
Variants of P systems with activation and blocking of rules

Artiom Alhazov1 • Rudolf Freund2 • Sergiu Ivanov3

Published online: 1 August 2019
� The Author(s) 2019

Abstract
We introduce new possibilities to control the application of rules based on the preceding applications, which can be defined

in a general way for (hierarchical) P systems and the main known derivation modes. Computational completeness can be

obtained even with non-cooperative rules and using both activation and blocking of rules, especially for the set modes of

derivation, when allowing derivation steps with no rules being applied. When we allow the application of rules to influence

the application of rules in previous derivation steps, applying a non-conservative semantics for what we consider to be a

valid infinite derivation, we can even ‘‘go beyond Turing’’.

Keywords Activation of rules � Blocking of rules � Computational completeness � Derivation modes � P systems �
Go beyond Turing

1 Introduction

Originally defined by Gheorghe Păun in 1998, see Păun

(1998), membrane systems, also known as P systems, are a

model of computing based on the abstract notion of a

membrane which can be seen as a container delimiting a

region containing objects which are acted upon by the

rewriting rules associated with the membrane. Quite often,

these objects are multisets (for basic results on multiset

computing, for example, see Kudlek et al. 2001), yet P

systems operating on more complex objects (e.g., strings,

arrays) are often considered, too, for instance, see Freund

(2005).

A comprehensive overview of different flavors of

membrane systems and their expressive power is given in

the handbook which appeared in 2010, see Păun et al.

(2010). For a state of the art snapshot of the domain, we

refer the reader to the P systems website (http://ppage.

psystems.eu/) as well as to the Bulletin of the International

Membrane Computing Society (http://membranecomput

ing.net/IMCSBulletin/index.php).

Nearly thirty years ago, the monograph on regulated

rewriting by Dassow and Păun (1989) already gave a first

comprehensive overview on many concepts of regulated

rewriting, especially for the string case. Yet as it turned out

later, many of the mechanisms considered there for guiding

the application of productions/rules can also be applied to

other objects than strings, e.g., to n-dimensional arrays

(Freund 1994). As exhibited in Freund et al. (2011), for

comparing the generating power of grammars working in

the sequential derivation mode, many relations between

various regulating mechanisms can be established in a very

general setting without any reference to the underlying

objects the rules are working on, using a general model for

graph-controlled, programmed, random-context, and

ordered grammars of arbitrary type based on the

This is a revised and extended version of the paper presented

at UCNC 2018 in Fontainebleau, France, see Alhazov et al.

(2018d).

The work is supported by National Natural Science

Foundation of China (61320106005, 61033003, and

61772214) and the Innovation Scientists and Technicians

Troop Construction Projects of Henan Province

(154200510012)

& Rudolf Freund

rudi@emcc.at

Artiom Alhazov

artiom@math.md

Sergiu Ivanov

sergiu.ivanov@univ-evry.fr

1 Vladimir Andrunachievici Institute of Mathematics and

Computer Science, Academiei 5, 2028 Chişinău, Moldova

2 Faculty of Informatics, TU Wien, Favoritenstraße 9–11,

1040 Vienna, Austria

3 IBISC, Université Évry, Université Paris-Saclay, 23

Boulevard de France, 91025 Évry, France

123

Natural Computing (2019) 18:593–608
https://doi.org/10.1007/s11047-019-09747-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-1255-1953
http://ppage.psystems.eu/
http://ppage.psystems.eu/
http://membranecomputing.net/IMCSBulletin/index.php
http://membranecomputing.net/IMCSBulletin/index.php
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-019-09747-5&domain=pdf
https://doi.org/10.1007/s11047-019-09747-5

applicability of rules. Also in the field of P systems (Păun

et al. 2010; http://ppage.psystems.eu/), where mainly

multisets have been considered, such regulating mecha-

nisms were used, e.g., see Cavaliere et al. (2007).

Dynamic evolution of the set of available rules has been

considered from the very beginning of membrane com-

puting. Already in 1999, generalized P systems were

introduced in Freund (1999); in these systems the mem-

branes, alongside the objects, contain operators which act

on these objects, while the P system itself acts on the

operators, thereby modifying the transformations which

will be carried out on the objects in the subsequent steps.

Among further ideas on dynamic rules, one may list rule

creation (Arroyo et al. 2002), activators (Alhazov 2004),

inhibiting/deinhibiting rules (Cavaliere et al. 2004), and

symport/antiport of rules (Cavaliere and Genova 2004).

One of the more recent developments in this direction are

polymorphic P systems (Alhazov et al. 2015, 2011; Ivanov

2014), in which rules are defined by pairs of membranes,

whose contents may be modified by moving objects in or

out, as well as P systems with randomized right-hand sides

of rules (Alhazov et al. 2017, 2018a), where the right-hand

sides are chosen randomly and in different ways from the

given set of rules.

We here follow an approach started to be elaborated in

Alhazov et al. (2018b) and then continued in Alhazov et al.

(2018e), where in the general framework of sequential

systems the applicability of rules is controlled by the

application of rules in the preceding derivation step(s). The

application of a rule in one derivation step may either

activate some rules to be applied in the next derivation

step(s) or may block their application. We immediately

observe that the application of a rule requires its activation

in a preceding step. A computation may also take deriva-

tion steps without applying a rule as long as there are some

rules activated for future derivation steps. In contrast to the

general framework for control mechanisms as described

in Freund et al. (2011), we here are not dealing with the

applicability of rules itself but with the possible activation

or blocking of rules by the effective application of rules in

preceding steps.

The idea of using activation and blockings of rules in the

area of membrane systems first was considered in Alhazov

et al. (2018c) and then in Alhazov et al. (2018d). In this

paper we extend the results for P systems with activation

and blockings of rules already obtained in these papers for

several variants of P systems. For example, we will

establish computational completeness results for various

kinds of one-membrane P systems (resembling multiset

grammars) and several derivation modes, using activation

and blocking of rules to be applied in succeeding derivation

steps. Depending on the derivation mode and the halting

condition, the complexity of the systems may vary either

with respect to the number of steps rules are activated

ahead or whether the use of blocking rules is needed or not.

Allowing a derivation step without applying a rule enables

the P system to check for the appearance of a symbol in the

current multiset.

We may even allow the application of rules to influence

previous derivation steps, but using a conservative

semantics that considers derivations to be consistent when

such backwards activations or blockings of rules are not

changing the correctness of the derivation, we cannot ‘‘go

beyond Turing’’, which on the other hand can be achieved

by allowing such backwards information to change past

configurations by triggering the applications of newly

activated rules and by using a less conservative semantics

looking at infinite computations on finite multisets as in

‘‘red-green P automata’’ (for instance, see Freund 2016).

Various possibilities of how one may ‘‘go beyond Tur-

ing’’ are discussed in van Leeuwen and Wiedermann

(2012), for example, the definitions and results for red-

green Turing machines can be found there. In Aman et al.

(2014) the notion of red-green automata for register

machines with input strings given on an input tape (often

also called counter automata) is introduced and the concept

of red-green P automata for several specific models of

membrane systems is explained. Via red-green counter

automata, the results for acceptance and recognizability of

finite strings by red-green Turing machines are carried over

to red-green P automata. The basic idea of red-green

automata is to distinguish between two different sets of

states (red and green states) and to consider infinite runs of

the automaton on finite input objects (strings, multisets);

allowed to change between red and green states more than

once, red-green automata can recognize more than the

recursively enumerable sets (of strings, multisets), i.e., in

that way one can ‘‘go beyond Turing’’. In the area of P

systems, first attempts to do that can be found in Calude

and Păun (2004) and Sosı́k and Valı́k (2006). Computa-

tions with infinite words by P automata were investigated

in Freund et al. (2004).

In Freund et al. (2015, 2016), infinite runs of P automata

are considered, taking into account the existence/ non-ex-

istence of a recursive feature of the current sequence of

configurations. In that way, infinite sequences over 0; 1f g,
called ‘‘observer languages’’, are obtained where 1 indi-

cates that the specific feature is fulfilled by the current

configuration and 0 indicates that this specific feature is not

fulfilled. The recognizing runs of red-green automata then

correspond with x-regular languages over 0; 1f g of a

specific form ending with 1x as observer languages. The

special observer language 0; 1f g� 1f gx corresponds with

the acceptance condition for P automata called ‘‘partial

adult halting’’. This special acceptance variant for P

594 A. Alhazov et al.

123

http://ppage.psystems.eu/

automata with infinite runs on finite multisets is motivated

by an observation made for infinite sequences of infinite

runs of a given P automaton: at some moment, a specific

initial part in the sequence of configurations in the infinite

sequence of runs does not change any more, for example,

the initial configuration.

We now may also consider variants of P systems with

activation and blocking of rules as well as infinite com-

putations on a given finite multiset. A sequence of such

infinite computations is called valid if each prefix of these

computations becomes stable, i.e., neither the configuration

itself nor the set of applicable rules changes any more. This

less conservative semantics for activating and/or blocking

the rules in preceding computations allows us to take the

infinite sequence of stable configurations obtained in this

way as the final computation on the given input. Provided

such a computation—obtained as the limit of a valid

sequence of computations—exists, we may just consider

the result of the first computation step and thus the second

configuration to see whether the input has been accepted.

Again this can be seen as looking at a specific initial part of

the computations and requiring that it does not change any

more, but also requesting that the whole computation

converges.

In the following section, we recall some notions from

formal language theory; in the succeeding section the main

definitions of the general framework for P systems working

under different derivation modes (see Freund and Verlan

2007) are given. Then we define the new concept of acti-

vation and blocking of rules based on the applicability of

rules within this general framework of static P systems, i.e.,

of P systems where the membrane structure does not

change during any computation. In Sect. 5 we prove first

results only using activation of rules for the next step. We

also establish relations to the family of sets of multisets

generated by tabled Lindenmayer systems and by P sys-

tems with promoters and inhibitors.

