of | |, giving a connection between the
conditions on u and the explosions.

Theorem 4.9. For u € R, the moment explosion time T7; of the rough Heston model is
finite if and only if u satisfies case (A) or (B). This is equivalent to T} (u) (explosion
time of the classical Heston model) being finite.

Proof. See | , Theorem 2.4] resp. | , Section 5]. The proof consists of two
main parts. First, Proposition 4.10 discusses the blowup behavior of the solution of
(4.14) in cases (A) and (B), and Lemma 4.11 shows that blowup of f leads to blowup of
the right-hand side of (4.7). Second, we show in Theorem 4.18 that the explosion time of
f(u,-) (the solution of (4.14)) agrees with T7*(u) (the explosion time of the rough Heston
model) for all u € R. O

Theorem 4.9 shows that the rough Heston model is consistent with the classical Hes-
ton model, at least considering their explosion behavior. In fact, the fractional Riccati
equation (4.6) is, in the case of classical Heston, an ordinary Riccati equation that can
be solved analytically. In the following we cite some results of | | to know more
about the qualitative behavior of the solution f(u,-) of (4.14) resp. the results we need
to prove Theorem 4.9.

Proposition 4.10. Let f(u,-) be the solution of (4.14) for u € R fized. Then the
following holds depending on the case of u:

Case (A): f(u,-) starts at 0, is positive thereafter and blows up in finite time.
Case (B): f(u,-) starts at 0, is positive thereafter and blows up in finite time.
Case (C): f(u,-) is non-negative and bounded, and exists globally.

Case (D): f(u,-) is non-positive and bounded, and exists globaly.

Proof. See | , Propositions 3.2, 3.4, 3.6, 3.7]. O

In the following Lemma we get an idea how the explosion times of f and of the moment
generating function are connected.

Lemma 4.11. If f is a non-negative, continuous function that blows up in finite time
with explosion time T, then I f blows up in finite time as well, with the same explosion
time T'. If f is a bounded continuous function, then I f does not blow up in finite time.

Proof. See | , Lemma 3.8]. At first glance it seems natural, but have in mind that
we have an integral kernel such that this is not obvious. O
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4. Rough Heston Model

With Lemma 4.11 we are able to transfer explosions of the solution f(u,-) of the
Volterra integral equation (4.14) to explosions of the moment generating function of the
log-price. So, for most of the (wanted) results it suffices to have an idea how the function
f(u,-) behaves. In order to ease numerical computations it would be helpful to have
some bounds for the explosion time to get reasonable starting values for iterations.

Theorem 4.12. Let u € R fived, satisfying case (A) or (B). Then, the blow-up time
To(u) of the solution f(u,-) of (4.14) satisfies

T (w) < Folw) < T (w), (4.26)
where
N a_ 1\l/a poo 1/a d
_ o, (r*=1) / w dw
T (u) :=T(1+ ) max WD) o \Gluw) o (4.27)
oo 1/a d
Ty (u) := 4T 1—|—a1/°‘/ — —w, 4.28
O N e (4.28)
with
0, u in case (A),
a(u) := .
—ep(u), w in case (B),
and
~ . y A
Gilu, ) = G(u,-), u m case (A),
—e1(u)Ljo,—eo(u)) + G(Us )L [_ey(u),00)s U in case (B).
Proof. See | , Theorem 4.1 and 4.2]. O

Lemma 4.13. The solution f of the Volterra integral equation (4.14) is differentiable
with respect to u, and its derivative satisfies

t (t _ S)a—l
o1 f(u,t) = /0 T (01G(u, f(u, s)) + RG(u, f(u,s))or f(u,s)) ds. (4.29)

Proof. We show that we can apply Theorem 2.12 here. Note that our Volterra integral
equation (4.14) can be written in the form of (2.13), i.e.

f(u,t) = J?(u,t) —i—/o a(u,t,s)h(u,s, f(u,s))ds
(4.30)

[T e e
_/0 D) O f(ws)ds, t20.
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4. Rough Heston Model

At first let T € [0,T) and n = 1. Then f € C(R x [0,T);R") is continuously dif-
ferentiable with respect to u since f = 0 in our representation. Second, h € C(R x
[0,T) x R™;R™) is continuously differentiable with respect to its first and third variables
for h(u, s, w) := G(u,w), since G is a polynomial with respect to each variable (see Re-
mark 4.6). Third, our kernel a(u,t,s) := (t — s)®~!/T'(«) is of continuous type on [0, T)
by Lemma 2.11, since

T .a—1 T
/ ds = .
o I'(a) MNa+1)
Additionally it is differentiable with respect to u in the way, stated in Theorem 2.12,

since for ay,(u,t,s) := 0, which is of continuous type on [0,Ts) for the same reason as
above, we get for each T € [0, T,) that

t
sup / la(u+€,t,s) —a(u,t,s) —eay(u,t,s)| ds = sup / leay (u,t, s)|ds
tef0,1]J0 te[0,T]
=0=o0(¢), €—0.

Now we can apply Theorem 2.12 and the derivative equals to just interchanging differ-
ential and integral operators and we get the representation (4.29). O

In the following lemma we show that f(-,¢) is strictly monotonous on certain parts of
the real axis.

Lemma 4.14. Let f(u,-) be the solution of the Volterra integral equation (4.14). Then
the following holds:

(i) In case (A) we have 0y f(u,t) <0 for u <0 and 0 f(u,t) >0 foru > 0.

(ii) If u satisfies case (B), then the same holds if Ta(u) — t is sufficiently small.

Proof. Ad (i). Lemma 4.13 allows us to write the partial derivative of f with respect to
u as

t — s a—1
st = [ (tr«-)o (0:G(u, F(u, 5)) + D2G(u, £ (u, $))0h [ (u, ) ds

= tw u u, s S tw u u, s u,s)as
= [ o0 s s+ [ a6t s oo s)d

=g+ [ (=" KO )0 ) s

with
K(u) (t, S) — 82G(1Iﬁ7(£()u7 S))’ (431)
t —5 a—1
g(t) ::/0 (tr(a))alG(u,f(u,s))ds. (4.32)
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4. Rough Heston Model

Now can apply Theorem 2.6 for fixed u € R, since
0
KW (t,s)— s —

is continuous on the product space as G is a polynomial with respect to both of its
arguments (see Remark 4.6) and f is continuous with respect to both of its arguments
since f(u,t) is differentiable with respect to u after Lemma 4.13 and f(u, -) is continuous
after Theorem 2.9 with Lemma A.10. From (2.8) we get the representation for o f (u,t)
as

O1f(u,t) = g(t) +/0 R5(t,s)g(s)ds, (4.33)

with & := 1 — . First we get

(t—s)*t

T'(a) >0, se(0,t). (4.34)
Second we have
G(u, f(u,s)) <0, p<O, (4.35)
and
G(u, f(u,s)) >0, p>0, (4.36)

for all s € (0,¢). To see this, consider that with (4.19), we have that 01G(u,w) < 0 is
equivalent to

1 2wp
u < 5 - 672,
which holds since for p < 0 in case (A) we have u < \/(£p) (see (4.22)) and therefore we
get

A 1 2wp
u§<0S+<_)a
&p 2 &
for w > 0 and p < 0. Then w > 0 is included in our case because f(u,s) > 0 for u

satisfying case (A) (see Proposition 4.10). Analogously, but not for a symmetric range
of u, we have for p > 0 that 0;G(u,w) > 0 is equivalent to

1 2wp
U>§—€T,
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4. Rough Heston Model

which holds, since for p > 0 we need u to be greater or equal than A\/({p) V1 (see (4.22)),

hence we get

1 2wp 1
— < 1<
2 @ S~ s

for w > 0 and p > 0. As above, w > 0 holds, since f(u,s) > 0 here. Now, with

(4.34)—(4.36) we follow that

t (t o S)a—l
ﬂw:/]iaeijﬁ»@<u
0 S~—

(@)
<0
>0
= ti(tis)a_l u, f(u,s)) ds
o) = | i oG ) >0
>0

If we are able to show that Rz > 0 in (4.33) this will lead to

g9(s) <0, p<O,
9(s) >0, p>0,

p <0, (4.37)
p > 0. (4.38)
4.39
4.40)

for s € (0,¢). In fact, Rz > 0 follows directly from the representation (2.9), since

Oy (t, s50) = KM (t,5) > 0,
1
D, (t, s;0) := / I(z)dz, n>2,
0

with

(4.41)

(4.42)

I(z) = (1 — 2)" 0 DO=D W (¢ 54 (£ — §)2)Pp_1(s+ (t — 5)z, 5;)

because of (1 — z),z > 0 and ¢p_1(s + (t — s)z,s;a) > 0 inductively. The fact that
K®(t,5) > 0 can be seen, as &G (u, f(u,s)) > 0 is equivalent to

2w+ (p€u—A) >0

for w > 0, which holds, since f(u,s) > 0 and (pfu — A) > 0 in case (A). Finally we get

o
Q(t, s, a) Z a)fbn(t,s;&) >0,

n=1

which leads to

Ra(t,s) = (t — s)"%Q(t, s; &) > 0.
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4. Rough Heston Model

Hence (4.39) and (4.40) hold and we get 01 f(u,t) < 0 for p < 0 and 01 f(u,t) > 0 for
p > 0. Note that for p < 0 we need u to be negative and for p > 0 we need wu to positive,
such that statement (i) is proven.

Ad (ii). Let us assume that u < 0 because the approach for u > 0 is exactly the same.
We have to show that

7(u) = inf{0 < t < To(u): O f(u,-) <0 on (t,To(u))} (4.43)
satisfies 7(u) < Ta(u). We use the facts that

" G(u,w) = %52 + wp — 352 <0, w— o0, (4.44)
G (u,w) =2w+ (p€u —A) >0, w— oo, (4.45)
flu,t) = 00, t— Tu(u). (4.46)

Note that (4.46) directly follows from Proposition 4.10. Thus, g from (4.32) satisfies
lim g(t) = —oo, (4.47)

t,/Ta(u)

and K satisfies lim (u) K™ (t) = +00. We can therefore pick € > 0 such that

t T
g(t) <0, KW(#) >0 for To(u)—e<t<Ty(u).
For z € [0,1] and any s,t < T, (u) satisfying Ty (u) — ¢ < s < t, we have
S+ (t—s)z>5>To(u) —e.
Using this observation in (4.41), we see from induction that
O,(t,s;a) >0, n>1, fa(u) —e<s<t< fa(u)
The same then holds for the resolvent kernel,
Ra(t,s) >0, To(u)—e<s<t<Tyu). (4.48)

By (4.33), we obtain
t

O f(u,t) =g(t) + /0 N R5(t,s)g(s)ds —i—/t R5(t,8)g(s) ds. (4.49)

—€

Now note that
t—e
| rattopgt)ds
0

where the right-hand side is positive. Indeed, (4.50) follows from (4.47) and (4.48), as
g(s) on the left-hand side of (4.50) is O(1), since it is continuous on (0,¢ — ¢). Thus,
letting t fa(u), we find that the negative terms ¢(¢) and ftt_g R5(t,s)g(s)ds on the
right-hand side of (4.49) dominate. This completes the proof. O

< —/t R5(t,s)g(s)ds, ast A To(u), (4.50)

—€
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Lemma 4.15. Let u € R and 0 < t < T (u). Then f(-,t) is analytic at u.

Proof. See | , Lemma 5.4]: According to | , Section 3.1.1], the solution can
be constructed by successive iteration and continuation. In | | is just shown that
the first iteration step leads to an analytic function, because the finitely many further
steps needed to arrive at arbitrary ¢t < T\a (u) can be dealt with analogously. Define the
iterates fo = 0 and

1

frnr1(v,s) = @ /08(5 — 1) LG, fu(v,7))dr, n>0.

On a sufficiently small time interval, f,(v,-) converges uniformly to f(v,-), and the
solution can then be continued by solving an updated integral equation and so on (see
| , Theorem 3.1.2]), until we hit 7, (v). Now fix v and ¢ as in the statement of the

lemma. For a sufficiently small open complex neighborhood U of u, it is easy to see that
t < Ty(v) holds for v € U. Define

v :=1Vsup |v],
velU
ta
=1V — .
K INa+1)

There is ¢ > 1 such that, for arbitrary v € U and w € C,

G, w)| < e ((Jw] v 1)* VAy(w| V1) VH?)
< ey (Jw| v 1)?

