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Abstract

Statistical modeling is a key technology for generating business value from data. While
the number of available algorithms and the need for them is growing, the number of
people with the skills to effectively use such methods lags behind. Many application
domain experts find it hard to use and trust algorithms that come as black boxes with
insufficient interfaces to adapt. The field of Visual Analytics aims to solve this problem by
a human-oriented approach that puts users in control of algorithms through interactive
visual interfaces. However, designing accessible solutions for a broad set of users while
re-using existing, proven algorithms poses significant challenges for the design of analytical
infrastructures, visualizations, and interactions.

This thesis provides multiple contributions towards a more human-oriented modeling
process: As a theoretical basis, it investigates how user involvement during the execution
of algorithms can be realized from a technical perspective. Based on a characterization
of needs regarding intermediate feedback and control, a set of formal strategies to realize
user involvement in algorithms with different characteristics is presented. Guidelines
for the design of algorithmic APIs are identified, and requirements for the re-use of
algorithms are discussed. From a survey of frequently used algorithms within R, the
thesis concludes that a range of pragmatic options for enabling user involvement in new
and existing algorithms exist and should be used.

After these conceptual considerations, the thesis presents two methodological contributions
that demonstrate how even inexperienced modelers can be effectively involved in the
modeling process. First, a new technique called TreePOD guides the selection of decision
trees along trade-offs between accuracy and other objectives, such as interpretability.
Users can interactively explore a diverse set of candidate models generated by sampling
the parameters of tree construction algorithms. Visualizations provide an overview of
possible tree characteristics and guide model selection, while details on the underlying
machine learning process are only exposed on demand. Real-world evaluation with
domain experts in the energy sector suggests that TreePOD enables users with and
without statistical background a confident identification of suitable decision trees.

As the second methodological contribution, the thesis presents a framework for interactive
building and validation of regression models. The framework addresses limitations of
automated regression algorithms regarding the incorporation of domain knowledge,
identifying local dependencies, and building trust in the models. Candidate variables for
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model refinement are ranked, and their relationship with the target variable is visualized
to support an interactive workflow of building regression models. A real-world case
study and feedback from domain experts in the energy sector indicate a significant effort
reduction and increased transparency of the modeling process.

All methodological contributions of this work were implemented as part of a commercially
distributed Visual Analytics software called Visplore. As the last contribution, this thesis
reflects upon years of experience in deploying Visplore for modeling-related tasks in the
energy sector. Dissemination and adoption are important aspects of making statistical
models more accessible for domain experts, making this work relevant for practitioners
and application-oriented researchers alike.



Kurzfassung

Statistische Modellierung ist eine Schlüsseltechnologie, um Daten effizient nutzen und
verwerten zu können. Noch nie war das Angebot und auch die Nachfrage nach entspre-
chenden Methoden und Algorithmen so groß wie heute. Die Zahl der Personen, die diese
Methoden effektiv einsetzen können, ist jedoch gering. Oft stehen Algorithmen nur als
Black Boxes ohne benutzerfreundliche Schnittstellen zur Verfügung, was deren Einsatz für
FachexpertInnen ohne statistischen Hintergrund schwierig macht. Der Bereich der Visual
Analytics verfolgt einen menschenorientierten Lösungsansatz für dieses Problem, der An-
wenderInnen durch interaktive, visuelle Schnittstellen in die Lage versetzt, Algorithmen
intuitiv zu steuern. Jedoch stellt die Öffnung von bestehenden, erprobten Algorithmen
für verschiedene Arten von Usern gravierende Herausforderungen für die Gestaltung von
Software-Infrastrukturen, Visualisierungen und Interaktionsmöglichkeiten dar.

Diese Doktorarbeit trägt in mehrerlei Hinsicht zur Schaffung eines menschengerechteren
Modellierungsprozesses bei. Als theoretische Grundlage wird untersucht, wie die Einbe-
ziehung von Menschen in laufende Algorithmen aus technischer Sicht realisiert werden
kann. Basierend auf einer Charakterisierung von Arten der frühzeitigen Kommunikation
mit Algorithmen werden formale Strategien erarbeitet, um diese Kommunikation für
verschiedene Klassen von Algorithmen zu realisieren. Richtlinien für das Design von
algorithmischen APIs werden identifiziert, und Voraussetzungen für die Wiederverwen-
dung von existierenden Algorithmen werden diskutiert. Mittels einer Studie von häufig
verwendeten Algorithmen in der Umgebung R kommt die Arbeit zu dem Schluss, dass
eine Reihe von pragmatischen Optionen zur Einbeziehung von Menschen in neuen und
existierenden Algorithmen vorliegt, und genutzt werden sollte.

Nach diesen konzeptuellen Überlegungen stellt die Arbeit zwei methodische Ansätze
vor, die zeigen, wie selbst Menschen mit wenig Modellierungserfahrung effizient in den
Modellierungsprozess einbezogen werden können. Zuerst wird eine Technik namens
TreePOD beschrieben, die die Auswahl von Entscheidungsbäumen unter widersprüchlichen
Zielvorgaben unterstützt, wie etwa Genauigkeit und Interpretierbarkeit. BenutzerInnen
können hierbei aus einer Palette von verschiedenartigen Modellen wählen, die durch
Variation von algorithmischen Parametern vorberechnet werden. Visualisierungen bieten
einen Überblick über erreichbare Modellcharakteristiken und helfen bei der Modellauswahl,
während Details über die zugrunde liegenden algorithmischen Prozesse nur bei Bedarf
kommuniziert werden. Eine Evaluierung von TreePOD mit FachexpertInnen aus der
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Energiewirtschaft hat ergeben, dass der Ansatz selbst Menschen ohne tiefe statistische
Ausbildung eine effiziente, selbstsichere Auswahl von Entscheidungsbäumen ermöglicht.

Der zweite methodische Beitrag der Arbeit beschreibt ein Rahmenkonzept für die inter-
aktive Erstellung und Validierung von Regressionsmodellen. Im Gegensatz zu früheren
Regressionstechniken erlaubt der Ansatz, Domänenwissen in die Algorithmen einzubrin-
gen, lokale Abhängigkeiten zu identifizieren und Vertrauen in die Modelle aufzubauen.
Mögliche Variablen zur Modellverfeinerung werden automatisch gereiht, und ihr Zusam-
menhang mit der Zielgröße der Regression wird visuell dargestellt. Dadurch unterstützt
der Ansatz einen interaktiven Arbeitsablauf zur Erstellung von Regressionsmodellen.
Eine Fallstudie mit echten Daten aus der Energiewirtschaft, sowie Rückmeldungen von
einigen FachexpertInnen legen nahe, dass der Ansatz eine signifikante Aufwandsreduktion
und Transparenzerhöhung für den Modellierungsprozess darstellt.

Alle methodischen Beiträge der Arbeit wurden als Teil einer kommerziell vertriebenen
Visual-Analytics-Applikation namens Visplore implementiert. Als letzte Beitragsleis-
tung reflektiert diese Arbeit über jahrelange Erfahrung mit dem Vertrieb und Einsatz
von Visplore für modellbezogene Aufgaben in der Energiewirtschaft. Verbreitung und
Akzeptanz sind wichtige Aspekte der Bestrebung, statistische Modelle zugänglicher zu
machen, wodurch diese Arbeit sowohl für Anwender als auch anwendungsnahe Forscher
an Relevanz gewinnt.
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CHAPTER 1
Motivation and Overview

We live in a data-driven world. With the ability to collect and store data about any
digital process at low cost, an unprecedented demand for information has swept into
virtually every sector of business and industry. Pouring in from millions of sensors, online
services, and scientific simulations, the amount of collected data is said to double every
two years [TGRM14]. At the cost of increasing resource consumption [SSS+16] and
certain sacrifices regarding privacy [Mar17], Big Data bears an enormous potential for
creating business value and fostering innovation [MCB+11]. Opportunities range from
massive cost savings by automation, to obtaining a better understanding of the underlying
processes, leading to new discoveries, higher efficiency, and better decisions. According to
recent business reports, exploiting this potential will be essential for staying competitive
in the years to come, putting significant pressure on companies to swim with the tide
as not to stay behind [MCB+11, HBC+16]. However, the size, complexity, and speed at
which new data arrives poses significant challenges for the analytical infrastructures of
today’s organizations. Looking at all of the data is no longer an option, and widespread
tools like spreadsheet software have not been designed for the tasks and intricacies of
data pouring in at high rates. Turning big data into business value calls for more scalable
approaches to knowledge extraction, pushing innovation in computer science, and forcing
companies to stock up on data-oriented talent. In the end, all the data in the world
becomes worthless without the proper means to analyze it.

In this context, automatic analysis methods like statistical modeling have become more
relevant than ever. Statistical models are simplified representations of data that can be
learned by the use of algorithms [HTF09]. A simple example is that of a linear regression
model, which summarizes an observed relationship between two numeric variables by
a single trend line. More complex patterns and relationships can be expressed using
a variety of model types that have been proposed over the past decades. In general,
modeling exploits the processing power of computers to find and represent patterns in a
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1. Motivation and Overview

consistent, automatized fashion. This supports the generation of value from big data in
multiple ways:

First, models support the knowledge generation of humans by breaking down large,
complex data into concise, interpretable patterns. Typical examples are looking for
untapped potential in business data, or finding causes of a sudden quality loss in a
manufacturing process. For knowledge discovery, the model is often nothing more than a
means to an end, while the value is generated by human interpretation and action.

A second, increasingly important purpose of models is using them directly as part of an
automated process. In a typical automation scenario, models constantly make predictions
about ongoing processes based on live data, while human involvement during operation is
limited to monitoring. Examples include automated stock trading in finance [VT03] and
predictive maintenance in facility management [SSP+15]. In such contexts, models are
key assets that need to be carefully selected and maintained over time, as their accuracy
directly translates to cost savings.

Despite the remarkable progress of modeling algorithms in recent years, their adoption in
practice faces a significant lag that limits their usefulness: Economies face an enormous
shortage of people with the qualifications and expertise to effectively apply statistical
modeling to real-world problems [MCB+11]. Domain experts are highly skilled within
their fields, but typically lack deep statistical, algorithmic backgrounds required for an
effective application of such methods. Data has swept faster into every department and
sector of the economy than education and training of human resources could keep pace
with. Within one or two decades, data science, i.e., the extraction of knowledge from
data with tools like statistical modeling, has turned into one of the most sought skills in
the job market [DP12]. In fact, the 2011 McKinsey report on big data projected a gap of
140,000 - 190,000 deep analytical talent positions for 2018 in the US alone [MCB+11].
According to their 2016 report on data analytics, this talent gap persists to be one of
the biggest hurdles in exploiting big data, effectively keeping billions of dollars from the
economy [HBC+16].

Universities and other training institutions have started adding data-oriented analytics
programs to improve this situation [Mor15]. However, educating new analytical graduates
takes years, and even with importing additional talent, these measures are not regarded
as sufficient to fill the ever-growing gap [MCB+11]. Moreover, generating value from
data is not possible without a thorough understanding of the application domain, which
again takes years to obtain. Therefore, these reports stress that a significant amount of
talent needs to be re-trained in place, i.e., enabling the existing body of domain experts
to join the analytic force instead of gradually replacing them [MCB+11, HBC+16].

Inspired by this point of view, the human resource gap can be reformulated as a computer
science problem: What are the gaps in current statistical modeling infrastructures that
prevent domain experts from adoption? And what can be done on the technological side to
enable a better use of existing human and computational resources? These are the central
research questions motivating this thesis. There have never been so many algorithms,
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toolkits, and communities dedicated to statistical modeling, machine learning, and data
mining. There also have never been so many companies and institutions in desperate need
of these techniques, but struggling due to a mismatch between requirements and available
skills. This work aims at helping to bridge this gap by making established modeling
infrastructures more human-oriented. By developing visual interfaces to algorithms that
take human creativity and domain knowledge, as well as the educational background of
users into account, the thesis strives to enable more of the existing domain experts to
master the information age.

1.1 The Problem: A Human-Unaware Modeling Process

The successful use of statistical models relies on both the processing power of computers,
and the domain expertise of humans [BL10]. Computers are highly efficient and reliable
in performing calculations, trying out possibilities, and delivering consistent results.
Humans are able to get the “big picture”, as needed for transforming real-world problems
into modeling tasks. They have background knowledge about problem domains, and
can assess whether a model is useful for an intended purpose. Moreover, they possess
creativity, intuition, and common sense – traits shown to effectively complement the
limitations of automated analysis [Kei01]. It is crucial that humans can incorporate all
these benefits to refine models, and to steer the process towards results that are useful
for particular applications.

As a likely scenario, domain experts would attempt to use modeling algorithms “off
the shelf”, as provided by popular computation environments like SPSS, R, or Matlab.
Implementations often come with default parameters that make it straightforward to
obtain some result as a starting point. However, the underlying computations are
often not transparent enough to understand why a particular result was achieved, and
how to effectively adapt the process according to particular needs. In most cases,
results can only be influenced by low-level parameters, such as termination criteria or
statistical optimization details with telling names like ’gamma’, ’method’, or ’C’. While
statistical experts with programming skills may find this sufficient, inexperienced modelers
may not understand how parameters relate to desired model characteristics like “more
interpretable”, “more report-friendly numbers”, or “avoid false positives at all costs”. In
other words, algorithms do not speak the language of domain experts and vice versa,
making it hard to provide effective feedback. Without better guidance, trial-and-error is
often the only option, leading to inefficiency, and possibly frustration if no parameter
settings exist to achieve certain goals.

Interactive visualization has been shown to enable an effective discourse between humans
and statistical models [KKEM10]. Most computation environments offer some form
of static visualizations of model results, which may enable humans to generate ideas
for refinement. However, without intuitive interfaces for triggering recalculations, the
incorporation of insights remains challenging. Direct manipulation of data and models,
for example, has proven effective and straightforward to learn [Shn83], but is all too rare
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1. Motivation and Overview

in standard environments [SSZ+17]. Furthermore, visualizations are usually limited to
information about the “final” results of an algorithm, such as quality metrics or error
plots. Explanations of why an algorithm has made certain decisions along the way, e.g.,
preferring certain explanatory variables over others, are typically not exposed. However,
domain experts often find it necessary to learn about a model’s inner workings to provide
useful feedback [SSZ+17], and to build trust in the models. Without better transparency
of the entire modeling process, and more support for intuitive user involvement along the
way, human potential may be wasted.

Aggravating this challenge, most algorithm implementations were not designed to provide
any form of feedback during their execution. Once started for data and parameters,
they run in isolation until eventually returning a result [Fek13]. Wrong assumptions
such as bad parameter choices, or data quality problems can only be recognized and
fixed after an entire computation has finished. For large data or advanced algorithms
like clustering or dimension reduction, this may take too long to keep the attention of
users [CRM91]. While waiting times hinder the efficiency of any data analysis, they are
particularly painful for inexperienced modelers, as their trial-and-error is typically the
least guided. With intermediate results that provide an idea of what to expect, and
the possibility to cancel and restart the computation, considerable shortcuts could be
provided [FPDm12]. But as long as algorithms are not guaranteed to respond after at
most a few seconds [CRM91], methods to exploit human strengths by visualization and
interaction are hard to realize from a technical perspective.

In summary, many established modeling algorithms come as black boxes with insufficient
interfaces for domain experts to adapt. They are not human-oriented enough to allow
users without programming skills and deep statistical backgrounds to effectively achieve
what they want. Aside from inefficiency, possible consequences include limited confidence,
settling for suboptimal models, or not using statistical modeling altogether. To improve
this situation, modeling infrastructures need to become more transparent, accessible, and
inclusive with respect to different educational backgrounds, which is the key motivation
for this thesis.

1.2 Empowering Humans by Interactive Visualization

A key requirement for a human-oriented modeling process is an effective communication
between users, algorithms, and models. Visualization has proven to be a highly effective
medium for conveying information to users [FWSN08]. The popular saying “a picture
is worth a 1000 words” is true in that humans acquire more information by vision than
by all other senses combined [War04]. Together with the processing power of billions
of neurons, the human visual system is an enormously effective seeker and interpreter
of patterns. Moreover, trends like the growing popularity of infographics in business
and journalism suggest that visualization is not just an effective, but also an inclusive
language capable of reaching broad audiences from diverse fields [Ber16].
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Number of observations = 11
Mean of x = 9.0
Mean of y = 7.5

Regression model of y on x:  y = 3 + 0.5x
Sum of error squares in x: 110.0
Regression sum of squares = 27.5
Residual sum of squares of y = 13.75
Multiple R²  = 0.667

Figure 1.1: Anscombe’s quartet [Ans73]: Four datasets where common statistical prop-
erties are exactly the same. Visualization immediately reveals the strong qualitative
differences.

In the context of modeling, visualization can answer important questions in an effective
and intuitive way. Examples include [WCH15]:

“How does the model look like? How does the model change when its parameters change?
How does the shape of the model compare to the shape of the data? Is the model fitting
uniformly good, or good in some regions, but poor in other regions? Where might the fit
be improved?”

Domain experts must be able to answer such questions to effectively criticize models
and to obtain a flawless view of the modeled phenomena [WCH15]. The usefulness of
visualization for this purpose is illustrated in Figure 1.1: “Anscombe’s quartet” shows four
significantly different datasets that are indistinguishable by common statistical summaries,
model parameters, and error metrics [Ans73]. While numbers are clearly misleading in
this case, visualization immediately reveals the underlying patterns and severe qualitative
differences. More importantly, it does not require a degree in statistics to immediately
understand, for example, that a linear approximation fits some of the data distributions
in Figure 1.1 better than others. In general, visualization fosters the formation of mental
images, enabling humans to recognize wrong assumptions, and to match models against
expectations, hypotheses, and analysis goals. Moreover, visualization may spark creativity
and intuition for adapting the models to better match the needs of application contexts.

Interactive visualization goes one step further by providing user interfaces to immediately
incorporate insights from visualizations, which in turn, updates the visualizations. This
enables a dialog between the human brain and the data, where humans can focus on
interesting parts or try out different scenarios in an intuitive fashion [War04]. Interac-
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Figure 1.2: By combining automated analysis with interactive visualization, the Visual
Analytics process enables a human-centered loop of knowledge discovery [KAF+08].

tion paradigms such as zooming, filtering, and linking multiple visualizations enable an
exploration of the data from different angles, which fosters the discovery of unexpected
patterns and relationships. In this respect, interactive visualization and algorithms for
knowledge discovery are two different approaches to the same goal, but with complemen-
tary advantages and disadvantages [BL10]: Algorithms complement scalability issues
of visualization by automatically focusing on relevant structures, while visualization
and interaction enable the incorporation of human strengths and expertise to steer the
algorithms towards particular analysis goals. Thus, it seems only logical to strive for a
tight integration of the two disciplines.

The respective research direction was termed Visual Analytics in 2005 [TC05], and later
defined as “combining automated analytics techniques with interactive visualizations for an
effective understanding, reasoning and decision-making on the basis of very large, complex
datasets” [KKEM10]. Visual Analytics aims at enabling an interactive, human-centered
process to extract knowledge from the data (see Figure 1.2): After the data is analyzed
first to show the important patterns, the Visual Analytics process enters a feedback
loop where humans can obtain more knowledge by refining hypotheses, models, and
visualizations through interaction [KAF+08]. This tight integration of computation and
cognition supports tasks like experimenting with data subsets for training and validation,
comparing model variants to obtain confidence, and steering computations based on
domain knowledge. All of these tasks are difficult for domain experts in current practice,
suggesting that visualization may indeed be a suitable approach to reach more users.

This thesis is by no means the first effort to involve humans in statistical modeling through
interactive visualization. It builds upon a large body of Visual Analytics research, which
shows that human-centric approaches can produce better results than purely automatic,
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1.3. Thesis Goals and Methodology

machine-driven methods (see Chapter 2). However, the field of Visual Analytics is
relatively young, and still faces research gaps that have hindered a broader impact in
practice. While many approaches exist, there are still important tasks and aspects of
modeling, which have not been sufficiently addressed. Moreover, not all Visual Analytics
approaches were designed to scale for users with different backgrounds, which may
limit the applicability in some cases. Despite all benefits of interactive visualization,
it is not trivial to build accessible solutions that enable an efficient modeling process
for a broad set of users. In fact, the practical challenges for adoption (Section 1.1)
have been acknowledged as difficult open research questions by the Visual Analytics
community. In a recent survey of open challenges on the road to human-oriented machine
learning [SSZ+17], Sacha et al. explicitly called for more work on:

• Designing interactions for machine learning adaption, i.e., developing better ap-
proaches for understandable interaction with models, such as mapping simple,
semantically meaningful user input to complex algorithmic modifications.

• Providing guidance for application domain experts, such as recommendations for
model refinement in a language that does not require deep statistical backgrounds.

• Interoperability between algorithms and visualization, i.e., overcoming technical
aspects that preclude a tight integration, such as algorithms running in isolation,
inaccessible internal structures, and intransparent algorithmic decisions.

Summarizing the first sections of this thesis, there is a significant need for more work on
human-oriented statistical modeling, which has been emphasized by practitioners and
researchers alike. Visualization can play an important role, but multiple communities
have stressed the importance of interdisciplinary work to overcome challenges like the
insufficient interoperability between algorithms and visualization [SSZ+17, KMRV15].
By contributing to both the visualization and the algorithmic side of Visual Analytics,
this thesis aims at advancing the field towards a more effective, accessible, and inclusive
process of statistical modeling.

1.3 Thesis Goals and Methodology
The overarching goal of this work is to advance the democratization1 of statistical models
by making established algorithms and infrastructures more human-oriented. The idea is
to strive for a tighter integration between computation and interactive visualization, such
that human strengths can be made use of, human needs like trust-building are catered
to, and educational backgrounds can be seen as an opportunity rather than a limitation.
Specifically, this vision comprises three sub-goals:

1Democratization in the sense of (1) enabling more people to use tools that were previously reserved
for a few [Nis17], and (2) being less dependent on preconfigured off-the-shelf solutions [SSZ+17].
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G1: Develop human-oriented solutions for under-addressed modeling tasks

While much previous work has been dedicated to involving humans in various aspects
of the modeling process (see Chapter 2), there are still important tasks that domain
experts find hard to accomplish in practice. Regression modeling, for example, has been
lacking support for an efficient incorporation of domain knowledge when the work of this
thesis started. As a first goal (G1), this thesis seeks to identify aspects and sub-tasks of
modeling that are highly relevant for practitioners but still underexplored in the literature,
and to design new Visual Analytics approaches to fill these gaps. The identification of
gaps is based on problem-driven research collaborations with company partners in the
energy sector, and backed up through careful review of the existing Visual Analytics
literature. On the one hand, the goal is to support particular workflow gaps for the
collaborating domain experts, which is evaluated based on feedback after deployment.
On the other hand, the generalizability of the solutions for other tasks, model types, and
application scenarios shall be investigated, to maximize the democratization impact of
the contributions beyond particular application domains.

G2: Enable users without deep analytical backgrounds

With big data on the rise, the educational and professional backgrounds of people tasked
with statistical modeling are becoming more and more diverse. While domain experts
are highly skilled within their fields, they may lack a deep background in statistics,
programming, and visualization, but still need to build good models. The second
thesis goal (G2) refers to investigating how (1) visualization, (2) interaction, and (3)
guidance of domain experts can be realized without requiring particular backgrounds. For
visualization, G2 makes familiarity and the ease of learning two primary design goals that
need to be balanced with traditional objectives like effectiveness. Regarding interaction,
algorithmic details should be exposed only on demand, but never necessary to achieve
particular modeling goals. Here, the challenge is to design meaningful actions that are
simple to perform, but trigger complex algorithmic changes under the hood [EFN11,
SSZ+17]. For the guidance of inexperienced modelers, G2 seeks to investigate whether a
precomputation of possible refinements or alternative models to choose from finds better
acceptance than a deep involvement in every tiny decision along the modeling process.
G2 is considered as key design goal for all solutions implemented in this thesis (G1).
Its fulfillment is evaluated with real domain experts, who claim to have no particular
backgrounds in statistics or visualization.

G3: Foster the re-use of existing, proven algorithm infrastructures

Existing systems and languages for data analysis such as R, Python, and MATLAB
have widely been used for a long time and offer a variety of proven algorithms. In
most cases, algorithms are used as black boxes that run in isolation, which contradicts
the requirements of human involvement through interactive visualization. Achieving
early communication with the user thus often involves a reimplementation of algorithms
by researchers and practitioners in Visual Analytics, leading to a suboptimal use of
resources and lots of proprietary code instead of standardized, tested solutions. As
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a third goal (G3), this thesis aims at fostering a better re-use of existing algorithmic
resources and infrastructures by the visualization community. By studying conceptual
and practical possibilities for integrating existing algorithms, the goal is to raise the
awareness and understanding of these possibilities within the Visual Analytics community.
A second aspect of the goal refers to studying needs and requirements to the design of
algorithmic APIs in favor of user involvement and tight integration. Here, the intention
is to encourage algorithm developers to regard the supported degree of user involvement
as a more conscious design choice for future algorithms.

1.4 Thesis Contributions

This section briefly describes the contributions of this thesis, and relates them to the
goals described in the previous section.

1.4.1 User Involvement in Ongoing Computations

An increasing number of interactive visualization tools stress the integration with com-
putational software like MATLAB and R to access a variety of proven algorithms. In
most cases, however, the algorithms are used as black boxes that run to completion
in isolation, which contradicts the needs of interactive data exploration. This thesis
structures, formalizes, and discusses possibilities to enable user involvement in ongoing
computations, which is henceforth referred to as Opening the Black Box. Based on a
characterization of needs regarding intermediate feedback and control, a key contribu-
tion is the formalization of strategies for achieving user involvement in algorithms with
different characteristics. In the context of integration, considerations for implementing
these strategies either as part of the visualization tool or as part of the algorithm are
described. Moreover, guidelines for the design of algorithmic APIs are identified. To
assess the practical applicability, a survey of frequently used algorithm implementations
within R investigates the fulfillment of these guidelines. The thesis concludes that many
pragmatic options for enabling user involvement in ongoing computations exist on both
the visualization and algorithm side and should be used.

This contribution mainly addresses thesis goal G3, as its key intention is fostering the re-
use of existing, proven infrastructures for modeling. Moreover, enabling user involvement
in ongoing computations is an important technical requirement for supporting a human-
oriented modeling process as envisioned in G1 and G2. For example, possibilities to
detect and correct wrong assumptions during computation are particularly important
for inexperienced modelers (G2), whose trial-and-error may involve numerous attempts
before reaching their goal.

1.4.2 Guided Selection of Decision Trees along Trade-Offs

Decision trees are a common technique for statistical classification. Besides their use for
prediction, their understandable model structure makes them useful for human-oriented
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applications like hypothesis generation, reporting, and decision support. When building
models for such purposes, a high interpretability by humans is often just as important as
a high model accuracy. Other objectives may also play a role, such as acquisition costs
of variables, or costs associated with particular error types, which may be only vaguely
known. Balancing all objectives is hard to automate because it involves know-how about
the domain as well as the purpose of the model.

This thesis contributes a new approach to guide model selection along trade-offs, called
TreePOD. TreePOD is based on exploring a large set of decision trees, generated by
sampling the parameters of tree construction algorithms. Based on this set, visualizations
of quantitative and qualitative model aspects provide an overview of possible result
characteristics. Along trade-offs between two objectives, TreePOD provides selection
guidance by focusing on Pareto-optimal tree candidates. TreePOD also conveys the
sensitivity of tree characteristics for possible variations, to support what-if analyses and
to increase the confidence in selected models. Real-world case studies and feedback
from domain experts in the energy sector suggest that TreePOD enables users with and
without statistical background a confident identification of suitable decision trees.

TreePOD relates to the goals of this thesis in multiple ways. Model selection along
human-oriented trade-offs involving interpretability or subjective costs is an underexplored
problem where only partial solutions exist (G1). With its focus on classification problems,
TreePOD addresses a ubiquitous and highly relevant problem in the energy sector
and beyond. Moreover, the idea of guiding the selection from proactively generated
candidates is not limited to any particular model type, which may broaden its impact
for democratization. Regarding the inclusion of domain experts without analytical
backgrounds (G2), TreePOD makes an effort by exposing parameters of the underlying
machine learning process only on demand. Visualizations are deliberately kept simple, and
partially use redundant encodings to facilitate an understanding of possibly unfamiliar
aspects. Interactions for refining models and creating alternatives rely on semantically
meaningful actions like “show me more like this”, or “round coefficients to integer
numbers”, and can be triggered with a single click. In line with re-using computational
infrastructures (G3), TreePOD internally connects to existing decision tree algorithms
rather than reimplementing them.

