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Segmented tunnel rings exhibit load-induced interfacial dislocations. In order to facilitate structural anal-
ysis, a hybrid method is developed and applied to a real-scale test of a segmented tunnel ring. Point loads,
imposed on the tested ring, and measured interfacial discontinuities serve as input for the analysis.
Moreover, the method accounts for the structural behavior of the individual segments by means of newly
derived transfer relations. They represent analytical solutions of the first-order theory of slender circular
arches, exhibiting constant cross-sectional properties. The tool for the development of this basically well-
known theory is the principle of virtual power. Its involvement is motivated by the possibility of a
mechanically consistent derivation of relations, some of which have been used for a long time without
analyzing their scientific background. The validity and the usefulness of the transfer relations follow from
a comparison of newly derived solutions with (i) alternative analytical solutions, (ii) Finite Element solu-
tions, and (iii) experimental data. The computational efficiency and the usefulness of the developed
hybrid method are demonstrated by structural analysis of a segmented tunnel ring. It provides valuable
insight into the load-carrying behavior of the tested structure without the need to describe the nontrivial
behavior of segment-to-segment interfaces.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The motivation for the present paper is structural analysis of a
real-scale experiment of a segmented tunnel ring, tested at Tongji
University [1], see Fig. 1. 24 hydraulic jacks imposed concentrated
loads on the structure, simulating non-uniform ground pressure.
During the stepwise loading process, monitoring instrumentation
was used to measure convergences as well as discontinuities at
segment-to-segment interfaces, i.e. relative rotation angles and
displacement jumps in the radial and tangential direction. Both,
point loads and interfacial dislocations result in discontinuities of
static and kinematic variables. They render structural simulations
a challenging task.

The complex contact behavior of segment-to-segment inter-
faces depends on many factors including their geometric layout,
the potential use of prestressed connecting bolts, the stresses act-
ing in the contact zone, as well as potential dislocations and rela-
tive rotation angles. This was the motivation for several testing
series, in which interfaces were subjected to normal forces and
bending moments [2,3] or to normal and shear forces [4]. Corre-
sponding models for the nonlinear interfacial behavior include
analytical approaches [5–8] and numerical approaches, where
the interfacial regions are modeled in great detail [9,10].

The structural behavior of segmented tunnel rings strongly
depends on the complex interface behavior. This was the motiva-
tion for many structural experiments [11–14,1]. As for the corre-
sponding structural analyses, several approaches exist. Interfaces
were simulated as perfect hinges [15]. Closed ring models with
reduced moments of inertia at the locations of interfaces were
developed [16–19]. Interfaces were modeled explicitly based on
rotational springs [20–23] and on systems of springs, allowing
for both dislocations and relative rotation angles [24,25]. If realistic
nonlinear interfacial behavior is taken into account, an
incremental-iterative solution scheme is required even if the rein-
forced concrete segments exhibit linear elastic material behavior.
This provides the motivation for the present study.

The aim of the present work is to establish a hybrid method for
displacement-monitored segmented tunnel rings. This is inspired
by existing hybrid methods, developed for structural analysis of
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Fig. 1. Setup of the real-scale experiment of a segmented tunnel ring at Tongji
University [1].
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displacement-monitored shotcrete shells, used as linings in the
New Austrian Tunneling Method, see, e.g. [26–29]. Herein, the
word ‘‘hybrid” refers to the combination of measurements and ana-
lytical or numerical computations in structural mechanics. In the
present context, measured interfacial discontinuities will be used
(together with prescribed point loads) as input for the computa-
tional structural analysis. This eliminates the interfacial nonlinear-
ities, and thus simplifies the structural analysis significantly. In
addition, the structural behavior of the individual segments will
be accounted for by means of analytical solutions of the small
strain (‘‘first-order”) theory for slender circular arches with con-
stant cross-sectional properties. Such transfer relations are appeal-
ing because they are capable of considering discontinuities of static
and kinematic variables, for example, the ones resulting from point
loads and interfacial dislocations, in a straightforward manner.

The present paper is organized as follows. In Section 2, the ana-
lyzed experiment on a segmented tunnel ring is described. Sec-
tion 3 is devoted to the derivation and an exemplary validation
of transfer relations, representing analytical solutions of the first-
order theory for slender circular arches with constant cross-
sectional properties. As for the validation, the transfer relations
are applied to a two-hinged arch, subjected to a point load and
to a three-hinged arch, subjected to dead load. Results obtained
with the help of the derived transfer relations are compared with
alternative analytical solutions obtained by the unit force method,
results from Finite Element simulations, and experimental data.
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Fig. 2. (a) Geometric dimensions of the analyzed segmented tunnel ri
Section 4 is devoted to the application of the transfer relations to
the aforementioned hybrid analysis of a displacement-monitored
experiment on a segmented tunnel ring. In the discussion in Sec-
tion 5, (i) the reason for the unsymmetric structural response
under symmetric external loading is explained, (ii) the question
whether the tested segmented tunnel ring may be treated as a
slender arch is answered, and (iii) the benefits from the presented
hybrid approach are highlighted. Section 6 contains conclusions
drawn from the presented study. Appendix A is devoted to the
first-order theory of slender circular arches. The tool for the devel-
opment of this basically well-known theory is the principle of vir-
tual power. Its involvement is motivated by the possibility of a
mechanically consistent derivation of relations, some of which
have been used for a long time without analyzing their scientific
background. Appendix B contains an analytical solution of an arch
problem based on the unit force method. Appendix C contains a list
of symbols.
2. Data from a real-scale test on a segmented tunnel ring

In this section, data from a full-scale experiment of a segmented
tunnel ring, tested at Tongji University [1], are presented (Fig. 1).
The radius R of the ring was 2.925 m, see Fig. 2(a). It consisted of
six reinforced concrete segments, named K, A, B, C, D, E. Their thick-
ness, H, and axial length, B, were 35 cm and 1.2 m, respectively.
Young’s modulus of concrete, Ec , amounted to 43,478 MPa
[30,31], the extensional stiffness EA amounted to 18,260 MN, and
the bending stiffness EI amounted to 186 MNm2. Compressive
loading was imposed by 3 groups of altogether 24 hydraulic jacks,
see Fig. 2(b). They simulated the action of non-uniform earth pres-
sure. The available measurements included jack forces and the
interfacial displacement/rotation discontinuities (Fig. 3), as well
as the vertical and horizontal convergences, see Fig. 4. The present
re-analysis of the test focuses on the first 4 load steps, during
which the segments remained uncracked [1]. Thus, the mechanical
behavior of the segments can be modeled by linear elasticity
theory.
3. Transfer relations for circular arches

Consider a slender arch with constant radius R, extensional
stiffness EA, and bending stiffness EI, subjected to radial and tan-
gential distributed loads, qr and qu (Fig. 5). The first-order theory
for such an arch consists of the following basic equations; for their
derivation see Appendix A. The displacement vector, u, and the
cross-sectional rotation, h, are given as
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Fig. 3. Experimental data used as input for structural analysis: (a) imposed jack forces, (b) – (d) measured interfacial discontinuities of radial displacements, tangential
displacements, and cross-sectional rotations; see [1].

