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Abstract

This work uses an existing precise bowing pendulum to measure the impact of the musician’s

bowing hand during sustained tones in the Helmholtz regime. An initial investigation by this

author suggests that the flexiblity of the player’s hand influences the friction force between

bow hair and string and the quality of sound produced. Current models of the bowed string,

with the three playing parameters, normal bow force Fn, bow velocity vb and relative distance

to the bridge β , do not include this effect. In order to emulate a relaxed bowing hand, the bow

was mounted to the bowing pendulum with the help of soft foam, alternative to a more rigid,

leather-cladded mounting. The change in mounting audibly influences the sound produced

on a cello’s open G string. In particular, the spectral centroid is shifted to lower or higher

frequencies and energy is absorbed differently by the vibrating bow, depending on the three

playing parameters. This work combines multiple physics based models of the bowed string

available in literature, in a numeric finite difference implementation. It succeeds in describing

partial slipping phenomena during the Helmholtz motion, related to torsional motion. Fur-

thermore it suggests, that refined models should include coupling between transversal string

displacement polarisations and a detailed model of bow hair and stick modes, in order to re-

produce the bowing pendulum findings. This is a step towards understanding the playability

and sound reproduction of bowed instruments, which is of interest to string and bow makers,

luthiers and players/teachers alike.
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Kurzfassung

In dieser Arbeit wurden mit einem präzisen Bogenpendel die Auswirkungen der Bogenhand,

während ausgehaltener Töne im Bereich der Helmholtzschwingungen, gemessen. Eine

Voruntersuchung durch den Author suggeriert, dass die Flexibilität der Hand eines Musik-

ers, die Reibungskräfte zwischen Bogenhaaren und Saite, als auch die Klangqualität beein-

flusst. Aktuelle Modelle der gestrichenen Saite, mit den drei Spielparametern, normale Bo-

genkraft Fn, Bogengeschwindigkeit vb und relative Distanz zum Steg β , beschreiben diesen

Effekt nicht. Um eine entspannte Bogenhand zu emulieren, wurde der Bogen mit weichem

Schaumstoff am Bogenpendel befestigt, alternativ zu einer festeren, lederummantelten Be-

festigung. Die unterschiedliche Bogenbefestigung beeinflusst den Klang einer leeren Cello G

Saite hörbar. Insbesondere wird der spektrale Zentroid zu tieferen und höheren Frequenzen

verschoben, abhängig von den drei Spielparametern. Diese Arbeit kombiniert mehrere, in

der Literatur verfügbare, Physik basierte Modelle der gestrichenen Saite, in einer Implemen-

tierung der numerischen Finite-Differenzen-Methode. Das Modell beschreibt erfolgreich die

mit der Torsionsbewegung zusammenhängenden Phänomene des Teilabrutschens während

der Helmholtzschwingung. Außerdem legt es nahe, dass künftige verbesserte Modelle eine

Kopplung zwischen den Polarisationen der transversalen Auslenkung der Saite, sowie eine

detaillierte Modellierung der Bogenhaar und -stangen Moden berücksichtigen sollten. Dies

ist ein Schritt in Richtung verbesserten Verständnisses der Spielbarkeit und Klangproduktion

von Streichinstrumenten, was für Geigenbauer, Bogenbauer, Saitenhersteller und Musiker

sowie Lehrer von Interesse ist.
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Chapter 1.

Introduction

1.1. Scope and purpose of bowed string instrument

research

The violin family instruments’ design remains unchanged for more than 300 years and their

quality has reached a level of refinement which seems unsurpassable. Both were achieved

empirically by honing craftsmanship skills and passing them down from generation to gener-

ation. Insofar the scientific method cannot aspire to improve anything of major significance.

It would be unclear, what the definition of “improve” might be, as musical acoustics contains

a strong component of personal taste and preference. The listener’s expectations and instru-

ment design have always evolved concurrently and any radical change would be met with

great scepticism.

Certainly the musical instrument can be analyzed as a physical body in the same

way that music can be investigated concerning its acoustical material. However

the effect of music in its spiritual idea and the effect of the instrument’s sound and

timbre in its aesthetic idea can only be realized by one who is willing to sharpen

his musical awareness by learning to listen. (M. Schleske)

Luthier Martin Schleske uses an approach of making tonal copies [1]. He investigated how

changes to the top and bottom plates of a violin effect specific changes in vibrational mode

patterns. Armed with this knowledge he replicates the resonance spectra of existing violins

with remarkable success.
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Chapter 1. Introduction

His approach of understanding certain physical effects and properties of an instrument’s

body and manipulate them for a desired effect can certainly be applied to the bow and string

interaction and the question of playability.

As with most fundamental research, curiosity is a major drive. While we do not expect to find

any new physical effects, the hope of understanding and quantifying the processes of bowed

string instruments, on par with the level of detail and accuracy the marvelous mechanism of

human hearing provides, represents a strong reward.

1.2. Understanding playability and the player’s bowing

hand

We can observe various styles of successful playing technique, all leading to a remarkable,

musical sound. While cellist Lynn Harrell advocates leaning ones torso slightly forward, to

increase the natural weight of the arm acting on the bow, Yo-Yo Ma is well known for leaning

backwards. Sol Gabetta performs with an, at times awkwardly raised, seemingly tight right

shoulder and yet she has a successful career as a soloist and teacher. The human anatomy

is diverse and so are the finer details of the bow grips of professional musicians. Certainly,

there is no right way to play, although there are basic movements and techniques that ob-

viously work, while others do not. To systematically understand playability, identifying some

common features of great performance and their particular influence on sound production,

seems to be a good approach.

Current models of the bowed string consider three major bowing parameters. The normal

force Fn acting on the string, bowing velocity vb, and relative distance β from the bridge. Re-

searchers have constructed various mechanical bowing devices to measure the response of

stringed instruments with precise control of these parameters. More detailed finite bow width

models have also considered a varying bow width as a result of a tilted bow. Unfortunately

we still lack in detailed understanding of what musicians do, to achieve a particular set of

parameters and a distinguished sound.

Teachers tell their students early on, not to press the bow onto the string. Instead, players

should relax their arm and let arm and bow fall onto the string freely. A sensor measuring

Fn cannot distinguish the former from the latter, and yet, any trained musician will immediatly

recognize players with a strong bow grip trying to press the bow onto the string. While

16



1.3. Thesis structure

superior in accuracy and repeatability, bowing machines with high mechanical impedance

electric motors remain similar to tight bow grip players, rather than an accomplished musician

with precise muscle control, where fingers, wrist, arm and even torso all work in accord.

The hand is a good indicator of skilled bowing technique and many bowing exercises target

the fingers and wrist in particular. It seems reasonable to include the player’s hand in an

improved model of bowing. As a starting point for this work, we think of the hand’s role as

some flexible coupling between the bow and the mass of the arm.

1.3. Thesis structure

This thesis consists of two major parts. First, Chapter 2 presents results of a measurement

session with a precise bowing pendulum, developed by R. Mores [2]. The bow was attached

to the pendulum either with flexible foam around frog and tip, or with a more rigid leather-

cladded bow mounting, to immitate a relaxed or tight bow grip. An investigation of steady

Helmholtz motion targets possible differences in bowing parameters and sound radiated,

between both cases.

Second, Chapter 3 gathers the physical bowing models available in literature, combines them

and adds a relaxed hand model inspired by the bowing pendulum setup. Numerical finite

difference simulation results are presented in an attempt to verify the model and compare

results from bowing pendulum experiments.

17





Chapter 2.

Bowing Pendulum Experiments to

Investigate the Bowing Hand

This work uses a precise bowing pendulum developed by Mores [3], where the frog of the

bow was wrapped in foam to crudely imitate a relaxed bowing hand, allowing vibrations of

the bow. Measurements across the normal playing parameter space and comparison of

the foam-wrapped bow with a more rigid, leather-cladded bow mounting (free and rigid bow

mounting) show clear differences in tonal quality, particularly with the mean frequency (or

spectral centroid) metric as a robust predictor of perceived “brightness”.

A number of researchers have developed mechanical bowing devices. Repeatability of bow-

ing gestures to a higher degree of accuracy and reliablity than humans could, forms a staple

of systematic bowed string research. Early work by Raman in 1920 [4] held the bow in place

and instead moved the violin on a sledge-like device. He recognized the importance of the

bow mounting, using a balanced lever rotating on ball bearings to control the bow force.

The bow is held carefully balanced in the fingers of the right hand, the necessary

increases or decreases in the pressure of bowing being brought about by in-

crease or decrease of the leverage of the fingers. The suppleness of the wrist of

the player and the flaccidity of the muscles of the forearm secures the necessary

smoothness of touch. (C.V. Raman)

Later, Kar et al. [5] used a more elaborate design, with the bow mounted to a moving metal

rod and a violin suspended below by long springs to adjust and measure bowing pressure.

19



Chapter 2. Bowing Pendulum Experiments to Investigate the Bowing Hand

A different approach was used by Lawergren [6], attaching the bow to wagons running along

tracks and controlling the bowing pressure by placing the violin on a screw jack below. In

a similar arrangement, Pickering [7] pressed the bow against the string with a weighted

wheel.