1.4.3 Domain Knowledge-Driven Building of Regression Models

Regression models are used in many application domains for predicting a quantitative
dependent variable based on a set of independent variables, called features. Automated
approaches for building regression models are typically limited with respect to incorpo-
rating domain knowledge in the process of selecting input variables. Other limitations
include the identification of local structures, transformations, and interactions between
variables. This thesis contributes a framework for building regression models addressing
these limitations. The framework ranks any number of features by their relevance for the
target variable, and provides visualizations for a qualitative understanding of relationship
structures. A central aspect of both visualization and ranking is the partitioning of
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feature domains into disjoint regions, giving the contribution its name Partition-Based
Framework. Partitioning enables a visual investigation of local patterns and largely
avoids structural assumptions for the quantitative ranking. The approach supports dif-
ferent tasks in model building (e.g., validation and comparison), as well as an interactive
workflow for feature subset selection. A real-world case study and feedback from domain
experts after two months of deployment in the energy sector indicate a significant effort
reduction for building and improving regression models.

The Partition-Based Framework contributes to multiple goals of this thesis. Compared
to other modeling tasks like classification or clustering, regression had received relatively
little attention in Visual Analytics when this thesis started. With incorporating domain
knowledge and building trust in the models, the framework supports relevant, yet
previously unaddressed tasks for a broad set of users (G1). Moreover, several design
choices of the framework are particularly geared towards acceptance by domain experts
(G2): Visualizations resemble familiar function graphs, and are deliberately kept low-
dimensional to avoid overly steep learning curves. Similar to TreePOD, proactively
computed model variants guide possible refinement steps by providing a representative
preview of what would happen. Interactions can be triggered with a single click, and
are kept track of, such that returning to previous steps to try out different scenarios
is possible at any time. Regarding the re-use of algorithms (G3), the framework also
integrates existing libraries for regression model identification.

1.4.4 Lessons Learned from Real-World Deployments

During all projects described in this thesis, the author was affiliated with the VRVis
Research Center in Vienna. VRVis is a non-university research institution conducting
applied research projects in close collaboration with industry partners in various sectors.
All technical contributions of this thesis were implemented as part of a Visual Analytics
software called Visplore, developed at VRVis. Solutions based on Visplore are available
to industry partners, and are also commercially sold to end customers by distribution
partners. This close collaboration enabled two aspects for this thesis: First, all new
techniques could be evaluated based on deployments with real-world users addressing real-
world problems. Furthermore, the collaboration enabled the author to gather real-world
experience and feedback regarding the deployment of Visual Analytics software in general,
over a period of several years. Reflecting on these experiences is the fourth contribution
of this thesis. One particular result from these reflections is a detailed task analysis of
statistical forecasting in the energy sector, which provided a better understanding of
prevalent gaps. A second aspect of the contribution is a set of lessons learned from
the various deployments from a technical and commercial perspective.

This contribution is not as tightly coupled with the methodological and conceptual thesis
goals G1-G3 as the other contributions. However, dissemination and adoption, i.e, how to
reach a broad set of users, is an important practical aspect of democratization. Moreover,
the application-oriented perspective from actual users can be seen as a form of practical
validation for many aspects contributed in this thesis.
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Figure 1.3: The thesis contributions relate to diverse topics of Visual Analytics. Together,
they provide a set of measures for bringing statistical modeling closer to domain experts,
covering the entire path from basic research to its application in practice.

1.4.5 Contribution Overview

Together, the four contributions aim at providing a comprehensive set of measures to
democratize the modeling process on a conceptual, methodological, and practical level.
Figure 1.3 shows how the contributions touch diverse topics related to Visual Analytics,
and positions them in the spectrum between basic and applied research: On the concep-
tual side, the work on Opening the Black Box presents considerations on how user
involvement in algorithms can be realized from a technical point of view. By establishing
what information should be exchanged with users during computations and why, the work
can be seen as a technical requirements analysis for human-oriented modeling. Building
on this theoretical basis, TreePOD and the Partition-Based Framework provide
methodological contributions that demonstrate how even inexperienced users can be
effectively involved in the modeling process. To fully cover the path from basic research
to its application in practice, the last group of contributions focuses on practice-oriented
aspects of democratization like the adoption by real users. Close collaboration with
industry partners enabled the author to validate all new methods based on real use-cases,
and to reflect on year-long experiences in getting users to adopt Visual Analytics solutions
in general. The resulting lessons learned are the most practice-oriented contribution
of this thesis, intended for practitioners and application-oriented researchers alike.
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1.5 Thesis Structure and Authorship Statement
Following the methodology of a cumulative dissertation, this thesis is structured into two
parts. The first part provides an overview of the topic at hand, and outlines how the
research contributions fit together as parts of a common bigger picture. More specifically,
the first part consists of three chapters: The current, first chapter motivates the need for
a more human-oriented approach to statistical modeling, and outlines research goals and
contributions. Chapter 2 provides an overview of related work, and characterizes gaps
regarding the goals of this thesis. Chapter 3 concludes by reflecting on the contributions,
discussing their impact, and deriving open research directions for future work. Afterwards,
the second part of this thesis presents the main contributions as originally published.

As common in the field of computer science, the research papers constituting this thesis
were collaborations of multiple authors. The thesis author, subsequently referred to
in first person as “I”, was also the first author of each paper. All papers came out of
research projects at the Visual Analysis group at the VRVis Research Center, led by
Dr. Harald Piringer. As the head and main supervisor of this group, Harald Piringer
had many ideas featured in this thesis, and is also a co-author of all papers. For the
individual papers, the contribution of each co-author can be summarized as follows:

• Paper A: Thomas Mühlbacher, Harald Piringer, Samuel Gratzl, Michael Sedlmair
and Marc Streit. Opening the Black Box: Strategies for Increased User Involvement
in Existing Algorithm Implementations, IEEE Transactions on Visualization and
Computer Graphics, 20(12):1643-1652, 2014. [MPG+14]
I was responsible for leading this project, and coordinated the collaboration based
on regular online meetings. For example, I coordinated joint efforts to survey
existing Visual Analytics literature regarding user involvement, and processed the
results for the subsequent formulation of common strategies. Moreover, I was deeply
involved in shaping the practical contributions of the paper, such as establishing
requirements and guidelines for algorithm design, and evaluated their fulfillment in
existing algorithm packages. Large parts of the paper were written by me, while
Harald Piringer revised my drafts and helped me improve them for submission.
Harald Piringer also contributed significantly to the conception and writeup of the
theoretical parts of the paper, i.e., characterizing types of user involvement and
formulating strategies to achieve them. Marc Streit, Samuel Gratzl, and Michael
Sedlmair contributed many ideas to the overall project, and provided valuable
feedback on the text. They also helped with literature surveys and the systematic
evaluation of existing algorithm packages. Finally, Marc Streit helped to write the
related work section of the paper.
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• Paper B: Thomas Mühlbacher, Lorenz Linhardt, Torsten Möller and Harald
Piringer. TreePOD: Sensitivity-Aware Selection of Pareto-Optimal Decision Trees,
IEEE Transactions on Visualization and Computer Graphics, 24(1):174-183, 2018
[MLMP18].
I was the lead person in publishing this work. As such, I was responsible for
the writeup of the paper and supplemental materials, as well as the evaluation
of TreePOD with users. Moreover, I contributed parts of the implementation,
and supervised Lorenz Linhardt in implementing other parts (see below). Harald
Piringer contributed many key ideas to the project, including the initial vision
of domain expert-friendly model selection along trade-offs. He provided close
mentorship throughout the project, and helped significantly with revising all texts
for submission. Lorenz Linhardt developed a comprehensive prototype of TreePOD
during an internship, which I built upon for the final implementation. He was also
involved in design decisions, and helped to prepare one of the evaluation workshops.
Torsten Möller introduced Lorenz to our group and provided valuable feedback
throughout the project. He also got his entire research group to review early drafts
of the paper. Even though not credited as an author, Clemens Arbesser also helped
significantly in revising the text in the days before the submission deadline.

• Paper C: Thomas Mühlbacher and Harald Piringer. A Partition-Based Framework
for Building and Validating Regression Models, IEEE Transactions on Visualization
and Computer Graphics, 19(12):1962-1971, 2013 [MP13]
Best paper award.
This project was a close collaboration between Harald Piringer and me. I was
the lead person in implementing the framework, and in evaluating it with real
users. I was also in charge of the writeup, drafted the manuscript, and refined it
several times. Harald Piringer provided significant help to improve the text for
the submitted version. He also had the initial idea for the partition-based ranking
of features, which had sparked the entire project. Subsequently, he was deeply
involved in conceptually shaping and refining all aspects of the framework. All
design decisions were made in close collaboration between the two of us, building
upon feedback from our project partners in the energy sector.

• Paper D: Thomas Mühlbacher and Harald Piringer. Task-tailored Dashboards:
Lessons Learned from Deploying a Visual Analytics System. Proceedings of IEEE
Vis Conference 2014, Practitioner Experience Track (poster paper), 2014, [MP14]
I wrote the paper and designed the poster for this submission. Harald Piringer is
the mastermind behind the Visual Analytics system “Visplore” described in the
paper. Together, we reflected on our experiences with its deployment in the energy
sector, which enabled me to formulate the "lessons learned". Harald Piringer also
provided valuable feedback to improve the text.
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• Paper E: Thomas Mühlbacher, Clemens Arbesser and Harald Piringer. Statistical
Forecasting in the Energy Sector: Task Analysis and Lessons Learned from Deploy-
ing a Dashboard Solution. Proceedings of IEEE Vis Conference 2015, Practitioner
Experience Track, Short Paper, 2015, [MAP15]
I wrote this short paper as a significant extension of the poster paper described
in the previous paragraph. Based on additional experiences in deploying Visual
Analytics solutions in the energy sector, I extended the set of lessons learned
by technical and commercial aspects. Harald Piringer helped me to establish a
conceptual model of the statistical forecasting process in the energy sector based
on a task analysis with domain experts. Clemens Arbesser prepared the figures for
the paper, and provided valuable feedback on the writeup.
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CHAPTER 2
Background and Related Work

This chapter puts the thesis in perspective of existing efforts for realizing a human-
oriented modeling process. First, Section 2.1 provides a brief overview of modeling basics
for readers without that background. Afterwards, Section 2.2 describes how various
communities have contributed to distinct parts and aspects of a human-centered modeling
process. Finally, Section 2.3 describes holistic solutions that successfully wrap up all
these parts to support common modeling tasks, in the form of a state of the art report.

2.1 Background: Short Overview of Statistical Modeling
Learning patterns from observations has engaged scientists for centuries [HTF09]. Early
examples include the modeling of planetary orbits for navigation [Sti81], predicting the
height of children from ancestors [Gal86], and classifying flowers based on properties of
their leaves [Fis36]. In those days, all measurements and calculations had to be carried out
meticulously by hand. With the introduction of computers, statistical problems increased
substantially in their size and complexity [HTF09]. New possibilities of generating,
storing, and analyzing data have enabled great opportunities for science and engineering,
but also brought many new challenges to the field of statistics.

Given the central role of computation, it is not surprising that computer-science-related
fields made significant statistical contributions over the past decades. Challenges in
data storage and search, for example, have sparked the field of data mining, which has
contributed many important algorithms for knowledge discovery in databases. Machine
learning, a sub-field of artificial intelligence, has brought forth some of the most powerful
and flexible learning techniques to date. While these fields may differ regarding terminolo-
gies and the communities that brought them into existence, they share a large overlap
of methods and goals. Most importantly, they share the idea of learning from data, i.e.,
extracting patterns and interpreting them to understand “what the data says” [HTF09].
To this end, the respective communities have proposed a large number of techniques and
algorithms that have been widely used in many application domains.
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One way to characterize modeling techniques is based on their learning paradigm, which
can either be supervised, unsupervised or semi-supervised [HTF09]: Supervised methods
learn a relationship between input and output variables of a system from training data,
i.e., data instances where the output variables are known. The resulting model can be
used to predict the outputs for new, unseen instances. In unsupervised learning, there is
no specified output variable, and the goal is to find inherent structure among the inputs,
e.g., groups of similar items. Semi-supervised learning falls in-between, with known
outputs for some data instances, and a typically large number of instances without.

Each learning paradigm lends itself to particular categories of modeling tasks: On the
supervised side, regression seeks to predict a quantitative variable based on a number
of inputs that can be continuous or categorical. Classification on the other hand aims
to predict classes of categorical variables, often referred to as “labels”. Among the
unsupervised methods, clustering aims to group data items into clusters without prior
knowledge of explicit class labels. A typical goal is to find clusters that contain similar
items, but are very different from other clusters according to a particular similarity metric.
As a related unsupervised method, dimension reduction tries to find a subset of observed
or derived variables that contain the most variation in the data set. Here, the goal is to
identify patterns and structures that manifest in high-dimensional subspaces, and are
thus not evident on the surface. Semi-supervised variants have been proposed for both
supervised and unsupervised methods: Including unlabeled data in predictive tasks may
improve the generalization for unseen data, while unsupervised methods like clustering
may benefit from indirect labels such as constraints imposed by the user [Zhu06].

Aside from these common categories of modeling tasks, many further methods exist,
including association rule mining, anomaly detection, and value imputation. Knowing all
these methods and successfully applying them in real-world contexts involves significant
expertise. Moreover, real-world analysis often calls for a combination of modeling
techniques from multiple categories. For example, predictive modeling based on hundreds
of variables may need to be preceded by a dimension reduction step to focus on the
most relevant subspaces. Such combinations lead to complex pipelines with many
interdependent parameters to be tuned, requiring considerable time to train and validate,
even for statistical experts [SSZ+17].

2.2 Towards A Human-Oriented Modeling Process

This section summarizes previous efforts to make specific parts and aspects of the modeling
process more human-oriented. As a theoretical basis, Section 2.2.1 discusses process
models from various communities that emphasize the role of humans in the modeling
process. Section 2.2.2 reviews conceptual efforts to realize a tight integration between
algorithms and interactive visualization to enable human involvement from a technical
perspective. Finally, Section 2.2.3 summarizes efforts in designing user interfaces to the
modeling process that account for strengths and weaknesses of humans.
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Figure 2.1: The knowledge generation model by Sacha et al. describes the role of
computers and humans in Visual Analytics, and stresses a tight integration [SSS+14].

2.2.1 Process Models and other Conceptual Efforts

The modeling process is generally understood as a pipeline comprising multiple steps.
The need for of human involvement between and during these steps has been emphasized
by various communities: The Knowledge Discovery Process in Databases [FPSS96], for
example, allows user feedback between pipeline steps like data selection, pre-processing,
transformation, mining, and interpretation. Similarly, the Reference Model for Informa-
tion Visualization [CMS99] envisions user interaction with components of the analytical
pipeline, and promotes the use of visual interfaces to achieve this goal. The standard
model of the Visual Analytics pipeline (see Figure 1.2) characterizes the analysis process
as a human-centered loop, where users interact with data, models, and visualizations to
generate knowledge [KKEM10]. More recently, Sacha et al. extended this model by a
more detailed perspective on human knowledge generation [SSS+14]. Their model also
clarifies the role of humans and computers in the analysis process, and emphasizes the
importance of a tight integration between the two (see Figure 2.1).

While these pipelines describe modeling as a means for human-driven knowledge discovery,
other conceptual models involve humans for the purpose of model building as such: In
2003, Fails and Olsen introduced the term Interactive Machine Learning (IML) for a
process, where users actively influence the decisions made by modeling algorithms [FOJ03].
In contrast to traditional machine learning, where inputs are specified in advance, model
updates in IML are rapid and immediately triggered by interaction (see Figure 2.2). The
higher responsiveness and shorter design cycles make this approach particularly attractive
for domain experts without modeling backgrounds.

Building upon the initial work of Fails and Olsen, several papers have structured the
IML process in more detail. Porter et al. propose a design space to characterize user
interaction with IML approaches along three dimensions (see Figure 2.3) [PTH13]: (1)
task decomposition, i.e., the granularity in which labour is subdivided between machine
and human to collaborate on tasks; (2) training vocabulary, i.e., what types of input
users may provide during model training, ranging from low-level labels to higher-level
information like matches or constraints; (3) training dialog, i.e., at which level and
frequency users may interact during the learning process. This design space provides a
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Figure 2.2: In contrast to traditional machine learning, interactive machine learning
(IML) involves users in algorithms through rapid cycles of interaction [ACKK14].

Figure 2.3: Porter et al. characterize interaction with machine learning along three
dimensions [PTH13].
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Figure 2.4: Sacha et al. identify opportunities for user involvement for each step of the
modeling process [SSZ+17].

useful framework for comparing IML approaches to each other, as well as to traditional
machine learning, which is situated in the origin of the three-dimensional frame.

Taking a different perspective on IML, Sacha et al. investigate how different components
of the modeling pipeline benefit from human involvement (see Figure 2.4)[SSZ+17]. They
propose a conceptual framework that models human interaction with machine learning
in stages like data editing, preparation, model building, and exploration. During all
stages, the authors promote interactive visualization as a “lens” between models and the
human analyst. Moreover, they stress the importance of meaningful, direct interactions
that adapt the machine learning process under the hood. The authors conclude with
identifying five research gaps between current practice and IML as envisioned by their
framework – three of which are key goals addressed by this thesis (see Chapter 1).

Yet another perspective on IML is provided by Amershi et al., who study the behaviour
of users in IML systems based on case studies [ACKK14]. Their findings show that (1)
people may violate assumptions of traditional machine learners, e.g. by a tendency to
give more positive than negative feedback to learners; (2) people may wish to interact
with machine learning in richer ways than anticipated; and that (3) transparent IML
systems can lead to better user experience and better models. From this, they derive
high level strategies to improve human interaction with machine learning systems, and
stress potential benefits of a closer collaboration between the machine learning and
human-computer interaction communities.

Summarizing this section, several communities have stressed the importance of user
involvement in the modeling process, and the role of visualization as the enabling interface.
Process models help to develop a common language across communities [PTH13], and
provide high-level guidance on the design of future systems. As common for model papers,
many of the discussed works identify gaps and challenges that must be overcome before
the envisioned process models can be fully realized. However, they mostly do not provide
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Figure 2.5: Various prevalent integration scenarios and suggested extensions [BL10].

practical guidance for implementing a human-centered modeling process; for example,
how a tight integration between visualization and algorithms can be realized, or how user
interfaces should be designed. These topics will be discussed in the next two sections.

2.2.2 Technical Integration of Modeling and Visualization

Integrating algorithms and visualization to leverage the benefits of both is the key idea
of Visual Analytics [KKEM10]. From a technical perspective, this integration can be
achieved in various ways. In their pioneering work from 2010, Bertini and Lalanne
identified three recurring integration scenarios in the Visual Analytics literature [BL10]:

1. Computationally enhanced Visualization (V++): techniques that are fundamen-
tally visual, but employ some automatic analysis to complement and improve the
visualization. Example: using a projection algorithm to produce relevant views on
high-dimensional data (see Section 2.3.3).

2. Visually enhanced Mining (M++): techniques with automatic algorithms as the pri-
mary analysis means, while visualization supports an understanding and validation
of results. Example: visualizing the structure or results of a model.

3. Integrated Visualization and Mining (VM): tight integrations where neither visual-
ization nor algorithm is predominant. Here, the authors distinguish between black
box approaches providing a tight feedback loop to restart algorithms for new param-
eters, and white box approaches, where users interact with ongoing computations to
affect algorithmic decisions.

In their paper, Bertini and Lalanne also suggest possibilities to improve contributions of
each category beyond their surveyed examples (see Figure 2.5). According to this scheme,
three contributions of this thesis each implement one of their envisioned suggestions: The
Partition-Based Framework supports Visual Model Building (V++), TreePOD visualizes
the Parameter Space and Alternatives (M++), and the work on Opening the Black Box
fosters a Mixed-Initiative KDD process (VM).
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Figure 2.6: The "‘Progressive Visual Analytics"’ (PVA) workflow lets users interact with
ongoing computations based on partial results [SPG14]

Having surveyed dozens of papers, Bertini and Lalanne conclude that pursuing a mixed-
initiative KDD process is one of the most promising directions for future research, and
call for more work on realizing tight integrations. Researchers in various communities
have echoed this call since, and emphasized the need for interdisciplinary collaboration
to achieve this goal. For example, Puolamäki et al. called for Visually Controllable Data
Mining with goals like (1) providing meaningful visualizations of the model structure; (2)
controlling models through visual interaction; and (3) making computations fast enough
for visual interaction [PPL10]. While the first two goals are aimed at visualization
and interaction designers, the third goal is directed at the designers of algorithmic
infrastructures.

The authors of the VisMaster book take a similar line and call for algorithms that better
suit the needs of interactive exploration [KKEM10, p. 97f]. Here, major goals are (1)
receiving fast initial responses from algorithms with progressive refinement, (2) providing
means for triggering recomputations after small changes, and (3) allowing analysts to steer
the computation. Fekete, however, points out that these goals are hard to realize with
existing infrastructures, as analytical environments were not designed for exploration,
and algorithm designers often make no effort to provide early communication with
users [Fek13]. As a result, many visualization developers have re-implemented algorithms
as part of the visualization tool to enable early user involvement. Typical examples include
user-involving variants of expensive algorithms like clustering or dimension reduction (see
Section 2.3). The obvious disadvantages of re-implementation include a suboptimal use
of resources, and lots of proprietary code instead of standardized and tested solutions.

In 2014, the thesis contribution on Opening the Black Box (Paper A) was among the first
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Figure 2.7: (a) Schulz et al. propose a graphical notation to model PVA pipelines as
illustrated in (b) [SASS16].

works to investigate how integration can be realized for algorithms that were not designed
for exploration. The paper also takes the requirements analysis further, and provides
a detailed discussion of how different types of early information exchange support user
involvement. Strategies for realizing them in algorithms with different characteristics are
presented, and guidelines for algorithm design in favor of user involvement are established.
The paper thus provides the needed interdisciplinary perspective on integration that has
been stressed in the literature many times [SSZ+17, KKEM10]. At the same conference,
Stolper et al. presented a conceptual paradigm for realizing early user involvement called
“Progressive Visual Analytics” (see Fig. 2.6) [SPG14]. The authors identify very similar
goals regarding intermediate feedback and control as Paper A. Moreover, they discuss
implications of progressive computation for visualization design, and derive guidelines
such as avoiding excessive view changes whenever new results arrive. Building on these
papers, Schulz et al. unified and extended the proposed concepts in an “Enhanced Visu-
alization Process Model for Incremental Visualization” [SASS16]. The authors propose a
graphical notation for building analytic pipelines using blocks of progressive analytics
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and incremental visualizations (see Fig. 2.7). Moreover, they provide guidelines for
implementing systems based on their process model using a multi-threading architecture.

More recently, Turkay et al. presented a set of design considerations for visualization
and interaction techniques in progressive analytics scenarios [TKBH17]. Specifically,
the authors discuss (1) how to design analytics that respect the temporal capabilities
of humans; (2) how to integrate computations that can be evaluated progressively; (3)
how to design user interaction with progressive processes; and (4) how to inform users
about aspects of progressiveness. From these discussions, the authors derive ten practical
design recommendations to facilitate the implementation of Progressive Visual Analytics
systems. As one example, the authors suggest letting users pause, resume, and navigate
through progressions instead of constantly updating views as new results arrive.

In summary, tight integrations of algorithms and visualization have come a long way
in the past decade, and research interest in the topic is still growing. Still, there are
numerous open challenges that need further research. Conveying the uncertainty of
incomplete results, for example, is a multi-faceted topic that has only been partially
solved. While approaches exist for certain types of results, such as confidence bounds for
aggregates [FPDm12], or low-resolution previews for 2D displays [TKBH17], more work
on generalizable approaches is needed. As a related aspect, the instability of progressive
results, such as an interesting result suddenly vanishing after an iteration, may need
dedicated treatment to avoid the confusion of users [TKBH17].

2.2.3 Human-Oriented Interface Design

A crucial aspect of designing human-oriented modeling tools are user interfaces that
account for the strengths and weaknesses of the human user. This section summarizes
existing efforts on four aspects of interface design, namely (1) how to visually communicate
aspects of models; (2) how to provide means for interacting with models; (3) how to
guide users through the modeling process, and (4) human factors regarding machine
interfaces such as familiarity, trust, and cognitive biases.

Visualizing Aspects of Models

Visualization has been shown to be an effective medium for deepening the human
understanding of statistical models [SSZ+17, WCH15]. Answering questions like “how
does the model look like”, or “how well does the model fit the data”, is essential to
obtaining a flawless view of the modeled phenomena, and to building trust in the
models [WCH15]. Moreover, the ability to effectively criticise and improve models relies
on an understanding of how good a model already is, and under which circumstances it
fails. This understanding can be established by visualizing quantitative and qualitative
aspects of the models.

On the quantitative side, the most commonly inspected type of information is summary
statistics of the model, also known as key performance indicators (KPIs). Typical
examples include error metrics for predictors such as RMSE, MAPE, or R2 [HTF09],
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Figure 2.8: Mosaic displays show aggregated residuals for data categories to reveal
systematic errors in the fit [Fri99].

or performance metrics for unsupervised techniques such as cluster purity or rand
index [Ran71]. As metrics provide a compact summary, they are a suitable abstraction
for comparing large numbers of models, e.g., in a ranked list [ZWRH14] or a scatter
plot [PSMD14]. However, computing a global score is often insufficient, as it does not
account for local differences in the data.

A common approach to account for local phenomena is breaking down KPIs for different
data subsets in one display, e.g., categories or partitioned continuous features. Such views
indicate circumstances where the model fits the data better than others. Mosaic displays,
for example, show the prediction bias of regression models for different data categories
in a heatmap (see Figure 2.8) [Fri99]. Similarly, confusion matrices for classification
models show which classes are predicted correctly, and which classes are likely to be
“confused” with others [HTF09]. Showing these local variations of error may provide
clues for model refinement, e.g., to add features that exhibit systematic error patterns to
the model [MP13], or to emphasize difficult classes in the learning process [KLTH10].

Model error metrics summarize aspects of the model behaviour rather than its form or
definition. Thus, they are largely independent of the model type or algorithm used, and
may for example be used to compare decision trees to neural networks or SVMs [HTF09].
However, scalable and general as they may be, metrics may hide ambiguities and diversity
in the data, and do not provide an intuition of how the model looks like.

Visualizing qualitative aspects of models, on the other hand, aims at providing a deeper
understanding of the model itself. Here, approaches can roughly be grouped into two
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Figure 2.9: Showing the structure of a decision tree reveals the importance of features in
separating the data. [vdEvW11].

categories: (1) showing the model definition and structure as such; and (2) showing the
model in the context of data.

Looking at the definition of a model may provide important information about relation-
ships in the data. The coefficients of a linear regression model, for example, provide a
quantitative notion of sensitivity and feature importance for the target variable [HTF09].
The structure of a decision tree, on the other hand, qualitatively conveys feature im-
portance, as features near the root are selected for the most important splits (see
Figure 2.9) [vdEvW11]. Aside from feature importance, showing the model structure
may also be helpful to deepen the understanding of the underlying machine learning
process. Wonsuphasawat et al. recently proposed a scalable graph-based visualization
of deep neural networks [WSW+18]. Here, visualization helps to debug the complex
structure, and also plays a crucial role for building trust in such models.

The second group of qualitative model visualizations refers to showing the model in
the context of data. Visualizing these aspects together can help interpret the typically
less familiar model in context of the usually much better understood data space. Here,
Wickham distinguishes between two approaches: (1) showing data in the model space
“d-in-ms”, and (2) showing the model in data space “m-in-ds” [WCH15].

Approaches of the first group, “d-in-ms” project the data into a subspace generated by
the model. A commonly used example is plotting fitted values versus the residuals of
a model in a scatter plot to detect non-linearity or outliers [WCH15, HTF09]. Other
examples include projecting data points onto principal components (PCA) [Pea01], or
visualizing how data points are separated by the nodes of a decision tree [AEK00]. On the
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Figure 2.10: HyperMoVal shows the graph of a four-dimensional regression model and
nearby data, by slicing the graph around a focal point [PBK10].

level of single observations, “d-in-ms” approaches may be used to explain why predictions
were made for particular data points. Examples include showing the activation patterns
of Bayesian networks [CCH01] and neural networks [TM05] for selected data items, to
reveal the responsible features and decisions.