Computational completeness results using both activa-

tion and blocking of rules for at most the next two steps

are established in Sect. 6, for different types of rules and

various derivation modes, where we use the feature to

allow at least one derivation step in between where no

rule is applied. Then we extend our systems by allowing

activation and blocking of rules in previous derivation

steps in Sect. 7, and finally discuss how to ‘‘go beyond

Turing’’ in Sect. 8. A summary of the results obtained in

this paper and some future research topics extending the

notions and results considered in this paper are given in

Sect. 9.

2 Definitions

After some preliminaries from formal language theory, we

define our model for hierarchical P systems in the general

setting of this paper as well as the main derivation modes

considered in the area of membrane systems, see Freund

and Verlan (2007).

2.1 Preliminaries

The set of integers is denoted by Z, the set of non-negative

integers (natural numbers) by N0, and the set of positive

integers by N. An alphabet V is a finite non-empty set of

abstract symbols. Given V, the free monoid generated by V

under the operation of concatenation is denoted by V�; the
elements of V� are called strings, and the empty string is

denoted by k; V�n kf g is denoted by Vþ. Let a1; . . .; anf g
be an arbitrary alphabet; the number of occurrences of a

symbol ai in x is denoted by xj jai ; the Parikh vector asso-

ciated with x with respect to a1; . . .an is xj ja1 ; . . .; xj jan
� �

.

The Parikh image of a language L over a1; . . .; anf g is the

set of all Parikh vectors of strings in L, and we denote it by

Ps Lð Þ. For a family of languages FL, the family of Parikh

images of languages in FL is denoted by PsFL. The fam-

ilies of regular and recursively enumerable string lan-

guages are denoted by REG and RE, respectively.

A (finite) multiset u over the (finite) alphabet V,

V ¼ a1; . . .; anf g, is a mapping f : V �! N0 and can be

represented by any string x the Parikh vector of which with

respect to a1; . . .; an is f a1ð Þ; . . .; f anð Þð Þ. The weight of u is
defined as f a1ð Þ þ . . .þ f anð Þ. The set of all finite multi-

sets over an alphabet V is denoted by V�.
For more details of formal language theory the reader is

referred to the monographs and handbooks in this area

(Dassow and Păun 1989; Rozenberg and Salomaa 1997).

2.2 Register machines

As a computationally complete model able to generate

(accept) all sets in PsRE we will use register machines:

A register machine is a construct M ¼ n;H;RM ; p0; hð Þ
where n, n� 1, is the number of registers (each of them

contains a non-negative integer), H is the set of instruction

labels, p0 is the start label, h is the halting label (only used

for the HALT instruction), and RM is a set of (labeled)

instructions being of one of the following forms:

• p : ADD rð Þ; q; sð Þ increments the value in register r and

in a non-deterministic way chooses to continue either

with the instruction labeled by q or with the instruction

labeled by s;

Variants of P systems with activation and blocking of rules 595

123

• p : SUB rð Þ; q; sð Þ decrements the value in register r and

continues the computation with the instruction labeled

by q if the register was non-empty, otherwise it

continues with the instruction labeled by s;

• h : HALT halts the machine.

M is called deterministic if in all ADD-instructions

p : ADD rð Þ; q; sð Þ, it holds that q ¼ s; in this case we write

p : ADD rð Þ; qð Þ. Deterministic register machines can accept

all recursively enumerable sets of vectors of natural num-

bers with k components using precisely k þ 2 registers,

see Minsky (1967).

2.3 ET0L-systems

Lindenmayer systems (with tables of rules) are a well-

known parallel mechanism for generating strings. An

ET0L-system is a construct

G ¼ ðV ; T;R1; . . .;Rm;wÞ where

• V is the alphabet of objects;

• T � V is the alphabet of terminal objects;

• w 2 V� is the initial string;

• Ri, 1� i�m, is a finite set of non-cooperative rules,

i.e., rules of the form X ! u with X 2 V and u 2 V�.
We denote R ¼

S
1� i� n Ri.

A computation in G starts with the initial string w, and in

each derivation step the rules from one of the rule sets Ri,

also called tables, are applied in the (maximally) parallel

way; a successful computation ends with a terminal string

over the terminal alphabet T.

An ET0L-system can also be seen as a multiset gener-

ating mechanism, i.e., we start with the initial object w

being a multiset and then apply the rules in the tables as

multiset rules. The terminal results then are multisets over

the terminal alphabet T. To emphasize the multiset char-

acter of the system, we also call it an mET0L-system. The

family of sets of multisets generated by mET0L-systems

with at most n tables is denoted by PsET0Ln. We omit the

suffix n if the number of tables is not bounded.

We also consider ET0L-systems and mET0L-systems

with promoters and inhibitors, i.e., the rules in G are of the

form (p, P, Q) where p 2 R and P, Q are finite sets of finite

multisets. The multisets in P are called promoters, those in

Q inhibitors. A rule (p, P, Q) is applicable to a multiset

w if and only if every multiset in P and none of the mul-

tisets in Q is contained in w.

An ET0L-system/mET0L-systems is called of type

ðproi;j; inhk;mÞ if the number of multisets in the sets of

promoters and inhibitors is limited by i and k, respectively,

and the weight of the multisets in the sets of promoters and

inhibitors does not exceed j and m, respectively. The family

of sets of multisets generated by mET0L-systems with n

tables of rules of type ðproi;j; inhk;mÞ is denoted by

PsET0Lnðproi;j; inhk;mÞ.

3 A general model for hierarchical P systems

We first recall the main definitions of the general model for

hierarchical P systems and the basic derivation modes as

defined, for example, in Freund and Verlan (2007).

A (hierarchical) P system of type X working in the

derivation mode d is a construct

P ¼ V ; T ; l;w1; . . .;wm;R1; . . .;Rm; f ;¼)P;d
� �

where

• V is the alphabet of objects;

• T � V is the alphabet of terminal objects;

• l is the hierarchical membrane structure (a rooted tree

of membranes) with the membranes uniquely labeled by

the numbers from 1 to m;

• wi 2 V�, 1� i�m, is the initial multiset in membrane i;

• Ri, 1� i�m, is a finite set of rules of type X assigned to

membrane i;

• f is the label of the membrane from which the result of a

computation has to be taken from (in the generative

case) or into which the initial multiset has to be given in

addition to wf (in the accepting case),

• ¼)P;d is the derivation relation under the derivation

mode d.

3.1 Types of rules

The notion ‘‘rules of type X’’, for example, may stand for

‘‘evolution rules’’ or ‘‘communication rules’’. We now give

examples for types of rules to be used further in this paper.

3.1.1 Evolution rules

In general, an evolution rule is of the form u ! v with

u; v 2 V�. An evolution rule u ! v is called ‘‘non-coop-

erative’’ (abbreviated ‘‘ncoo’’) if u 2 V , otherwise it is

called ‘‘cooperative’’ (abbreviated ‘‘coo’’). An evolution

rule is applied within the region of the membrane it is

assigned to. The evolution rule u ! v can be applied in a

membrane region if and only if the multiset in this region

contains u as a submultiset. The application of u ! v

eliminates u and adds v. To the symbols in v also targets—

out; inj—may be assigned: target out means that the cor-

responding symbol is sent out to the surrounding mem-

brane whereas a target inj means that the corresponding

symbol is sent into the inner membrane labeled by j.

596 A. Alhazov et al.

123

3.1.2 Communication rules

A communication rule is of the form u|v with u; v 2 V� and
not both being empty. The communication rule u|v has the

effect that u inside the membrane the rule is assigned to is

exchanged with v in the outer region of this membrane (if u

and v are available in the respective membrane regions). If

both u and v are not empty, then u|v is called an antiport

rule, otherwise a symport rule. The type of rules antii;j
indicates that for every antiport rule u|v in the P system the

conditions 1� juj � i and 1� jvj � j hold. The type of rules

symi indicates that for every symport rule ujk or kjv in the P
system the condition 1� juj � i or 1� jvj � i, respectively,

holds.

3.1.3 Insertion, deletion, and substitution rules

For an alphabet V, let a ! b be a rewriting rule with

a; b 2 V [fkg, and ab 6¼ k; we call such a rule a substi-

tution rule if both a and b are different from k and we also

write S(a, b); such a rule is called a deletion rule if a 6¼ k
and b ¼ k, and it is also written as D(a); a ! b is called an

insertion rule if a ¼ k and b 6¼ k, and we also write I(b).

The sets of all insertion rules, deletion rules, and substi-

tution rules over an alphabet V are denoted by InsV , DelV ,

and SubV , respectively. Whereas an insertion rule is always

applicable, the applicability of a deletion and a substitution

rule depends on the presence of the symbol a. In the case of

a multiset this only means incrementing the number of

symbols b, decrementing the number of symbols a, or

decrementing the number of symbols a and at the same

time incrementing the number of symbols b.

These types of rules and the corresponding notations can

be extended by allowing more than one symbol on the left-

hand and/or the right-hand side, i.e., a; b 2 V�, and ab 6¼ k.
The corresponding sets of all extended insertion rules,

deletion rules, and substitution rules over an alphabet V are

denoted by Ins�V , Del
�
V , and Sub�V , respectively.

3.2 Derivation modes

The set of all multisets of rules applicable in each mem-

brane to a given configuration can be restricted by

imposing specific conditions, thus yielding the following

basic derivation modes (for example, see Freund and

Verlan (2007) for formal definitions):

• asynchronous mode (abbreviated asyn): at least one rule

is applied;

• sequential mode (sequ): exactly one rule is applied;

• maximally parallel mode (max): a non-extendable

multiset of rules is applied;

• maximally parallel mode with maximal number of rules

(maxrules): a non-extendable multiset of rules of max-

imally possible cardinality is applied;

• maximally parallel mode with maximal number of

objects (maxobjects): a non-extendable multiset of rules

affecting as many objects of the current configuration as

possible is applied.

