

INSTITUT FÜR ENERGIETECHNIK UND THERMODYNAMIK Institute for Energy Systems and Thermodynamics

Diplomarbeit

Eine Bewertung von Biomasse KWK-Anlagen als Basis für zukunftsfähige Einsatzmöglichkeiten

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieur unter der Leitung von

DI Andreas Werner

Institut für Energietechnik und Thermodynamik

eingereicht an der Technischen Universität Wien Fakultät für Maschinenwesen und Betriebswissenschaften

von

Matthias Kowatsch

1126187 Arndtstraße 62/B47

1120 Wien

Wien, im Juni 2018

Matthias Kowatsch

Eigenständigkeitserklärung

Ich bestätige mit meiner Unterschrift, dass ich die Diplomarbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe. Weiters bestätige ich, dass ich diese Diplomarbeit bisher weder im Inland noch im Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

Wien, im Juni 2018

Matthias Kowatsch

Vorwort

Großer Dank gilt allen Menschen die mich auf meinem Weg durch das Studium unterstützt und begleitet haben. Sie alle waren eine große Inspiration und haben es mir ermöglicht mit Abschluss dieser Arbeit ein großes persönliches Ziel zu erreichen.

Kurzfassung

Eine Bewertung von Biomasse-KWK Anlagen als Basis für zukunftsfähige Einsatzmöglichkeiten

Österreichische Biomasse KWK-Anlagen (feste Biomasse) tragen wesentlich zur Strom- und Wärmeversorgung des Landes bei und sind damit ein wichtiger Bestandteil des erneuerbaren Energiemixes. Um eine Förderung für diese Erneuerbaren Energieanlagen zu erhalten, ist in Österreich das Erreichen eines Brennstoffnutzungsgrades von mehr als 60 % vorgesehen.

Im Zuge dieser Arbeit erfolgt ein einleitender Überblick darüber, welche verschiedenen Konzepte zur gekoppelten Wärme- und Stromerzeugung zum Einsatz kommen können. In weiterer Folge werden mit Hilfe der Auswertung eines an die Betreiber der Anlagen ausgesendeten Fragebogens die Brennstoffnutzungsgrade der Bestandsanlagen bestimmt und analysiert. Aufgrund der Ergebnisse der Fragebogenerhebung und der Tatsache, dass der Großteil des Anlagenbestands als Konzept einen Dampfkraftprozess verwendet, zeigt eine beispielhafte Rechnung, welche Brennstoffnutzungsgrade mit unterschiedlichen Betriebskonzepten erreicht werden können und welche Kriterien für das Erreichen eines hohen Brennstoffnutzungsgrads ausschlaggebend sind. Aus gegebenem Anlass wird abschließend eine konkrete Anlage (Dampfkraftprozess mit Entnahme-Kondensationsturbine) Ausgehend Auslegungsfall werden simuliert. vom Betriebsweisenmodifikationen Optimierungen und vorgeschlagen, um den Brennstoffnutzungsgrad zu erhöhen. Die technischen Grenzen der jeweiligen Maßnahmen werden dargelegt.

Abstract

An Evaluation of Biomass CHP Systems as a Basis for future Fields of Application

Austrian biomass CHP-plants (solid biomass) significantly contribute to the country's heat supply and, therefore, are an integral part of the renewable energy mix. In order to obtain a subsidy for these renewable energy systems, Austrian law stipulates a fuel utilisation efficiency rate of more than 60%.

This thesis provides an overview over the different concepts which can be applied to combined heat and power generation. Subsequently, the fuel utilisation efficiency rates of existing CHP-systems will be determined and analysed by evaluating the results of a questionnaire that was sent to the operators of the respective systems. On the basis of the results of the questionnaire and the fact that the majority of these renewable energy systems are operated using a steam power process, an exemplary calculation will show which fuel utilisation efficiency rates can be achieved with different operating concepts and which criteria are decisive in reaching a high fuel utilisation efficiency rate. Finally, a specific system (steam power process with extraction-condensation turbine) will be simulated. Based on this specific case, operating mode modifications and optimisations will be presented in order to increase the fuel utilisation efficiency rate. The technical limitations of the respective measures will be displayed.

Inhaltsverzeichnis

1	Aufę	gabenstellı	ung							1
2	Mög	lichkeiten	der	kombinierten	Strom-	und	Wärmeerz	eugung	aus f	ester
Bi	omass	e								3
	2.1	Biomasse	KWK m	it Einsatz des	Dampfkraf	tprozes	sses			3
	2.2	Biomasse	KWK m	it Einsatz des	ORC-Proz	esses				7
	2.3	Biomasse	KWK m	ittels Holzverg	asung und	d Gasm	otor			9
	2.4	Biomasse	KWK m	ittels sonstige	r Konzepte					11
3	Ana	lyse österr	eichisc	her Biomass	e KWK-Ar	nlagen.				14
	3.1	Die österre	eichisch	e Biomasse K	WK-Lands	chaft				14
	3.2	Brennstoff	nutzung	sgrade österre	eichischer	Anlage	n			16
	3.2.1	Allgemeir	nes zum	Brennstoffnutz	ungsgrad	-				16
	3.2.2	Fragebog	generhel	oung						18
	3.2.3	Auswertu	ıng der [Daten						19
4	Retr	iehskonze	nte vo	on Biomasse	ekraftwerk	en ur	nd deren	Finflus	s auf	den
B	ennsto	offnutzung	sarad.					Liinus	5 au	25
		_ · · · · ·								
	4.1	Reiner Hei	zbetriet	D						25
	4.2	Ausschließ	Sliche S	tromerzeugun	g					29
	4.3	Kombiniert	e Stron	n- und Warme	erzeugung					32
	4.3.1	Idealer, v	olistand	ig warmegefuhr	ter Betrieb.					
	4.3.2		изкорріц Г. Б.	ing bei stromge	runrten Ania	agen				34
	4.4		der Brei	nnstoffnutzung	sgrade					37
	4.5	Zwischenb	llanz							38
5	Proz	zesssimula	tion ı	Ind Optimier	rungsmög	lichkei	iten bei	einer au	usgewä	hlten
Be	estand	sanlage	•••••							40
	5.1	Simulation	sprogra	mm IPSEpro						40
	5.2	Prozesssin	nulatior	einer Biomas	se KWK-A	nlage				41
	5.2.1	Simulatio	n des A	uslegungszusta	nds					42
	5.2.2	Simulatio	n des Is	t-Zustands						44
	5.3	Dauerhafte	e Wärm	eabnahme dur	ch ein Pel	letswer	k			46
	5.3.1	Weitere N	Möglichk	eiten zur Anpas	sung der A	nlage				49
	5.3	3.1.1 Rüc	knahme	der Stromprodukt	ion					50
	5.3	3.1.2 Umb	bau der E	Intnahme-Konder	sationsturbir	ne				52
	5.3	3.1.3 Nutz	zbarmach	nen der Rauchgas	kondensatio	nswärme				53
	5.4	Anschluss	an ein	Fernwärmesys	stems					59

	5.5	Bewertung der Optimierungsmöglichkeiten	. 63
6	Zus	ammenfassung und Ausblick	. 64
7	Anh	ang	. 66
	Abkürz	zungsverzeichnis	. 66
	Tabelle	enverzeichnis	. 71
	Abbildu	ungsverzeichnis	. 72
	Forme	lverzeichnis	. 74
	Literati	urverzeichnis	. 75
	sonstig	ge Anhänge	. 78

1 Aufgabenstellung

KWK¹-Anlagen, die mit fester Biomasse (z.B. Waldhackgut) betrieben werden, sind heute ein wichtiger Bestandteil der österreichischen Energieversorgung (vgl. Kapitel 3.1) und leisten einen großen Beitrag zur regionalen Wertschöpfung, Beschäftigung und Kaufkraft (Pfemeter et al. 2016, S. 5–6).

Um diesen Stellenwert zu erreichen, wurden Biomasse-KWK-Anlagen in Österreich wie auch anderswo in Europa als "Ökostromanlagen" durch Investitionsförderung, sowie für einen bestimmten Zeitraum durch garantierte Abnahmetarife massiv unterstützt. Im Laufe der Zeit ist es allerdings zu einer Veränderung der ökostromrechtlichen Rahmenbedingungen gekommen. Stand anfänglich noch die Stromerzeugung im Vordergrund, haben sich die Anforderungen immer mehr in Richtung des Erreichens hoher Gesamtwirkungsgrade der Energieerzeugung, ausgedrückt als Brennstoffnutzungsgrad, verschoben.

Dies hat allerdings zur Folge, dass heute in Österreich Biomasse-KWK-Anlagen (feste Biomasse) mit dem Schwerpunkt Stromerzeugung (meist vergleichsweise niedriger Brennstoffnutzungsgrad) neben Anlagen, bei denen die elektrische Energie nur ein "Nebenprodukt" der Wärmeerzeugung darstellt (hoher Brennstoffnutzungsgrad), existieren.

Die meisten der heute existierenden Biomasse KWK-Anlagen (feste Biomasse) erreichen in den nächsten Jahren das Ende der vertraglich zugesicherten Ökostromtarife. Kaum eine Anlage kann nach Ende der Vertragslaufzeit ohne weitere Ökostromförderung wirtschaftlich betrieben werden, sodass in den ökostromrechtlichen Regelungen ein Nachfolgetarif für einen weiteren Betriebszeitraum von derzeit sieben Jahren vorgesehen ist. Dieser soll u.a. an das Erreichen eines Brennstoffnutzungsgrads von 60 % gebunden sein.

Bis jetzt gibt es keine systematische Erhebung bzw. keine publizierten detaillierten Daten zu den in den österreichischen Biomasse KWK-Anlagen eingesetzten Techniken und den Brennstoffnutzungsgraden. Die erste Aufgabe der vorliegenden Diplomarbeit war es daher, eine möglichst repräsentative Erhebung der bestehenden Biomasse KWK-Anlagen mit Abfrage detaillierter technischer Kenndaten durchzuführen. Die Analyse der Erhebungsdaten soll einen Überblick verschaffen, unter welchen technischen oder sonstigen Rahmenbedingungen welcher Brennstoffnutzungsgrad in der Praxis erreicht wird und was die Anforderung eines Brennstoffnutzungsgrads von > 60 % für den österreichischen Biomassekraftwerks-Anlagenpark bedeuten würde.

¹ KWK... Kraft-Wärme-Kopplung

Der Brennstoffnutzungsgrad ist zweifelsohne eine wichtige Kenngröße, um die Effizienz und die Vorteile der gekoppelten Erzeugung von Strom und Wärme aus fester Biomasse für eine nachhaltige Energiewirtschaft beschreiben zu können. Es stellt sich daher die Frage, ob und in welchem Ausmaß der Brennstoffnutzungsgrad bei bestehenden Anlagen, die derzeit die Anforderung eines Brennstoffnutzungsgrads von > 60 % nicht erreichen, erhöht werden könnte und mit welchen Folgen dies v.a. hinsichtlich des Umfangs der Ökostromerzeugung verbunden wäre.

Um die Frage nach den Optimierungspotenzialen bei Bestandanlagen besser festmachen zu können, wurden unterschiedliche Betriebsformen von Biomassekraftwerken betrachtet und ihr Einfluss auf den Brennstoffnutzungsgrad ermittelt. Diese grundsätzlichen Betrachtungen werden in der Folge mit Hilfe des Simulationsprogrammes IPSEpro am Beispiel einer typischen Biomasse KWK-Anlage mit – angenommen – derzeit niedrigem Brennstoffnutzungsgrad für einen konkreten Betriebsfall näher untersucht, um ausloten zu können, welche Möglichkeiten zur Veränderung des Brennstoffnutzungsgrads in der Praxis tatsächlich gegeben sind.

Wesentliche Forschungsfragen, die im Verlauf dieser Diplomarbeit beantwortet werden, sind:

- 1. Wie ist der Anlagenpark der österreichischen Biomasse KWK-Anlagen beschaffen? Welche Brennstoffnutzungsgrade erreichen die in Österreich betriebenen KWK-Anlagen derzeit?
- 2. Durch welche Maßnahmen kann der Brennstoffnutzungsgrad bestehender Biomasse KWK-Anlagen erhöht werden? Welche Brennstoffnutzungsgrade sind dabei in Abhängigkeit von den eingesetzten Anlagentechniken erreichbar? Welche Konsequenzen ergeben sich aus der Zielsetzung eines möglichst hohen Brennstoffnutzungsgrads?

2 Möglichkeiten der kombinierten Strom- und Wärmeerzeugung aus fester Biomasse

Die Kraft-Wärme-Kopplung (KWK) dient der Erzeugung von elektrischer Energie und (nutzbarer) Wärmeenergie. Bei Einsatz von fester Biomasse kommen dafür unterschiedliche technische Konzepte zum Einsatz. Die in der Praxis angewandten technischen Verfahren werden einleitend aufgezeigt und näher beschrieben.

2.1 Biomasse KWK mit Einsatz des Dampfkraftprozesses

Der Dampfkraftprozess mit Einsatz einer Dampfturbine ist die gängigste Technologie zur Stromproduktion beim Einsatz von festen Brennstoffen. Je nach technischer Gestaltung der Dampfturbine kann aus der Turbine teilweise abgearbeiteter Dampf mittels Anzapfungen entnommen oder der am "kalten Ende" der Turbine anstehende Dampf zu Nutzwärme umgesetzt werden. In Biomasseheizkraftwerken werden Dampfturbinen üblicherweise erst ab einer Leistung von 1 MW_{el} eingesetzt, weil die Kosten kleiner Dampfturbinen überproportional hoch sind und der elektrische Wirkungsgrad einer Dampfturbine mit kleiner werdender Größe abnimmt.

Das Funktionsprinzip basiert auf dem Clausius-Rankine-Prozess, wobei feste Biomasse durch Verbrennung in elektrische und thermische Nutzenergie umgewandelt wird. Durch die Verbrennung kommt es im Kessel (Feuerung, Verdampfer und Überhitzer) des Kreisprozesses zur isobaren Verdampfung und anschließenden Überhitzung des Arbeitsmediums (Wasser). Der überhitzte Wasserdampf ("Frischdampf") entspannt in der nachgeschalteten Dampfturbine, wodurch die entstehende mechanische Arbeit mit Hilfe eines Generators in elektrische Energie umgewandelt wird.

Nutzwärme kann beim Dampfkraftprozess auf zwei unterschiedliche Arten erzeugt werden, die abhängig von den lokalen Gegebenheiten zum Einsatz kommen:

Im Gegendruckbetrieb (vgl. Abbildung 1), wird der Dampf in der Turbine auf ein definiertes Druck- und Temperaturniveau – das von den Anforderungen des Wärmeabnehmers abhängt – entspannt und steht dann nach der Turbine zur Wärmebereitstellung zur Verfügung. Dazu wird der Turbinenabdampf entweder direkt zu den Verbrauchern geleitet (selten) oder (überwiegend) in einem Heizkondensator kondensiert und die Kondensationswärme als Nutzwärme auf eine Wärmeträgerflüssigkeit übertragen. Diese Betriebsweise hat grundsätzlich ein fixes Verhältnis zwischen Strom- und Wärmeerzeugung zur Folge, die mögliche Stromerzeugung ist von der benötigten Menge an Nutzwärme abhängig, die Turbine arbeitet wärmegeführt. Über das Jahr gesehen ist eine hohe Stromproduktion nur bei konstanter Wärmeabnahme erreichbar. Sinkt der Wärmebedarf, verringert sich die Prozessdampfmenge in den für die Anlage zulässigen Größen und somit produziert die Turbine auch gleichzeitig weniger Strom.

Diese Limitierung der Stromerzeugung besteht beim Entnahme-Kondensationsbetrieb nicht. Das Funktionsprinzip wird anhand der Abbildung 2 und Abbildung 3 erklärt. Für den Entnahme-Kondensationsbetrieb wird eine Turbine eingesetzt, bei der zwischen einem Hoch- und Niederdruckteil eine variable Menge Prozessdampf (Entnahmedampf) auf einem gewünschten, vorher festgelegten Druck- und Temperaturniveau entnommen und, z.B. mittels eines Heizkondensators für Heizzwecke zur Verfügung gestellt wird. Sinkt bei dieser Betriebsweise die Wärmenachfrage, kann der Dampf in größeren Mengen - sowie dies von der Turbinenauslegung her möglich ist – durch den Niederdruckteil der Turbine geleitet und verstromt werden. Gleichermaßen kann bei steigendem Wärmebedarf mehr Dampf aus der Turbine entnommen und für Heizzwecke zur Verfügung gestellt werden. Kraftwerke Entnahme-Kondensationsturbinen mit können damit stromgeführt betrieben werden. Welche Mengen an Entnahmedampf möglich sind, hängt von der Turbinenauslegung ab. Die max. Entnahmedampfmenge liegt in der Praxis meist erheblich niedriger als die der Turbine zugeführte Frischdampfmenge. Bei Entnahme-Kondensationsturbinen muss der am "kalten Ende" der Turbine üblicherweise im Vakuum bei niedriger Temperatur anstehende Dampf kondensiert werden, wegen des niedrigen Temperaturniveaus ist die Kondensationswärme aber nur in seltenen Fällen nutzbar und muss daher an die Umgebung abgeführt werden ("Rückkühlung").

In beiden Fällen werden die im Heiz- und/oder Abdampfkondensator anfallenden Kondensate in einem Speisewasserbehälter gesammelt und anschließend mittels Speisewasserpumpe auf den Kesseldruck verdichtet und zur Schließung des Kreisprozesses in den Dampferzeuger (Feuerung und Verdampfer) gepumpt (Kaltschmitt et al. 2016, S. 972–983).

Abbildung 1: Schaltschema Dampfkraftprozesse einer Biomasse KWK-Anlage im Gegendruckbetrieb, modifiziert nach Kaltschmitt et al. 2016, S. 977

Funktionsprinzip der Entnahme-Kondensation (vgl. Abbildung 2 und Abbildung 3)

 $0 \rightarrow 1$ In einer Speisewasserpumpe (SP) wird der Druck des Arbeitsmediums (Wasser) auf Verdampferdruck erhöht, wo es nun in unterkühlter Form vorliegt. Diese Zustandsänderung erfolgt im idealisierten Fall isentrop.

1 \rightarrow **2** Unter Zugabe von Luft wird das Waldhackgut in der Brennkammer (BK) verbrannt und liefert so die Energie um das Wasser vollständig (idealisiert isobar) zu verdampfen und mittels des Überhitzers (ÜH) auf ein höheres Temperaturniveau zu überhitzen.

 $2 \rightarrow 3$ Der überhitzte Dampf wird in einer Hochdruckturbine (HD-T) – unter Erzeugung von mechanischer Arbeit – auf ein vorgegebenes Druckniveau entspannt.

Nun erfolgt die Aufteilung (durch Entnahme aus der Turbine) des überhitzten Wasserdampfs in 2 Massenströme. Der eine Teilstrom wird in die Niederdruckturbine (ND-T) geleitet, während der andere zum Wärmeabnehmer (WA) gelangt.

 $3 \rightarrow 4$ Die Niederdruckturbine (ND-T) entspannt den Dampf auf ein vorgegebenes Druckniveau meist in das Mehrphasengebiet des Wassers. Dabei wird weiter mechanische Energie erzeugt. Die gesamte von HD-Turbine und ND-Turbine geleistete Arbeit wird auf eine gemeinsame Welle übertragen und in einem Generator verstromt. $4 \rightarrow 5$ Der Abdampf aus der ND-Turbine kondensiert in einem mit Frischluft (dargestellt, ggf. kommt auch eine Wasserkühlung zum Einsatz) gekühlten Kondensator (K) unter Wärmeabgabe an die Umgebung vollständig isobar.

 $5 \rightarrow 6$ Über eine Kondensatpumpe (KP) wird das Wasser, unter leichter Druckerhöhung auf ca. Umgebungsdruck, in den Speisewasserbehälter (SB) gefördert.

 $3 \rightarrow 7$ Ein Wärmeabnehmer (z.B. Fernwärmenetz, Prozesswärmebedarf) entzieht dem Teilmassenstrom Energie und lässt ihn dabei vollständig isobar auskondensieren. Der Massenstrom wird anschließend dem Speisewasserbehälter zugeführt, wobei sich der Zustand 6 bzw. 0 einstellt.

Abbildung 2: Schaltschema einer Entnahme-Kondensationsanlage

Abbildung 3: T,s Diagramm des vorliegenden Kreisprozesses

2.2 Biomasse KWK mit Einsatz des ORC-Prozesses

Der Organic Rankine Cycle (ORC-Prozess) ist vom Prinzip her ähnlich wie der klassische Dampfturbinenprozess aufgebaut und kann sowohl wärmegeführt als auch stromgeführt betrieben werden. Als Arbeitsmittel wird allerdings kein Wasser, sondern eine organische Flüssigkeit eingesetzt. Diese organischen Arbeitsstoffe (z.B., Isobutan, n-Butan oder n-Propan) zeichnen sich durch niedrigere Verdampfungstemperaturen bei höheren Drücken, sowie sehr steile, teilweise positive Steigungen der Sattdampfkurven im T, s-Diagramm aus (Watter 2015, S. 333–335).

ORC-Prozesse haben ein gutes Teillastverhalten, kommen Vergleich im zum Dampfkraftprozess aber in eher geringeren Leistungsklassen zwischen 100 kW_{el} und 3.000 kWel zum Einsatz. Aufgrund der oben beschriebenen Eigenschaften der Arbeitsmittel kann der ORC-Prozess auch bei einem niedrigeren Temperaturniveau der Energieguelle (im Bereich ab etwa 100 °C) effizient betrieben werden. Die elektrischen Wirkungsgrade sind aufgrund der geringen Prozesstemperaturen und der Verluste bei der Wärmeübertragung Thermoöl Arbeitsmittelkreislauf von auf den niedriger als beim klassischen Dampfturbinenprozess (Wesselak 2017, S. 540-543).