The second group, “m-in-ds” refers to visualizing a representation of the model itself in
the data space. For low-dimensional regression models, this is straightforward, as the
predicted surface can be shown as a graph in data space. The R packages visreg and
ggobi, for example, plot one- or two-dimensional regression surfaces along with the data
points [BB13, SLBC03]. “HyperMoVal” by Piringer et al. extends this idea to higher-
dimensional models by slicing the data space, and plotting data points that are near to
the surface in the respective slice (see Figure 2.10) [PBK10]. For classification models,
Wickham proposes showing a sampled approximation of multi-dimensional classification
boundaries in the data space (Figure 2.11a) [WCH15]. While this works well for low
numbers of dimensions, he admits that finding informative views in higher-dimensional
embeddings may take some time. In the same paper, Wickham also suggests “m-in-
ds” approaches for unsupervised techniques: For agglomerative clustering, he proposes
connecting data points in the sequence they have been clustered, to convey similarity in
2D views of higher-dimensional spaces. Similarly, he suggests plotting the representative
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a b

Figure 2.11: Plotting a point-wise approximation of high-dimensional decision boundaries
(a) and cluster centers of a Self-Organizing Map (b) in 2D projections conveys the local
quality of the models [WCH15].

nodes (cluster centers) of self-organizing maps in the data space, and connect them by lines
(see Figure 2.11b). Overlaid with the data points, the resulting net-like structure reveals
how well the cluster centers fit the data. In general, Wickham and other authors point out
that it requires creativity, and may not always be possible to find suitable visualizations
of models in data space - especially as the dimensionality increases [WCH15, ACH15].
However, in cases where it is possible, it is a very direct way of conveying the local quality
of the fit.

In addition to all these efforts for visualizing a single model, the literature has emphasized
several orthogonal aspects of model visualization. On the one hand, multiple works stress
the importance of building and inspecting more than one candidate model [WCH15,
PSMD14, SJS+17]. Considering diverse alternatives minimizes the risk of getting stuck
in local optima and fosters confidence in the models. Dedicated views for comparing two
or more models have been proposed [PBK10, KPB14], as well as techniques for exploring
entire model spaces based on abstractions of the models [MLMP18, PSMD14, SJS+17].
On the other hand, there have been multiple arguments for visualizing the modeling
process itself, and not just its end result [WCH15, MPG+14, SPG14]. This includes
visualizing the progress of learning algorithms to reveal pitfalls early [ZF14, TKBH17],
and, in a wider sense, visualizing the analytic provenance during the modeling process to
facilitate efficient workflows [GZ09, BCD+09, MPR18]. These topics will be illustrated
with examples, and discussed in more detail as part of the following sections.
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Interaction with Models

Just as important as visualizing aspects of models is the ability to act upon the obtained
insights. This section reviews efforts to support an effective communication from users
to models and algorithms.

A historical, yet still very commonly used interface to statistical modeling are command
line interfaces that operate by the exchange of text. Data scientists with the respective
experience can be highly efficient with such interfaces, and appreciate benefits like its
inherent exactness and high reproducibility [Wic18]. Unfamiliar users, however, find
significant hurdles in memorizing all the commands and options, and are challenged by
the high cognitive load of indirect manipulation [Com17].

The visualization community has promoted the idea of interacting more directly with
the visualizations [Shn83, KKEM10, EFN11]. To better understand the requirements
of visual interaction, several efforts have be made to taxonomize low-level interactions
with visual representations: Shneiderman, for example, proposed the categories Overview,
Zoom, Filter, Details-on-Demand, Relate, History and Extract [Shn96]. Several authors
have proposed similar taxonomies at slightly different granularities and scopes, including
Dix and Ellis [DE98], Keim [Kei02], and Wilkinson [Wil06]. Particularly interesting
from the human-oriented perspective is the taxonomy by Yi et al., who formulate
their categories in terms of user objectives [YKSJ07], for example: “Mark something
as interesting (Select)”, “Show me less/more detail (Abstract/Elaborate)” or “Show me
related items (Connect)”. While these taxonomies were created from the wider scope of
data exploration, many of them can be directly transferred to interaction with statistical
models, such as “Show me a less/more complex variant of the model”, or “Show me
similar models”.

The field of Human-Computer-Interaction (HCI) describes user interaction as a process
with two distinct phases (“Stages of Action”) [Nor13]: Execution, and Evaluation. Execu-
tion refers to performing an action to reach a goal, while Evaluation refers to observing
results and evaluating the fulfillment of the goal. Norman also describes that users may
not know how to perform an action to reach a goal, or how to evaluate its fulfillment. He
calls these gaps (or “gulfs”) between the human goal and the actual state the Gulf of
Execution, and Gulf of Evaluation. It is the goal of human-oriented interface design to
avoid or to bridge these gulfs, and to guide users towards and during their interaction.

Many approaches have been proposed in the HCI and visualization communities to
implement human-friendly interaction. There is a consensus that direct manipulation of
graphical user interfaces (GUI) usually enables a more intuitive dialog than command
line interfaces. Originally proposed by Shneiderman in 1983, the idea is to allow users to
change the state of an object via a graphical handle directly in-place or via an intuitive
metaphor [Shn83]. Contemporary examples include sliders for changing quantities, drag-
and-drop interfaces for rearranging items, or scrollbars for changing a viewed fraction
of a whole. While the use of such controls is easy to master, the challenge for interface
designers is finding an appropriate abstraction of the object state to expose. For example,
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Figure 2.12: Rearranging data items by drag and drop is a common metaphor for guiding
similarity-based projection algorithms. [EFN11].

simply exposing the parameters of a statistical model via sliders instead of text does not
free unfamiliar users from trial-and-error.

To amend this, Endert et al. propose semantic interactions, i.e., simple, meaningful
metaphors that trigger complex model changes under the hood [EFN11]. Their semantic
interaction pipeline binds model steering techniques to interactive affordances provided
by the model visualization itself. In their example implementation, ForceSpire, users can
move around document icons in a force-directed layout to express their desired similarity
in the model (see Figure 2.12). Under the hood, this simple interaction triggers formal
updates of the underlying term weight model or adds constraints to the layout. Similar
dragging metaphors for changing distance functions under the hood is provided by the
works of Brown et al. [BLBC12] and Endert et al. [EHM+11] (see Section 2.3.3).

More generally, the metaphor of specifying a desired target state via direct manipulation
is found in several other human-oriented systems: Kapoor et al. allow users to express
their dissatisfaction with misclassifications in a confusion matrix to update the under-
lying weightings (see Figure 2.13a) [KLTH10]. Expressing a like or dislike of items to
change models is also the key idea of recommender systems found in entertainment and
sales [JWK14, MS11]. Similarly, the Crayons system described by Fails and Olsen lets
users modify image classifiers by “painting” over important regions to emphasize them in
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a b
Figure 2.13: (a) ManiMatrix allows users to express dissatisfaction with misclassifica-
tions in a confusion matrix to update an underlying classifier [KLTH10]. (b) In the
Crayons system, painting over important regions of images allows emphasizing them for
classification [FOJ03].

the classification (see Figure 2.13b) [FOJ03]. Designing such intuitive interfaces is often
highly model-specific, and thus associated with high implementation effort. This may
be one of the reasons why semantic interaction is still relatively rare compared to more
conventional approaches to model interaction.

The previously described approaches mostly focus on changing the status quo of one
particular model according to some goals. A different approach to navigating the
model space is the proactive creation of alternatives for the user to explore. By using
models as key entities of the data model, “conventional” techniques for visualization and
interaction can be applied, such as linking and brushing [Hea99] or multiple coordinated
views [Rob07, WBWK00]. Schneider et al., for example, represent classifiers by metrics in
a scatter plot to support model selection and the building of classifier ensembles [SJS+17].
By linking the scatter plot with views of the data space, selection of a model immediately
highlights misclassified points, while selecting data points shows the metrics only for
the selection. Similarly, Padua et al. support model selection from a set of decision
trees generated by a full-factorial sampling of algorithm parameters [PSMD14]. Here,
a secondary goal is to provide a deeper understanding of the effect of each algorithm
parameter on the model space (see Figure 2.14). Gleicher employs a similar methodology
to craft projections of data items that are meaningful to users, so-called “Explainers”
[Gle13]. Seeking to create diverse projection functions that represent various trade-
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Figure 2.14: Linking and brushing of model candidates in an ensemble conveys the effect
of algorithmic creation parameters on decision trees [PSMD14].

offs to choose from, Gleicher proposes varying the parameters of creation prodecures.
Visualizations of the resulting models then support users to perform model selection based
on qualitative inspection. In general, model space exploration techniques free users from
specifying their goals in advance to a certain extent. However, most existing solutions do
not provide sufficient guidance along trade-offs, and offer limited interactions to refine
the model space in interesting regions in an intuitive manner. These shortcomings were
two key motivations for the thesis contribution TreePOD (Paper B), which guides model
selection under conflicting objectives by focusing on Pareto-optimal candidates [MLMP18].
Moreover, simple actions such as “show me more like this”, or “what would happen if...“
allow users to create variations of interesting candidates with a single click.

Regardless of how interaction with the model space is realized, users often need to try
out different scenarios and variations before they reach their goal. Multiple sources
thus stress the importance of history features to navigate back and forth in the ac-
tion sequence [NCE+11, MP13]. Approaches may reach from simple undo/redo sup-
port [ZBB+13], timelines of interaction [SIH00], to sophisticated graphical history inter-
faces that allow for branching, editing, and searching [HMSA08].

In summary, many techniques for interaction have been proposed in the HCI, visualization,
and machine learning communities. Designing interfaces that effectively support a broad
set of users is a challenging task. Simple interactions that subsume complex model changes
under the hood may reduce the hurdles for inexperienced modelers. However, experienced
users with a deep understanding of algorithmic details should not be prevented from
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incorporating their knowledge. In TreePOD (Paper B), the approach is to offer both:
simple interactions on the surface, while algorithmic details are exposed on demand.
While this might be a general guideline to enable both groups of users, interfaces should
always be designed and evaluated in close collaboration with actual users when possible.
Employing a design study methodology, for example, may increase the probability that
new metaphors and techniques will be adopted by the intended audiences [SMM12].

Guiding the Modeling Process

While the previous section described how users can guide the machine via interaction,
this section focuses on the machine guiding the user throughout the modeling process.
In other words, it reviews efforts on assisting the user in performing steps to accomplish
a modeling task at hand.

Guidance may be realized in many forms. To enable an effective discussion of the subject,
Schulz et al. characterize guidance along four dimensions [SSMT13]:

1. Guidance context: how much prior knowledge are users expected to have.

2. Guidance domain: which entity of interest are users guided towards, e.g., interesting
data subsets, optimal models, effective views, etc.

3. Guidance target: how users are taken to their goal, which can either be
direct (“Take me to X”) in case users have an idea what they want,
indirect (“Take me to Y that are like X”) similar to query-by-example [Zlo77], or
inverse indirect (“Take me to Z that deviate from X”), to discover new paths.

4. Guidance degree: to which extent a suggested path is constrained, and how much
freedom is given to deviate from suggestions.

As one example of this scheme, TreePOD (Paper B) provides direct guidance by suggesting
concrete variations of a selected model, as well as indirect guidance towards similar models
by offering a button “Show me more like this”. As guidance context, prior knowledge is
expected to the extent of understanding what the suggested actions mean (e.g., “round
all numbers to integers”). The guidance domain are Pareto-optimal decision trees. The
guidance degree is constrained when applying one of the predefined variations, but quite
unrestricted when creating a new bunch of similar candidates to choose from.

More recently, Ceneda et al. developed the conceptual model of Schulz et al. fur-
ther [CGM+17]. They summarized guidance context and domain under the term “knowl-
edge gap”, and introduced a distinction between the input and the output of the guidance
generation process (see Figure 2.15). Inputs refer to elements informing the guidance
mechanism, such as data, knowledge, or the analytic history. Outputs are the resulting
elements to guide the user, such as visual cues or dedicated views (see below).

Model building and selection involve several non-trivial choices that can benefit from
guidance. Common examples are the choice of algorithmic parameters and model
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Figure 2.15: Guidance can be characterized with respect to the knowledge gap of users
in achieving a particular goal, the input and output of a guidance mechanism, and the
degree to which users are constrained by this mechanism [CGM+17].

types [SHB+14, PSMD14, MLMP18], and the selection of data records and features as
model inputs [MBD+11, vdEvW11, MP13, KPB14]. A common approach to guiding such
choices is to precompute several different possibilities, and conveying their implications to
the user. Model refinement, for example, may be guided by trying out model extensions
based on different features under the hood, and showing achievable accuracy gains to
the user [MP13, vdEvW11]. As a more constrained example of guidance, model space
exploration techniques precompute an entire set of ready-made models to choose from,
while users skip the building process altogether [PSMD14, MLMP18].

The previous examples guide model identification workflows by using data as the primary
input for guidance. Another approach is to extract information from the user’s interaction
patterns. Mouse and keyboard events, as well as higher-level interactions may implicitly
hint at the user’s intentions [CGM+17]. Gotz and Wen, for example, demonstrate how
patterns of ongoing user interactions can be matched to previous ones to identify and
guide the task at hand [GW09]. While such implicit methods are unobtrusive and
applicable to any workflow, they are also prone to errors by misinterpreting the activities
of the user [OK98].

Several approaches have been proposed to represent the output of a guidance generation
process visually. One possibility is explicitly showing the results of precomputation-
based guidance in a dedicated view. Van den Elzen and van Wijk, for example, show
possible results of refining decision trees by additional features in a ranked list (see
Figure 2.16) [vdEvW11]. The Partition-Based Framework (Paper C) provides similar
list and matrix views to guide the refinement of regression models [MP13]. Having
a dedicated view for suggestions allows tool designers to show many details, and is a
reasonable choice if the guidance mechanism is a central part of the workflow.

A more light-weight alternative is to provide visual cues as part of another visualization,
e.g., as overlay. This consumes less space and potentially reduces the cognitive load of
switching focus between views. TreePOD (Paper B), for example, shows the Pareto front
as an overlay in a scatter plot representing decision trees by two objectives [MLMP18].
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Figure 2.16: A ranked list of possible features for model refinement guides the building
of decision trees [vdEvW11].

May et al. propose the use of signpost glyphs as a focus-and-context technique for
exploring large graphs (see Figure 2.17a) [MSDK12]. While only a part of the graph fits
the screen, signposts point towards important nodes that are currently not displayed.
Luboschik et al. guide the top-down exploration of multi-scale data by visual cues of where
to expect interesting details in finer levels [LMS+12]. This is achieved by downsampling
the finer levels and comparing the result to the coarser level data, to identify features that
will emerge when drilling down. Finally, Willett et al. enhance user interface widgets
by visual cues to enable a more informed usage [WHA07]. Examples include enriching
selection widgets with visualizations of other users’ choices, or augmenting a slider with
a histogram of the data (see Figure 2.17b).

In summary, guidance is a multi-faceted topic with high relevance for creating user-friendly
modeling solutions. Without proper assistance, users may easily be overwhelmed by the
broad range of options for model types, parameters, and data subsets. In the evaluation
of Papers B+C, the proposed guidance mechanisms were among the most appreciated
aspects for the collaborators. Reaching good models faster, with the confidence of having
seen many options and alternatives, added the most value over previous approaches,
according to the experts.

Human Factors

The last block of related work on interface design focuses on characteristics of the human
user. Humans have unique strengths and weaknesses that the design of human-oriented
solutions must take into account. Moreover, humans bring requirements to the table that
go beyond typical goals of statistical modeling such as maximizing accuracy.

One such aspect is the need of humans to trust the models and the insights that result
from the modeling process. At the end of every analysis, it is a human who needs to
act with confidence upon the potential findings. Even in automation scenarios, it is
humans who have to stand up for mistakes that a model may have made. On the one
hand, this can be seen as an argument for integrating and re-using proven, thoroughly
tested algorithms, as advocated by this thesis. On the other hand, it is an argument for
visualization: In contrast to black-box modeling, one can actually see and understand
the mechanics of the models, which can generate a great amount of trust [ERT+17].

However, the use of visualization alone is by no means a guarantee for trust. This is
especially true if users are confronted with novel, unfamiliar techniques. Visualizations
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Figure 2.17: (a) Signposts guide users towards interesting nodes in a large network while
zoomed in to a small part [MSDK12]. (b) “Scented” user interface widgets enable a more
informed usage [WHA07].

need to be understood to an extent that allows for confident interpretation before users
can start to trust it. In this respect, Gulati argues, when it comes to human interactions
with machines, “familiarity breeds trust” [Gul95]. And yet, even when a new visualization
has been understood, domain experts may still remain skeptical and express a preference
for known, yet possibly less effective visualizations [SZ88]. Cognitive scientists attribute
this skepticism to a human cognitive bias called the familiarity heuristic [Ash06], which
is associated with the bias of availability: People estimate the likelihood of events based
on how many examples of such events come to mind [TK73].

Several authors have investigated the implications of familiarity biases for visualization
design. Studies by Dasgupta with climate scientists confirmed the tendency of preferring
familiar visualizations [Das17]. However, he found that familiarity as such does not nec-
essarily lead to better task performance, while the subjective preference of a visualization
does. He also found that participatory design sessions and long-term collaboration can
mitigate the effect of familiarity biases. This matches findings of Brehmer et al., who
furthermore establish that partial redundancy among visual encodings can facilitate
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an understanding of unfamiliar parts [BNTM16]. Takayama et al. also report cases
where participative design eventually led to the preference of unfamiliar designs over
less effective familiar ones [TK06]. Another study by Dasgupta et al. compared user
performance on tasks with a conventional, script-based approach to a Visual Analytics
(VA) approach [DLW+17]. Despite the users’ familiarity with scripting, the authors
observed comparable, and even larger levels of trust in the VA approach when it came to
complex sensemaking tasks. All these results suggest that familiarity does affect experts’
preferences, but respective biases can be overcome.

In conclusion, familiarity is a design parameter, which may have a considerable impact on
trust. New interactive visualizations can be disruptive, and may need significant time for
adoption [Das17]. Participatory design can help, but when designing visualizations for a
larger audience, convincing a few experts does not guarantee acceptance on a broader
scale. In such practice-oriented cases, it may be a guideline to not deviate more from
widely accepted norms than necessary. TreePOD (Paper B) follows this guideline, as
well as Brehmer et al.’s suggestion of using partially redundant encodings for anticipated
unfamiliar parts [BNTM16]. Both aspects, familiarity and redundancy, received positive
feedback from domain experts in the evaluation sessions of TreePOD (see Paper B).

The last aspect discussed in this section are characteristics of the human cognitive system.
Benefits and strengths of human cognition are the key motivation for visualization
research. However, its weaknesses and limitations also have implications for interface
design that human-oriented approaches need to consider.

On the one hand, there are limits to human perception that have been extensively studied
in the cognitive sciences, such as color blindness [Gor98] or change blindness [ROC97].
Guidelines to account for such shortcomings have been proposed in the visualization
literature. Examples include avoiding color-maps that rely on the distinction of red and
green hues [Mun14], or emphasizing potentially overlooked differences [HE12, GAW+11].
On the other hand, there are multiple cognitive biases that influence how humans behave
when interacting with interfaces. Cognitive science describes bias as an error, where the
cognitive system unconsciously deviates from seemingly rational behaviour [TK74]. The
aforementioned availability bias and the related familiarity heuristic are examples of this
phenomenon. Also relevant for analysis is the so-called confirmation bias, which describes
a tendency to accept confirmatory evidence of an existing hypothesis and to dismiss
contrary information [Nic98]. This early fixation may be aggravated by anchoring bias,
which states that people lean towards a pre-existing goal, or “anchor”, once set [TK74]. In
general, previous experiences unconsciously shape the approaches of users to the analysis
process. Expertise and backgrounds may shape implicit attitudes that may influence
how hypotheses and analysis questions are formulated and addressed [WBP+17]. As an
example, Wall et al. refer to forensic experts who may be more conservative in their
judgments than others due to their understanding of the consequences of their decisions.

Interactive interfaces can lead to humans unconsciously feeding these biases back into
the analytic process [WBP+17]. Information overload [MP77] and confirmation bias, for
example, may lead to an early restriction of the information space, while possibly relevant
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aspects are overlooked. In model building and selection, this can lead to accepting a
local optimum while missing better models based on completely different assumptions.
Human-oriented systems should account for such possibilities, and point out biases to
the users where possible. As one example in that direction, Nussbaumer et al. suggest
using the interaction history to warn users about bias during high-dimensional data
exploration [NVH+16]. By creating awareness of bias, they argue, users can adapt and
proceed their exploration in a less biased way. Law and Basole go one step further, and
try to counter selection bias before it arises [LB17]. Their “Breadth-first Exploration”
concept actively confronts users with parts of the information space they have not looked
at. “Voyager” is an example of a system implementing this strategy for tabular data,
constantly augmenting the exploration path with charts of unseen dimensions [WMA+16].
Also, TreePOD (Paper B) can be considered an example of this approach, as it provides
unbiased alternatives to the selected models throughout the entire workflow.

In summary, humans come with many unique characteristics that human-oriented interface
design needs to consider. While basic research on human factors is not the contribution
of this thesis, this brief overview completes the discussion on human-oriented design.
Moreover, selected aspects like bias avoidance and familiarity were considered as design
goals, which was hinted at throughout this section, and is elaborated in the papers.

2.3 Visual Analytics Solutions for Modeling Tasks

While the previous section described previous work on specific parts of the modeling
process, this section describes holistic solutions that successfully combine these parts.
It can be seen as a state of the art report on solutions supporting a human-oriented
modeling process. The primary goal is to motivate the need for the thesis contributions
with respect to previous efforts, including work published after the own papers. As a
secondary goal, the section aims to provide an overview of the various approaches as a
basis for drawing conclusions and identifying open research directions in Chapter 3.

This section is not the first state of the art report on Visual Analytics approaches to
statistical modeling. Here, the focus is on aspects related to the thesis contributions,
while other reports assume overlapping, yet slightly different scopes. Moreover, the
other reports structure their literature reviews differently. Yafeng Lu et al., for example,
recently reviewed the state of the art in Predictive Visual Analytics [LGH+17]. Their
categorization of papers is structured by the addressed step of the modeling pipeline (pre-
processing, modeling, validation,..), as well as the interaction techniques used. Similarly,
Junhua Lu et al. reviewed progress and trends in Predictive Visual Analytics structured
by pipeline steps and applicable data types [LCM+17]. Widening the scope to modeling
tasks beyond prediction, Endert et al. reviewed the state of the art in integrating Visual
Analytics with machine learning [ERT+17]. Their literature review is primarily structured
by “user intent”, where they distinguish (1) methods to modify parameters and the
computation domain of algorithms, and (2) methods to define analytical expectations
about the results. In contrast, the literature review at hand uses the modeling task as
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Figure 2.18: Ankerst et al. combine a pixel-based visualization of the the tree structure
with algorithmic support for the cooperative building of decision trees [AEK00].

the primary structural element, i.e., classification, regression, clustering, and dimension
reduction. This enables a direct comparison of the thesis contributions to solutions for
the same task, and provides a feeling for how much attention each task has received by
the VA community over the past years.

2.3.1 Classification

Classification refers to modeling the relationship between classes of a categorical dependent
variable and a set of numerical or categorical features [HTF09]. While many different
types of classification models have been proposed, some are arguably more suitable
for human-oriented applications than others. Decision trees for example, are based
on interpretable rules like numerical thresholds, which allows humans to understand
how the model works. This has made them the subject of some of the most human-
centered approaches to classification over the years: Ware, for example, proposed to let
users interactively draw decision boundaries as polygons in data space to build decision
trees [WFH+01]. While manual construction leads to high levels of comprehension, the
lack of algorithmic support limits such approaches to classification problems of moderate
difficulty. Similarly, Ankerst et al. introduced a manual tree construction approach called
“Perception-Based Classification” [AEEK99]. A pixel-based visualization of the training
data conveys the distribution of class labels conditioned on the value ranges of features.
Users can interactively select features and split points, which updates the visualization to
emphasize the remaining variance per feature. While the method fosters comprehension
and exploits perceptual capabilities, it also lacks algorithmic support that, for example,
could prevent users from over-fitting their data.

To make use of both human and machine capabilities, Ankerst et al. proposed a
cooperative approach to decision tree building [AEK00]. Users may still perform manual
refinement, while algorithmic support can be triggered at any point to suggest further
splits, or train selected branches further. Domain knowledge can be incorporated in the
form of constraints for the algorithmic optimization. A pixel-based visualization of the
decision tree shows the purity gained by every split, as well as the significance of the
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Figure 2.19: BaobabView supports a cooperation between users and tree building
algorithms based on a scalable node-link visualization of the tree [vdEvW11].

nodes in terms of data items (see Figure 2.18). Van den Elzen and van Wijk propose a
similar approach to cooperative construction, with several improvements regarding the
incorporation of domain knowledge [vdEvW11]. Their tree visualization, “BaobabView”,
employs a familiar node-link representation that also shows feature names and split
values, which is important for the interpretation by domain experts. Their visualization
is also more scalable for complex trees and large data sets as commonly found in practice
(see Figure 2.19). Moreover, the cooperative process provides a visual ranking of possible
features and splits, which guides the user through model refinement (see Figure 2.17a).
As one drawback, however, focusing on the iterative refinement of a single tree may not
lead to the globally best solution, which is a key motivation for the ensemble approach
of TreePOD (Paper B).

Ranking features to guide model refinement has also been proposed in other contexts
than decision trees. Decoupled from particular model types, May et al. guide the
selection of features and record subsets by quantifying their mutual information with a
categorical target [MBD+11]. Their proposed visualization, “Smartstripes”, uses color to
highlight data subsets with high relevance for the target, enabling the discovery of local
dependencies (see Figure 2.20). Krause et al. point out that a single selection criterion
may not always yield the best subset, and rank features by the results of multiple selection
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Figure 2.20: Visualizing mutual information of partitioned features with a target variable
reveals local dependencies for feature selection [MBD+11].

algorithms [KPB14]. Their approach, called “INFUSE”, represents features as glyphs that
show how important each feature is for a number of classifiers and cross-validation runs
(see Figure 2.21a). Users can interactively select feature subsets, build classifiers, and
compare the results to automatic selection algorithms. In general, such interactive “white
box” approaches to feature selection allow for an incorporation of domain knowledge and
have the potential to foster high levels of trust.

However, not all types of data and classification problems are suitable for relying on
a human recognition of patterns. Höferlin et al., for example, argue that interactive
feature selection is difficult for classifying high-dimensional video data based on complex
features in image space [HNH+12]. Instead, they propose “Inter-Active Learning”, a
technique to involve users through a “query-by-example” approach: As in traditional
active learning [Set12], the system asks users to label difficult data instances in order to
improve an automatically learned model. Additionally, users can speed up the process by
suggesting data subsets to label instead, based on their understanding of the problem
domain and the constructed model. Following the classification of Endert et al. [ERT+17],
“Inter-Active Learning” differs from the aforementioned approaches as it allows users to
define expectations about the results, rather than the inputs of an algorithm.

Several other “black box” approaches to modeling pursue a similar, result-oriented
approach to user involvement: “ManiMatrix” by Kapoor et al., for instance, does not
expose inner workings, but presents the user with a classifier right away [KLTH10]. Users
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b

Figure 2.21: (a) Krause et al. use glyphs to encode the results of ranking features by
multiple criteria [KPB14]. (b) Linking visualizations of data space and model space
supports the creation of accurate ensemble classifiers [SJS+17].

may then interact with the confusion matrix to express their dissatisfaction with the
misclassifications of particular classes, which updates weights of the classifier under the
hood. While this is a nice example of “semantic interaction” as described by Endert et
al. [EFN11], tweaking error weights may be time-consuming, especially if their importance
is only vaguely known. Instead of tuning a single model, Talbot et al. propose an approach
to interactively build an ensemble of classifiers to maximize accuracy [TLKT09]. Similar
to “ManiMatrix”, their “EnsembleMatrix” approach lets users interact with confusion
matrices, and supports them in finding an optimal combination strategy for the ensemble.
Schneider et al. support highly detailed ensemble refinement based on the importance
of individual data records [SJS+17]. With linked visualizations of model space and
data space, users can identify ensemble parts that misclassify important cases, and
replace them by models with better performance (see Figure 2.21b). In contrast to
these approaches, Padua et al. automatically build an ensemble of decision trees, and
let users explore the models with multiple linked views [PSMD14]. Here, the goal of
creating multiple models is to support an informed selection from alternatives, instead of
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Figure 2.22: Visualizing the parameter space of linear models reveals multiple coexisting
trends [GWR09].

combining them into a single, more accurate predictor. The ensemble is systematically
built by parameter variation, such that exploring the models may help to understand the
parameter spaces of tree construction algorithms.

