
A Solver for the Steiner Tree
Problem with few Terminals

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Softwareengineering und Internet Computing

eingereicht von

André Schidler, BSc
Matrikelnummer 1225113

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Stefan Woltran
Zweitbetreuung: Dr. Johannes Fichte
Mitwirkung: DI Markus Hecher

Wien, 11. Oktober 2018
André Schidler Stefan Woltran

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





A Solver for the Steiner Tree
Problem with few Terminals

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Softwareengineering and Internet Computing

by

André Schidler, BSc
Registration Number 1225113

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Stefan Woltran
Second advisor: Dr. Johannes Fichte
Assistance: DI Markus Hecher

Vienna, 11th October, 2018
André Schidler Stefan Woltran

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

André Schidler, BSc
Murlingengasse 15/319, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. Oktober 2018
André Schidler

v





Kurzfassung

Das graphentheoretische Steinerbaumproblem ist ein sehr bekanntes NP-hartes Pro-
blem. Instanzen des Problems bestehen aus einem Graphen G = (V,E), den Kosten für
Kanten c und einer Menge aus Terminalen R ⊆ V . Die Lösung zu einer Instanz ist ein
zusammenhängender Teilgraph minimalen Gewichts der alle Terminale enthält. Es ist
lange bekannt, dass Instanzen mit einer Laufzeitbeschränkung von O(3∣R∣) gelöst werden
können. Das Problem ist also effizient lösbar, wenn die Anzahl der Terminale beschränkt
werden kann.

PACE ist ein alljährlicher Wettbewerb. Jedes Jahr wird ein anderes NP-hartes Pro-
blem verwendet, von dem bekannt ist, dass es effizient lösbar ist, wenn ein Parameter
beschränkt werden kann. Die TeilnehmerInnen geben für diesen Wettbewerb Programme
ab, die Instanzen des Problems lösen können (Lösungsprogramme). Diese werden danach
gereiht, wie viele Instanzen sie innherhalb einer gewissen Zeit- und Arbeitsspeichergrenze
lösen können. Dieses Jahr war das ausgeschriebene Problem das graphentheoretische
Steinerbaumproblem.

Wir haben ein Lösungsprogramm implementiert und damit den vierten Platz erzielt.
In dieser Arbeit präsentieren wir den formaltheoretischen Hintergrund sowie Implemen-
tierungsdetails unseres Programms. Der Großteil der Implementierung folgt direkt aus
der Theorie. Daher beschränken wir uns auf jene Implementierungsdetails die entweder
spezifisch für unser Programm sind, oder nicht direkt aus der Theorie ableitbar sind.

Der Quellcode aller teilnehmenden Programme muss nach der Abgabefrist veröffentlicht
werden. Dies hat uns erlaubt die drei besten Programme näher zu analysieren. Wir
präsentieren hier die wesentlichen Unterschiede zwischen diesen Programmen und unserem.
Wir haben außerdem versucht, das durch die Analysen gesammelte Wissen, in unser
Programm einzubauen. Wie diese Adaptierungen unser Programm beeinflusst haben, ist
ein weiteres Thema dieser Arbeit.

Wir haben unser Programm außerdem mit öffentlichen und bekannten Instanzen getestet.
Wir präsentieren die Ergebnisse und vergleichen diese mit den von anderen aktuellen
Lösungsprogrammen erzielten Resultaten.
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Abstract

The Steiner tree problem on graphs is a well known NP-hard problem. Instances of this
problem define a graph G = (V,E) with edge costs and a set of terminals R ⊆ V . The
solution to an instance is a connected subgraph of minimal total cost, that contains all
vertices in R. It is known that an instance can be solved in time O(3∣R∣). The problem is
therefore (fixed parameter) tractable if we know that the number of terminals is smaller
than some k.

PACE is an annual competition. Each year a different fixed parameter tractable problem
is used. Participants submit programs that solve instances of the problem. These solvers
are then ranked by the number of instances they could solve within a given time and
memory limit. This year’s topic was the Steiner tree problem on graphs.

We implemented and submitted a solver that placed 4th in the competition. In this
thesis we discuss the formal theory used in our solver, as well as implementation details.
Since most of the implementation follows directly from the theory, we focus on details
that are particular to our implementation or not apparent from theory.

PACE requires the source code of all submitted solvers to be publicly available. This
allowed us to analyze the top three submissions. We discuss how they differ from our
implementation. We also tried to apply the insights from this analysis to our solver. We
show if and how these extensions impact the performance of our implementation.

We benchmarked our solver against a collection of publicly available and well known
instances. We present the results and discuss how these compare to those of other
state-of-the-art solvers.
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CHAPTER 1
Introduction

1.1 Motivation
The Steiner Tree Problem on Graphs (ST) is named after the 19th century mathematician
Jakob Steiner. It is well known that the problem is NP-hard [Kar72] and therefore
intractable. Since we cannot generally solve instances of NP-hard problems efficiently,
knowing which classes of instances are practically solvable is of great value.

One approach to identify such classes is parameterized complexity. The idea is to find
parameters besides the input size to classify the complexity. We can then identify those
classes of instances that become tractable, if the parameter is bounded.

The Parameterized Algorithms and Computational Experiments Challenge (PACE) is
an annual competition that encourages the implementation of solvers for such problems.
Often new approaches to problems are developed only theoretically and their practical
value is unknown. PACE [BS18] tries to encourage participants to bridge this gap between
theory and practice.

The main motivation was to put knowledge from the parameterized complexity domain
into practice. The choice of ST was mandated by this year’s topic of PACE.

1.2 Problem Statement and Aim
An instance of ST is defined by a graph, edge costs and a subset of its vertices called
the terminals. The goal is to find a connected subgraph of minimum weight containing
all terminals. Figure 1.1 shows an example graph and the solution to the associated ST.
The graph has 9 terminals and the edges of the minimal subgraph have a total weight of
82. Although the problem is intractable, one of the classic algorithms for this problem
can efficiently solve instances with a low number of terminals. The number of terminals
is therefore a parameter that allows us to identify efficiently solvable instances.
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Figure 1.1: A graph with a minimal subgraph connecting the terminals. Terminals are
drawn larger and edges of the subgraph are colored.

This year’s PACE had several tracks:

1. Exact with few terminals: Instances contain few terminals.
2. Exact with low treewidth: Instances have low treewidth, a structural property that

can be used by algorithms.
3. Heuristic: In contrast to the other two tracks, the solution found by the solver is

not required to be optimal.

We participated in the exact with few terminals track. The rules for this track stated that
every instance has to be solved optimally or not at all. It was therefore not allowed to
output a heuristic solution, in the hope that it is correct. Furthermore, use of third party
solvers was prohibited. It would have otherwise been possible to base the implementation
on existing linear programming frameworks. In every track the submitted solvers had 30
minutes per instance to find a solution and were required to stay within a 6 GB memory
limit.

The general objective was to create a solver that is specialized for instances with few
terminals. For this end, we set the following goals:

• Combine the state-of-the-art body of theory into one program.
• Optimize the solver to perform well in the competition. This required the following

considerations:
– The runtime does not matter as long as it is within the limits. Solving hard

instances in time is therefore more important than solving easier instances
fast.

– Memory has to be used wisely, as the limit is tight.
– The instances used to rank the submissions will probably resemble the publi-

cized instances. It is therefore important that our solver performs well for the
public instances.

2



1.3. Contributions

• Analyze the other submissions after the deadline.
• Compare our solver to existing solvers using well known benchmarks.
• Prove the correctness of our approach.

1.3 Contributions
Our two main contributions are the proof of correctness for our approach and the actual
implementation.

Most of the theoretical foundation for our solver has been available and proven. We
adapted the solving algorithm to allow for linear programming based, or more generally
inconsistent, heuristics. This mandated a proof of correctness for the algorithm, given
this new type of heuristics. This proof is presented in Chapter 3.7.

The implementation is a novel combination of techniques. Especially the solving algorithm
has not been combined with other approaches before. Furthermore, we extended the
implementation of the algorithm with details not yet discussed in literature. These
extensions are discussed in Chapter 4.

Another contribution is the analysis and comparison of the PACE submissions as presented
in Chapter 5.

1.4 Structure
We start by introducing some definitions and basic knowledge in Chapter 2. We then
discuss our implementation in two ways. In Chapter 3 we present the theoretical body
that went into our solver. The ideas presented here have been gathered from different
sources and comprise the base our solver is built on. We also prove the correctness for
our solving algorithm. In Chapter 4 we discuss implementation details. Here we present
new ideas that went in our solver as well as insights we gathered. Afterwards we discuss
the results of the PACE competition and take a close look at the other submissions in
Chapter 5. We also discuss attempts to extend our solver with features from the other
submissions. In Chapter 6 we present the results of benchmarking our solver using well
known instances. We also compare it to the results in other papers.

1.5 State of the Art
One successful approach to solving the Steiner tree problem is dynamic programming.
The Dreyfus-Wagner algorithm [DW72] is one of the classic algorithms for this problem.
A refinement of this approach, the Dijkstra-Steiner algorithm [HSV16], is used in our
solver. Both are discussed in Chapter 3.2.

Another dynamic programming algorithm with similar properties is a minimum-flow
algorithm for networks [EMV87]. It is used by one of the other submissions and is
discussed in Chapter 5.2.1.

3



1. Introduction

A different approach used to solve the problem is Branch and Cut (B&C). The idea is to
use linear programming to model the problem and use a modified Branch and Bound
(B&B) algorithm to find a solution. Solvers that use B&C distinguish themselves by the
linear programming model they use [FLL+17, KM96]. As one of the other submissions
uses this approach, we discuss it in Chapter 5.4.

Solvers usually try to reduce an instance before they solve it. Therefore, they try to
remove irrelevant parts of the graph, before passing it to the solving algorithm. As most
reductions have been known for some time, state of the art solvers use a similar set of
reductions. We discuss these in Chapter 3.3.

Some algorithms with theoretically good bounds have been developed, that do not seem
to perform well in practice. A subset convolution algorithm has the currently best
known runtime bound [BHKK07]. Furthermore, algorithms with worse time bounds, but
polynomial memory bounds have been developed [BHKK07, FGK08].
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CHAPTER 2
Preliminaries

In this chapter, we establish the notations and background knowledge required throughout
this thesis. We start by introducing some complexity theory basics. We then discuss the
necessary graph theory definitions. This allows us to define the Steiner Tree Problem on
Graphs (ST). Finally, we introduce linear programming.

2.1 Complexity Theory
We use O(f(n)) to classify the runtime of algorithms. Given a measurement n for the
size of the input, e.g. the number of vertices in a graph or the number of elements to
sort, we define O as follows [Bac94, Lan09]:

O(g(n)) = {f(n) ∣ (∃c, n0 > 0), (∀n ≥ n0) ∶ 0 ≤ f(n) ≤ c ⋅ g(n)}

We can divide problems into two basic groups. Tractable and intractable problems. A
tractable problem is a problem that can be solved by an algorithm in time O(f(n)),
where f(n) is a polynomial [Pap95]. We also say the problem is solvable in polynomial
time.

An important class of problems are NP-complete problems. These are problems that
can only be solved in polynomial time by non-deterministic algorithms. For an exact
definition we refer the reader to the literature [Pap95]. We limit this discussion to some
important properties. It is an open problem if NP-complete problems are tractable. As
of now no deterministic polynomial-time algorithms are known that solve such problems.
NP-hard problems are at least as hard to solve as NP-complete problems.

As we cannot generally solve intractable problems efficiently, it is of interest to identify
tractable classes, whose instances can be solved in polynomial time. Parameterized
complexity is one approach for this. Given a parameter k of the problem, we can define
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2. Preliminaries

the complexity of the problem under the assumption that the parameter is constant.
This gives us a bound on those classes, where we know a bound for k. Of particular
importance for this thesis is the class of problems that are Fixed Parameter Tractable
(FPT ). Let I denote an instance, kI the value of the parameter k for the instance and
∣I ∣ the size of the instance. A problem with parameter k is in FPT if there exists an
algorithm, that solves every instance I in time O(f(kI)∣I ∣c) for a computable function f
and a constant c [CFK+15].

2.2 Graphs
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Figure 2.1: The basic graph of our running
example
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Figure 2.2: A minimum spanning tree for
the graph in Figure 2.1

An undirected graph G = (V,E) is defined by a set of vertices V ≠ ∅ and edges E ⊆
{{vi, vj} ∈ V × V ∣ vi ≠ vj}. We use v and vi to denote vertices, where the subscript
distinguishes different vertices. An edge {vi, vj} ∈ E, also denoted eij , connects vertices
vi and vj . We use V and E whenever we refer to the current instance. In order to avoid
ambiguity we use V [G] and E[G] to refer to the vertices and edges of a specific graph G.
We also use m = ∣E∣, n = ∣V ∣ as shorthand notations. A graph G′ = (V ′,E′) is a subgraph
of G if V ′ ⊆ V and E′ ⊆ (E ∩ (V ′ × V ′)).

A network is a graph with extra properties. For this thesis we use networks with edge
costs c ∶ E ↦ N and denote them G = (V,E, c). We also use the terms (undirected) graph
and network synonymously. The weight of a graph is the sum of its edge weights denoted
∣G∣ = ∑e∈E c(e). Figure 2.1 shows the graph used throughout this thesis. Circles represent
vertices, lines are edges and the edge costs are in rectangles.

We denote the set of edges incident to a vertex vi as δ(vi) = {eij ∣ eij ∈ E}. We use
δG to refer to the incident edges in a specific graph. The degree of a vertex is ∣δ(vi)∣.
The neighborhood of a vertex vi are the incident vertices or {vj ∣ eij ∈ δ(vi)}. A
vertex induced subgraph for V ′ ⊂ V is defined as (V ′,E ∩ (V ′ × V ′)). An edge induced
subgraph for E′ ⊂ E is defined as (⋃eij∈E′{vi, vj},E′). A complete graph is a graph
G = (V,{eij ∈ V × V ∣ vi ≠ vj}), i.e. a graph where every vertex is connected to all other

6



2.3. Steiner Trees

vertices. The density of a graph is the ratio of edges to vertices. Sparse graphs have low
density.

A path is a subgraph that can be written as an alternating sequence of vertices and
edges vi0ei0i1vi1ei1i2vi2 ...ei`−1i`vi` , where each edge connects the adjacent vertices. The
path connects vi1 and vi` . As a path S is a subgraph, we denote its vertices by V [S]
and its edges by E[S]. The length of a path is ∑eij∈E[S] c(eij). The distance between
two vertices is the length of the shortest path connecting the vertices and denoted by
d(vi, vj) [Reh15]. A cycle is a path connecting a vertex to itself using distinct edges. A
connected graph is a graph where for every vi, vj ∈ V such that vi ≠ vj , there exists a path
connecting vi with vj .

A connected component C of a graph G is a subgraph of G such that for every vi, vj ∈
V [C], vi ≠ vj , there exists a path from vi to vj . Furthermore, there exists no vi ∈
V [C], vj ∈ V [G] ∖ V [C] such that there is a path from vi to vj . A graph is therefore
connected if it contains only one connected component.

A tree is a connected graph without cycles. A Minimum Spanning Tree (MST) of a graph
G is a tree MG = (V,E′, c) with E′ ⊆ E, that minimizes ∑eij∈E′ c(eij). Figure 2.2 shows
the MST for the graph in Figure 2.1.

b

ca

d

1

16

13

36

12

17

Figure 2.3: A distance network

The distance network for a graph G and a set W with ∅ ⊂ W ⊆ V is defined as
DG(W ) = (W,W ×W,d). It is therefore a complete graph for W with the shortest
distances in G as edge weights. Figure 2.3 shows the distance network DG({a, b, c, d})
for our running example.

A directed graphG = (V,A) is defined by its vertices and arcs A ⊆ {(vi, vj) ∈ V ×V ∣ vi ≠ vj}.
We define the set of incoming edges for a vertex vi as δ−(vi) = {aji ∈ A} and the set of
outgoing edges as δ+(vi) = {aij ∈ A}. Paths can be defined analogously.

2.3 Steiner Trees

We can now formally define the problem.

7



2. Preliminaries
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ent colors indicate different regions

Problem 1 (Steiner Tree Problem on Graphs (ST))
Input An instance I = (G,R). With pairs (G,R) where G = (V,E, c) is a graph and

R ⊆ V are terminals.
Task A Steiner tree is a connected subgraph T = (V ′,E′, c), with R ⊆ V ′. Let T be the

set of all possible Steiner trees for G. The task is to find arg minT ∈T ∣T ∣.

We refer to such a solution as a Steiner minimal tree (SMT) (sometimes the term minimal
Steiner tree is used instead). Note that any SMT is a tree, as otherwise removing an
edge from a cycle would reduce the total weight. We assume that every Steiner tree is
a tree. The SMT for an instance is not necessarily unique. We define smtG(R) as the
set of SMTs for an instance (G,R). ∣smtG(R)∣ is the (unique) weight of the SMTs. We
use zi to denote terminals, i.e. zi ∈ R, and k = ∣R∣. Steiner vertices are vi ∈ V ∖R. Our
running example in Figure 2.1 uses lower case letters to denote terminals and upper case
letters for Steiner vertices. Figure 2.4 shows the SMT for our running example.

An elementary path is a path that contains no intermediary terminals. Therefore, a
path S from vi to vj is an elementary path if ∀v` ∈ V [S] ∶ v` ∉ R ∨ v` = vi ∨ v` = vj . The
restricted distance d(vi, vj) is the length of the shortest elementary path connecting vi
and vj [Reh15].

A Voronoi partitioning separates the vertices into k disjoint sets. For each terminal zi ∈ R
we define the neighborhood N(zi) as the set of vertices that are closer to zi than to any
other terminal [Pol03]. Ties are assumed to be broken randomly. More precisely

V = ⋃̇zi∈RN(zi)

vi ∈ N(zi) ⇒ d(vj , zi) ≤ d(vj , z`) for all z` ∈ R
If vi ∈ N(zi) then zi is the base of vi, therefore base(vi) = zi. N(zi) is called the Voronoi
region of zi. Voronoi regions can be computed in O(m + n logn) [Meh88]. Figure 2.5
shows the Voronoi partitioning for our running example.

The Steiner tree problem is also defined for directed graphs:

8



2.4. Linear Programming

Problem 2 (Steiner arborescence problem)
Input An instance I = (G,R, r). With triples (G,R, r), where G = (V,A, c) is a directed

graph, R ⊆ V are terminals and r ∈ R is a root.
Task A graph T = (V ′,A′) is a Steiner arborescence if R ⊆ V ′ ⊆ V , A′ ⊆ (A ∩ (V ′ × V ′))

and for every vi ∈ V ′ ∖ {r} there exists exactly one path from r to vi. Let T +
be the set of all possible Steiner arborescences for (G,R). The task is to find
arg minT ∈T + ∣T ∣.

Any ST instance can be transformed into the directed version, with the same optimal
value [HRW92a]. To transfer the problem from an undirected graph G = (V,E, c) into a
directed graph Ð→G = (V,A,Ð→c ), we set A such that for each edge eij ∈ E, A contains arcs
(vi, vj), (vj , vi). Similarly Ð→c ((vi, vj)) = c({vi, vj}). As a root we use a random terminal
r ∈ R. The solution is a graph where every terminal is reachable from the root. We use
R′ to denote R ∖ {r}.

2.4 Linear Programming
Linear programming is a way to model optimization problems. A linear programming
model consists of a linear objective function, that is either minimized or maximized, a set
of variables x = {x1, ..., x`} and a set of linear inequalities or constraints. The goal is to
find a variable assignment that optimizes the objective function and complies with all
constraints [Dan98]. We refer to such a model as a Linear Program (LP).

We can choose a domain for the variables. If the domain is limited to integer values, we
have an integer linear programming model. We refer to such a model as an Integer Linear
Program (ILP). Any ILP can be converted to a general LP by allowing real values instead
of integers. We refer to this as the LP-relaxation of the ILP. Given a minimization
problem, an optimal solution for the LP-relaxation is a lower bound for the ILP. This
property is often used to compute bounds for ILPs [Dan98, Pap95].

We can formulate ST as an ILP. There are many different ways to formulate the problem
[Pol03] we use the cut formulation stated below [Ane80, Reh15].

minimize: ∑
e∈E

c(e)xe

subject to: ∑
eij∈E

vi∈W,vj∉W

xeij ≥ 1, for all W ⊂ V,0 < ∣W ∩R∣ < ∣R∣

xe ∈ {0,1} for all e ∈ E

The variables are used to determine if an edge is in the SMT or not. A value of 1
means that the corresponding edge is in the SMT. Note that the number of constraints
is exponential in n, as there are 2n different subsets of V . The optimal solution does not
depend on the model used, but the quality of the bounds derived from its LP-relaxation
changes depending on the model [Pol03, KM96].
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CHAPTER 3
Theory on Steiner Trees

In order to ensure the correctness of our solver, we built our implementation on a base of
theoretically proven techniques. In this chapter, we present the theory used for our solver.
The goal is to give an understanding of the methods. The proofs have been omitted for
brevity and can be found in the respective sources.

Our solver is split into two parts. One tries to simplify the instance and the other solves
it. We call these two parts reducing module and solving module respectively. Both parts
work with approximations, which is therefore the first topic we present. Afterwards we
continue with the discussion of our two modules and finish the chapter with a presentation
of local search methods. These methods are used to enhance non-optimal solutions or
upper bounds.

3.1 Approximations

Upper and lower bounds are an important part of our solver. Approximations are used
to calculate them. A recurring concept in this thesis, is that, whenever a lower bound
exceeds an upper bound, the element tested cannot be optimal. This works for Steiner
trees, sub-solutions, vertices and edges, as we discuss subsequently.

In this chapter, we discuss several methods for computing such bounds. Every approxi-
mation we present here is used in our solver. As approximations are often a trade off
between tightness and computation time, we use more than one method.

A general concept is that any Steiner tree is an upper bound for an SMT on the same
instance.

11



3. Theory on Steiner Trees

3.1.1 Repeated Shortest Path Heuristic (RSPH)

The Shortest Path Heuristic (SPH) is a method to calculate an upper bound. It is similar
to Prim’s algorithm [Pri57], used for calculating MSTs. SPH incrementally builds a graph
T . Initially T consists of a single vertex called the root. In each iteration, T is extended
by one terminal. The algorithm chooses the terminal closest to but not in T . It then
adds to T the shortest path from T to this terminal. After a maximum of k iterations,
this method yields a Steiner tree [TM80].