In Alhazov et al. (2016), these derivation modes are

restricted in such a way that each rule can be applied at

most once, thus yielding the set modes sasyn, smax,

smaxrules, and smaxobjects (the sequential mode is already a

set mode by definition).

A configuration is a list of the contents of each cell; a

sequence of configurations C1; . . .;Ck is called a compu-

tation in the derivation mode d if Ci¼)P;dCiþ1 for

1� i\k. The derivation relation ¼)P;d is defined by the

set of rules in P and the given derivation mode which

determines the multiset of rules to be applied to the mul-

tisets contained in each membrane.

3.3 Computations

As we are dealing with membrane systems, we consider the

classic halting condition, i.e., the computation ends when

no rule can be applied any more.

The set of all terminal multisets obtained as results of

halting computations in P by using the derivation mode d
is denoted by PsðP; gen; dÞ, with gen indicating that P is

considered as a generating device; if we are only interested

in the number of symbols in the resulting multiset, the

corresponding set of natural numbers is denoted by

NðP; gen; dÞ.
The families of sets of (k-dimensional) vectors of natural

numbers and sets of natural numbers generated by P sys-

tems with at most n cells using rules of type X in the

derivation mode d are denoted by PsðOPnðXÞ; gen; dÞ and
NðOPnðXÞ; gen; dÞ, respectively. If n is not bounded, we

simply omit the subscript in these notations.

We also consider P systems as accepting mechanisms: in

membrane f, we add the input multiset w0 to wf in the

initial configuration C1 ¼ ðw1; . . .;wmÞ thus obtaining

C1½w0	 ¼ ðw1; . . .;wfw0; . . .;wmÞ; the input multiset w0 is

accepted if there exists a halting computation in the

derivation mode d starting from C1½w0	.
The families of sets of (k-dimensional) vectors of natural

numbers and sets of natural numbers accepted by P systems

with at most n cells using rules of type X in the derivation

mode d are denoted by PsðOPnðXÞ; acc; dÞ and

NðOPnðXÞ; acc; dÞ, respectively. If n is not bounded, we

simply omit the subscript in these notations.

Variants of P systems with activation and blocking of rules 597

123

3.4 Flattening

Many variants of P systems can be flattened to only one

membrane: any object a in membrane i can be represented

by an object [a, i] in the skin membrane, the outermost

membrane of the P system; the rules then can be adapted

accordingly. For further details of the flattening procedure

we refer to Freund et al. (2014).

For example, an evolution rule a ! ðb; outÞ assigned to

membrane 2 inside the skin membrane 1 then is replaced

by the rule ½a; 2	 ! ½b; 1	 in the single membrane 1 of the

corresponding flattened P system.

For communication rules, a second region is necessary,

but in this case we can restrict ourselves to the regions

inside and outside the skin membrane. If we assume that in

the region outside the skin membrane, the environment, all

objects are available in an unbounded number, then the

communication rule u|v assigned to the skin membrane has

the same effect as the evolution rule u ! v. On the other

hand, symport rules of the form ajk and kja correspond to

the deletion rule D(a) and the insertion rule I(a),

respectively.

Throughout the paper we therefore will assume the

simplest membrane structure of only one membrane which

in effect reduces the P system to a multiset processing

mechanism, and, observing that f ¼ 1, in what follows we

will use the reduced notation

P ¼ V ; T ;w;R;¼)P;d
� �

:

3.5 P systems with promoters and inhibitors

As for mET0L-systems we can also consider the rules in a P

system

P ¼ V ; T ;w;R;¼)P;d
� �

:

to be rules with promoters and inhibitors, i.e., the rules in

P are of the form (p, P, Q) where p 2 R and P, Q are finite

sets of finite multisets; the multisets in P are the promoters,

those in Q are the inhibitors. A rule (p, P, Q) is applicable

to a multiset w if and only if every multiset in P and none

of the multisets in Q is contained in w.

A P system using rules of type X together with pro-

moters and inhibitors is called of type ðX; proi;j; inhk;mÞ if

the number of multisets in the sets of promoters and inhi-

bitors is limited by i and k, respectively, and the number of

objects in the multisets of the sets of promoters and inhi-

bitors does not exceed j and m, respectively. The family of

sets of multisets generated by P systems of type

ðX; proi;j; inhk;mÞ with the derivation mode d is denoted by

PsðOPðX; proi;j; inhk;mÞ; gen; dÞ. We omit inhk;m or proi;j if

no inhibitors or no promoters are used.

4 P systems with activation and blocking
of rules

We now define our new concept of regulating the appli-

cation of rules at a specific moment by activation and

blocking relations for P systems (with only one

membrane).

A P system with activation and blocking of rules of type

X (an AB-P system of type X for short) working in the

derivation mode d is a construct

PAB ¼ P; L; fL;A;B; L1;¼)PAB;d
� �

where P ¼ V; T ;w;R;¼)P;d
� �

is a P system of type X, L

is a finite set of labels, fL assigns one or more labels to each

rule from R, A, B are finite subsets of L
 L
N, and L1 �
L describes the set of rules which may be used in the first

derivation step. The elements of A and B are of the form

p; q; tð Þ with p; q 2 L and t 2 N; p; q; tð Þ indicates that

t steps in the future the application of p activates (for A) or

blocks (for B) the application of the rule q.

Now let ¼)P=P;d, for any set of rules P � R, denote the

derivation relation obtained from ¼)P;d by reducing the

set of available rules from R to P. Then a sequence of

multisets wi 2 V�; 0� i� n, with w0 ¼ w is called a valid

derivation of z ¼ wn—we also write w0 ¼)PAB;d

w1 ¼)PAB;d . . .wn—if and only if, with Pk denoting the set

of rules applied to wk in the kth derivation step, for every i,

0� i\n, the following conditions hold true:

• either wi ¼)P=Pi;d wiþ1, where Pi is the set of all rules r

(identified by their labels) such that there is a relation

rj; r; t
� �

2 A with i� j ¼ t, which means that the

application of a rule rj in the jth derivation step has

activated rule r probably to be applied in the ith

derivation step, and there is no rule relation rj; r; s
� �

2
B such that i� j ¼ s, which means that the application

of the rule rj in the jth derivation step would block rule

r to be applied in the ith derivation step, or

• Pi is empty, i.e., no rule r is activated to be applied ith

derivation step or every activated rule is blocked, too;

in this case we take wi ¼ wi�1 provided there is still

some rule activated to be applied later.

With this interpretation we see that A can be called the set

of activating rule relations and B the set of blocking rule

relations. The role of L1 is to get a derivation started by

defining the rules to be applied in the first derivation step.

In the same way as for the original model of P systems

we can define the derivations in the AB-P systemPAB, now

using the derivation relation ¼)PAB;d instead of ¼)P;d. As

we are dealing with membrane systems, the classic output

condition—in the generating case—is to only consider

halting computations; yet we also want to allow that for a

598 A. Alhazov et al.

123

bounded number of steps no rule can be applied as long as

still some rules are activated for future steps. Hence, for

AB-P systems we consider several variants of halting

conditions and output strategies.

4.1 Halting conditions

In Alhazov et al. (2013), the notion halting with delay d is

used to describe the situation that we allow the system to

stay inactive (i.e., without applying a rule) for d steps

before a computation is said to halt. We will also use this

refinement of halting in this paper to specify how many

steps we allow the system to go ahead without applying a

rule.

Another natural condition is to take as results only those

multisets which only consist of terminal symbols.

Hence, for the P systems considered in this paper we

may specify the following derivation and output strategies:

• halt: the only condition is that the system halts in the

sense explained above, i.e., no rule is activated for

future steps, which means that no rule will be applicable

any more; the result is the multiset obtained at the end

of such a halting computation (which in fact means that

specifying the terminal alphabet is obsolete);

• (halt, d): the result is the multiset obtained at the end of

a halting computation, but the additional condition is

that in no successful derivation (i.e., a derivation

yielding a result) more than d steps without applying

a rule may occur; the special case d ¼ 0 means that we

do not allow a derivation step where no rule is applied

(again specifying the terminal alphabet is obsolete);

• term: the multiset obtained during a computation

consists of terminal symbols only (yet the system need

not have reached a halting configuration);

• (term, d): the multiset obtained during a computation

consists of terminal symbols only (yet the system need

not have reached a halting configuration), but, in

addition, we require that in any successful derivation

at most d steps without applying a rule may occur;

• (halt, term): both conditions must be fulfilled, i.e., the

multiset obtained as a result at the end of a halting

computation consists of terminal symbols only;

• (halt, term, d): all three conditions must be fulfilled,

i.e., the multiset obtained as a result at the end of a

halting computation consists of terminal symbols only,

and in any successful derivation at most d steps without

applying a rule may occur.

We may also write ðhalt; �Þ, ðterm; �Þ, and ðhalt; term; �Þ
instead of halt, term, and (halt, term), respectively.

4.2 Result of computations

The set of all multisets obtained as results of computations

in PAB by using the derivation mode d with the output

being obtained by the output strategy b 2 D,

D ¼ fðhalt; aÞ; ðterm; aÞ; ðhalt; term; aÞ j a 2 N0 [f�gg

is denoted by PsðPAB; gen; d; bÞ, with gen indicating that

PAB is considered as a generating device; if we are only

interested in the number of symbols in the resulting mul-

tiset, the corresponding set of natural numbers is denoted

by NðPAB; gen; d; bÞ.
The families of sets of (k-dimensional) vectors of

natural numbers and sets of natural numbers generated by

AB-P systems using rules of type X in the derivation

mode d and using the output strategy b are denoted by

PsðOPðXÞ; gen; d; bÞ and NðOPðXÞ; gen; d; bÞ, respectively.
Also P systems with activation and blocking of rules can

be considered as accepting mechanisms: we add the input

multiset w0 to w1 in the initial configuration C1 ¼ ðw1Þ thus
obtaining C1½w0	 ¼ ðw1w0Þ; the input multiset w0 is

accepted if there exists a halting computation in the

derivation mode d starting from C1½w0	. We point out that

in the accepting case we only consider halting computa-

tions, but may also restrict the number of derivation steps

where no rule can be applied, i.e., in total we consider the

following halting strategies:

D0 ¼ fðhalt; aÞ j a 2 N0 [f�gg

The families of sets of (k-dimensional) vectors of natural

numbers and sets of natural numbers accepted by AB-P

systems using rules of type X in the derivation mode

d and using the halting strategy b are denoted by

PsðOPðX;ABÞ; acc; d; bÞ and NðOPðX;ABÞ; acc; d; bÞ,
respectively.