Cronhjort [8] clamped a bow to a PC-controlled carriage of a daisy wheel printer. He con-

trolled the bow force by applying torque via a motor-driven cantilever. Schoonderwaldt et al.

[9] used this arrangement for bow force limit investigations.

Vogl in collaboration with string manufacturer Thomastik Infeld, Vienna [10], built a device for

quality control purposes, where a sledge is driven along a linear axis and the bow is mounted

on a lever system attached to the sledge.

The more recent work by Galluzzo and Woodhouse [11], in similar fashion, uses a linearly

driven carriage. They clamped the bow to a leaf spring to apply torque and control the bow

force with the help of an electromagnetic shaker. Their additional efforts with open-loop

feedback control, offer gestural input control with greater precision.

All these well-thought-out mechanical bowing devices use an electric motor to drive the bow

and control the bowing velocity. Their common approach is to understand bowing gestures

in terms of the three major parameters Fn, vb and β and to reproduce them as accurate as

possible. The high mechanical impedance electrical motors and rather ridgid bow mountings

force the bow on a strict path. Electric motors do not “feel” the interaction physics of the string

and bow hair contact area, they cannot adapt on the fly.

Unfortunately, this is at odds with how a musician would approach bowing, as they constantly

adapt to the feedback they receive from bow and instrument. As Raman noted, musicians

are very much concerned with smoothness of touch. We should think of bowing as “lettings

things happen” just within the constraints of a gently guiding hand and arm.

Your wrist should move on an axis perpendicular to the string and think of the

edge of your wrist pushing [in bowing direction] against an imaginary resis-

tance. All your fingers should have contact with the bow stick and try to have

an even distribution of force. Your thumb joints should be bent and relaxed.

(J. Kubitschek, cellist and teacher)

The bowing pendulum used with this research is much closer to this interpretation of bowing.

Its design and properties are discussed in the following section.

20



2.1. Pendulum Setup

2.1. Pendulum Setup

A cello’s open G string was bowed and measured with a precise bowing pendulum (Figure

2.1) and measuring instruments as described in [3]. Key features include:

• Mass M1, emulating the player’s arm, moves horizontally.

• Bow force Fn is precisely adjustable through the length of screws at b and c, thereby

lowering or raising mass M2.

• Mass M2 and its damping device (consisting of a mass dropping into water) with low

mechanical impedance, determine the bowing speed by reacting to the friction force Ff .

This is a much closer approximation of a musician’s bowing, than a high mechanical

impedance electric motor.

• Sensors S1, S2 and S3 measure the playing parameters vb, friction force and Fn.

• The pendulum’s bowing direction is self-stabilising, maintaining a constant bow hair to

bridge distance, with less than 0.5mm variation.

Experiments were conducted on a “teacher level” cello, crafted by Laberte-Humbert Frères,

Mirecourt, in 1926. And a German bow by Emil Werner, reasonably coated with rosin, as

a musician would during normal play. Bow hair tension was adjusted to a level suitable for

normal play. The string measured, was a tungsten wound Spirocore G string by Thomastik-

Infeld, Vienna. The cello rests horizontally on supports at the end pin and neck and is backed

by wooden rests at the ribs, to prevent it from rotating. This resembles a player’s hold of the

instrument and limits any effects on the vibrational modes of the instrument’s body.

Figure 2.2 depicts the free and rigid bow mountings. The foam-wrapped bow mounting is

designed in such a way, that the bow is almost dropping due to its own weight, resembling a

light bow grip.

2.2. Data capturing and post processing

Each bow stroke was captured with two force sensors (normal bowing force and tractive

force), a horizontal bow position sensor, a microphone placed 1m from the bridge and a

21



Chapter 2. Bowing Pendulum Experiments to Investigate the Bowing Hand

Figure 2.1.: Bowing pendulum schematics. Due to excentric mounting brackets, mass M1
moves horizontally. With a carefully adjusted counter mass M3 and a disconnected string
e, M1 stays at rest at every position

22



2.2. Data capturing and post processing

Figure 2.2.: Foam-wrapped bow mounting (left) and rigid, leather-cladded bow mounting
(right).
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Chapter 2. Bowing Pendulum Experiments to Investigate the Bowing Hand

near middle of bow

near frog

near tip

Figure 2.3.: An example of a single bow stroke. Each marker corresponds to a signal aver-
aged over 10ms, blue circles indicate Helmholtz motion, red crosses non-Helmholtz mo-
tion. Recorded with β ≈ 1/14.

piezo sensor attached to the bridge. Bowing velocity and acceleration are derived from the

horizontal bow position sensor.

Despite careful adjustment of the counter pendulum with mass M3, the bowing pendulum’s

damping forces are not entirely uniform across all bow positions. Also a tradeoff between

the tension in string d and the friction forces at the wheels is necessary. All damping forces,

depending on bow position, were measured with dry runs, without any string contact. When,

additionally, accounting for inertial forces, the friction force between bow hair and string Ff

was extracted from sensor S2’s data, according to Equation (2.1).

Ff = FS2−Finertial−Fdamping (2.1)

Figure 2.3 shows typical data for Fn and vb recorded from a single up-bow stroke. A YIN-

algorithm [12] performed classification of Helmholtz and non-Helmholtz motion from the

bridge-mounted piezo’s signal. As this is an analysis of steady Helmholtz motion.

As this is an analysis of steady Helmholtz motion, microphone recorded sound samples

should preferably show as little variation in Fn and vb as possible, while data from transients

near tip and frog should be excluded. Non-Helmholtz motion data tuples were discarded,

while the remaining data tuples were grouped into segments, 0.34 s in length with 75%
overlap. A classic short-time Fourier transform on the microphone signal, with a Blackman

24



2.3. Results and discussion

window 16384 samples in length (0.34 s at 48 kHz), prepares spectral analysis. Segments

whose Fn and vb averages have standard deviations σ(Fn) > 3g or σ(vb) > 0.3cms−1 are

discarded. To summarize, this leaves us with many steady Helmholtz motion 0.34 s sound

samples, their associated frequency spectra and their respective average values of Fn and

vb with little variation.

2.3. Results and discussion

To extract the possible impact of a relaxed bowing hand, this research attempted to cover as

wide a range of normal playing parameters (Fn,vb,β ), where steady Helmholtz motion occurs,

as possible. Comparing a free and rigid bow mounting, exhibits clearly audible differences.

Visualised to some extent with the spectral centroid (Section 2.3.1) as a robust metric for

perceived brightness [13] and an analysis of the power spectral density (Section 2.3.3) with

a focus on the first few harmonic frequencies.

Results are presented as gridded pseudocolour plots on the parameter space spanned by Fn

and vb, measured at three distinct values of β (1/9, 1/14 and 1/30). Alas, due to measuring

time constraints, a more exhaustive search of the parameter space was not possible. Each

coloured grid square represents an average of the underlying data points (each data point

representing a 0.34 s steady Helmholtz motion sound sample and its associated sensor data),

allowing an easy comparison between the free and rigid bow mounting. Please refer to

Appendix A for the scatter plots of the underlying data points.

2.3.1. Spectral centroid analysis

The spectral centroid can be understood as the “center of mass” of a given frequency spec-

trum x(n), with center frequency f (n) of bin number n and is defined as

centroid =

N−1
∑

n=0
x(n) f (n)

N−1
∑

x=0
x(n)

. (2.2)

Medium β . Figure 2.4 shows the spectral centroid on the Fn and vb parameter space of

107 up-bow strokes at β ≈ 1/14, chosen as an intermediate value, from experience with the
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Figure 2.4.: β ≈ 1/14, spectral centroid parameter space analysis. Free (top), rigid (middle)
bow mounting and difference between both cases (bottom).
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cello. Adjusting the driving mechanism’s mass M2, lead to varying bow speeds, depending

on the bow force. Results from free and rigid bow mounting and the difference between

both cases, are presented as spectral centroid pseudocolour plots, analysed from sound

recorded with a microphone placed 1m from the bridge. Grey rectangles indicate no available

steady Helmholtz motion data. The fundamental frequency of the open G string was tuned

to 98Hz.

In both cases, free and rigid bow mounting, there is a trend of a spectral centroid maximum at

lower vb, gradually shifted to higher vb with increasing Fn. The largest maximum occurs with

an rigid bow mounting at a low bow speed of −4 cms−1 and low bow force equivalent mass

of 85 g. At β ≈ 1/14, a foam wrapped bow mounting generally lowers the spectral centroid,

with the exception of high bow speeds and low bow force.

Above 120 g bow force equivalent mass, the spectral centroid shows a relatively uniform

distribution. Data indicates a general trend of a decreased spectral centroid at higher and

very low bow speeds, with a maximum in between and the undamped case’s maximum being

more pronounced. The free case shows a lower spectral centroid, by approximately 50Hz.

There are no data points at high bow force and very low bow speeds. Since the pendulum is

gravity driven and no particular bow speed is forced, the bow tends to stick below a certain

speed threshold and no steady Helmholtz motion occurs.

Figure 2.5.: Spectral centroid analysis at β ≈ 1/14 and 80 g Fn equivalent mass, correspond-
ing to an as free as possible suspension of the bow above the string.
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Remarkably, the most significant differences occur right around a bow force corresponding to

the bow’s own mass of 80 g. In the foam-wrapped case, this would correspond to a relaxed

playing state, where the musician holds the weight of his own arm and grips the bow as lightly

as possible. For a closer investigation, Figure 2.5 presents the spectral centroid of all sound

samples in the Fn range from 75 to 85 g. The separation in spectral centroid and different

dependence on vb between the free and rigid case, is immediatly apparent. The free bow

mounting exhibits a few outliers with high spectral centroid.

