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Kurzfassung

Die Landau-Lifshitz—Gilbert Gleichung (LLG) ist das fundamentale mathematische Modell
fiir Verstdndnis und Simulation zeitabhéngiger mikromagnetischer Ph&nomene. Schwierig-
keiten bei der Entwicklung effizienter numerischer Verfahren sind die Nichtlinearitdt der
Gleichung, eine nicht-konvexe Nebenbedingung, und die Nicht-Eindeutigkeit von Losungen.
Mit dem (zweite Ordnung) Tangent-Plane-Verfahren aus [Alouges et al. (Numer. Math.,
128, 2014)] und dem Midpoint-Verfahren aus [Bartels und Prohl (STAM J. Numer. Anal.,
44, 2006)] verfiigen wir iiber zwei Algorithmen mit (formal) zweiter Konvergenzordnung in
der Zeit. Beide Algorithmen basieren auf der Finite-Elemente-Methode und konvergieren
unbedingt.

Die spezielle Struktur beider Algorithmen legt bei Erweiterungen die aufwéndige implizi-
te Behandlung von etwaigen Termen niedriger Ordnung und von gekoppelten Gleichungen,
wie etwa Streufeld-Berechnungen oder die Kopplung von LLG mit der Maxwell-Gleichung,
nahe. Um dieses Problem zu umgehen, bedienen wir uns eines implizit-expliziten Adams—
Bashforth-artigen Ansatzes, mit dem wir die Terme niedriger Ordnung explizit behandeln.
Bei Kopplungen von LLG mit anderen Gleichungen entkoppeln wir die ndherungsweise
Berechnung der Magnetisierung (als Losung von LLG) und der Losung der gekoppelten
Gleichung (z.B. elektrisches und magnetisches Feld bei der Kopplung von LLG mit der
Maxwell-Gleichung). Die so erhaltenen Algorithmen sind (formal) zweiter Konvergenzord-
nung in der Zeit. Fiir die Kopplung mit der Eddy-Current-Gleichung erhalten wir so ein
entkoppeltes Tangent-Plane-Verfahren mit Konvergenz zweiter Ordnung in der Zeit. Fiir
die Kopplung mit der Spin-Diffusion-Gleichung erhalten wir so ein entkoppeltes Midpoint-
Verfahren mit Konvergenz zweiter Ordnung in der Zeit. Dariiber hinaus organisieren wir die
Annahmen beider Verfahren in einem einheitlichen Rahmen, der insbesondere physikalisch
relevante nicht-lineare dissipative Effekte abdeckt. Wir erweitern die vorhandene numeri-
sche Analysis und beweisen die unbedingte Konvergenz all unserer erweiterten Algorithmen.
Zusitzlich behandeln wir Losungsstrategien fiir die entsprechenden Variationsformulierun-
gen. Schliefflich fithren wir mit unseren erweiterten Algorithmen numerische Experimente
durch. Diese Experimente bestéitigen die Konvergenz zweiter Ordnung in der Zeit, den
reduzierten Aufwand und die Anwendbarkeit auf physikalisch relevante Beispiele.






Abstract

In computational micromagnetism, the Landau-Lifshitz—Gilbert equation (LLG) is the
fundamental mathematical model for the understanding and simulation of time-dependent
micromagnetic phenomena. The non-linear nature of the equation, a non-convex side con-
straint, and the non-uniqueness of solutions aggravate the development of efficient numerical
algorithms. The (second-order) tangent plane scheme from [Alouges et al. (Numer. Math.,
128, 2014)] and the midpoint scheme from [Bartels and Prohl (STAM J. Numer. Anal.,
44, 2006)] provide us with two finite-element-based algorithms, which are both (formally)
second-order in time and unconditionally convergent.

The particular structure of both algorithms suggests the numerically expensive implicit
treatment of possible lower-order terms and of coupled systems like, e.g., the computation
of the stray field or, more generally, the coupling of LLG with the full Maxwell system. To
avoid this and to conserve the second-order in time convergence, we employ an implicit-
explicit second-order in time Adams—Bashforth-type approach, where we treat the lower-
order terms explicitly in time. For couplings with other equations, this decouples the
approximate computation of the magnetization (i.e., the solution of LLG), and of the
coupled equation (e.g., electrical and magnetic field of the coupling of LLG with the full
Maxwell system). The resulting algorithms are (formally) second-order in time. For the
coupling with eddy currents, this yields a decoupled second-order in time tangent plane
scheme. For the coupling with the spin diffusion equation, this yields a decoupled second-
order in time midpoint scheme. Moreover, we provide certain assumptions in a unified
framework, which covers, in particular, physically relevant non-linear dissipative effects.
We extend the existing convergence analysis and prove unconditional convergence of our
extended algorithms. Moreover, we discuss the efficient solution of the corresponding (linear
and non-linear) variational problems. Numerical experiments with our extensions confirm
the preservation of the second-order in time convergence, reduced computational costs, and
the applicability to physically relevant examples of our algorithms.
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1. Introduction

1.1. Motivation

In computational micromagnetics, the Landau-Lifshitz—Gilbert equation (LLG) [Gil55,
LLO0g] is a widely accepted model for the simulation of magnetization dynamics; see Fig-
ure 1.1. In particular, LLG is applied for the modelling and simulation of the writing
process on a hard disk drive (HDD). Hard disk drives store information coded in the av-
erage magnetization of a tiny compartment of a ferromagnetic material. In the writing
process, a recording head generates a magnetic field and the resulting magnetization dy-
namics reverse the magnetization. For details, we refer to, e.g., [HS98, Chapter 6.4] and
the references therein.

1.2. Mathematical model

On a mathematical level, magnetization dynamics (e.g., the HDD writing process) are
modelled in the evolution of the magnetization m on a bounded and polyhedral Lipschitz
domain w C R3. In the following, we provide a basic configuration and discuss certain
aspects of the model; cf., e.g., [HS98, BMS09].

For low temperatures, the modulus of m can be assumed to be material dependent and
constant. Without loss of generality, we restrict ourselves to the case |m| =1, i.e., we seek

mt):w—S*:={xeckR:|z|=1}, (1.1)

where m is a solution of the Landau-Lifshitz—Gilbert equation [Gil55, LLO8] (LLG). Given
a final time T" > 0, LLG reads

om = —m X (heg(m) + II(m)) + am x Oym in (0,7) X w, (1.2a)
Opm =0 on (0,7) X Ow, (1.2b)
m(0) =m° with |m° =1 on w. (1.2¢c)

LLG describes the magnetization m under the influence of the so-called effective field
heg(m) : w — R3, which reads

heg(m) = Cox Am + w(m) + f. (1.3)

Here, CexAm is the so-called exchange field with the exchange constant Cex > 0, which
models the tendency of the magnetization m to locally align itself into the same direction.
In w(m) : w — R3, we collect m-dependent lower-order terms such as anisotropy or stray
field. We refer to Section 2.2 for a precise definition. Finally, f : w — R? models an applied



1. Introduction

mx mx

-1.000+00 o 1,0002+00 -1.000e+00 05 o 0.5 1,000e+00
[NRRRRRERENRERRRERART

M"?\\HHH‘DHHHH\D"?M M M
[ L
(a) t = Ons (b) t = 0.05ns
"’mlm{ﬁ\\mm\uummwuﬁwm V‘VWV?\WHHH\DHHHH\Diﬁ\wm

(c) t =0.1ns (d) t =0.15ns

mx mx
1,0008+00 -1.000e+00 05 o 0.5 1,000e+00
[NRRRRRERENRERRRERART

-1.000+00 o

M .

(e) t =0.2ns (f) t = 0.3ns

mx mx

-1.000+00 E)

(R .

1,0008+00 -1.000e+00 05 o 0.5 1,000e+00
[ENRRRRENRTRRRNRRRRANN

(g) t = 0.4ns (h) ¢t = 1ns

Figure 1.1.: Experiment of Chapter 1: Snapshots of the switching of a magnetization on a
thin film of permalloy. The simulation follows the setting of the u-MAG stan-
dard problem #4 [mum] (second configuration). The simulation was performed
with a C++-based extension of NGS/Py [ngs|, which was mainly developed by

the author. The visualization was done with ParaView [AGLO05].



1.3. State of the art

magnetic field (e.g., the field generated by a recording head). Associated with the effective
field heg(m), the energy functional of LLG (1.2) is defined as

C;x /W\Vm!de—;/wﬂ'(m)'mdw_/f'mdw' (1.4)

w

SLL(;(m) =

Indeed, there holds the formal relation

. 55LLG (m)

her(m) = om

i.e., heg(m) is the negative variational derivative of the ferromagnetic bulk energy. Over
time, the magnetization m tends to attain a state of minimum energy, where the so-called
Gilbert damping constant 0 < « < 1 governs how fast this energy minimum is reached.
The larger «, the faster the magnetization m reaches an eventual equilibrium.

Moreover, TI(m) : w — R? collects lower-order terms, which model external effects, such
as the Slonczewski field [Ber96, Slo96] and the Zhang-Li field [ZL04, TNMS05]. Such effects
are usually referred to as dissipative effects, and, in contrast to 7(m), do not contribute
to the energy functional (1.4). We refer to Section 2.2 for a precise definition.

Finally, let m be a solution of (1.2). Formally testing (1.2a) with m, we infer that

d :
a]m|2 =om-m (122 g,
If the initial condition m? satisfies [m°| = 1 on w, it thus follows that |m| = 1 in the

space-time cylinder. Hence, regardless of the precise definition of heg(m) and II(m), any
solution m of LLG (1.2) satisfies the constraint (1.1).

1.2.1. Couplings with other equations

More advanced mathematical models in computational micromagnetism take into account
the effects which stem from a bounded and polyhedral Lipschitz domain Q C R? with
w ; Q, i.e., from outside of w. Naturally, this leads to the coupling of LLG with another
PDE which is defined on 2. In this work, we consider the coupling with the eddy current
equation (ELLG) (see, e.g., [LT13, LPPT15]) as well as the coupling with the spin diffusion
equation (SDLLG) [GWO07]; see Chapter 2 for details.

1.3. State of the art

As far as the analysis of LLG is concerned, the notion of a weak solution of LLG goes
back to [Vis85, AS92]. Weak solutions of LLG exist globally in time but are in general not
unique [AS92]. However, [CFO01] proves that strong solutions exist locally in time up to
some (possibly very small) time 7" > 0. Moreover, the work [DS14] proves a weak-strong
uniqueness principle of LLG in the sense that, if m; is a smooth solution of LLG on [0, 7]
and my is a weak solution on [0, 7], then m; = my on [0,T].

For couplings with other equations, the notion of weak solutions extends that from [AS92]:
We refer to [LT13] for the coupling of LLG with the eddy current equation, to [CF98] for the
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coupling with the full Maxwell system (MLLG), and to [GWO07] for the coupling with the
spin diffusion equation (SDLLG). In all the latter references, existence of weak solutions to
the corresponding coupled LLG systems is proved. Moreover, the weak-strong uniqueness
principle for LLG applies also to MLLG [DS14].

The numerical integration of LLG and its coupled systems has received much attention in
the recent years. For an introduction, we refer to, e.g., the monographs [Pro01, BBNP14]
or the review articles [KP06, GW07, Cim08] and the references therein. This work is
concerned with advances and extension of the following two numerical schemes, which are
both based on the finite element method (FEM).

e The tangent plane scheme (TPS): The tangent plane scheme in its present form
goes back to the work [Alo08]. It is based on an equivalent reformulation of LLG and
requires only the solution of one linear FEM system per time-step; see Section 1.3.1
below for details.

e The midpoint scheme (MPS): The midpoint scheme was first analyzed in the
work [BP06]. It is based on the implicit midpoint rule for time-integration and FEM
in space; see Section 1.3.2 below for details.

As far as convergence is concerned, the tangent plane scheme as well as the midpoint
scheme, and the corresponding extensions usually yield only formal convergence rates; see,
e.g., [BP06, Alo08, BBP08, LT13, AKST14]. This is due to the fact that the convergence
proofs in these works employ an energy argument for the existence of solutions of parabolic
problems; see, e.g., [Eval0]. Usually, one only has convergence of a subsequence of the
algorithm’s output and ideally requires no CFL-type coupling of the time-step size k > 0
and the mesh-size h > 0. In this virtue, we make the following standard convention.

Convention 1.3.1 (Unconditional convergence). We say that a time-marching algorithm is
unconditionally convergent, if a subsequence of the (postprocessed) output converges towards
a weak solution of LLG (or a coupled LLG system) and if this requires no coupling of the
time-step size k > 0 and the mesh-size h > 0.

Finally, note that there exists a variety of micromagnetic software. We mention the
popular 00MMF-package [DP99], which employs a finite difference method. Moreover, the
Python-based software tool magnum. fe [AEB™13] contributes to the well-known open source
FEniCS-project. Besides, we refer to the u-MAG homepage [mum] of the National Institute
of Science and Technology (NIST) for benchmark problems, solution reports, and links to
more micromagnetic software.

1.3.1. The tangent plane scheme (TPS)

The so-called tangent plane scheme (TPS) is a popular approach for the numerical inte-
gration of LLG. The fully explicit prototype of the first-order tangent plane scheme was
first formulated and analyzed in [AJ06] with a refined analysis in [BKP08]. In [Alo08], an
additional implicit stabilization term was introduced.

The tangent plane scheme relies on the equivalent reformulation of LLG (1.2a)

adm +m x om = [heg(m) + II(m) | — (heg(m) - m)m — (II(m) - m)m.  (1.5)
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It employs uniform time-stepping with time-step size k > 0 for time discretization and
standard lowest-order Courant finite elements in 3D for space discretization. At time ¢;
and for given m} ~ m(t;), one solves one linear system for v} ~ v(t;) := dym(t;) in an
mfl—dependent subspace, which mimics v - m = 0 nodewise. Then, mfjl ~m(t; + k) is
the nodewise normalization of mj, + kvj.

For the first-order tangent plane scheme, [Alo08] proves unconditional convergence in
the sense of Convention 1.3.1. Starting from the basic configuration heg(m) = Am and
II(m) = 0, the scheme as well as the convergence results of [Alo08] were extended to
lower-order contributions [AKT12, Gol12, Pagl3, BSF*14], the couplings with the eddy
current equation [LPPT15, LT13, Pagl3], the coupling with the full Maxwell system [Pagl3,
BPP15], the coupling with the spin diffusion equation [AHP*14, ARB*15, Rugl16], and the
coupling with magnetostriction [Pagl3, BPPR14]|. Even stochastic effects were considered
in [GLT16] and [AdBH14], where the latter work considers only a semi-discretization in
time. Finally, [AHP*14, Rugl6] show that the normalization of the update in the compu-
tation of mjt! ~ m(t; + k) can be omitted.

All the latter algorithms are formally first-order in time. Moreover, in the recent
work [FT17], the authors derive a-priori estimates for the tangent plane scheme without
normalization for LLG and ELLG, provided that the solution is smooth enough.

For (almost) second-order convergence in time, [AKST14] introduces a variant of the
tangent plane scheme for plain LLG, which relies on a smarter choice of the unknown
v, but still requires only the solution of one adapted linear system per time-step. The
resulting integrator (TPS2) is formally and experimentally of (almost) second-order in
time in the sense that for the time-step size k > 0, one expects a consistency error of the
size O(k*7¢) for all € > 0. Moreover, [AKST14] proves unconditional convergence in the
sense of Convention 1.3.1. However, the scheme treats the lower-order terms implicitly in
time, and, for example, for non-local stray field computations one either has to solve a
linear system with a fully populated system matrix or to employ a fixed-point iteration.
Both approaches complicate the computations and increase the computational costs.

1.3.2. The midpoint scheme (MPS)

The so-called midpoint scheme is another popular approach for the numerical integration
of LLG. It was first analyzed in [BP06] with heg(m) := Am and II(m) = 0.

The basic idea is summarized as follows: Let & > 0 be the uniform time-step size. At time
t; and for given m’ ~ m(t;), the standard semi-discrete midpoint rule in time employed to
LLG (1.2a) solves for m**! ~ m(t; + k) the non-linear system

dmit! = —mit2 x AmitY2? 4 amit/? 5 domit, (1.6)

where m**t1/2 .= (m*!' 4+ m?) /2 and d;m'*! := (m**! —m?)/k. Then, [BP06] additionally
employs lowest-order Courant finite elements in 3D for space discretization and solves (1.6)
on a discrete variational level.

The resulting integrator is unconditionally convergent in the sense of Convention 1.3.1
[BP06]. Moreover, [Cim09] and [BP07, BP0S8| transfer the midpoint scheme and the con-
vergence result of [BP06] to the formally equivalent Landau-Lifshitz form of LLG and
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the related (p-)harmonic heat flow, respectively. The midpoint scheme and the con-
vergence results of [BP06] were extended to applications in thermally assisted record-
ing [BPS09, BPS12], where the modulus constraint |m| = 1 from (1.1) is relaxed, and
to stochastic effects [BBP13, BBNP14]. Moreover, [BBP08] considers the coupling of LLG
with the full Maxwell system. There, the computation of the approximations to the mag-
netization m and the magnetic and electric field requires the solution of a fully-coupled
non-linear system.

To solve the non-linear system, the only rigorous method is a fixed-point iteration; see,
e.g., [BP06, BBP08, BPS09]. However, for the convergence of the fixed-point iteration,
we require the CFL-type condition k& = o(h?). Naturally, this iteration is stopped when
a given tolerance is reached. The resulting inexact midpoint scheme still conserves the
modulus constraint (1.1) nodewise [Bar06]. Moreover, [Bar06] extends the convergence
result of [BP06] in the sense that it takes into account the inexact solution of the non-
linear system by the fixed-point iteration.

Formally and experimentally, the midpoint scheme is second-order in time, but, to our
knowledge, the thorough a priori analysis is still open. However, in contrast to the tangent
plane scheme from the latter section, the midpoint scheme conserves the (discrete) energy
and the nodal modulus and requires no nodewise normalization.

1.4. Outline & Contributions

In this section, we give a short overview on the structure and contributions of this work.
To this end, we start with the following crucial convention.

Convention 1.4.1 (IMEX). We say that a time-marching scheme is implicit-explicit
(IMEX), if it treats only the higher-order terms implicitly, while the lower-order terms
are integrated explicitly in time.

We will encounter the latter term at several places in this work. In particular, it is
relevant the following two general concepts of this work.

e Second-order in time IMEX integration: For analytical reasons as well as for
numerical stability, both, the (almost) second-order tangent plane scheme as well as
the midpoint scheme require an implicit-in-time treatment of higher-order terms. In
their basic forms from [BP06, AKST14], both algorithms suggest the numerically
expensive implicit treatment of the lower-order terms 7 and IT. As an improvement,
we employ an explicit second-order in time Adams—Bashforth-type approach to the
lower-order terms 7 and II. As a result, we obtain IMEX algorithms in the sense
of Convention 1.4.1, which preserve the formal convergence order, but significantly
reduce the computational costs.

e Decoupled second-order time-stepping: We extend the second-order in time
IMEX integration to coupled LLG system (e.g., the coupling with eddy currents).
The benefit is that (from the second time-step on) we decouple the time-stepping of
LLG and the coupled equation. As before, this reduces the computational effort of
the integrator, but preserves the formal convergence order.
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Throughout this work, we keep assumptions (e.g., to 7) general. However, we note that
our exemplary contributions to 7 (e.g., the stray field), II, as well as the corresponding
approximations, (mostly) fall into our setting and refer to Appendix A for the verifications.
Besides, the assumptions of this work are organized as follows.

e Abstract assumption framework: We label general assumptions to the lower-
order terms and to the discretization with (L - ) and (D - ), respectively. As
an example, (L2) supposes the boundedness of the operator m(-). Moreover, we
label specific assumptions to the (almost) second-order tangent plane scheme and the
extension to the coupled ELLG system with (T - ) and (E - ), respectively. Similarly,
we label the specific assumptions to the midpoint scheme and the extension to the
coupled SDLLG system with (M - ) and (S - ), respectively.

Chapter 2 and Chapter 3 collect the preliminaries of this work. In these chapters, we unify
and extend the analytical and numerical framework of the own works [DPP*17, PRS18].

e Chapter 2 (Analytical framework): We collect basic notations, function spaces,
assumptions, the coupling of LLG with the eddy current equation (ELLG), and the
spin diffusion equation (SDLLG). Moreover, we introduce the notion of weak solutions
of LLG, the coupled ELLG system, and the coupled SDLLG system.

e Chapter 3 (Discretization): We introduce meshes, FEM spaces, and fix the time-
and space discretization. Moreover, we introduce the discretization of the LLG data
and make all assumptions which are not associated with the specific algorithms in
this work. Specific assumptions for the tangent plane scheme or midpoint scheme
and couplings are made in the corresponding chapters.

In Chapter 4-7, we present, elaborate, and extend findings from the own works [DPP*17,
PRS18], which we supplement with findings from our work [KPP*18]. In particular, this
involves the following contributions:

e Chapter 4 (IMEX TPS2): Based on [DPP*17], we extend the (almost) second-
order tangent plane scheme from [AKST14] and additionally cover non-constant ex-
ternal fields and dissipative effects, i.e., O;f # 0 and IT # 0. To reduce the com-
putational costs, we introduce a second-order in time IMEX approach. We prove
unconditional convergence in the sense of Convention 1.3.1 of our extended algo-
rithm. Based on [DPP117, KPPT18], we also discuss strategies for the non-trivial
solution of the underlying discrete variational problem of the method.

e Chapter 5 (Decoupled TPS2 for ELLG): We extend the findings of the latter
section to the coupled ELLG system. Based on [DPP*17], we formulate an (almost)
second-order in time tangent plane scheme. In particular, this involves a decoupled
second-order time-stepping. The benefit is that we only have to sequentially solve
only two linear systems per time-step, which reduces the computational costs. Then,
we prove unconditional convergence in the sense of Convention 1.3.1 of our extended
algorithm.
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e Chapter 6 (IMEX MPS): Based on [PRS18], we formulate an extension of the
midpoint scheme of [BP06], which additionally takes into account the lower-order
terms 7r, f, and, II. In particular, this involves a second-order in time IMEX ap-
proach, which conserves the second-order in time convergence of the overall scheme.
As a benefit, this approach saves us the time-consuming (approximate) evaluation of
7 and IT at each iteration of the fixed-point iteration for the solution of the non-linear
system. Instead, we only require one (approximate) evaluation of 7w and IT per time-
step. Then, we prove unconditional convergence in the sense of Convention 1.3.1
of our extended algorithm as well as convergence of the algorithm resulting from
the inexact solution of the non-linear system by the fixed-point iteration. Finally,
extending [PRS18|, we present a strategy to compute the fixed-point iterates on a
linear algebra level, and prove a refined uniqueness result of the discrete solutions of
the non-linear problem.

e Chapter 7 (Decoupled MPS for SDLLG): Based on new ideas, we extend the
findings of the latter section to the coupled SDLLG system, i.e., we formulate and
analyze a corresponding midpoint scheme. This chapter and the results therein are
the natural counterpart of Chapter 5 for the tangent plane scheme, i.e., we employ
a decoupled second-order time-stepping, and prove unconditional convergence in the
sense of Convention 1.3.1 of our extended algorithm.

Moreover, we underpin the theoretical findings (e.g., formal convergence rates) and the
practical applicability of our extensions from Chapter 4-6 with numerical experiments,
which are based on the following implementations.

e Implementation: We employ a C++-based and a Python-based extension of the
FEM software package NGS/Py [ngs]. The C++-based extension was mostly developed
by the author in the time of his Phd thesis. The Python-based extension was mostly
developed by Carl-Martin Pfeiler' in the course of his co-supervised master thesis.
These implementations will also be part of the joint work [EHM™18] with Lukas
Exl?, Carl-Martin Pfeiler', Norbert Mauser?, Dirk Praetorius', Michele Ruggeri?,
and Joachim Schéberl'. For both, the C++-extension and the Python-extension, we
require couplings with the BEM software BEM++ [SBA+15]. To this end, we employ the
software tool NGBem [Rie], which was developed by Alezander Rieder!.

Finally, we point out that the present work stands in line with the PhD-theses [Goll2,
Pagl3, Rugl6], the master thesis [Kem14], and the co-supervised master thesis [Pfel7] on
computational micromagnetism, which were all written in the work-group and which laid
the foundations to this work.
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2. The analytical framework

The goal of this chapter is to unify, elaborate, and extend the analytical framework of the
LLG model and the coupled LLG systems from our works [DPP*17, PRS18]. It covers:

e General framework: We collect general notations, definitions, spaces, and results.
In particular, we introduce (time-dependent) LP- and Sobolev spaces in Section 2.1.

e Precise LLG: We state the LLG model with all necessary general assumptions. In
particular, we introduce the m-dependent lower-order contributions 7 (m) and II(m)
as general operators. Moreover, we introduce the notion of a weak solution of LLG;
see Section 2.2.

e Coupled systems: We extend the model by coupling LLG with eddy currents
(ELLG) and spin diffusion (SDLLG) and introduce the corresponding notions of
weak solutions; see Section 2.2.1 for ELLG and Section 2.2.2 for SDLLG.

Meshes and approximation spaces do not belong here. They are introduced in Chapter 3.

2.1. General notations, definitions, spaces, and results

We recall the following standard notations:

e A < B: For A,B € R, we write A < B, if there exists a generic constant C' > 0
(which is clear from the context), such that A < CB!.

A 2 B: For A,B € R, we write A > B, if B < Al

A~ B: For A, B € R, we write A~ Bif A< Band B < AL

Matlab notation: Let d € N and by,...,b,, € RY. We write [by,...,b,,] € R&>*™
for the matrix, whose ¢-th column is by for all £ € {1,...,m}.

e a x B: Given a € R? and B := [by, bs, b3] with by, bs, bz € R3, we write

ax B = [axbl,axbg,axbg €R3X3.

e Dual spaces: Let B be a Banach space with the corresponding norm || - ||g. By B/,
we denote the space of linear and continuous functionals on B. With the norm
|/ (@)]
Ifllp = sup

B>z#0 HxHB ’

n particular, this notation implies that the constant C' > 0 depends on the data of the model but not on
discretization parameters such as time-step size k > 0 or mesh-size h > 0
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B’ is a Banach space. Moreover, we adopt the standard duality pairing with

(fi2)gryp = f(z) forall f€ B andforallzeB.
e Polynomials: For a domain D C R?, where d > 1, we write P*(D) for the polyno-
mials of degree at most k € Ny on D.

e Space-time domain: Given d € N, a domain D C R% and T > 0, we write
Dy :=(0,T) x D.

e Zero extension/Restriction: Given two domains D G D' C R?, where d > 1, we
interpret functions on D as functions on D’ with zero-extension, and functions on D’
as functions on D via restriction.

Finally, we recall the following standard concepts of convergence on a Banach space B; cf,
e.g., [Yos95, Chapter 5]:

e Weak convergence: Let (z/)jey C B and x € B. We say that (x)sen converges
weakly in B to x as £ — oo, if

f(xg) = f(x) asf— oo forall fe B.
Then, we write £y — x as { — oo in B.

e Weak* convergence: Let (fy)jeny C B’ and f € B'. We say that (fy)een is weak*
convergent in B’ towards f as £ — oo, if

fe(z) = f(z) asl— oo forall z e B.

Then, we write f; — f as £ — oo in B.

2.1.1. LP- and Sobolev spaces

In this section, we collect definitions, notations, and results for the well-known LP- and
Sobolev spaces; see, e.g., [AF03, Eval0, Maz11]. Throughout this section, let d € N and
let D C R? be a domain.

e [P-spaces: For p € [1,00] we denote the space of p-integrable functions on D with
LP(D), and recall that for ¢ € LP(D) the corresponding norm reads

(fD|<p]pd:c)1/p for p € [1, 00),
lellzr(py =
esssupp |¢| for p = oo.

It is well-known that LP(D) is a Banach space, separable for 1 < p < oo, reflexive for
1 < p < 00, and a Hilbert space for p = 2, where we denote the generic scalar product with

(0, V) 2(py = /Dgowda? for all ¢, € L*(D).

For details on LP-spaces, we refer to, e.g., [AF03, Section 2|. Moreover, there holds the
following well-known interpolation estimate.

10
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Proposition 2.1.1 (Interpolation estimate, [AF03, Theorem 2.11]). Let D C R? be a
domain. Let 1 <p < q<r <oo and O € (0,1) such that

1 ® 1-©
=4 .
q p r
Let ¢ € LP(D)N L"(D). Then, ¢ € LY(D) and it holds that
lellZo(py < llelZocpy lellze (- O
e Sobolev spaces: Let a := (a,...,a4) € (Ng)? be a given multi-index and |a :=

an:l |ay,|. For ¢ € C°°(D), we denote the derivative of order a by
D%p = 9x{" - dxy? ¢ € C°(D) with D¥p = ¢ for |a| = 0.

The standard generalization to weak derivatives in the distributional sense allows to define
D% ¢ even if ¢ is not differentiable; see, e.g., [AF03, Section 1]. For p € [1,00] and k € N,
this leads us to the Sobolev spaces

WH*P(D) := {p € LP(D) : D*p € LP(D) for all a € (Ny)¢ with |a| < k},
and we interpret W = LP(D). For ¢ € W*P(D), we denote the corresponding norm by
o D 1/p
(S ID%el, ) ) forp e [1,00),

H‘PHW’W(D) = .
maX|q| <k | D ‘PHLOO(D) for p = oo.

It is well-known that W*P(D) is Banach space, separable for 1 < p < oo, and reflexive for
1 < p < oo. For p =2, we use the standard notation H*(D) := W*2(D) and note that
H k(D) is a separable Hilbert space. Then, we denote the generic scalar product by

()= 3 [ DToD%da forall g € HH(D),
<k

and write || - || mr(p) for the corresponding norm. For details on Sobolev spaces, we refer
to, e.g., [AF03, Section 3| and [Eval(, Section 5. Moreover, there hold the following
well-known embedding theorems.

Theorem 2.1.2 (Rellich-Kondrachov theorem, [AF03, Theorem 6.3(i)]). Let d € N and
let D C R? be a bounded Lipschitz domain. Then, the embedding from H'(D) into L?(D)
is compact. In particular, for any sequence (@n)nen C HY(D) and p € HY(D), we get that

on—¢ inH'(D)asn—>00 = ¢,—¢ inL*D)asn— . O

Theorem 2.1.3 (Sobolev embedding, [AF03, Theorem 4.12, Case C]). Let D C R? be a
bounded Lipschitz domain. Then, for 2 < p < 6, the embedding from H'(D) in LP(D) is
continuous. O

Finally, we define for ¢ € W*P(D) the semi-norm

1/p
_. [ D%o]? ) fi € 1, 00),
ey o= | ( Dtaimt [0 ) for p e (1,20
max|q|— [ D¢l Lo (D) for p = co.

11
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2.1.2. Vector-valued spaces

In this section, we collect standard notations and definitions for vector-valued spaces. Given
a space B, we use bold letter for the corresponding vector-valued version, i.e., we write

B := (B)3.
For given a domain D € R? with d € N, we write, for example
C>(D) = (C=(D))’, C(D):=(C(D))?,
c>*([D):= (c=(D))’, c(D):=(cD))’.

In particular, this extends the notations for LP-spaces and Sobolev spaces from Section 2.1.1
to product spaces in three dimensions for vector-valued functions. For p € [1,00] and
k € Ny, we write

LP(D):= (LP(D))3, W*P(D):= (W"P(D))?, and H¥(D):= (H*(D))3.

With ¢ € LP(D), the corresponding norm on the product space LP(D) reads

{(fD “P|pdl’)1/p for p € [1,00),

lellLr(py =
esssupp || for p = 0.

For p = 2, we use the standard scalar product for product spaces and write
3
(bl =3 [ er- wide forall g € (D),
(=1

Moreover, for ® ¥ ¢ L?(D)3*3) with ® = [p1,p2,p3] and ¥ = [, 19, 13], where
e, Py € L2(D) for all £ € {1,2,3}, we reuse the latter notation and write

NE

(@, W) 2y = D, (e %) 2y, (2.1a)

~
w |l

1

1@ Z2(py = D lellzap)- (2.1b)
=1

For ¢ := (1, pa, 93)T € WFP(D), and a multi-index o € (Ng)¢, we interpret the weak
derivative componentwise, i.e.,

D% := (D%p, D%ps, D%p3)T € LP(D).
Then, similarly as for LP(D), our corresponding norm on the product space reads

1/p
(S Il ) forp e 1,00),

[ llwso ¢
max|q|< [| D *@ll L) for p = co.

12
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Moreover, for D C R3, we extend the usual gradient notation to the Jacobian and write
Ve = [ 02,0, Ourp, Oayp | € LP(D)**2.

We note that 0,4 € LP(D) for all £ € {1,2,3}. Moreover, for p = 2 and ¢, € HY(D),
the notations (2.1) then yield that

NE

<V§0,V'¢ >L2(D) = <amg¢yawg¢>[,2(p)7

o~
w |

1

1

~
I

Next, we extend the standard-notation for the dual space H~'(D) := (HY(D)) to
vector-valued spaces and write

HY(D):=(H'(D)).

Finally, for a bounded Lipschitz domain D C R3, we define H (curl; D): For ¢ €
C* (D), recall the curl-operator

8:1:2903 - a{l}g‘PZ
Vxe:=| 0g,p1 — Oz, p3 | € C (D).
aﬂvlSD? - 8332901

As for standard Sobolev spaces, V x ¢ € L?(D) is understood in the sense of distributions.
This leads us to the definition

H (curl; D) := {¢ € L*(D) : V x ¢ € L*(D)}.
With the generic scalar product

(0, Y) Hcurp) = (P V) 20y + (VX @,V X )2y forall g, ¢ € H (curl; D),

the space H (curl; D) is a Hilbert space; see, e.g., [Mon03, Section 3.5.3] for details.

2.1.3. Time-dependent spaces

In the following section, we transfer the concepts and notations from Section 2.1.1 to Banach
space valued functions and recall the definition of time-dependent LP- and Sobolev spaces.
We collect the basic definitions and results; see, e.g., [Edw65, Zei90, DL92, Rou05, Eval0]:
To that end, let B be a real Banach space with the corresponding norm || -|| g and let 7" > 0.

e Time-dependent LP-spaces: For p € [1,00], let LP(0,T; B) be the space of all
measurable functions ¢ : [0,7] — B with t — [|¢(t)||p € LP(0,T). Similarly to standard
LP-spaces, the functional

1
(ST le@ B ae) ™ for p e [1,0),
esssupge o lle(t)ll 5 for p = oc.

H‘PHLP(O,T;B) = {

13
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is a norm on the Banach space LP(0,T; B). Consequently, if B is a Hilbert space with the
corresponding scalar product (-,-)p and p = 2, then L%(0,7T; B) with the generic scalar
product

T
<80»7/)>L2(0,T;B) ::/0 (p(t),9(t))pdt  for all p,9 € L*(0,T; B)

is a Hilbert space. If B is separable and 1 < p < oo, then LP(0,T; B) is separable (see,
e.g., [Zei90, Proposition 23.2(f)]). For dual spaces, the situation is similar to that of classical
LP-gpaces.

Proposition 2.1.4 (Dual space of LP(0,T; B), [Edw65, Theorem 8.18.3, Theorem 8.20.5]).
Let B be a reflerive Banach space and let 1 < p < oco. Upon identification of the spaces, it
holds that

LP(0,T; B) = LP (0, T; B'), where

+5 =1

1
v

"=

and where we interpret 1/00 as 0. O

For further details on LP(0,T; B), we refer to, e.g., [Zei90, Section 23.2ff].

e Time-dependent Sobolev spaces: First, we extend the classical definition of weak
derivatives from R-valued functions to B-valued functions, where we interpret all integrals
in the sense of B-valued Bochner-integrals; see, e.g., [Yos95, Section V.5] for details.

Definition 2.1.5 (Weak derivative, [Eval0, p.301]). Let ¢ € L'(0,T;B). The function
v € LY(0,T; B) is the weak derivative of ¢ in time, if it holds that

T T
/ o)y (t)dt = —/ v(t)Y(t)dt  for allp € CF°(0,T).
0 0

Then, we write ¢’ := v and note that ¢’ is unique (see, e.g., [Zei90, Proposition 23.18]).
We further require the concept of evolution triples:

Definition 2.1.6 (Evolution triple, [Zei90, Definition 23.11]). Let B be a real, separable,
and reflexive Banach space. Let H be a real, separable Hilbert space with

BCHCDPB

such that the embedding from B to H is continuous, and B is dense in H. Then, we call
(B', H, B) an evolution triple.

Built on an evolution triple (B, H, B), we introduce the time-dependent Sobolev space
W(0,T; H,B) := {¢ € L*(0,T; B) : ¢ € L*(0,T; B')}. (2.2a)
With the norm

HQOHIQ/V(O,T;H,B) = HSDH%?(O,T;B) + H‘Plﬂiz(oj;g/) for all ¢ € W(0,T; H, B) (2.2b)

14
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the space W (0,T; H, B) is a Banach space (see, e.g., [Zei90, Proposition 23.23(i)]). Clearly,
if B is a Hilbert space with the corresponding scalar product (-,-)z, then W(0,T; H, B)
with the generic scalar product

T T
(0, 0) 12(0,7;) 3:/0 <<P(t)ﬂ/’(t)>3dt+/0 (@' (), ¢/ (t) gt for all p,9p € W(0,T; H, B)

is a Hilbert space. The concept and results for W(0,7; H, B) can be extended to a general
Banach space X instead of B and B’ in (2.2). Similarly to the scalar case, we then write

HY0,T;X) :={p € L*(0,T; X) : ¢ € L*(0,T; X)}.

For details on W (0,7T; H,B) and H'(0,T;X), we refer to, e.g., [Zei90, Section 23.6],
[DL92, p.472ff] or [Rou05, Chapter 7]. For evolution triples, in particular, functions
¢ € W(0,T; H, B) are continuous with respect to time.

Proposition 2.1.7 ([Zei90, Proposition 23.23(ii)]). Let (B’, H, B) be an evolution triple.
Let ¢ € W(0,T; H, B). Then, there exists a unique function ¢ € C([0,T], H) with ¢ = &
a.e. on [0,T]. O

Finally, we obtain the following useful and well-known compact embedding result.

Lemma 2.1.8 (Aubin-Lions lemma, [Rou05, Lemma 7.7]). Let (B', H, B) be an evolution
triple. Let the embedding from B to H be compact. Then, the embedding from W(0,T; H, B)
to L*(0,T; H) is compact. O

2.2. The Landau-Lifshitz—Gilbert equation (LLG)

In this section, we present the precise setting of LLG (1.2) and collect general assumptions
on the model. Recall the Gilbert form of the LLG equation [Gil55, LLO8] from (1.2):

om = —m X (heg(m) + II(m)) + o« m x Oym in wr, (2.3a)
Onm =0 on (0,7) x dw, (2.3Db)
m(0) = m° in w, (2.3c)

where the effective field reads
het(m) = CoxAm + w(m) + f. (2.4)

We suppose that w C R? is a bounded and polyhedral Lipschitz domain and recall the final
time T' > 0, the Gilbert damping constant 0 < « < 1, and the exchange constant Cex > 0.
Moreover, we suppose that the initial data satisfies

m’c H'(w) and |m°| =1 ae. inw. (2.5)
We interpret the m-dependent lower-order terms 7 (m) : w — R3 as operator
7 L*(w) — L*(w), (2.6)

and suppose the following assumptions (L1)—(L3):
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(L1) Linearity of m: The operator 7 : L?(w) — L?(w) is linear.

(L2) Boundedness of m: There exists a constant Cr > 0, such that
(@) z2w) < Crll@llr2@w) for all ¢ € L*(w).

(L3) Self-adjointness of m: The operator 7 : L?(w) — L?(w) is self-adjoint.

While the results of this work are formulated for general 7, we have the following contri-
butions in mind, which all satisfy (L1)—(L3):

e Uniaxial Anisotropy: The so-called uniaxial anisotropy models the tendency of
a magnetization to align in the direction of a given easy axis a € R® with |a| = 1.
Given ¢ € L?(w), it takes the mathematical form

7(p) = (a-p)a € L*(w). (2.7)

Note that this effect is local and does not depend on the shape of the domain w.
For details, we refer to, e.g., [HS98]. The uniaxial anisotropy satisfies the above
assumptions (L1)—(L3); see Proposition A.1.1 for the verification.

e Stray field: The so-called stray field (often also referred to as demagnetization field)
models the influence of the magnetic field hy : R3 — R3, which is generated by a
given magnetization ¢ : R3 — R? as the solution of the simplified Maxwell system

0 =div(hq +¢) inR3 (2.8a)
0=V x hg in R?; (2.8b)

cf. [HS98, Section 3.2.5] for details. The Helmholtz decomposition yields that hq =
—Vu for some potential u : R? — R. Hence, we can rewrite (2.8) as

0=div(-Vu+¢) = —Au+dive  in R3. (2.9)

If we interpret ¢ : w — S? as a magnetization on R? via zero-extension, we can
translate (2.9) to the well-known transmission problem

—Au:—le‘P in w,
“Au=0 in R3 \ @,
U — 0t — on Jw,
(vuext _ vuint) n=-¢-n on 8&],
u(w) = O(fa| ) as o] = oo,

where we supposed u(z) = O(|x|™!) as |x| — oo for unique solvability. With inte-
gration by parts, we rewrite the latter problem as in [Pra04, eq. (1.3)] in the weak
form: Find v € H'(R3) such that

<VU,, v1/}>L2(w) = <‘107 V1/]>L2(u.;) for all (UAS CSO(R:s) (210)
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2.2. The Landau-Lifshitz—Gilbert equation (LLG)

Altogether, for given ¢ € L?(w), we define the stray field as
7w(p) := —Vu € L*(w), where u solves (2.10). (2.11)

Overall, the stray field is a non-local effect on the whole space R3, even though ¢
is defined on w. The stray field satisfies the assumptions (L1)-(L3); see Proposi-
tion A.1.2.

Next, we suppose that the applied field satisfies f € C*([0, T], L?(w)). Finally, we interpret
similarly to 7 the dissipative effects TI(m) : w — R? as operator

I H'(w) N L®(w) — L2(w). (2.12)

While the results of this work are formulated for general II, we have the following contri-
butions in mind:

e Zhang-Li field: The so-called Zhang-Li field [ZL04, TNMSO05] models the effect of
electron spins on the magnetization. Often, this is referred to as spin torque dynamics.
For ¢ € H'(w) N L™ (w), we define

M(p) =@ x(u-V)p+8u-V)p € L*(w). (2.13)

Here, u € L*(w) is the given spin velocity vector and /5 € [0,1] is the constant of
non-adiabacity.

e Slonczewski field: The so-called Slonczewski field [Ber96, Slo96] models the effect
of spin waves which are excited by an electric current in the direction p € R3, where
|p| = 1. For ¢ € L?(w), we define

(p) :=G(p-p)ep xp € L), (2.14)
where G € C}(R) is given.

With the latter framework at hand, we come to the notion of a weak solution of LLG (2.3).
We extend [AS92, Definition 1.2] to our setting of LLG (2.3). Recalling from (1.4) the
energy functional

C,

ex 1
5 IVm|72 () — (m(m), m) g2y — (F, M) 12, (2.15)

E LLG (m) =
a weak solution is defined as follows:

Definition 2.2.1 (Weak solution of LLG). A function m is called a weak solution of
LLG (2.3), if it satisfies the following conditions (i)—(iii):

(i) m € L>(0,T; H (w)) N H'(wr) and |m| =1 almost everywhere in wr.

(i) m(0) = m® in the sense of traces.
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2. The analytical framework

(iii) For all o € H'(wr), it holds that
T T T
/0 (Orm, @) 2y At = Cex/o (m x Vm, V), dt —/0 (m x w(m), )2, dt
T T
- <m X f7 90>L2(w) dt — <m X H(m)7 ‘p>L2(w) dt
0 0
T
+ a/ (m x om, @) 2, dt. (2.16)
0

Moreover, m is called a physical weak solution, if it additionally satisfies the following
stronger energy estimate (iv):

(iv) For almost all T € (0,T), it holds that

E1uc (m(r) + o / Jomlaq., dt
0 (2.17)

+ / (O0F 1) 12 lt — / (TL(m), 01m) 12y dt < Ers (m).
0 0

2.2.1. Coupling with eddy currents (ELLG)

In this section, we introduce the coupling of LLG (2.3) with the eddy current equation
and the corresponding notion of a weak solution. We follow the presentation of [DPP*17,
Section 3.1]. We adopt the framework for plain LLG from Section 2.2. Let Q C R3
with w C Q be another bounded and polyhedral Lipschitz domain, which represents a
conducting body 2 with its ferromagnetic part w. Then, the coupled ELLG system (cf.,
e.g., [LT13, LPPT15]) reads

om = —m X (heg(m) + h) + a m x Oym in wr, (2.18a)

—p1o Oym = pg Oth + 01V x (V x h) in Qr, (2.18b)
Onm =0 on (0,7) x Ow, (2.18c¢)
(Vxh)xn=0 on (0,T) x 09, (2.18d)
(m, h)(0) = (m°, h?) inwx Q. (2.18¢)

Here, pp > 0 is the vacuum permeability and o € L°°(2) is the conductivity of the
ferromagnetic domain ). We suppose that o is uniformly bounded from below, i.e., there
exists gg > 0 such that ¢ > o9 > 0 a.e. on ). Moreover, we suppose that the initial
condition h? € H (curl; Q) satisfies the compatibility conditions

div(h® + x,m°) =0in Q@ and (h®+ x,m")-n =0 on 9Q. (2.19)
Unlike [LT13], we define the energy functional

Cex 1

1
|V 3 — 5 (7 M), M) 2 — (F ) 12 + SRy (2:20)

Based on [LT13, Definition 2.1], we extend Definition 2.2.1 for plain LLG [AS92] and define
a weak solution to ELLG (2.18) in the following way.

Eerng (m, h) ==
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2.2. The Landau-Lifshitz—Gilbert equation (LLG)

Definition 2.2.2 (Weak solution of ELLG). The pair (m,h) is called a weak solution of
ELLG (2.18), if it satisfies the following conditions (1)—(iv):

(i) m € L>=(0,T, H (w)) N HY(wr) with |/m| =1 a.e. in wr.

m(0) = m® and h(0) = h in the sense of traces.

)
(ii) h € HY(0,T; L*(Q)) N L*(0,T; H (curl; Q))
(iii)

)

(iv) For all p € H*(wr), it holds that

T T T
A<@m&hmyﬁ:@fé<mXVmiwh%wﬂA<mX“WW@Hth
T T
—A(mxﬁ@pwﬁ—l<th@m@&

T T
[ monttm) g o [ m o i,
0 0
(2.21a)

and for all ¢ € L*(0,T, H (curl;Q)), it holds that

T T T
_ uo/ (0, €) gt = uo/ O, €)1 dt+/ (1Y % B,V % ¢ pagey d
0 0 0
(2.21b)

The pair (m, h) is called a physical weak solution, if it additionally satisfies the following
stronger energy estimate (v):

(v) For almost all 7 € (0,T), it holds that

T Y
0 o Jo (2.22)

+/0 <8tf7m>L2(w) dt—A <H(m)7atm>L2(w) dt < 5ELLG (m(0)7h’<0))

2.2.2. Coupling with spin diffusion (SDLLG)

In this section, we introduce the coupling of LLG (2.3) with the spin diffusion equation
and the corresponding weak solution. To this end, we adopt the framework for plain LLG
from Section 2.2, and let Q C R? with w C Q be another bounded and polyhedral Lipschitz
domain. To simplify the notation, we recall for a,b € R3, the definition of the outer
product

aib; ajby ajbs

a®b:= | ab; asby asbs €R3><3‘
a3b1 a3b2 a3b3
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2. The analytical framework

For the coupled SDLLG system, we adopt the setting from [AHP'14, eq.(9)], which reads

Oom = —m X (heg(m) +cs) +a m x Oym in wr (2.23a)
s = —div(m @ j — Do(Vs — Bm @ ([Vs]Tm)))
— Dy(s+ s xm) in Qp, (2.23b)
Onm =0 on (0,7) x 0w, (2.23¢)
Ons =0 on (0,7) x 09, (2.23d)
(m, 5)(0) = (m?, s%) inw x Q. (2.23e)

Here, ¢ > 0 is the coupling parameter, 3, 8’ € (0, 1) are the non-dimensional spin polariza-
tion parameters, j € L2(0,T; H'(Q2)) is the spin current, and Dy € L>(f) is the diffusion
coefficient. We suppose that Dg is uniformly bounded from below, i.e., for some D > 0, it
holds that Dy > D > 0 a.e. in 2. Moreover, we suppose that s° € L%(Q).

To further simplify the notation, we adopt for given p € L*°(w) the p-dependent bilinear
form a(p;-,-) : HY(Q) x H' () — R from [AHP* 14, Section 2.3] and define

a(p; €1, €2) :=(DoVE1, V2) oy — B8 (Dop @ (VG 1), VE2) 2

+ <D0C17C2>L2(Q (Do(C1 % p), C2) 2 ()
=(DoV¢1, Vo) 21y — BB (Do(1t @ p)VE1, V) 2,
+ <DoCl,C2>L2(Q (Do(C1 % p), C2) 2 () (2.24)

for all ¢1,¢2 € HY(Q). Given p € L®(Q), the following lemma yields (uniform) conti-
nuity and ellipticity of the bilinear form a(pu;-,-). We extend the statement of [AHP'14,
Lemma 5] from || = 1 a.e. in Q to p € L>®(Q2). The proof, however, follows the lines
of [AHP" 14, Lemma 5] and is therefore omitted.

Lemma 2.2.3. Given p € L>®(w), the bilinear form a(w;-,-) : HY(Q) x H'(Q) — R
from (2.24) satisfies the following assertions (i) and (ii):

(i) a(p;-,-) is continuous in the sense that for all 1,¢2 € H'(Q), it holds that
a(p; €1, C2) < || Dollpoo(y (1 + gl ooy + ||H||Loo(w NSl e @)llCall e o)-
(i) If ﬁﬁ’”u”%oo(w) < 1, then a(p;-,-) is positive definite in the sense that
a(1;¢,¢) > (1= BBl Ty ) DI () for all ¢ € HY(Q). O

With the p-dependent bilinear form a(u;-,-) at hand, we are ready to introduce the
notion of a weak solution of the coupled SDLLG system: To do so, we require the cor-
responding energy functional. Unlike [AHPT 14, Section 5], we consider the spin diffusion
variable s as a dissipative effect to the model, i.e., s is not represented in our corresponding
energy-functional, which still reads
(2.15) Cex 1
i (m) 02 S Ui, — S mim) m) gy — (fom) ) (229)
The following notion of a weak solution of SDLLG (2.23) goes back to [GW07, Definition 1]
and extends Definition 2.2.1 for plain LLG [AS92]; see also [AHP 14, Rugl6].
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2.2. The Landau-Lifshitz—Gilbert equation (LLG)

Definition 2.2.4 (Weak solution of SDLLG). The pair (m, s) is called a weak solution of
SDLLG (2.23), if it satisfies the following conditions (i)—(iv):

(i) m € L>=(0,T, H (w)) N HY(wr) with |/m| =1 a.e. in wr.
(i) s € L>(0,T; L*(2)) NnW(0,T; L*(), H'(Q)).
(iii) m(0) = m" and s(0) = s° in the sense of traces.