Abbildung 4: Schaltschema ORC-Prozess einer Biomasse KWK-Anlage (Kaltschmitt et al. 2016, S. 1003)

In Abbildung 4 ist ein ORC-Prozess mit Biomassefeuerung dargestellt. Im Kessel wird die feste Biomasse (z.B. Hackgut) verbrannt und stellt so - wie im Dampfkraftprozess - die benötigte Wärme zur Verfügung. Da sich die meisten organischen Arbeitsmittel bei Temperaturen um 300 °C zersetzten, die Temperaturen im Heizkessel aber an die 1000 °C erreichen, muss ein möglichst hoher Massenstrom eine Erwärmung des Kreislaufmediums über die kritische Temperatur verhindern. Weil das Arbeitsmittel im ORC-Kreislauf bei hohen Drücken um die 60 bara zirkuliert und somit bei Störungen ein größeres Gefahrenpotential hat, wird in den meisten Fällen ein Thermoölkreislauf zwischengeschaltet, um die thermische Energie auf den ORC-Kreislauf zu übertragen. Das Thermoöl durchläuft den geschlossenen Thermoölkreislauf annähernd druckfrei und erwärmt sich auf ein Temperaturniveau, das weder für das ORC-Arbeitsmedium noch für das Thermoöl selbst problematisch ist. Im Wärmeüberträger wird das Arbeitsmedium des ORC-Prozesses vollständig verdampft und üblicherweise um wenige Kelvin überhitzt. Aufgrund der oben bereits erwähnten Eigenschaft des organischen Arbeitsmittels (positive Steigung der Sattdampfkurve), besteht bei der Entspannung in der nachgeschalteten Turbine nicht die Gefahr in das Nassdampfgebiet des ORC-Arbeitsmediums zu expandieren. Die Erzeugung von Strom wird wie beim Dampfkraftprozess über einen an die Dampfturbine angeschlossenen Generator erreicht. Der Abdampf aus der Turbine kondensiert in einem Heizwärmetauscher und stellt so die noch enthaltene thermische Energie für Heizzwecke zur Verfügung. Über eine Arbeitsmittelpumpe gelangt die organische Flüssigkeit mit dem gewünschten Druck wieder in den Verdampfer, wodurch der ORC-Kreislauf geschlossen ist. Weil das heiße Rauchgas seine thermische Energie auf das Thermoöl überträgt und somit nicht direkt mit dem sensiblen Dampferzeuger des ORC-Prozesses in Kontakt steht, ergibt sich die Möglichkeit einer nahezu unbeaufsichtigten Betriebsweise, die v.a. bei kleineren Anlagen einen großen Vorteil dieser Technologie darstellt. ORC-Prozesse können mit Abwärme aus Niedertemperaturquellen betrieben werden. Eine Steigerung der Effizienz des ORC-Prozesses kann durch den Einbau von Rekuperatoren/Economisern erreicht werden (Kaltschmitt et al. 2016, S. 998–1006; Obernberger und Gaia 2005).

2.3 Biomasse KWK mittels Holzvergasung und Gasmotor

Im Vergleich zu den zwei, im oberen Abschnitt, vorgestellten Technologien, die bei Leistungen über 100 kW_{el} kommerziell zum Einsatz kommen, wird die KWK mittels Holzvergasung bis dato – mit wenigen Ausnahmen – eher bei Anlagen mit geringeren Leistungen eingesetzt. Holzvergaser bilden eine Alternative zur KWK mit fester Biomasse mit ORC- oder Dampfkraftprozess und überzeugen vor allem durch prinzipiell wesentlich höhere elektrische Wirkungsgrade (Thrän et al. 2016).

Abbildung 5 zeigt den schematischen Aufbau eines Biomasse KWK-Systems mit Holzvergasung. Der bedeutende Unterschied bei der KWK mittels Holzvergasung – zu den beiden bereits vorgestellten Technologien – liegt darin, dass es zu keiner direkten Verbrennung im Vergasungsreaktor (allotherme Vergasung) der festen Biomasse kommt, um die nötige Energie für den Prozess bereitzustellen. Bei dieser Technologie wird in einem Vergaser – unter Mithilfe eines Vergasungsmittels – ein Produktgas erzeugt, das nach Kühlung und Reinigung in einer Gasaufbereitung, in einem Gasmotor (BHKW) in Wärme und Strom umgewandelt wird (C.A.R.M.E.N. e.V. 2017).

Abbildung 5: Schematischer Aufbau eines Holzvergaser KWK-Konzepts (Timmerer und Lettner 2005, S. 10)

Bei der Vergasung handelt es sich um einen endothermen Prozess, dem Wärme mit einem hohen Temperaturniveau zur Verfügung gestellt werden muss. Bei autothermen Vergasern findet im Inneren eine partielle Oxidation der Kohlenwasserstoffe mit Luft statt, wodurch die benötigte Reaktionswärme zur Verfügung gestellt wird. Dabei bildet sich Rauchgas, das eine Verdünnung des Produktgases bewirkt und somit für einen niedrigeren Heizwert desselben verantwortlich ist. Im Vergleich zur autothermen Vergasung wird bei der allothermen Vergasung der gesamte Reaktionswärmebedarf von außen gedeckt, wodurch eine Verdünnung des Produktgases vermieden wird und sich somit Synthesegas mit höherem Heizwert ergibt. Bei der allothermen Vergasung muss jedoch ein Teil des produzierten Gases oder der verbleibende Restkoks für die Beheizung des Vergasers benützt werden. Die technische Realisierbarkeit ist jedoch wegen der hohen zu übertragenden Energie sehr schwierig. Für die Vergasung von fester Biomasse im kleineren Leistungsbereich werden hauptsächlich Festbettvergaser, die als Gegenstrom-, Gleichstrom- oder Querstromvergaser ausgeführt sind, verwendet. Bei Anlagen mit größerer Leistung werden entweder Wirbelschicht- oder Flugstromvergaser eingesetzt (Karl 2012, S. 195–222).

Bei der Vergasung entstehen neben der Enthalpie des Produktgases auch Wärmeverluste. Die Hauptkomponenten des entstehenden Gases, deren Zusammensetzung von der Art und Weise des Vergasungsprozesses und der dabei auftretenden Temperaturen, sowie den verwendeten Vergasungsmitteln abhängt sind: Kohlenmonoxid (CO), Wasserstoff (H₂), Kohlendioxid (CO₂), Methan (CH₄), Wasserdampf (H₂O) und Stickstoff (N₂). Dabei ist vor allem der CO-Gehalt für den Heizwert des Produktgases ausschlaggebend. Nebenbei entstehen auch noch Teere, Asche und andere unerwünschte Abfallprodukte. In Tabelle 1 ist der Einfluss der Wahl des Vergasungsmittels auf den Heizwert dargestellt (Wesselak 2017, S. 544–550).

Gaskomponente		Vergasungsmittel	
in [Vol%]	Luft	Luft / O ₂ (80 %)	Wasserdampf
СО	10 - 20	40 - 50	25 - 47
H ₂	9 - 20	9 - 17	35 - 50
CH ₄	1 - 8	< 1	14 - 25
CO ₂	10 - 20	19 - 25	9 - 15
N ₂	40 - 55	15 - 30	2 - 3
Heizwert in [MJ/m ³]	4 - 6,5	7 - 9	12 - 17

Tabelle 1: Einfluss des Vergasungsmittels auf den Heizwert (Wesselak 2017, S. 547)

Bevor das produzierte Holzgas zur Erzeugung von Strom und Wärme in einen Gasmotor kommt, muss es noch gekühlt und von unerwünschten Nebenprodukten gereinigt werden, um eine Beschädigung der Komponenten des BHKW zu vermeiden. In der Gasreinigungseinheit kommen trockene Gasreinigungsverfahren (z.B. Elektrofilter, Gewebefilter oder Heißgaszyklone) bzw. Gaswäscheverfahren (z.B. organische Lösungsmittel) zum Einsatz, die Staub und Teere aus dem Produktgas entfernen und somit den störungsfreien Betrieb des Gasmotors ermöglichen (C.A.R.M.E.N. e.V. 2017).

2.4 Biomasse KWK mittels sonstiger Konzepte

Biomasse ist ein nachhaltiger Energieträger mit weitgehend GWP-neutraler CO₂-Emission. Gerade auch deshalb werden immer mehr Konzepte entwickelt bzw. in diesem Kontext neu aufgegriffen, um aus einem natürlichen Rohstoff (z.B. Holzhackgut) Wärme und Strom zu produzieren. Bei den 3 bisher vorgestellten Technologien handelt es sich um die bis dato am weitesten verbreiteten Konzepte zur gekoppelten Erzeugung von elektrischer und thermischer Energie auf Basis fester Biomasse. Doch auch neben diesen bereits etablierten KWK-Konzepten, erlangen/haben Technologien wie die Brennstoffzelle, der Stirlingmotor, Gasturbine die oder der Dampfmotor Bedeutung im Zusammenhang mit Biomassevergasung bzw. -verbrennung. In dieser Arbeit wird folgend noch genauer auf die Funktionsweise des Dampf- und Stirlingmotors eingegangen, um den einleitenden Technologieüberblick abzuschließen (Mertzis et al. 2014).

Biomasse KWK mittels Stirling-Motor

Der Stirling-Motor besteht (vgl. Abbildung 6) im Wesentlichen aus drei Hauptbestandteilen: einem beheizten Expansionszylinder mit Kolben (Erhitzer-Wärmeübertrager), einem gekühlten Kompressionszylinder mit Kolben (Kühler-Wärmeübertrager) und einem Regenerator. Die beiden Kolben sind über eine Welle miteinander verbunden und erzeugen durch die periodische Expansion und Kompression eines unter Druck stehenden Arbeitsgases (z.B. Luft, Helium) – im Innenraum des Stirlingmotos – über einen Generator elektrischen Strom. Das Arbeitsgas bewegt sich dabei über den Regenerator – der sich dadurch periodisch erwärmt bzw. abkühlt – zwischen den beiden Räumen hin und her. Die beiden Zylinder werden durch den Erhitzer bzw. einen Wärmeabnehmer jeweils auf konstanter Temperatur gehalten. Der große Unterschied zu einem konventionellen Motor ist, dass die Energie für die Kolbenarbeit nicht im Inneren des Stirling-Motors erzeugt, sondern durch eine externe Wärmequelle zur Verfügung gestellt wird. Da nahezu alle (Ab-)Wärmequellen zum Betrieb genützt werden können, ergibt sich ein breites Einsatzfeld für diese Technologie (Wang et al. 2016).

In Abbildung 7 ist der schematische Aufbau eines mit Biomasse gefeuerten Stirling-Motors dargestellt. Dabei liefert das aus der Verbrennung stammende Rauchgas die Wärme, die dem Stirling-Motor über den Erhitzer-Wärmeübertrager zugeführt wird. Danach erfolgt mit dem noch relativ heißen Rauchgas eine Erwärmung des an den Kühler-Wärmetauscher angeschlossenen Wärmeabnehmers, ehe das Rauchgas an die Umgebung abgegeben wird. Der Kühler-Wärmetauscher selbst sorgt für die Vorwärmung des Rücklaufes eines Prozess-oder Fernwärmeabnehmers. Derartige Anlagenkonzepte kommen Stand heute kaum zum Einsatz und bewegen sich im Leistungsbereich von weniger als 100 kW_{el}. Probleme ergeben sich vor allem durch die Anforderungen an die Hochtemperatur-Wärmetauscher und die Abdichtung des Stirling-Motors (Kaltschmitt et al. 2016, S. 1006–1011; Obernberger et al. 2005).

Abbildung 7: Schaltschema Stirling-Motor in einer Biomasse KWK-Anlage (Kaltschmitt et al. 2016, S. 1010)

Biomasse KWK mittels Dampfmotor

Das Funktionsprinzip beruht wie bei der Biomasse KWK mittels Dampfturbine auf dem Clausius-Rankine-Prozess (vgl. Kapitel 2.1), wobei anstelle der Dampfturbine Dampfmotoren zum Einsatz kommen, um den elektrischen Strom zu erzeugen. Dampfmotoren arbeiten mit gesättigtem bzw. leicht überhitztem Dampf. Sie benötigen in moderner Ausführung keine Ölschmierung, was einen unproblematischen Betrieb ermöglicht. Ein Vorteil gegenüber der Dampfturbine sind die geringeren Anforderungen an die Frischdampfqualität und somit an die Komponenten der Anlage. Dadurch ist die Nachrüstung eines Dampfmotors oft eine einfache Lösung. Der Einsatz ist allerdings nur im kleineren Leistungsbereich (< $1,2 \text{ MW}_{el}$) – falls Frischdampftemperatur und Abdampfdruck keine große Rolle spielen - sinnvoll, da ansonsten die Vorteile eines Systems mit Dampfturbine überwiegen. Neben den Dampfkolbenmotoren ist auch der Einsatz von

Dampfschraubenmotoren möglich, die einen reinen Sattdampfbetrieb erlauben und somit kein Überhitzer nötig ist (Karl 2012, S. 185–191; Tobias Zschunke 2012).

Zum Abschluss dieses Kapitels sind in Tabelle 2 die typischen Leistungsbereiche, sowie die unterschiedlichen elektrischen Wirkungsgrade (vgl. Abschnitt 3.2.1) der verschiedenen Biomasse KWK-Konzepte dargestellt.

Stromerzeugungskonzepte	Typ. Leistungsbereich in [MW _{el}]	El. Wirkungsgrad, bezogen auf den Brennstoffeinsatz in [%]
Dampfturbine	0,5 - 20	15 - 35
Dampfkolbenmotor	0,2 - 1,5	12 - 20
Dampfschraubenmotor	0,1 - 2,5	12 - 20
Stirlingmotor	0,01 - 0,15	8 - 22
ORC-Prozess	0,1 - 3	10 - 17

Tabelle 2: Leistungsbereich und el. Wirkungsgrad der verschiedenen Konzepte (Wesselak 2017, S. 544)

3 Analyse österreichischer Biomasse KWK-Anlagen

Das folgende Kapitel widmet sich den österreichischen Biomasse KWK-Anlagen². Dabei wird einleitend auf die produzierten Strom- und Wärmemengen, die in die Netze eingespeist werden, eingegangen. Anschließend werden die Ergebnisse einer Fragebogen-Erhebung präsentiert, aus den Erhebungsergebnissen die Brennstoffnutzungsgrade der österreichischen Bestandsanlagen ermittelt und diese näher analysiert.

3.1 Die österreichische Biomasse KWK-Landschaft

In Österreich werden über das ganze Land verteilt etwa 130 kommerzielle KWK-Anlagen mit fester Biomasse betrieben (vgl. Abbildung 8). Ca. 20 davon sind als Holzgasanlagen ausgeführt, während der Rest die nötige Energie für die eingesetzten Kreisprozesse durch klassische Verbrennung zur Verfügung stellt (Pfemeter et al. 2016).

Wie aus den Fragebögen hervorgeht, bedient sich der Großteil der Biomasse KWK-Anlagen, die nicht mit Holzvergasung arbeiten, eines Dampfkraftprozesses mit Entnahme-Kondensationsturbine, knapp gefolgt von Anlagen mit Gegendruckturbine, während nur einige wenige Anlagen mit ORC-Prozess betrieben werden.

Abbildung 8:Verteilung der Biomasse KWK-Anlagen in Österreich, modifiziert nach (Pfemeter et al. 2016)

² Mit Biomasse KWK-Anlagen ist im gesamten Kapitel eine KWK-Anlage die mit fester holzbasierter Biomasse (z.B. Waldhackgut) betrieben wird gemeint.

Die etwa 130 Biomasse KWK-Anlagen liefern eine Engpassleistung³ von insgesamt rund 310 MW_{el} und haben im Jahr 2016 ca. 2.000 GWh Strom ins Netz eingespeist. Das entspricht annähernd 3% der gesamten dem Endverbrauch zur Verfügung gestellten Strommenge (~60.000 GWh). In Österreich ist mit mehr als 50 % der erzeugten Strommenge die Wasserkraft der größte Lieferant an elektrischer Energie. Unter den durch das Ökostromgesetz⁴ (gemäß §7 ÖSG 2012) geförderten Erneuerbaren Energieanlagen sind Biomasse KWK-Anlagen mit ungefähr 20 % gelieferter Strommenge hinter den Windkraftanlagen der wichtigste Stromerzeuger. Die Einspeisetarife für Strom aus fester Biomasse sind in der Ökostrom-Einspeisetarifverordnung⁵ (gemäß §9 ÖSET-VO 2018) geregelt und haben für Biomasse KWK-Anlagen im Jahr 2016 durchschnittlich 13,26 Cent/kWh betragen. Abbildung 9 zeigt die im Jahr 2016 guartalsweise eingespeisten Strommengen der Erneuerbaren Energieanlagen. Dabei fällt der wesentliche Anteil der Biomasse KWK an der Gesamtproduktion und vor allem die über das Jahr konstante gelieferte Strommenge auf. Biomasse KWK-Anlagen produzieren in Österreich also kaum fluktuierend, d.h. sie werden nur wenig von äußeren Einflüssen beeinträchtigt. (OeMAG Abwicklungsstelle für Ökostrom AG 2018).

Ökostrom-Einspeisemengen 2016

Abbildung 9: Die im Jahr 2016 in Österreich eingespeisten Ökostrommengen, Datenquelle: (OeMAG Abwicklungsstelle für Ökostrom AG 2018)

 $^{^{3}}$ "Engpassleistung" die durch den leistungsschwächsten Teil begrenzte, höchstmögliche

elektrische Dauerleistung der gesamten Anlage mit allen Maschinensätzen" vgl. BGBI. I Nr. 108/2017 idgF §5 (Bundesrepublik Österreich 01.01.2018)

⁴ BGBI. I Nr. 108/2017 idgF (Bundesrepublik Österreich 01.01.2018)

⁵ BGBI. II Nr. 408/2017 idgF (Bundesministerium für Wissenschaft, Forschung und Wirtschaft 01.01.2018)

Neben dem elektrischen Strom erzeugen die mit fester Biomasse betriebenen KWK-Anlagen – ihrem Funktionsprinzip entsprechend – Nutzwärme. Damit decken sie rund 15 % des gesamten österreichischen Fernwärmebedarfs, der im Jahr 2016 etwa 20.000 GWh betragen hat. Somit sind sie hinter den mit nicht biogenen Stoffen betriebenen KWK-Anlagen und den reinen Biomasse Heizwerken der wichtigste Wärmelieferant des Landes (vgl. Abbildung 10). Die holzbasierte gekoppelte Erzeugung von Strom und Wärme in Biomasse KWK-Anlagen stellt im Jahr 2016 insgesamt rund 5.000 GWh Energie bereit (Statistik Austria 2018a).

Anteile an der Fernwärmeerzeugung in Österreich im Jahr 2016

Abbildung 10: Anteile der Energieträger an der Fernwärmeerzeugung im Jahr 2016 in Österreich Datenquelle: (Statistik Austria 2018a)

3.2 Brennstoffnutzungsgrade österreichischer Anlagen

In diesem Kapitel wird zuerst der Brennstoffnutzungsgrad definiert und näher betrachtet. Anschließend erfolgt eine Vorstellung des an die Betreiber ausgesendeten Fragebogens, bevor die Daten der ausgefüllten Fragebögen ausgewertet werden, um die Brennstoffnutzungsgrade österreichischer Anlagen aufzuzeigen und zu analysieren.

3.2.1 Allgemeines zum Brennstoffnutzungsgrad

""Brennstoffnutzungsgrad" die Summe aus Stromerzeugung und genutzter Wärmeerzeugung, geteilt durch den Energieinhalt der eingesetzten Energieträger bezogen auf ÖSG ein Kalenderjahr" (vgl. §5 2012), lautet die Definition des Brennstoffnutzungsgrades im österreichischen Ökostromgesetz⁶. Ausgedrückt in einer Gleichung ergibt sich nach Zahoransky und Allelein 2013, S. 241:

$$\eta_{Bst} = \frac{\dot{Q}_{Nutz} + P_{el}}{\dot{Q}_{zu}}$$
 1

 η_{Bst} ... Brennstoffnutzungsgrad

 \dot{Q}_{Nutz} ... genützte Wärmeleistung

P_{el} ... elektrische Leistung

Q_{zu} ... der über den Brennstoff dem Kreisprozess zugeführte Wärmestrom

Für die in dieser Arbeit benötigten Zwecke wird Gleichung 1 in einer adaptierten Form verwendet:

$$\eta_B = \frac{Q_{th} + E_{el}}{m_B * H}$$

- η_B ... Brennstoffnutzungsgrad
- Q_{th} ... jährlich erzeugte Nutzwärmemenge
- E_{el} ... jährlich erzeugte Strommenge
- m_B ... jährlich zugeführte Brennstoffmenge
- H ... Heizwert des Brennstoffs

Somit ergibt sich der Brennstoffnutzungsgrad als Quotient aus der Summe der jährlich erzeugten Nutzwärme- und Strommenge zum Produkt aus jährlich zugeführter Brennstoffmenge und Heizwert des Brennstoffs (vgl. Gleichung 2). Dabei kann auch der elektrische bzw. thermische Anteil des Brennstoffnutzungsgrades betrachtet werden, indem nur die Strommenge bzw. nur die Wärmemenge durch den Nenner geteilt wird. Wichtig ist die Unterscheidung zum elektrischen und vor allem thermischen **Wirkungsgrad**. Der elektrische Wirkungsgrad η_{el} ist als Quotient aus elektrischer Leistung und zugeführtem Wärmestrom definiert (vgl. Gleichung 3).

$$\eta_{el} = \frac{P_{el}}{\dot{Q}_{zu}}$$
 3

⁶ BGBI. I Nr. 108/2017 idgF (Bundesrepublik Österreich 01.01.2018)

Der thermische Wirkungsgrad η_{th} errechnet sich aus Quotient von der Leistung des thermodynamischen Kreisprozesses P_{Proz} und zugeführtem Wärmestrom (vgl. Gleichung 4).

$$\eta_{th} = \frac{P_{Proz}}{\dot{Q}_{zu}}$$

Damit wird die Güte eines thermodynamischen Kreisprozesses zur Umwandlung von Wärmeenergie in reine mechanische Arbeit definiert, weshalb dieser auf keinen Fall mit dem thermischen Anteil des Brennstoffnutzungsgrades verwechselt werden darf (Zahoransky und Allelein 2013, S. 21–22).

Das Ökostromgesetz⁷ fordert für Anlagen, die feste Biomasse als Brennstoff verwenden, Brennstoffnutzungsgrade von mindestens 60 %, damit die festgelegten Einspeisetarife laut Kontrahierungspflicht vergütet werden (vgl. §12 ÖSG 2012). Da die Verträge nach 15 Jahren auslaufen (vgl. §16 ÖSG 2012) wird in §17 des ÖSG 2012 die Kontrahierungspflicht für Nachfolgetarife geregelt, wobei für eine Folgeförderung auch hier Brennstoffnutzungsgrade größer oder gleich 60 % gefordert werden.

3.2.2 Fragebogenerhebung

Um die Brennstoffnutzungsgrade der österreichischen Biomasse KWK-Anlagen ermitteln zu können, werden die in Gleichung 2 vorkommenden Parameter (jährlich erzeugte Nutzwärme, jährlich erzeugte Strommenge und jährlich zugeführte Brennstoffmenge) benötigt. Deshalb ist im Zuge dieser Arbeit ein Fragebogen entwickelt und an die Betreiber der etwa 130 Betriebsanlagen ausgesendet worden, mit dem die oben erwähnten Daten und weitere Informationen zu den Anlagen erhoben werden können.

Der Fragebogen beinhaltet einen Hauptteil, in dem Informationen zum Betreiber und Standort der Anlage, einige allgemeine Daten (z.B. Inbetriebnahmezeitpunkt der Anlage, Betriebsstunden, etc.), sowie die zur Brennstoffnutzungsgradberechnung benötigten Werte abgefragt werden. In diesem Teil erfolgt auch die Angabe, mit welchem Konzept die Anlage betrieben wird (Dampfkraftprozess, ORC-Prozess, Holzvergasung, Stirling-Motor). Je nach Auswahl steht dann ein anlagenspezifischer Teil zum Ausfüllen bereit, in dem detaillierte Informationen zu den einzelnen Konzepten abgefragt werden (z.B. Frischdampfparameter beim Dampfkraftprozess, verwendetes Arbeitsmittel beim ORC-Prozess, Art der Vergasung bei der Holzvergasung, oder Arbeitsmedium des Stirling-Motors). Der gesamte Fragebogen ist dieser Arbeit angehängt (vgl. Anhang 1 bis Anhang 5). Die statistische Auswertung der rückgesendeten Exemplare zur Bestimmung der Brennstoffnutzungsgrade, erfolgt im folgenden Abschnitt.