=: 0(|w| v 1)2.
To see this, note that
w< (Jw| V1) <e(lw V1),
(p§u—A) < e,

with ¢ > 1 appropriate and consider the representation (4.20) of G(u,w). By the defini-
tion of f,, we get that

sup | fo(v, 5)| < (07)*" 7', n>0. (4.51)
s
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This can be seen inductively, since if (4.51) holds, we get
i (0,9)] € s G, falo, 7)) dr
n+1 = F a n\Y
gF(a/ LY (| oo, )V 1) dr
1
Sir a)/ (s —7)*710((on)*" ~L v 1)2dr
M1 gntig 1 / ° a—1
§—T dr
e Y
n [An
=0 1n"2(0n)? +1
)™ T
<o 2o (v
=7 T(a+1)
n+1_
= ()" .
By a standard result on parameter integrals (| , Theorem IV.5.8|), the bound (4.51)
implies that each function f,(-,%) is analytic in U. From the bounds in | , Section
3.1.1], it is very easy to see that the convergence f,(v,t) — f(v,t) is locally uniform with
respect to v for fixed ¢. It is well-known (see | , Theorem 3.5.1]) that this implies
that the limit function f(-,¢) is analytic. O

Lemma 4.16. The function u — fa(u) increases for u < 0 and decreases for u > 1.

Proof. See | , Lemma 5.5]: Recall that T,, = oo in cases (C) and (D), which include
€ [0,1]. For case (A), the assertion directly follows from Lemma 4.14 (i). So let u
satisfy case (B), where again we assume without loss of generality that v < 0. Suppose
that fa() does not increase. Then we can pick ug < 0 such that any left neighborhood
of up contains a point u with Ta(u) > fa(uo). From the continuity of 0 f(u,t) (see
Lemma 4.15), Lemma 4.14 (ii), and the continuity of 7 from (4.43), there are u; < ug
satisfying To (1) > T () and t1 < T (uo) such that 9y f(u,t) < 0 in the rectangle

{(u,t) s uy <u<ug, ty <t < Tolu)}. (4.52)
Then, lim, T (o) f(up,t) = oo implies that

lim  f(u,t) = oo, (4.53)
t /T (uo)

because the inequality 0y f(u,t) < 0 shows that f (1}\1, -) must explode at least as fast as
f(ug, ). But (4.53) is a contradiction to Ty (u1) > Ty (uo). O
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4. Rough Heston Model

Lemma 4.17. Letu € R and 0 < t < fa(u) Then (4.7) holds, where f = c31 and
f(u,-) is the solution of (4.14).

Proof. See | , Lemma 5.6]: We assume that u < 0, as u > 0 is handled analogously.
By Lemma 4.16, u fa(u) increases. In the proof, we write M (u,t) for the right-hand
side of (4.7), and M (u,t) := E[e"X*] for the moment generating function. Now fix
u<O0and 0 <t < fa(u) such that (u,t) has positive distance from the graph of the
increasing function fa() Clearly, it suffices to consider pairs (u,t) with this property.
By Corollary 4.4, there are v~ < v™ such that

M(v,t) = M(v,t), v~ <v<wovt. (4.54)

We now show that (4.54) extend to u < v < v™ by analytic continuation. From general
results on characteristic functions (| , Theorems II.5a and II.5b|), v — ]\7(1},15) is
analytic in a vertical strip w™ < Re(v) < w™ of the complex plane, and has a singularity
at v = w™. If we suppose that w™ > wu, then Lemma 4.15 leads to a contradiction:
The left-hand side of (4.54) would then be analytic at v = w™, and the right-hand
side singular. This shows that (4.54) can be extended to the left up to u by analytic
continuation. O

Theorem 4.18. Let u € R. Then To(u) = T*(u), and (4.7) holds for 0 < t < T*(u).

Proof. See | , Theorem 5.7]: In the light of Lemma 4.17, it only remains to show
that Ty (u) > T(u). (Obviously Lemma 4.17 implies that Ty (u) < Tr(u)). Since
t — X; is continuous, we have with Doob’s submartingale inequality and dominated
convergence that the map t +— M (u,t) = E[e*X!] is continuous and therefore we get

~

To(u) > Tk (u). ]

Theorem 4.18 now ensures, together with Lemma 4.11, that doing our analysis on the
solution f(u,t) of (4.14) is sufficient to know about the explosion time of the moment
generating function of the log-price.

Despite we have the focus on real u, since we are interested in the moment generating
function, it may be helpful to be consistent for complex-valued u, since the characteristic
function is necessary for option pricing. So, Gerhold et al. argue in | , Section 6]
that the results above transmit to the complex case.

Theorem 4.19. Letu € C. Then T (u) = Tk (Re(u)), and (4.7) holds for0 < t < T (u).
Lemma 4.20. Let u € C. Then Ty(u) > Ti(u).

Proof. See | , Lemma 6.2]: Suppose that fa(u) < T}(u). The Volterra inte-
gral equation (4.14) translates into a two-dimensional Volterra integral equation for
(Re(f),Im(f)). Since Gripenberg et al. did their analysis very general in a multidi-
mensional setting, we get from | , Theorem 12.1.1] that (Re(f),Im(f)) explodes
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4. Rough Heston Model

for t /T, < oo. This contradicts the continuity of ¢ E[e®Xt], which is used in the

proof of Theorem 4.18. O
Proof of Theorem 4.19. | , Theorem 6.2]: The first statement is clear since |e%Xt| =
leRe(@Xt|  Now let t > 0 be arbitrary. As above, we write M for the moment gen-

erating function and M for the right-hand side of (4.7). By Theorem 4.18 we have
M(v,t) = M(v,t) for v in the real interval

I:={veR:T;(v) >t}
The function M (+,t) is analytic on the strip
{veC:Re(w)el}={veC:Ti(v) >t} (4.55)

By the same argument as in Lemma 4.15, the function M (-,?) is analytic on the set
{v e C:T,(v) > t}, which contains the strip (4.55) by Lemma 4.20. Therefore, M (-, 1)
and M (-,t) agree on (4.55) by analytic continuation. This implies the assertion. O
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5. Numerics — The Theory

After the discussion in Chapter 4, especially Theorem 4.18, one of the main results, we
now know, is that if we have an idea about the behavior of 1, the solution of (4.13),
we have an idea about the behavior of the moment generating function. Hence, it is
of great interest to have an (at least) numerical handling of ¥. In this chapter we will
introduce an algorithm to get a numerical solution for the Volterra integral equation
(4.13). Furthermore, with this numerical solution we want to use different approaches
to compute the explosion time of ) and some asymptotic properties. More precisely,
Gerhold et al. suggest in | | Algorithm 5.7 for computing the explosion time if u
satisfies case (A) from Chapter 4 and Algorithm 5.8 for computing a lower bound for the
explosion time if u satisfies case (B).

5.1. Numerical scheme for the Riccati equation

In the following the numerical scheme used in | | is presented. Let us write g(u,t) =
R(u,(u,t)). Over a regular discrete time-grid (tx)reqy,..., vy With mesh A (tp = kA), we
estimate

1 Pt a—1
Yl tin) = o /O (trs1 — )2 g(u, 5) ds
by
~ 1 bttt PR
Y(u,tryr) = I’(a)/o (ter1 — ) g(u, s) ds,
where
N tivg —1 o t—t; .
Glu,t) = G, ty) + L G(u, ), t€ [ty ti), 0<j <k

tiv1 —

This corresponds to a trapezoidal discretization of the fractional integral and leads to
the following scheme:

Dlutrp) = (aj,k+1R(u,1Z(u7tj))> + @k ks1 R(u, P(u, trg)), (5.1)
0<j<k
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5. Numerics — The Theory

with
Aa
ao,k+1 = m

«

(kO = (k = a)(k + 1)),

. — _ 2a+1 _'01"1‘1_2 s 10é+1 1<<
@)+ 7F(a+2)((k J+2)7 +(k—J) (k—j+1)%), 1<j<k,

ACM
Ak+1,k+1 = m-
(5.2)

However, J(u, tr+1) being on both sides of (5.1), this scheme is implicit. Thus, in a first
step, we compute a pre-estimation of {b\(u tx+1) based on Riemann sum that we then
plug into the trapezoidal quadrature. This pre-estimation, called predictor and that we
denote by ¢F (u,txy1), is defined by

~ 1 ¢
P a—1~
t = — t— d :
P ntin) = o [ (€= 9" G ds (53)
with
g(u,t) = gu,t;), te€ltjtjr), 0<j<k
Therefore,
VP (U, trg) = > bk R(u D(u,ty), (5.4)
0<5<k
where
AO&
) — — i+ 1) — (k- 4)® <3 <k. .
bj,kJrl F(Ot ¥+ 1) ((k J+ ) (k .7) )7 0< J = k (5 5)

Thus, the final explicit numerical scheme is given by

(U trg) = Y (aj,kﬂR(uﬂ/)(u,tj))) + app1 ki R(u, 97 (u, tg). (5.6)

0<j<k
El Euch and Rosenbaum note in | | that theoretical guarantees for the convergence
of this scheme are provided in | |. In particular, it is shown that for given ¢ > 0 and

u € R,

~

o, Y(u,t;) —(u,tj)| = o(A)
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and

~

max (9 (u, t;) — ¥(u,t;)| = o(A*7),

t]'E[a,t}

for any € > 0.
From this description we get the following algorithm for a predetermined specific choice
for the model parameters in (4.1)—(4.3).

Algorithm 5.1. Let u be a real number and t > 0 a given time point.

e Fizn € N for the number of intervals for an equidistant grid on [0,t].

o Fork e {0,...,n—1} compute for all j the a;p+1 in (5.2), the bj i1 in (5.5), and
evaluate Y (u, try1) in (5.4) and finally Y(u,ty1) in (5.6).

Remark 5.2. Note that running Algorithm 5.1 can be quite slow. In Section 6.2 for the
implementation, there is a description how vector arithmetics can be used, and we profit
from the fact that the a; ;41 and the bj 41 only depend on the lag £ = k — j for most of
the j such that we do not need to compute these values in every iteration step.

For the implementation of the numerical scheme of this section see Section 6.2 and for
the auxiliary functions resp. for understanding how the model is handled in the source
code see Section 6.1. As appetizer for the following we have some plots to see how our
computations are graphically displayed in Figure 5.1, for which the source code can also
be found in Section 6.2. Here we used the rough Heston model of (4.1)—(4.3) with

7=0041=03,6=1,v=1, p=—0.7, a=0.6, (5.7)

which will be used in all the examples.
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Figure 5.1.: Graphical example for the numerical implementation of ¥ (u,t)

5.2. Computing the explosion time

In this section I present a way suggested in | , Section 6] to compute the explosion
time at least numerically if u satisfies case (A). For case (B) we get an algorithm for
an approximation of a lower bound, which is after | | sometimes sharper than the

explicit bound from Theorem 4.12.
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The solution f of (4.14) satisfies the fractional Riccati equation
D} f =dy +dof + f7, (5.8)

where d; (u) = ¢1(u)cs and do(u) = co(u), with initial condition I'=%f(0) = 0. We try a
fractional power series ansatz

O =" an(uyte (5.9)
n=1

with unknown coefficients a,, = a,,(u). By Lemma 3.4 (i), the fractional power series (5.9)
(formally) satisfies the initial condition. Inserting (5.9) into (5.8) and using Lemma 3.4 (i)
again, we obtain

00 00 0o n—1
S ettt =y 43t + 3 (z ) o
n=0 n=0 n=2 \k=1

N L (5.10)
=di + dart® + Z (dgan + Z akan_k) ",
n=2 k=1
where
F(an+1)
= 5.11
Un [(an —a+1) (5.11)

Note that v, is an increasing sequence; this follows from the fact that logoI' is convex
(see Example 11.14 in | |). By Stirling’s formula (Theorem A.6), v, ~ (an)® for
n — oo. From (5.10), we obtain the following convolution recursion for a,, = a,(u):

dq
a = —,
1 o
n—1 (5.12)
i1 = doan + Z arn_1 |, n>1.
Un+1 el

The function f can thus be expressed as f(u,t) = F(u,t®), where

F(u,z) = Zan(u)z". (5.13)
n=1

Lemma 5.3. Let u € R, satisfying case (A) from Chapter j. Then F(u,-) is analytic at
zero, with a positive and finite radius of convergence R(u).
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Proof. See | , Lemma 7.2|: To see that the radius of convergence is positive, we
show that there is a number A = A(u) > 0 such that

lan| < A"t n> 1. (5.14)