Fig. 4. Experimental data used for validation of the transfer relations: ‘‘+” and ‘‘�”
refer to an increase and a decrease, respectively, of the initial diameter; see [1].
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u ¼ uer þ v� ðr � RÞ 1
R

du
du

� v
R

� �� �
eu; ð1Þ

h ¼ 1
R

du
du

� v
R
; ð2Þ

where u and v denote the radial and tangential component of u,
respectively, r and u stand for the radial and the tangential
coordinate, and er and eu symbolize the base vectors in the radial
and the tangential direction (see Fig. 5). For linear elasticity the con-
stitutive expressions for the normal force N and the bending
moment M are given by [32,33]

N ¼ EA
u
R
þ 1
R

dv
du

� �
; ð3Þ

M ¼ �EI
1
R2

d2u
du2 �

1
R2

dv
du

 !
: ð4Þ

The equilibrium conditions read as [34]

�N
R
þ 1
R
dV
du

þ qr ¼ 0; ð5Þ

1
R
dN
du

þ V
R
þ qu ¼ 0; ð6Þ

1
R
dM
du

¼ V : ð7Þ

The distribution of normal stresses follows from [35]

ruu ¼ N
A
þM

I
ðr � RÞ; ð8Þ

where A and I denote the cross-sectional area and the moment of
inertia, respectively.
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3.1. Stepwise solution scheme

In order to derive analytical solutions for N; V ; M; u; v, and h
from Eqs. (2)–(7), a step-by-step integration strategy is developed.
Combination of Eqs. (5) and (6) results in the following second-
order differential equation for N

d2N
du2 þ N ¼ R qr �

dqu
du

� �
: ð9Þ

After solving Eq. (9), V follows from Eq. (6) as

V ¼ � dN
du

� Rqu: ð10Þ

Knowledge of the shear force enables solution of Eq. (7) for M

dM
du

¼ R V : ð11Þ

Combination of Eqs. (3) and (4) results in the following second-
order differential equation for u

d2u
du2 þ u ¼ R

N
EA

�MR
EI

� �
: ð12Þ

After solving Eq. (12), v follows from re-arrangement of Eq. (3), as

dv
du

¼ NR
EA

� u: ð13Þ

Finally, h is obtained from Eq. (2) as

h ¼ 1
R

du
du

� v
R
: ð14Þ

Subsequently, the described solution concept, see Eqs. (9)–(14), is
applied to the following load cases: (i) an unloaded part of the arch,
(ii) dead load, (iii) point loads, and (iv) interfacial discontinuities of
kinematic variables.

Eqs. (9)–(14) represent a system of six linear differential equa-
tions in the six variables, N; V ; M; u, v, and h. This system is inho-
mogeneous because of the loading quantities qr and qu. In load
case (i), the load quantities qr and qu are set equal to zero. There-
fore, load case (i) refers to the derivation of the ‘‘homogeneous
solution” of the system of differential equations. (9)–(14). The load
cases (ii)–(iv), in turn, refer to the derivation of ‘‘particular
solutions”.

3.2. Solution for the unloaded part of the arch

For an unloaded arch, i.e. for qr ¼ qu ¼ 0, the forces and the
bending moment follow from the Eqs. (9)–(11) as
O

R
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r

qr

qϕ

(a)

Fig. 5. (a) Circular arch of radius R, loaded by radial and tangential distributed load
(b) displacements and internal forces at an arbitrary cross-section; u and v denote th
cross-sectional rotation, and N; M, and V are the normal force, the bending moment, an
NðuÞ ¼C1 sinuþ C2 cosu; ð15Þ
VðuÞ ¼ � C1 cosuþ C2 sinu; ð16Þ
MðuÞ ¼ � RC1 sinu� RC2 cosuþ C3: ð17Þ
It is useful to replace the mathematically motivated integration
constants C1; C2, and C3 by mechanically interpretable constants,
chosen as the forces and the bending moment at the initial cross-
section: i.e. as Vi; Ni, and Mi. The relations between these two sets
of integration constants follow from Eqs. (15)–(17) as

Vð0Þ ¼Vi ) C1 ¼ �Vi; ð18Þ
Nð0Þ ¼Ni ) C2 ¼ Ni; ð19Þ
Mð0Þ ¼Mi ) C3 ¼ Mi þ RNi: ð20Þ
It is noteworthy that the validity of Eqs. (15)–(20) can be checked
by means of equilibrium conditions, formulated for a part of the
arch, ranging from the initial cross-section to the one defined by
an arbitrary value of u.

The kinematic state variables follow from the Eqs. (12)–(14)
under consideration of the Eqs. (15)–(20) as

uðuÞ ¼C4 cosuþ C5 sinuþ 1
2

R
EA

Viu cosuþ Ni cosuþu sinuð Þ½ �

þ 1
2
R3

EI
Viu cosuþ Ni cosuþu sinuð Þ � 2ðMi þ RNiÞ

R

� �
; ð21Þ

vðuÞ ¼ � C4 sinuþ C5 cosuþ C6

þ R
EA

�1
2
Vi � cosuþu sinuð Þ þ 1

2
Niu cosu

� �

þ R3

EI
�1
2
Vi cosuþu sinuð Þ þ Ni

1
2
u cosu� sinu

� �
þMi þ RNi

R
u

� �
;

ð22Þ

hðuÞ ¼ � C6

R
þ R2

EI
Vi cosuþ Ni sinu�Mi þ RNi

R
u

� �
: ð23Þ

Again, it is useful to replace mathematically motivated integration
constants C4; C5, and C6 by mechanically interpretable constants,
chosen as the state variables at the initial cross-section, i.e. ui; hi,
and vi. The relations between these two sets of integration con-
stants follow from Eqs. (21)–(23) as

uð0Þ ¼ui ) C4 ¼ ui þMi
R2

EI
þ Ni �1

2
R
EA

þ 1
2
R3

EI

 !
; ð24Þ

hð0Þ ¼hi ) C6 ¼ �hiRþ Vi
R3

EI
; ð25Þ

vð0Þ ¼vi ) C5 ¼ vi þ hiRþ Vi �1
2

R
EA

� 1
2
R3

EI

 !
: ð26Þ
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s, qr and qu , in the r-u plane (the distributions of qr and qu are not shown),
e radial and the tangential component of the displacement of the axis, h is the
d the shear force, respectively (arrows point in positive directions).
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Eqs. (15)–(26) refer to the homogeneous solution of the differ-
ential equations (9)–(14). Notably, the integration constants were
introduced as the static and kinematic variables at the initial
cross-section. Therefore, homogeneous boundary conditions must
be considered in the following derivation of particular solutions
of the inhomogeneous system of differential Eqs. (9)–(14).

3.3. Particular solutions for dead load

The dead load q is decomposed into its radial and tangential
component, i.e. qr ¼ �q sinðuþ bÞ and qu ¼ �q cosðuþ bÞ, where
b denotes the inclination angle of the initial cross-section, see
Fig. 6. Corresponding particular solutions for static and kinematic
variables are called load integrals. They are marked by the super-
script L.

The particular solutions for the forces and the bending moment
follow from the Eqs. (9)–(11). Considering the homogeneous
boundary conditions NLð0Þ ¼ 0; VLð0Þ ¼ 0; MLð0Þ ¼ 0, the follow-
ing relations are obtained:

NLðuÞ ¼Rqu cosðuþ bÞ; ð27Þ
VLðuÞ ¼Rqu sinðuþ bÞ; ð28Þ
MLðuÞ ¼R2q sinðuþ bÞ �u cosðuþ bÞ � sinb½ �: ð29Þ
Analogous to the Eqs. (15)–(20), the validity of the Eqs. (27)–(29)
can be checked by means of equilibrium conditions, formulated
for a part of the arch, ranging from the initial cross-section to the
one defined by an arbitrary value of u.

The particular solutions for the kinematic state variables follow
from the Eqs. (12)–(14). Considering the homogeneous boundary
conditions uLð0Þ ¼ 0, vLð0Þ ¼ 0; hLð0Þ ¼ 0, the following relations
are obtained:

uLðuÞ ¼ R2q
4EA

u2 sinðuþ bÞ þu cosðuþ bÞ � cos b sinu
� �

þ R4q
4EI

u2 � 4
� 	

sinðuþ bÞ þ 3u cosðuþ bÞ þ 2 sinu cos bþ 4 sin b
� �

;

ð30Þ
vLðuÞ ¼ R2q

4EA
u2 cosðuþ bÞ þu sinðuþ bÞ � sin b sinu
� �

þ R4q
4EI

u2 � 8
� 	

cosðuþ bÞ � 5u sinðuþ bÞ�
þ sinu� 4uð Þ sin bþ 8 cos b�; ð31Þ

hLðuÞ ¼R3q
EI

u sin bþu sinðuþ bÞ þ 2 cosðuþ bÞ � 2 cos b½ �: ð32Þ

3.4. Particular solutions for point loads

The point load P, acting at an arbitrary point of the arch, which
is defined by the angleup (Fig. 7), is decomposed into its radial and
ϕ

O

y

ϕf

q

x

ϕi = 0

β

qr

−q

qϕ

ϕ + β
r

Fig. 6. Decomposition of q into qr and qu .
tangential component, Pr and Pu. These components are intro-
duced as limiting cases of distributed loads qr and qu:

Pr ¼lim
�!0

Z upþ�

up��
qr R du; ð33Þ

Pu ¼lim
�!0

Z upþ�

up��
qu R du: ð34Þ

Both, qrðuÞ in Eq. (33) and quðuÞ in Eq. (34), are expressed by means
of the Dirac function, defined as

dðu�upÞ ¼
0 . . .u – up;

þ1 . . .u ¼ up;

(
ð35Þ

which satisfies

lim
�!0

Z upþ�

up��
dðu�upÞ du ¼ 1: ð36Þ

The expressions for qrðuÞ and quðuÞ follow from multiplying Eq.
(36) by Pr and Pu, respectively, and comparing the resulting terms
with Eq. (33) and Eq. (34), respectively, as

qr ¼
Pr

R
dðu�upÞ; ð37Þ

qu ¼ Pu
R

dðu�upÞ: ð38Þ

A point load results in discontinuities of both the normal force
and the shear force at the load point. The bending moment is con-
tinuous but not smooth at such a point. This situation is described
mathematically by means of the Heaviside function,

Hðu�upÞ ¼
0 . . .u < up;

1 . . .uP up;

(
ð39Þ

the derivative of which is equal to the Dirac distribution, i.e.

dHðu�upÞ
du

¼ dðu�upÞ: ð40Þ

The particular solutions for the forces and the bending moment fol-
low from the Eqs. (9)–(11). Considering homogeneous boundary
conditions, the following relations are obtained:

NLðuÞ¼ Pr sinðu�upÞ�Pu cosðu�upÞ
h i

Hðu�upÞ; ð41Þ

VLðuÞ¼� Pr cosðu�upÞþPu sinðu�upÞ
h i

Hðu�upÞ; ð42Þ

MLðuÞ¼�R Pr sinðu�upÞþPu 1�cosðu�upÞ
h in o

Hðu�upÞ: ð43Þ

Analogous to the Eqs. (15)–(20), the validity of the Eqs. (41)–(43)
can be checked by means of equilibrium conditions, formulated
O

y

ϕ

β

ϕpϕf

Pr
Pϕ

P

ϕi=0

x

r

Fig. 7. Point load P at u ¼ up and its radial and tangential component.
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for a part of the arch, ranging from the initial cross-section to the
one defined by an arbitrary value of u.

The particular solutions for the kinematic state variables follow
from the Eqs. (12)–(14). Considering homogeneous boundary con-
ditions, the following relations are obtained:

uLðuÞ ¼1
2
PrR
EA

sinðu�upÞ � ðu�upÞ cosðu�upÞ
h i

Hðu�upÞ

þ 1
2
PuR
EA

�ðu�upÞ sinðu�upÞ
h i

Hðu�upÞ

þ 1
2
PrR

3

EI
sinðu�upÞ � ðu�upÞ cosðu�upÞ
h i

Hðu�upÞ

þ 1
2
PuR

3

EI
�ðu�upÞ sinðu�upÞ � 2 cosðu�upÞ þ 2
h i

Hðu�upÞ;
ð44Þ

vLðuÞ ¼ PrR
EA

1
2
ðu�upÞ sinðu�upÞ

� �
Hðu�upÞ

þ PuR
EA

�1
2
ðu�upÞ cosðu�upÞ �

1
2
sinðu�upÞ

� �
Hðu�upÞ

þ PrR
3

EI
1
2
ðu�upÞ sinðu�upÞ þ cosðu�upÞ � 1

� �
Hðu�upÞ

þ PuR
3

EI
�1
2
ðu�upÞ cosðu�upÞ

�
þ3
2
sinðu�upÞ � ðu�upÞ

�
Hðu�upÞ; ð45Þ

hLðuÞ ¼ PrR
2

EI
1� cosðu�upÞ
h i

Hðu�upÞ

� PuR
2

EI
sinðu�upÞ � ðu�upÞ
h i

Hðu�upÞ: ð46Þ
ð57Þ
3.5. Particular solutions for interfacial discontinuities of kinematic
variables

Discontinuities of kinematic variables occur at connections
between neighboring arch elements, e.g. at hinges or at segment-
to-segment interfaces of segmented tunnel rings. They result in
rigid body motions. Therefore, the particular solutions for forces
and the bending moment vanish, i.e.

NLðuÞ ¼ VLðuÞ ¼ MLðuÞ ¼ 0: ð47Þ
The rigid body motion, resulting from a discontinuity of the

radial displacement, Duj, at tangential position uj, see Fig. 8(a),
can be described by means of the Heaviside function as

uLðuÞ ¼Duj cosðu�ujÞHðu�ujÞ; ð48Þ
vLðuÞ ¼ � Duj sinðu�ujÞHðu�ujÞ; ð49Þ
hLðuÞ ¼0: ð50Þ
A discontinuity of the tangential displacement, Dvj, see Fig. 8(b),
yields, analogous to the Eqs. (48)–(50):
uLðuÞ ¼Dvj sinðu�ujÞHðu�ujÞ; ð51Þ

vLðuÞ ¼Dvj cosðu�ujÞHðu�ujÞ; ð52Þ

hLðuÞ ¼0: ð53Þ

Finally, a discontinuity of the cross-sectional rotation, Dhj, see Fig. 8
(c), yields load integrals reading as

uLðuÞ ¼RDhj sinðu�ujÞHðu�ujÞ; ð54Þ

vLðuÞ ¼ � RDhj 1� cosðu�ujÞ
h i

Hðu�ujÞ; ð55Þ

hLðuÞ ¼DhjHðu�ujÞ: ð56Þ
3.6. Transfer relations

The load cases considered in the previous subsections are now
superimposed. The resulting functions for the static and kinematic
variables, i.e. for forces and moment, as well as for displacements
and rotation, are arranged in matrix–vector form [36]. The afore-
mentioned variables are collected into a state vector, and a transfer
matrix relates the state vector related to the initial cross-section to
the state vector characterizing the cross-section at any position u.
Thus,
where

T13ðuÞ ¼ R sinu; T14ðuÞ ¼ R2

EI
ðcosu� 1Þ;

T15ðuÞ ¼ R
EA

1
2
u sinuþ R3

EI
1
2
u sinuþ cosu� 1

� �
;

T16ðuÞ ¼ R
EA

1
2
u cosu� 1

2
sinu

� �
þ R3

EI
1
2
u cosu� 1

2
sinu

� �
;

T23ðuÞ ¼ R ðcosu� 1Þ; T24ðuÞ ¼ R2

EI
ðu� sinuÞ;

T25ðuÞ ¼ R
EA

1
2
u cosuþ 1

2
sinu

� �
þ R3

EI
u� 3

2
sinuþ 1

2
u cosu

� �
;

T26ðuÞ ¼ R
EA

�1
2
u sinu

� �
þ R3

EI
1� cosu� 1

2
u sinu

� �
;

T34ðuÞ ¼ � R
EI
u; T35ðuÞ ¼ R2

EI
ðsinu�uÞ; T36ðuÞ ¼ R2

EI
ðcosu� 1Þ;

T45ðuÞ ¼ R ð1� cosuÞ; T46ðuÞ ¼ R sinu:

ð58Þ
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Fig. 8. Interfacial discontinuities of: (a) radial displacement, (b) tangential displacement, and (c) cross-sectional rotation.
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The top-left six-by-six submatrix of the transfer matrix in Eq. (57)
contains the radius R of the arch, its extensional stiffness EA, and
its bending stiffness EI. Load integrals, in turn, form the top six ele-
ments of the last column of the transfer matrix. The summation
extends over all external loads imposed on the considered arch. This
may include integrals for dead load, see Eqs. (27)–(32), point loads,
see Eqs. (41)–(46), and interfacial discontinuities of kinematic vari-
ables, see Eqs. (47)–(56). The unknown six integration constants
form the vector of state variables referring to the initial cross-
section of the arch, see ui; vi; hi; Mi; Ni, and Vi in Eq. (57). They
are obtained from the boundary conditions, as will be shown in
the following examples.
3.7. Validation example 1: two-hinged arch, subjected to a point load

The two-hinged arch tested by La Poutré [37] is analyzed, see
Fig. 9(a). The arch was made of steel and exhibited an I-shaped
cross-section, see Fig. 9(b). It is characterized by EA ¼ 400 MN
and EI ¼ 0:662272 MNm2. A point load was imposed at the crown
of the arch. The vertical deflection of the load application point was
measured. Under progressively increased loading, the steel started
to yield once the point load reached Py ¼ 0:059 MN. The corre-
sponding deflection was equal to dy ¼ 11:53 mm.