⁷ BGBI. I Nr. 108/2017 idgF (Bundesrepublik Österreich 01.01.2018)

3.2.3 Auswertung der Daten

Von den ausgesendeten Fragebögen sind 46 ausgefüllt retourniert worden. Dabei ergibt sich die in Abbildung 11 dargestellte Zusammensetzung der verschiedenen Anlagenkonzepte.

Abbildung 11: Anteile der verschiedenen Anlagenkonzepte der Biomasse KWK-Anlagen

Die Engpassleistung der erhobenen Anlagen beträgt rund 200 MW_{el} und entspricht damit in etwa 2/3 der gesamten in Österreich installierten Leistung. Das häufigste Anlagenkonzept ist ein Dampfkraftprozess mit Entnahme-Kondensationsturbine. 45,7 % (21) der Betriebsanlagen sind in dieser Bauweise ausgeführt und stellen damit 63,2 % der elektrischen Nennleistung bereit. Dahinter folgen die als Dampfkraftprozess mit Gegendruckbetrieb ausgeführten Konzepte, die 30,4 % (14) des Anlagenbestandes ausmachen und dabei 34,2 % der Engpassleistung zur Verfügung stellen. Die anderen Konzepte teilen sich die Plätze 3 und 4 zu fast gleichen Anteilen auf, wobei 13 % (6) als Holzvergaser und 10,9 % (5) als ORC-Prozess ausgeführt sind. Bei den elektrischen Leistungen ergibt sich die gestürzte Reihenfolge. 2,2 % der elektrischen Nennleistung kommen von Anlagen mit ORC-Prozess und nur 0,3 % werden von Holzvergasern bereitgestellt. Unter den ausgewerteten Daten ist keine Anlage die einen Stirling-Motor verwendet. Aus dieser Statistik geht hervor, dass 76 % der Anlagen mit Dampfkraftprozess betrieben werden und dabei 97,4 % der Engpassleistung liefern, woraus ihr dominierender Stellenwert unter den österreichischen Biomasse KWK-Anlagen resultiert.

Für die Bestimmung der **Brennstoffnutzungsgrade** werden die in den Fragebögen angegebenen Werte zur jährlich erzeugten Nutzwärme und Strommenge, sowie die jährlich zugeführte Brennstoffmenge in die Gleichung 2 eingesetzt. Der Heizwert des eingesetzten Brennstoffes unterscheidet sich für verschiedene Holzarten und ist stark vom Wassergehalt des Brennstoffs abhängig. Da die Brennstoffmenge in atro-t⁸ angegeben wurde und die Anlagen fast ausschließlich mit Waldhackgut betrieben werden, ergibt sich der Heizwert für die in dieser Arbeit durchgeführten Berechnungen nach Hagauer et al. 2009, zu 5,235 MWh/atro-t. Folglich lassen sich nun die Brennstoffnutzungsgrade der Betriebsanlagen ermitteln.

Die Ergebnisse sind in Abbildung 15 (vgl. Kapitelende) dargestellt, wobei der Brennstoffnutzungsgrad der verschiedenen Anlagen in einen elektrischen und einen thermischen Anteil unterteilt ist. Außerdem ist das Verhältnis zwischen jährlich produzierter Wärme- und Strommenge (Wärme-Strommengenverhältnis) aufgetragen. Bei einem Wert von 4 heißt das zum Beispiel, dass über das Jahr gesehen die 4-fache Menge an thermischer im Vergleich zu elektrischer Energie erzeugt worden ist.

Durch die Kategorisierung der ausgewerteten Anlagen nach ihren Brennstoffnutzungsgraden ergibt sich die in Tabelle 3 und Abbildung 12 gezeigte Verteilung:

- 52 % der Betriebsanlagen erreichen Brennstoffnutzungsgrade größer als 60 % und stellen dabei 39 % der installierten Engpassleistung zur Verfügung, womit folglich 48 % der Anlagen (mit 61 % an vorhandener Nennleistung) unter die für Erlangung des Ökostrom-Nachfolgetarifs (vgl. Abschnitt 3.2.1) geltende Hürde fallen.
- 17 % der Anlagen haben Brennstoffnutzungsgrade kleiner als 30 %. Dabei handelt es sich ausschließlich um Anlagen, die mit dem Konzept eines Dampfkraftprozesses mit Entnahme-Kondensationsturbine betrieben werden und dabei immerhin 20 % der elektrischen Engpassleistung zur Verfügung stellen.
- Die genaue Aufschlüsselung, wie viele Anlagen sich in welchem Nutzungsgradbereich befinden, kann ebenfalls Tabelle 3 entnommen werden.

Brennstoffnutzungsgrad	Anzahl	Anteil	Engpassleistung MWel	Anteil
≥60%	24	52%	77,1	39%
<60% - ≥50%	5	11%	40,7	21%
<50% - ≥40%	5	11%	11,8	6%
<40% - ≥30%	4	9%	28	14%
<30%	8	17%	39	20%

Tabelle 3: Kategorisierung der Anlagen nach dem Brennstoffnutzungsgrad

⁸ Eine atro-t (Atrotonne) ist die Maßeinheit für eine Tonne absolut trockenes (Wasergehalt=0%) Holz (Hagauer et al. 2009).

Abbildung 12: Verteilung der Anzahl der Anlagen nach dem Brennstoffnutzungsgrad

In Abbildung 13 sind alle ausgewerteten Biomasse KWK-Anlagen dargestellt, die einen Brennstoffnutzungsgrad von größer als 60 % aufweisen. Es handelt sich dabei hauptsächlich um Anlagen, die einen Dampfkraftprozess mit Gegendruckturbine verwenden (13 Anlagen). Des Weiteren sind auch alle Anlagen die mit einem Holzvergaser betrieben werden (6) sowie 3 der 5 Anlagen mit ORC-Prozess in diesem Bereich. Bei den 2 KWK-Anlagen mit Dampfkraftprozess unter Einsatz von Entnahme-Kondensationsturbinen werden Sonderbauformen von Turbinen (wegschaltbarer Niederdruckteil) eingesetzt, also Anlagen, bei denen wahlweise ein Gegendruck- oder Entnahme-Kondensationsbetrieb möglich ist.

Die 24 Anlagen mit Brennstoffnutzungsgraden von über 60 % erreichen gemeinsam eine Engpassleistung von 77,1 MW_{el} (39 % der angegebenen Engpassleistung) und haben 2016 rund 560 GWh (ebenfalls rund 39 % der ausgewerteten Einspeisemenge) Strom ins Netz eingespeist. Wobei der Hauptteil der Stromerzeugung von den Anlagen mit Dampfkraftprozess kommt, da die beiden anderen Konzepte eine Engpassleistung von lediglich 3,6 MW_{el} aufweisen (Holzvergaser sogar nur 0,67 MW_{el} davon). Beachtlich ist. dass die eingespeiste Wärmemenge im Jahr 2016 mit rund 1800 GWh etwa 64 % der von allen in der Auswertung erfassten Biomasse KWK-Anlagen gelieferten Nutzwärme ausmacht. Daraus resultieren auch die hohen Wärme-Strommengenverhältnisse der hier betrachteten Anlagen und nicht zuletzt die hohen Brennstoffnutzungsgrade (vgl. Überlegungen in Kapitel 4).

Abbildung 13: ausgewertete Biomasse KWK-Anlagen mit Brennstoffnutzungsgrad >60 %

Abbildung 14 zeigt jene der ausgewerteten Anlagen, die einen Brennstoffnutzungsgrad unter 60 % aufweisen. Es handelt sich dabei um 22 Betriebsanlagen, die mit Ausnahme von ORC-Prozessen, Dampfkraftprozesses mit Gegendruckturbine einem und zwei ausschließlich mit dem Konzept des Dampfkraftprozesses und Entnahme-Kondensationsturbine arbeiten. Die Engpassleistung beträgt 119,5 MW_{el}, was bedeutet dass 61 % der installierten Leistung von Anlagen mit einem Brennstoffnutzungsgrad kleiner als 60 % bereitgestellt wird. Im Jahr 2016 hat die ins Netz eingespeiste Strommenge der in der Auswertung erfassten Anlagen, rund 850 GWh betragen (entspricht 60 % der gesamten Einspeiseleistung). Während bei fast allen der Anlagen mit Brennstoffnutzungsgrad >60 % ein Wärme-Strommengenverhältnis von größer 2 auftritt, haben die in Abbildung 14 erfassten Anlagen mit Ausnahme der beiden ORC-Prozesse fast alle ein Wärme-Strommengenverhältnis kleiner 2. Folglich ist auch die eingespeiste Wärmemenge geringer als bei den in Abbildung 13 dargestellten Anlagen und hat 2016 etwa 940 GWh betragen (36 % der gesamten in der Auswertung erfassten Nutzwärmelieferung). Der geringere Anteil erzeugter Nutzwärme korrespondiert naturgemäß dem niedrigeren an mit Brennstoffnutzungsgrad. Auch hier wird wieder auf die Betrachtungen in Kapitel 4 verwiesen.

Abbildung 14: ausgewertete Biomasse KWK-Anlagen mit Brennstoffnutzungsgrad <60 %

Die Fragebogenerhebung bringt damit zusammengefasst folgende wesentlichen Ergebnisse:

- 48 % der in der Erhebung erfassten Anlagen erreichen den für die Gewährung eines Ökostrom-Nachfolgetarifs nach derzeitiger nötigen Brennstoffnutzungsgrad von 60 % nicht. Diese produzieren jedoch derzeit 61 % des elektrischen Stromes aus fester Biomasse. Ein Wegfall dieser Anlagen hätte damit erhebliche Auswirkungen auf die gesamte Ökostromerzeugung in Österreich. Bei diesen Anlagen handelt es sich fast ausschließlich um Dampfkraftwerke mit Einsatz von Entnahme-Kondensationsturbinen.
- Nur Anlagen, die den Hauptteil der Brennstoffenergie in Nutzwärme umwandeln (Anlagen mit Wärme-Strommengenverhältnis >2) erzielen in der Regel auch Brennstoffnutzungsgrade von mehr als 60 %. Bei diesen Anlagen handelt es sich überwiegend um Dampfkraftwerke mit Einsatz von Gegendruckturbinen.
- Der elektrische Anteil am Brennstoffnutzungsgrad sinkt mit höher werdendem Wärme-Strommengenverhältnis, was aufgrund der thermodynamischen Randbedingungen auch zu erwarten ist, da bei zunehmender Produktion von Nutzwärme das volle Potential der Brennstoffenergie zur Erzeugung von elektrischer Energie immer weniger ausgeschöpft werden kann.

Abbildung 15: Brennstoffnutzungsgrade der ausgewerteten Biomasse KWK-Anlagen

24

4 Betriebskonzepte von Biomassekraftwerken und deren Einfluss auf den Brennstoffnutzungsgrad

Das folgende Kapitel soll die verschiedenen Möglichkeiten der energetischen Nutzung des eingesetzten Brennstoffs (Waldhackgut) und deren Auswirkungen auf den Brennstoffnutzungsgrad aufzeigen. Dazu werden anhand eines theoretischen Beispiels zuerst der reine Heizbetrieb bzw. die ausschließliche Stromproduktion und anschließend unterschiedliche Formen der kombinierten Erzeugung von Strom und Wärme in einer Biomasse KWK-Anlage betrachtet.

4.1 Reiner Heizbetrieb

Im reinen Heizbetrieb wird das Waldhackgut in einem Heißwasserkessel verbrannt und die dabei entstehende Energie für Heizzwecke zur Verfügung gestellt. In dem hier gewählten Beispiel handelte es sich um einen Heizkessel mit einer Feuerungswärmeleistung von 22 MW_{th}. Bei der Verbrennung der Biomasse entstehen Verluste, die den erreichbaren Brennstoffnutzungsgrad bestimmen. Der gesamte Verlust setzt sich aus den folgenden Teilverlusten zusammen:

- Verlust durch Unverbranntes fixer Kohlenstoffe in Flug- und Grobasche VUFUGA
- Verlust durch Unverbranntes als Kohlenmonoxid V_{UCO}
- Verlust durch fühlbare Wärme in der Asche V_{FWA}
- Abgasverluste V_{Abg}
- Verlust durch Strahlung V_{St}

Die Abgasverluste wurden im Wesentlichen mittels Verbrennungsrechnung abgeschätzt (Durchführung nach Brandt 1999a, 1999b, einige Adaptionen zur einfacheren Darstellung; Annahmen zu typischen Betriebsbedingungen nach üblichen Betriebswerten ausgeführter Anlagen).

Um zu zeigen wie sich der Wassergehalt bzw. der Ascheanteil des Brennstoffs, der Luftüberschuss bei der Verbrennung und die Rauchgastemperatur auf die Verluste und somit den Brennstoffnutzungsgrad auswirken, werden – jeweils ausgehend von einem Referenzfall – diese Parameter variiert. Der Kohlenstoffanteil in der Asche mit 0,5 % und der Kohlenmonoxidanteil im Rauchgas mit 0,005 % bleiben bei den Variationen unverändert.

Referenzfall

In Tabelle 4 und Abbildung 16 sind die gewählten Parameter sowie die einzelnen Verluste im Referenzfall dargestellt. Bei dieser Konfiguration mit einem Wassergehalt im Waldhackgut von 40 %, einem Ascheanteil von 3 %, einer Rauchgastemperatur von 150 °C und einem Luftüberschuss von 1,5, sowie den oben erwähnten Kohlenstoff- und Kohlenmonoxidanteilen ergeben sich Verluste von etwas mehr als 10 %. Von den insgesamt 10,27 % an Verlusten macht den größten Anteil mit 8,842 % der Abgasverlust V_{Abg} aus. Der Strahlungsverlust V_{St}, der nur von der Nennleistung des Heizkessels abhängt und sich deshalb über die verschiedenen Variationen hinweg nicht verändert, liegt bei 1,2 %. Die Verluste durch Unverbranntes V_{UGUFA} & V_{UCO} und fühlbare Wärme in der Asche V_{FWA} sind gering und machen insgesamt nur rund 0,2 % aus. Dadurch ergibt sich in dieser Konstellation eine thermisch bereitgestellte Leistung des Heizkessels von 19,74 MW_{th} und einen Brennstoffnutzungsgrad von 89,73 %.

Parameter		Verluste im H	eizkessel
Wassergehalt Waldhackgut	40%	Vugufa	0,047%
Ascheanteil	3%	νυςο	0,033%
Kohlenstoffanteil in der Asche	0,5%	VFWA	0,103%
Kohlenmonoxidanteil im Rauchgas	0,005%	VAbg	8,842%
Temperatur Rauchgas in °C	150	Vst	1,246%
Luftüberschuss	1,5	Vges	10,27%
Feuerungswärmeleistung in MWth	22	Leistung in MWth	19,74

Tabelle 4: Verluste im Heißwasserkessel beim Referenzfall

Abbildung 16: Flussdiagramm bei Verbrennung und reinem Heizbetrieb

Variation Wassergehalt

Die Auswirkungen auf die Verluste bei einem Wassergehalt des Waldhackguts von 20 % sind in Tabelle 5 abgebildet. Der Einfluss des Unverbrannten sinkt im Vergleich zum Referenzfall deutlich ab, bleibt aber im Vergleich zu den Abgasverlusten, die etwas verringert sind, immer noch eher unbedeutend. So ergeben sich insgesamt ein Brennstoffnutzungsgrad von 92,06 % und damit eine thermische Leistung von 20,25 MW_{th}.

Parameter		Verluste im He	izkessel
Wassergehalt Waldhackgut	20%	Vugufa	0,035%
Ascheanteil	3%	νυςο	0,024%
Kohlenstoffanteil in der Asche	0,5%	VFWA	0,076%
Kohlenmonoxidanteil im Rauchgas	0,005%	VAbg	6,559%
Temperatur Rauchgas in °C	150	Vst	1,246%
Luftüberschuss	1,5	Vges	7,94%
Feuerungswärmeleistung in MWth	22	Leistung in MWth	20,25

Tabelle 5: Verluste im Heißwasserkessel bei Variation des Wassergehalts

Variation Ascheanteil

Ist der Aschegehalt im Vergleich zum Referenzfall um etwas mehr als das Doppelte auf 7 % erhöht ("schlechtes Waldhackgut" nach langer Lagerdauer bzw. Erdanteilen), ergibt sich die in Tabelle 6 dargestellte Zusammensetzung. Die Verluste durch Unverbranntes fixer Kohlenstoffe in Flug- und Grobasche V_{UGUFA} und die Verluste durch fühlbare Wärme in der Asche V_{FWA} steigen zwar deutlich an, aufgrund ihres geringen Einflusses auf den Gesamtverlust sinkt der Brennstoffnutzungsgrad aber nur gering auf 89,01 % ab. Die thermische Leistung beträgt 19,58 MW_{th}.

Parameter		Verluste im	Heizkessel
Wassergehalt Waldhackgut	40%	Vugufa	0,117%
Ascheanteil	7%	νυςο	0,034%
Kohlenstoffanteil in der Asche	0,5%	VFWA	0,254%
Kohlenmonoxidanteil im Rauchgas	0,005%	VAbg	9,343%
Temperatur Rauchgas in °C	150	Vst	1,246%
Luftüberschuss	1,5	Vges	10,99%
Feuerungswärmeleistung in MWth	22	Leistung in MWth	19,58

Tabelle 6: Verluste im Heißwasserkessel bei Variation des Ascheanteils

Variation Rauchgastemperatur

Eine Erhöhung der Rauchgastemperatur um 30 °C (vgl. Tabelle 7) bewirkt keine bzw. kaum Veränderungen bei $V_{UFUGA,}$, V_{UCO} , V_{FWA} , jedoch steigen die Abgasverluste V_{Abg} deutlich auf

fast 11 % an. Es ergibt sich ein Brennstoffnutzungsgrad von 87,6 %, womit eine thermische Leistung von 19,27 MW_{th} bereitgestellt wird.

Parameter		Verluste im	Heizkessel
Wassergehalt Waldhackgut	40%	Vugufa	0,047%
Ascheanteil	3%	νυςο	0,033%
Kohlenstoffanteil in der Asche	0,5%	VFWA	0,106%
Kohlenmonoxidanteil im Rauchgas	0,005%	VAbg	10,965%
Temperatur Rauchgas in °C	180	Vst	1,246%
Luftüberschuss	1,5	Vges	12,40%
Feuerungswärmeleistung in MWth	22	Leistung in MWth	19,27

Tabelle 7: Verluste im Heißwasserkessel bei Variation der Rauchgastemperatur

Variation Luftüberschuss

Der Einfluss auf die Verluste durch Erhöhung des Luftüberschusses auf 1,8 kann Tabelle 8 entnommen werden. Durch den höheren Luftüberschuss erhöht sich vor allem wieder der Abgasverlust V_{Abg} , aber auch der Verlust durch Unverbranntes als Kohlenmonoxid V_{UCO} dessen Einfluss aber generell sehr gering ist. Schlussendlich ergeben sich in diesem Fall ein Brennstoffnutzungsgrad von 88,2 % und eine thermische Leistung von 19,4 MW_{th}.

Parameter		Verluste im	Heizkessel
Wassergehalt Waldhackgut	40%	Vugufa	0,047%
Ascheanteil	3%	νυςο	0,038%
Kohlenstoffanteil in der Asche	0,5%	VFWA	0,103%
Kohlenmonoxidanteil im Rauchgas	0,005%	VAbg	10,365%
Temperatur Rauchgas in °C	150	Vst	1,246%
Luftüberschuss	1,8	Vges	11,80%
Feuerungswärmeleistung in MWth	22	Leistung in MWth	19,40

Tabelle 8: Verluste im Heißwasserkessel bei Variation des Luftüberschusses

Die Variationsrechnung zeigt, dass die Hauptverluste eines Heißwasserkessels durch das Abgas hervorgerufen werden. In den hier betrachteten Variationen ist immer nur ein Parameter verändert worden und dabei ergibt sich, dass besonders der Wassergehalt des Brennstoffes, aber auch Rauchgastemperatur und Luftüberschuss einen erheblichen Einfluss auf die Verluste und somit den Brennstoffnutzungsgrad haben. Bei einer Kombination ungünstiger Parameter (z.B. feuchter Brennstoff, hohe Rauchgastemperaturen, großer Luftüberschuss) sinkt der Nutzungsgrad deutlich unter 90 % ab. Deshalb ist es sinnvoll auf einen möglichst trockenen Brennstoff und eine Verbrennung bei niedrigem Luftüberschuss zu achten. Insgesamt lässt sich anhand des hier angeführten Beispiels aber erkennen, dass bei reinem Heizbetrieb ohne großen technischen Aufwand hohe Brennstoffnutzungsgrade von rund 90 % möglich sind.

4.2 Ausschließliche Stromerzeugung

Nachdem im vorherigen Abschnitt der reine Heizbetrieb und die dabei erzielbaren Brennstoffnutzungsgrade aufgezeigt worden sind, erfolgt nun die Betrachtung einer ausschließlichen Stromerzeugung. Dafür wird mit der aus der Verbrennung kommenden thermischen Energie ein Dampfkraftprozess betrieben (vgl. Kapitel 2.1). Der überhitzte Frischdampf wird in diesem Fall in einer reinen Kondensationsturbine, unter Erzeugung von elektrischer Energie, auf eine möglichst niedrige Temperatur bzw. ein möglichst niedriges Druckniveau entspannt, da der Abdampf nicht wie in einer KWK-Anlage mit Gegendruckturbine für Heizzwecke bereitgestellt werden muss. Auf welches Niveau die Entspannung erfolgt, gibt die Wärmesenke vor, mit welcher der Turbinenabdampf kondensiert wird. Bei einem mit Frischluft gekühlten Kondensator können das etwa ein Druck von 0,1 bara und eine Temperatur von rund 45°C sein. Für niedrigere Kondensatordrücke wird z.B. ein mit Flusswasser gekühltes System benötigt.

Anhand eines Beispiels soll nun gezeigt werden, wie hoch der Brennstoffnutzungsgrad eines solchen Systems zur reinen Stromerzeugung ist und wie sich ein verändertes Kondensationsniveau auf den Nutzungsgrad auswirkt. Die zur Erzeugung des benötigten Prozessdampfes bereitgestellte thermische Energie kommt aus einem Heizkessel, der jenem aus dem Referenzfall des vorherigen Kapitels entspricht. Die Feuerungswärmeleistung beträgt also 22.000 kW_{th} bei einem Wirkungsgrad von 89,73 %. Damit wird ein Frischdampfmassenstrom von 23,5 t/h bei einem Druck von 24 bara und einer Temperatur von 425 °C erzeugt. Die eingesetzte Kondensationsturbine hat einen Isentropenwirkungsgrad $\eta_s = 85$ %. Die Parameter des gewählten betrachteten Dampfkraftprozesses sind in Tabelle 9 zusammengefasst.