If the set B of blocking rules is empty, then the AB-P

system is said to be a P system with activation of rules (an

A-P system for short) of type X; the corresponding sets of

multisets generated/ accepted as well as the respective

families of languages of multisets are denoted in the same

way as for AB-P system by just omitting the B.

Moreover, an AB-P system is called an AkBm-P system

if for all p; q; tð Þ 2 A we have t 2 f1; . . .; kg, which means

that the rules applied in one derivation step activate only

the rules which are to be applied in the next k steps, and for

all p; q; tð Þ 2 B we have t 2 f1; . . .;mg, which means that

the rules applied in one derivation step can block only the

rules which are to be applied in the next m steps. In the case

of k ¼ 1 or m ¼ 1 we only write p; qð Þ instead of p; q; 1ð Þ.

Remark 1 As we need to activate rules for further

derivation steps to be able to have unbounded derivations,

Variants of P systems with activation and blocking of rules 599

123

only using blocking of rules makes no sense. Yet with

implicitly activating all rules in every derivation step, we

can only specify those rules to be blocked and in that way

get a kind of B-P systems. Yet these are just a special

variant of AB-P systems, as instead of only specifying the

rules to be blocked in succeeding steps, by the application

of any rule we can also activate all rules for the next k þ 1

steps where k is the maximum of values t in blocking

relations ðp; q; tÞ 2 B. Hence, in this paper we will not

consider this variant further. h

5 Results below PsRE

In this section we first give an illustrative example showing

that with sequential A1-P systems we can get more than

semilinear sets. Then we exhibit some relations between

A1-P systems working in maximal derivation modes,

ET0L-systems, and P systems with promoters working in

maximal derivation modes.

5.1 More than semilinear

It is folklore that sequential P systems with non-coopera-

tive rules (i.e., rules with exactly one symbol on their left-

hand side) can only generate semilinear sets, i.e., PsREG.

Our first example shows that using sequential A1-P sys-

tems (i.e., P systems in which the rules in a derivation step

activate only the rules that may be applied in the next step)

with non-cooperative rules we can already generate non-

semilinear sets.

Example 1 The non-semilinear set L1 ¼ anbm j 2� n;f
2�m� 2n�1g can be generated by a sequential A1-P

systems with non-cooperative rules (we remind that this

type of rules is abbreviated ncoo):

P ¼ V ¼ a; b;A;Bf g; T ¼ a; bf g;ð
w ¼ Ab;R;¼)P;sequ

�
;

R ¼ A ! a; b ! BB;A ! AA;B ! bf g;
PAB ¼ P; L; fL;A;B ¼ ;; L1;¼)PAB;sequ

� �
;

L ¼ pa; pb; pA; pBf g;
L1 ¼ pAf g;
fL ¼ pa;A ! að Þ; pb;B ! bð Þ; pA;A ! AAð Þ;f

pB; b ! BBð Þg;
A ¼ pa; pað Þ; pb; pað Þ; pb; pbð Þ; pb; pAð Þ; pA; pBð Þ;f

pB; pbð Þ; pB; pBð Þg:

The set A of activating rule relations is graphically illus-

trated in the following figure which shows that this con-

struction is rather similar to using graph control:

With every adding of one symbol A we may at most

double the current number of symbols b using the rules

labeled pB and pb. At some moment instead of activating pA
by pb we may switch to pa whereafter only pa can be

applied any more, yielding a terminal multiset provided all

symbols B have been derived to the terminal symbol b

before switching from pb to pa. In sum, we conclude

L1 2 PsðOPðncoo;A1Þ; gen; sequ; bÞ

for b 2 fðterm; 0Þ; ðhalt; term; 0Þg.
For a similar result with only halting computations we

have to guarantee that the multiset obtained at the end of a

halting computation is terminal, too. This can be achieved

in different ways: in any case, we add an additional label

qB and and add the activations pa; qBð Þ and qB; qBð Þ to A,

which results in the following control diagram:

For the rule assigned to the new label qB we may either

take B ! b guaranteeing that all nonterminal symbols not

already derived to the terminal symbol b can do this now,

or B ! B trapping the derivation in an infinite loop if and

only if not all nonterminal symbols have already been

derived to the terminal symbol b by pb. In both cases we

obtain

L1 2 PsðOPðncoo;A1Þ; gen; sequ; bÞ

for b 2 fðhalt; 0Þ; ðhalt; term; 0Þg, too. h

In the following proofs we will simplify the notation for

AB-P systems by writing labeled rules as p : r instead of

first listing all rules r in the underlying P system P and

then in PAB listing the labels p as well as finally defining

the function fL by listing all pairs p; rð Þ. In a shorter way,

the whole AB-P system then can be written as

PAB ¼ V; T ;w;R;A;B; L1;¼)PAB;d

� �

with R already containing the labeled rules.

Theorem 1 For any b 2 fðhalt; 0Þ; ðterm; 0Þ;
ðhalt; term; 0Þg,
PsREG(PsðOPðncoo;A1Þ; gen; sequ; bÞ:

Proof Let G ¼ ðV ; T ;P; SÞ be a regular grammar where V

is the total alphabet, T the terminal alphabet, N :¼ VnT the

set of nonterminal symbols, P a finite set of regular rules

over N and T, and S 2 N the start symbol. We assume the

600 A. Alhazov et al.

123

rules in P to be of the forms A ! bC or A ! kwith A;C 2
N and b 2 T . For all X 2 N, let PX denote the set of all

rules from P with X on the left-hand side. For each rule

r ¼ A ! bC, let rhs(r) denote the nonterminal symbol

C on the right-hand side of the rule.

The set of terminal multisets generated by G can be

generated by a sequential A1-P system with non-cooper-

ative rules:

PA ¼ V ; T;w;R;A;B; L1;¼)PA;sequ

� �

R ¼ pr : r j r 2 Pf g [pX : X ! X j X 2 Nf g;
L1 ¼ pr j r 2 PSf g;
A ¼ pr; pq

� �
j q 2 PrhsðrÞ

� �

[pr; pXð Þ j r 2 P; X 2 Nf g [pX; pXð Þ j X 2 Nf g:

With the application of a labeled rule pr : r for the next step

of the derivation all rules are activated which contain the

nonterminal symbol on the right-hand side of r on their left-

hand side with the activation relations pr; pq
� �

; q 2 PrhsðrÞ.

If r is of the form A ! k, then PrhsðrÞ is empty, the result is

terminal, and the derivation must halt, as also the rules pX :
X ! X; X 2 N activated by pr; pXð Þ cannot be applied.

Hence, we infer

PsðLðGÞÞ ¼ PsðPA; gen; sequ; bÞ

for b 2 fðhalt; 0Þ; ðterm; 0Þ; ðhalt; term; 0Þg.
On the other hand, the rules pX : X ! X; X 2 N and the

related activation relations are only needed for the output

strategy (halt, 0), but they guarantee that a derivation

cannot halt as long as the actual multiset is not terminal.

Moreover, these rules and the related activation relations

can always be omitted if—without loss of generality—we

assume that for every nonterminal symbol A there is at least

one rule A ! bC or A ! k in P.

The strictness of the inclusion follows from Example 1,

which observation completes the proof. h

Using the maximally parallel derivation mode, we can at

least simulate ET0L-systems:

Theorem 2 For any b 2 fðhalt; 0Þ; ðterm; 0Þ;
ðhalt; term; 0Þg,
PsET0L � PsðOPðncoo;A1Þ; gen;max; bÞ:

Proof The main idea of constructing an equivalent A1-P

system PA for a given ET0L-system G ¼
ðV; T ;R1; . . .;Rm;wÞ follows the idea of the proof for P

systems with states, see Alhazov et al. (2015): we use new

symbols tk representing the m tables Rk, 1� k�m, of the

ET0L-system to be simulated. Using a rule ti;j : ti ! tj then

indicates that after the application of table Ri the table Rj is

to be used; hence, all rules in Rj as well as all rules tj;k :

tj ! tk for all k and the final rule tj;e : tj ! k are activated

by corresponding rule relations in A. The final rules tj;e :

tj ! k do not activate any rule, which means that after

having applied this rule the computation in the A1-P sys-

tem PA ends.

In order to start correctly, we use an initial symbol t0
and define

L1 ¼ t0;k : t0 ! tk j 1� k� n
� �

which allows us to activate the rules for simulating any

table Tk.

As in the proof of Theorem 1, the construction described

so far only works for the output strategies

b 2 fðterm; 0Þ; ðhalt; term; 0Þg; for b ¼ ðhalt; 0Þ we again

need the additional labeled rules pX : X ! X; X 2 N,

which are to be activated by the final rules tj;e : tj ! k in

order to trap the system in an infinite loop if a final rule is

applied when the current multiset is not yet terminal. In any

case, the derivations in G using the tables Ri are simulated

correctly by the A1-P system PA using the adequate rule

activations, and the terminal results obtained by the ET0L-

system G interpreted as multisets are the same as the

multisets obtained by the A1-P system PA. Hence, we

conclude

PsðLðGÞÞ ¼ PsðPA; gen;max; bÞ

for b 2 fðhalt; 0Þ; ðterm; 0Þ; ðhalt; term; 0Þg. h

Obviously, the same constructions as described in the

proof above work if we use the maximal number of rules or

the maximal number of objects, hence, we immediately

obtain the following results:

Corollary 1 For any d 2 fmax;maxrules;maxobjectsg,
PsET0L � PsðOPðncoo;A1Þ; gen; d; bÞ

for any b 2 fðhalt; 0Þ; ðterm; 0Þ; ðhalt; term; 0Þg.