The outliers at high vb are attributed to two particular bow strokes and are associated with

a flagolet-like sound. This can be explained as a result of the limited capability of the fun-

damental frequency estimating YIN algorithm to classify Helmholtz motion from the bridge

mounted piezo sensor. A definitive classification would require a look at the precise trans-

lational displacement at the bowing contact surface, to reliably identify even slight double

slipping. These outliers occur near the minimum bow force, most likely right at the bound-

ary, where differential slipping crosses into the double slipping non-Helmholtz motion regime.

The rigid bow mounting shows no such outliers. Possibly there is a bow mounting dependent

effect at play, related to partial slipping, requiring further investigation.

To illustrate the changing sound more precisely, Figure 2.6, depicts the average power spec-

tral density envelope of all sound samples in the respective shaded areas of Figure 2.5. The

spectral centroid is mostly influenced by the first five to ten harmonics. Most of clearly audible

differences occur within the first four harmonics. Generally, all spectra show similar features,

the sound was radiated frome the same instrument. Nevertheless, a numer of differences

can be associated with changes in bow mounting and bow speed.

The free bow mounting’s second and third harmonic are lowered by more than 10 dB, while

the fundamental frequency is slightly more powerful than with a rigid bow mounting. The

stronger shift to a higher spectral centroid with slower bow speeds and a rigid bow mount-

ing — as indicated by the dashed lines — is primarily caused by shift in power towards the

third and fourth harmonic. At the slowest bow speeds, the fourth harmonic radiates the most

power, a significant difference when compared to the free bow mounting, where the funda-

mental frequency consistently dominates in radiated power. Thes free power spectral density

envelope exposes dips in power relative to the rigid spectrum at a number of harmonics, par-

ticularly at the 2nd, 3rd, 7th, 16th, 17th and 23rd harmonic.

Furthermore, the rigid sound signal consistently contains more power, it is audibly louder.

Section 2.3.2 provides further analysis on signal power.
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2.3. Results and discussion

Figure 2.6.: β ≈ 1/14, average frequency spectrum envelope over all sound samples in the
respective shaded area in Figure 2.5. Recorded near 80 g Fn equivalent mass, correspond-
ing to the bow’s own mass.
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Small β . Figure 2.7 shows the parameter space of 104 up-bow strokes at β ≈ 1/30. Mu-

sicians often use this area close to the bridge with a bow force on the higher end of the

spectrum, during musical passages in forte, requiring an intense, brilliant sound.

As Schelleng observed in his diagram [14], the playing parameter space leading to Helmholtz

motion is increasingly constricted at lower β . The results presented here replicate this, as

no Helmholtz motion occurs at low bow force and higher bow speed. A higher bow force is

required to drive Helmholtz motion at higher bow speeds, the results presented in 2.7 were

obtained around the minimum bow force. The minimum bow force limit was recently inves-

tigated by Mores [15], using this bowing pendulum. Instead, changes in spectral centroid

during stead Helmhholtz motion were explored here and more data points would be needed

for an analysis of transients.

Close to the minimum bow force, the spectral centroid is shifted to higher frequencies with

a free bow mounting. Consistent with the results from medium β in Figure 2.4, the spectral

centroid is shifted to lower frequencies with a free bow mounting, when moving away from the

minimum bow force limit, towards slower bow speed and higher bow force in the upper right

corner of the parameter space. The medium β results provide a hint of this spectral centroid

shift reversal near the lower bow force limit. No significantly different behaviour emerges near

a Fn equivalent mass equal to the bow’s own mass of 80 g.

Large β . Figure 2.8a shows the parameter space of 85 up-bow strokes at β ≈ 1/9. On the

particular cello measured, this is just above the fingerboard, an area that offers a different,

softer sound, often used in piano passages, particularly in orchestral play.

The spectral centroid varies very little across the parameter space, when compared to smaller

β . Generally, the free bow mounting shifts the spectral centroid to higher frequencies by

60Hz on average, in opposition to the shift towards lower frequencies at medium β . Again,

this is a significant, clearly percievable when listening to the recorded sound samples. As

with small β , no distinctly different behaviour emerges near a Fn equivalent mass equal to

the bow’s own mass of 80 g.

2.3.2. Signal power analysis

Medium and high β . The middle and right column in Figure 2.9 shows the power of the

microphone signal (20-10000Hz band) across the playing parameter space from the same
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2.3. Results and discussion

sound samples used in spectral centroid analysis in the previous section. Radiated sound

power depends on bow velocity and not on bow force, again in accordance with Schelleng’s

results [14]. Bowing closer to the bridge generally leads to a higher sound level. Using the

same bowing parameters, the rigid bow mounting produces an audibly louder sound, with

differences up to 10 dB between the rigid and free case, at low Fn and higher vb.

Small β , depicted in the left column of Figure 2.9. Closer to the minimum bow force near

the bridge, signal power behaviour is more complex. The clear dependence on bow velocity

is only observed at Fn equivalent mass of 120 g or higher. As expected, the loudest sound

sample was recorded near the bridge at high bow velocity and, remarkably, with a rigid bow

mounting. A musician’s analogous playing state could be described as playing with great

force, transmitted through a tight bow grip. A free bow mounting exhibits a maximum in

signal power at high bow force and low bow speed, strikingly with increased power over the

rigid bow mounting in the same parameter space are. These measurements suggest the

presence of a sweet spot when playing forte with a relaxed bowing hand near the bridge.

When comparing the spectral centroid in Figure 2.7 across the same parameter space, high

sound power seems to be associated with a spectral centroid shift towards lower frequencies.

However, it remains unclear what precise mechanism could cause this.

2.3.3. Power spectral density analysis ( f0, f1)

The previous sections established the first few harmonics´ major influence on spectral cen-

troid and radiated sound level. The following investigates the relative power contained in

the fundamental frequency ( f0) and the first harmonic ( f1), across the previously established

playing parameter space. Again, results are presented at the three distinct values of β in Fig-

ures 2.10 to 2.12. f0’s power relative to the entire signal is shown in the left column of each

figure (free, rigid and difference), while the columns on the right depict f1’s relative power.

Medium β , Figure 2.10. With a free bow mounting, the fundamental frequency contributes

more to the entire signal, consistently across the playing parameter space measured. The

first harmonic exhibits the opposite behaviour, with a rigid bow mounting, its contribution in-

creases. Around the bow force equivalent weight of 80 g, this pattern emerges more clearly.

Small β , Figure 2.11. Differences between bow mountings are generally smaller, except at

high Fn and vb, where a rigid bow mounting leads to the first harmonic dominating the power
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spectral density. Remarkably, with both bow mounting, the first harmonic increases in relative

power at high Fn and low vb.

Large β , Figure 2.12. Closer to the bridge, relative power content generally varies less

across the parameter space, consistent with previous plots. As with medium β , the free

bow mounting shifts power to the fundamental frequency, although to a smaller degree and

without any noticeable pattern around Fn corresponding to the bow’s own weight.

2.4. Summary of findings

A free, foam wrapped bow mounting (corresponding to a relaxed bowing hand) and rigid,

leather-cladded bow mounting (tight bowing hand) affect a cello’s sound radiation in different

ways, depending on bowing parameters Fn, vb and β . Spectral centroid, average power and

power spectral density all exhibit bow mounting dependent variations.

At medium β , a free bow mounting generally shifts the spectral centroid to lower frequencies,

while the opposite is the case close to the bridge and close to the fingerboard. Remarkable

patterns can occur around a bow force equivalent to the bow’s own weight, suggesting an

involvement of the bow stick’s properties.

With a free bow mounting, radiated sound power is lowered at most parameter combinations,

strongly suggesting that the vibrating bow stick absorbs energy.

Changes in power spectral density of the radiated sound were precisely quantified, with par-

ticularly significant effects within the first few harmonic frequencies, providing additional em-

pirical data for model verification purposes.

The empirical results presented here, clearly show, that two strokes with identical playing pa-

rameters Fn, vb and β can produce, during sustained Helmholtz motion, significantly audible

sound differences, as supported by spectral analysis. An improved bowing model requires at

least one additional parameter, describing the strength of vibration of the bow stick.
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Figure 2.7.: β ≈ 1/30, spectral centroid parameter space analysis. Free (top), rigid (middle)
and difference between both cases (bottom).
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Figure 2.8.: β ≈ 1/9, spectral centroid parameter space analysis. Free (top), rigid (middle)
and difference between both cases (bottom).
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Figure 2.9.: Power of the microphone signal in the 20-10000 Hz band, relative to the loudest
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Figure 2.10.: β ≈ 1/14, power of the fundamental and first harmonic frequency, relative to the
entire signal. Damped case on top, undamped case in the middle and difference between
the two on the bottom. The abcissa defines the bow speed vb in [cm/s] with negative
speeds for up-bow, while the ordinate defines the bow force Fn equivalent mass in [g].
Note the significant difference around an equivalent mass of 80 g.
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Figure 2.11.: β ≈ 1/30, power of the fundamental and first harmonic frequency, relative to the
entire signal. Damped case on top, undamped case in the middle and difference between
the two on the bottom. The abcissa defines the bow speed vb in [cm/s] with negative
speeds for up-bow, while the ordinate defines the bow force Fn equivalent mass in [g].
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Figure 2.12.: β ≈ 1/9, power content of the fundamental and first harmonic frequency, rela-
tive to the entire signal. Free case on top, rigid case in the middle and difference between
the two on the bottom. The abcissa defines the bow speed vb in [cm/s] with negative
speeds for up-bow, while the ordinate defines the bow force Fn equivalent mass in [g].
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Chapter 3.