Structural analysis of the arch focuses on the initial linear
elastic behavior. The six integration constants are obtained from
the six boundary conditions. Three of them refer to the initial
cross-section of the arch. They read as ui ¼ vi ¼ 0 and Mi ¼ 0.
They provide direct access to three integration constants. The
remaining three integration constants hi; Ni, and Vi are identified
from the boundary conditions referring to the final cross-section
(index ‘‘f”). They read as uf ¼ vf ¼ 0 and Mf ¼ 0. To this end, the
transfer relations, see Eq. (57), are specified for u ¼ p such that
the vector on the left-hand side of Eq. (57) contains the state
Fig. 9. Two-hinged arch subjected to a point load at its crown: dimensions of (a) the
arch and (b) the cross-section.
variables at the final cross-section of the arch. Inserting the cor-
responding three boundary conditions into this vector delivers
the following three algebraic equations for the remaining three
integration constants:

0 �2 R3

EI � Rp
2EA � R3p

2EI

�2R � Rp
2EA þ R3p

2EI 2 R3

EI

0 2R 0

264
375 hi

Ni

Vi

264
375 ¼ �

PR
2EA þ PR3

2EI

PRp
4EA þ PR3

EI
p
4 � 1
� 	

�PR

264
375:

ð59Þ

The solution of Eq. (59) reads as:

hi ¼
PR4EA p2 � 2p� 4

� 	
4p EAR2 þ EI

 �

EI
þ PR2 p2 � 2pþ 4

� 	
4p EAR2 þ EI

 � ; ð60Þ

Ni ¼ P
2
; ð61Þ

Vi ¼�
EAR2 � EI

 �

P

EAR2 þ EI

 �

p
: ð62Þ

The deflection at the crown of the arch is equal to d ¼ �uðp=2Þ.
The latter is obtained by evaluating Eq. (57) for u ¼ p=2 and
inserting the identified integration constants. After simplification,
the following result is obtained

d ¼ PR3

8EI
3p2 � 8p� 4
� 	þ PR3ðp2 þ 12Þ

8p EAR2 þ EI

 �þ PREIðp2 � 4Þ

8pEA EAR2 þ EI

 � :

ð63Þ

This result is compared with (i) experimental measurements [37],
(ii) an available FEM solution [38], and (iii) the solution obtained
with the unit force method, see Fig. 10. All three analysis results
coincide, provided that the same stiffness of steel is used, see
Fig. 10(a). Moreover, the analytical solutions agree very well with
the experimental results, provided that the Young’s modulus of
steel is set equal to 210 GPa, as recommended by Eurocode 3 [39],
see Fig. 10(b). This underlines the validity of the presented analyt-
ical solution scheme.

3.8. Validation example 2: three-hinged arch under dead load

The considered three-hinged arch is obtained from the analyzed
two-hinged arch by inserting a hinge at the crown, see Fig. 11. In
the following analysis, the structural behavior under dead load
q ¼ 0:000157 MN=m is investigated. The transfer relations, see
Eq. (57), are specified for the load integrals for dead load, see
Eqs. (27)–(32), and for the unknown relative rotation angle at the



Fig. 10. Normalized force–deflection diagrams of the two-hinged arch, illustrated in Fig. 9: comparison of experimental data from [37] with the FEM solution from [38] and
the analytical solution obtained with the unit force method and the presented transfer relations, see Eq. (63); Py and dy denote the point load and the deflection at the start of
yielding of steel: (a) Young’s modulus of steel Es ¼ 200 GPa, and (b) Young’s modulus of steel Es ¼ 210 GPa.

O x

y

γ = 180◦

2R = 3.82m

q

if

h

Fig. 11. Three-hinged arch subjected to dead load q ¼ 0:000157 MN/m.

Fig. 12. Comparison of the deformed configuration of the three-hinged arch, see
Fig. 11, obtained by the transfer relations, see Eqs. (69) and (70), and by the unit
force method, see Appendix B.
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crown hinge, Dhh, see Eqs. (47) and (54)–(56). The seven
unknowns, i.e. the six integration constants and the unknown rel-
ative rotation angle Dhh, are obtained from six boundary conditions
ui ¼ vi ¼ 0; Mi ¼ 0 and uf ¼ vf ¼ 0; Mf ¼ 0 and from the transition
condition Mh ¼ 0 at the crown hinge. The integration constants at
the initial cross-section provide direct access to three integration
constants. The following four algebraic equations are then
obtained for hi; Ni; Vi, and Dhh:

0 �2 R3

EI � Rp
2EA � R3p

2EI R

�2R � Rp
2EA þ R3p

2EI 2 R3

EI �R

0 2R 0 0
0 R R 0

266664
377775

hi
Ni

Vi

Dhh

26664
37775 ¼

pR2q
4EA þ 3pR4q

4EI

p2R2q
4EA � R4q

EI 4� p2

4


 �
�pR2q

�R2q

2666664

3777775:
ð64Þ

The solution of Eq. (64) reads as

hi ¼ qR3

8EI
�3p2 þ 7pþ 8
� 	þ qR

8EA
�p2 þ p
� 	

; ð65Þ

Ni ¼� 1
2
pqR; ð66Þ

Vi ¼1
2
qRðp� 2Þ; ð67Þ

Dhh ¼ qR3

4EI
p2 � 3p
� 	þ qR

4EA
p2 � p
� 	

: ð68Þ

Based on the obtained integration constants and the relative
rotation angle, the state vector at an arbitrary cross-section of
interest can be determined by evaluating the transfer relations,
see Eq. (57), for the respective polar angle u. The displacement
components u and v follow from the first two lines of the transfer
relations, reading as

uðuÞ ¼ qR4

8EI
2u2 � 2pu� 3p2 þ 5pþ 6
� 	

sinuþ 2 puþu� 2pð Þ cosuþ 4p
� �

þ qR2

8EA
2u2 � 2pu� p2 � pþ 2
� 	

sinuþ 2u p� 1ð Þ cosu� �
� pqR4

4EI
p� 3ð Þ þ pqR2

4EA
p� 1ð Þ

" #
H u� p

2


 �
cosu; ð69Þ

vðuÞ ¼ qR4

8EI
2 3p� pu� 3uð Þ sinuþ 2u2 � 2pu� 3p2 þ 3p

� 	
cosu� 4puþ 3p2�

�3p� þ qR2

8EA
2 3u� pu� pð Þ sinuþ 2u2 � 2pu� p2 þ p

� 	
cosuþ p2 � p

� �
� pqR4

4EI
p� 3ð Þ þ pqR2

4EA
p� 1ð Þ

" #
H u� p

2


 �
1� sinuð Þ: ð70Þ
They provide access to the deformed configuration of the arch, see
also Fig. 12. In order to check the validity of Eqs. (69) and (70), the
unit force method is used to calculate the horizontal and the verti-
cal displacement component at an arbitrary point of the arch, see
Appendix B. The two independently derived analytical results coin-
cide, see Fig. 12. This underlines the validity of the transfer rela-
tions, the load integrals for dead load, and the load integrals for
relative rotation angles.
4. Hybrid analysis of the segmented tunnel ring

The tangential coordinate u is measured from the crown of
the segmented tunnel ring (Fig. 2), i.e. from the cross-section
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in the middle of segment K. The structure is analyzed by means
of one transfer matrix, containing 42 sets of known load
integrals: 24 of them are related to point loads and 18 to three
displacement/rotation discontinuities each at the six interfaces
between neighboring segments (Fig. 3). The ring was tested on
a lab floor (Fig. 1). Therefore, gravity forces were acting in the
axial direction and, thus, did not interfere with the structural
analysis.