The additional control symbols ti used in the proof of

Theorem 2 can also be interpreted as promoters, which

idea is essential for proving the following result:

Theorem 3 For any d 2 fmax;maxrules;maxobjectsg,
PsðOPðncoo;A1Þ; gen; d; ðhalt; term; 0ÞÞ

� PsðOPðncoo; pro1;1Þ; gen; dÞ:

Proof Let PA ¼ ðV; T ;w;R;A; L1;¼)PA;dÞ be an arbi-

trary A1-P system. We construct an equivalent P system

Ppro ¼ V 0; T;w1;R
0;¼)Ppro;d

� �

with atomic promoters, i.e., a rule in R0 is of the form

ða ! u; fbg; ;Þ with a; b 2 V 0 and u 2 V 0�, which we will

write as a ! ujb.

Variants of P systems with activation and blocking of rules 601

123

V 0 ¼V [fpr j r 2 Rg;
w1 ¼w

Y
r2L1

pr;

R ¼fa ! u
Y

ðr;qÞ2A
pqjpr j r : a ! u 2 Rg

[fpr ! k j r 2 Rg:

The additional work of Ppro consists of keeping track of

which rules are allowed to be executed in the next step by

generating the corresponding promoters pq, which are

eliminated again in the next derivation step. Both systems

stop the derivation when no rule is applicable any more,

and only terminal results are extracted. Hence, we conclude

PsðPA; gen; d; ðhalt; term; 0ÞÞ ¼ PsðPpro; gen; dÞ

for any d 2 fmax;maxrules;maxobjectsg.

Putting together the results of Theorem 3 and Corol-

lary 1 we obtain the following result, already shown

in Sburlan (2006) for d ¼ max.

Corollary 2 For any d 2 fmax;maxrules;maxobjectsg,
PsET0L � PsðOPðncoo; pro1;1Þ; gen; dÞ:

The construction given in the proof of Theorem 3 can be

extended from only activation of rules simulated by atomic

promoters to activation and blocking of rules simulated by

atomic promoters and inhibitors, provided we still require

the system to not allow delays or look-aheads more than

one:

Theorem 4 For any d 2 fmax;maxrules;maxobjectsg;
PsðOPðncoo;A1B1Þ; gen; d; ðhalt; term; 0ÞÞ

� PsðOPðncoo; pro1;1; inh1;1Þ; gen; dÞ:

Proof Let PAB ¼ ðV ; T;w;R;A; L1;¼)PAB;dÞ be an arbi-

trary AB-P system without delays (which is reflected by the

output strategy (halt, term, 0)) and no look-aheads more

than one, i.e., activations and blockings of rules are just for

the next step. We construct an equivalent P system

P ¼ V 0; T ;w1;R
0;¼)P;d

� �

with atomic promoters and inhibitors, i.e., a rule in R0 is of
the form ða ! u; fbg; fcgÞ with a; b; c 2 V 0 and u 2 V 0�,
which we will write as a ! ujb;:c.

For every labeled rule pr : r we use two control

symbols—the promoter pr and the inhibitor �pr, respec-

tively, which are eliminated again in the next step. As a

technicality we observe that the presence of both promoter

pr and inhibitor �pr prevents the rule r from being applied.

V 0 ¼V [fpr; �pr j r 2 Rg;
w1 ¼w

Y
r2L1

pr;

R0 ¼ a ! u
Y

ðr;qÞ2A
pq

Y
ðr;qÞ2B

�pq j pr ;: �pr
j r : a ! u 2 R

8<
:

9=
;

[fpr ! k; �pr ! k j r 2 Rg:

P keeps track of which rules are allowed or prohibited to

be executed in the next step by generating the corre-

sponding promoters pq and inhibitors �pq, which are elimi-

nated again in the next derivation step. Both systems stop

the derivation when no rule is applicable any more, and

only terminal results are extracted. Hence, we conclude

PsðPAB; gen; d; ðhalt; term; 0ÞÞ ¼ PsðP; gen; dÞ

for any d 2 fmax;maxrules;maxobjectsg. h

If we allow arbitrary look-aheads, the construction of

the simulating P system with promoters and inhibitors

becomes more involved than that given in the proof of

Theorem 4, as we have to check that the AB-system does

not have delays; therefore, in the following proof we will

need two promoters of weight one or, equivalently, one

promoter of weight two:

Theorem 5 For any d 2 fmax;maxrules;maxobjectsg,
PsðOPðncoo;ABÞ; gen; d; ðhalt; term; 0ÞÞ

� PsðOPðncoo; pro2;1; inh1;1Þ; gen; dÞ

and

PsðOPðncoo;ABÞ; gen; d; ðhalt; term; 0ÞÞ
� PsðOPðncoo; pro1;2; inh1;1Þ; gen; dÞ:

Proof Let PAB ¼ ðV ; T;w;R;A; L1;¼)PAB;dÞ be an arbi-

trary AB-P system without delays (which is reflected by the

output strategy (halt, term, 0)). We construct an equivalent

P system

P ¼ V 0; T ;w1;R
0;¼)P;d

� �

with promoters and inhibitors of type ðncoo; pro2;1; inh1;1Þ,
i.e., a rule in R0 is of the form ða ! u; fd; bg; fcgÞ with

a; b; c 2 V 0, d 2 V 0 [fkg, and u 2 V 0�, which we will write
as a ! ujd;b;:c.

Let k ¼ maxft j ðp; q; tÞ 2 A [Bg be the maximal look-

ahead. Then for every labeled rule pr : r we use control

symbols ½pr; t	; ½ �pr; t	, 0� t� k � 1, which count down t to

zero to let them become active as promoter (½pr; 0) or

inhibitor (½ �pr; 0), respectively, before these promoters and

inhibitors are eliminated again. As a technicality we

602 A. Alhazov et al.

123

observe that the presence of both promoter ½pr; 0	 and

inhibitor ½ �pr; 0	 prevents the rule r from being applied. The

additional symbol d is only generated if a rule from R is

simulated; the necessity of its presence in order to apply a

rule in P guarantees that only derivations in PAB without

delay are simulated in P.

V 0 ¼V [fdg [f½pr; t	; ½ �pr; t	 j r 2 R; 0� t� k � 1g;
w1 ¼wd

Y
r2L1

pr;

R0 ¼ a ! du
Y

ðr;q;tÞ2A
½pq; t � 1	

8<
:

Y
ðr;q;tÞ2B

½ �pq; t � 1	 j d;½pr ;0	;:½ �pr ;0	 j r : a ! u 2 R

9=
;

[f½pr; t	 ! ½pr; t � 1	 j d; ½ �pr; t	
! ½ �pr; t � 1	 j d j r 2 R; k � 1[t[0g
[f½pr; 0	 ! k j d; ½ �pr; 0	
! k j d j r 2 Rg [fd ! kg:

Each couple of two atomic promoters d; pr can be replaced

by the corresponding singleton promoter dpr of weight two,

which observation completes the proof. h

6 Computational completeness results

In this section we show that several simple variants of P

systems become computationally complete when using the

control of activation and blocking of rules if we allow at

most delays of one, i.e., in any case, after one derivation

step without applying a rule, in the next step a rule has to

be applied to continue the derivation.

6.1 Sequential P systems with non-cooperative
rules

Theorem 6 For any b 2 fðhalt; 1Þ; ðterm; 1Þ;
ðhalt; term; 1Þg,
PsRE ¼ PsðOPðncoo;A2B1Þ; gen; sequ; bÞ:

Moreover,

PsRE ¼ PsðOPðncoo;A2B1Þ; acc; sequ; ðhalt; 1ÞÞ:

Proof The proof idea is to show how to simulate register

machines. For a given registermachineM ¼ n;H;RM ; p0; hð Þ
we construct an equivalent AB-P system

PAB ¼ V; T ;w;R;A;B; L1;¼)PAB;sequ

� �

in the following way: For every label p 2 Hn hf g we use

labels lp;�lp;~lp
� �

for an ADD-instruction and labels

lp; l
0
p; l̂p;

~lp;�lp;
n o

for a SUB-instruction; for the final

instruction h : HALT we only use the rule lh : h ! k. For
any p, we also use the symbols p; p0, and for each register r

its contents is described by the number of symbols ar in

(the configurations of) PAB. The starting rule is given by

L1 ¼ lp0
� �

, and we start with w ¼ p0.

An ADD-instruction p : ADD rð Þ; q; sð Þ is simulated by

the following labeled rules in R and rule relations in A:

1. first step:

lp : p ! p0ar and ðlp;�lpÞ; ðlp;~lpÞ 2 A;

2. second step:
�lp : p

0 ! q;~lp : p
0 ! s and ð�lp; lqÞ; ð~lp; lsÞ 2 A.

A SUB-instruction p : SUB rð Þ; q; sð Þ is simulated by the

following labeled rules in R and rule relations in A and B:

1. first step:

lp : p ! p0 and ðlp; l̂pÞ; ðlp;~lp; 2Þ 2 A;

2. second step:

l̂p : ar ! k and ðl̂p;�lpÞ 2 A, ðl̂p;~lpÞ 2 B;

3. third step:
�lp : p

0 ! q;~lp : p
0 ! s and ð�lp; lqÞ; ð~lp; lsÞ 2 A.