Finite Difference Numerical String

Simulation

3.1. Physical model ingredients

The following sections describe and summarise the physical string model components and

their implementation in a numerical Finite Difference scheme.

A string’s transversal and torsional vibrations are well researched, both in theory and exper-

iment [16–19]. Equation (3.1) describes a one-dimensional transversal wave on an ideal,

perfectly flexible string placed along the z axis, with string tension T , linear mass density m,

transversal string displacement η(z, t).

T
∂ 2η(z, t)

∂ z2 = m
∂ 2η(z, t)

∂ t2 (3.1)

Transversal wave speed is given by ctransversal =
√

T/m and impedance by Ztransversal =√
T m. This linearised string equation holds for small amplitude vibrations only, a sufficiently

accurate assumption during normal, steady Helmholtz motion of the bowed string. Neverthe-

less, there are cases of musical interest (e.g. attack transients of the bowed string or forceful

plucking), where the vibration amplitude becomes large and a number of nonlinear effects

appear, see [20, 21] for an overview.
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When fixed at both ends with length L, boundary conditions (3.2) force an analytical and

harmonic series of standing wave solutions (3.3), with harmonic number n, amplitude Bn,

angular phase shift φn and kn =
nπ

L .

η(0, t) = η(L, t) = 0

∂η(0, t)
∂ t

=
∂η(L, t)

∂ t
= 0

(3.2)

η(z, t) =
∞

∑
n=1

Bn sin(ωnt +φn)sinknz

ωn = knv = kn
√

T/m

(3.3)

These solutions represent the mathematical basis of the harmonic sound produced by stringed

instruments. Unfortunately, the non-linear slip and stick interaction between bow hair and

string, demands a numerical approach to find solutions. Multiple researchers have imple-

mented finite difference (FD) [22, 23] methods to solve the nonlinear equations of the bowed

or struck string. They all added terms to the basic string equation to account for various

physical effects.

Ruiz and Hiller [24, 25] first proposed a string model suitable for FD methods, including the

bowed string. Later, Bacon and Bowsher [26] focused their research on the struck string.

Chaigne and Askenfelt [27, 28] and later Bensa et al. [29] modelled piano strings struck by

a hammer and included damping terms to acount for various physical losses and frequency

dependent damping of the string.

Pitteroff and Woodhouse [30–32] simulated a model of the bowed string including bending

stiffness, torsional motion and longitudinal bow hair compliance. They used FD methods

for finite bow hair width simulation, in combination with the analytical solution of the non-

interacting string.

Desvages and Bilbao [33] included vertical polarisation of the transversal string displacement

without any coupling to the horizontal polarisation and added vertical bow hair compliance.

Their model included a term for the bow’s inertia instead of a forced bow velocity. Further-

more they modelled the player’s left hand fingers, soundboard and string interactions.

This work combines these models as described in Section 3.2, Figures 3.2, 3.3 and Equa-

tions (3.10), (3.12) and (3.11). Expanded with a spring and dashpot model of the damping
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3.1. Physical model ingredients

foam emulating the player’s bowing hand, as used during bowing pendulum experiments.

Finger and soundboard interactions are neglected, since Chapter 2 includes open string

measurements only.

3.1.1. Transversal string displacement

The string is assumed to have tension T , radius a and a homogeneous mass distribution,

with linear mass density m. When comparing the more intricate properties of different strings,

especially tungsten wound lower cello strings, this may need modification. Following the work

of Bensa et al. [29], Equation (3.4) describes the transversal string displacement η = η(z, t)

by adding terms to the ideal, one-dimensional string in Equation (3.1).

T
∂ 2η

∂ z2 −B
∂ 4η

∂ z4 −2b1
∂η

∂ t
+2b2

∂η

∂ t
∂ 2η

∂ z2 + f (vrel) = m
∂ 2η

∂ t2 (3.4)

String bending stiffness B = Eπa4

4 (Young’s Modulus E) adds inharmonicity, where higher

modes’ frequencies are lowered.

This study uses an external force f modelled after the friction law described in Section

3.1.3.

Chaigne and Askenfelt [27] proposed damping terms to approximate losses occurring in real

instruments, due to physical effects such as friction losses or coupling to the instrument’s

bridge and body. They used first and third order time derivatives to account of frequency

dependent damping, where higher frequencies have higher damping factors. Bensa et al.

showed that a third order time derivative term leads to an ill-posed initial value problem and

instead introduced a mixed spatial and time derivative term b2, creating a well-posed initial

value problem. They conducted an empirical study with a piano to fit the values of b1 and b2.

This work, assuming a crude similarity between the damping behaviour of cellos and pianos,

attempts no such study and uses the range empirical values presented by Bensa et al.

Term b2, getting larger with increasing frequency, seems to have a stabilising effect on the

numerical simulation of Helmholtz motion, as sometimes high frequency perturbations in-

troduced by the non-linear bow hair friction, summed up catastrophically during FD time

stepping.
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Chapter 3. Finite Difference Numerical String Simulation

This model of the transversal string displacement is used without modification to introduce a

second (perpendicular, uncoupled) polarisation.

3.1.2. String torsion

The bowed string’s torsional motion is closely linked to the stick and slip interaction. During

sticking, when the relative velocity at a contact point is zero, the string may still roll under the

bow hair.

vrel =
∂η

∂ t
−a

∂ χ

∂ t
− ∂xhair

∂ t
(3.5)

Note that when sticking (vrel = 0), the string’s cross sectional center of mass may still move

relative to the bow hair, due to torsional motion.

Formally, torsional motion is described by the same wave equation as transversal motion

(3.1). With angular displacement χ(z, t), torsional stiffness K, moment of inertia per unit

length J = ma2, where a is the string’s radius and m its linear mass density, assuming a

homogeneous mass distribution.

K
∂ 2χ(z, t)

∂ z2 = J
∂ 2χ(z, t)

∂ t2 (3.6)

Torsional wave speed is given by ctorsional =
√

K/J and impedance by Ztorsional =
√

KJ.

In principle, modern (cello) strings are usually built with a core wound by a second, different

material, which leads to internal friction during torsional motion, thereby dissipating energy,

as argued by Woodhouse and Loach [19]. They measured the torsional behaviour of cello

strings and their key findings show, that torsional Q factors are roughly an order of magnitude

smaller than those of the transverse modes on the same string, while exhibiting only marginal

dependence on mode number. The string’s material properties used during simulation (Table

3.2) are partially based on their work.

As with the transversal string displacement model, the simulation includes a frequency inde-

pendent damping term and an external force, dependent on the contact point string velocity

relative to the bow hair. In accordance with Woodhouse and Loach’s measurements, no

frequency dependent damping is included.
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3.1. Physical model ingredients

K
∂ 2χ(z, t)

∂ z2 −2d1
∂ χ(z, t)

∂ t
−a f (vrel) = J

∂ 2χ(z, t)
∂ t2 (3.7)

With the dispersion relation k = ω

c + id1c
K , we can relate the damping coefficient d1 to the

torsional Q factor (see Appendix C).

Q0 =
ω0K
2d1c

(3.8)

Initial simulations indicate, that the ratio of torsional to transversal Q factors is key to Helm-

holtz motion stability. Depending on initial conditions, low torsional damping can lead to

torsional waves becoming the dominating form of Helmholtz motion. Looking at the identical

mathematical form of Equations 3.4 and 3.7, coupled through the external force at the bow

hair contact region, it’s clear that both wave forms are interchangeable.

3.1.3. Friction model

This work applies the classical velocity dependent friction curve model (Equation 3.9, Figure

3.1), for its success in describing many phenomena of the bowed string. It is based on fitted

steady sliding experimental data by Smith and Woodhouse [34]. Multiple researchers have

employed it previously (e.g. [33, 35]) and have analysed and discussed it extensively in

literature [4] (add Friedlander and more).

µ(vrel) =±
[

0.4exp
−|vrel|
0.01

+0.45exp
−|vrel|

0.1
+0.35

]
, vrel ≶ 0 (3.9a)

f (vrel) = µ(vrel) fb, vrel 6= 0 (slip) (3.9b)

f (vrel) ∈ [−µs fb,µs fb] , µs = 1.2 vrel = 0 (stick) (3.9c)

The tribology of rosin is key to a more sophisticated model of dynamic friction. In particu-

lar the rosin’s viscosity strongly depends on temperature. Empirical data shows that friction

coefficient hysteresis occurs, during dynamic slip and stick processes [34, 36]. This under-

scores the need for thermal friction models, when looking for a simulation as accurate as

possible. Maestre et al. [37] and Mansour et al. [38] have recently implemented thermal

friction models in their simulations.