The only unknowns involved in the transfer relations are the
six integration constants, representing the six state variables at
the crown. They are identified as follows. Noting that a closed
ring is statically indeterminate to the third degree, three geo-
metric continuity conditions are required for determination of
the forces and the bending moment at the crown. To this end,
the transfer relations, see Eq. (57), are specified for u ¼ 2p, in
order to provide a relation between the state variables at the ini-
tial (index ‘‘i”) and the final (index ‘‘f”) cross-section. Noting that
the initial cross-section is equal to the final cross-section, the
geometrical compatibility conditions read as uf ¼ ui, vf ¼ vi,
and hf ¼ hi. They allow for determination of the internal forces
at the crown, i.e. of Mi; Ni, and Vi. This is done numerically.
Based on the units of measurement ‘‘Meganewton”, ‘‘Megapascal”,
Table 1
Numerical values of the point loads and of the internal forces at the crown.

Load step P1 [MN] P2 [MN] P3 [MN

1 0.02550 0.01514 0.01519
2 0.05543 0.03442 0.04124
3 0.08535 0.05370 0.06729
4 0.11727 0.07105 0.09134

Fig. 13. Deformed configuration of the analyzed segmented tunnel ring and distribution o
forces in Fig. 14: (a) load step 1, (b) load step 2, (c) load step 3, and (d) load step 4; the
and ‘‘Meter”, the condition number of the system matrix is equal
to 43. This indicates reliable numerical solutions, see Table 1.
The remaining integration constants, i.e. the kinematic state
variables at the crown, ui; vi, and hi, may be set equal to small
arbitrary values, because they refer to rigid body motions. The
latter do not influence the predicted relative displacement
convergences.

Based on the obtained integration constants, the transfer rela-
tions allow for computing all six state variables at any position of
interest by means of a simple matrix-vector product, see Eq. (57).
This enables computation of deformed configurations, as well as
of the distributions of the internal forces and of the normal stres-
ses, see Eq. (8) as well as Figs. 13 and 14.

The ring structure responds unsymmetrically to the symmetric
external loads, see the deformed configurations, illustrated in
Fig. 13. The unsymmetric response is also clearly visible in the
bending moment distributions. The first load increment activates
the largest bending moments in the crown region, see Fig. 14(a).
At the second load increment, significant bending moments
develop also in the lateral parts and in the bottom region, see
Fig. 14(d). The third load increment results in bending moments
mainly in the left lateral part of the segmented ring, see Fig. 14
] Mi [MNm] Ni [MN] Vi [MN]

�0.03567 �0.05604 0.01181
�0.05170 �0.14271 0.02689
�0.07160 �0.22701 0.04753
�0.08887 �0.30893 0.06491

f the normal stresses according to Eq. (8), see also the bending moments and normal
magnification factor of the displacements amounts to 50.



Fig. 14. Distributions of internal forces of the analyzed segmented tunnel ring: (a) – (c) load step 1, (d) – (f) load step 2, (g) – (i) load step 3, and (j) – (l) load step 4; the small
circles illustrate positions of segment-to-segment interfaces.
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(g). The final load increment, in turn, yields an increase of the
bending moments particularly in the right lateral part and in the
bottom region, see Fig. 14(j).

Non-smoothness due to the point loads occurs in the bending
moment distributions, see the kinks in Fig. 14(a), (d), (g), and (j),
whereas discontinuities occur in the shear force distributions, see
the jumps in Fig. 14(c), (f), (i), and (l). The normal force distribu-
tions, however, remain relatively smooth throughout the test, see
Fig. 14(b), (e), (h), and (k).

The maximum tensile normal stress occurs at load step 4 on the
inner surface of the bottom segment C. It amounts to 3.56 MPa.
Since this is close to the tensile strength of the concrete, load step
4 refers to the elastic limit of the investigated structure. This is
consistent with experimental observations [1].

In order to further check the reliability of the presented
results, model-predicted convergences are computed. They agree
well with the measured convergences, as quantified by the quad-
ratic correlation coefficient amounting to r2 ¼ 0:9995, see also
Fig. 15. Notably, this comparison is a nontrivial assessment of
the predictive capabilities of the transfer relations, since the
convergences are independent of the point loads and interfacial
discontinuities.



Fig. 15. Comparison ofmodel-predicted andexperimentallymeasured convergences.

Fig. 16. Distributions of internal forces of the analyzed segmented tunnel ring, considerin
load step 1, (d) – (f) load step 2, (g) – (i) load step 3, and (j) – (l) load step 4.
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5. Discussion

The following discussion refers to (i) the reason for the unsym-
metric structural response under symmetric external loading, (ii)
the question whether the tested segmented tunnel ring may be
treated as a slender arch, and (iii) the benefits from the presented
hybrid approach.

5.1. Initial geometric imperfections as the reason for the unsymmetric
structural response

In order to explain the unsymmetric structural behavior, two
load cases are considered. Load case (I) accounts for the point loads.
However, all interfacial discontinuities are set equal to zero. Load
case (II) considers all of the interfacial discontinuities. However,
all point loads are set equal to zero. Load case (I) results in symmet-
ric distributions of the bendingmoments and the normal forces and
in an antisymmetric distribution of the shear forces, see Fig. 16.
g points loads only and setting the interfacial discontinuities equal to zero: (a) – (c)
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Notably, the magnitudes of the internal forces are very similar to
the ones obtained in the full structural analysis, compare Fig. 16
with Fig. 14. Load case (II), in turn, results in unsymmetric distribu-
tions of the internal forces, see Fig. 17. Remarkably, the magnitudes
of the internal forces are very small compared to load case (I). This
underlines the fact that the measured interfacial discontinuities
primarily result in rigid body motions of the segments. This sug-
gests (i) that the initial configuration – albeit being close to a perfect
ring – exhibited small geometric imperfections (amounting to a few
millimeters), and (ii) that rigid body motions of the segments
removed or, at least, reduced these imperfections in the analyzed
load steps, such that the tunnel ring exhibited an almost symmetric
configuration at later stages of the test [1]. This also clarifies that
Fig. 17. Distributions of internal forces of the analyzed segmented tunnel ring, consideri
load step 1, (d) – (f) load step 2, (g) – (i) load step 3, and (j) – (l) load step 4.
the measured discontinuities of the tangential displacements refer
to establishing full-face contact in the interfacial contact regions,
starting from an initially imperfect contact. They do not refer to
overlapping of neighboring tunnel segments and, thus, not to
crushing of concrete, which would be preceded by very large com-
pressive normal forces.

5.2. Does the tested ring qualify for the analysis as a slender arch?

The slenderness is defined as H=R. In the given case,
H=R ¼ 35=292:5 � 0:12 which is relatively small, but not very
small compared to 1. This renders the slenderness assumption
R=r � 1 questionable, see, e.g. [40]. Notably, the slenderness
ng interfacial discontinuities only and setting the point loads equal to zero: (a) – (c)
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assumption was used for the derivation of the constitutive Eqs. (3)
and (4) and of the expression for the normal stresses as a function
of the normal force and the bending moment, see Eq. (8). In order
to clarify whether or not the tested ring qualifies for the analysis as
a slender arch, the structural analysis is repeated for R=r 6� 1. This
results in constitutive relations containing couplings (i) of the nor-
mal force and the change of curvature of the axis of the arch, and
(ii) of the bending moment and the normal strain of the axis of
the arch:

N ¼cEA u
R
þ 1
R

dv
du

� �
þ cEK 1

R2

d2u
du2 þ

1
R2

dv
du

 !
; ð71Þ

M ¼cEK u
R
þ 1
R

dv
du

� �
þ bEI 1

R2

d2u
du2 þ

1
R2

dv
du

 !
: ð72Þ

In addition, the following expression for the normal stresses as a
function of the normal force and the bending moment is obtained:

ruu ¼ E
N bEI �McEKcEA bEI � cEK 2

� r � Rð ÞN
cEK �McEAcEA bEI � cEK 2

" #
R
r
: ð73Þ
Table 2
Numerical values of EA; EI;cEA; bEI , and cEK , for the investigated segmented tunnel ring.

R=r � 1 R=r 6� 1

EA ¼ 18,620 MN cEA ¼ 18,282 MN

EI ¼ 186 MNm2 bEI ¼ 187 MNm2cEK ¼ �64 MNm

Fig. 18. Comparison of internal force distributions at load step 4, considering the slende
bending moments, (b) normal forces, (c) shear forces.