In sum, we obtain the AB-P system PAB as follows:

PAB ¼ V; T ;w;R;A;B; L1;¼)PAB;sequ

� �

V ¼ p; p0 j p 2 Hn hf gf g [hf g [ar j 1� r� nf g;
w ¼p0;

L1 ¼ lp0
� �

;

R ¼ lp : p ! p0ar; �lp : p
0 ! q; ~lp : p

0 ! s j
�

p : ADD rð Þ; q; sð Þ 2 RMg
[lp : p ! p0; l̂p : ar ! k; �lp : p

0 ! q;
�

~lp : p
0 ! s j p : SUB rð Þ; q; sð Þ 2 RMg

[lh : h ! kf g;
A ¼ ðlp;�lpÞ; ðlp;~lpÞ; ð�lp; lqÞ; ð~lp; lsÞ j

�

p : ADD rð Þ; q; sð Þ 2 RMg
[ðlp; l̂pÞ; ðlp;~lp; 2Þ; ðl̂p;�lpÞ; ð�lp; lqÞ; ð~lp; lsÞ j
�

p : SUB rð Þ; q; sð Þ 2 RMg;
B ¼ ðl̂p;~lpÞ j p : SUB rð Þ; q; sð Þ 2 RM

� �
:

If the rule l̂p : ar ! k can be applied in the second step, it

activates �lp and at the same time blocks ~lp, which has been

activated in the first simulation step and thus will be

applied if the register is empty, i.e., if l̂p cannot be applied.

Only the second step of the simulation of a A SUB-in-

struction can be a derivation step where no rule is applied,

but afterwards, in any case, a rule will be applied again in

PAB, which guarantees that the delay is at most one.

Hence, in the accepting case, the halting strategy

(halt, 1) is already sufficient. In the generating case, again

delay one is enough, and the special features of the

underlying register machine guarantee that also the AB-P

Variants of P systems with activation and blocking of rules 603

123

system PAB halts with a terminal multiset whenever it

halts, and on the other hand, the multiset can only become

terminal when the final rule lh : h ! k is applied, which

terminates the derivation in PAB. h

6.2 P systems working in set-maximally parallel
derivation modes

Corollary 3 For any d 2 smax; smaxrules; smaxobjects
� �

, we

have the following results:

PsRE ¼ PsðOPðncoo;A2B1Þ; gen; d; bÞ

for any b 2 fðhalt; 1Þ; ðterm; 1Þ; ðhalt; term; 1Þg. Moreover,

PsRE ¼ PsðOPðncoo;A2B1Þ; acc; d; ðhalt; 1ÞÞ:

Proof We can use exactly the same construction as in the

proof of Theorem 6. The set mode guarantees that the rule

l̂p : ar ! k in the second step of the simulation of a SUB-

instruction can be applied only once. The other arguments

remain exactly the same as in that proof. h

6.3 (Purely) Catalytic P systems working
in maximally parallel derivation modes

A typical variant of rules in P systems are so-called cat-

alytic rules of the form ca ! cv, where c is a catalyst, a

symbol which never evolves itself, but helps another

symbol a to evolve into a multiset v. The type of P systems

using only catalytic rules is called purely catalytic (ab-

breviated pcat); if both catalytic rules and non-cooperative

rules are allowed, we speak of a catalytic P system (ab-

breviated cat). In the description of the families of sets of

multisets generated/accepted by such (purely) catalytic P

systems the maximal number of catalysts to be used is

indicated as a subscript, i.e., we write pcatn and catn.

The following result then is a consequence of the pre-

ceding proofs; we emphasize the important fact that even in

the purely catalytic case only one catalyst is needed.The

bracket notation [p]cat indicates that the type is either cat

or pcat.

Corollary 4 For any d 2 max;maxrules;maxobjects
� �

, we

have the following results:

PsRE ¼ PsðOPð½p	cat1;A2B1Þ; gen; d; bÞ

for any b 2 fðhalt; 1Þ; ðterm; 1Þ; ðhalt; term; 1Þg. Moreover,

PsRE ¼ PsðOPð½p	cat1;A2B1Þ; acc; d; ðhalt; 1ÞÞ:

Proof Looking carefully into the proof of Theorem 6, we

see that the only rules where the set mode would be needed

are those of the form l̂p : ar ! k. Using just one catalyst c,

we can use the rules l̂p : car ! c instead. The remaining

details of the proof of Theorem 6 can remain as they are for

the catalytic case.

For the purely catalytic case, we observe the astonishing

fact that, as we are following the construction of a

sequential P system, the same catalyst c can also be used

for all the other rules; for example, we take lp : cp ! cp0

instead of lp : p ! p0. These observations complete the

proof. h

6.4 P systems with insertion and deletion rules

In this section we return to a sequential simulation of

register machines using insertion and deletion rules; yet it

turns out that the same construction also works for the set-

maximally parallel derivation modes, as we have already

seen in the case of non-cooperative rules. The type of rules

with insertion and deletion of singleton symbols is denoted

by ID.

Theorem 7 For any d2 sequ;smax;smaxrules;f smaxobjectsg,
we have the following results:

PsRE ¼ PsðOPðID;A2B1Þ; gen; d; bÞ

for any b 2 fðhalt; 1Þ; ðterm; 1Þ; ðhalt; term; 1Þg. Moreover,

PsRE ¼ PsðOPðID;A2B1Þ; acc; d; ðhalt; 1ÞÞ:

Proof The proof idea again is to show how to simulate

register machines. For a given register machine M ¼
n;H;RM ; p0; hð Þ we construct an equivalent AB-P system

PAB ¼ V; T ;w;R;A;B; L1;¼)PAB;d
� �

with insertion and deletion rules; as symbols we only need

the symbols ar for representing the contents of registers r,

1� r� n. We mention that the HALT-instruction is never

activated.

PAB ¼ V;T ;w;R;A;B;L1;¼)PAB;d
� �

V ¼ ar j 1� r�nf g;
w¼k;

L1 ¼ lp0
� �

;

R¼ lp : IðarÞ j p : ADD rð Þ;q; sð Þ 2 RM

� �

[lp : IðarÞ; l̂p : DðarÞ; ~lp : DðarÞ j p : SUB rð Þ;q; sð Þ 2 RM

� �
;

A¼ ðlp;qÞ j p : ADD rð Þ;q; sð Þ 2 RM ; q 6¼ h
� �

[ðlp; sÞ j p : ADD rð Þ;q; sð Þ 2 RM; s 6¼ h
� �

[ðlp; l̂pÞ; ðl̂p;~lpÞ j p : SUB rð Þ;q; sð Þ 2 RM

� �

[ðl̂p; ls;2Þ j p : SUB rð Þ;q; sð Þ 2 RM ; s 6¼ h
� �

[ð~lp; lqÞ j p : SUB rð Þ;q; sð Þ 2 RM; q 6¼ h
� �

;

B¼ ð~lp; lsÞ j p : SUB rð Þ;q; sð Þ 2 RM; s 6¼ h
� �

:

The simulation of an ADD-instruction only needs one step

with inserting one register symbol ar using the rule lp :

604 A. Alhazov et al.

123

IðarÞ and then branching to lq or ls in the non-deterministic

case or just activating lq in the deterministic case.

The simulation of a SUB-instruction starts with two

steps inserting and immediately afterwards again deleting a

register symbol ar with the only purpose to allow the AB-P

system PAB to activate both the decrement and the zero-

test case with ðl̂p;~lpÞ 2 A and ðl̂p; ls; 2Þ 2 A, respectively. If

the rule ~lp : DðarÞ can be applied in the third step, it

activates lq and at the same time blocks ls, which has been

activated in the previous simulation step and thus will be

applied if the register is empty, i.e., if ~lp cannot be applied.

In the AB-P system defined above, only the third step of

the simulation of a SUB-instruction can be a derivation

step where no rule is applied, but afterwards, in any case, a

rule will be applied again inPAB, which guarantees that the

delay is at most one.

Hence, in the accepting case, the halting strategy

(halt, 1) is already sufficient. In the generating case, again

delay one is enough, and the special features of the

underlying register machine guarantee that also the AB-P

system PAB halts with a terminal multiset whenever it

halts, and on the other hand, the multiset can only become

terminal when no rule is activated any more with M having

reached the final label h, which also terminates the

derivation in PAB. h

Remark 2 We emphasize that the construction in the

preceding proof uses the minimal amount of symbols, i.e.,

one symbol for each register. The whole control just works

with the activation and blocking of rules. h

Remark 3 We finally observe that all proof constructions

given in this section provide deterministic simulations of

deterministic register machines, which is an important

feature for the discussions in Sect. 8. h

7 P systems using backwards activation
and blocking of rules

The definition of AB-P systems given in Sect. 4 can be

extended by allowing the relations in A and B to be of the

form rj; r; t
� �

with t possibly also being a negative integer.

In that way rules can be activated or blocked in previous

steps.

A conservative semantics for this extension is calling a

derivation

w0 ¼)PAB;d w1 ¼)PAB;d . . .wn

to be consistent if and only if the available sets of rules for

previous steps are not changed by having rules activated or

blocked backwards in time.

In that way, at least for computationally complete AB-P

systems, no increase in the computational power is

obtained, as this condition can be checked by any com-

putationally complete device, for example, a Turing

machine.

A very special case is to allow t ¼ 0, but not to insist on

consistency (consistency for t ¼ 0 would mean that the set

of rules available for the current step does not change when

considering activations and blockings for t ¼ 0). As long as

only activations of rules are considered, this only opens the

field for probably new rules to become applicable at the

same step, but at the end the whole set of rules available for

being applied will be fixed. The situation changes if we

also allow blocking of rules, as in this case with the

application of some rules other ones having been applica-

ble could be blocked. In the simplest case, consider

ðp; p; 0Þ 2 B, i.e., a rule when being applied is blocking

itself to be applied. On the other hand, starting with a set of

activated rules, only a finite number of sets of rules

eventually to be applied in the current derivation step in a

non-conflicting way has to be checked to find out all pos-

sible continuations of the ongoing derivation. Hence, in the

following section we shall focus especially on activations

of rules backwards in time, i.e., on activations ðp; q;�tÞ for
t[0. As a special technical detail we mention that acti-

vations going back behind the first step just are ignored.