Example 3.1.1. Figure 3.1 shows an application of the SPH to our running example.
Here c is chosen as the root. The algorithm establishes a Steiner tree in three iterations.∎

The choice of the root is an important factor determining the quality of the approximation.
By quality we refer to how close ∣T ∣ is to the optimal weight. The quality of the
approximation can be enhanced by running the algorithm repeatedly for different choices
as root. This root may be a terminal or a Steiner vertex. This extension is called RSPH
[HRW92c]1.

Further gains can be obtained by computing an MST for the graph induced by V [T ]
on G. The resulting tree is then optimized by repeatedly removing non-terminal leafs
[RC86].

Algorithm 3.1 implements the ideas presented above. It uses a modified version of
Dijkstra’s algorithm (see Chapter 3.2.1) [Dij59] to speed up computation. The original
algorithm has runtime O(kn2) [TM80] and while the algorithm presented here has the
same worst-case runtime, the average case is faster [dW02].

3.1.2 MSTs and 1-Trees

Next, we establish a method to compute lower bounds. For this we use insights gained
from research on another NP-hard problem, the Traveling Salesman Problem (TSP).
It is well researched and relates to ST, as we discuss subsequently. First, we have to
introduce some definitions specific to this topic.

A tour is a cycle with no repeating vertices. Given a graph G = (V,E) and a distance
function d ∶ E → N, we call the resulting network (V,E, d) metric if

d(vi, v`) ≤ d(vi, vj) + d(vj , v`) ∀vi, vj , v` ∈ V

Note that the distance function d used in this thesis is metric.

The TSP is the problem of finding the shortest tour containing all vertices. Relaxing this
condition to the shortest cycle containing all vertices yields the metric-TSP. This name
is due to the fact, that it is equal to solving the TSP on the metric completion. Using
the definitions from this thesis, the metric completion for (V,E, c) is (V,V × V, d). From
here on we refer to the metric-TSP simply as TSP.

1The original source was not available, [HRW92c] refers to [WMS92]
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3.1. Approximations

Algorithm 3.1: RSPH [dW02, Chapter 5]
Data: An ST instance (G,R) and a set of roots B ⊆ V
Result: A Steiner tree

1 return minr∈B Compute(G,R, r)
2 Function Compute(G, R, r) is
3 V ′ ← {r},E′ ← ∅
4 Q← {r}
5 l(v) ← ∞, b(v) ← ∅ for each v ∈ V
6 l(r) ← 0
7 while R /⊆ V ′ do
8 Choose vi ∈ Q minimizing l(vi)
9 Q = Q ∖ {vi}

10 if vi ∉ R then // As in Dijkstra’s algorithm, see Chapter 3.2.1
11 foreach eij ∈ δG(vi) do
12 if l(vj) > l(vi) + c(eij) then
13 l(vj) ← l(vi) + c(eij)
14 b(vj) ← vi
15 Q← Q ∪ {vj}
16 end
17 end
18 else // Add path to terminal and reset added vertices
19 for u← vi to u = ∅ do
20 V ′ ← V ′ ∪ {u}
21 Q← Q ∪ {u}
22 if b(u) ≠ ∅ then
23 E′ ← E′ ∪ {{u, b(u)}}
24 u = b(u)
25 end
26 l(vj) = 0, b(vj) = ∅ for all vj ∈ V ′

27 end
28 end
29 T ←MST (V ′,{eij ∈ E[G] ∣ vi, vj ∈ V ′}, c)
30 do // Optimize by removing non-terminal leafs
31 O = V [T ]
32 foreach vi ∈ V [T ] ∖R and ∣δG(vi) ∩E[T ]∣ = 1 do
33 E[T ] ← E[T ] ∖ δG(vi)
34 V [T ] ← V [T ] ∖ {vi}
35 end
36 while O ≠ V [T ]
37 return T
38 end

13



3. Theory on Steiner Trees

F

I G

d H

b E

a

J

c

(a) Step 1: Our partial solution contains only
the root (c).

F

I G

d H

E

a J

b

c

6

5

(b) Step 2: The terminal closest to c has been
added (b).

F

I G

d H

E

Ja

b

c

6

5

1

(c) Step 3: The terminal closest to our partial
solution has been added.

F

I

d

G

H

E

Ja

b

c

6

5

1 5

5

(d) Step 4: The last terminal has been added.

Figure 3.1: SPH applied to our running example.

As mentioned before, a tour is a cycle. Removing any edge from the solution of a TSP
results in a spanning tree. We can therefore calculate a lower bound for the TSP by
computing the MST. Conversely, the minimum value of a tour containing all vertices
halved is a lower bound for an MST. This is because given an MST, we can create a tour
of at most double the cost. First, we double all edges. Then we can construct a cycle of
double the cost: We traverse the graph and always choose an unused edge, preferring
those connecting unvisited vertices (depth first traversal). We can convert this cycle
into a tour in the original graph. We follow the cycle but skip any vertex that we have
already visited. This is possible since the network is metric and yields a tour of at most
double the cost of the MST. Therefore, the optimal value of a TSP halved is a lower
bound for the value of an MST.

We can tighten the aforementioned bound. Given any vertex vi ∈ V , a tour containing
all vertices is a spanning tree for V ∖ {vi} with vi connected to this tree by two edges.
This is the definition of a 1-tree. A minimal 1-tree for vertex vi can be calculated by
connecting vi with its two cheapest edges to an MST of V ∖ {vi} [HK70]. Note that if a
minimal 1-tree is a tour, it is the solution to the associated TSP.
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3.1. Approximations

By a similar argument as for the TSP, the weight of a minimal 1-tree halved is a lower
bound for the value of an MST.

The connection to ST is as follows. Given an ST instance (G,R) and an SMT T . We
construct a tour in DG(V [T ]). Since T is an MST for DG(V [T ]), we can use the same
method as before to construct a tour with cost at most 2∗ ∣T ∣. We therefore have a 1-tree.
Every edge in this 1-tree is a path in G. We can therefore create a Steiner tree of cost at
most 2 ∗ ∣T ∣ from the 1-tree. This shows that the 1-tree is a valid lower bound for the
SMT in G.

We now argue, that we do not need DG(V [T ]) to calculate this bound, but can use
DG(R). Since the 1-tree we computed above is a tour, we can map each path between
two terminals to an edge in DG(R). This yields a 1-tree in DG(R). The following lemma
formalizes this [HSV16].

Lemma 1. [HSV16, Lemma 8] Given an ST instance (G,R). Let r ∈ R be any element
and R′ = R ∖ {r}. Furthermore, let wmst be the weight of an MST of DG(R′).

wmst
2

+ min
zi,zj∈R′∶zi≠zj∨∣R′∣=1

d(r, zi) + d(r, zj)
2

is lower bound for any SMT.

The distance network can be constructed in O(n logn+m) and the MST for this network
in O(k2). Given the value for the MST, the calculation of the bound can be performed
in time O(∣R∣) [HSV16].

3.1.3 Dual Ascent

Dual ascent is another approach to computing lower bounds. It uses the idea of linear
programming discussed in Chapter 2.4. A feasible solution is a, not necessarily optimal,
variable assignment for the ILP, complying with all constraints. Therefore, a feasible
solution for ST formulation is a Steiner tree. Any feasible solution to an ILP is an upper
bound.

The ILP can also be formulated as its dual. This is achieved by applying a specific
transformation to the ILP. We do not discuss this transformation further, as it is not
important for this chapter. The reader is referred to the literature for more information
[Dan98]. The original model is called the primal. The two models relate to each other
as follows: If the primal is a minimization problem, then the dual is a maximization
problem. Any feasible solution for the dual is a lower bound for both the primal and the
dual.

For the dual ascent algorithm we use the conversion to the Steiner arborescence problem
discussed in Chapter 2.3. We need to also adapt the ILP from Chapter 2.4 to the directed
version. Given a set W ⊂ V with r ∉W and containing at least one terminal. This set
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3. Theory on Steiner Trees

induces two subgraphs, one containing all the vertices in W and one containing all other
vertices, including the root. For any such subset, a Steiner tree must contain an arc
connecting the root subgraph with the one induced by W . This is the idea behind this
formulation [Won84]:

minimize: ∑
a∈A

c(a)xa

subject to: ∑
aij∈A

vi∉W,vj∈W

xaij ≥ 1, for all W ⊂ V, r ∉W,W ∩R ≠ ∅

xa ∈ {0,1} for all a ∈ A

The dual formulation of the problem uses a variable uW for each W ⊆ R, r ∉W,W ∩R ≠ ∅
[Won84, Pol03]:

maximize: ∑uW

subject to: ∑
W,vi∉W,vj∈W

uW ≤ c(aij), for all aij ∈ A

uW ≥ 0 for all uW

Note that in this case each cut is represented by a variable. Each such variable is assigned
an integer value of at least 0. The algorithm starts with one component per terminal,
consisting of exactly this terminal. It then iteratively adds arcs to these components,
until the root is connected to all terminals.

Algorithm 3.2 shows the whole algorithm. It maintains a set Q of active terminals, the
bound w̃ and reduced costs c̃. Initially all terminals except the root are in Q, the bound
is 0 and c̃ = c. Any arc such that c̃(aij) = 0 is called saturated. Let cut ∶ R ↦ 2V be a
function that maps a terminal to all vertices that can reach it using only saturated arcs.

In each iteration a terminal from Q is chosen. If the cut contains any other active vertex
or the root, the terminal is removed from Q, as it is already connected. Let F be the
set of all arcs that go from a vertex not in the cut to a vertex in the cut. The lowest
weight among all arcs in F is computed and c̃ is updated, such that the lowest weight is
subtracted from all arcs in F . This yields at least one new saturated arc. The weight is
furthermore added to the bound. As there is one new saturated arc in each iteration,
the algorithm terminates. The result is a lower bound w̃ and the reduced costs c̃. The
algorithm is illustrated in Figure 3.2 and runs in time O(m∗min{n∗k,m}) [Dui93]. We
subsequently refer to (V,E, c̃) as a dual ascent graph.

Similar to the SPH, the choice of root impacts the quality of the bound. We can apply
the same idea as for the RSPH and call the algorithm with different roots [Pol03].

The choice of active vertex in each iteration is another important factor. In Line 5 some
strategy for choosing an element from Q is applied. This choice affects the computed
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3. Theory on Steiner Trees

Algorithm 3.2: The dual ascent algorithm [PUW18, Chapter 3.1]
Data: A directed graph G = (V,A, c), terminals R ⊆ V and a root r ∈ R

1 c̃← c
2 w̃ ← 0
3 Q← R′

4 while ∣Q∣ > 0 do
5 Choose z′ in Q
6 C ← cut(z′)
7 if ∣(Q ∪ {r}) ∩C ∣ > 1 then
8 Q← Q ∖ {z′}
9 else

10 F ← {aij ∈ A ∣ vi ∉ C, vj ∈ C}
11 c′ ←minaij∈F c̃(aij)
12 w̃ ← w̃ + c′
13 foreach aij ∈ F do
14 c̃(aij) ← c̃(aij) − c′
15 end
16 end
17 end
18 return w̃

bound [Pol03]. Usually the algorithm tries to minimize some function, for example the
size of the cut or the number of incoming arcs [Pol03, PUW18].

This concludes our discussion about approximations. We look at two areas where we use
them next. These are solving algorithms and reductions.

3.2 Solver

In this chapter, we discuss different algorithms relating to our solving module. We
first discuss Dijkstra’s algorithm, a classic graph searching algorithm for shortest paths
[Dij59]. We then present one of the classic solving algorithms for ST: The Dreyfus-Wagner
algorithm [DW72]. Although its runtime of O(3k) implies FPT , its best-case runtime
is not much better than the worst-case. It is therefore not efficient enough to compute
SMTs for larger instances.

In the last part we discuss how we can combine the previous two algorithms. The new
algorithm, which we refer to as the Dijkstra-Steiner algorithm, does not necessarily
enumerate all possible sub-solutions. While not improving on the worst-case runtime,
the best-case runtime is considerably better [HSV16].

18



3.2. Solver

In the following discussions the algorithms only compute the optimal value. For brevity
we omitted the backtracking required to compute the actual paths/Steiner trees. We
discuss it at the end of the chapter when presenting the final algorithm.

3.2.1 Dijkstra’s algorithm

Dijkstra’s algorithm is a classic graph search algorithm. It is a recurring topic in this
thesis and we use several different implementations in our solver. In general it is used
to find shortest paths in a graph. Algorithm 3.3 shows the version that calculates the
minimal distance between two vertices.

The algorithm maintains a queue of vertices it has seen or scanned (Q) and stores the
length of the shortest known path from the start vertex (l). In every iteration the vertex
from the queue is picked that minimizes l. Then it is expanded: We check if we can reach
any of the neighbors cheaper than previously thought. If so we have found a new shortest
path and can add the neighbor to the queue. Once the target vertex is expanded, we
have found a shortest path from start to target and stop [Dij59].

This idea is not limited to finding a shortest path from one vertex to another. If no
target is used, the algorithm calculates the minimum paths from the start vertex to every
other vertex. Also sets of vertices can be used as start and target.

The runtime of the algorithm depends on the distance between the vertices. If the vertices
have maximum distance, every other option is explored first. The worst-case runtime is
in O(n2) [FT87].

Example 3.2.1. Figure 3.3 shows a run of the algorithm to find a path from b to H
in our running example. In every iteration the dotted vertex with the shortest known
distance is expanded. Note that in the final iteration it would be possible that G would
have been expanded before H. Furthermore, the shortest path found uses c, because d
has been expanded after c. ∎

3.2.2 The Dreyfus-Wagner algorithm

This long known algorithm exploits the structure of Steiner trees. The idea is to calculate
sub-solutions and incrementally build larger and larger sub-solutions until finally obtaining
an SMT. The algorithm uses an important property of any SMT with three or more
terminals.

Lemma 2. [DW72, Optimal Decomposition Theorem]
Let T = (V ′,E′) be an SMT for (G,R), such that ∣R∣ ≥ 3. Then, for any zi ∈ R there
exists:

• A vertex vi ∈ V [G]
• A subset I: ∅ ⊂ I ⊂ (R ∖ {zi})
• Disjoint sets E1,E2,E3: E′ = E1 ∪E2 ∪E3, each inducing a connected subgraph.
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3. Theory on Steiner Trees

Algorithm 3.3: Dijkstra’s algorithm [Dij59]
Data: A network G = (V,E, c) and vertices vstart and vend
Result: The length of a shortest path between vstart and vend

1 l(vi) ← ∞ for all vi ∈ V
2 l(vstart) ← 0
3 P ← ∅
4 Q← {vstart}
5 while vend ∉ P do
6 Choose vi ∈ Q minimizing l(vi)
7 Q← Q ∖ {vi}
8 P ← P ∪ {vi}
9 foreach eij ∈ δ(vi) do

10 if l(vj) > l(vi) + c(eij) then
11 l(vj) ← l(vi) + c(eij)
12 Q← Q ∪ {vj}
13 end
14 end
15 end
16
17 return l(vend)

– There exists T ′ ∈ smtG({zi, vi}) such that E[T ′] = E1
– There exists T ′ ∈ smtG(I ∪ {vi}) such that E[T ′] = E2
– There exists T ′ ∈ smtG((R ∖ (I ∖ {zi})) ∪ {vi}) such that E[T ′] = E3

Therefore, any SMT contains vertices vi that connect sub-solutions. These vertices are
called junctions. It suffices to compute these sub-solutions and join them at junctions,
creating ever larger sub-solutions until finally creating a graph in smtG(R) [DW72].

Algorithm 3.4 picks up this idea. It starts computing the smallest possible sub-solutions.
These are the pairwise shortest paths between vertices and terminals. From there it
starts processing terminal subsets by cardinality. For each cardinality t it creates optimal
sub-solutions for each set I ⊆ R′ of cardinality t. This is done in two steps. First, all
sub-solutions from disjoint sets composing I are merged. The minimum combination
at every vertex is retained as tentative solution l′(vi, I). Now these tentative solutions
are propagated to the other vertices. The combination corresponds to assuming that
vi is a junction for the two subtrees. The propagation connects a vertex to a junction.
Therefore, the second step checks if it is cheaper to connect a vertex to a junction than
joining the subtrees at that vertex. After the whole algorithm finishes, l(r,R′) contains
the weight of any SMT for the current instance.
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Figure 3.3: Dijkstra’s algorithm run from b to H. The number next to the vertex is the
shortest known distance. Dotted vertices have been scanned and solid ones have been
expanded. Dotted edges have been used by the algorithm and solid edges are part of a
shortest path.

The whole algorithm runs in time O(3k) [DW72] and requires memory in O(2kn) [HSV16].
Although there are only 2kn entries in l, there are 3k−1 possible combinations of disjoint
subsets.

Example 3.2.2. Figure 2.4 shows the SMT of our running example. Here F is a junction.
It joins the sub-solutions for {a, b}, {c} and {d}.

Table 3.1 shows the result of full Dreyfus-Wagner run for our running example. c is used
as a root. On the left side are the calculations for all terminals sets with cardinality 1.
The entries are the distances from every vertex to the terminal in the set. Next are the
calculations for all sets of size two, these are in the middle of the table. For each set the
l′ values are calculated by combining the single element sets on the left side. Next the l
values are calculated using the l′ values and the distances between the vertices. The l′
values in the table’s right are calculated by using the l values from the two and single
element sets. The last l value needs only be calculated for the root and contains the
solution. ∎
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3. Theory on Steiner Trees

Algorithm 3.4: The Dreyfus-Wagner algorithm [DW72, Chapter 2]
Data: Instance (G,R) of ST and a root r ∈ R
Result: The weight of an SMT

1 R′ ← R ∖ {r}
2 l(vi,{zj}) ← d(vi, zj) for all zj ∈ R, vi ∈ V
3
4 for t = 2 to ∣R′∣ do
5 foreach I ⊆ R′ such that ∣I ∣ = t do
6 foreach vi ∈ V [G] do l′(vi, I) ← min

∅⊂J⊂I
(l(vi, J) + l(vi, I ∖ J))

7
8 foreach vi ∈ V [G] do l(vi, I) ← min

vj∈V [G]
(d(vi, vj) + l′(vj , I))

9

10 end
11 end
12 return l(r,R′)

{a} {b} {d} {a, b} {a, d} {b, d} {a, b, d}
Vertex l l l l′ l l′ l l′ l l′ l

a 0 1 16 1 1 16 16 17 16 16
b 1 0 15 1 1 16 16 15 15 16
c 12 11 16 23 17 28 22 27 26 33 22
d 16 15 16 31 16 32 21 31 25 36
E 8 7 12 15 8 20 18 19 17 25
F 6 5 10 11 6 16 16 15 15 16
G 32 31 36 63 32 68 42 67 41 68
H 32 31 16 63 32 48 42 47 41 48
I 11 10 5 21 11 16 16 15 15 16
J 9 8 13 17 9 22 19 21 18 22

Table 3.1: The full Dreyfus-Wagner calculation for our running example.

3.2.3 Applying Dijkstra’s algorithm

Although the Dreyfus-Wagner algorithm is FPT given k, it quickly becomes time and
memory consuming even for double digit k. In an effort to improve the best-case runtime,
a method similar to Dijkstra’s algorithm can be added.

The idea presented in Algorithm 3.5 is to define a neighborhood for sub-solutions. The
neighborhood is based on both graph neighborhood and disjoint sets of terminals. Entries
in the queue are prioritized by the weight of the underlying sub-solution. Whenever an
entry is processed all neighboring sub-solutions are created and added to the queue. This
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3.2. Solver

process is continued until an optimal solution is found. Since the queue is ordered by
weight, all partial solutions that are more expensive than the optimum are disregarded.

Algorithm 3.5: The preliminary Dijkstra-Steiner algorithm [HSV16]
Data: An ST instance (G,R) and a root r ∈ R
Result: The weight of an SMT

1 R′ ← R ∖ {r}
2 l(vi, I) ← ∞ for all (vi, I) ∈ V × 2R′

3 l(zi,{zi}) ← 0 for all zi ∈ R′

4 l(vi,∅) ← 0 for all vi ∈ V
5 Q← {(zi,{zi}) ∣ zi ∈ R′}
6 while (r,R′) ∉ P do
7 Choose (vi, I) ∈ Q minimizing l(vi, I)
8 Q← Q ∖ {(vi, I)}
9 P ← P ∪ {(vi, I)}

10 foreach eij ∈ δ(vi) do
11 if l(vj , I) > l(vi, I) + c(eij) then
12 l(vj , I) ← l(vi, I) + c(eij)
13 Q← Q ∪ {(vj , I)}
14 end
15 end
16 forall ∅ ⊂ J ⊆ (R′ ∖ I) with (vi, J) ∈ P do
17 if l(vi, I ∪ J) > l(vi, I) + l(vi, J) then
18 l(vi, I ∪ J) ← l(vi, I) + l(vj , J)
19 Q← Q ∪ {l(vi, I ∪ J)}
20 end
21 end
22 end
23
24 return l(r,R′)

The currently best known solution is l(vi, I). The value is optimal once the tuple is
expanded, i.e. (vi, I) ∈ P . In every iteration the cheapest sub-solution is chosen from
the queue. The result is propagated to neighboring vertices. Furthermore, if there are
known optimal disjoint solutions at the current vertex, they are recombined into larger
sub-solutions. Created entries are added to the queue for later processing. As soon as we
have an optimal entry for the root and the set of all terminals, we have a solution.

Note that this isn’t entirely the same principle as Dijkstra’s algorithm. The merging
of solutions depends on the vertices expanded before, which is different to the original
algorithm. A straightforward application of Dijkstra’s algorithm would immediately
create all larger sub-solutions, as they are in the neighborhood. This is not possible,
because, in contrast to edge costs, we do not know how much transitioning from sub-

23



3. Theory on Steiner Trees

l Q

v E d P v E

a {a} 0 x b {a}
{b} 1 a {b}

b {b} 0 x F {d}
{a} 1 I {d}

d {d} 0 x H {d}
F {d} 5
H {d} 16
I {d} 5

⇒

l Q

v E d P v E

a {a} 0 x a {b}
{b} 1 b {a,b}

b {b} 0 x F {d}
{a} 1 x I {d}

{a, b} 1 F {a}
d {d} 0 x H {d}
F {b} 5

{a} 6
H {d} 16
I {d} 5

Table 3.2: Data structure changes in one Dijkstra-Steiner iteration.

solution to sub-solution costs. Therefore, we cannot automatically transfer insights about
Dijkstra’s algorithm to this one.