In summary, a variety of approaches have been proposed to involve users in classification
tasks through visualization. Many approaches enable the incorporation of domain
knowledge and human strengths in the iterative improvement of a single model. A
few others focus on selection and combination tasks based on multiple models, and
allow users to provide feedback in terms of desired result characteristics. Building on
lessons learned from both approaches, the thesis contribution TreePOD (Paper B) tries
to combine benefits of both into a holistic workflow: Based on an automatically created
ensemble of diverse tree candidates, guidance along trade-offs in terms of meaningful
tree characteristics enables a confident selection even for non-experts in statistics. At
any point, users may trigger the computation of new trees, and modify single trees for
what-if analyses and a flexible incorporation of domain knowledge.

2.3.2 Regression

Regression refers to the task of predicting a continuous target variable from numerical or
categorical features [HTF09]. Compared to the large number of interactive classification
approaches, regression has received relatively little attention in Visual Analytics so far. In
particular, dedicated support for incorporating domain knowledge in building, validating,
and comparing regression models was lacking when this thesis started.

Numerous approaches employ regression and correlation analysis as a means for knowledge
discovery. Guo et al., for example, propose a framework for the discovery of multivariate

46



2.3. Visual Analytics Solutions for Modeling Tasks

Figure 2.23: Steed et al. use colored rectangle glyphs below the axes of parallel coordinates
to convey the correlation with other features. Small thermometer glyphs above the axes
show the importance of each feature for a regression model. [SSFJK14].

trends [GWR09]. Interactive visualizations of the model parameter space enable the
detection of multiple, coexisting trends in the data (see Figure 2.22). With this system,
users are able to interactively select patterns and to extract data subsets that fit a model
well. However, the approach is limited to linear models and supports no incorporation
of domain knowledge in the model building process. Approaches like “INFUSE” and
“Smartstripes” (see previous section) also guide the user towards data subsets that explain
a target variable well [KPB14, MBD+11]. Originally intended for classification, however,
these approaches require a discretization of the target variable, which may incur a
problematic loss of detail for regression.

Among the few Visual Analytics approaches to regression model building, Steed et al.
propose an interactive system based on augmented parallel coordinates [SSFJK14]. Small
glyphs near each axis indicate the correlation with every other axis, guiding the user
towards highly correlated features (see Figure 2.23). The system is linked with Matlab to
integrate algorithms for stepwise feature selection and multiple linear regression model
fitting. The algorithms are integrated as black boxes with limited means of interaction.
Users can, however, interactively experiment with the subset of used features, which is
guided by a thermometer glyph encoding the relevance of each feature for the target.

A similar black box integration of modeling algorithms with Visual Analytics has been
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Figure 2.24: “TimeFork” lets users explore different futures predicted by automatically
built time series models for decision making [BZS+16].

proposed for predicting movie sales from social media data [LKT+14]. The presented
system ranks features by their relevance for the target, and supports building various
model types based on a user-defined feature subset. Models can be compared using
different metrics, and validated by inspecting point-wise residuals. While this allows
users to experiment with features and model parameters in a feedback loop, the system
does not provide dedicated guidance for model refinement and parameter choices.

Several solutions focus on building prediction models for quantitative time series data.
Hao et al. propose a Visual Analytics approach to predict large seasonal time series with a
focus on preserving local peaks [HJM+11]. Their system integrates multiple autoregressive
model types that can be built, which may be preceded by a peak-preserving smoothing
algorithm. Users may interact with sliders to try out parameters for the smoothing
and the models, and view the results in multiple linked views. Bögl et al. go one
step further and provide dedicated visual guidance for the refinement and selection of
autoregressive ARIMA models [BAF+13]. Based on various model diagnostic plots, users
can interactively tune models provided by an integration with the statistical environment
R. The visual interface follows the workflow of the Box-Jenkins methodology for model
selection, which makes the method highly effective for statistical experts familiar with
this approach. In contrast, the time series prediction system “TimeFork” by Badam et al.
is geared towards decision makers without deep statistical backgrounds [BZS+16]. Their
idea is to show possible future developments for multiple time series by slightly varying
the input values of a predictor. Users can focus on a particular path by interaction, and
investigate how this development would affect the predictions of the other time series
(see Figure 2.24). In contrast to Hao and Bögl’s approaches, however, modeling is not
the primary objective but rather a means to the end of decision support. As such, users
are not deeply involved in the modeling process itself, but interact with its results.

Other works focus on the validation of regression models. Based on “HyperSlice” [vWvL93],
“HyperMoVal” by Piringer et al. shows slices of a multidimensional regression model
together with nearby data points [PBK10] (see Figure 2.25). Users can interactively
adjust the slice position to identify regions with a bad fit, and compare multiple models
by the use of different line stipple patterns. Linked multivariate views deepen the under-
standing of training and validation data for model refinement, and allow users to focus
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Figure 2.25: “HyperMoVal” supports the validation and comparison of multidimensional
regression models in the context of nearby data points [PBK10].

on data subsets for validation via brushing. Regression models (SVM) can be trained by
a black box integration of a library, but there is no dedicated support or guidance for the
building process as such. Moreover, the point-wise approach of slicing the model may
lead to important local dependencies to be missed, especially if the number of dimensions
increases. The Partition-Based Framework (Paper C) was the first regression approach
to support guided interactive workflows for both building and validation, while allowing
users to incorporate domain knowledge. Here, partitioning the feature space is the key
idea to provide an overview of local dependencies, and to avoid structural assumptions in
the ranking of features by relevance. Moreover, the framework goes beyond other feature
ranking approaches [MBD+11, KPB14], as it ranks and visualizes pairs of features to
support an identification of 2D-feature interactions explaining the target.

Since its publication, several follow-up works have built on the idea of the Partition-
Based Framework and extended it in various ways. Klemm et al. extend the approach
beyond features and feature pairs to also consider three-dimensional subsets of the feature
space [KLG+16]. Their solution adds a voxel-based visualization that shows the relevance
of feature triplets for the target, to identify relevant interactions of three features (see
Figure 2.26). In “LoVis”, Zhao et al. also rank features by relevance, and visualize
feature dependencies very similar to Paper C [ZWRH14]. Additional views support the
discovery of local patterns, and reveal complementary features that explain different
parts of the data well in combination (see Figure 2.27). Users can incrementally add local
models to build composite predictors, while dedicated views and metrics prevent the
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Figure 2.26: Matrix- and voxel-based displays support the discovery of dependencies of a
target on pairs and triplets of features [KLG+16].

model from getting unnecessarily complex. More loosely related to Paper C, Andrienko
et al. support regression modeling for predicting real estate prices from geographic and
demographic attributes [AAR+16]. Treed regression models are built using automatic
feature selection algorithms, while users can interactively define the candidate features
and data records. Related to Paper C, the prediction bias is visualized over a geographic
map, which may inform refinements like modeling regions separately from each other.
Additionally, the geographical variance of feature importance is visualized on a map to
support an understanding of how determining factors differ geographically.

In conclusion, interactive regression has started to receive increasing attention over the
past years. Compared to classification or clustering (see next section), however, the
number and diversity of approaches are limited. Most existing techniques, including
Paper C, focus on incremental model refinement by guiding the selection of relevant
features. Result-oriented approaches to model building and selection, where users can
trade-off expectations in terms of result characteristics, are surprisingly rare for regression.
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Figure 2.27: “LoVis” ranks and visualizes relationships to support the building of multiple
models for local effects. Partitioning of the data space at varying coarseness, as shown in
the lower row, guides the trade-off between over- and underfitting. [ZWRH14].

A reason might be that regression is mostly used for predictive tasks, where automatable
objectives like accuracy are typically more important than, for example, interpretability.
Nonetheless, it might be promising to investigate building ensembles of diverse regression
models similar to TreePOD (Paper B), and to guide users in exploring this space of
possibilities. Seeing multiple alternatives for explaining a target may be interesting
information on its own, and might also reduce the danger of getting stuck in a local
optimum as opposed to the refinement of single models [WCH15].

2.3.3 Clustering and Dimension Reduction

The last section of this state of the art report discusses approaches from unsupervised
learning. Specifically, it focuses on two of the most common unsupervised methods,
namely clustering and dimension reduction.

Clustering refers to the task of finding inherent groups in the data according to some
notion of similarity [HTF09]. In contrast to supervised learning, there is usually no
ground truth that the results of clustering methods can be compared to. Thus, it is
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Figure 2.28: Relating clusters across different parametrizations enables algorithms to
produce results that match user expectations [HOG+12].

not as straightforward to measure the quality of clusterings in crisp, quantitative terms
like accuracy or squared error [CENS06]. While several metrics exist, a comprehensive
assessment of cluster adequacy often involves qualitative judgments and know-how about
the purpose of the clustering. This may explain why clustering has received relatively
much attention by the visualization community.

Several Visual Analytics approaches involve the user in the building and refinement
of clusters. Cohn et al. envision a process where users guide a clustering algorithm
by interactively specifying constraints [CCM03]. Based on a given clustering, users
may indicate certain items that should not be grouped together, and move them to
different clusters. While such constraints may not be known in advance, the authors
argue that “critiquing is easier than constructing”, and users typically “know it when
they see it”. In line with this principle, several approaches offer the modification of
spatial arrangements to express constraints for cluster optimization [BDW08]. Lee et al.,
for example, allow users to shift text documents to interact with clusters obtained by
topic modeling [LKC+12]. Des Jardins et al. let users drag items in a force-directed
layout to modify clusters [DMF07], and Kumar et al. allow users to specify constraints
on triplets of data items (X is more similar to Y than to Z) [KK08]. In contrast to
these observation-level techniques for steering, Hossain et al. let users define constraints
on entire clusters [HOG+12]. Based on such input, their “ScatterGather” algorithm
tries to produce a clustering that better reflects the expectations of the analyst (see
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Figure 2.29: Sketching a few anchor trajectories (shown in blue) allows users to steer the
clustering of a Self-Organizing Map [SBvLK08].

Figure 2.28). Relying more on user interaction than algorithmic updates, Bruneau et al.
let users modify cluster labels similar to a painting application [BPBO15]. Based on a
2D embedding of clustered points, convenient user interactions with algorithms under the
hood support re-labeling many points at once. For example, a “diffusion” of class labels
to nearby structures is triggered with one click instead of manual brushing and labeling.

In contrast to these result-oriented approaches, other works involve the user in the
clustering process as such. Schreck et al. let users visually monitor and control the
training of a self-organizing map clustering algorithm for trajectory data [SBvLK08].
By interactive drawing of trajectories, users may initialize the algorithm based on
domain knowledge and expectations (see Figure 2.29). During training iterations, the
clustering result is constantly visualized, while users can modify clusters or parameters,
and terminate the algorithm when sufficiently converged. Rinzivillo et al. also rely
on human control in building clusters of trajectory data [RPN+08]. In their approach,
users are presented with clusterings that are generated step by step, and may decide
at any point to stop, modify, or terminate ongoing calculations. In such tight steering
applications, it is crucial to deliver results in at most a few seconds as not to lose the
user’s attention [CRM91]. Ahmed and Weaver suggest a pre-computation scheme based
on expected user interactions to provide clustering results at interactive rates [AW12].
Alternatively, strategies for providing approximate results can be applied to keep users
focused on the analytical process (see Paper A) [MPG+14].
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Figure 2.30: A tight integration of cluster formation and evaluation allows users to select
clusterings using multiple views [TPRH11a].

Figure 2.31: Visualizing cluster structure over time reveals system stability and topological
changes [TPRH11b].
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Figure 2.32: Linked scatterplots showing features as points support comparisons of
relevant features across clusterings [TLS+14].

While the previously discussed works support cluster building and refinement, several
approaches focus on validation, comparison, and selection tasks. Turkay et al. propose a
tight integration of cluster formation and evaluation to enable an effective steering of
algorithms [TPRH11a]. Multiple coordinated views convey whether (1) the data tends
to form clusters, (2) clusters remain stable across alternative clusterings, and whether (3)
clusters are cohesive, i.e., highly similar within but highly different from other clusters (see
Figure 2.30). Based on these views, clusterings can be effectively compared and selected
for a particular application. In the same year, Turkay et al. extended the approach to
account for aspects of time-dependent data [TPRH11b]. Here, the idea is to visualize
the stability of a clustering across multiple time steps, and to reveal structural changes
like suddenly merging or splitting clusters (see Figure 2.31). In an application with
biomolecular simulations, this allowed analysts to effectively identify vanishing clusters,
and to determine the time when the simulated system stabilizes. In more recent follow-up
work, Turkay et al. contributed interactive visualizations to compare clusterings with
respect to their most discriminative features [TLS+14]. For each of multiple clusterings,
statistical measures are computed per feature, and shown as points in coordinated scatter
plots (see Figure 2.32). Selecting important features for one clustering highlights them in
the representations of the others, revealing stable explanations as well as alternatives.

The “Hierarchical Cluster Explorer” by Seo and Shneiderman enables cluster comparisons
for choosing an adequate model complexity [SS02]. Their system provides multiple linked
views to provide an overview of hierarchically clustered data from the context of genomics.
While users can not influence the clustering algorithm as such, a significant benefit of
the approach is that no parameters need to be specified in advance. Once the clustering
is computed, users can adjust the “cutting” position through the hierarchy with a slider
to select a clustering with adequate level of detail (see Figure 2.33). Caruana et al.
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Figure 2.33: Interactively defining a cut through a dendrogram supports choosing an
adequate model complexity for hierarchical clusterings [SS02].

Figure 2.34: Meta-clustering a large number of clusterings by their properties guides
users towards distinct groups of achievable model characteristics, and supports trade-offs
between them [CENS06].
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Figure 2.35: Constraining items into inseparable groups allows users to align similarity
embeddings with mental models [DKM06].

take this idea of proactive computation and result-oriented model selection one step
further [CENS06]. Their “Meta-Clustering” approach first produces a large, diverse set of
alternative clusterings by repeating the k-means algorithm for different input conditions.
Then, these clusterings are clustered by their characteristics, so that users only need
to inspect a small set of qualitatively different candidates (see Figure 2.34). In this
respect, this approach is very similar to TreePOD (Paper B), as it provides scalable
guidance by focusing on a manageable subset of decision-relevant alternatives. Moreover,
Meta-Clustering shares TreePOD’s inclusivity for inexperienced modelers (G2), as no
parameters have to be specified or understood in advance.

Concluding the part on clustering, note that many more approaches exist that have
not been discussed in this section. Given that the thesis’ contributions do not focus on
clustering, the intention was to provide an overview of representative solutions with a
clear human-oriented focus. Please refer to other state of the art reports such as the one
by Endert et al. [ERT+17] for a more complete survey.

The second part of this section deals with dimension reduction, another highly common
technique for unsupervised learning. Dimension reduction refers to finding, deriving,
or synthesizing new dimensions from the existing ones, where most of the interesting
variation happens. Combined with visualization, the typical goal is to embed high-
dimensional data into two or three dimensions, such that salient structures like clusters,
outliers, or manifolds become visible [SZS+17].

Several Visual Analytics solutions make use of human expertise in identifying and refining
such embeddings. As for clustering, a common approach is letting users specify constraints
for embedding algorithms to incorporate mental models. Endert et al., as well as Buja et
al. enable users a specification of “anchor points” that remain in fixed positions, while
algorithms such as PCA or MDS arrange the data points around them [EHM+11, BSL+08].
Similarly, “ForceSpire” by Endert et al. supports the anchoring of documents in a force-
directed layout [EFN11]. As a higher-level form of constraints, Dwyer et al. enable users
to define regions that must not overlap, or that may not be torn apart [DKM06] (see
Figure 2.35).
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Figure 2.36: The “iPCA” system allows users to weight features by importance for
principal component analysis with a slider interface [JZF+09].

Another group of solutions makes use of domain knowledge to adjust the notion of
similarity between items that underlies most embedding algorithms. In the simplest
case, users can modify explicit weights assigned to the data dimensions to stress their
importance for similarity. The “iPCA” approach by Jeong et al. provides sliders to adjust
these weights, also called “dimension loadings” (see Figure 2.36) [JZF+09]. Johansson
and Johansson employ a more output-driven approach, and let users modify weights
for quality metrics that embeddings may optimize [JJ09]. As for most interactive
weighting approaches, however, weights are often only vaguely known and may involve
trial-and-error until a particular result is achieved [PSTW+17]. To incorporate mental
models more intuitively, Endert et al. propose direct, “semantic interactions” with
items in the 2D embedding to define similarities [EFN11]: By dragging an item closer
to another one, users may attribute higher similarity to this pair, which updates the
parameters of the embedding under the hood. As a result, similar items to either of
them will also be moved to reflect the updated similarity function. Similar spatial
metaphors have been employed by various other solutions, including “DisFunction” by
Brown et al. (see Figure 2.37a) [BLBC12], and an interactive projection approach by
Molchanov and Linsen [ML14]. Buja et al. let users move around entire groups of
items to escape from local minima of stress optimization, and to explore the stability
of the embedding [BSL+08]. Other solutions allow users to manipulate the actual data
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Figure 2.37: (a) In “Dis-Function”, users may drag points (shown in blue) closer to
others (red) to update the underlying distance function for these preferences (middle
image) [BLBC12]. (b) Pezzotti et al. allow users to prioritize important regions in a
progressive t-SNE projection algorithm [PLvdM+17]. Green color indicates regions that
are still coarsely approximated.

values underlying the embedding to explore its stability. In the “iPCA” approach, for
example, users may remove data items such as outliers, or edit their values to see what
happens to the embedding [JZF+09]. Trying out different what-if scenarios helps users in
building confidence, and conveys the sensitivity of the underlying algorithmic functions.
“StarSPIRE” [BNH14] and “ForceSPIRE” [EFN11], on the other hand, let users annotate
data items to enrich them with additional semantics for the similarity computations.

The previously discussed works seek a semantic dialog with the user based on results.
Another approach is to let users directly steer the parameters and process of the embedding
algorithm as such. Choo et al., for example, expose the parameters of a supervised
dimension reduction algorithm by a slider interface [CLKP10]. Here, the idea is to
let users visually explore the parameter space to reveal structures such as clusters.
“DimStiller” by Ingram et al. allows users to build dimension reduction pipelines by
concatenating different algorithmic operators [IMI+10]. Using individual controls, the
parameters of each operator can be tuned, while immediate visual feedback is provided
to guide the exploration. Other approaches rely on the user to prioritize the work
of expensive dimension reduction algorithms. In “MDSteer”, Williams and Munzner
propose a progressive, steerable version of multidimensional scaling (MDS) for very large
datasets [WM04]. To shortcut the high execution times of MDS, the approach shows
partial results based on subsets of the data after a few seconds. Users may then indicate
regions, or data subsets, that should be computed next, to obtain an understanding of the
most important parts after shorter time. Pezzotti et al. employ a similar methodology for
the t-SNE algorithm [PLvdM+17]. Based on a roughly approximated notion of similarity,
intermediate results are shown that become incrementally more accurate over time. Users
may prioritize interesting data subsets, while the current degree of approximation is
color-coded to convey the uncertainty of the incremental results (see Figure 2.37b).
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Figure 2.38: Ranking and visual comparison allow users to select appropriate embed-
dings [RL15].

The last block of solutions focuses on supporting the evaluation and comparison of
multiple dimension reduction algorithms. Embeddings of high-dimensional data can be
generated in various ways by different algorithms and parametrizations. A study by Lewis
et al. has shown that especially inexperienced modelers often disagree on the quality
of dimension reduction methods [LVdMdS12]. To support effective comparisons, Rieck
and Leitte propose a system to visualize and rank embeddings by quality measures (see
Figure 2.38) [RL15]. Being based on general topological properties of the embeddings,
their framework supports comparisons between results of different algorithm types, like
PCA, MDS, t-SNE or IsoMap. Similarly, Liu et al. propose the use of distortion-
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Figure 2.39: Annotating objects with semantic concepts like "‘Paris-ness"’ for cities allows
users to craft projections with meaningful axes [Gle13]. Projections can be compared
regarding their alignment with prior knowledge, simplicity, and other objectives (right
image).

based quality metrics to compare different types of embeddings [LWBP14]. As a less
general, but highly human-oriented approach to model selection, Gleicher proposes an
integrated approach for crafting and comparing projections [Gle13]. In contrast to
statistical dimension reduction, the idea of the proposed “Explainers” system is to create
projections that align with semantic, user-specified annotations. In a dataset of cities, for
instance, users may annotate cities with vague notions like “American-ness” or “Paris-ness”
based on intuition. The system would then create a diverse set of projections onto these
fictional, yet meaningful axes, which users can explore (see Figure 2.39). Similar to
TreePOD (Paper B), the Explainers system considers trade-offs in choosing from these
projections, including their simplicity, expressive power, alignment with prior knowledge,
and diversity. This human-oriented approach to model selection, and the understandable
quality of the embedding sets this system somewhat apart from other dimension reduction
techniques, and makes it particularly noteworthy in the context of this thesis.

In conclusion, the Visual Analytics community has brought forth various ways of involving
humans in dimension reduction tasks. Again, this section only provided a coarse overview,
as no thesis contribution focuses on unsupervised learning techniques. Please refer to
Sacha et al. [SZS+17] or Endert et al. [ERT+17] for more complete surveys on the topic.
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CHAPTER 3
Discussion and Conclusions

This thesis has made multiple contributions to Visual Analytics in favor of a more
democratic, human-oriented modeling process. With the Partition-Based Framework and
TreePOD (Papers B+C), it introduced new human-centered solutions for previously under-
addressed modeling tasks (G1). TreePOD has outlined a methodology to effectively
involve users without deep statistical backgrounds in the modeling process through
visualization (G2). The work on Opening the Black Box (Paper A) has shown a large
potential for re-using existing algorithms to implement human-oriented solutions (G3),
and paved the way for more user-involving algorithm design in the future. Finally,
evaluations with real users, and reflections on real-world deployments (Papers D+E)
suggest a high relevance of the thesis contributions for Visual Analytics in practice.

Throughout the papers, the thesis makes multiple cases for the benefits of human
involvement in the modeling process. A key lesson learned, however, is that not all forms
of user involvement are equally suitable for all types of user and application scenarios.
Effective steering of complex algorithms, for example, requires a certain understanding of
the involved mechanisms, which may preclude inexperienced modelers in some cases. On
the other hand, experts with the respective knowledge of inner workings should not be
limited by superficial, overly simplistic interfaces. Choosing an adequate degree, or scope
of user involvement is thus crucial for the adoption of new techniques by particular user
groups. The three main contributions (Papers A,B,C) promote three radically different
scopes, by providing feedback loops of varying tightness (see Figure 3.1): On one side
of the design space, Opening the Black Box (Paper A) argues for involving users in the
tightest possible loop. At any time during an ongoing computation, users can incorporate
control signals to cancel, prioritize, or steer the algorithm’s work (Figure 3.1a). While the
ability to cancel early is helpful for any user, the usefulness of steering for inexperienced
modelers relies on intuitive interfaces to do so. Designing such interfaces requires effort
and creativity, especially if the gap between algorithm complexity and a user’s expertise
is large. The Partition-Based Framework for regression (Paper C) employs a less tight
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Opening the Black Box Partition-Based Framework TreePOD
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 Integration between user and algorithmtight loose
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Figure 3.1: The three main contributions provide feedback loops for user involvement
at varying scopes: (a) with ongoing computations, (b) with algorithmically suggested
refinements of a single model, and (c) with an extendable ensemble of models.

feedback loop, and does not require users to bother with algorithmic details. In contrast
to the real-time interaction of Paper A, the cooperation between algorithm and user
can be described as “turn-based”: After algorithms provide a guided list of possible
model refinements, the user selects the desired model change, which in turn, triggers
new algorithmic suggestions (Figure 3.1b). While the required algorithmic knowledge
is low in this process, users still need a certain understanding of how selected features
affect the model to make good choices. On the most novice-friendly end of the spectrum,
TreePOD (Paper B) promotes the loosest integration between algorithm and user. Here,
model candidates are built in advance, while users perform judgments and make decisions
purely based on the results (Figure 3.1c). On demand, users may trigger refinements or
compute new candidates to extend the candidate set using controls that hide algorithmic
details per default.

Of all contributed concepts, TreePOD was appreciated as the least background-assuming
approach by our collaborating domain experts. The result-oriented approach allowed
them to identify good models in much shorter time, at much higher confidence than
previously used tools. As another lesson learned, however, they warned us from hiding
algorithm parameters entirely, as this would remove familiar ground for modelers with
the respective expertise. Despite its more time-consuming approach to cooperative model
building, the Partition-Based Framework was also considered a huge step forward by our
collaborators. Still much faster than previously used tools, the framework provided them
with an unprecedented transparency and confidence in the built models.

In addition to positive feedback from our collaborators, the thesis contributions also had
a measurable impact on the scientific community. The Partition-Based Framework, for
example, received the best paper award at IEEE VAST 2013, and seems to have inspired
several follow-up works as described in Section 2.3.2. By August 2018, the paper has
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been cited 77 times according to Google Scholar1. Opening the Black Box, which was
published one year later, has been cited 64 times, while other model papers have built
on the proposed concepts. The “Enhanced Visualization Process Model for Incremental
Visualization” by Schulz et al., for example, explicitly relates the building blocks of their
model to the proposed strategies for user involvement [SASS16]. TreePOD, on the other
hand, is the newest of the main contributions, and was cited 3 times since its publication
in 2018.

Before concluding this thesis, the author wants to stress that this work does not regard
human involvement as unconditionally beneficial in all scenarios. Parts of the modeling
process that can be automated well, should be automated, to free up as much human
resources for more important high-level tasks as possible. Yet, there is ample evidence
that human involvement can lead to better results due to the additional knowledge and
cognitive abilities that automatic approaches simply do not have [ACKK14, KKEM10].
Moreover, human-oriented requirements arising from applications, as well as needs
regarding trust and accountability [KPB14] often make human involvement attractive,
and sometimes inevitable. Nevertheless, it is important to note that human involvement
incurs costs that need to be balanced with the benefits.

One such cost is the fact that human intervention may affect the reproducibility of
results. Blessing and curse at the same time, interactive specifications like brushing
or dragging items around the screen are much less exact than textual specification in
scripting environments. Also, the mere fact that humans may deviate from well-defined
algorithmic paths at all can be seen as counterproductive in certain analytical scenarios,
and may require additional justification in reports.

As a second type of cost, model inspection and manual improvement may take up
considerable amounts of human time. This is particularly the case for approaches
that promote deep human involvement to optimize or override algorithmic decisions.
Studies from human-computer interaction have shown that humans are only willing to
spend their attention and time on complex tasks, if the expected benefits outweigh the
expected costs [Bla02]. In cases, where only a few models need to be built to serve as key
assets, fighting for every percent of accuracy and increased confidence may certainly be
worthwhile. With increasing digitization, however, trends indicate growing numbers of
devices and processes that need to be modeled and monitored in many sectors. Power grid
operators, for example, predict the production from hundreds of power plants on a regular
basis, while industries constantly add new devices that need predictive maintenance. In
such scenarios, the time invested per model is an important criterion to minimize. Thus,
the need to produce good models without deep involvement in every algorithmic decision
may become increasingly pressing in the years to come.

Result-oriented approaches like TreePOD can be seen as a first step in this direction.
However, to the author’s knowledge, no solutions exist that support modeling hundreds or

1https://scholar.google.at/scholar?hl=en&as_sdt=0%2C5&q=m%C3%BChlbacher+
piringer&btnG=, last accessed 2018, Aug 24.
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3. Discussion and Conclusions

thousands of targets in acceptable time, while still considering knowledge and requirements
from the domain. Designing more scalable approaches to model building and validation
that account for the increasingly strict time constraints of experts remains an important
challenge for future work. In line with the growing desire for automation, a possible
direction could be to shift human involvement from the building phase to (1) the high-level
specification of objectives for entire model batches, and (2) the posterior inspection and
remedy of problem cases.