Parameter des Dampfkraftprozesses				
Feuerungswärmeleistung	22000 kWth			
Wirkungsgrad Dampferzeuger	89,73%			
Frischdampfdruck pFD	24 bar			
Frischdampftemperatur TFD	425 °C			
Frischdampfmassenstrom mD	23,5 t/h			
Isentropenwirkungsgrad ns	85%			

Tabelle 9: gewählte Parameter des betrachteten Dampfkraftprozesses

Betrieb bei niedriger Kühlwassertemperatur (Wasserkühlung)

Die Kondensationswärme des Turbinendampfs wird über einen Kühlkreislauf in ein Oberflächengewässer abgegeben. Um das Speisewasser auf 105 °C vorzuwärmen, wird vor der Turbine ein Frischdampfmassenstrom von 2,2 t/h entnommen. Die Turbine erzeugt – mit den oben beschriebenen Voraussetzungen – eine elektrische Leistung von 5666 kW_{el} und
erreicht dabei einen elektrischen Wirkungsgrad (in diesem Fall gleich dem Brennstoffnutzungsgrad) von 25,75 % (vgl. Tabelle 10). Damit die Turbine in der derartigen Konfiguration betrieben werden kann, ist eine ausreichend niedrige Kühlwassertemperatur nötig, um den Turbinenabdampf bei niedrigem Kondensatordruck vollständig kondensieren lassen zu können. Steigt diese an, reduziert sich die Turbinenleistung und der Kondensationsdruck steigt (siehe Fall reduzierte Turbinenleistung durch steigende Lufttemperatur). In Abbildung 17 sind die Verluste und entstehende elektrische Leistung in einem Flussdiagramm dargestellt.

Betrieb bei niedrigen Kühlwassertemperaturen			
Druck nach Entspannung pκ	0,05 bar		
Temperatur nach Entspannung Τκ	32,9 °C		
elektrische Leistung Pel	5666 kWel		
Brennstoffnutzungsgrad	25,75%		

Tabelle 10: Kenndaten beim Betrieb mit niedrigen Kühlwassertemperaturen

Abbildung 17: Flussdiagramm bei ausschließlicher Verstromung

Betriebsfall bei höheren Kühlwassertemperaturen (Luftkühler)

In diesem Fall wird angenommen, dass der Frischdampf auf ein Kondensationsdruckniveau von 0,1 bara entspannt und damit bei 45,8 °C kondensiert wird. Ein Kondensationsdruck von 0,1 bara kann typischer Weise bei Außenlufttemperaturen bis über 25 °C mit einem Luftkühler erreicht werden. Zur Speisewasservorwärmung auf 105 °C wird in diesem Fall ein Frischdampfmassenstorm von 1,8 t/h entnommen. Die Turbine erzeugt dabei eine elektrische Leistung von 5338 kW_{el}. Da sich an den Frischdampfparametern und dem erzeugten Dampfmassenstrom in diesem Beispiel nichts ändert (Feuerleistung des Kessels bleibt ident), sinkt der Brennstoffnutzungsgrad in diesem Betriebsfall auf 24,26 % (vgl. Tabelle 11). Somit zeigt dieses Beispiel erwartungsgemäß, dass sich mit steigendem Kondensationsdruck der Turbine bei gleichbleibenden Frischdampfparametern, der elektrische Brennstoffnutzungsgrad der Biomasse Verstromung verschlechtert.

Betrieb mit Luftkühlung				
Druck nach Entspannung pk 0,1 bar				
Temperatur nach Entspannung Tk 45,8 °C				
elektrische Leistung Pel 5338 kWel				
Brennstoffnutzungsgrad 24,26%				

Tabelle 11: Kenndaten beim Teillastfall der Turbine

Die beiden bisher untersuchten Betriebsfälle der reinen Wärme- und der reinen Stromerzeugung beschreiben die mögliche Bandbreite an erreichbaren Brennstoffnutzungsgraden durch (konventionelle) Verbrennung von fester Biomasse. Daraus wird unmittelbar klar, dass zum Erreichen hoher Brennstoffnutzungsgrade ein entsprechender Wärmeabsatz nötig ist. Bei der Verstromung erreichen selbst hoch effiziente Anlagen, die den Prozessdampf in der Turbine auf ein sehr niedriges Druck- und Temperaturniveau entspannen, nur Brennstoffnutzungsgrade von weniger als 30 %, wenn keine Wärmeauskopplung erfolgt.

Der große Unterschied liegt in der Qualität der produzierten Energie. Während im Heizbetrieb lediglich Nutz- oder Prozesswärme entsteht, die eine eher minderwertige Energieform (niedriger Exergieanteil) darstellt und einen lokalen dauerhaften Abnehmer benötigt, wird bei der Stromerzeugung die hochwertigste aller Energieform – der elektrische Strom = Exergie – erzeugt.

4.3 Kombinierte Strom- und Wärmeerzeugung

In Biomasse KWK-Anlagen werden mit verschiedenen Konzepten, wie in Kapitel 2 beschrieben, nicht ausschließlich Strom oder Nutzwärme, sondern beide Produkte gekoppelt erzeugt. Dabei stellt sich in erster Linie die Frage, ob die Anlage wärmegeführt oder stromgeführt betrieben werden soll. Der Großteil wird wärmegeführt betrieben, dabei gibt, wie in Abschnitt 2.1 bereits erwähnt, der Wärmeabnehmer die Fahrweise der Anlage vor und der Strom wird als Nebenprodukt erzeugt und in das Netz eingespeist oder für den Eigenbedarf verwendet. Das heißt einen KWK-Anlage wird z.B. auf die Grundlast eines Fernwärmenetzes ausgelegt (vgl. Abschnitt 5.4, Abbildung 35). Bei der stromgeführten Betriebsweise folgt die Anlage der Stromproduktion, wobei die dabei erzeugte Wärme dauerhaft abgenommen werden muss, um die maximale gewünschte Strommenge zu produzieren (Schellong 2016, S. 87–103).

Betrachtet wird zunächst der Fall eines idealen, vollständig wärmegeführten Betriebs einer Biomasse KWK-Anlage, bei dem davon ausgegangen wird, dass die erzeugte Wärmemenge immer zu 100 % abgenommen wird (z.B. industrieller Wärmeverbraucher, Deckung der Grundlast eines großen städtischen Fernwärmenetzes).

4.3.1 Idealer, vollständig wärmegeführter Betrieb

Das ideale System für einen vollständig wärmegeführten Betrieb ist bei mittleren und größeren Anlagen der Dampfkraftprozess mit Einsatz einer Gegendruckturbine (Funktionsprinzip vgl. Kapitel 2.1). Im Unterschied zum reinen Kondensationsbetrieb (vgl. Kapitel 4.2) entspannt die Turbine den Frischdampf auf ein Druck- und Temperaturniveau, bei dem der Abdampf der Turbine noch für Heizzwecke verwendet werden kann. Das folgende Beispiel betrachtet ein System mit Gegendruckturbine mit der z.B. die Grundlast eines Fernwärmenetzes (~14,5 MW_{th}) gedeckt werden soll. In Tabelle 12 sind die Parameter des Dampfkraftprozesses dargestellt. Als Heizkessel dient wieder jener aus dem Abschnitt 4.1 in der Auslegung des Referenzfalls und erzeugt dieselben Frischdampfparameter wie in den zwei bereits betrachteten Fällen. Auch die verwendetet Turbine hat Isentropenwirkungsgrad $\eta_{s} = 85\%$ einen und es wird ein Frischdampfmassenstrom von 0,5 t/h zur Speisewasservorwärmung auf 105 °C vor der Turbine abgezweigt (vgl. Tabelle 12)

Parameter des Dampfkraf	tprozesses	
Feuerungswärmeleistung	22000 kWth	
Wirkungsgrad Dampferzeuger	89,73%	
Grundlast des Fernwärmenetzes	14500 kWth	
Frischdampfdruck pFD	24 bar	
Frischdampftemperatur TFD	425 °C	
Frischdampfmassenstrom mD	23,5 t/h	
Isentropenwirkungsgrad ns	85%	

Tabelle 12: gewählte Parameter des betrachteten Dampfkraftprozesses

Die Entspannung erfolgt auf ein Druckniveau p_{GK} von 1 bara und eine Temperatur T_{GK} von 99,6 °C. Der in diesem Zustand vorliegende Mischdampf wird vollständig kondensiert und etwas unterkühlt, womit in einem Wärmetauscher die rund 14,5 MW_{th} an Heizwärme für das Fernwärmenetz bereitgestellt werden. Die Turbine liefert dabei eine elektrische Leistung von 3973 kW_{el}, womit sich ein Brennstoffnutzungsgrad von 83,63 % ergibt (vgl. Tabelle 13 und Abbildung 18).

Gegendruckbetrieb bei maximaler Wärmeabnahme		
Druck nach Entspannung pgk	1 bar	
Temperatur nach Entspannung Тск 99,6 °С		
elektrische Leistung Pel	3973 kWel	
thermische Leistung Qth	14425 kWth	
Brennstoffnutzungsgrad 83,63%		

Tabelle 13: Kennzahlen bei Gegendruckbetrieb im Vollastfall

Abbildung 18: Flussdiagramm bei Gegendruckbetrieb im Volllastfall

Im Vergleich zum reinen Heizbetrieb wird neben der thermischen Energie für das Heizsystem, die den hohen Brennstoffnutzungsgrad bewirkt, auch noch eine beachtliche Menge an "wertvoller" elektrischer Energie (reine Exergie) erzeugt, wobei der Brennstoffnutzungsgrad nur vergleichsweise wenig absinkt.

Vollständig wärmegeführter Betrieb bei außentemperaturabhängiger Wärmeabnahme

Bei Einsatz einer Gegendruckturbine ist die Stromproduktion vollständig von der Wärmeabnahme abhängig. Verringert sich diese, kann die Turbine noch im Teillastbetrieb unter geringerer Stromproduktion betrieben werden, bevor das System bei sehr kleiner Wärmeabnahme abgeschaltet werden muss, sollte der Abdampf nicht bei einem energetisch gut nutzbarem Temperaturniveau an der Umgebung "weggekühlt" (kondensiert) werden. Die Stromerzeugung folgt damit bei Versorgung eines Fernwärmenetzes mit typischem Lastgang der jahreszeitlich sehr unterschiedlichen Wärmeabnahme. Dieses feste Verhältnis zwischen Strom- und Wärmeproduktion hat einen konstant hohen Brennstoffnutzungsgrad zur Folge.

4.3.2 Wärmeauskopplung bei stromgeführten Anlagen

Wollen – aus welchen Gründen auch immer – die Nachteile des wärmegeführten Betriebs einer Biomasse KWK-Anlage (Abhängigkeit der Strom- von der Wärmeerzeugung) vermieden werden, so ist für einen stromgeführten Betrieb der Dampfkraftprozess mit Entnahme-Kondensationsturbine die adäquate Lösung (Funktionsprinzip vgl. Kapitel 2.1). In dem hier gewählten Beispiel wird abermals die Konfiguration des Dampferzeugers aus Abschnitt 4.1 gewählt. Der Isentropenwirkungsgrad des Hochdruckteils der Turbine η_{sH} beträgt 85 %, während jener des Niederdruckteils $\eta_{sN} = 80$ % ist. In diesem Fall wird der zur Speisewasservorwärmung auf 105 °C nötige Dampfmassenstrom zwischen dem Hochdruckturk- und Niederdruckteil der Turbine entnommen und beträgt im Auslegungsfall 1,7 t/h bzw. im Fall erhöhter Stromproduktion 1,8 t/h. Die Parameter sind in Tabelle 14 zusammengefasst.

Parameter des Dampfkraftprozesses			
Feuerungswärmeleistung 22000 kWth			
Wirkungsgrad Dampferzeuger 89,73%			
Frischdampfdruck pFD 24 bar			
Frischdampftemperatur TFD 425 °C			
Frischdampfmassenstrom mp 23,5 t/h			
Isentropenwirkungsgrad HD-T nsн 85%			
Isentropenwirkungsgrad ND-T nsN	80%		

Tabelle 14: gewählte Parameter des betrachteten Dampfkraftprozesses

Normalbetrieb

Der Hochdruckteil der Turbine entspannt den Frischdampf auf einen Druck pHEK von 3 bara und eine Temperatur T_{HEK} von 195 °C. Im Normalbetrieb wird an dieser Stelle zusätzlich zu den 1,7 t/h zur Speisewasservorwärmung 7,8 t/h des Dampfmassenstroms m_D für Heizzwecke entnommen und dabei isobar von 195 °C auf etwa 95 °C kondensiert. Ein solcher Entnahmedampfmassenstrom liegt in einem typischen Bereich von in der Praxis eingesetzten Dampfturbinen der gegenständlichen Leistungsklasse. Der restliche Teil wird im Niederdruckteil der Turbine auf 0,1 bara und 48,8 °C entspannt. Somit ergibt sich eine elektrische Leistung P_{el} von 4574 kW_{el}, bei einer thermischen Leistung Q_{th} von 5256 kW_{th} die dauerhaft von einem Wärmeverbraucher abgenommen werden kann. Der Brennstoffnutzungsgrad ist im Vergleich zum Dampfkraftprozess mit Gegendruckturbine mit 44,68 % zwar erheblich geringer, aber der Anteil an erzeugter elektrischer Energie ist deutlich höher. Tabelle 15 fasst die Ergebnisse noch einmal zusammen, während in Abbildung 19 die Verteilung der Energieflüsse abgebildet ist.

Entnahme-Kondensationsbetrieb	im Normalbetrieb
Druck nach Entspannung im HD-T рнек	3 bar
Temp. nach Entspannung im HD-T Тнек	195 °C
Druck nach Entspannung im ND-T рыкк	0,1 bar
Temp. nach Entspannung im ND-T Тмек	48,8 °C
Entnahmemenge von md nach HD-T	9,5 t/h
elektrische Leistung Pel	4574 kWel
thermische Leistung Qth	5256 kWth
Brennstoffnutzungsgrad	44,68%

Tabelle 15: Kennzahlen beim Entnahme-Kondensationsbetrieb im Normalbetrieb

Abbildung 19: Flussdiagramm bei Entnahme-Kondensationsbetrieb im Normalbetrieb

Betrieb bei erhöhtem Strombedarf

Bei gesteigertem Strombedarf gibt es die Möglichkeit nur 7,7 t/h (1,8 t/h für die Speisewasservorwärmung und 5,9 t/h für Heizzwecke) des Dampfmassenstroms $\dot{m}_{\rm D}$ zu entnehmen. Weil im Niederdruckteil der Turbine nun ein größerer Dampfmassenstrom vorliegt, erhöht sich die elektrische Leistung auf 4799 kW_{el}, während die thermische Leistung auf 3942 kW_{th} absinkt, da im Umkehrschluss ein geringer Massenstrom für Heizzwecke genützt werden kann. Somit ergibt sich insgesamt ein verringerter Brennstoffnutzungsgrad von 39,73 %.

Entnahme-Kondensationsbetrieb bei erl	nöhtem Strombedarf
Druck nach Entspannung im HD-T рнек	3 bar
Temp. nach Entspannung im HD-T Тнек	195 °C
Druck nach Entspannung im ND-T рык	0,1 bar
Temp. nach Entspannung im ND-T Тмек	48,8 °C
Entnahmemenge von md nach HD-T	7,7 t/h
elektrische Leistung Pel	4799 kWel
thermische Leistung Qth	3942 kWth
Brennstoffnutzungsgrad	39,73%

Tabelle 16: Kennzahlen beim Entnahme-Kondensationsbetrieb bei erhöhtem Strombedarf

Entnahme-Kondensationsturbinen sind üblicherweise so ausgelegt, dass sie innerhalb der Auslegungsgrenzen bei einer bestimmten elektrischen Leistung einen variablen Entnahmedampf-Massenstrom für die Erzeugung von Nutzwärme zur Verfügung stellen können. In diesem Fall steigt bei zunehmendem Nutzwärmebedarf der erforderliche Frischdampfmassenstrom. Alternativ könnte bei konstanter Kesselleistung (Frischdampfmenge) auch die Stromerzeugung erhöht werden, wenn der Nutzwärmebedarf sinkt. Entnahme-Kondensationsturbinen bieten damit hinsichtlich der Stromerzeugung wesentlich mehr Flexibilität als Gegendruckturbinen, dies allerdings um den Preis, dass nie so hohe Brennstoffnutzungsgrade erreicht werden können.

Anlagenkonzept	elektr. Leistung	therm. Leistung	Brennstoffnutzungsgrad
-	kWel	kW th	%
reiner Heizbetrieb	-	19.740	89,73%
KT bei L	5338	-	24,26%
KT bei nK	5666	-	25,75%
KWK m. GK	3973	14.425	83,63%
KWK m. EK im N	4574	5256	44,68%
KWK m. EK bei eS	4799	3942	39,73%

4.4 Vergleich der Brennstoffnutzungsgrade

KT bei L	Kondensationsturbine bei Luftkühlung
KT bei nK	Kondensationsturbine bei niedrigen Kühlwassertemperaturen
KWK m. GK	KWK mittels Gegendruckkondensation
KWK m. EK im N	KWK mittels Entnahme-Kondensation im Normalbetrieb
KWK m. EK bei eS…	KWK mittels Entnahme-Kondensation bei erhöhtem Strombedarf

Tabelle 17: Brennstoffnutzungsgrade unterschiedlicher Betriebsformen

In Tabelle 17 sind noch einmal die erzeugten elektrischen und thermischen Leistungen, sowie der Brennstoffnutzungsgrad der verschiedenen Beispiele dargestellt. Der reine Heizbetrieb bildet mit 89,73 % die Obergrenze (BNG max.) des in diesem Beispiel erreichbaren Brennstoffnutzungsgrades (vgl. Abbildung 20). Verluste entstehen dabei nur bei der Umwandlung des eingesetzten Brennstoffes (durch die Verbrennung) in thermische Energie, die ausschließlich für Heizzwecke verwendet wird. Die untere Grenze des Brennstoffnutzungsgrades (BNG min.) entsteht bei reiner Verstromung der eingesetzten Biomasse in der Kondensationsturbine im Fall der Luftkühlung (vgl. Abbildung 20), die in dem in dieser Arbeit betrachteten Beispiel bei 24,26 % liegt. Dabei wird jedoch, abgesehen vom Kondensationsbetrieb bei niedrigen Kühlwassertemperaturen, die meiste elektrische Energie erzeugt. Zwischen diesen beiden Grenzen liegen die Brennstoffnutzungsgrade der betrachteten Biomasse KWK-Anlagen. Der Brennstoffnutzungsgrad des Konzepts mit Gegendruckturbine beträgt 83,63 %. Es handelt sich in diesem Fall um einen wärmegeführten Betrieb bei dem ein großer Anteil des eingesetzten Brennstoffs in Nutzwärme umgewandelt wird, aber im Vergleich zum reinen Heizbetrieb auch eine elektrische Leistung als "Nebenprodukt" entsteht. Diese kann jedoch nur dann erzeugt werden, wenn auch die Nutzwärme abgenommen wird. Geht die Wärmenachfrage stärker zurück und soll die überschüssige thermische Energie nicht bei einem energetisch nutzbaren Temperaturniveau weggekühlt werden, kann die Gegendruckturbine nicht weiter betrieben werden und somit weder Nutzwärme noch Strom erzeugen. Die stromgeführte Biomasse KWK-Anlage mit Entnahme-Kondensationsturbine erreicht im Normalbetrieb einen Brennstoffnutzungsgrad von 44,68 % und im Fall erhöhten Strombedarfs einen Brennstoffnutzungsgrad von 39,73 %. Diese liegen zwar deutlich unter jenem der KWK-Anlage mit Gegendruckturbine, allerdings ist der Anteil an erzeugter elektrischer Leistung auch höher. Wird im stromgeführten Betrieb, die im Vergleich zum reinen Heizbetrieb und zur Gegendruckturbine relativ geringe Nutzwärme dauerhaft abgenommen, liefert diese Anlage dauerhaft den elektrischen Strom. Zusammenfassend lässt sich sagen, dass zum Erreichen eines hohen Brennstoffnutzungsgrades ein großer Anteil des eingesetzten Brennstoffs in thermische Energie umgewandelt werden muss.

Abbildung 20: Verteilung der Brennstoffnutzungsgrade

4.5 Zwischenbilanz

An dieser Stelle der Arbeit soll eine kleine Zwischenbilanz gezogen werden, um die bislang erlangten Erkenntnisse der Arbeit zusammenzufassen. Dabei ergeben sich die folgenden wesentlichen Punkte:

 Die Analyse der österreichischen Biomasse KWK-Landschaft zeigt, wie wichtig die Biomasse KWK-Anlagen sowohl für die Stromproduktion, als auch für die Lieferung von Nutzwärme durch Erneuerbare Energieanlagen sind. Sie decken rund 3 % der gesamten dem Endverbrauch zur Verfügung gestellten Strommenge und erzeugen gleichzeitig rund 15 % der Fernwärmemenge Österreichs.

- Aus der Fragebogenerhebung geht hervor, dass ein wesentlicher, nach der Stromerzeugung überwiegender Anteil der Bestandsanlagen die Schwelle von 60 % nicht erreicht. Es handelt sich dabei fast ausschließlich um Dampfkraftwerke, die mit Entnahme-Kondensationsturbine betrieben werden. Eine Stilllegung dieser Anlagen hätte erhebliche Auswirkungen auf den gesamten Ökostromsektor zur Folge.
- Mit der Analyse der Betriebskonzepte wird verdeutlicht, dass zum Erreichen hoher Brennstoffnutzungsgrade ein großer Anteil der eingesetzten Energie in Nutzwärme umgewandelt werden muss. Dabei zeigt sich, dass mit dem Konzept der Entnahme-Kondensationsturbine in üblicher Konzeption selbst bei maximaler dauerhafter Wärmeabnahme das Erreichen eines Brennstoffnutzungsgrades von > 60 % nicht möglich ist, wohingegen Anlagen mit Gegendruckturbine aufgrund des starren Verhältnisses zwischen Wärme- und Stromproduktion Brennstoffnutzungsgrade zwischen 80 % und 85 % erreichen sollten. Grund für die aus der Fragebogenerhebung hervorgehenden teilweise niedrigeren Werte dieser Anlagen könnte sein, dass bei Ausbleiben der Wärmabnahme der Turbinenabdampf zur Kondensation bei einem energetisch gut nutzbaren Temperaturniveau "weggekühlt" wird, um trotzdem die maximale Stromproduktion aufrechtzuerhalten.

Unter dem Aspekt, dass mit einer Biomasse KWK-Anlage mit Entnahme-Kondensationsturbine das Erreichen eines Brennstoffnutzungsgrades von über 60 % kaum möglich ist, ein Großteil der Bestandsanlagen aber dieses Konzept verwenden und deren Fortbestand für die Ökostromversorgung von großer Bedeutung ist, soll im nächsten Kapitel eine derartige Bestandsanlage näher untersucht und verschiedene Möglichkeiten zur Adaptierung betrachtet werden, um zu zeigen, welche Brennstoffnutzungsgrade dabei erreichbar sind und welche Konsequenzen aus den verschiedenen Anpassungen folgen.