Example 3.2.3. Listing all the steps in the calculation of our running example would
take too long. Instead Table 3.2 shows one iteration of the algorithm, from iteration 3 to
4. The first element in the queue, b,{a} is chosen in the iteration. The entry is marked
in P and propagated to its neighbors. For a the new sub-solution is no improvement over
the known one. F does not know any sub-solution for {a} yet, so the entry is created.
Furthermore, the entries for {a} and {b} are combined to a larger sub-solution. Finally
the corresponding queue entries are created. ∎

3.2.4 Adding a guiding heuristics

Algorithm 3.5 expands all sub-solutions that have lower weight than ∣smtG(R)∣. This
can be a large amount, especially if the total cost is high. We can apply another idea
used in graph search to avoid this problem. A∗ applies a guiding heuristic to speed up
the search in Dijkstra’s algorithm [HNR68]. Instead of prioritizing the entries in Q by
distance alone, a heuristic lower bound is added. Ideally entries closer to the target have
a lower heuristic value and are prioritized.

Let h ∶ V ×2R → N be the heuristic and l∗ be the optimal weight. The heuristic is required
to be admissible: l∗(vi, I) +h(vi,R∖ I) ≤ l∗(vi,R) for all vi ∈ V, I ⊂ R. Therefore h(vi, I)
is a lower bound for l∗(vi, I).
In the preliminary algorithm, elements from Q are prioritized by l(vi, I). We now add
the heuristic value and use l(vi, I) + h(vi,R ∖ I) for prioritization.

The use of a heuristic does not guarantee lower runtime. In the worst case the number of
enumerated sub-solutions is the same and the added computation time for the heuristic
worsens runtime. Besides potential runtime gains, the use of a heuristic can also drastically
reduce memory consumption.
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Example 3.2.4. For our running example, the algorithm requires a minimum of ten
iterations. The necessary operations can be tracked using the SMT in Figure 2.4. In
the beginning the initial entries (a,{a},0), (b,{b},0) and (d,{d},0) are expanded. As a
results (I,{d}, 5) and (b,{a}, 1) are expanded. After expanding (b,{a, b}, 1), all necessary
sub-solutions are present at the junction F . After expanding (F,{d}, 10) and (F,{a, b}, 6),
we have the combined sub-solutions. The only thing remaining is to propagate it towards
the root. This is achieved by expanding (F,{a, b, d},16) and finally (c,{a, b, d},22)
yielding the solution. This run creates 20 entries in Q.

If we have a perfect heuristic, i.e. h(vi, I) = l∗(vi, I), our algorithm takes exactly this
path. Without the heuristic, we have to expand every sub-solution with weight smaller
than 22 before. This takes about 55 iterations and about 90 entries in Q. Note that this
is still considerably less than the worst case of 160 iterations. ∎

3.2.5 Pruning

The guiding heuristic allows us a navigate the search space more efficiently. Pruning
reduces the search space. Before we add any entry to Q, we validate if it can be part of
any SMT. If not it is not added to Q and subsequently not to P . This avoids unnecessary
iterations and can lower the number of combinations for subsets significantly. We use
upper and lower bounds to identify non-optimal sub-solutions.

A very fast test allows us to discard some entries. Since the heuristic is a lower bound,
whenever l(vi, I) + h(vi,R ∖ I) exceeds an upper bound, we can discard the entry. This
method merely saves memory, as the entries would never have been expanded.

The following lemma allows for a test that provides a potentially tighter bound.

Lemma 3. [HSV16, Lemma 15] Let (G,R) be an ST instance, vi ∈ V [G], I ⊂ R and
∅ ⊂ U ⊆ (R ∖ I). Furthermore, let T1 be a Steiner tree for {vi} ∪ I and H = (V ′,E′, c) be
a, not necessarily connected, subgraph of G such that:

1. (I ∪U) ⊆ V ′

2. Each connected component of H contains a terminal in U .
3. ∣H ∣ < ∣T1∣

If such a graph H exists, there is no SMT for R that contains T1 as a subgraph.

The definition of H seems a little obscure. T1 is a Steiner tree containing I ⊂ R. Now
assume we have another Steiner tree T2 containing R ∖ I. It especially contains all the
vertices in U and is connected. If we add all the vertices and edges from H to T2 we have
a (connected) Steiner tree for R. The lemma therefore states that, if connecting I to a
Steiner tree for R ∖ I is cheaper than T1, the current sub-solution is not part of an SMT.

We can easily construct such a graph H using Algorithm 3.6. Given a sub-solution
T ′ ∈ smtG(I ∪{vi}). We now take a terminal zj ∈ R∖(I ∪{vi}) and add it via its shortest
path to T ′. If we set U = {zj}, the new graph meets the first two required criteria.
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To lower the weight of the graph, we choose zj to be of minimum distance to T ′. We
keep the weight of the final graph as an upper bound. It can be used to test all future
sub-solutions using I.

Algorithm 3.6: Prune method [HSV16, Chapter 5]
Data: An ST instance (G,R), a root r ∈ R and a function l ∶ V × 2R → N as used

in Algorithm 3.3
Result: true if the current sub-solution can be pruned and false otherwise.

1 ub(I) = ∞ for all I ⊆ R ∖ {r}
2 Uub(I) = ∅ for all I ⊆ R ∖ {r}
3 Function prune(vi, I) is
4 if l(vi, I) > ub(I) then
5 return true
6 zi, zj ← arg min

zi∈I∪{vi},zj∈R∖I
d(zi, zj)

7 if l(vi, I) + d(zi, zj) < ub(I) then
8 ub(I) ← l(vi, I) + d(zi, zj)
9 Uub(I) ← {zj}

10 end
11 return false
12 end
13 Function prune_combine(vi, I, J) is
14 if Uub(I) ∩ J = ∅ or Uub(J) ∩ I = ∅ then
15 u← Uub(I) + ub(J)
16 X ← I ∪ J
17 if ub(X) > u then
18 ub(X) ← u
19 Uub(X) ← (Uub(I) ∪Uub(J)) ∖X
20 end
21 end
22 return prune(vi, I ∪ J)
23 end

Example 3.2.5. We apply pruning to our running example without using a heuristic.
For a and b the closest other terminal has distance 1 and for d it has distance 10. Therefore,
after expanding the initial entries we have ub({a}) = ub({b}) = 1 and ub({d}) = 15. As
discussed in the previous example, the sub-solutions for {a} and {b} are joined at b which
has distance 11 to terminal c. This results in ub({a, b}) = 12. When sub-solutions {a, b}
(weight 6) and {d} (weight 10) are merged at F it is established that ub({a, b, d}) = 22.
In later iterations it is also established that ub({a, d}) = 16 and ub({b, d}) = 15.
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Running the whole algorithm with pruning requires 25 iterations and creates 27 entries in
the queue. This is a considerable improvement. In practice, the effectiveness of pruning
depends on the instance [HSV16]. ∎

3.2.6 Final algorithm

In Algorithm 3.7 everything discussed in this chapter is put together. The guiding
heuristic is used in Line 9. Note that the heuristic requires R and not R′ as we need a
bound for all remaining terminals. In Lines 16 and 24 are the checks for pruning. The
information for backtracking the SMT is gathered in Lines 5, 15 and 23. The actual
backtracking is performed in Line 31.

The original algorithm had a stronger requirement for the heuristic called consistency
[HSV16]. A heuristic is consistent if

h(vi, I) ≤ h(vj , I ′) + l∗(vj , I ∖ I ′ ∪ {vi}) for all vi, vj ∈ V and {r} ⊆ I ′ ⊆ I ⊆ R

As we use heuristics that do not have this property, the algorithm has been adapted to
accommodate for this fact. If the heuristic is consistent, we can skip adding entries to Q
if they are already in P . This extra check is performed in the conditionals in lines 13 and
21. Another consequence of using inconsistent heuristics is, that even if an entry is in P ,
it is not guaranteed, that weight is optimal, except for the full terminal set at the root.

The original correctness proof does not work with inconsistent heuristics [HSV16]. The
important invariant (vi, I) ∈ P ⇒ l(vi, I) = ∣smtG({vi} ∪ I)∣ is lost. If the heuristic is
inconsistent, it may happen that a cheaper sub-tree is found at a later point, violating
the invariant. We therefore prove that correctness still holds.

3.2.7 Correctness

We now prove that the adapted algorithm presented above is still correct, if the heuristic
is not consistent. We show this without pruning to simplify the proof. The proof for
pruning follows from showing that the invariants still hold. Intuitively, pruning uses
l(vi, I) to calculate an upper bound, if the value is non-optimal, this results in a higher
upper bound, decreasing the effectiveness, but preserving validity.

We use the following results from the original proof, that did not depend on the consistency
of the heuristic [HSV16]:

R1 For each (vi, I) ∈ P ∪Q holds that:
R1.1 b(v, I) ⊆ P and backtrack(v, I) returns the edge set of a connected graph T

such that all vertices {v} ∪ I are in T and ∣T ∣ ≤ l(v,I).
R1.2 I ∪ {vi} = {vi} ∪ ⋃(vj ,J)∈b(vi,I) J .

R2 For each (vi, I) ∈ (V × 2R′) ∖ P holds:
R2.1 l(vi, I) ≥ ∣smtG({vi} ∪ I)∣.
R2.2 if l(vi, I) = ∣smtG({vi} ∪ I)∣, then (vi, I) ∈ Q.
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Algorithm 3.7: The final Dijkstra-Steiner algorithm [HSV16]
Data: An ST instance (G,R), a root r ∈ R, an admissible heuristic h and an

upper bound ub′
Result: An SMT and its weight

1 R′ = R ∖ {r}
2 l(vi, I) ← ∞ for all (vi, I) ∈ V × 2R′

3 l(zi,{zi}) ← 0 for all zi ∈ R′

4 l(vi,∅) ← 0 for all vi ∈ V
5 b(vi, I) ← ∅ for all (v, I) ∈ V × 2R′

6 Q← {(zi,{zi}) ∣ zi ∈ R′}
7
8 while (r,R′) ∉ P do
9 Choose (vi, I) ∈ Q minimizing l(vi, I) + h(vi,R ∖ I)

10 Q← Q ∖ {(vi, I)}
11 P ← P ∪ {(vi, I)}
12 foreach eij ∈ δ(vi) do
13 if l(vi, I) + c(eij) < l(vj , I) then
14 l(vj , I) ← l(vi, I) + c(eij)
15 b(vj , I) ← {(vi, I)}
16 if l(vi, I) ≤ ub′ and not prune(vi, I) then
17 Q← Q ∪ {(vj , I)}
18 end
19 end
20 forall ∅ ⊂ J ⊆ R′ ∖ I with (vi, J) ∈ P do
21 if l(vi, I) + l(vi, J) < l(vi, I ∪ J) then
22 l(vi, I ∪ J) ← l(vi, I) + l(vj , J)
23 b(vi, I ∪ J) ← {(vi, I), (vi, J)}
24 if l(vi, I ∪ J) ≤ ub′ and not prune_combine(vi, I, J) then
25 Q← Q ∪ {l(vi, I ∪ J)}
26 end
27 end
28 end
29 return backtrack(r,R′), l(r,R′)
30
31 Function backtrack(vi, I) is
32 if b(vi, I) = {(vj , I)} then
33 return {eij} ∪ backtrack(vj , I)
34 else
35 return ⋃

(vj ,I′)∈b(vi,I)
backtrack(vj , I ′)

36 end
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We also introduce a few definitions. We denote by T (vi, I) the graph defined by
backtrack(vi, I). Furthermore we define a a tuple (vi, I) to be optimal, if it holds
that l(vi, I) = ∣smtG(I ∪ {vi})∣ and T (vi, I) is a subgraph of at least one T ∈ smtG(R).
Note that an optimal entry is never overwritten, since any new entry cannot have lower
weight by R1.1 and R2.1.

We define the transformation tr(vi, T1, T2) for two trees T1, T2, where T1 is a subgraph
of T2 and vi ∈ V [T1]. Let V ′ = V [T2] ∖ (V [T1] ∖ {vi}) and E′ = (E[T2] ∖E[T1]). The
result of the transformation is the graph T ′ = (V ′,E′). Therefore, the result of tr is the
remaining graph, after removing the edges in T1.

Furthermore we define trr(vi, T1, T2) analogously to tr, adding a root vertex r ∈ V [T1].
Let T ′ = tr(vi, T1, T2). Since we have a tree, there exists a unique path Svi,r from vi
to r. Let T ′′ = tr(vi, Svi,r, T

′) and Ci be the connected component in T ′′ containing
vi. The result of the transformation is the graph (Ci,E[T ′′] ∩ (Ci × Ci)). After the
transformation, only the subtree rooted at vi, without T1, remains of T2.

Lemma 4 (Loop Invariant). The following invariants hold at the start of every itera-
tion of the main loop in Algorithm 3.7, Line 8: There exists a partition W of R′ such
that:

H1 There exists a T ∈ smtG(R), such that
H1.1 For each W ∈ W, there exists a (vi,W ) ∈ P ∪ Q such that T (vi,W ) is a

subgraph of T and (vi,W ) is optimal.
H1.2 For each (vi,W ) ∈ P ∪Q, such that T (vi,W ) is a subgraph of T , there exists

no W ′ ∈ W such that (vi,W ∪W ′) is optimal, T (vi,W ′) is a subgraph of T
and (vi,W ∪W ′) ∈ P ∪Q.

H2 For each W ∈ W it holds that either
H2.1 There exists a tuple (vi,W ) ∈ Q such that (vi,W ) is optimal.
H2.2 There exists a tuple (vi,W ) ∈ P such that (vi,W ) is optimal. Furthermore,

there exists T ∈ smtG(R) such that T (vi,W ) is a subgraph of T and ∣R ∩
V [trr(vi, T (vi,W ), T )]∣ > 0.

Before we prove the lemma, we prove some results of this invariant. In the following
lemmas and proofs we refer to the invariant conditions by the label.

Lemma 5. Let W be a partitioning of R′ as described in Lemma 4. Let (vi, I) be the
element chosen in the current iteration from Q. If (vi, I) is optimal and I ∈ W, then
invariant H2 holds after the current iteration.

Proof. We assert that after the iteration there exists an element (vo, I) such that H2
holds. Let T ∈ smtG(R) be any SMT containing T (vi, I) as a subgraph. Due to optimality
such a graph exists. Let Svi,r be the unique path from vi to r in T . Furthermore, we use
φ(vj) ∶= V [R ∩ trr(vj , T (vj , I), T )] (see H2.2 ). We prove the lemma by contradiction.
We therefore assume that no tuple (vo, I) ∈ P exists, such that H2 holds. Therefore for
all optimal (vj , I) holds that, (vj , I) ∉ Q and ∣φ(vj)∣ = 0.
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We now show the following result by induction on `, where x` denotes the `-th vertex in
Svi,r. Note that the property defined by φ(vj) implies, that vj has degree at maximum
two in T . If it had degree 3 or higher, one of the subtrees would contain no terminal,
contradicting that T is minimal.

• Induction Hypothesis: For every vertex vj ∈ V [Svi,r] it holds that, (vj , I) is optimal,
(vj , I) ∈ P, (vj , I) ≠ Q and ∣φ(vj)∣ = 0.

• Base Case (x1): (vi, I) is by definition optimal. In this iteration it is removed from
Q and added to P . Furthermore, by assumption ∣φ(vi) = 0∣.

• Induction Step (x`+1): For vertex x`+1 it holds that by hypothesis (x`, I) ∈ P and
(x`, I) is optimal. Together with (x`, I) ∉ Q this implies, that (x`, I) has been
expanded with optimal weight. Due to the optimality of (x`, I) and because x` has
by assumption degree 1 or 2, the optimal weight for (x`+1, I) is l(x`, I)+c({x`, x`+1}).
Therefore, after the expansion of (x`, I), the tuple (x`+1, I) was optimal. By R2.2
it is therefore either in Q or P . Therefore, by assumption (x`+1, I) ∈ P and also by
assumption ∣φ(x`+1)∣ = 0.

Since r ∈ Svi,r and φ(r) > 0 we have a contradiction.

Lemma 6. Whenever an element from Q is chosen in the loop in Line 8 there exists a
(vi, I) ∈ Q that is optimal.

Proof. Let W be a partition as described in Lemma 4. We first show that given T as
defined in H1 and φ(vj) ∶= V [R ∩ trr(vj , T (vj , I), T )], it holds that for every W ∈ W
exists an optimal entry (vi,W ) ∈ P such that ∣φ(vi)∣ > 0 and T (vi,W ) is a subtree of T .
Note that this is different from H2.2 as T is a specific SMT.

Let W ∈ W be an arbitrary element and (vi,W ) an optimal entry such that T (vi,W ) is
a subgraph of T . We know from H1 that such an entry exists. Now we can show the
desired property by using the same proof as in Lemma 5.

We can now prove the lemma. From the previous discussion, we know that for every
W ∈ W exists an entry satisfying H2.2 in T . As each of the entries defines a subtree in T ,
we have ∣W∣ subtrees. There can be at maximum ∣W∣ − 1 junctions joining these subtrees.
Every junction reduces the number of subtrees by one and the last subtree remaining is
the tree itself. We define Ai = {W ∈ W ∣ (vi,W ) is optimal}, the set of optimal entries
in W for a vertex. Since we have ∣W∣ subtrees connected by ∣W∣ − 1 junctions, there
exists a vi ∈ V such that ∣Ai∣ > 1. Since all entries (vi,W ),W ∈ Ai are optimal, the entry
(vi,⋃iAi) would have been added to Q with optimal value in Line 25. This contradicts
H1.2.

We now have all the tools to prove Lemma 4:

Proof. The invariant clearly holds at the start of the first iteration. Every entry in Q is
of the form (zi,{zi}). This is clearly a partition and every entry is an optimal subtree of
any SMT.
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We assume that the conditions hold and we are at the beginning of an arbitrary iteration.
We remove an element (vi, I) from Q. We proceed with a case distinction on this tuple:

Case 1 : (vi, I) is not optimal. In this iteration no optimal value can be overwritten in l,
as the weight of any tuple processed in this iteration cannot be lower than an optimal
value. The invariant still holds at the end of the iteration.

Case 2 : (vi, I) is optimal, but there exists no partitioning W, such that I ∈ W and H1
and H2 hold for W . By the invariant such a partition exists. The loop in Line 12 cannot
overwrite any entries defined in the invariant, as no optimal entry can be overwritten,
and no changes to l and b are performed in case of equality.

In case the loop in Line 20 creates an optimal entry (vi, I ∪ J). This can invalidate the
invariant only, if there exist I ′, J ′ ∈ W such that I ∪ J = I ′ ∪ J ′. Let T be the SMT as
defined in H1. It holds that I ∉ W and therefore, either I /⊆ I ′ or J /⊆ J ′. This implies
that either T (vi, I) is not a subtree of T or T (vi, J) is not. Therefore, H1.2 still holds,
as well as the other invariants.

Case 3 : (vi, I) is optimal and there exists a partitioning W as described in the lemma.
We only consider optimal entries that are created during the iteration. All other entries
do not affect any of the invariant rules.

If no new optimal entries in Q are created, then by Lemma 5 H2 is preserved. As (vi, I)
is added to P , H1.1 holds. And as no new entries are created, H1.2 holds as well.

For every optimal entry processed in the loop at Line 12 (propagation), H2.1 and therefore
H2 is preserved. Since (vi, I) is added to P , H1.1 is also preserved. Finally, since all
entries are created with I, H1.2 holds as well.

For every optimal entry processed in the loop at Line 20 (merging). Entries created here
use I ∪ J as the set. We proceed with a case distinction on J :

Case 3a: J ∉ W; H1 holds after the iteration as (vi, I) ∈ P . H1.1 holds since
(vi, I) ∈ P and H1.2 holds because J ∉ W. Since (vi, I ∪ J) is optimal, there exists
a T ∈ smtG(R) such that T (vi, I ∪ J) is a subtree. Since T (vi, I) and T (vi, J) are
the subtrees of T (vi, I ∪ J) and each contains at least one terminal, H2.2 holds.
Case 3b: J ∈ W ; We argue thatW ′ = (W∖{I, J})∪{I ∪J} is a partition preserving
the invariant. Let T be the SMT as described in H1 for W . H1.1 holds since either
T (vi, I ∪ J) is a subgraph of T , or one of T (vi, I), T (vi, J) is no subgraph of T .
H1.2 holds since it held for the smaller sets and therefore also for the larger set.
Since at the beginning of the iteration (vi, I ∪ J) ∉ P ∪Q by H1.2, (vi, I ∪ J) is
added to Q and therefore 2.1 and consequently H2 holds.

Next, we show the desired result.

Theorem 7. Algorithm 3.7 terminates and when (r,R′) ∈ P then l(r,R′) is the weight
of an SMT for the instance (G,R).
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Proof. For correctness we have to show that whenever (r,R′) ∈ P then l(r,R′) =
∣smtG(R)∣. Proof by contradiction, we assume (r,R′) ∈ P and l(r,R′) is not equal
to the optimal weight. Remember that heuristic h is admissible and therefore l∗(vi, I) +
h(vi,R ∖ I) ≤ l∗(vi,R) for all vi ∈ V, I ⊂ R.

Let w = ∣smtG(R)∣. Due to the admissibility of the heuristic it holds that w′ = l(r,R′) +
h(r,{r}) = l(r,R′). And since the solution is not optimal by the property defined
above w′ > w. Since we expanded the entry, it holds that at this iteration, no entry
(vi, I) ∈ Q such that l(vi, I) + h(vi,R ∖ I) ≤ w existed. Any optimal entry (vj , J) would
have l(vj , J) + h(vj ,R ∖ J) ≤ w due to optimality and the admissibility of the heuristic.
Therefore, there existed no optimal entry in Q, contradicting Lemma 6.

For termination consider that any value of l that is set (not ∞) is clearly bounded above
by ∣G∣. The maximum number of values in l is 2nn. Since every update of l requires a
lower value than the existing one, l is updated at most 2nn ∗ ∣G∣ times. Any update of l
can produce one entry in Q. Including the initial values, there are at most 2nn ∗ ∣G∣ + k
entries added to Q. Since this number is finite, the algorithm terminates.

We do not know how the use of an inconsistent heuristic impacts the runtime. The
termination proof gives us a bound on the number of iterations, but not a very good one.
Consistency guarantees us, that the estimates decrease if we get closer to the target. This
is true for many everyday estimation methods, like Euclidian distance. Admissibility on
the other hand has a comparatively weak guarantee. It states, that we never overestimate
the distance. This allows for the possibility that we find a shorter path to an already
expanded entry.