Gerhold et al. note that the factor n®~! is chosen in order to facilitate the proof for this
geometric bound. We have

a ¥daln7! 20797 (a)*ne ! 20T (ar)?
(n+ 1)1 " T(2a)(n+1)o1 T2a) = %% (5.15)
since for a € (0,1) we have
n-1 (n+ 1)t n+1\"* 1 . Ime o R
= _= _— = — —_— n [0@]
(n+ 1)t n n n n no ’ ’
and

na_l n a—1 1 a—1
= =|1- —1, n—oo.
(n+1)o-1 n+1 n+1

Choose ng such that the left-hand side of (5.15) is bounded by 3a~°T'(a)?/T'(2«) for
all n > ng, and such that 2v, > (an)® for all n > ng. The latter is possible because
vp ~ (an)®. Fix a number A with A > 3a~T'(«)?/T'(2a) and such that A"n*! > |a,|
holds for 1 < n < ng. Let n > ng and assume, inductively, that |ag| < AFko—1 holds for
1 <k <n. From the recurrence (5.12), we then obtain

n—1
lant+1] < 2(an+a)™@ <|al2|A"n°‘1 + A" Z K Y (n — k)o‘1>
k=1

n—1
<2(an)™@ <\d2\Anna_1 + A" Z ke (n — k)o‘_1> .

k=1

a—l( )a—l

Since 247 (n — x is a strictly convex function of x on (0,7n) with minimum at n/2,

it is easy to see that

n—1

Zka—l(n - k)a_l < / .CL‘a_l(TL - x)a—l dr
0

k=1

1
— n2a—1/0 ya—l(l _ y)a—l
=n?*"1B(a,a)

I'(a)?
'2a)

n?a—l
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We conclude
20T (ar)?
I'(2a)
(207 %do|nt 207 0T (a)?not
— A" 1)o 1
(n+1) < (n+ 1o " T(2a)(n + 1)o1
o 13070 (a)?
I'(2«)

lani1| < 207 %|do| A"n ! + Anrpet

< A™n+1)
§ An+1(n+1)a_1.

This completes the inductive proof of (5.14).
The finiteness of the radius of convergence will follow from the existence of a number
B = B(u) > 0 such that

a, > B", n>1. (5.16)
To this end, define
d -1
Ty = 2—}_7”, n > 1.
Un+1

By Stirling’s formula (Theorem A.6), we have r,/rp,_1 = 1 + (1 — a)/n + O(n~?) as
n — 0o, and so r, eventually increases. Let ng > 2 be such that r,, increases for n > ny,
and define

. 1/2 1/no
B :=min{ry,,, a1, a, ,...,an() }.

This number satisfies a,, > B" for n < ng by definition. Let us fix some n > ng and
assume, inductively, that a, > B* holds for 1 < k < n. By (5.12) we get

tni1 > ——(doB" + (n — 1)B")

Un+1
= B"r, > B"rp,
> pntl

Thus, (5.16) is proved by induction. O

From the estimates in the proof of Lemma 5.3, it is clear that termwise fractional
derivation of the series (5.9) is allowed, and so the right-hand side of (5.9) really represents
the solution f of (5.8) with initial condition I}~ f(0) = 0, as long as t satisfies 0 < t <
R(u)Y/*. We proceed to show how the explosion time T:*(u) can be computed from the
coefficients a,(n). The essential fact is that there is no gap between R(u)Y* and T (u).
For this, we require the following classical result from complex analysis.
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Theorem 5.4 (Pringsheim’s theorem). Suppose that the power series F(z) =Y 7 anz"
has positive finite radius of convergence R, and that all but finitely many of the coefficients
are non-negative real numbers. Then F has a singularity at R, i.e. a singularity on the
real axis R.

Proof. See | , p- 235, Section 8.1.5]. O

Lemma 5.5. Let f(u,-) be the solution of (5.8). Then f(u,-) is analytic on the whole
interval (0,17 (u)).

Proof. Gerhold et al. | | suggest to use | , Theorem 1], such that we directly
attain the result. O

Theorem 5.6. Suppose that u € R satisfies case (A). Define the sequence a,(u) by the
recurrence (5.12). Then we have

lim sup a, (u) "V @™ = T* (u). (5.17)
n—oo
Proof. See | , Theorem 7.4]: Recall that f(u,-), the solution of (5.8), also solves

the Volterra integral equation (4.14). By Lemma 5.5, we have that f(u,-) is analytic on
the whole interval (0,77 (u)). As f(u,t) blows up for ¢t T (u) by Proposition 4.10, and
t+— F(u,t®) is analytic on (0, R(u)Y®), we must have R(u)'/* < T (u).

Assume for contradiction that R(u)/® < T*(u). Then f is analytic at R(u)Y/®. But
since z — 2!/ is analytic at R(u) > 0, the composition F(u,z) = f(u, z//*) would be
analytic at z = R(u) as well, which contradicts Theorem 5.4. Therefore,

R(u)Y* = T*(u). (5.18)

It is well-known that the radius of convergence is given by the Cauchy-Hadamard formula
(see e.g. | , Section 4.1.3])

R(u)™" = limsup a, (u)"/", (5.19)

n—oo

which concludes the proof. O

Note that, in case (B), we can argue similarly as in the preceding proof. However, the
coefficients a,, are no longer positive and so Pringsheim’s theorem (Theorem 5.4) is not
applicable. Then, the inequality R(u)'/® < T*(u) need not be an equality. Still, we can
compute a lower bound for the explosion time:

lim sup |ay, (w)] /@™ < T* (). (5.20)

n—o0
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In the following we try to improve the asymptotics (5.17) in order to save computation
time. Our approach is to apply Lemma 2.13 to our equation (4.14). The Volterra integral
equation (4.14) can be written in the representation of (2.16) with

(t—s)*t
k(t—s):=ky(t—58)= —=o—— > t >
(t—s):=ko(t —s) e >0, t>s>0,
where we have
t—s)*2
E(t—s)=—(1- (t=s)"" t > 0.
(t—s) (1-a) T'(a) <0, t>s52>0

Hence the requirements (2.19) and (2.20) for the kernel hold. Then clearly

F(t) == f(ut) = 00, ¢ /' Ta(u) = T3 (u),
hence (2.22) holds. For r = 1 and h = 0 we then get

g(w) :== Glu,w) = ¢1(u)es + co(w)w + w? ~ w?,  w — oo,

such that (2.18) follows. For w satisfying case (A), we have ¢;(u) > 0 and ca(u) > 0,
such that we get with c3 > 0 that

g(w) >0, w>0.
The same argument holds for ¢/, such that we get
g (w) = ca(u) + 2w >0, w>0.

Then, ¢”(w) > 0 and hence (2.17) follows. Now the requirements of Lemma 2.13 are
fulfilled, and we get the asymptotics

I'(2a)

(To(w) =)~ ¢ /T (u). (5.21)

But what is with condition (2.21)? In fact, we need h to be greater 0. So, this only
suffices for a heuristic approach to have an idea for the asymptotics to test numerically,
since actually h does not quite fulfill the requirements of Lemma 2.13 (Cheat alert ®).
At least, we could choose h = ¢ and define

g(w) = G(u,w —€) = c1(u)es + ca(u)(w — €) + (w — )2, (5.22)

we would obtain the same results, except, that case (A) is just sufficient for w > ¢ and
not for w > 0 as required in Lemma 2.13. So let us write
7 I'(2a)
ft) ~
()

(To(u) =)™, ¢t 7 Ta(u), (5.23)
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instead of (5.21), because we do not quite fulfill the requirements, but also because
according to | |, not all steps in | | are rigorous. We proceed, heuristically, to
infer refined asymptotics of a,(u) from (5.23). Define

D(z) = Zan(u)R(u)"z”,

a power series with radius of convergence 1, by the definition of R(u) in Lemma 5.3. Its
asymptotics for z /1 can be derived from (5.23). Recall that the explosion time and
the radius of convergence of F' are related by T7(u) = R(u)'/®.

~ T* Rx)/ay—«a
fo (1 = (R
I'Q2a) , 1/ay—
= R7I(1 — zY/e)«
a’T(2c) 4 _
~———R(1—- « 1.
F(OZ) ( Z) ? z /

The method of singularity analysis (see | , Section VI|) allows us to transfer the
asymptotics of ® to asymptotics of its Taylor coeflicients a, R". Sweeping some analytic
conditions under the rug, Gehold et al. | | arrive at

7 a°T'(2a) . ;o1
R(u)"™ ~ R
an(u) (U) F((l) F(a) ) n — o0,
and thus
? 1 a1 2T (2«
an(u) ~ R(U) n—1_«o 1F(O(é)2), — 00. (524)
According to | , Section 7] numerical tests confirm (5.24) (also see e.g. Figure 5.3),

and there is little doubt that it is true in case (A). Summing up, 7} can be computed
by the following algorithm, which converges much faster than the simpler approximation
(5.17).

Algorithm 5.7. Let u be a real number satisfying case (A).
o Fiz npax € N (€.9. nmax = 100),

o compute a1(u),...,an,.. (u) by the recursion (5.12),
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e compute the approximation

~ T*(u) (5.25)

N=Nmax

P(@)? 0D
aT'(2a)

<an(u)n1a

for the explosion time.
Algorithm 5.8. Let u be a real number satisfying case (B).
o [z npax € N (€.9. nmax = 200),
e compute a1(u), ..., an,,. (u) by the recursion (5.12),

e compute the approximate lower bound
|an (u)| 71/ < To(w) (5.26)
N=Nmax

of the explosion time.

Remark 5.9. Note that it will be advantageous in the implementation to represent the v,
from (5.11) via the Euler beta function to avoid overflows in the gamma function. This
can be done via
I'(an +1) I'(an+1) (@) INE)!
Up = = a) = .
" Tlan—a+1) T(an—a+1)I(a) B(an —a+1,q)

The problem of such an overflow occurred to me during the implementation of the al-
gorithms in R, but this is not an R-specific problem since I found out that e.g. for large
arguments Python’s math.gamma-function also gives an error message instead of evaluat-
ing to infinity.

In the following we look at some plots to numerically verify the statements of this
section. At first glance, if we consider Figure 5.1, we can think of just trying different
times ¢ for the end of the interval, where ¢(u, t) is computed with Algorithm 5.1. This is
a motivation for thinking of some “graphical” approach, i.e. some iterations with “human
decision” to have an idea or a “guess” about the explosion time to be able to compare
with the results from the other tested algorithms. The whole method can be seen in
Section 6.3. For the model (5.7) from Section 5.1, we get with this iteration method an
explosion time of

Ty 6(—3) ~ 0.1752218 =: Tyrapn- (5.27)

Now we want to compare this to the results that come from Algorithm 5.7. Therefore,
we use the computations in Section 6.4. First we try Algorithm 5.7 in order to achieve
the explosion time automatically and compare it to (5.27). We get an approximation of

T (—3) ~ 0.1747451 =: Tyum. (5.28)
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As we can see we have an error of
| Tyraph — Thum| = 0.0004767, (5.29)

which is quite good. Now we want to show, that despite the fact, that the requirements of
| | are not quite fulfilled we get, at least numerically, the asymptotic representation
(5.23). The implementation therefor can be found in Section 6.4 and results are given in
Figure 5.2. As next let us show that the asymptotics (5.24) holds for our example. It is
equivalent to

I'(a?)