8 Going beyond Turing

We are now discussing how to ‘‘go beyond Turing’’ by

using a less conservative semantics for activating (and/or

blocking) the rules in preceding derivation steps.

The main idea is to consider infinite computations on

given finite multisets —compare this with the idea of red-

green Turing machines, see van Leeuwen and Wiedermann

(2012), and of red-green register machines, see Aman et al.

(2014).

There are several ways to look at these infinite com-

putations and the development of the configurations, yet we

have in mind the one based on the ideas elaborated in

Freund et al. (2015): we consider sequences of computa-

tions where every computation in this sequence the evo-

lution of configurations starts again from the beginning

with the initial activations and blockings, but also takes

into the account the activations and blockings of rules

including the backwards signals obtained in the previous

evolution of configurations. We call such an infinite

sequence of computations valid if each prefix of length n of

the computation becomes stable, i.e., for every k with

1� k� n neither the kth configuration itself nor the set of

rules applicable in the kth computation step change any

more. We consider the infinite sequence of

Variants of P systems with activation and blocking of rules 605

123

stable configurations obtained in this way as the final

computation on the given input.

To make such a process of getting an infinite sequence

of computations easier to be described, we consider the

following procedure: the first computation makes only one

step, the second one makes two derivation steps, . . . , the

nth computation starting with the initial configuration and

using the initial activations and blockings enlarged with the

actual activations and blockings of rules including the

backwards signals obtained in the previous computation

makes n derivation steps, . . . We emphasize that all acti-

vations and blockings obtained in the nth computation of

the given deterministic P system are taken over for the next

computation.

Remark 4 That the condition for an infinite sequence of

computations as defined above to be valid is a P3-condi-

tion shortly can be argued as follows: Any valid infinite

sequence of computations of a deterministic P system with

activations and blockings of rules can be encoded as an x-
word, i.e., as an infinite sequence of encodings of finite

configurations and the activated and blocked rules for the

next computation. Observe that the number of steps ahead

for which these activations and blockings are to be con-

sidered is bounded by a constant.

The condition that such an x-word represents a valid

infinite sequence of computations then can be checked by a

deterministic Turing machine: the deterministic derivation

in a deterministic P system with activations and blockings

of rules is simulated by a deterministic Turing machine,

which goes back on its tape to the encoding of a

configuration and the multiset of rules to be applied to it

whenever one of these two still changes. Then the input x-
word represents a valid sequence of computations of the

deterministic P system with activations and blockings of

rules if and only if the corresponding Turing machine has a

complete non-oscillating run on it (a run is called complete

when every position on the tape is reached, and it is called

non-oscillating when every position on the tape is reached

only finitely often during the infinite computation).

The family of x-languages accepted by deterministic

Turing machines by complete non-oscillating runs equals

P3, for example, see Freund and Staiger (2001). Therefore,

all x-languages representing exactly the valid sequences of

computations of a deterministic P system with activations

and blockings of rules are in P3. h

Provided it exists, we can just consider the stable first

configuration of a valid infinite sequence of computations

to see whether the input has been accepted. This idea can

be used for all the computationally complete variants of P

systems with activation and blocking of rules considered in

this paper in Sect. 6, as according to Remark 3 all of them

allow for a deterministic simulation of deterministic reg-

ister machines.

One interesting construction principle which can be

applied for simulating red-green P systems/automata

(starting in red) in all these variants is the following:

• in order to even capture sequential P systems with

activation and blocking of rules, we expand the times in

the rule relations by a factor of two, hence, the original

computations will happen in each odd derivation step;

• we use two new symbols YES and NO; in the initial

configuration we add the new symbol NO;

• each application of a rule p changing the color from red

to green activates the rule pY : NO ! YES by the

backwards activation p; pY ;�1ð Þ (no such rule is

allowed to be activated in L1);

• each application of a rule p changing the color from

green to red activates the rule pN : YES ! NO by the

backwards activation p; pN ;�1ð Þ (no such rule is

allowed to be activated in L1);

• the mind change (change of color) is propagated

backwards by using the backwards activation relations

pN ; pN ;�2ð Þ and pY ; pY ;�2ð Þ, respectively;
• these rules (labeled by) pN and pY then are used

‘‘backwards’’ in every even derivation step; the back-

wards propagation stops when one of these rules is

applied in the second derivation step (as already

mentioned, we assume that backwards activations of

rules have no effect any more if they activate a rule

before step 1);

• if the computation of a red-green P automaton stabilizes

in green, i.e., no mind (color) change from green to red

takes place any more, then, of course, no changes in the

second configuration occur any more, i.e., it has become

stable and therefore available for ‘‘reading out’’ the

result of the computation.

It is interesting to mention that only ‘‘backwards ’’ rule

activations are used in the algorithm described above, but

no ‘‘backwards’’ rule blockings.

We conclude that with every kind of P systems with

activation and blocking of rules which allows for the de-

terministic simulation of register machines we can simulate

the corresponding variant of red-green P automata which

characterize the R2-sets in the Arithmetical Hierarchy

(see Budnik 2006), i.e., with such systems we get at least

R2; compare this with the results obtained in Freund et al.

(2015, 2016). Yet R2 is only a lower bound: as already

pointed out in Remark 4, the condition for a sequence of

computations to be valid is a P3-condition, which implies

that the upper bound is P3. Hence, one of the most chal-

lenging open problems is to find out if we can obtain more

than R2.

606 A. Alhazov et al.

123

9 Conclusion

We have considered the concept of regulating the appli-

cability of rules based on the application of rules in the

preceding step(s) within a very general model for hierar-

chical P systems and for the main derivation modes. These

concepts of activation and blocking of rules can also be

extended in a natural way to the many variants of tissue P

systems, i.e., networks of cells where a rule to be applied

can affect multiple cells at the same time.

For the maximally parallel derivation modes and P

systems with activation and blocking of non-cooperative

rules not allowing derivation steps without applying any

rule we have established several relations to ET0L-systems

as well as to P systems with promoters and inhibitors.

Even with the sequential derivation mode and for the set

modes of derivation, the resulting computational power

already reaches computational completeness even with

non-cooperative rules and using activation of rules with

look-ahead two and blocking of rules for the next step

when we allow at most one derivation step without any rule

being applied before in the next step again some rule must

be applied for continuing the derivation.

Using a special semantics for activating and/or blocking

the rules in preceding derivation steps, we could even show

how to ‘‘go beyond Turing’’ with activating rules in pre-

ceding derivation steps and to get R2 as a lower bound and

P3 as an upper bound. Another interesting topic for future

research is to investigate how powerful such AB-P systems

are in generating x-strings.

Acknowledgements Open access funding provided by TU Wien

(TUW). Rudolf Freund is very grateful for interesting discussions

with Ludwig Staiger on the topics elaborated in Sects. 7 and 8.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Alhazov A (2004) A note on P systems with activators. In: Păun Gh,

Riscos-Núñez A, Romero-Jiménez A, Sancho-Caparrini F (eds)

Second brainstorming week on membrane computing, Sevilla,

Spain, 2–7 Feb 2004, pp 16–19

Alhazov A, Ivanov S, Rogozhin Yu (2011) Polymorphic P systems.

In: Gheorghe M, Hinze T, Păun Gh, Rozenberg G, Salomaa A

(eds) Membrane computing. Lecture notes in computer science,

vol 6501. Springer, pp 81–94

Alhazov A, Freund R, Heikenwälder H, Oswald M, Rogozhin Yu,

Verlan S (2013) Sequential P systems with regular control. In:

Csuhaj-Varjú E, Gheorghe M, Rozenberg G, Salomaa A, Vaszil

Gy (eds) Membrane computing—13th international conference,

CMC 2012, Budapest, Hungary, 28–31 Aug 2012, Revised

selected papers. Lecture notes in computer science, vol 7762.

Springer, pp 112–127. https://doi.org/10.1007/978-3-642-36751-

9_9

Alhazov A, Freund R, Ivanov S, Oswald M (2015) Observations on P

systems with states. In: Gheorghe M, Petre I, Pérez-Jiménez MJ,

Rozenberg G, Salomaa A (eds) Multidisciplinary creativity.

Hommage to Gheorghe Păun on His 65th Birthday, pp 17–28.

Spandugino

Alhazov A, Freund R, Verlan S (2016) P systems working in maximal

variants of the set derivation mode. In: Leporati A, Rozenberg G,

Salomaa A, Zandron C (eds) Membrane Computing—17th

International Conference, CMC 2016, Milan, Italy, 25–29 July

2016, Revised selected papers. Lecture Notes in Computer

Science, vol 10105. Springer, pp 83–102

Alhazov A, Freund R, Ivanov S (2017) P systems with randomized

right-hand sides of rules. In: Graciani C, Păun Gh, Riscos-Núñez

A, Valencia-Cabrera L (eds) 15th brainstorming week on

membrane computing, Sevilla, Spain, Jan 31–Feb 5 2017,

pp 13–42

Alhazov A, Freund R, Ivanov S (2018a) Hierarchical P systems with

randomized right-hand sides of rules. In: Gheorghe M, Rozen-

berg G, Salomaa A, Zandron C (eds) Membrane computing—

18th international conference, CMC 2017, Bradford, UK, 25–28

July 2017, Revised selected papers. Lecture notes in computer

science, vol 10725. Springer, pp 15–39. https://doi.org/10.1007/

978-3-319-73359-3

Alhazov A, Freund R, Ivanov S (2018b) Introducing the concept of

activation and blocking of rules in the general framework for

regulated rewriting in sequential grammars. In: Orellana-Martı́n

D, Păun Gh, Riscos-Núñez A, Valencia-Cabrera L (eds)

Proceedings of the 16th brainstorming week on membrane

computing, Sevilla, Spain, Jan 30–Feb 2 2018, pp 1–22

Alhazov A, Freund R, Ivanov S (2018c) One-membrane P systems

with activation and blocking of rules. In: Orellana-Martı́n D,

Păun Gh, Riscos-Núñez A, Valencia-Cabrera L (eds) Proceed-

ings of the 16th brainstorming week on membrane computing,

Jan 30–Feb 2 2018, Sevilla, Spain, pp 23–38

Alhazov A, Freund R, Ivanov S (2018d) P systems with activation and

blocking of rules. In: Stepney S, Verlan S (eds) Unconventional

computation and natural computation—17th international con-

ference, UCNC 2018, Fontainebleau, France, 25–29 June 2018,

Proceedings. Lecture notes in computer science, vol 10867.