Fig. 19. Comparison of the normal stress distributions at load step 4, considering R=r �
outer surface and (b) the inner surface; (c) normal stress distribution along the thickne
Notably, Eq. (73) describes a nonlinear distribution of the normal
stresses across the thickness of tunnel segments.

In Eqs. (71)–(73), cEA; bEI , and cEK stand for the geometrically
enriched extensional and bending stiffnesses, and for a coupling
stiffness, respectively. They read as

cEA ¼
Z
A
E

R
r

dA; ð74Þ

cEK ¼
Z
A
E

R
r

r � Rð Þ dA; ð75Þ

bEI ¼ Z
A
E

R
r

r � Rð Þ2 dA: ð76Þ

For the investigated tunnel ring, the values for cEA and bEI differ by
only a few percent from the ones for EA and EI, see Table 2.

Since the geometrically enriched constitutive Eqs. (71) and (72)
are more complicated than their counterparts given in Eqs. (3) and
(4), the strategy for solving the differential equations for u and v
needs to be modified as well. In this context, Eqs. (12) and (13)
need to be replaced by

d2u
du2 þ u ¼ N

bEIRþ cEKR2bEIcEA � cEK 2
�M

cEKRþ cEAR2bEIcEA � cEK 2
; ð77Þ

dv
du

¼ N
bEIRcEA bEI � cEK 2

�M
cEKRcEA bEI � cEK 2

� u: ð78Þ

Thus, the analytical solutions for the kinematic variables are more
complicated than those presented in Section 3, provided that
R=r 6� 1 is considered. Still, the geometrically enriched transfer
relations can be derived by analogy to the procedure described in
rness assumption R=r � 1, see the red graphs, and R=r 6� 1, see the blue graphs: (a)

1, see the red graphs, and R=r 6� 1, see the blue graphs: normal stresses at (a) the
ss of the middle cross-section of segment C.



852 J.-L. Zhang et al. / Engineering Structures 148 (2017) 839–856
Section 3. In the following, they are used for the structural analysis
of the tunnel ring, as described in Section 4.

The solutions obtained for R=r 6� 1 and for the slenderness
assumption R=r � 1 are virtually the same. The maximum differ-
ence regarding the internal forces at load step 4 amounts to only
1.2%, see Fig. 18. The maximum differences regarding the normal
stresses at the inner and the outer surface of the segments are less
than 3.5%, see Fig. 19. In addition, the nonlinear normal stress dis-
tributions, described by Eq. (73), are close to the linear distribu-
tions described by Eq. (8), see Fig. 19(c). This underlines that the
analyzed tunnel ring indeed qualifies for the analysis by means
of the transfer relations based on the slenderness assumption
R=r � 1.

5.3. Benefits from the hybrid approach

The presented hybrid approach uses prescribed point loads and
measured interfacial discontinuities of displacements/rotations as
input. This is different from the standard approach which (i) uses
only the prescribed loading as input and (ii) requires a mathemat-
ical model for the structural behavior of segment-to-segment
interfaces [20–25]. The mechanical behavior at these interfaces is
nonlinear due to phenomena such as interfacial separation, fric-
tional sliding, diffuse cracking, and crushing of concrete. Corre-
sponding nonlinear interface models require an iterative solution
strategy even if the segments behave in a linear elastic fashion.
The proposed hybrid formulation, on the other hand, uses mea-
sured interfacial discontinuities as input. This eliminates the inter-
facial nonlinearities and, thus, simplifies the structural analysis
significantly.

6. Conclusions

The presented hybrid method for segmented tunnel rings con-
tains transfer relations, representing analytical solutions of the
basic equations of first-order theory for slender circular arches
with constant cross-sectional properties. As for these transfer rela-
tions, the following conclusion is drawn:

� As highlighted in the two validation examples, the transfer rela-
tions allow for deriving analytical solutions for many arch prob-
lems of interest. This requires only the formulation of boundary
and transition conditions, as well as the corresponding solution
of linear algebraic systems of equations. Thereafter, the transfer
relations provide analytical functions for all six state variables
of interest: the radial and tangential displacement, the cross-
sectional rotation angle, the bending moment, and the normal
and shear force. This renders the transfer relations an attractive
topic in classes on ‘‘Structural Analysis”.

As for the developed hybrid method and for its application to the
segmented tunnel ring, the following conclusions are drawn:

� The developed transfer relations are very valuable for hybrid
analysis of a displacement-monitored segmented tunnel ring,
because the whole ring, consisting of six segments, can be ana-
lyzed with one transfer matrix, containing 24 sets of known load
integrals for the imposed point loads and 18 sets of known load
integrals for themeasured discontinuities of the three kinematic
variables at the six segment-to-segment interfaces. This way,
the hybrid analysis of each load step essentially requires the
solution of an algebraic system of only three equations,
referring to the continuity of displacements and of the
cross-sectional rotation at the crown of the ring. Thereafter,
the transfer relations provide analytical solutions for all six
variables of interest: N; V ; M; u; v, and h. These solutions can
be simply evaluated for any position u of interest. Therefore,
the transfer relations are computationally very efficient.

� There is no need to explicitly model the nontrivial behavior of
segment-to-segment interfaces in the developed hybrid
method. This is possible because it uses imposed point loads
and measured interfacial discontinuities as input. This is
different from more classical approaches to the same problem,
see [41]. Therein, a nonlinear interface model required
incremental-iterative solution schemes even for linear elastic
behavior of the reinforced concrete segments.

� The developed hybrid analysis provides valuable insight into
the load-carrying behavior of displacement-monitored seg-
mented tunnel rings. The performed hybrid analysis underlines
that very small imperfections of the initial assembly of seg-
mented tunnel rings may lead to a remarkably unsymmetric
structural behavior.

As for future work, it is planned to extend the developed hybrid
method towards consideration of inelastic material behavior, such
as tensile cracking of concrete and yielding of the steel
reinforcements.
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Appendix A. Small strain (‘‘first-order) theory for slender
circular arches

The tool for the development of this basically well-known the-
ory is the principle of virtual power. Its involvement is motivated
by the possibility of a mechanically consistent derivation of rela-
tions, some of which have been used for a long time without ana-
lyzing their scientific background. The principle of virtual power
[42–45] is particularly useful for the transition from three-
dimensional continuum mechanics to the presently considered
arch theory. It reads as

Pext þ Pint ¼ 0; ðA:1Þ
with

Pext ¼
Z
V
fðr;u; zÞ � _�uðr;u; z; tÞdV þ

Z
@V

Tðn; r;u; zÞ � _�uðr;u; z; tÞ dA;
ðA:2Þ

Pint ¼�
Z
V
r :

_�d dV ; ðA:3Þ

where Pext and Pint denote the virtual power of the external forces
and of the internal forces, respectively, fðr;u; zÞ stands for volume
forces, Tðn; r;u; zÞ denotes the surface tractions with n as the unit

surface normal vector; _�uðr;u; z; tÞ stands for the virtual velocity

field, r for the real stress field, and _�d for the Eulerian strain rate
tensor.

The radius of curvature of slender circular arches, R, is signifi-
cantly larger than the cross-sectional dimensions. The latter are
considered to be constant along the axis of the arch. The position
of an arbitrary point of the arch is described by a cylindrical coor-
dinate system, with the base vectors er; eu, and ez (Fig. A.1).



R O

er, u

ez, w

h h R

ϕi

ϕf

eϕ, v

Fig. A.1. Circular arch of radius R in the undeformed configuration: illustration of
the base vectors er ; eu , and ez; the values ui and uf of u refer to the initial and the
final cross-section of the arch.

J.-L. Zhang et al. / Engineering Structures 148 (2017) 839–856 853
A.1. Kinematic description

The displacement field of an arch is given by the Eqs. (1) and (2).
The underlying kinematic assumptions read as follows:

1. Arches are loaded in the r;u - plane.
2. Each cross-section performs a rigid body motion.
3. Cross-sectional rotations are small, such that the circular paths

of the cross-sectional points can be approximated by the initial
tangents to these paths.