As stated before, the Dijkstra-Steiner algorithm is similar to but different than Dijkstra’s
algorithm and A∗. It is therefore not possible to directly use knowledge from this domain.
It nonetheless shows possible impacts. If an inconsistent heuristic is used, the runtime of
A∗ deteriorates from O(n2) to O(2n) [Mar77]. The actual worst-case runtime depends
on the heuristic and may well be O(n2) [ZSH+09]. On the one hand this suggests, that
the worst case runtime of our new algorithm, is considerably worse. On the other hand,
the impact may well be negligible as long as heuristic produces mostly consistent results.

This concludes our discussion of solving algorithms. We established the method we use
to compute SMTs and present methods to simplify an instance to reduce computation
time next.

3.3 Reductions
The runtime for solvers usually depends on the size of the graph and the number of
terminals. One of the ways to speed up computation is therefore a reduction in the
size of the instance. Therefore, removing components of a graph: vertices, terminals or
edges. Reductions use computationally fast tests to find areas of the graph that can be
transformed into a simpler graph. Given that these tests can be run quick enough, the
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overall runtime of the solver can be improved considerably. Therefore, most reductions
we present in this chapter run in O(m + n logn).

Each reduction consists of a test and a transformation. Whenever the test succeeds,
the transformation is run. The transformation maps the instance to a, preferably easier
solvable, instance. It must hold that any SMT for the reduced instance can be mapped
to an SMT of the original instance. Although reduced instances are usually easier to
solve, this property is not guaranteed.

Reductions can be applied multiple times and in arbitrary order. The resulting SMT is
then mapped back in the reverse order. It is common to apply reductions either until
the graph cannot be reduced further, or the amount of reducible graph components fall
below a defined threshold.

In this chapter, we present the theory behind the reductions used in our solver. We start
by introducing the concept of Steiner distance, which is central for subsequent reductions.
Afterwards, we explore the reductions grouped by type. We distinguish between three
types of reductions:

1. Exclusions: These tests identify graph components that can be removed.
2. Inclusions: Inclusion reductions identify components that are guaranteed to be in

an SMT.
3. Bound based: The idea of bounds has been discussed in the previous chapter.

Whenever the lower bound for a component exceeds the upper bound for the
instance, the component can be removed.

It is common that a reduction introduces new edges. Whenever an edge that already
exists is added, we retain the minimum of the existing edge cost and the new edge cost.
For the aforementioned reverse transformations of an SMT it is important to identify
edges. For this chapter we assume implicitly that an edge is identified by its endpoints
and costs. For example: A reduction adds edge e with cost 5 to G. An SMT T is
computed for the reduced instance. The reduction checks if e is T . When doing so it
also validates, that c(e) = 5, otherwise e ∉ E[T ]. This is important as reductions may
change costs multiple times.

3.3.1 Bottleneck Steiner distance

Throughout this thesis we use the distance measure d. While very useful, it is not specific
to the ST. In contrast the bottleneck Steiner distance utilizes instance specific properties.
It has proven very useful for reductions.

In order to define bottleneck Steiner distance we first have to define Steiner distance.
Given a path P between two vertices vi and vj . The path can be transformed into one or
more elementary paths by splitting it at intermediate terminals. The maximum length
among these elementary paths is the Steiner distance. The bottleneck Steiner distance
between vertices vi and vj , denoted s(vi, vj), is the minimum Steiner distance among
all paths connecting vi and vj . The restricted bottleneck Steiner distance s(vi, vj) is the
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minimum Steiner distance among all paths connecting vi and vj without using the edge
eij . Note that if eij ∉ E then s(vi, vj) = s(vi, vj) [DV89].

To give an intuition for this measurement: Assuming that the graph is a road network
and that terminals are gas stations. Any car driving from vi to vj needs to be able to
drive distance s(vi, vj) without refueling [KM96]. Given that the road from vi to vj is
blocked, the car has to be able to drive distance s(vi, vj).

Algorithm 3.8 shows the classical way to calculate s. If run for all vertices it yields
the exact values for all possible vertex pairs. The algorithm runs in O(nk) per vertex
[HRW92b]. Note that it requires d to be calculated for all vertex pairs. Given that the
measurement is central to many reductions and becomes outdated if the graph changes,
the runtime is infeasible for larger instances.

Algorithm 3.8: Algorithm to find s(vi, vj) [HRW92b, Chapter 2.3.1]
Data: A graph G = (V,E, c) and a vertex vi ∈ V
Result: s(vi, vj) for all vj ∈ V

1 s(vi, vj) ← d(vi, vj) for all vj ∈ V
2 L← {vi}
3 while R /⊆ L do
4 Choose zk ∈ R ∖L minimizing s(vi, zk)
5 L← L ∪ {zk}
6 forall vj ∈ V ∖L do
7 s(vi, vj) ←min{s(vi, vj),max{s(vi, zk), d(zk, vj}}
8 if vj ∉ R and s(vi, vj) ≤ s(vi, zk) then
9 L← L ∪ {vj}

10 end
11 end
12 return s

s is usually tested against and upper bound. We can cut down on computation time, if
we use an upper bound for s and the tests stay valid. We can calculate s for pairs of
terminals efficiently using an MST. If we additionally know the distance to the r closest
terminals for every vertex, we can calculate such an upper bound. Let zi,j be the j-closest
terminal to vi and vi, vj ∈ V , the upper bound ŝ can be calculated as follows:

ŝ(vi, vj) = min
a,b∈{1,...,r}

{max{d(vi, zi,a), s(zi,a, zj,b), d(zj,b, vj)}}

We can calculate the r closest terminals by modifying Dijkstra’s algorithm (see Chap-
ter 3.2.1). The calculation takes time O(m + n logn) [Dui93, Pol03].

We can also use Dijkstra’s algorithm to directly approximate s. Given two vertices vi and
vj , a run of the algorithm produces the mapping l. The mapping contains the distances
from vi to any other vertex the algorithm encountered before finding vj . Running the
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3.3. Reductions

algorithm twice, once from vi to vj yields two such mappings l1 and l2. Let R′ = R∖{vi, vj}
and dz = minzk∈R′ min{l1(zk), l2(zk)}. We can approximate s(vi, vj) by min{l1(vj), dz}.
In order to speed up competition we add some modifications to the algorithm:

1. The algorithm does not proceed from terminals other than vi and vj .
2. If we test against a value lw we stop if we exceed this value.
3. We define a limit ld and stop after iterating over a total of ld edges.
4. During the second run, the algorithm does not proceed from vertices encountered

in the first run.

Note that although the modifications speed up the approximation, it is not guaranteed to
find the desired path. In this case we can construct a path by using vertices found in both
runs. Let V ′ be the set of all vertices in both l1 and l2. The length of the shortest path
found by the algorithm is therefore dv = min{l1(vj),minvk∈V ′(l1(vk) + l2(vk))}. We can
now approximate s(vi, vj) by min{dv, dz} [Reh15]. We refer to this measure as sc(vi, vj).

Although the algorithm does not always return a value, it is very useful to test against
a known weight, for example the weight of an edge. Note that if the use of edge eij is
prohibited, this approximates the restricted bottleneck Steiner distance.
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Figure 3.4: The running example graph
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Figure 3.5: Graph after applying the de-
gree 2 reduction on vertex E

3.3.2 Exclusions

Exclusion try to identify areas of the graph that can be removed. For this end, we need
to prove that for any Steiner tree T containing a specific graph component, there exists
another Steiner tree of equal or lower cost without it. In this case we can remove the
tested component.

In this chapter we mainly present the tests used in the reductions. The transformation is
usually the removal of the tested vertex or edge. Since we do not need this part in an
SMT, no transformation on the solution is required afterwards
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Non-Terminals of Degree 0 or 1

This is a simple test that allows to efficiently check for removable vertices. Although it is
generalized in subsequent tests, the fast runtime makes it invaluable.

Lemma 8. [HRW92b, Chapter 2.1.1] No vertex vi ∈ V, vi ∉ R of degree 1 or 0 can be in
a Steiner minimal tree.

Assuming that vi has degree one and eij is its incident edge: If a Steiner tree T contains
vi, it is a leaf node. ∣T ∣ could then be reduced by removing eij and T would remain a
Steiner tree. Although the graph is usually connected, some reductions may disconnect
the graph. The lemma allows us to remove disconnected non-terminals.

Example 3.3.1. In Figure 3.4 vertex J can be safely removed. ∎

Non-Terminals of Degree 2

Instead of testing for components that cannot be part of an SMT, this test identifies
graph regions that do not have an impact on the construction of an SMT.

Lemma 9. [HRW92b, Chapter 2.2.2] Given a vertex vi ∈ V, vi ∉ R of degree two. Let
eij , ei` be the two incident edges. Let G′ be a graph obtained by removing vi and adding
edge ej` with cost c(eij) + c(ei`), then ∣smtG(R)∣ = ∣smtG′(R)∣. If G already contains ej`
with c(eij) + c(ei`) ≥ c(ej`), vi can be removed.

Whenever a Steiner vertex vi of degree two is in an SMT, both neighbors have to be as
well. Otherwise we would have a non-terminal leaf. We can therefore replace vi by an
edge connecting its neighbors. Should this edge be in the resulting SMT, we have to
reintroduce vi and replace the edge by the original two edges it represents [HRW92b].

Example 3.3.2. In Figure 3.4 vertex E has degree 2 and has been removed in Fig-
ure 3.5. ∎

Steiner Distance

This test makes use of the previously introduced bottleneck Steiner distance to identify
removable edges.

Lemma 10. [DV89, Chapter 3] Any edge eij with c(eij) > s(vi, vj) can be removed from
G. The same holds for any edge eij such that c(eij) > s(vi, vj) [Pol03, Dan03].

This test is usually referred to by different names. The test using the exact values is
usually referred to as Paths with many Terminals (PTm). We also use this name if we
use ŝ instead of s. We use the name Steiner Distance Circuit (SDC), if we use sc [Reh15].

Example 3.3.3. Figure 3.6 marks the edges identified by PTm. Edges eFG, eGH and
eGI can be removed as their end vertices can be reached more cheaply. ecH can be
removed because the Steiner distance of path c ecF F eFI I eId d edH H is 16. ∎
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Long Edges

This test complements the previous test by identifying removable edges missed by the
PTm test.

Lemma 11. [Pol03, Lemma 20] LetMDG(R) be the MST for the distance network defined
for R. Furthermore, let cmax be the maximum cost among all edges in MDG(R). Any
edge eij with c(eij) > cmax can be removed from G.

Example 3.3.4. In the graph displayed in Figure 3.4, we can construct a spanning tree
such that cmax is 15. We can connect b to a with cost 1, to c with cost 11 and to d with
cost 15. This allows us the eliminate edges ecG and edH not identified by the PTm test.∎

Non-Terminals of Degree k (NTDk)

This test is often referred to as Bottleneck Degree m Test (BDm) [DV89]. As the name
suggests, it is a generalization of the NTD2 test. The goal here is to identify Steiner
vertices that do not have degree higher than two in any SMT. We define a distance
network using s the following way: D′(V ) ∶= (V,V × V, s).

Lemma 12. [DV89, Chapter 4] For a vi ∈ V ∖R with ∣δ(vi)∣ ≥ 3 exists an SMT where
vi has maximum degree two if: For every A ⊆ δ(vi) with ∣A∣ ≥ 3, it holds that

∑
eij∈A

c(eij) ≥ ∣D′({vj ∣ eij ∈ A})∣

Given such a vertex vi and its incident vertices VA = {vj ∣ eij ∈ δ(vi)}. Similar to the
NTD2 test, we can remove vi and replace it by edges connecting its neighbors. We add
edges {(vj , v`) ∈ VA × VA ∣ vj ≠ v`} with costs c(ej`) = c(eij) + c(ei`) for vj , v` ∈ VA, vj ≠ v`.

Note that this does not really reduce the graph, as it introduces numerous new edges. In
conjunction with the previously discussed tests, many of the new edges can be eliminated.
This usually leads to an overall reduction in the number of vertices and edges.

Whenever an SMT T uses one of the edges, vi is reintroduced and the edge replaced by
the original two edges, similar to the NTD2 reduction.

Example 3.3.5. Several vertices in Figure 3.4 can be reduced using the NTDk reduction.
For vertex I the sum of incident edge costs is 110. An MST among its neighbors costs
30, because s(I,G) = 20. Furthermore, for vertex H the incident edge sum is 136 and
the cost of an MST is 56. Although vertex G has degree 4, it can be reduced as well. An
MST among its neighbors costs 32 while any subset of three or more incident edges costs
at least 220. Figure 3.7 shows the graph after reducing vertex I. ∎
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3.3.3 Inclusions

The previously discussed reductions allow us to eliminate parts of the graph. Inclusions
try the opposite. We try to identify parts of the graph that are part of at least one SMT.
This can be achieved by showing that for a Steiner tree containing the component, no
other Steiner tree of equal or lower weight exists, that does not contain the component.
These tests are also the only way to reduce the number of terminals.

Central to inclusion reductions is the concept of contraction. Any edge eij that has been
identified to be in an SMT can be contracted by performing the following transformation:

• For each edge ej` ∈ δ(vj) ∖ {eij} add edge ei` with cost c(ej`).
• If vj ∈ R then R = R ∪ {vi}.
• Remove vertex vj and edges δ(vj).

Given an SMT T for the reduced graph, we transform it into an SMT for the unreduced
graph:

• Add vertex vj and edge eij .
• If any of the previously added edges ei` are in T , replace them by ej`.

Next, we discuss different tests that allow us to identify such edges.

Terminals of Degree 1

This simple test allows us to quickly identify contractible edges. Although these edges are
also identified by subsequent tests, this one runs faster and can therefore be performed
more often.

Lemma 13. [HRW92b, Chapter 2.2.1] For any terminal zi ∈ R of degree one, the incident
edge {zi, vj} is in every SMT.

Note that we assume that the edge costs are positive. The above lemma would also hold
for edges of cost 0, as they would not increase the cost of the graph.
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Example 3.3.6. In Figure 3.4 terminal a can be contracted into b. Subsequently b can
be contracted into F making it a terminal. ∎

Minimum Terminal Edge

The following lemma is a generalization of the previous lemma and allows for more edges
to be contracted. The test is also called Short-Terminal-to-Terminal Edges (STTE)
[HRW92b].

Lemma 14. [HRW92b, Chapter 2.2.2] If the nearest vertex incident to a terminal zi is
also a terminal zj, the edge {zi, zj} is in at least one SMT .

Example 3.3.7. In Figure 3.4 a is the nearest neighbor of b. Therefore {a, b} can be
contracted. Even if a were connected to other vertices, since their weight cannot be lower
than 1 and therefore the lemma would still be applicable. ∎

Nearest Vertex

This test tries to find contractible edges incident to terminals. The idea is: If the shortest
edge is short enough compared to the other edges, it is in an SMT.

Lemma 15. [HRW92b, Chapter 2.2.3] Let zi be a terminal with degree at least 2. Let
e′ = {zi, v`1}, e′′ = {zi, v`2} be a shortest and second shortest edge incident to zi. There
exists at least one SMT containing e′, if there exists a terminal zj such that zj ≠ zi and

c(e′′) ≥ c(e′) + d(v`1 , zj)

In case the test fails, we can extend it. If we can show the test condition holds for any
edge that connects v`2 , this is equal to showing it for e′′:

Lemma 16. [Reh15, Lemma 8] Given the definitions of the previous lemma, there exists
at least one SMT containing e′ if:

c(e) ≥ c(e′) + d(v`1 , zj) for all e ∈ δ(zi) ∪ δ(v`2) ∖ {e′, e′′}

Executing the test requires computing d which is expensive. It is possible to redefine
the test using Voronoi regions to execute it faster. Instead of calculating d(v`1 , zj) we
use d(v`1 , base(v`1)) if base(v`1) ≠ zi, otherwise we use the distance to the second closest
terminal [Pol03].

Example 3.3.8. Figure 3.8 shows a graph with Voronoi regions indicated via coloring.
Three terminals b, c and d have degree at least 2. The reduction can be applied to all
these terminals. For terminal d the shortest edge has cost 5 and the second shortest
16. The shortest path to the next terminal is 15. For c the argument is similar and the
shortest incident edge of b connects to a terminal. ∎
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Short Links

This reduction uses the notion of links to contract edges. Links are edges that connect
two Voronoi regions, therefore edges such that eij ∈ E and base(vi) ≠ base(vj) [Pol03].

Lemma 17. [Pol03, Lemma 23] Given a terminal zi and the two shortest links of its
Voronoi region ej1`1 , ej2`2 such that base(vj1) = base(vj2) = zi. ej1`1 belongs to at least
one SMT if

c(ej2`2) ≥ d(zi, vj1) + c(ej1`1) + d(v`1 , base(v`1))

Example 3.3.9. Figure 3.8 shows the Voronoi regions of the running example. Edges in
black are links. For c the shortest link is {c, F} and the cost of the second shortest link
is 20. The path from c to b is of cost 11, therefore {c, F} can be contracted. A similar
argument holds for the region of terminal d. ∎
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3.3.4 Bound based

In Chapter 3.1 we discussed approximations and how they can define bounds for our
instance. We distinguish between global and local bounds. The approximations discussed
so far compute bounds for the whole instance or global bounds. Local bounds give us a
limit for the cost of any SMT containing a specific component. Whenever a local lower
bound exceeds a global upper bound, we can remove the tested component.

We have already established a method to compute global upper bounds in Chapter 3.1.1.
In this chapter, we discuss local lower bounds. The first method we discuss uses Voronoi
regions to compute these bounds and the other the already discussed dual ascent algorithm.

Voronoi region based bounds

In the following we present several lower bounds for vertices and edges. For this we
introduce the function radius ∶ R → N, returning the length of the shortest path leaving
the Voronoi region of a terminal. For convenience it is assumed, that the terminals are
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ordered in ascending radius value. Furthermore, zv,1, zv,2, zv,3 denote the closest, second
closest and third closest terminal to the vertex v.

Note that the bounds were originally stated and proved using the normal distance measure
d [Pol03] and then restated using restricted distance d [Reh15].

The following lemma defines lower bounds that can be established quickly.

Lemma 18. [Reh15, Lemma 10] Let v ∈ V ∖R and T be a Steiner tree containing v:

d(v, zv,1) + d(v, zv,2) +
k−2
∑
`=1

radius(z`)

is a lower bound for ∣T ∣.

The same idea can be applied to obtain a lower bound for edges.

Lemma 19. [Reh15, Lemma 11] Let eij ∈ E and T be a Steiner tree containing eij:

c(eij) + d(vi, zvi,1) + d(vj , zvj ,1) +
k−2
∑
`=1

radius(z`)

is a lower bound for ∣T ∣.

Example 3.3.10. Using Figure 3.8 we can see that the two shortest links have cost 1
and 5 yielding a 6 for the radius values. We can now calculate the lower bound for H.
The two closest terminals are d and c with a total cost of 36. The resulting upper bound
is 42.

In a similar fashion we can calculate a lower bound for edge {d, H}. The distance from d
to the nearest terminal is 0 and from H to the nearest terminal 16. Together with the
radius value and edge cost, this yields a lower bound of 38. ∎

We can also establish bounds based on the degree of the vertex. Using this idea, we can
define a bound based test similar to the NTDk test already discussed.

Lemma 20. [Reh15, Lemma 13] Let v ∈ V ∖R and T be a Steiner tree containing v. If
v has degree at least three in T , then

d(v, zv,1) + d(v, zv,2) + d(v, zv,3) +
k−3
∑
`=1

radius(z`)

is a lower bound for ∣T ∣.

The transformation for any identified vertex is the same as in the NTDk test, see 3.3.2
for details.
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Example 3.3.11. The shortest link has cost 1. The three closest terminals for vertex
F have distances 5, 6 and 10. Therefore, the lower bound for a Steiner tree where F has
degree greater than two is 22. ∎

In Chapter 3.1.2 we discussed a lower bound based on 1-trees in the distance network.
We can use this idea and apply it to Voronoi regions.

Lemma 21. [Reh15, Lemma 14] Let

E′ = {{base(vi), base(vj)} ∣ eij ∈ E, base(vi) ≠ base(vj)}
c′(za, zb) = min{min{d(za, vi), d(zb, vj)} + c(eij) ∣ vi ∈ N(za), vj ∈ N(zb)}

G′ = (R,E′, c′)

The weight of an MST for G′ is a lower bound for the weight of any Steiner tree for
(G,R).

This lemma can be used to define a lower bound for edges and vertices. Let w′ be the
weight of the spanning tree for G′ minus the length of its longest edge:

• Let v ∈ V , w′ + d(v, zv,1) + d(v, zv,2) is a lower bound for a Steiner tree containing v
as a Steiner node.

• Let eij ∈ E, w′ + d(vi, zvi,1) + c(eij) + d(vj , zvj ,1) is a lower bound for a Steiner tree
containing eij .
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Figure 3.10: Graph after running dual ascent. w̃ = 22

Example 3.3.12. Figure 3.9 shows the reduced distance network G′ for our running
example. The graph is already a minimal spanning tree and has cost 17 and without the
longest edge it is 7.

We again calculate a lower bound for H. The sum of costs for the two closest terminals
is 36. Therefore the lower bound is 43. For the edge {d, H} the calculation yields a lower
bound of 39. ∎
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Dual ascent

We already discussed the dual ascent algorithm in Chapter 3.1.3. Besides a lower bound w̃,
the algorithm also calculates reduced arc costs c̃. We discuss how to use these results to
establish local lower bounds. r denotes the terminal designated as root.

Lemma 22. [Pol03, Chapter 3.4.2] Let w̃ be the lower bound and c̃ be the reduced edge
costs after a dual ascent run. Furthermore, let d̃ be the distance function using the reduced
edge costs and directed paths. Given a vertex vi ∈ V ,

w̃ + d̃(r, vi) + min
zj∈R′

d̃(vi, zj)

is a lower bound on any Steiner tree containing vi.

A similar bound can be derived for any edge eij ∈ E. Let

ci = d̃(r, vi) + c̃(aij) + min
z`∈R′

d̃(vj , z`)

cj = d̃(r, vj) + c̃(aji) + min
z`∈R′

d̃(vi, z`)

w̃ +min{ci, cj} is a lower bound for any Steiner tree containing eij.

Note that the lower bound for an edge eij is calculated by taking the minimum over the
corresponding arcs aij , aji. Furthermore, the lower bound on terminals is always 0.

The tests can be sped up, if a Voronoi partitioning based on the reduced costs is created
first.