(iv) For all p € H(wr), it holds that
T T T
/0 (Orm, @) o,y At = C’ex/o (m x Vm, V), dt _/0 (m x 7(m), o) 2, dt
T T
— [ mx gyt [t T, )

T T
—/ (m X s,0) 2, dt —|—a/ (m x Oym, @) 2, dt, (2.26a)
0 0

and for all { € HY(Q), it holds that

T T
/ <ats7c>1:[71(g)><H1(Q) dt“‘/ a(m;87C) dt
0 0 (2.26b)

T T
:5/0 (m®J,VQ) 2 dt—ﬁ/o (3 -mn,m - Q) p2p0naw) dt-

The pair (m, s) is called a physical weak solution, if it additionally satisfies the following
stronger energy estimate (v):

(v) For almost all T € (0,T'), it holds that

Erie (m(r) +a / |03 dt + / (O0F ) 2, dt
0 0 (2.27)

T

—/ (II(m), Oym) 2, dt —c/ (8,0m) 2,y dt < Erre (mY).
0 0

Remark 2.2.5. In [GW07, AHP"1}], the energy estimate (2.27) is not included in the
definition of the weak solution. For a first-order tangent plane scheme for coupled SDLLG
with IL = 0, [AHP 14, Section 5] considers the alternate enerqy functional

Espric (m, s) == Epra (M) — c(s,m) 12,

and proves that the limit (m, s) of the approximations satisfies
~ T
Esprre (m(7),s(T)) + a/ 18y |72 ) At
0

—|—/ (8tf,m>L2(w) de +C/ <8ts’m>I:I—1(Q)><H1(Q) dt < gSDLLG’ (mojso).
0 0

for almost all 7 € (0,T). Upon integration by parts, this is equivalent to our (2.27).
Moreover, note that [Rugl6, Definition 5.1.2] also uses the energy functional (2.25).
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3. Discretization

In this section, the overall goal is to unify, elaborate, and extend the setting for the dis-
cretization of LLG and its coupled systems from the main sources [DPPT17, PRS18]. As
for the analytical framework, we start with general definitions and results, and then fix the
discrete framework. We divide this chapter into the following four parts:

e General: We introduce general meshes and approximation spaces; see Section 3.1.
e Time: We fix uniform time-stepping as discretization in time; see Section 3.2.
e Space: We fix the FEM-based discretization in space; see Section 3.3.

e Model: We introduce the discretizations of the data m°, 7, f, and IT and collect
corresponding general assumptions; see Section 3.4.

3.1. General meshes and approximation spaces

In this section, we introduce meshes and standard H'(D)- and H (curl; D)-conforming
finite element spaces, where D C R? is a general bounded and polyhedral Lipschitz domain.

3.1.1. Meshes

We collect some standard notations and results for meshes; see, e.g., [Bra07, BS08, EG04,
Mon03]. Throughout, D C R? is a bounded and polyhedral Lipschitz domain.

Definition 3.1.1 (Mesh). We call a set TP a mesh on D with the elements K € TP, if
it satisfies the following properties (1)—(iv):

(i) Each element K € TP is a closed non-degenerate tetrahedron.

(i) The elements K € TP cover D, i.e., it holds that

In particular, K C D for all elements K € TP.

(iii) Two distinct elements do not overlap, i.e., for K, K € TP with K #+ f(, it holds that

int(K) Nint(K) = 0.

(iv) There are no hanging-nodes, i.e., no vertex of any element K € TP lies in the interior
of any face or any edge of any other element K € TP.

23



3. Discretization

Definition 3.1.2 (Mesh-size). Let TP be a mesh on D. We call h := maxy 7o diam(K)
the mesh-size of TP.

Definition 3.1.3 (Cinesh-shape-regular meshes). Let Cinesh > 0. We say that a family

(TP pso of meshes on D is Ciesn-shape regular, if
diam(K
1a;n() < Cmesh  for all elements K € ’ELD and for all h > 0,

K

where pg > 0 is the diameter of the largest ball that can be inscribed in K € ’771D.

Definition 3.1.4 (Cpesnh-quasi-uniform meshes). Let Cpesh > 0. We say that a family
(ED)h>0 of meshes on D is Cesh-quasi-uniform, if it is Cmesn-Shape reqular and if

h < Cmesnh diam(K)  for all elements K € 771D and for all h > 0.
In order to match with subdomains Dgy, C D C R3, we require the following definition:

Definition 3.1.5 (Resolved meshes). Let D C R? be a bounded and polyhedral Lipschitz
domain with a polyhedral Lipschitz subdomain Dy, C D C R3. Let TP be a mesh on D.
We say that TP resolves Dy, if for all elements K € TP with int(K) N Dy # 0, it holds
that K C Dgy.

Proposition 3.1.6 (Cpesn-quasi-uniform sub-meshes). Let D C R® be a bounded and
polyhedral Lipschitz domain with a polyhedral Lipschitz subdomain Dy, C D C R3. Let
(ED)h>0 be a family of Cesh-quasi-uniform meshes on D, which, for each h > 0, resolves
Dgyp- Then, the family of corresponding sub-meshes

TP = (K € Tj, : K C Dy}

1s a family of Cmesh-quasi-uniform meshes on Dgyp. ]

3.1.2. Standard P1-FEM

Given a bounded polyhedral Lipschitz domain D C R? and a Cypesh-quasi-uniform family
of meshes (7,”)p~0 on D, we employ the lowest-order Courant finite element space
SP = {v, € C(D) : vp|k € PHK) for all K € T,”} ¢ H'(D),

which consists of piecewise affine, globally continuous functions; cf., e.g., [EG04, Bra07,
BS08]. We write ZP : C(D) — SP for the corresponding nodal interpolant. We collect the
following two standard FEM results.

Proposition 3.1.7 (Approximation properties of ZP, [EG04, Corollary 1.109]). Let (T,”)n~0
be a family of Cmesh-quasi-uniform meshes on D C R3. Let p € (3/2,00]. Then, there
exists a constant C' > 0, which depends only on p, D, and Cuesh, such that for all h > 0,
it holds that

le = I ol ooy + B IVe = VI 0l oy < Ch? |plwenpy for all p € WHP(D). O

Proposition 3.1.8 (Inverse estimate, [EG04, Corollary 1.141]). Let (T;P)n=0 be a family
of Cnesh-quasi-uniform meshes on D C R3. Let p € [1,00]. Then, there exists a constant
C > 0, which depends only on p, D, and Cmesh, such that, for all h > 0, it holds that

IVl o) < Ch7Hlenll oy for all K € TP and for all @), € SP. O
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3.2. Time-discretization

3.1.3. Nédélec-elements of the second kind

Given a bounded and polyhedral Lipschitz domain D C R3 and a Cpmesh-quasi-uniform
family of meshes (7,”)5~0 on D, we employ the Nédélec-elements [Néd86] of second kind
and order one

XP = {¢ € H (curl; D) : ¢l € PHK) for all elements K € T,°} ¢ H (curl; D);

see, e.g., [Mon03, Section 8.2.2]. Unlike the standard H'(D)-conforming space of piecewise
affine functions ShD from the latter section, the degrees of freedom of X E are associated
with the edges. This is reflected in the following elementwise definition of the corresponding
interpolation operator J, ,? :

Let K € T;, and let T, the unit tangent vector to some edge e of K. For ¢ € H'(K),
define J xpx € PY(K) via the relation

/ (px — Tk$K) Tepde =0 for all p € P'(e) and for all edges e of K. (3.1)
e

Then, we define the interpolation operator JhD : HY(D) — X,? via

(TPe) k= Tk(plk) forall p € HY(D),
and get the following approximation properties.

Proposition 3.1.9 (Approximation properties of J, ,? , [Mon03, Theorem 8.15]). Let (’7;LD )h>0
be a family of Cmesh-quasi-uniform meshes on D C R3. Then, there exists a constant
C > 0, which depends only on D, and Cpesh, such that, for all h > 0, it holds that

lo = TP ellr2my + 1V x (¢ = TPe)2p) < Ch2|@l2py  for all o € H*(D). O

3.2. Time-discretization

In this section, we fix the time-discretization of the time-scale [0,7] of this work. For
M € N, we employ the uniform time-steps t; := jk for all j =0,..., M, where

k:=—
M’

is the uniform time-step size. For a Banach space B and a finite sequence (goi)f\i_l C B,
we define the mean-values ¢'t1/2 € B via

) +1 7
(10@"‘1/2 ;:% for i=0,...,M—1 (3.2a)

and the discrete time-derivatives d;p'*! € B via

dyp™="—" € B for i=0,...,M—1. (3.2b)
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3. Discretization

Moreover, we interpret sequences (¢°)M | C B as functions from [0, 7] to B in the following

way: For t € [t;,t;y1) and i =0,..., M — 1, we define

Lo () =g, of (t) == B(t) == T2, and (3.3a)

i tit1 — 1
? . 3.3b
- (3.30)

P () = '™

b=t
Pr(t) =@ ==+

We refer to the latter functions as the postprocessed output of the sequence (goi)ij\i_l € B.

Remark 3.2.1. Note that gp?,cp,;,npz,@g € L?(0,T; B) as well as o € HY(0,T; B) with
8t<,pk(t) = dt(pH_l fO’f’ t e (ti,ti+1) and i = 0,....,.M—1.

3.3. Space-discretization

In this section, we fix the space-discretization which we will employ in the algorithms for the
numerical integration of LLG and its couplings. We distinguish between space discretization
for plain LLG on w, and coupled systems on 2 D w. Recalling from Section 2.2 that w and
Q) D w are bounded and polyhedral Lipschitz domains, we start with the meshes:

e Plain LLG: If we only consider the LLG equation on w, we employ a family of
Cmesh-quasi-uniform meshes (73)p~0 on w and denote the corresponding nodes by

N :={z €w: z is a vertex of any element K € Tp}. (3.4)
We suppose a numbering of the nodes, i.e., N, = {z1,..., 2y} with N = |N}].

e Couplings: For couplings of LLG with equations on D w, we employ a family
of Ciesh-quasi-uniform meshes (7}?)h>0 on ). We suppose that for all A > 0, the
meshes ’7;? resolve the subdomain w. For all h > 0, we denote the nodes of 7;52 by

N :={z € Q: zis a vertex of any element K € 7%},

Since (7719);»0 is Ciesh-quasi-uniform and since 7;19 resolves the subdomain w for
all h > 0, Proposition 3.1.6 yields that the sub-meshes of (77?)}»0 on w are Cesh-
quasi-uniform on w. This justifies that we reuse the notation from the latter point
and write

T ={KcT": K cCw}
in this case. Similarly, we reuse from (3.4) the notation

Ny =N2Nnw={z,...,zn}.

Next, we introduce spaces and notations for the space discretization:

e Plain LLG: If we only consider the LLG equation, we build on the family of Ciesh-
quasi-uniform meshes (7p)x>0, the space

Sy := {v € C@) : vp|k € PY(K) for all elements K € Tj,} C H'(w). (3.5)
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3.3. Space-discretization

and denote the vector-valued version by &j, := (Sh)3. To mimic the modulus con-
straint |m| = 1 a.e. in wyp on a discrete level, we define as in, e.g., [Alo08, AKST14,
BSF*14], the set

My, = {pn € Sp: lgn(z) = L for all nodes z € N} € Sp (3.6)

e Couplings: For the coupling of LLG with the spin diffusion equation (2.23) on
Q D w, we employ

Sy = {on € C(Q) : |k € PHK) for all elements K € 7719} c HY(Q),

and denote the vector-valued version with 8§ := (8,53)3. According to Proposi-
tion 3.1.6, the family of sub-meshes (771) hep O W IS also Cinesh-quasi-uniform. This
justifies that we reuse the notation Sy from (3.5) and write

Sh = {on € C(@) : pp|x € PY(K) for all elements K € T} € H'(w),

as well as Sy, := (Sy)? for the corresponding vector valued version. Moreover, we
reuse the notation from (3.6) and write

M, = {v, € 8, : |pn(z)] =1 for all nodes z € N} C Sp,.

Finally, for the coupling of LLG with eddy currents (2.18), we employ the H (curl; 2)-
conforming space of Nédélec-elements of the second kind [Néd86] and define

X = {¢h € H (curl; Q) : €| € PYK) for all elements K € T} € H (curl; Q).

3.3.1. Discrete tangent space

For the tangent plane schemes from Section 1.3.1, the sought v : w — R? is pointwise
tangential to m : w — S?, i.e., it holds that

veKm)={p:w—-R: p-m=0ae inw}. (3.7)

To mimic the latter space on a discrete level, we proceed as in, e.g., [Alo08, AKST14,
BSF*14], and seek v} ~ v(t;) in the following discrete version: Given pj, € My, we define
the discrete tangent space as

ICh(pr) = {pn € Sh: @n(z) - pp(z) = 0 for all nodes z € N, }, (3.8)

i.e., the tangent space constraint in (3.7) is satisfied nodewise. Figure 3.1 illustrates the 2D
case: While the FEM space in 2D yields 2 degrees of freedom at each node, the nodewise
tangent space yields only one. As a consequence, we get that dim ICp(pp) = 2N, while
dim(8p) = 3N. Moreover, these degrees of freedom vary with pp(2z) for all nodes z € Nj,.
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3. Discretization

pn(z1) en(z3)

pn(z2)

Figure 3.1.: Illustration of the nodewise tangent space in 2D for three nodes z1, z9, 3.

3.3.2. Approximate L>-scalar product

In particular for the midpoint scheme from Section 1.3.2, we require an approximate L2(w)—
inner product, which depends only on the values at the nodes N}, of the (sub-)meshes 7, on
w. We proceed as in [BP06, BBP08, Bar15]: Let Z;, be the nodal interpolant corresponding
to Sy. Given ¢, € C(w), the approximate L2-scalar product employs the mass-lumping

(@), = / T(p ) da ~ / -z = (0, ) o) (3.9)

To derive a handier representation, let ¢, € S;, be the hat-functions assigned to the nodes
z € N},. Then, we get that

Th(p- ) = Y @(2) P(2) b=
zENh

From the latter equation, we infer that the approximate L?-scalar product reads

(@, 1), @9 Z p(z)-Y(z) ( /wqﬁz dz ), where ( /wqbz dx) > 0. (3.10)

zeN},

Moreover, we write || - ||, for the corresponding norm. We stress that (-,-), is indeed a
scalar product on 8§, C C(w). The following lemma summarizes approximation properties

of <'7'>h'

Lemma 3.3.1 ([Barl5, Lemma 3.9]). Let (-,), be the approzimate L*-scalar from (3.10)
with the corresponding norm || - ||n. Then, the following two assertions (i)—(ii) hold true:

(i) It holds that
lenllz2w) < llenlln < VBllenllaw) for all on € Sh.

(ii) There exists a constant C' > 0, which depends only on w and on Cinesh, such that

(P )y, = (s ¥n) 2oy < C R IVenllLaw) [VnllL2@w)  for all on, tbn € Sh.
]
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3.4. Discretization of the data

With the definition of (-,-), at hand, we introduce the following discrete versions of the
Laplacian and the L?-projection:

Discrete Laplacian: Mimicking the well-known integration by parts formula, we define
the discrete Laplacian Ay, : H'(w) — S, as in [BP06, eq. (2.1)] via the relation

(Anp,n)y, = =V, V) g,y for all p € H' (w) and for all ¢, € Sp,. (3.11)

Besides the obvious linearity, Ay, is bounded in the following sense.

Lemma 3.3.2 ([BP06, Equation (2.3)]). Consider the discrete Laplacian Ay from (3.11).
There exists a constant C > 0, which depends only on w and on Cpyesh, such that

1Anenlln < Ch72 lenllaw) for all on € Sp. O

Quasi-L2-projection: Similarly to Ay from (3.11), we mimic the L?(w)-projection: As
in [BBPOS, p. 1401], we define P}, : L*(w) — S}, via the relation

(Prp: ¥n)y, = (@ ¥n) 2, forall g € L?(w) and for all ¥, € Sj,. (3.12)
Besides the obvious linearity, Py, is bounded in the following sense.
Lemma 3.3.3. The L?(w)-quasi-projection Py, from (3.12) satisfies that
[Prgln < lellze) Jor all o € 2w,
Proof. Given ¢ € L?(w), we test (3.12) with 1 := P € S} and obtain that

(3.12)
IPrellh = (Pre. Pre)y, = (@, Prp) 12w < l10llL2w) IPrellrw)-
Together with | Prp| r2w) < [|Preplln from Lemma 3.3.1(i), this concludes the proof. [

3.4. Discretization of the data

In this section, we unify the discretization assumptions of the own works [DPP*17, PRS18|
for the data m®, m, f, and IT of LLG (2.3) and its coupled systems. Here, we collect
the assumptions, which we require to formulate the results in this work and which are
independent of the specific algorithm. Note that additional assumptions, which are enforced
by a specific algorithm, are made in the corresponding chapter.

3.4.1. Discretization of m’

We define the approximation to the initial condition for all A > 0 as
Sn>m) ~m°.

To formulate the theorems in this work, we require

(D1) Weak consistency of mJ: It holds that m) — m° in H'(w) as h — 0.

Moreover, we require the following stronger assumption to derive energy estimates such as
Definition 2.2.1(iv):

(D1T) Strong consistency of m): It holds that m{ — m° in H'(w) as h — 0.
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3. Discretization

3.4.2. Discretization of

For the approximation of 7w from Section 2.2, we suppose operators
m, : Sy — L%(w)  for all h > 0.

As in Section 2.2 for 7, the specific contributions are postponed and discussed at the end
of this section. For the results in this work, we require the following general assumptions:

(D2) Linearity of m;,: For all h > 0, the operators 7, : S, — L?(w) are linear.

(D3) Uniform boundedness of 7;: There exists a constant Cr > 0 such that

|7n(en)llL2w) < Crllenllre@y for all ¢, € Sy and for all h > 0.

(D4) Weak consistency of mj,: For all sequences (¢p)p>0 C Sy, with ¢, — ¢ in L?(w)
as h — 0, it holds that

wn(pn) — 7(p) in L*(w) ash — 0.

Moreover, we require the following stronger assumptions to derive stronger energy estimates
such as Definition 2.2.1(iv):

(D4") Strong consistency of m,: For all sequences (¢5)n>0 C Sp, with 5 — ¢ in L?(w)
as h — 0, it holds that

wn(en) = 7(p) in L*(w) ash — 0.

In many works, the consistency assumptions (D4) and (D47") are formulated with conver-
gences in L?(wr): In this case, one assumes that

mh(pnk) = w(p) or m(pnk) = w(p) (3.13)

for (certain) sequences (@pi)n k>0 With @pr — ¢ in L%(wr) as h,k — 0; see, e.g., [Pagl3,
AHP*14, BSF*14, BPP15, LPPT15]. In contrast to these works, we deem the formula-
tion (D4) and (D4%) to be more natural. After all, this does not involve any analytical
problems. In all relevant situation, we recover the required convergences (3.13) from the
following lemma.

Lemma 3.4.1 (Consistency of 7, on L%(wr)). Suppose that m is bounded (L2). Let
¢ € L°(0,T; L*(w)) and let the sequence (¢nk)n >0 C L>=(0,T,8S}), satisfy

Onk — @ in L°(0,T, L*(w)), and (3.14a)
pnk(t) = @(t) in L*(w) a.e. forte (0,T). (3.14b)

as h,k — 0. Then, the following two assertions (i)—(ii) hold true:
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3.4. Discretization of the data

(i) Suppose that 7, is uniformly bounded (D2) and weakly consistent (D4). Then, it
holds that

mh(nk) = w(p) in L*(wr) as h,k — 0.

(i) Suppose that w, is uniformly bounded (D2) and strongly consistent (D4%). Then, it
holds that

7w (pn) = w(p) in L*(wr) as h,k — 0.

Proof. As a direct consequence of the principle of uniform boundedness (see, e.g., [Yos95,
Chapter II.1, Corollary 1])!, weak* convergent sequences are bounded. With (L2) and (D3),
this yields that

(3.14a)
sup || 7n(enk(t)llL2@) +esssup |7 (@) l2w) S Nellpeorrew) <o (3.15)
tE(O,T) tE(O,T)

First, we prove (i): For all ¢ € C*°(wr), the convergence (3.14b) proves that

(mr(Pnk(t)), €) L2 () 2 (m(@(t)),C)p2 for almost all t € (0,T) as h,k — 0.

With (3.15), we obtain an integrable majorant and the dominated convergence theorem
yields that

T T
/0 (7 (nk) €) 2w dt—)/() (m(#), Q)2 dt  as h,k — 0.

With (3.15) and Lemma B.2.1, this proves (i). To prove (ii), we similarly get from the
convergence (3.14b) that

+
Imn(pnk () — w20 o3 0 for almost all £ € (0,T) as h,k — 0.

With (3.15), we obtain an integrable majorant and the dominated convergence theorem
proves that

T
Imn(pne) = (@)1 2a0p = /0 lmen(on(t)) — w(p(t) 13200 At — 0 as o,k = 0.
This proves (ii) and concludes the proof. O

Finally, for the approximation operators to the exemplary contributions of 7, we proceed
as follows:

In our reference, this theorem is called resonance theorem. However, it is also often referred to as (a
corollary of the) Banach—Steinhaus theorem.
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3. Discretization

e Approximate uniaxial anisotropy: For the uniaxial anistropy operator 7 from

(2.7), we define
m(pn) = (a-pp)a € 8y, forall gy € Sy, (3.16)

where a € R?® with |a| = 1 is the easy axis, i.e., m, = 7|s,. The approximate
uniaxial anisotropy satisfies the above assumptions (D2), (D3), and (D4"). For the
verification, we refer to Proposition A.2.1.

Approximate stray field: For the stray field operator from (2.11), the situation
is more complicated than for uniaxial anisotropy. This is due to the fact that stray
field computations are connected to the solution of the variational problem (2.10)
on the whole space R?. We employ a variant of the well-known Fredkin-Koehler
algorithm [FK90]. This involves the numerically expensive solution of a hybrid FEM-
BEM-problem. For a precise formulation, we refer to Section 3.4.5 at the end of
this chapter. However, we note that the approximate stray field satisfies the above
assumptions (D2), (D3), and (D4"). For the verification, we refer to Proposi-
tion A.2.2.

Remark 3.4.2. For further approaches for the approximate stray field computation, the
reader is referred to [Goll2]. We note that also these approaches satisfy (D2), (D3),
and (D47).

3.4.3. Discretization of f

We define the approximation to the applied field f € C([0,T]; L?(w)) as

S, fi~ f(t;) foralli=0,1,...,M, (3.17)

and require the following convergence assumption:

(D5) Weak consistency of (f)}: The postprocessed output fy, C L?(wr) of (fi)M,

satisfies that

fur— f in L*(wr) as h,k—0.

Moreover, we require the following stronger assumption to derive energy estimates such as
Definition 2.2.1(iv).

(D5T) Strong consistency of (f})M: The postprocessed output fy, € L*(wr) of (fi)M,
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3.4. Discretization of the data

3.4.4. Discretization of Il
For the approximation of IT from Section 2.2, we suppose operators
I, : S, — L?(w) forall h > 0.

As in Section 2.2 for II, the specific contributions are postponed and discussed at the end
of this section. For the results in this work, we require the following general assumptions:

(D6) Uniform boundednes of II;: There exists a constant C' > 0 such that
I (er)ll 22wy < C (14 l@nllLew) ) lenllare) for all p, € S, and for all i > 0.

(D7) Weak consistency of II;: For all ¢ € H'(wr) N L®(wr) and all sequences
(Prk)ni=o C L*(0,T;8),) with

ok — @ in L*(wp) and Vep, — Ve in L} (wr) as bk — 0,
as well as [|ppklzoe(wyy < C for all b,k > 0 for some fixed C' > 0, it holds that

I, (onk) — I(p) in L} (wr) ash — 0.

For energy estimates such as Definition 2.2.1(iv), we require the following stronger assump-
tion:

(D7T) Strong consistency of IT;: For all ¢ € H'(wr) N L®(wr) and all sequences
(@ne)ni>o C L2(0,T;S}) with

ok — @ in L*(wp) and Vep, — Ve in L} (wr) as bk — 0,
as well as [|ppk | zoc () < C for all b,k > 0 for some fixed C' > 0, it holds that

I}, (pnr) — M(p) in L*(wy) as b,k — 0.

Finally, for the approximation operators to the exemplary contributions from Section 2.2,
we proceed as follows:

e Approximate Zhang-Li field: For the Zhang-Li field IT from (2.13), we define
I (pn) = @n X (u-V)on+ B (u-V)py € L*(w) forall g, € Sy, (3.18)

where we suppose exact evaluation of the spin velocity vector u € L*°(w) and where
B € [0,1] is the constant of non-adiabacity, i.e., Il := II|s,. The approximate
Zhang—Li field satisfies the assumptions (D6) and (D7). For the verification, we
refer to Proposition A.3.1(i).

e Approximate Slonczewski field: For the Slonczewski field II from (2.14), we
define

O (en) = G(en P)n xp € LP(w) for all g, € Sp, (3.19)

where we recall that p € R® with [p| = 1 and G € C}(R), i.e., we set IIj, := I|s, .
The approximate Slonczewski field satisfies the assumptions (D6) and (D771). For
the verification, we refer to Proposition A.3.3(i).
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3.4.5. Approximate stray field computations with Fredkin—Koehler method

In this section, we introduce an approximation operator 7y &~ 7, where 7 is the stray field
operator from (2.11). There, the discretization of the variational problem (2.10) for the
function u € H'(R?) (on the whole space) seems not to be easily feasible. We employ (a
variant of) the well-known Fredkin—Koehler approach [FK90], which uses a superposition
principle and transfers the evaluation of 7 to a problem on the domain w. Here, we follow
the presentation in [PRS18, Section 4]: First, we introduce for u € H'(w) the well-known
double-layer integral operator for the Laplace problem as

Klula)(@) = - [ R0, as) e oy (20)

see, e.g., [McLO00, Section 6] or [SS11, Section 3.1] for details. Then, given a magnetization
¢ € L*(w), we define u; € H}(w) := {u € H'(w) : [ uda = 0} as the unique weak solution
of

Au; =divy inw, (3.21a)
Onu1 =0 on Jw. (3.21b)

With u; at hand, we define ug € H'(w) as the unique weak solution of
Aug =0 in w, (3.21c)

1
Uz = (K —5 )m\aw on Jw. (3.21d)

Finally, [FK90] yields that we can evaluate 7 with the superposition
() = —Vu = —Vu; — Vuy € L*(w).

With the latter representation, we can employ as in, e.g., [BSFT14], the following hybrid
FEM-BEM approach and solve the problem from (3.21) on a discrete variational level: To
that end, we define the space of piecewise affine and globally continuous functions with
zero integral mean, on the boundary, and with zero trace as

S*

>

¢={¢h€5h!/w@hdl‘=0},
S* = Splaw, and
Sphi={n€Sh:pnlon =01},
respectively. Then, our algorithm reads as follows:

Algorithm 3.4.3 (Stray field computation by Fredkin—Koehler method, [FK90]). Input:

Sho e~ .
Perform the following four steps (a)—(d):

(a) Find uyp € Sy such that

(Vur, Von) r2) = (Pns Von) 12,y for all ¢, € Sp.
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(b) Compute gy, € S such that
(gns Bn) 12000y = (LK = 1/2] (wlow) , 1) 20y for all ¢y, € S

(c) Compute usp, € Sp with (uzp)|ow = gn such that

(Vo p, Von) o,y =0 for all ¢ € ).

(d) Compute 7, (pp) := —Vuy — Vug € L?(w).
Output: Approzimate stray field w,(pn) =~ 7(p). O

Remark 3.4.4. The original algorithm from [FK90] employs nodal interpolation of g :=
(K — 1/2)(u1law) to obtain g, € SP*, which is not stable in the sense of finite element
analysis. Therefore, we discretize g by the L?(Ow)-orthogonal projection onto S,‘?w. Instead,
one could also employ the Scott—Zhang projection [SZ90] in step (b) of Algorithm 3.4.3 and
not the L*(Ow)-orthogonal projection; see, e.g., [BSF*14]. However, with the L?(0w)-
orthogonal projection, we obtained numerically more accurate results for coarse meshes on
thin layers; see [PRS18, Section 4.1].

Altogether, we define the discrete stray field operator in the following way:
7y 1 Sy — L?(w) : o — w(n),  with the output of Algorithm 3.4.3. (3.22)

Note that 7, satisfies the assumptions (D2), (D3), and (D4") from Section 3.4.2. For
the verification, we refer to Proposition A.2.2.
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4. Implicit-explicit second-order tangent
plane scheme for LLG

The following chapter is mainly based on [DPP*17], which is joint work with Giovanni
Di Fratta', Carl-Martin Pfeiler', Dirk Praetorius®, and Michele Ruggeri®. In parts, these
findings are also elaborated in the co-supervised master thesis [Pfel7]. Moreover, we incor-
porate ideas of [KPP*18], which is ongoing joint work with Johannes Kraus®, Carl-Martin
Pfeiler', Dirk Praetorius', and Michele Ruggeri®.

4.1. Introduction

Based on the preliminary works [AJ06, BKPO08], the work [Alo08] is the first milestone in
the development of today’s tangent plane schemes in computational micromagnetism. The
overall benefit of the method is that—despite the non-linear nature of LLG (2.3)—only
one linear system has to be solved per time-step. The basic idea from [Alo08] can be
summarized as follows:

For a smooth solution m, LLG (2.3a) allows for an equivalent reformulation, which reads

adm +m x ym = [heg(m) + II(m) ]| — (heg(m) - m)m — (II(m) - m)m.  (4.1)

In particular, (4.1) is linear in v(t) := dym(t) € K(m(t)). Upon adding a stabilization
term, this gives rise to a variational problem for v(¢) in the tangent space K(m(t)). The
scheme then employs the uniform time-stepping from Section 3.2 and the lowest-order
Courant-type FEM space 8y, from Section 3.3 in space. Then, at at each time-step ¢; and
for given My, > m}t ~ m(t;), one solves the corresponding discrete variational problem in
the discrete tangent space ICp(m}) S 8, for ICy(m}) 5 v), ~ v(t;). With v}, = v(t;) at

hand, one computes the approximation My, > mﬁl ~ m(t;11) via the update formula

i+1 i
mit(z) == m?ﬂ(z) i kvh(z) for all nodes z € NVp,. (4.2)

Imy,"(2) + kg, (2)]
i.e., the modulus constraint (1.1) is enforced nodewise.

Since the reformulation (4.1) is linear in v and despite the non-linear nature of LLG (2.3),
the tangent plane scheme requires only the solution of one linear system in the discrete
tangent space ICp,(ms,) S 8i. The resulting numerical integrator is formally first-order in
time.

'TU Wien
2Universitit Wien
3University of Duisburg-Essen
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4. Implicit-explicit second-order tangent plane scheme for LLG

In [Alo08], the tangent plane scheme is formulated and analyzed for heg(m) := Am and
II(m) = 0 and proved to be unconditionally convergent in the sense of Convention 1.3.1.
With its (relatively) low complexity, it has attracted scientific interest in the compu-
tational micromagnetics community. In particular, [Alo08] was extended to lower-order
contributions [AKT12, Gol12, Pagl3, BSF*14], the coupling with eddy currents/the full
Maxwell system [LPPT15, LT13, Pagl3, BPP15], the coupling with the spin diffusion equa-
tion [AHP"14, ARB™ 15, Rug16], and the coupling with magnetostriction [Pagl3, BPPR14].
Moreover, [GLT16] and [AdBH14] (semi-discrete) even takes into account stochastic effects.
As a by-product, [AHPT14, Rugl6] prove that the normalization in the update (4.2) can
be omitted. All the latter extensions are again formally first-order in time, however, with-
out normalization and given a smooth enough (and thus unique [DS14]) strong solution to
LLG (2.3), the recent work [FT17] even proves an a-priori estimate, which is first-order in
time and space.

Curiously, the tangent plane scheme allows for a slight modification, which yields the
(almost) second-order in-time numerical integrator of [AKST14]. This is based on the
following key observation, which was already noted in [AKT12, Section 4]: Let Pty be
the pointwise orthogonal projection onto m(t)* := span{m(t)}*+. With the smarter choice
of the sought unknown

w(t) == dym(t) + ng(t)ﬁttm(t) € K(m(t). (4.3)

we formally get from [AKST14, p.413] that

m(t) + kv(t)

— T =M 3 .
m(t) £ k(D] (t+k)+ O(k), (4.4)

i.e., the normalized update is a second-order in time approximation of the update m(t+k).
Then, [AKST14, Section 6] formally derives from (4.1) a linear variational formulation for
the new v from (4.3) in the tangent space K(m(t)). As for the classical first-order tangent
plane scheme, [AKST14] employs the uniform time-stepping from Section 3.2 and the FEM-
space Sy, from Section 3.3 for space-discretization and solves one linear system for

Kn(mi) > vi ~ v(t;) = gmit) + ng(t)attm(t) e K(m(t)). (4.5)

Upon a stabilization, the resulting scheme of [AKST14] is unconditionally convergent in
the sense of Convention 1.3.1. The stabilization, however, slightly perturbs the formal
convergence order in the sense that one may only expect order O(k?>~¢) in time, for all
e > 0. Omitting the stabilization yields full second-order in time convergence, but comes
at the cost of the mild CFL-type condition £k = o(h) for convergence towards a weak
solution of LLG. While superior to the classical tangent plane scheme [Alo08] in terms of
convergence order, the original algorithm from [AKST14] suffers, in particular, from the
following issues:

o In [AKST14], the external field is assumed to be constant in time. Moreover, f and
7 are not approximated, but assumed to be available exactly.
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Dissipative effects are not covered in [AKST14], i.e., IT = 0.

The integrator of [AKST14] involves the (possibly) computationally costly evaluation
of 7, (v}). Since v} is the sought unknown, this term contributes to the bilinear form
of the discrete variational formulation. For example for stray field computations, the
corresponding system matrix is fully-populated and often not explicitly available.

Shipping around the latter issue with an explicit Euler approach for the w-contribution
[AKT12, BSF*14], reduces the convergence from (almost) second-order to first-order
in time, i.e., we are reduced to the accuracy of the classical first-order tangent plane
scheme.

4.1.1. Contributions

Based on the own work [DPP117], we make the following contributions:

We extend the algorithm and its formal justification from [AKST14] to dissipative
effects IT and to non-constant external fields, i.e., IT # 0 and J; f # 0. This yields a
(formally) second-order in time extension of the algorithm of [AKST14] to a broader
class of model problems.

We introduce a second-order in time explicit approach for 7 and II and provide a for-
mal justification. This approach goes back to the own work [PRS18] for the midpoint
scheme (see Chapter 6) and avoids the numerically expensive implicit treatment of 7
and IT.

Our analysis allows for approximations 7, ~ m, ffb ~ f(t;), and II;, ~ II, where
we adapt techniques of [AKT12, BSF14] as well as the own work [PRS18] for the
midpoint scheme (see Chapter 6).

We confirm the formal convergence order of our algorithm with a numerical exper-
iment; see Section 4.4. For a qualitative experiment with a physically relevant ex-
ample, we refer to the later Section 6.4, where we also make a comparison with our
extension of the midpoint scheme from Chapter 6.

We prove unconditional convergence of our extended algorithm in the sense of Con-
vention 1.3.1; see Section 4.5.

In order to avoid the (eventually) fully-populated system matrix from the implicit
treatment of w and II, we introduce a fixed-point scheme for the solution of the linear
system and prove its convergence; see Section 4.6.1.

We sketch an approach for the (non-trivial) solution of the discrete variational prob-
lem in the discrete subspace ICp, (1)) ; S, on a linear algebra level; see Section 4.6.2.
For details, we refer to [Rugl6, KPP*18].

Note that for IT = 0 and 0;f = 0, the contributions of this section are also elaborated in
the master thesis [Pfel7], which was co-supervised by the author and which is also based
on [DPP*17].
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4.2. Algorithm

In this section, we extend [AKST14, Algorithm 2] to our setting of LLG (2.3) and formulate
our algorithm as in [DPP*17, Section 2.4]. In order to employ approximations 7, ~ T,
fi &~ f(t;), and II, ~ II, we adapt the techniques of [AKT12, BSF"14] as well as the own
work [PRS18] for the midpoint scheme (see Chapter 6): To this end, we need to extend
our notations. First, we define the stabilization

G :Rso— Ryp  with liH(l) G(s) =00 and lim G(s)s =0, (4.6a)
s—

s—0

and, morally, the reciprocal stabilization
. . . . . -1 _
p:Rsg—Ryo with ll_l}(l) p(s) =0 and 21_1% p(s)s™" = oc. (4.6b)
Moreover, as in [AKST14, p.415], we define the weight-function

a+ gmin{s, G(k)} for s > 0,

Waw () = {a (1 + % min{—s, G(k)} )_1 for s < 0, (4.6¢)

and note that G(k) > «/2 for sufficiently small k. Throughout this chapter, we wrap
O [II(m)] in the formal derivation operator

D(m,0m) := O [II(m)], (4.7a)

and note that D is linear in the second argument. Moreover, we consider a corresponding
approximation Dy, ~ D, where

Dy : 8, x Sy — L (w). (4.7b)

For the exemplary contributions of IT from Section 2.2 and their discretizations from Sec-
tion 3.4.4, we refer to Section 4.2.1 below for the precise definition of the corresponding
operators D and Dj. Then, we employ a general time-stepping approach for the dis-
cretization of 7 and II, which, in particular, covers implicit-explicit approaches. With
(mi)M ) and (vi)M being the sequence of sought approximations to m(t;) and v(t;) with
v from (4.3), respectively, we define

7wl (vl mz,mz_l) ~mw(m(t; +k/2)) and TIP(vi; mfl,mz_l) ~II(m(t; + k/2))

with one of the following three approaches (A1)-(A3) below and refer to Section 4.3 for
a formal justification. We allow

(A1) the implicit second-order in time approach from [AKST14, Algorithm 2]

w,lD(vfl; mﬁl, mﬁ';l) = rh(mﬁl) + 5 wh(vz), and

S ok o
1P (v} o, i) o= Ty (mi) + 5 Dy (i, )
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(A2) the explicit second-order in time Adams—Bashforth-type approach

Dri i -1 mn(mb) + kmp(v)) fori=0
T (Vs My, My ) = 9§ 5 i 1 i—1 7
smp(my) — smp(my ) else,

and

P (v);mp, mi ) .= {Hh(mz) * lth(m%, 'u;L) L o for ¢ =0,
ITy,(m},) + 5 Dp(my, mj) — 5 Dp(my,m; ") else;
(A3) the first-order in time explicit Euler approach from [AKT12, BSFT14]
ﬂ,?('vz;mﬁl,mz_l) = m(m})  and HhD(vﬁL;mZ,mz_l) =TI, (ms).
With these preparations, we have everything together to formulate our algorithm.

Algorithm 4.2.1 (IMEX TPS2, [DPP*17, Algorithm 2]). Input: Approzimation m,:l =
m% € My, of initial magnetization.
Loop: Fori=0,...,M — 1, iterate the following steps (a)—(c):

(a) Compute the discrete function
b= —Cex |V}, | + (f] + mh(m}) + Ip(m})) - mj,. (4.8)

(b) Find vi € ICh(mi) such that, for all ¢y, € (M), it holds that

i i i i Cex i
Wa k) (M) v, ‘Ph)Lz(w) + (mj, X v, on) 20 T — k(L4 p(k)) (VUi Veon) p2

2
i TS R i+1/2
= —Cex (VMy,, v<Ph)LZ(W) + <7T}?('Uh§ my,m, 1)7 90h>L2(w) + h+ / ’¢h>L2(w)
+ <HhD(’vz;m27mz_1)7¢h>L2(w)' (49)
(c) Define mjtt € My, by
mﬁfl(z) = m?(z) + v?(z) for all nodes z € N,. (4.10)
imy,(2) + kv, (2)]

Output: Approrimations m}’1 ~m(t;). O

Remark 4.2.2. (i) If we suppose linearity of mp, and linearity in the second argument
of Dy, all general time-stepping approaches (A1)-(A3) are affine in v'. Then, the
discrete variational formulation (4.9) gives rise to a linear system for 'u}'l. We refer
to Section 4.6 for details on how to solve this system.

(ii) The implicit approaches (A1) and (A2) withi = 0 depend on mwy(v) and Dy(mt, v!).
In practice, however, we then may require a numerically expensive fized-point itera-
tion to solve (4.9), even though this is a linear system for v} ; see Section 4.6.1 for
detasils.
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4. Implicit-explicit second-order tangent plane scheme for LLG

(iii) In contrast to (ii), the Adams—Bashforth-type approach (A2) for i > 0 and the ex-
plicit Euler approach (A3) avoid the implicit evaluation of m,(v}) and Dy(mi, v}).
The explicit Euler approach (A3) is formally first-order in time. It will generically
reduce the convergence order of the scheme and is only analyzed for comparison.
However, the Adams-Bashforth-type approach (A2) avoids the evaluation of mj(v})
and Dh(mz,vfl) at least from the second time-step on and is formally second-order
in time. It is thus our preferred choice.

(iv) For all approaches (A1)—-(A3), the discrete variational problem (4.9) generally gives
rise to a linear system, which has to be solved in the time-dependent discrete subspace
th(m%) ; Sy. We refer to Section 4.6.2 for a strategy on a linear algebra level.

(v) The update (4.10) is well-defined for any v) € ICp,(mi): To see this, note that the
nodewise definition (3.8) of the discrete tangent space Kp(m}) yields that

vi(z)-mi(z) =0 for all nodes z € Nj,. (4.11)
Recalling that m}l € My, we get for all nodes z € Ny, that

|2 (4é1)

mi,(2) + kvj(2)]* = [mj, (2)° + 2k mj, (=) - v, (2) + |vj(2) L+ v (2)* > 1,

i.e., the denominator in the update (4.10) is always positive.

(vi) The standard choices for the stabilization functions are p(k) := |log(k)k| and G(k) :=
p(k)~L. Note that these fit into the setting of (4.6), while p(k) = 0 does not sat-
isfy (4.6b).

(vii) With the second-order approaches (A1) and (A2), Proposition 4.3.2 yields the formal
convergence order O(k®+ p(k)k) of Algorithm 4.2.1. With p from (vi), we obtain the
formal convergence order O(k®>=¢) for all ¢ > 0, i.e., almost second-order in time.
The choice p =0 comes at the cost of the CFL-condition k = o(h) for convergence of
the postprocessed output of Algorithm 4.2.1 towards a weak solution of LLG (2.3).

(viii) With Way = a and p = 0, Algorithm 4.2.1 degenerates to the classical first-order
tangent plane scheme of [Alo08, AKT12, BSF*1/].
4.2.1. Formal derivation of exemplary II-contributions

In this section, we derive the formal derivative D for the exemplary contributions to IT
from Section 2.2. To this end, recall that D was defined in (4.7a) via the relation

D(m,0ym) := 9;[II(m) |
Moreover, we introduce corresponding approximations Dy ~ D.

e Zhang-Li field: For the Zhang—1i field [ZL04, TNMS05] from (2.13), we get with
formal derivation as in [DPPT17, Section 7.2.2] that

O [T(m) | @13) omx (u-V)m+mx (u-V)om+ B(u-V)om =: D(m,0m),
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4.3. Formal justification of Algorithm 4.2.1

where u € L*(wr) and 8 € [0,1]. Then, we define the corresponding approximation
operator Dy, =~ D as

Dy(pn,¥n) = tn % (w- V) o+ X (u-V) by + 5 (u-V)hy € L(w), (4.12)
for all pp, ¥y € Sy, ie., Dy := D|sh><5h.
e Slonczewski field: For the Slonczewski field [Ber96, Slo96] from (2.14), we get with
formal derivation as in [DPP*17, Section 7.2.1] that
2.14
O [TI(m) ] (.40 [G'(m-p)oym-p|m x p+G(m - p)dym x p =: D(m,dm),

where G € C}(R) and p € R?® with |p| = 1. Then, we define the corresponding
approximation operator Dy ~ D as

Dy (n,bn) == [G'(en - P)¥n-Plen xP+G(pn-P)Yn xp € L (w), (4.13)

for all ¢, ¥y € Sy, i.e., Dy := D‘thsh'

4.3. Formal justification of Algorithm 4.2.1

In this section, we extend the formal justification of the (almost) second-order tangent plane
scheme from [AKST14, Section 6] to our setting of LLG (2.3), i.e., we cover O, f # 0 and
II # 0 in general, and IMEX approaches for 7w and IT, in particular. First, we elaborate
the key-idea of [AKST14] behind the definition of v from (4.4).

Lemma 4.3.1 ([AKST14, p. 413]). For m € C*(wr) with |m| = 1, it holds that

k

m(t) + kv(t) =m(t+k)+ (’)(k;?’)7 where  v(t) := dym(t) + 5 IP)m(t) (Oum(t)) (4.14)

[m(t) + ko(t)]

for allt € [0,T — k. O
Recall the pointwise orthogonal projection Py, onto m(t)*. For |m| =1 in wr, we

obtain the representation
Py () := % — (¢ - m(t)) m(t) for all ¢ € C(w). (4.15)

Note that, here, we elaborate [DPP*17, Proposition 13]. Then, the following proposition
clarifies on a continuous-in-space-level why Algorithm 4.2.1 is expected to be of (almost)
second-order in time.

Proposition 4.3.2 (Formal justification of IMEX TPS2, [DPP*17, Proposition 13]). Let
m € C*(wr) be a strong solution of LLG (2.3) and suppose that

Am) := (heg(m) +TI(m) ) - m  satisfies B := [|A(m)]||goo() < G(k) <oco. (4.16)

For ap, o € H'(wr), define the bilinear form

Cex
B (¥, ¢) = W (A1), @) 12,y + (M X 8, 0) 2y + == k(14 p(R) Vb, Vo) 2,
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4. Implicit-explicit second-order tangent plane scheme for LLG

For ¢ € HY(wr), define the linear form

k
LA,f(SD) = fCex<vm(t)av¢>L2(w) + < 'f(t + 5 )7¢ >L2(w)'

Let Py ) be the pointwise orthogonal projection onto m(t)* from (4.15). Then,
k
v(t) == Om(t) + 5 PryOum(t) € KK(m(t)) N C™ (@) (4.17)

satisfies the following two assertions (i)—(ii):
(i) Lett €[0,T —k]. There exists Ry = O(k?> + kp(k)) such that

k

Bin(0(t),0) — 5 (r(0(0)). ) g0y — 5 (D(mlt),0(0), @) o

= Las() + (m(m(t)), @) p2() + T(M(1)), @) g2y + (B1, @) 2,y (4.182)
for all ¢ € K(m) N C>®(w).
(ii) Lett € [k, T —k|. There exists Ry = O(k* + kp(k)) such that

B (0(t), 0) = La5(9) + 5 (m(m(t)), 9) o) — 5 m(mlt — ), )2,
+ (T(m(1)), 9) 0y + 5 (Dme), m(0),9) o
— D), mlt = 1), @)+ (Rer@lpay  (L18D)

for all ¢ € K(m) N C>®(w).

The proof of Proposition 4.3.2 requires the following elementary lemma, which is al-
ready implicitly stated (without a proof) in [AKST14]. For a proof, we refer to [DPP*17,
Lemma 12].

Lemma 4.3.3 (Weight function properties, [DPP*17, Lemma 12]). Let Wegr)(s) be the
weight function from (4.6¢). Then, the following assertions (i)—(iii) hold true:

(i) There exists kg > 0, which depends only on o and G, such that

Wea k) (s) > for all s € R.

| o

(ii) It holds that

G(k)k

lv = Wy ()| < 5

for all s € R.

(iii) For G(k) > B >0 and k < a/B, it holds that

k B?
| + 55~ Wak) ()] < %lg for all s € [-B, B]. O

44
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Proof of Proposition 4.3.2. We follow the arguments of [AKST14, Section 6] for
H(m) := heg(m) + II(m). (4.19)

The proof is split into the following seven steps.

Step 1. We prove (i). To that end, we make auxiliary definitions and steps: Recall that
D from (4.7a) stems from the formal differentiation D(m,dym) := 9;[IL(m)]. Together
with the differentiation of (4.19) with respect to ¢, this yields that

at [’H(m)] = 8t [heff(m>] + 8t [H(m)]

L) Cox A0+ 0, [m(m)] + 0 + 0, [TT(m)]

) Cox AOm -+ 7(Dim) + O0f + 0, [TL(m)
= Cex AOm + w(Oym) + O,f + D(m,dym). (4.20)
Moreover, the equivalent formulation (4.1) of LLG (2.3a) becomes

adym +m X Oym (4.19)

H(m) — (H(m) - m)m. (4.21)

We test the latter equation with ¢ € IC(m(t)) N C*°(w), and recall that m - ¢ = 0. This
yields that

a(Oym, o) o) + (M X O, @) 2,y = (H(m), @) 2, (4.22)

for all ¢ € IC(m(t)) N C>(w).
Step 2. We derive a variational formulation for v: To that end, formal differentiation
of (4.21) with respect to time yields that

aOypm +m X Opm = O [’H(m)] — (8t [’H(m)] . m)m

For the next steps, recall from (4.15) that

Y =P + (¢ -m(t)) m(t) for all ¢ € C(@).

In particular, we get that Pp,;ym = 0. Moreover, ax a = 0 and (a x b)-b = 0 for vectors
a,b € R? yields that

Pm(t)[m X 8ttm] =m X 8ttm — [(m X 8ttm) . 8ttm]m =m X Bttm

=m X []P’m(t)@ttm] +m x [(Ottm . m)m] =m X [Pm(t)attm].
Then, we apply Py, ;) to (4.23) and obtain with the latter equation that
(6] [Pm(t)aﬁm] +m X [Pm(t)attm] = ]P’m(t)é?t [’H(m)] - (’H(m) . m) []P’m(t)ﬁtm} . (4.24)
Finally, we note that for any ¥ € C(w), it holds that

[Py ] - = - forall g € K(m(t)) NC>®(). (4.25)
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4. Implicit-explicit second-order tangent plane scheme for LLG

With these preliminary steps, we test (4.24) with ¢ € KK(m(t)) N C*°(w) and obtain that

«Q <Pm(t)attma 80>L2(w) + <m X IEDm(t)al‘nf"na (P>L2(w)

(4.24)
= <]P)m(t)at [H(m) ] ) 80>L2(w) - <(7'L(m) : m) EDm(t)atrna ¢>L2(w) (4-26)

(O [%(m) ] ) S0>L2(w) - <(H(m) ) m) oym, (‘0>L2(w)'

In a first step towards the variational formulation (4.18a), we add (4.22) and (4.26). With
the definition (4.17) of v, we obtain for all ¢ € K(m(t)) N C*°(w) that

(4.25)

Ty + Ty = (U, @) p2,) + (M XV, 0) 2,
k k
= (H(m), @)y (O H) ], 0) o) — o ((Flm) - ) Dm. 0)

= (H(m), @) pagy + (O HIM) |9}

k k2
- §<(H(m) ' m)’u, ¢>L2(w) + Z<(H(m) : m)Pm(t)attm7 (P>L2(w)
k k k2
=T+ -Ty— = Ts + — Tg. 4.27
3+ 5 14— 55 + 16 (4.27)
In the remainder of the proof, we generate from the terms 17, ..., Ty, the terms from the

variational formulation (4.18a).
Step 3. We generate the first term in By, from 77 + (k/2)T5. With the definition
A(m) = H(m)-m and the assumption (4.16), we apply Lemma 4.3.3(iii). This yields that

ot g (H(m) - m) = W (Am))v + O(K?).

From this, we obtain that
k__ (427 k 2
71+ 575 2 0 0, @) + 5 ((Hm) - m)0.0) 12y = Wy Am), @) ) + O,
Step 4. We transform T5: Integration by parts yields that

(4.27) (2.3b)
T3 - <%(m)7 ‘)0>L2(w) - = Cex<vm7 VCP>L2(UJ) + <7T(m), ¢>L2(w)

+ (F (1), ) p2(w) + (TL(M), 0) 12,y

Step 5. We transform 7j: Recalling from (4.17) that v = 9ym + O(k), linearity (L1)
of 7 and linearity of D in the second argument yield that

420
Ty “20 Cex(Adim, @) 2,y + (T(0em), @) 12y + (O S (1), @) 2(y + (D(M, 0, @) 2,

(4.17)
= Cex(Av, ) 21y + (T(V), @) 20y + (O F (1), @) p2(0) T (D(M,0), ) 2(,) + O(K).

Then, we add p(k) in the first term and obtain that

4.17
Ty "2 Cor (14 p(k)) (A, P) 12(w) T (T(©), ) 20

+(0cf (1) ) L2y T (D(m,0),0) 2y + O(k) + O(p(k)).
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To generate corresponding terms in the variational formulation (4.18a) from the latter
equation, we note that

Do) L7 m(t) + g@n]?m(t)@ttm(t) (235) k

= 5 8an(t)attm(t) = O(k‘) (4.28)
With integration by parts, we obtain that

(4.17)

T, =

—Cox (14 p(k)) (Vv, V) 12y + (T(V), #) p2()
+(0cf (1) ) g2y + (D(m,0), @) 2y + O(k) + O(p(k)).