4. All cross-sections remain, at any time, orthogonal to the axis of
the arch.

5. The displacements are small compared with the cross-sectional
dimensions. This allows to refer the analysis to the coordinates
that describe the undeformed system.

In cylinder coordinates, the vanishing components of the linearized
strain tensor read as err ¼ ezz ¼ eur ¼ euz ¼ ezr ¼ 0. The only non-
vanishing component is the normal strain in the tangential
direction

euuðr;u; zÞ ¼ uðuÞ
r

þ 1
r
dvðuÞ
du

� r � R
r

1
R
d2uðuÞ
du2 � 1

R
dvðuÞ
du

 !
: ðA:4Þ
A.2. Virtual power of the external forces: stress resultants

The virtual power of the external forces involves volume forces
fðr;u; zÞ and surface tractions Tðr;u; zÞ:
er,

ez,
eϕ, v

M(ϕf )

V (ϕf)

ϕf
N(ϕf )

Fig. A.2. Positive line loads quðuÞ and qrðuÞ and positive line moment
fðr;u;zÞ ¼ f rðr;u;zÞerðuÞþ fuðr;u;zÞeuðuÞþ f zðr;u;zÞez; ðA:5Þ
Tðn;r;u;zÞ ¼ Trðr;u;zÞerðuÞþTuðr;u;zÞeuðuÞþTzðr;u;zÞez: ðA:6Þ
They produce power along the virtual velocity field, which is
described analogous to the real displacements, see Eq. (1), as

_�uðr;u; z; tÞ ¼ _�uðu; tÞer

þ _�vðu; tÞ � ðr � RÞ 1
R
@ _�uðu; tÞ

@u
�

_�vðu; tÞ
R

 !" #
eu:

ðA:7Þ
Determination of the virtual power of the external forces, see Eq.
(A.2), produced by tractions, see Eq. (A.6), and by body forces, see
Eq. (A.5), along the virtual velocities, see Eq. (A.7), includes stress
resultants which are energetically conjugate to the three degrees
of freedom of the cross-section of the arch, namely to give the
mathematical symbols of the degree of freedom: line loads qrðuÞ
and quðuÞ, distributed moments mðuÞ, normal forces NðuÞ, shear
forces VðuÞ, and bending moments MðuÞ, see Fig. A.2. Thus, the vir-
tual power of the external forces reads as

Pext ¼
Z uf

ui

qrðuÞ _�uðu; tÞ R duþ
Z uf

ui

quðuÞ _�vðu; tÞ R du

�
Z uf

ui

mðuÞ 1
R
@ _�uðu; tÞ

@u
�

_�vðu; tÞ
R

 !
R duþ NðuÞ _�vðu; tÞ

�����
uf

ui

�MðuÞ 1
R
@ _�uðu; tÞ

@u
�

_�vðu; tÞ
R

 !�����
uf

ui

þ VðuÞ _�uðu; tÞ
���uf

ui

; ðA:8Þ

with

qrðuÞ ¼
Z
A
f rðr;u; zÞ r

R
dAþ

Z
C
Trðns; r;u; zÞ r

R
ds; ðA:9Þ

quðuÞ ¼
Z
A
fuðr;u; zÞ r

R
dAþ

Z
C
Tuðns; r;u; zÞ r

R
ds; ðA:10Þ

mðuÞ ¼
Z
A
fuðr;u; zÞðr � RÞ r

R
dAþ

Z
C
Tuðns; r;u; zÞðr � RÞ r

R
ds; ðA:11Þ

NðuÞ ¼
Z
A
ruuðr;u; zÞ dA; ðA:12Þ

VðuÞ ¼
Z
A
rurðr;u; zÞ dA; ðA:13Þ

MðuÞ ¼
Z
A
ruu ðr;u; zÞðr � RÞ dA: ðA:14Þ

where C denotes the cross-sectional contour of the arch, s is the arc-
length measured along the contour, and ns is the unit surface nor-
mal vector at s. The stress resultants of Eqs. (A.12)–(A.14), only con-
tain normal stresses ruu and shear stresses rur , underlining that
u

w

N(ϕi)

M(ϕi)

ϕi

V (ϕi)

qϕ(ϕ)

qr(ϕ)
m(ϕ)

s mðuÞ, acting in the direction of the local base vectors er ; eu; ez .
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Fig. B.1. Illustration concerning the use of the unit force method for computation of
the displacements: (a) one half of the three-hinged arch, (b) moving unit load in the
horizontal direction, (c) moving unit load in the vertical direction.
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stress states in slender arches are governed by ruu and rur . All
other independent stress components may be disregarded.

A.3. Constitutive relations

Normal stresses ruu appearing in the definitions of the normal
forces NðuÞ and the bending moments MðuÞ, see Eqs. (A.12) and
(A.14), can be related to normal strain, via Hooke’s law:

ruuðr;u; zÞ ¼ Eeuuðr;u; zÞ; ðA:15Þ
where E denotes Young’s modulus. Substitution of Eq. (A.4) into Eq.
(A.15), and insertion of the result into Eqs. (A.12) and (A.14), gives

NðuÞ ¼
Z
A
E

uðuÞ
r

þ 1
r
dvðuÞ
du

� r � R
r

1
R
d2uðuÞ
du2 � 1

R
dvðuÞ
du

 !" #
dA

ðA:16Þ
and

MðuÞ ¼
Z
A
E

uðuÞ
r

þ 1
r
dvðuÞ
du

� r � R
r

1
R
d2uðuÞ
du2 � 1

R
dvðuÞ
du

 !" #
ðr � RÞ dA;

ðA:17Þ
respectively. As for the evaluation of the integrals in Eqs. (A.16) and
(A.17), it is noted that the axis of the arch is the line on which the
centers of gravity of the cross-sections of the arch are located. The
characteristic dimensions of the cross-section of a slender arch are
very small compared with the radius of its axis. Consequently, the
coordinate r, appearing in the denominator of the integrands in
Eqs. (A.16) and (A.17), differs only very little from R. Therefore, it
is admissible to set r � R in the denominators of Eqs. (A.16) and
(A.17). This results in the two constitutive equations, i.e. Eqs. (3)
and (4). The relation between the stresses and the stress resultants
follows from inserting Eq. (A.4) into Eq. (A.15), setting r ¼ R in the
denominators of the resulting expression, and comparing the result
with the Eqs. (3) and (4); see Eq. (8) for the result that is equal to the
one derived in [35].

A.4. Virtual power of the internal forces

As for the virtual power of the internal forces, see Eq. (A.3), the

stresses r produce power on the Eulerian strain rate tensor, _�d,
which, in the geometrically linearized theory, is equal to the rate

of the virtual linearized strain tensor _�e [42,43,46]:

Pint ¼ �
Z
V
r : _�e dV : ðA:18Þ

Virtual strain rates _�e are given, by analogy to the actual strain rates,

as _�err ¼ _�ezz ¼ _�eur ¼ _�euz ¼ _�erz ¼ 0, and

_�euuðr;u; z; tÞ ¼
_�uðu; tÞ

r
þ 1

r
@ _�vðu; tÞ

@u

� r � R
r

1
R
@2 _�uðu; tÞ

@u2 � 1
R
@ _�vðu; tÞ

@u

 !
: ðA:19Þ

Consequently, r : _�e ¼ ruu
_�euu. Hence, the virtual power of the inter-

nal forces reads, where considering the virtual strain rates, accord-
ing to Eq. (A.19), as

Pint ¼ �
Z uf

ui

Z
A
ruu

_�uðu; tÞ
r

þ 1
r
@ _�vðu; tÞ

@u

"

� r � R
r

1
R
@2 _�uðu; tÞ

@u2
� 1
R
@ _�vðu; tÞ

@u

 !#
r dA du: ðA:20Þ

Substitution of Eqs. (A.12) and (A.14) into Eq. (A.20), and integration
over the cross-sectional area, yields the following expression for the
virtual power of the internal forces in terms of normal forces and
bending moments