Example 3.3.13. Figure 3.10 shows the running example after a run of dual ascent
using c as a root. The resulting lower bound is 22. We can now calculate the lower bound
for H. The shortest path from c to H using the 0 edges has cost 11. The shortest path
from H to a terminal is 1. Together with the graph’s lower bound this yields 34 as the
lower bound for H. Note that a Steiner tree using H has minimum weight 43 under the
assumption that it must not be a leaf.

Similarly we can calculate the lower bound for the edge {d, H}. We have to calculate
both variants: c to d and H to closest terminal as well as c to H and d to closest terminal.
The shortest path from c to d hast cost 0 and the closest terminal to H is d with distance
1, totaling at 12. The shortest path from c to H has cost 11 and the distance from d to
the closest terminal is 0, also totalling at 12. Together with the graph’s lower bound this
yields a lower bound of 34 for the edge. ∎

3.3.5 Inaccurate Data

Many reductions use the same data: distances, Voronoi regions, Steiner distances, and
upper bounds. In order to avoid expensive recalculations, the data is usually stored. As
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reductions remove part of the graph, they can cause the data to be outdated. Some
reductions produce correct results even if stale data is used, although they might not be
as effective [HRW92b]. It is therefore useful to know how different reductions affect data
and when the data needs to be refreshed.

Inclusion tests contract edges, thereby usually decreasing distances. Therefore distances,
Voronoi regions, Steiner distances and upper bounds decrease. As the tests compare
against an upper bound, they remain correct if the stored distances are higher [HRW92b].

Exclusion tests remove part of the graph and can cause distances to increase. Voronoi
regions and upper bounds stay the same. Steiner distances usually change as well, except
for the long edges and SDC test by design.

In this sense the NTDk test is not a real exclusion test as it restructures the graph more
than remove parts. It therefore does not change distances, but the upper bound may
change.

Tests that compare against a lower bound stay correct even if the stored data is higher.
This affects the SDC, long edge and NTDk reduction. Conversely, tests that compare
against an upper bound stay correct even if the data is lower than in reality. As is the
case for the Voronoi reductions.

The dual ascent reduction as well as the simpler non-terminal and terminal tests tests do
not rely on stored data.

This concludes our discussion of reductions. In the next and final theoretical part, we
look at methods to improve our approximations.

3.4 Improving Steiner Trees
Every graph that is connected, contains all terminals and uses only edges from the input
graph is a Steiner tree. Furthermore, every Steiner tree is an upper bound for the weight
of an SMT. This implies two things:

1. We can find Steiner trees in a subgraph of G as long as all terminals are in one
connected component.

2. Given a Steiner tree T , we can generate new Steiner trees by replacing parts of it.

In this chapter, we use this ideas to improve our upper bounds. Although many approxi-
mations for Steiner trees exist [HRW92c], we only use RSPH in our work. The methods
we present in this chapter are nonetheless applicable to all approximation methods that
generate Steiner trees.

3.4.1 Alternative Graphs

The idea behind this strategy is, to reduce the input graph in the hope that the approxi-
mation finds a better bound using the reduced graph. Since we compute an upper bound
it suffices to compute Steiner trees. It is therefore not necessary for the reduced graph to
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contain an SMT for the original graph. We discuss different methods to find subgraphs
of G that may improve approximation results.

Dual Ascent

We discussed this algorithm in Chapter 3.1.3. It iteratively creates larger and larger
components, until it has established one component that contains all terminals. It is
straightforward to use the final component as an input for our approximations. We
therefore create a graph that contains all edges eij such that c̃(aij) = 0 or c̃(aji) = 0.
While the dual ascent algorithm guarantees that this graph contains a Steiner tree, it
may not contain an SMT [Pol03].

Pruning

The concept of comparing lower to upper bounds has been discussed several times.
In Chapters 3.3.4 and 3.3.4 we discussed methods that use this concept to remove
components of the graph.

So far we always computed a valid upper bound. Using an invalid upper bound, i.e. one
that is lower than the optimal value, would result in potentially sub-optimal results. For
approximations the validity is not a concern. As long as we arrive at a Steiner tree, we
have the desired result. We can therefore assume any upper bound, reduce the graph
using the bound and finally run the approximation algorithm. Note that this is similar
to guessing the value of ∣smtG(R)∣.

A common way to establish the bound is by defining a reduction goal. We therefore
choose the bound, so that a fixed percentage of edges or vertices are eliminated. If we
want to eliminate 10 % of the edges and the graph has 100 edges, we use the 90th highest
weight to compute our upper bound [Pol03].

We can extend this methods to include other reductions as well. After pruning the graph,
we run other reductions, shrinking the graph even more. We can also run the pruning
in several passes. In each pass we lower the upper bound to eliminate more edges or
vertices, run the reductions and try to find a Steiner tree. We can also prohibit the
reduction of edges from a known Steiner tree to guarantee the existence of at least one
solution. We keep the smallest Steiner tree over all passes as an upper bound [Pol03].

Recombination

It is common to calculate several Steiner trees. RSPH alone is performed in several
passes, each of the improvement strategies presented here may produce distinct Steiner
trees. Furthermore, reductions are performed in passes, often recalculating upper bounds.
We can collect these trees and recombine them, in a hope to find a better one.

The general idea is, to select a certain number of Steiner trees from a pool. A new
graph is created by combining the vertices and edges of the chosen trees. Reductions
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and pruning can then be applied to the resulting graph [Pol03, Reh15]. Finally a Steiner
tree is approximated using this graph.

It is also possible to adjust the edge weights in a way that reflects in how many Steiner
trees they occur. Different strategies have been suggested, either penalizing high-frequency
edges with higher costs to achieve diversity or lowering their costs to intensify their
usage [RUW00, Reh15]. The weights are adapted before a Steiner tree is computed and
restored before any reductions or local searches are applied [Reh15].

Parameters of this strategy are the size of the pool, the selection strategy defining how
many and which Steiner trees to choose, as well as how the edge weights are adapted.

3.4.2 Local search

Approximated solutions can often be improved by applying small changes. Given a
Steiner tree we try to replace components in the hope of obtaining a new Steiner tree
with lower weight. All methods described here run in O(m logn) [UW12].

For the rest of this section we assume we are optimizing a Steiner tree T = (V ′,E′, c).
Furthermore, a key-vertex is a non-terminal in V ′ of degree at least three and a crucial
vertex is either a key-vertex or a terminal. Let C denote the set of crucial vertices.

Vertex Insertion

This method tries to find a better solution by adding a new vertex. Given a vertex
vi ∈ V ∖ V ′, and A = {eij ∈ δ(vi) ∣ vj ∈ V ′}. Therefore, A contains all edges that directly
connect vi to T . If ∣A∣ > 1 we can try to improve T using the following strategy. We add
the first edge from A to T , thereby adding vi to T . For every other edge eij ∈ A we find
the most expensive edge e′ on the path from vi to vj . If c(e′) > c(eij) remove e′ and
add eij . This effectively computes a minimal spanning tree for V ′ ∪ {vi} [UW12]. If the
resulting tree’s weight is lower than T we keep the new tree as T , otherwise we restore T .
The search is performed for all vi ∈ V ∖ V ′2.

Key-Path Exchange

A key-path is a path in T that connects two crucial vertices. This method removes
a key-path and tries to reconnect the two resulting components. Whenever we find a
cheaper path, we keep the new graph, otherwise we restore T . A straightforward way to
find a new path, is to use Dijkstra’s algorithm [Voß92, VSA96]3.

The algorithm’s runtime can be improved using Voronoi partitioning. We partition the
graph into regions defined by the vertices in T and store the links, ordered by the length
of the path they represent. Whenever we delete a path, we repair the partitioning and
keep track of the new links. Finding an alternative path now only requires to check the
prioritized links [UW12].

2The original source was not available, [UW12] refers to [Min90]
3[VSA96] also references [Dow91] which was not available
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Key-Vertex Elimination

This method tries to find a smaller Steiner tree after the removal of a key-vertex. For each
key-vertex vi, we try to remove the vertex. This splits T into three or more components.
We then create a distance network, where each component is represented by a vertex.
The edges have cost equal to the shortest path between these components in G. If the
MST of this distance network has smaller cost than T , we can replace vi in T by adding
the paths represented by the MST’s edges [DV97].

Calculating the distance network and its MST is expensive. As with the previous method
we can use Voronoi partitioning to speed up the calculation. Keeping track of the links
allows us to create the distance network without explicitly calculating the paths [UW12].

This concludes the discussion of the theoretical background. We now turn to its practical
applications.
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CHAPTER 4
Implementation

In the previous chapter, we laid out the theoretical foundation for our solver. In this
chapter, we discuss our implementation1 for PACE. With the theoretical knowledge in
mind, we focus on solver specific details and findings that are not derivable from the
presented theory.

The structure of this chapter is similar to that of the previous one. We first present how
we calculate the bounds in our solver. Next, we lay out the details of our solving and
reduction modules. In the last part we discuss weaknesses of our implementation

4.1 Approximations

In our implementation we use bounds extensively. During the reduction phase we need
lower and upper bounds to determine if components in the graph can be part in an
SMT. During the solving phase the upper bound is not as important and primarily serves
to reduce memory consumption. A lower bound is used as a guiding heuristic (this is
discussed in detail in Chapter 4.2).

Although the algorithms for the heuristics are in principle simple, the implementations
are comparatively extensive. Their implementation also includes optimizations and
local searches, which add considerable complexity. This extra effort is justified as these
heuristics together with the solver code are the most called modules. Small improvements
in runtime or tightness can make a big difference.

We first discuss RSPH, our main method of obtaining an upper bound. Afterwards, we
present our approach to calculate lower bounds using dual ascent.

1The source code of our solver can be found at https://github.com/ASchidler/pace17
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4.1.1 RSPH

Whenever an upper bound is required, this heuristic is called. During the reduction
phase, all bound based reductions (see Chapter 3.3.4) use it. Furthermore, dual ascent
uses it on subgraphs on G during pruning and recombination (see Chapter 3.1.3).

The algorithm is usually limited to 20 roots. Since dual ascent calls it several times
during one run, it uses a lower limit of 10 roots, to reduce runtime.

Shortest paths

The implementation of this heuristic is rather straightforward. In every iteration we
choose a terminal and add the shortest path to our solution. In a first implementation
we used precalculated distances to determine the closest terminal. In each iteration we
ran Dijkstra’s algorithm to find the shortest path.

This worked as a proof of concept, but was inefficient. We implemented it again using
the method suggested in the literature and discussed in Chapter 3.1.1. We run Dijkstra’s
algorithm from the root. As soon as we find another terminal, we add the shortest path.
Furthermore, we change the distances for all added vertices to 0 and add them to the
queue. This ”warm starts” the algorithm. We run it again until we find terminal, add
the path and repeat the whole process until all terminals have been added.

During the first tests, the results of the two versions differed, sometimes significantly. This
was surprising, as they were supposed compute the same Steiner tree. Close examination
showed that they chose different shortest paths. This led to different connection points
for subsequent terminals and subsequently more differences. The significant difference
turned out to be the direction in which the algorithm is run. In the first version it
started at the terminal and searched the tree, the second version searched in the opposite
direction.

Since the algorithm is greedy, it prefers shorter edges first. Once it reaches a vertex with
minimal cost, the path is never overridden in case of tied costs. We added an additional
value that acted as a tie breaker, in case two elements have equal cost. This caused
variations similar to the ones observed before. Although we tried different tie breaking
strategies, we could not find one that achieved overall better results. The tie breaking
strategies are:

1. The number of edges in the path. This prefers paths with many edges, providing
more possible connection points.

2. An increasing multiplier for the path cost. This prefers paths that have fewer edges
and cheaper edges at the end.

3. A decreasing multiplier for the path costs. This prefers paths that have more edges
and cheaper edges at the start.
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Root selection

In every RSPH run the algorithm chooses several roots. The result from the best root
is then used as an upper bound. For larger instances it becomes infeasible to try every
possible root in every run. We therefore store the roots used in the previous run sorted
by increasing result. For the next run we use half of them and fill the other half with
terminals not used before.

4.1.2 Dual Ascent

As described in Chapter 3.1.3, we use this algorithm to calculate both lower and upper
bounds. The associated reduction is the only one that does not run in O(m + n logn).
We use it nonetheless, as its effectiveness usually justifies the extra runtime.

Terminal selection

In every iteration of dual ascent we have to select an active terminal. The choice of
this terminal impacts the result. A good selection strategy can therefore tighten the
computed bounds.

We implemented dual ascent three times with slight variations. The original goal was
to improve the existing implementation. Tests showed that the new implementations
were not strictly better. Each implementation performs best for some instances. All
implementations use the number of incoming edges as the deciding metric when choosing
the next component. The main difference is, when the incoming edges are counted:

1. The first implementation keeps track of the components and uses the incoming
edge count established before the edge weights are reduced. This is the slowest
implementation, but produces the overall best results.

2. The second implementation counts the incoming edges while it reduces the edge
weights. It is the fastest version, but produces the overall worst bounds.

3. The last implementation counts the incoming edges after all updates have been
performed. This method is exact, but slow. The runtime and the quality of the
approximation is between the other two implementations.

When used for reduction purposes, we alternate between implementation one and two.
Therefore, half of the runs are calculated using one implementation and half using the
other. If used as a guiding heuristic, we use either the second implementation or the
third, as the first one is too slow.

Upper bounds

In order to find better upper bounds, we try to find new subgraphs of G that in conjunction
with RSPH produce better bounds. For this end we use three methods:

1. Dual-Ascent-Merge is based on combining several dual ascent graphs.
2. Prune-Ascent tries to use pruning on a dual ascent graph.
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3. Solution-Merge combines several Steiner trees generated by the previous methods.

Dual-Ascent-Merge uses the set of all graphs that have been generated by the dual ascent
runs. It is run several times with a changing subset of available dual ascent graphs. From
each graph the zero cost paths from root to each terminal are calculated and added to
an auxiliary graph using the original edge costs. Furthermore, the cost of each edge is
increased by (1 + l − o) ∗ 100 where l are the number of dual ascent graphs used and o
how often the edge occurred in a zero cost path. Therefore edges that occur more often
get priority. On this auxiliary graph the shortest path heuristic is run with ten roots and
local searches are performed after the original edge weights have been restored.

Prune-Ascent only uses one dual ascent graph at a time. An auxiliary graph is created
with all edges that have weight zero in the dual ascent graph. The original edge weights
are used for this graph. In three iterations this graph is reduced and for each iteration
RSPH with ten roots is run. In each iteration non-bound-based reductions are applied
to the graph in three passes. Afterwards bound based reductions are run and an upper
bound is chosen in a way that at least 10% of vertices are eliminated. All vertices that are
in the current best upper bound are protected against removal. For the implementation
several other options were considered and decided against:

• The bound could be chosen in a way that eliminates a certain amount of edges
instead of vertices. This did not produce better bounds.

• Besides eliminating vertices using the new bound, edges could be eliminated. This
worsened the bound for sparse graphs, but improved it for dense graphs. As it did
not improve it enough for the challenge, the idea was discarded.

• The run could be performed on a copy of the main graph instead of an auxiliary
graph. As the main graph is usually larger, this took considerably more computation
time, while producing inferior results.

• Instead of defining the bound using vertices, it could be reduced by a fixed per-
centage. This amounts to guessing the real optimum. This again produced inferior
results compared to the implemented version.

• More pruning iterations could be performed. This produces better upper bounds,
but ultimately the improvement did not justify the added computation time.

Solution-Merge is very similar to Dual-Ascent-Merge. The only difference is that Solution-
Merge adds all edges from a set of previous feasible solutions instead of zero length
paths.

Of these three methods, Prune-Ascent is the most computationally expensive. Each run
means three reduction processes, distance and upper bound calculations. Nonetheless it
often improves the upper bound especially for dense graphs. Dual-Ascent-Merge was not
described as such in literature, but produced good bounds for some instances and was
therefore included.
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Parameterization

We introduced several parameters that control the behaviour of the reduction. The
number of roots is decided, based on size and density of the graph. Furthermore, three
parameters, each controlling how often the previously discussed upper bound methods
are run, are also adapted to the properties of the graph.

The algorithm runs slow on dense graphs, due to the number of edges to consider. We
therefore limit the number of runs and upper bound generations for theses instances.
As the runtime also increases with the graph size, we reduce the number of runs as the
graph gets bigger.

The roots for the runs are chosen such that half of them are the best from the previous
run (if available) and the rest are terminals not used in the previous run.

This concludes our presentation of the approximation implementations. Next, We discuss
implementation details about our solving module.

4.2 Solving Algorithm
In our solver module we use the Dijkstra-Steiner algorithm as discussed in Chapter 3.2.3.
We added several improvements, either not mentioned or not explicitly specified in the
original paper [HSV16]. In this chapter, we discuss our adaptions to the algorithm.

We also show benchmark results for the different features we describe. All benchmarks
discussed here have been performed on the 200 PACE instances using the same limitations
of 30 minutes runtime and 6 GB memory limit. More information on the benchmark
environment can be found in Chapter 6. Table 4.1 and Figure 4.1 show the benchmark
results. tuw is the baseline of our solver with all features enabled. The other results are
discussed subsequently. The column Common Runtime (s) shows the aggregated runtime
over all instances that were solvable with every configuration.

Name Solved Runtime (s) Common Runtime (s) Memory (GB)
tuw 188 10985.62 7512.30 26.39
tuw-config-store 187 9499.72 7519.85 25.53
tuw-config-root 186 10109.63 7808.71 25.98
tuw-config-da 177 8576.86 8576.86 27.98

Table 4.1: Different solver configuration settings compared.

4.2.1 Root selection

The original algorithm always uses the last terminal as the root for the calculation
[HSV16]. The tightness of the bounds computed by RSPH and dual ascent depend a
lot on the roots used. This suggests that a good root selection may also improve the
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Figure 4.1: Comparison plot of different solver configurations. The markings show the
runtime (y-axis) for an instance (x-axis). The instances are sorted by ascending runtime.

performance of the solver. For this end we use the following root selection strategy: Use
the best root from the last dual ascent reduction run. If none is available, use the best
root from the last RSPH run. If none is available default to the last terminal. Note
that, although as long as the reductions have been run, roots are available from both
heuristics, due to the nature of the reductions, they may no longer be part of the graph.

In Table 4.1 and Figure 4.1 we compare how the solver performs with (tuw) and without
(tuw-config-root) the root selection strategy. The results show an improvement in both
the runtime and the amount of instances solved.

4.2.2 Label Store

In each iteration the current sub-solution is combined with other sub-solutions at the
current vertex. This process creates up to 2k entries per vertex. It is therefore one of the
more time consuming operations when dealing with complex instances.

The combination process is performed for all other sub-solutions with a disjoint set of
terminals. In an attempt to optimize this step we looked for a data structure that allows
us to identify them, without iterating over every entry. The goal was therefore to avoid
examining non-disjoint sub-solutions.

We use integers to represent subsets. If the n-th bit is one, then the n-th element of
the set is in the subset represented by the integer. For a four element set {1,2,3,4},
we need four bits to represent its subsets. The number 5 in binary is 0101, therefore

54



4.2. Solving Algorithm

-
110

1
011

0
100

11 01
001

10
110

00

111 011 101
101

001 110 010 100 000

Figure 4.2: The label store with 15 vertices. Numbers in the vertices are the vertex label.
Numbers above are the values stored at the vertices.

element 1 and 3 are in the subset represented by 5. It is therefore possible to use binary
operators to compare sets. The binary and operations performs a set intersection and
the or operation a set union.

The data structure used is a binary tree with a specific structure. Each vertex in the
tree has a label, determined by its position. Starting with the least significant bit, every
left branch means the bit at the current level is set, otherwise unset. Figure 4.2 shows
the basic structure. The label is drawn inside the vertex.

Whenever a new entry is inserted we search for the first vacant vertex. For this search,
the binary value is compared bit by bit. Starting at the root, whenever the bit is 1 we
continue our search in the left branch, otherwise in the right. Note that the root accepts
any value.

When the store is queried for all stored sets disjoint from I, we examine I bit by bit. We
now recursively build a set of sets. We start with the root: B0 = {root}, now we construct
Bi+1 considering only children of vertices in Bi. We add all right children, signifying 0
branches. If the bit at position i+ 1 is not set we also add the left children. Let B be the
union of all Bi and J the values stored at the vertices in B. We now return all values in
J that are indeed disjoint from I. This process cuts down the sets we need to consider
by ignoring whole subtrees.

We benchmarked the solver with label store and without. In Table 4.1 and Figure 4.1 the
entry tuw uses the label store, while the entry tuw-config-store uses a simple list. During
the development phase, the store made a greater difference. With further improvements
in other modules, the effect of the store became smaller. Nonetheless it allows us to solve
one instance more.

Example 4.2.1. Figure 4.2 shows the state of the label store after inserting 110, 011,
001, 100, 101 and 100. We now query the store for all disjoint sets of 011. B0 = {−} and
B1 = {0} as the first bit of the query set is set. B2 = ∅ as the right child of 0 is empty
and the second bit is set. We therefore have B = {−,0} and corresponding values 110
and 100. Of these to only 100 is really disjoint. Note that we cut the number of entries
to check down from 6 to 2. ∎
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4.2.3 Heuristics

While the original paper suggested three different guiding heuristics, we only used one of
them [HSV16]. Only the 1-tree heuristic proved feasible for our purposes, as the others
were too slow. The implementation is straight forward, with a cache, so the heuristic
value for a subset of vertices can be reused.

While not suggested in the original paper, we also use dual ascent with great success.
This heuristic is not consistent and required the changes described in Chapter 3.2.4.
In Table 4.1 and Figure 4.1 we compare the solver with and without dual ascent as a
guiding heuristic. The entry tuw-config-da shows how the solver performed without it.
The results confirm that this addition has a great impact on our solvers performance.

When used as a guiding heuristic, dual ascent performs only one run using the same
root as the solving algorithm. As discussed in Chapter 4.1.2 the algorithm has been
implemented multiple times. When the heuristic is called the first time, it calculates the
bound, once with each of the fast implementations. For the rest of the solving run it uses
the method that produced the better bound.

After calculating the bound, the heuristic value for all vertices is calculated and cached.
Subsequent calls for the same terminal subset are answered using the cached values. To
limit the memory consumption, only the heuristic values for the last 15 000 queried
subsets are kept. Note that the solver chooses the root that produced the best result in
the last dual ascent run, improving the bounds produced by the guiding heuristic.

We use dual ascent for small sparse graphs and 1-trees otherwise. While dual ascent
provides better bounds, it is too slow to be feasible as a guiding heuristic for larger
graphs. Whenever a graph has fewer than 2000 edges and m

n ≤ 3, we use dual ascent.