This research should certainly include a thermal friction model in future refinements.
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Figure 3.1.: Classical friction coefficient curve (3.9a), after the fit of steady sliding empirical
data by Smith and Woodhouse [34].

3.1.4. Bow hair, stick and player’s hand

The goal of modelling and simulation in this work, is to identify physical avenues through

which the player’s bow grip may influence radiated sound. Keeping this in mind, we look at

previous research towards understanding the bow hair and stick behaviour.

The bow’s history and early scientific work were documented in the nineteenth century by

Fétis [39] and Saint-George [40]. Many features of the “modern” bow have been developed

by François Xavier Tourte (1750-1835), reaching a sophisticated level of empirical craftsman-

ship, the physical science’s understanding has not caught up to yet, especially with regards

to features relevant to musicians and luthiers, such as playability and sound radiation.

Serious scientific interest in the bow, picked up again in the second half of the twentieth

century, with papers by Kimball [41] and Reder [42]. In 1975, Schumacher presented exper-

imental and theoretical work on bow hair and sick modes [43].

Guettler and Askenfelt [44–46] Askenfelt measured coupled bow hair and stick modes admit-

tance curves with a tiny accelerometer attached to the bow hair. For longitudinal bow hair

vibrations, they found a characteristic impedance of 4-17 kgs−1, while the steel D string sim-

ulated in this work has a characteristic impedance of 0.64 kgs−1. However, they do identify
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3.1. Physical model ingredients

opportunities for the string to drive the bow, if the bow operates close to a nodal point on the

string, where the string impedance is relatively high.

Mansour [35] dismisses any likelihood of bow hair and stick vibrations influencing timbre, due

the difference in admittance between string and bow. Although, he acknowledges the bow’s

importance regarding gestural input and playability.

Recent work by Gough analysed in-plane and out-of-plane vibrational stick modes an their

coupling to the bow hair with finite element numerical analysis and comparison with mea-

surements. A key result relevant to this work, Gough found that the player gripping the bow

adds significant amounts of damping to the bow hair and stick modes. An entirely plausible

fact, since musicians can feel the vibrations of the bow stick and suppress them noticeably

with a tight grip. When resting the bow on the string, he did not find any meaningful effects

on radiated sound. Although he did remark on the possibility of an effect associated with the

detailed slip and stick friction behaviour of the bowed string. Imagine hair and stick vibrating

horizontally and vertically in such a manner, that the relative velocity and the force acting

on the string, are altered at distinct times during the Helmholtz cycle, thereby facilitating or

hindering stick to slip transitions.

The most recent and complete models of the bowed string, still lack definite results on the

bow’s influence on radiated sound and playability.

This work uses a spring and dashpot model for longitudinal bow hair compliance, as pre-

sented by Pitteroff and Woodhouse [30] and implemented by Maestre et al. [37]. Additionally,

a lumped model of the bow stick, consisting of a mass coupled to mass of the arm by another

spring and dashpot, represents the damping foam/player’s hand or possibly a single bow hair

and stick vibrational mode. Illustrations are shown in Section 3.2, Figures 3.2 and 3.3.

Based on Desvages and Bilbao’s work [33], the vertical bow hair movement is represented

by a Hunt-Crossley model [47]. This work neglects any coupling between horizontal and

vertical polarisations through the bow hair tension. Since no experimental data to feed the

Hunt-Crossley model is available, its values are adjusted “by hand” to give some reasonable

vertical bow hair deflection of a few millimetres. During simulation, the resulting bow force Fn

is determined by adjusting the vertical position of the arm ya.
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Chapter 3. Finite Difference Numerical String Simulation

horizontal

ηηη = η(z, t) transversal displacement
χχχ = χ(z, t) torsional deflection
xxxhhh = xh(z, t) bow hair position
xb = xb(t) bow stick position
xa = xa(t) arm position

vertical

ζζζ = ζ (z, t) transversal displacement
yb = yb(t) bow stick position
ya = ya(t) arm position

Table 3.1.: Simulated state variables. The string at rest lies along the z-axis of a cartesian
frame of reference, with horizontal transversal displacement along the x-axis and vertical
transversal displacement along the y-axis.

3.1.5. Bow driving mechanism

Just as with the bowing pendulum presented in Chapter 2, the mass of the arm is driven by

a mass dropping into water. This mechanism has a mechanical impedance of 16.6 kgs−1, as

shown by experimental data by Mores [2]. The bow speed is adjusted by changing the mass

dropping into water.

3.2. Model summary

The bowed string model presented in Figures 3.2, 3.3 and Equations (3.10) to (3.12), is

suitable for finite difference numerical simulation, with explicit time stepping. State variables

are defined in Table 3.1. As laid out in the previous sections, the model includes bending

stiffness, linear damping, dispersion, uncoupled horizontal and vertical transversal polarisa-

tion, string torsion, finite bow width, longitudinal bow hair compliance, a lumped model of

the player’s hand and arm and the classical velocity dependent friction coefficient. There is

no forced bow velocity, instead the system self adjusts to the impedance w, modelled after

a mass dropping into water driving the bow. Model and string parameter magnitudes are

given in Table 3.2, corresponding to a cello D string (tuned to 147Hz) and taken from various

sources in literature as indicated.
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3.2. Model summary

Horizontal model equations.

T ηηη
′′−Bηηη

′′′′−2b1η̇ηη +2b2ηηη
′′
η̇ηη + f (vrel) = mη̈ηη transverse (3.10a)

Kχχχ
′′−2d1χ̇χχ−a f (vrel) = Jχ̈χχ torsion (3.10b)

kh(xb− xxxhhh)+ ch(ẋb− ẋxxhhh)+ f (vrel) = mhẍxxhhh bow hair (3.10c)

−k(xb− xa)− c(ẋb− ẋa)+ kh(xxxhhh− xb)+ ch(ẋxxhhh− ẋb) = mbẍb bow stick (3.10d)

k(xb− xa)+ c(ẋb− ẋa)+mgg−wẋa = maẍa arm (3.10e)

η̇ηη−aχ̇χχ− ẋxxhhh = vvvrel (3.10f)

Vertical model equations.

T ζζζ
′′−Bζζζ

′′′′−2b1ζ̇ζζ +2b2ζζζ
′′
ζ̇ζζ − fb(∆yyyhhh) = mζ̈ζζ transverse (3.11a)

k(ya− yb)+ c(ẏa− ẏb)−mbg+ fb(∆yyyhhh) = mbÿb bow stick (3.11b)

yb−ζζζ contact +a = ∆yyyhhh bow hair (3.11c)

ya = const. arm (3.11d)

Clamped boundary conditions.

η(0, t) = η(L, t) = 0 (3.12a)

η̈(0, t) = η̈(L, t) = 0 (3.12b)

χ(0, t) = χ(L, t) = 0 (3.12c)

χ̈(0, t) = χ̈(L, t) = 0 (3.12d)

ζ (0, t) = ζ (L, t) = 0 (3.12e)

ζ̈ (0, t) = ζ̈ (L, t) = 0 (3.12f)

Note, that the horizontal transversal displacement and torsional deflection are coupled through

the friction force f (vrel). When sticking, the string rolls under the bow hair, balancing the tor-

sional and transversal restoring forces with the friction forces.
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Figure 3.2.: Horizontal polarisation bowing model.
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Figure 3.3.: Vertical polarisation bowing model.
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L string length 0.685 m

T string tension 130 N

B = Eπa4

4 bending stiffness 3×10−4 Nm2

m linear mass density 0.0032 kgm−1

b1 transversal damping coefficient 0.0019 kgs−1m−1

b2 transversal damping coefficient 4.8×10−7 kgms−1

K = Gπa4

4 torsional stiffness [19] 2.8×10−4 Nm2

J = µa2 moment of inertia per unit length [19] 6.9×10−10 kgm

a string radius 0.465×10−3 m

d1 torsional damping coefficient [19] 2.5×10−8 kgms−1

k foam spring constant 500 Nm−1

c foam damping coefficient 9.9 kgs−1

kh dist. bow hair spring constant [30] 6×106 Nm−2

ch dist. bow hair damping coefficient [30] 1×103 kgs−1m−1

mb bow stick mass 0.08 kg

ma arm mass 3 kg

mg driving mass variable

w driving unit impedance 16.6 kgs−1

Table 3.2.: Cello D string model parameters. E: Young’s Modulus, G: Shear Modulus.
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3.3. Time-stepping algorithm

3.3. Time-stepping algorithm

The Finite Difference method implementation is detailed in Appendix B. The resulting basic

time-stepping equations are given by

s j+1 = A js j +A j−1s j−1 +A j−2s j−2 +
(
M j+1)−1 f, (3.13)

where vector s j at time step j contains all state variables and the square FD matrices A j,

A j−1, A j−2 and (Mj+1)−1 contain all model parameters.

Numerically, the relative velocity between bow hair and string is never exactly zero. Figure

3.4 depicts an offset added to the friction curve, taking this problem into account.

Figure 3.4.: Classical friction coefficient curve, with a numerical offset. The shaded area
indicates sticking.