Step 6. We combine Step 1-Step 5 to conclude (i): For the f-contributions in 75 and
T4, we recover from

F(t) + gatf(t) =f(t+ g) +O(K*) fortel0,T—k),

the corresponding term in the variational formulation (4.18a) via

k k )
(f(t), ‘P>L2(w) + §<8tf(t)790>1:2(w) = <f(t + 9 )7<P>L2(w) + O(k%).
Moreover, for the remaining term Ty from (4.27), we obtain that
1.27) k?
Ts ( = ) Z<(’H(m) ’ m)Pm(t)attm7 80>L2(w) = O(k2)~

Overall, we conclude (i) from Step 3-Step 5 and the latter two equations.
Step 7. We prove (ii): To that end, note that for t € [k, T — k], it holds that

KL (m(t) — m(t — k) = dm(t) + O(k) "2 w(t) + O(k).
With the linearity of 7w and of D in the second argument, this yields that

|

(R (0(0), ) 120 + & (D(m{1), (1)), ) g2
1

S ((m(0)), 9) gy — 5 (w(mlt
1

£ {D(m(), m(0), ¢} gy — 5 (Dlm(t), mit -

— k), e) 2w

k), @) p2(w) + O(K?).

Replacing the corresponding terms in the left-hand side of (4.18a), we prove (ii). Alto-
gether, this concludes the proof.

O
Remark 4.3.4.

(i) Proposition 4.3.2(1) and (ii) correspond to Algorithm 4.2.1 with the
general time-stepping approaches (A1) and (A2), respectively.

(ii) In Step 3 of the proof of Proposition 4.5.2, the replacement of

(a+ 5 (hea(m) +1H(m)) -v) 1o, with Wogy (Am)) 9, 0) s,

illustrates the idea of [AKST14] behind the weight-function We(r): On the one hand,
the replacement results in a second-order in time error, on the other hand it ensures
for sufficiently small k > 0 ellipticity of the bilinear form By, (-, -); see Lemma 4.3.5(1).
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(iii) In Step 5 of the proof of Proposition 4.3.2, we can choose p = 0. Then, we require the
mild CFL-type condition k = o(h) for convergence of Algorithm 4.2.1. However, with
p as in (4.6b), this convergence is unconditional in the sense of Convention 1.3.1.
In (4.6b), the generic choice is p(k) :=log(k)k. This results in a formal convergence
order O(k*log(k)) < O(k*7¢) for all e > 0, i.e., almost second-order in time.

4.4. Experimental convergence order

In this section, we illustrate the accuracy and computational costs of different variants
of Algorithm 4.2.1 with a numerical experiment. To this end, we use our Python-based
extension of NGS/Py [ngs|, which was mainly developed by Carl-Martin Pfeiler*. Note
that the numerical experiment of the own work [DPP*17, Section 7.1] already confirms
the formal convergence order from Remark 4.2.2 and that these results were also reported
in the co-supervised master-thesis [Pfel7, Section 4.4.3]. However, this experiment ne-
glects dissipative effects, i.e., II(m) = 0. In contrast to that, we additionally include the
Slonczewski-field [Ber96, Slo96] in the form

1+PPB+2) 17!
1P —4 for z € [-1,1],

I(p) :==G(p-pP)p xp, with G(z):=

where p = (1,0,0)” and P = 0.8. Besides that, we slightly adapt [DPP*17, Section 7.1]:
The lower-order m-dependent energy terms 7(m) consist always of the stray field, i.e.,
one evaluation of the corresponding approximation 7rj, employs the Fredkin—Koehler algo-
rithm [FK90] in the variant of Algorithm 3.4.3. We always employ the standard choices
p(k) := |log(k)k| and G(k) := p(k)~! from Remark 4.2.2(vi) and compare the perfor-
mance of the different approaches to 71',? and HhD with the following five variants of Algo-
rithm 4.2.1:

e TPS2: We employ the implicit second-order approach (A1l). For all i =0,..., M —
1, we perform (inexact) time-steps with Algorithm 4.6.1 below, with the iteration
tolerance ¢ = 10710 for the underlying fixed-point iteration.

e TPS2+AB: We employ the explicit second-order Adams—Bashforth-type approach (A2).
For the first time-step, we use TPS2. For all other time-steps, the right-hand side of
the discrete variational formulation (4.9) is independent of v}, and we solve the arising
linear system in ICp,(m}) with the approach from Section 4.6.2.

e TPS2+EE: We employ the first-order explicit Euler approach (A3). For all time-
steps, the right-hand side of the discrete variational formulation (4.9) is independent
of vfl, and we solve the arising linear system in Kh(mZ) with the approach from
Section 4.6.2.

e TPS1+AB: We combine the classical first-order tangent plane scheme [Alo08, AKT12,
BSF*14] with the implicit second-order approach (A2). Essentially, this is TPS2+AB
with Wgx) = a and p = 0.

4TU Wien
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e TPS1+EE: We employ the classical first-order tangent plane scheme [Alo08, AKT12,
BSF*14]. Essentially, this is TPS2+EE with W) = a and p = 0.

r T T 7
I |
10741 .
. 107° | E
O . -
g B i
K i |
1079 | [ TPS2 ]
| | @ TPS2+AB i
| | A TPS2+EE 1
| | m TPS1+AB |

107 | | TPSI+EE X
E (- (- B

1073 1074

Time-step size (k)

Figure 4.1.: Experiment of Section 4.4: Reference error max;(|[mpk,. (t:) — mnk (i)l 51 ()
for k = 20 kyop with £ € {1,2,3,4,5} and kyef = 5-107°.

For all these variants, we choose the final time 7' = 7, the domain w = (0, 1)3, the Gilbert-
damping parameter o = 1, the exchange constant Ceyx = 1, the external field f = (0,1, 0)7,
and the initial value m® = m9 = (1,0,0)7.

For space discretization, we employ the triangulation 7, obtained from the NGS/Py-
embedded Netgen [ngs| with the mesh-size h = 0.125, which corresponds to 3939 elements
and 917 nodes. We note that we checked the corresponding stiffness matrix to verify the
angle condition (T1). Having fixed the space discretization, we perform the latter variants
with varying time-step size. Since the exact solution is unknown, we employ TPS2+AB to
compute a reference solution myy ., where the reference time Kper := 5 - 1075 is a fine
time-step size.

In Figure 4.1, we illustrate the experimental convergence order of our variants. For our
setting, the plot confirms the predictions of Remark 4.2.2: For TPS2 and TPS2+AB, we
obtain the convergence order

O(k?p(k)) = O(K*|log(k)|) < O(k*7¢) for all € > 0.

For TPS2+EE, TPS1+AB and TPS1+EE, we obtain the reduced convergence order O(k).
In Table 4.1, we illustrate the computational costs of our variants. As expected, TPS2 with
its fixed-point iteration is by far the most expensive method. The methods TPS2+AB and
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TPS2 TPS2 TPS2+AB | TPS2+EE | TPS1+AB | TPS1+EE

absolute || relative relative relative relative relative
k =0.0016 1.44 100% 38.15% 33.13% 31.46% 26.63%
k = 0.0008 1.48 100% 37.74% 32.96% 31.21% 26.75%
k = 0.0004 1.53 100% 37.27% 32.48% 31.12% 26.62%
k = 0.0002 1.44 100% 40.23% 35.39% 33.75% 28.95%
k = 0.0001 1.33 100% 44.30% 38.86% 37.32% 31.91%

Table 4.1.: Experiment of Section 4.4: Average absolute time (in s) of TPS2 and relative
times of all variants.

TPS2+EE are slightly costlier than their counterparts TPS1+AB and TPS1+EE, respectively.
This is due to the fact that the mass-term (Wg)(A}) v}, @n) L2(w) in the discrete varia-
tional formulation (4.9) depends on the time-step for TPS2+AB and TPS2+EE. In contrast to
TPS1+AB and TPS1+EE where Wg () = «, we thus have to reassemble the corresponding sys-
tem matrix at each time-step. Similarly, the Adams—Bashforth-type methods TPS2+AB and
TPS1+AB are slightly costlier than their explicit Euler counterparts TPS2+EE and TPS1+EE,
respectively. This is due to the fact that for TPS2+AB and TPS1+AB, the Slonczewski-field
from (4.13) additionally gives rise to four additional Dj-terms in the right-hand side of
the discrete variational formulation (4.9), which we have to reassemble at each time-step.
In [DPP*17, Table 1], we have II(m) = 0 and this effect (almost) disappears.

In conclusion, TPS2+AB is the method of choice. It is the only method that benefits (at
least from the second time-step on) from the IMEX approach and conserves the (almost)
second-order in time convergence. Compared to TPS2+EE and TPS1+EE, the higher com-
putational costs are justified with the (almost) doubled convergence rate. Moreover, the
Crank—Nicholson type approach of TPS1+AB is not enough to obtain (almost) second-order
in time.

4.5. Main result

In this section, we formulate and prove the main result of this chapter. We extend [AKST14,
Theorem 2] to the setting of our implicit-explicit (almost) second-order tangent plane
scheme and prove unconditional convergence in the sense of Convention 1.3.1. Note that this
result is based on the own work [DPP*17, Theorem 4] and stands in line with correspond-
ing results for the first-order tangent plane scheme; see, e.g., [Alo08, AKT12, BSF*14]. To
formulate the main result, we additionally require the following assumptions:

(T1) Angle condition of 7,: For all h > 0, the nodal hat functions ¢, € S, where
z € Ny, satisfy that

/ Vi, Ve, de < 0 for all nodes z # 2.

(T2) Nodewise normalized m): It holds that m{ € My, for all h > 0.
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(T3) Linearity of Dy: For all h > 0, the operators D}, are linear in the second argument.

(T4) Uniform boundedness of Dj: There exists a constant Cp > 0 such that, for all
h > 0, it holds that

(Di(pn,¥n)s ¥n) 2wy < Cp [¥nllL2w) |9l m1(w) for all ¢ € My and all ¢y, € Sj,

as well as
IDw(en, )l L2w) < Cp (llenllgrw) + |1@Prllaiw)) for all wn, @n € M.

(T5) Weak consistency of Dy,: For all sequences (¢nx)n x>0 C L%(0,T;S),) which satisfy
lenkllLoo(w,)y < C for all h,k > 0 and some fixed C' > 0, and for all sequences
(Yhr)n k=0 C L*(0,T; Sp) with b — 0 in L*(wr), it holds that

Dh(‘Phka 'l,bhk) —0 in LQ(WT) as h — 0.

For the additional stronger statement (c) from Theorem 4.5.1 below, we require the follow-
ing additional assumptions:

(T5%) Strong consistency of Dj: For all sequences (pni)ni>0 C L?(0,T;8)) which
satisfy [|@nk| oo (wp) < C for all b,k > 0 and some fixed C' > 0, and for all sequences
("/’hk)h,k>0 C LZ(OJT) with ¥pr — 0 in LQ(UJT), it holds that

Dy (pnks%nr) = 0 in L*(wr) as h— 0.
(T6) L3-stability of m: There exists a constant C% > 0 such that
I7(P)llsw) < Crllellsw) forall @ € L (w).
(T7) Additional regularity of f: It holds that f € C'([0,T]; L*(w)) NC([0,T); L3(w)).

With these preparation, we are ready to formulate the main result of this chapter.

Theorem 4.5.1 (Convergence of IMEX TPS2 for LLG, [DPP*17, Theorem 4]). Consi-
der Algorithm 4.2.1 for the discretization of LLG (2.3). Then, the following three asser-
tions (a)—(c) hold true:

(a) Suppose linearity and uniform boundedness of wy, and Dy, i.e., there hold (D2)—(D3)
and (T3)—(T4). Then, there exists kg > 0, which depends only on m°, Cex, a, 7(-),
II(-), and Cmesh such that, for all k < kg, the discrete variational problem (4.9) is
uniquely solvable. Then, in particular, Algorithm 4.2.1 is well-defined.

(b) Suppose that
e the meshes Ty satisfy the angle condition (T1);
e the approzimations m) satisfy (D1) and (T2);
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(¢)

the approzimation operators my, satisfy (D2)-(D4);

the approzimations ( f,’;)f\io are weakly consistent (D5);

the approzimation operators Il satisfy (D6)—(DT);

the approzimation operators Dy, satisfy (T3)—(T5);

the general time-stepping approaches ﬂ'}? and HhD are defined by one of the three
options (A1)—(A3).

Then, there exists a subsequence of the postprocessed output myy, from Algorithm 4.2.1,
and a weak solution

m € L0, T; H (Q)) N H' (wr)
of LLG (2.3) in the sense of Definition 2.2.1(1)—(iii), such that

muy, —m i H' (wrp) as h,k — 0.

Additionally to the assumptions from (b), suppose that
e the operator w is L3-stable (T6);
e the applied field f satisfies the additional regularity assumption (T7T);
e the approximations m% are strongly consistent (D17);
e the approxzimation operators wy, are strongly consistent (D47);
e the approzimations (fi)M, are strongly consistent (D5%);
e the approzimations operators Iy are strongly consistent (DTT);

e the approzimations operators Dy, are strongly consistent (T57).

Then, the weak solution m from (b) is a physical weak solution in the sense of Defi-
nition 2.2.1(1)—(iv), i.e., it additionally satisfies the stronger energy estimate (2.17).

Remark 4.5.2. (i) The angle condition (T1) means that the off-diagonal entries of the

(i)

(iii)
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corresponding stiffness matrices are non-positive. In particular, (T1) is satisfied, if
for all h > 0, the dihedral angles of all elements K € T, have an angle less or equal
7/2; cf., e.g., [Bar05, Remark 3.3(ii)].

As in [AKST14], Theorem 4.5.1 holds also with p = 0, provided the mild CFL-
type condition k = o(h). The proof follows the same lines, except for the proof of
the convergence property in Lemma 4.5.4(viil), which is established in Remark 4.5.5
instead.

Theorem 4.5.1(a) implies only unique solvability of the discrete variational formula-
tion (4.9). In practice, we employ the fized-point iteration from Algorithm 4.6.1 for
the implicit approaches. To prove the corresponding convergence result in Proposi-
tion 4.6.3, we will additionally require the stronger assumption (T4T) below.
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(iv) Uniazial anisotropy and stray field and the corresponding approrimations satisfy the
assumptions of Theorem 4.5.1(c) to w and my, respectively. We refer to Appendiz A
for the verification.

(v) For the Zhang-Li field [ZL04, TNMS05], the corresponding approzimation opera-
tors II, and Dy, satisfy all assumptions of Theorem 4.5.1(b), except weak consis-
tency (T5) of Dy; see Proposition A.3.1 for the verification. However, the statement
remains valid and Remark 4.5.8 bypasses the corresponding gap in the proof. This
extends [DPP* 17, Section 7.2.2], where the statement was only valid for

||vm2||Loo(w) S and the Adams-Bashforth-type approach (A2)  (4.29)

or the explicit Euler approach (A3). However, the practical solution of the discrete
variational formulation (4.9) for the implicit approaches requires a fized-point itera-
tion; see also (iii). Only in the setting of (4.29), we obtain the required convergence
of the fixed-point iteration in the first time-step. We refer to Remark 4.6.4 for details.

(vi) For the Slonczewski field [Ber96, Slo96], the corresponding approximation operators
I1;, and Dy, satisfy the assumptions from Theorem 4.5.1(c) and even the stronger
assumption (T4m) below; see Proposition A.3.3 for the verification.

(vil) In the main source [DPP"17], we made assumptions directly to 71',? and TIP | while
here we differentiate between assumptions to my, Ily, and Dy, respectively.

We split the proof of Theorem 4.5.1 into the following subsections. In Section 4.5.1, we
prove well-posednes (a). For the proof of (b), we follow a standard energy argument (see,
e.g., [Eval0]), which consists of the following three steps:

e We derive a discrete energy bound; see Section 4.5.2.
o We extract weakly convergent subsequences and identify the limits; see Section 4.5.3.

e We verify that the limit m is a weak solution of LLG in the sense of Definition 2.2.1(i)—
(iii) and thus conclude the proof of (b); see Section 4.5.4.

In Section 4.5.5, we prove (c).

4.5.1. Well-posedness

Proof of Theorem 4.5.1(a). Since for given m} € M, the update from (4.10) is well-
defined for any v} € Kp(m}) (see Remark 4.2.2(v) for details), we only have to prove that
the discrete variational formulation (4.9) is uniquely solvable for sufficiently small k£ > 0.
To this end, note that with linearity (D2) and (T2) of m, and Dy, respectively, the
right-hand side of the discrete variational formulation (4.9) is affine on vz. Hence, for all
approaches (A1)—(A3), we can reorganize the terms to the classical setting with a bilinear
forms on the left-hand side and a linear form on the right-hand side. In particular, for the
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explicit Euler approach (A3), and the explicit Adams-Bashforth-type approach (A2) with
i > 0, the corresponding bilinear form of the discrete variational formulation (4.9) reads

Bj, (0, #n) = Wae(\h) ¥n: h) 12,y + (Mh X W1 0n) 20

Cex i
+ ; k(1+p(k) (VYn, Veor) 2y for all ¥, op € Kp(my,).

(4.30a)

In the implicit case of approach (A1) and (A2) for ¢ = 0, the corresponding bilinear form
reads

Bi,(¥n, en) := By, (¥, en) — g (mh(¥n), on) p20) — g (Dp(mi,, ¥n), n) 2. (4.30b)
for all ¢y, 5, € Kp(m?). With the Lax-Milgram theorem (see Theorem B.2.4), we thus
only have to prove that, for sufficiently small k£ > 0, the corresponding bilinear forms are
positive definite on /Cj,(m}). This is done in the following two steps.

Step 1. We show that B} from (4.30a) is positive definite: Since (a x b) -a = 0 for
a,b € R?, Lemma 4.3.3(i) yields for sufficiently small & > 0 that

i 4.30a i Cex
B () = Waw) M) o ) oy + =5 k(1L F p(R) (Vebn, Vi) 2
46) ¢ Clox i
> Slnliew + 5 kIVERlTa) for all gy € ICn(mj,).

Step 2. We show that E}L from (4.30b) is positive definite: To this end, the latter
equation and uniform boundedness (D3) of 7, and (T4) of Dy, yield for sufficiently small
k> 0 that

Cex 2
— FIVnllze)

k k
= (Cx+Cp) 5 [¥nllL2w) = Cp 5 1¥nlp2e) I Venllza).

(4.30b
)

. ) «
B}, (¥, Yn) > §H¢h”%2(w)+

With the Young inequality, this yields for arbitrary § > 0 that

Biwt) 2 5 (o= [Cnt Colk= 32 k) Ialac
1 Cp

+ 5 (Cex - 75) MIVYn|32q,,  for all gy, € Ky (m),).

With the choice § = Cex/Cp and sufficiently small k£ > 0, the factors on the right-hand
side of the latter estimate are positive.

Hence, for all approaches (A1)—(A3) the corresponding bilinear form is positive definite.
Altogether, this concludes the proof. O

4.5.2. Discrete energy bound

In this section, we derive a discrete energy bound, which represents the mathematical core
of the proof of Theorem 4.5.1(b). Note that the used techniques go back to [Alo08], where
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a corresponding result was proved for the first-order tangent plane scheme for heg(m) :=
Am and II(m) = 0. For the second-order tangent plane scheme, [AKST14, Section 6]
essentially adapts [Alo08, AKT12, BSF*14] but covers only implicit treatment of 7 (m)
and II(m) = 0. Here, we extend [AKST14, Section 6] to the setting of Algorithm 4.2.1.
To this end, we elaborate the own work [DPP*17, Lemma 15].

Lemma 4.5.3 (Discrete energy bound, [DPPT17, Lemma 15]). Let the assumptions of
Theorem 4.5.1(b) be satisfied and let k > 0 be sufficiently small. Then, the following
assertions (i)—(ii) hold true:

(i) For alli=0,...,M —1, it holds that

CX 7 7 7 % CeX A
VI B + Wow Oh) 0h 01 gy + ko) V0432

) i1/2 ) ; .
< <7T,?(vh,mh,m2 1) ’U;L>L2(w) +( }Zl / 7”2>L2(w) =+ <HhD(vz;mh,mh 1) U;L>L2(w)-

(ii) There exists a constant C > 0 which depends only on T, w, m®, a, Cex, 7(-), f,
II(:), and Cmesh such that, for all j =0,..., M, it holds that

Jj—1 J—
IV 1720y + kD 0hl[72) + E0(k) D IV 0hll7e, < C < oo
i=0 i=0

Proof. For the proof of (i), we test the discrete variational formulation (4.9) with v} €
ICh(mi). Since (b x a)-a =0 for a,b € R, we get that

PN i Cex i g
Wa ) (AL) v, vh) 2wt k (1 + p(k)) (Vop, Vo) 2,

2
7 7 i— i+1/2 4
= —Cex <vmhavvh>L2 + <ﬁl?(vh§mhamzh 1) Uh>L2(w) + < Y 7Uh>L2( (4.31)

w)

+ <Hh (vh;mhamz 1)’v;1>L2(w) .

In the following, we generate as in [Alo08] from the first term on the right-hand side
of (4.31) the missing terms on the left-hand side of (i). To this end, let Z;, be the nodal
interpolant corresponding to &j. Moreover, note that, since v% € ICh(mZ), we get that
m} (z) - v (z) = 0 for all nodes z € Nj,. Recalling that m} € M,,, we get that

i i 2 i i i
| m,(2) + kv (2) | = [mj,(2)]? + v, (2) = 1+ v, (2) > 1,

for all nodes z € NVp,. Since T}, satisfies the angle condition (T1), Lemma B.1.1 then yields
for ¢, = m}l + kv,il € 8y, that

m}L + kv’;'L ) ‘ 2
]m}t + k:'v}L|
= [V T2 + 2k (Vi VU)o + K (V0] 1220

; (4.10)
IVm, e = HVIh<

< |V (mp, + kvp) |72,

L2(w)
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Reorganizing the terms in the latter estimate, we infer that

C,

Cex ex P A %
> k| VLT € Cox (VM. VL) 12, (4.32)

de [l 12 —

Then, the combination of (4.31) and (4.32) proves (i). Next, we show (ii) and split the
proof into the following six steps.

Step 1. We derive a preliminary estimate: To that end, note that Lemma 4.3.3(i), yields
for sufficiently small k > 0, that

g PN i o0
9 HUhH2L2(w) < <WG(k)(/\h)vh7'Uh>L2(w)~ (4.33)
Then, we sum (i) over i = 0,...,j — 1 and exploit the telescopic sum property. This way,
we obtain that
O = T T + ok z (AT Ols Z V92
X = 9 (w) Rl L2(w RIIL2(w
(433) Cex j PN Cex i
< VML) + o Oh) vh vh) 2, + =5 p(R) K Z IV [172 )
0 C i1
X i i i+1 2 i
< 2e 02 @ T k 2(77,?(vh;mh,mh ), vh>L2(w) + k Z (fi i+1/ >L2(w)
j—1
+k > (TP (v mp,my ), V) () =1 S1+ 82 + S5+ . (4.34)
i=0
In the following, we estimate Si,...,S4. Then, our goal is to absorb as many terms as

possible to x) and to apply the discrete Gronwall lemma afterwards.
Step 2. We estimate S1: We get that

(D1)
2

~

Step 3. We estimate Sy: For all approaches (A1)—(A3), we get that

<7Th ('Uh’mhamz 1) UZ>L2(W)
S Elmn (i)l 2 [vhllze @) + 170 (me) | 2 [0kl L2 @) + 170 (mi D z2) 104l 22 )
(D3)

S RIRlITe ) + Ml wllvhll2w) + Imy 2w 1vhl 22w

Recall that mh,mz 1 ¢ My,. With the Young inequality, we conclude from the latter
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estimate for arbitrary ¢ > 0 that

7j—1
( z A
Sy "2V 1 D (i (v my, my ), Vh) L2 (w)
=0

J— Jj— 7—1
S KD vilTew + 5 Z 422 () + 58 D 101320
=0 i=0 i—0

j—1

+ (k+0)k Y [vhllzew

=0

A
SR

Step 4. We estimate S3: The Young inequality yields for arbitrary § > 0 that

j—1 j—1
(4.34) i+1/2 k 1/2
Ss = kY A vl S 5 Zufh*/ i + 0% 3 leklisc
=0
(D5) § i1

S 5+ 0k vkl
=0

Step 5. We estimate S;: To that end, recall that m%, mﬁ:l € Mj,. We deal with the
different approaches (A1)—(A3) one after the other. For the implicit approach (A1) and
the explicit Adams—Bashforth-type approach (A2) with i = 0, we obtain that

(T2 (ol i), )y = (IO (), 98 ooy + (D (md 1), 06
(T4) . . : .
XL, ()| 2wy 10Rl 22 (w) + K 0kl 22 w) 10R 1 Fr ()
=: Ty + Ts.

For T7, the Young inequality yields for arbitrary § > 0 that

@8 i Lo a2 i |2
Ti < mp |l llvillzew S 3 Il ) + 0 VRl 2 )

1 . )
S5t5 VM4 172 + 8 04172

For Ty, we insert p(k) in order to match with the third term in the definition (4.34) of ).
With the Young inequality, we get for arbitrary 6 > 0 that

Ty S Skplk) V0l 13 + (“Wk)) [0 1720

~

For the explicit Adams—Bashforth-type approach (A2) with ¢ > 0, we obtain with similar
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steps as for 17 for arbitrary ¢ > 0 that

<HhD(v;;ﬁ mh, m;L 1) v;l)LQ(w)

= (IIa(m4), vh) p2(w) + 5 (DM, m), vh) pa) = 5 (Dp(mjy, mi 1), v4) L2

T8 i i i i i—1

< th<mh>up<w>thum) # ol (Imille + Imi ) )
(De6) 1 1 ;

< L L Um0 ek

For the explicit Euler approach (A3), we omit in the latter arguments the Dy, contribution
and obtain that

i i i 1 i i
<HhD('Uh§mh>mh 1)>Uh>L2(w) S 35 + 5 vahH%?(w) +9 thH%ﬁ(w)'

Altogether, we infer for all approaches (A1)—(A3) that

—_

j_
k Z <HhD(U7iL;mh7m’;L 1) 'U;L>L2(w)
=0

NS k =

+53 2; IVl + (k+0+ W)> k Z; 10122y + K2 p(k) Z; IV} 122

Step 6. We combine Step 1-Step 5: We arrive for arbitrary § > 0 at

5, 439

| =

Sh| =

| B o
W <14 Sy 5 2_IIVmiligag,
1=0

i (4.35)

j—1
k P2 2 3 72
+ (ko W> k ; 1vhllz2() + 0k7p(k) ; VORI )

First, we choose a § > 0 small enough such that we can absorb the terms

j—1

0k Y l1vhlZew) and SK%p(k) D IIVh]Zec,
1=0 =

into xU). Next, recall from (4.6b) that kp(k)~' — 0 as k — 0. In particular, for sufficiently
small £ > 0, we can absorb the terms

j—1 g2 i
2 712 712
k iz;thHLQ(w) and op(k) Zz;H”hHLQ(w)

into x9). With the definition of xU) from (4.34), we then get for all j = 1,..., M that

j—1

7j—1
XD ST+ kY VM T, ST+ EY XY (4.362)
1=0 i
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Moreover, it holds that

(D1)

(4.34)
O =T I vmllpew) S 1 (4.36D)

X

Note that (4.36) fits in the setting of the discrete Gronwall lemma (see Lemma B.3.1). This
yields that

—_

X(j)gexp< k)gexp(:r’)<oo, forall j=1,..., M.

i

<.

Il
o

Altogether, this shows (ii) and concludes the proof. O

4.5.3. Extraction of weakly convergent subsequences

In this section, we exploit the discrete energy bound from Lemma 4.5.3 and extract weakly
convergent subsequences of the postprocessed output of Algorithm 4.2.1. The specific
adaptation of these standard techniques to the tangent plane scheme goes back to [Alo08,
AKT12, BSF*14] for the classical first-order variant and was extended to the second-order
variant in [AKST14]. Here, we elaborate the corresponding [DPP*17, Lemma 16].

Lemma 4.5.4 (Convergence properties, [DPPT17, Lemma 16]). Let the assumptions of
Theorem 4.5.1(b) be satisfied. Then, there exists subsequences of the postprocessed output

mpy, € {m}  m, mpy. . mu} and v,
of Algorithm 4.2.1 and a function
m € L®(0,T; H (w)) N H(wr)

such that the following convergence properties hold true simultaneously for the same subse-
quence as h,k — 0:

(i) mp, —m in H'(wr).

(i) mjpy, = m in L>(0,T; H' (w)).
(iif) mjy, — m in L*(0,T; H' (w)).
(iv) mjy — m in L*(wr).

(v) m(t) = m(t) in L2(w) a.e. fort € [0, T).
(vi) m}, — m pointwise a.c. in wr.
(vii) vne — Bym in L2(wr).

)

(viii) kVope — 0 in L% (wr).
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Proof. For the proof of (i)—(vi), we follow [Alo08, BSF*14]: We infer from Lemma B.1.4(ii)
that

I dtmfleLg(w) < H’IJ;LHL2(W) foralli =0,1,...,M — 1.
With Lemma 4.5.3(ii), the definition (3.3) of the postprocessed output yields that
[0kl L2w) S lvpllp2w) S 1- (4.37)
Moreover, since mi € My, for all i = 0,..., M, it holds that [mpllLoe ) = 1. With
Lemma 4.5.3(ii), we altogether get that

Ikl Et oy + 1Ml oo 0,151 (0)) S 1- (4.38)

With the Eberlein-Smulian theorem (see Theorem B.2.2), we can successively extract
weakly convergent subsequences of mj, with corresponding limits

m* € {m*,m~,m~,m} where m* € L*(0,T; H'(w)) and m € H'(wr) (4.39)
such that there hold the convergence properties
muy = m in H'(wp), and mj};, —m* in L*(0,T; H'(w)) as h,k — 0.

With the Rellich-Kondrachov theorem (see Theorem 2.1.2), this proves (i) and (iv) for
my. Moreover, it is a direct consequence of the definitions of the postprocessed output
and the discrete time-derivative, that

(4.37)
Imh, — mukllL2@wr) S klIOmnkllr2wy < k—0 ashk—0,

and altogether, we obtain that
lm — mpl L2 S M = Mkl L2wr) + [0k — millL2@r) = 0 as bk — 0.

Hence, we can identify all limits from (4.39) and conclude (i) as well as (iii)—(iv). Next,
we show (ii). Upon further extraction of subsequences, the Alaoglu theorem (see Theo-
rem B.2.3) yields subsequences of m},, which are weak* convergent in L>(0,T; H!(w)).
Since weak* convergence in L>°(0,T; H'(w)) implies weak convergence in L?(wr), this
yields the common limit m and we conclude (ii). Moreover, further successive extrac-
tion of subsequences proves (v)—(vi). For the proof of (vii), we follow [BSF14, Lemma
3.8]: Boundedness of [|v,[|f2(.) from (4.37) and the Eberlein-Smulian theorem (see The-
orem B.2.2) yield upon extraction of another subsequence a function v € L?(wr) such
that

v, —v in L*(wr) ash,k— 0.

In order to get v = Oym, Lemma B.1.4(ii) with p = 1 yields that

M1 M-1
1V = dmuellprory = & 3 ok = demi Pl S K 3 Iwhllzaq,)
=0 i=0

=k ”UﬁkHQLz(wT) Sk—0 ashk—0.
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Since || - || L1 (wy) is lower-semicontinuous on L*(wr), the latter equation yields that

lv = dyml| 1 oy < liminf vy, — dmnell ) =0,

and hence v = dym. For the proof of (viii), we follow [AKST14, p.420]: With Lemma 4.5.3(ii),
the definition (3.3) of the postprocessed output yields that

M-1 M-1

B VOl T2 = K D IV0hlTa) = [kotk) ™ ] (k) K Y V0] 72,
i=0 =0 (440)
4 (4.6b)

Skp(k)™ =70 ash,k—0.
This proves (viii) and altogether concludes the proof. ]

Remark 4.5.5. If p =0, then we cannot proceed as in (4.40) to prove Lemma 4.5.4(vii).
Instead, we get as in [AKST14, p.420] with the uniform boundedness statement from
Lemma 4.5.53(i1) and an inverse estimate that

M-1 M-1
KV T2 = K D IV0LlZaw) S H 2R Y 0)l7e, S hT2K2
i=0 i=0

Hence, with the mild CFL-type condition k = o(h), Lemma 4.5.4 still holds.

Moreover, we note a direct consequence of the latter convergence properties, which al-
ready anticipates the verification of Definition 2.2.1(i) for the proof of Theorem 4.5.1(b).

Lemma 4.5.6 (|m| =1 a.e. in wy). Let the assumptions of Theorem 4.5.1(b) be satisfied.
Then, m € L>®(0,T; H'(w)) N H'(wy) from Lemma 4.5.4 satisfies |/m| =1 a.e. in wr.

Proof. We follow [Alo08, BSF*14]. First, we estimate

11 =1l 2r) < 11 = Implllz2wr) + gl = 1millz )
<N = fmplll 2y + g, — mil L2y = 11 + Ta. (4.41)
Note that with the convergence property of Lemma 4.5.4(iv), we get that 7o — 0 as
h,k — 0, i.e., we only have to deal with 77. To this end, fix ¢t € [O,T)ﬁ&md x € w. Let
i € {0,1,...,M — 1} such that ¢ € [t;,t;11) and K € Tj, such that x € K. Since Vm is
constant elementwise and since m}L € M,,, it holds for all nodes z € K with the definition
of the postprocessed output that

|1 — |my (@) | = [ 1= |mj(2)]| = |Im}(2)] = [mj, ()] | < |mj,(2) — mj () |
< |z — x| ‘sz(:n)h(‘ < h‘Vm}L(:nﬂK‘ = h‘Vm,:k(t,mﬂK’.

Since t € [0,7) and & € w were arbitrary, we can integrate in the latter estimate over wr,
and obtain that

(4.41)

Ty 11— |mylll2wry S IVMylle2w,) S h—0 ashk—0.

Altogether, this yields that |m| =1 a.e. in wy. O
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4. Implicit-explicit second-order tangent plane scheme for LLG

4.5.4. Convergence to weak solution

In this section, we prove Theorem 4.5.1(b). To this end, we first prove a weak consistency
property of the general time-stepping approaches (A1)-(A3) in L?(wr).

Lemma 4.5.7 (Weak consistency of wP and ITIP). Let the assumptions of Theorem 4.5.1(b)
be satisfied. Consider the general time-stepping approaches (A1)—(A3). Then, the follow-
ing two convergence properties (1)—(ii) hold true as h,k — 0:

(i) W}?(U}:k; my,.,my,) — w(m) in L?(wr).

(ii) IP (v}, m;,, mi;) — I(m) in L?(wr).
Proof. First, we prove (i): With the convergence properties from Lemma 4.5.4 and with
Lemma 3.4.1, we get that

mn(miy) 2 w(m) and m(mi) 2P w(m) i LX(wr) ashk—0.  (4.42a)

Moreover, we get with the convergence property from Lemma 4.5.4(vii) that

(D3)
Flmn@i)lzwn S klomlnzwn S k=0 ashk—0, (4.42D)

~

ie., kmp(vy,) — 0 in L?(wr) as h,k — 0. This yields that

mh(m,, ) + gﬂ'h(vgk) (4422) w(m) in L?(wp) as h,k — 0. (4.42c)

Then, (i) is a direct consequence of the convergence properties (4.42), where for the Adams—
Bashforth-type approach (A2) we use (4.42¢) for [0, k] and (4.42a) for [k,T]. Next, we
show (ii). With Lemma 4.5.6, we get that m € H'(w7)NL>®(w7). Hence, II(m) € L?(wr)
is well-defined. Then, the convergence properties from Lemma 4.5.4 yield that

1, (my,) 2V T(m) i L2(wr) as bk — 0. (4.430)

Together with weak consistency (T5) of Dy, this yields that

_ k o
I, (my,;,) + 5 Dy (my,,, vp,.)

(T3) k (4.42b) (4.43D)
="1I,(m;,) + Dp(my,, 5 v ) — II(m) in L*(wr) as h,k— 0.
Moreover, we infer from the convergence property from Lemma 4.5.4(iv) that
_ 1 - - - =
In(my,,) + 5 Dy (m,, my,) — B Dy, (1., mpy.) (430
43¢
(T3) _ 1 _ _ .
= Hh(mhk) + Dh(mhk , f(mhk — mhk)) —TII(m), in L2(wT)

2

as h,k — 0. Then, the convergences (4.43) cover all approaches (A1)-(A3), where for
(A2) we deal with [0, k| and [k, T] separately. This shows (ii) and concludes the proof. [
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We come to the actual proof of Theorem 4.5.1(b): The used techniques go back to [Alo08],
where a corresponding result was proved for the first-order tangent plane scheme with
heg(m) = Am and II(m) = 0. These techniques were extended to implicit-explicit lower-
order term contributions in [AKT12, BSF*14] and adapted in [AKST14] to the (almost)
second-order tangent plane scheme. However, only II(m) = 0, 0,f = 0, and the implicit
approach (A1) were covered in [AKST14]. For the explicit approaches (A2) and (A3),
a corresponding result for the midpoint scheme was proved in the own work [PRS18]; see
Section 6 below. Here, we combine the ideas from [AKST14] and [PRS18] for the setting
of Algorithm 4.2.1 and elaborate the proof of the own work [DPP*17, Theorem 4(ii)].

Proof of Theorem 4.5.1(b). We show that the limit from Lemma 4.5.4
m e L0, T; H (w)) N H'(wy) (4.44)

is a weak solution in the sense of Definition 2.2.1. In Lemma 4.5.6, we have already verified
Definition 2.2.1(i). We split the remaining verifications into the following eight steps.

Step 1. We verify Definition 2.2.1(ii), i.e., m(0) = m? in the sense of traces: To this
end, note that consistency (D1) yields that m) — m® in H'(w) as h,k — 0. Recall
that m(0) is understood in the sense of traces. Moreover, recall that the trace operator is
continuous from H'(wr) to L?(w). Since continuous mappings conserve weak convergence,
the convergence property from Lemma 4.5.4(i) yields that m$ = m,(0) — m(0) in L*(w)
as h,k — 0. Since weak limits are unique, we altogether get that m® = m/(0).

Step 2. We verify Definition 2.2.1(iii), i.e., m satisfies the variational formulation (2.16).
To this end, we denote with Zj the vector-valued nodal interpolant on &y and let ¢ €
C>(w7). Since (a x b) -a =0 for a,b € R?, we get that

In(mj x o(t)) € Kp(mj) fort € [ti,tir1) and i € {0,1,..., M —1}.

For each interval [t;,t;11), we test the corresponding discrete variational formulation (4.9)
with Zj,(m!, x ¢(t)) and integrate over [0,7]. Then, we plug in the definition (3.3) of the
postprocessed output. Altogether, we obtain that

1 2 3
Ipg + Ly + Ly =

T T
/o Wy M) Vs Tnmy, X @) oy dt+/0 (M X O Ti(myy, X @) o,y

Cex r_ _
SR+ ) [ (T VTl ) o,
(£9) Ve VI, (me dtt | xP o mr me). T (m d
=" —Cex ; (Vg VI (my,, X @) pa,dt + ; (7 (Opges Mg M), T (Mg, X @) 2,y

T T
[ Fe Tl < 00 gy A+ [ OO (g mige i) Tl ) o

= —Coxliy + I} + 15 + I, (4.45)

In the following, we show convergence of the integrals 1 }llk, .} ,Zk and obtain the variational
formulation (2.16) from the limits.
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4. Implicit-explicit second-order tangent plane scheme for LLG

Step 3. Similarly to [Alo08, p.193], we derive the auxiliary convergence results
In(m,, X @) = mx @ in L*(wr) ash,k—0, and (4.46a)
VIi(m;, x @) —V(m,, x¢)—0 in L*(wy) as h,k— 0. (4.46b)
To this end, recall that m,, (t) is piecewise affine for ¢ € [0,7") a.e.. This yields that

D*m;, (t)|x =0 for all elements K € 7, and t € [0,7) a.e. (4.47)

Then, the approximation properties of the nodal interpolant Zj (see Proposition 3.1.7)
together with the convergence properties from Lemma 4.5.4 yield that

[Zn(myy, X @) = My X @llp2r) + IVZR(my,, < @) = Vimy, < @) L2(wy)

T 1/2
S h( Z/ ‘m}:kX‘P@I?(K)dt)
KeT, Y0
(4.47)

S bl o0, wzee ) Myl L2 0,7, 21 (w))
S hllmyllzore (@) =0 as hk—0. (4.48)

This already verifies (4.46b), and with the convergence property from Lemma 4.5.4(iv), we
further get that

[Zh(my,y, X @) —m X @120y

S Zw(my, x @) —my, X SOHLQ(MT) + [[(my,;, — m) x ‘PHL2(wT)
(4.48)
S hllmyllczore @) + My, — Mgz, — 0 as bk — 0,

which also verifies (4.46a).
Step 4. We deal with I}, as in [AKST14, p.422f]: From Lemma 4.3.3(ii), we get that

We k) (Mi) (4'—6;1) a in L®(wyp) as h,k — 0.

Together with the convergence property from Lemma 4.5.4(vii), we infer that
Wee)(Apg) U, — @ 0ym in L*(wr) as h,k — 0.
Then, the auxiliary result (4.46a) yields that

T T
(4.45) . _
[flLk = /0 <WG(k)()‘hk)vhk7Ih(”"hk X ‘P))Lz(w) dt = « /0 (Orm, m x ‘P>L2(w) dt,

as h,k — 0.
Step 5. We deal with I?, and elaborate the corresponding arguments of [Alo08, BSFT14].
First, we show that

m,, X v, —mxdm in L*(wr) ashk— 0. (4.49)
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4.5. Main result

To this end, recall that [[m; || Lo (.,,) = 1. Then, the convergence properties from Lemma 4.5.4
yield that [[m, X v, [|r2(w,) S 1. Moreover, we get for all ¢ € C*°(wr) that

T T T
/0 (Mg X Ve Qo At = _/0 (Vg Mg X gy dt = _/0 (Orm,m X C) o, dt
T
= / (m x 8tm,C>L2(w) dt ash,k—0.
0

Hence, Lemma B.2.1 implies the convergence (4.49) and as a consequence, we obtain that

T T
4.45 _ _ _ 4.46a
7, (4.45) /0 (my, x v, Ip(my, x cp))Lz(w) dt ( — ) /0 (m x Oym, m X <p)L2(w) dt,

as h, k — 0. With Lagrange’s identity, the integrand becomes
(mxom)-(mx @)= mPodm-@o—(m-@)(dm-m) ae. onuwr. (4.50)

With Lemma 4.5.6 and the product rule, we further get that
1
lm|=1 and 0= §8t|m|2 =0im-m ae. in wy.

Hence, the combination of the latter three equations yields that
T
If%k’ — / <atm, LP>L2(UJ) dt as h, k — 0.
0

Step 6. We deal with ng,: To this end, we elaborate the corresponding arguments
in [Alo08, AKST14]. First, the convergence properties of Lemma 4.5.4 yield that

IVZh(my, X o)l 2we) < IV(myy, X @)llL2wr) + IVZR(my, x @) — V(mg, X @)|l2 )

S Ml omm ) 1Pl L2 0,7w 1 ()
(4.46D)
+ IVZh(my,, x @) = V(my, x o)z S 1 (4.51)

Then, the convergence property from Lemma 4.5.4(viii) yields that

Cex

4.45) T _ _
= Tk(l +P(k))/0 (Vg VIR(my,, X ‘P)>L2(w) dt

(
[Tl =

(4.6b)
S kIVugllzewr) IVZa(my,, x @)llp2wr) S kIVUllLzew,) =0 as bk =0,

i.e., we get that ng —0as h,k— 0.
Step 7. We deal with I}, as in [Alo08, BSFT14]: We get that

T
It = /O (Vg VIn(my, X 9)) g2, dt
T
:/0 (Vm,, ,V(m,, x go)}LQ(w) dt

T
_ _ - A
+/0 (Vg VI(my,, < @) = V(my, X @), dt = L + 1
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4. Implicit-explicit second-order tangent plane scheme for LLG

The product rule and the convergence properties from Lemma 4.5.4 yield that

T T
Iﬁ}gA = /0 (Vm, . Vm,, x ‘P>L2(w) dt+/0 (Vm,, ,m;, x ch)LQ(w) dt

T T
= /0 (Vm,, ,m;, x Vgo)Lg(w) dt — /0 (Vm,m x V), dt

as h,k — 0. Moreover, we get from (4.46b) that I;t}CB — 0 as h,k — 0. Altogether, we
conclude that

T T
It — / (Vm,m x Vo)) 2, dt = —/ (m xVm, V) dt  ashk— 0.
0 0

Step 8. We deal with I;?k, I}?k, I,Zk,: To this end, we extend the arguments of [AKST14,
BSF*14]. With the convergence properties from (4.46a) and Lemma 4.5.7, we derive that

T T
Iy, = / (78 (Vs My M), T (g, X P)) 2. dt = / {m(m),m X @)z, dt,
0 . 0
o= [ FunTatmig < @) oyt ™ [ (Fomx )yt and
OT 0 .
Iy, = /0 (T (Vg M M), T (1, % P)) () At = /0 {I(m), m < @) pa() dt,
(4.52)

as h,k — 0. Then, the combination of Step 1-Step 8 concludes the proof. O

Remark 4.5.8. For the Zhang—Li field, the corresponding contributions to I and Dy,
satisfy all assumptions from Theorem 4.5.1(b), except weak consistency (T5) of Dy. Note
that (T5) is only required to establish the convergence in (4.52). However, even with-
out (T5), Lemma 4.5.4 still holds. Instead of (T5), Proposition A.3.2 then proves the
weaker convergences

T
/ (Dp(my,., kv, ), Zp(my, X <p)>L2(w) dt -0, and
0
T J—
/ (Dp(my,, my, —my), Iy(m,, x cp)>L2(w) dt =+ 0, ash,k—D0.
0

Recalling the definitions of the general time-stepping approaches (A1)—(A3) and with the
weak consistency (D7) for I, at hand (see Proposition A.3.1(1)), this proves the conver-
gence (4.52).

4.5.5. Stronger energy estimate

In this section, we prove Theorem 4.5.1(c), i.e., under stronger assumptions, the solution
m from (b) is a physical weak solution in the sense of Definition 2.2.1(i)—(iv). To this end,
we first prove a strong consistency property of the general time-stepping approaches (A1)—
(A3) in L*(wr).
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4.5. Main result

Lemma 4.5.9 (Strong consistency of w and ITP). Let the assumptions of Theorem 4.5.1(c)
be satisfied. Consider the general time-stepping approaches (A1)—(A3). Then, the follow-
ing two convergence properties (1)—(ii) hold true as h,k — 0:

(i) TFhD(’U}:k; m,,.,my,) — w(m) in L%(wr).
(ii) HhD(v,:k; m, ., my,) — II(m) in L?(w7).
Proof. First, we show (i): For all approaches (A1)—(A3), we get from Lemma 4.5.4 that

(D3)
Elmn(op)lleews) S kllvgllewy) S k—0 ashk—0. (4.53a)

Moreover, we get from the stronger consistency assumption (D41) with Lemma 3.4.1 that
mh(miy,), mh(m;,), m(m),) — m(m) in L*(wr) as h,k — 0. (4.53b)

Then, (i) is a direct consequence of the convergences (4.53). Next, we show (ii): With
Lemma 4.5.6, we get that m € H'(w7) N L>®(wr). Hence, II(m) € L?(wr) is well-defined.
With the stronger consistency assumptions (D7) for ITj, and (T5™") for the corresponding
Dy, we get for all approaches (A1)—(A3) that

IR (0] Mg i) — TH(m) | £2 (0

S Ta(my,) — II(m) || 2w + 1EDw(my,, v L2 )
+ | Dr(my,, my,) — Dh(mﬁwmik)”LQ(wT)

(T3) _ _ _
=" [Hp(my,;,) — IH(m)| 2wy + [1DR(my, k) |22 )

_ _ _ (4.53)
+ ||Dy(m,,;,, m;, — mhk)”L2(wT) —"0 ash,k—0.

Altogether, this concludes the proof. O

We come to the actual proof of Theorem 4.5.1(c). To this end, we extend the techniques
from [BSF*14, Appendix A] for the first-order tangent plane scheme and from [AKST14,
p.424f] for the (almost) second-order tangent plane scheme to the extended setting of
Theorem 4.5.1(c). Here, we elaborate the proof of the own work [DPP*17, Theorem 4(iii)].

Proof of Theorem 4.5.1(c). Since the assumptions from (c) are stronger than those of (b),
we only have to verify, that m from (b) satisfies the energy estimate (2.17). To this end,
recall from (2.15) the notion of the energy functional

Cex 1
Euna(m) = X Vmlag, — S(mm)mpg, — (fmip),. (459

Let 7 € [0,T") be arbitrary and let j € {1..., M} such that 7 € [t;_1,t;). Since we supposed
f € CY([0,T; L?(w)), we can define f := f(t;) for all i € {0,..., M}. Then, we split the
proof into the following five steps.
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4. Implicit-explicit second-order tangent plane scheme for LLG

Step 1. We exploit the discrete energy estimate from Lemma 4.5.3 (i): For all ¢ €
{0,...,7 — 1}, we get that

Ena(mith) — Enna(m))
(4.54) Cex
2

- <.fi+17 m;j_l)[,z(w) + <fz> m%)LQ(w)

kdy [[Vmy 72, —

— \aoi o Cex i
_k<WG(k)()‘hk)vhvvh>L2(w)_ 2 /{/‘Qp(k')HV’vhH%g(w)

IA

T R i 1 i i 1 i i

+ k<7"hD('vh§ my, my, 1>vvh>L2(w) - §<7r(mh+1),mh+1)L2(w) + §<7T(mh)?mh>L2(w)
+1/2 4 i i i i

+ k<fh+ / a'Uh>L2(w) —(f +17"77'}1—|—1>L2(W) +(f 7mh>L2(w)

+ KL () miy, my ), 0) oy

3 3
N Cex i ¢ ¢
= —kWa) M) 0hs 0h) o) — o KPR VR G2y + D T8 + DT
/=1 (=1
+ k<Hi?(v;L§mZamz_l)ame?(w)- (4.55)

Step 2. We transform 22:1 7 With linearity (L1) and self-adjointness (L3) of r,
we get that

3
¢) (4.55) T A - i 1 i i 1 4 :
ZT7(‘_) ="k <7ThD<’Uh; my,m, 1), Uh>L2(w) - §<ﬂ(mh+1)7 mh+1>L2(w) + §<7T(mh)’ mh)LQ(‘*’)
=1

= k(g (Ohmh, mi ), v)) gy — k(T (MG), 0) o) + K (m(mG,), vh) g2,
+ (m(my), m7f;L>L2(w) - <7"(m2)7m;z+1>1,2(w) + (m(my), m2+1>L2(w)
S mi ) mi) ) — 3 () mi g
= ol (ol i) = ), 00 oy — (Comd )i =, — kel
— mlmit =) i i) (4.56)
For the second term on the right-hand side of (4.56), Lemma B.1.4(ii) does not provide a
suitable estimate for mz;rl - m}l — kv,il in the L?-norm. However, the Holder inequality

and mﬁl € My, yield that

(m(my,), mitt —mj —kvy) oy < llmmg)lls ) lmy,™ —mi, — kvjll e,
(T6) .
, L .
< lmillzs) lmy,™ = mi, — kg s,

S llmytt = mp, — kvj | s
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With Lemma B.1.4(ii) for p = 3/2, we get that

i+1

I — mi, — kvhllpara S B 1041178 0)- (4.57a)

Then, an interpolation estimate (see Proposition 2.1.1 with p = 2, ¢ = 3, r = 6, and
6 = 1/2) and the Sobolev embedding H'(w) C L%(w) (see Theorem 2.1.3) further yield
that

K2 0125wy < K10l z2 ) 10hl Lo ) < #2105l 2w 1041 E )

< 1.2 ([ (]2 2 | 4yi i (4.57b)
S E T2 + F vkl L2 VULl L2 w)-
For the third term on the right-hand side of (4.56), Lemma B.1.4(ii) yields that
1 i+1 ; i+1 i (L2 i+1 i (12 2 (|2
|t = mi) i =) | S et = mi e S R k-

Altogether, the combination of the latter steps yields that

f ’L 3
ZT( S k‘ 7y, (v mj, m h ) —m(my,), ’Uh> L2(w)
(=1

+ k? HU;LH2L2(UJ + K Hv;LHLQ(UJ) vam’LQ(w)

Step 3. We deal with Zz T ) We get that

3
) (4.55) i i i+ i t oot
ZT}) = k<fh+1/2’vh>L2(w (£ +1>L2(w)+<f’mh>L2(w)

B2 00 1) — B 0 o) + R 0 1
= (FL ) oy P M) pag) — (F7 M) o
+ (1 M) pa

BT = £ ) o — (FFL mit = mi, — ko)
—k <dtfi+17m;z>L2(w)‘

In order to estimate the second term in the latter equation, we argue as in Step 2. With
the estimates from (4.57), the Holder inequality yields that

(£ =l — ko) s | < 15 s i — i, — kb s,
(@) )

(T7) ) . . ) ) )
< mptt = mi, = kvl gz S B 0A)1 220 + 52 10h ) VORIl z2w)

Then, the combination of the latter steps yields that

3
ZT —|—]€ d ferl Z>L2(w) S k < ;—&-1/2 B fz+lvv;L>L2(w)
=1

+ B 01720y + K2 105l 2w VORIl 22w
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Step 4. We combine Step 1-Step 3. Since p(k) > 0, we can omit (Cex/2) p(k )kHVvth(w
n (4.55). We obtain that

Euna(mpth) — Euva(my,) + kWag (M) vhs vh) 1

+ k<dtf Hmp) o) — k(I (o) mi, my ), vh) g

(4.55) TN i 1/2 i i
S k[ (P (whimi, min) = m(m), v e |+ kT = P ) g

L*(w)

+ K2 [ 0h] 20 + #2105 22w) IV 0R ] 2w

We sum in the latter estimate over i = 0,...,5 — 1. With the telescopic sum property, we
obtain that

7j—1
Erra(m)) — Eura(my) +kZ Wa k)(Ahk)’UmUﬁLz(w)
1=0
-1
+/€Z (def™ mp) g2 — K Z<HE(Uﬁ§mhamZ Y, Vh) L2 ()
=0

i— i+1/2 % %
Sk Z ‘<7"h ps Mg, My ) — (M), VL) o, }4' kz ‘ Ry L) o)
j-1

j—1
+ kK Z HU;LHQL%J) + K Z vnll L2 w) VORI L2 ()
; =0

With the definition (3.3) of the postprocessed output, we rewrite the latter estimate as
0 K
Euncm () =~ Eurclmd) + | W) (a7 via) g
tj tj D B
+ /0 <8tfk7 m;k>L2(w) dt — /O <Hh (v;k; m}:k’ mﬁk)v 'U}:k>L2(w) dt

J
5/
0

tj tj
+ k:/o lol 2 dt+k:/0 V07l 2o 10il 22 d (4.58)

J— — — tj ry —
(ﬂi?(vl:k; ml:kv m}?k) - ﬂ-(mhk)a vhk>L2(w) ‘ dt +/() <fhk - fka vhk>L2(w) dit

Step 5. We conclude the proof with standard lower semi-continuity arguments: To
this end, we require the strong consistencies (D4%), (D7) and (T5") of &, IT;, and Dy,
respectively, for the convergence properties from Lemma 4.5.9. Together with linearity (L1)
as well as boundedness (L2) of 7, we then get that

/tj
0

(ﬂ',?(v,;k; my, . my) —w(m,,), lek>L2(w) ’ dt -0, and

t; _ _ T
/0 (HhD(vgk;mgk,mgk),'uhk)ﬂ(w) dt—>/0 (II(m), Oym) 2, dt
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as h,k — 0. Together with the consistency (D5%) of ()M, the right-hand side of (4.58)
vanishes as h, k — 0. Moreover, the no-concentration of Lebesgue functions yields that

b - 5+) [T
<atfk’mhk>L2(w) dt " — (8tf,m>L2(w) dt as h,k — 0.
0 0

Next, we get that

N
ELLa(my) @3 Erra(m®) as hk — 0.