4.2.4 Priority Queue

In each iteration the algorithm chooses a vertex-subset tuple that minimizes the known
weight of the sub-solution. The tuple is chosen from a collection representing a queue.
We use a priority queue to efficiently select the next tuple. Therefore, the tuples are
prioritized by weight. Profiling results showed that for complex instances, the priority
queue code is one of the most executed parts of the solver. We use two different strategies:
bucket queues and d-heaps.

The entries in d-heaps are stored in a tree. Every vertex has d or fewer children. For
every vertex the heap condition holds: the value of a vertex is lower than that of its
children. The minimal element is therefore always the root. We add new elements as
a leaf and then swap it with the parent, until the heap condition is restored. When
removing the smallest element, we swap the root with a leaf and then remove it. The new
root is then swapped with its children until the heap condition holds. Therefore, d-heaps
are always balanced and changes can be performed in logarithmic time [EEK17]2.

2The original source was not available, [EEK17] refers to [Joh75]
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Python provides a binary heap or 2-heap implementation heapq, often used for priority
queues. We tried the generalized concept d-heaps. Here we store d different values per
vertex instead of two. In theory d-heaps should perform better, if the amount of insert
statements is significantly higher, than the removal of an element. This behaviour can
be expected if the bounds are not very tight, as is the case with complex instances.
We compared different values for d. Table 4.2 shows the results. The differences are
negligible, we use the best performing value of 16.

Name Solved Runtime (s) Memory (GB)
tuw-config-d16 188 10997.23 26.47
tuw-config-d4 188 11004.03 26.54
tuw-config-d2 188 11025.96 26.31
tuw-config-d8 188 11147.63 26.51
tuw-config-d32 188 11252.28 26.49

Table 4.2: Comparison of the performance using different d-heaps as a priority queue

The other approach we use is that of bucket queues. The idea is to have one bucket for
each value. When we add an element, we put it in the bucket corresponding to its value.
This avoids costly management of the queue structure. We have the list of buckets, a
pointer to the non-empty bucket of lowest weight and a lookup table. The lookup table
allows us to change the weight of existing entries. Whenever we add a new entry, we
select the bucket in constant time and add the entry to the lookup table. If the bucket
was empty before, we check if we need to update the pointer. To remove an element, we
take a random element from the bucket referred to by the pointer. If the bucket is empty,
we search for the next non-empty bucket and update the pointer.

This approach avoids managing the elements itself. Adding an element takes two entries
and removing and entry is also quick, provided the bucket is not empty. Therefore,
the performance depends on the value range covered and how often buckets are empty
[MS08a]. The more entries fall into a narrow value range, the better the queue performs.
We therefore used a threshold for the upper bound to decide when to use bucket queues
and when d-heaps. Table 4.3 shows the comparison using different thresholds. The use
of bucket queues has negligible impact on the runtime. We nonetheless use them, as they
provide a theoretical benefit and no empirical disadvantage.

This concludes the discussion of our solving module’s details. In the next part we show
how our implementation manages reductions.

4.3 Reductions

This module runs first and tries to reduce the graph’s size. Apart from the bounds
already discussed, the implementation of the reductions is straightforward from the

57



4. Implementation

Name Solved Runtime (s) Memory (GB)
tuw-config-bucket-50k 188 11001.43 103.31
tuw-config-bucket-20k 188 11008.14 103.26
tuw-config-bucket-5k 188 11027.34 103.44
tuw-config-bucket-10k 188 11044.97 104.12
tuw-config-bucket-0k 188 11057.56 104.29

Table 4.3: Comparison of the performance using different thresholds for the use of a
bucket queue.

theory. Therefore, we do not discuss the reductions in detail. The focus in this chapter
is on the configuration of the reduction process.

4.3.1 Organization of Reductions

We perform the reductions in passes. Each pass consists of all reductions, executed in
a specific order. Each reduction has a threshold. If the number of edges removed by
the reduction is below the threshold, it deactivates itself. This avoids wasting runtime
for negligible results. The threshold depends on the runtime of the reduction. Fast
reductions continue as long as they remove at least one edge, slow reductions have higher
thresholds. Dual ascent uses a threshold of 1 %.

The order of the tests follows the following idea: Fast reductions are performed continu-
ously before and after other reductions. These are tests Non-Terminals of Degree 0, 1
and 2, Terminals of Degree 1 and Minimum Terminal Edge. This potentially simplifies
the graph before more expensive reductions are run. The order of the other reductions is
as follows:

1. Long Edges
2. Steiner Distance based reductions
3. NTDk

4. Dual Ascent
5. Inclusions

The idea is to first remove edges, so more vertices are viable for NTDk. Afterwards
we run dual ascent on a hopefully smaller graph. Inclusion reductions often cause data
changes that are incompatible with the other reductions. This requires the data to be
recalculated. We therefore run these reductions last.

Some reductions are very slow or ineffective on dense graphs. We therefore change the
behaviour of the reduction process for graphs where m

n > 5. The dual ascent reduction
adapts its parameters accordingly, as discussed. The SDC and NTDk reductions are
skipped.
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4.3.2 Cached data

Reductions require information about the graph. This information is often expensive to
calculate and used by several reductions. For this end, we cache the following information:

• The distance between terminals and vertices.
• The bottleneck Steiner distances between terminals.
• A Voronoi partitioning of the graph.
• For each vertex we also store two lists of terminals. One is ordered by proximity

based on d and the other based on d.

Reductions may change the underlying data rendering the calculated information invalid.
The changes cause a shift in one directions, either the real values become lower or higher,
as discussed in Chapter 3.3.5. To avoid expensive recalculations, we use a flag for each of
the stored types of information. Whenever a reduction changes the graph, it adapts this
flags. These flags signify if the data is accurate, potentially lower than the real values
or higher. Each reduction checks at the beginning, if it would still be valid given the
settings of the flags. Whenever this check fails, the data in question is recalculated. E.g.
the NTDk reduction requires that s is either accurate or higher than in reality. After
each pass all data marked as inaccurate is discarded. This avoids that reducible parts of
the graph are not identified because of outdated data.

This completes the presentation of our implementation’s details. We discuss some
weaknesses in the last part.

4.4 Weaknesses
Our solver is able to solve 188 of the 200 PACE instances. We analyzed the remaining
12 instances to find the weaknesses of our solver. In general any instance that has many
sub-solutions with similar weight are troublesome for the solver. If the heuristic is not
able to clearly distinguish between them, the algorithm examines all of them.

The class of dense graphs has this property. The effect is exacerbated if the edges have
the same or very similar weight. This is not only problematic for the solving algorithm.
The reductions fail to identify reducible graph components in dense graphs. Furthermore,
guiding heuristic and pruning become a ball-in-chain, as their computation time increases
significantly, while they produce inferior results. They are nonetheless required to keep
memory consumption in check.

The solver also performs poorly for complex instances with many terminals. This is
unsurprising, as the goal was to develop a solver for instances with few terminals.

Another weakness of our solver is its memory consumption. Both runtime and memory
consumption could probably be greatly improved if we reimplemented the solver in a
more efficient programming language. During development, Python allowed us to quickly
implement new ideas. We think that this contributed more to our solvers performance,
than a more efficient programming language would have.
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We explore how our solver compares to the other participants next.
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CHAPTER 5
PACE Results

Our solver was written as a submission for PACE. In this chapter, we present the results
of the competition. We also take a closer look at other submissions. Our goal is to
find distinct features, that sets the different submissions apart. We also discuss if these
features could enhance our solver.

PACE consisted of two rounds. After the announcement of the challenge, 100 ST instances
were publicized. After the submission deadline, all submissions were tested against 100
private instances. These were not publicized, but the instances had properties similar to
the public instances. The submissions where then ranked by how many private instances
they were able to solve within the time and memory limit of 30 minutes and 6 GB. The
results are shown in Table 5.1. Our solver placed fourth, with little distance to the top
submissions and a considerable gap between fourth and fifth place.

The solvers could be tested using the website http://www.optil.io. The site
provided a live ranking showing how the solvers performed for the public instances. The
optil.io platform was also used to establish the final ranking using the private instances.

Due to the big gap between the top four submissions and the fifth place, we limit our
discussion in the remainder of this chapter to the top 3 submissions. We first examine
benchmarks for the top solvers and then take a closer look at the implementations of the
solvers.

5.1 Benchmark

We take a closer look at how the different solvers perform. The official PACE results do
not offer any information on runtime or memory consumption. In order to obtain this
data, we benchmarked the top four solvers again on the public and private instances. The
codebase for the other solvers from the time of submission. Because we added features
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Place Score Participants
1 95 Team wata_sigma: Yoichi Iwata, Takuto Shigemura
2 94 Team Jagiellonian: Krzysztof Maziarz, Adam Polak
3 93 Team reko: Thorsten Koch, Daniel Rehfeldt
4 92 Team tuw: Andre Schidler, Johannes Fichte, Markus Hecher
5 67 Team UWarsaw: Michał Błaziak, Krzysztof Kiljan, Dominik Klemba,

Marcin Mucha, Wojciech Nadara, Jakub Pawlewicz, Marcin Pilipczuk,
Mateusz Radecki, Michał Ziobro

6 66 Team noname: Suhas Thejaswi
6 66 Team DXHPeter : Peter Mitura, Ondřej Suchý
6 66 Team Johannes: Johannes Varga
9 48 Team sspspt: Saket Saurabh, P. S. Srinivasan, Prafullkumar Tale

Table 5.1: Final PACE 2018 results [BS18]

since the submission, we tested both, the current version (tuw) and the submitted version
(tuw-pace) of our solver.

We benchmarked the solvers using all 200 PACE instances. We also used the same time
and memory constraints as PACE. The benchmark environment is described in Chapter 6.
The aggregated results can be found in Table 5.2 and Figure 5.1. The detailed results
are listed in Appendix A. Note that the solvers performed better in our benchmarking
environment than they did on optil. The expected result for our solver would be 186
solved instances, 94 public and 92 private. The column Common shows the total runtime
for those instances solved by all solvers.

The results show that wata_sigma is considerably more efficient than the other submis-
sions. Although reko is tied for first place in this listing, it fails on two fairly simple
instances. This suggests it could outperform the other submissions in terms of solved
instances with limited extra work. Our solver is the least efficient in terms of resources.
This was to be expected due to the use of Python. It is nonetheless not much slower
than expected. In Figure 5.1 we see that especially for harder instances, it is on par with
the other submissions. Furthermore, the changes to our solver paid off, as it solves more
instances, unfortunately they also make it a little slower on almost all instances.

We will now examine the different submissions more closely.

5.2 First Place – wata_sigma

The solver wata_sigma has the same basic architecture as ours and is implemented in
Rust. It first uses reductions to simplify the instance and then uses a solving algorithm
to compute an SMT. Since there is no publication available yet, all conclusions in this
chapter have been drawn from the source code [YS18].
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Name Private Public Runtime (s) Common (s) Memory (GB)
wata_sigma 95 94 156.73 94.16 1.51
reko 95 94 9078.32 5130.77 5.57
tuw 94 94 10985.62 7675.36 26.39
Jagiellonian 94 93 5645.55 3599.72 35.35
tuw-pace 93 94 10004.67 7116.27 25.39

Table 5.2: Comparison of solvers submitted for PACE
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Figure 5.1: Comparison plot of solvers submitted for PACE. The markings show the
runtime (y-axis) for an instance (x-axis). The instances are sorted by ascending runtime.

For the solving module a dynamic programming approach is used. Although the Dreyfus-
Wagner algorithm is the classical FPT approach for ST, there exists another similar
algorithm [EMV87]. It is similar in approach and runtime bounds. Originally it was
designed to compute minimum-flows in networks and can be adapted to solve ST instances.

Many familiar reductions are used: Non-Terminals of Degree 0, 1 and 2 reductions
and Steiner Distance reductions. Additionally it uses two reductions we will discuss
subsequently: The Nearest Special Vertices test and the Degree 3 Test.

5.2.1 Minimum-Cost Network Flows and Steiner Trees

The Minimum-cost Network Flow Problem (MCNFP) tries to optimize the flow of a
commodity in a network. An instance is defined by a directed graph (V,A), a demand
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xi for each vertex vi and costs cij ∶ R↦ R for each arc aij . A solution to the problem is
a flow f = (fij) that defines for each arc aij how much of the commodity flows from vi
to vj . For f it holds that

∑
aji∈A

fji − ∑
ai`∈A

fi` = xi.

Therefore, the difference between the incoming and the outgoing commodity of a vertex
is exactly the demand. The goal is to find the flow that minimizes

∑
aij∈A

cij(fij).

Note that the existence of a minimum flow implies that the sum over r is 0 [EMV87].

Given an ST instance we can transform it into a MCNFP instance. We first transform it
into a Steiner arborescence instance with root r0. We set x0 = ∣R∣ − 1 and for all other
terminals zi ∈ R′ we set xi = 1. Furthermore we set

cij(fij) =
⎧⎪⎪⎨⎪⎪⎩

c(aij) if fij ≠ 0,
0 otherwise.

Any minimum flow now contains all terminals and minimizes the sum of edge costs.

The algorithm uses a send-and-split method to solve this problem. Given an instance
(G, r, c) and ∅ ⊂ I ⊆ R, we introduce some definitions.

xI = ∑
vi∈I

xi

AI =
⎧⎪⎪⎨⎪⎪⎩

A if xI ≥ 0,
{(vj , vi) ∣ aij ∈ A} otherwise

and cIij(fI) =
⎧⎪⎪⎨⎪⎪⎩

cij(xI) if xI ≥ 0 or aij ∉ AI ,
cji(−xI) otherwise.

Furthermore, Let l(vi, I) be the solution for the following instance: We set xj = 0 for all
vj ∉ I and then xi = xi − xI .
Note that the solution to the original instance is l(vi,R) for any vertex vi. The definition
of AI is used to either receive commodities from the neighbors in case of a deficit or send
them commodities in case of a surplus. We now define

l′(vi, I) = min
∅⊂J⊂I

(l(vi, J) + l(vi, I ∖ J)).

This is called splitting and allows us to combine sub-solutions. The solution can now be
calculated recursively by using the following formula (sending) [EMV87]

l(vi, I) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if ∣I ∣ = 1,
min{ min

aij∈AI

(cIij(xI) + l′(vj , I)), l′(vi, I)} else.

The next step is to apply the algorithm to ST. As long as edges are used the costs are
independent of the amount of commodities flowing. Further, for every arc aij exists
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a counter-arc aji with the same costs. Therefore A = AI and the cost of sending a
commodity from vi to vj is d(vi, vj). We can now simplify the algorithm and state
l(vi, I) = minvj∈V (d(vi, vj) + l′(vi, I)). This is exactly the Dreyfus-Wagner algorithm (see
Chapter 3.2.2).

The distinguishing feature of this solver is its pruning strategy, which we will discuss
next.

5.2.2 Pruning

In Chapter 3.2.2 we discussed that the best-case runtime for the Dreyfus-Wagner algorithm
is exponential in the number of terminals. This bound also holds for this application
of the MCNFP algorithm, as established above. The wata_sigma solver achieves its
excellent results by applying very successful pruning strategies. We already discussed
pruning in Chapter 3.2.5. We use the notation T (vi, I) for an SMT in smtG(I ∪ {vi}).

Any tuple (vi, I) represents a graph in smtG(I ∪ {vi}). Whenever we can show that
there exists no T ′ ∈ smtG(R∖ I), such that vi ∈ V [T ′], we can discard (vi, I). This is the
concept behind pruning.

The solver uses three different pruning techniques. These are applied during the sending
(or propagation) phase. Therefore, the algorithm has calculated the values for a subset
∅ ⊂ I ⊆ R and is about to send it to the other vertices. Pruning marks every vertex vi
either as valid if T (vi, I) may be a subgraph of any T ′ ∈ smtG(R), or invalid if there
exists no SMT that contains T (vi, I) as a subgraph. When merging sub-solutions T (vi, I)
and T (vi, J) all vertices that are valid in both sub-solution are merged and retain their
flag.

The first strategy is the same as in our solver. When propagating the values, the solver
uses Dijkstra’s algorithm and propagates the valid flag as well. It stops propagation as
soon as it finds the first terminal not in the current subset I. Any vertex that has not
been flagged as valid before, remains invalid.

The second strategy applies the following idea: Imagine that we remove all vertices from
the graph. We now add vertex by vertex to the graph. We always add the vertex vi next
that maximizes l(vi, I). After adding each vertex, we check if there exists a connected
component containing all vertices in R ∖ I, if so we stop and remember the vertex vj we
added last. Since before we added the vertex, there could not have been a Steiner tree for
R∖I, any SMT in smtG(R∖I) must contain a vertex v`, such that l(v`, I) ≤ l(vj , I). This
gives us an upper bound and we can mark all vertices vi ∈ V , such that l(vi, I) > l(vj , I)
as invalid. For the computation of this value we assume that l(vi, I) = ∞ per default, as
some vertices may not have a value due to the previous strategy.

The last strategy is the most intricate. The solver uses ideas expressed in Chapter 3.4.2.
The first idea is the following: Given a tree T . If we add an edge between any two
vertices we have a cycle. We now have to remove an edge from the cycle to restore the
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tree property. If any edge e in the cycle has higher weight than the added edge, we can
lower the weight of the tree, by removing e.

This idea can be extended to paths instead of edges. We use the same definition for key-
paths as in Chapter 3.4.2: Given a Steiner tree T , every terminal and any non-terminal
of degree 3 or higher in T is a crucial vertex. A key-path is a path connecting two crucial
vertices without any intermediary crucial vertices. Given a Steiner tree T , if we add a
path S between two vertices in T , we create a key-path and a cycle. If any key-path S′
in the cycle has higher weight than S, we can obtain a Steiner tree of lower weight by
removing S′.

Using this idea, we can establish a bound on the distance between subtrees in an SMT.
Given an SMT T for our current instance. Imagine a subtree in T1, rooted at vi.
Furthermore, let vj ∈ V [T1] and w be the maximum length of a key-path in the path
between vi and vj . For all v` ∈ V [T ] ∖ V [T1] it must hold d(vj , v`) ≥ w. Otherwise we
could add the path from vj to v` and remove the longest key-path to obtain a smaller
tree, contradicting that T is an SMT.

Let V ′ be the set of all valid vertices in the current iteration for subset ∅ ⊂ I ⊆ R. For
every vi ∈ V ′ and every vertex vj ∈ V [T (vi, I)] we store the maximum length of a key-path
in the path between vi and vj in T (vi, I) as fvj(vi). Further, let B = ⋂vi∈V ′ V [T (vi, I)] be
the set of vertices in all trees. We now compute bvj = minvi∈V ′ fvj(vi) for all vj ∈ B. Since
vertices in B are in all trees, these vertices are guaranteed to be in every T ∈ smtG(I).
Since we do not know, which of the trees in smtG(I) will connect best with the remaining
terminals, we take the minimum over all the key-path values. For all vi ∈ V, vj ∈ B we
can now mark vi as invalid if d(vi, vj) < bvj .

This concludes the discussion of the solving module.

5.2.3 Nearest Special Vertices

The Nearest Special Vertices (NSV) test is a generalization of the Nearest Vertex and
Short Links test (see Chapter 3.3.3) [HRW92b] and based on the following lemma:

Lemma 23. [DV89, Theorem 1] Given an edge eij ∈ E. If there exist two terminals
z, z′ ∈ R, such that d(z, z′) = d(z, vi)+c(eij)+d(vj , z′) and s ≥ d(z, z′) then eij is included
in at least one SMT.

The test can be performed efficiently using an MST. Let T =MG: For each edge eij ∈ E[T ],
we remove the edge from T and compute the two resulting connected components. If
each component contains at least one terminal, the edge is on a shortest path between
two terminals. To calculate s we find the shortest edge est that reconnects the two
components. If no such edge exists, we can contract eij , otherwise s = c(est). After we
perform the test, we re-add eij to T and proceed with the next edge [DV89].

The test can be performed in O(n2) [DV89], which exceeds our desired limit of O(n logn).
Furthermore, repeated application of Nearest Vertex and Short Links reduces the graph
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by a similar amount [Pol03]. The NSV test has therefore not been included in the tuw
solver.

5.2.4 Non-Terminals of Degree 3

This is a test that we first encountered in this solver. It tests the incident edges of all
non-terminals with degree 3. The idea is, that if we can reach all the neighbors of a
vertex without using a specific edge, we do not need the edge.

Let dX(v, v′) be the distance of the shortest path between v and v′ without using any
vertex in I. If v′ is not reachable from v without using vi we assume that dX(v, v′) = ∞.
Given a vi ∈ V ∖R, such that ∣δ(vi)∣ = 3, we define {eij , ei`, eio} = δ(vi) and B = {vj , v`, vo}.

The tests are performed on a subset of permutations of the neighbors {(x1, x2, x3) ∣
x1, x2, x3 ∈ B,x2 ≠ x1, x3 > x2}. Therefore, three permutations, where each neighbor is
exactly once at position one. Furthermore, only permutations such that d{vi}(x1, x2) ≤
c(vi, x1) + c(vi, x2) and d{vi}(x1, x3) ≤ c(vi, x1) + c(vi, x3) are considered. Therefore such
permutations where x1 can be reached from the other neighbors, without incurring a
higher cost by avoiding vi.

The edge {vi, x1} can be eliminated if the weight of an MST in (B,B ×B,d{vi}) is less
than or equal to ∑v′∈B c(vi, v′). Therefore, an SMT containing all three neighbors, does
not have to include vi as well.

If the test above fails, we can extend the test to the neighbors of neighbors. The following
test is performed recursively: Let X = {vi}, p = x1,wvi,p = c(vi, x1):

1. If min{dX(x2, p), dX(x3, p)} ≤ c(vi, p), then remove {vi, x1}. We can reach p
efficiently without using vi.

2. If p ∈ R stop. Since we have a terminal, we have to add p and the search for an
alternative path failed.

3. Otherwise find all neighbors q of p, such that

min{dX(x2, p), dX(x3, p)} > max{wvi,p, c(p, q)}.

If more than one such neighbor exists, we can stop, as we cannot determine if
an alternative path exists. If none such neighbor exists, we found an alternative
path and can eliminate {vi, x1}. If one such neighbor exists, we set p = q,wvi,p =
wvi,p + c(p, q), I = I ∪ {p} and go to 1.

All vertices where the test succeeds are of degree 2 afterwards and therefore removed in
a subsequent Non-Terminals of Degree 2 test (see Chapter 3.3.2).