Using this friction curve with a numerical offset with the slip FD equations (B.13) — assum-

ing vrel < offset means sticking — involves a trade-off between the maximum stick relative

velocity (small offset preferred) and the algorithm’s propensity to oscillate between sticking

and slipping in alternating time steps (large offset preferred). If the offset is too large, small

effects such as Schelleng ripples may be obscured and if it is too small, the bow may fail to

stick entirely during simulation.

To avoid this conundrum, a sufficiently small offset (1×10−6ms−1) is used and during stick-

ing, the relative velocity is forced to zero (within numerical accuracy) by using the stick FD

51



Chapter 3. Finite Difference Numerical String Simulation
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Figure 3.5.: Time-stepping algorithm workflow when using separate FD equations for (partial)
sticking or slipping situations.
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equations (B.15). Now, during sticking the friction force assumes the value of the string’s

restoring forces (B.14), ensuring vrel = 0.

As presented in Figure 3.5, after initialization, the time-stepping loop starts by

1. taking the string’s restoring forces from the previous time-step and calculating the rela-

tive velocity and bow force using backwards FD equations (B.10). If |vrel|< offset and

| frestore|< fb, the bow hair sticks to the string.

2. Set the correct FD matrices according to the slipping or sticking state of each bow hair

and string contact grid point.

3. Perform timestep according to Equation (3.13) and check whether grid points changed

from slipping to sticking. (When |vrel|<) offset or changes its sign and | frestore|< fb.)

4. When a slipping grid point changed the sign of its relative velocity during, it should start

sticking. To ensure this, an iterative numerical solver (Dogleg algorithm [48]), solves

Equation (3.13) for fb with the constraint vrel = 0.

5. The timestep is repeated with the (slightly) adjusted fb.

Setting the partial slip and stick FD matrices and running the numerical solver is compu-

tationally expensive. On the other hand, this time-stepping algorithm produces numerically

much more reliable transitions between slipping and sticking.

3.4. Simulation results

3.4.1. Average power and spectral centroid analysis

Consistent with the bowing pendulum experiments in Chapter 2, the simulation results pre-

sented in Figure 3.6, are restricted to steady Helmholtz motion, with a congruent parameter

space exploration and, again, with the simple metrics of spectral centroid and power in the 20

- 10000Hz band. They are calculated from the string’s transverse displacement 1mm away

from the bridge, since the instrument body is not simulated. The calculation methodology is

identical (Section 2.2), with a short-time fourier transform (16384 samples window length at

50 kHz sample rate) and a YIN algorithm [12] for Helmholtz motion classification purposes.
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Figure 3.6.: Pseudocolour plots of the average power in the 20 - 10000Hz frequency range
and spectral centroid across the playing parameter space spanned by Fn and vb, at three
distinct values of β . Calculated from the string’s transverse displacement 1mm away from
the bridge. Each coloured coloured rectangle represents an average over multiple stft
windows. Power in dB is given relative to the rectangle with the highest output.
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A direct comparison with the microphone signal presented in Sections 2.3.2 and 2.3.3 is

obviously questionable, nevertheless a few basic observations seem allowable. The model

properties used, do not result in any relevant bow stick vibrations, while longitudinal bow hair

vibrations do occur.

The average power output increases with bowing velocity, but remains entirely independent

of Fn. When approaching the bridge, power output increases. At medium and large β , this

behaviour is consistent with the empirical findings for the rigid bow mounting in Figure 2.9.

The spectral centroid pseudocolour plots (Figure 3.6, right column) display close to linear

trajectories of constant centroid in the vb - Fn plane. A general trend of lower spectral centroid

at low vb and high Fn, and higher spectral centroid at high vb and low Fn is observable. At

constant values of vb and Fn, the spectral centroid increases when bowing closer to the

bridge. At low vb and low Fn, the β = 0.04 plot (top right) exhibits a maximum in spectral

centroid, shifting to higher bow speed, when moving away from the bridge. Overall and in

absolute terms no bowing position β can lead to a distinctly higher spectral centroid. There

are no clear parallels to be extracted, when comparing the spectral centroid simulation and

empirical results.
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Figure 3.7.: Select examples of horizontal transverse displacement, 1mm away from the
bridge, single slip and stick cycle. The legend indicates β , bow force equivalent weight,
bow speed, average power and spectral centroid. The average power and spectral centroid
analysis in Figure 3.6 is based, in part, on this data.
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Figure 3.7 shows select examples of the horizontal transverse displacement, 1mm away from

the bridge, used for average power and spectral centroid calculation. The examples, showing

a single cycle of Helmholtz motion each, are synced at the moment of string release. The

correlation between amplitude and average power is immediately apparent to the naked eye,

while the particular value of spectral centroid is not related to the displacement curve shape

in an obvious manner. The next section investigates the precise slip and stick interaction

between bow hair and string with the chosen examples.

3.4.2. Partial slip, string torsion and bow hair vibrations

The strength of the simulation model at hand, is its inclusion of the finite width contact area,

torsional string motion and longitudinal bow hair vibrations. The three model components are

tightly linked and related to the concept of Schelleng Ripples.

The previous section’s examples are investigated in Figures 3.8 to 3.12, where the top plot

presents horizontal transverse displacement and torsional deflection (at the contact area’s

center) in relation to the moment of string release, where all bow hair segments start slipping,

as indicated by the vertical black lines. The middle graph depicts relative velocity between

string surface and bow hair vrel and the velocity difference between the string’s cross sec-

tional center and the bowing velocity vb, corresponding to the relative velocity measured in

much of the empirical literature available. The bottom graph presents the slip and stick in-

teraction across the entire contact area width. White corresponds to sticking (remember, the

string may still roll), red indicates slipping backwards with respect to the bowing direction and

blue represents forward slipping. Note that axis scaling is kept constant across all figures.

Example 1 (Figure 3.8) corresponds to playing piano, at low vb and Fn, close to the finger-

board, while example 2 (Figure 3.9) corresponds to playing forte, at high vb and Fn, close

to the bridge. Both playing states present close to ideal Helmholtz motion, with relatively

few partial slips and sharp slip to stick transitions. The piano example has almost no ripples

during the sticking phase, as seen both in relative velocity an transverse displacement. The

forte case exhibits slightly stronger ripples, associated with partial slips that reach further

across the bow hair width — but almost no forward slips — and a higher torsional deflec-

tion, both in amplitude and absolute offset. The highly irregular relative velocity vcenter− vb

is a result of longitudinal bow hair vibrations. Closer to the bridge, the time spent slipping is

shortened and maximum slip velocity is reached only momentarily, although it is about four
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3.4. Simulation results
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Figure 3.8.: example 1, piano. Average power −14 dB, spectral centroid 214Hz.
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Figure 3.9.: example 2, forte. Average power −1 dB, spectral centroid 178Hz.
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Chapter 3. Finite Difference Numerical String Simulation

times higher than in the piano case. When looking closely, the moment of slip initiation and

the torsional vibration follow a fixed phase relationship. With piano, release occurs close to

the minimum torsional deflection and with forte, release occurs during forward rotation (in

bowing direction).

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8
ho

riz
on

ta
l t

ra
ns

ve
re

di
sp

la
ce

m
en

t [
m

m
]

0

2

4

6

to
rs

io
na

l d
ef

le
ct

io
n 

[°
] = 0.07, F

n
/g  100g, v

b
  10cm/s

0 1 2 3 4 5 6 7 8 9 10

-2

-1

0

v re
l [m

/s
]

v
rel

v
center

 - v
b

0 1 2 3 4 5 6 7 8 9 10

time [ms]

44

46

48

50

52

54

po
si

tio
n 

al
on

g 
st

rin
g 

[m
m

]
(0

: b
rid

ge
; 6

85
: n

ut
)

Figure 3.10.: example 3, medium β , close to ideal Helmholtz motion. Average power −6 dB,
spectral centroid 203Hz.

Example 3 (Figure 3.10) depicts close to ideal Helmholtz motion at intermediate playing

parameters. A correlation between the relative velocity vcenter− vb ripples and torsional de-

flection is apparent. Again, supporting the notion that the ripples during the stick phase are

formed through a combination of torsional vibrations, longitudinal hair vibrations and partial

slipping. Furthermore, the fixed phase relationship between release and torsional deflection

is present (release during forward rotation).

Example 4 (Figure 3.11), although there are multiple release events during the Helmholtz

cycle, is still classified as Helmholtz motion by the fundamental frequency estimating YIN

algorithm. The main slip event and Helmholtz corner are clearly visible. The second release

manifests itself as a strong ripple, illustrating a rather fluid transition from Helmholtz motion

to non-Helmholtz motion when approaching the minimum bow force. Torsional deflection

amplitude and offset are at a minimum. The majority of the time, much of the contact area is
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Figure 3.11.: example 4, multiple slipping. Average power −4 dB, spectral centroid 238Hz.
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Figure 3.12.: example 5, strong torsional vibration. Average power −9 dB, spectral centroid
96Hz.
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Chapter 3. Finite Difference Numerical String Simulation

slipping, nevertheless the slip and stick characteristic continues to emerge. Again, the main

release occurs during forward rotation.

Example 5 (Figure 3.12) is a sort of brute force example close to the fingerboard. During mu-

sical play this would be rather an exception than the norm. Almost no partial slips occur, but

quite noticeable, the stick to slip transition is not instantaneous, as some bow hair segments

slip and stick repeatedly. As a result the vrel curve shows stronger vibrations during slipping.