With Lemma 4.3.3(ii) and the convergence properties from Lemma 4.5.4, standard lower
semi-continuity arguments yield for arbitrary intervals I C [0, 7] that

/<5LLG(m(T)) + a/ ||8tm|\2Lz(w) dt > dr
I 0

< liminf / (5LLg(m;{k(7')) + 1nf We k) |/ thkHLz )dt)
1

h,k—0

< I}ZIEL%f I <5LLG(mZk(T)) + /0 <WG(k)()‘hk)vhkavhk>Lz(w) dt > dr.

Altogether, we obtain that

[ (Suactme) + o [ jomia at ) ar
I 0
T T (4.58)
+ / ( / (8tf,m>L2(w) dt — / (H(m),@tm)Lz(w) dt > dr < /gLLG dr.
1\ Jo 0

Since the interval I C [0,7] was arbitrary, the latter estimate also holds pointwise a.e. in
(0,T). This concludes the proof. O

4.6. How to solve the discrete variational formulation

Given a time-step m}l € My, this section focuses on how to solve the discrete variational
problem (4.9). Here, we face two main issues:

e While the discrete variational formulation (4.9) in general gives rise to a linear system
for v, the corresponding system matrix for the implicit approaches may be fully
populated or not even explicitly available. Then, the remedy is a fixed-point iteration;
see Section 4.6.1, which is based on the own work [DPP*17].

e The discrete variational formulation (4.9) gives rise to a variational problem, which

has to solved in the time-dependent subspace Kh(m};) ; Sj. In Section 4.6.2, we
present a strategy, which, on a linear algebra level, allows us to solve a corresponding
2N-dimensional problem. This section is based on [KPP*18, Section 3] and a corre-
sponding (and very similar) approach for the first-order tangent-plane scheme is also

contained in [Rugl6, Section 6.1.2].
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4. Implicit-explicit second-order tangent plane scheme for LLG

Related to both problems and throughout this section, we define for ¥y, 5, € KZh(m’}'L) the
bilinear form

B}, (%, o) = War (M) i, Pn) g T (mj, X n, @n) 12

. (4.59a)
B(L+ (k) (V4hn, Veon) o

+

as well as the linear functional
i i i i+1/2

R}, (¢n) = —Cex (VmMy, V<Ph>L2(w) + (mn(my,), SOh>L2(w) + h+ / s PR (4.59b)

4.6.1. Fixed-point iteration for the implicit approach

Consider the implicit approach (A1) and the Adams—Bashforth-type approach (A2) with
i = 0. Suppose linearity (D2) of 7, and linearity in the second argument (T3). Then, to
solve discrete variational formulation (4.9), one has to find v} € IC,(m}) such that

Bj, (v}, on) — 5 <7Th(Uh)7‘:0h>L2(w) ) <Dh(”ha¢h)a‘Ph>L2(w) = Rj,(¢n),

for all ¢y, € IC,(m}). Here, the terms

k - k A
5 {Th(Vh) Pr)pa(,) and o (Dn(vh, ¥n), o) 2 (4.60)

are of particular interest. If, for example, (non-local) approximate stray field computations
with the Fredkin—Koehler method [FK90] (see Section 3.4.5) contribute to the operator 7y,
the corresponding matrix is fully-populated and/or can only be assembled with sufficient
accuracy at high computational costs; cf. [DPP*17, Remark 3(i)]. To ship around this issue,
we proceed as in the own work [DPPT17]: We incorporate the terms from (4.60) in the
right-hand side and solve the resulting system by a fixed-point iteration. Given m}l € My,
the following algorithm then performs one (inexact) time-step with Algorithm 4.2.1. It is
implicitly contained in [DPP*17, p.15f].

Algorithm 4.6.1 (Inexact implicit TPS 2.0, one time-step, [DPP*17, p.15f]). Input:

mﬁl € My, initial guess u;o) =0 € Kh(mﬁl), iteration tolerance € > 0. [Iterate the
following steps (a)—(b).

(a) Loop: Forl=1,2,..., and until
0+1 ¢
iy ™ = w2 <€
find ugfﬂ) € KCp(m) such that

i 4 i k 4 k i 4
Bj (uy " on) = Riy(on) + 5 {mu(uy) on) gy + 5 (Dulmiuy)oon) gy (4.61)

for all pp, € KCp(ml), where Bl (-,) and R} () stem from (4.59).
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4.6. How to solve the discrete variational formulation

i (£+1)
' k
mit(z) = mh(z) i U@H)(Z) for all nodes z € Np,. (4.62)
[m},(2) + k(2
Output: Approrimation mfj‘l ~m(tiy1). 0

Remark 4.6.2. Since ugfﬂ) € Kn(m}), we conclude as in Remark 4.2.2(v) that the

update (4.62) is well-defined.
For sufficiently small k& > 0, the following proposition proves convergence of ug) towards
the sought v}il € ICh(mZ) as £ — 0. To this end, we require the following stronger version

of the assumption (T4) to Dy,:

(T4") Strong uniform boundedness of Dj: There exists a constant Cp > 0 such that,
for all A > 0, it holds that

| Dn(en, ¥r)llLzw) < Co |[¥nllaiw) for all ¢, € My, and all 3y, € Sp.
Implicitly, the following convergence result of the fixed-point iteration in Algorithm 4.6.1(a)
is contained in the proof of [DPP*17, Theorem 4(i)].

Proposition 4.6.3 (Convergence of fixed-point iteration, [DPP*17, p.15f]). Consider the
fized-point iteration from Algorithm 4.6.1. Suppose linearity (D2) and uniform bound-
edness (D3) of m,. Suppose linearity in the second-argument (T2) and strong uniform

boundedness (T4") of Dy. Then, the fived-point iterates ug) from (4.61) are well-defined.
For sufficiently small k > 0, it holds that

ugf) — b in L*(w)  as { — oo,
where v € Kp(m) is the unique solution v} of the discrete variational problem (4.9).

Proof. For ¢y, € IC,(m), we define the energy norm

a C,
lonl? = SlonlZa) + “kIVenlEag. (4.63)
For sufficiently small k£ > 0, we get from Lemma 4.3.3(i) that
Bj,(¢n,en) 2 llenll*  for all wy € ICh(mj,). (4.64)
i.e., B} is positive definite with respect to || - |. As a consequence, the Lax—Milgram

theorem (see Theorem B.2.4) yields existence and uniqueness of the fixed-point iterates
ugf) € Kp(m}). Moreover, linearity (D2) and (T3) of m, and Dy, respectively, yield for

all £ € Ny and all ¢, € KCp,(m),) that

Bj(uy "V~ w) 1)

(4.61) k ¢ k i (e
= 5 <7Th(u§z))a SOh>L2(w) + 5 <Dh(mh’u§b))a 90h>L2(w)
= 5 ™) en) oy — 5 (Dnlmiuy ™) en) o,
k ¢ - k G -
= 5 <7Th(’u'§l) - ul(l 1))a @h)Lz(w) + 5 <Dh(mh7 U';L) - ué 1))7 §0h>L2(w)-
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4. Implicit-explicit second-order tangent plane scheme for LLG

Testing the latter equation with ¢y = ugfﬂ) — ugf), we infer from uniform bounded-

ness (D3) of 7, and stronger uniform boundedness (T4") of D, that

(4.64)
/+1 l i /+1 4 /+1 Y/
Jul ™ — w92 < Byl — ul? u{ — )

k ¢ — ¢ ¢
=Bl — )l

koo -1 041 ¢
< Cor gy =iz g™ = e

i (e o— ¢ [
Y =) gy + 5 (Dnlm ) —al )l -

0 _ (-1

k 41
+0p 5 i) = war llug

l
— |z (4.65)

k ) -1 /41 ¢
<[Ca+Cp] = 1l =l V|2 [l = a2

+Cp = [Vuy) = Vi ™o lluy ™ = ul? | 2)- (4.66)

With the Young inequality, we get for arbitrary ¢ > 0, that
{41 4
gy =y
(4.63) L

4 14 14 l— L —

S sl = g + 0k ) — G + 0k Ve = Vg™,
k. ¢ ¢ —

< Sl P Sy TP

~

i.e., there exists a constant C' > 0 which depends only on «, Cex, Cr, and C such that,
for arbitrary J > 0, it holds that

¢ ¢ ko« ¢ ¢ o
b w1 < C Sl g 1P+ O ) — g
With § = 1/(2C) and k < 1/(8C?) := ko, we arrive at
¢ ¢ 1. ¢ 1. —
U Rl Sl R [

If we absorb the first term on the right-hand side of the latter equation, this yields that

e+1 ¢ 2 (¢ -1
b ™ =P < 5 gy — w7 forall C€ N,
i.e., the sequence (“g))ﬁo is a contraction with respect to the energy norm ||-||. Hence, the

Banach fixed-point theorem (see Theorem B.2.6) yields convergence to a (unique) fixed-
point ugoo) € ICn(m}) of (4.61). Since any fixed-point of (4.61) solves the discrete varia-
tional formulation (4.9), we conclude from the uniqueness of solutions in Theorem 4.5.1(a)

that ugoo) = 'u}iL. O

Remark 4.6.4. (i) Compared to Theorem 4.5.1(a), Proposition 4.6.3 additionally re-
quires the stronger uniform boundedness (T41) of Dy,.
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4.6. How to solve the discrete variational formulation

(ii) The approximate uniazial anisotropy and the approximate stray field as well as the ap-
prozimate Slonczewkst field and the corresponding approrimate derivation Dy, satisfy
all assumption of Proposition 4.6.3 to my, I and Dy, respectively.

(iii) The approximate Zhang—Li field I1, and the corresponding approximate derivation Dy,
satisfy all assumptions of Proposition 4.6.3, except the additional stronger uniform
boundedness (T4") of Dy. In the proof, however, the assumption (T47) is only
needed to establish (4.65). In particular, in the setting

HVm%HLw(UJ) <1 and the Adams—Bashforth-type approach (A2)  (4.67)

we employ the fixed-point iteration only in the first time-step. This lets us by-
pass (4.65) in our specific situation in the following way: For 1y € 8y, we estimate

||Dh(m27¢h)”lz2(w)
(4.12) . .
< lYn x (w- V) my |2 + lmy, < (w- V) p|p2) + 118 (w - V) ¥ L2

S Nnllzz) 1wl w) IVmpllpeo@w) + (Mmoo w) + 8) 1l o w) Vbnll L2
(4.67)
S N Ynllar )

Hence, in the setting of (4.67), the fized-point iteration of the first time-step still
converges towards vj,.

4.6.2. Solve the tangent space system

The discrete variational formulation (4.9) in the explicit cases as well as the subsequent
discrete variational formulation (4.61) of the fixed-point iteration in the implicit cases give
rise to the following variational problem: Find p, € KCp,(m)) such that

be(uh, cph) = ﬁ;L(SOh) for all P € ICh(m}L), (4.68)

where the linear form fl}t() depends on the choice of the general time-stepping approaches
(A1)-(A3). On a linear algebra level, problems arise, in particular, from the fact that
KCn(m}) S 8y and dim(ICy(m})) = 2N, while dim(S,) = 3N. Moreover, note that
ICr,(m}) depends on the time-step m}. In the ongoing cooperation [KPP*18], we investi-
gate solution techniques to solve (4.68) on a linear algebra level and to develop correspond-
ing preconditioning techniques for the application of iterative methods (see, e.g.,[Saa03]).
A closer look on these results, however, is beyond the scope of this work. We only state
here the specific technique, which we use for our numerical computations. Note that for the
first-order tangent plane scheme, the linear algebra techniques are also included in parts
in [Rugl6, Section 6.1].

We transfer (4.68) to a system in 2N = dim(KCp(m})) dimensions; see also [Rugl6,
Section 6.1.2] and [KPP*18, Section 3]. Here, we follow the presentation of [KPP*18,
Section 3]: Let ¢; € Sp, be the nodal hat function associated with z;, i.e., ¢;(zx) = i
with Kronecker’s delta. As basis of S8}, we define

P3(j—1)+¢ = pjer forall j=1,...,N and all £ =1,2,3,
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4. Implicit-explicit second-order tangent plane scheme for LLG

i.e., for fixed j € {1,..., N} the three consecutive basis vectors obtained from ¢ € {1, 2, 3}
belong to the node z;. Then, define the matrix A(m}) € R33N via

[A(my,) ], = Bj(¢r, ¢;) forall jke{l,... 3N}

and note that for k small enough A (m}) is positive definite; cf. Lemma 4.3.3(i). Moreover,
define r(mi) € R3 via

[r(mﬁl)]] = ﬁﬁl(qu) forall je{l,...,3N}.

To map RN to ICh(mZ) on a coordinate level, we proceed as follows: Given m € R3 with
|m| = 1, the matrix

I-2ww’, where w:= 218 for m £ —es,

~ |m+es|

R**3 3 H(m) :=
[el,eg, —eg] for m = —eg3.

has orthonormal columns and maps e3 to m, i.e.,

H(m) := [H(m)el,ﬁ(m)eg] e R3*2,

in Matlab notation satisfies span(H(m)) L m. Hence, the block-diagonal matrix

H(m} (1)) 0 0
Q(m}) = 0 H(’”jﬁ}(@)) 0 c R3NVx2N
0 0 H(m|(zn))

mimics /Cp, (M) nodewise in each diagonal block. Then, [KPPT18, Theorem 3| proves that
the reduced system

[Q(m},)" A(m},)Q(mj,) | x = Q(mj,) r(m},)

admits a unique solution x € R? and that we can recover the sought solution p;, € ICh(m}'I)
to the discrete variational problem (4.68) from
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5. Decoupled second-order tangent plane
scheme for ELLG

The following chapter is based on [DPP*17], which is joint work with Giovanni Di Fratta',
Carl-Martin Pfeiler', Dirk Praetorius', and Michele Ruggeri?.

5.1. Introduction

In the chapter, we extend the effective (almost) second-order tangent plane scheme from
Chaper 5 to the ELLG system (2.18).

For the coupled ELLG system (2.18) and the related coupling with the full Maxwell
system, the works [LT13, Pagl3, BPP15, LPPT15, FT17] formulate extensions of the (for-
mally) first-order tangent plane scheme. There, [LT13, Pagl3, LPPT15, BPP15] extend
the techniques of [Alo08] and prove unconditional convergence in the sense of Conven-
tion 1.3.1. Moreover, [FT17] even proves a first-order in time and space a-priori esti-
mate for a tangent plane scheme for ELLG in the spirit of [AHP*14, Rugl6]. More-
over, [LPPT15, Pagl3, BPP15, FT17] employ an explicit Euler approach on the cou-
pling term, which decouples the computation of mﬁ':rl ~ m(t;+1) and the magnetic field
h?l ~ h(t;+1) from the eddy current equation.

For higher-order in time integration of the coupled ELLG system (2.18), only the work
[BBPO0S8] considers the related coupling with the full Maxwell system of the (formally)
second-order in time midpoint scheme. There, one non-linear fully coupled system has
to be solved per time-step. An extension of the (almost) second-order tangent plane
scheme [AKST14] from plain LLG to ELLG is an obvious idea, however, we identify the
following issues:

e The formulation of an (almost) second-order tangent plane scheme for the coupled
ELLG system (2.18) is not straightforward. This is due to the fact that dym is
represented in the eddy current part (2.18b) and, in contrast to the first-order tangent
plane scheme, v is defined as in (4.3) and thus v # dym.

e In order to decouple the computations of m)' ~ m(t;41) and h}"" ~ h(t;11), the
explicit Euler approach of [Pagl3, BPP15, LPPT15, FT17] for the coupling term
reduces the convergence order down to (formal) first-order in time convergence of the
overall numerical integrator.

ITU Wien
2Universitat Wien
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5. Decoupled second-order tangent plane scheme for ELLG

5.1.1. Contributions

Based on the own work [DPP*17], we make the following contributions:

e We extend the (almost) second-order in time tangent plane scheme from [AKST14]
and Chapter 4 to a formally (almost) second-order in time numerical integrator for
ELLG (2.18); see Section 5.2.

e We adopt the second-order implicit-explicit approach for the lower-order terms 7,
and I, to the coupling term. From the second time-step on, this decouples the
computation of mitt ~ m(t;+1) and hﬁl“ ~ h(ti+1). In particular, only two linear
systems have to be solved sequentially at each time-step; see Section 5.2.1.

e We confirm the formal convergence order of our algorithm with a numerical experi-
ment; see Section 5.3;

e We prove well-posedness and unconditional convergence of our algorithm towards a
weak solution in the sense of Definition 2.2.2(i)—(iv).

e Provided the CFL-type condition k = 0(h3/ 2), we prove convergence of our algorithm
towards a weak solution in the sense of Definition 2.2.2(i)—(v), i.e., there even holds
the stronger energy estimate (2.22).

5.2. Algorithm

Based on the own work [DPP*17, Algorithm 7], we formulate in this section an (almost)
second-order extension of Algorithm 4.2.1 for plain LLG to ELLG (2.18), which computes
approximations

S, >mi ~m(t;) and X, >hi ~h(t;), foralli=0,...,M.

Roughly, we proceed as follows: For the LLG part (2.18a), we adopt Algorithm 4.2.1,
which improves the (almost) second-order tangent plane scheme from [AKST14]. For the
ELLG part (2.18b), we adopt the implicit midpoint approach from [BPP15, Algorithm 4.1]
(full Maxwell-LLG) and [LT13, Algorithm 2.1]. To formulate our algorithm, we recall the
notations from the (almost) second-order tangent plane scheme for plain LLG (2.3) from
Chapter 4 and recall, in particular, the implicit-explicit approaches

7P (v, mp, mi ) = w(m(t; + k/2)) and TP (v, m),mi ) = I(m(t; + k/2)),

which were defined by one of the three options (A1)-(A3). Accordingly, we define the
coupling term hz’e ~ h(t;) with one of the following three options:

(C1) The implicit and formally second-order in time midpoint approach [LT13, Pagl3,
BPP15]

1,© . g i+1/2
h;b = hz e Xy,
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5.2. Algorithm

(C2) The explicit and formally second-order in time Adams—Bashforth-type approach

o e (W i
" " 1 3Rt — LR else
2ty — 2 :

(C3) The explicit and formally first-order in time Euler approach [Pagl3, LPPT15, BPP15,
FT17]

e ,
h’;z = hﬁl € Xy,
With these preparations, we are ready to formulate our algorithm.

Algorithm 5.2.1 (TPS2 for ELLG, [DPP*17, Algorithm 7]). Input: Approzimations
mgl = m% € My, and h,:l = h?l € Xy.
Loop: Fori=0,...,M — 1, iterate the following steps (a)—(b):

(a) Compute the discrete function
N, o= G [Vl (Ff + muomd) + B+ Ty (md) -y (5.1

(b) Find v € ICp(m}) and ki € X}, such that, for all @), € Kp(m}), it holds that

i i iy i Cex i
Wa ) (AL) v, ‘Ph)Lz(w) + (mj, X v, on) 20 T — k(L4 p(k)) (VUi Veon) g2

2
- _Cex (vmz}'“ V‘Ph)[,z(w) -+ <7ThD (’U;L; ml}'“ mZ_l), (’oh>L2(w) + <f;b+1/2, ¢h>L2(w)
+ <h;'£®7 Qoh>L2(w) + <HhD(v;w m;‘p m;;l)’ L’Oh>L2(w)’ (52&)

and for all {n, € Xy, it holds that
i i - i+1/2
_/“L0<dtmh+17 Ch>L2(w) = M0<dthh+1a Ch>L2(Q) + (o 'V x hh+ / VX Ch>L2(Q)a (5.2b)

where m’;rl € My, is defined by

i+1 mj,(2) + kvj (2)
= 2 L 1l nod € Np. 5.2
m;" (2) imi (2) & kot (2) for all nodes z € N, (5.2¢)

Output: Approzimations m ~ m(t;) and hi ~ h(t;) O

Remark 5.2.2. (i) With hﬁl’e = h2+1/2 from the implicit approach, the system (5.2)
s fully coupled. The resulting algorithm is formally (almost) second-order in time.
Moreover, note that (dtm;’Ll,Ch)LQ(w) in (5.2b) non-linearly depends on the sought

v} via (5.2¢). This results in a non-linear fully coupled system (5.2).

(ii) To solve the non-linear system from (i), we employ a fized-point iteration; see Algo-
rithm 5.2.5. Clearly, this is computationally costly. Moreover, it prevents the general
advantage of the tangent plane scheme, that only one (potentially coupled) linear
system has to be solved per step; cf., e.g., [LT13, Pagl3, BPP15, LPPT15].

79



5. Decoupled second-order tangent plane scheme for ELLG

(iii) Owur preferred choice for the coupling term h;‘{@ is the second-order Adams—Bashforth-
type approach (C2). The resulting algorithm is formally (almost) second-order in
time. For i > 0 and provided that 77,’? and HhD are affine in 'vg, we can Sequen-
tially solve two linear systems for vffl and h;fl, respectively; see the decoupled Algo-
rithm 5.2.8. Only for i = 0, the system (5.2) is fully coupled and non-linear; see (i)

for details.

(iv) As for the Adams-Bashforth-type approach (C2), the explicit Euler approach (C3)
allows for the sequential computation of v}jl and h;:rl, but the resulting algorithm is
(formally) only first-order in time. We analyze this approach only for comparison.

(v) Following [LT13, Pagl3, LPPT15, BPP15], we can replace in (5.2b) the term

(demi™ G oy B9 (V0 ) o) (5.3)

Provided that w2 and TIP are affine in vi, the overall system (5.2) is then linear
h h h

for vz and h#l even for the implicit approach h;;@ = h2+1/2. However, note that

Lemma 4.3.1 yields Oym = v + O(k), i.e., the replacement (5.3) formally results in
a first-order in time error. Thus, we may only expect first-order in time convergence
of the overall integrator.

(vi) In practice, we solve the eddy current part (5.2b) for the unknown gy, := h2+1/2 € Xy,
i.e., we compute the unique gn, € Xy, such that, for all € Xy, it holds that
240 (gh. Ch>L2(Q) + k(07 x gn, V x Ch>L2(Q)

i+1 i (54)
= —pok (dgm;, ,Ch>L2(w) + 240 (hy, Ch>L2(Q)'

Then, hﬁl :=2gy, — hi solves the eddy current equation (5.2b).
(vil) For the sake of readability, we suppose exact evaluation of o € L>(w).

In the following two subsections, we take a closer look at one time-step of Algorithm 5.2.1
and elaborate two particular variants. We cover:

e The ideal case: We employ for ¢ > 0 the explicit second-order in time Adams—
Bashforth-type approaches (A2) for w2 and IIP as well as (C2) for h;L’@ and de-
couple the time-stepping; see Section 5.2.1.

e The worst-case: We employ the implicit approaches (A1) for 7r,? and HhD as well
as (C1) for h;’@ and present a fixed-point scheme for the solution of the resulting
non-linear system; see Section 5.2.2.

Throughout, we recall from Section 4.6 for v, @y € Kh(mZ) the bilinear form

Bj (0, #n) = W) (An) Yn: n) 12, + (Mh X W1 01) 20

Cox (5.5)
2 k (1 + ,O(k)) <V¢h> V@h)Lz(w)-

+
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5.2. Algorithm

5.2.1. One decoupled (almost) second-order time-step

In this section, we present one time-step of Algorithm 5.2.1 in its ideal form. We exploit
for ¢ > 0 the advantages of the explicit second-order in time approaches and employ the
explicit second-order Adams—Bashforth-type approach

1

i© _ 3. i
hy, :ihh_§ h (5.6)

from (C2) for the coupling term as well as the explicit second-order approaches

S 3 . 1 ,

w2 (vi; mj,m; ') = 3 (M) — 3 mp(m) ), and (5.7a)
o . 1 L 1 S

TIP (v} iy, miy ™) = THu(mi) + 3 Di(mh, mi) — 5 Dy(mi,mi™),  (5.70)

from (A2) for the lower-order terms. Moreover, we follow Remark 5.2.2(vi) and solve the

eddy current part (5.2b) for gy, := h§l+1/2.

Algorithm 5.2.3 (Decoupled TPS 2, one time-step with (A2) and (C2), i > 0). Input:
i > 0 with approzimations My, > m}b ~m(t;), Mp > mﬁ;l ~m(ti—1), Xp D hﬁl ~ h(t;),
and X, > hi~! ~ h(t;_1). Iterate the following steps (a)—(d):

(a) Find v}, € ICp,(m) such that, for all @p, € Kp(m}), it holds that
Bliz(/v;w ‘Ph)

7 3 7 1 i—
= — Cex(Vmy, V‘Ph>[,2(w) + ) (mn(my,), 4Ph>L2(w) ) (mp(my, Y, ‘Ph>L2(w)

i+1/2 3, 1, .
+ < h+ / "Ph>L2(w) + 5 <hh7‘Ph>L2(w) - 5 <h'h 1’¢h>L2(w)

i 1 i 1 P
+ (Ha(m), on)p2() + 5 (Dn(mh, mi), o) g2, — 5 (Dr(mp, my, 1)780h>L2(w)~

(b) Define mZH € M, by

mitl(z) = mj(2) + kv (2)

= — ; for all nodes z € Nj,.
imy,(2) + kv (2)]

(¢) Find gn € X}y, such that, for all {p, € Xy, it holds that

240 (gh, Ch) 2y + K (07'V X gn, V X Ch) p2(q)
= —pok (dymj ™, Ch) 2wy T 200 (B Ch)L2(6)-

(d) Compute hitt € X}, by hit! = 2g, — hi.

Output: Approrimations My, > mﬁfl ~m(tiy1) and Xp > hfjl ~ h(tit1). O
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5. Decoupled second-order tangent plane scheme for ELLG

Remark 5.2.4. (i) With the Laz—Milgram theorem (see Theorem B.2.4), the linear sys-
tems in (a) and (c) are uniquely solvable. As in Remark 4.2.2(vii) for plain LLG,
we conlcude that the update in (b) is well-defined. Altogether, Algorithm 5.2.1 is
well-posed.

(ii) For the explicit Buler approaches (A3) for wP and TIP as well as (C3) for h%e, we
only have to change the right-hand side of (a) accordingly, i.e., the resulting algorithm
s well-posed.

5.2.2. One coupled time-step with fixed-point iteration

In this section, we deal with one time-step of Algorithm 5.2.1 in a worst-case scenario: We
employ the implicit approaches

hy® =, (5.8)
from (C1)—(C2) for the coupling term as well as
7P (vh;mi, mi ) = mu(m)) + 5 mh(vh), and (5.9a)
i i L i i
I (v my, my ") = Iy (m,) + ) Dy (mj,; ), (5.9D)

from (A1)-(A2) for the lower-order terms. With the choice (5.8), the discrete variational
formulation (5.2) is a fully-coupled non-linear problem. To this end, we employ a fixed-
point iteration which builds on the corresponding Algorithm 4.6.1 for plain LLG. Note that
this scheme is implicitly contained in the proof of the own work [DPP*17, Theorem 9].

Algorithm 5.2.5 (Inexact implicit TPS2, one time-step, [DPP*17, p.21f]). Input: Ap-

prozimations My > mi ~ m(t;), and Xy > hi ~ h(t;), initial guesses ul(lo) =0 €
Kn(ml) and g}(lo) = hi € Xy, iteration tolerance € > 0. Iterate the following steps (a)-
(c):

(a) Loop. For{=1,2,..., and until

¢ ¢ ¢ ¢ 1/2
(™ = 3oy + gl = 90130y ) <

perform the following steps (a-1)—(a-iii):
(a-1) Find uﬁfﬂ) € ICi,(m) such that, for all @y, € Kp(ms), it holds that

Bi(uy ", ) = ~Cox (Vi Veon) gy + (mn(mi), 1) pag) + 5 () 0n) 1o,
7 4
+ h+1/2> <Ph>L2(w) + <Q;(L)a ‘Ph>L2(w)
i k i 4
(T (m) 00 g2y + 5 (Da(mi ) en) oy (5:10)
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(a-ii) Define d,(fﬂ) €Sy by

i 4
d(z+1)(z) _ 1 ( m;(z) + kugﬂ)(z)
"k

: —m} (z)> for all nodes z € Ny. (5.11)
' mi(z) + by V)

(a-iii) Find g\ € X}, such that, for all {, € Xy, it holds that

¢ — 4
210 (g ) Ch) gy + R 0TIV x gl TV X ) g,

(¢+1) i (5-12)
= —pok (dy, ", Ch) 2y 1 200 (s Ch) L2y
(b) Define mitt € My, by
i (t+1)
4 k
mit! = mh(z) + u@H)(z) for all nodes z € Ny,.
(mj(2) + kw7 (2)]
(c) Compute hitt = ng(fﬂ) — Rl € X},
Output: Approzimations My, > mi™ ~m(ti11) and X, 3 i~ h(ti). O

Remark 5.2.6. In step (a-ii) of Algorithm 5.2.5, dng) € 8y, mimics dtmffl.

In the following proposition, we prove a convergence result for the fixed-point iterates of
Algorithm 5.2.5. To this end, we follow the proof of [DPP*17, Theorem 9(i)]. In analogy to
Proposition 4.6.3 for plain LLG, we require the stronger assumption (T4") to D, instead
of (T4), which we recall from Section 4.6.1.

(T4%) Strong uniform boundedness of D;,: There exists a constant Cp > 0 such that,
for all h > 0, it holds that

”Dh(goh,lfih)HL2(w) <Cp H'l»bhHHl(w) for all $h € M, and all ¥y, € Sy,.

Proposition 5.2.7 (Convergence of fixed-point iteration, [DPP*17, p.21f]). Consider the
fized-point iteration from Algorithm 5.2.5. Suppose linearity (D2) and uniform bound-
edness (D3) of . Suppose linearity in the second-argument (T2) and strong uniform
boundedness (T4T) of Dy,. Then, the fized-point iterates ugf) € Kn(m!) and g,(f) e Xy,
are well-defined. For sufficiently small k > 0, there exists a unique solution (v%l, h;:rl/Z) €
Kn(mj) x Xy, of the discrete variational formulation (5.2) and it holds that

ug) — vl in L*(w)  as well as g,(f) — h2+1/2 in L*(Q), as { — oo. (5.13)
Proof. The well-definedness of the fixed-point iterates follows from the ellipticity of the
bilinear form B;'L from the LLG part and of the corresponding bilinear form from the eddy
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current part as in Remark 5.2.4(i). To show the convergence (5.13), we proceed as follows:
We recall from (4.63) for ¢, € KCp,(m) the energy norm

(6% Cex
lenll? = 5“9%”21:2(@ + TkHV‘PhH%%w)’ (5.14)

As in the proof of Theorem 4.5.1(a) for plain LLG, the bilinear form B,i from the variational
formulation (5.10) is elliptic with respect to || - || for £ > 0 small enough, i.e., it holds that

B (n on) = llenl®  for all @, € Ky (m)). (5.15)

We endow the product space ICp,(m}) x X, with the norm

ICons CIZ = llenll? + 11Gnll Ty for all g € Kp(mj) and all G € Xy, (5.16)

In the following three steps, we show that the sequence (u,(f), g}(f)) teN, is a contraction in

the product space with respect to the product norm | - ||« and then apply the Banach
fixed-point theorem (see Theorem B.2.6).

Step 1. We estimate [u,, (e _ ugf) |I*. Using the assumptions (D2)—(D3), (T2)

and (T47), we get as in the proof of Proposition 4.6.3 and with the additional term
(gg), ‘ph>L2(w) in (5.10) for all £ € N that

(5.15) |

s B U h

(5.10)

k ¢
< [CntCp] 5 Iy —uy ™ Vllgey fug ™

l
_U’;L)HLQ(w)
k
+CDfHVu“)—VU;S N2 llul™ - u“wm(w)

Z 1
+ 119y = 9tV lpae el ™ = w2, (5.17)

Step 2. We estimate ||g}(f+1) — g}(f)HLQ(Q). For all £ € Ny, we get that

S gh 7Ch>L2(Q) +k(07'V x g(e+1) 07V x gi(zZ)? V X Chl 20

— ok (d(“_l) h 7Ch>L2(w) for all ¢, € Xp.

2410 (g),

Testing the latter equation with ¢, := g(zﬂ) — g,(f) € Xy, we obtain that

191 = 0 ey < 5 15 = I I = 0 ooy for all €€ N (5.19)

Next, we estimate the right-hand side of the latter estimate. To this end, elementary
calculations show that

ﬁ - |y—| < 2|x—y| forallx€R® with|x|>1 andally e R®\{0}. (5.19)
X y
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With Z}, being the nodal interpolant corresponding to Sy, we get from the definition (5.11)
of dj, € §), that

1 mi + k:u(éﬂ) 1 mi + kuld
it =pm( ) 1 () O
lm} + kuh | Imj + ku,’|

Moreover, we conclude as in Remark 4.2.2(i), that

mi(z) + kul™(2) > 1 and  |mi(2) + kul?(2) > 1 for all nodes z € A,

i.e., nodewise we are in the situation of (5.19). Together with the norm equivalence || - ||, ~
|| - | 2(w) of the approximate L?-norm from Lemma 3.3.1, this yields that

¢
I — d o)
(0+1) 0y, (5:20) 1 mh + ku(“_l) m}l + k:ugf)
< |ldy, " =y e = ¥ Iy (é+1) -7 0,
|mh+k:u ] |mj + ku, |
G19) 0 0
< 2ffuf ™ — ) < 2V ™ = ul e
Altogether, we arrive at
gy = 9\ 120y C sk ™ — w2, for all £ € No. (5.21)
Step 3. We combine Step 1 and Step 2. For all £ € N, this yields that
(¢ ¢ ‘— (¢
s+ 1P < [+ O +2v/5] & uf? — ! agy o) — 2] g,

(¢+1) _

-1 {4
+ 0 o 1Vl — Yl g lufl ™ — w1z,

The remainder of the proof follows the lines of the proof of Proposition 4.6.3 for plain LLG.
With the Young inequality, we get for arbitrary § > 0 that

k _
iy ™ w17 S S ey = P 4 0 g — g VP for all €€ .

Choosing § > 0 small enough, we get from the latter estimate for £ > 0 small enough that

JulD — uO)2 < mu%)—uﬁf‘”ulz for all £ € N. (5.22)

For the sequence (ug), g,(f))geNo, we further get for sufficiently small & > 0 that

(¢+1) £41) (516 (€+1)
Il —ul? gl = g2 U= Y — W) 4 (gt

2
PR — gy HL2(Q)

(5:21) 041 ¢
< (1+;k2)mu,§ A

(522) 2 109\ o) _ o (=1)p2
< = - _
3(1+ B ) et — V)

(516 .
fm( ) (7D gl _ gty
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for all £ € N. Hence, the sequence (ugf),g,(f))geNO is a contraction in the product space

with respect to the product norm || - ||«. With the Banach fixed-point theorem (see Theo-

rem B.2.6), there exists a unique fixed point (pp,vp,) € ICp(m}) x X}, of the iteration, and
0 (0

the sequence (u,,’, g, )een, converges to (pp, V), with respect to || - [|«. By construction,
there holds (up,vy) = (v, h;LH/ 2). Altogether, this concludes the proof. O

Remark 5.2.8. (i) For the validity of the assumptions from Proposition 5.2.7 for ex-
emplary contributions to my, I, and Dy, the situation is precisely the same as in

Remark 4.6.4(ii)—(iii) for plain LLG.

(ii) The statement of Proposition 5.2.7 remains valid for the explicit choices from (A2)-
(A3) for wD and IIP instead of the implicit choices from (5.9) even if the assump-
tions (D2)-(D3), (T2), and (T4%) fail to hold. Since the terms on the right-hand
side of (5.17) stem from the implicit approaches to 77,?, HhD, and h;f), Step 1 of
the proof in this case simply becomes

lut ™ — w212 < Nlgy” — g Pllpay llul) — ul Vg2 forallleN.

The remainder of the proof follows the same lines.

5.3. Experimental convergence order

In this section, we illustrate the accuracy and computational costs of different variants of
Algorithm 5.2.1 with a numerical experiment. To this end, we use our Python-based ex-
tension of NGS/Py [ngs], which was mainly developed by Carl-Martin Pfeiler®, and slightly
adapt the numerical experiment from the own work [DPP*17, Section 7.3]: We lay our
focus on the performance of different approaches of the coupling term hﬁl’@ and neglect the
m-dependent energy contributions to the effective field as well as any further dissipative
effects, i.e.,

w=m, =0 and II =1I;, = Dy = 0.

We always employ the standard choices p(k) := |log(k)k| and G(k) := p(k)~! from Re-
mark 4.2.2(vi) and compare the following four variants of Algorithm 5.2.1:

e FC: We employ the fully-coupled second-order approach (C1), i.e., the coupling term
reads hﬁl’@ = hZhH/ % for all § = 0,...,M — 1 and the discrete variational formula-
tion gives rise to a fully-coupled non-linear system. At each time-step, we perform
Algorithm 5.2.5 for an (inexact) time-step and perform the underlying fixed-point
iteration with tolerance ¢ = 10710,

e DC-2: We employ the second-order explicit Adams—Bashforth-type approach (C2).
For the first time-step, this is FC from the latter point. From the second time-step
on, we have

o 3 . 1.,

3TU Wien
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and we employ the decoupled Algorithm 5.2.3.

e DC-1: We employ the first-order explicit Euler approach (C3), i.e., the coupling term
reads hZ’@ = h’,'L foralli =0,...,M —1. For all time-steps, we perform the decoupled
Algorithm 5.2.3, where we replace the terms

3 7 1 71— 9
5 (R npaqy — 5 (hy, Lenpa DY (R en) e

e SF: We employ the explicit second-order Adams—Bashforth-type approach (C2) and
make the simplification from Remark 5.2.2(v). Essentially, this is DC-2 with

(demjtt ) o,y Teplaced by (v}, ) o)

in the eddy current part (5.2b).

1075 1 | 0t E
5 O(k)
1076 E o) E 1072 ¢ E
. 107TF 4 L 100 g
2 2
- k=]
& &

108 E 1077

10-10}

L . . . L L. TR . . L
1073 10~ 1073 10-*
Time-step size (k) ¢ Time-step size (k)

Figure 5.1.: Experiment of Section 5.3: Reference error max;(|[mink, . (t:) — mnk(t:) | mr ()
(left) and max;([|Apk, (ti) — Prk(ti)ll H(cur)) (right) for k = 28 kpep with £ €
{1,2,3,4,5} and kyer = 5-107°.

For all these variants, we choose the final time T = 7, the Gilbert-damping parameter
a = 1, the inner domain w = (—1/8,1/8)3, and the overall domain = (—1,1)3. In the
LLG part (2.18a), we choose Cex = 1 and f := (f1,0,0)” € C>([0,T)), where, in contrast
to [DPP*17, Section 7.3], we set fi(t, ) := sin(nt). In the eddy current part (2.18a), we
choose g = 1 and define o € L>®(Q) via

100 in w,
o(x) = .
{1 in 2\ @.

For space-discretization, we employ the triangulation 7}19 obtained from the NGS/Py-

embedded Netgen [ngs|, where we choose the maximal mesh-size 0.03 in the sub-domain
w and 1/8 in the outer domain 2 \ w. The resulting mesh resolves w, the sub-mesh 7},
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FC FC DC-2 DC-1 SF

absolute relative relative relative relative
k = 0.0016 2.97 100% 26.08% 25.52% 24.44%
k = 0.0008 2.97 100% 26.20% 25.61% 24.43%
k = 0.0004 2.98 100% 26.23% 25.59% 24.52%
k = 0.0002 2.79 100% 28.20% 27.64% 26.40%
k = 0.0001 2.45 100% 32.46% 31.78% 30.54%

Table 5.1.: Experiment of Section 5.3: Average absolute time (in s) of FC and relative times
of all variants.

on w consists of 2388 elements and 665 nodes, and the overall mesh 7}? consists of 22381
elements and 4383 nodes. We note that we checked the corresponding stiffness matrix to
verify that the sub-mesh 7}, satisfies, in fact, the angle condition (T1).

Having fixed the space discretization, we perform the latter variants with varying time-
step size. Since the exact solution is unknown, we employ DC-2 to compute a reference
solution my,y, ., where the reference time ke := 5 - 107° is a fine time-step size. The initial
values of our simulations are the result of the following relaxation process: We start with
the nodal interpolant of

1 1 -m? onw
m’ o =——|[1], and hY = _
V3 1 0 on O\ w,

adopt the above setting, but let f = 0. Then, we simulate with DC-2 and the reference
time k.or for 1s. As a result, we obtain an energy equilibrium, which represents the actual
initial values for our simulations.

In Figure 5.1, we illustrate the experimental convergence order of our variants. For our
setting, the plot confirms the predictions of Remark 5.2.2: For FC and DC-2, we obtain the
convergence order

O(k*p(k)) = O(K*|log(k)|) < O(k*™¢) for all £ > 0.

For DC-1 and SF, we obtain the reduced convergence order O(k).

In Table 5.1, we illustrate the computational costs of our variants. Recall that DC-2
requires the solution of a fully-coupled non-linear system and therefore is (by far) the most
expensive method. All other methods successively employ an explicit approach to the
coupling term h;’@ and consequently only require the computationally cheaper solution of
two linear systems for mﬁ':“l and h;fl.

In conclusion, DC-2 is the method of choice. It is the only method that benefits (at
least from the second time-step on) from the IMEX approach and conserves the (almost)
second-order in time convergence. Hence, the computationally more expensive (almost)
second-order in time method FC does not pay off. Moreover, the simplification from Re-
mark 5.2.2(v) in SF comes at the prize of a reduced convergence order in time.
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5.4. Main result

In this section, we formulate and prove a convergence result for our (almost) second-order
tangent plane scheme for ELLG. Recall that for plain LLG, we extended in Chapter 4
the convergence result from [AKST14, Theorem 2] to an extended setting of LLG. For
ELLG (and the full Maxwell-LLG system), similar results for the first-order tangent plane
schemes are proved in [LT13, Pagl3, BPP15, LPPT15]. Based on the own work [DPP*17,

Theorem 9], our convergence result combines and extends all the latter findings and requires
the following assumptions for the eddy current part of Algorithm 5.2.1:

(E1) Weak consistency of h{: It holds that hY — h? in L?*(Q2) as h — 0.

(E2) Uniform boundedness of V x hY: There exists a constant Cy > 0 such that

HV X h(})LHLQ(Q) < Cy forall h > 0.

For the stronger statement from Theorem 5.4.1(c) below, we also require the following
assumptions:

(E1T) Strong consistency of h): It holds that h) — h° in L*(2) as h — 0.

(CFL) CFL-type condition: It holds that k = o(h3/?).

With these preparations, we are ready to formulate our main result.

Theorem 5.4.1 (Convergence of TPS2 for ELLG, [DPP*17, Theorem 9]). Consider Algo-
rithm 5.2.1 for the discretization of ELLG (2.18). Then, the following three assertions (a)—
(c) hold true:

(a) Let the assumptions of Theorem 4.5.1(a) for plain LLG be satisfied. Then, there
exists kg > 0, which depends only on m®, Cex, o, 7(-), TI(-), po, o, and Cmesn such
that for all k < kg, the discrete variational problem (5.2) admits a unique solution.
In particular, Algorithm 5.2.1 is well-defined.

(b) Let the assumptions of Theorem 4.5.1(b) for plain LLG be satisfied and suppose that
e the approzimations hY satisfy (E1) and (E2);

e the coupling approach h%e is defined by one of the three options (C1)—(C3).

Then, there exists a subsequence of the postprocessed output mp; and hyy of Algo-
rithm 5.2.1 as well as a weak solution

m € L®(0,T; H (w)) N H (wr) and
h € L°°(0,T; H (curl; Q) N H(0,T; L*(2))

of ELLG (2.18) in the sense of Definition 2.2.2(1)—(iv) such that

muy, —m  in H (wp) and hp, —h in LQ(QT) as h,k — 0.
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(c) Let the assumptions of Theorem 4.5.1(c) for plain LLG be satisfied and suppose that
e the approzimations hY satisfy (E17) and (E2);
e the coupling approach h;'l’@ is defined by one of the three options (C1)—(C3);
e there holds the CFL-type condition k = o(h%/?) from (CFL).

Then, (m, h) from (b) is a physical weak solution in the sense of Definition 2.2.2(1)—
(v), i.e., it additionally satisfies the stronger energy estimate (2.22).

Remark 5.4.2. (i) In contrast to the unconditional convergence results from [LT13,
Pag13, BPP15, LPPT15] for the first-order tangent plane scheme for ELLG (and
the full Mazwell-LLG system), we require the CFL-type condition k = o(h®/?) to
prove (c). We note that this refines the original [DPP 17, Theorem 9(iii)], where we
supposed the stronger k = o(h?). We refer to Section 5.4.5 for details.

(ii) As for plain LLG, Theorem 5.4.1 holds for p = 0 under the mild CFL-type condition
k = o(h); see Remark 4.5.2(iii) for details. Note that for (c), we required the even
stronger k = o(h®/?).

(iii) For the validity of the assumptions for our exemplary contributions to =, Iy, and
Dy, the situation is precisely the same as in Remark 4.5.2(iii)—(vi) for plain LLG.

We split the proof of Theorem 5.4.1 into the following subsections. In Section 5.4.1,
we prove well-posedness (a). To prove (b), we use a standard energy argument (see,
e.g., [Eval0]), which consists of the following three steps:

e We derive a discrete energy bound for the output of Algorithm 5.2.1; see Section 5.4.2.
e We extract weakly convergent subsequences and identify the limits; see Section 5.4.3.

o We verify that the limit (m, h) is a weak solution of ELLG in the sense of Defini-
tion 2.2.2(i)—(iv) and thus conclude the proof of (b); see Section 5.4.4.

In Section 5.4.5, we prove (c). To this end, we extend the concept of the postprocessed
output to the coupling term h;b’@ and write

ho.(t) == hﬁl’@ for t € [t;,tiy1), where i€{0,1,...,M —1}. (5.23)

5.4.1. Well-posedness

Proof of Theorem 5.4.1(a). At first, we show that one time-step of Algorithm 5.2.1 is well-
defined, i.e., we fix i € {0,...,M — 1}. Then, we conclude the proof with an induction
argument for ¢ =0,..., M — 1. ‘

The explicit approaches from (C2) and (C3) for h;l’@ decouple the time-stepping. There,
the corresponding h%— and hﬁlfl—terms only contribute to the right-hand side of the linear
system of the LLG part and unique solvability for all choices (A1)-(A3) for wf and IIP
follows as in Theorem 4.5.1(a) for the LLG part (5.2a) for sufficiently small £ > 0 and with
the ellipticity of the bilinear form in the eddy current part (5.2b).
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For the implicit approach hﬁl’@ = hﬁfl/ % from (C1) and (C2) and the explicit approaches
for P and IIP from (A2) and (A3), Remark 5.2.8(ii) implicitly yields well-definedness
for sufficiently small & > 0 even without the assumptions (D2)-(D3), (T2) and (T4).

Consequently, the only left case is the combination of the implicit approach
XC) i+1/2
hi® = it (5.24a)

from (C1) and (C2) for the coupling term and the implicit approaches

ok .
7P (vh;my, mi ) = mu(m)) + 2 m(vy,), and (5.24b)
1P (w)mi ) = Ty (m}) + & Dy (miiof). (5.240)

from (A1) and (A2) for the lower-order terms. Since we supposed only the weaker (T4)
instead of (T'4"), this case is not covered by Proposition 5.2.7. As a remedy, we introduce

an alternate (and artificial) fixed-point iteration, which computes iterates ugf) ~ v}'l and

g}(f) ~ h;;rl/ 2 (not relabeled), and prove convergence with the Banach-fixed point theo-
rem towards a unique solution of the discrete variational problem (5.2) with our weaker

assumptions. To this end, recall from (5.5) the bilinear form
B}, (¥n: 1) = W (A) $hs h) 12, + (M0 X Wn, Pn) 12 (w)

(1+ p(k) (V4pn, Vepn) 12,y for all 4p, oy, € I (m,).