As data volumes and velocity keep increasing, a second topic for future research is
extending the work on scalable infrastructures for online and progressive computation.
This includes adding more algorithms and libraries that provide early communication with
users, as well as making visualization and interaction modules ready for the implications.
While a few promising examples exist [FPDm12, TKBH17, PLvdM+17], it remains a
challenge to deal with the incompleteness, instability, and uncertainty of incremental
results in general analysis scenarios. It may also take time for analysts to get used to
working with incomplete results as opposed to conventional, offline analytics. Thus, it is
crucial that new technical solutions are oriented towards the cognitive capabilities and
characteristics of users, and not the other way around [TKBH17].

Finally, it remains a challenge to guide the modeling process while keeping the exploration
path and result as unbiased as possible. Information overload, as well as algorithmic
suggestions to conquer it, may lead users to an early pruning of eventually better solutions.
Step-wise techniques for model refinement, such as the Partition-Based Framework
(Paper C) are particular prone to such biases. As a possible direction, free computational
resources could be used much more often to proactively explore more possibilities than
the user explicitly asked for [LB17]. The importance of showing analytic provenance to
make the explored path tangible has been recognized by the community. It can be argued,
however, that showing the unseen paths as context is equally important to complete
the picture of provenance, to avoid potential bias, and to increase confidence in the
conclusions finally drawn.

In conclusion, human-oriented modeling has come a long way since this thesis started
in 2013. Practical works on integration, better support for regression, and improved
guidance for model selection are only three examples of the many significant contributions
made by the community over the years. And yet, most of these useful works have still
not made it into the mainstream technology of modeling in practice so far. Today,
the large majority of analysts uses standard scripting environments for modeling, and
off-the-shelf visualization software for the results, which is far from the state of the art in
interactive machine learning. However, the first commercial tools with a focus on human-
oriented modeling have recently started to emerge. Exploratory [Nis17], and Dataiku
DSS [dat13], for example, provide interactive visual interfaces to proven algorithms from
R or Python, that can be used without programming skills. According to these sources,
as well as our own experiences with Visplore, the need for more accessible statistical
modeling is real, and growing. And the more interactive approaches become part of the
mainstream, the easier it will get to translate the newest techniques and findings from
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Visual Analytics science into practice. Until then, I hope, that the described efforts for
empowering inexperienced modelers, and for making algorithms ready for visualization
have contributed an important part to this joint movement of democratization.
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Opening the Black Box: Strategies for Increased User Involvement
in Existing Algorithm Implementations

Thomas Mühlbacher, Harald Piringer, Samuel Gratzl, Michael Sedlmair and Marc Streit

Abstract— An increasing number of interactive visualization tools stress the integration with computational software like MATLAB and
R to access a variety of proven algorithms. In many cases, however, the algorithms are used as black boxes that run to completion in
isolation which contradicts the needs of interactive data exploration. This paper structures, formalizes, and discusses possibilities to
enable user involvement in ongoing computations. Based on a structured characterization of needs regarding intermediate feedback
and control, the main contribution is a formalization and comparison of strategies for achieving user involvement for algorithms with
different characteristics. In the context of integration, we describe considerations for implementing these strategies either as part of
the visualization tool or as part of the algorithm, and we identify requirements and guidelines for the design of algorithmic APIs. To
assess the practical applicability, we provide a survey of frequently used algorithm implementations within R regarding the fulfillment
of these guidelines. While echoing previous calls for analysis modules which support data exploration more directly, we conclude that
a range of pragmatic options for enabling user involvement in ongoing computations exists on both the visualization and algorithm
side and should be used.

Index Terms—Visual analytics infrastructures, integration, interactive algorithms, user involvement, problem subdivision

1 INTRODUCTION

A tight interplay between visualization, interaction, and analytical
computation is the core aspect of Visual Analytics [25, 45]. The mo-
tivation is to combine cognitive and perceptual capabilities of human
analysts with computational capabilities for tasks like statistical mod-
eling, planning, and decision making [43]. In addition to intelligent
visualization and interaction concepts, involving the user in the anal-
ysis process implies delivering results and visual feedback within at
most a few seconds [9] and ideally less than 100 ms [42]. Particularly
for large data, this requirement contradicts the computational effort of
many advanced algorithms like clustering or dimension reduction.

As a compromise, a growing number of systems apply strategies
like early visual feedback of partial results [17, 23], cancellation
on arrival of new input [36], or active steering of a computation in
progress [10]. In current practice, however, this type of application-
specific fine-tuning often involves a reimplementation of algorithms
by researchers and practitioners in Visual Analytics [15]. The obvious
disadvantages include a sub-optimal use of skills and resources and an
explosion of proprietary implementations rather than standardized and
tested solutions.

In contrast, existing systems and languages for data analysis have
widely been used for a long time and offer a variety of proven algo-
rithms. In fact, an increasing number of academic and commercial
visualization tools stress the integration with software like MATLAB
and R (e.g., the R integration in Tableau1 or [38]). Two key goals are to
offer the algorithmic functionality within the visualization tool and to
increase the acceptance by data analysts who have been working with
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these script-based environments for years. Packages like RServe2 or
the MATLAB API3 make the integration reasonably easy from a soft-
ware engineering point of view. However, as pointed out by Fekete,
“computation and analyses are often seen as black boxes that take ta-
bles as input and output, along with set of parameters, and run to com-
pletion or error without interruption” [15]. In general, it is commonly
stated in the Visual Analytics community that exploration is not taken
into account in most infrastructures for analysis computation [25], ex-
plaining “calls for more research [...] on designing analysis modules
that can repair computations when data changes, provide continuous
feedback during the computation, and be steered by user interaction
when possible” [15].

Motivated by and echoing these calls, we structure requirements
and formalize strategies to achieve them. Using this formalization, we
argue that a range of possibilities for implementing these strategies al-
ready exists based on currently available computation infrastructures.
Specifically, the focus of this paper is on studying conceptual possi-
bilities for tightly integrating analytical algorithms of existing com-
putation software into interactive visualization tools. A main goal of
the paper is to increase the awareness and the understanding of these
possibilities within the Visual Analytics community. Another goal is
to improve the understanding of the needs of Visual Analytics appli-
cations within communities focusing on algorithm design like Knowl-
edge Discovery and Data Mining. To this extent, the contributions of
the paper can be summarized as follows:

• A structured characterization of visual exploration needs con-
cerning user involvement in ongoing computations.

• A formal characterization and comparison of strategies for
achieving user involvement in different types of algorithms

• Considerations for implementing these strategies either as part
of the visualization tool or as part of the algorithm, including an
identification of requirements and guidelines for the design of
algorithmic APIs in favor of a tight integration.

• A survey of frequently used algorithms for knowledge extraction
and model building of multivariate data regarding the fulfillment
of these guidelines as a case study based on the software R.

2 RELATED WORK
Over the last decades, the interplay between computational environ-
ments and visualization has been addressed in numerous research pa-
pers and commercial systems. On the one hand, visualization systems

2http://rforge.net/Rserve
3http://www.mathworks.com/products/matlab



integrate computational tools to perform calculations, as found in re-
search [24, 38, 47] as well as in commercial products like Tableau,
JMP4, or Spotfire5. However, these implementations often boil down
to a black box integration that is insufficient for realizing interac-
tive exploration of large datasets as envisioned in this paper. On
the other hand, there are graphical libraries developed for extending
computational environments by visualization capabilities, such as the
GGobi[44] package for R. However, these extensions are usually not
designed for dealing with large datasets and do not allow users to ac-
tively interact with ongoing computations.

The visualization community has already identified the need for in-
termediate results, which state-of-the-art computational environments
cannot provide in most of the cases. According to Fekete [15], an-
alytical environments are not designed for exploration and algorithm
designers often make no effort to provide such early results during
computation. In the VisMaster book [25, p. 97f], the authors take
the same line by explicitly identifying needs and goals for realizing
interactive visual analysis. The major goals are to get fast initial re-
sponse with progressive refinement, to provide means for triggering
recomputation following small changes, and to allow analysts to steer
the computation. The work by Fisher et al. [17] confirms the need
for early feedback during computations by a user study on incremen-
tal visualization. A more general discussion of user involvement in
online algorithms together with a description of example implementa-
tions has been provided by the CONTROL project [23]. We take this
requirements analysis one step further, and provide a detailed discus-
sion of how different types of early information exchange support user
involvement in interactive exploration.

User interaction in a more general sense was investigated by Yi et
al. [52], who proposed seven interaction categories for visualization
based on the user’s intent, Card et al.’s venerable work [9] on three lev-
els of time constraints in interaction, or in Nielsen’s book on usability
engineering [32]. While these works cover important needs of user
involvement in general, we focus on bidirectional user involvement in
ongoing computations (Sec. 3), and we derive strategies for achieving
the desired involvement in practice (Sec. 4).

To enable earlier user involvement, strategies to accelerate result
availability have been proposed in various contexts. Examples in-
clude pre-aggregation strategies for databases such as OLAP and data
cubes [28], as well as sampling and filtering techniques for progres-
sive refinement in online aggregation [16, 17, 23], enumerative queries
[23], or data mining [51]. For subdividable problems, Divide-and-
recombine (D&R) approaches split up a problem into multiple parts,
solve the parts individually, and finally recombine the partial results.
Examples include MapReduce [12] or RHIPE [21]. However, these
examples focus more on speeding up the computation of large data by
parallelization, rather than actively involving the user.

The need of visualizing incremental results can be found in many
different application contexts beyond multivariate data analysis. Pro-
gressive drawing is a well-known approach in volume rendering [8],
map rendering applications such as Google or Bing Maps, or the draw-
ing of function graphs [35]. Particularly interesting in this respect is
the work by Angelini and Santucci [1], as it provides a formal model
that allows characterizing and evaluating incremental visualizations
regardless of the application context. Furthermore, much research has
gone into visually representing the uncertainty of incomplete results
[17, 20, 34]. While this is important, the focus of this paper lies on
achieving intermediate feedback in the first place, while particular vi-
sualization techniques are out of scope.

In summary, many approaches have been proposed to achieve user
involvement in ongoing computations. Building on these possibilities,
our primary goal is to provide a more formal characterization and com-
parison of strategies for achieving user involvement for different types
of algorithms, together with a discussion in the context of integration
with existing computational environments.
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Fig. 1. Types of User Involvement (TUI) structure the needs of visual
exploration concerning user involvement in ongoing computations along
two directions: the direction of information and the entity of interest.

3 TYPES OF USER INVOLVEMENT

As a starting point for discussing integration concepts, this section
describes four different Types of User Involvement (TUI) that an in-
teractive visualization may support for an ongoing computation of an
algorithm P. In the context of this paper, the main goal of the TUI is to
discuss the needs of visual exploration regarding the integration with
ongoing computations more specifically.

The scope of the TUI is limited to the time between the start and the
end of a computation of P, i.e., it does neither include a priori param-
eterization, nor any further application of the final result rP. Accord-
ingly, we define the scope of P such as to include any bounded compu-
tation or algorithm that has a well-defined end. Note that this explicitly
excludes problems that can change over time, such as accounting for
new data that concurrently arrives via streaming. We will refer to a va-
riety of algorithms from multivariate analysis for illustrating the TUI
and other concepts. In particular, we will relate to the well-known al-
gorithms k-means clustering (as in the R method kmeans) and model-
based feature subset selection (as in the R method regsubsets) as
recurring examples whenever reasonable, and refer to them using the
abbreviations KMEANS and SUBSETS.
We define the TUI based on two orthogonal dimensions (see Fig. 1):

1. The direction of information. We distinguish between feedback
and control. Feedback comprises information which is passed
from the computation to the user and requires an appropriate vi-
sual representation to enable an efficient and correct interpreta-
tion by the user. Control is information passed from the user to
the computation and requires appropriate interaction techniques.

2. The entity of interest. We distinguish between information
concerning the execution of the computation, and information
concerning final or intermediate results of P.

The four TUI are defined as the Cartesian product of these dimensions
and will be discussed in the following sections: execution feedback
(Sec. 3.1), result feedback (Sec. 3.2), execution control (Sec. 3.3), and
result control (Sec. 3.4). This classification of TUI is independent of
any specific algorithm or the structure of its result as well as any partic-
ular implementation and strategy how a certain involvement has been
realized. We emphasize that our focus is on the question what can
be visualized and controlled and why from a user’s perspective rather
than on the issue how, which depends on the particular algorithm P.
We also stress that this paper does not assume every type of user in-
volvement to be indiscriminately beneficial for each situation. User
involvement may incur costs and complexities on multiple levels in-
cluding the implementation, the computation, and the application by
users. Identifying the most appropriate degree of user involvement is
a key topic of Visual Analytics [3, 11, 27, 46] and depends on the al-
gorithm and the application context. Our focus is on the classification
of known types of user involvement and on general strategies to ac-
complish it on a technical level rather than on the assessment, when
specific TUI are appropriate.

4http://www.jmp.com
5http://spotfire.tibco.com



3.1 Execution Feedback
This TUI comprises any kind of feedback about the ongoing compu-
tation of P as such. Common types of information include:

• Aliveness confirms that the computation is in progress and no
event has occurred that may cause failure to eventually deliver
the final result, e.g., a crash, a deadlock, or a lost connection.

• Absolute progress includes information about the current ex-
ecution phase of P which may be qualitative (e.g., “comput-
ing distance matrix...”) or quantitative (e.g., “iteration 12” for
KMEANS or the number of processed data items [1]).

• Relative progress includes information about the degree of com-
pleteness of P which is frequently provided as percentage or as
an estimate of the remaining time.

From the user point of view, execution feedback should mainly an-
swer two questions: First, can any result be expected at all? This may
not be the case either due to the occurrence of a failure or an unaccept-
ably long time required for computation. Second, does it make sense
to wait for the result or do something else in between?

3.2 Result Feedback
This TUI involves any kind of intermediate feedback regarding the
result rP of the ongoing computation of P. We distinguish between
four common classes of result feedback:

• Structure-preserving intermediate results ˜rPi are structurally
equivalent to the final result rP in the sense that the same tech-
niques for visualization and data processing can be applied to
them as surrogates while rP is not yet available. This is typi-
cally the case for iterative and anytime algorithms. For example,
the intermediate object positions after each iteration of a multi-
dimensional scaling algorithm are structurally equivalent to the
final positions. In case of the SUBSETS example, the best subset
found so far has the same structure as the eventually best sub-
set. Further examples from literature include non-negative ma-
trix factorization [10], self-organizing maps [40], and data aggre-
gation [17]. The structure of rP may be multi-faceted, however,
and consist of multiple parts of which only a subset is provided
as feedback during computation. In the KMEANS example, rP
comprises both the cluster centers and the cluster assignments of
all data points. To limit data transfer, showing only the interme-
diate centers during computation could be a reasonable option.

• Aggregated information provides a certain aspect of interme-
diate results ˜rPi without preserving the structure in full detail.
Common examples are quality measures of ˜rPi [5], e.g., the good-
ness of fit for the best subset so far with respect to a certain type
of model (in the SUBSETS example) or the overall stress of the
current solution in case of multidimensional scaling.

• Uncertainty concerning the final result rP as estimated based on
the available intermediate information. An example are confi-
dence bounds for rP [17].

• Provenance includes any type of meta-information concerning
simplifications made for generating ˜rPi . Depending on the strat-
egy to enable user involvement (see Sec. 4), this class may in-
volve information about the considered data or the settings of
complexity parameters. In this respect, provenance information
is related to execution feedback about the absolute progress, but
always refers to a particular intermediate result ˜rPi .

An appropriate visual representation depends on many aspects like
the type and structure of the intermediate results ˜rPi , the update rate of
˜rPi , the involved amount of transferred data, and the intended goal of

the visualization. It should, however, ensure that the result is perceived
as intermediate. One option for doing so is to explicitly represent the
change of the intermediate results over time. Examples include tech-
niques of comparative visualization [19] to represent the difference
between ˜rPi and ˜rPi−1 , or line graphs to visualize the convergence of
aggregated information or uncertainty over time [17].

The key benefit of intermediate result feedback for the user is to
enable an earlier continuation of the analysis based on preliminary
information. Moreover, result feedback supports the decision whether
the ongoing computation should be cancelled. This may be the case

if the current intermediate result is already good enough or if the final
result is not likely to be good enough. Finally, access to intermediate
results is a key requirement for result control (see Sec. 3.4).

3.3 Execution Control
This TUI involves any kind of control of the execution of the ongo-
ing computation of P as such. The most important type of execution
control is cancellation, i.e., an explicit or implicit request to cancel
the execution prematurely. Explicit requests are issued by the user if
control feedback or result feedback suggests that either intermediate
results are good enough, or the final result is unlikely to be good, or
no result can be expected in acceptable time at all. Implicit requests
are typically triggered by updated dependencies of the algorithms like
changed input data and algorithm parameters. Such requests often en-
tail a subsequent restart of the computation, a paradigm described in
the context of multi-threaded visual analysis [36].

Another type of execution control is the prioritization of the re-
maining work. While the final result rP is not affected, the purpose
is to alter the sequence of intermediate results in order to generate
presumably more interesting ones earlier. In this respect, prioritiza-
tion can be regarded as borderline case between execution and result
control. Examples include algorithms involving spatial partitioning or
hierarchical structures where users may want to process more interest-
ing parts first [50]. As another example, algorithms processing search
spaces may benefit from looking into more promising regions first.

3.4 Result Control
This TUI refers to user interaction with the ongoing computation of P
in order to steer the final result rP. This enables users to take advan-
tage from human perception and domain knowledge [3, 25, 45], e.g.,
for early validation of intermediate results, guided feature selection,
weighting, and for avoidance of being stuck in local extrema. In the
widest sense, this TUI corresponds to the common understanding of
the Visual Analytics process as defined by Keim et al. [26]. Conse-
quently, a significant share of the Visual Analytics literature addresses
this TUI, e.g., clustering [31], classification [48], regression [30], di-
mension reduction [14], distance functions [7], and many others.

In the context of this paper, it is helpful to distinguish between in-
ner and outer result control. The difference is whether the steering is
based on intermediate results of a single execution of P, or on final
results of multiple individual executions. Inner result control thus
refers to the ability of controlling a single ongoing computation of P
before it eventually returns a final result. Typical examples are partial
modifications of the computation state between two consecutive itera-
tions of P. In the KMEANS example, users could be allowed to shift,
merge, or split cluster centers between iterations.

Outer result control involves multiple consecutive executions of
P that do not directly re-use previous results. It imposes no require-
ments on the algorithm, but relies on the visualization tool to enable
the discourse between the user and the computation. As stated above,
our scope of the TUI is limited to the time between the start and the
end of a single computation of P. Therefore, outer result control is not
relevant for this paper from the point of view of algorithm design.

4 STRATEGIES FOR ACHIEVING USER INVOLVEMENT
The previous section defined types of user involvement in ongoing
computations. This section describes four strategies S1 – S4 to achieve
user involvement for algorithms with different characteristics. We note
that our focus is on the technical applicability of these strategies for
enabling any type of user involvement, not on the discussion when
specific TUI are appropriate from an application point of view. The
motivation of these strategies within this paper is achieving a tighter
user involvement in integrations of interactive visualization software
with computational environments, such as R or MATLAB. However,
their formulation does not rely on this application context, but can be
regarded as a contribution to general algorithm design regarding early
user involvement.

The common key idea of the four strategies is to replace the ex-
ecution of an algorithm P by a series of smaller steps {P̃1, ..., P̃n} in
order to allow feedback and control between any subsequent steps P̃i
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Fig. 2. S1: Data Subsetting. Additional passes of P for increasing sub-
sets of data are computed to allow user involvement after a shorter time.

and ˜Pi+1. The simplification of P to steps P̃i can be achieved in several
ways, which can be characterized based on two orthogonal aspects:
(1) The dimension of simplification of P can either be the input data,
the parameters, or the algorithm itself. (2) The approach of simplifi-
cation along these dimensions can be realized by subdivision of P for
divisible problems, or based on simplified extra passes if a subdivi-
sion is not possible. The Cartesian product of these two aspects yields
six combinations which are entirely covered by our four strategies: S1
computes extra passes for simplified data, S2 computes extra passes
for simplified parameters or a simplified algorithm. S3 subdivides P
into subproblems with respect to data or parameters, while S4 subdi-
vides the control flow of the algorithm as such. In this sense, we argue
that our set of strategies is complete in the context of our scope, i.e.,
enabling user involvement during the computation of operations with
bounded effort.

Motivated by the structured approach of describing and compar-
ing design patterns in software engineering [18], we characterize each
strategy in terms of the name, definition, scope, examples, considera-
tions regarding user involvement, and computational implications.

4.1 S1: Data Subsetting
Definition. Perform computations of P for increasingly larger subsets
Di ⊆ Di+1 ⊆ D of data records or dimensions of a data table D in
additional passes and enable user involvement after completing every
pass P̃i = P(Di) (see Fig. 2).

Scope. S1 operates solely in the data space. As a consequence, S1
is structurally applicable to any algorithm that operates on a data table
or data vector D. From an application point of view, S1 requires that
intermediate results provide a meaningful approximation of the final
result rP. Specifically, this is the case for algorithms inferring a global
structure like clusters, trends, and aggregation.

In contrast to strategies subdividing the workload into disjoint seg-
ments (i.e., S3), the subsetting of D does not rely on reusing results
between passes. As a consequence, S1 is in particular applicable in sit-
uations where algorithms cannot reasonably be subdivided for inherent
structural reasons or due to constraints imposed by their programming
interface. This makes S1 the most generally applicable strategy that
requires little knowledge about the inner structure of P.

However, the type of P determines whether subsetting is possible
and reasonable in terms of data records (i.e., rows of D) or in terms of
data dimensions (i.e., columns of D). Another important consideration
is the method for defining the subsets of D, which significantly affects
how representative the intermediate results are. This issue is directly
related to sampling, which is discussed extensively in the literature
also in context of visualization [4, 13, 28, 33].

Examples. As stated above, S1 is generally suitable for algorithms
inferring a global structure or information. This includes, for example,
most algorithms from unsupervised statistical learning [22]. In this
case, subsetting data records may enable an early detection and poten-
tially correction of wrong assumptions or inadequate parameters, e.g.,
a wrong number of clusters in the KMEANS example. Dimension
reduction techniques like PCA and MDS may also benefit from sub-
setting of data records just as most descriptive statistics like statistical
moments (e.g., mean, variance, skewness), percentiles, etc.

While the purpose of subsetting in S1 is achieving early user in-
volvement, techniques from supervised learning may already include
record-based subsetting for the purpose of model validation [22].
Depending on the purpose of the model, however, applying S1 for
speedup may still be applicable, e.g., when visually indicating linear
trends in a scatter plot. More care must be taken with subsetting of
dimensions in machine learning, as the selection of features is very
critical for the quality and representativity of results.
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Fig. 3. S2: Complexity Selection. Additional passes of P for simplified
parameters are computed to allow user involvement after a shorter time.

User involvement. The key parameters for enabling user involve-
ment are the number and the size of the data subsets Di. These param-
eters enable a tradeoff between frequency of user involvement, quality
in terms of completeness of intermediate results, and computational
overhead. The typically known size of Di relative to D enables a direct
quantification of the completeness in terms of the considered data size.
This information should especially be conveyed as feedback regarding
result provenance and can also be seen as absolute progress. Feed-
back concerning the relative progress with respect to the overall time,
however, requires intimate knowledge of the computational complex-
ity of P. Especially for client-driven implementations (Sec. 5.1), this
may also be a major challenge for enabling user control mechanisms
at an approximately equal rate.

Computational implications. The computational overhead of S1
is the sum of all P(Di), which can be very significant. On the other
hand, the execution of the P(Di) and the P(D) is easily parallelizable.
In so far, S1 does not necessarily incur a latency for receiving the final
result. In an extreme case, all P(Di) as well as P(D) are scheduled
independently, loosely relying on the increasing effort for computing
increasing percentages of D to arrive in order. The memory consump-
tion, however, typically also increases with the degree of paralleliza-
tion due to a multiplication of algorithm-internal structures. Regarding
the storage of Di, indexing of D should be used whenever possible to
avoid data duplication and reduce data transfer.

4.2 S2: Complexity Selection
Definition. Perform computations of P for less complex parameter
configurations P̃i in additional passes before computing P itself, and
enable user involvement after completing every pass P̃i (see Fig. 3).

Scope. S2 operates in the parameter space of P. Therefore, the
applicability of S2 is determined by the existence and accessibility of
complexity parameters that enable a speed vs. quality tradeoff. In par-
ticular, this applies to approximation algorithms [49] and many heuris-
tics of computationally intractable problems in operations research,
but also to many algorithms in other fields like statistics (see below).

In contrast to S1 that operates in data space, the application of S2
is very dependent on P and typically requires structural knowledge of
P and the effect of parameter changes in context of the specific data.
This is a highly non-trivial issue in general as also shown by the grow-
ing importance of parameter space analysis as a topic in visualization
literature [41]. In particular, the purpose of many complexity param-
eters in statistics is to adjust the suitability for particular data and a
particular purpose rather than to simply trade off quality versus speed.
An example is the bias vs. variance tradeoff of many types of sta-
tistical models [22], where additional complexity improves the model
quality only to a certain point before degrading generalizability due
to over-fitting. As a consequence, S2 should only be considered for
algorithms where concluding from intermediate results ˜rPi to the final
result rP is meaningful.

On the other hand, S2 does not require any structural decomposabil-
ity of P, as it is the case for S3 and S4. In contrast to S1 which requires
vector- or tabular-oriented data, S2 is also applicable to algorithms
working on non-decomposable operands like analytical functions.

Examples. In operations research, approximation algorithms for
computationally intractable problems are common. They provide a
solution that is provably optimal up to a constant – and often definable
– factor and have provable run-time bounds [49]. For nearest neighbor
search, for example, ε-approximate variants exist that enable to trade
off the probability of finding the true nearest neighbor versus space and
time costs especially in high-dimensional spaces (e.g., Arya et al. [2]).

Further examples of complexity parameters include the refinement



Workload W

w1 w3w2

w1

w2

w3

rP(w )2

rP(w )3

rP(w )1

rP(w  )k

P(W)
P

P

P

S3

Algorithm P Result rP
rP

C rP1
~

rP2
~

C
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of subdivision schemes, the size of search radii, thresholds for stop-
ping criteria, or even the algorithm itself as long as different algorithms
yield structurally equivalent results, which includes most heuristics.
Many algorithms for feature subset selection (SUBSETS), for exam-
ple, differ in whether they perform a greedy or an exhaustive search.

User involvement. The key parameters for enabling user involve-
ment are the number of approximation steps and the complexities of
the steps. Unlike for S1, the degree of freedom for both parameters is
determined by P. Quantitative complexity parameters like thresholds
may enable a precise choice of the number of approximations and even
a quantification of the completeness or precision (e.g., for estimating
relative progress). Conversely, categorical parameters such as avail-
able heuristic algorithms may impose a strict limitation on the number
and complexities of steps, and complexities may be hard to estimate
or even order. This makes a quantification of the progress difficult or
impossible in general and only enables qualitative feedback regard-
ing progress and result provenance. While feedback regarding result
provenance is essential especially for strategy S2, however, only expert
users will often be able to interpret the information. As for S1, another
challenge for client-driven implementations (Sec. 5.1) will typically be
to enable user control mechanisms at an approximately equal rate.

Computational implications. The computational overhead of S2
is the sum of additional passes for computing the steps P̃i. However,
these computations are independent and thus easily parallelizable. As
discussed for S1, this enables to reduce or avoid the latency for receiv-
ing the final result rP at the cost of increasing memory consumption.

4.3 S3: Divide and Combine
Definition. Subdivide a workload W into n disjoint parts {w1, ...,wn},
apply P independently to each part wk to generate partial results
{rP(w1), ...,rP(wn)}, and compute intermediate results or the final re-
sult based on combining some or all rP(wk) (see Fig. 4).

Scope. S3 imposes two requirements on P: First, independent ap-
plications of P to parts wk of a subdivided workload W must be possi-
ble in order to generate the partial results rP(wk). Second, a meaningful
combination C must exist to combine subsets of partial results to inter-
mediate results ˜rPi that are structurally equivalent to the final result rP.
In particular, applying C to all partial results yields the final result rP
of P. In context of S3, a single step P̃i thus comprises the computation
of a subset of partial results and the application of C to them.