This concludes our discussion of this submission. The Non-Terminals of Degree 3
reduction yielded good results in our solver and has been added permanently. The very
efficient use of resources in this solver suggests that the pruning methods used could
provide a great enhancement to our solver. Unfortunately due to the different algorithm
the pruning strategies are not directly applicable.
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5.3 Second Place – Jagiellonian

The Jagiellionian solver is implemented in C++ and uses the Dijkstra-Steiner algorithm
to solve instances. Besides the implementation language, the main difference is its
architecture. The instance is first reduced and then the solver tries to split it into
two smaller instances. If this is possible the solver calls itself recursively for the two
sub-instances. Every sub-instance goes through the same reduction-split cycle. Once the
instances cannot be partitioned further, the SMTs are computed and the solutions are
merged together, until an SMT for the original instance is obtained. We will subsequently
discuss splitting and the new reductions introduced in this solver.

As for the previous submission, no publication exists yet. The details discussed here have
been discerned from the source code [MP18].

5.3.1 Heavy Edges

Heavy Edges is a graph transformation. It does not directly remove components, but
allows for other reductions to find more reducible edges and vertices. The idea is that
we can reduce the weight a terminal’s incident edges, if we can show that it will be a
leaf. Let zi ∈ R be a terminal, such that all incident edges have the same weight wzi .
Furthermore, let wmax = max

eij ,ei`∈δ(zi)
d(vj , v`). If wmax < wzi we can set c(eij) = wmax + 1

for all eij ∈ δ(zi).

The reduction of edge weights may tighten bounds and allow other reductions to identify
more reducible components. Note that the condition of equal weight among incident
edges guarantees that an SMT using any of the edges before the reduction still is an
SMT after the reduction. Furthermore, the weight condition in the neighborhood of zi
guarantees that the terminal is a leaf in any SMT. Given a Steiner tree containing two
distinct edges eij , ei`: Removing the first edge and adding the path from vj to v` to the
tree yields a cheaper Steiner tree.

5.3.2 Minimum Spanning Tree Contraction

Minimum Spanning Tree Contradction is a new inclusion reduction in addition to those
discussed in Chapter 3.3.3. It uses the following rule: Given terminals zi, zj ∈ R and a
connecting edge eij ∈ E. If eij is contained in an MST for G it is in at least one SMT.

An MST is not always unique. Imagine a fully connected graph with three vertices and
uniform edge costs. Now any two edges form an MST. We like to test all edges that
are part of any MST, it is therefore not enough to simply compute one MST. Kruskal’s
algorithm [Kru56] computes an MST by using the following graph property: Given a
cycle, the heaviest edge in the cycle is not in any MST. Algorithm 5.1 uses this property.
It iterates over all edges ordered by weight. The algorithm uses the mapping C to keep
track which vertices are in a connected component. Whenever it finds an edge connecting
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two yet unconnected components, it connects the two components in C and marks the
edge as belonging to an SMT.

Algorithm 5.1: An algorithm returning all edges that are in any MST [MP18]
Data: A graph G = (V,E, c)
Result: A set of edges E′, containing all edges that are in any MST.

1 E′ ← ∅
2 Q← E
3 C(vi) = vi for all vi ∈ V
4 while Q ≠ ∅ do
5 w = mine∈Q c(e)
6 F = {e ∈ Q ∣ c(e) = w}
7 foreach eij ∈ F , C(vi) ≠ C(vj) do
8 E′ ← E′ ∪ {eij}
9 end

10 foreach eij ∈ F do
11 C(v`) ← C(vi) for all v` ∈ V such that C(v`) = C(vj)
12 end
13 Q = Q ∖ F
14 end
15 return E′

5.3.3 Splitting

The Jagiellonian solver uses the concept of articulation points to transform the instance
into smaller instances. An articulation point is a vertex vi ∈ V such that removing vi
results in a disconnected graph with two or more connected components. Should a
component not contain any terminals, all its vertices can be removed from G, as no SMT
will contain them. Otherwise, it comprises a sub-instance.

For this section, given two graphs G1 = (V1,E1, c) and G2 = (V2,E2, c), we refer to
the operation G = (V1 ∪ V2,E1 ∪ E2, c) as merging the graphs. Further, let C1, ...,C`
be the connected components after the removal of articulation point vi, we refer to
this as vi induces the components C1, ...,C`. Given a set of vertices B and a graph
G, we add B to G′, a subgraph of G, by setting V [G′] = V [G′] ∪ B and E[G′] =
E[G′] ∪ ((V [G′] ×B) ∩ ⋃vi∈B δG(vi))

In order to obtain smaller instances we use an articulation point vi that induces `
components. We can create ` sub-instances by adding {vi} to every component. We
merge the resulting SMTs and thereby obtain a solution for the original instance. Due to
the exponential runtime of the algorithm, decreasing k can reduce the overall runtime
considerably.
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Figure 5.2: A graph with an articulation
set {E,H, I}.
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Figure 5.3: A graph split into two instances
by the articulation set.

Example 5.3.1. In our running example in Figure 2.1, vertices b, E and F are ar-
ticulation points. Using F yields the components C1 = {a, b},C2 = {E,J} and C3 =
{c, d,G, I,H}. C2 does not contain any terminals and can be removed. Solving for C1
yields a Steiner tree with a, b and F . Solving for C3 computes a Steiner tree using d, I,F
and c. Both Steiner trees can be merged and form an SMT for the original instance. ∎

We can extend the concept of articulation points to articulation sets. Removing all vertices
in an articulation set from the graph disconnects the graph into two or more components.
Given an algorithm to compute articulation points, we can compute articulation sets of
size l the following way: For all B ⊆ V such that ∣B∣ = l − 1, we temporarily remove B
from G and run the algorithm. Any articulation point we find together with B forms an
articulation set. We restore G before running the algorithm for the next subset.

We assume that any articulation set we use is minimal. Therefore no subset of it is an
articulation set. This is automatically the case, if we search for sets with increasing
cardinality. For the remainder of this section we assume that an articulation set splits the
graph into two connected components C1 and C2. In case more components are obtained,
we can merge them until only two remain. Adding the vertices in the articulation set
reconnects them.

While the splitting operation is easy for articulation points the process is more intricate
for sets. Several problems occur. We cannot simply add all vertices in the set as terminals
and then merge the solutions. This would create cycles and therefore no SMT. It is
therefore necessary to establish which vertices from the set the sub-instances will use.
We cannot predict this beforehand, as the only requirement is, that the sub-solutions
share at least one vertex.

Another problem is, that the graph induced by one of the sub-instances on the SMT
might not be connected. Therefore, the sub-solution required is a disconnected Steiner
tree. This is not solvable with an SMT solver.

Example 5.3.2. In Figure 5.2 we have an example graph. The set B = {E,H, I} is an
articulation set and the edges with weight 1 form an SMT. Let C1 = {a, c,F},C2 = {b, d,G}.
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Clearly an SMT for the original instance does not contain H. We can therefore not
simply add all vertices in B as terminals. Furthermore, the graph induced by V [C2] ∪B
on the SMT is not connected. ∎

This implies that we have to solve two problems:

1. When splitting the instance using an articulation set B, we cannot predict which
sub-instance will use which vertices in B.

2. We need a different way to solve the sub-instances. As we showed, for some
sub-instances we require a disconnected Steiner tree.

We address the two problems in this order.

We first define our problem in more detail. Given an articulation set B and an SMT T .
Let B′ = B ∩V [T ] and let T1 be the subgraph induced by V [C1]∪B′ on T . Furthermore,
let T2 be defined analogously for C2. Next, we discuss the possible configurations of T1
and T2. The case ∣B′∣ = 1 is similar to using an articulation point. T1 and T2 are both
SMTs and they can be merged. If ∣B′∣ = 2 it becomes more complex. Either T1 or T2
must be disconnected, otherwise merging them would result in a cycle. Since we have two
articulation vertices used, one of the trees must have exactly two connected components.
The number of possibilities quickly increases with the size of B′. In general, for any
vi, vj ∈ B′, vi ≠ vj , the two vertices are in the same connected component in T1 iff they
are in different connected components in T2.

We established that for any articulation set with more than one element, we cannot
find an SMT by solving two sub-instances. For every non-empty subset of B we have
to solve for all possible configurations of T1 and T2 and take the minimum over all
resulting SMTs. This number increases quickly. For ∣B∣ = 1 there is just one subset
with one configuration. In case ∣B∣ = 2 we have three subsets, with in total 2 + 2 ⋅ 1 = 4
configurations. For ∣B∣ = 3 this increases to 8 + 3 ⋅ 2 + 3 ⋅ 1 = 17 and for ∣B∣ = 4 we obtain
infeasible 1 ⋅ 48 + 4 ⋅ 8 + 6 ⋅ 2 + 4 ⋅ 1 = 96 different configurations. One configuration implies
the solving of two sub-instances.

Example 5.3.3. Table 5.3 shows all possible configurations for articulation set B =
{E,H, I}. The sets symbolize components. Therefore {E} symbolizes one component
containing E and {E, I},{H} stands for two connected components, one containing E
and I, the other one H. For every B1,B2 tuple we solve the two sub-instances and
merge the resulting graphs to obtain an SMT. The cheapest solution over all possible
configurations is the solution to the original instance. ∎

We established how we deal with problem number one, it remains to discuss how to solve
problem 2.

At the current state the solver won’t produce the required sub-solutions, as it will always
produce a connected Steiner tree. We can use a transformation on the sub-instance,
that produces the required result. Assume that we want to calculate the configuration
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∣B′∣ = 1 ∣B′∣ = 2 ∣B′∣ = 3
B1 B2 B1 B2 B1 B2

{E,H, I} {E},{H},{I}
{E} {E} {E,H} {E},{H} {E,H},{I} {E, I},{H}

{E},{H} {E,H} {E,H},{I} {H,I},{E}
{H} {H} {H,I} {H},{I} {H,I},{E} {E,H},{I}

{H},{I} {H,I} {H,I},{I} {E, I},{H}
{I} {I} {E, I} {E},{I} {E, I},{H} {E,H},{I}

{E},{I} {E, I} {E, I},{H} {H,I},{E}
{E},{H},{I} {E,H, I}

Table 5.3: Illustration of all possible subset combinations for an articulation set B =
{E,H, I}.

{v1, v2},{v3} for our current sub-instance. We now merge v1 and v3 by adding the edges
{e1j ∣ e3j ∈ δ(v3)} and removing v3. The vertices can now reach v1 the same way and
with the same cost as they could v3. The solver can now compute a connected SMT. We
transform this SMT into the desired sub-solution by unmerging v1: We reintroduce v3
and map all edges back.

Example 5.3.4. In Figure 5.3 we see the two sub-instances for B′ = {E, I}, with
B1 = {E, I},B2 = {{E},{I}}. This is the combination that will result in the SMT for
the instance. H has been removed, as it is not in B′. E and I have been marked as
terminals. On the right side, the edges to I have been mapped to E. The resulting SMT
will contain the edge {d, e} which will be transformed to {d, I}. This will together with
the SMT for the left side yield an SMT for the original instance. ∎

As we saw, splitting quickly becomes infeasible with growing size of the articulation set.
The solver therefore ensures that the set has a certain quality. Articulation points are
always used. In case the articulation set has size 2, each of the two components has to
contain at least five terminals and the instance must not have more than 3000 edges. For
articulation sets of size 3 the limits are eight and 1000. No articulation sets of higher
cardinality are used.

5.3.4 Implementing the features

We tried to enhance our solver with the insights gained by the antecedent analysis. The
MST contraction has been added. For heavy edges and splitting we benchmarked our
implementation. The results are in Table 5.4. tuw is our solver at the current version,
with current features and no splitting or heavy edges enabled. tuw-pace is added for
comparison and is our solver as submitted for PACE. The other entries show our solver
with enabled splitting and/or heavy edges. For the PACE instances splitting has no
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impact and heavy edges worsens the performance. For this reason we disabled splitting
per default.

Name Solved Runtime (s) Common Runtime (s) Memory (GB)
tuw 188 10985.62 10513.38 26.39
tuw-split 188 11499.82 11020.31 26.43
tuw-heavy 187 9253.89 9253.89 25.79
tuw-split-heavy 187 9993.20 9993.20 25.50
tuw-pace 187 10004.67 10004.67 25.39

Table 5.4: Comparison between different tuw configurations using features from the
Jagiellonian solver.

5.4 Third Place – reko
reko is the only submission we examined, that was not created specifically for this
challenge. The solver has already participated in the DIMACS challenge where it placed
third in the single threaded exact ST category [Gam14]. The solver is named SCIP-Jack
and is an extension for SCIP, a collection of software tools for mathematical problems
[GEG+17, Ach09]. The application is written in C [KR18].

For this solver there are several papers describing the different aspects of the application.
These heavily influenced the implementation of our solver. The reductions are the same
as in our solver, except for those found in the other submissions. We will therefore focus
our discussion on the solving algorithm. In contrast to the other two submissions, this
one uses a different approach to calculate SMTs.

5.4.1 ILP Reformulation

SCIP-Jack extends the linear programming capabilities of SCIP. This allows SCIP-Jack
to use the existing linear programming implementation and only extend it to ST. For
this end it uses a similar model to that discussed in Chapter 2.4:

minimize: ∑
a∈A

(c(a) ⋅ xa)

subject to: ∑
aij∈A

vi∉W vj∈W

xaij ≥ 1, for all W ⊂ V, r ∉W,W ∩R ≠ ∅,

xa ∈ {0,1} for all a ∈ A,

∑
aij∈A

xaij

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

= 0 if vj = r
= 1 if vj ∈ R ∖ {r}
≤ 1 else

for all vj ∈ V,
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5. PACE Results

∑
aij∈A

xaij ≤ ∑
aj`∈A

xaj`
for all vj ∈ V ∖R,

∑
aij∈A

xaij ≥ xaj`
for all vj ∈ V ∖R,aj` ∈ A.

The additional constraints have been added to tighten the bounds computed for the
LP relaxation [Reh15, KM96]. These constraints are based on the idea of commodity
flow, already discussed in Chapter 5.2.1. The basic idea is that the commodities flow
from the root to the terminals. Every terminal needs to receive the commodity. Every
non-terminal can only pass it on, if it receives the commodity.

5.4.2 Branch & Bound

The number of possible solutions to the ILP is limited. As we have one variable per
edge, we have 2m possible variable assignments. We can also represent these possible
assignments in a binary tree. Starting from the root, the left edge represents assigning 0
to the first variable, the other edge assigning 1. We apply the same idea to the root’s
children, this time for the second variable. If we continue this idea for all children, we
obtain a tree, with 2m leafs. Each leaf represents one possible assignment for the variables
and each non-leaf a tentative assignment. We call this the enumeration tree of our ILP.

For this section we use the following definitions: x = {x1, ..., xm} is the set of variables
in our program. x̂ = {x1 = 0, x2 = 1} is a tentative assignment. We denote by ILP
our linear program and by LP its LP relaxation. Given a tentative assignment x̂, we
obtain the linear program LP x̂ by adding equality constraints for all fixed variable values.
Furthermore we denote by x101 the assignment {x1 = 1, x2 = 0, x3 = 1} and given a label
` = 101 we denote by x`1 the assignment x` ∪ {x∣`∣+1 = 1}. We will also use LP ` as a
shorthand for LP x`

Branch and Bound (B&B) is a method to systematically explore all possible assignments
[LD60, MS08b]. It does so by recursively searching through the enumeration tree. We
maintain a stack L = {} of linear programs and a best solution ub. We start by adding
ILP 0 and ILP 1 to L. B&B now takes an element LP ` from L. If x` is a tentative
assignmentment we add ILP `0 and ILP `1 to L. Otherwise, let T be the graph represented
by x`. If T is a Steiner tree and ∣T ∣ < ub we set ub = T . We continue this until L is empty.
Then, ub is the SMT for this instance. The idea of adding all possible assignment for a
variable to L is called branching.

It is easy to see that this will systematically search the enumeration tree. Unfortunately,
it is infeasible even for small ST instances due to its exponential runtime. We can
drastically reduce the runtime if we check for every tentative assignment x` if it complies
with all constraints. If any constraint is violated, we do not add ILP `0 and ILP `1 to L.
We can thereby skip whole subtrees of the enumeration tree.
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Additionally B&B uses a technique already encountered multiple times in this thesis:
Bounds. Whenever the algorithm is at a non-leaf, it has a tentative variable assignment
x̂. It now checks if it can extend this assignment to an optimal solution. For this it
uses a lower bound function lb(x̂), returning a lower bound on all assignments x̂ can
be extended to. If lb(x̂) > ∣ub∣ we stop and do not add any sub-programs to L, as the
subtree cannot contain an optimal solution.

5.4.3 Branch & Cut

The ILP above has another problem. The number of constraints is exponential, as there
exist 2n subsets. It is therefore not possible to efficiently use the ILP definition above.
We require a technique to find out which constraints we need, in order to obtain an SMT.

Imagine an LP with only two variables. The possible variable assignments can be
represented by points on a 2-D plane. Without any constraints, every point is a valid
solution. Every constraint adds a line to the plane and all valid assignments are now on
one side of the line. It therefore cuts off possible assignments. After all constraints have
been added we end up with a (convex) polygon containing all solutions. In the general
case we have more than two variables. Generally constraints introduce hyperplanes and
we obtain a (convex) polytope [Dan98].

Branch and Cut (B&C) extends the branching concept with a cutting phase. We start
with a minimal set of constraints as ILP . In our case we omit the constraints for the
vertex subsets. We then try to add cuts as necessary. Therefore, the linear program will
be adapted continuously during the solving process. The cutting phase is run on any
ILP ` including the initial program, before the algorithm branches.

The cutting phase consists of the following steps:

1. The algorithm solves the LP relaxation of our current linear program ILP `. Let w
be the total cost of the assignment.

2. As w is a lower bound, we check if w > ∣ub∣, if so, the current branch cannot contain
an optimal solution and we discard ILP `.

3. If the assignment for LP ` has only integer values, it is a feasible solution for ILP `.
Let T be the graph represented by this solution. If T is a Steiner tree, we discard
ILP ` as we have found an optimal solution for this branch. If ∣T ∣ < ub we update
ub = T .

4. Otherwise, we search for violated cuts and add them to ILP `. If we find any, we
start again with the first step.

5. If no cuts have been found we branch.

It remains to explain, how the violated cuts are found. In terms of network flows, we
are searching for cuts that have no in-flow of commodities. We therefore try to find a
cut separating a terminal zi ∈ R ∖ {r} and the root r. A cut separates the vertices into
two sets C1 and C2, where r ∈ C1. We define A′ = A ∩ (C1 ×C2), the arcs connecting the
two sets. Whenever we find a cut such that ∑aij∈A′ xaij < 1 we have a violated constraint.
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SCIP-Jack uses different methods to find such cuts. One strategy is to search for cuts
minimizing this sum [HO92]. Another strategy is to search for cuts that minimize ∣A′∣ as
this will result in constraints with fewer variables [KM96].

We have skipped some practical details here for brevity. One important factor to
implement this efficiently is managing the cuts. If all found cuts are added and never
removed, the resulting linear program may become too complex to solve [KM96]. Another
consideration is, if cuts are valid for the whole program, or just for the current branch.
This depends if the cut is dependent on any variable we branched on.

As the solving algorithm is very different to our approach, we were not able to gain any
transferable insights from analyzing this solver.
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CHAPTER 6
Benchmarks

In this last chapter we want to discuss how our solver performs outside the PACE context.
As the primary goal was to perform well at the competition, non-PACE instances
were always a secondary consideration. Although we used other instances for tests, we
optimized the solver towards the PACE instances. It was therefore interesting for us to
see, how well the solver performs on instances that were unknown to us.

In order to test our solver thoroughly, we used several instance collections publicized
online. SteinLib is a large collection of ST instances used in many papers [KMV00]. The
results from these instances allow us to compare our solver to others outside the PACE
context. We also used the instance collections provided for the 11th DIMACS challenge
[Wer16, LLL+14].

For all our benchmarks we used servers with two Intel Xeon E5-2650 v4 CPUs. Each
process ran on exactly one CPU, which boosts the clock speed to 2.9 GHz. The servers
werer running Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-124-generic x86_64), Python
2.7.12 and GCC 5.4.0 20160609. Every instance was tested in three separate runs. The
result is the average of these runs. For these benchmarks we extended our timelimit to
two hours and allowed each instance to use up to 24 GB of memory. We also tested the
PACE instances again with these extended limits.

Table 6.1 shows the results aggregated per instance set. The entry PACE shows the
results for the PACE instances1.

Name S F Runtime MO TO Original
1R 27 0 2804.63 0 0 24
2R 10 17 2960.90 11 6 11

1The original implementation was limited to instances with ∣R∣ ≤ 64. This accounts for some but not
all the differences in the results.
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Name S F Runtime MO TO Original
ALUE 13 2 2638.91 0 2 7
ALUT 7 2 2163.41 0 2 3
B 18 0 11.77 0 0 18
C 18 2 89.90 0 2 8
copenhagen14 14 7 3174.08 0 7 10
csd 5 9 23.16 0 9 6
DIW 21 0 2034.40 0 0 21
DMXA 14 0 206.15 0 0 14
D 18 2 245.86 0 2 8
E 17 3 1936.70 0 3 8
ES10FST 15 0 7.17 0 0 15
ES20FST 15 0 13.03 0 0 15
ES30FST 15 0 29.20 0 0 15
ES40FST 15 0 46.66 0 0 15
ES50FST 15 0 74.53 0 0 15
ES60FST 15 0 105.71 0 0 15
ES70FST 15 0 123.32 0 0 -
ES80FST 15 0 169.70 0 0 -
ES90FST 15 0 246.79 0 0 -
ES100FST 15 0 256.90 0 0 -
ES250FST 14 1 7724.59 0 1 -
ES500FST 0 15 0.00 0 15 -
ES1000FST 0 15 0.00 0 15 -
ES10000FST 0 1 0.00 1 0 -
GAP 13 0 291.53 0 0 12
goemans 240 0 19750.98 0 0 162
I080 92 8 6999.28 0 8 85
I160 78 22 1264.91 20 2 51
I320 59 41 4237.36 13 28 50
I640 47 53 7065.82 15 38 25
LIN 32 5 13126.44 0 5 34
MC 3 3 27.77 1 2 2
MSM 30 0 1180.10 0 0 29
P4E 11 0 20.35 0 0 10
P4Z 10 0 9.05 0 0 10
P6E 15 0 19.12 0 0 14
P6Z 15 0 13.92 0 0 14
PACE 188 12 11002.39 8 4 -
PUC 6 44 128.36 5 39 6
PUCN 3 10 23.09 1 9 3
skutella 1 4 1.07 1 3 1
smc 15 0 6.61 0 0 15
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Name S F Runtime MO TO Original
TAQ 13 1 1498.27 0 1 11
SP 5 3 2.72 0 2 5
TSPFST 54 22 37238.36 4 18 3
vienna-geo-original 0 23 0.00 4 19 -
vienna-i-simple2 5 80 3662.70 9 68 0
X 3 0 65.49 0 0 2

Table 6.1: The benchmark results for Steinlib instances. Column S shows how many
instances were solved successfully and F how many failed. MO lists how many instances
failed due to the memory limit and TO how many due to the time limit. The col-
umn Original refers to the number of instances solved by the original Dijkstra-Steiner
implementation [HSV16].