. T* a(n+l),,1—«
an (L) T e

=1, n— oo, (5.30)

which is confirmed by Figure 5.3, whereto the source code can be found in Section 6.4.
The last thing in this section which remains to do is to show a reason why we can profit
from Algorithm 5.8. A good example is for the model, we used so far, with © = 2.851852.
The upper bound from Theorem 4.12 is 79842.92 which is significantly worse than the
bound of Algorithm 5.7, which is 0.2436943 after the computations in Section 6.4.

w(u,t)
_6 _4 —

-8

-10

0.0e+00 5.0e+164 1.0e+165 1.5e+165 2.0e+165 2.5e+165
asymp
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t t

Figure 5.2.: Asymptotics (5.23)
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Figure 5.3.: Asymptotics (5.24) for a,, of the power series (5.9)

5.3. Approximation of the Riccati-solution via polylogarithm

The supervisor of this work, Stefan Gerhold, suggested an approximation of f(u,t), the
solution of (4.14), via an asymptotic representation with a polylogarithm for u € R.
Write

Flut) =) an(u)t™”, (5.31)
n=1

as in Section 5.2. Define
ar(2
by = ar(a()?)na_l(T;‘)_o‘(”H) ~Qp, N 00. (5.32)

Fix N € N and write
o] N-1
Flut) = bt + > (an — b))t + Ey,
n=1 n=1

where
[o@)

En =) (an —b)t*". (5.33)
n=N
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If Fy is small, we have the approximation

Zb ton 4 Z tom

oTE0) L Ney N N (5.34)
- W(T W) Lita | (7 ) )+ > (an — o)t
@ n=1
where the polylogarithm is defined by
o0 Zn
Li,(z) :== prrl (5.35)
n=1
Heuristic error analysis leads to
oo t an
_ * om
Bl = | Y- ("~ 0 7=
n=N
an
< ak _
Sup( % — by Z <T> (5.36)
t/T*)aN
— T* ak - ( a
lf;]l\)f( a) |ak k;‘ 1— (t/ng)a
< NP@/Ty)*N, N — oo,
with 8 < 0 such that
an — bp ~ (const)n®(T*)™",  n — co. (5.37)

In Section 6.5 we compute the approximation (5.34) and plot it against the real f(u,t)
in Figure 5.4. There we can see that it works out quite well if the explosion time 77} is
already well-approximated. The constant [ in (5.37) can be computed via

log(|an, — by|) + anlog(Tr)
log(n)

For our example (5.7) we get in Section 6.5 that = —0.4176961; see Figure 5.5.

— B, n—oo. (5.38)
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6. Source Code, Methods &
Implementation

In this section I want to show some examples with the algorithms and asymptotics
mentioned in Sections 5.1-5.3. Since one aim of this thesis is that a master’s degree
student can easily follow the topics discussed in here, I am going to give detailed insight
into my implementation and the issues I dealt with programming the algorithms in the R-
programming language. Therefore, the coding is not shown in the appendix, but between
the description of the implementation to trigger the reader to reproduce the procedure.

For all the programs R version 3.2.3 has been used.

6.1. Introduction and auxiliary functions

At first let us start with the implementation of the model in R via an R-data.frame,
since this is quite flexible for our purpose. The model parameters of (4.1)-(4.3) are the
contents of the data.frame as follows:

v:i=1v>0,
1:=X>0,
x:=&>0,
; (6.1)
v_0:=Vy >0,
r:=pc (_17 1)7
a:=ac(1/2,1).
For example we get our model through coding the following:
1|rh <- data.frame("v" = 0.04, "1" = 0.3, "x" =1, "y_0" = 1, "r" = -0.7, "a" = 0.6)

As later on we will need some basic functions from Chapter 4 to directly take over the
notation there into our implementation, I wrote some auxiliary functions. For sure, you
could omit them and write their return values directly in the needed place, because most
of them are just one-liners.
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6. Source Code, Methods & Implementation

Auxiliary functions: ans, c_1,c_2,c_3,e_0,e_1,R, G

H*

Description of arguments
# NA

# Description of return value:
Returns the last computed value in the current R-environment.

H*

ans <- function(){
return(.Last.value)

# Description of arguments
# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model

# Description of return value:
# Returns c_1(u) of R(u,w) = c_1(u) + c_2(u) * w + c_3 * w~2.

# Remark: Actually the variable "parameters" is not needed here but due to
consistency reasons it is also an argument.

c_1 <- function(u, parameters){
return(1/2 * u * (u - 1))

# Description of arguments
# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model

# Description of return value:
# Returns c_2(u) of R(u,w) = c_1(u) + c_2(u) * w + c_3 * w~2.

c_2 <- function(u, parameters){

return(parameters$r * parameters$x * u - parameters$l) # r = rho, x = xi, 1 =
lambda

# Description of arguments
# parameters...data.frame containing the model parameters of a rough Heston model
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6. Source Code, Methods & Implementation

# Description of return value:
# Returns c_3 of R(u,w) = c_1(u) + c_2(u) * w + c_3 * w~2.

# Remark: Note that c_3 does not have an argument u since it is not dependend on
it.

c_3 <- function(parameters){

return(1/2 * parameters$x * parameters$x) # x = xi
}
B o C
# Description of arguments

# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model
# Description of return value:

# Returns e_0 of the representation G for the transformed Volterra integral
equation.

e_0 <- function(u, parameters){

return(1/2 * c_2(u = u, parameters = parameters))
}
S
# Description of arguments

# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model
# Description of return value:

# Returns e_1 of the representation G for the transformed Volterra integral
equation.

e_1 <- function(u, parameters){

return(e_O0(u = u, parameters = parameters)~2 - c_3(parameters = parameters) * c_
1(u = u, parameters = parameters))
¥
B o s o o o o e
# Description of arguments

# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model
# w...some real value; will be replaced by psi later on
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6. Source Code, Methods & Implementation

# Description of return value:
# Returns R which is part of the integrand for the Volterra integral equation for
psi.

R <- function(u, w, parameters){
return(c_1(u = u, parameters = parameters)
+ c_2(u = u, parameters = parameters) * W
+ c_3(parameters = parameters) * w~2)

# Description of arguments

# u...moment of rough Heston model

# parameters...data.frame containing the model parameters of a rough Heston model
# w...some real value; will be replaced by psi later on

# Description of return value:
# Returns G which is part of the integrand for the Volterra integral equation for
f.

G <- function(u, w, parameters){
res <- (w + e_0(u = u, parameters = parameters))~2 - e_1(u = u, parameters =
parameters)
return(res)

Second, it will be quite helpful for performing some tests, if we have functions to check,
whether our chosen parameters are admissible in the sense that they fulfill the conditions
in (6.1), such that we are not risking getting unreasonable results. Furthermore, we
then do not need to extra implement a handling for inappropriate values, since we have
checked them before using this values in the functions.

Functions for tests and checks: cases, consistency, elrol6_condition,
aux_modelcheck, modelcheck

# Description of arguments
# u...moment of rough Heston model
parameters...data.frame containing the model parameters of a rough Heston model

H*

# Description of return value:

# Returns a data.frame with objects "Case" and "compl".

# return$Case...String with the case that u satisfies

# return$compl...indicator if the moment input was a complex data type

cases <- function(u, parameters){

if(c_1(u = Re(u), parameters = parameters) > 0){
if (e_0(u = Re(u), parameters = parameters) >= 0){
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6. Source Code, Methods & Implementation

return(data.frame("Case" = "Case (A)", "compl" = is.complex(u),
stringsAsFactors=FALSE)) # There were some troubles with the collocation
of data.frames for one dimensional u with the default value of
stringAsFactors.
Yelsed{
if(e_1(u = Re(u), parameters = parameters) < 0){
return(data.frame("Case" = "Case (B)", "compl" = is.complex(u),
stringsAsFactors=FALSE))
}elseq
return(data.frame ("Case" = "Case (C)", "compl" = is.complex(u),
stringsAsFactors=FALSE))
}
}
}elseq{
return(data.frame("Case" = "Case (D)", "compl" = is.complex(u),
stringsAsFactors=FALSE))
}
}
B o s o o o oo
# Description of arguments

# parameters...data.frame containing the model parameters of a rough Heston model

# Description of return value:
# Returns a boolean value to check if the chosen parameters really correspond to

the restrictions of our model.

consistency <- function(parameters){

if (parameters$v <= 0){
return (c (FALSE, "v"))

}

if (parameters$l <= 0){
return (c (FALSE, "1"))

}

if (parameters$x <= 0){
return (c (FALSE, "x"))

}

if (parameters$v_0 <= 0){
return (c (FALSE, "v_0"))

}

if (abs (parameters$r) >= 1){
return (c(FALSE, "r"))

}

if (parameters$a <= 1/2){
return (c (FALSE, "a"))

}

if (parameters$a >= 1){
return (c(FALSE, "a"))

}

return (TRUE)
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# Description of arguments
# parameters...data.frame containing the model parameters of a rough Heston model

# Description of return value:
# Returns a boolean value if the restriction of (-1/sqrt(2), 1/sqrt(2)] of [ElRol6

] is fulfilled; else the range is given back.

elrol6_condition <- function(parameters){

if (parameters$r <= - 1 / sqrt(2)){ # r = rho
return (c(FALSE, "Lower than - 1 / sqrt(2))"))
}
if (parameters$r > 1 / sqrt(2)){
return (c(FALSE, "Higher than 1 / sqrt(2)"))
}
return (TRUE)
¥
B o o o o e
# Description of arguments

# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model
# Description of return value:

# Returns a data.frame with with "Consistency", "ElRol1l6_Condition", "Cases" using
the functions above.

# Remark: The "auxiliary"-prefix, because here for one-dimensional argument u.

aux_modelcheck <- function(u, parameters)d{

ret_1 <- consistency(parameters = parameters)
ret_2 <- elrol6_condition(parameters = parameters)
ret_3 <- cases(u = u, parameters = parameters)
return(data.frame ("Consistency" = ret_1, "ElRol6_Condition" = ret_2, "Cases" =
ret_3))
}
B o o o o o o e e e
# Description of arguments

# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model
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6. Source Code, Methods & Implementation

# Description of return value:
# Returns a collocation of the checkfunctions above for multi-dimensional u.

modelcheck <- function(u, parameters){
n_u <- length(u)
if(n_u < 2){

aux_modelcheck(u = u, parameters = parameters)
}elseq
res <- data.frame("u" = u, "Consistency" = FALSE, "ElRol16_Condition" = FALSE,
"Cases" = data.frame("Case" = "Case (X)", "compl" = FALSE,

stringsAsFactors=FALSE)) # values don"t matter, this is only for adjusting
the correct data.frame

m_res <- ncol(res)

for(i in (1:n_u)){

res[i,(2:m_res)] <- aux_modelcheck(u = ul[i], parameters = parameters) # For
successful collocation we need "stringAsFactors = TRUE" in the data.
frames for dim(u) = 1!
}
return (res)

As we will need some reasonable starting values for iterations in Section 6.3 later on,
we will profit from having the boundaries from Theorem 4.12 for the explosion time
available as function.

Boundaries for the explosion time: aux_max_boundaries, max_boundaries,
lower_bound, upper_bound, boundaries

# Description of arguments
# alpha...some real number between O and 1.

# Description of return value:
Returns the maximum of the function, that needs to be maximized for the
boundaries of the explosion time.

# Remark: alpha in (0, 1) is not checked, since this function is mainly an
auxiliary function such that only admissible input will be used.

aux_max_boundaries <- function(alpha){
to_max <- function(r){
return((r~alpha - 1)~(1 / alpha) / (r * (r - 1)))
}
# "optimize" seemed to work nice for our purpose
# Maybe one should implement this a little bit more propper.
res <- optimize(f = to_max, interval = c¢(1 + 1 / Inf, 10), maximum = TRUE)
return(res$objective)
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# Description of arguments
# alpha...some real number between O and 1.

# Description of return value:
# Returns a data.frame containing "alpha" and "f(r_max)" to realize "aux_max_
boundaries" for vector-valued alpha.