We note that the corresponding bilinear form for the LLG part (5.2a) then reads

k k .
o <7rh(¢h)v 90h>L2(w) - 5 <Dh(m;m 'l.bh)a cloh>L2(w)- (525&)

é;z(d’iw‘Ph) = Blll(,lpha Qoh) - 9

for all 4y, ¢, € Kp(m}) and that the corresponding linear form reads

R} (1) = —Cox (Y, Veor) gy + (T (M), 1) oy + (£

+ (TL(m,), on) g2y + Ry 0m) g
= Ry (on) + (B2 pn) o,y for all @y, € Ky (mi). (5.25b)

aSDh>L2( )

Our alternate fixed-point iteration then follows the one in Algorithm 5.2.5(a), but, instead
of Algorithm 5.2.5(a-i), computes u(£+ lek n(m) as solution of

~ 4 (5.25b)

Bi(u <z+1)7¢h):R2(%) R (on) + <g}<l)’¢h>L2( ) forall ¢, € Kn(mi). (5.25¢)

Hence, compared to Algorithm 5.2.5, the only difference of our alternate fixed-point iter-

ation is that we incorporate the implicit contributions of 7, and Dy, in (5.25b) into the
bilinear form of the LLG part.
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For well-definedness and convergence of the iterates (ug), g,(f))g‘;o, we follow the proof

of Proposition 5.2.7. To this end, we denote the energy norm by

Cex ;
=k HV(th%Q(w) for all ¢y, € IC,(m},) (5.26)

2, @ 2
”|90h|” = §HsohHL2(w) + 9

and endow the product space Kh(mﬁl) x X}, with the norm

ICons CIZ = llenll? + [1Gnll Ty for all g € Kp(mj) and all G € Xy, (5.27)

With our assumptions (D2)—(D3), (T2) and (T4), we get for sufficiently small & > 0 as
in Step 2 of the proof of Theorem 4.5.1(a) for plain LLG that

Bi(enen) 2 lnl? for all ¢y, € I, (ms,), (5.28)

i.e., ellipticity of E}L with respect to || - |. Moreover, we note that the bilinear form of the
eddy current part (5.12) is elliptic with respect to || - [|z2(q). The Lax-Milgram theorem

(see Theorem B.2.4) then yields well-definedness of the iterates (ugf) , g/(f))?io and we obtain

that

(5.28) _
041 ? i (041 ¢ 0+1 Vi
oy ™ = 1P S By = - )
(5:25) —1)  (6+1 ¢ ¢ -1 041 ¢
< o)) =g Y =) < lal) = 0 Pllze Y = e

Following the lines of Step 2 of the proof of Proposition 5.2.7, we further obtain that

(5.18)
19 = g\ p2y < VBk[lul T — | 2, for all £ € Ny

The combination of the latter two equations then yields that

(4+1)

/4 14 {—
™ — ) < Kl —ul

no 2@ forall £ €N.

and altogether, we infer that

(5.27)
YA YA ¢ / ? /—
Il —ul? g — g S kel — Wl

Uy 5 9n ~ h L2(w)
(5.27) y o y o
< k) —ul Y, gl — g V) forall £ € N

Hence, for sufficiently small k& > 0, the sequence (u,(f), Q;(f))?io from our artificial fixed-point

iteration is a contraction with respect to || - ||.. With the Banach fixed-point theorem (see
Theorem B.2.6), this yields, in particular, convergence in L?(w) x L?(2) towards the unique
solution (v}, h;:rl/ 2) € ICp(m}) x X}, of the discrete variational formulation (5.2). Hence,
our assumptions also cover the setting of (5.24). Altogether, this concludes the proof. [J
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5.4.2. Discrete energy bound

In this section, we derive a discrete energy bound, which represents the mathematical
core of the proof of Theorem 5.4.1(b). For plain LLG, recall that Lemma 4.5.3 extends the
techniques of [Alo08, AKT12, AKST14, BSF+14]. For the ELLG setting of Algorithm 5.2.1,
we combine these techniques with extensions of [LT13, Pagl3, BPP15, LPPT15] for the
eddy current part (2.18b). Here, we elaborate the own work [DPP*17, Lemma 18].

Lemma 5.4.3 (Discrete energy bound, [DPP*17, Lemma 18]). Let the assumptions of
Theorem 5.4.1(b) be satisfied and let k > 0 be small enough. Then, the following asser-
tions (1)—(iii) hold true:

(i) For alli=0,...,M — 1, it holds that

Ce

x i 0N o i Cex
N dy ||Vm +1||L2 + War) (ML) vy vh>L2(w) +

Tkp(k) HV’U;LHQLQ(W)

+ = dtuh’“ny +;||a*1wh”“2um

i i+1/2 T A i
< (mj, (vh,mh,mh Y, Uh>L2(w) + h+ / avh>L2(w) + <H}?(Uh§mh7mh bl Uh>L2(w)
Rit1/2. i i,© i+1/2
+ (h,, o+ dm+l>L2(w)+<hh —h," / S Vh) £2(0)-

(ii) For alli=0,...,M — 1, it holds that

o || dthH_lHLQ +dg o™ 12V x hH_lHL? Q) = < o | dtmh HL2(w

(iii) There exists a constant C > 0, which depends only on T, w, Q, m°, a, Cex, w(-), f,
I1(-), h°, po, o, and Cmesh, such that, for all 7 =0, ..., M, it holds that

-1 -
IV 1320 + 5 D 10hlI72 ) + F20(k) D IVUhlIT2 )
i—0 =
7j—1
+ 1520y + IV X Bf G2 + 5D I dihj 7o) < C < oo
=0

Proof. We split the proof into the following seven steps.
Step 1. We prove (i). Following the lines of the proof of Lemma 4.5.3(i), we infer from
the LLG part (5.2a) that

Cex C’ex

A [V By + Va0 o) + 2 p(R) V030

i—1

2
7 i+1/2 i
< <7rh (vhﬂmhvmh ) vh>L2(w <f+ /

' Uh) L2 ()

+ <h;£®7vh>L2(w) + (Hh (’Uh5 mh>m2 1) U;L>L2(w)'

(5.29)
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Next, we test the eddy current part (5.2b) with ¢, := —(1/uo) hﬁ:rl/? and obtain that

(5:2b)

A P AR A

L i+1/2
£2(Q) ~ %HU RR R AR [

1 i | i+1/2
R R R L AR [ 1T

We insert hl}'b’@ and 'vz in the latter equation and derive that

i 1,0 i 1,0 i+1/2 i 7 i+1/2
(vp,, by, >L2(w) R hh+ / >L2(w) + (v, — demy " hy, / >L2(w)

1 . 1, 4172 (5.30)
= 5 I ) = o™ 2V X B g,

Finally, the combination of (5.29) and (5.30) proves (i).

Step 2. We prove (ii). We test (5.2b) with ¢, := d¢hi™' € &), With the Young
inequality, we obtain that

i 1 _ i i i
poll dehiy 1720y + 5 dello VAV xR [0y = —po(demy™, dehyth) )

Ho i+112 Ho i+112
< 5 Hdemy Iz ) + 5 I1dehy " llze o).

Absorbing (uo/2) || deh! ||%2(Q) in the latter estimate to the left-hand side, we conclude (ii).

Step 3. We prove (iii). To this end, we recall from (4.33) that

a AR
3 ||’UhH2L2(w) < <WG(k)(>‘h)vha’vh>L2(w) (5.31)

for sufficiently small & > 0. We sum (i) over ¢ = 0,...,j — 1 and exploit the telescopic sum
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property. This yields that

C, a 2 C Ch
= 12+ 5 B DOl + =5 p(R) K2 D V022,
k = i41/2
5 ||h HLz — lo™'V x by, H2L2(Q)
MO =0
(G31) Oy i1 Cex = i
— f (w) +k Z WG (k) )‘h vhavh>L2(w) + Te p(k) k? Z ||Vvh”%2(w)
=0 —
koA~ i+1/22
S ||hJHL2 + =Y o'V x by g
Ho =3
(i) Cex i1 iy
< Hv hHL2 (w +5 Hh HL2 Q + k Z 7Th vhvmh7 h )7Uh>L2 w
) () (w)
=0

Jj—1 it
‘Hfz z+1/2 ) L2( + k Z Hh ’Uh,mhvmz 1),’U;L>L2(w)

S BTG TN Sl LR
= S+ S9+ S3+ 854+ S5+ Sg+ S7. - (5.32)
Note that x() includes all terms in (iii), but
j—1
IV x h; HL?(Q and kz | dth2+1“%2(ﬂ)
i=0

In a first step, we bound X(j). To this end, we first estimate S1,...,S7. Then, we absorb
as many terms as possible to y(9) and apply the discrete Gronwall lemma afterwards.
Step 4. We deal with S1,...,S5. First, we note that

(532 1 (E1)
S *Hh HL2 S L

Following the lines of Step 2-Step 5 in the proof of Lemma 4.5.3(ii) for plain LLG, we
obtain together with the latter estimate for arbitrary § > 0 that

k ! 2 9 = P2
b (ko g )k 2 ekl + 0K%6(K) 3 19l

see (4.35) for the corresponding estimate for plain LLG.
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Step 5. We deal with Sg and S;. To this end, we get from Lemma B.1.4(ii) that
I dimy | r2w) S 10k 22w (5.33)

For all approaches (C1)—(C3), the Young inequality yields for arbitrary § > 0 that
j—1

(5.32) ; , . . .
1S6| + |S7| < k2‘<hh+1/2 — i o, ‘+ kZ’ R — R )

-1
k i+1/2 % i
< Znh” 2oy + 08 > [log, — dimi |2,

6 =0
k O pitl/2 .
+5 Z 1IR3 = By, P2y + 0k D vil 72
=0 =0
k .7 ] 1 J 1
<3 > IRz ) + 0k ZH%IILQ(W + ok ZHdtm’“lle
=0
(5.33) 1, J 1*1
S S L PR WY o1 [ 2
=0 =0

Step 6. We combine Step 2-Step 5. This yields for all j = 1,..., M the estimate

—
()
=
—_
b
,_.

k
<1,7
xR+ 5

o9

4 L -t
712 7112
||th||p<w> H (ko g )k ;o: AP

<. s
|
= O

+ k2 p(k) Y IV 0L T2 + 5 Znh Iz

1=0 1=0

We proceed as in Step 6 of the proof of Lemma 4.5.3(ii) and choose § > 0 small enough
to absorb the terms

j—1

0k Y |vjl72q and SKp(k) Y IV} [7aq,
i=0 =

into xU). With kp(k)~' — 0 from (4.6b) as k — 0, we further absorb for sufficiently small
k > 0 the terms

Jj— 9 j-1
» k
23 [whl3e, and Z loh e, and k[BL[3e
=0
into x). Altogether, this yields for all j = 1,..., M that
Jj—1 (5.32)

XD ST+ VM3, +k Z IhsllGew S 1+E Zx (5.34a)
=0
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Moreover, we get with the assumptions (D1) for m% and (E2) for h) that

(5.32) C x
X=X VML) + L ingi. @ S L. (5.34b)

Observe that (5.34) fits in the setting of the discrete Gronwall lemma (see Lemma B.3.1),
which yields that

—_

.

Y9 < exp ( k‘) Sexp(T)<oo foral j=1,...,M. (5.35)
i=0
Step 7. We estimate the remaining ||V x h? 13 ) and kzg;é |dth§z+1”i2(9)' To this
end, we sum (ii) over i =0,...,7 — 1. The telescoplc sum property yields that
j—1
pok Y [l dehi 120y + 1072V x B|[72 )
i=0
7j—1
< o~ 12V x ho”rﬂ +pok Z | dthHHIﬂ
=0
(5 (E2) (5.35)
o129 x Ra +xY < 14+x9 <L
Together with o > o¢ > 0 in ELLG (2.18), this concludes the proof. O

5.4.3. Extraction of weakly convergent subsequences

In this section, we exploit the discrete energy bound from Lemma 5.4.3 and extract weakly
convergent subsequences of the postprocessed output of Algorithm 5.2.1. Note that corre-
sponding results are proved in, e.g., [Alo08, AKT12, AKST14, BSF*14] and Lemma 4.5.4
for plain LLG and in, e.g., [LT13, Pagl3, BPP15, LPPT15] for ELLG (and full Maxwell-
LLG). Here, we elaborate [DPP*17, Lemma 19].

Lemma 5.4.4 (Convergence properties, [DPP*17, Lemma 19]). Let the assumptions of
Theorem 5.4.1(b) be satisfied. Then, there exist subsequences of the postprocessed output

miy. € {myy, my, My Mg, ma},  and
h;Lk € {hikv hi:lw hi—i_k’ﬁhh hp, hh®k}7
as well as functions
m € L®(0,T; H (w)) N H'(wr), and
h € L°>(0,T; H (curl; Q) N H'(0,T; L*(Q))

such that the following convergence properties (i)—(xii) hold true simultaneously for the
same subsequence as h,k — 0:

(i) mpp — m in H (wr).
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m, —m in L0, T; H (w)).

m}, = m in L*(0,T; H' (w)).

m}, — m in L*(wr).

m},(t) = m(t) in L*(w) a.e. fort € (0,T).

* . . .
my . — m pomt’wzse a.e. 1m wr.

kVv,, — 0 in L?(wr).

hue — h in HY(0,T; L3(Q)).

hi, = h in L=(0,T; H(curl, Q)).
h}, — h in L*(0,T; H (curl, 2)).
(Xii) h;;k — hhk — 0 in L2(QT).

)
)
)
)
)
(vil) vy, — 9ym in L*(wr).
)
)
)
)

Proof. (i)—(viii) follow as for plain LLG; see Lemma 4.5.4. To prove (ix)—(xii), we proceed
as in [LT13, Pagl3, BPP15, LPPT15] and retrieve from Lemma 5.4.3(iii) that

|hnkll i 0,7:22Q)) + 1Rkl Lo (0,1 H (cur)) S 1 (5.36)

With the Eberlein-Smulian theorem (see Theorem B.2.2), we can successively extract
weakly convergent subsequences of hy, with corresponding limits

h* € {h=,h~,h* h h h®} (5.37)

such that there hold the convergence properties
Y. —h* in L*(0,T,H (curl;Q)) and hy —h in H'Y(0,T; L*(Q))
as h,k — 0. Moreover, it is a direct consequence of the definitions of the postprocessed
output and the discrete time-derivative, that
(5.36)
Hh;;k — hhk||L2(QT) S k HaththLg(QT) 5 k—0 as h, k— 0.

This lets us identify all limits h* in (5.37) and proves (ix), and (xi)—(xii). Finally, we
prove (x). With (5.36), the Banach-Alaoglu theorem (see Theorem B.2.3) lets us succes-
sively extract further subsequences of hy,, which converge in L>(0,7"; H (curl;§2)). Since
weak™* convergence in L>°(0,T; H (curl; §)) implies weak convergence in L?(0, T; H (curl; ()),
we can identify these limits with A and conclude (xi). Altogether, this concludes the
proof. O

As for plain LLG, we note a direct consequence of the latter convergence properties for
m;, and anticipate the verification of Definition 2.2.2(i) for the proof of Theorem 5.4.1(b).
The proof follows the lines of Lemma 4.5.4 for plain LLG.

Lemma 5.4.5 (|m| =1 a.e. in wr). Let the assumptions of Theorem 5.4.1(b) be satisfied.
Then, m € L>(0,T; H*(w)) N H!(wr) from Lemma 5.4.4 satisfies /m| =1 a.e. inwp. O
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5.4.4. Convergence to weak solution

In this section, we prove Theorem 5.4.1(b). For plain LLG, recall that in Section 4.5.4,
we extended the techniques of [Alo08, AKT12, AKST14, BSF*14]. For ELLG (and full
Maxwell-LLG), note that [LT13, Pagl3, BPP15, LPPT15] prove similar results for the
first-order tangent plane scheme. For our (almost) second-order in time setting of Algo-
rithm 5.2.1 for ELLG, we proceed as in Section 4.5.4 for the LLG part (2.18a) and ex-
tend [LT13, Pagl3, BPP15, LPPT15] for the eddy current part (2.18b). Here, we elaborate
the proof of the own work [DPP*17, Theorem 9(ii)].

Proof of Theorem 5.4.1(b). We show that

m € L0, T; H (w)) N H'(wr) and (5.38a)
h e L>®(0,T; H (curl; Q)) N HY(0,T; L?(w)), (5.38b)

from Lemma 5.4.4 are a weak solution of ELLG in the sense of Definition 2.2.2(i)—(iv). The
combination of (5.38) and Lemma 5.4.5 already yields Definition 2.2.2(i) and (ii), and we
split the remaining verifications into the following four steps.

Step 1. We verify Definition 2.2.2(iii), i.e., m(0) = m° and h(0) = h® in the sense of
traces. For m, this follows as in Step 2 of the proof of Theorem 4.5.1(b) for plain LLG.
For h, we proceed as in [LT13, Pagl3, BPP15, LPPT15]: On the one hand, note that

hie(0) = B BV RO i L2(Q) as b,k -5 0.

On the other hand, the continuous trace mapping conserves weak convergence and we get
from Lemma 5.4.4(ix) that

hue(0) = h(0) in L*(Q) as h,k — 0.

Since weak limits are unique, this verifies h(0) = h" in the sense of the traces.

Step 2. We verify Definition 2.2.2(iv), i.e., (m,h) satisfies the variational formula-
tion (2.21). To this end, let Z}, the nodal interpolation operator associated to Sy,. Moreover,
let Jy : C(Qr) — X}, be the interpolation operator corresponding to the Nédélec-elements
of the second kind [Néd86]. Then, let ¢ € C*°(w7) and ¢ € C*°(Qr). Since (axb)-b =0
for a,b € R3, we get that

In(mj, x p(t)) € Kp(mp) and  Fr(((t) € Xy,

for t € [ti,t;y1) and i € {0,1,..., M —1}. Then, we test the LLG part (5.2a) and the eddy
current part (5.2a) of the discrete variational formulation with Zp(m} x ¢ (t)) and J5(¢(t)),
respectively, and integrate over [0,7]. Plugging in the definition of the postprocessed
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output, we get the LLG part

Cex

1 2 3
T+ Thr + = Thy =

T T
/0 W) MotV T (M, X @) pa ) dt+/0 (M X U Ti(Myy X @) o,y At

Cox T -
+ SR+ 0l0) [ (P Vi ) o

T T
(5.2a) _ _ _ _ - _
s —Cex/o (Vmy, ,VI,(m,, x go)>L2(w) dt+/0 <7r;?(vhk;mhk,mhk)7lh(mhk X Lp))Lg(w) dt

T T

+/0 <fhk,Ih(m/:k X ‘P)>L2(w) dt"‘/o <hh®kah(mI;k X ‘P)>L2(w) dt
T

+/0 <HhD(Ul:k7 m}_zk7m;k)th(m]:k X QO)>L2(w) dt

= _CexI]%k -+ I}?k + ng. + ng. + I}SL]C (5393)

as well as the eddy current part

T
— Ko I}%k = Mo / (atmhk, JhC>L2(w) dt
0
5.2b T T _
( = : Ho / <athhk‘7\7hc>L2(Q) dt-l—/ <J 1V X hpg, V X (JhC)>L2(Q) dt (5-39b)
0 0

— polff+

In the following, we prove convergence of the integrals I %k,...,f ,i,lg and obtain the variational
formulation (2.16) from the limits.

Step 3. We deal with the LLG part (5.39a). We start with the coupling term I}, . From
Step 4 of the proof of Theorem 4.5.1(b) for plain LLG, we recall the auxiliary convergence

Iy(m;, x @) >mx @ in L*(wr) as h,k— 0.
Together with the convergence property from Lemma 5.4.4(xi), this yields that

7 (5.39a) T e _ T
I = /0 (P, Tn(m, X ‘P)>L2(w) dt = /0 {hym X @), dE, as b,k — 0.

For IflLkr“ﬂIi?k and If%k? we follow the lines of the proof of Theorem 4.5.1(b) for plain LLG.
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We obtain that

T T
(5.39a) N —
Iy = /O War) M) Vi Ta(myy, X @) o,y At = Oé/O (Orm, m X @) 2, dt,
T T
(5.39) _ _ _
I = /0 (g, X vy, Th(my,, X ‘P)>L2(w) i = /0 (0rm, ) 12 A,

T
(5.39a) - N
=Y k(1 + P(k’))/o (VO VIR (M X)) oy At = 0,

T T
5.39 _ _
I (5.392) /0 (Vmy,, ,VIy(m,, x cp))LQ(w) dt — —/0 (m x Vm, Vo)) 2, dt, and

6 (5.39a) [T i r
Iy = /0 <fhkvl-h(mhkx‘P)>L2(w)dt_>/o (fym x @), dt.

as h,k — 0. For I i?k and [ Sk, recall from plain LLG that we required the convergence
properties from Lemma 4.5.4 and the weak consistencies (D4), (D7) and (T5) for m,
II;, and Dy, respectively, to derive the weak consistencies from Lemma 4.5.7 for ﬂ]? and
ITP. Hence, with Lemma 5.4.4 (i)—(viii), we get in the same way that

T T
(5.39a) _ _ — _
I?Zk = /0 <7ThD(vhk;“Lhk””"hk‘)’Ih(”Lhk X (P)>L2(w) dt — A <7T(”l),7n X (P>L2(w) dt,

T T
(5.39a) o _
s 0 /0 (TP (05 mi i), T (i, % ) o) At — /0 (TI(m), m % @) 12 dt,

as h,k — 0.

Step 4. We deal with the eddy current part (5.39b) as in [LT13, Pagl3, BPP15,
LPPT15]: To this end, the convergence properties of the interpolant Jj (see Proposi-
tion 3.1.9) yield that

TIn¢ — ¢ in L*(0,T; H (curl; Q) as h,k — 0. (5.40)
Together with the convergence properties from Lemma 5.4.4, we obtain that

o (5.30) [T T
5 O [ @ 516 gy bt = [ (0 g
0 0

NG T
0 0
1y (39b) [T e S
TS / (07 V X hpi, V X (Th€)) p2( dt — / (07 VX h,V xC)p2q)dt,
0 0

as h,k — 0. Altogether, this concludes the proof. O

5.4.5. Stronger energy estimate

In this section, we prove Theorem 5.4.1(c), i.e., under stronger assumptions, the solution
(m,h) from (b) also satisfies the stronger energy estimate (2.22). To this end, recall
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that in Section 4.5.5, we extended the techniques of [AKST14, BSFT14] and proved a
corresponding result for LLG. For ELLG and full Maxwell-LLG, [LT13, BPP15, LPPT15]
state and [Pagl3] proves similar results for the classical first-order tangent plane scheme.
Based on the proof of the own work [DPP*17, Theorem 9(iii)], we combine the latter
findings to prove Theorem 5.4.1(c). However, we face the following problem: Compared to
the classical first-order tangent plane schemes for ELLG (and full Maxwell-LLG) in [LT13,
Pagl3, BPP15, LPPT15], the first term in the eddy current part (5.2b) reads

(dtmz+1’ch>L2 () instead of (Vhs Ch) £2(0)- (5.41)

However, the replacement (5.41) is essential to establish (almost) second-order in time
convergence; see Remark 5.2.2(v). Yet, throughout the verification of the stronger energy
estimate (2.22), the replacement (5.41) gives rise to the additional error term

tj
/ (Phk, vy, — atmhk>L2(w) dt, (5.42)
0

which must converge to 0 as h, k — 0. To this end, we require the additional convergence
property of the following lemma, where the

CFL-type condition k = 0(h3/2).
from (CFL) comes into play.

Lemma 5.4.6 (Additional convergence property, [DPPT17, p.27]). Let the assumptions of
Theorem 5.4.1(b) and the CFL-condition (CFL) be satisfied. Then, it holds that

v, — Omp — 0 in LY0,T; L*(w))  as h,k — 0.
Proof. With Lemma B.1.4(ii), we get that

T
17, — Okl i o.125()) = /0 07, — Bemunil| 2 dt

=k > llv) = dimp ey SEY 050

With the interpolation estimate (see Proposition 2.1.1 with p = 2, ¢ = 4, r = 6, and

6 = 1/4), and since the Sobolev-embedding H'(w) < L%(w) is continuous, we obtain that
1/4 3/4

1/4
o Iohl3e, S Ikl et

) 193371 (5.43)

We combine the latter two equations. An inverse estimate (see Proposition 3.1.8) and the
convergence property from Lemma 5.4.4(vii) then yield that

lvillpa) S lvhllgz

M-1

1/2 3/2
10 = ekl 0122wy S K2 Y [0kl o 10kl )
=0
N (CEL)
SERT N 013w = kB o3,y S kB2 0 ash,k—0.
1=0
This concludes the proof. ]
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Remark 5.4.7. Our formulation of Lemma 5.4.6 improves [DPPT 17], in the sense that
we only require k = o(h3/?) instead of the stronger CFL-type condition k = o(h?).

We have everything together for the proof of Theorem 5.4.1(c).

Proof of Theorem 5.4.1(c). Since the assumptions from (c) are stronger than those of (b),
we only have to verify, that (m,h) from (b) satisfies the energy estimate (2.22). To this
end, recall the notion of the energy functional from (2.20)

Cex
5 IVml[72

1 1
ErLrg(m, h) = = g{mm), m) o) = (f M2 + 5 1RlIZ2cq- (5:44)

2

Then, let 7 € [0,T) be arbitrary and let j € {1..., M} such that 7 € [t;_1,t;). Since we
supposed f € C1([0,T; L*(w)), we can define f':= f(t;) for all i € {0,..., M}. With the
discrete energy estimate from Lemma 5.4.3(i), we get for all i € {0,...,7 — 1} that

Eprig(my R — EpLia(m, b))
(5.44) Cex i 1 i i 1 i i
= 9 kdt ”V +1HL2 - §<7T(mh+1)amh+1>L2(w) + §<7r(mh)7mh>L2(w)

- <fi+1a m;b+1>L2(w) + <flv mﬁ'z>L2(w) + 5 dt Hh’;:rluiz(ﬁ)

P Cox i ko _ i+1/2
< ke M)V Vi) o) — =5 K2 p(R) [ V0p 172 () — o lo™'V % Byt 1720
i i 1 i i 1 i i
(vhvmhamh Y, I L2(w) §<W(mh+1)amh+1>L2(w) + §<7r(mh)amh>L2(w)

+ k(my,
<f}zz+1/27 ;L>L2 <fl+1 H—1>L2(w) + (fla m2>L2(w)

+ k(TIP (v}; My, M) 1),’0,2) 2w )+k<h2+1/2, vl — dtm§l+1>L2(w)
+ K

1,0 1/2 4
h h+/ h>L2()

i \gyi i Cex i ko i+1/2
= =kWam (An) Vs Vh) o — ; k2 p(B) [ Vop 1720y — o o'V x Byt 1220
3 3
l {4 i i— i i+1/2 4 i
+ 310+ 3T + R OP (o] g mi ), ) o+ R vh — demit)
=1 =1
+ k(h® = by, ) (5.45a)

Following the lines of Step 2 and Step 3 in the proof of Theorem 4.5.1(c) for plain LLG,
we get that

3
Y4 7 i i
ST S k| P (i, i) = 7 (i), k) g

= (5.45b)

+ B [0 1 T2y + B2 105l 2 V04| 22w
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as well as

3
) i+l i i+1/2 H—l i
T +k'<dtf 7mh>L2w Sk <f -f > 2(w
;:1: f () L2 (w) (5.45¢)

+ B [0 1220y + R 10hl L2 () VO 22 )
Since p(k) > 0, we can omit (Cex/2)k2p(k:)HVUZHiQ(w) in (5.45a) and obtain that

EELLc;(mZ+1 hH_ ) 5ELLg(mh, hh) + k<Wg(k) ()\h)vh, ’Uh> L2(w) +k <d fH_l i>L2(w)

- i+1/2 i i i
+ /T lo™'V x hh+ / H%ﬂ(g) - k<HhD(Uh§mhvmh 1)7vh>L2(w)

(545 i i i i+1/2 i i
< k‘ 7Th vh’mh’mh 1) 7T(”’n’h)avh>L2(w) ‘ + k ‘ <fh+ /2 .f +17'Uh>L2(w) )
i i i+1/2 i
+ K thHL?(w) + K thHL2(w) vah||L2(w) +k } (hh+ / y Up — dtmh+1>Lz(w) ’
i, i+1/2
k[ (R = B k) g |
Summing in the latter estimate over ¢ = 0,...,5 — 1, we get that
j—1
Errrc(mi, b)) — Eprra(my, hy) + kZ Wa ) (M), o)) 2w T kZ S my) h) L2(w)
=0
o 71 j—1
i+1/2 z 7
+ MZO ||U 1V h / ||L2 - kzo Hh 'Uhvmha l)avh>L2(w)
j—1 Jj—1
VY B AN i+1/2 i i
S kZ ) <ﬂf?(vh;mh7mh 1) 7T('rn’h)7'Uh>L2(w) + kz ‘ < h+ /2 f +1uvh>L2(w) ‘
B j—1 j—1
z 1 2 i 3
R Iehla + K 3 Il 199kl + kz\ T - dmi |
=0 =0
US| - B |
=0
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5.4. Main result

With the definition of the postprocessed output, we rewrite the latter estimate as

oL (mif (1), b (7)) — Eeria(my, hy)
tj

tj
+ /0 <WG(.’€) ()‘]:k)v}jka vﬁk)LQ(w) dt + /O <at.fka m}:k>L2 (w) dt

1 t _ _ t; 7 B B -
+M0/0 o Iy x hhk“%z(g) dt—/o (Hfl?(’vhk;mhk,mgk),vhk>L2(w) dt

tj

t; B B B o B
5/0 ‘ (71 (V3 Mg M) — (M), V) £2(0) ‘d“‘ /0 (Fhr — fl:r’,vhk>L2(w) ‘dt

tj oy tj
[ ogelBac dt-+h [

t; .
+ /0 ‘ <hi(?k - hhk, ,Uf:k>L2(w) ) dt. (546)

by _
Hv}:k;HL2(LU) va}:kHLQ(w) dt+/0 <hhka 'U}?k - atmhk>L2(w) } dt

For the terms with 717? and HhD , recall from plain LLG that we required the convergence
properties from Lemma 6.5.5 and the strong consistencies (D41), (D71) and (T5") for
7, Iy, and Dy, respectively, to derive the strong consistencies from Lemma 4.5.9. Hence,
with Lemma 5.4.4 (i)—(viii), we get in the same way that

/tj
0

(0 (W M M) = (M), U g | A = 0, and

t; . B T
/0 <HhD('vhk;mhk,mhk),vhk>L2(w)dt—>/0 <H(m),8tm>L2(w)dt

as h,k — 0.
On the right-hand side of (5.46), only the last but one term is new. However, Lemma 5.4.6
proves that

/tj
0

As in the proof of Theorem 4.5.1(c) for plain LLG, the remaining terms on the right-hand
side of (5.46) vanish as h,k — 0.
On the left hand side, note that we require strong consistency (E17) of A to show that

(R, Ve — Oemeni) 2y | At S Rkl oo o722 () 10Rs, — Oemnill a0, £2(0)

S v, — Oemnkll Lo, rip2 @)y — 0 as bk — 0.

5ELLg(m2, h%) — EELLG(mO, ho) as h, k — 0.

The remainder of the proof employs standard lower semi-continuity arguments and fol-
lows the lines of Step 5 of the proof of the corresponding Theorem 4.5.1(c) for plain
LLG. O
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6. Implicit-explicit midpoint scheme for LLG

The following chapter is mainly based on [PRS18], which is joint work with Dirk Praetorius?
and Michele Ruggeri®. Moreover, we present some new ideas, which are not part of [PRS18].

6.1. Introduction

The midpoint scheme was first-analyzed in [BP06] for hegy = Am and II = 0. The basic
idea can be summarized as follows: Based on the Gilbert form of LLG (2.3a), we employ

e an implicit midpoint rule in time;
e FEM for space discretization;
e a mass-lumping for modulus conservation over time.

In contrast to the tangent plane scheme, one non-linear system has to solved at each
time-step. However, since the mass-lumping yields modulus conservation over time in
each node, no pointwise normalization is required. In addition, the symplectic nature
of the implicit midpoint rule yields a discrete energy equality, i.e., there is no artificial
damping. The resulting numerical integrator is (formally) second-order in time and [BP06]
proves unconditional convergence in the sense of Convention 1.3.1. Closely related to LLG,
discrete energy inequalities and modulus conservation through mass-lamping are also of
great interest in the development of algorithms for the related (p-)harmonic map heat flow:
In [BP07, BP08], corresponding adaptations of the midpoint scheme were formulated and
analyzed. Moreover, [BBP08] extends the algorithm and convergence results of [BP06] to
the coupling of LLG with the Maxwell equation.

In [Cim09], the midpoint scheme was formulated for the equivalent Landau-Lifshitz form
of LLG, which reads

om = —m X heg(m) — am x (m X heg(m)). (6.1)

There, again heg(m) = Am and II(m) = 0 and the resulting integrator has the same
basic properties as the classical midpoint scheme from [BP06]: Unconditional convergence,
(formal) second-order in time convergence, modulus conservation, and a discrete energy
equality [Cim09]. Moreover, based on (6.1), the works [BBP13, BBNP14] introduce and
analyze a midpoint scheme, which additionally takes into account stochastic effects.

The midpoint schemes of [BP06, Cim09] were adapted to an unconditionally convergent
numerical integrator for LLG in thermally assisted recording [BPS09, BPS12]. There,

ITU Wien
2Universitat Wien
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6. Implicit-explicit midpoint scheme for LLG

an additional PDE-inherent mass term adapts the modulus of the magnetization to a
phenomenological temperature-modulus law. Due to the mass-lumping, the algorithms
preserves this modulus constraint also on the discrete level.

The usual approach for the solution of the non-linear system is a fixed-point iteration; see,
e.g., [Bar06, BP06, BBP08, BPS09, Cim09, BPS12]. For the convergence of the fixed-point
iteration, one usually requires the CFL-type condition & = o(h?). Moreover, [Bar06, Cim09]
analyze the effect of the inexact solution of the non-linear system.

For the midpoint scheme for plain LLG, we identify, in particular, the following issues:

While [BBP08, BPS09, BPS12] hint the extension of the midpoint scheme to lower-
order terms, the corresponding rigorous extension of the analysis seems to be missing.

The extension of the midpoint scheme to dissipative effects IT seems to be missing.

While the naive extension of the midpoint scheme to lower-order terms seems to be
straightforward, the implicit treatment of 7w and IT requires one evaluation of 7, ~ 7
and IT; =~ II at each step of the fixed-point iteration at each time-step. For stray
field computations, for example, the evaluation of 7r;, then involves the solution of a
computationally expensive problem.

To circumvent the latter issue, an explicit Euler approach is unfavourable since it
reduces the (formal) convergence order in time from second to first-order.

The midpoint scheme is well-defined, however, uniqueness of the discrete solution is
a by-product of the convergence result of the fixed-point iterations, which requires
the CFL-type condition k = o(h?); see, e.g., [Bar06, BP06, BBP0S, BPS09).

At each fixed-point iteration, a FEM-type problem has to be solved. However, none
of the latter works provides a solution strategy on a linear algebra level.

6.1.1. Contributions

Based on the own work [PRS18], we make the following contributions:
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We formulate an extended midpoint scheme, which takes into account the lower-order
terms 7, f, and, in particular, IT. To this end, we transfer techniques for the tangent
plane scheme [AKT12, BSF*14] to the midpoint scheme. This makes the midpoint
scheme applicable to a broader class of model problems.

For 7 and II, we employ an explicit second-order in time approach so that the overall
numerical integrator is (formally) second-order in time. This way, we only require
one evaluation of the numerically expensive operators 7 and Il per time-step.

We confirm the formal convergence order of our algorithm with a numerical exper-
iment; see Section 6.3. Moreover, we confirm in Section 6.4 the applicability of our
algorithm with a physically relevant example, where we also make a comparison with
our extension of the (almost) second-order tangent plane scheme from Chapter 4.



6.2. Algorithm

e We prove well-posedness and unconditional convergence of our extended algorithm in
the sense of Convention 1.3.1; see Section 6.5.

Note that the (more recent) own work [DPP*17] makes corresponding contributions for
the (almost) second-order tangent plane scheme; see Chapter 4. Moreover, note that the
master thesis [Kem14] already deals with the latter points, but considers only IT = 0 and
a formally first-order in-time explicit Euler approach for the discretization of (a possible
non-linear) .

In addition to the latter points, we present the following new ideas:

e We provide a solution strategy for the variational problems which arise from the fixed-
point iteration. Moreover, we prove that—despite the FEM-nature of the problem—the
fixed-point iterates can be computed nodewise, greatly reducing the computational
complexity of the method; see Section 6.6.3.

e Under the assumption that there is no finite time-blow up, we prove that, the
uniqueness of discrete solutions follows already from the weaker CFL-type condi-
tion k = o(h) (instead of k = o(h?) in, e.g., [Bar06, BP06, BBP0S, BPS09]); see
Section 6.7.

6.2. Algorithm

In this section, we formulate the extended midpoint scheme as in the own work [PRS18,
Algorithm 2]. Morally, we start with with [BP06, Algorithm 1.1], where heg(m) := Am
and IT = 0. Then, we adapt and extend the techniques for lower-order terms for the tangent
plane scheme from [AKT12, BSF*14]. We employ a general time-stepping approach for the
discretization of 7r and II, which, in particular, covers implicit-explicit approaches. With
(m%)iﬂio being the sequence of sought approximations to m(t;), we define

a2 (mi mi,mi ) = w(m(t; +k/2)) and IR (mi mi, mi ) ~ I (m(t; + k/2))
with one of the following three options (A1)—(A3):

(A1) The implicit second-order in time midpoint approach [BBP08, BPS09, BPS12]
i+1

. —_— m' 4 ml
2 (mi mi, mit) = 7rh< b 5 h ) and
i+1 i
©/ itl i i1y m, " +m,
II) (m; ™, mj,m; ") = Hh<f .

(A2) The explicit second-order in time Adams—Bashforth approach

1+1 i
m, +mh f . 0
O/ i+l i o oi—1y . 7"h<72 ) or ¢ =0,
T, (my ,my,my ) = . / o
5 Th(my) — 5 mp(my 7)) else,
and
i+1 i
+m
- - , II (mh h) fort=0
[C) i+1 i —1y\ . 2 ’
I (m;™ ,my,m; ") := ‘
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6. Implicit-explicit midpoint scheme for LLG

(A3) The first-order in time explicit Euler approach from [AKT12, BSF*14, Kem14]

w}?(mzﬂ,mﬁl,mfl) = m,(mi), and Hh@(mﬁlﬂ,m}‘l,mzfl) = I, (m}).

Based on [PRS18, Algorithm 2], we are now ready to formulate our IMEX midpoint scheme.
To this end, we recall, in particular, the approximate L?-product (-, ), , the discrete Lapla-
cian Ay, and the quasi-L? projection P, from Section 3.3.2.

Algorithm 6.2.1 (IMEX MPS, [PRS18, Algorithm 2]). Input: Approzimation mgl =

m% € 8, of initial magnetization.
Loop: For0<i< M —1, find mﬁfl € 8y, such that, for all @y € Sy, it holds that

<dtm§1+17 90h>h =

i+1/2 i+1/2 i+1/2 ; ;i
— Cex(m,, 2 x Ahm;j— / a‘Ph>h - <m2+ /2 x ’Phﬂ}?(ml+17mﬁz>mz 1)>‘Ph>h (6.2)
i+1/2 ; ; — i+1/2 i+1/2 :
— (m;" /2« PRI (mit mi, mi ), on), — (m," /2 % Pufyt / s Ph)),
+ a(m?l/Z x dgmt, Ph)p,-
Output: Approximations m}l ~m(t;). O

Remark 6.2.2. (i) Givenm} € S, the discrete variational formulation (6.2) gives rise
to a non-linear system for m}fl € 8y, which admits a solution; see Theorem 6.5.1(a).
For uniqueness, we require additional assumptions; see Section 6.7 for details.

(ii) The non-linear system (6.2) can be (approximately) solved by a fized-point iteration;
see Section 6.6 for details.

(iii) The fized-point iteration for the solution of the non-linear system (6.2) with the im-
plicit second-order in time approaches (A1) and (A2) for i =0 involve the numeri-
cally expensive evaluation of mp and Iy at each iteration at each time-step.

(iv) In contrast to (iii), the explicit Euler approach (A3), requires only one evaluation of
7y, and II;, per time-step, but it generically reduces the convergence order from second
to first-order in time. We analyze this approach only for comparison. At least from
the second time-step on, the Adams—Bashforth approach (A2), however, still requires
only one evaluation of 7y and I, per time-step, but is formally second-order in time.
It is thus our preferred choice.

(v) The approzimate L*-product (-,-), ensures the nodewise modulus conservation (and
thus uniform boundedness); see Proposition 6.5.3. Moreover, we can compute the
fized-point iterates by the nodewise solution of 3 x 3 systems, which can even be done
in parallel; see Section 6.6.3 for details.

(vi) In [PRS18], the operators w and II as well as their discretizations ;, and II; are
summarized in the single operator w with the discretization my,.
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6.3. Experimental convergence order

6.3. Experimental convergence order

In this section, we illustrate the accuracy and computational costs of different variants of
Algorithm 6.2.1 with a numerical experiment. To this end, we use our C++-based extension
of NGS/Py [ngs], which was mainly developed by the author. Note that the numerical
experiment of the own work [PRS18, Section 6.1] confirms the formal convergence orders
from Remark 6.2.2. However, this experiment neglects dissipative effects and considers
only II(m) = 0. In contrast to that, we slightly adapt [PRS18, Section 6.1] and, most
importantly, additionally cover the Slonczewski-field [Ber96, Slo96] in the form

(1+P)3(3+2) -1
1P —4 for z € [-1,1],

I(p) =G(p - P)p xp, with G(x):=

where p = (1,0,0)7 and P = 0.8. Note that this repeats the numerical experiment
from Section 4.4 for the (almost) second-order tangent plane with our midpoint scheme.
The lower-order m-dependent energy term 7 (m) always consists of the stray field, i.e.,
one evaluation of the corresponding approximation 7r;, employs the Fredkin—Koehler algo-
rithm [FK90] in the variant of Algorithm 3.4.3. Then, we compare the performance of the
different approaches to 71',? and Hhe) with the following three variants of Algorithm 6.2.1:

e MPS+MP: We employ the implicit second-order midpoint approach (A1).
e MPS+AB: We employ the explicit second-order Adams—Bashforth approach (A2).

e MPS+EE: We employ the explicit first-order explicit Euler approach (A3).

For the solution of the non-linear system, we always employ the fixed-point iteration with
the nodewise approach from Algorithm 6.6.8 below with the iteration tolerance ¢ = 10717;
see Section 6.6 for details.

For all our variants, we choose the final time 7' = 7, the domain w = (0,1)3, the Gilbert
damping constant o = 1, the exchange constant Cex = 1, the constant external field
f=1(0,1,0)7, and the constant initial value m° = m% = (1,0,0)7.

For space discretization, we employ a uniform triangulation 7; with 8 elements per edge.
This corresponds to 3072 elements, 729 nodes, and a mesh-size h = 0.125. Having fixed
the space discretization, we perform our variants with varying time-step size. Since the
exact solution is unknown, we use MPS+AB to compute a reference solution myp, ., where
the reference time ke := 5 - 1077 is a fine time-step size.

In Figure 6.1, we illustrate the experimental convergence order of our variants. For our
setting, the plot confirms the predictions of Remark 6.2.2: For MPS+MP and MPS+AB, we
observe second-order convergence in time. For MPS+EE, the explicit Euler approach to 7,
and ITj; reduces the convergence order to one.

In Table 6.1 and Table 6.2, we illustrate the computational costs of our variants. In
Table 6.1, we observe that all variants require for all time-step sizes roughly the same
number of fixed-point iterations for the approximate solution of the discrete variational
formulation (6.2). However, Table 6.1 shows that MPS+MP is (by far) the most expensive
method, and MPS+AB and MPS+EE are much cheaper and essentially of the same cost. This

ef ?
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6. Implicit-explicit midpoint scheme for LLG

is due to the fact that MPS+MP requires one evaluation of 7r;, and II; per iteration per
time-step, while MPS+AB and MPS+EE require only one evaluation per time-step.
present setting, the evaluation of our Il is cheap, whereas the evaluation of 7r;, employs

the Fredkin—Koehler algorithm [FK90] in the variant of Algorithm 3.4.3.

In conclusion, MPS+AB is the method of choice. It is the only method that benefits from

the IMEX approach and conserves the second-order convergence in time.

Figure 6.1.: Experiment of Section 6.3: Reference error max;(|[mpg,, (t:) — mnk(t:) || g ()
for k = 20 kep with £ € {1,2,3,4,5} and kyef := 5- 1072,

Table 6.1.: Experiment of Section 6.3: Average iteration numbers of MPS+MP per time-step
and relative iterations numbers of all variants.
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Error

I I
1075 s |
10_6 F B
1077 s |
F | XMPS+MP ]
| | @ MPS+AB )
| | AMPS+EE X
| [

1073 1074

Time-step size (k)

MPS+MP MPS+MP MPS+AB MPS+EE

absolute || relative relative relative
k = 0.0016 19.33 100% 99.99% 106.92%
k = 0.0008 7.75 100% 100.00% | 106.78%
k = 0.0004 5.30 100% 100.00% | 104.47%
k = 0.0002 3.96 100% 100.00% | 108.65%
k = 0.0001 3.36 100% 100.00% | 104.70%




6.4. Qualitative comparison

MPS+MP MPS+MP MPS+AB MPS+EE

absolute || relative relative relative
k =0.0016 0.67 100% 7.10% 7.14%
k = 0.0008 0.27 100% 15.79% 15.91%
k = 0.0004 0.21 100% 20.87% 20.94%
k = 0.0002 0.16 100% 26.27% 27.06%
k = 0.0001 0.14 100% 29.31% 30.05%

Table 6.2.: Experiment of Section 6.3: Average time (in s) of MPS+MP per time-step and
relative times of all variants.

6.4. Qualitative comparison

In the section, we consider the physically relevant u-MAG standard problem #5 [mum] for
a qualitative test of the midpoint scheme from Algorithm 6.2.1 vs. the (almost) second-
order tangent plane scheme from Algorithm 4.2.1; see Chapter 4 for details. Note that
this section essentially repeats the corresponding experiments from the own works [PRS18,
Section 6.2] and [DPP*17, Section 7.2.2]. For the u-MAG standard problem #5 [mum)], we
employ the domain w := (—50nm, 50nm) x (—50nm, 50nm) X (—5nm, 5nm), which represents
a permalloy film. We have

2A

a=01, Cox=—s5—,
ML

and f =0,
where pig = 47 -107"N/A? is the magnetic permeability, A = 1.3-107'1J/m is the physical
exchange constant, M, = 8.0-10°A /m is the saturation magnetization, and L = 10~ is the

spatial scaling parameter. The operator m consists of the stray field, and the dissipative
effects IT consist of the Zhang—1i field [ZL04, TNMS05], which reads

I(p) = x(u-V)p+5(u-V)ep (6.3a)

with u € L (w) being the spin velocity vector and 5 € [0, 1] the constant of non-adiabacity.
Here, we have § = 0.05 and our (already rescaled) velocity vector reads

1 72.17
u = 0 , 6.3b
PYOMSL 0 ( )

where 79 = 2.21 - 10°m/(As) is the gyromagnetic ratio. Then, we consider the following
three algorithms:

e MPS+AB: We employ the second-order midpoint scheme from Algorithm 6.2.1 with
the explicit Adams-Bashforth approach (A2) for w2 and IIP and the time-step
size k = 0.05ps. For space discretization, we employ a triangulation 7, obtained
from the NGS/Py-embedded Netgen [ngs| with 25666 elements and 5915 nodes. We
solve the underlying non-linear system (6.2) with the fixed-point iteration from Algo-
rithm 6.6.1, where we use the iteration tolerance ¢ = 1075; see Section 6.6 for details.
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6. Implicit-explicit midpoint scheme for LLG

We perform these computations with our C++-based extension of NGS/Py [ngs|, which
was mainly developed by the author.

e TPS2+AB: We employ the (almost) second-order tangent plane scheme from Algo-
rithm 4.2.1 with the explicit Adams—Bashforth—type approach (A2) for 71',]7/J and
HhD , where we use the same time-step size and mesh as for MPS+AB. We note that we
checked the corresponding stiffness matrix to verify the angle condition (T1). We
perform these computations with our Python-based extension of NGS/Py [ngs|, which
was mainly developed by Carl-Martin Pfeiler?.

e 0OMMF: The 00OMMF-software package [DP99] employs a finite difference method with
an adaptive time-step size. For our particular setting, the results are available on the
pu-MAG homepage [mum].

X X

-1.0me+00 0 1 000e+00 -1000=+00 0

wﬁl\\l\\l\rﬂl‘,\l\\l\\\\T\M wa\\\HIHIWTHIHIHIT\M

(a) Initial state, t = Ons. (b) Equilibrium state, ¢t = 8ns.

Figure 6.2.: Experiment of Section 6.4: The initial vortex (left) and the equilibrium vor-
tex (right) computed with MPS+AB. The visualization was done with ParaView
[AGLO3].

In all cases, the initial value is obtained from the relaxation of the nodal interpolant of

—XIo
0 1

and IT = 0, which yields the initial vortex from Figure 6.2a; cf., the relaxation in the
numerical experiment in Section 5.3. Then, one applies the Zhang-Li field from (6.3). This
induces a wandering of the vortex towards the new equilibrium from Figure 6.2b, where we

3TU Wien
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6.5. Main result

stop our simulation at the final time T' = 8ns. We monitor the wandering with the nodal
averages

(ma) = S (mua(), and (my) = S (masl=),

zEN, zeNy

in the sense that, roughly, the vortex center follows the path ({(m.), (m,),0)” when looking
at w from above.

In Figure 6.3, we plot the dynamics of (m,) and (m,). Note that the results differ
slightly and that TPS2+AB is slightly phase-shifted. However, we observe that all three
method show the same qualitative behavior.

0.4 ‘ T
—— MPS+AB (m,)
TPS2+AB (my)
021 & e 00MMF (). |-

—0.41 — MPS+AB (m) |
TPS2+AB (m)
------- 0OMMF (m,)
_06 | | | | | | |

0 1 2 3 4 5 6 7 8
Time [ns]

Figure 6.3.: Experiment of Section 6.4: Development of (m,) and (m,) over time.

6.5. Main result

In this section, we formulate and prove the main result of this chapter. We extend [BP0G,
Thereom 3.1] from heg(m) = Am and II(m) = 0 to the setting of Algorithm 6.2.1
and prove unconditional convergence of the postprocessed output in the sense of Conven-
tion 1.3.1. Note that corresponding results are proved, e.g., in [BPS09, Cim09] and that
our main result is based on the own works [PRS18, Proposition 3| for (a) and on [PRS18,
Theorem 4] for (b) and (c¢). In addition to the assumptions from the setting of LLG from
Section 2.2 and the general discretization from Section 3.2-3.4, we require the following
assumptions:
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6. Implicit-explicit midpoint scheme for LLG

M1) Uniform boundedness of m?: There exists a constant Cy > 0 such that
h

|mj || () < Co  for all h > 0.

(M2) Lipschitz-type condition for IT,: There exists a constant C' > 0 such that, for all
h > 0, it holds that

T4 (en) — T (i) | 22wy < C B [14 [lenllpow) + lnllLoow) | llon — ¥nllp2w)

for all @p, Yy € Sp.

With these preparations, we are ready to formulate our convergence theorem.

Theorem 6.5.1 (Convergence of IMEX MPS, [PRS18, Proposition 3, Theorem 4]). Con-
sider Algorithm 6.2.1 for the discretization of LLG (2.3). Then, the following three asser-
tions (a)—(c) hold true:

(a) Suppose that

the approximation operators my, are linear (D2);

the approximation operators Il satisfy the Lipschitz-type condition (M2).

Then, Algorithm 6.2.1 is well-posed, and for all i € {0, ..., M}, it holds that

imi(2)| = |mY(2)| for all nodes z € Ny,.

In particular, it holds that |[my || = |[mj |l and |m}||pe(wy = M| (w) for all
ie€{0,...,M}.

(b) Suppose that

the approzimations m, satisfy (D1) and (M1);

the approximation operators my, satisfy (D2)—(D4);

the approzimations (fi)M, satisfy (D5);

the approzimation operators I, satisfy (D6)—(DT) and (M2);

the general time-stepping approaches 7r,(? and th are defined by one of the three
options (A1)—(A3).

Then, there exists a subsequence of the postprocessed output mpy of Algorithm 6.2.1
as well as a weak solution

m € L0, T; H'(Q)) N H' (wr)

of LLG (2.3) in the sense of Definition 2.2.1(1)—(iii) such that

my, —m i H'(wrp) as h,k — 0.