The subdivision of W can be defined in terms of data (i.e., data
space-based) or parameters (i.e., parameter space-based) that P is ap-
plied to. A data space-based subdivision is specifically possible in
cases where applying P to a collection of elements (e.g., a set, a vec-
tor, a matrix) internally involves applying the same operation to each
element. A parameter space-based subdivision is applicable to algo-
rithms that take a specification of a domain (e.g., the extents of a search
space) as a parameter, given that disjoint parts of the domain can be
processed independently. It should be noted that a disjoint subdivision
of the workload W does not in all cases imply a disjoint subdivision
of the data or parameter space considered by each P(wk) for compu-
tation. In other words, the disjoint subdivision applies to the output
of P rather than the input of P. Tolerating a certain overlap in the in-
puts of multiple P(wk) extends the applicability of S3 to operations
that require a specified context around each processed element, e.g.,
for convolution or pattern search.

The characteristics of the combination C depend on the structure of
the result rP. In many cases, C is a composition of partial results in
order to restore their context within W which has been lost due to the
initial subdivision. Sometimes, C may also be a simple aggregation
(e.g., maximum or mean). In any case, a practical requirement is that
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Fig. 5. S4: Dependent subdivision. The idea is to involve the user
between sequentially dependent steps of algorithms P, e.g., iterations.

an application of C should be cheap to perform compared to comput-
ing the partial results themselves. The reason is that the intermediate
results ˜rPi are composed of arbitrary and non-disjoint subsets of the
partial results (see Fig. 4). C may thus be applied to a single partial
result multiple times for generating different intermediate results.

In order to avoid confusion, we point out that S3 is related and
often applicable yet not equivalent to divide and conquer (D&C) algo-
rithms [6]. For D&C algorithms, the subdivision is an inherent prop-
erty of the algorithm while S3 refers to a subdivision-based strategy in
a broader sense. In particular, S3 does not require that the application
of P to a single element P(wk) becomes trivial. In this respect, S3 is
more related to parallelization paradigms like MapReduce [12].

Examples. An example for data space-based S3 is the sampled
evaluation of a function, e.g., for progressive rendering of increas-
ingly fine-grained function graphs. In this case, P is the evaluation
of the function for a set of positions, W are the positions of all sam-
ples, wk is a certain subset, and C restores the context (i.e., the position
and order) of results of P within W . Another example is the progres-
sive computation of aggregates, e.g., the average [17]. In this case, P
may involve potentially optimized algorithms for computing the ag-
gregate for blocks of data wk and C further aggregates multiple rP(wk)

according to their cardinality.

A parameter space-based example is the computation of the auto-
correlation of a time series. The parameter refers to the interval (W )
of considered lags. This interval can be separated in disjoint parts and
C recomposes the autocorrelation as a function of the lag-size.

User involvement. The two key characteristics of S3 are the degree
of subdivision (DIVIDE, i.e., the number n of wk), and the strategy to
generate the intermediate results ˜rPi (COMBINE). In general, DIVIDE
is the more decisive factor for execution feedback and control while
COMBINE determines the frequency and quality of result feedback.
An approximately uniform subdivision of W facilitates feedback re-
garding the relative progress as compared to S1 and S2 and also en-
ables user control like cancellation at a roughly equal rate.

Regarding result feedback, COMBINE defines the ordering of the
computations for all parts wk, and the amount of additional complete-
ness for each intermediate result ˜rPi . As the number of intermediate
results ˜rPi is independent of DIVIDE, the rates for feedback and con-
trol may be different. It is therefore a possible strategy to internally
decouple the processing of COMBINE from DIVIDE (e.g., by multi-
threading), and to define the progress for each P̃i in terms of additional
time rather than W by applying C to all already completed rP(wk).

Computational implications. Increasing the degree of subdivi-
sion DIVIDE enables more fine-grained execution feedback and con-
trol without inherently inferring higher costs for obtaining the final
result rP(W). In practice, however, each application of P may involve a
certain overhead for reasons including the internal structure of P, po-
tentially overlapping inputs of multiple P(wk), and implementation-
related issues (e.g., data transfer, initialization, etc.). The latter
are typically more significant for client-driven implementations (see
Sec. 5.1). In addition, the overhead of S3 includes generating interme-
diate results from partial results and thus depends on COMBINE.

The independence of all P(wk) makes S3 suitable for performing
computations in parallel. In general, parallelization is typically a key
motivation for subdivision. In the context of user involvement, how-
ever, a certain degree of sequential scheduling is required in order to
involve the user between independent subsets of workload parts.



4.4 S4: Dependent Subdivision
Definition. Subdivide P into sequentially dependent steps P̃i so that
the result ˜rPi of each step is an input to the next step ˜Pi+1, and is struc-
turally equivalent to the final result rP. Enable user involvement be-
tween steps (see Fig. 5).

Scope. S4 poses requirements regarding the decomposability of P
and the structural equivalence of the result of each step ˜rPi to rP. In
particular, this includes iterative algorithms where the result of each
iteration serves as input to the next. In addition to inherently iterative
problems, multiple problems can directly be transformed to iterative
problems (e.g., recursive problems [6]), or an iterative variant exists
(e.g., iterative PCA [39]). While iterative algorithms are the by far
most important example of S4, the sequential steps could also be de-
fined in terms of an ordered domain that needs to be processed sequen-
tially, e.g., progressive signal reconstruction as described below.

In contrast to S1 and S2, each step P̃i can reuse the previous result
˜rPi−1 to avoid redundant computation. In contrast to S3, each step P̃i

depends on the previous step ˜Pi−1, i.e., it is not possible to decompose
the workload into independent parts.

Examples. S4 is in particular applicable to inherently iterative al-
gorithms. In statistical learning, prominent examples include (1) the
training of regression or classification models such as neural networks,
(2) dimension reduction algorithms like multi-dimensional scaling,
and (3) clustering algorithms such as partitioning around medoids or
the recurring example KMEANS. Other examples are force-based al-
gorithms for graph layout [29], as well as algorithms that – potentially
recursively – build hierarchical structures (e.g., decision trees), where
each recursion adds to the complexity of ˜rPi .

Concerning sequential processing of an ordered domain, consider
a progressive reconstruction of a signal (e.g., a time series or an im-
age) from a frequency-based representation, as common for displaying
large JPEG images. An implementation of S4 could define P̃i as to re-
construct a certain disjoint band of increasingly higher frequencies and
to add the result to the already reconstructed part of the signal.

User involvement. The key parameter for enabling user involve-
ment is the step size, denoted by s. Varying s enables to trade off
the frequency of feedback and user control against the computational
overhead involved with each step. For iterative algorithms, s is typi-
cally defined in terms of iterations which enables user involvement at
an approximately equal rate. Whether relative feedback can reason-
ably be provided depends on whether the number of steps is known
in advance. As this often does not apply to convergent algorithms, a
distance from a termination criterion may be provided instead.

In contrast to all other strategies, each step P̃i depends on the result
of the previous step ˜Pi−1 for S4. We argue that this is a requirement for
permitting meaningful control of the ultimate result rP within an ongo-
ing computation of P, i.e., enabling inner result control (see Sec. 3.4).
For S1 and S2, changing data or parameters typically requires to restart
computing all intermediate results, beginning with the simplest step.
For S3, obtaining a homogeneous final result rP requires that each
step P(wk) is computed in the same way for all independent workload
parts wk. For these reasons, outer result control is more appropriate
when applying S1, S2, or S3. In contrast, for iterative algorithms, in-
ner result control can be reasonable to enable domain knowledge for
affecting convergence (e.g., avoiding local extrema).

Computational implications. As discussed for the degree of sub-
division of S3, the step size s may have a practical effect on the compu-
tational overhead imposed by S4. Unlike for S3, however, the sequen-
tial dependence of the P̃i on each other does not permit parallelization.

5 CLIENT-DRIVEN VS ALGORITHM-DRIVEN IMPLEMENTATION
OF STRATEGIES

The previous sections characterized types of user involvement in on-
going computations (Sec. 3) and described four strategies to achieve
user involvement for algorithms with different characteristics (Sec. 4).
This section discusses possibilities of realizing the strategies when in-
tegrating interactive visualization software and computational environ-
ments. We will refer to these environments as VIS and COMP, where
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Fig. 6. Reimplementing algorithms P in VIS allows to achieve user in-
volvement but involves substantial effort for VIS (left). In client-driven
integration, VIS implements strategies for achieving user involvement
by connecting to existing P that provide adequate interfaces (middle). In
algorithm-driven integration, VIS connects to algorithms that implement
strategies and provide communication directly from within (right).

VIS can be any interactive visualization tool and COMP can be com-
putational environments such as R or MATLAB, as well as any other
external computational resource or library.

We discriminate between three responsibilities:
Algorithm refers to performing the computation of P or P̃i.
Client refers to visualizing the feedback of Algorithm and the han-

dling of user input, i.e., the elements for human-computer interaction.
Flow control refers to implementing the control flow and commu-

nication between Algorithm and Client. This includes the implemen-
tation of a strategy for defining and scheduling the steps P̃i.

Currently, a frequent situation in Visual Analytics is that all three
responsibilities, i.e., Algorithm, Client and Flow control are imple-
mented as part of VIS (see Fig. 6, left column), which has disadvan-
tages as pointed out in related work [15] and in the introduction. In
context of integrating VIS and COMP, however, we assume that the
role of the Algorithm is provided by COMP and the role of the Client is
taken by VIS. In this case, the Flow control can either be a responsibil-
ity of VIS (client-driven integration, center column in Fig. 6), or a re-
sponsibility of COMP (algorithm-driven integration, right column in
Fig. 6). Characterizing, comparing, and discussing these two scenar-
ios is the purpose of this section. We establish requirements imposed
by client- and algorithm-driven integration, and we derive guidelines
to the design of the interface of P in favor of flexible client control.

5.1 Client-driven integration
In client-driven integration, the definition and scheduling of the P̃i is
managed by VIS, while their computation is performed by COMP. Be-
tween any steps P̃i and ˜Pi+1, VIS can realize user involvement, e.g., by
visualizing ˜rPi or by adjusting the call of ˜Pi+1 according to user input.
This externalization of the control flow requires that the programming
interface of P exposes all parameters that clients need to define P̃i. We
subsequently analyze these requirements for each strategy.

In S1, the P̃i are defined as executions of P on subsets of the input
data D. Externally produced subsets can be fed to P instead of the
full D, making S1 applicable for client-driven integration without ad-
ditional requirements. In S2, a client-driven selection of complexity
involves calling P for different parameters. This yields the following
interface Requirement for a Client-driven integration (RC) for S2:

RC 1. Expose complexity parameters to trade off speed for quality.

Considering the central role of most complexity parameters, this
criterion is not very limiting in practice (see Sec. 6). For S3, clients
need to define a part of the subdivided workload W for each call of P.
To support S3, the interface of P must meet the requirement RC2:

RC 2. Enable a precise specification of the processed workload.

For data space-based applications of S3, a subdivision into coherent
blocks is often possible on the client side. Parameter space-based ap-
plications of S3 require the possibility to fully specify boundaries via
the interface, e.g., the lower and upper limit of a considered subspace.



Requirement RC2 also holds for S4, as the sequential processing of
iterations is also based on a decomposition of workload. The specifi-
cation can either be explicit, i.e., the number of iterations performed
in P̃i, or implicit, by means of a stopping criterion.

A second requirement of S4 is the ability to pass the final state of P̃i
on to ˜Pi+1. We identify RC3 for S4 as follows:
RC 3. Provide access to all parts of the state as output, and accept
equivalent information as input, in order to enable resuming the com-
putation with minimal redundancy.

The form of this state information depends on P. For statistical
learning, the state is often the model itself (e.g., a regression model or
cluster centers). While the model is typically the output of such P, not
all interfaces support accepting a model as an input to proceed with.

It should be noted that not all strategies are appropriate for every
algorithm. Given that a particular strategy is appropriate for P, algo-
rithm developers should account for those RC that are required by this
strategy in order to enable an appropriate degree of user involvement.
Regarding execution feedback, the arrival of steps P̃i and their defini-
tion can be reported for aliveness and absolute progress. Regarding
result feedback, the client may directly visualize intermediate results
˜rPi or use any output of steps P̃i to derive information such as quality

metrics as a post-processing step in VIS. Regarding execution con-
trol, considering user input in between enables to call a specific ˜Pi+1
for prioritization, or not at all for premature cancellation. Regarding
result control, ˜Pi+1 can be called for modified inputs.

Client-driven control enables several possibilities of realizing par-
allelization of steps P̃i. For S1, S2, and S3, multiple invocations of
P can be parallelized using multiple threads within COMP, multiple
instances of COMP, or even different computers in network- or cloud-
based environments. In practice, however, the incurred latency may
exclude some options regarding responsiveness for user involvement.

As an inherent limitation of client-driven integration, user involve-
ment is only possible between steps P̃i, i.e., invocations of P. This
may limit the achievable frequency of user involvement as opposed to
a reimplementation of P.

5.2 Algorithm-driven integration
In algorithm-driven integration, the Flow Control is realized directly
within the implementation of P. Specifically, P is responsible for
defining simplification steps P̃i according to a particular strategy, and
for communicating with the Client in order to enable user involvement.
Definition of the simplification steps. When defining the steps P̃i,
four objectives can be identified for different TUI: (1) Execution feed-
back should be provided as precisely as possible and at approximately
equal rates. (2) Result feedback should provide good approximations
of rP as early as possible. (3) Both execution control and result con-
trol should have a minimal latency. (4) The computational overhead
of user involvement should be minimal.

These objectives are partly contradicting each other. Defining the
steps P̃i represents a mechanism to control this tradeoff for optimiza-
tion within a given context. While the four objectives generally apply
to client-driven as well as algorithm-driven integration scenarios, typi-
cally the client knows their preference in context. For algorithm-driven
integration scenarios, it is thus desirable that the client has means of
controlling the definition of steps P̃i via the interface of P. However,
a direct definition of steps often requires an intimate knowledge about
the inner structure of P. In this sense, an algorithm-driven Flow Con-
trol provides two key advantages over client-driven integration:

First, the implementation of P is the more appropriate place to be
aware of the inner structure and any implications than the client. Ide-
ally, the client can specify the preference of the objectives and certain
constraints (e.g., a minimal frequency of feedback) while the algo-
rithm knows how to realize this specification. Based on this consid-
eration, we formulate the following Guideline for the design of P’s
interface in the context of Algorithm-driven integration (GA):
GA 1. Offer means for specifying preference and constraints by the
client regarding desired feedback and control rates.

A second advantage of algorithm-driven integration is that commu-
nication is not limited to the times between structurally equivalent P̃i.

For example, execution control can be realized after arbitrary blocks of
code, allowing to check for cancellation signals often without having
to generate result feedback at the same rate. This source-code level of
granularity also allows minimizing the overhead of executing multi-
ple steps P̃i instead of a single P, as the products of potential common
initialization steps can be reused.
Communication with the Client. In algorithm-driven integration,

the extent of supported feedback and control is entirely up to P. This
makes sense, as appropriate types of user involvement are strongly
algorithm-dependent. On that account, it is a key goal of this paper
to encourage algorithm developers to acknowledge the degree of sup-
ported user involvement as a conscious design choice.

The exchange of information between P and VIS can be imple-
mented in different ways. A simple feedback mechanism commonly
found in command line-based computation environments is providing
a textual trace of the ongoing computation to a console. This one-
directional form of communication is usually intended to be read di-
rectly by users, not clients like VIS. As a result, parsing the trace may
be difficult and highly algorithm-specific. As it is intended for console
display, larger amounts of data can not be communicated reasonably.

A more flexible option is the definition of an interface by the algo-
rithm for sending feedback to and querying control information from
an unknown client during the computation. Technically, a broad set
of communication techniques exists, including the registration of call
back procedures, dedicated points of code insertion, registration mech-
anisms implementing the Observer design pattern [18], message pass-
ing and application-layer network protocols.

As a common guideline in software engineering, we argue for a
separation of concerns in that algorithm implementations should need
to care more about what to communicate and when, rather than about
how and to whom. Details of the communication such as the number
and location of clients, or issues like parsing protocols should be de-
coupled from the actual implementation of P in order to minimize the
implementation effort of algorithm developers and to maximize the
reusability of an implementation in various environments. We see two
options to achieve this:

The first option is pragmatic in the sense that the algorithm develop-
ers should support the communication technique that incurs the min-
imal effort on their side. Translating one of the aforementioned tech-
niques to another is typically possible and requires an Adapter [18]
which can – and should – be realized outside the algorithm, for exam-
ple by the client developer. In many cases, the most simple technique
is providing means for registering callback methods in the same pro-
gramming language as the algorithm implementation. This inversion
of control enables a single client to insert code into P that is called at
semantically meaningful positions of the control flow for exchanging
feedback and control signals, e.g., between iterations. P does not need
to know the client but executes callbacks as a black box. A direct use
by clients may pose certain challenges, such as different languages of
VIS and COMP, or requiring VIS and COMP to be executed on the
same machine. However, as argued above, Adapter objects can be de-
fined to address these challenges, e.g., by translating local calls to Re-
mote Procedure Calls (RPC). We thus suggest the following interface
guideline as a pragmatic step towards separation of concern:

GA 2. Provide a callback interface to allow a client-side customiza-
tion of the communication protocol.

The second option of the algorithm developer is to rely on an exist-
ing communication infrastructure, which may be external or internal.
External refers to libraries and middleware outside the environment of
COMP, e.g., for message passing. While this typically enables more
powerful communication possibilities (e.g., over a network), a disad-
vantage for clients could be to incur the communication infrastructure
as potentially unwanted dependency. In contrast, an internal infras-
tructure refers to a dedicated extension of the COMP environment it-
self (e.g., MATLAB or the R core) that algorithms and clients can
use for benefit without additional complexity or dependency. How-
ever, such extensions are typically not provided today. We thus recom-
mend to realize powerful and easy-to-use communication mechanisms



Algorithm (package) Description Operates Exposes Definable State Provides Comm. Allows
on table complexity workload restorability communication granularity callbacks

param. (RC1) (RC2) (RC3) from within (GA1) (GA2)
tsne (tnse) T-SNE dimension reduction � � � � � (trace+GA2) � �

neuralnet (neuralnet) Neural network � � � � � (trace) � �

optim (stats) Optimization - � � � � (trace) � �

sammon (MASS) Multi-dimensional scaling � � � � � (trace) � �

vegas (R2Cuba) Monte Carlo Integration - � � � � (trace) � �

kmeans (cluster) K-means clustering � � � � � � �

som (kohonen) Self organizing map � � � � � � �

emcluster (EMCluster) Expectation max. clustering � � � � � � �

rpart (rpart) Recursive tree construction � � � � � � �

regsubsets (leaps) Best subset feature selection � � � � � � �

biglm (biglm) Linear model � � � � � � �

pam (cluster) Partitioning around medoids � � � � � (trace) � �

acf (stats) Autocorrelation � � � � � � �

ksvm (kernlab) Support vector machine � � � � � � �

Table 1. A survey of frequently used R algorithms regarding the fulfillment of the identified requirements and guidelines in favor of a tight integration.

between algorithms and clients as valuable future core extensions of
widely-used COMP environments.

A key consideration of respective extensions refers to their level of
abstraction. Low-level mechanisms do not directly support any se-
mantics of the communicated information but rely on the end points
to do so. Conversely, high-level mechanisms could directly provide
support for specific types of user involvement. For execution feed-
back and control (e.g., cancellation), this seems rather straightforward.
For result feedback and control, however, defining standardized means
seems highly non-trivial, but would enable benefits like querying in-
termediate results of different algorithms transparently to the client.
While this may be a too demanding step for current computation en-
vironments, considerations like these could be a starting point for de-
signing new computation infrastructures, as suggested by Fekete [15].

6 CASE STUDY “R”: APPLICABILITY OF STRATEGIES

In the previous section, we identified a set of requirements and guide-
lines for the design of algorithmic interfaces in favor of an applicabil-
ity of the proposed strategies. In this section, we investigate to which
degree an exemplary computational environment fulfills the require-
ments of client-driven integration or even actively supports user in-
volvement in the sense of algorithm-driven integration. Specifically,
we surveyed 14 common algorithms for important problems related to
multivariate analysis from the scripting environment R. The selection
of R was motivated by its broad acceptance in academia and corporate
research, the choice of algorithms was inspired by R’s reference list of
recommended packages for common topics, CRAN Task Views6.

Table 1 gives an overview of the survey results. The table suggests
that the large majority of the inspected algorithms supports a client-
driven application of multiple strategies, while only a few of them
directly provide algorithm-driven feedback. This indicates that there is
currently a large potential of realizing user involvement at the hands of
VIS developers, as well as potential for COMP developers to support
user involvement more directly.

The data-based S1 is applicable to all algorithms operating on a
data table. This applies to all our examples except for optimization
(optim) and monte-carlo integration (vegas), which take analytic
functions as inputs. Also, all investigated algorithms expose some
complexity parameter or method selector that influences the runtime
of single steps (RC1). For example, the pamonce option enables al-
gorithmic short cuts in Partitioning-around-medoids clustering (pam),
and best-subset feature selection (regsubsets) offers a selector of
exhaustive vs. stepwise methods. Furthermore, the majority of inves-
tigated subdividable algorithms fulfills the interface requirements of
strategies S3 and S4 (RC2, RC3).

However, not all surveyed algorithms fulfill RC1 - RC3, which al-
lows us to discuss potential interface improvements for specific real-
world examples. Note that this discussion is neither an assessment of
the algorithms themselves nor their specific implementations.

6http://cran.r-project.org/web/views

Example 1: The clustering method pam iteratively performs an ex-
haustive search of medoids, i.e., data records that exhibit a minimal
sum of distances to all other records. While pam allows the specifica-
tion of an initial set of medoids (RC3), it is not possible to subdivide
iterations into separate calls (RC2). Adding a numeric parameter indi-
cating the number of iterations to perform in each step would enable
users to suggest cluster medoids in-between, in order to speed up con-
vergence for large datasets as well as to avoid local minima.

Example 2: The iterative training of support vector machines as
provided by ksvm does not expose the divisibility of the underlying
Sequential Minimal Optimization [37]. However, the usefulness and
convergence of SVMs highly depends on the choice of multiple model
parameters. We suggest to enable a specification of the number of iter-
ations and the previously trained model as input parameters of ksvm.
This would allow early previews and cancellation of the model identi-
fication for an exploration of model parameters.

Example 3: Computing the autocorrelation function of a time se-
ries (acf) can be seen as a divide-and-combine approach of comput-
ing correlations between a time series T and different lags of T . While
acf allows a specification of the longest computed lag (lag.max) in
the sense of RC1, it lacks the counterpart lag.min needed for a work-
load specification according to RC2.

After surveying the examples regarding the client-driven applica-
bility of strategies, we now discuss the direct support of user in-
volvement as provided by algorithms. Several algorithms provide
a uni-directional trace of textual feedback to a console during their
execution (pam, vegas, sammon, optim, neuralnet and
tsne). Most of them allow specifying different levels of verbosity,
while tsne, neuralnet and optim even allow specifying the
interval between messages (GA1). Apart from this trace, one exam-
ple comes close to the perfectly accessible algorithm as outlined by
algorithm-driven integration: The iterative tsne algorithm for dimen-
sion reduction allows clients to define a callback (GA2) that is exe-
cuted instead of printing the trace at regular, client-definable intervals
(GA1). This enables flexible feedback in a consistent way.

However, we found no algorithms that consider control signals
during their execution. A possible explanation could be that R usu-
ally runs in single-threaded, stand-alone command line environments,
where the receiving of concurrent control signals is practically not fea-
sible. With callbacks at hand, however, algorithms could incorporate
control by considering the return value of callbacks in their control
flow. As long as measures like this have not been adopted, providing
user control is possible by implementing S1-S4 on the client-side.

This case study shows that very few of the examined R implemen-
tations directly provide intermediate feedback in a consistent way, and
none of them directly supports intermediate control. This confirms
the necessity of external means such as client-driven strategies when
integrating VIS with R for visual exploration. On the upside, all sur-
veyed algorithms fulfill the requirements of at least one client-driven
strategy. The fact that there are good as well as bad examples shows
that integrability lies at the hands of the single COMP developer, even



without the availability of standardized communication protocols.

7 DISCUSSION AND FUTURE WORK

This paper is intended to show individual developers in the VIS and
COMP communities practical measures of supporting integrability on
their end. We agree with previous work [15] that the development of
algorithms that directly provide standardized communication would be
highly desirable in this context, as it allows reuse and minimizes effort
for the VIS community. However, agreeing on protocol standards and
implementing them for existing P is tedious, and putting the full load
on the shoulders of COMP developers is not reasonable. The client-
driven application of S1-S4 can be seen as a practicable alternative that
allows VIS developers to achieve user involvement for a large number
of existing implementations. Adhering to interface requirements in
favor of client-driven integration is a more manageable first request to
COMP developers than providing perfectly accessible algorithms.

Fekete has identified two key limitations of current integrations be-
tween VIS and COMP for the purpose of exploration [15]: First, “al-
gorithms provided by analytical environments are not designed for ex-
ploration and make no effort in providing early results quickly to the
analyst”. Our paper directly addresses this issue, as the characterized
strategies and resulting guidelines pave the way for tighter integrations
that support user involvement during computations. As the second is-
sue, Fekete states that “when data is large [...] transfer time itself
exceeds the reactivity requirement” [15]. This issue is further aggra-
vated by the exchange of intermediate signals. However, many forms
of intermediate communication are substantially smaller than the regu-
lar inputs or outputs of P, e.g., the cluster centers in KMEANS. Apart
from data size, the severity of this limitation in practice depends on
infrastructural aspects of the integration that are beyond the scope of
this paper. Examples include network-based vs. memory-based com-
munication, same machine vs. different machine in LAN / Internet,
stateless vs. workspace-based COMP, internal data source vs. ter-
tiary database, as well as overheads incurred the internal data format
of COMP. As our discussion does not cover these aspects as such, we
demonstrate in the following that the presented strategies and integra-
tion scenarios can work for moderately large datasets.

As an initial proof of concept, we implemented four common inte-
gration scenarios by connecting our VIS environment Visplore [30, 35,
36] to R and MATLAB: We integrated Visplore with (1) the c-based
R-API as part of the Visplore process [24], (2) the COM interface of
the MATLAB engine in a different process (3) the RServe package via
TCP running on the same PC7 as Visplore, and (4) RServe running on
a different PC8 via Gigabit LAN. Table 2 reports timings of transfer-
ring arrays of randomized double precision values from VIS to COMP.
Timings for the other direction, i.e., COMP to VIS, were equivalent
in this measurement. As a second experiment, we implemented the
client-driven versions of S1 and S4 for the R-method kmeans based
on the local API integration of R. The input of a 20-dimensional table
of random data records is transferred to the R-workspace once, while
cluster labels for each record are returned to Visplore after every step
P̃i. Table 3 states average timings of early result availability for vary-
ing numbers of data records (S1) as well as percentages of the full
iteration count (S4), for k = 20 clusters. The intention of these tests is
to show that data transfer can be sufficiently fast for data sizes com-
monly found in real world analyses. Especially in local integrations,
computation times are often the more limiting factor.

Array size R API, local MATLAB, local RServe, local RServe, LAN
100 MB 0.017s 0.254s 0.476s 0.883s

1024 MB 0.171s 2.663s 5.018s 8.510s

Table 2. Timings of transferring arrays of double precision random val-
ues between Visplore and COMP environments using different integra-
tion scenarios. Measurements were averaged across 10 repetitions.

While most examples in this paper stem from the field of multi-
variate analysis, the discussed TUI and strategies are generalizable

7Windows PC, Intel Xeon E3-1245 V2 CPU @ 3.4 Ghz, 16GB RAM
8Windows Notebook, Intel i7-3612QM CPU @ 2.1 Ghz, 8GB RAM

Number of rows 2 iterations 5 iterations 10 iterations 20 iterations
20,000 0.105s 0.256s 0.490s 0.845s

200,000 1.594s 4.041s 8.728s 19.256s
2,000,000 19.744s 59.244s 128.209s 291.869s

Table 3. Timings of the availability of ˜rPi in Visplore when executing
kmeans on a 20-dim. dataset of random numbers for k = 20 clusters in
R. Visplore and R are executed on the same PC using the c-based API
of R. Measurements were averaged across 10 repetitions.

to many algorithms in other disciplines. However, there are contexts
where users will not consider all TUI as desirable. While result con-
trol might counteract the reproducibility of results in some cases, early
result feedback might as well be unfamiliar to users that are accus-
tomed to “seeing precise figures” [17]. In such cases, the potentially
large overheads of executing additional steps P̃i might be particularly
painful if these resources could have been used to execute P as a black
box more quickly. Finally, approximate solutions often introduce the
need for explicit encoding of incompleteness and uncertainty, which
increase the complexity of drawings and may even confuse users un-
familiar with such techniques.