# return$alpha...input to see the corresponding output correctli

# return$f(r_max)...maximum of the function, that needs to be maximized for the
boundaries of the explosion time

# Remark: alpha in (0, 1) is not checked, since this function is mainly an

auxiliary function such that only admissible input will be used.

max_boundaries <- function(alpha){

n_alpha <- length(alpha)
if (n_alpha < 2){
aux_max_boundaries (alpha = alpha)
}elseq{
res <- vector("list", length = n_alpha)
for(j in (1:n_alpha)){
res[[j]] <- aux_max_boundaries(alpha = alphal[j])
}
res <- as.data.frame(cbind(alpha, res))
colnames (res) <- c("alpha", "f(r_max)")
return(res)
}
T
B o o o e
# Description of arguments

# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model
# Description of return value:

# Returns the lower bound for the explosion time.

lower _bound <- function(u, parameters){
u <- Re(u)

case <- cases(u = u, parameters = parameters)$Case
if (case == "Case (A)"){
a_u <- 0
}else if (case == "Case (B)"){
a_u <- -e_O(u = u, parameters = parameters)
}elseq{
return (0) # stop("ATTENTION: We are in Case (C) or (D)!")
}
integrand <- function(w){
(w / G(u = u, w = w, parameters = parameters)) (1 / parameters$a) / w
}
fac_3 <- integrate(f = integrand, lower = a_u, upper = Inf)
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6. Source Code, Methods & Implementation

fac_1 <- gamma(l + parameters$a)~(1 / parameters$a)
fac_2 <- max_boundaries (alpha = parameters$a)
fac_3 <- fac_3$value # we need to assign this to just get the value
res <- fac_1 * fac_2 * fac_3
return(res)
}
B o s C D o o o __
# Description of arguments

# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model
# Description of return value:

# Returns the upper bound for the explosion time.

upper _bound <- function(u, parameters){
u <- Re(u)

case <- cases(u = u, parameters = parameters)$Case
if (case == "Case (A)"){
a_u <- 0
fac_3 <- 0
}else if(case == "Case (B)"){
a_u <- -e_0(u = u, parameters = parameters)
fac_3 <- parameters$a * (e_O(u = u, parameters = parameters) / e_1(u = u,
parameters)) (1 / parameters$a) # Analytical solution of int_0"{-e_0}
}elseq
return(Inf) # stop("ATTENTION: We are in Case (C) or (D)!")
}
integrand <- function(w){
(w / G(u = u, w = w, parameters = parameters)) (1 / parameters$a) / w
}
fac_3 <- fac_3 + integrate(f = integrand, lower = a_u, upper = Inf)$value
fac_1 <- 4 x gamma(l + parameters$a) (1 / parameters$a)
res <- fac_1 * fac_3
return(res)
}
B o o o e e
# Description of arguments

# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model
# Description of return value:

# Returns the boundaries of the explosion time.
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boundaries <- function(u, parameters){
n_u <- length(u)
u_re <- Re(u)

res <- data.frame("u" = u, "T_low" = 0, "T_up" = 0, "Complex" = is.complex(u))
for(j in (1:n_u)){
res$T_low[j] <- lower_bound(u = u_rel[j], parameters = parameters)
res$T_up[j] <- upper_bound(u = u_rel[j], parameters = parameters)

}

return(res)

6.2. Implementation of numerical scheme of Section 5.1

Note that the relevant equations for our algorithm, (5.2) and (5.4)—(5.6), are generally
quite easy to implement at first glance, but with an intelligent code we can save a lot of
computation time. In our case we can omit some inner loops and replace them by smart
vector arithmetics to use the power of R. In order to achieve this we need to simplify the
given algorithm Algorithm 5.1. At this point I want to thank Omar El Euch who kindly
provided his Python code while my first implementations were slow and did not work out
well. I translated it into R and in the following I will shortly describe the implementation
by discussing the used variables, such that it can be reproduced, modified and understood
easily (which is actually one aim of this section):

avect Note that the inner part of (5.2), i.e. the a; 4 for j € {1,...,k}, is only depen-
dent of the lag £ = k — j. This can be seen as with
Aa
() i= ————(((+2)*T ot — 2004 1)), reNuU{0 6.2
o) = Fr gy €+ (E+1)*), LeNU{0},  (62)
we get
ajr1 =alk—j), 1<j<k, kel (6.3)

Now, if n € N denotes the number of steps in our algorithm, we can once compute a
vector containing a(-) for all lags till £ = n — 1 and then for k < n we get

a17k+1 a(k: — 1)
QQ’]CJFl a(k — 2)
: = : (6.4)
k-1 k41 a(l)
Qg k1 a(0)
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Since we do not need to compute the a; 1 from new on, but just have an index access
we save a lot of time. The indexing is easily realized, since for the vector with the a; ;41
we need the last k£ elements of the vector

a(n —1)
a(n —2)
avect := : ) (6.5)
a(1)
a(0)
hence we get
a1,k+1
ag k+1
avect[(n - k + 1):n] = : . (6.6)
Ak—1,k+1
Ak k+1

Note that with using fancy indexing conventions in R we can write avect[-(1:(n -
k))] instead of avect[(n - k + 1):n], but here it seems to me that the code is better
readable with the standard indexing.

bvect In the same way as above the bj; ;41 of (5.5) are only dependent of the lag too
for j € {0,...,k}. Denote the lag function by

b(t) = F(aAj_l)((u ) — %), eNU{o), (6.7)

then we have
bjkt1 =0k—j), 0<ji<k, kel (6.8)

As above we produce the vector

bvect := : , (6.9)
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where we access the b ;41 via

bo k+1
b1 k1
bvect[(n - k):n] = : . (6.10)

bk—1,k+1
bk kv1

Note that different to avect in bvect we need the last £ + 1 elements, so we get one
entry more.

res The object res is a matrix of dimension (n + 1) x dim(u), where n is the number
of steps for the iteration. So we have for dim(u) = 1

res = . . (6.11)

Blut)

We used the vector- resp. matrix-arithmetics of R to implement everything pointwise for
a given vector u.

res_aux This is an auxiliary matrix of dimension (n+ 1) x dim(u) with n is the number
of steps for the iteration. It contains the factors R(u,(u,tx)) which are needed for the
pre-estimates in (5.4). For dim(u) = 1 we have

R
R(

u
u

) TE<U, to))
w:(u,tl)) 7 (6.12)

’
res_aux .=

~

R(u, 9 (u,tn))

where actually the last value can be omitted, since it would only be needed for 12 (U tpt1)-
Due to simplifications it is computed, since it is the last value of a loop, and we would have
to write an extra code for the last index of res. For a given vector u the implementation
is pointwise.

resp This is an auxiliary vector of length dim(u) which is renewed in every iteration
step. For dim(u) = 1 we have for k = 0 that

A“ ~

resp = mR(u,w(u,to)), (6.13)
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and fork in (1:(n - 1)) we use

bvect[n - k]

bvect[n - k + 1]
resp =res_aux[1:(k + 1)] -

bvect [n]

b(k)
(6.9) and (6.12) -~ - bk —1)
= (R (s t)), - R(u u ) |
k ~
= bk = ) R(u, (u, 1)
5=0
(65 ¢ -
=3 bipr1 R(u, 9 (u, )
=0
= {/;P(uv tk+1)'
For dim(u) > 1, the implementation above is pointwise in the vector wu.
res_aux_p This is an auxiliary vector of length dim(u). For dim(u) = 1 we have
res_aux_p := R(u,w = resp) (040 R(u, {Z)\P(u,tk_i_l)). (6.15)
This is a factor of the last summand in (5.6). For the last summand we then have
k11 R(u, 0 (u, 1) = A% res_au. (6.16)
’ ’ ’ INa+2) -

Hence, resp and res_aux_p are just the auxiliary vectors for computing the last sum-
mand in the recursion (5.6).

Since all the relevant objects of the function are discussed, let us view the code. Here,
the function aux_psi realizes the recursion (5.6) for v with dim(u) > 1. Additionally,
the function psi also handles a maturity vector 7" with dim(7") > 1. Since a vectorized
implementation for higher dimensional T is not going to work out for this approach,
we just have a loop which runs aux_psi for every entry of T. Additionally, we have
aux_psi_mpfr and psi_mpfr which do the same as aux_psi and psi, except the fact,
that with the objects of type mpfr we can handle large numbers which would cause
overflow errors. Despite the fact, that this numbers actually cannot be plotted (they
need to be converted to Inf-values, e.g. via base::as.numeric or Rmpfr: :asNumeric),
it will sometimes be useful to have the possibility to deal with “large numbers”, since
some computations need a division by large numbers, and overflows in the denominator
result in explosion time zero.
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Numerics — fractional addams method:  aux_psi, psi, aux_psi_mpfr, psi_mpfr

# Description of arguments

# u...moment of rough Heston model (dim(u) > 1)

# parameters...data.frame containing the model parameters of a rough Heston model

# T...psi(u, t) is computed from O to T

# n...grid size with n * dt =T

# Description of return value:

# Returns the data.frame containing "grid" and "res", resp. "res.1", "res.2",
"res.n" for dim(u) = n.

# return$grid...the grid which is determined by T an n

# return$res...psi(u, t) for r in {0, dt, 2dt, ..., ndt = T}

# Remark: The grid is given back too, since plot manipulation gets a little bit
easier and more transparent if you store the values and corresponding grid
together.

aux_psi <- function(u , parameters, T, n){
dt <- T / n
n_u <- length(u)
gamma_1 <- gamma(parameters$a + 1)
gamma_2 <- gamma(parameters$a + 2)

res <- matrix(data = 0, nrow = (n + 1), ncol = n_u)*1i # Can also be applied for
u complex, res = psi(u, t) for u fix

res_aux <- matrix(data = 0, nrow = (n + 1), ncol = n_u)*1i

resp <- rep(x = 0, times = n_u)*1i

res_aux_p <- rep(x = 0, times = n_u)x*1i

res_aux[1,] <- c¢_1(u = u, parameters = parameters)

resp <- dt~parameters$a * res_aux[1,] / gamma_1

res_aux_p <- R(u = u, w = resp, parameters = parameters)

res[2,] <- dt~-parameters$a * parameters$a * res_aux[1,] / gamma_2 + dt~
parameters$a * res_aux_p / gamma_2

res_aux[2,] <- R(u = u, w = res[2,], parameters = parameters)
nn <- seq(from = n - 1, to = 0, by = -1)
bvect <- dt-parameters$a * ((nn + 1) parameters$a - nn-parameters$a) / gamma_1

avect <- dt~parameters$a * ((nn + 2) (parameters$a + 1) + nn~(parameters$a + 1)
- 2 % (nn + 1)"(parameters$a + 1)) / gamma_2

k <- 1 # k = 1 appart, since something didn’t work out with the matrix-
multiplication %*%.
resp <- t(t(res_aux([1:(k + 1),]) %*% bvect[(n - k):nl]) # Note that "resp" and "

res_aux_p" are renewed in every step. "res_aux" will be the psi~(u, t_k) for
k in {0, ..., n} at the end.

res_aux_p <- R(u = u, w = resp, parameters = parameters)

res[(k + 2),] <- res_aux[1,] * (k~(parameters$a + 1) - (k - parameters$a) * (k +

1) “parameters$a) * dt~parameters$a / gamma_2

res[(k + 2),] <- res[(k + 2),] + res_aux_p * dt~parameters$a / gamma_2

res[(k + 2),] <- res[(k + 2),] + t(as.matrix(res_aux[2:(k + 1),]) %*% avect[((n
-k + 1):n)])

res_aux[(k + 2),] <- R(u = u, w = res[(k + 2),], parameters = parameters)

for(k in (2:(n - 1))){
resp <- t(t(res_aux[1:(k + 1),]) %*% bvect[(n - k):n]) # Note that "resp" and
"res_aux_p" are renewed in every step. "res_aux" will be the psi~(u, t_k)
for k in {0, ..., n} at the end.
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res_aux_p <- R(u = u, w = resp, parameters = parameters)
res[(k + 2),] <- res_aux[1,] * (k~(parameters$a + 1) - (k - parameters$a) * (k
+ 1) “parameters$a) * dt~parameters$a / gamma_2
res[(k + 2),] <- res[(k + 2),] + res_aux_p * dt~parameters$a / gamma_2
res[(k + 2),] <- res[(k + 2),] + t(t(res_aux[2:(k + 1),]1) %*% avect[((n - k +
1):n)1)
res_aux[(k + 2),] <- R(u = u, w = res[(k + 2),], parameters = parameters)
}
grid <- seq(from = 0, to = T, by = dt)
res[!is.finite(Re(res))] <- Inf # Probably quite improper, but to have an
appropriate representation for further analysis it will be good to avoid
NaNs, so we hope (and in fact it has to be in Case(A) and (B)) that the Nals
are errors where Infs would be the result.)
res[!is.finite(Im(res))] <- 1i x* Inf
# Output "res" equals to a sequence psi(u,t_0), psi(u,t_1), ..., psi(u, t_n)
with t_0 = 0, t_n = T
return(data.frame("grid" = grid, "res" = res))
}
B o e e e
# Description of arguments
# u...moment of rough Heston model (dim(u) > 1)
# parameters...data.frame containing the model parameters of a rough Heston model
# T...psi(u, t) is computed from 0 to T (dim(T) > 1)
# n...grid size with n * dt =T
# Description of return value:

# Returns a list containing for each T[j] the result of aux_psi.

psi <- function(u, parameters, T, n){
n_T <- length(T)

if(n_T < 2){
aux_psi(u = u, parameters = parameters, T = T, n = n)
}elseq{
res <- list()
for(i in (1:n_T)){
tmp <- aux_psi(u = u, parameters = parameters, T = T[il, n = n)
res[[i]] <- data.frame("T" = T[i], res = tmp$res, grid = tmp$grid)
}
return(res)
}
}
B o o o o o e
# Description of arguments
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# u...moment of rough Heston model (dim(u) = 1)

# parameters...data.frame containing the model parameters of a rough Heston model
# T...psi(u, t) is computed from 0 to T (dim(T) = 1)

# n...grid size with n * dt = T

# Description of return value:

# Returns the data.frame containing "grid" and "res", resp. "res.1", "res.2",
"res.n" for dim(u) = n.

# return$grid...the grid which is determined by T an n

# return$res...psi(u, t) for r in {0, dt, 2dt, ..., ndt = T}

# Remark: Since we are dealing with explosions, it will sometimes be interesting
to compute numbers that would normally cause an overflow.

library (Rmpfr)

aux_psi_mpfr <- function(u , parameters, T, n){
dt <- T / n
gamma_1 <- gamma(parameters$a + 1)
gamma_2 <- gamma(parameters$a + 2)
res <- mpfr(rep(x = 0, times = n + 1) ,53) # 53 = double precision for mpfr
res_aux <- mpfr(rep(x = 0, times = n + 1) ,53)
resp <- mpfr(rep(x = 0, times = 1),53)
res_aux_p <- mpfr(rep(x = 0, times = 1),53)
res_aux[1] <- c_1(u = u, parameters = parameters)
resp <- dt~parameters$a * res_aux[1] / gamma_1
res_aux_p <- R(u = u, w = resp, parameters = parameters)
res [2] <- dt~parameters$a * parameters$a * res_aux[1l] / gamma_2 + dt~parameters$
a * res_aux_p / gamma_2
res_aux[2] <- R(u = u, w = res[2], parameters = parameters)
nn <- seq(from = n - 1, to = 0, by = -1)
bvect <- dt~parameters$a * ((nn + 1) parameters$a - nn~parameters$a) / gamma_1
avect <- dt~parameters$a * ((nn + 2)~(parameters$a + 1) + nn~-(parameters$a + 1)
- 2 % (nn + 1)~ (parameters$a + 1)) / gamma_2
for(k in (1:(n - 1))){ # The problem for k = 1 in "aux_psi" does not occur in
the case dim(u) = 1.
resp <- t(res_aux[1:(k + 1)]) %*% bvect[(n - k):length(bvect)]
res_aux_p <- R(u = u, w = resp, parameters = parameters)
res[(k + 2)] <- res_aux[1] * (k~(parameters$a + 1) - (k - parameters$a) * (k +
1) “parameters$a) * dt parameters$a / gamma_2
res[(k + 2)] <- res[(k + 2)] + res_aux_p * dt-parameters$a / gamma_2
res[(k + 2)] <- res[(k + 2)] + t(res_aux[2:(k + 1)]) %*% avect[(n - k + 1):
length(avect)]
res_aux[(k + 2)] <- R(u = u, w = res[(k + 2)], parameters = parameters)
}
grid <- seq(from = 0, to = T, length.out = n + 1)
return(data.frame("grid" = grid, "res" = asNumeric(res)))
}
B o o o e
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Description of arguments

u...moment of rough Heston model (dim(u) = 1)

parameters...data.frame containing the model parameters of a rough Heston model
T...psi(u, t) is computed from 0 to T (dim(T) > 1)

n...grid size with n * dt =T

H O OH H

# Description of return value:
# Returns a list containing for each T[j] the result of aux_psi_mpfr.

psi_mpfr <- function(u, parameters, T, n){
n_T <- length(T)
if(n T < 2){
aux_psi_mpfr(u = u, parameters = parameters, T = T, n = n)
Yelseq
res <- list()
for(i in (1:n_T)){
tmp <- aux_psi_mpfr(u = u, parameters = parameters, T = T[i], n = n)
res[[i]] <- data.frame("T" = T[i], res = tmp$res, grid = tmp$grid)
}

return(res)
}
}

As an example of the numerics we plotted a picture for a vector u satisfying each case
of (A)—(D); see Figure 5.1. We choose

u=(-3,2.9,1.5,0.5), (6.17)

and take the following model:

rh <- data.frame("v" = 0.04, "1" = 0.3, "x" =1, "v_0" =1, "r" = -0.7, "a" = 0.6)

Note that one should have loaded all the R-functions which were introduced above at
this point. We made sure that the components of u are satisfying the proposed cases:

# Cases (A), (B), (C), (D)

moment <- data.frame(A = -3, B = 2.9, C = 1.5, D = 0.5)

modelcheck(u = as.numeric (moment), parameters = rh)
Output:

> # Cases (), (B), (C), (D
> moment <- data.frame(A = -3, B=2.9, C=1.5, D =0.5)
> modelcheck(u = as.numeric(moment), parameters = rh)
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u Consistency ElRol6_Condition Cases.Case Cases.compl
1 -3.0 TRUE TRUE Case (&) FALSE
2 2.9 TRUE TRUE Case (B) FALSE
3 1.5 TRUE TRUE Case (C) FALSE
4 0.5 TRUE TRUE Case (D) FALSE

Then we run the code, where the output can be seen in Figure 5.1.

steps <- 1000
par (mfrow = c(1,1))
par (mfrow = c(2,2))

# Case(A)
maturity <- 0.18
estimate <- psi(u = moment$A, parameters = rh, T = maturity, n

x <- estimate$grid
y <- Re(estimate$res)
plot(x = x, y = y, type = "o", xlim = ¢(0.17, 0.18), cex = 0.5,

= steps)

xlab

= expression(

t), ylab = expression(psi(u,t)), main = paste("Rough Heston Model - Case (A)

\nu = ", toString(moment$A), sep = ""))

# Case (B)
maturity <- 480

estimate <- psi(u = moment$B, parameters = rh, T = maturity, n = steps)

x <- estimate$grid

y <- Re(estimate$res)

plot(x = x, y = y, type = "o", xlim = c(400, 420), cex = 0.5, xlab = expression(t)

, ylab = expression(psi(u, t)), main = paste("Rough Heston Model

nu = ", toString(moment$B), sep = ""))

# Case (C)

maturity <- 1500

estimate <- psi(u = moment$C, parameters = rh, T = maturity, n
x <- estimate$grid

y <- Re(estimate$res)

plot(x = x, y = y, type = "o", cex = 0.5, xlab = expression(t),
psi(u, t)), main = paste("Rough Heston Model - Case (C) \nu
moment$C), sep = ""))

# Case (D)

maturity <- 1500

estimate <- psi(u = moment$D, parameters = rh, T = maturity, n
x <- estimate$grid

y <- Re(estimate$res)

plot(x = x, y =y, type = "o", cex = 0.5, xlab = expression(t),
psi(u, t)), main = paste("Rough Heston Model - Case (D) \nu
moment$D), sep = ""))

par (mfrow = c(1,1))

- Case (B) \

= steps)

ylab

= n

5

= expression(
toString(

= steps)

ylab

= n

= expression(
toString (
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6.3. Graphical iteration method

Having loaded all the functions of Sections 6.1 and 6.2 we now develop a graphical scheme
with “human decision” to have a guess about the explosion time. Here we use the function
boundaries from Section 6.1 to determine the starting values for the iteration. The term
iter in the code is written as a macro (function defmacro of gtools) that does the
iteration for the maturity and plots the results for the graphical decision. There is little
hope that this approach leads to a very stable algorithm that could be implemented
without “human decision”, since some experiments have shown that first, the success
sometimes depends strongly on the initial situation and second, how fast the function
¥ (u, t) explodes is strongly dependent on the model choice. Nevertheless, if you are aware
of some dangers, like numerical errors due to underflows or overflows, or the fact that it
strongly depends on the explosion time (which we do not know at the beginning of this)
if the number of steps is appropriate, this approach works out quite nicely and leads to
reasonable results. After the source code we have the output in the console, which is
mainly generated by the macro iter to show how big our maximal error is such that
we know when we have done a sufficient number of iterations. The vectors bounds are
assigned manually dependent on the plots in Figures 6.2-6.7. Note that in the subtitle
of these plots, the index number of the vector maturity is printed. Figure 6.1 shows a
plot of ¥ (u,t) with the two starting values for the maximal value T of ¢, which we get
from the boundaries of Theorem 4.12.

Script for graphical iteration

rh <- data.frame("v" = 0.04, "1" = 0.3, "x" =1, "v_0" =1, "r" = -0.7, "a" = 0.6)
moment <- -3

modelcheck (u = moment, parameters = rh)

T_bounds <- boundaries(u = moment, parameters = rh)

T_bounds

maturity <- c(T_bounds$T_low, T_bounds$T_up) # Starting values = boundaries

steps <- 1000

par (mfrow = c(1,1))

par (mfrow = c(1,2))

estimate <- psi(u = moment, parameters = rh, T = maturity, n = steps)

for(j in (1:2)){

plot(x = estimate[[j]l]$grid, y = Re(estimate[[j]l]$res), type = "o", cex = 0.5,

main = bquote(paste(psi(u, t), " for T = ", .(maturity[jl))), ylab =
expression(psi(u, t)), xlab = expression(t))

}

par (mfrow = c(1,1))

# The plots verify the explosion in between.

# Now we start the iteration
library(gtools) # for defining macro

# ITERATION START
iter <- defmacro(.GlobalEnv, expr={
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n <- 6 # since the plot visualization is done manually,

and n need to match!
left <- bounds[1]
right <- bounds [2]

maturity <- seq(from = maturity[bounds[1]], to = maturity[bounds[2]],

= n)
max_error <- maturity[n] - maturity[1]
res <- psi(u = moment, parameters = rh, T = maturity,

par (mfrow = c(1, 1))
par(mfrow = c(2, 3))
for(j in (1:mn)){

n

the par(mfrow = [...])

= steps)

dfl <- data.frame(x = res[[jl]l$grid, y = Re(res[[jll$res))

length.out

plot(dfl, type = "o", cex = 0.5, xlab = "t", ylab = expression(psi(u, t)),
main = bquote(atop(paste(psi(u,t), " for T = ", .(round(maturity([j]l,4)),
sep = ""), paste("Max.num = " , .(max(na.omit(df1$y))), sep = "" )
),
sub = paste("Nr. ", toString(j), sep = ""))

}

par(mfrow = c(1, 1))

max_error
»
# ITERATION END
maturity
bounds <- c(1,2)
iter ()
bounds <- c(2,3)
iter ()
bounds <- c(3,4)
iter ()
bounds <- c(1,3)
iter ()
bounds <- c(3,4)
iter ()
bounds <- c(2,5)
iter ()
T_exp_graph <- mean(maturity[1:3])
T_exp_graph

OQutput:

> rh <- data.frame(’v’ = 0.04, ’1° = 0.3, ’x’> =1, ’v_0’> =1, ’r’> = -0.7, ’a’ = 0.6)

> moment <- -3
> modelcheck(u = moment, parameters = rh)
Consistency ElRo16_Condition Cases.Case Cases.compl
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1 TRUE TRUE Case (4) FALSE
> T_bounds <- boundaries(u = moment, parameters = rh)
> T_bounds

u T_low T_up Complex
1 -3 0.0229439 0.5527463  FALSE

> maturity

[1] 0.0229439 0.5527463
> bounds <- c(1,2)
> iter()

[1] 0.5298024

>

> bounds <- c¢(2,3)
> iter()

[1] 0.1059605

>

> bounds <- c¢(3,4)
> iter()

[1] 0.02119209

>

> bounds <- c(1,3)
> iter()

[1] 0.008476838

>

> bounds <- c(3,4)
> iter()

[1] 0.001695368

>

> bounds <- c(2,5)
> iter()

[1] 0.001017221

>

> T_exp_graph <- mean(maturity[1:3])
> T_exp_graph

[1] 0.1752218
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Figure 6.1.: Starting values for ¢
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Figure 6.2.: Iteration #1, maximal error = 0.5298024
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Figure 6.3.: Iteration #2, maximal error = 0.1059605
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Figure 6.4.: Iteration #3, maximal error = 0.02119209
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Figure 6.5.: Iteration #4, maximal error = 0.008476838
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Figure 6.6.: Iteration #5, maximal error = 0.001695368
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Figure 6.7.: Iteration #6, maximal error = 0.001017221
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6.4. Computing explosion time via Algorithm 5.7 and lower
bound via Algorithm 5.8