(¢c) Additionally to the assumptions from (b), suppose that
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6.5. Main result

the approximations m?L are strongly consistent (D17);
e the approximation operators m, are strongly consistent (D4%1);
e the approximations ( ;LH/Z)Z-]ZO are strongly consistent (D57);

e the approxzimation operators Iy, are strongly consistent (DTT).

Then, the weak solution m from (b) is a physical weak solution in the sense of Defi-
nition 2.2.1(1)—(iv), i.e., it additionally satisfies the stronger energy estimate (2.17).

Remark 6.5.2. (i) Theorem 6.5.1 supposes the exact solution of the non-linear varia-
tional problem (6.2) and the convergence is unconditional in the sense of Conven-
tion 1.3.1. In contrast to that, Theorem 6.6.12 below takes into account the effect of
the inexact solution of (6.2) by a fixed-point iteration. This requires the CFL-type
condition k = o(h?) for convergence.

(ii) Uniazial anistropy, stray field and the corresponding approximations, satisfy the as-
sumptions from Theorem 6.5.1(c) to 7 and mp,, respectively. We refer to Appendiz A
for the verification.

(iii) For the Zhang-Li field [ZL04, TNMS05], the corresponding approximation operator
I}, satisfies the assumptions from Theorem 6.5.1(b). We refer to Proposition A.3.1
for the verification.

(iv) For the Slonczewski field [Ber96, Slo96], the corresponding approzimation operator
I}, satisfies the assumptions from Theorem 6.5.1(c). We refer to Proposition A.3.3
for the verification.

We split the proof of Theorem 6.5.1 into the following subsections. In Section 6.5.1, we
prove well-posedness (a). For the proof of (b), we follow a standard energy argument (see,
e.g., [Eval0]), which consists of the following three steps:

e We derive a discrete energy bound; see Section 6.5.2.
o We extract weakly convergent subsequences and identify the limits; see Section 6.5.3.

e We verify that the limit m is a weak solution of LLG in the sense of Definition 2.2.1(i)—
(iii) and thus conclude the proof of (b); see Section 6.5.4.

In Section 6.5.5, we prove (c).

6.5.1. Well-posedness

The well-posedness of Algorithm 6.2.1 follows from the following proposition, which consid-
ers one isolated time-step. We adapt the techniques of [BPS09, Lemma 5.1] to the setting
of Algorithm 6.2.1 and elaborate [PRS18, Proposition 3].
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Proposition 6.5.3 (Well-posedness of IMEX MPS, one time-step, [PRS18, Proposition 3]).
Suppose linearity (D2) of 7, as well as the Lipschitz-type continuity (M2) of II,. For
i€{0,1,...,M — 1} and given mﬁl,mz_l € 8y, the discrete variational formulation (6.2)
admits a solution m}fl € 8y, which satisfies

imi(2)| = |mj,(2)| for all nodes z € Nj,.

In particular, it holds that |mi™ |, = |m} ||n as well as Hm?lHLm(w) = [|m,[| Loo () -

Proof. Given m}l € 8y, we split the proof into the following three steps.
Step 1. We define an auxiliary mapping F : 8y — Sp: To that end, let Zj, be the nodal
interpolant corresponding to 8p,. We define the mapping F : 8§, — S, by

2 . )
F(epn) = 7 (n —my) +Ih<<Ph X R%(@h)) for all ¢y, € S, (6.4)

where the residual term is defined as

RZh(QOh) = CexAhSDh + ’Phﬂ-l?(290h - mﬁw m?m mz_l)
i11/92 . . . 20 .
+Pufi "+ PATIR (201 — i mi i) - S5 (o — i) € S
With linearity (D2) of 7, as well as the Lipschitz-type continuity (M2) of ITj,, the auxiliary
mapping F : 8y, — 8}, is continuous for all general time-stepping approaches (A1)—(A3).
Step 2. We analyse F: Let ¢, € Sy, and suppose that F (1) = 0. Then, direct calcu-

lations show that m ' := 29, —mj, € Sy, solves the discrete variational formulation (6.2).
Moreover, we get that |m ()| = |[m."!(2)| for all nodes z € Nj: To see this, let ¢, be

the nodal basis function corresponding to some node z € Np,. From the definition (3.10) of
(,-), and with 9, = (m}"! +mi)/2, we get that

0 = (F(¥n) ¥n(z)dz)y

Since [ ¢, da > 0, this yields that im/ T (2)| = |mi,(2)| for all nodes z € N,.
Step 3. We show that there exists such a ¥, € Sy with F(1,) = 0: To that end, note
that for all ¢, € &}, it holds that

(lenlli = (mi,en)y) > 7 lenlln (llenlln = Il )- (6.5)

Enl )

<f(‘10h)7 90h>h =

If we choose r > 0 such that r > |jmj ||, it holds that

(6.5)
(F(en),pn)y, = 0 forall ¢p eS8, with [op|n=r
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Then, the Brouwer fixed-point theorem (see Theorem B.2.5) yields the existence of ¥, € S},
with ”",bhHh < r and f(i/)h) =0.

Step 4. We combine Step 1-Step 3 and conclude existence of a solution m;fl to the
variational formulation (6.2), which satisfies |m/} (z )] = |mz+1( )| for all nodes z € V,. In
particular, the definition (3.10) of the approximate L?-product (-, -}, yields that [|m} ||, =
|m ||n. Moreover, since affine functions attain their maximal modulus in one of the nodes
z € N, we get that Hm’HHLoo (@) = [lm}||Ls (). This concludes the proof. O

Proof of Theorem 6.5.1(a). Proposition 6.5.3 yields well-posedness for given m! € S, and
induction on ¢ =0,1,..., M — 1 proves that

|m’+1( )| = ‘m%(z” for all nodes z € N},

Therefore,

z+1Hh — i+1

[m ”mh”h and  [lmy, ||L°°(w —HthLoo (w)-

This concludes the proof. ]

6.5.2. Discrete energy bound

In this section, we derive a discrete energy bound, which represents the mathematical core
of the remainder of the proof of Theorem 6.5.1(b)—(c). Note that [BP06, Lemma 3.1(i)]
proves the statement for heg(m) = Am and II(m) = 0. For extensions of the midpoint
scheme, corresponding results are proved in, e.g., [BBP08, BPS09, BPS12]. Moreover,
note that [AKT12, BSF*14] provide corresponding results for the tangent plane scheme
with lower-order terms. In the own work [PRS18, Lemma 9] and [PRS18, Lemma 10],
the corresponding ideas of [BSF*14] are exploited to extend [BP06, Lemma 3.1] to the
setting of Algorithm 6.2.1. The following lemma elaborates [PRS18, Lemma 9] and [PRS18,
Lemma 10].

Lemma 6.5.4 (Discrete energy bound, [PRS18, Lemma 9, Lemma 10]). Let the assump-
tions of Theorem 6.5.1(b) be satisfied and let k > 0 be sufficiently small. Then, the following
assertions (1)—(ii) hold true:

(i) For alli=0,...,M — 1, it holds that
Cex

de [V T2, + al demy ™7

] i % i— 7 i+1/2
= (dymit 7@ (mit! mi mi 1)>L2( : + (dgmit, h+ / >L2(w)

+ (dermy IR (my mi, mih) -

(ii) There exists a constant C > 0 which depends only on T, w, m®, o, Cex, 7(-), f,
II(), and Cmesh, such that, for all j =0,..., M, it holds that

HVT”%H%?(W) + /fz | demj |72, < C < oo
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Proof. First, we prove (i). To this end, we define the approximate effective field and
dissipative effects as

i+3 i+1/2 1 1
H, % = CoxApm! 2 4 Pym® (mit mi, mi~))

+ PR L P (mit mi miY) € 8. (6.6)

With this notation, we rewrite the discrete variational formulation (6.2) and, for all ¢, €
S, we obtain that

6.2 i it+s i i
@i on)y, E 1, o), amT x dimit ), (67)

We test the latter equation with ¢y = ozdtm“Ll € 8. Since (a x b)-b = 0 for all
a,b € R3, we obtain that

PR = =m0 dumi )

CVHdtmh :a<m2+1/2 x dt z—‘rl %Z+2> )

h

i1
Next, we test (6.7) with ¢y, := ”HZ:FQ € 8j, and obtain that

it3y (6.7) almi /2 i+3

(demjt M1, %), alm, 7 x demit H, %),

With the definition (3.12) of the quasi-L? projection Py, the combination of the latter two
equations yields that

il
O‘H dtmz+1”h _ <d mz+17HH‘2>h
6.6 7 7 1 K] i—
(:) ex(dtthrl A m+1/2> < +1 ’Phﬂ- ( + mh’mh 1)>h
+ <dtmz+1 P f1+1/2> + <dtmz+1 PhHQ( i+1 mh7m2 1)>h
= C’ex<dt'rnz+1 Ahm2+1/2> <dtmz+1 Trhg(m;j_l mh7m2 1)>L2(w)

i+l pit1/2
+ (dgm;",

h >L2(w)+<dtm?1’1—[®( myt my, mi- 1)>L2(w)'

For the first term on the right-hand side, the definition (3.11) of the discrete Laplacian Ay,
yields that

A i ; i 1 i
<dtm2+1, Ahmh+l/2> —(Vdim +1, th+l/2>L2(w) Y d¢ [[Vm +1HL2

Then, the combination of the latter two equations proves (i). We split the proof of (ii) into
the following seven steps.

Step 1. We sum (i) over i = 0,...,j — 1: Together with the telescopic sum property,
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we obtain that

. Cox . j—1 .
X9 = 5 ||Vmi||2LQ(w)+akZ||dtm+1Hh

C.
= Vmf 30 +kZ (e (mi ™ mi mi ) )

—~
—-
=

+1 2
+kz d mH—l 7 / +kz d mz+1 ( H—l mh7m2 1)>L2(w)
In the following steps, we estimate S1,...,S4. Then, our goal is to absorb as many terms

as possible to X(j ) and to apply the discrete Gronwall lemma afterwards.
Step 2. We estimate S1: We obtain that

~

Clox (D1)
S1 = ; IVmiylzee, S 1 (6.9)

Step 3. We estimate Sy: To this end, we note that

(M1)

max [mp [ pe) = Y mfllpe) < L

=0,...,

(6.10)

For all approaches (A1)—(A3), this yields that that

i+l i i—1 (DS) i+1/2 = ¢ 6.10)
7 (mi ™ mip,mi e S Imy e + D IImalew S 1 (6.11)
{=i—1

Then, the Young inequality yields for arbitrary ¢ > 0 that

i+1 i+1 i—1
kz dym;, 7rh mh mh,mh ))Lg(w)

< ok ||dtml+1|’1:2w)+ ZHﬂ'h W mg, my 7,

=0

(6.11) L 1
S 5kZHdth‘ 172 w15

Step 4. We estimate S3: The Young inequality yields for arbitrary § > 0 that
(6.8) i1 k: it
: i i+1/2 i i+1/2
s = kY (dempt i) ) S (5k:z I demy g + 5 D15l
‘ i=0

(D5) 1
< 6kZ||dtml+1HLz 5
=0
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Step 5. We estimate Sy: For all approaches (A1)—(A3), it holds that

i+1
i i i i+1/2 j
TP (m ™ ml, mi |2 S I Ha(my, / Mz + Y ITa(m)) | z2)
j=i—1
(D6) i+1/2 i+1/2 AR ¢ )
S (L [lmy P lpeow) ) Imy Pl + > (14 Impllzeew) ) Il )
t=i—1
(6.10) i+1
S 1+ Y VM e, (6.12)
l=i—1
Then, the Young inequality yields for arbitrary § > 0 that
6.8) i i i
=" kY (demy TR (my mp, mi ) g
7—1
S 5/62 | demy, |72 Z TR (m} ! mfy, miy ) 172 )
(6.12) 1 1
< 6kz H dtmz ”LQ(w) + + Z HthHLz(w)

=0
Step 6. We combine Step 1-Step 5 and get for arbltrary 0 > 0 that

. (68) ex 4
) = vm mi |32 + 0k Y [ demy 7
1 = 1 kY J
S Lok [ dami g + 5 3 IVmilag,
i=0 =0

z+1||

If we choose 6 > 0 small enough, we can absorb ¢k Zg;ol || dgme ) from the right-

hand side into xU). Moreover, for sufficiently small k > 0, we can absorb k/ 5|\Vm§l]\2LQ(w)
from the last term into xU). Altogether, this results in
. i1 . (6.8) i
XD S 1+ED IVmplliee < 1+EY x? forallj=1,... M. (6.13a)
i=0 ‘
Moreover, it holds that
(0) (6:8) C’ex 02 (D1)

(W) ~

1. (6.13b)

X

Altogether, (6.13) fits in the setting of the discrete Gronwall lemma (see Lemma B.3.1),
which yields that

j—1
v Sexp (Dok) <exp(T) < oo, forall j=1,..,M.
i=0
With Proposition 3.3.1(i), we can replace the || - ||,-norm by the || - HLz(w)—norm in X(i).
This proves (ii), and concludes the proof. O
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6.5.3. Extraction of weakly convergent subsequences

In this section, we exploit the discrete energy bound from Lemma 6.5.4 and extract weakly
convergent subsequences of the postprocessed output of Algorithm 6.2.1. Correspond-
ing results are obtained in, e.g., [BP06, BBP08, BPS09]. The following lemma is based
on [PRS18, Lemma 11].

Lemma 6.5.5 (Convergence properties, [PRS18, Lemma 11]). Let the assumptions of
Theorem 6.5.1(b) be satisfied. Then, there exist subsequences of the postprocessed output

m);Lk € {mhk‘) m;’;,_k7 m}:ku Mpp, mik}?
of Algorithm 6.2.1 and a function
m € L0, T; H (w)) N H(wr)

such that the following convergence properties (1)—(vi) hold true simultaneously for the same

subsequence as h, k — 0

(i) mp, —m in H'(wr).

(it) mjy = m in L>(0,T; H' ().
(iii) mj, —m in L?(0, T; H' (w)).
(iv) mjy, — m in L*(wr).

(v) m(t) = m(t) in L2(w) a.e. fort € [0, T).
i)

(v

Proof. From the definition of the postprocessed output, we get that

mhk — m pomthse a.e. in wr.

(L2)
Hmhk||L°o(wT)§ %Hix HthLoo )— HthLw (w) < 1 and thus HmﬁkHB(wT)ﬁl-

~
geon

Together with the discrete energy bound from Lemma 6.5.4(ii), this yields that
Mkl zt wr) + IMhell e 0 m1 @) S 1 (6.14)

With the Eberlein-Smulian theorem (see Theorem B.2.2), we can successively extract
weakly convergent subsequences of mj, with the corresponding limits

m* € {m,m", m~,m,m~}, where m*<c L*0,T;H'(w)) and m ¢ H'(wr),
and the convergence properties

m}, = m* in L?(0,T; H (w)) aswell as my, —m in H'(wyp).

With the Rellich-Kondrachov theorem (see Theorem 2.1.2), the latter equation implies
that myp, — m in L?(w7) as h,k — 0 and this proves (i) and (iii)—(iv) for my. For the
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remaining mj, , we need to identify all corresponding limits m*. To this end, the definitions
of the postprocessed output and the discrete time-derivative directly yields that

(6.14)
[mn, — mpgllLewr) < kllOmnkllrzw,)y < k=0 ashk—0.

Since (iv) holds already for mpy, we altogether get that

[ —millr2wr) S lm = muelp2wr) + 1m0k — millL2 ) = 0 as bk — 0,
i.e., m* = m. This proves (i) as well as (iii)—(iv). To prove (ii), we use (6.14) and
the Alaoglu theorem (see Theorem B.2.3) for further successive extraction of subsequences
which are weak* convergent in L>(0, T, H'(w)). Since weak* convergence in L°°(0, T, H' (w))
implies weak convergence in L?(0,7T, H'(w)), this identifies the latter limits with m and
thus proves (ii). Upon successive extraction of further subsequences, (v) and (vi) are direct
consequences of (iv). Altogether, this concludes the proof. O

Moreover, we note a direct consequence of the latter convergence properties, which al-
ready anticipates the verification of Definition 6.5.1(b) for the proof of Theorem 4.5.1(b).

Lemma 6.5.6 (jm| =1 a.e. in wr). Let the assumptions of Theorem 6.5.1(b) be satisfied.
Then, m € L°(0,T; HY(w)) N HY(wr) from Lemma 6.5.5 satisfies |/m| =1 a.e. in wr.

Proof. We extend the corresponding technique of [BP06] and estimate

11 = Imlll L2y <= Imylllz2 ) + el = Imlll 2

<1 = |yl 2y + Mgy, — Ml L2,y = 11 + To. (6.15)

With the convergence property of Lemma 6.5.5(iv), we get that 7o — 0 as h, k — 0, i.e., we
only have to deal with 77: To this end, fix t € [0,7) and ¢ € w. Let i € {0,1,...,M — 1}
such that t € [t;,t;41) and K € T, such that £ € K. For all nodes z € K, it holds that
|m}, (z)| = |m)(z)| and with the definition of the postprocessed output, we get that

1= |my(t @)l = [1 = |my(@)]] < [1 = |my(2)]| + [Imi,(2)] = [mj, ()]
= [1— [my ()| + [lmi,(2)] — |mj, ()] = T{' + T}

Since we supposed in (2.5) that [m°| = 1 a.e. in w and since Vm{ is elementwise constant,
we obtain that

A
T < |1 = mj(@)|] + ||mp ()| — [mp(2)[| = [|[m°(@)| — [mj (@)|| + [|m) (2)] — [m),(2)]]
< [m%(@) — mj(x)] + |mj(x) — mj(2)] < [m°(@) —mj (@) + |[Vmj k| |2 — =],
Similarly, since Vm’,'L is elementwise constant, we get that
T < |miy(2) —mj ()| < [Vmi|k| |2 — 2| = [Vmy, || e - 2.

Combining the latter three equations, we obtain that

11— |my, (t,2)| < |[m (x) —mj(z)| + |[Vm) k| |z — 2| + |Vmy, k]| |z — 2.

124



6.5. Main result

We integrate in the latter estimate over wr and arrive at

(6.15)

=" 1= mgyl rer) S lmb =m0l pew) + b IV lL2) + 7 I VMG L2 or)-

For the first two terms, we infer from (D1) that
HVm?LHLz(wT) <1 and m) —-m® in L*w) ash,k—0,

where the convergence property holds with the Rellich-Kondrachov theorem (see Propo-
sition 2.1.2). Together with the convergence properties of Lemma 6.5.5, this yields that
Ty — 0 as h, k — 0. Altogether, this concludes the proof. O

6.5.4. Convergence to weak solution

In this section, we prove Theorem 6.5.1(b). To this end, we first prove a weak consistency
property of the general time-stepping approaches (A1)-(A3) on L?(wr).

Lemma 6.5.7 (Weak consistency of 72 and II?). Let the assumptions of Theorem 6.5.1(b)
be satisfied. Consider the general time-stepping approaches (A1)—(A3). Then, the follow-
ing two convergence properties (1)—(ii) hold true as h,k — 0:

(i) ﬂ,?(m;k,m,:k,m,fk) — m(m) in L*(wr).
(ii) TIP (my, myy, myy,) — T(m) in L*(wr).

Proof. First, we show (i): With the convergence properties from Lemma 6.5.5, and uniform
boundedness (D3) as well as weak-consistency (D4) of 7}, we can apply Lemma 3.4.1.
This yields that

wh(m;k), TI'h(m}Tk), h(Mp,) — w(m) in L2(wT) as h,k — 0.

Then, (i) is a direct consequence of the latter convergence properties, where for the Adams—
Bashforth approach (A2) we deal differently with [0, k] and [k, T, respectively. To show (ii),
we get with Lemma 6.5.6 that m € H'(wr) N L®(w) and thus II(m) € L?(w) is well de-
fined. Then, (ii) is a direct consequence of the convergence properties from Lemma 6.5.5
and the weak consistency property (D7) of IT;,. This concludes the proof. O

We come to the actual proof of Theorem 6.5.1(b). In [BP06], the result is proved for the
basic configuration heg(m) = Am and II(m) = 0. Moreover, [AKT12, BSF*14] prove
corresponding results for the tangent plane scheme with lower-order terms similar to our
setting of LLG (2.3). We combine and extend the ideas of [BP06, AKT12, BSF'14] and
base the following proof on the own work [PRS18, Section 3.3-3.4].

Proof of Theorem 6.5.1(b). We show that
m € L®(0,T; H (w)) N H(wr) (6.16)

from Lemma 6.5.5 is a weak solution of LLG in the sense of Definition 2.2.1(i)—(iii). To-
gether with (6.16), Definition 2.2.1(i) is a direct consequence of Lemma 6.5.6 and we split
the remaining verifications into the following seven steps.
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Step 1. We verify Definition 2.2.1(ii), i.e., m(0) = m” in the sense of traces: To that
end, note that myy, (0) = m) — m° in H'(w) as h,k — 0. Moreover, boundedness of the
trace operator from H'(wr) to L?(w) implies that m;, (0) — m (0) in L?(w) as h, k — 0.
Since weak limits are unique, we get that m" = m (0). Thus, m satisfies Definition 2.2.1(ii).

Step 2. We verify Definition 2.2.1(iii), i.e., m satisfies the variational formulation (2.16):
To this end, let ¢ € C*°(wr). Let I}, be the nodal interpolant corresponding to &), and
define

en(t) == In(p(t)) € Sh. (6.17)

For each interval [t;,t;y1) with ¢ € {0,1..., M — 1}, we test the corresponding discrete
variational formulation (6.2) with ¢, (¢) and integrate over [0,7]. The definition of the
postprocessed output, yields that

T
IflLk = / <8tmhk7§0h>h de
0

T T

6.2 __ __ S — =

(:) _Cex/ <mhk X Ahmhk, ‘Ph>h dt —/ (mhk X ’Phﬂ';(?(m;{k, my,., mgk), (,Dh>hdt
0 0

T T
- / (s % PP o)yt — / (o x PRI (it i i), o), dt
0 0

T
+ Oé/ (Mpk X Oymupy, Lph>h dt =: —Cexf;%k — Ii?:k — Iﬁk — Il?k + Ozf}?k. (6.18)
0

In the following, we prove convergence of the integrals I ék, ceey I,?k towards their continuous
counterparts in the variational formulation (2.16).

Step 3. We collect auxiliary convergence results: Note that similar results are implicitly
contained in, e.g., [BP06, BPS09]. Here, we elaborate the corresponding arguments. For
p € (3/2,00] and ¢ € [1, 00|, we show that

on— @ in L9(0, T; WhP(w)), (6.19a)

In(mpe X pp) = m X @ in L*(wr), (6.19b)

V(mp, X @p) — VI (M, X pn) — 0 in L*(wr), and (6.19¢)
Mpe X Vo, — m x Ve in L?(wr), (6.19d)

as h,k — 0. First, the convergence (6.19a) is a direct consequence of the definition (6.17)
of ¢y, and the approximation properties of the nodal interpolant Z}, (see Proposition 3.1.7).
To show (6.19b) and (6.19¢), we first note that D? | = 0 for all elements K € Tp,.
This implies that

[ X ‘Ph|H2(K) < vahk”LQ(K) HchhHLoo(K) for all elements K € Tj.

With approximation properties of the nodal interpolant Z}, (see Proposition 3.1.7) and the
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convergence properties of Lemma 6.5.5, we then obtain that

Mk X n — Tn(Mpk X on)ll L2 wr) + IV@nk X o) — V(M X @n) | L2(wr)

T 1/2
Sh( Z / \mhkxgohfqz(l()dt>
KeTp, 70

T 1/2
(X [ IO a0 | TonO ey )
KeT; 7"

(6.19a)
5 h ||vmhk||L2(wT) ||V(ph||Loo(wT) g h—0 ash,k—0,

This already verifies (6.19c). With |m| =1 a.e. in wyp from Lemma 6.5.6, we further get
that

[m X ¢ —Mpk X enllL2(wr)

S lmx (e —en) 2wy + | (M —Mnk) X @nll L2

S Mmoo wnlle = enlle@we) + Im = Mnkl 2w @8l Loo (wr)
(6.192) (6.19a)

S e —enllewr) + Ilm—mnllr2w,y  — 0 ashk—0.

~

The combination of the latter two estimates proves (6.19b). Replacing ¢ and ¢, with Ve
and Ve, respectively, in the latter estimate, we conclude (6.19d).
Step 4. We deal with I}, as in [BP06, Section 3]: We derive that

T
6.18
IflLk ( = ) / <8tmhk790h>hdt
0

T T
= /0 <8tmhk, 90h>L2(w) dt +/0 <8tmhk, goh>h — (8tmhk, ¢h>L2(w) dt ;.= IilﬁgA + Iilz}gB'

With the convergence property of Lemma 6.5.5(i), we get that

T T
6.18 6.19a
I;L}CA ( = ) / <8tmhk7 QOh>L2(w) dt ( — ) / <8tm, (P>L2(w) dt as h, k— 0.
0 0

For Ii;gB, we recall from Lemma 6.5.5(1) that ||Oympkllp2(,) S 1. With Lemma 3.3.1(ii)
and an inverse estimate (see Proposition 3.1.8), we then get that

1B
|1 | S P2V Ol 2o Vol 22 (wr)

(6.192) (6.20)
S blOmukllzwr IVenllLewyy < h—0 ashk—0.

The combination of the latter three equations yields that

T
I’ik’ — / <atm, LP>L2(UJ) dt as h, k — 0
0
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6. Implicit-explicit midpoint scheme for LLG

Step 5. We deal with I?, as in [BP06, Section 3]: To this end, recall from the defi-
nition (3.10) that the approximate L?-product (-,-), depends only on the nodal values of
the arguments. Together with the definition (3.11) of the discrete Laplacian Ay, we obtain
that

, (618) [T . r. ..
I, = (Mpe X ApMmipg, @p), dt = — (Apmpg, My X @p);, dt
0 0
T T
= —/ (AnTpg, Tn(Mnk X @n))y, dt = / (Vp, VIR (Mnk X @n)) 2 () dt
0 0
T
= / (Ve VIR Mk X on) = V (Mpk X @n)) 2, dt
0
T 2A4 | 2B
+ / (Vﬁhk, \Y% (mhk X (Ph)>L2(w) dt =: Ih;g + Ih;c .
0
For I 2;?, the convergence properties from Lemma 6.5.5 and (6.19¢) yield that I ,2L}€A — 0 as

h,k — 0. For Ii}fB, recall that for a,b € R3, it holds that (a x b) - a = 0. Together with
the convergence properties of Lemma 6.5.5, the product rule yields that

T T
P = / (Ve VITpi X @n) 12(0) dt+/ (Ve Mopk X Veon) 2, di
0 0
T 6.19d) [T
= / <thk,mhk X VQOh>L2(w) dt  — / (Vm, m X V(,D>L2(w) dt
0 0
T
= —/ (m xVm, Vo) dt  ashk— 0.
0
Altogether, we obtain that
) T
Ihk‘ — —/0 <m X Vm,ch)Lg(w) dt as h,k — 0.

Step 6. We deal with If{k, Ifl‘k, and I,?k,: Since we can apply the nodal interpolant Zj, to
the arguments of (-, -),, we get for I}, from the definition (3.12) of the quasi-L? projection
P;, that

5 618) [T o 4+ __ __
Ihk = 0 <mhl€ X ’Phﬂ-h (mhkvmhkamhk)a §0h>hdt
T o -
= —/ (P, (mify, mp, my), Tn(Mink X @n))), dt
0
G120 (Y e, 4+ - -
= (e (g, M M), Tn(Mnk X Pn)) () dt

With the convergence properties from Lemma 6.5.7(i), we infer that

3 (6.19b) T T
I, — 7 - ; (m(m), m x @) 2, dt = ; (m x w(m), )2, dt  as h,k—0. (6.21)
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6.5. Main result

If we replace in the latter two equations 7y, by e or I, the convergence properties from
assumption (D5) for f;; and Lemma 6.5.7(ii) for IT;, similarly yield that

T
Iﬁk (GEb) / (m x f,so)Lz(w) dt as h,k — 0, and
0
T
Ii?k (GE))b) / (m X H(m), ¢>L2(w) dt as h, k — 0.
0

Step 7. We deal with I9, as in [BP06, Section 3]: Similarly as in Step 4, we exploit
the nodewise definition (3.10) of the approximate L2-product (,-), and apply the nodal
interpolant Zj, to the arguments. Then, we derive that

¢ 618) [T r _
Iy, = (M X Oy, ), dt = — (Ormng, Tn(Mns X pn))p, At
0 0
T
= —/ (Oemung, Tn(Mpk X 1)) p2(,) dt
0
’ 6,A 16,8
—/ (Omnge, LMk X n))y, — (Omng, LMk X on)) p2i) dt =2 =Ly — Iy
0
With the convergence properties from Lemma 6.5.5, we get that
6.4 (6.19b) T
I = / (Oym, m X <p>L2(w) dt ash,k—0.
0

For I,?;CB, we recall from Lemma 6.5.5(1) that ||Oqmpkl/p2(w,) S 1. With Lemma 3.3.1(ii)

wT) ~
and an inverse estimate (see Proposition 3.1.8), we get that

157 S BV Okl o) |90 % 01 |2y

S hllOmnkll o wry IVZR(Mnk < @n) | L2(wr)

S RIVIh(mng < @n)llL2(wr)

< K|V X @n)llL2wr) T PRIV < @n) = VIR Mk X 0n)| L2(0r)
(6.19¢)

S R (IV@ e X on)ll L2 + 1)

(6.19a)
S R (lmakllczo.rm @) lonllLoorwreow) +1) S h—0 ashk—0,

ie., IIS}CB — 0 as h,k — 0. Altogether, the latter three equations yield that

T T
I,?k.—>—/ (O, m X @) 2, dt:/ (m x oym, @) 2, dt  as h,k — 0.
0 0

The combination of Step 1-Step 7 concludes the proof. O
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6. Implicit-explicit midpoint scheme for LLG

6.5.5. Stronger energy estimate

In this section, we prove Theorem 6.5.1(c), i.e., under stronger assumptions, the solution
m from (b) is a physical weak solution in the sense of Definition 2.2.1(i)—(iv). To this end,
we first prove a strong consistency property of the general time-stepping approaches (A1)—
(A3) on L?(wr).

Lemma 6.5.8 (Strong consistency of 2 and II®). Let the assumptions of Theorem 6.5.1(c)
be satisfied. Consider the general time-stepping approaches (A1)—(A3). Then, the follow-
ing two convergence properties (1)—(ii) hold true as h,k — 0:

(i) ﬂ}?(m;k, m,, . my,) — w(m) in L%(wr).
(ii) Hhe(m;;k, m,, . my,) — II(m) in L2(wr).

Proof. First, we show (i): With the convergence properties from Lemma 6.5.5, uniform
boundedness (D3) and strong consistency (D4%) of &), we can apply Lemma 3.4.1. For
all approaches (A1) and (A3) this yields that

7 (M)l myy, M) — (M) | 20y
< Nlmen (i) — (M) L2 (wp) + 1700 (mg) — 70 (M| L2 )

+[|7n (M) — w(m)|| 2wy — 0 as bk — 0,

which proves (i). To prove (ii), the detour of Lemma 3.4.1 is not required. We recall
from Lemma 6.5.6 that m € L>(wr) N H'(wr) and thus II(m) € L?(wr) is well-defined.
Then, (ii) is a direct consequence of the strong consistency (D71) of II,. O

We come to the actual proof of Theorem 6.5.1(c). In [BP06], the result is proved for
heg(m) := Am and II(m) = 0. In [BSFT14, Appendix A], a corresponding result was
proved for the tangent plane scheme. Here, we elaborate the own work [PRS18, Section 3.5
and transfer the techniques of [BSF14] to the setting of Algorithm 6.2.1. In addition
to [PRS18], we cover dissipative effects, i.e., II(m) # 0.

Proof of Theorem 6.5.1(c). Since the assumptions of (c) are stronger than those of (b), we
only have to verify that m from (b) satisfies the energy estimate (2.17). To that end, recall
from (2.15) the notion of the energy functional

C

ex 1
2 vaH%Q(w) - §<7r(m)7m>L2(w) - <f7m>L2(w)' (622)

SLL(;(m) =

Then, let 7 € (0,7) and define j € {1,..., M} such that 7 € [t;_1,t;). Since we supposed
in Section 2.2 that f € C*([0,7], L?(w)), we can define f* := f(t;) for i € {0,...,M}.
Then, we split the proof into the following five steps.
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6.5. Main result

Step 1. We exploit the discrete energy equality from Lemma 6.5.4(i): For any i €
{0,1,...,5 — 1}, we get that

Eua(mith) — Euna(my)

(6 22) C’exk i 1 i i ‘ (
d¢ ||Vm +1”L2 (w) — <7r(mh+1), mh+1>L2(w) + §<7T(mh)a mh>L2(w)

<fz+1 Z+1>L2(w) <f27mh>L2(w)

7 1 % % 1 7 %
= —ak| dmjtf; - §<W(mh+1) mh+1>L2(w) + §<7"(mh) Mp) L2 ()

1—1 1+1>

+k <dtml+17 I(?(m;jl mh7 m,, )>L2 <-fz+1 L2(w) + <.fzv m;'1>L2(w)

+ Kk (dem} ™, ;L+1/2> L2w) TF (demi i, He(mZH mj,, mj,” 1)>L2(w)

3
= _Oék||dtmz+1”h+ZT -f—ZTZ)‘l—k Hh l+1 m%,mh )s dtml+1>L2(w)-
(=1 /=1

(6.23)
Step 2. We show that
iT},‘” =k (dempt, w (mptt g, mih) = wmy ) . (6.24)
=1
To this end, we rewrite
T T2 2w mi) )+ g mi), mi) g
= lmlm ) mi ) ) — g mi ) mi)
g mi ) mi) gy + g (rimi) mi) g
B lm )y ) + ) i)
(L3) —k(ﬂ'(m?lﬂ),dtm2+1>L2(w).
With the definition of T,(.-g)7 this shows (6.24).
Step 3. We show that
iTJ(f) —k <dtmz+1, fz+1/2 fi+1/2>L2(w) <dtf”+1 mz+1/2>L2(w)‘ (6.25)
=1
To this end, we rewrite
ST OB (g5 ) ) g R e £

(=1
_ k(dtm”l,f’“/? fi+1/2>L2(w) +k <dtm2“,fi“/2>p<w)

(.fH—l l+1>L2(w) + <fiam§z>L2(w)'
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6. Implicit-explicit midpoint scheme for LLG

For the last three terms in the latter equation, we expand the first term and compute
L <dtml+1 fz+1/2> <fz+1 Z+1>L2(w) + <fi’m;z>L2(w)

7 7 1 i 7 1 % A 1 7 7
5( HF +1>L2(w) - §<mh’f +1);:2(@ + 2<mh+1af VE2(0) §<mhaf ) L2(w)

- <fi+l mZ}‘L+1>L2(w) + <f27 m;L>L2(w)

7 7 1
<mh+17 f +1>L2(w) _

1 o 1
5 *<mzjfz+1>1,2( )y T35
< ’L+1/2 ‘f’L+1>

—k

2

1
9 < l+17fZ>L2(w <mh7.f >L2 (w)

L2(w) +(m Z+1/27 -f1>

(my T2 Y L L2(w)"

The combination of the latter two equations proves (6.25).
Step 4. We combine Step 1-Step 3 and obtain that
Euna(mith)

= k(demit wP (mit! mi, mit) _W(m2+1/2)>L2( )+k<dtmz+1’fz+1/2 Fir/2)

— Era(my) + okl demi

L2(w)
— k(dg Hl/z) L2(w) + k (dymy ™ TLD (my ™, mj, my l)>L2(w)'

We sum the latter equation over ¢ = 0,...,5 — 1 and exploit the telescopic sum property.
This yields that

j—1
gLLG + ak Z H dtszrth +k Z fz+1 z+1/2>L2(w)

—kz P (mi mi,mi ), dtm““l)Lz(w)
7j—1

= Era(my) + kZ dymy ™ 7R (mt my, my ) — "(mzﬂ/z»p(w)
1=0
7—1
i k’z <dtm2+1, fz+1/2 fz+1/2>L2(

w)*

Moreover, the norm equivalence relation || - [[g2() < || - [|» from Lemma 3.3.1(i) yields that
+ b 2 t —
ELLG(mhk(T)) + Oé/ ||8tmhk||L2(w) dt+/ <atfkamhk>L2(w) dt
0 0
tj B
_ /0 (H,? (mzk, my M), 8tmhk>L2(w) dt

t.?
< &rra(my) + /0 (@, ) (Ml gy mi) — (M) 2, A1

t _ —
+ / (Omnge, Fup — Fr) () dt - (6.26)
0
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6.6. Fixed-point iteration

Step 5. We conclude the proof with standard lower semi-continuity arguments: To this
end, we require the strong consistencies (D4%) and (D7) of mj, and I, respectively, for
the convergence properties from Lemma 6.5.8, which yield that

t; B
/ (Oymp, W}?(m;{k, m;,, mgk) — W(mhk»LQ(w) dt — 0
0
t; - .
/ (H,(?(mzk, my, My, 3tmhk>L2(w) dt — / (II(m), 8tm>L2(w) dt
0 0

as h,k — 0. Together with the consistency (D5™) of (fi)M,, the right-hand side of (6.26)
vanishes as h, k — 0. Moreover, the no-concentration of Lebesgue functions yields that

t _ (Dst) [T
(Ocfi, Mni) g2y At~ — (Ocf M),y dt  as bk — 0.
0 0

Next, we get that

+
5LL(;(m2) (D—1> ) SLLg(mO) as h, k — 0.

With the convergence properties from Lemma 6.5.5, and standard lower semi-continuity
arguments, we get for arbitrary intervals I C [0, 7] that

/<5LLG(m(T)) + a/ H@thiz(W) dt > dr
I 0

< liminf / <5LLG(m;k(T)) +a / O 22 ) dt ) dr.
I 0

h,k—0

Altogether, we obtain that

[ (Suactme) + o [ 1omiaq at ) ar
I 0
T T (4.58) 0
+/(/ (8tf,m>L2(w)dt—/ <n(m>,atm>L2(w)dt>dT < /&Lg(m)dT.
1 0 0 I

Since the interval I C [0,7] was arbitrary, the latter estimate also holds pointwise a.e. in
(0,7). This concludes the proof. O

6.6. Fixed-point iteration

This section is based on the own work [PRS18, Section 5]. However, we present a few
extensions. For the solution of the non-linear problem (6.2), we employ a fixed-point
iteration, cf., e.g., [Bar06, BP06, BBP08, BPS09, Cim09, BPS12] for various adaptations
and extension of the midpoint scheme. Here, we deal with the following aspects of this
method:

133



6. Implicit-explicit midpoint scheme for LLG

e We extend the fixed-point iteration for the solution of the non-linear problem (6.2)
and the corresponding convergence analysis to our extended setting of LLG (2.3),
i.e., we also include lower-order terms. Our goal is an algorithm for one (inexact)
time-step with our IMEX midpoint scheme; see Section 6.6.1. This section elaborates
the own work [PRS18, Section 5].

e For given v, € S}, we state how to compute the discrete Laplacian Ay, and the
quasi- L2-projection Pjpy,; see Section 6.6.2.

e We present a strategy for the solution of the linear variational problem at each fixed-
point iteration on a linear algebra level. In particular, only nodewise 3 x 3 systems
have to be solved; see Section 6.6.3.

e We collect the knowledge from the latter three points and formulate an efficient in-
exact midpoint scheme for the full time-stepping. Moreover, we prove convergence
under the CFL-type condition k& = o(h?) towards a weak solution of LLG; see Sec-
tion 6.6.4. This extends [PRS18, Theorem 15].

6.6.1. One inexact time-step

In this section, we consider one isolated time-step of our IMEX midpoint scheme in Al-
gorithm 6.2.1 and formulate an algorithm, where the non-linear system (6.2) is solved
inexactly by a fixed-point iteration. We prove well-definedness and —provided a CFL-type
condition— also convergence of the fixed-point iteration.

First, we formulate our algorithm. While [BP06] seeks in the discrete variational formu-
lation (6.2) the unknown m?l, we proceed like in [Bar06, BBP08, BPS09, Cim09, BPS12]
and, given m}l € Sp, seek the unknown

. i+1/2
Hp = mh .

To this end, we first rewrite (6.2): Since a x a = 0 for vectors a € R?, we get that
i+1/2
my,

i+1
ho=

2 A 2 ,
x dem 7 B < (h —mp) = — o pp X . (6.27)

We define the approximation to the effective field and the dissipative effects as functional
Hi(pn) := CoxAppn + 'Phﬂ'f(?(Quh —mi, m}, mi;l) (6.28a)

; . . . .28a

+Pufi? 4 PLTIR (2, — mi, mi, miTh) € Sy,

With the latter two equations, the discrete variational formulation (6.2) reads as follows:
Find pp € 8y, such that

2c

2 i i 2,
T (Bns@n)y, + (< Hp (pn), n)p, + i (e X My, pn)), = T (mj, on)), (6.28D)

for all ¢y, € 8p,. With these preparations and based on [PRS18, Algorithm 13|, we formu-
late an algorithm, which —given the previous time-step m}1 and based on the rewritten
variational formulation (6.28)— performs one (inexact) time-step of our IMEX midpoint
scheme.
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6.6. Fixed-point iteration

Algorithm 6.6.1 (Inexact IMEX MPS, one time-step). Input. Previous time-step m} €

S}, initial guess ul(lo) = m}, € 8}, ileration tolerance € > 0. Perform the steps (a)-(c):

(a) Compute ’Hﬁl(ugo)) € 8y,; see Section 6.6.2 for details.
(b) Loop. For {=1,2,..., repeat the following steps (b-i)—(b-ii) until
i +1 i l
I, o) = Hi )l < = : (6.20)

(b-i) Find ,ugfﬂ) € 8y, such that

2, (41 41 i 20, (041 i
% o ™ pndy Gy T < HG (), pn), + - (" x mi o),
, (6.30)
=% (mi,, en)y,  for all g € Sp;
see Section 6.6.3 for details.
(b-ii) Compute ’Hﬁl(ugﬂ)) € 8y,; see Section 6.6.2 for details.
(c) Set mit! = 2;1,2“1) —m} € 8.
Output. Approzimation mij‘l ~m(titr). O

The following proposition proves that the iteration in the latter algorithm is well-defined
and states general beneficial properties of the iterates. Essentially, these findings are inde-
pendent of the precise definition of heg(m) and II(m). Based on [PRS18, Remark 14(i)—
(ii)], we collect and elaborate results from, e.g., [Bar06, BBP08, BPS09]. In particular, (ii)
extends [Bar06, Theorem 3.1] to our setting of LLG (2.3).

Proposition 6.6.2 (Fixed point iterates, [PRS18, Remark 14(i)—(ii)]). Consider the fized-
point iteration from Algorithm 6.6.1(b). Then, the following two assertions (i)—(ii) hold
true:

(i) The iterates (Hg))?io € 8y, are uniquely defined. It holds that
¢ i
i ooy < M llpoeqy  for all £ € No.

(ii) For all ¢ € N, the update m?‘l = 2/,Lfb+1 — m}z € Sy, satisfies the perturbed discrete
variational formulation

; i+1/2 ; i+1/2 i+1/2 ;
(demitt on), = —(my 2 x G (my ), 1), + admy T demi ),
i+1/2

+ (m,, X T, ®n)y, for all pp € Sp, (6.31)
where r,(lz) = ’HZ,'L(;LEL@H)) — 'Hﬁl(ug)) € Sy. The update m/"" satisfies
Imit(2)| = |mj,(2)| for all nodes z € Ny,

and, in particular, HmZHHh = |mi|n as well as HmZHHLoo(w) = ||m},|| Lo (w)-
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6. Implicit-explicit midpoint scheme for LLG

Proof. For the proof of (i), we follow, e.g., [BPS09, Lemma 6.1]. Given an iteration u,(f) €
S}, we define for vy, ¢y € Sy, the bilinear form

BOW,@1) 1= = {n @nhy + (o x Hy (D), on)y + 2 n X miony (6.322)

With this definition, ,ugfﬂ) € 8, is uniquely defined by

30) 2,
B(K)(ugfﬂ),(ph) :30) %<m§1, wn), forall ¢ € Sy (6.32b)

For all approaches (A1)-(A3), we infer from (a x b) x a =0 for a,b € R? that

2
BO (o, n) = 1 [¥nllf, for all by, € S,

i.e., BO(..) is elliptic with respect to | - ||n. Hence, the Lax Milgram theorem (see
Theorem B.2.4) proves existence and uniqueness of the iterate ,ung) € 8jp. Thus, the

sequence (u%))jio € 8, is uniquely defined. To show the boundedness statement, let

z € N}, and denote with ¢, the associated nodal basis function. Then, we test (6.32) with
pp = ui(fﬂ)(z) ¢» € Sp,. Recalling that (a x b) -a = 0 for all vectors a,b € R3, the
nodewise definition (3.10) of the approximate L%-product (-,-), cancels out the last two

terms in (6.32a), and we obtain that

2 32) 2 2 ,
— \ugfﬂ)(z)ﬂ (632 2 i (2) -,ugfﬂ)(z) < % |mj,(2)| ]u,(fﬂ)(zﬂ for all nodes z € Np,.

k kol =
Since functions in &}, attain their maximal modulus at some node, this proves (i).
For the proof of (ii), we fix £ € N and write ml}'b+1 = Q;LELZH) —m. From the defini-

tions (3.2) of the mean-value and the discrete time-derivative, this yields that
#gfﬂ) _ m;':rl/Q and dtmﬁl —9 (M%H) —mi).

The perturbed variational formulation (6.31) is a direct consequence of (6.30) and (6.27).
Finally, thinking of r,(f) € Sj, as an additional contribution to ?—LﬁL(mZH/ 2), we infer the
nodewise modulus equality in the same way as in Proposition 6.5.3 for the (exactly solved)

IMEX midpoint scheme. Altogether, this concludes the proof. O

Finally, we deal with the convergence of the iteration in Algorithm 6.6.1(b) and extend
the convergence result of, e.g., [Bar06, BBP08, BPS09], and additionally cover lower-order
terms.

Proposition 6.6.3 (Convergence of fixed-point iteration). Consider the fixed-point itera-
tion from Algorithm 6.6.1(b). Suppose linearity (D2) and boundedness (D3) for my, as well
as the Lipschitz-type condition (M2) for II,. Then, the following two assertions (i)—(ii)
hold true for all approaches (A1)—~(A3) for w2 and 1.
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6.6. Fixed-point iteration

(i)

(i)

There exists a constant C > 0, which depends only on Cex, Cmesh, 7(+), and II(-)
such that, for all h,k > 0, which satisfy the CFL-type condition

(L4 [[m )| Fee () kB2 < C, (6.33)

the sequence of iterates (ﬂg))?io is a contraction in L*(w). Then, there exists a

unique pp, € Sy, such that

ug) — pp in L*(w)  as £ — oo.

In particular, pp and mﬁ';rl =2 — m}b are unique solutions of the discrete varia-
tional formulation (6.28) and (6.2), respectively.

Under the CFL-type condition (6.33), the stopping criterion (6.29) is met after finitely
many iterations.

Remark 6.6.4. (i) The appearance of Hmme(w) in the CFL-type condition (6.33) re-

(iii)

flects that m is the input for one time-step in Algorithm 6.6.1. However, this is not
a restriction for the full time-stepping: With Proposition 6.6.2(ii), uniform bounded-
ness (M1) of m$ yields that

i llpee@w) = mpllpe@) S 1 foralli=0,..., M.

In particular, the latter holds regardless of the indices at which the subsequent itera-
tions are stopped.

In contrast to the stopping criterion (6.29) in Algorithm 6.6.1 and, e.g., [Bar00,
BBP08], the works [BP06, BPS09, BPS12] employ the stropping criterion

||u,(f+l) - Mg)Hh <e. (6.34)

Together with the assumption (M1), Lemma 6.6.5 below yields that

i /41 i ¢ _ i /41 ¢

11 (s, ) = A ()0 S B2 (4 1 3 )) s, = 2l
(i), _ 041 ¢ (M1) 041 ?
R M) sy = i S BT Y —

Hence, the stopping criterion (6.29) generally yields less iterations than that in (6.34).

For the explicit approaches (A2) for i >0 and (A3), the ﬂ,? and H}(?—contributions
do not depend on py. In this case, we obtain already from the boundedness statement
for Ay, from Lemma 3.3.2 and || - ||g2(wy = || - [|n from Lemma 3.3.1(i) that

i i 6.28a
124 (on) — Hi () Z ([ Cox Anipn — Coxe Antbn |

S h7 2 len — Ynllrewy S P2 llen — Ynlln,

and the statement of Proposition 6.6.3 is valid without the assumptions to my and
I1,,.
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6. Implicit-explicit midpoint scheme for LLG

We postpone the proof of Proposition 6.6.3 to the end of this section. In the following
auxiliary Lemma 6.6.5, we establish a Lipschitz-type condition for Hj,(-).

Lemma 6.6.5 (Lipschitz continuity of #;(-)). Consider the approzimate effective field
and dissipative effects H, (-) from (6.28a) defined by any approach (A1) -(A3) for 71'}(? and
H}(?. Suppose linearity (D2) and boundedness (D3) for my, as well as the Lipschitz-type
condition (M2) for I1;,. Then, there exists a constant C > 0, which depends only on Cex,
Cmesh; 7(+), and II(-) such that

15, (n) — Hi(Wn)lln < Ch72 [T+ |onll oo (w) + [%nll o) ] len — ¥nlln

for all pp, Y € Sh.
Proof. For ¢y, 1, € Sp, it holds that
174 (on) — Hi, (¥n)lln

(6.28a) . ‘ . . . ,
< NAwen = Annlln + (1Pry (2n — mi, my, my ) — Pryy (29, — mi,, mi, mi )|l

+ |PLIIR (200 — M, mij, i) — PRILY (24, — mj, mj, mp ") ||

For the explicit approaches (A2) with i > 0 and (A3), the general time-stepping ap-

proaches 71',(? and th depend only on mj and mz_l. Hence, the last two terms in the

latter estimate vanish in this case. For the implicit approaches (A1) and (A2) with i =0,
we obtain that

oy (2epn — mi,, mij,mit) = mh(ep) as well as IIP (24, — mj, mj, mj, ") = Iy (4hy,).
We thus obtain for all approaches (A1)-(A3) that

1), (en) — Hi,(Wn)lln S 1 Anen — Antbnlln + | Prmn(en) — Prmn(n)|n
+ |PrIln(en) — Prlln(vn)lln-

With the boundedness statement for Ay from Lemma 3.3.2, we estimate that

AR — Aptnlln = 1AL (en — )l S A2 llen — ¥nllr2(w)-
With the boundedness statement for Pj, from Lemma 3.3.3, we estimate that

(D2) (D3)
1Prmn(en) — Pamn(@n)lln S llmwn(en —¥n ) 2@ S llen — ¥nllrzw),

as well as
IPrIIL(en) — Pulln(¥n)lln < [ Ta(en) — Ma(n)ll 2w
(M2)
S T[T+ llenllnew) + 9l w) | llen — ¥nll p2w)-
Together with || - ||z2() = || - ||n from Lemma 3.3.1(i), the combination of the latter three
equations concludes the proof. O
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6.6. Fixed-point iteration

We have everything together for the proof of Proposition 6.6.3.

Proof of Proposition 6.6.3. We adapt the corresponding technique of, e.g., [BPS09, Lemma 6.1]

to our setting:

(4+1)

To prove (i), we estimate ||, "~ — ug) ||n. For all £ € N, we get that

2 6.30 i i
2l = oy, 2 Y g () — ) < H V), en),

200 041 ¢ i
=2 Y = ) xomien),

4 i l i l—
= (T (M) = M) ] en,
— (Y = 1Y 1 (1Y), ),
2c
- (™) — i) x mi, p),  for all g € S,

We test the latter equation with ¢y := u(Hl) — ugf) € 8j,. Since (a x b)-a = 0 for vectors

a,be RS we obtain that
/ 1 +1 i i /—1 /+1 ¢
e = 15 = =y [ ) = MG LY = ),
Z 1 7 {— é 4
<1 ) oo o) 10 (128) = 8 () 12 = 121

for all ¢ € N. Recall the modulus estimate
¢ i
g ey < lImllpeeqy forall £ € N (6.35)

of the iterates from Proposition 6.6.2(i). With the assumptions to 7, and ITj, we obtain
from Lemma 6.6.5 that

i i l— _ ¢ — o
O R e [ e R Pl PR R % el PP N T Pl
(6.35) , .
< B[ g e ] e =

The combination of the latter three equations yields that

{+1 /-1
sy T — =Dy

‘ - i i ¢

il S k2 (e [+ il o] af” = o
_ i J4 {—

SRR (1 e ] Ief” = py Dl for all £ € N.