We see multiple directions for future work: (1) We plan to imple-
ment client-driven integration strategies for different algorithms within
Visplore, in order to evaluate them in the context of real-world tasks.
(2) While our discussion of realizing client-driven strategies assumed
the client to be VIS, we intend to investigate implementing it as an au-
tonomous piece of reusable middleware. (3) To enable a more general
assessment of the applicability of strategies, we also intend to extend
our survey to include additional COMP environments like MATLAB
or Python.

8 CONCLUSION

In this paper we characterized possibilities of achieving a tight integra-
tion between computational environments and visualization software.
We laid the ground by a structured characterization of needs for user
involvement in ongoing computations. Based on this classification,
we formalized and described strategies to realize these needs for algo-
rithms of different characteristics. A detailed discussion of considera-
tions for client-driven and algorithm-driven implementations enabled
us to identify guidelines to algorithmic interfaces which we evaluated
based on a survey of common algorithms of the software R.

The combination of automated analysis techniques with interactive
visualization is the key idea of Visual Analytics [25]. In this sense, we
see our work as contribution on multiple levels. On a theoretical level,
the formalization and comparison of technical strategies to achieve
user involvement is a contribution to the theoretical foundations of
Visual Analytics. On a practical level, we believe that the described
implementation considerations facilitate an adoption for numerous in-
tegration scenarios based on existing computation environments. On a
community level, we hope that the identification of specific require-
ments and guidelines for client-driven and algorithm-driven imple-
mentations fosters the development of computational infrastructures
which are better suited to the needs of visual exploration.
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Abstract—Balancing accuracy gains with other objectives such as interpretability is a key challenge when building decision trees.
However, this process is difficult to automate because it involves know-how about the domain as well as the purpose of the model.
This paper presents TreePOD, a new approach for sensitivity-aware model selection along trade-offs. TreePOD is based on exploring
a large set of candidate trees generated by sampling the parameters of tree construction algorithms. Based on this set, visualizations
of quantitative and qualitative tree aspects provide a comprehensive overview of possible tree characteristics. Along trade-offs
between two objectives, TreePOD provides efficient selection guidance by focusing on Pareto-optimal tree candidates. TreePOD also
conveys the sensitivities of tree characteristics on variations of selected parameters by extending the tree generation process with
a full-factorial sampling. We demonstrate how TreePOD supports a variety of tasks involved in decision tree selection and describe
its integration in a holistic workflow for building and selecting decision trees. For evaluation, we illustrate a case study for predicting
critical power grid states, and we report qualitative feedback from domain experts in the energy sector. This feedback suggests that
TreePOD enables users with and without statistical background a confident and efficient identification of suitable decision trees.

Index Terms—Model selection, classification trees, visual parameter search, sensitivity analysis, Pareto optimality

1 INTRODUCTION

Decision trees are a common technique for statistical classification.
Hierarchical decision rules model classes of a categorical variable de-
pending on numerical or categorical independent variables, called fea-
tures. The decision rules are typically inferred from training data for
which the classes are known, which is referred to as supervised learn-
ing [14]. Frequent types of rules include thresholds on numerical fea-
tures and class membership vectors on categorical features. In con-
trast to other types of classification models such as neural networks, a
key advantage of decision trees is the ability of humans to understand
how the model works. Experts in many fields such as medical diagno-
sis, image processing, or fraud detection therefore appreciate decision
trees for their interpretability [14, 19]. In addition to classifying new
data instances, the understandable model structure also supports ex-
plaining class dependencies for hypothesis generation and reporting.

The process of building decision trees involves multiple trade-offs.
As for other model types, the most well-known trade-off is that be-
tween over- and underfitting the data for robust generalization (bias-
variance trade-off). Automated techniques exist which adjust the
model complexity accordingly, e.g., by using different data for grow-
ing and pruning the tree [14]. In addition to accuracy, however, as-
pects regarding model interpretability by humans are often equally im-
portant for decision trees. Model interpretability has received much at-
tention recently [12, 15, 19] and is a multi-faceted goal by itself. Sim-
ple trees with limited depth and comprising only few decision rules
based on a small number of features are typically easier to understand.
Moreover, decision trees intended for human decision makers benefit
from nice, round thresholds [15] (e.g., x ≤ 100 instead of x ≤ 99.475).

Balancing accuracy gains, interpretability and other objectives such
as feature acquisition costs [10, 22, 45] is a key challenge when build-
ing decision trees. However, this process is difficult to automate be-
cause it involves know-how about the domain as well as the purpose
of the model and often requires a qualitative assessment of the deci-
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• Torsten Möller is with the University of Vienna. Email:

torsten.moeller@univie.ac.at

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

sion tree by domain experts. Even with a deep understanding of the
learning algorithm, obtaining a decision tree that satisfies all objec-
tives takes substantial time for trial-and-error [32]. Aggravating the
challenge, many domain experts do not have a background in statisti-
cal learning [46], but still need to build decision trees which meet their
objectives while reflecting their domain knowledge.

This paper proposes TreePOD, a new Visual Analytics technique
for decision tree identification which addresses these challenges. In-
spired by work on visual parameter space exploration [40] and in line
with recent work in statistics [49] , our approach is based on exploring
a large set of tree candidates. A key goal is to support a global-to-local
strategy for model selection (G1) that initially provides the user with
a comprehensive overview of possible tree characteristics. A second
goal is to address users with and without deep statistical background
(G2). For this reason, TreePOD takes a result-oriented approach which
focuses on characteristics of generated trees such as prediction accu-
racy, complexity, and interpretability. Details of the machine learning
process (e.g., training parameters) are hidden by default and exposed
only at request. In order to foster a quick identification of suitable
trees (G3), TreePOD supports an effective quantitative and qualitative
comparison of model alternatives. In order to further increase the user
confidence in the selected model (G4), TreePOD visualizes the sensi-
tivity of tree candidates on variations of generation parameters.
Based on TreePOD as the main contribution of this paper, additional
contributions include:

• An outlined workflow for decision tree selection.
• A case study to address a real-world problem in the energy sector.
• Qualitative feedback of domain experts from the energy sector.

2 RELATED WORK
Research in statistical learning has devised many automated algo-
rithms for building decision trees, e.g., CART [6], C4.5 [37], and
CHAID [16]. Many of these algorithms use entropy minimization
to choose features and split positions when growing the tree. Af-
ter the growing phase, automated approaches can be used to ensure
the generalizability of the model, e.g., by pruning and cross valida-
tion [14]. Decision trees have also been extended to ensemble learn-
ing techniques such as random forests. Such approaches may further
increase the accuracy at the cost of incurring significantly higher com-
plexity compared to single trees. Gleicher [12] notes that accuracy
is not the only concern and mentions efficiency, generalizability, ro-
bustness, conciseness, verifiability, self-consistency, and comprehen-
sibility as some other qualities that model designers must consider.
Gleicher also stresses that these properties form trade-offs where the
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Figure 1. Selection of decision trees explaining marital status in the UCI Census Income 1994 dataset [21]. (a) Candidate trees are generated
by sampling the parameters of decision tree algorithms. Linked visualizations guide the selection from this set by providing (b) a summary of tree
candidates and parameter variations, (c) a sensitivity-aware overview of the trade-off between the conflicting objectives accuracy and number of
nodes, (d) a qualitative comparison of Pareto-optimal trees, and (e) details of a selected decision tree. (f) Applying controlled parameter variations
to every tree conveys the effect of parameter changes on tree characteristics, e.g., how rounding of decision boundaries affects accuracy (g). Users
can extend the set of candidate trees at any time, (h) and validate trees based on data using linked views.

proper balance depends on the context and needs.
An increasing number of automated approaches take comprehensi-

bility into account as an important goal. Jung et al. [15], for example,
perform rounding of model coefficients in logistic regression classi-
fiers in order to make them easier for humans to interpret. Lakkarju et
al. [19] include metrics for interpretability in the objective function for
model selection. In many cases, however, assessing comprehensibility
requires a qualitative inspection by domain experts.

In contrast to such automated approaches, visualization research
has focused on cooperative approaches for decision tree construction
which enable users to incorporate their domain knowledge in the gen-
eration process. Ankerst et al. [3] let the user evaluate intermediate
results of the construction algorithm to specify constraints. This en-
ables the computer to automatically create patterns satisfying these
constraints. Van den Elzen and van Wijk [46] support an iterative
refinement of a tree during the growing, optimization, and pruning
phases. This process is based on BaobabView, a technique for visu-
alizing decision trees which combines advantages of other methods
such as node-link diagrams [13, 48] and icicle plots [3, 23]. All these
cooperative approaches may improve comprehensibility and user con-
fidence in the model. A study by Liu and Salvendy [23] shows that
resulting trees have relatively high classification accuracies and small
sizes. However, focusing on the iterative refinement of single trees
may not lead to the global optimum. Moreover, such approaches do
not communicate the overall achieveability of modeling objectives and
may require statistical know-how and significant time by the user.

In order to provide a global coverage of possible tree character-
istics, some automated approaches obtain multiple decision trees as
result. Zhao [50] creates Pareto optimal decision trees to capture the
trade-off between different types of misclassification errors. Likewise,
Czajkowski and Kretowski [9] use an evolutionary algorithm to gen-
erate multiple decision trees which are Pareto optimal for contradic-
tory metrics such as accuracy and the number of nodes. These ap-
proaches focus on generating an appropriate set of decision trees, not
on exploring this set to facilitate the model selection by a human ex-
pert. Czajkowski and Kretowski stress that the comprehensibility of
the generated Pareto front is a main issue for future work.

In visualization, an increasing number of systems provide global
exploration strategies of parameter spaces [40], e.g., in simulation [1,
7, 25, 35] and image analysis [43]. In many cases, the goal is to iden-
tify input parameter values which optimize the output in some sense.
Assessing the output often involves both quantitative metrics and qual-
itative judgments of complex results, for example segmented image
data [43]. Statistical model selection is a closely related problem. Un-
derstanding the relation between abstract generation parameters and

the resulting model is typically non-intuitive and model selection is
usually based on multiple quantitative and qualitative criteria. Related
work for exploring model spaces include subspace clustering [28],
neural networks [26], and association rules [8].

In the context of decision trees, we regard the work by Padua et
al. [32] as most similar. Their system supports the analysis of a large
set of candidate trees generated by sampling the parameter space of
decision tree algorithms. Linked views visualize this parameter space
as well as metrics of the resulting trees and thus enable to relate inputs
to outputs by interaction. The trees are shown as node-link diagrams
and small icicle plots that convey the structure but not the accuracy.
This system provides a global overview of tree characteristics (G1) and
guides statistical experts towards useful training parameters. However,
their work does not explicitly recognize trade-offs between objectives
(G3) and does not visualize their sensitivity on changes of generation
parameters or the evaluation data.The analysis focuses on an exist-
ing set of trees and does not address the integration in an interactive
workflow for decision tree building. Moreover, by exposing many de-
tails about generation parameters, the system is primarily designed for
users with statistical background which contradicts goal (G2).

3 OVERVIEW OF TREEPOD
TreePOD is a new Visual Analytics technique for sensitivity-aware
model selection. The key idea is to create a large set of candidate trees
that can be explored with respect to objectives such as prediction accu-
racy, or interpretability. To this end, the parameter space of tree con-
struction algorithms is sampled to create a diverse set of trees (Fig. 1a,
Sec. 4). Visualizing the candidate set at different levels of detail in
multiple coordinated views [39] enables a global-to-local strategy for
model selection [40] (Sec. 5): A summary panel displays a concise de-
scription of the candidate set, and provides various ways of focusing
on candidate subsets (Fig. 1b). A quantitative overview shows achiev-
able values for pairs of objectives, and guides selection along trade-
offs by identifying the Pareto front, i.e., the set of Pareto-optimal trees
(Fig. 1c). Tree maps at the bottom visualize accuracy and complexity
of the Pareto-optimal trees in a compact form (Fig. 1d). A detail panel
shows the currently selected tree and its characteristics (Fig. 1e).

To investigate local sensitivities of tree characteristics to parame-
ter changes, users can specify a controlled variation of parameters
(Fig. 1f, Sec. 6). Visualizing these variations shows how character-
istics of single trees, multiple trees, or entire Pareto-fronts are affected
by constraints such as rounded decision rules (Fig. 1g). Section 6.3
describes how this approach to sensitivity-aware trade-off exploration
supports a variety of model selection tasks.

While TreePOD focuses on analyzing and choosing from an exist-
ing set of candidates, we also outline its integration in a workflow for
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Figure 2. The Pareto front guides tree selection along trade-offs be-
tween two result metrics, in this example (a) accuracy vs. nr. of used
attributes, and (b) accuracy vs. nr. of nodes. Hard constraints on met-
rics filter the set of tree candidates in all views.

building decision trees (Sec. 7). Key steps in this workflow include the
incremental extension of the candidate set based on insights from ex-
ploration (Fig. 1h), and the validation of trees based on data (Fig. 1i).

As a guiding example illustrating TreePOD, consider the follow-
ing fictional scenario: Jane, an analyst working for the ministry of
social affairs, aims to predict the multi-class attribute Marital Status
in the UCI “Census Income Dataset 1994” [21]. Features comprise
12 demographic attributes like Age, Sex, Income, Occupation, Native
Country, and many others1 . Her goal is to obtain an accurate and
concise set of rules suitable for reporting or policy-making.

4 GENERATION OF CANDIDATE TREES

A prerequisite for model selection is the availability of good candi-
date models. Automatic decision tree algorithms help to identify tree
candidates efficiently. Based on a specification of various parameters,
they produce a decision tree for pre-classified data by heuristic opti-
mization in two distinct phases:

1) Training: Given a subset of training data and training parame-
ters, the algorithm generates an initial tree description. Training pa-
rameters include a set of candidate features and a selection criterion
that defines a feature selection strategy (e.g., maximizing information
gain [37], Gini impurity [6] or gain ratio [38]). Other parameters in-
clude numerical termination criteria for the build process such as a
maximal tree depth or a minimal leaf size needed for further splits.

2) Post-processing: In the optional second phase, post-processing
such as pruning to avoid overfitting [14], or rounding of numerical
decision borders to increase interpretability [42, 15] may be applied.

Training and post-processing involve numerical, categorical and
set-typed parameters. For easier readability, we subsequently use pa-
rameter value as an umbrella term for all types of parameters. Choos-
ing parameter values that result in desirable trees is non-trivial and typ-
ically requires substantial effort [32]. Instead of forcing the parameter
space upon the user, TreePOD constructs a diverse set of candidates by
sampling various parameters in a stochastic or pseudo-random fash-
ion. This may include drawing feature subsets, drawing the maximal
tree depth from a range (e.g., [1,..,10]), or randomly choosing a tree
pruning method. As a key benefit, stochastic assignment of parame-
ters helps creating diverse and unbiased candidates, which increases
the probability of reaching the global optimum during exploration. It
also reduces the need to specify parameter values prior to exploration.

Users can also manually assign parameters to incorporate knowl-
edge about algorithms [27] or previously obtained insights. This in-
cludes setting parameters to a fixed value for all trees (e.g., max depth
= 6), as well as manual adjustment of sampling ranges (e.g., max depth
∈ [1,..,6]). However, we provide reasonable defaults for all sets and
ranges to keep the mandatory user input to a minimum. Data subsets

1For better demonstration, we intentionally exclude the highly correlated
feature Relationship Status, as this would yield trivial rules like Marital Status
is ’Married’ if Relationship Status is: Wife

for growing, pruning, and evaluation can also be manually specified,
but are otherwise automatically determined by splitting the available
data into random parts of equal size.

TreePOD also supports various common pruning techniques [14].
As the simplest method, we support collapsing sub-trees if all leaves
within produce the same classification. Pruning can also be deacti-
vated to allow for a more detailed analysis of achievable accuracy.

In the guiding example, Jane wants to know how well small models
can perform. She generates 300 decision trees by sampling (1) the
maximal tree depth between 1 and 6, (2) the minimal leaf size required
for further splits, (3) as well as subsets of the 12 available features to
obtain different explanations. This generates 300 candidates that are
evaluated for an exploration of their results (see Figure 2).

5 GUIDED EXPLORATION OF PARETO-OPTIMAL TREES
This section describes interactive visualizations of the tree candidates
at different levels of detail. The goal is to support the selection of
suitable trees based on quantitative and qualitative characteristics.

5.1 Candidate summary panel
At the coarsest level, TreePOD provides a concise summary of all tree
candidates (see Fig. 1b). This view describes how the set of candidates
is successively refined by the user during exploration. Users may de-
fine generation parameter filters, for example to focus on trees based
on particular feature subsets or rounding thresholds. Tree candidates
may also be filtered based on their result metrics such as accuracy (see
Section 5.2). The current set of filters is summarized in this view. Fur-
thermore, the panel states the number of Pareto-optimal trees regard-
ing two objective metrics, which is used as central guidance concept in
TreePOD. These concepts will be introduced in the following sections.

5.2 Quantitative trade-off overview
The model selection process typically involves quantitative metrics.
The metrics in our implementation refer to three types of objectives:

(1) Accuracy, as measured by the F1 score (aka F-measure) [51].
We provide per-class scores (e.g., F1 “Married”) as well as the overall
score by computing the weighted average of F1 across classes (denoted
Accuracy [F1 score]).

(2) Complexity, optionally expressed as either the total number of
nodes, the number of leaves, the maximum tree depth, the number of
used attributes, or the total feature cost.

(3) Interpretability in terms of human-friendly numbers, com-
puted as the average num. of significant digits in numerical rules [31].

We do not intend to make a case for any particular metric. The
concepts of TreePOD could be applied to other metrics as well.

For an effective quantitative overview of the tree candidates, Tree-
POD displays two user-specified metrics in a 2D scatter plot (e.g., Ac-
curacy vs. Nr. of used attributes in Fig. 2a). This provides an overview
of the candidates in terms of quantitative characteristics and may re-
veal patterns such as discontinuities or clusters caused by distinct pa-
rameter settings, e.g., the inclusion of important features.

Not all candidates are equally relevant for model selection. For
example, among all trees of the same size in Fig. 2b, some are sub-
stantially more accurate than others. An established concept in multi-
criteria decision making is Pareto optimality [18]. In general, a so-
lution is considered Pareto-optimal if no other solution exists that is
better for some criteria without being worse for others. The set of all
Pareto optimal solutions is called Pareto front. In our case, this front
comprises all candidate models which are Pareto optimal regarding the
two objectives mapped to the axes of the scatter plot.

Pareto-optimal candidates are highlighted using an increased point
size and connected with a line to visualize the Pareto front (see Fig. 2).
Drawing the front as an interpolated line rather than step-wise is a po-
tentially too optimistic approximation of the real Pareto front. How-
ever, we decided to tolerate this as the selection relies on the discrete
set of candidates rather than on the continuous shape of the Pareto
front. Visually, drawing interpolated lines enables to compare slopes
across neighbouring segments. Very steep and very shallow segments
indicate transitions that provide high gain of one objective for low ad-
ditional cost of the other, guiding users towards possible “sweet spots”.



Figure 3. Pixel-based treemaps convey qualitative aspects of accuracy
and complexity along a Pareto front.

Any tree can be selected by a click, making it focal. In the scatter
plot, this focal tree is highlighted by a black circle around the point
(Fig. 2). Linked views focus on it as well, for example, to show the
tree description and parameters which led to that result (see Sec. 5.4).

The view also enables to define range filters for objective values
by dragging handles inwards from the plot borders. In Fig. 2, all
trees using more than 5 attributes are excluded as indicated by a semi-
transparent gray area. Filters persist when changing objectives, which
allows investigating a filtered set of candidates with respect to other
objectives. This supports a global-to-local workflow for model se-
lection, where the considered set of trees is iteratively refined (G1).
Filtered points are not considered when computing the Pareto fronts,
but are still displayed in a lower intensity as context. Additionally, a
textual representation is shown in the candidate summary (see Fig. 2).

5.3 Qualitative comparison along the Pareto front
The quantitative overview described in the previous section provides
effective guidance to trees with high objective values. However, sum-
mary metrics hide multiple sources of ambiguity that may be relevant
to the decision maker. For example, a high overall accuracy of models
can be the result of well-explaining features, or of highly skewed base
rates [51]. Likewise, a single accuracy metric does not inform about
the distribution of accuracy among the classes.

To visualize such qualitative aspects along a trade-off, we encode
the set of Pareto-optimal candidates using small tree maps [41] (see
Fig. 3). Their sequence represents a linear traversal of the 2D Pareto
front, i.e. one objective improves while the other deteriorates from
left to right. This arrangement facilitates switching to the next more
accurate or next simpler Pareto-optimal tree for an efficient browsing
of candidates. Clicking a plot makes the corresponding tree focal.

Each partition in a tree-map corresponds to a leaf node, with a rela-
tive size proportional to the percentage of data instances classified by
that leaf. This enables an effective perception of complexity for the
corresponding decision tree (see Fig. 3).

Inspired by perception-based approaches to classification [2, 3, 20],
we encode the class distribution within a leaf by a quasi-random place-
ment of pixels according to the class frequencies. The emerging
pattern enables an intuitive perception of purity and, for high-purity
leaves, easy identification of the predominant class. The selected plot
in Figure 3, for example, indicates a first split that isolates Married
persons very well (mostly blue leaf). The other leaves are much less
pure. Discriminability of hue depends on the size of coherent ar-
eas [29] and thus on the separability of a data set. We found that,
in practice, 5-7 classes can be effectively discriminated also for small
pure leaves. For noisy leaves, discrimination of single pixels is typ-
ically less important than the overall perception of entropy, which is
directly supported by the encoding. This encoding has the advantage
that both over- and underfitted trees result in high-frequency patterns.
Simple and accurate trees, however, contain large, homogeneous re-
gions. This provides effective qualitative guidance along the trade-off.

Our approach to pixel-based encoding of class distribution is in-
spired by work of Ankerst et al. [3], but differs with respect to two
major aspects: first, their approach shows all levels of the tree next to
each other, visualizing the purity gained by every split. Our approach
focuses on the leaves to enable an efficient comparison of accuracy
and complexity across multiple trees. Second, their pixel arrangement
is spatially linked to data items. Our pixel placement is random, which
avoids visual structure within the leaves that distracts from the percep-
tion of tree complexity. Details on the topology and splits of the tree
are shown in a linked visualization (see Sec. 5.4).
Inspecting the tree maps in Fig. 1d, Jane discovers that the more com-
plex Pareto-optimal candidates are refinements of a few simpler ones.
She also perceives “Widows” as least frequent Marital Status (green).
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Figure 4. Details for a selected tree evaluation. A node is hovered to
focus on the explanation of Widowed persons.

5.4 Details for a selected model
Additional views of TreePOD show further details of the focal tree:

1) Structural aspects of the tree: when decision trees are used for
explanatory purposes, inspecting the rules is essential. This includes
the names of the used features, as well as their depth in the tree as a
notion of their importance. Moreover, the exact split values are often
important for explanation or hypothesis generation. The rule definition
is also essential for qualitative judgments of interpretability based on
domain knowledge. Another structural aspect of trees refers to the
topology, e.g., distinguishing deep from wide trees.

To visualize these aspects, we use a node-link diagram inspired by
BaobabView [46]. Each node contains its rule definition as text. The
width of a link leading into a node is proportional to the number of data
items that it applies to. Within links, space is subdivided into stacked,
colored bands that convey the proportion of each class [46]. Since we
want to emphasize the significance of paths and leaves, we reduce the
visual footprint of other aspects. For example, we encode a leaf’s de-
cision as a colored triangle glyph instead of coloring the whole leaf,
as this would result in large salient areas that distract from the signif-
icance of the links. For the same reason, we show detail information
for nodes only on demand: when hovering a node, all nodes between
it and the root show horizontally stacked bars conveying the gain of
purity along the path (see Fig. 4). Hovering class labels in a coloring
legend visually emphasizes leaves yielding that class.

As an indicator for decision confidence, we add a bubble to each
leaf node, using the same pixel-based purity encoding as the plots in
Sec. 5.3. Their size is proportional to the number of classified data
items. Apart from making leaf nodes more salient, these bubbles facil-
itate visual correspondence of leaves with the tree map visualization.

2) Quantitative properties of the tree: The quantitative metrics
listed in the beginning of Section 5 can be inspected in a list. In partic-
ular, this includes metrics currently not shown in the trade-off visual-
izations. As a familiar encoding of accuracy per class, we also provide
a confusion matrix. A column-wise encoding of relative frequencies
using a linear gray-scale informs the user about systematic misclassifi-
cations. On demand, users can switch to a row-wise relative encoding
to focus on recall rather than precision. Absolute numbers are stated
per cell to support comparisons in any case.

As TreePOD generates its tree candidates by parameter sampling,
the particular parameter values that led to a tree can be interesting and
are shown on demand. We hide this list by default to focus on the
resulting trees, rather than the machine learning process (G2).

Inspecting the details of Pareto-optimal trees, Jane discovers “Age”
as an important feature that is often used for the first split, mostly fol-
lowed by “Sex”, and “Income”. “Age” seems to be important for the
classification of Widow(er)s. The confusion matrix for the focal tree,
however, reveals that less than half of all Widow(er)s are classified as
such (bottom row in Fig.4b). She also discovers that the rule defini-
tions are often not based on whole numbers, such as “Age > 27.5”.

6 SENSITIVITY ANALYSIS OF TRADE-OFFS
Confidence in model selection is a multi-faceted topic. The visual-
izations described in the previous section provide no direct support
for investigating how changes of the parameters involved in training,



post-processing, and evaluation would affect the trees. This section de-
scribes extensions to the tree generation process and the visualization
which enable an effective sensitivity analysis of parameter variations.

6.1 Generating tree families for effective comparison
Stochastic parameter sampling as described in Sec. 4 efficiently gener-
ates a diverse set of alternatives to choose from. However, these sam-
ples are usually too diverse to support a focused sensitivity analysis.
As a solution, we extend the stochastic generation process by a con-
trolled variation of one or more user-specified parameters, which are
subsequently referred to as variation parameters. In contrast to other
parameters, variation parameters are varied in a full-factorial manner
and define a tree candidate for every possible combination of values.
For each stochastic sample of the other parameters (Sec. 4), the con-
trolled variation thus defines a family of trees. All members of one
family are referred to as sibling trees. They only differ by the val-
ues of one or more variation parameters. For illustration, consider the
variation of one parameter in the guiding example:
For her report, Jane prefers rules based on simple integer numbers,
e.g. “Age > 28” rather than “Age > 27.5”. She wonders if even
multiples of 10 are sufficiently accurate. Thus, she varies the post-
processing parameter “Round to significant digits” in three steps:
{“no rounding”, “max. 2 significant digits”, and “max. 1 signifi-
cant digit”}. As a result, 3 variations are created for each of the 300
stochastic samples, which differ by the performed rounding. The new
number of candidates is 900, comprising 300 families of 3 trees each.

This two-step generation process ensures the existence of unbiased
alternatives, and enables an effective assessment how a single tree, or
the candidate set as a whole changes under controlled variations.

6.2 Sensitivity visualization
By default, the visualizations do not treat siblings differently from
other possible candidates. As a result, one common Pareto-Front is
computed, and shown in the quantitative and qualitative views.

TreePOD supports filtering the candidate set by variation parame-
ters. In the candidate summary panel (Sec. 5.1), all values for each
variation parameter are listed using labeled dot markers (see Fig. 1b).
Clicking on a dot marker filters the set of visible tree candidates to
those of the respective value. An additional marker labeled “any” does
not filter on that parameter. Filters for multiple variation parameters
are combined by a logical “AND”. We refer to the vector of all current
variation parameter values as the variation focus. Changing the vari-
ation focus updates the set of tree candidates which also updates the
Pareto front. The corresponding sibling of the previous focal tree be-
comes the new focal tree, which also updates the detail visualizations.

For a sensitivity analysis regarding a specific variation parameter,
the user may click on its name in the summary panel (e.g., “Round to
significant digits” in Figure 1). The scatter plot then supports compar-
ing the impact of parameter changes at three levels of locality.