The results show that the tighter limits imposed by PACE are not the reason that
our solver fails to solve more instances. They also confirm the weaknesses discussed in
Chapter 4.4. For the PACE instances, the memory limit is more of a problem than the
time limit.

In general our solver was able to solve more instances than the original implementation.
On the one hand this is expected, as the addition of reductions alone should improve the
solver. On the other hand the original implementation was in C++, which gives it an
edge in terms of performance.

Although our solver performed comparatively well, it performed worse on some sets. In
case of the set 2R our solver ran out of memory on an instance solved by the original
implementation. This may well be due to the original implementation being benchmarked
with a 100 GB memory limit.

The set LIN revealed another weakness of our solver. The two instances our solver failed
to solve were sparse graphs with over 70 000 edges. The reductions take a lot of time on
graphs of this size. For these instances the reductions alone took about one hour. We
never dealt with graphs of this size during development. Adding some adaptions for such
graphs would probably enhance the runtime.

It would also be interesting to compare our solver against one of the other submissions
based on these instances. Fortunately SCIP-Jack has been benchmarked using SteinLib
instances [Reh15]. As the results are not available for full instance sets, the number of
solved instances is not a good metric. We can nonetheless compare the solvers based on
the publicized results. In general SCIP-Jack performed better than our solver. On the
instance sets D, E and PUC it solved a few instances more and for the sets I320, I640
and vienna-i-simple the differences are considerable. Our solver performed considerably
better for the instances in the LIN set.

2Three instances caused an error regarding the maximum recursion depth in Python.
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SteinLib results are also available for the mozartballs solver [FLL+17]. Results are only
available for some hard instances from the skutella, SP and PUC sets. This solver was
able to solve many instances our solver was unable to solve.

The results show that our solver performs well outside the PACE context. They also
show that there is room for improvement and suggest starting points.
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CHAPTER 7
Conclusion

In this thesis we thoroughly discussed how to solve instances of the Steiner tree problem.
We focused on finding SMTs and used approximations to help us in this process. We
approached the discussion from two sides. The theoretical side provided all the state-of-
the-art knowledge that we used. We thereby built a solid base of proven theorems and
algorithms on which we constructed our solver. We then approached the discussion from
the practical side. Here we laid out the implementation details of our solver. We focused
on the aspects not covered by theory alone.

We also discussed the performance of our solver in the competition, where it performed
well. The publication of the source codes allowed us to analyze the other submissions.
We presented the results of this analysis. We focused on the details that distinguish the
solvers from each other. We also tried to apply the knowledge gained from this analysis to
our solver. This allowed further improvements to our implementation. We also presented
attempts that weren’t fruitful.

In the last part we discussed the results we obtained by benchmarking our solver. The
instances we used include many that were used in other papers. This allowed us to
compare our results to those of other solvers outside PACE. The comparison showed us
that our solver performs well and also suggests starting points of where to start searching
in the considerably large room for improvement.

Conclusively we want to consider, that with the exception of mozartballs [FLL+17], which
was not submitted, the submissions comprise the state-of-the-art. Especially SCIP-Jack
is an established solver. Nonetheless, our solver was able to play in the same ballpark.

7.1 Future Work
There is a long list of ideas for minor improvements of our current implementation. While
none will cause leaps in capability, each may cause small improvements. These are specific
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to our implementation. It would also be interesting, how our solver would perform if it
was implemented in other programming languages.

Two of the three submissions we discussed used yet unknown reductions. This shows
that there may still be reductions that we do not know about and that could make a
difference. Finding new ones might therefore be a worthwhile endeavour. Especially since
new reductions could be used in all solvers.

Tight bounds can be used for both solving and reducing ST instances. For upper bounds
RSPH is the most common approximation. We have discussed how its results can be
improved by combining different ideas. New local search methods for Steiner trees
may improve these upper bounds, as well as new ideas on which graphs to run the
approximation. We discussed the way little details in the calculation can effect the results
of the approximations. As our dual ascent implementation is quite complex, there is
probably room for improvement. Both guiding heuristics used in our solver are expensive
to compute. Finding a heuristic that provides a similar quality of bounds but is easier to
calculate could also greatly improve our solver.

As the top submission showed. A good pruning strategy can greatly improve runtime
and memory consumption. Since the basic solving algorithm is similar to the one we use,
it should be possible to transfer the ideas.

Dense graphs were a problem for all the solvers: All the instances where every solver
failed were dense graphs. Focusing on finding a method to solve them would therefore
improve the capabilities of our solver immensely. There are no reductions that perform
well on dense graphs. This could be a starting point as well. These instances are not
impossible to solve, as tests with SCIP-Jack showed, that given a longer time limit, it
was able solve them.
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APPENDIX A
PACE Benchmarks

Table A.1 shows the results for each PACE instance per solver. For each solved instance,
the time to solve and the peak memory usage are stated. Instances that have not been
solved are either marked by MO (out of memory), TO (time out) or ERR (runtime
error).

Jagiellonian reko tuw wata_sigma
I t m t m t m t m

001 0.01 0.00 0.02 0.00 0.41 4.00 0.01 0.00
002 1.54 21.00 0.13 4.00 1.54 93.00 0.08 1.00
003 2.97 37.00 0.26 4.00 7.15 123.00 0.15 4.00
004 9.00 48.00 0.17 4.00 5.50 125.00 0.48 9.00
005 11.19 66.00 0.28 4.00 10.65 181.00 3.93 26.00
006 0.01 0.00 0.02 1.00 0.42 4.00 0.01 0.00
007 0.02 0.00 0.03 0.00 0.81 4.00 0.01 0.00
008 0.09 4.00 0.04 2.00 1.94 87.00 0.01 1.00
009 0.01 0.00 0.01 0.00 0.44 4.00 0.01 0.00
010 0.12 4.00 310.11 96.00 2.09 89.00 0.02 0.00
011 0.12 4.00 135.89 62.00 2.31 91.00 0.02 0.00
012 0.04 2.00 0.03 0.00 1.33 87.00 0.01 0.00
013 6.00 19.00 0.06 2.00 2.11 94.00 0.04 1.00
014 5.49 19.00 0.07 2.00 1.88 92.00 0.04 1.00
015 5.46 19.00 0.07 2.00 1.53 92.00 0.04 1.00
016 5.81 19.00 0.07 4.00 2.66 95.00 0.05 1.00
017 6.35 19.00 0.06 2.00 2.38 95.00 0.06 1.00
018 0.26 4.00 0.07 2.00 2.57 97.00 0.18 4.00
019 0.21 4.00 0.08 1.00 5.48 99.00 0.17 4.00
020 0.18 4.00 0.07 4.00 5.99 99.00 0.18 4.00
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Jagiellonian reko tuw wata_sigma
I t m t m t m t m

021 0.18 4.00 0.08 2.00 2.25 96.00 0.14 4.00
022 0.22 10.00 0.07 1.00 3.99 99.00 0.16 4.00
023 3.06 107.00 2.06 81.00 78.60 561.00 1.29 62.00
024 3.08 107.00 2.06 81.00 79.35 562.00 1.08 62.00
025 4.12 107.00 2.06 81.00 79.11 561.00 1.31 62.00
026 3.11 107.00 2.06 81.00 81.44 561.00 1.30 62.00
027 0.01 0.00 0.02 1.00 0.52 4.00 0.01 0.00
028 0.06 1.00 0.03 1.00 0.89 4.00 0.00 0.00
029 0.02 0.00 0.03 0.00 0.97 31.00 0.01 0.00
030 0.17 4.00 0.03 1.00 1.22 86.00 0.01 0.00
031 0.06 2.00 0.02 0.00 1.61 88.00 0.02 0.00
032 0.10 4.00 0.03 0.00 1.33 88.00 0.01 1.00
033 0.04 2.00 0.04 1.00 2.36 88.00 0.01 0.00
034 0.13 4.00 0.05 1.00 2.16 92.00 0.01 0.00
035 0.15 4.00 0.12 4.00 3.35 93.00 0.02 0.00
036 2.07 19.00 0.24 4.00 11.18 101.00 0.03 1.00
037 0.18 4.00 0.05 2.00 2.94 95.00 0.03 0.00
038 5.65 19.00 0.07 2.00 8.12 105.00 0.09 4.00
039 0.52 4.00 0.09 2.00 5.41 98.00 0.03 4.00
040 0.26 4.00 0.06 2.00 3.53 99.00 0.04 0.00
041 0.51 4.00 0.07 2.00 8.94 100.00 0.03 0.00
042 0.24 4.00 0.07 1.00 4.27 99.00 0.04 1.00
043 0.30 4.00 0.15 4.00 7.49 100.00 0.03 0.00
044 0.31 4.00 0.15 4.00 10.34 101.00 0.03 1.00
045 1.60 19.00 0.13 4.00 15.24 107.00 0.03 0.00
046 1.75 21.00 0.14 4.00 2.15 106.00 0.09 2.00
047 3.29 37.00 0.27 4.00 8.29 155.00 0.45 4.00
048 1.87 44.00 1.26 41.00 33.51 124.00 1.34 18.00
049 2.23 38.00 0.51 4.00 39.73 121.00 0.91 4.00
050 5.82 122.00 27.57 43.00 100.74 163.00 0.68 4.00
051 10.79 49.00 0.19 4.00 9.61 131.00 0.62 4.00
052 8.88 65.00 0.27 4.00 15.19 163.00 3.90 26.00
053 0.24 4.00 0.05 0.00 6.93 92.00 0.02 0.00
054 0.18 4.00 0.05 0.00 3.97 90.00 0.02 2.00
055 0.06 1.00 0.02 0.00 1.02 57.00 0.01 0.00
056 0.17 4.00 0.03 1.00 1.46 88.00 0.02 0.00
057 0.04 2.00 0.03 1.00 1.49 88.00 0.01 0.00
058 0.03 2.00 0.03 0.00 1.32 87.00 0.01 0.00
059 0.03 2.00 0.03 1.00 2.00 88.00 0.01 0.00
060 0.28 4.00 0.04 1.00 2.71 92.00 0.02 0.00
061 0.04 2.00 0.04 0.00 1.44 88.00 0.01 0.00
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Jagiellonian reko tuw wata_sigma
I t m t m t m t m

062 0.58 4.00 0.08 2.00 4.93 95.00 0.02 0.00
063 3.33 19.00 0.09 2.00 5.03 96.00 0.02 0.00
064 0.18 4.00 0.06 1.00 4.94 98.00 0.03 1.00
065 0.20 4.00 0.08 4.00 5.18 99.00 0.03 1.00
066 6.62 20.00 0.13 4.00 7.81 101.00 0.05 1.00
067 4.60 72.00 0.49 4.00 51.50 122.00 0.28 4.00
068 0.10 4.00 0.03 1.00 2.92 89.00 0.01 0.00
069 0.13 4.00 17.05 65.00 5.93 119.00 0.24 4.00
070 0.18 4.00 7.13 52.00 10.06 133.00 0.21 4.00
071 0.03 1.00 0.03 0.00 1.13 87.00 0.01 0.00
072 0.26 4.00 0.04 2.00 3.01 93.00 0.02 0.00
073 0.10 2.00 0.04 1.00 3.71 91.00 0.01 0.00
074 0.08 4.00 0.05 1.00 3.54 92.00 0.02 1.00
075 9.43 19.00 0.10 4.00 8.23 106.00 0.10 2.00
076 0.80 4.00 0.24 4.00 16.63 112.00 0.05 2.00
077 1.37 22.00 0.23 4.00 27.00 119.00 0.19 4.00
078 2.49 23.00 1.02 40.00 21.48 123.00 0.18 4.00
079 2.84 23.00 4.91 42.00 53.64 123.00 0.23 4.00
080 4.22 87.00 12.45 42.00 48.53 129.00 0.42 9.00
081 0.07 4.00 0.03 0.00 2.20 88.00 0.02 0.00
082 0.07 4.00 0.04 0.00 1.23 89.00 0.02 1.00
083 0.40 4.00 0.07 1.00 5.12 96.00 0.01 0.00
084 4.53 19.00 2.71 38.00 36.24 104.00 0.13 4.00
085 0.59 4.00 2.03 58.00 17.20 191.00 0.15 4.00
086 0.92 4.00 TO TO 47.23 265.00 1.22 56.00
087 0.90 4.00 TO TO 59.07 265.00 1.12 49.00
088 1.52 19.00 0.10 4.00 5.89 102.00 0.03 0.00
089 0.21 4.00 0.05 1.00 5.78 100.00 0.04 2.00
090 12.48 20.00 0.09 4.00 7.76 105.00 0.07 4.00
091 0.71 4.00 0.16 4.00 9.16 109.00 0.05 1.00
092 0.28 4.00 0.05 0.00 8.86 95.00 0.01 0.00
093 0.03 0.00 0.03 1.00 1.33 91.00 0.01 0.00
094 0.31 4.00 0.03 1.00 4.70 95.00 0.03 1.00
095 0.11 4.00 0.04 1.00 2.09 94.00 0.02 0.00
096 0.12 4.00 0.04 1.00 1.75 94.00 0.02 1.00
097 1.68 19.00 0.14 4.00 9.32 107.00 0.04 2.00
098 0.46 4.00 0.04 0.00 3.44 91.00 0.02 0.00
099 0.49 4.00 0.12 4.00 16.00 100.00 0.05 0.00
100 1.51 33.00 0.07 15.00 11.21 103.00 0.05 0.00
101 2.68 19.00 0.17 4.00 21.49 110.00 0.11 4.00
102 0.06 2.00 0.04 1.00 1.83 92.00 0.02 0.00
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Jagiellonian reko tuw wata_sigma
I t m t m t m t m

103 0.06 1.00 0.04 2.00 1.49 93.00 0.02 1.00
104 1.32 21.00 0.06 2.00 4.17 98.00 0.04 1.00
105 8.88 31.00 0.13 4.00 15.66 110.00 0.06 0.00
106 0.03 0.00 0.02 1.00 0.82 4.00 0.01 0.00
107 12.75 21.00 0.23 4.00 12.50 112.00 0.04 0.00
108 4.55 19.00 0.16 4.00 6.61 107.00 0.07 2.00
109 25.97 54.00 0.19 4.00 10.66 114.00 0.08 4.00
110 2.34 19.00 0.09 4.00 5.75 111.00 0.07 2.00
111 17.90 20.00 0.21 4.00 14.07 113.00 0.10 4.00
112 2.91 24.00 4.80 41.00 32.27 126.00 0.23 4.00
113 7.59 85.00 143.44 45.00 242.37 187.00 0.61 4.00
114 20.52 484.00 984.46 154.00 242.82 300.00 1.12 21.00
115 0.01 0.00 0.02 0.00 0.75 4.00 0.01 0.00
116 0.72 4.00 0.06 2.00 16.47 98.00 0.02 0.00
117 0.02 1.00 0.02 0.00 1.79 88.00 0.01 0.00
118 0.99 4.00 1.54 47.00 17.37 102.00 0.03 1.00
119 0.12 4.00 0.02 1.00 1.30 92.00 0.01 1.00
120 0.47 4.00 0.04 1.00 1.92 93.00 0.02 0.00
121 0.11 4.00 0.04 0.00 2.68 95.00 0.02 0.00
122 0.10 2.00 0.04 1.00 2.14 97.00 0.01 0.00
123 8.77 34.00 0.24 4.00 23.69 120.00 0.11 4.00
124 1.93 199.00 3.26 40.00 50.17 127.00 0.42 4.00
125 0.75 4.00 0.24 4.00 17.56 107.00 0.04 2.00
126 0.35 4.00 0.09 4.00 7.31 104.00 0.05 1.00
127 1.46 19.00 0.81 4.00 11.97 123.00 0.09 4.00
128 3.36 20.00 5.06 40.00 30.13 116.00 0.13 4.00
129 4.28 710.00 11.69 63.00 87.78 131.00 0.71 4.00
130 0.09 4.00 0.04 2.00 1.94 90.00 0.02 0.00
131 0.60 4.00 0.16 4.00 32.14 107.00 0.04 0.00
132 50.42 875.00 0.13 4.00 11.53 110.00 0.15 4.00
133 0.59 4.00 0.12 4.00 4.55 99.00 0.03 0.00
134 2.31 335.00 0.21 4.00 31.80 127.00 0.28 9.00
135 3.38 237.00 3.50 41.00 65.32 138.00 0.31 4.00
136 0.70 4.00 0.09 2.00 19.81 113.00 0.04 2.00
137 19.86 1942.00 0.79 4.00 68.82 126.00 0.46 4.00
138 3.40 64.00 0.07 2.00 4.29 109.00 0.07 0.00
139 1.28 19.00 0.37 4.00 10.26 109.00 0.02 1.00
140 5.92 102.00 1.35 42.00 69.39 146.00 0.28 4.00
141 2.37 440.00 2.16 46.00 22.65 111.00 0.17 4.00
142 4.16 1919.00 1.76 46.00 45.69 119.00 0.24 4.00
143 10.78 100.00 0.08 2.00 7.37 111.00 0.08 4.00

86



Jagiellonian reko tuw wata_sigma
I t m t m t m t m

144 4.55 331.00 2.18 41.00 39.50 133.00 0.35 4.00
145 1.53 18.00 0.04 2.00 4.43 99.00 0.01 0.00
146 2.77 146.00 0.57 4.00 42.08 113.00 0.32 4.00
147 5.27 392.00 9.27 41.00 61.74 128.00 0.19 4.00
148 12.76 19.00 0.12 4.00 33.55 119.00 0.04 0.00
149 38.54 117.00 1.54 38.00 38.31 123.00 0.23 4.00
150 14.02 221.00 34.16 46.00 258.24 223.00 2.02 21.00
151 26.16 367.00 1203.68 198.00 230.03 324.00 2.32 25.00
152 133.16 1423.00 TO TO 553.40 443.00 5.26 34.00
153 2.97 500.00 0.39 4.00 25.06 121.00 0.06 2.00
154 10.06 37.00 1.55 38.00 30.81 118.00 0.11 2.00
155 0.02 1.00 0.02 0.00 0.96 4.00 0.01 0.00
156 2.01 80.00 111.31 85.00 89.35 151.00 0.34 9.00
157 4.15 1781.00 1.67 39.00 33.31 124.00 0.11 4.00
158 2.38 679.00 0.46 4.00 30.95 119.00 0.23 4.00
159 6.06 53.00 6.79 41.00 52.76 126.00 0.21 4.00
160 7.52 302.00 7.10 50.00 104.79 159.00 4.33 20.00
161 MO MO 433.58 380.00 MO MO MO MO
162 MO MO 208.92 266.00 MO MO MO MO
163 MO MO 51.42 154.00 MO MO MO MO
164 MO MO 174.33 220.00 MO MO MO MO
165 MO MO 697.43 573.00 MO MO MO MO
166 9.41 68.00 0.89 4.00 32.69 119.00 0.13 4.00
167 200.72 466.00 20.60 83.00 418.53 261.00 2.02 47.00
168 1.23 37.00 0.09 2.00 7.45 108.00 0.08 4.00
169 207.89 398.00 1.34 47.00 44.59 118.00 1.15 36.00
170 128.40 1295.00 1.76 38.00 75.58 127.00 0.24 4.00
171 MO MO 423.92 78.00 MO MO MO MO
172 MO MO TO TO MO MO MO MO
173 ERR ERR TO TO MO MO MO MO
174 31.64 142.00 7.98 114.00 117.64 150.00 0.89 4.00
175 2.06 244.00 0.31 4.00 15.71 110.00 0.12 4.00
176 5.66 94.00 9.35 72.00 83.62 167.00 0.48 9.00
177 202.27 1120.00 0.17 4.00 15.80 118.00 0.07 2.00
178 367.39 556.00 3.15 69.00 71.34 129.00 1.55 39.00
179 29.13 36.00 0.17 4.00 13.01 133.00 0.16 4.00
180 18.51 78.00 1.27 38.00 55.14 129.00 0.17 4.00
181 25.08 538.00 TO TO 337.61 369.00 4.39 27.00
182 38.50 44.00 0.48 4.00 53.93 138.00 0.10 4.00
183 12.86 243.00 0.15 4.00 8.86 116.00 0.08 0.00
184 24.64 606.00 6.27 49.00 279.20 265.00 7.83 23.00
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A. PACE Benchmarks

Jagiellonian reko tuw wata_sigma
I t m t m t m t m

185 TO TO 0.26 4.00 21.87 126.00 0.21 4.00
186 16.23 42.00 0.14 4.00 9.15 117.00 0.14 4.00
187 1608.02 2973.00 TO TO 621.25 329.00 2.43 43.00
188 31.41 240.00 11.78 87.00 67.68 171.00 0.26 4.00
189 25.98 695.00 TO TO 359.33 494.00 3.17 28.00
190 737.87 1384.00 656.46 131.00 1506.00 765.00 2.97 43.00
191 2.46 118.00 0.90 4.00 23.98 133.00 0.24 4.00
192 60.11 1683.00 TO TO 513.12 361.00 33.72 30.00
193 39.43 272.00 79.06 90.00 472.24 766.00 0.51 4.00
194 TO TO 1780.28 120.00 TO TO 2.16 49.00
195 MO MO 59.18 211.00 TO TO MO MO
196 MO MO 39.18 93.00 TO TO MO MO
197 863.96 3572.00 15.06 47.00 210.60 451.00 27.18 132.00
198 109.96 1604.00 1305.58 215.00 1066.09 969.00 8.72 59.00
199 152.24 1502.00 TO TO 325.14 456.00 8.39 55.00
200 ERR ERR TO TO TO TO MO MO

Table A.1: Solver comparison for each PACE instance. Columns marked t show the run
time in seconds, columns marked m show the peak memory usage in megabytes
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