Under the assumption (6.33), the sequence (“g))?io is thus a contraction. With the Banach

fixed-point theorem (see Theorem B.2.6), this concludes the proof of (i). Finally, (ii) is a
direct consequence of (i) and the latter estimate. O
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6. Implicit-explicit midpoint scheme for LLG

6.6.2. Evaluation of A; and Py,

In this section, we discuss, how to evaluate, for given v, € 8}, the discrete Laplacian Ay,
and the quasi-L? projection Ppap,. To this end, let @; € Vi, be the nodal hat function
associated with z;, i.e., p;(zx) = J;, with Kronecker’s delta. As basis of Sy, we employ

P3(j—1)4¢ = pjer foral j=1,...,Nandall £=1,2,3,

i.e., for fixed j € {1,..., N} the three consecutive basis vectors obtained from ¢ € {1, 2, 3}
in the latter definition belong to the node z;. Moreover, we define the well-known mass-
matrix and stiffness-matrix M € R3V>3N and L € R3V>3N yia

M, = (¢, ¢k>L2(w) and Lj := <v¢j,v¢k>L2(w) forall j,ke{l,...,3N}.
(6.36)

Clearly, M is symmetric and positive definite and L is symmetric and positive semi-definite.
Finally, we define the mass-lumped mass-matrix M;, € R3V*3N yia

(M, ], = (5, ), forall jke{l,. .. 3N}

Note that M}, is diagonal and positive definite. With the latter notation, we can formulate
the following proposition.

Proposition 6.6.6 (Evaluation of A, and Py). Let b, € Sy, and y,ya,yp € R¥*N such
that

3N 3N 3N
Yn= Y ¥ibj Dun =) (ya)i¢;, and Pupp =) (yp)j$;-
s =0 =0
Then, it holds that
ya=—(My) 'Ly and yp=(M;)"' My. (6.37)

Moreover, the approrimate L?-scalar product (-, )y, gives rise to a diagonal mass matriz
My,. In particular, its inverse (Myp,)~! can be evaluated exactly at linear cost O(N).

Proof. The assertion is a direct consequence of the definition (3.11) of the discrete Laplacian
Ay, the definition (3.12) of the quasi-L? projection Py, and of the definition (3.10) of the
approximate L2-scalar product (-,-),. O

6.6.3. Nodewise systems

In this section, we simplify Algorithm 6.6.1. Essentially, we can compute the fixed-point
iterate with the parallel solution of nodewise 3 x 3 systems. This is a direct consequence
of the following proposition, which requires the following standard notation: For given
a € R3, we define the matrix

0 —as an
[a] == a 0 —a|eR> (6.38)
—ag al 0
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6.6. Fixed-point iteration

We note that [a] .. is skew-symmetric satisfies that

[a] b=axb forall vectors a,b € R3. (6.39)

Proposition 6.6.7 (Nodewise systems). Consider the fixed-point iteration from Algo-
rithm 6.6.1(b). Let ¢ € N and suppose that uf; as well as m}1 are known. Then, the
nodewise defined matrices

AL =T SIH () ()], ~ G [mi )], € forallj € (L., N} (640

are positive definite. Hence, there exist unique solutionsy; € R3 to

¢ i
Ay =mi(2)). (6.41)

Moreover, the next iterate ugﬂ) € 8, satisfies ;LEZHI)(zj) =y forallje{l,...,N}.

Proof. Since for given a € R3, the matrix [a]x from (6.38) is skew-symmetric, we get that

Ay)x . x 029 x|?, forallje{l,...,N}

0
J

solutions. For the representation formula, note that the approximate L?-scalar product
(-,-)), depends only on the nodal values of the arguments. In particular, the next iterate

,ugﬂ) € 8, satisfies that

i.e., the matrices A’ are positive definite and the nodwise systems (6.41) admit unique

k . ak j :
/,L;LZ—H)(ZJ’) I 5#2“1)(%‘) % (H;L(/J’Ef))>(z]) + 7N§f+1)(zj) % [%zh(ug))](zj> = mﬁ(zj)y

for all j € {1,..., N}. Hence, with the defining property of [a]x € R3*3 for a vector a € R3
from (6.39), we get from the latter equation that ugfﬂ) (zj) € R? are the unique solutions
of the nodewise systems in (6.41) for all nodes z;. Since functions in &), are uniquely

defined by their nodal values, this concludes the proof. O

The latter proposition cumulates in a simplified version of Algorithm 6.6.1, where we
replace the underlying variational formulation (6.30) by the nodewise 3 x 3 systems from
the latter proposition.

Algorithm 6.6.8 (Inexact IMEX MPS, one time-step, nodewise systems). Input. Previ-

ous time-step mﬁl € 8y, initial guess ;LELO) = mﬁl € 8y, iteration tolerance € > 0. Perform

the steps (a)—(c):
(a) Compute H%(ugo)) € 8y; see Lemma 6.6.6.
(b) Loop. For {=1,2,..., repeat the following steps (b-1)—(b-ii) until

17 () = ()] < e
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6. Implicit-explicit midpoint scheme for LLG

(b-1) Compute u,(fﬂ) € 8y, by solving the nodewise systems

Ag@) [ugfﬂ)(zj)] = mi(zj) forallj=1,...,N,

where A;g) € R3*3 are defined by
k , .
A = 1= D3 () (20)], 5 [mi(z)]

(b-ii) Compute ’H%(uﬁf“h € 8y; see Lemma 6.6.6.
(c) Set mjt! = 2u§lé+1) —mj € S).
Output. Approximation mﬁj‘l ~m(tit). 0

Remark 6.6.9. (i) With Proposition 6.6.7, the nodewise system are a smarter way to
solve the discrete variational formulation (6.30), i.e., the outputs of Algorithm 6.6.8
and Algorithm 6.6.1 are identical.

(ii) With the results from Section 6.6.2, the functional Hi (-) from (6.28a) can be evaluated
exactly and at linear cost. Moreover, we get from Lemma 6.6.6 that 'H}L() requires
only the assembly of the mass and stiffness matriz from (6.36). However, this is
independent of the time-step and has to be dome only once at the beginning of the
time-stepping.

(iii) The nodewise systems can be solved exactly and in parallel, and require no precondi-
tioning. Together with (ii), one iteration can be performed at linear cost.

6.6.4. Convergence of the inexact midpoint scheme

In this section, we bring together all the findings of Section 6.6.1-6.6.3 and formulate an
efficient algorithm for the full inexact time-stepping of Algorithm 6.6.1. Then, we prove
convergence towards a weak solution of LLG. At first, we extend the inexact IMEX midpoint
scheme with the nodewise systems from the latter section to a full time-stepping.

Algorithm 6.6.10 (Inexact IMEX MPS, full time-stepping). Input. Approximation

m,;l = m% € 8y, of initial magnetization, iteration tolerance € > 0.

Loop. Fori=0,...,M — 1 iterate the following steps (a)—(c):
(a) Set ug,o) :=m}, and compute ’Hﬁl(ug’o)) € Sy, see Lemma 6.6.6.

(b) Loop. Fort¢=1,2,..., repeat the following steps (b-i)—(b-ii) until

1AL () — A ()l < e - (6.42)
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6.6. Fixed-point iteration

(b-i) Compute MS’ZH) € 8y, via

A;i’g) [,ug’“l)(zj)] = mﬁl(zj) forallj=1,...,N,

where Agi’z) € R3*3 qare defined by

AP =T S () (20)], — S [mi 2],

(b-ii) Compute H%(uﬁf’“l)) € Sp; see Lemma 6.6.6.
(c) Set mit! = 2;15?’”1) —mi €8},
Output. Approzimations m} ~ m(t;). ]

Remark 6.6.11. When the iteration in the latter algorithm is stopped, the update formula
of (c) yields that m;LH/Q = uﬁf’“l). However, since the functional H;(-) from (6.28a) is

not necessarily linear, possibly
i i i i,0+1 i i
M (m) # 24, (uy ) - Hi (m)).

(i,€+1))

Hence, in general one cannot recycle H%(uh for the next time-step.

Finally, we formulate our convergence theorem, which, in contrast to our basic con-
vergence result from Theorem 6.5.1, takes into account the inexact solution of the dis-
crete variational formulation (6.2). So far, this was considered only by [Bar06, Cim09] for
heg(m) := Am and II(m) = 0. In particular, [Cim09] proves convergence towards a weak
solution under the CFL-type condition k = o(h?), but its algorithm is based on the equiv-
alent Landau-Lifshitz form (6.1). For the Gilbert form (2.3a), [Bar06] proves convergence
under the additional assumption € = o(h?). Our result builds on [Bar06] but requires no
coupling ¢ = o(h?) and additionally considers lower-order terms. Here, we elaborate the
own work [PRS18, Theorem 15].

Theorem 6.6.12 (Convergence of inexact IMEX MPS, [PRS18, Theorem 15]). Consider
Algorithm 6.6.10 for the discretization of LLG (2.3). Then, the following three asser-
tions (a)—(c) hold true:
(a) Suppose that
e the approximations mg are uniformly bounded (M1);
e the approximation operators y, are linear (D2) and uniformly bounded (D3);
e the approximation operators Iy satisfy the Lipschitz-type condition (M2);
there holds the CFL-type condition

k= o(h?). (6.43)
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6. Implicit-explicit midpoint scheme for LLG

Then, there exists kg > 0, which depends only on Cex, Cmesh, ™(-), II(-), and m°
such that Algorithm 6.6.10 is well-posed for all k < ko and all € > 0. In particular,
the underlying fived-point iterations are contractions and converge in L?(w) towards
the unique solutions of the discrete variational formulations (6.2) as € — 0.

(b) Suppose the assumptions from Theorem 6.5.1(b), and the CFL-type condition (6.43).
For € > 0, denote the postprocessed output of Algorithm 6.6.10 with megpr. Then,
there exists a subsequence of m.py, and a weak solution

m € H'(wp) NL>®(0,T; H'(Q))
of LLG (2.3) in the sense of Definition 2.2.1(1)—(iii) such that

me, —m  in H (wp) ase, h,k— 0.

(c) Suppose the assumptions from Theorem 6.5.1(c), and the CFL-type condition (6.43).
Then, m from (b) is a physical weak solution in the sense of Definition 2.2.1(i)—(iv).

Proof of Theorem 6.6.12. According to Proposition 6.6.7, Algorithm 6.6.10 successively
performs time-steps with the inexact midpoint scheme from Algorithm 6.6.1. At the i-
th time-step, Proposition 6.6.2 yields that the iterates are well-defined and that

, (M1)
Imj |l = Impllpew) < 1 forallie{0,...,M—1}, (6.44)

regardless of when the iteration is stopped. With Proposition 6.6.3(i), the sequence of
iterates is a contraction for small enough

i 5 (6.44) _
(L4 [[mf )| Foeqy ) kA2 "= kB2

Hence, we conclude (a) with the CFL-type condition (6.43).
To show (b)—(c), we require an operator Py, : 8y, — Sp,, which is defined by

(7~Dh<Ph,¢h)L2(w) = (¢n,tn), for all pp, P € Sp. (6.45)
With the latter definition, we obtain that
~ (3.12) ,~
(PrPren:¥n)y, = (PhPh Yh)p2() = (Ph,¥n)y,  for all ¥y, € Sp,
ie., ’INDh is the inverse of the quasi- L?-projection P}, in Sj,. Moreover, there holds a uniform

boundedness property of 7~3h in L?(w). To see this, let ¢}, € Sj,. With the norm equivalence
|22y = || - | from Lemma 3.3.1(i), we obtain that

~ ~ ~ (6.45) ~
1Prenlliew) = (Pren Pren)rew) = (@n Pren)y
< llenlln 1Prenlln < lenllnzew) 1Prenll 2w,
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6.7. Uniqueness of discrete solutions

i.e., it holds that

1Prenllzeew S llenlreew) for all wp € S (6.46)

Then, we note that Proposition 6.6.3(ii) yields for given € > 0 an index /. € N at which
the stopping criterion (6.42) is met. This lets us define

gl = £ Py [ () — 3 (ul ) ] € S, for all i € {0,..., M — 1} (6.47)
as well as the corresponding ﬁgfk) € L?(wr) via
9. (t) =gk, forallte[ttiy) and i€ {0,...,M —1}.

In particular, the norm equivalence || - [|g2(,) = || - ||n from Lemma 3.3.1(i) yields that

_ — (647 b L (ile+1 (i
1Gerse — Frildory < K D IP[ M) = #H () 11200
=1
(6.46) ML . (6.42)
<R I ) = M1 ()2 S 20 ase k0.
=1

Hence, the consistency properties (D5) and (D5%) of (f} )M, yield the corresponding

g —f in LQ(OJT) ase,h,k— 0, and

9o — f in LQ(wT) ase, h,k — 0,

respectively. Together with the perturbed discrete variational formulation (6.31) from
Proposition 6.6.2(ii), the actual proof of (b)—(c) then follows along the lines of the proof of
Theorem 6.5.1(b)—(c) for the (exactly solved) IMEX midpoint scheme with g%, and g,

instead of f}iﬂ/ % and F1i, Tespectively. O

6.7. Uniqueness of discrete solutions

In this section, we prove a uniqueness result of the solution m?j’l € 8y, of Algorithm 6.2.1.
The techniques of this section are inspired by [Pro01, Lemma 4.4], where a uniqueness
result for an analytical solution of an equivalent reformulation of LLG (2.3a) is proved. So

far, uniqueness of the discrete solution mi*! required

the CFL-type condition k = o(h?)

and was a bi-product of the convergence results of the fixed-point iteration for the solution
of the non-linear system from the variational formulation (6.2); see, e.g., [Bar06, BP0G,
BBPO08, BPS09] and the latter section. In Theorem 6.7.1 below, we prove that, essentially,
the weaker assumption that

no finite time blow-up and k =o(h)

suffice to establish uniqueness of mﬁfl.
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6. Implicit-explicit midpoint scheme for LLG

Theorem 6.7.1 (Uniqueness of solutions). Consider the IMEX midpoint scheme from
Algorithm 6.2.1 for the discretization of LLG (2.3). Suppose that

e the approximations m% are uniformly bounded (M1);
e the approximation operators wy, are linear (D2) and uniformly bounded (D3);

e the approximation operators II, satisfy the Lipschitz-type condition (M2);

there holds the mild CFL-type condition k = o(h);

there is no finite time blow-up in the sense that

sup [|[Vmpl| ooy < Cv < 00, (6.48)
h,k>0

Then, there exists ko > 0, which depends only on m°, Cox, a, 7(-), TI(-), Cmesh, and Cy
such that for all k < ko the sequences (m}b)f\io of approrimations are unique.

The actual proof, is essentially based on the following lemma.

Lemma 6.7.2. There exists a constant C > 0, which depends only on Cpesh, such that

(h X Aptpn, ¥n), < ChH [ Vpnllpeew) I¥nllh - for all pa, ¢n € Sh.

Proof. Let ¢, € 8p, be arbitrary. We denote the standard nodal interpolation operator
corresponding to 8y with Zp. Then, we use an implicit trick from [BP06, p. 1410]: Since
the definition (6.20) of the approximate L2-scalar product (-, -), depends only on the nodal
values of the arguments, we can apply Zj to the arguments. Then, the definition (3.11) of
the discrete Laplacian Ay, yields that

(n X Aptbp, Yn)y = (Y X i, Aptbp)y,
= (Zn(¥n x pn), Antpn)y, = —(VIu(¥n X pn), Vbp) p2 (-

The approximation properties of Zj, (see Proposition 3.1.7) and (a x b) - a = 0 for vectors
a,b € R? further yield that

(B < Dptn, n)), =
= —(V(¥n X n), Vbn) g2y + (VL = Zp) (P X pn), VPn) g2,

= — (W X Vin, Vn) gy + O (V1= Zu)(%n X ), Vibi) g2y
KeT,

SIVenll Lo @) 1nll L2 @) IVnl L2 w) + 1 Z 19n X pnll 2 ) VPR L2 (k) -
KeT,,

Since it holds elementwise that D%, = D?uy, = 0, we get from the latter estimate that

(en X Appn, i)y,

S IVl oo @) [¥nll 2@ VRl L2y + D IV el Lo () 190 1 3 10
KeT,
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With an inverse estimate (see Proposition 3.1.8), the latter estimate yields that

(b X Anpn, )y, S hHIV sl poo @) 1901172 )

Together with the norm equivalence relation || - ||, = || - [ £2(,) from Lemma 3.3.1(i), this
concludes the proof. O

We have everything at hand for the actual proof of Theorem 6.7.1.

Proof of Theorem 6.7.1. We split the proof into the following five steps.

Step 1. We collect auxiliary notations and results: Fix ¢ € {0,...,M — 1} and let
mﬁfl mt' € S}, both solve the discrete variational formulation (6.2). By abuse of nota-
tion, we define

‘ 1 _ 1
my = (my b m) €8y, and aw = O (Wi 4 mp) € Sn. (6.49)

Moreover, we define the mean value of the differences as

, . w 1 1
d =y T = S S e 5 (6.49b)

For given p, € 8y, we recall from (6.28a) the notion of the approximate effective field and
dissipative effects
Hj, (1) = CoxDnpan + Prrp (2pn — my, mj, mj ')
i+1/2 _
+ Py 7+ PUIIR (2py, — mi, mi, mih) € S).
i+1

Finally, since m;™ and m;" " both solve the discrete variational formulation (6.2), Theo-
rem 6.5.1(a) applies and we obtain uniform boundedness in the sense that

—~i+1

—~—i+1/2
17272 | oo () + 122 | oo )
1 . .
S*HmZHHwa)‘F 7 Lo ) + ]| oo ()
) 0 (M1)
= 2{|m [l ooy = 2[ImY o) S 1. (6.50)

Step 2. We estimate HdﬁlﬂHh: Following the lines of Section 6.6.1, we rewrite the
discrete variational formulation (6.2) with the notations from Step 1. Since m and

m;,"! both solve (6.2), we get for py, € {mZH/z,NHl/Z} that

2 i 2 i 2 i
% (s o)y + (> H (), pn)y + == (n X M, @n)y = 4 (M, n)y,s
for all ¢y, € 8p. From the latter equation, we obtain that
2, iv1)2 i+1/2 i it+1/2 —~i+1/2 i ~it1/2
S ), = i H (i), on) (-G, ), ),

2 . .
- ?04 (d;:rl/2 x mj, pp), for all ¢ € Sp.
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We test the latter equation with ¢y, := dﬁjl/?

. Since
ml}';‘rl/Q (6.49b) m’;j—l/Q B d2+1/2 (6.51)
and (a x b) -a = 0 for vectors a,b € R, we obtain that
2 it1)2 +1/2 L i1)2y gitl/2 —i+1/2 P ~it1/2\  git1/2
Sl IR = i xm m ), )+ o ), ),

(6.51) _<m2+1/2 « %Z(m2+1/2)7d2+1/2>h n <m;‘l+1/2 y HZ(Am/ZH/Z),dZHm)h

i+1/2 i i+1/2 i —=i+1/2 i+1/2
= (P [ (my ) g ] T, (6.52)
With the auxiliary notations from Step 1, it holds that
Hi(m ) — Hi(my ) = Coxnd) ' + Ry,

where the residual term Ry, is defined as

Ry = ’Pmr;(? (mzﬂ, m}, mﬁ';l) — 'Phﬂ',(?(mfl, m}, mﬁfl) (6.53)
+ P IR (m) mj, mi ) — PP (m ! mi, m) ) € S
The combination of the latter three equations then yields that
i+1/2,2 (6.52)  C, +1/2 i+1/2  i+1/2 1 +1/2 +1/2
I 2R 2 =Sk g Ay ), < Sk R 0T,
(6.54)
—. _Cex T, — ET
=: 5 1 5 2.

Step 3. We estimate 77: From Lemma 6.7.2, we get that

(6.54) i+1/2 i+1/2  4i+1/2 _ i+1/2 i+1/2
Ty 2 k(mi o andit P ), < kR mT Y e T2
. (6.48) i
_ _ 1+1/2 _ i+1/2
< khT VTRl poe p) 1213 S KR A3

Step 4. We estimate Ts: If we employ the explicit approaches (A2) with i > 0 or (A3)
for ﬂ’,(? and H}(?, then Rj = 0 and there is nothing to do. For the implicit approach (A1)
and (A2) with ¢ = 0, the residual term becomes

Ry, 2 Py (mt ) - Py () 4 P (mi ) - Py I (). (6.55)

We estimate that

(6.54)

T k(T2 xmit? Ry,

) ) (6.50) )
1+1/2 1+1/2 1+1/2
< ki o) I 20 IR < kI (0 (1R 8-
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To estimate ||Rp||n, the boundedness statement of Py from Lemma 3.3.3 yields for the
approaches (A1) or (A2) with ¢ = 0 that

(6.55) i i i —
IRulln < |[Pamn(my ) = Prmn(mg, ) n + | PrILa(m) ) — PRI () |

< mn(my ™) = m @) e + 1Ly ) = T ) 2 )

(6.56)
For the first term on the right-hand side of (6.56), we get that
i+1/2 —~—it+1/2 (D2) i+1/2 —~—it+1/2
e (m ™) = e, ) o =l (mg ™ ) e
(D3) . . .
+1/2  —~—it+1/2 (6.49b) \ Ji+1/2
S AR PPl A 1
For the second term on the right-hand side of (6.56), we get that
X84 (") = 0 (33, ) 2
M2) ,
_ 1/2 —it1/2 /2 —~itl/2
S R P e [ AT A PR
(6.50) ,
+1/2  ——it+1/2 (6.49b) , _ +1/2
S T I Ol A P2
Together with the norm equivalence relation || - || >~ || - [|[£2(,) from Lemma 3.3.1(i), we

arrive at
_ i+1/2
Ty S kR
Step 5. We combine Step 1-Step 4 and obtain that

6.54 i Cex i i i k., i
0 (6.54) ||dh+1/2||i2z : <mh+1/2 « Ahdh+1/2,dh+1/2)h+ ; <mh+1/2 « Rh’dh+1/2>h

_ 1+1/2
> (1-Ckh7Y) (a3,

where C' > 0 is independent of h,k > 0. With k£ = o(h) and for sufficiently small k£ > 0,

the latter factor is positive and we obtain that dZH/ > = 0 and thus m ’H = ’n*LZH. This
concludes the proof. O

Remark 6.7.3. If the assumption (6.48) fails to hold, we cannot make the last estimate
in Step 3 of the latter proof. Arguing along the same lines, we arrive in this case at

0> (1= Ckh™ [14 | Vil oo ) 1521,
where C' > 0 does not depend on h,k > 0. In order for the factor in the latter estimate to
be positive, an inverse estimate (see Proposition 3.1.8) and Theorem 6.5.1(a) yield that
(M1)
kR (14 IVl poowry | S kR Wnkll pooor) S kB2 M)l pooqry S k72

~

Hence, without (6.48), the statement of Theorem 6.7.1 remains valid under the CFL-type
condition k = o(h?). However, this is the classical bi-product of the convergence result of
the fixpoint iteration; see, e.g., [BP06, BBP0S, BPS09] or Theorem 6.6.12.
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7. Decoupled midpoint scheme for SDLLG

7.1. Introduction

In this chapter, we extend the (formally) second-order in time midpoint scheme from Chap-
ter 6 to the SDLLG system (2.23).

As far as coupled LLG systems are concerned, the midpoint scheme was so far only ex-
tended to the coupling of LLG with the full Maxwell system [BBPO08]. There, the implicit
nature of the midpoint rule gives rise to a fully-coupled non-linear system for the approxi-
mations to the LLG variable and the Maxwell variables, which increases the computational
complexity of the method.

For the coupled SDLLG system, the works [AHP*14, ARB"15, Rugl6] formulate and
analyze a first-order in time tangent plane scheme. In particular, these works employ an
explicit Euler approach to the coupling term, which even decouples the computation of
mitt ~ m(tipq) and sit A s(tig).

With the midpoint scheme for the coupling of LLG with the full Maxwell system [BBP0S,
Algorithm 1.2] and the corresponding tangent plane scheme for SDLLG [AHP 14, ARB*15,
Rugl6] at hand, the formulation and analysis of the corresponding midpoint scheme for (2.23)
seems (relatively) straightforward. However, we identify the following issues:

e The straightforward fully coupled approach in the virtue of [BBPOS] gives rise to a
numerically expensive fully coupled system for the computation of m;’jl ~ m(tiz1)
and sﬁj‘l ~ $(ti+1). The explicit Euler-approach from the first-order tangent plane
[AHPT14, ARB™15, Rugl6] for the coupling term is feasible, however, reduces the
superior (formal) convergence order of the midpoint scheme from second to first order
in time.

e Surprisingly, the implicit midpoint approach for the spin diffusion equation prevents
an easy combination of the techniques of, e.g., [AHPT14, ARB™15, Rugl6, PRS18]
and Chapter 6, respectively, for the verification of the energy estimate (2.27).

7.1.1. Contributions

In this chapter, we make the following contributions, which are novel and have not been
published elsewhere.

e We extend the midpoint scheme for plain LLG from [PRS18] and Chapter 6, respec-
tively, to the setting of SDLLG (2.23).

e We employ an explicit second-order in time approach for the coupling term, which
decouples the computations of m}™" ~ m(t;+1) and s, ~ s(t;+1). In particular,

this greatly reduces the computational complexity of the overall integrator.
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7. Decoupled midpoint scheme for SDLLG

e We prove well-posedness and unconditional convergence of our extension of the mid-
point scheme towards a weak solution of SDLLG in the sense of Definition 2.2.4(i)-
(iv); see Section 7.3.

e Under the CFL-type condition k& = O(h?), we prove convergence towards a physical
weak solution in the sense of Definition 2.2.4(i)—(v); see Section 7.3.5.

Note that the own work [DPP*17] makes corresponding contributions for the (almost)
second-order tangent plane scheme for ELLG; see Chapter 5. Moreover, we stress that
our implementation for the numerical experiments of this work does not yet include the
proposed midpoint scheme for SDLLG, i.e., we have no means to underpin the theoretical
findings of this chapter with numerical experiments.

7.2. Algorithm

In this section, we formulate an extension of the IMEX midpoint scheme for plain LLG to
SDLLG (2.23), which computes approximations

Spo>mi ~m(t;) and S¥>s) ~s(t;) foralli=0,...,M.

For the LLG part (2.23a), we proceed as in Section 6, where we extended [BP06] from
heg(m) = Am and II(m) = 0 to our setting of LLG (2.3). For the spin diffusion
part (2.23b), we adapt the decoupled tangent plane scheme for SDLLG from [AHP'14,
ARBT15, Rugl6]. Moreover, we also build on the fully-coupled midpoint scheme for the
coupled Maxwell-LLG system from [BBP08]. To formulate our algorithm, we adopt from
Chapter 6 the implicit-explicit approaches

7P (mi mi,mi ) = w(m(t; +k/2)) and IR (mi mi,mi ) ~ I (m(t; + k/2))

from (A1)—(A3). Accordingly, we define the coupling term 328 with one of the following
three options:

(C1) The implicit and formally second-order in time midpoint approach [BBPO0S|
32’9 = 5?1/2 € Sy
(C2) The explicit and formally second-order in time Adams—Bashforth approach

i+1/2 .
S5 §® . sy, for i =0,
h o 3 1 i1

i
58, — 38 else.

(C3) The explicit and formally first-order in time Euler approach [AHP*14, ARB'15,
Rug16]

1,0 . i Q
Sh =8y GSh
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7.2. Algorithm

Moreover, we introduce the approximation to the spin current j as
S5 4l ~j(t;) forallie{0,1,...,M}.
Finally, given g € L (w), we recall from (2.24) the p-dependent bilinear form

a(p; ¢1,G2) = (DoV&1, V) p2(q) — BB (Do @ p)VE1, V) 12w
+ <D0C17 C2>L2(Q) + <D0(C1 X p’)a C2>L2(w) for all Cla C2 € HI(Q)a

where, for the sake of readability, we suppose exact evaluation of Dy € L>(Q2) with Dy >
D > 0. With these preparations, we are ready to formulate our algorithm.

Algorithm 7.2.1 (MPS for SDLLG). Input: Approximations m,:l = m) € 8, and
sh1 = .32 € S,?.

Loop: Fori=20,...,M — 1, find m’+1 €8y, and sﬁfl € S such that for all @y € Sy, it
holds that

<dtm 7<Ph>
= Cax(my, 1 x Mgy V2, o)y, — (g2 PR (i i mi ). o),
—(m z+1/2 X PRII® (it m27m2—1>7(’0h> <m2+1/2 “ P f7,+1/2’ o) (7.1a)
—(m ZH/Q X Prsy®. ), + a<m2+1/2 x dymjt on),
and for all §, € S h it holds that
<dt32+1,Ch>L2(Q) +a(m ;:-1/27 2+1/27C )= )
5<m2+1/2 z+1/2 VCh>L2 B i+1/2 m2+1/2 Ch>L2(anw)‘ .
Output: Approzimations m! ~m(t;) and s} ~ s(t;). O

Remark 7.2.2. (i) The explicit approaches (C2) fori > 0 and (C3) decouple the time-
stepping in the latter Algorithm. Then, the coupling term 82’@ in the LLG part (7.1a)
plays the role of another, explicitly available contribution to the dissipative effects. In
particular, we can successively sollve the non-linear LLG part for mzﬂ and the linear

i+

spin diffusion part (7.1b) for ;™.

(ii) To solve the non-linear system from the LLG part (7.1a) from (i), we suggest the
fized-point iteration for plain LLG from Section 6.6. Under the CFL-type condition
k = o(h?), the fized-point iterates converge towards a unique solution. In Section 7.2.1
we formulate the resulting (inexact) decoupled algorithm.

(iii) With 32’@ = 5?1/2 from the implicit approaches, the system (7.1) is non-linear and
fully-coupled, but admits a solution; see Theorem 7.3.1(a) for details. However, not
even under the CFL-type condition k = o(h?), we succeeded in proving uniqueness or
convergence of the corresponding fixed-point iteration. This is due to the fact that the

bilinear form a(m;:rl/z, -,+) in the spin diffusion part (7.1b) depends on the sought

i+1
m, .
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7. Decoupled midpoint scheme for SDLLG

(iv) In practice, we suggest to solve the spin diffusion part (7.1b) for the unknown oy, :=
§it1/2 o g

h e., compute the unique o, € Xy, such that

2(on, Ch)r2() ka(mﬁfl/z‘ on, Cn)
=2 <ShuCh>L2 (@) + Bk (m ZH/2 @7 ZH/Z s ViCh) 120
+ Bk (7, e n,m;:rlﬂ . Ch>L2(anw) for all ¢, € S%.

In particular, this system is linear in oy, and .s”1

part (7.1b).

=20,— sh solves the spin diffusion

7.2.1. Decouple the (inexact) time-stepping

In this section, we present one time-step of Algorithm 7.2.1 in its ideal form. For ¢ > 0,
we exploit the advantages of the explicit second-order in time approaches and employ the
explicit second-order Adams—Bashforth approach

e 3 L i
s; §sh 282 , (7.2a)

from (C2) for the coupling term as well as the explicit Adams—Bashforth approaches

3 o1 -

Tr,?(m;jl my, mi 1)_§wh(m;)—§wh(m; 1), and (7.2b)
) 1 )

TP (v, i) = ) latom) — o T (720

from (A2) for the lower-order terms. In particular, 326 is independent of the sought

Hl and can be interpreted as a further, explicitly available dissipative effect. This way,
We decouple the time-stepping and can compute sequentially m ZH and S’H. Following
Remark 7.2.2(i), we employ a fixed-point iteration for the 1nexact solutlon of the LLG
part (7.1a). Moreover, we employ the nodewise systems of Section 6.6.3. To this end,
we recall from (6.28a) the notion of the approximate effective field and dissipative effects
H} (-), which, in the setting of (7.2) reads

. 3 . 1 ._ i
Hi (k) = CoxDnptn + 3 'Phﬂ'h(m%) - = ’Phﬂ'h(mz SEE thh+1/2 -
7.3

3 3 .
+ 5 ,Phl_Ih('rnZ ) - — PhHh( ) + — ’Phsh - ’Phszfl c Sh~

Algorithm 7.2.3 (Inexact decoupled second-order MPS for SDLLG, ¢ > 0). Input. i >0
with appro:mmatzons Sp > my = m(t;), Sp 2 mz V'~ m(ti_y) and ng > st o~ s(t),
S sh ~ s(ti—1), iteration tolerance € > 0. Itemte the following steps (a)—(e):

(a) Set uéo) :=m} and compute ’H}'L(,ugo)) € 8y,; see Lemma 6.6.6.
(b) Loop. For ¢ =1,2,..., repeat the following steps (b—i) ~(b-ii) until

A (e+1) — A, @)
sl = Ml < o

154



7.2. Algorithm

(b-i) Compute uﬁfﬂ) € 8y, via the nodewise systems

AV [ (z))] = mi(z) forallj=1,...,N,

where Ay) € R3*3 are the nodewise defined matrices

AP = 1= R [ )] — 5 T3]

(b-ii) Compute H%L(ugfﬂ)) € 8y; see Lemma 6.6.6.
(c) Setmit! = 2u§f+1) —m} € 8),.
(d) Find oy, € S such that

Y2 a4, ¢h)

=28}, Cn) g2y + Bk (i, 2 @ 5,72 VG ooy + 8K G mi ™ G Lo

2(0h, Ch) (o) + kalmy,”

for all ¢, € S5
(e) Set sit! =20y, — s € Si.
i+1

Output. Approzimations m; " ~ m(t;;1) and szﬂ ~ 8(tiv1). O]

Proposition 7.2.4 (Convergence of fixed-point iteration). Consider the fized-point itera-

tion from Algorithm 7.2.3. The fixed-point iterates (ug))g’io are well-defined. There exists
a constant C' > 0, which depends only on Cex and Cesh, such that, for all h, k > 0, which
satisfy the CFL-type condition

(0

the sequence of iterates (p, )7, is a contraction in L?(w). Then, there exists a unique
pr € Sy such that

p,gf) — pp,  in L*(w)  as £ — oo.

In particular, m?l = 2up — m}L is the unique solution of the LLG-part (7.1a).

Proof. The si- and s} '-terms in the functional #}(-) from (7.3) play the role of another

explicitly available dissipative effect. Hence, the proof follows as for plain LLG—see Propo-
sition 6.6.2, Proposition 6.6.3, and Remark 6.6.4 (iii). O
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7. Decoupled midpoint scheme for SDLLG

7.3. Main result

In this section, we formulate and prove a convergence result for our midpoint scheme
for SDLLG. Recall that for plain LLG, we extended in Chapter 6 the convergence result
from [BPO6] to our extended setting of LLG. For coupled equations, a similar convergence
result is proved in [BBPO0S8| for a fully coupled midpoint scheme for Maxwell-LLG. For
SDLLG, similar results for the first-order tangent plane scheme are proved in [AHP*14,
Rugl6]. Our result combines and extends the latter findings for our midpoint scheme for
SDLLG. To this end, we require the following additional assumptions:

(S1) Uniform boundedness of mY: For all h > 0, it holds that Bﬁ’Hm%HQLm(Q) <y<1
(S2) Weak consistency of s): It holds that s — s% in L*(Q) as h — 0.

(S3) Strong consistency of (ji)M,: The postprocessed output j,;, € L*(0,T; H(2))
of (ji)M, satisfies that

Jre — 3 in L*(0,T; HY(Q)) as h,k — 0.

For the stronger statement from Theorem 7.3.1(c) below, we additionally require the fol-
lowing assumption:

(CFL) CFL-type condition: It holds that k = O(h?).

With these preparations, we are ready to formulate our theorem.

Theorem 7.3.1 (Convergence of MPS for SDLLG). Consider Algorithm 7.2.1 for the
discretization of SDLLG (2.23). Then, the following three assertions (a)—(c) hold true:
(a) Suppose that
e the approzimations mY satisfy (S1)
e the approximation operators my, are linear (D2);
e the approximation operators Iy satisfy the Lipschitz-type condition (M2).
Then, Algorithm 7.2.1 is well-posed and for all i € {0,..., M — 1}, it holds that

Imit ()| = |mY(2)|  for all nodes z € N,

In particular, it holds that |[m} |, = |[m}|n and |m}| Loy = M| L) for all
ie{0,...,M).
(b) Suppose that
mh, (F1)M,, and I1y, satisfy the assumptions of Theorem 6.5.1(b) for plain LLG;
the approzimations m) satisfy (D1) and (S1);

the approzimations s satisfy (S2);

the approzimations (ji)M, are strongly consistent (S3);
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7.3. Main result

e the general coupling approach 329 is defined by one of the three options (C1)-
(C3).

Then, there exists a subsequence of the postprocessed output myy, and spi from Algo-
rithm 7.2.1, and a weak solution

m € L®(0,T; H (w)) N H (wr) and
s € L™(0,T; L*(2)) N W(0,T; L*(Q), H'())
of SDLLG (2.23) in the sense of Definition 2.2.4(1)—(iv) such that
mpe — M in Hl(wT) and Spp — S in L2(QT) as h,k — 0.
(c) Additionally to the assumptions from (b), suppose that m}) satisfies (D1%) and that
there holds the CFL-type condition (CFL). Then, (m,s) from (b) is a physical

weak solution in the sense of Definition 2.2.4(i1)—(v), i.e., it additionally satisfies
the stronger energy estimate (2.27).

Remark 7.3.2. (i) Uniform boundedness (S1) of m) for Theorem 7.3.1 is stronger
than the corresponding uniform boundedness (M1) in Theorem 6.5.1 for plain LLG.
We already require (S1) to prove that Algorithm 7.2.1 is well-posed. Moreover, since
0< 8,8 <1, (S1) allows the natural case that m% e M,;.

(ii) In contrast to the unconditional convergence results from [AHPY 14, Rugl16] for the
first-order tangent plane scheme for SDLLG, we require the CFL-type condition k =
O(h?) to prove Theorem 7.3.1(c).

(iii) For the validity of the assumptions for our exemplary contributions to mp, and II,
the situation is precisely the same as in Remark 6.5.2(i1)—(iv) for plain LLG.

(iv) Recall from Remark 7.2.2(ii) that for the implicit approaches 52’8 = 32+1/2 conver-
gence of a corresponding fized-point iteration —even under the CFL-type condition
k = o(h?)— remains mathematically open.

We split the proof of Theorem 7.3.1 into the following subsections. In Section 7.3.1,
we prove well-posedness (a). To prove (b), we use a standard energy argument (see,
e.g., [Eval0]), which consists of the following three steps:

e We derive a discrete energy bound for the output of Algorithm 7.2.1; see Section 7.3.2.
e We extract weakly convergent subsequences and identify the limits; see Section 7.3.3.

o We verify that the limit (m, s) is a weak solution of SDLLG in the sense of Defini-
tion 2.2.4(i)—(iv) and thus conclude the proof of (b); see Section 7.3.4.

In Section 7.3.5, we prove (c). To this end, we extend the concept of the postprocessed
output to the coupling term 32’9 and write

sO(t) == 328 for t € [t;,tix1), where i€{0,1,...,M —1}. (7.4)
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7. Decoupled midpoint scheme for SDLLG

7.3.1. Well-posedness

In this section, we prove Theorem 7.3.1(a), i.e., we show that Algorithm 7.2.1 is well-posed.
Essentially, the proof is contained in the following adaption of [BPS09, Lemma 5.1]. It is
based on a corollary of the Brouwer fixed-point theorem (see Theorem B.2.5).

Proposition 7.3.3 (Well-posedness of MPS for SDLLG, one time-step). Suppose linear-
ity (D2) of m), as well as the Lipschitz-type continuity (M2) of IT. Leti € {0,..., M —1}.
Let mﬁl,mz_l € Sy, with

BB [Iml|7ee(y < v < 1. (7.5)

and s}’;,sz_l € S%. Then, there exist m?l €S8y and sﬁfl e 8%, which solve the discrete
variational formulation (7.1). Moreover,

imi T (2)| = |mi,(2)|  for all nodes z € Nj,.
i+1 i+1

In particular, it holds that |[m)™ || o) = ||}, | Lo w) as well as |m} |, = [|mi],||4.

Proof. We split the proof into the following five steps.
Step 1. We make preliminary definitions: We define the product space X := Sp, X S%,
endow it with the inner product

((n: Cn)s (B Cn)) x, = (Ph Bn) + (Cns gy for all (en, Cn), (BhyCh) € X (7.6)
and denote the corresponding norm with |- || x, . Let Zj, : C(@) — Sp, and I3} : C(Q) — S

be the nodal interpolants corresponding to Sy, and S%, respectively. Given ¢, € Sy, and
¢h € Sg, let A(pn;Ch) € 82 be the unique solution of

(A(pn; Ch)ﬂ,bh)Lz(Q) = a(@n; Cn, ) for all ¢y, € 52' (7.7a)

Given ¢, € 8, let R(pp,) € S% be the unique solution of

(R(pn); Cn)p2(0) = —Blen ® i VEh) r2(0) (7.7)
- ﬁ<j;+1/2 "N, Ph Ch>L2(8Qmaw) for all ¢, € 82-
Step 2. We define an auxiliary mapping F(-,-) on X}, via
FO (pn Ch)>
F: X, — Xy ,C »—>< ’ ) 7.8a
h h (@, Cn) FO (g &) (7.8)

where the mappings F) and F? are defined in the following: To this end, let (¢, Cr) €
X}, and set

FD (pn, Cn) = %(‘Ph —m},) + Zn(en X Ri(en,Cn)) € Sh, (7.8b)
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where the residual R (-, -) is defined as

R (@n,C) = Cex Ao + Prmy (2¢0n — mj, mj, m) ') + 'th;iLH/Q
+ ’PhH,(?(2<ph — mfl, mz, mﬁfl) + Ph[Q(l)Ch + 9(2)82 + 6(3)32*1 ]
2a

- ?(‘Ph —mj,) € S,

and oM, 0?81 c R depend on the specific approach (C1)-(C3) to the coupling term
s;l’@. Next, we set

2 , [ poo ()
F2) ’ = = —s*)+ A( min 1,h7 ;
(n:Cn) k(Ch h) ( { lonlzm }<Ph ¢n)
772}, || oo () 0
+R(min{ 1, —AETW) €Sy. 7.8¢
( { AT }‘Ph) h (7.8¢)

where, for ¢ = 0, we interpret min{1, m%::“’;} = 1. With linearity (D2) of 7, as well

as the Lipschitz-type continuity (M2) of IIj, the auxiliary mapping F® : X}, — &), is
continuous for all general time-stepping approaches (A1)—(A3). Moreover, F @ x, >
S% is continuous for all coupling approaches (C1)—(C3). Altogether, F : X, — Xj is
continuous. )

Step 3. We emphasize the special meaning of min{1 IIthﬂ} in the definition of F:

? lenllLoo w)

In particular, it holds that

[} || oo () ,
ming 1, —————= > Onllroer v < M} || Loo(w) - 7.9
Imin {1 iy | i < bl (7.9
Together with the uniform ellipticity property of a(mﬁjl/ 2; -,+) from Lemma 2.2.3(ii), we
obtain that
[}, || Lo (w) (7.7a) [, || oo ()
(A(min § 1, 77— ¢ ¢n; ), Cn) = a(minq 1, 7= 1 53 Cny Cn
{ lenllLoc (w) } L) ( { lenll Lo (w) } )
\|m2\\Loo( REE
> — B5 i i) 2 2
> (1= [min {1, 2 el ) D 160

(7.9) . (7.5)
> (1=88"myl[zo) )P I F ) = (1 =) DIkl En 0 (7.10a)
Moreover, we obtain the crucial uniform boundedness property

. [}, || oo ()
IR( mm{ L m } en ) ||H—I(Q)

(7 ||m;z||L°°(w) Lit1/2

.7b)
< ] - .. oo .
<28 min {1, 2 Yo e 16, o)

(7'9) 7 a4+1/2
< 28| | oo o) 1752l mr - (7.10b)
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7. Decoupled midpoint scheme for SDLLG

Step 4. We state the key-property of F (-, -): Note that for ¢, € Sy, with [[@p|peo (W) <
|77}, || oo (o), We obtain that
mi o
min{l,”h”L(“’)}:L (7.11)
[enll Loo ()

In particular, let (¢p,Cn) € Sp x 8§ with lenllLew) < IlmjllLe(w) and F(en,Cn) =
(0,0)T. By design, m;';rl = 2¢p — m! and sffl := 2(), — s} are then a solution of the
discrete variational formulation (7.1).

Step 5. We show the existence of (¢p,¢n) € X, with F(en, ¢r) = (0,0)T: To that
end, we apply the Brouwer fixed-point theorem (see Theorem B.2.5). Let (¢n,Cn) € Xn
and test F(pp,Cn) with (¢, ¢r). Since (a x b) -a = 0 for all vectors a,b € R3, the

R (-)-contribution in F() cancels out and we obtain that

(F(en:Cn)s (pn,Cn)) x, ) (FD (@n, Cn)s ) + (FO (nr Cn)r ) p2e

(7.8) 2 2, 2 2,
=z lnll — E(mh7‘10h>h T 161172 () — A (8hs Ch) L2

AT LA
+ (A(minq 1, ——————= iCh), € + (R(minq 1, ———= ,C
(Amin {1 o oy 30 alasgey + Romin {1 T 5L F o) s
2 2 P
= = ”(‘thCh)||2Xh — —((m}, 83), (¢n, Cn)) x,
k k
fy Imilze o Imill )
+ (A(minq 1, —————— iCh), € + (R(minq 1, ——= ,C .
(Amin {1 o ey 3960 adasgay + Rlmin {1, T 5L b s

With the estimates (7.10) for the last two terms and an inverse estimate (see Proposi-
tion 3.1.8), we obtain that

(F(@n:Cn)s (en, Cn)) x,,

2 i
2 T 1(n, Sl xn ((ns Cn)llx, — (M, s3)llx, )
+ (1—9) D||Ch\|%11(g) - 25Hm§lHLoo(w)HJ'ZH/QHHI(Q)HChHHl(Q)
2 .
>~ [[(en, Cn)llx,, (11, Cn)llx, — 1M, sh) | x, )

k
— 2080 [m || gyl e @) 1€l L2

2 7 % — i Li41/2
>+ I (en: Gu)llx, (I1(n. C)lix,, — (i, si)lix, — CBER™ |l gyl 2 llars oy )

where the constant C' > 0 is independent of A and k£ and stems from the inverse estimate.
Since v < 1, we conclude from the latter estimate that there exists 7 > 0 (which depends
on h) such that

(F(pns Cn)s (pns C))x, = 0 i [|(n, Cn)llx), = 7

Consequently, the Brouwer fixed-point theorem (see Theorem B.2.5) yields the existence of
a pair (¢, Cn) € Sy x S with ||(vn, Cn)llx, <7 and F(en,¢r) = (0,0)7.
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Step 6. We combine Step 1-Step 5 and set m Z+1 = 2¢pp — mh as well as SZH =
2¢n — si. As in Proposition 6.5.3 for plain LLG, we get that Im;T(2)| = |mi(z)] for all

nodes z € N},. Hence,

A 1. . 1. . A
lenllzoew) = HmlH + M| Lo () < §||mZ+IHLo<>(w) +olmillew) = [mallLew).-
In particular, it holds (7.11). Altogether, Step 4 concludes the proof. O
Proof of Theorem 7.3.1(a). With the uniform boundedness property (S1) of m{, Propo-

sition 7.3.3 and an induction argument on ¢ = 0,..., M — 1 proves well-posedness and
Imit(2)| = |mf(2)| for all nodes z € N,
Therefore,
lm I = [lmplln and  [lmg | pe ) = M ] oo )
This concludes the proof. O

7.3.2. Discrete energy bound

In this section, we derive a discrete energy bound, which represents the mathematical core
of the proof. Recall that in the corresponding Lemma 6.5.4 for plain LLG, we combined and
extended the techniques from [BP06] for the midpoint scheme with heg(m) := Am and
II(m) = 0 with the techniques from [AKT12, BSF*14] for the tangent plane scheme with
lower-order terms. For SDLLG (2.23), [AHP* 14, Rugl6] prove corresponding results for
the first-order tangent plane scheme for SDLLG. For the SDLLG setting of Algorithm 7.2.1,
we combine and extend the techniques from Lemma 6.5.4 for the LLG part (2.3a) with the
techniques of [AHP 14, Rugl6] for the spin diffusion part (2.3b).

Lemma 7.3.4 (Discrete energy bound). Let the assumptions of Theorem 7.3.1(b) be sat-
isfied and let k > 0 be sufficiently small. Then, the following assertions (i)—(ii) hold true:

(i) For alli=0,...,M — 1, it holds that
Cex

de [Vmy 1 Za) + all demy 17

i i i— i i+1/2
(dtm i+1 ﬂ-h (mh+l mh7mh 1)>L2(UJ) <dtm +1 h+ / >L2(w)

<dtm7,+1 HG‘)( ;l-i-l mh7mh_1)> L2(w )—|—C<dtmz+1 S;®>L2(w)-

(ii) There exists a constant C > 0, which depends only on T, w, Q, m°, a, Cex, 7(-), f,
(), s°, ¢, B8, B, Do, 3, and Cresh, such that, for all j =0,..., M, it holds that

j—1
[V 2 + kD I demi I
=0
7j—1
i+1/2 i
+ 51220 +k§juv ey + R Y N disi By ) < O < o
=0 =0
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7. Decoupled midpoint scheme for SDLLG

Proof. (i) follows like for plain LLG; see the proof of Lemma 6.5.4. We split the remainder
of the proof into the following six steps.
Step 1. We bound the third and fourth term in (ii). To this end, we test the spin

diffusion part (7.1b) with ¢, := ksijrl/2 and obtain that

; +1/2, i+1/2  _i4+1/2
i ) = 5 Nshlagy + balmi™ /% i 1/2 7002
(7.1b) i+1/2 . .i+1/2 i+1/2 i+1/2 i+1/2  _i+1/2
= ﬂk(mﬁl / ®j; /,Vs;Z /> ()+k< it/ n,mz / -S;L />L2(8908w). (7.12)
Moreover, we infer the uniform boundedness
i+1/2 1 I
|, /HLm@@ < funﬁ+wLm + Sl )

(7.13)

= ||thL°° (w) < (BB~ 1/2 (1-— 7)1/2 < 0.

The trace inequality and the Young inequality yield for arbitrary § > 0, that

i +1/2  +1/2 1+1/2
fw+wpm) muuz |+ ka(myt s 2 s T2
e i+1/2 i+1/2
S s lmy ) 13T W ) + Sk s
(7'13) 1/2 i+1/2
< fu“/nﬂmn+6mw+/uHm»

i+1/2

With the uniform boundedness statement (7.13) for m," '~ the ellipticity of the bilinear

form a(m;:rlm7 ,-) from Lemma 2.2.3(ii) yields that

(7.13) i
z<1—>Dn*”men

The combination of the latter two equations yields that

1 .
1 +1/2
n§+hm)—fwm$m (1 =)Dk 5,13 g
(7.14)
+1/2 +1/2
ful/nHmz+6M|l/uHmn
We sum this estimate over ¢ = 0,...,7 — 1. The telescopic sum property proves that

1, i+1/2
5 8120y + (1= Dk}jn*/nHwn

i+1/2 i+1/2
wﬂp@+5§yu+umq>+M§]|+ﬂml
=0
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If we choose ¢ in the latter estimate small enough, we can absorb the last term to the
left-hand side and arrive at

1 1+1/2 a4+1/2
(A +kZH 200 S 1802 +kZ|| 20 )
(7.15)

T _ (S3)
< 1+k || TP < 1+ [ Gl ey dt S L.
() 0 ()

Step 2. We bound the first two terms in (ii): To this end, we sum (i) over i =0, ...,j—1.
The telescopic sum property yields that

1 Cex 1 i
X9 = 5 IV, |72, + ak ZHdeHh

. i=
& 22 | 3 q) + kZ (e w2 (L m i) g
=0
7j—1
i k?z d, ml+1 z+1/2>L2 © + kz dtszrl Hh ( z+l mhvm;b 1)>L2(w)
=0
—i—ck‘z (dgmi*!, Z®>L2(w) = S+ + S5, (7.16)
ie., xU) covers the first two terms in (ii). In the following steps, we estimate Si,...,Ss.