Pint ¼ �
Z uf

ui

NðuÞ
_�uðu; tÞ

R
þ 1
R
@ _�vðu; tÞ

@u

 !
Rdu

þ
Z uf

ui

MðuÞ 1
R2

@2 _�uðu; tÞ
@u2 � 1

R2

@ _�vðu; tÞ
@u

 !
Rdu: ðA:21Þ

A.5. Formulation of the principle of virtual power: equilibrium
conditions

The equilibrium conditions for the stress resultants, see Eqs.
(A.9)–(A.14), are obtained by means of the principle of virtual
power, see Eq. (A.1). Specializing Eq. (A.1) for the virtual power
of the external forces according to Eq. (A.8), and for the one of
the internal forces according to Eq. (A.21), yields, after integration
by parts and collection of similar terms,

Pext þ Pint ¼
Z uf

ui

�NðuÞ
R

þ 1
R2

d2MðuÞ
du2 þ 1

R
dmðuÞ
du

þ qrðuÞ
" #

_�uðu; tÞRdu

þ
Z uf

ui

1
R
dNðuÞ
du

þ 1
R2

dMðuÞ
du

þmðuÞ
R

þ quðuÞ
� �

_�vðu; tÞRdu

þ VðuÞ �mðuÞ � 1
R
dMðuÞ
du

� �
_�uðu; tÞ

����uf

ui

¼ 0: ðA:22Þ

The principle of virtual power, see Eq. (A.22), must be satisfied for

arbitrary admissible virtual velocity fields _�uðu; tÞ and _�vðu; tÞ. This
implies that the bracketed expressions in Eq. (A.22) must vanish,
which results in the following equilibrium conditions

� NðuÞ
R

þ 1
R2

d2MðuÞ
du2 þ 1

R
dmðuÞ
du

þ qrðuÞ ¼ 0; ðA:23Þ
1
R
dNðuÞ
du

þ 1
R2

dMðuÞ
du

þmðuÞ
R

þ quðuÞ ¼ 0; ðA:24Þ
1
R
dMðuÞ
du

þmðuÞ ¼ VðuÞ: ðA:25Þ

Finally, Eq. (A.25) is used to eliminate the bending moments in Eqs.
(A.23) and (A.24). This yields themore familiar format of the equilib-
rium conditions of forces acting in the radial direction and the tan-
gential direction, respectively, see Eqs. (5) and (6). Specializing Eq.
(A.25) for mðuÞ ¼ 0 delivers the familiar format of the equilibrium
conditions concerning bending moment and shear force, see Eq. (7).

Appendix B. Deformed configuration of the three-hinged arch,
obtained by the unit force method

Since both the three-hinged arch and its dead load are symmet-
ric, see Fig. 11, only one half of the arch needs to be considered, see
Fig. B.1. The deformed configuration can be described by the two
orthogonal displacement components uxðuÞ and uyðuÞ. With the
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help of a horizontal force P ¼ 1, applied at u, the unit force method
delivers the horizontal displacement uxðuÞ as

uxðuÞ ¼� qR4

8EI
2p p� 2ð Þ cos2uþ 2 pþ 3ð Þ cosu sinu
�

þ sinu 4pu� 3p2 þ 3p
� 	

þ4p cosuþ 2puþ 6u� 6p� � qR2

8EA
4u cos2uþ 2p sin2u
h

þ 1�pð Þ 2cosuþpð Þ sinuþ 2u p� 3ð Þ�: ðB:1Þ
By analogy, the vertical displacement uyðuÞ is obtained as

uyðuÞ ¼ � qR4

8EI
2 pþ 3ð Þ cos2uþ 2 2u� pð Þ cosu sinu
�

þ 4pu� 3p2 þ 3p
� 	

cosu

�4p sinu� 2u2 þ 2puþ 3p2 � 5p� 6
�� qR2

8EA
2 p� 1ð Þ sin2u
h

þ2 p� 2uð Þ sinu cosuþ p 1� pð Þ cosu� 1ð Þ þ 2u p�uð Þ�:
ðB:2Þ

Appendix C. List of symbols
A
 cross-sectional area of the arch

B
 width of the cross-section of the arch

C
 cross-sectional contour of the arch

C1; C2; C3; C4; C5; C6
 integration constants in the solutions

for the unloaded part of the arch

er ; eu; ez
 base vectors of the cylindrical

coordinate system

_�d
 Eulerian rate of deformation tensor
E
 Young’s modulus

Ec
 Young’s modulus of concrete

Es
 Young’s modulus of steel

EA
 extensional stiffness
cEA
 extensional stiffness, considering

R=r 6� 1

EI
 bending stiffness
bEI
 bending stiffness, considering R=r 6� 1
cEK
 coupling stiffness, considering R=r 6� 1
f
 vector of volume forces

f r; fu; f z
 components of f

H
 height of the cross-section of the arch

I
 second moment of the cross-sectional

area

m
 distributed bending moment

M
 bending moment

Mh
 bending moment at the hinge at the

crown of the arch

Mi
 bending moment at the initial cross-

section of the arch

ML
 load integral for the bending moment

n
 unit normal vector

ns
 unit normal vector at the point with

the coordinate s

N
 normal force

Ni
 normal force at the initial cross-section

of the arch

NL
 load integral for the normal force

P
 point load imposed on the arch

Pr
 radial component of P

Pu
 tangential component of P
Pint
 virtual power of the internal forces
Pext
 virtual power of the external forces

q
 dead load intensity of the arch

qr
 radial component of q

qu
 tangential component of q

r
 radial coordinate of the polar

coordinate system

R
 radius of the axis of the circular arch

s
 arc-length measured along the contour

of the cross-section

t
 time

T
 vector of surface tractions

Tr ; Tu; Tz
 components of T

u
 displacement vector

u
 radial component of u

ui
 radial displacement at the initial cross-

section

ux
 horizontal component of u

uy
 vertical component of u

uL
 load integral for radial displacements

_�u
 virtual velocity vector

_�u; _�v
 components of _�u

v
 tangential component of u

V
 shear force

vi
 tangential displacement of the axis at

the initial cross-section

vL
 load integral for the tangential

displacements

Vi
 shear force at the initial cross-section

of the arch

VL
 load integral for the shear force

w
 axial component of the displacement

of the axis of the arch

x
 horizontal coordinate of the Cartesian

coordinate system

y
 vertical coordinate of the Cartesian

coordinate system

z
 axial coordinate of the cylindrical

coordinate system

d
 deflection at the crown of the arch

dy
 deflection at the crown of the arch at

the onset of yielding of steel

Duj
 relative radial displacement at

interfaces

Dvj
 relative tangential displacement at

interfaces

Dhj
 relative cross-sectional rotation at

interfaces

Dhh
 relative cross-sectional rotation at the

hinge at the crown of the arch

err
 normal strain in the r (radial)-direction

euu
 normal strain in the u (tangential)-

direction

ezz
 normal strain in the z (axial)-direction

eru ð¼ eurÞ
 shear strain in the r-u plane

euz ð¼ ezu)
 shear strain in the u-z plane

ezr ð¼ erz)
 shear strain in the z-r plane

_�e
 rate of the virtual linearized strain

tensor

_�err
 virtual normal strain rate in the r

(radial)-direction

_�euu
 virtual normal strain rate in the u

(tangential)-direction
(continued on next page)
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_�ezz
 virtual normal strain rate in the z
(axial)-direction
_�eru ð¼ _�eur)
 virtual shear strain rate in the r-u
plane
_�euz ð¼ _�ezu)
 virtual shear strain rate in the u-z
plane
_�ezr ð¼ _�erz)
 virtual shear strain rate in the z-r plane
c
 central angle of the circular arch

r
 Cauchy stress tensor

rrr
 normal stress in the r (radial)-direction

ruu
 normal stress in the u (tangential)-

direction

rzz
 normal stress in the z (axial)-direction

rru ð¼ rur)
 shear stress in the r-u plane

ruz ð¼ rzuÞ
 shear stress in the u-z plane

rzr ð¼ rrz)
 shear stress in the z-r plane

h
 cross-sectional rotation

hi
 rotation of the initial cross-section

hL
 load integral for the cross-sectional

rotation

u
 angular coordinate of the polar

coordinate system

uf
 polar position of the final cross-section

of the arch

ui
 polar position of the initial cross-

section of the arch

up
 polar position of a point load on the

arch

uj
 polar position of an interface on the

segmented tunnel ring
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