5 Prozesssimulation und

Optimierungsmöglichkeiten bei einer

ausgewählten Bestandsanlage

Im abschließenden Kapitel wird einleitend mit Hilfe des Simulationsprogrammes IPSEpro eine ausgewählte Biomasse KWK-Bestandsanlage dargestellt und sowohl der Auslegungsals auch der Ist-Zustand simuliert, und die erreichten Brennstoffnutzungsgrade angegeben. Aufbauend auf dem Betriebsfall in dem die Wärmeabnahme durch ein Pelletswerk erfolgt, der ebenfalls simuliert wird, werden Möglichkeiten untersucht wie die Anlage hinsichtlich einer Erhöhung des Brennstoffnutzungsgrades ertüchtigt werden kann.

5.1 Simulationsprogramm IPSEpro

IPSEpro ist ein Simulationsprogramm der Firma SimTech Simulation Technology zur Darstellung und Berechnung thermodynamischer Prozesse. Die Grundlage für das Leistungsvermögen von IPSEpro liefert das hochentwickelte und gleichzeitig intuitive Modellierungssystem. Die in der Software erstellten grafischen Modelle entstehen durch passende Verbindung separater standardisierter Komponenten, welche durch eine Kombination mathematischer Gleichungen beschrieben werden. Der gesamte dargestellte Prozess ergibt so ein Gleichungssystem, das bei der Simulation gelöst wird. Der Schlüssel zum flexiblen Einsatz von IPSEpro liegt einerseits in den unterschiedlichen Modellbibliotheken auf die zugegriffen werden kann und andererseits an den fast unbegrenzten Möglichkeiten die einzelnen Komponenten im Process Simulation Environment (PSE) zu einem Prozess zusammenzusetzen. Zusätzlich können mit dem Model Development Kit (MDK) benutzerdefinierte Modellbibliotheken erstellt werden. In Abbildung 21 ist der Aufbau von IPSEpro dargestellt (SimTech GmbH).

Abbildung 21: Aufbau der IPSEpro Struktur (SimTech GmbH)

5.2 Prozesssimulation einer Biomasse KWK-Anlage

Bei der für dieses Kapitel betrachteten Biomasse KWK-Anlage handelt es sich um eine klassische Bestandsanlage mit Entnahme-Kondensationsturbine (Funktionsprinzip vgl. Kapitel 2.1) und einer elektrischen Engpassleistung von 5 MW_{el}, von der angenommen wird, dass sie derzeit ausschließlich für die Stromerzeugung eingesetzt wird.

Das für die Simulation als Basis verwendete Modell wurde vom Institut für Energietechnik und Thermodynamik (IET) der TU Wien erstellt und wird für die in dieser Arbeit benötigten Zwecke adaptiert. Die Bearbeitung erfolgt im PSE von IPSEpro, wobei die Modellbibliothek APP_Lib_Std.iml zum Einsatz kommt, um den Prozess darzustellen und die gewünschten Simulationen durchzuführen.

Der in Abbildung 22 dargestellte Prozess zeigt die grundsätzliche Konfiguration der betrachteten Biomasse KWK-Anlage. Er besteht aus einem Dampferzeuger mit Überhitzer, der über eine Rohrleitung mit der Entnahme-Kondensationsturbine, die in Hoch- und Niederdruckteil unterteilt dargestellt wird, verbunden ist. Dem Niederdruckteil der Turbine folgt ein Kondensator, der über eine Kondensatpumpe mit dem Speisewasserbehälter zusammengeschlossen ist. Zwischen den beiden Turbinenteilen ist die Rohrleitung zur Entnahme angebracht, die sich in zwei Stränge unterteilt. Der eine Strang führt über den Wärmeabnehmer in den Speisewasserbehälter, während der andere gedrosselt in eben diesen geleitet wird. Der Speisewasserbehälter ist mit einer Speisewasserpumpe wieder mit dem Dampferzeuger verbunden, womit der geschlossene Prozess vorliegt. Die beiden Turbinenteile sind noch über eine Welle mit dem Generator verschalten und um die Temperatur- und Druckverluste der gesamten Rohrleitungen zu berücksichtigen, enthält das Modell zwischen Kessel und Turbine die beiden dargestellten Elemente. Die für die Simulation benötigten technischen Daten der Komponenten sind einer klassischen Biomasse KWK-Bestandsanlage mit Entnahme-Kondensationsturbine nachempfunden und lauten wie folgt:

- Dampferzeuger: Wirkungsgrad: 86 %; Druckverlust: 0,8 bar
- Rohrleitung: Temperaturverlust/Druckverlust: 5 °C/1 bar
- **Turbine:** mechanischer Wirkungsgrad: 98 %; Isentropenwirkungsgrad HD-T: 88 %; Isentropenwirkungsgrad ND-T: 80 %
- Generator: mechanischer Wirkungsgrad: 95,8 %; elektrischer Wirkungsgrad: 99 %
- Kondensator: eingestelltes Temperaturgefälle: 1 °C → vollständige Verdampfung + Unterkühlung um 1 °C

- Kondensatpumpe: mechanischer Wirkungsgrad: 99 %, hydraulischer Wirkungsgrad: 99 %
- Speisewasserbehälter: Druckverlust: 0,1 bar
- Speisewasserpumpe: mechanischer Wirkungsgrad: 99 %, hydraulischer Wirkungsgrad: 70 %
- Wärmeabnehmer: Verlustfreie Wärmeabnahme

Abbildung 22: IPSEpro Modell der betrachteten Biomasse KWK-Anlage

In der weiteren Folge werden mit diesem Simulationsmodell unterschiedliche Betriebsfälle untersucht, beginnend mit dem Auslegungszustand der Anlage mit max. Wärmeauskopplung, gefolgt vom angenommenen Ist-Zustand (reine Stromerzeugung). Anschließend erfolgt die Betrachtung der Biomasse KWK-Anlage bei einem realistischen Wärmeabnahmeprojekt (Installation eines Pelletswerks).

5.2.1 Simulation des Auslegungszustands

Die betrachtete Biomasse KWK-Anlage mit Entnahme-Kondensationsturbine ist auf einen Zustand ausgelegt, in dem 5000 kW_{el} elektrische Leistung erzeugt werden, da der Standort für diese Strommenge den in der Ökostromverordnung geregelten Einspeisetarif erhält. Im besten Fall kann dabei eine konstante Wärmeabnahme von 5500 kW_{th} erfolgen. Im Auslegungszustand wird dazu der maximal zulässige Frischdampfmassenstrom von 27 t/h in

der verwendeten Turbine der Fa. MAN, Typ MARC 2 C10 abgearbeitet. Der erzeugte Frischdampf hat einen Druck von 24 bara und eine Temperatur von 425 °C, die sich auf Grund von Rohrleitungsverlusten vorm Turbineneingang auf 23 bara und 420 °C reduzieren. Die Turbine ist auf einen Entnahmedruck von 3 bara ausgelegt, bei dem laut Dampfverbrauchs-Diagramm maximal 10 t/h Dampfmassenstrom entnommen werden können (vgl. Anhang 6). Der Abdampfdruck im Auslegungszustand der Turbine beträgt 0,1 bara bei einer Temperatur von etwa 46 °C. Nach der Mischung des Kondensats und des Dampfes im Speisewasserbehälter soll sich eine Temperatur von 103 °C einstellen.

Für die Simulation des Auslegungsfalles haben die Komponenten des Prozesses die am Beginn dieses Kapitels beschriebenen technischen Daten. Als Vorgabe werden die Temperatur und der Druck vor der Turbine, der Entnahme- und Abdampfdruck, die Temperatur nach der Wärmeabgabe, die erzeugte elektrische und thermische Leistung, sowie die Temperatur nach dem Speisewasserbehälter festgelegt. In Abbildung 23 ist das Simulationsmodell mit den sich einstellenden Zuständen dargestellt. Im linken unteren Eck ist die Legende abgebildet, die angibt welche Stoffwerte in den Kreuzen jeweils dargestellt werden. Sie zeigt von links oben im Uhrzeigersinn beginnend den Massenstrom in t/h, die Enthalpie in kJ/kg, die Temperatur in °C und den Druck in bara. Ausnahme sind die beiden Einträge auf der Welle der Turbine die die elektrische Leistung in kW_{el} angeben. Bei der Simulation mit den beschriebenen Voraussetzungen die dem Auslegungsfall entsprechen sollen, stellt sich ein Massenstrom von 26,92 t/h ein. Nach Entspannung auf 3 bara wird davon annähernd die maximale Menge von 10 t/h entnommen, wobei 1,7 t/h zur Speisewasservorwärmung und -entgasung und der restliche Massenstrom für die benötigte Bereitstellung der 5500 kWth an thermischer Leistung verwendet werden. Der restliche im Niederdruckteil der Turbine abgearbeitete Dampfmassenstrom, der auf 0,1 bara entspannt wird, liegt mit einer Dampfziffer von x = 0.937 vor. Nach vollständiger Kondensation im Kühler und Druckerhöhung in der Kondensatpumpe vermischt sich der Abdampfmassenstrom im Speisewasserbehälter wieder mit den anderen beiden Massenströmen und liegt danach mit den gewählten 103 °C bei einem Druck von 1,128 bara vor. Die Speisewasserpumpe hebt den Wassermassenstrom auf ein Druckniveau von 24,8 bara bei einer Temperatur von 103,42 °C. Um den Prozess so ablaufen lassen zu können, wird dem Dampferzeuger eine Brennstoffwärmeleistung von 24886,87 kW KWK-Anlage zugeführt. So erreicht die Biomasse im Auslegungsfall einen Brennstoffnutzungsgrad von 42,19 % und bleibt damit, wie nahezu alle Anlagen mit Entnahme-Kondensationsturbine, unter der im Ökostromgesetz geforderten Schwelle von 60 % (vgl. Abschnitt 3.2.1).

Abbildung 23: Simulation des Auslegungsfalls der Biomasse KWK-Anlage

5.2.2 Simulation des Ist-Zustands

Der Ist-Zustand (= der in Wirklichkeit gefahrene Betrieb) der betrachteten Anlage unterscheidet sich vom Auslegungszustand (vgl. Abschnitt 5.2.1) deutlich, weil es zu keiner Wärmeabnahme kommt. Um einen reinen Kondensationsbetrieb (nur Stromerzeugung ohne Wärmeabnahme) mit einer Stromproduktion von 5000 kW_{el} zu ermöglichen, hat eine Anpassung der MAN, Typ MARC 2 C10 Turbine stattgefunden (vgl. Abbildung 24). Um die 5000 kW_{el} Leistung zu erreichen, muss bei einer Entnahmemenge von 2 t/h eine Entspannung auf einen Entnahmedruck von 3,73 bara, sowie einen Abdampfdruck von 0,123 bara erfolgen.

Durch die angebotene Modifikation kann eine Leistung von 5000 kW bei folgenden Massenströmen und Drücken erreicht werden:

	Klemmenleistung [kW]	Frischdampfmassenst. (t/h)	Wärmeauskopplung [t/h]	Entnahmedruck (bara)	Abdampfdruck (bara)
Fall 1	5000	23,2	0	4,01	0,129
Fall 2	5000	23,9	2	3,73	0,123
Fall 3	5000	24,6	4	3,4	0,115
Fall 4	5000	25,3	6	3,17	0,107

Abbildung 24: Auszug aus der Modifikationsbeschreibung von MAN (MAN 2006)

Für die Simulation des Ist-Zustands werden dieselben Parameter wie im Auslegungszustand (vgl. Abschnitt 5.2.1) eingestellt, mit dem Unterschied dass wegen der nicht stattfindenden Wärmeauskopplung, $Q_{th} = 0$ angenommen wird. Auf Grund der oben beschriebenen Turbinenanpassung unterscheidet sich außerdem der Entnahmedruck mit 3,73 bara und der Abdampfdruck mit 0,123 bara im Vergleich zu den im Auslegungszustand vorgegebenen Werten. Dabei ergeben sich die in Abbildung 25 dargestellten Ergebnisse nach der Simulation des Prozesses. Bei gleichem Frischdampfdruck und gleicher Frischdampftemperatur stellt sich im Ist-Zustand ein Massenstrom von 23,72 t/h ein. Somit muss der Dampferzeuger nicht mehr die volle Dampfleistung liefern, woraus ein verringerter Brennstoffeinsatz Q_{in} = 21928 kW resultiert. Wie in den Adaptionsunterlagen der Turbine gefordert, kommt es in dieser Konstellation zu einer Entnahme von 2 t/h Entnahmedampf aus der Zwischenstufe der Turbine, der seine Verwendung ausschließlich zur Speisewasservorwärmung und -entgasung findet, da im Ist-Zustand keine Wärmeabnahme erfolgt. Der restliche Dampf wird im Niederdruckteil der Turbine auf das oben erwähnte Abdampfdruckniveau entspannt, bei dem sich eine Temperatur von 49,9 °C, sowie eine Dampfziffer x = 0,934 ergeben. Die Turbine liefert so die gewünschten 5 MW_{el} elektrische während der Brennstoffnutzungsgrad, aufgrund des Ausbleibens Leistung, der Wärmeabnahme um fast die Hälfte, auf 22,8 % absinkt.

Abbildung 25: Simulation des Ist-Zustands der Biomasse KWK-Anlage

5.3 Dauerhafte Wärmeabnahme durch ein Pelletswerk

Um den Auslegungszustand der dezentral gelegenen Biomasse KWK-Anlage am ehesten erreichen zu können, ist die Installation eines Produktionsbetriebes mit dauerhafter Wärmeabnahme nötig, bei der die Anlage auch unter ungünstigen Voraussetzungen (Sommerbetrieb) noch die erforderliche Nutzwärmemenge liefern kann.

Daher soll in diesem Abschnitt gezeigt werden wie sich durch Zubau eines Pelletswerks an die betrachtete Bestandsanlage der Brennstoffnutzungsgrad im Vergleich zum Ist-Zustand (in erster Linie durch Erhöhung des Wärmeverbrauchs) verändert und wie sich unterschiedliche Anpassungen auf den Brennstoffnutzungsgrad auswirken. Ein Pelletswerk wurde gewählt, weil diese Variante für ein Biomassekraftwerk ohne Anbindung an ein Fernwärmenetz einer größeren Stadt oder Gemeinde zur Steigerung der Wärmeabnahme, eine naheliegende Alternative darstellt.

Die Daten und Ausführungen des in dieser Arbeit betrachteten Pelletswerks sind an den technischen Bericht: *"Errichtung einer Pelletieranlage"* (Wimmer 2017) angelehnt.

Schematische Darstellung des Pelletswerks

In Abbildung 26 ist der schematische Ablauf der Pelletsproduktion dargestellt. Zuerst wird das Rohmaterial (Sägespäne und Hackgut) an einer Rohstoffannahme von den Lieferanten an das Pelletswerk übergeben und auf einer geeigneten Lagerstätte zwischengespeichert. Von dort aus gelangt das Material in eine Vorrichtung in der Metall- und Grobteile abgeschieden werden und eine Fraktionierung in Hackgut und Sägespäne stattfindet. Das Hackgut wird folgend in einer Nasszerspanung gemahlen und weiter bearbeitet, ehe es zusammen mit den "gereinigten" Sägespänen einen Trocknungsprozess auf einem Bandtrockner durchläuft. In diesem Prozessschritt ist eine Wärmezufuhr notwendig, die mit Hilfe der Biomasse KWK-Anlage gedeckt wird und somit für die konstante Wärmeabnahme verantwortlich ist. Das getrocknete Rohmaterial wandert dann in eine Trockenspanlagerung, wo es zwischengespeichert wird. Danach erfolgt der Produktionsprozess in dem die Pellets erzeugt und anschließend gelagert werden. Die detaillierten Verfahrensschritte der Pelletsproduktion sollen hier nicht näher erläutert werden. Die fertigen Pellets werden konfektioniert. Sie verlassen das Pelletswerk dabei entweder einzeln auf Transport-LKWs abgefüllt oder in Säcken die auf Paletten gestapelt werden.

Abbildung 26: Schematischer Ablauf der Pelletsproduktion

Produktionsumfang und Wärmebedarf

Im Pelletswerk sollen im kontinuierlichen Betrieb 4 Tonnen Pellets pro Stunde produziert werden. Daraus ergibt sich bei angenommenen 7.500 Betriebsstunden pro Jahr eine jährlich erzeugte Pelletsmenge von 30.000 t.

Der Wärmebedarf des Pelletswerks resultiert aus dem Trocknungsprozess, der mit Hilfe eines Bandtrockners erfolgt. Dabei handelt es sich um ein luftdurchlässiges Förderband aus antistatischem Kunststoff-Metall-Gewebe, auf das die Holzspäne mittels Verteilerschnecke gleichmäßig aufgetragen werden. Während des Transportes mittels des Bandes, wird das Material in 3 Zonen mit erwärmter Außenluft durchblasen, die anschließend über einen Kamin an die Umgebung abgeführt wird. Die Erwärmung der angesaugten Luft auf eine Temperatur von etwa 90 °C erfolgt über einen Wärmetauscher, der mit Entnahmedampf aus der Biomasse KWK-Anlage versorgt wird. Da die Außenluft jahreszeitlich und witterungsbedingt unterschiedliche Temperaturen hat, ergibt sich ein variabler Wärmebedarf des Bandtrockners und somit des Pelletswerks, der in Tabelle 18 für 5 verschiedene Außentemperaturen abgebildet ist. Die angegebenen Werte setzten voraus, dass die Temperatur des Rohmaterials jener der Außenluft entspricht, der Wassergehalt des Rohmaterials 50 % bzw. des Trocknungsgutes 5 % beträgt und die Trocknungsluft eine relative Luftfeuchte von 80 % (im Austrittszustand) besitzt. Daraus ergibt sich im ungünstigsten Zustand (Fall 1) ein gesamter Wärmebedarf von 4,84 MW_{th}, der bei einer Frischlufttemperatur von -10 °C auftritt. Die Abluft verlässt dabei das System mit einer Temperatur von 30 °C. Im günstigsten Fall (niedrigster Energiebedarf, Fall 5) beträgt die Außentemperatur 25 °C, womit sich eine Ablufttemperatur von 36 °C einstellt. Der Wärmebedarf des Pelletswerks beträgt in diesem Zustand 3,4 MW_{th} und liegt somit deutlich unter dem Maximalbedarf. Die Fälle 2-4 ergeben sich bei Temperaturen zwischen diesen beiden Extremwerten.

Parameter		Fall 1	Fall 2	Fall 3	Fall 4	Fall 5
Temperatur Frischluft	°C	-10	0	15	20	25
Temperatur Abluft	°C	30	30	32	34	36
Energiebedarf Trocknung	MW	4,34	4,04	3,54	3,38	3,25
Energiebedarf Aufwärmung	MW	0,5	0,22	0,17	0,16	0,15
Energiebedarf gesamt	MW	4,84	4,26	3,71	3,54	3,4

Tabelle 18: Wärmebedarf des Bandtrockners bei verschiedenen Außentemperaturen modifiziert nach Wimmer 2017, S. 31

Simulation eines ausgewählten Betriebsfalls

Im Folgenden wird der Betriebsfall 3 detaillierter betrachtet. Die Außentemperatur beträgt dabei 15 °C und die Abluft wird mit 32 °C an die Umgebung abgeführt. Das Pelletswerk (Bandtrockner) hat dabei einen Wärmebedarf von 3,71 MW_{th}, der mit Entnahmedampf aus der Entnahme-Kondensationsturbine gedeckt wird. Die Biomasse KWK-Anlage soll außerdem weiter die maximale elektrischer Leistung von 5 MW_{el} liefern.

Dieser Betriebsfall wird wie die beiden in Abschnitt 5.2 betrachteten Anlagenzustände mit Hilfe von IPSEpro simuliert. Diese Betriebsweise erlaubt eine Entnahme bei einem Druck von 3 bara und einer Temperatur von etwa 190 °C, die benötigt wird, um die Frischluft auf die gewünschten 90 °C zu erwärmen, sowie eine Entspannung auf einen Abdampfdruck von 0,1 bara und einer Temperatur von rund 46 °C. Die Grundkonfiguration der Komponenten entspricht jener des Auslegungszustands. Überhaupt verändert sich bei der Eingabe der Parameter des Prozesses im Vergleich zum Auslegungszustand nur die abgegebene thermische Leistung, die in diesem Fall 3,71 MW_{th} beträgt. Daraus ergeben sich bei der Simulation die in Abbildung 27 ersichtlichen Werte. Der Frischdampfmassenstrom beträgt 25,67 t/h, wofür dem System eine Feuerungswärmeleistung Qin = 23729,65 kW zugeführt werden muss. In diesem Betriebsfall erfolgt zwischen HD- und ND-Turbine eine Entnahme von 7,4 t/h des mit 3 bara und rund 190 °C vorliegenden Dampfes. Davon werden rund 5,56 t/h zur Wärmeversorgung des Pelletswerks (Bandtrockner) verwendet, während der Rest wiederum der Speisewasservorwärmung und -entgasung dient. Nach der Entspannung des nicht entnommenen restlichen Dampfmassenstroms von rund 18,3 t/h im Niederdruckteil der Turbine auf den Abdampfdruck von 0,1 bara stellt sich wie im Auslegungszustand eine

Dampfziffer von x = 0.927 ein. Das Dampf-Verbrauchsdiagramm der Turbine (vgl. Anhang 6) zeigt, dass die Turbine bei den bei der Simulation errechneten Ergebnissen die gewünschte elektrische Leistung von 5 MW_{el} liefern kann. Der Brennstoffnutzungsgrad beträgt bei dieser Betriebsform der betrachteten Biomasse KWK-Anlage 36,71 %. Er ist damit zwar höher als im Ist-Zustand liegt aber immer noch deutlich unter dem mit dieser Anlage im Auslegungszustand erreichbaren Wert von 42,19 %. Dieser Wert wird annähernd beim Betrieb eines Pelletswerks bei einer Außentemperatur von -10 °C (Fall 1) erreicht, da der Wärmebedarf fast den 5,5 MW_{th} des Auslegungszustandes entspricht. Eine konstant hohe 5,5 MW_{th} aufgrund Wärmeabnahme von ist der außentemperaturabhängigen Wärmeabnahme des Pelletswerks nicht möglich. Der Zubau eines Pelletswerks an eine dezentral gelegene Anlage, die sonst kaum Wärmeabnehmer vorfindet ist sinnvoll, da mit der konstanten Wärmeabnahme der Brennstoffnutzungsgrad erhöht wird. Im weiteren Verlauf soll nun betrachtet werden, wie die Biomasse KWK-Anlage mit Pelletswerk weiter angepasst werden kann.

Abbildung 27: Simulation der Biomasse KWK-Anlage im Fall Wärmeabnahme Pelletswerk

5.3.1 Weitere Möglichkeiten zur Anpassung der Anlage

Da der mit der Biomasse KWK-Anlage und zugebautem Pelletswerk erreichte Brennstoffnutzungsgrad noch immer nicht den Anforderungen des Ökostromgesetzes entspricht, werden in diesem Abschnitt weitere Möglichkeiten untersucht wie der Brennstoffnutzungsgrad bei der vorliegenden Form der Wärmeabnahme durch das Pelletswerk weiter erhöht werden kann. Im ersten Schritt erfolgt eine erneute Simulation der Anlage im Zustand: "Wärmeabnahme Pelletswerk bei reduzierter Stromproduktion", um zu zeigen, wie sich die Veränderung auf den Brennstoffnutzungsgrad auswirkt. Des Weiteren soll gezeigt werden, welches Potential für eine Erhöhung des Brennstoffnutzungsgrades das Nutzbarmachen von Rauchgaskondensationswärme und Niedertemperaturwärme hat.