Explosion time via Algorithm 5.7 and bound via Algorithm 5.8: explosion_time,
explosion_time_mpfr

# Description of arguments
# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model
# n...maximal coefficient
# verbose...
# Description of return value:
# For verbose == FALSE it returns the explosion time computed via the power series
# For verbose == TRUE it returns a list containing the explosion time and the
vector with the coefficients a_n.
explosion_time <- function(u, parameters, n,verbose = FALSE){
case <- cases(u = u, parameters = parameters)$Case
if (case == "Case (A)" | case == "Case (B)"){
ints <- (1:mn)
v <- gamma(parameters$a) / beta(parameters$a * (ints - 1) + 1, parameters$a) #
representation through beta advantageous to avoid overflow
a <- rep(x = 0.00, times = n)
a[1] <- c_1(u = u, parameters = parameters) * c_3(parameters = parameters) / v
[1]
a[2] <- c¢c_2(u = u, parameters = parameters) x al[l1] / v[2]
for(k in (3:n)){
alk] <- 1 / v[k] * (c_2(u = u, parameters = parameters) * al[(k-1)] + a
[(1:(k-2))] %*% rev(al(1l:(k-2))1))
}
if (case == "Case (A)"){
res <- 1 / (aln] * n~(1 - parameters$a) * gamma(parameters$a)~2 / (
parameters$a~parameters$a * gamma (2 * parameters$a)) )~ (1/(parameters$a
* (n + 1))
if (verbose == TRUE){
res <- list(ExplosionTime = res, a = a) # Both too look if the results are
reliable
}
return(res)
}else if (case == "Case (B)"){
res <- abs(aln])~(-1/(parameters$a * n) )
if (verbose){
res <- list(LowerBound = res, a = a)
}
return(res)
}
}elseq
stop ("ATTENTION: We are in Case (B), (C) or (D)! This Algorithm is just for
Case (A)")
}
}
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Description of arguments

u...moment of rough Heston model

parameters...data.frame containing the model parameters of a rough Heston model
n...maximal coefficient

H* O H H

# Description of return value:
# Returns the explosion time computed via the power series.

# Remark: This is the "mpfr"-version of "explosion_time". Here it is possible to
choose n arbitrary large. This is not senseless since our explosion time can
be very small but the a_n are very large such that they cause overflows while
computing the explosion time.

explosion_time_mpfr <- function(u, parameters, n){

case <- cases(u = u, parameters = parameters)$Case
ints <- mpfr((1:n), 32) # 32 bits precision for integer
v <- gamma(parameters$a) / beta(parameters$a * (ints - 1) + 1, parameters$a)
a <- rep(mpfr(0,53), times = n)
al[1] <- c_1(u = u, parameters = parameters) * c_3(parameters = parameters) / v
[1]
al[2] <- c_2(u = u, parameters = parameters) * al[1]l / v[2]
for(k in (3:m)){
al[k] <- (c_2(u = u, parameters = parameters) * al(k - 1)] + al[1:(k-2)] %*% rev
(al1:(k-2)1))/vI[k]
}
if (case == "Case (A)"){
res <- (aln] * n~(l1-parameters$a) * gamma(parameters$a)~2 / (parameters$a~(
parameters$a) * gamma(2 * parameters$a)))~(-1/(parameters$a*x(n + 1)))
return (asNumeric(res)) # convert to numeric-type. Standard-overflows will
become "Inf'"s
}else if(case == "Case (B)"){
res <- abs(alnl])~(-1/(parameters$a * n) )
return (asNumeric (res))
}Yelsed{
stop("Not appropriate case. Only implemented for Case (A) and (B)!")
}
¥
B o o o o
# Description of arguments
# u...moment of rough Heston model
# parameters...data.frame containing the model parameters of a rough Heston model
# n...maximal coefficient
# Description of return value:

# Returns vector a_n which is of type "mpfr".
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a_n_mpfr <- function(u, parameters, n){
ints <- mpfr((1:n), 32) # 32 bits precision for integer
v <- gamma(parameters$a) / beta(parameters$a * (ints - 1) + 1, parameters$a)
a <- rep(mpfr(0,53), times = n)
al1] <- c_1(u = u, parameters = parameters) * c_3(parameters = parameters) / v
[1]
a[2] <- c_2(u = u, parameters = parameters) * al[l] / v[2]
for(k in (3:mn)){
alk] <- (c_2(u = u, parameters = parameters) * al(k - 1)] + a[1:(k-2)] %*% rev
(al1:(k-2)1))/vI[k]
}
return(a)
}
Let us now make a first computation for the model (5.7) with v = —3.
rh <- data.frame("v" = 0.04, "1" = 0.3, "x" =1, "v_O" =1, "r" = -0.7, "a" = 0.6)
modelcheck(u = -3, parameters = rh) # We know already that u = -3 is ok, but we
should always check.
T_exp <- explosion_time(u = -3, parameters = rh, n = 670)
T_exp
Output:
> rh <- data.frame(’v’ = 0.04, ’1° = 0.3, ’x’ =1, ’v_0’> =1, ’r’> = -0.7, ’a’ = 0.6)
> modelcheck(u = -3, parameters = rh) # We know already that u = -3 is ok, but we

should always check.
Consistency ElRo16_Condition Cases.Case Cases.compl

1 TRUE TRUE Case (&) FALSE
> T_exp <- explosion_time(u = -3, parameters = rh, n = 670)
> T_exp

[1] 0.1747451

Since the approximation of the explosion time is not exact, we have to try a little bit.
Then we get the plot in Figure 5.2.

Numerical evidence for asymptotics (5.23)

T_exp <- explosion_time(u = -3, parameters = rh, n = 670)

library (gtools)

iter_2 <- defmacro(.GlobalEnv, expr = {
T_exp <- T_exp + 0.0001
par (mfrow = c(1,1))
par(mfrow = c(1,2))
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p <- psi(u = -3, parameters = rh, T = T_exp, n = 1000)

h <- Re(p$res)

dfl <- data.frame(x = p$grid, y = h)

plot(df1, type = "1", xlab = expression(t), ylab = expression(psi(u, t)))

¢ <- gamma(2 * rh$a) / gamma(rh$a)
asymp <- (log(h) - log(c)) / log(T_exp - p$grid)
df2 <- data.frame(x = p$grid, y = asymp)

plot (df2, type = "1", xlab = expression(t), ylab = "asymp", xlim = c(0.173,T_exp
))

abline(h = -rh$a, col = "red")

T_exp

par(mfrow = c(1,1))
b

iter_2(); iter_2(); iter_2(); iter_2(); iter_2()
iter_2(); iter_2(); iter_2(); iter_2(); iter_2()
iter_2() # iterations necessary since explosion time is not exact

Numerical evidence for asymptotics (5.24)

N <- 150
avec <- a_n_mpfr(u = -3, parameters = rh, n = N)
T_exp <- explosion_time_mpfr(u = -3, parameters = rh, n = N)

ints <- mpfr((1:N), 32)

asymp <- avec * T_exp~(rh$a * (ints + 1)) * ints~(1-rh$a) * gamma(rh$a)~2 / (rh$a~
rh$a * gamma(2 * rh$a))

asymp <- as.numeric(asymp)

df2 <- data.frame(x = (1:length(asymp)), y = asymp)

plot(df2, type = "o", cex = 0.5, xlab = expression(n), ylab = expression(aln]))

abline(h = 1, col = "red")

Now a good example, where the upper bound of Algorithm 5.8 is nice to have is for
u = 2.851852.

Upper bound of Algorithm 5.8 better than Theorem 4.12

modelcheck(u = 2.851852, parameters = rh)

T_exp <- explosion_time_mpfr(u = 2.851852, parameters = rh, n = 1000)
T_exp

bounds <- boundaries(u = 2.851852, parameters = rh)

bounds

bounds$T_up - T_exp
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Output:
> modelcheck(u = 2.851852, parameters = rh)
Consistency ElRo16_Condition Cases.Case Cases.compl

1 TRUE TRUE Case (B) FALSE
> T_exp <- explosion_time_mpfr(u = 2.851852, parameters = rh, n = 1000)
> T_exp

[1] 0.2436943
> bounds <- boundaries(u = 2.851852, parameters = rh)
> bounds
u T_low T_up Complex
1 2.851852 191.2771 79842.92 FALSE
> bounds$T_up - T_exp
[1] 79842.67

As we can see, the upper bound of 0.2436943 is very valuable, since from Theorem 4.12,
we just get an upper bound of 79842.92.

6.5. Implementation of polylogarithmic approximation

First, let us consider some functions we need for the computation of the approximation
(5.34).

Functions for polylog-approximation: Li, rhs, rhs_vect, rhs_abvect, rhs_mpfr,
rhs_mpfr_abvec, Error

H# H B H

#

Description of arguments
z...real value |.| <=1
nu...real value

n...number of maximal summands

Description of return value:
Returns the Li- or polylogarithmic function.

Li <- function(z, nu, n = 100000){

if (abs(z) <= 1){

res <- sum(z~(1:n) / (1:n) nu)
Yelseq{

res <- Inf
}

return(res)
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Description of arguments

u...moment of rough Heston model

t...time ¢t

N...N of the approximation of f via polylogarithm

T_exp...Explosion time we get from an estimator

parameters...data.frame containing the model parameters of a rough Heston model

H OH OH O OHE R

# Description of return value:
# Returns the right-hand side of the approximation of f with a polylogarithm.

rhs <- function(u, t, N, T_exp, parameters){
fac_1 <- parameters$a~(parameters$a) * gamma(2 * parameters$a) / gamma(
parameters$a) "2 * T_exp~(-parameters$a)
fac_2 <- Li(z = (t/T_exp) (parameters$a), nu = (1 - parameters$a))
sum_1 <- fac_1 * fac_2

# Create vector a
ints <- (1:N)
v <- gamma(parameters$a) / beta(parameters$a * (ints - 1) + 1, parameters$a)
a <- rep(x = 0, times = N)
af[1] <- c_1(u = u, parameters = parameters) * c_3(parameters = parameters) / v
[1]
al[2] <- c_2(u = u, parameters = parameters) * al[l]l / v[2]
for(k in (3:N)){
alk] <- 1 / v[k] * (c_2(u = u, parameters = parameters) * al[(k-1)] + a
[(1:(k-2))] %*% rev(al(1:(k-2))1))
}

# Create vector b

b <- fac_1 * ints~(parameters$a-1) * T_exp~(-parameters$a * ints)
sum_2 <- sum((a - b)[(1:(N-1))] * t-(parameters$a * ints[(1:(N-1))1))
res <- sum_1 + sum_2

return(res)

Description of arguments

u...moment of rough Heston model

t...time t (dim(t) >= 1)

N...N of the approximation of f via polylogarithm

T_exp...Explosion time we get from an estimator

parameters...data.frame containing the model parameters of a rough Heston model

H OH H O K H

# Description of return value:

# Returns a vector with that ealuates "

" for each t.

rhs
rhs_vect <- function(u, t, N, T_exp, parameters){
n_t <- length(t)
res <- rep(0, n_t)
for(j in (1:n_t)){
res[j] <- rhs(u, t[j] , N , T_exp, parameters)
}
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HOH H ¥ H B

return(res)

Description of arguments

u...moment of rough Heston model

t...time t (dim(t) >= 1)

N...N of the approximation of f via polylogarithm

T_exp...Explosion time we get from an estimator

parameters...data.frame containing the model parameters of a rough Heston model

Description of return value:
Returns the vectors a and b which are used for the approximation of f via
polylogarithms.

rhs_abvec <- function(u, t, N, T_exp, parameters){

H OH H O OE

fac_1 <- parameters$a~(parameters$a) * gamma(2 * parameters$a) / gamma/(
parameters$a) "2 * T_exp~(-parameters$a)

fac_2 <- Li(z = (t/T_exp) (parameters$a), nu = (1 - parameters$a))

sum_1 <- fac_1 * fac_2

# Create vector a
ints <- (1:N)

v <- gamma(parameters$a) / beta(parameters$a * (ints - 1) + 1, parameters$a)

a <- rep(x = 0, times = N)

a[1] <- c_1(u = u, parameters = parameters) * c_3(parameters = parameters) / v
[1]

a[2] <- c_2(u = u, parameters = parameters) * al[l]l / v[2]

for(k in (3:N)){
alk] <- 1 / v[k] * (c_2(u = u, parameters = parameters) * al[(k-1)] + a
[(1:(k-2))] %*% rev(al(l:(k-2))1))
}