As with the previous examples, release occurs during forward rotation. Remarkably, despite

the high torsional amplitude and offset, barely any ripples occur during the sticking phase.

3.5. Summary of findings

The numerical simulation model presented in this work, succeeds at modelling steady Helm-

holtz motion, with two uncoupled transverse directions of polarisation, torsional motion, dis-

persion, frequency dependent damping, longitudinal bow hair compliance, finite bow hair

width and a low mechanical impedance driving mechanism modelled after Mores’ bowing

pendulum. The classical velocity dependent friction curve was implemented. An offset in the

friction curve is kept to a minimum by using a separate set of model equations during slipping

and sticking.

A non-exhaustive β , vb and Fn parameter space analysis of steady Helmholtz motion was

conducted. Average power and spectral centroid behaviour, calculated with a short-time

fourier transform, was investigated. The parameter depence of the average power shows

good agreement with empirical evidence, while, unsurprisingly, modelling the spectral cen-

troid behaviour correctly may require sophisticated analysis and modelling of bridge, body

and bow stick-hair resonances with coupled transverse polarisations.

No clearly visible relationship between the rounding of the Helmholtz corner and spectral

centroid can be extracted from the transverse displacement data.

An analysis of finite bow hair width slip and stick behaviour proved to be fruitful. The effects of

partial slipping (forward and backward), torsional motion and longitudinal bow hair vibrations

all influence the ripples — visible in both the transverse displacement and relative velocity

curves — during the sticking phase of the Helmholtz cycle, to a varying degree, dependent

on the bowing parameter. No clear dominating effect emerged.

60



3.5. Summary of findings

Release events and torsional motion follow a strict phase relation. Release always occured

near the minimum torsional deflection or later during forward (in bowing direction) rolling.

The Helmholtz motion seems exceptionally resilient to partial slipping, even when more slip-

ping than sticking, across the entire bow hair width, occurs, continuous Helmholtz motion can

persist.

These results emphasize, that finite bow hair width simulation is essential to understanding

the detailed nature of the slip and stick friction interaction and working towards improved

friction models.
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Chapter 4.

Conclusions and Outlook

Grappling with the understanding of the bowed string and its playability, is possible on dif-

ferent levels of analysis. An empirical, measurement techniques based approach, was pre-

sented in Chapter 2. Physics based modelling, trying to describe and understand the bowed

Instrument’s nature at a fundamental level, was elaborated on in Chapter 3. At the same

time, a musical perspective, thinking like a musician, luthier, bow maker or listener, seems

to be of equal importance, as their level of sophistication stems from long tradition and their

craft was honed over centuries.

When entering the domain of musicians, we invariably travel to the realm of aesthetics, sub-

jective perception and emotion, posing an additonal, uncertain challenge. And yet we can

certainly strive to classify what constitutes playability and great sound, further refining our

models to include the bow, intrument body and musician’s physiology in greater detail.

The bowing pendulum experiments presented in this work, provide empirical evidence of

the bowing hand’s influence on the frequency spectrum and radiated sound level, beyond

the three major bowing parameters (Fn, vb, β ). To provide further insight and relate these

results to musical playing and listening traditions, further auditory perception studies and

measurements of musician’s muscle tension are required.

The results in Chapter 2 support the use of a bowing pendulum, rather than electrically driven

bowing machines. Nevertheless, the present bowing pendulum has room for improvement.

A more elaborate bow mounting, akin to a musician’s bow grip and with tuneable damping

properties is desireable. As is some form of automated measurement. With the current

setup, adjusting the bow forces and fine tuning the pendulum is a quite tedious task.
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Chapter 4. Conclusions and Outlook

The empirical data on the bowed string currently available, is insufficient to accurately verify

the presented model of the bowed string. Horizontal and vertical string displacement, tor-

sional and thermal data, across the finite bow hair width, with sufficient time resolution are

necessary. Further bowing pendulum experiments should incorporate advanced sensors to

simultaneously measure and derive more string model parameters with greater precision, in

order to work towards practical applications useful to luthiers, string manufacturers or musi-

cians.

The physics based model established in this work, is successful in describing the torsional

motion of the string and the associated partial slipping and forward slipping phenomena.

Incorporating a thermal friction model is key and necessary improvement in further work.

The finite difference model at hand could be used, to further investigate the bowed string’s

torsional motion. The processes facilitating a fixed phase relation between torsional motion

and release, are poorly understood. Inácio [49] has shown, that the ratio of transversal to

torsional wave speed, can influence the duration of transitions. This could be investigated

further, presenting an avenue to understand playability.

Unfortunately, the finite difference modelling efforts have reached somewhat of a dead end,

particularly in terms of performance, especially when attempting elaborate parameter space

analysis. Further model refinements, should ideally include a modal analysis of the instru-

ment’s body and bridge as well as the bow’s hair and stick. Coupling between transverse

polarisations is key when trying to analyse the influence of bow stick vibrations. It is conceiv-

able, that a (tiny) Helmholtz like motion occurs in vertical direction of transverse polarisation.

Leading to bow force and velocity variations, supporting or hindering particular qualities of

the bowed string. Combined digital waveguide synthesis and finite difference methods show

more promise to achieve high fidelity and real-time performance.

When listening, the emerging patterns of music, provide us with deep satisfaction, a maybe

primordial experience at times. A great understanding of nature’s processes and the sophis-

tication of precise measurement, are rewarding in themselves. Reasons, other than personal

and cultural, to further persue this avenue of research, do exist. Some Luthiers like to en-

hance their craftsmanship with the tools of modern physics, to more reliably achieve a high

level of perfection. Certainly, measurement techniques can bring some objectivity to the oth-

erwise quite subjective listening experience, when judging combinations of instrument, string

and bow. Musicians with their very much individual preferences, are often left with the (some-

times expensive) process of trial and error, when choosing the right combination. Some level

of predictability from measured data, to identify desired combinations of good tonal quality
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and playability would be useful indeed. There are tradeoffs involved between playability and

different aspects of tonal quality. This is also the case when manufacturing strings. Making

predictions based on a set of string parameters and material properties, would provide string

manufacturers with an advantage. In future, it might even be conceivable, to develop a vir-

tual instrument closely resembling reality, allowing musicians to easily test and compare the

sound of multiple different strings.
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Appendix A.

Scatter plots

A.1. Spectral centroid
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Figure A.1.: β ≈ 1/14, spectral centroid scatter plot.

67



Appendix A. Scatter plots
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Figure A.2.: β ≈ 1/30, spectral centroid scatter plot.
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Figure A.3.: β ≈ 1/9, spectral centroid scatter plot.
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Appendix B.

Finite Difference Method Implementation

B.1. Equally Spaced Discretisation Grid

Finite Difference Simulations were performed on an equally spaced discretisation grid with

an explicit time-stepping method. Separate grid points were used for horizontal transversal,

vertical transversal and torsional motion. The number of grid points is calculated from the

string length L and grid spacing ∆z.

N =
L
∆z

(B.1)

Discrete horizontal transversal displacement vector notation at time step j.

η(z, t) =


η

j
1
...

η
j

N

 , with η
j

i = η(zi, t j) (B.2)

Throughout this chapter, index i denotes grid points along the entire string, while index c

denotes the W = e2− e1 grid points within the string and bow hair contact region, where e1

and e2 index the bow hair edge grid points.

i ∈ [1, . . . ,N] (B.3a)

c ∈ [e1, . . . ,e2] , with e1, e2 ∈ [1, . . . ,N] (B.3b)
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Appendix B. Finite Difference Method Implementation

We can summarise all 3N +W +4 simulated state variables in a single discrete vector.

s j =



η
j

1
...

η
j

N

ζ
j

1
...

ζ
j

N

χ
j

1
...

χ
j

N

x j
a

x j
b

x j
h,1
...

x j
h,W

y j
a

y j
b



(B.4)

B.2. FD Equations

A list of all FD Equations used during simulation, with shorthand notation

f (zi, t j) = f j
i (B.5)

Time derivative central FD Equation, to second order accuracy.

∂ f j
i

∂ t
=

f j+1
i − f j−1

i
2∆t

+O(∆t2) (B.6)

Time derivative backwards FD Equation, to second order accuracy. Used in mixed time and

space damping term.
∂ f j

i
∂ t

=
3 f j

i −4 f j−1
i + f j−2

i
2∆t

+O(∆t2) (B.7)
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B.3. FD Operators

Second spatial derivative central FD Equation, to second order accuracy.

∂ 2 f j
i

∂ z2 =
f j
i+1−2 f j

i + f j
i−1

∆z2 +O(∆z2) (B.8)

Fourth spatial derivate central FD Equation, to second order accuracy.

∂ 4 f j
i

∂ z4 =
f j
i+2−4 f j

i+1 +6 f j
i −4 f j

i−1 + f j
i−2

∆z4 +O(∆z2) (B.9)

Time derivative backwards FD Equation, to second order accuracy. Used in vrel for nonlinear

friction coefficient calculation and in the frequency dependent damping term, where mixed

spatial and time derivatives occur. With this backwards FD Equations, it’s possible to solve

for f j+1
i in closed form.