Springer, pp 1–15. https://doi.org/10.1007/978-3-319-92435-9

Alhazov A, Freund R, Ivanov S (2018e) Sequential grammars with

activation and blocking of rules. In: Durand-Lose J, Verlan S

(eds) Machines, Computations, and Universality—8th interna-

tional conference, MCU 2018, Fontainebleau, France, 28–30

June 2018, Proceedings. Lecture notes in computer science, vol

10881. Springer, pp 51–68. https://doi.org/10.1007/978-3-319-

92402-1

Aman B, Csuhaj-Varjú E, Freund R (2014) Red-green P automata. In:

Gheorghe M, Rozenberg G, Salomaa A, Sosı́k P, Zandron C

(eds) Membrane computing—15th international conference,

CMC 2014, Prague, Czech Republic, 20–22 Aug 2014, Revised

selected papers. Lecture notes in computer science, vol 8961.

Springer, pp 139–157. https://doi.org/10.1007/978-3-319-14370-

5

Arroyo F, Baranda AV, Castellanos J, Păun Gh (2002) Membrane

computing: the power of (rule) creation. J Univers Comput Sci

8:369–381

Budnik P (2006) What is and what will be. Mountain Math Software,

Los Gatos

Calude CS, Păun Gh (2004) Bio-steps beyond Turing. BioSystems

77(1–3):175–194

Variants of P systems with activation and blocking of rules 607

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-36751-9_9
https://doi.org/10.1007/978-3-642-36751-9_9
https://doi.org/10.1007/978-3-319-73359-3
https://doi.org/10.1007/978-3-319-73359-3
https://doi.org/10.1007/978-3-319-92435-9
https://doi.org/10.1007/978-3-319-92402-1
https://doi.org/10.1007/978-3-319-92402-1
https://doi.org/10.1007/978-3-319-14370-5
https://doi.org/10.1007/978-3-319-14370-5

Cavaliere M, Genova D (2004) P systems with symport/antiport of

rules. In: Păun Gh, Riscos-Núñez A, Romero-Jiménez A,

Sancho-Caparrini F (eds) 2nd Brainstorming week on membrane

computing, Sevilla, Spain, 2–7 Feb 2004, pp 102–116

Cavaliere M, Ionescu M, Ishdorj TO (2004) Inhibiting/de-inhibiting

rules in P systems. In: Pre-proceedings of the 5th workshop on

membrane computing (WMC5), Milano, Italy, June 2004,

pp 174–183

Cavaliere M, Freund R, Oswald M, Sburlan D (2007) Multiset

random context grammars, checkers, and transducers. Theor

Comput Sci 372(2–3):136–151

Dassow J, Păun Gh (1989) Regulated rewriting in formal language

theory. Springer, Berlin

Freund R (1994) Control mechanisms on #-context-free array

grammars. In: Păun Gh (ed) Mathematical aspects of natural

and formal languages. World Scientific Publ, Singapore,

pp 97–137

Freund R (1999) Generalized P-systems. In: Ciobanu G, Păun Gh

(eds) Fundamentals of computation theory, 12th international

symposium, FCT ’99, Iaşi, Romania, Aug 30–Sept 3 1999,

Proceedings. Lecture notes in computer science, vol 1684.

Springer, pp 281–292

Freund R (2005) P systems working in the sequential mode on arrays

and strings. Int J Found Comput Sci 16(4):663–682. https://doi.

org/10.1142/S0129054105003224

Freund R (2016) P automata: new ideas and results. In: Bordihn H,

Freund R, Nagy B, Vaszil Gy (eds) 8th workshop on non-

classical models of automata and applications, NCMA 2016,

Debrecen, Hungary, 29–30 Aug 2016. Proceedings, book-

s@ocg.at, vol 321, pp 13–40. Österreichische Computer

Gesellschaft

Freund R, Staiger L (2001) Acceptance of x-languages by commu-

nicating deterministic Turing machines. In: Martı́n-Vide C,

Mitrana V (eds) Where mathematics, computer science, linguis-

tics and biology meet: essays in honour of Gheorghe Păun.

Kluwer Academic Publishers, Dordrecht, pp 115–126

Freund R, Verlan S (2007) A formal framework for static (tissue) P

systems. In: Eleftherakis G, Kefalas P, Păun Gh, Rozenberg G,

Salomaa A (eds) Membrane computing. Lecture notes in

computer science, vol 4860. Springer, pp 271–284. https://doi.

org/10.1007/978-3-540-77312-2_17

Freund R, Oswald M, Staiger L (2004) x-P automata with commu-

nication rules. In: Martı́n-Vide C, Mauri G, Păun Gh, Rozenberg

G, Salomaa A (eds) Membrane computing. Lecture notes in

computer science, vol 2933. Springer, pp 203–217. https://doi.

org/10.1007/978-3-540-24619-0_15

Freund R, Kogler M, Oswald M (2011) A general framework for

regulated rewriting based on the applicability of rules. In:

Kelemen J, Kelemenová A (eds) Computation, cooperation, and

life—essays dedicated to Gheorghe Păun on the Occasion of His

60th Birthday. Lecture notes in computer science, vol 6610.

Springer, pp 35–53

Freund R, Leporati A, Mauri G, Porreca AE, Verlan S, Zandron C

(2014) Flattening in (tissue) P systems. In: Alhazov A, Cojocaru

S, Gheorghe M, Rogozhin Yu, Rozenberg G, Salomaa A (eds)

Membrane computing. Lecture notes in computer science, vol

8340. Springer, pp 173–188

Freund R, Ivanov S, Staiger L (2015) Going beyond Turing with P

automata: Partial adult halting and regular observer x-languages.
In: Calude CS, Dinneen MJ (eds.) Unconventional computation

and natural computation – 14th international conference, UCNC

2015, Auckland, New Zealand, Aug 30–Sept 3 2015, Proceed-

ings. Lecture notes in computer science, vol 9252. Springer,

pp 169–180

Freund R, Ivanov S, Staiger L (2016) Going beyond Turing with P

automata: regular observer x-languages and partial adult halting.
IJUC 12(1):51–69

Ivanov S (2014) Polymorphic P systems with non-cooperative rules

and no ingredients. In: Gheorghe M, Rozenberg G, Salomaa A,

Sosı́k P, Zandron C (eds) Membrane computing—15th interna-

tional conference, CMC 2014, Prague, Czech Republic, 20–22

Aug 2014, Revised selected papers. Lecture notes in computer

science, vol 8961. Springer, pp 258–273

Kudlek M, Martı́n-Vide C, Păun Gh (2001) Toward a formal macroset

theory. In: Calude CS, Păun Gh, Rozenberg G, Salomaa A (eds)

Multiset processing—mathematical, computer science and

molecular computing points of view. Lecture notes in computer

science, vol 2235. Springer, pp 123–134

Minsky ML (1967) Computation: finite and infinite machines.

Prentice-Hall Inc., Upper Saddle River

Păun Gh (1998) Computing with membranes. J Comput Syst Sci

61:108–143

Păun Gh, Rozenberg G, Salomaa A (2010) Oxford handbook of

membrane computing. Oxford University Press Inc., New York

Rozenberg G, Salomaa A (eds) (1997) Handbook of formal

languages. Springer, New York

Sburlan D (2006) Further results on P systems with promoters/

inhibitors. Int J Found Comput Sci (Special Volume: Membrane

Computing) 17(01):205–221. https://doi.org/10.1142/S0129

054106003772

Sosı́k P, Valı́k O (2006) On evolutionary lineages of membrane

systems. In: Freund R, Păun Gh, Rozenberg G, Salomaa A (eds)

Membrane computing. Lecture notes in computer science, vol

3850. Springer, pp 67–78. https://doi.org/10.1007/11603047_5

van Leeuwen J, Wiedermann J (2012) Computation as an unbounded

process. Theor Comput Sci 429:202–212. https://doi.org/10.

1016/j.tcs.2011.12.040

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

608 A. Alhazov et al.

123

https://doi.org/10.1142/S0129054105003224
https://doi.org/10.1142/S0129054105003224
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-77312-2_17
https://doi.org/10.1007/978-3-540-24619-0_15
https://doi.org/10.1007/978-3-540-24619-0_15
https://doi.org/10.1142/S0129054106003772
https://doi.org/10.1142/S0129054106003772
https://doi.org/10.1007/11603047_5
https://doi.org/10.1016/j.tcs.2011.12.040
https://doi.org/10.1016/j.tcs.2011.12.040

	Variants of P systems with activation and blocking of rules
	Abstract
	Introduction
	Definitions
	Preliminaries
	Register machines
	ET0L-systems

	A general model for hierarchical P systems
	Types of rules
	Evolution rules
	Communication rules
	Insertion, deletion, and substitution rules

	Derivation modes
	Computations
	Flattening
	P systems with promoters and inhibitors

	P systems with activation and blocking of rules
	Halting conditions
	Result of computations

	Results below PsRE
	More than semilinear

	Computational completeness results
	Sequential P systems with non-cooperative rules
	P systems working in set-maximally parallel derivation modes
	(Purely) Catalytic P systems working in maximally parallel derivation modes
	P systems with insertion and deletion rules

	P systems using backwards activation and blocking of rules
	Going beyond Turing
	Conclusion
	Acknowledgements
	References