5.3.1.1 Rücknahme der Stromproduktion

Bei Zurücknahme der Stromproduktion bei gleichzeitig dauerhafter Wärmeabnahme durch das Pelletswerk kann der Brennstoffnutzungsgrad erhöht werden. Die Bestandsanlage ist auf eine Stromproduktion von 5000 kW_{el} ausgelegt, kann aber bis zu einem gewissen Grad auch bei einer niedrigeren erzeugten Strommenge weiter im Teillastbetrieb gefahren werden. Eine Reduktion auf 2100 kW_{el} bei einer gleichzeitigen Wärmeabnahme von 3710 kW_{th} durch das Pelletswerk ist im Dauerbetrieb mit der MAN, Typ MARC 2 C10 Turbine möglich vgl. (Wimmer 2017). Zur Simulation dieses Betriebszustandes wird wie in den Fällen zuvor das Grundmodell der Betriebsanlage verändert. Aufgrund des Teillastbetriebs verändern sich allerdings einige Parameter und Vorgaben. Das Simulationsmodell und die sich einstellenden Werte sind in Abbildung 28 dargestellt. Wie erkennbar stellt sich ein Frischdampfmassenstrom von 13.62 t/h Die ein. Entnahmedampfmenge beträgt dabei 6 t/h, wobei 5,3 t/h für die Wärmeversorgung des Pelletswerks verwendet werden. Bei einem Frischdampfmassenstrom von 13,62 t/h ergibt sich die Entnahmetemperatur von 240 °C aus dem Entnahmetemperatur-Diagramm der Turbine (vgl. Anhang 8). Hier ist zu beachten, dass auf der horizontalen Achse mit der Entnahmedampfmenge die Frischdampfmenge gemeint ist. Der Hochdruckteil der Turbine befindet sich dabei stark in der Teillast und hat einen Isentropenwirkungsgrad von nur noch 67 % (aus dem Entnahmediagramm rückgerechnet). Für diesen Betriebsfall liegt die Abdampftemperatur nach Entspannung im Niederdruckteil laut Abdampftemperatur-Diagramm (vgl. Anhang 7) noch immer im Bereich von 45 °C, womit der Isentropenwirkungsgrad auch hier mit 80 % gewählt wird. Es stellt sich damit eine Dampfziffer x = 0.96 ein. Der Bestandsanlage muss in diesem Betriebsfall eine Feuerungswärmeleistung von Q_{in} =12593,43 kW_{th} zugeführt werden und es ergibt sich bei einer produzierten thermischen Leistung $Q_{th} = 3710 \text{ kW}_{th}$ und elektrischen Leistung Brennstoffnutzungsgrad von 46,14 %. $P_{el} = 2100 \text{ kW}_{el}$ ein Die Reduktion der Stromerzeugung und die damit verbundene Verschiebung in Richtung erhöhtem Wärme-Strommengenverhältnis bewirkt eine deutliche Steigerung des Brennstoffnutzungsgrades knapp über den Brennstoffnutzungsgrad des Auslegungszustandes. Die Schwelle von 60 % wird auf diese Art und Weise nach wie vor nicht erreicht und die Erhöhung des Brennstoffnutzungsgrades hat eine starke Reduktion der elektrischen Leistung zur Folge.

Abbildung 28: Simulation der Biomasse KWK-Anlage bei Wärmeabnahme Pelletswerk und reduzierter Turbinenleistung

Würde bei gleichbleibender Wärmeauskopplung die Stromproduktion weiter verringert werden, ist das Erreichen noch höherer Brennstoffnutzungsgrade möglich. Die hier verwendete Turbine (MAN, Typ MARC 2 C10) hat ihre Betriebsgrenze bei einer Leistung von etwa 1 °MW_{el}. In diesem Bereich wäre ein Betrieb bei einem Brennstoffnutzungsgrad von etwa 50 % erreichbar. Ein zuverlässiger Dauerbetrieb ist in diesen Leistungsgrößen nicht mehr möglich. Grund dafür ist der zu geringe Frischdampfmassenstrom, der bei Werten unter 10 t/h zu einer starken Zunahme der Entnahme- und Abdampftemperatur führt (vgl. Anhang 7 und Anhang 8) und den Turbinenwirkungsgrad extrem verschlechtert.

Um zum Beispiel also nur der Eigenstrombedarf (ca. 800 kW_{el}) des Standorts zu decken und das Pelletswerk mit ausreichend Wärme zu versorgen, muss die vorhandene Turbine umgebaut oder ersetzt werden. Da es sich in diesem Fall um einen wärmegeführten Betrieb handelt, erscheint die Variante einer Gegendruckturbine sinnvoll. Ein Umbau oder Tausch der vorhandenen Turbine, ohne die ganze Biomasse KWK-Anlage tauschen zu müssen, wäre möglich. Welche Auswirkungen diese Variante auf den Brennstoffnutzungsgrad hat, wird in der folgenden Simulation mit einer auf Gegendruckbetrieb umgebauten Anlage aufgezeigt.

5.3.1.2 Umbau der Entnahme-Kondensationsturbine

Um die Stromproduktion noch weiter zu minimieren, um z.B. nur mehr den Standort mit Strom zu versorgen, ist ein Umbau bzw. Wechsel der Turbine notwendig. Ob und mit welchem Arbeits- bzw. Geldaufwand die vorhandene Entnahme-Kondensationsturbine tatsächlich auf die Gegendruckturbine mit der gewünschten Funktion umgebaut werden kann, ist nicht bekannt. Ein Wechsel der Turbine wäre ebenfalls nur mit einigen baulichen Veränderungen möglich und vor allem mit hohem Kapitaleinsatz verbunden, was die wirtschaftliche Sinnhaftigkeit dieser Variante in Frage stellt. Nichtsdestotrotz soll anhand der Simulation in Abbildung 29 beispielhaft gezeigt werden wie sich der Brennstoffnutzungsgrad bei einem möglichen Umbau bzw. Wechsel auf eine Gegendruckturbine verändert.

Bei einer thermischen Leistung von 3710 MW_{th} und elektrischen Leistung von etwa 800 kW_{el}, ergeben sich bei der Anlage mit Gegendruckturbine im Vergleich zum Auslegungssystem veränderte Konfigurationen. Der Dampferzeugerwirkungsgrad beträgt 86 %, die Temperatur nach der Wärmeabnahme reduziert sich auf 95 °C und die Temperatur nach dem Speisewasserbehälter soll 110 °C betragen. Die Gegendruckturbine entspannt auf ein Druckniveau von 1 bara und eine Temperatur von 140 °C, um die für das Pelletswerk nötige Nutzwärme breitstellen zu können. Die Simulation liefert für diese Auslegung einen Frischdampfmassenstrom von 5,8 t/h, der zum Großteil in der Turbine bei einem Isentropenwirkungsgrad von 76 % entspannt wird. Lediglich 0,13 t/h werden zur Speisewasservorwärmung abgezweigt. Die Brennstoffwärmeleistung Q_{in} beträgt 5296,4 kW, womit sich für die veränderte Biomasse KWK-Anlage mit Gegendruckturbine für die oben beschriebenen Strom- und Wärmeabnahme ein Brennstoffnutzungsgrad von 84,7 % einstellt. Dieser hohe Wert ist wenig überraschend, da wie in Kapitel 4 beschrieben, Anlagen mit Gegendruckturbine im wärmegeführten Betrieb Brennstoffnutzungsgrade in dieser Größenordnung erreichen.

Diese Variante der Veränderung wäre zu wählen, wenn am vorhandenen Standort jedenfalls der Brennstoffnutzungsgrad von über 60 % erreicht werden soll. Die Konsequenzen daraus sind, dass der Umbau bzw. Wechsel der Turbine vermutlich sehr kostenintensiv wäre und außerdem die produzierte Strommenge nur mehr für den Eigenstrombedarf zur Verfügung stehen würde, womit die Bestandsanlage nicht weiter zur Ökostromversorgung beitragen könnte. Die Sinnhaftigkeit einer solchen Veränderung ist in fraglich, deshalb werden in den folgenden Punkten Möglichkeiten untersucht, wie bei der Bestandsanlage durch Nutzbarmachen von Rauchgaskondensations- und Niedertemperaturwärme die Effizienz und somit der Brennstoffnutzungsgrad gesteigert werden kann, wenngleich auch mit diesen Veränderungen das Erreichen von 60 % Brennstoffnutzungsgrad eher unwahrscheinlich ist.

Abbildung 29: Simulation der Biomasse KWK-Anlage mit umgebauter Turbine bei Wärmeabnahme Pelletswerk

5.3.1.3 Nutzbarmachen der Rauchgaskondensationswärme

Eine Möglichkeit zur Steigerung der Effizienz der Biomasse-Bestandsanlage und somit zur Erhöhung des Brennstoffnutzungsgrades liegt in der Rauchgaskondensation. Als Basis für die hier durchgeführten Betrachtungen wird die Biomasse Bestandsanlage wieder in der Konfiguration maximale Stromerzeugung (5 MW_{el}) und Wärmeauskopplung mit Pelletswerk (3,71 MW_{th}) herangezogen. Der Brennstoffnutzungsgrad beträgt bei dieser Kombination 36,71 %.

Zur Berechnung der aus der Rauchgaskondensation frei werdenden Wärme wird ein mit Mathcad erstelltes Tool verwendet, das am Institut für Energietechnik und Thermodynamik auf der TU Wien erstellt worden ist. Für die in dieser Arbeit benötigten Zwecke hat eine Adaption der ursprünglich für die Erdgasverbrennung ausgelegten Berechnung stattgefunden, um selbige für die hier benötigte Verbrennung von fester Biomasse nützen zu können.

Um die Rauchgaskondensationswärme bestimmen zu können, erfolgt zu Beginn eine Verbrennungsrechnung für den eingesetzten Brennstoff, der in diesem Fall Waldrestholz (Fichte) mit einem Wassergehalt von 40 % ist. Die Außentemperatur entspricht der

Brennstofftemperatur und beträgt in diesem Fall 15 °C. Die für die Berechnung im Mathcad Tool benötigten adaptierten Brennstoffdaten und Formeln stammen aus den Werken Brennstoffe und Verbrennungsrechnung (Brandt 1999a), Taschenbuch für Heizung + Klimatechnik (Sprenger et al. 2016), Energie aus Biomasse (Kaltschmitt et al. 2016).

Mit Hilfe der Verbrennungsrechnung wird die pro kg Brennstoff erforderliche Luftmasse, sowie die sich ergebende Rauchgasmasse ermittelt. Dazu werden zuerst die Brennstoffzusammensetzung, sowie der Sauerstoffbedarf und die Verbrennungsprodukte je kg Brennstoffkomponente benötigt. Der betrachtete Brennstoff Waldrestholz (Fichte) setzt sich aus der in Abbildung 30 gezeigten Elementarverteilung von C, H, O, N, S zusammen. Den auf 100 % fehlenden Anteil (rund 2,3 %) machen Elemente aus, die für die hier durchgeführte Berechnung nicht von Bedeutung sind.

Brennstoffzusammensetzung

$\gamma_{C.BS} := 0.493$	Kohlenstoffanteil
$\gamma_{\rm H.BS} := 0.061$	Wasserstoffanteil
$\gamma_{O.BS} := 0.418$	Sauerstoffanteil
$\gamma_{N,BS} := 0.0038$	Stickstoffanteil
$\gamma_{S,BS} := 0.0003$	Schwefelanteil

Abbildung 30: Elementare Zusammensetzung des Waldrestholzes (Fichte)

Bei der Verbrennung ergibt sich ein auf je kg Brennstoffkomponente (C, H, N, S) bezogener Sauerstoffbedarf, der in Abbildung 31 dargestellt ist. Aus diesem kann mit Gleichung 5 die erforderliche Sauerstoffmenge je kg Brennstoff ermittelt werden. Die Menge des vorhandenen Sauerstoffes je kg Brennstoff $\mu_{O2}^*\gamma_{O.BS}$ beträgt dabei 0,418 kg/kg. Somit ergibt sich insgesamt ein Sauerstoffbedarf je kg Brennstoff $\mu_{O2.BS} = 1,392$ kg/kg.

$$\mu_{O_2.BS} = \sum_{i} (\mu_{O_2.i} * \gamma_{i.BS}) - \mu_{O_2} * \gamma_{O.BS}$$
 5

 $\mu_{O_2.BS}$... Sauerstoffbedarf je kg Brennstoff

 $\mu_{O_2.i}$... Sauerstoffbedarf je kg Brennstoffkomponente

 $\gamma_{i.BS}$... Anteil der Brennstoffkomponente

i ... Brennstoffkomponente (C, H, N, S)

 μ_{O_2} ... Sauerstoff je kg Brennstoffkomponente

Sauerstoffbedarf	Verbrennungsproduk	te
$\mu_{O2.C} := 2.67223 \cdot \frac{\text{kg}}{\text{kg}}$	$\mu_{\text{CO2.C}} \coloneqq 3.697 \cdot \frac{\text{kg}}{\text{kg}}$	CO2
$\mu_{O2.H} := 8 \cdot \frac{\text{kg}}{\text{kg}}$	$\mu_{\text{H2O.H}} \coloneqq 9.\frac{\text{kg}}{\text{kg}}$	Wasser
$\mu_{O2.N} := 1.1432 \cdot \frac{\text{kg}}{\text{kg}}$	$\mu_{H2O.w} \coloneqq 1 \frac{kg}{kg}$	Wasser aus Brennstofffeuchte w
$\mu_{O2.S} := 1 \cdot \frac{\text{kg}}{\text{kg}}$	$\mu_{NO,N}\coloneqq 2.144{\cdot}\frac{kg}{kg}$	Stickstoffmonoxid
	$\mu_{\text{SO2.S}} \coloneqq 2.92722 \cdot \frac{\text{kg}}{\text{kg}}$	Schwefeldioxid

Sauerstoffbedarf und Verbrennungsprodukte je kg Brennstoffkomponente

Aus dem Sauerstoffbedarf kann mit Gleichung 6 der Luftbedarf je kg Brennstoff ermittelt werden. Bei einer Zusammensetzung der Luft von 76,8 Gew-% N₂ und 23,2 Gew-% O₂ mit einer Luftfeuchtigkeit von 60 % und einem Luftüberschuss bei der Verbrennung n_{BS} = 1,4 ergibt sich dieser – aus der Berechnung mit Mathcad – zu μ_{LBS} = 8,46 kg/kg.

$$\mu_{L.BS} = \frac{\mu_{O_2.BS}}{0.232} * n_{BS} * (1 + x_{H2OL.BS})$$
6

 $\begin{array}{ll} \mu_{L.BS} & ... \mbox{ Luftbedarf je kg Brennstoff} \\ \mu_{O_2.BS} & ... \mbox{ Sauerstoffbedarf je kg Brennstoff} \\ n_{BS} & ... \mbox{ Luftüberschuss} \end{array}$

x_{H2OL.BS}⁹ ... Wassergehalt der Luft

Abbildung 31 kann ebenfalls der Anteil an Verbrennungsprodukten im Rauchgas (CO₂, H₂O, NO, SO₂) je kg Brennstoffkomponente entnommen werden. Mit dem Sauerstoffbedarf $\mu_{O2.BS}$ und dem Stickstoffgehalt $\mu_{N2.BS}$ ¹⁰ ergibt sich nach Gleichung 7 die gesamte Rauchgasmenge je kg Brennstoff $\mu_{RG.BS}$ = 9,85 kg/kg.

$$\mu_{\text{RG.BS}} = \sum_{m,i} (\mu_{m.i} * \gamma_{i.BS}) + \mu_{O_2.BS} * (n_{BS} - 1) + \mu_{N_2.BS}$$
7

⁹ Berechnung mit Mathcad-Tool

¹⁰ Ergibt sich aus Luftzusammensetzung und trockenem Luftbedarf

$\mu_{RG.BS}$	Rauchgasmenge je kg Brennstoff
m	Verbrennungsprodukt (CO2, H20, NO, SO2)
i	Brennstoffkomponente (C, H, N, S)
$\mu_{m.i}$	Menge Verbrennungsprodukt im Rauchgas je kg Brennstoffkomponente
γ _{i.BS}	Anteil der Brennstoffkomponente
$\mu_{O_2.BS}$	Sauerstoffbedarf je kg Brennstoff
$\mu_{N_2.BS}$	Stickstoffgehalt im Rauchgas je kg Brennstoff
n _{BS}	Luftüberschuss

Mit der berechneten Rauchgasmenge und den bekannten Massen der Verbrennungsprodukte im Abgas kann die Rauchgaszusammensetzung berechnet werden. Dabei ergibt sich die in Abbildung 32 dargestellte Verteilung der Komponenten, womit die Verbrennungsrechnung abgeschlossen ist.

$$x_{RG,BS} = \begin{pmatrix} 0.185138 \\ 0.102059 \\ 8.920231 \times 10^{-5} \\ 0.056561 \\ 0.655325 \\ 8.27576 \times 10^{-4} \end{pmatrix} CO2 H2O \\ SO2 kgRG \\ O2 kgRG \\ N2 \\ NO$$

Abbildung 32: Rauchgaszusammensetzung nach der Verbrennung

Nun erfolgt mit Hilfe des Mathcad-Tools die Ermittlung der nutzbaren Wärmemenge aus der Rauchgaskondensation. Dafür muss das heiße Rauchgas (~ 150°C) abgekühlt werden, damit das vorhandene H₂O kondensiert und dabei die Kondensationswärme abgibt. Für die vorhandene Konstellation ergibt sich das in Abbildung 33 dargestellte Verhalten des Wassers im Rauchgas. Die blau gepunktete Linie stellt den Wassergehalt des Rauchgases dar, sie liegt entsprechend der Verbrennungsrechnung bei 0,102 kg/kg. Die blau strichlierte Linie gibt den Sättigungsgehalt des Rauchgases an (so viel Wasser könnte das Rauchgas – abhängig von der Temperatur – gasförmig lösen). Der Schnittpunkt dieser beiden Linien markiert den Rauchgastaupunkt, der in diesem Fall bei rund 55 °C liegt. Bei der grünen Linie handelt es sich um das flüssig vorliegende Wasser, während die rote Linie das dampfförmige Wasser zeigt. Bei einer Abkühlung des Rauchgases von 150 °C ausgehend, liegt das Wasser also so lange nur dampfförmig vor, bis es auf die Temperatur des Taupunkts abgekühlt wird. Danach beginnt das Wasser zu kondensieren, womit der Dampfgehalt sinkt und der Wassergehalt (flüssig) steigt. Eine Reduktion des Wassergehalts

im Brennstoff und somit im Rauchgas hätte z.B. eine Senkung des Rauchgastaupunktes zur Folge.

Abbildung 33: Verhalten des im Rauchgas vorhandenen Wassers bei der Abkühlung

Vx _{sH2O}	Sättigungsgehalt des Rauchgases
--------------------	---------------------------------

- Vx_{H2O}Wassergehalt des Rauchgases
- Vx_{H2OI}Wasser das flüssig vorliegt
- Vx_{H2Ov}Wasser das vom Rauchgas dampfförmig gehalten wird
- $v\theta_{sH2O}$ Sättigungstemperatur

Da beim Kondensieren des Wassers eine große Menge an Energie freigesetzt wird, muss für die Rauchgaskondensation eine Abkühlung möglichst weit unter den Rauchgastaupunkt angestrebt werden. Gleichzeitig soll die übertragene Energie das Kühlmedium so erwärmen, dass dieses genützt werden (z.B. Vorwärmen von Trocknungsluft, kann Absorptionswärmepumpe). Deshalb ist eine Absenkung der Temperatur nur bis zu einem gewissen Grad sinnvoll. Soll die aus der Rauchgaskondensation gewonnene Energie auf einem höheren Temperaturniveau genützt werden, kann eine Wärmepumpe (in diesem Beispiel eine Absorptionswärmepumpe) eingesetzt werden.

Die bei der Abkühlung des Rauchgases entstehende Wärmemenge pro kg Rauchgas v Q_{ges} setzt sich aus einem sensiblen Anteil v Q_{RG} (pro °C Temperaturabsenkung frei werdende

Wärme) und einem latenten Anteil vQ_{H2O} (pro °C Temperaturabsenkung aus der Kondensation frei werdenden Wärme) zusammen (vgl. Abbildung 34). Bis zum Erreichen des Rauchgastaupunktes findet keine Kondensation statt, womit das Rauchgas nur sensible Wärme abgibt. Danach beginnt das im Rauchgas vorhandene Wasser zu kondensieren, wodurch zusätzliche Kondensationswärme frei wird. Zu Beginn der Kondensation werden große Wärmemengen frei, die mit abnehmender Temperatur und somit abnehmendem Wassergehalt im Rauchgas sinken.

Abbildung 34: frei werdende Wärmemenge pro kg Rauchgas bei der Abkühlung

Um die pro kg Brennstoff und °C Temperatursenkung frei werdende Wärmemenge q_{ges} bestimmen zu können, muss vQ_{ges} mit der Rauchgasmenge je kg Brennstoff $\mu_{RG.BS}$ multipliziert werden. Mit dem Heizwert des Brennstoffes $H_{U.BS} = 2,206$ kWh/kg bei einem Wassergehalt von w = 40 % und der Feuerungswärmeleistung $Q_{in} = 23,73$ MW ergibt sich ein Brennstoffmassenstrom $m_{BS} = 10,76$ t/h. Mit dem Mathcad-Tool kann die gesamte frei werdende Wärme pro kg Brennstoff $q_{ges.i}$ für die Abkühlung auf ein vorgegebenes Temperaturniveau bestimmt werden. Durch die Multiplikation dieses Wertes mit dem Brennstoffmassenstrom m_{BS} ergibt sich so die Dauerwärmeleistung $Q_{GES.i}$ aus der Rauchgaskondensation bei Abkühlung auf eine bestimmte Temperatur (vgl. Gleichung 8).