∂ f j
i

∂ t
=

3 f j
i −4 f j−1

i + f j−2
i

2∆t
+O(∆t2) (B.10)

B.3. FD Operators

Spatial derivative FD operators in matrix notation, with FD coefficients as give in Equa-

tions (B.8) and (B.9). They enforce the clamped boundary conditions.

∂ 2

∂ z2 = Dzz =



−2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2


(B.11)

∂ 4

∂ z4 = Dzzzz =



6 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .

1 −4 6 −4 1
1 −4 6 −4

1 −4 6


(B.12)
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Appendix B. Finite Difference Method Implementation

B.4. FD Model Equations

Inserting Equations (B.6) to (B.10) in Equations (3.10) and (3.11), we get the entire set of

model equations in FD notation. Note that there are 3N + 4+W equations for each state

variable Equation (B.4) and W equations for the relative velocity, in total.

B.4.1. Slip

All bow hair and string contact grid points slip (vrel,c 6= 0 and fi(vrel,c) = µ(vrel,c) fb,c).

3η
j

c −4η
j−1

c +η
j−2

c

2∆t
−a

3χ
j

c −4χ
j−1

c +χ
j−2

c

2∆t

−

(
3x j

b−4x j−1
b + x j−2

b
2∆t

+
3x j

h,c−4x j−1
h,c + x j−2

h,c

2∆t

)
= vrel,c

(B.13a)

T
η

j
i+1−2η

j
i +η

j
i−1

∆z2 −B
η

j
i+2−4η

j
i+1 +6η

j
i −4η

j
i−1 +η

j
i−2

∆z4 −2b1
η

j+1
i −η

j−1
i

2∆t

+b2
3η

j
i+1−6η

j
i +3η

j
i−1−4η

j−1
i+1 +2η

j−1
i +8η

j−1
i −4η

j−1
i−1 +η

j−2
i+1 −2η

j−2
i +η

j−2
i−1

∆t∆z2

+ fi(vrel,c)−m
η

j+1
i −2η

j
i +η

j−1
i

∆t2 = 0

(B.13b)

T
ζ

j
i+1−2ζ

j
i +ζ

j
i−1

∆z2 −B
ζ

j
i+2−4ζ

j
i+1 +6ζ

j
i −4ζ

j
i−1 +ζ

j
i−2

∆z4 −2b1
ζ

j+1
i −ζ

j−1
i

2∆t

+b2
3ζ

j
i+1−6ζ

j
i +3ζ

j
i−1−4ζ

j−1
i+1 +2ζ

j−1
i +8ζ

j−1
i −4ζ

j−1
i−1 +ζ

j−2
i+1 −2ζ

j−2
i +ζ

j−2
i−1

∆t∆z2

− fb,i(∆yh,c)−m
ζ

j+1
i −2ζ

j
i +ζ

j−1
i

∆t2 = 0

(B.13c)

K
χ

j
i+1−2χ

j
i +χ

j
i−1

∆z2 −2d1
χ

j+1
i −χ

j−1
i

2∆t
−a fi(vrel,c)− J

χ
j+1

i −2χ
j

i +χ
j−1

i
∆t2 = 0 (B.13d)

k
(

x j
b− x j

a

)
+ c

(
x j+1

b − x j−1
b

2∆t
− x j+1

a − x j−1
a

2∆t

)

+mgg−w
x j+1

a − x j−1
a

2∆t
−ma

x j+1
a −2x j

a + x j−1
a

∆t2 = 0

(B.13e)
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B.4. FD Model Equations

−k
(

x j
b− x j

a

)
− c

(
x j+1

b − x j−1
b

2∆t
− x j+1

a − x j−1
a

2∆t

)
+ kh

(
x j

h,i− x j
b

)
+ch

(
x j+1

h,i − x j−1
h,i

2∆t
+

x j+1
b − x j−1

b
2∆t

)
−mb

x j+1
b −2x j

b + x j−1
b

∆t2 = 0

(B.13f)

kh

(
x j

b− x j
h,i

)
+ ch

(
x j+1

b − x j−1
b

2∆t
−

x j+1
h,i − x j−1

h,i

2∆t

)

+ fi(vrel,c)−mh
x j+1

h,i −2x j
h,i + x j−1

h,i

∆t2 = 0

(B.13g)

k
(

y j
a− y j

b

)
+ c

(
y j+1

a − y j−1
a

2∆t
−

y j+1
b − y j−1

b
2∆t

)

−mbg+∆z
e2

∑
c=e1

fb,c(∆yh,c)−mb
y j+1

b −2y j
b + y j−1

b
∆t2 = 0

(B.13h)

B.4.2. Stick

All bow hair and string contact grid points stick (vrel,c = 0 and f (vrel) ∈ [−µs fb,µs fb]).

During sticking, the friction force f (vrel) is determined by the string’s restoring force, see

Equation (3.10a).

f (vrel = 0) = frestore =−T η
′′+Bη

′′′′+2b1η̇−2b2η
′′
η̇ +mη̈ (B.14)

Thus, in the contact region, c ∈ [e1, . . . ,e2], the FD model equations are now given by

T
η

j
c+1−2η

j
c +η

j
c−1

∆z2 −B
η

j
c+2−4η

j
c+1 +6η

j
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j
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j
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∆z4 −2b1
η

j+1
c −η

j−1
c

2∆t

+b2
3η

j
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j
c +3η

j
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j−1
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j−1
c +8η

j−1
c −4η

j−1
c−1 +η

j−2
c+1 −2η

j−2
c +η

j−2
c−1

∆t∆z2 = frestore,c

(B.15a)
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3χ
j

c −4χ
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c +χ
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c
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−

(
3x j

b−4x j−1
b + x j−2

b
2∆t

+
3x j

h,c−4x j−1
h,c + x j−2

h,c

2∆t

)
= 0 = vrel,c

(B.15b)
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(B.15c)
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B.5. Matrix Notation

With the state vector from Equation (B.4), we can write Equation (B.13)/(B.15) in matrix

form,

M j+1s j+1 +M js j +M j−1s j−1 +M j−2s j−2 + f = 0 (B.16)

and solve for s j+1.

s j+1 =
(
M j+1)−1 M js j +

(
M j+1)−1 M j−1s j−1

+
(
M j+1)−1 M j−2s j−2 +

(
M j+1)−1 f

(B.17)

Simplified with A j =
(
M j+1)−1 M j, A j−1 =

(
M j+1)−1 M j−1, . . . the basic time-stepping

equation is given by

s j+1 = A js j +A j−1s j−1 +A j−2s j−2 +
(
M j+1)−1 f. (B.18)

The FD matrices A j, A j−1, A j−2 and (Mj+1)−1 (a separate set each for the slipping and

sticking case), contain all model parameters and remain constant during time-stepping, with

their coefficients given by Equations (B.13) and (B.15). f contains all vrel-dependent force

terms, calculated with backwards FD Equation (B.10). This allows a relative velocity stick

or slip check, prior to the next time step and proceed with the correct (slip or stick) set of

matrices.

When simulating finite bow hair width, the hair and string contact region encompasses more

than one grid point and partial slipping and sticking situations occur, where the FD matrices

A and (Mj+1)−1 become a combination of the slipping and sticking case.

A careful comparison of Equation (B.13) and Equation (B.15) yields, that changes occur

only for state variables involved with string and hair contact, ηc, χc and yh. Armed with

this knowledge, we can define a vector p, of the same length as s j in Equation (B.4), with

elements equal to one for all state variable indices involved in sticking contact and zero

otherwise. Using Matlab code notation, partial slip and stick FD matrices are then given by

Apartial(p == 0, :) = Aslip(p == 0, :);

Apartial(p == 1, :) = Astick(p == 1, :);
(B.19)
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Appendix C.

Q-factor and damping coefficients

This section derives the raltionship between the transversal and torsional Q-factor and damp-

ing coefficients b1 and d1 at their respective fundamental frequency.

Guessing a solution

η = Ae−i(kx+ωt) (C.1)

to the string equation

T η
′′−Bη

′′′′−2b1η̇ +2b2η
′′
η̇−mη̈ = 0, (C.2)

the resulting dispersion relation is given by

k2(1+ i
ω2b2

T
)− k4 B

T
+ i

ω2b1

T
− ω2

c2 = 0, (C.3)

with transversal wave speed c =
√

T
m . With the approximations that B is small and iω2b2

T � 1
at the fundamental frequency, we get

k =
ω

c

√
1− i

2b1c2

ωT
. (C.4)

Assuming 2b1c2

ωT � 1 and using Taylor series expansion
√

1− x = 1− 1
2x+O(x2), the dis-

persion relation for transversal waves at the fundamental frequency, is approximated with

reasonable accuracy by

k =
ω

c
− i

b1c
T

. (C.5)

77



Appendix C. Q-factor and damping coefficients

The complex term leads to an exponential decay proportional to e−
ω

2Q t . Thus, the transversal

quality factor Q0 of the fundamental frequency ω0 is determined by

Q0 =
ω0T
2b1c2 . (C.6)

Equivalently, the relationships for torsional waves are given by

k =
ω

c
− i

d1c
K

, Q0 =
ω0K
2d1c2 . (C.7)

For large values of Q0, the Q-factor approximates the number of oscillations required for the

amplitude of a freely oscillating system to drop to e−π , or 4% of its initial magnitude.
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