# Create vector b

b <- fac_1 * ints~(parameters$a-1) * T_exp~(-parameters$a * ints)
sum_2 <- sum((a - b)[(1:(N-1))] * t~(parameters$a * ints[(1:(N-1))]1))
res <- sum_1 + sum_2

return(list(a = a, b = b))

Description of arguments

u...moment of rough Heston model

t...time t

N...N of the approximation of f via polylogarithm

T_exp...Explosion time we get from an estimator

parameters...data.frame containing the model parameters of a rough Heston model
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# Description of return value:
# mpfr-method of rhs.

rhs_mpfr <- function(u, t, N, T_exp, parameters){
fac_1 <- parameters$a~(parameters$a) * gamma(2 * parameters$a) / gamma(
parameters$a) "2 * T_exp~(-parameters$a)
fac_2 <- Li(z = (t/T_exp) (parameters$a), nu = (1 - parameters$a))
sum_1 <- fac_1 * fac_2

# Create vector a
ints <- mpfr ((1:N),32)

v <- gamma(parameters$a) / beta(parameters$a * (ints - 1) + 1, parameters$a)
a <- mpfr(rep(x = 0, times = N),53)
a[1] <- c_1(u = u, parameters = parameters) * c_3(parameters = parameters) / v
[1]
a[2] <- c_2(u = u, parameters = parameters) * al[l]l / v[2]
for(k in (3:N)){
alk] <- 1 / v[k] * (c_2(u = u, parameters = parameters) * al[(k-1)] + a

[(1:(k-2))]1 %*% rev(al(1l:(k-2))1))
}

# Create vector b

b <- fac_1 * ints~(parameters$a-1) * T_exp~(-parameters$a * ints)
sum_2 <- sum((a - b)[(1:(N-1))] * t-(parameters$a * ints[(1:(N-1))1))
res <- sum_1 + sum_2

return(res)

}

B o o o o o o o o o oo -

# Description of arguments

# u...moment of rough Heston model

# t...time t

# N...N of the approximation of f via polylogarithm

# T_exp...Explosion time we get from an estimator

# parameters...data.frame containing the model parameters of a rough Heston model

# Description of return value:
# mpfr-method of rhs_abvec.

rhs_mpfr_abvec <- function(u, t, N, T_exp, parameters){
fac_1 <- parameters$a~(parameters$a) * gamma(2 * parameters$a) / gamma
parameters$a) "2 * T_exp~(-parameters$a)
fac_2 <- Li(z = (t/T_exp) (parameters$a), nu = (1 - parameters$a))
sum_1 <- fac_1 * fac_2

# Create vector a
ints <- mpfr ((1:N),32)

v <- gamma(parameters$a) / beta(parameters$a * (ints - 1) + 1, parameters$a)

a <- mpfr(rep(x = 0, times = N),53)

al[1] <- c_1(u = u, parameters = parameters) * c_3(parameters = parameters) / v
[1]

al2] <- c_2(u = u, parameters = parameters) * al[l] / v[2]

for(k in (3:N)){
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alk] <- 1 / v[k] * (c_2(u = u, parameters = parameters) * al[(k-1)] + a
[(1:(k-2))] %*% rev(al(1:(k-2))1))
}
# Create vector b
b <- fac_1 * ints~(parameters$a-1) * T_exp~(-parameters$a * ints)
sum_2 <- sum((a - b)[(1:(N-1))] * t-(parameters$a * ints[(1:(N-1))1))
res <- sum_1 + sum_2
return(list(a = a, b = b))
}
B oo oo o o o e e
# Description of arguments
# u...moment of rough Heston model
# t...time ¢t
# N...N of the approximation of f via polylogarithm
# T_exp...Explosion time we get from an estimator
# parameters...data.frame containing the model parameters of a rough Heston model
# N_max...defines the maximal sumand for the "infinite" sum
# Description of return value:

# Returns the error from putting the asymptotic b_n into the power series for the

a_n.
Error <- function(u, t, N, T_exp, parameters, N_max = 3000){
res <- rhs_mpfr_abvec(u = u, t = t, N = N_max, T_exp = T_exp, parameters =
parameters)
res <- sum((res$a[N:N_max] - res$b[N:N_max]) * t~(parameters$a * (N:N_max)))

return (asNumeric (res))

}

Script for plotting the approximation

rh <- data.frame("v" = 0.04, "1" = 0.3, "x" =1, "v_O0" =1, "r" = -0.7, "a" = 0.6)
T_exp <- explosion_time(u = -3, parameters = rh, n = 670)
p <- psi(u = -3, parameters = rh, T = T_exp, n = 1000)
f <- c_3(parameters = rh)*Re(p$res)
library (gtools)
approx <- defmacro(.GlobalEnv, expr = {
T_exp <- explosion_time(u = -3, parameters = rh, n = 670)

x <- p$grid

y <- function(t){
res <- rhs_vect(u = -3, t = t, N =N, T_exp = T_exp, parameters = rh)
return(res)

}
plot(y, type = 1", col = "red", xlim = c(O, T_exp—0.001),
xlab = expression(t), ylab = bquote(paste(f(u, t), phantom() %~~% phantom()
, widehat(f)(u, t) , sep = "")),
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main = bquote (paste("Polylog-approximation for N = ", .(N), sep = ""))) #
ploting a function automatically adjusts the ylim to the xlim !
lines(x = x, y = f, col = "blue",lty = "dashed")
legend ("topleft", inset = 0.05, 1legend = c("f(t)", "polylog-approx."), col = c(
"red", "blue"), cex = 0.8, 1lty=1:2)
B
ma_standard <- c(5,4,4,2) + 0.1

ma <- c(5,4.4,4,2) + 0.1
par (mar = ma)

par (mfrow = c(1,1))
par (mfrow = c(2,2))

N <- 3
approx ()

N <- b
approx ()

N <- 10
approx ()

N <- 20
approx ()

par (mfrow = c(1,1))

The outcome, i.e. the plots, can be seen in Figure 5.4. Then let us determine the constant
B from (5.37).

Power 3 for error bound

T_exp <- explosion_time(u = -3, parameters = rh, n = 670)

t <- T_exp - 0.01

N <- 3000

ab_vec <- rhs_mpfr_abvec(u = 0, t = t, N = N, T_exp = T_exp, parameters = rh)

a_vec <- ab_vec$a

b_vec <- ab_vec$b

ints <- mpfr ((1:N),32)

beta <- (log(abs(a_vec - b_vec)) + rh$a * ints * log(T_exp))/log(ints)

plot (asNumeric(beta), type = "1", xlim = c(100,3000), xlab = expression(n), ylab
= expression(betal[n]),
main = bquote(paste("Approximation of ", beta, " ", phantom() %~~% phantom(),
. (asNumeric(betal[length(beta)])), sep = "")))
abline(h = asNumeric(beta[length(beta)]), col = "red", lty = "dashed")

asNumeric (beta[length(beta)l)
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> asNumeric(beta[length(beta)])
[1] -0.4176961

The plot for the approximation of 5 can be seen in Figure 5.5.
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A.1. Asymptotics

Definition A.1 (| |)- Let S be aset and sp € S. We assume a notion of neighborhood

to exist on S, such that sy € S is possible, e.g. S = R and sy = +o00. Two functions
fy9:S\{so} = R (C) are given.

(i) Write
f(s) =olg(s)), s— so, (A1)
if
Jim j;gz) =0. (A.2)

In other words, for any (arbitrary small) € > 0, there exists a neighborhood V. of
50 (depending on ¢), such that

[f(s)] <elg(s)l, s€Ve, 57 s0.

We say “f is of order smaller than g”, or “f is little-oh of g7, or “f is asymptotically
dominated by g” (as s tends to sg).

(ii) Write
f(s) = 0O(g(s)), s so, (A.3)
if
liiri)ssljp ggz; < 0. (A.4)

In other words, there exists a neighborhood V of sy and a constant C' > 0 such that

[f(s)l <Clg(s), seV, s#s0.

One also says that “f is of order at most g”, or “f is big-oh of g”, or “f is bounded
from above by g (up to a constant factor) asymptotically” (as s tends to sp).
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(iii) Write

f(s)~g(s), s— so, (A.5)
if
_f(s)
slgglo a5) 1. (A.6)

One also says that “f and g are asymptotically equivalent” (as s tends to sg ).

Remark A.2. Note that very often the term s — sy is omitted, since it can mostly be
identified by the context.

Remark A.3. Note that f(s) = O(1) resp. f € O(1) (for s — s9) means that f is bounded
for s — sg, since this is equivalent to

< 0

|£(s)]
1

lim sup
S$—S0

Lemma A.4. Some properties of the Landau-Notation are the following:

(i) Product: For fi = O(g1) and fo = O(g2) we have f1fa = O(g192). Especially we
have fO(g) = O(fg).

(it) Sum: For fi = O(g1) and fo = O(g2) we have f1 + fo = O(|g1| + |g2|). This
implies that for f1, fa € O(g) we get f1 + fo € O(g) which means that O(g) is a
convex cone. If f and g are positive functions, we get O(f) + O(g) = O(f + g).

(i1i) Constant multiplication: Let k be a constant. Then we have O(kg) = O(g) if k
is nonzero. From f = O(g) we get kf = O(g).

Proof. The properties above can be computed straight forward using the definition of
the big-O-notation.
Ad (i). Here we get with suppression of the argument for ease of notation
M h é > < <limsup h ) <limsup f2 > < 00.
S—S0 S—rS0

9192 971 g1 971 g

Ad (ii). We have for |f1/g1|,|f2/g2| < C that

|f1+ /2 < Al f §@+U72|<2C
lg1l +1g2| — lgal +1g2| ~ lg1l + g2l ~ la1l = g2l
which leads to f1 + fa = O(|g1| + |g2])-

Ad (iii). For |f/g| < C we get

lim sup
S—S0

< limsup <

S— S0

‘kf' < |k|C.
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A. Appendix

Remark A.5. Note that the notation can be combined with other arithmetic operators,
e.g. g(s) = h(s) + O(f(s)) expresses the same as g(s) — h(s) = O(f(s)).

Theorem A.6 (Stirling’s formula). For every x > 0 exists 6(z) € (0,1) such that
D(z) = V2ra® 1/ 2e 20 @)/12,
Proof. See | , Theorem VI.9.10.]. O

Remark A.7. Note that in | | we have

1
nl=V2mn" 2™ (14 6,), 0<en < o,

12n
so we have
n! ~ V2" 2e™ n = o0, (A.7)
and therefore
[(z) ~ V22" 2™ 2 — . (A.8)

A.2. Lipschitz Continuity

Definition A.8 (| ). Let k = k(t,s,u) be defined for 0 < s <t < oo and u in R.

(i) If, for any given positive constants A and B, there exists a constant L > 0 such
that

|k(t, s,u1) — k(t, s,u2)| < Lluy — ual, 0<s<t<T, A<wuj,ux<B, (A9)
then k is said to be locally Lipschitz continuous in wu.

(ii) If the Lipschitz constant L does not depend on B, then k is called globally Lipschitz
continuous in u.

Remark A.9. Note that the reason for k(t,s,u) in Definition A.8 to be dependent on 3
variables is that we are dealing with 3- resp. 2-variate functions which are said to be
locally Lipschitz in Chapter 4. Brunner seemingly just wants a most general definition
to be appropriate for his representation (2.10) of nonlinear Volterra integral equation in

[ |

Lemma A.10. Polynomials are locally Lipschitz continuous.
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A. Appendix

Proof. The idea for this short proof is from | |. Let p: R — R be a polynomial.
Then, for p:= pjja,p) : [A, B] = R, we get that the continuous function 9,p(z) on [A, B]
is bounded, i.e.

|8Iﬁ(x)| <L, =z¢€ [A’ B]v
and with the mean value theorem we get for some £ € (A, B)
p(y) = ()| = 10:p(E)lly — x| < Lly —yl, x,y € (A B),

which concludes the proof. O
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