Then, our goal is to absorb as many terms as possible to x¥) and to apply the discrete
Gronwall lemma afterwards.

Step 3. We estimate S1,...,S4: Following the lines of the proof of Lemma 6.5.4, we get
for arbitrary 6 > 0, that

4 7j—1 i
1 7 k 7
> 18 S 1+g+5kZH demy |70 t5 > IVmilia-
/=1 =0 1=0

Step 4. We estimate S5: For arbitrary ¢ > 0, the Young inequality yields that

7j—1

7 z@ ?
= ckz dtm +1 >L2(w) 1+5kZHdtm +1HL2 w)+ Z”S H%?(Q)
=0

For either of the general coupling approaches (C1)—(C3), we infer from Step 1 that

P . Pl
3 ZHS;Z HQLQ(Q) S EZHS%,HiQ(Q) S
i=0 i=0

Altogether, the latter two equations prove that

| =

j—1

1
S k>l dempt (3
1=0
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7. Decoupled midpoint scheme for SDLLG

Step 5. We combine Step 1-Step 4 and obtain that

i1
5 (7.16) Cex j i
XSS I e + ok 3 demi
i=0
1
S 1o 0k > | demj e + < 5 Z IV |22
=0 =0

If we choose 6 in the latter estimate small enough, we can absorb 0k Zg;& | dgmi |2 12(w)
to the left-hand side. Then, we choose k > 0 sufficiently small such that we can absorb
kHVm{lﬂzLQ(w) from the last term to the left-hand side. Altogether, we arrive at

' J—1 ' (7.16)
X(])§1+k2"vm2"%2( < 1+kzx forall j € {1,...,M —1} (7.17a)
=0

and additionally note that

(D1)

©) (7.1 Cex <1 (7.17b)

X

Hence, (7.17) fits in the setting of the discrete Gronwall lemma (see Lemma B.3.1). This
yields that

7—1
) < eXP(Z’“) < exp(T) < oo forall j=1,..., M.
1=0

Step 6. To bound the last term in (ii), we follow [AHP*14, Proposition 17]: Let Pgo

be the L?-orthogonal projection onto SQ Together with the continuity of a(m H_I/z, )

from Lemma 2.2.3(i), we obtain for ¢ € Hl(Q) that

(desy™,€) g1y = (s ) paq) = (disy ™, (Psad))
(7éb) a( 2+1/2’ ,;—L+1/2 (]P)SQC)) + IB< Z+1/2 ® ’L+1/2 (]P)ngc)>L

+ﬁ< z+1/2 n,m Z+1/2 (]P) C))

L2 (Q)

2(Q)
L2(9QN0w)

S (U Iy 2 ey + 1m3 2 ) s o 1| (s €) e

i+1/2 Jit1/2

+[lmy, ooy 13, N () H(PsgC)HHl(Q)

(7.13) ; ;
S Ulan ™ Plene + sy Pllene) | (Psed) )

Since the family of meshes (7;$})n~0 is quasi-uniform, Pgo is H 1(Q)-stable. This yields
that

(HJH—I/Q

7 i+1/2
(o™ €) s oy S lee + Iy 2 o) ) 1(Psed) o)

< (||9’+1/2\|H1<m + st ey ) 1€ E @) for all ¢ € HY(9).
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Together with the Young inequality, we conclude that

Li+1/2 i+1/2

iHH%_l(Q) S N, H%—Il(ﬂ) + sy, ||%—11(Q)'

|| dtsh

We sum the latter estimate over ¢ =0,...,7 — 1 and obtain with Step 1 that

j—1 Jj—1 Jj—1
i+1)(2 <i+1/2)2 i+1/2)12
i gy S 6 1357 ey + 6 S 1557 i
=0 =0 =0

(7.15) J—1 i1/ (S3)
< LR i e S L
=0

Altogether, this shows (ii) and concludes the proof. O

7.3.3. Extraction of weakly convergent subsequences

In this section, we exploit the discrete energy bound from Lemma 7.3.4 and extract weakly
convergent subsequences of the postprocessed output of our midpoint scheme for SDLLG.
Note that the result is somewhat weaker then the corresponding results from [AHP114,
Rugl16] for the tangent plane scheme for SDLLG (2.23); see, e.g., [AHPT14, Proposition 21].
In contrast to [AHP*14, Proposition 21], we can only exploit

M—-1 M
k Z ||V82+1/2||%2(Q) Sl instead of & ZHVS};H%Q(Q) < L
=0 =0

As a consequence, the stronger convergence statement from (ix) below holds only for Spy.

Lemma 7.3.5 (Convergence properties). Let the assumptions of Theorem 7.3.1(b) be sat-
isfied. Then, there exist subsequences of the postprocessed output

myy. € {myy, my, My Mg, ma},  and (7.18a)
S € {87k e She Shies Shies Sk} (7.18Db)
of Algorithm 7.2.1 as well as functions

m € L®(0,T; H (w)) N H'(wr), and
s € L>(0,T; L*(Q)) nW(0,T; L*(Q), H(Q))

such that the following convergence properties (1)—(x) hold true simultaneously for the same
subsequence as h,k — 0:

(i) mpp — m in H' (wp).

(i) m}, = m in L®(0,T; H'(w)).
(iil) m}, — m in L*(0,T; H' (w)).
)

(iv) m}, — m in L*(w).

165



7. Decoupled midpoint scheme for SDLLG

(v) mi,(t) = m(t) in L*(w) a.e. fort € (0,T).
(vi) m}, — m pointwise a.e. in wr.
(vii) s}, — s in L*(Qr).
(viil) sf, = s in L®(0,T; L*(Q)).
(ix) Spr — s in L2(0,T; H'(Q)),
(x) Opsp — Oys in L2(0,T; H-1(Q)).
Proof. From the definition (3.3) of the postprocessed output, we get that

. a) 0 (S1)
[kl oo (wr) < IMpllpew) S 1.

With the discrete energy bound from Lemma 7.3.4, the definition of the postprocessed
output yields that

Mkl 51 ) + IMakl Lo o, @) S 1, and  (7.19a)
I8kl Loo 0,m322(0)) + 18kl 220,780 (2)) + 10e8hkll L2 171 002y) S 1 (7.19b)

From (7.19a), we conclude (i)—(vi) like in the proof of Lemma 6.5.5(i)—(vi) for plain LLG.
Next, we prove (vii) and (ix)—(x). With the uniform bound (7.19b), the Eberlein-Smulian
theorem (see Theorem B.2.2) yields existence of

s7,8,8,8% € L*(Qr), 3€L*(0,T;H'(Q),
s € L2(QT)7 and s € L2(07T§ If:Ill(Q))

as well as subsequences of the postprocessed output such that there hold the convergences

S =8, S8, s,—s" and sh —s® in L*Qr), (7.20a)
Spr — 3 in L2(0,T; H*()), and (7.20b)
spr — s in L*(Qp) aswell as Oysp, — w  in L2(0,T; ﬁ_l(Q)) (7.20c)

as h,k — 0. In a first step, we show w = d;s. Upon extraction of another subsequence,
the uniform bound (7.19b) yields existence of 5 € H'(0,T; H~'(Q)) such that

Shpk—§ in H'(0,T; H () as h,k— 0,
i.e., in particular, it holds that
spk — 8 and  9spp — 98 in L%(0,T; ﬁ_l(Q)) as h,k — 0.

However, since weak convergence in L?(27) implies weak convergence in L?(0,T; H ()
and since weak limits are unique, we obtain with (7.20c) that s = s as well as w = 0ys =
O¢s. Next, we identify the limits from (7.20). To this end, denote by s* the corresponding
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7.3. Main result

limit of the postprocessed output sj,. First, note that the definitions of the postprocessed
output and the discrete time-derivative directly yield that

||Shk: — SZ]CHLQ(O,T;EI'—l(Q)) S k H&gsthLQ(O’T;ﬁ_l(Q)) — 0 as h, k — 0. (7.21)

For ¢ € L%(0,T; H*(Q)), we then obtain with the convergences from (7.20) that

‘/ ~ Shks PUE-1(0)x H(0) dt)

’/ — Shks P) - (Q)le(Q)dt)

(7.21
+ llsnk = Shill 20 -1 () 1Pl 220,73 H2 ()

—>)0 as h,k — 0.

With the uniqueness of weak limits we conclude that s* = s in L?(0,T; H ~1(Q)) and
hence s* = s a.e. in Q7 as well as s € W(0,T; L*(Q2), H'(2)). Altogether, this proves (vii)
and (ix)—(x). Finally, we prove (viii). With (7.19b), the Alaoglu theorem (see Theo-
rem B.2.3) allows the further extraction of subsequences of the postprocessed output s},
which are weak® convergent in L>°(0,T; L?(2)). Since this implies weak convergence in
L?(Qr), the common limit is s from (vii). Altogether, this concludes the proof. O

As for plain LLG, we note a direct consequence of the latter convergence properties for
m;, and anticipate the verification of Definition 2.2.4(i) for the proof of Theorem 7.3.1(b).
The proof follows the lines of Lemma 6.5.6 for plain LLG.

Lemma 7.3.6 (jlm| =1 a.e. in wr). Let the assumptions of Theorem 7.3.1(b) be satisfied.
Then, m € L*>(0,T; H*(w)) N H!(wr) from Lemma 7.3.5 satisfies /m| =1 a.e. inwp. O

7.3.4. Convergence to weak solution

In this section, we prove Theorem 7.3.1(b). Recall that the proof of Theorem 6.5.1(b) for
plain LLG combines and extends the techniques of [BP06] for the midpoint scheme with
het(m) = Am and II(m) = 0 with [AKT12, BSF*14] from the tangent plane scheme
for the lower-order terms. Moreover, note that [AHP'14, Rugl6] prove a corresponding
result for the tangent plane scheme for the coupled SDLLG system; see, e.g., [AHPT14,
Theorem 12]. We adapt the ideas of these works for the setting of our midpoint scheme.

Proof of Theorem 7.53.1(b). We show that

m € L®(0,T; H (w)) N H'(wr), and (7.22a)
s € L>(0,T; L*(Q)) N W (0,T; L*(Q), H*(Q)), (7.22b)
from Lemma 7.3.5 are a weak solution in the sense of Definition 2.2.4(i)—(iv). The combi-

nation of (7.22) and Lemma 7.3.6 already yields Definition 2.2.4(i)—(ii), and we split the
remaining verifications into the following five steps.
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7. Decoupled midpoint scheme for SDLLG

Step 1. We verify Definition 2.2.4(iii), i.e., m(0) = m° and s(0) = s” in the sense of
traces: We conclude m(0) = m” as in Step 1 in the proof of Theorem 6.5.1(b) for plain
LLG. The verification of s(0) = s" follows the same lines: On the one hand, note that

spi(0) = Y V0 i L?(Q) ash,k— 0.
On the other hand, the convergence properties of Lemma 7.3.5 imply that
shp— s in H'((0,T), H 1)) as h,k— 0.
With the continuity of the trace operator, we infer from the latter equation that
sni(0) = s(0) in HY(Q) as h,k — 0.

Since the injection L?(2) C H ~1(Q) is continuous, the uniqueness of limits verifies Defini-
tion 2.2.4(iii).

Step 2. We verify Definition 2.2.4(iv), i.e., (m,s) satisfies the variational formula-
tion (2.26). To this end, we proceed similarly to the proof of Theorem 6.5.1(b) for plain
LLG. Let ¢ € C™(w7) and ¢ € C®(Qr). Moreover, let Z; and Z% be the nodal inter-
polants corresponding to 8y and S%, respectively. Define

on(t) = Tulp(t) and Gu(t) := TRC() fort e [0,7].
For t € [t;,tix1) with ¢ € {0,..., M — 1}, we test the corresponding discrete variational

formulation (7.1) with ¢, (¢) and ¢, (t) and integrate over [0,7]. With the definition of the
postprocessed output, we get an LLG part

T
Ilik = / <8tmhk> ‘Ph>h de
0
(7.1) r __ r__ e, + _ -
=" —Cex (Mpp X Ay, @n), dt — (Mpr, X Py, (my,,my, ,myy), p), dt
0 0
T B T -
—/ Mk X Prfnis P dt—/ (Mne x PRI, (mf, my, my), en), dt
0 0
T T
- C/ (Wi X Prsiy, o)y, dt +04/ (Tpk X Oy, pn)), dt
0 0
= —Coxlfy — I — Iip — I} — Py + alf,.. (7.23a)
and a spin diffusion part

T T
In + Iy = /0 <5t8hk,Ch>ﬁ_1(Q)XH1(Q)dt+/0 a(Mpg, Shk, Gr) dt

T T
= 5/0 (Mhs ® Jis V) p2(0) At —5/0 (Thk - 1Mok - Cn) L2 (9000w At
= BI}9 - pIi. (7.23b)
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In the following, we show convergence of the integrals I}, ,...,I}1 towards their continuous
counterparts in the variational formulation (2.26).

Step 3. We collect some auxiliary results: From standard approximation properties of
the nodal interpolants (see Proposition 3.1.7), we get for p € (3/2,00] and ¢ € [1, o0] that

en — @ in LY0,T; W'P(w)), and (7.24a)
Ch— ¢ in LY0,T; WP(Q)) as h,k — 0. (7.24b)

As in Step 3 of the proof of Theorem 6.5.1(b) for plain LLG, we infer from the convergence
properties from Lemma 7.3.5 and (7.24b) that

Ty, (Mpe X pp) = m x @ in L*(wp) and (7.25a)
M X Cp = m x ¢ in L*(wy) as h,k — 0. (7.25b)

Together with the convergence properties from Lemma 7.3.5, we obtain that

mp.Qmy, — m@m in L2(wT), (7.26&)
T - Cn o ¢ i L0, T H (W), (7.26b)

- S . .
T © G o2 m®j  in L (wr) (7.26¢)

as h,k — 0. Here, (7.26a)—(7.26b) follow as in [Rugl6, Chapter 5] and rely on |m| =1 a.e.
in wr (see Lemma 7.3.6) and on the uniform bound

(S2)

— i (a)
onk | Lo o) < max (Imp[|poe) = [millzew S 1 (7.27)

.....

However, instead of (7.26c), the corresponding [Rugl6, Lemma 5.1.12] verifies strong
convergence and requires the additional assumption j € L*°(p) for that. To see our
weaker (and sufficient) (7.26¢), we conclude from (7.27) and (S3) on the one hand that
[Thk ® Jpkll L2y S 1. On the other hand, we get with the convergence properties from

Lemma 7.3.5 for all ¢ € C*°(Qy) that

T B T
/O<mhk®jhk’C>L2(w)dt_/0 (M ® 5, C)pa)dt

T _ T B
= /0 (Mg — M) @ Jpp, € g2y dt + /0 (Mm@ (G —3), Q) p2) dt
SN s — M| 2 o) 13 nil 2200 €] o 02 + T ne = 31220 M 22000 (€] 2o (000
. - . (S3)
S mne — mlewr) + ldne — Jllze@) = 0 as hyk — 0.

Together with Lemma B.2.1, this verifies (7.26¢).
Step 4. We deal with the LLG part (7.23a): For the coupling term IP,, recall the
convergence property from Lemma 7.3.5(vii). Moreover, recall from the definition (3.10)
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7. Decoupled midpoint scheme for SDLLG

that the approximate L?-product (-, -) 5, depends only on the nodal values of the arguments.
From the definition (3.12) of the quasi-L2-projection P},, we obtain that

Iy, Mk X Prspis n)pdt = — [ (Tn(Mpk X @n), Prspi)y, dt
0 0
T T
7.25a

= —/0 (Zn(Mnk X P1)s 83 £2(0) ar ™% )—/0 (m X @, 8) 2, dt
T

= / (m x 37‘P>L2(w) dt ash,k—0.
0

For I}Lk, ng,, I;*Lk and IZk, we follow the lines of the proof of Theorem 6.5.1(b) for plain
LLG and obtain that

i T2 [ @ dt = [ (0m.e)pag dt
0 0
o (7:28) r _ T
I <mhk X Ahmhk, QOh>h dt - — (m x Vm, VQO>L2(W) dt,
0 0
4 (7.230) r — T
Iy, (Mg X Prfup,on)pdt = | (m X f,0) 12, dt, and
0 0

7 (7.23) r r
I, (M X Ompk, pp)pdt — [ (M X Oy, ) 2, di
0 0

as h,k — 0. For I 2k and [ ;?k, recall from plain LLG that we required the convergence
properties from Lemma 6.5.5 and the weak consistencies (D4) for 7;, and (D7) for ITj, to
derive the weak consistencies from Lemma 6.5.7 for 717? and Hhe. Hence, with Lemma 7.3.5
(i)—(vi), we get in the same way that

T T
7.23a _ —
I3, (7.232) /0 (Mg % ’Phﬂl?(mzk,mhk,mgk),cpwhdt — /0 (m x w(m), )2, dt, and
T T
(7.23a) _ - =
Iy = /0 (Mo x PRIIP (mfy, my, mi), @), dt — /0 (m x II(m), @) 2, dt

as h,k — 0.

Step 5. We deal with the spin diffusion part similarly as in [AHP*14, Rugl16]: We start
with I i%k:v 1 i%l?:v and [ %k and derive from the convergence properties from Lemma 7.3.5 and
Step 3 that

T
(7.230) (7.24b)

ji /0 (Oesnies Ch) 1wy & = /0 (Ors, C) 10 1 (o) Ut
r23b) [T 7.2c T '

79 (7.23D) /0 Mok @ Jnis V) £2 (o) dt (7.26¢) /0 (M ®35,VC) p,dt  and

T T
(7.23b) - (7.26b) .
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For I}, , the definition (2.24) of the bilinear form a(my; -, -) unveils that

T
7.23b o
I (r230) /a(mhkashkaCh)dt
0

T T
/ (DoV'Shk, VEn) p2(q) dt —5/3// (Do(Mpk @ Mpk)VSnk, VCa) p2(y) dt
0 0

T T
+ / {(DoShk, Ch) L2 () At + / (Do(Shk X Mink), Ch) g2, At
0 0

= Iy = PO+ L+ I
We exploit the convergence properties from Lemma 7.3.5 and Step 3 and obtain with
Dy € L*>(2) that
T T
_ (7.24b)
IZ;{I — /O (DOVShk;, VCh)Lz(Q) dt — /O <D0v3, VC>L2(Q) dt,

a3 o (7.24b) [T
Ihl; = / <D03hk7Ch>L2(Q) dt " — / <D037C>L2(Q) dt and
0 0

a2 T o (7.24b) [T
Ih,; = / <D0(mhk ® mhk)Vshk, vCh>L2(w) dt " — / <D0(m ® m)Vs, VC>L2(w) dt
0 0

as h,k — 0. Finally, we get with Dy € L*(Q) that

ad T o (7.25b) r
= —/ (8hks Do (Mg X Cp)) g2y At = _/ (8, Do(m X €)) () dt
0 0

T
= / (Do(s x m),{) g2,y dt  as h,k — 0.
0

Altogether, we get that

T T
Ii?k = / a(Mpy, Spi, Cp) dt — / a(m,s,¢)dt ash,k— 0.
0 0

The combination of Step 1-Step 5 concludes the proof. O

7.3.5. Stronger energy estimate

In this section, we prove Theorem 7.3.1(c), i.e., under stronger assumptions, the solution
(m, s) from (b) also satisfies the stronger energy estimate (2.27). The proof builds on two
lemmas which improve

e the statements about the boundedness of the discrete energy (Lemma 7.3.7);
e the convergence property of the postprocessed output (Lemma 7.3.8).

Roughly, our analysis follows [AHP*14, Rugl6], where a corresponding result is proved
for the tangent plane scheme for SDLLG. For the midpoint scheme, however, the situation
seems to be more involved and we additionally require the CFL-type condition

CFL-type condition k= O(h?).
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7. Decoupled midpoint scheme for SDLLG

We start with the stronger result about the boundedness of the discrete energy. To this
end, we adapt the corresponding techniques from [AHP* 14, Rugl6].

Lemma 7.3.7 (Stronger discrete energy bound). Let the assumptions of Theorem 7.5.1(b)
be satisfied. Letk > 0 be sufficiently small and suppose (CFL), i.e., it holds that k = O(h?).
Then, there exists a constant C' > 0, which depends only on T, w, Q, m°, a, Cex, w(-), f,
I1(-), s°, ¢, B, B', Do, 3, and Cesn such that, for all j € {1,..., MY}, it holds that

Jj—1
Hsh”L2(Q + kz HVShHL2(Q) + Z HSZH - 32”3:2(9) < C < oo, (7.28)
=0 =0

Proof. We split the proof into the following four steps. A
Step 1. We test the spin diffusion part (7.1b) with ¢, = ksﬁl“. Then, the Young
inequality and the trace inequality yield for any é > 0 that

<SZ+1 ( ’L+1/27 Z+1/27SZ+1)

— s, 8011 >L2(Q) +ka
71b i 2 Ji41/2 i Ji41/2 i+1/2
Bk( +1/ @7 12 s +1>L2(Q) + k(7 T2y, h+ / Sh+1>L2(8Qﬁaw)' (7.29)

As in Step 1 of the proof of Lemma 7.3.4, we get the uniform boundedness property

i 1 1
™ e < fum”lum + Sl e
h (W) = 5 ) w) (7.30)
(a) _
= IImglle(w) S (B8 2(1 =) < oo
With the Young inequality this yields for arbitrary ¢ > 0 that
L (1.30)
i % +1/2 +1/2 4 41/2 4
(5! = sh 850 oy + Ra(my, %2 sl S || 2 30 + Ok s 3 )

With 82+1/2 sitt — (k/2) dgsi™, we obtain that

z+1/2 i+l i1

<SZ+1_Sh’SZ+1>L2(Q)+ka( ;8p 8
(7.30) i+1/2 i i+1/2 2 3
< fH 22 )+ Ok s 2 o) + K2 a(my P dusit s,

In the following, we exploit Lemma 2.2.3 and estimate both terms involving the bilinear

form a(m +1/2, ).
Step 2. We estimate a(m ;:rl/ 2, st z'H) from below: With the ellipticity statement
of the bilinear form a(m;j_l/Q, ,+) from Lemma 2.2.3(ii), we obtain that
i+1/2 441 1 i+1/2),2
a(my s s > D (1= 88 my o)) i i o

(7'30) / 0112 141 (Sl) i+1
> D (1= 88 mBey) 85 ey > D= 85 By (7:3D)
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7.3. Main result

Step 3. We estimate k%a(m Z+1/2 dts“rl7 sﬁl) from above: With the continuity state-

ment of the bilinear form a(m?jl/Q, +,+) from Lemma 2.2.3(i) and with Dy € L*>(Q), we

get that

a(m;j*l/Z dts’“ SZH)

< [1Doll ooy (1+ Imiyt 2l o) + lmy 12 ) desi e oy 5 e o)
(730

1 Dol e sy (1 + 1Ml e sy + 2120 0y ) desi™ e oy 18 e o
(Sl

< [l desi  m e 185 @

With an inverse estimate (see Proposition 3.1.8), we obtain that

Hdtsﬁlesz(Q) <dt8h +1 dts >L2(Q) = <dt5h - dt31+1>H*1(Q)><H1(Q)

< Nl desy g1 Il desy @) S A7 T desi g T desi™ z2()

e, || dts’}i:'_lHLQ(Q) <AL dts’+1||H @) Hence, another application of an inverse esti-

mate shows that || dts”1HH1 < h72|d s’+1||H_ @ With the Young inequality, this
yields for arbitrary § > 0 that

e

k2 a( Z+1/2 dtsz-l-l Zi—l) 5 (kh72) k H dtsl—HHH @ ”8

(CFL) k
S L P ol P R o +6k||sz+1||Hl(m-

Step 4. We combine Step 1-Step 3 and obtain that

(557 = i 85 oy + D (L= ) ks 3 @
i+1/2
S A R e L P
We sum in the latter estimate over ¢ =0,...,7 — 1 and obtain with Lemma 7.3.4 that

|
—

J
(85 = s st gy + D (L— )k Z I3 oy

-
Il
o

- 1
k [i+1/2 iy ;
552 32" sy + 0k 3185 o) + 5 Zum“u? @
1=0 =0

(S2) 1 i1
5 ok Z s}, HHl(Q

For § > 0 small enough, we can absorb the last term into the left-hand side. With Abel’s
summation by parts (see Lemma B.3.3), we get that

I
—

J
I A

1 1 2 1 2
<SZ+ - Sha SZJF >L2(Q) =3 HS?LHB(Q) ||Sh||L2(Q) +5 E HSH - 32”142(9)

<.
Il
o
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7. Decoupled midpoint scheme for SDLLG

Combining the latter three equations, we obtain that

4 -t . =t (S3)
IIS?LIIQH(Q)+ZHSZ“—SZH%z(Q)+kZ||82“||fq1(Q) S 1+Hs2||2L2<Q) < L
i=0 =0

Finally, an inverse estimate yields that

02 —2 012 52) —2 (CEL)
kIVsilze@w) S kR lIspllze) < kh S L

~

and the combination of the latter two equations concludes the proof. ]

With the latter lemma at hand, we proceed to prove additional convergence properties
for the postprocessed output of our midpoint scheme for SDLLG. A corresponding result
for the tangent plane scheme for SDLLG is proved as part of [AHP* 14, Proposition 15] or
[Rugl6, Proposition 5.1.11].

Lemma 7.3.8 (Additional convergence properties). Let the assumptions of Theorem 7.3.1(b)
be satisfied. Moreover, suppose (CFL), i.e., it holds that k = O(h?). Let

* = — + = ®
Shi € {Shka Spks Shio Shks Shk, Shk}

be the postprocessed output of Algorithm 7.2.1. Then, upon further extraction of another
subsequence, it holds that

st —s i L*Qr) ashk—0.

Proof. With the stronger discrete energy bound from Lemma 7.3.7, the Eberlein-Smulian
theorem (see Theorem B.2.2) allows to further extract a subsequence of the postpro-
cessed output sp such that sp, — s in L2(0,T; H'(Q?)) as h,k — 0. Recalling from
Lemma 7.3.5(x) that yspx — O;s in L%(0,T; ﬁ_l(Q)) as h,k — 0, we altogether get that

spr — s in W(0,T; L*(Q), H'(Q)) as h,k — 0.

From this, we get with the Aubin-Lions lemma (see Lemma 2.1.8) that sy, — s in L2(Qr)
as h, k — 0. Moreover, the stronger discrete energy bound from Lemma 7.3.7 yields that

M—1
Ishk — il Ty S B D Isi = sillieq) S k=0 ashk—0. (7.32)
§=0
Altogether, this concludes the proof. O

We come to the actual proof of Theorem 7.3.1(c). With the additional convergence
result from Lemma 7.3.8, our starting position in terms of convergence properties of the
postprocessed output is now the same as that in [AHP*14, Rugl6] for the tangent plane
scheme for SDLLG. Hence, the following proof combines the techniques of Section 6.5.5 for
the midpoint scheme for plain LLG with [AHP*14, Rugl6] for the tangent plane scheme
for SDLLG.
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7.3. Main result

Proof of Theorem 7.3.1(c). Since the assumptions of (c¢) are stronger than those of (b), we
only have to verify that (m,s) from (b) satisfies the energy estimate (2.27). To that end,
recall from (2.25) the notion of the energy functional

(2.25) Cex 1
> 5 [Vm M2 — 5(m(m), M) 2y — (Fim) 2, (7.33)

fLra (m) w) " 5

Since we supposed in Section 2.2 that f € C''([0, 7], L*(w)), we can define f*:= f (t;) for
i€{0,...,M}. Let 7 € [0,T) be arbitrary and let j € {1,..., M} such that t € [t;_1,t;).
With the discrete energy equality from Lemma 7.3.4(i) for all ¢ € {0,...,j — 1}, we obtain
that

&g (M) — ELig (mj,)
9 Cox

X 3 1 ) ) 7 7
kdy |[Vm +1||L2 - §<7"(mh+1),mh+l>,;2(w) + §<7T(mh)7mh>L2(w)

— ("t m H1>L2(w) +(f, m%hz(w)

7 1 7 7 i 7
= —ak||demy ;= 5 (m(miT), mit) L)+ 5 (m(my,) mi) g

2 2
+ ke (e R (it i, i) ) = (P mi) P M) g
+ & (dymit ;*1/2>L2(w)+k<dtm;+1,n®( L mi,mih) (7.34a)

+ ck({demit, sZG))LQ( )

7 £) 7 i i— 7
— —akudtm+1||h+ZT( +ZT + k(I (my ™ mg, my ), demy ™)

+ ck({dgmitt, s;@>L2 @)’ (7.34D)

As in Step 2 and Step 3 of the proof of Theorem 6.5.1(c) for plain LLG, it holds that

3

ZTT(rZ) k<dtmz+1 W}?(m;{‘rl mh?mz 1) ﬂ(m2+1/2)>L2(w) and (7340)
/=1

S 1/2 ‘ 1/2
ZTJ(’) _ k(dtmz+1,fl+ / fl+1/2> L2(w) < fH—l Z+ / >L2(w)' (7.34d)
/=1
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7. Decoupled midpoint scheme for SDLLG

Then, summation in (7.34) over ¢ = 0,...,j — 1 yields that

j—1 J-1 .
Erie (m)) +ak Y [ dempt 7 + k> (def™, m;z+1/2>L2(w)
1=0 =0

j—1 Jj—1
. —_— . 0 ,
—k E (TP (mi™ mi, m! 1),dtmz+1)L2(w) —ck E (s ,dtm?l)p(w)
i=0 i=0

j—1 ,
= Eua (mp) + & Y (dem™ e (mi mi, mi ) = w(my )
1=0
j—1 )
+ k; Z <dtm7h+17 f’7;/+1/2 . fl+1/2>L2(w)- (735)
=0
The norm equivalence relation || - HL2(w) < |- ||» from Lemma 3.3.1(i) and the definition of

the postprocessed output yield that
t; t;
ELLc (myy) + a/ 10emeng 72 dt+/ (Oc S, Monk) () dt
0 0

i B tj
_/O <H,(?(m;k,mhk,mgk)j)tmhk}p(w)dt—c/o <sh®k76tmhk>L2(w)dt

(3.10) t -
< &unc (m)) +/ (O, w2 (Ml my, miy,) — 7 (Mnk)) g2, At
0

tj _ _
+ / (Omnge, Fur — Fr) o) At - (7.36)
0

For the terms with 71'}(? and IT®, recall from plain LLG that we required the convergence
properties from Lemma 6.5.5 and the strong consistencies (D4 ™) for 7, and (D7") for IT},
to derive the strong consistencies from Lemma 6.5.8. Hence, with Lemma 7.3.5 (1)—(vi), we
get in the same way that

t]
/ (Ormep, Tr,(?(mzk, my,, Myy) — w(mhk)>L2(w) dt =+ 0, and
0

t - T
/0 <Hh®(m;kamhkamﬁk)’atmhkﬁ?(w)dt_>/0 (IL(m), em) 2, dt,

as h,k — 0. The last term on the right-hand side vanishes with the strong consistency as
for plain LLG as h, k — 0. For the coupling term, we infer from the additional convergence
property of Lemma 7.3.8 that

t; T
c/ <s%,atmhk>L2(w) dt — c/ (s,0m) 2yt as b,k — 0.
0 0
With the latter convergences at hand, the remainder of the proof employs standard

lower semi-continuity arguments and follows the lines of the Step 5 of the proof of the
corresponding Theorem 6.5.1(c) for plain LLG. O

176



A. Lower-order terms

A.1. Assumption verification for

Proposition A.1.1 (Uniaxial anisotropy). The uniazial anisotropy m from (2.7) satis-
fies (L1)—~(L3) and (T6), i.e., m is linear, bounded, self-adjoint, and L>-stable.

Proof. (L1), (L2) and (T6) are direct consequences of |a|] = 1. To verify (L3), the
definition (2.7) of the anisotropy contribution 7 yields, that

2.7)

/ﬂ(cp)'(pda:(: /(a-cp)(a~¢)dw = /QOﬂ'(’l/))dw for all ¢, € L*(w).

This concludes the proof. ]

Proposition A.1.2 (Stray field, [Pra04, Proposition 3.4, Theorem 5.2]). The stray field
7 from (2.11) is well-defined and satisfies (L1)—(L3) and (T6), i.e., 7 is linear, bounded,
self-adjoint, and L3-stable. ]

A.2. Assumption verification for ),

Proposition A.2.1 (Approximate anisotropy). The approzimate uniazial anisotropy
from (3.16) satisfies (D2), (D3), and (D4%), i.e., m, is linear, uniformly bounded in
L%(w), and satisfies the strong consistency condition. ]

Proposition A.2.2 (Approximate stray field with Fredkin—-Koehler). The approzimate
stray field m), from Section 3.4.5 satisfies (D2), (D3), and (D4%), i.e., m), is linear,
uniformly bounded in L*(w), and satisfies the strong consistency condition.

Proof. The linearity (D2) is obvious from Algorithm 3.4.3. In [BSF*14, Proposition 4.2],
(D3) and (D4) are proved with the Scott-Zhang projection [SZ90], instead of the L?(dw)-
orthogonal projection in Algorithm 3.4.3(b). Since 7}, is quasi-uniform, we obtain, in par-
ticular, that the L?(dw)-orthogonal projection onto S := Syg,, is (uniformly) H'(dw)-
stable. Then, [Goll2, Section 4.3] implies that (D3) and (D4) are also valid for the
L?(dw)-orthogonal projection. O

A.3. Assumption verification for I,

A.3.1. Approximate Zhang-Li field

In the following proposition, we verify the assumptions of this work for the approxi-
mate Zhang-Li field IT; from (3.18) and the corresponding approximate derivative Dy,
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from (4.12). For (i), we elaborate and extend the corresponding arguments of [PRS18, Sec-
tion 4.2], [DPPT17, Section 7.2.2] and [Rugl6, Section 5.2.2]. For (ii), we reorganize and
extend [DPP*17, Section 7.2.2]. For (iii), we follow [PRS18, Remark 14(vii)]. Whenever
necessary, we transfer those arguments from the postprocessed outputs mj, and v, to our
general framework. For the sake of readability, we recall the approximate Zhang—Li field
from (3.18): For ), € S}, we have

I, (pn) = on x (w-V) e+ 8 (u-V)e, € L (w), (A.1a)

where u € L>(w) and € [0,1]. For the tangent plane scheme, we additionally recall the
corresponding approximation operator of the formal derivative from (4.12): For ¢, ¢y €
S}, we have

Dy (en, 1) == Yu x (w-V)on +onp x (uw-V), + 8 (u-V)p, € L*(w).  (A.1b)

Proposition A.3.1 (Approximate Zhang-Li field). Consider the approximate Zhang—Li
field II, and the corresponding approximate derivative operator Dy, from (A.1). Then, the
following three assertions (1)—(iii) hold true:

(i) General: The operator 11, satisfies (D6) and (DT).
(ii) TPS: The operator Dy, satisfies (T3) and (T4).
(iii) MPS: The operator II}, satisfies (M2).
Proof. To prove (i), we conclude uniform boundedness (D6) from

(A.1a)
T (en)ll2w) S llenllzocw) lullpew) IVenrllrzw) + B llullpew) IVenll 2w

S (1 + ”(Ph”Loo(w)) HSOhHHl(w) for all ¢, € Sp,. (AQ)

Next, we verify weak consistency (D7): To this end, let ¢ € H'(wr) N L>®(wr) and let
the sequence (@pi)n k>0 C L%(0,T;S},) satisfy that

oy — @ in L*(wr) and Vep, — Ve in L% (wr), as h,k — 0, (A.3)

Moreover, let (@pk)n k>0 be uniformly bounded, i.e., it holds that ||@nk|lzee(w,) < 1. With
Lemma B.2.1, and the uniform boundedness

(A.2)
L (ene) L2y S (1 + llenkllneowr) ) IVonell 2wy < 1,

it only remains to show for all { € C*°(wr) that

T T
| o). Opgdo— [ M10). Opayde ashks0. (A4
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To that end, let { € C*°(wr). We get that

T
/0 (I (Pnk), €) p2(w dt
(A.1a) T T
=, (ene % (- V) @i, C) 2y dt + 8 ; ((w- V) onr, € p2(,) dt
T T
— —/ <(’U,V) Phk, Phk X C)Lz(w) dt +/8/ <<’U,V) (’th,C>L2(w) dt = _IflLk—i_ﬁI%k
0 0
Since ¢ € C*°(wr), we obtain that

gohkxc(ﬁ) @ x ¢ in L*(wp) as hk—0,

and with the latter equation, we prove that

T T
Iy, — /0 ((u-V) e, x C)pag,)dt = —/0 (@ % (1 V)@, C) 2 dt,
T
Ifztk - / <(u ’ v) (P7C>L2(w) dt, ash,k— 0.
0

The combination of the latter three equations verifies (A.4). This shows (D7) and proves (i).

For (ii), linearity in the second argument (T3) is obvious from the definition (A.1b) of
Dy,. For uniform boundedness (T4), let ¢, € M, and 9, € Sp,. From (ax b)-a =0, we
obtain for vectors a,b € R? that

(Di(ons ), ) "2 (on x (w0 V) Wons ) gy + B (0 - V) i ton) g

S (llenllpew) +8) lwllpoew) VYRl Lz 1%nll £z

S nllzew) 1%nll o)

which verifies the first part of (T4). For the second part, let ¢, @, € My. Then,

| Dr(en, 1) lL2 ()
(Adb) N N
<l x (u- V) @nllp2) + llen X (u- V) @nllp2w) + BlI(w- V) @nllp2)

IN

[@nllzoe ) IVenllL2@w) + llenllzeew) IV@nllLz@w) + BlIIVeRll L2
S enllear@w) + Ilonllmr )

Altogether, this verifies (T4).
For (iii), we have to show the Lipschitz-type continuity (M2). To this end, let ¢y, ¥, €
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S}1. Then, we obtain that

ITLn(en) — Tp ()l L2 ()
(A.1b)
< len x (w-V)en — i x (w- V)l L2y + B 1 (w- V) [@n —¥n ]| [l L2(w)

S N [en—vn] x (w-V)enllpze) + 1n x (w- V) [@n =] L2
+ Bllull Lo w) [Veon — Vabull L2

AN

|| oo @) IV @RIl Lo ) llon — ¥nllL2w)
+ (llull o) 1nll L) + B8) IVen — Vabnll L2(w)-

With an inverse estimate (see Proposition 3.1.8), we altogether get that

1ML (en) — Th(n)lp2w) S B (1 + llenllnocw) + 1¥nllzew) ) len — ¥nllrzw)-

This shows (M2) and concludes the proof. O

The weak consistency property (T5) for the approximate derivative does not hold for
Dy, from (A.1b). Throughout the proof of Theorem 4.5.1(b), the assumption (T5) is not
required until the convergence (4.52). However, in the specific situation of Lemma 4.5.4,
the following proposition let us bypass the missing (T5); see also Remark 4.5.8.

Proposition A.3.2 (Bypass missing (T5) in (4.52)). Consider the approzimate approxi-
mate derivative operator Dy, from (A.1) of the Zhang—Li field from (3.18). Let the assump-
tions from Theorem 4.5.1(b) be satisfied. Let Iy, be the nodal interpolant corresponding to
Sy. Then, for all ¢ € C*>(wr), it holds that

T
/ (Dp(my,., kv, ), Zp(my, X <p)>L2(w) dt -0, and (A.5a)
0

T
/ (Dp(my,,, my, — my), Zp(m,, ¥ cp)}Lg(w) dt -0, ash,k—0. (A.5b)
0

Proof. With the assumptions from Theorem 4.5.1(b), we have, in particular, available the
convergence properties of the postprocessed output from Lemma 4.5.4. Lemma 4.5.6 implies
that the limit m satisfies |[m| = 1 a.e. in wp. The nodewise normalization in the update
from Algorithm 4.2.1(c) yields that |1, ||z (.,) = 1 and for ¢ € C*°(wr) that

@h = TLp(my,;, x @) satisfies  [|@nkllLoewr) < [[@lLe(wr)- (A.6)

First, we show (A.5a): With linearity (T3) of Dy, in the second argument (cf. Proposi-
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tion A.3.1(ii)), we obtain that

T T
I}lzk = ‘ /0 <Dh(m}:k7kv;k)7¢hk>L2(w) dt ‘ = ’k/o <Dh(m}:kav}:k)7¢hk>ll2(w) dt

(A.1b) T B R T
S k/o | (O % (w0 V) M, @) o, | +k/0 | (M % (- V) v, @) g2,y | dt

T
+5/€/0 | {(w- V) vy, §ri) L2(w |dt

(A.6)
S kvl e 1wl zoe @) IVl 2w 180kl Lo wor)

+ k(L4 lmpll oo wr) ) 1wl o ) VUl L2 () 1@hkll Loo (wr)-
With [|m, || e (w,) = 1 and uniform boundedness from (A.6), we get that
I S Kol ez r) IV 22 ) 191 2 wr) + B IV 220 1191 0 o)
With the convergence properties from Lemma 4.5.4, this yields that [ ,}Lk —0as h,k—0

and thus proves (A.5a).
Next, we show (A.5b): We obtain that

T
Iy, = /0 (D (M, My, — M), Phk) 2, At
T
(A.1b) _ _ R
- /0 ([myy, —mp] x (u- V) mhk,¢hk>Lz(w) de
T f—
+ /0 <ml:k: X (u ' v) [m}:k - mitk] ’ Sohk>L2(w) dt
T
+ ﬁ/o ((w- V) My = M, @u) pag At = Ll + TP + T (A7)

First, we deal with ,?;CA: With ||m;,||Le ;) = 1 and uniform boundedness (A.6), we get
that

A7)

2,A = —
e | S llwllzoew) lImgy, — millzwr) VM2 el e wr)-

The convergence properties of Lemma 4.5.4 then yield that I,?}CA —0ash,k— 0. For I 2}63,
we get as in Step 3 of the proof of Theorem 4.5.1(b) that

Phik A9 x ¢ in L?(wr) as h,k—0

With [|m; ||z (w,) = M|/ g,y = 1 and the uniform boundedness (A.6), we similarly
obtain that

my, X ope — mx (mx ) in L*(wr) as h,k — 0.
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The latter two convergences and the convergence properties of Lemma 4.5.4 yield that

T
(A7) _ _ .
I}QL}CB = —/0 ((w-V)[my, —mp,],m;, x ‘phk>L2(w) dt -0 ash,k—0.

With ¢y, instead of m; X @pk, in the latter arguments, we get in the same way that
Ifl;ﬂc — 0 as h,k — 0. Altogether, this shows (A.5b) and concludes the proof. O]

A.3.2. Approximate Slonczewksi field

In the following proposition, we verify the assumptions of this work for the approxi-
mate Slonczewski field IT;, from (3.19) and the corresponding approximate derivative Dy,
from (4.13). Morally, we reorganize [DPP117, Section 7.2.1]. For (i) and (iii), we also refer
to [Rugl6, Section 5.2.1]. Whenever necessary, we transfer the arguments in the latter
references from the postprocessed outputs mj, and v, to our general framework. For the
sake of readability, we recall the approximate Slonczewski field from (3.19): For ¢, € Sj,
we have

I, (¢n) == G(pn P) pn x p € LP(w) (A.8a)

For the tangent plane scheme, we additionally recall the corresponding approximation
operator of the formal derivative from (4.13): For ¢y, ¢, € Sp,, we have

D) == [G'(n-P)¥n-Plen xP+G(en p)¥n xp € L*(w). (A.8b)

Proposition A.3.3 (Approximate Slonczewski field). Consider the approzimate Slonczewski-
field I, from (3.19) and the corresponding approximate derivative Dy, from (A.8). Then,
the following three assertions (i)—(iii) hold true:

(i) General: The operator Il satisfies (D6) and (D7T).
(ii) TPS: The operator Dy, satisfies (T3), (T4") and (T57).
(iii) MPS: The operator I}, satisfies (M2).
Proof. To show (i), we need to verify (D6). To this end, G € C¢(R) and |p| = 1 yield that

(A.8a)
I (en)llzzw) S 19(en-P)en X Pllrzw)

S Gl L) lenllew) S lenlleew) for all ¢, € Sp,
i.e., there even holds a stronger estimate than in (D6). To verify the strong consistency
condition (D7%) we follow [Rugl6, Section 5.2.1]: Let ¢ € L?*(wr) and (@pi)hr=0 C
L%(0,T,Sy) with

||(PthLoo(wT) S 1 and Phk — P in L2(wT) as h,k > 0. (Ag)
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Then, G € C}(R) is, in particular, Lipschitz-continuous and
1T (enk) — (@) L2(wp) = 1G(@nk - P) @rr X P — G(@ - P) @ X Pl L2(wy)
< |[9(enr-p) =Gl P)] (enk X P)lL2(wr) + 192 - P)[rr — @] % PllL2(w)

S Glwree ) lonk = @l L2(wr) lenk X PllLsewr) + 1G] L ®) lene — @llL2wr)
(A.9) (4.9)
S llenk — 2y — 0 as bk — 0. (A.10)

This show (D7) and concludes the proof of (ii).

Similarly to (D7), we verify (M2) and thus prove (iii). To this end, let ¢, € Sp,.
Since we defined IIj; := Il|s, in (A.8a), we can repeat the computations of (A.10) and
similarly get that

ITLn (n) — Tk (n) | L2 (w)

(A.8a)
S GlIwreew lln X Pllecw) llen — ¥rllp2w) + 1G] L) lon — Pull L2

S (14 llenllnew)) llen — ¥nllL2(w),

which verifies an even stronger estimate than that of (M2).

Finally, we prove (ii). Linearity in the second argument (T3) of D}, is obvious from the
definition (A.8b). To show strong uniform boundedness (T41) of Dy, let ¢ € M, and
Y, € 8. We get that

(A.8b)
IDw(en ¥n)llrzew) < 111G (n-P)¥n-plen X Pllrzw) + 1G(en - P) ¥n X Pllr2(w)

S NG ey 1¥nll 2w llenll oo w) + 1G] oo ) [1¥nll 2 () (A.11)

S (T4 llenllzew)) Il 2w, (A.12)

i.e., there even holds a stronger statement than (T4%1). Finally, we show (T5%): To this
end, let (Sohk)h,k>0 C L2(0,T;Sh) and ('l/’hk)h,k>0 C L2(0, T;8}), such that

”(,OthLoo(w) S 1 and ¢hk — 0 in LZ(WT) as h,k — 0. (A13)

Repeating the estimates of (A.11) with || - ||g2(,,) instead of || - || z2(.,y, we show that

wr)

(A.13)
I Dw(nks i)l L2y S (1 + llenllew)) l¥nkllL2@wsy = 0 as bk — 0.

Altogether, this shows (T5%) and concludes the proof. O
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B. Auxiliary results

B.1. Tangent plane scheme

Lemma B.1.1 ([Bar05, Lemma 3.2]). Let Z;, be the nodal interpolant corresponding to
Sy, where the underlying mesh satisfies the angle condition (T1). Let @ € Sp with
lpn(2)| > 1 for all nodes z € N,. Then, it holds that

vz ()

L) < |IVenllL2(w)- O

Lemma B.1.2 ([Goll2, Lemma 3.1.1]). Let p € [1,00). Then, there exists a constant
C > 0, which depends only on Cmesn and p, such that

1/p
o rsohumw)gh?’( T |soh<z>p) < Cllgnllise for all gp € Sp. 0
zENh

Remark B.1.3. Lemma B.1.2 is a generalization of Lemma 3.3.1 for p = 2.

Lemma B.1.4. Let m} € My, and v} € Ky(m!). Define m?l e My, via

mitl(z) = mj (z) + kvj,(z)

= : for all nodes z € N,.
Imj,(2) + kvj (2))]

Then, the following two assertions (1)—(ii) hold true:

(i) For all nodes z € Ny, it holds that

i i 1 i i i i 1 i
[, (2) = mi(2)] < Sk (2)] and [mjt(z) — mi,(2) = kvj(2)] < 5 K [vh(2)].

(ii) Let p € [1,00). Then, there exists a constant C > 0, which depends only on Cpmesh
and p, such that

1

I demy T Loy < Clvhllr@w) and || demy™ — )|l pow) S Ck [0 2w (w)-

Proof. For the proof of (i), see, e.g., [AJ06, Section 3.1] or [Goll2, Lemma 3.3.2, 3.3.3].
(ii) is a direct consequence of Lemma B.1.2. O
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B. Auxiliary results

B.2. Functional analysis

Lemma B.2.1 ([Yos95, Chapter V.1, Theorem 3]). Let B be a Banach space with corre-
sponding norm || - || and (z¢)72, C B as well as x € B. It holds that x; — = in B as
¢ — oo if and only if the following two conditions (A) and (B) are satisfied:

(A) It holds that supcy ||2¢]|B < 0.
(B) There exists a dense set D C B', such that

f(xg) = f(z) asl— oo forall f € D. O
Theorem B.2.2 (Eberlein-Smulian theorem, [Yos95, p. 141]). Let B be a reflexive Banach

space with corresponding norm || - ||g. Let (x¢)32, C B, such that

sup ||z¢|| < oo.
feN
Then, there exists x € B and a subsequence (xg, )3 such that xy, — x in B ask — co. [

Theorem B.2.3 (Banach-Alaoglu theorem, [Rud91, Theorem 3.17]). Let B be a separable
Banach space with dual space B'. Denote the norm corresponding to B' by || - ||p:. Let
(fo)p2, € B' such that

sup | fel g < oo.
¢eN

Then, there exists f € B’ and a subsequence (fy, )72, such that fo, Az inB ask — co. O

Theorem B.2.4 (Lax-Milgram theorem, [Yos95, Section II1.7]). Let H be a Hilbert space
with corresponding norm || - ||g. Let S : H x H — R be a sesquilinear form, which is
continuous in the sense that there exists a constant C.on > 0 such that

1S(z,9)| < Ceont |||l Iyl for all z,y € H,
and coercive in the sense that there exists a constant Coer > 0 such that
S(x,x) > Cooer ||zl|%  for all z € H.
Let f € H'. Then, there exists a unique xy € H, such that
S(zf,y) =F(y) forallye H. O

Theorem B.2.5 (Brouwer fixed-point theorem!, [Eval0, p. 529]). Let d € N and let
F :RY - R? be continuous. Suppose there exists v > 0, such that

F(x)-x >0 forallxeR? with x| = r.

Then, there exists xg € R? with |xo| < r and F(xq) = 0. O

Note that this result is often only considered a corollary of the actual Brouwer fixed-point theorem. We
refer to, e.g., [Eval0, p. 463] for the classical formulation.
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B.3. Other

Theorem B.2.6 (Banach fixed-point theorem, [Werll, p. 166]). Let B be a Banach space
with corresponding norm || - ||g. Let ¢ € (0,1). Let F : B — B be a mapping, such that

|F(u) —F)|lp <qllu—nv|p foralu,ve B.

Then, F has a unique fized-point x € B, i.e., F(x) = x. In particular, for any initial value
xg € B, the sequence (x¢)ien, C B defined via x¢41 := F(z¢) for all £ € Ny satisfies that

zy—x mB asl— oo. O

B.3. Other

Lemma B.3.1 (Discrete Gronwall lemma, [QV94, Lemma 1.4.2]). Let ag > 0 and let
(Bi)2gs (74)2 be non-negative sequences. Suppose that

i—1
Y <y and v < ap+ Zﬁjfyj for alli > 1.
=0
Then, it holds that
i—1
’YiSaoexp<Zﬂj) for all i > 1. 0

=0
Lemma B.3.2 (Young’s inequality, [Eval0, p. 706]). Let a,b € R. For ¢ > 0, it holds that

) b
b<é —. O]
ab < o0a” + 1
Lemma B.3.3 (Abel’s summation by parts, [Barl5, Lemma 3.8]). Let H be a Hilbert space
with the corresponding scalar product (-,-); and the corresponding norm || - ||g. Let j € N
and (z;)]_o € H. Then, it holds that

|
—

j—1

1 1
(i1 = zi @) = 5 17 — 5 lzollF + D i — =il 3. O
=0

J

<.
Il
=)
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