$Q_{GES.i} = q_{ges.i} * m_{BS}$

Q _{GES.i}	Dauerwärmeleistung
q _{ges.i}	frei werdende Wärmemenge je kg Brennstoff
m _{BS}	Brennstoffmassenstrom
i	Temperatur

Für die in diesem Beispiel durchgeführte Betrachtung wird das Rauchgas auf 50 °C abgekühlt und erhitzt dabei die für das Pelletswerk notwendige Trocknungsluft auf die gewünschten 90 °C. Bei der Abkühlung liefert die Rauchgaskondensation eine Dauerwärmeleistung Q_{ges.50} = 4,9 MW, wobei der Anteil aus der Rauchgaskondensation Q_{RGK.50} = 1,68 MW beträgt. Mit dieser Wärmemenge kann das Pelletswerk auch im ungünstigen Fall, bei niedrigen Außentemperaturen (vgl. Tabelle 18) betrieben werden. Da somit die Wärmeleistung aus dem Entnahmedampf der KWK-Anlage nicht mehr benötigt wird, kann diese in einem zweiten Pelletswerk mit derselben Konfiguration oder wenn möglich für eine Produktionssteigerung im vorhandenen Pelletswerk eingesetzt werden, wodurch eine Verdoppelung der Pelletsproduktion ermöglicht wird. Die KWK-Anlage liefert somit im betrachteten Fall (bei einer Außentemperatur von 15 °C) eine elektrische Leistung von 5 MW_{el} und eine thermische Leistung aus der Rauchgaskondensation und dem Entnahmedampf von jeweils 3,71 MW_{th}. Dabei stellt sich bei einer Brennstoffwärmeleistung Q_{in} = 23,73 MW ein Brennstoffnutzungsgrad von 52,34 % ein. Dieser liegt deutlich über den Werten, der bisher betrachteten Varianten (mit Ausnahme des Umbaus auf Gegendruckbetrieb) und ermöglicht gleichzeitig eine volle Auslastung der Stromproduktion. Das heißt durch Nutzbarmachen der Rauchgaskondensationswärme, kann die Biomasse KWK-Anlage hinsichtlich ihres Brennstoffnutzungsgrads stark verbessert und gleichzeitig der Produktionsumfang an Pellets deutlich erhöht werden. Voraussetzung dafür ist, dass sich aus wirtschaftlicher Sicht eine Verdoppelung der Pelletsproduktion rentiert.

5.4 Anschluss an ein Fernwärmesystem

Wie aus den bisherigen Betrachtungen dieser Arbeit hervorgeht, ist eine konstant hohe Wärmeabnahme zum Erreichen hoher Brennstoffnutzungsgrade unumgänglich. Die oben dargestellte Variante (Wärmeabnahme durch ein Pelletswerk) ist dafür eine gute Lösung. Jedoch ist dabei kein Dauerbetrieb auf dem maximalen thermischen Leistungsniveau der KWK-Anlage möglich, da jährliche Schwankungen im Wärmebedarf ausgeglichen werden müssen (vgl. Abschnitt 5.3). Ein Fernwärmenetz hat einen ähnlichen jahreszeitlichen Verlauf (vgl. Abbildung 36), aber eine insgesamt viel höhere Wärmenachfrage. In diesen Systemen

8

kommen Biomasse KWK-Anlagen zum Decken der Grundlast (vgl. Abbildung 35) zum Einsatz, wodurch sich eine hohe Anzahl an Betriebsstunden mit Volllast und somit ein hoher Brennstoffnutzungsgrad ergibt (zur Spitzenlastabdeckung werden im Normalfall reine Heizkessel verwendet). Voraussetzung dafür ist das Vorhandensein eines Fernwärmenetzes und entsprechende Wärmeabnehmer

In Österreich gibt es mehr als 2.400 solcher Netzte. Die größten Fernwärmenetze befinden sich in den großen Ballungszentren (Markus Köfinger 2016).

Da viele der Biomasse KWK-Anlagen, sowie auch die in dieser Arbeit näher betrachtete Anlage, dezentral liegen, ist eine Anbindung an ein Fernwärmenetz schwierig zu realisieren. Laut Ludwig 2012, S. 183–197 muss pro km Rohrleitung eine Anschlussleistung von 1 MW_{th} vorhanden sein, um auftretende Verluste abzudecken und einen sinnvollen Betrieb zu ermöglichen. Das würde für die hier betrachtete Anlage bei der Maximallast von 5,5 MW_{th} bedeuten, dass die Wärme im Umkreis von 5,5 km durch Haushalte und sonstige Verbraucher und/oder ein vorhandenes Fernwärmenetz abgenommen werden müsste.

In 2015/2016 sind in Österreich rund 1 Mio Haushalte mit Fernwärme versorgt worden, wobei der Energiebedarf pro Haushalt 27,27 GJ betragen hat. Dies entspricht einer Jahresdauerleistung pro Haushalt von 0,85 kW_{th} (Statistik Austria 2018b).

Die betrachtete Biomasse KWK-Anlage könnte somit mit ihrer maximalen thermischen Leistung gut 5.800 Haushalte mit Wärme versorgen. An dezentralen Standorten ist dieses Potential meist nicht vorhanden. Diese Umstände unterstreichen, dass für viele der Bestandsanlagen diese Variante der Wärmeabnahme nicht in Frage kommt. Nichtsdestotrotz soll ein abschließendes Konzept zeigen, welcher Brennstoffnutzungsgrad bei Einbindung der Bestandsanlage in ein Fernwärmenetz möglich wäre.

Abbildung 35: Lastgang eines Fernwärmenetzes (Dötsch et al. 1998, S. 13)

Abbildung 36: Jahreszeitlicher Verlauf des Wärmebedarfs modifiziert nach Markus Köfinger 2016, S. 31

Konzept zum Anschluss an ein Fernwärmenetz

Bei der Anbindung der Anlage an ein Fernwärmenetz kann einerseits der Entnahmedampf aus der Turbine der KWK-Anlage und andererseits die aus der Rauchgasabkühlung und -kondensation entstehende Wärme zur Beheizung des Heizmediums (Wasser) genützt werden. Die Anlage wird dabei im Auslegungszustand betrieben (vgl. Abschnitt 5.2.1). Während das Rauchgas zum Vorwärmen des Rücklaufs dient, hebt der Entnahmedampf die Temperatur des vorgewärmten Wassers auf das gewünschte Temperaturniveau des Vorlaufs. Das Konzept ist in Abbildung 37 dargestellt. Die Rücklauftemperatur beträgt in diesem Fall ~50 °C (wurde bewusst niedrig angenommen). Um dieses Rücklaufwasser vorzuwärmen, wird das Rauchgas in zwei Stufen abgekühlt. Im ersten Schritt wird die Energie aus der Rauchgasabkühlung inklusive Rauchgaskondensation, die ab etwa 55 °C beginnt (vgl. Abbildung 33), bei einer Abkühlung von 65 °C auf 45 °C genützt. Da diese Energie aufgrund des niedrigeren Temperaturniveaus nicht direkt auf den Netzrücklauf übertragen werden kann, kommt eine Absorptionswärmepumpe zum Einsatz. Die zum Betrieb notwendige Wärmezufuhr von etwa 1 MW_{th} für den thermischen Verdichter erfolgt mit Entnahmedampf aus der KWK-Anlage. Bei einem COP¹¹ Wert von 2 wird der Netzrücklauf auf etwa 60 °C angehoben. Die zweite Stufe der Vorwärmung erfolgt in einem

¹¹ COP = coefficient of performance

Wärmetauscher, wobei der Rauchgasstrom von ~150 °C auf ca. 65 °C abgekühlt wird und so die Rücklauftemperatur auf rund 70 °C anhebt. Um die gewünschte Vorlauftemperatur von etwa 80 °C zu erreichen, wird der restliche Entnahmedampf mit einer übrigen Dampfleistung von rund 4 MW_{th} aus der Biomasse KWK-Anlage genützt. Das Rauchgas gibt bei Abkühlung auf 45 °C etwa 6 MW_{th} ab, die aufgrund der Absorptionswärmepumpe vollständig zur Vorwärmung genützt werden können. Die Biomasse KWK-Anlage liefert während des Heizbetriebs die im Auslegungszustand maximale erzeugte elektrische Leistung von 5 MW_{el}. Bei einem Brennstoffeinsatz Q_{in} von etwa 25 MW ergibt sich in dieser idealisierten, verlustfreien Konfiguration ein Brennstoffnutzungsgrad von knapp über 60 %. Dies ist zwar für eine Anlage mit Entnahme-Kondensationsturbine sehr beachtlich, allerdings würde eine Anlage mit Gegendruckturbine ohne Rauchgaskondensation in einem Fernwärmesystem dieser Art konzeptbedingt einen Brennstoffnutzungsgrad von über 80 % erreichen. Deshalb kann es zwar sinnvoll sein eine bestehende KWK-Anlage mit Entnahme-Kondensationsturbine an ein vorhandenes Fernwärmenetz anzuschließen, jedoch würde dieses Anlagenkonzept nie primär zur Deckung der Grundlast eines Fernwärmesystems eingesetzt werden.

Abbildung 37: Einbindungsschema der KWK-Anlage in ein Fernwärmenetz

- KWK... Kraft-Wärme-Kopplungsanlage
- WA... Wärmeabnehmer
- WZ... Wärmezufuhr (durch Entnahmedampf aus der KWK-Anlage)
- AWP... Absorptionswärmepumpe
- FWT... Fernwärmewärmetauscher
- RGS... Rauchgasstrom
- VL... Vorlauf Fernwärmenetz
- RL... Rücklauf Fernwärmenetz

5.5 Bewertung der Optimierungsmöglichkeiten

Die betrachtete Bestandsanlage mit Entnahme-Kondensationsturbine hat als primäres Ziel ihrem Anlagenkonzept entsprechend – die Produktion von Ökostrom. Im Ist-Zustand wird sie ohne Wärmeauskopplung bei einem Brennstoffnutzungsgrad von etwa 23 % betrieben, was nicht der sinnhaften Nutzung einer KWK-Anlage entspricht. Aufgrund der dezentralen Lage ist eine konstante Wärmeauskopplung schwierig, da keine umliegenden Abnehmer vorhanden sind. Deshalb ist der Zubau eines Pelletswerks eine sehr gute Lösung, um diesem Problem Abhilfe zu schaffen und würde den Brennstoffnutzungsgrad der Anlage auf rund 37 % anheben. Dieser kann zwar durch Rücknahme der Stromproduktion in den Grenzen der Fähigkeit der Turbine auf bis zu 46 % angehoben werden, jedoch erfüllt die Anlage dann nicht mehr, die an ihr Konzept gestellte primäre Funktion der maximalen Stromproduktion. Soll weiterhin die elektrische Leistung zur Ökostromversorgung im Vordergrund stehen, der Brennstoffnutzungsgrad aber trotzdem erhöht werden, kann mit Rauchgaskondensation ein bisher nicht genutztes Potential eingesetzt werden. Die so erzeugte Wärme würde eine Verdopplung der Pelletsproduktion ermöglichen. Die in diesem Fall sehr effizient betriebene Entnahme-Kondensationsanlage erreicht in dieser 52 %. Konfiguration Brennstoffnutzungsgrad Der geforderte einen von rund Brennstoffnutzungsgrad von 60 % kann ohne Umbau der Turbine auf Gegendruckbetrieb, nur dann erreicht werden, wenn die Anlage ihre maximale Wärmeleistung aus dem Entnahmedampf und die Energie aus der Rauchgaskondensation in ein Fernwärmenetz einspeisen würde. Diese Variante ist aufgrund der dezentralen Lage der Anlage aber auch nur theoretisch möglich. Die Untersuchungen an der betrachten Anlage machen deutlich, dass mit einer Entnahme-Kondensationsanlage auch bei extrem effizientem Betrieb kaum ein Brennstoffnutzungsgrad von 60 % erreicht werden kann. Die primäre Aufgabe der Entnahme-Kondensationsanlage ist aber auch nicht, einen möglichst großen Anteil der eingesetzten Brennstoffenergie in Wärme umzuwandeln (woraus ein hoher Brennstoffnutzungsgrad resultiert), sondern die Unterstützung der Ökostromversorgung mit einem möglichst hohen – dem Anlagenkonzept entsprechenden – Brennstoffnutzungsgrad.

Um die künftigen Klimaziele zu erreichen ist die Energieversorgung aus Erneuerbaren Energieanlagen unumgänglich. Biomasse KWK-Anlagen (feste Biomasse) wird dabei, im Vergleich zu Windkraft-, Photovoltaik-, und Solaranlagen weniger Aufmerksamkeit geschenkt. Die in dieser Arbeit durchgeführte Analyse des österreichischen Energiemarkts zeigt allerdings, dass sie einen wichtigen Anteil sowohl an der Wärmeversorgung (15 % des Endverbrauchs) als auch an der Stromversorgung (3 % des Endverbrauchs) des Landes liefern. Der große Vorteil der verschiedenen eingesetzten Konzepte (hauptsächlich Dampfkraftprozess mit Entnahme-Kondensationsturbine oder Gegendruckturbine) liegt neben der gekoppelten Erzeugung von Wärme und Strom auch in der geringeren Volatilität bei der Stromerzeugung. Während die oben genannten Energieanlagen stark von äußeren Einflüssen abhängen, liefern Biomasse KWK-Anlagen über das Jahr gesehen eine konstante Menge an elektrischer Energie. Für einen wirtschaftlichen Betrieb ist eine Vergütung laut Ökostromgesetz von großer Bedeutung. Bei vielen der Bestandsanlagen läuft der festgeschriebene Einspeisetarif aus und für den Folgetarif wird ein Brennstoffnutzungsgrad von über 60 % gefordert. Die Auswertung der Fragebogenerhebung zeigt, dass nur etwa 50 % der Bestandsanlagen diesen Wert übertreffen. Ein Schließen aller anderen Anlagen hätte eine Reduktion - um mehr als die Hälfte - der installierten elektrischen Leistung zur Folge. Bei genauerer Betrachtung der Auswertung nach verschiedenen Anlagenkonzepten wird deutlich, dass fast ausschließlich Biomasse KWK-Anlagen mit Dampfkraftprozess und Entnahme-Kondensationsturbine die Hürde von 60 % nicht überschreiten. Wie aus der Arbeit hervor geht, hat dies weniger damit zu tun, dass diese Anlagen energetisch ineffizient betrieben werden, als dass zum Erreichen hoher Brennstoffnutzungsgrade ein Großteil der eingesetzten Brennstoffleistung in Nutzwärme umgewandelt werden muss. Dies passiert bei Anlagen die mit Dampfkraftprozess und Gegendruckturbine arbeiten, weshalb mit dieser Form der Biomasse-KWK sehr hohe Brennstoffnutzungsgrade (um die 80 %) erzielt werden. Die Voraussetzung ist eine über das Jahr gesehen konstante hohe Wärmeabnahme (z.B. durch ein Fernwärmenetz), die aufgrund des oben beschriebenen Effekts, bei allen KWK-Anlagen zum Betrieb mit hohen Brennstoffnutzungsgraden nötig ist. Verringert sich die Wärmenachfrage kann mit Gegendruckturbinen, aufgrund der gekoppelten Strom- und Wärmeerzeugung, ohne Kondensation des Abdampfs, nicht mehr die maximale elektrische Leistung geliefert werden. Eine Kondensation des Abdampfs aus einer Gegendruckturbine führt zu einer Verringerung des sonst konstant hohen Brennstoffnutzungsgrads und zu einer Vernichtung energetisch nutzbarer Wärmeströme. Anlagen die so betrieben werden, schaffen über das Jahr gesehen immer noch einen durchschnittlichen Brennstoffnutzungsgrad größer als 60 %, können aus energetischer Sicht aber nicht als effizient angesehen werden. Ein hoher Brennstoffnutzungsgrad ist also mehr ein Indiz dafür, ob die Anlage wärmegeführt oder

stromgeführt betrieben wird, als eine Aussage über die Effizienz. Wird also ein Brennstoffnutzungsgrad von 60 % gefordert, stellt sich die Frage: Soll mit Biomasse KWK-Anlagen künftig mit einem wesentlichen Anteil am Erneuerbaren Strommarkt teilgenommen werden, oder sollen Biomasse KWK-Anlagen die Nutzwärme für vorhandene Abnehmer bereitstellen und den Strom nur als Nebenprodukt erzeugen?

Trifft letzteres zu, ist für viele der dezentralen Bestandsanlagen, deren primäre Funktion der Stromerzeugung dient und bei denen eine dauerhaft hohe Wärmeabnahme aufgrund der ruralen Lage schwierig ist, ein Fortbestand ohne Nachfolgeförderung wirtschaftlich nur bedingt möglich. Anhand der durchgeführten Simulation einer solchen Bestandsanlage mit Entnahme-Kondensationsturbine, die primär der Stromproduktion, dient wird verdeutlicht, dass ein Brennstoffnutzungsgrad von 60 % ohne drastische Veränderung der Anlage nicht erreicht werden kann. Die durchgeführten Optimierungsmaßnahmen (Zubau eines Pelletswerks zur dauerhaften Wärmeabnahme, sowie das Nutzbarmachen von Rauchgaskondensation) haben eine energetisch sehr effiziente Anlage zur Folge, die aber aufgrund ihres Konzepts und dem primären Ziel der Stromerzeugung trotzdem keinen Brennstoffnutzungsgrad über 60 % erreicht.

In Anbetracht der Forderung, die Energie in Zukunft ausschließlich aus Erneuerbaren Energieanlagen zu erzeugen ist der Fortbestand und Ausbau von Biomasse KWK-Anlagen ein wichtiger Teil eines wirksamen Gesamtkonzepts, in dem nicht ausschließlich auf eine Technologie gesetzt werden sollte. Genauso sollte bei Biomasse KWK-Anlagen nicht nur auf ein einziges Anlagenkonzept gesetzt werden. Verschiedene Voraussetzungen können den Einsatz unterschiedlicher Varianten sinnvoller oder weniger sinnvoll machen. So ist in Gegenden mit großem Wärmebedarf (z.B. Versorgung Fernwärmenetz) der Einsatz wärmegeführter Anlagen erstrebenswert, da diese die Wärmeerzeugung sicherstellen und nebenbei auch noch Strom produzieren. Andererseits kann aber die biomasse-basierte Elektrizitätserzeugung durch Entnahme-Kondensationsanlagen einen wichtigen Beitrag für eine CO_2 arme, das heißt nicht fossile Energieversorgung liefern.
7 Anhang

Abkürzungsverzeichnis

%	Prozent
°C	Grad Celsius
atro-t	Absolut trocken-Tonnen
bara	bar absolut
AWP	Absorptionswärmepumpe
BGB	Bundesgesetzbuch
BHKW	Blockheizkraftwerk
BK	Brennkammer
BNG	Brennstoffnutzungsgrad
bzw.	beziehungsweise
С	elementarer Kohlenstoff
ca.	circa
СНР	Combined Heat and Power
CH4	Methan
СО	Kohlenmonoxid
CO2	Kohlendioxid
EK	Entnahme-Kondensation
el	elektrisch
elektr.	elektrisch
et al.	und andere
etc.	et cetera
ev.	eventuell
Fa.	Firma
FWT	Fernwärmewärmetauscher
Gew-%	Gewichtsprozent
ggf.	gegebenenfalls
GJ	Gigajoule
GK	Gegendruck-Kondensation
GWh	Gigawattstunden
GWP	Global Warming Potential
h	Stunden
н	elementarer Wasserstoff
H2	Wasserstoff
H20	Wasser
HD-T	Hochdruckturbine

idgF	in der gültigen Fassung			
IET	Institut für Energietechnik und Thermodynamik			
К	Kelvin			
К	Kondensator			
kJ	Kilojoule			
km	Kilometer			
KP	Kondensatpumpe			
KT bei L	Kondensationsturbine bei Luftkühlung			
KT bei nK	Kondensationsturbine bei niedrigen Kühlwassertemperaturen			
kW	Kilowatt			
kWh	Kilowattstunden			
KWK	Kraft-Wärme-Kopplung			
KWK m. EK bei eS	KWK mittels Entnahme-Kondensation bei erhöhtem			
	Strombedarf			
KWK m. EK im N	KWK mittels Entnahme-Kondensation im Normalbetrieb			
KWK m. GK	KWK mittels Gegendruckkondensation			
LKW	Lastkraftwagen			
m³	Kubikmeter			
max	maximal			
MDK	Model Development Kit			
min	minimal			
Mio	Million			
MJ	Megajoule			
MW	Megawatt			
Ν	elementarer Stickstoff			
N2	Stickstoff			
ND-T	Niederdruckturbine			
NO	Stickstoffmonoxid			
Nr.	Nummer			
0	elementarer Sauerstoff			
O2	Sauerstoff			
ORC	Organic Rankine Cycle			
ÖSET-VO	Ökostromeinspeisetarif Verordnung			
ÖSG	Ökostromgesetz			
PSE	Process Simulation Environment			
RGS	Rauchgasstrom			
RL	Rücklauf Fernwärmenetz			
S	Entropie			
S	elementarer Schwefel			

S.	Seite
SB	Speisewasserbehälter
SO2	Schwefeldioxid
SP	Speisewasserpumpe
т	Temperatur
t	Tonnen
th	thermisch
therm.	thermisch
u.a.	unter anderem
ÜH	Überhitzer
v.a.	vor allem
VL	Vorlauf Fernwärmenetz
V _{Abg}	Abgasverlust
V _{FWA}	Verlust durch fühlbare Wärme in der Asche
V _{ges}	Verluste gesamt
vgl.	vergleiche
VM	Verbrennungsmaschine
Vol-%	Volumsprozent
V _{St}	Verlust durch Strahlung
V _{UCO}	Verlust durch Unverbranntes als Kohlenmonoxid
V _{UFUGA}	Verlust durch Unverbranntes fixer Kohlenstoffe in Flug- und
	Grobasche
Vx _{sH2O}	Sättigungsgehalt des Rauchgases
Vx _{H2O}	Wassergehalt des Rauchgases
Vx _{H2OI}	Wasser das flüssig vorliegt
Vx _{H2Ov}	Wasser das vom Rauchgas dampfförmig gehalten wird
W	Wassergehalt
WA	Wärmeabnehmer
WZ	Wärmezufuhr
х	Dampfziffer
z.B.	zum Beispiel

Mathematische Symbole-Formeln

Symbol	Einheit	Definition
$\gamma_{i.BS}$		Anteil der Brennstoffkomponente
E _{el}	MWh	jährlich erzeugte Strommenge
η_{Bst}	%	Brennstoffnutzungsgrad
η_B	%	Brennstoffnutzungsgrad
η_{th}	%	thermischer Wirkungsgrad
η_{el}	%	elektrischer Wirkungsgrad
η_s	%	Isentropenwirkungsgrad
η_{sH}	%	Isentropenwirkungsgrad Hochdruckteil
η_{sN}	%	Isentropenwirkungsgrad Niederdruckteil
Н	kWh/kg	Heizwert
H _{u.BS}	kWh/kg	Heizwert Brennstoff
i		Brennstoffkomponente (C,H,N,S)
i	°C	Temperatur
$\mu_{O_2.BS}$	kg/kg	Sauerstoffbedarf je kg Brennstoff
$\mu_{O_2.i}$	kg/kg	Sauerstoffbedarf je kg Brennstoffkomponente
μ_{0_2}	kg/kg	Sauerstoff je kg Brennstoffkomponente
$\mu_{L.BS}$	kg/kg	Luftbedarf je kg Brennstoff
$\mu_{O_2.BS}$	kg/kg	Sauerstoffbedarf je kg Brennstoff
$\mu_{N_2.BS}$	kg/kg	Stickstoffbedarf je kg Brennstoff
$\mu_{RG.BS}$	kg/kg	Rauchgasmenge je kg Brennstoff
$\mu_{m.i}$	kg/kg	Verbrennungsprodukt im Rauchgas je kg Brennstoffkomponente
m _B	atro-t	jährlich zugeführte Brennstoffmenge
m _D	t/h	Frischdampfmassenstrom
m		Verbrennungsprodukt (CO2, H2O, NO, SO2)
m _{BS}	t/h	Brennstoffmassenstrom
n _{BS}		Luftüberschuss
P _{el}	MW	elektrische Leistung
p_{FD}	bara	Frischdampfdruck
p_K	bara	Druck nach Entspannung Kondensation
$p_{ m GK}$	bara	Druck nach Entspannung Gegendruck-Kondensation
$p_{ m HEK}$	bara	Druck Zwischenstufe Entnahme-Kondensation
$p_{\rm NEK}$	bara	Druck Niederdruckstufe Entnahme-Kondensation
\dot{Q}_{Nutz}	MW	genützte Wärmeleistung
\dot{Q}_{zu}	MW	zugeführter Wärmestrom
Q_{th}	MWh	jährlich erzeugte Nutzwärmemenge
Q_{th}	MW	thermische Leistung
Q _{GES.i}	MW	Dauerwärmeleistung

Q _{RGK.i}	MW	Wärmeleistung Rauchgaskondensation
q _{ges.i}	kJ/kg	Frei werdende Wärmemenge je kg Brennstoff
q _{ges}	kJ/kgK	frei werdende Wärmemenge je kg Brennstoff und °C
Q _{in}	MW	Feuerungswärmeleistung
T_{FD}	°C	Frischdampftemperatur
$T_{\rm K}$	°C	Temperatur nach Entspannung Kondensation
$T_{\rm GK}$	°C	Temperatur nach Entspannung Gegendruck-Kondensation
$T_{\rm HEK}$	°C	Temperatur Zwischenstufe Entnahme-Kondensation
$T_{\rm NEK}$	°C	Temperatur Niederdruckstufe Entnahme-Kondensation
vQ _{ges}	kJ/kgK	frei werdende Wärmemenge je kg Rauchgas und °C
vQ _{RG}	kJ/kgK	frei werdende sensible Wärmemenge je kg Rauchgas und $^{\circ}\mathrm{C}$
vQ _{H20}	kJ/kgK	frei werdende latente Wärmemenge je kg Rauchgas und °C
$v \vartheta_{sH2O}$	°C	Sättigungstemperatur
X _{H2OL.BS}		Wassergehalt der Luft

Tabellenverzeichnis

Tabelle 1: Einfluss des Vergasungsmittels auf den Heizwert (Wesselak 2017, S. 547)	10
Tabelle 2: Leistungsbereich und el. Wirkungsgrad der verschiedenen Konzepte	
(Wesselak 2017, S. 544)	13
Tabelle 3: Kategorisierung der Anlagen nach dem Brennstoffnutzungsgrad	20
Tabelle 4: Verluste im Heißwasserkessel beim Referenzfall	26
Tabelle 5: Verluste im Heißwasserkessel bei Variation des Wassergehalts	27
Tabelle 6: Verluste im Heißwasserkessel bei Variation des Ascheanteils	27
Tabelle 7: Verluste im Heißwasserkessel bei Variation der Rauchgastemperatur	28
Tabelle 8: Verluste im Heißwasserkessel bei Variation des Luftüberschusses	28
Tabelle 9: gewählte Parameter des betrachteten Dampfkraftprozesses	29
Tabelle 10: Kenndaten beim Betrieb mit niedrigen Kühlwassertemperaturen	
Tabelle 11: Kenndaten beim Teillastfall der Turbine	31
Tabelle 12: gewählte Parameter des betrachteten Dampfkraftprozesses	
Tabelle 13: Kennzahlen bei Gegendruckbetrieb im Vollastfall	
Tabelle 14: gewählte Parameter des betrachteten Dampfkraftprozesses	34
Tabelle 15: Kennzahlen beim Entnahme-Kondensationsbetrieb im Normalbetrieb	35
Tabelle 16: Kennzahlen beim Entnahme-Kondensationsbetrieb bei erhöhtem Strombedarf	
Tabelle 17: Brennstoffnutzungsgrade unterschiedlicher Betriebsformen	
Tabelle 18: Wärmebedarf des Bandtrockners bei verschiedenen Außentemperaturen	
modifiziert nach Wimmer 2017, S. 31	48

Abbildungsverzeichnis

Abbildung 1: Schaltschema Dampfkraftprozesse einer Biomasse KWK-Anlage im	
Gegendruckbetrieb, modifiziert nach Kaltschmitt et al. 2016, S. 977	5
Abbildung 2: Schaltschema einer Entnahme-Kondensationsanlage	6
Abbildung 3: T,s Diagramm des vorliegenden Kreisprozesses	7
Abbildung 4: Schaltschema ORC-Prozess einer Biomasse KWK-Anlage	
(Kaltschmitt et al. 2016, S. 1003)	8
Abbildung 5: Schematischer Aufbau eines Holzvergaser KWK-Konzepts	
(Timmerer und Lettner 2005, S. 10)	9
Abbildung 6: Prinzip Stirling-Motor, modifiziert nach Kaltschmitt et al. 2016, S. 1007	11
Abbildung 7: Schaltschema Stirling-Motor in einer Biomasse KWK-Anlage	
(Kaltschmitt et al. 2016, S. 1010)	12
Abbildung 8:Verteilung der Biomasse KWK-Anlagen in Österreich,	
modifiziert nach (Pfemeter et al. 2016)	14
Abbildung 9: Die im Jahr 2016 in Österreich eingespeisten Ökostrommengen, Datenquelle:	
(OeMAG Abwicklungsstelle für Ökostrom AG 2018)	15
Abbildung 10: Anteile der Energieträger an der Fernwärmeerzeugung im Jahr 2016	
in Österreich Datenquelle: (Statistik Austria 2018a)	
Abbildung 11: Anteile der verschiedenen Anlagenkonzepte der Biomasse KWK-Anlagen	
Abbildung 12: Verteilung der Anzahl der Anlagen nach dem Brennstoffnutzungsgrad	21
Abbildung 13: ausgewertete Biomasse KWK-Anlagen mit Brennstoffnutzungsgrad >60 %	22
Abbildung 14: ausgewertete Biomasse KWK-Anlagen mit Brennstoffnutzungsgrad <60 %	23
Abbildung 15: Brennstoffnutzungsgrade der ausgewerteten Biomasse KWK-Anlagen	24
Abbildung 16: Flussdiagramm bei Verbrennung und reinem Heizbetrieb	26
Abbildung 17: Flussdiagramm bei ausschließlicher Verstromung	
Abbildung 18: Flussdiagramm bei Gegendruckbetrieb im Volllastfall	33
Abbildung 19: Flussdiagramm bei Entnahme-Kondensationsbetrieb im Normalbetrieb	
Abbildung 20: Verteilung der Brennstoffnutzungsgrade	
Abbildung 21: Aufbau der IPSEpro Struktur (SimTech GmbH)	40
Abbildung 22: IPSEpro Modell der betrachteten Biomasse KWK-Anlage	
Abbildung 23: Simulation des Auslegungsfalls der Biomasse KWK-Anlage	
Abbildung 24: Auszug aus der Modifikationsbeschreibung von MAN (MAN 2006)	
Abbildung 25: Simulation des Ist-Zustands der Biomasse KWK-Anlage	45
Abbildung 26: Schematischer Ablauf der Pelletsproduktion	47
Abbildung 27: Simulation der Biomasse KWK-Anlage im Fall Wärmeabnahme Pelletswerk	49
Abbildung 28: Simulation der Biomasse KWK-Anlage bei Wärmeabnahme Pelletswerk	
und reduzierter Turbinenleistung	51

Abbildung 29: Simulation der Biomasse KWK-Anlage mit umgebauter Turbine	
bei Wärmeabnahme Pelletswerk	53
Abbildung 30: Elementare Zusammensetzung des Waldrestholzes (Fichte)	54
Abbildung 31: Sauerstoffbedarf und Verbrennungsprodukte je kg Brennstoffkomponente	55
Abbildung 32: Rauchgaszusammensetzung nach der Verbrennung	56
Abbildung 33: Verhalten des im Rauchgas vorhandenen Wassers bei der Abkühlung	57
Abbildung 34: frei werdende Wärmemenge pro kg Rauchgas bei der Abkühlung	58
Abbildung 35: Lastgang eines Fernwärmenetzes (Dötsch et al. 1998, S. 13)	60
Abbildung 36: Jahreszeitlicher Verlauf des Wärmebedarfs modifiziert nach	
Markus Köfinger 2016, S. 31	61
Abbildung 37: Einbindungsschema der KWK-Anlage in ein Fernwärmenetz	62

Formelverzeichnis

Gleichung 1: Brennstoffnutzungsgrad	17
Gleichung 2: Brennstoffnutzungsgrad in adaptierter Form	17
Gleichung 3: elektrischer Wirkungsgrad	17
Gleichung 4: thermischer Wirkungsgrad	18
Gleichung 5: Sauerstoffbedarf je kg Brennstoffkomponente	54
Gleichung 6: Luftbedarf je kg Brenstoff	55
Gleichung 7: Rauchgasmenge je kg Brennstoff	55
Gleichung 8: Dauerwärmeleistung	59

Literaturverzeichnis

- Pfemeter, Christoph; Kahr, Stefanie; Liptay, Peter (Hg.) (2016): Bioenergie Atlas Österreich. Österreichischer Biomasse-Verband; Österreich. Wien: Österreichischer Biomasse-Verband (Klimaaktiv).
- Kaltschmitt, Martin; Hartmann, Hans; Hofbauer, Hermann (Hg.) (2016): Energie aus Biomasse. Grundlagen, Techniken und Verfahren. 3., aktualisierte und erweiterte Auflage. Berlin, Heidelberg: Springer Vieweg.
- Watter, Holger (2015): Regenerative Energiesysteme. Grundlagen, Systemtechnik und Analysen ausgeführter Beispiele nachhaltiger Energiesysteme. 4., überarb. und erw. Aufl. Wiesbaden: Springer Vieweg (Lehrbuch).
- 4. Wesselak, Viktor (2017): Handbuch Regenerative Energietechnik. 3rd ed. Berlin, Heidelberg: Springer Berlin Heidelberg.
- Obernberger, Ingwald; Gaia, Mario (2005): Biomasse Kraft-Wärme-Kopplung auf Basis des ORC-Prozesses. Stand der Technik und Möglichkeiten der Prozessoptimierung. Online verfügbar unter http://www.biosbioenergy.at/uploads/media/Paper-Obernberger-ORCProzess-2005-10-11.pdf, zuletzt geprüft am 11.04.2018.
- Thrän, Daniela; Ponitka, Jens; Arendt; Oliver (2016): Bioenergie-Technologien (2. Auflage). Online verfügbar unter https://www.energetischebiomassenutzung.de/fileadmin/media/6_Publikationen/fh_technologie_web_small.pdf, zuletzt geprüft am 01.06.2018.
- C.A.R.M.E.N. e.V. (2017): Kleine Holzvergasungsanlagen. Hg. v. Edmund Langer. Online verfügbar unter https://www.carmenev.de/files/informationen/Brosch%C3%BCren/Kleine_Holzvergasungsanlagen.pdf, zuletzt geprüft am 10.03.2018.
- Timmerer, Helmut; Lettner, Friedrich (2005): Anlagensicherheit und Genehmigung von Biomassevergasungsanlagen. Online verfügbar unter https://nachhaltigwirtschaften.at/resources/edz_pdf/leitfaden_biomassevergasungsanl agen.pdf, zuletzt geprüft am 09.06.2018.
- 9. Karl, Jürgen (2012): Dezentrale Energiesysteme. Neue Technologien im liberalisierten Energiemarkt. 3., überarb. und erw. Aufl. München: Oldenbourg (Technik 10-2012).
- Mertzis, Dimitrios; Mitsakis, Panagiotis; Tsiakmakis, Stefanos; Manara, Panagiota;
 Zabaniotou, Anastasia; Samaras, Zissis (2014): Performance analysis of a small-scale combined heat and power system using agricultural biomass residues. The SMARt-

CHP demonstration project. In: *Energy* 64, S. 367–374. DOI: 10.1016/j.energy.2013.11.055.

- Wang, Kai; Sanders, Seth R.; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei (2016): Stirling cycle engines for recovering low and moderate temperature heat. A review. In: *Renewable and Sustainable Energy Reviews* 62, S. 89–108. DOI: 10.1016/j.rser.2016.04.031.
- 12. Obernberger, Ingwald; A. Hammerschmid; P.Thonhofer; F. Biedermann (2005): Strom aus fester Biomasse. Stand der Technik und künftige Entwicklungen, zuletzt geprüft am 11.04.2018.
- Tobias Zschunke (2012): Elektroenergie aus Biomasse in dezentraler Anwendung. Technik, Ökonomie, Ökologie. Tagungsband. Online verfügbar unter https://www.energetischebiomassenutzung.de/fileadmin/user_upload/Downloads/Tagungen/Elektroenergie/Tag ungsband_Elektroenergie_aus_Biomasse_2011_HSZiGr_110112_reduziert.pdf, zuletzt geprüft am 07.03.2018.
- 14. Bundesrepublik Österreich (01.01.2018): Ökostromgesetz 2012. ÖSG 2012. Online verfügbar unter https://www.ris.bka.gv.at/Bund/, zuletzt geprüft am 09.06.2018.
- Bundesministerium f
 ür Wissenschaft, Forschung und Wirtschaft (01.01.2018): Ökostrom-Einspeisetarifverordnung 2018. ÖSET-VO 2018. Online verf
 ügbar unter https://www.ris.bka.gv.at/Bund/, zuletzt gepr
 üft am 09.06.2018.
- OeMAG Abwicklungsstelle für Ökostrom AG (2018): Ökostrom. Online verfügbar unter https://www.oem-ag.at/de/marktteilnehmer/stromerzeuger/, zuletzt geprüft am 01.03.2018.
- 17. Statistik Austria (2018a): Gesamtenergiebilanz Österreich 1970 bis 2016 (Detailinformation). Online verfügbar unter https://www.statistik.at/web_de/statistiken/index.html, zuletzt geprüft am 05.03.2018.
- Zahoransky, Richard; Allelein, Hans-Josef (Hg.) (2013): Energietechnik. Systeme zur Energieumwandlung ; Kompaktwissen für Studium und Beruf ; mit 46 Tabellen. 6., überarb. und erw. Aufl. Wiesbaden: Springer Vieweg.
- Hagauer, Dietmar; Lang, Bernhard; Pasteiner, Claudia; Nemestothy, Kasimir (2009): Empfohlene Umrechnungsfaktoren für Energieholzsortimente bei Holz- bzw. Energiebilanzberechnungen, zuletzt geprüft am 09.06.2018.
- 20. Brandt, Fritz (1999a): Brennstoffe und Verbrennungsrechnung. 3. Aufl. Essen: Vulkan-Verl. (FDBR-Fachbuchreihe, 1).
- Brandt, Fritz (1999b): Dampferzeuger. Kesselsysteme, Energiebilanz, Strömungstechnik. 2. Aufl. Essen: Vulkan-Verl. (FDBR-Fachbuchreihe, 3).

- 22. Schellong, Wolfgang (2016): Analyse und Optimierung von Energieverbundsystemen. Berlin, Heidelberg: Springer Vieweg.
- SimTech GmbH: System Description. Online verfügbar unter http://www.simtechnology.com/CMS/index.php/ipsepro/system-description, zuletzt geprüft am 14.05.2018.
- 24. MAN (2006): Modifikation Dampfturbine MARC 2 C10.
- 25. Wimmer, Johann (2017): Errichtung einer Pelletieranlage. Technischer Bericht. A-4560 Kirchdorf.
- 26. Sprenger, Eberhard; Recknagel, Hermann; Albers, Karl-Josef (2016): Taschenbuch für Heizung + Klimatechnik 2017/2018. 78. Aufl. München: DIV Deutscher Industrieverlag.
- Markus Köfinger (2016): Rahmenbedingungen zur Integra-tion dezentral anfallender (Ab-) Wärme-quellen in Wärmenetze. Austrian Institute of Technology. Online verfügbar unter http://www.energieinstitut-linz.at/v2/wpcontent/uploads/2017/03/Ergebnisbericht-Open-Heat-Grid-Teil-4.pdf, zuletzt geprüft am 07.06.2018.
- 28. Ludwig, J. (2012): Energieeffizienz durch Planung betriebsübergreifender Prozessintegration mit der Pinch-Analyse: KIT Scientific Publ.
- 29. Statistik Austria (2018b): Gesamtenergieeinsatz der Haushalte. Online verfügbar unter https://www.statistik.at/web_de/statistiken/index.html, zuletzt geprüft am 07.06.2018.
- 30. Dötsch, Christian; Taschenberger, Jan; Schönberg, Ingo (1998): Leitfaden Nahwärme. Stuttgart: Fraunhofer-IRB-Verl. (UMSICHT-Schriftenreihe, 6).
- 31. MAN (2007): Betriebshandbuch MARC 2 C10.

sonstige Anhänge

Fragen zur betriebenen Biomasse KWK-Anlagen:				
Bezeichnung / Name der Anlage oder Betreibergesellschaft				
Ort				
Postleitzahl				
Straße/Gasse/Platz				
Hausnummer				
Bezeichnung / Standort der Anlage				
Ort				
Postleitzahl				
Straße/Gasse/Platz				
Hausnummer				
Frage 1: Aus welchem Jahr stammen die Daten?	Jahr			
Frage 2: In welchem Jahr wurde die Anlage in Betrieb genommen?	Jahr			
Frage 3: Wie hoch ist die elektrische/thermische Nennleistung der Anlage?	elektr. Leistung	therm. Leistung		
	MW	MW		
Frage 4: Mit welchem Konzept wird die Anlage betrieben? (Anmerkung beachten, falls	Dampfkraftprozess	ORC-Prozess	Holzvergasung	Stirling-Motor
vorhanden Prozessschaltbild mitsenden)				
Frage 5: Wie viele Betriebsstunden hat die Anlage pro Jahr?	Betriebsstunden pro Jahr			
	h/a			
Frage 6: Wie groß ist die produzierte Strommenge pro Jahr?	Bruttostrommenge pro Jahr	Nettostrommenge pro Jahr		
	MWh	MWh		
Frage 7: Wie groß ist die jährlich verkaufte Wärmemenge?	Wärmemenge pro Jahr			
	GWh			
Frage 8: Welche Arten von Abnehmern werden mit Wärme versorgt?	Abnehmer von Prozesswärme	kommunales Fernwärmenetz	sonstige Wärme für	
			Heizzwecke	
Frage 9: Wie hoch ist der jährliche Brennstoffverbrauch?		Brennstoffmasse jährlich		
	atro-t/a	Schüttraummeter/a	Brennstoffart	

Anhang 1: Fragebogen Seite 1 (allgemeiner Teil)

Frage 1: Welche Frischdampfparameter liefert die Anlage bei Nennleistung	Druck	Temperatur	Massenstrom	
(nach Kesselaustritt, vor Turbineneingang)?	bar	°C	t/h	
Frage 2: Welche Turbine oder Turbinen ist/sind im Einsatz?	Lieferant	Typ/Bezeichnung	elektr. Nennleistung	
	-	-	MW	
Turbine 1				
Turbine 2				
Frage 3: Wie erfolgt bei Ihnen die Wärmeauskopplung?	Art	Druck Heizdampf	Temperatur Heizdampf	max. Heizdampfmenge
	Gegendruck oder	р	θ	Q*
	Entnahme-Kondensation			
	-	bar	°C	t/h
Turbine 1				
Turbine 2				
Frage 4: In welchem Zustand wird das Rauchgas an die Umgebung	Druck	Temperatur	Massenstrom	
abgegeben (bei Nennleistung der Anlage)?	bar	°C	t/h	

Anhang 2: Fragebogen Seite 2 (Dampfkraftprozess)

Frage 1: Welches Wärmerträgermedium wird verwendet?	Wärmeträgermedium			
Frage 2: Parameter des Wärmeträgermediums bei Nennleistung der Anlage?	Druck	Temperatur	Massenstrom	
	bar	°C	t/h	
Frage 3: Welches Arbeitsmittel kommt im ORC-Kreislauf zum Einsatz?	Arbeitsmittel			
Frage 4: Frischdampfparameter des Arbeitsmittels bei Nennleistung der Anlage?	Druck	Temperatur	Massenstrom	
	bar	°C	t/h	
Frage 5: Welche Turbine oder Turbinen ist/sind im Einsatz?	Lieferant	Typ/Bezeichnung	elektr. Nennleistung	
	-	-	MW	
Turbine 1				
Turbine 2				
Frage 6: Zustand des Arbeitsmittels vor der Wärmeauskopplung?	Druck	Temperatur	Massenstrom	
	bar	°C	t/h	
Frage 7: In welchem Zustand wird das Rauchgas an die Umgebung abgegeben (bei Nennleistung der Anlage)?	Temperatur			
	°C			

Frage 1: Nach welchem Prinzip erfolgt bei Ihnen die Holzvergasung?	Art der Vergasung	Prinzip		
Frage 2: Wie hoch ist die jährlich produzierte Gasmenge und welchen Heizwert hat das Gas?	Volumen	Volumen	Heizwert	
	Norm m ³	Betriebs m ³	MJ/m ³	
Frage 3: Welche Zusammensetzung hat das produzierte Gas?	со	CO2	CH4	H2
	%	%	%	%
	H2S	cos	H2O	N2
	%	%	%	%
Frage 4: Gasparameter des Holzvergasers bei Nennleistung vor Rohgaskühlung?	Temperatur	Druck		
	°C	bar		
Frage 5: Welche Technologie zur Verstromung ist im Einsatz?	Gasmotor	Gasturbine		
Frage 6: Welche(r) Gasmotor/Turbine ist im Einsatz?	Lieferant	Typ/Bezeichnung	elektr. Nennleistung	therm. Nennleistung
	-	-	MW	MW
Motor 1/Turbine 1				
Motor 2/Turbine2				
Frage 7: Betriebsstunden des/der Motors/Turbine pro Jahr?	Betriebsstunden pro Jahr	Restgasverwertung		
	h/a	-		
Frage 8: Gasparameter bei Eintritt in den/die Motor/Turbine?	Temperatur			
	°C			
Frage 9: Wie erfolgt bei Ihnen die Wärmeauskopplung?	Art der Wärmeauskopplung			

Anhang 4: Fragebogen Seite 4 (Holzvergaser)

Frage 1: Gaszustand vor Wärmetauscher Stirling-Motor?	Druck	Temperatur	Massenstrom	
	bar	°C	t/h	
Frage 2: Mit welcher Temperatur verlässt das Rauchgas den Stirlingmotor ggf. vor Wärmeauskopplung (bei Nennleistung der Anlage)?	Temperatur			
	°C			
Frage 3: Welcher Stirling-Motor ist im Einsatz?	Lieferant	Typ/Bezeichnung	elektr. Nennleistung	therm. Nennleistung
	-	-	MW	MW
Frage 4: Mit welchem Arbeitsmedium wird der Stirling-Motor betrieben?	Arbeitsmedium			

Anhang 6: Dampfverbrauchs-Diagramm MARC 2 C10 (MAN 2007, S. 173)

Anhang 7: Abdampftemperatur-Diagramm MARC 2 C10 (MAN 2007, S. 174)

Anhang 8: Entnahmetemperatur-Diagramm MARC 2 C10 (MAN 2007, S. 175)