1) Point-wise sensitivity of the focal tree. As the most local level,
the scatter plot displays the siblings of the current focal tree as colored
points. Inspired by previous work on sensitivity analysis [4], ordinal
variations are connected by lines and encoded using different levels of
luminance in the order of variation. For example, the turquoise points
in Fig. 5f show how the focal tree changes for increasing maximal tree
depths. For variation parameters without inherent order such as the
pruning method, all siblings are connected to the focal tree. In this
case, hue is used to discriminate the values. Our implementation at-
tempts to use different hue sets for encoding data classes and variation
values. This avoids color scheme overlaps if the numbers of classes
and compared parameter values are low, which is a frequent case.

2) Point-wise sensitivity of Pareto-optimal trees. As a less lo-
cal level, point-wise sensitivities can be shown for all currently visible
Pareto-optimal trees. This enables to investigate how the sensitivity
changes along the Pareto front. For example, Fig. 5d shows that eval-
uating trees for validation data leads to a stronger accuracy loss for
complex trees than for simple ones.

3) Sensitivity analysis of the Pareto front. As the most global
level of sensitivity visualization, the Pareto front itself is shown for
each variation step. Each front is computed individually based on the

candidates for the corresponding value of the investigated variation
parameter. This enables a direct comparison of achievable trade-offs.
In Fig. 1g, for example, the turquoise fronts indicate how the trade-off
between accuracy and size changes for various rounding thresholds.
The color scheme is the same as for point-wise sensitivity encoding.

6.3 Application to sub-tasks of model selection
The process of model selection comprises a number of sub-tasks which
can be addressed by TreePOD. We identified four groups of tasks.

1) Sensitivity-aware selection of tree generation parameters
This group of tasks refers to studying the global effect of changing
tree generation parameters. The focus of interest is typically on the
achievable model characteristics and not on individual trees. There-
fore, visualizing the entire front is typically the most suitable level of
locality in this case. Typical goals include refining parameter ranges
for the stochastic variation or assessing their stability for increased
confidence. Specific examples for this group of tasks are:

Assessing the benefits of feature inclusion: Using features with
high explanatory power is essential for a good fit, but some features
may be expensive to obtain. Sometimes, these costs can be quantified,
e.g., expensive medical tests [22]. Other times, they are subjective,
such as side-effects of medical tests [45]. The latter are often only
vaguely known and harder to compare across features. To support both
types of costs, TreePOD enables a qualitative comparison of feature
inclusion by varying whether a user-specified subset of the features is
included. As an example, Fig. 5a shows the achievable Pareto fronts
when including Income-related features in explaining Marital Status,
or not. A reason to omit them could be a generally high number of
missing values, when collecting such data from surveys.

Assessing accuracy loss due to decision border rounding:
Rounding numerical decision thresholds in a post-processing step
increases a tree’s usefulness in human-oriented application con-
texts [15]. However, this typically decreases accuracy. Varying num-
ber rounding parameters, e.g., to n significant digits, supports the user
in deciding how much accuracy should be sacrificed (see Fig. 5b).

Further examples refer to the variation of generation strategies, such
as the feature selection criterion or the pruning method. For both pa-
rameters, several methods exist but no single one is considered gener-
ally superior [11, 30]. Visualizing the variation of Pareto fronts helps
to understand the effect of different methods for the given dataset.

2) Assessment of model stability From a statistical point of
view, a weakness of decision trees refers to their high variance com-
pared to other model types [14]. Slight changes in the training data
may lead to substantially different model definitions. TreePOD sup-
ports an assessment of model stability by controlled variation of train-
ing data subsets. In this case, siblings refer to trees trained for the
same parameters, but based on different data. When using meaningful
data categories as subsets, encoding the Pareto fronts allows to iden-
tify categories for which classification is easier than for others. For
example, the scatter plot in Fig. 5c shows that Marital Status is harder
to predict for some ethnicities than for others.

3) Sensitivity of accuracy to changed evaluation data Com-
paring model accuracy across different validation data subsets is a
common approach for assessing generalizability to new data [14]. To
enable such assessments, TreePOD supports a user-defined variation
of the evaluation data subset analogous to the variation of generation
parameters. In this case, siblings represent evaluations of the same tree
for different data subsets. Showing these siblings for individual trees
conveys how accuracy changes for different subsets, which supports
the selection of robust models. Particular examples include:

Comparing training and validation data: Comparing tree evalu-
ations for different training and validation data subsets provides guid-
ance along the bias-variance trade-off. Fig. 5d, for example, shows a
steadily increasing training accuracy, while the accuracy for validation
data decreases for deeper trees due to over-fitting [14]. This provides
effective guidance for selecting an adequate model complexity.

Comparing accuracy for data categories: Using meaningful data
categories as evaluation subsets allows to identify a potential bias of
the models, e.g. towards the most prevalent categories in the training
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Figure 5. Various applications of a systematic variation of parameters in the generation, post-processing, and evaluation of decision trees. The
sensitivity is shown for different levels of locality: the entire Pareto front (a, b, c, e), all Pareto optimal tree candidates (d), and a single tree (f).

data. Fig. 5e, for example, illustrates a variation of the evaluation data
for different ethnic groups. The largest ethnic group of data records
in the training data refers to “White” persons and also obtains more
accurate classification than most others.

4) Building confidence in a selected tree TreePOD supports
studying variations of a single tree to obtain confidence in its superi-
ority. The point-wise sensitivity encoding is suitable for this purpose.

Assessing gain of refinement: By varying the termination criteria
of tree construction (e.g. max. depth, or min. leaf size), TreePOD
supports visualizing the benefits incurred by every split level. Reflect-
ing the step-wise nature of the greedy construction process, the result-
ing line graph visualizes the construction history, to provide guidance
for selecting an adequate depth. In Fig. 5f, for example, the varia-
tion of the maximal tree depth shows how the focal tree is not Pareto-
optimal at first, but becomes part of the front after five refinement lev-
els. Adding a split level increases the accuracy of the tree further,
while 3 more levels yield a significant decrease for the validation data.

7 WORKFLOW INTEGRATION
Building decision trees involves multiple steps [46]. The previous sec-
tions focused on the description of TreePOD for analyzing and choos-
ing among an existing set of candidate trees. This section outlines the
integration of TreePOD in a workflow for building decision trees. The
subsequent steps are roughly ordered by their sequence in a typical
workflow. However, our implementation does not enforce a particular
order and permits most of them at any time.

Selecting training and validation data: Selecting plausible input
data is typically a first step. In our implementation, users may interac-
tively brush multivariate views of the data such as scatter plots, paral-
lel coordinates, and time series plots to define data subsets for training
and validation (see Sec. 8). Interactive data selection is useful, e.g.,
to exclude artifacts such as outliers based on domain knowledge. Al-
ternatively, the system automatically defines disjunctive data sets for
training and validation by random sampling of the input data.

Definition of initial tree candidates: On demand, TreePOD allows
adjusting the variation strategy per generation parameter, i.e., fixed,
stochastically sampled, or subject to a controlled variation (see Fig. 6).
As the parameters have default values for sampling, users may also
simply press a “Train” button to start without specifying parameters.

Global stochastic refinement of tree candidates: Initially, 300
stochastic variations are generated by default. Users may adjust this
number depending on, e.g., the size of the training data and the number
of features. At any time, users may then press a button titled “Show
me more” to generate additional stochastic samples. For each of them,
the same controlled variations are applied as for the initial set of trees.
The set of Pareto-optimal trees will be re-evaluated for this new set,
updating all views. This type of global augmentation of tree candidates
is useful if the initial sampling turns out to be too sparse overall.

Local stochastic refinement of tree candidates: For a more fo-
cused, result-oriented refinement, users can create variants of the se-
lected focal tree. Pressing a button titled “Show me more like this”
will create new samples by stochastically varying the generation pa-
rameters such that they are similar to those of the focal tree, e.g.,
lying within narrow intervals for quantitative parameters. Repeating
this for different Pareto optimal candidates allows steering the refine-
ment of the front, and ensuring that interesting regions obtain enough

samples. Alternatively, the user may inspect the particular parameter
values for generating the focal tree. Users can then vary specific pa-
rameters while keeping all others fixed. For example, this enables to
explicitly trigger the creation of additional hierarchy levels for a tree.

Extending the controlled variation: Users may specify or extend
controlled variations of parameters at any time, e.g., if they identify in-
teresting aspects for sensitivity analysis only after an initial inspection
of the candidate trees. Each update of variation parameters is applied
globally to all trees. This may generate new members of tree fam-
ilies or modify existing ones, e.g., if the controlled variation affects
parameters which have previously been sampled stochastically.

Subjective validation of classification results: Clicking on any
node of the focal tree as well as on rows and columns of the confusion
matrix highlights the corresponding subset of training and validation
data in the linked multivariate views. This supports a subjective val-
idation of the classification results in the context of the actual data.
In particular, this step may reveal if misclassifications are evenly dis-
tributed over the data or accumulate for, e.g., specific periods in case
of time-dependent data or particular regions in case of spatial data.
Sometimes, such findings may indicate structural breaks or insuffi-
cient quality for subsets of the data. Users can decide to exclude such
subsets and re-run the generation for all models.

Extending the feature set: Detecting data subsets with many mis-
classifications may also inform domain experts about potentially miss-
ing features or may suggest the derivation of new features based on
existing ones (e.g., decision boundaries defined by the interaction of
multiple features). Derived features may, for example, be created in
external computing environments and imported afterwards, e.g., from
CSV files. Users may then either re-run the training for all tree candi-
dates, or add the extended features as additional controlled variation.

Generation of sub-trees: It is sometimes helpful to focus the gen-
eration process on a particular sub-tree while considering other parts
of the tree as given, e.g., if certain subsets of the data are more com-
plex to model than others (Sec. 9 illustrates an example). In this case,
users can specify a particular node of the focal tree as temporary root.
This generates a set of candidates for this sub-tree using the same ap-
proaches for stochastic sampling and controlled variation as for the
entire trees. Only these candidates are considered in this type of sub-
tree mode. By default, only the data corresponding to the temporary
root is considered for computation and visualization, and the result
metrics refer to the sub-trees only. However, the structural tree still
shows the position of the focal sub-tree within the entire tree as con-
text (see Fig. 6). Upon leaving the sub-tree mode, the user may either
add the focal sub-tree or all Pareto-optimal sub-trees as variants of the
initiating focal tree to the overall set of tree candidates.

Local pruning of the focal tree: As the counterpart to growing
sub-trees, users may also manually prune all nodes below a selected
node of the focal tree. In contrast to automated pruning which is per-
formed for all tree candidates, this type of local pruning is only appli-
cable to the focal tree. The pruned tree is added to the set of candidates
as a variation of the initiating focal tree.

8 IMPLEMENTATION
TreePOD has been implemented as a part of Visplore, a system for vi-
sual exploration of multivariate datasets. Visplore provides multiple
linked views such as scatter plots, time series plots, and views for data



categorization. Data subsets defined by brushing these views can be
used in TreePOD as described in Sec. 7. The system is implemented
in C++ and uses OpenGL for rendering. A multi-threading architec-
ture [34] is used to maintain interactivity during computations.

For the identification of decision trees, we integrated the CART im-
plementation of the open source library OpenCV [36]. Post-processing
operations such as rounding are implemented on top of the tree defini-
tions produced by OpenCV. In most cases, OpenCV was fast enough
to generate large numbers of trees in a few seconds. Specifically, gen-
erating 300 trees for a data set of 32541 data records and 12 features
took on average 5 seconds on a Desktop PC with Intel i7-2600k CPU
at 3.4 Ghz and 16GB RAM. From a technical point of view, the ability
to generate large numbers of trees rapidly is a key prerequisite for our
approach and specifically the interactive workflow.

9 EVALUATION
For evaluating TreePOD and the described workflow, we collaborated
with four domain experts working for a transmission system opera-
tor and two experts from an IT service provider in the energy market.
All of them have been active in this domain for multiple years. They
are confronted with classification problems on a regular basis, e.g., for
predicting market situations or for building treed prediction models of
time series data. Nevertheless, all of them characterize themselves as
having little background in statistical learning and very limited exper-
tise with decision tree algorithms in particular. They used to address
classification problems based on insights from static diagrams, intu-
ition, and trial-and-error using common statistics software.

The evaluation took place in three workshops. In a first workshop,
we introduced them for one hour to TreePOD by illustrating it based
on three energy-related classification problems which were familiar to
them from previous projects. They were allowed to ask questions at
any time. Based on what they saw, the experts decided on a real-world
classification problem as case study for a next workshop.

In this second workshop about one month later, we addressed that
particular model selection problem (Sec. 9.1) after a brief recap of
TreePOD. We strictly followed their instructions, but operated the soft-
ware prototype ourselves. Two main reasons were limited time of the
experts for familiarizing with all features, and the goal to keep them
focused on aspects of the process rather than the implementation. Con-
ducting the described case study took approximately one hour.

In a third workshop four months later, two of the experts used a
deployed version of TreePOD to address a different model selection
problem (Sec. 9.2.). This time, the experts controlled the system them-
selves, while we observed their actions and their workflow.

After each workshop, we asked the experts for their feedback using
the rose-bud-thorn method [24] for another hour (Sec. 9.3).

9.1 Case study: prediction of imminent power shortages
The key task of power grid operators is to balance demand and supply
of electricity. Volatile power sources such as wind farms, or fluctu-
ations of energy prices may lead to spontaneous shortages or abun-
dances in networks. Once such critical situations are in progress, they
are expensive to fix. Recognizing their imminence in advance for early
intervention can thus reduce financial costs significantly.

In a joint analysis session using TreePOD, domain experts identified
decision trees predicting imminent critical situations. The target vari-
able is a categorical time series with two classes “critical in 15min”,
and “ok in 15min”, observed over 1 month (≈ 260,000 records). Fea-
tures comprise: (1) the DELTA between power supply and demand,
(2) the used proportion of a limited RESERVE of balance energy, (3)
various transformations of DELTA and RESERVE such as sliding av-
erages over the past 10min (e.g. DELTA 10), first derivatives that ex-
press the TENDENCY of change, (4) 39 POWERPLANT production
time series, and (6) categories such as MINUTE and HOUR.

For illustration, Fig. 6a shows examples of imminent critical situa-
tions, where RESERVE 10 is at its limit. The purpose of the model is
to alert human decision makers rather than to replace them. In addi-
tion to high accuracy, having a small set of interpretable rules is thus
considered highly important by the experts.

The experts initially select the first and second half of the observed
time period as training and validation data. For generating an initial set
of tree candidates, the experts stochastically vary the used termination
criterion and the subset of input features to obtain 100 samples (see
Fig. 6b). As variation parameter, the degree of rounding is varied in 4
steps. This results in 100 x 4 = 400 candidates.

The experts set accuracy and the number of nodes as objectives in
the scatter plot. All tree maps of Pareto-optimal candidates show large,
pure blue regions (Fig. 6c). Inspecting detail views reveals that criti-
cal situations are hardly ever imminent when |RESERVE 10| is below
76% of its limit (Fig. 6d). This is the first split of all Pareto opti-
mal candidates. While this matches the expectation of the experts, the
particular threshold value is relevant information for them. Classify-
ing the remaining data, however, is more complex as shown by the
noise at the margins of the increasingly complex tree maps. In order
to focus the further analysis on explaining this remaining variance, the
experts enter the sub-tree generation mode for the |RESERVE 10| ≥
76% node. This creates a separate batch of 400 sub-tree candidates.

The visualizations of the Pareto-front now show 11 Pareto-optimal
sub-tree candidates (Fig. 6e,f). In the scatter plot, the colored Pareto
fronts for the varied degrees of rounding show that enforcing 3 or 2
significant digits does not incur a significant accuracy loss for smaller
trees, while rounding to 1 digit does (Fig. 6e). After inspecting the
trees in detail, the experts decide for 2 significant digits.

Browsing the Pareto-optimal candidates reveals that the feature
TENDENCY RESERVE is used for the first split by most sub-trees.
This makes sense for the experts, as this feature indicates an increase
(positive values) or decline (negative) of available balance energy.

By inspecting the Pareto front in the scatter plot, the experts soon
decide for a sub-tree with two splits and an accuracy of approximately
0.73 (Fig. 6e). While the next simple candidate with a single split is
much less accurate, significant gains of accuracy conversely require
a much larger number of splits which contradicts the requirement for
simplicity. The experts inspect further details for this selected focal
tree (Fig. 6f,g). They are surprised that the second split by MINUTE
has a threshold of 52, which they wish to investigate further. For
this purpose, we configured an additional view of our system beyond
TreePOD for the experts. Specifically, stacked bars show the propor-
tion of critical situations per minute within the hour cycle. A click
on the MINUTE-based split node in TreePOD updates the stacked
bars to show only the corresponding data (Fig. 6h). This visualiza-
tion confirms the adequacy of the split and also indicates a similarly
blue region at the beginning of each hour. Based on this cyclic pat-
tern, the experts hypothesize that the temporal proximity to the full
hour might be an even more suitable feature than MINUTE. A com-
posite brush for (MINUTE >52 OR MINUTE < 5) enables to express
HOUR CHANGE as a new binary input feature for TreePOD.

The experts specify an additional controlled variation regarding the
inclusion of this feature. The point-wise sensitivity of the focal tree
confirms an accuracy gain of approximately 2% for the corresponding
sibling. This sibling also belongs to the updated set of Pareto optimal
candidates and thus becomes the new focal tree (Fig.6i).

The experts are already very satisfied with this tree. As a final
check, they want to validate its generalizability. A controlled varia-
tion of the evaluation data confirms the tree’s accuracy for both train-
ing and validation data due to its relative simplicity (Fig.6j). More
complex tree candidates are much less accurate for the validation data.

At the end of our joint session, the experts were very confident of
having selected the most appropriate tree for their purpose. As a next
step, they plan to test the performance in operation for a few weeks
and eventually update the tree using TreePOD based on recent data.

9.2 Evaluation workshop with users of TreePOD
The third workshop took place four months later. After a brief recap,
two of the experts controlled the system themselves for approximately
one hour each, in individual sessions. The goal was to identify rea-
sons for short-term changes of power production schedules, denoted
as a categorical time series REDISPATCH (yes/no) over three months
(2521 records). Features include 23 numerical time series represent-
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Figure 6. Predicting critical situations in power grid operation. Based on pre-classified data (a), varying decision tree generation parameters (b)
obtains an ordered list of Pareto optimal model candidates (c). Inspecting the structure suggests an important first split (d). The Pareto fronts for
different degrees of threshold roundness recommend a rounding degree of 2 (e) and a sub-tree candidate (f, g). The distribution of classification
accuracy suggests adding the proximity to full hours as feature (h). The resulting tree (i) is better and generalizes for the validation data (j).

ing conditions of the network and the market, as well as temporal cat-
egories. This section describes how TreePOD was used by the experts.
Screenshots of their insights can be found in the supplemental mate-
rial. Feedback of the users is part of Sec. 9.3.

For an initial definition of tree candidates, the first user studied the
dialog’s options in depth first. She then started with sampling only
the termination criteria, but provided all features to every tree as fixed
assignment. The only difference between the resulting trees was their
degree of refinement, allowing her to assess the benefits of splits. Sur-
prised by the use of feature EXCHANGE 1 for the first split, she in-
vestigated alternative first splits by varying the features, while allow-
ing just one split (max depth = 2). Browsing these trees revealed that
no single split allowed splitting off a significant number of redispatch
cases, and that the selection of EXCHANGE 1 as the first-split feature
was justified. She then resorted to the default settings, and created a
new batch of 100 trees based on sampling the features and termination
criteria. Surprised by the high variation among the candidates, she
repeatedly used the “Show me more like this” button to create more
samples near the Pareto-front. She then spent some time browsing
the fronts. A linked time series view highlighting periods classified as
“REDISPATCH: yes” by the focal tree allowed her to compare the rec-
ognized redispatches across trees. Watching this view while browsing,
she identified trees explaining the previously unexplained redispatch
cases. This was a new way of exploration we had not tried before.
She finally concluded that the redispatch periods during the first two
months can be classified well using trees of moderate depth (≤ 4),
which she considered useful for reporting. Trees that also explain the
periods of the last month, however, require significantly more nodes.

The second user defined an initial batch of 500 candidates by sam-
pling the features and termination criteria. Browsing the Pareto-
optimal trees enabled him a quick identification of important features,
as well as a preferable tree depth (max 4-5) for reporting. Like the
first user, he was curious about alternative explanations without the
dominant feature EXCHANGE 1. Thus, he extended the candidates
by controlled variation of omitting vs. providing this feature to the
trees. He discovered that a related feature NET 1 is often selected
as a substitute, resulting in trees with comparable accuracy. He then
used the same linked time series view as the first user while browsing
the trees. He hypothesized that the cause for redispatch periods might
have changed after the second month. Thus, he decided to split the
data sets based on this possible structural break, and trained trees for

each part individually. He discovered that trees for the third month did
not use EXCHANGE 1, but rather four other features, confirming his
hypothesis. Finally, controlled variation of border rounding showed
him that rounding to 3 or even 2 significant digits incurs little accu-
racy loss for most trees, which he appreciated for his report.

In conclusion, both experts were satisfied with the explanations they
found, and considered them useful for their reports.

9.3 Qualitative Feedback
The six domain experts stressed the importance of building classifi-
cation models as part of their jobs. Some models need to be updated
frequently due to rapid changes in the energy sector. Consequently, the
time they can spend on tuning single models is limited (G3). More-
over, they believe that many domain experts in their field lack a deep
statistical knowledge (G2). For all six experts, model accuracy and
complexity are typically the most important aspects. Other require-
ments such as feature acquisition costs and model plausibility need to
be considered as well, but are often hard to quantify. Thus, they appre-
ciated that the controlled variation allowed them to compare discrete
sets of model variants without the need for quantification.

The reaction of the experts to TreePOD was very positive overall.
All of them praised the possibility of getting a fast overview of pos-
sible model characteristics as a huge step forward in comparison to
their current practice (G1). In particular, all experts considered the
knowledge about the variability of model characteristics and achiev-
ability of model objectives as significant gain of confidence (G4). The
result-driven approach was embraced as very understandable. The de-
tail visualizations of the model were considered crucial both for under-
standing the approach as such and for supporting a qualitative model
assessment. In general, all experts claimed to have understood Tree-
POD within the first workshop to a degree which enabled them to think
about applications to own classification problems. We specifically
asked them if they consider the controlled variation as beneficial with-
out deep algorithmic knowledge. Four experts answered that important
variation options do not require such knowledge in their opinion, e.g.,
the set of input features or rounding levels. Two of the domain experts
also considered the variation of other generation parameters as helpful
for non-experts in statistics to develop an intuition of their impact.

When asked about specific visualizations, five experts considered
the tree maps as important intermediate level of complexity between
the abstract scatter plot and the detailed structural visualization. They



considered their linear order as an intuitive guidance through the can-
didates. However, all experts agreed that the scatter plot is crucial as
an overview and for conveying the shape of the Pareto front, e.g., for
an efficient perception of jumps and sparsely sampled regions.

As a shortcoming, two experts questioned the restriction to binary
trees, i.e., each intermediate node having two children. Despite advan-
tages of binary trees from a statistical point of view [14], they consid-
ered more general trees as easier to understand and to communicate,
e.g., when subsequent splits refer to the same feature.

The experts who used TreePOD themselves found the default sam-
pling parameters combined with the “Show me more like this” button
highly enabling for users without statistical background. However,
they considered the number of 20 added samples with every press of
this button inadequately small. One expert considered a time-based
specification a better alternative, e.g., sampling for 1-2 seconds. One
expert suggested adding dedicated buttons to trigger important varia-
tions more easily, e.g., “create rounded variations”, or “omit feature”.
When defining filters on result metrics, one expert suggested drawing
the achievable Pareto front for the filtered trees as context. Concern-
ing the bubble encoding of leaf nodes (see Fig. 4a), the users found
purity better conveyed by the stacked bars and bands between nodes.
However, one user said their correspondence to the tree maps helped
to understand the latter visualization, which was unfamiliar at first.

The other experts also contributed numerous ideas for further exten-
sions. One expert stressed that upper hierarchy levels should be defin-
able from the outside in order to represent given (political) rules and
classification schemes. Another expert requested a sensitivity anal-
ysis for decision thresholds of particular nodes. As a very interesting
idea, one expert suggested using TreePOD to explain user-defined data
subsets. For example, after brushing an anomalous period of energy
production in a time series view, TreePOD could explain this period
by other time series such as meteorological conditions.

10 DISCUSSION AND FUTURE WORK

TreePOD fosters a shift in the strategy for tuning the generation param-
eters of decision trees. Fully automated tree generation often results
in a cumbersome trial-and-error parameter search [32]. Most previ-
ous work for cooperative decision tree construction [3, 23, 46] follow
a local-to-global strategy for investigating the parameters [40]. These
approaches can be classified as white-box integration of visualization
and mining [5]. In contrast, TreePOD can be considered a black-box
type of integration. A key advantage is to hide details of the generation
process from users unless on explicit request (G2). Moreover, Tree-
POD encourages a global-to-local search strategy which starts with
an overview of possible characteristics for reducing the risk of miss-
ing the global optimum (G1). TreePOD still supports a cooperative
creation, but on a global scale rather than by focusing on a single tree.
Specifically, controlled variations are applied to the entire set of candi-
dates which enables a comparison of the effect across trees for higher
user confidence (G4). However, this concept does not exclude local re-
finements of selected trees if explicitly requested by users (see Sec. 7).

TreePOD closely follows the Visual Analytics Mantra [17]: To an-
alyze first, TreePOD generates a comprehensive set of decision can-
didates and computes quality metrics for them. TreePOD shows the
important by focusing the selection on Pareto-optimal tree candidates.
Users may zoom and filter by quality metrics. Adding tree candidates
enables to analyze further for inspecting sensitivities regarding con-
trolled variations of the tree generation parameters as well as for refin-
ing the sampling towards desirable tree properties. Additional views
provide details on demand for a selected tree.

An important design decision of TreePOD is to restrict the num-
ber of Pareto objectives to two. This limitation has several signif-
icant advantages for keeping the approach understandable by users.
For visualization, the simple representation as poly-line permits an in-
tuitive comparison of variations of the entire front. For interaction,
the linear order of tree candidates along the trade-off enables an intu-
itive switch from one tree to the next more accurate or more simple
Pareto-optimal tree. For guidance in general, the set of Pareto optimal
tree candidates is typically much smaller for two objectives than for

three or more objectives, which avoids overwhelming the user with
too many alternatives (G3). Moreover, feedback by domain experts
suggests that the trade-off between accuracy and complexity is typi-
cally the most important consideration, even if additional objectives
such as feature acquisition cost exist. Additional objectives can be
considered by filtering trees with undesirable values as a common ap-
proach to address multi-criteria decision problems [44]. Nevertheless,
experimenting with visualization approaches for higher-dimensional
multi-criteria decision making [33] is relevant as future work.

Regarding other scalability aspects, the use of hue restricts the num-
ber of target classes to approximately ten for perceptual reasons [47].
Even more so, as color is also used for encoding the variation. We
also experimented with showing variations of multiple parameters si-
multaneously, but rejected this feature due to generating too complex
visualizations in many cases. On the other hand, the visual complex-
ity of TreePOD does not depend on the size and dimensionality of the
training or validation data. As a practical limit of the data size, how-
ever, the approach strongly benefits from short training times of trees
in order to generate a sufficiently dense sampling overall and of the
Pareto front in particular. The quantitative overview scales well for
large numbers of trees, considering that the most relevant information
is the location and shape of the Pareto front. Conversely, a sparse sam-
pling will in general obtain a very inaccurate approximation of the real
Pareto front. While local refinements of the sampling help to mitigate
this problem (Sec. 7), integrating advanced approaches for construct-
ing the Pareto front [9, 50] are an important aspect of future work.

As a next step, we plan to conduct a long-term study based on de-
ploying TreePOD to target users from multiple application domains.
Moreover, we intend to extend the approach in order to further uti-
lize information contained in the generated set of candidate trees. For
example, analyzing the frequency and the context in which particular
features are selected could provide useful information about their im-
portance. Finally, we believe that core concepts of TreePOD are trans-
ferable to other types of models. Model selection is typically a multi-
criteria problem. In addition to accuracy, objectives regarding, e.g.,
comprehensibility and feature acquisition cost apply to many types of
models [12], e.g., regression polynomials. We thus plan to evaluate in
how far the concepts of TreePOD regarding sampling, guidance, and
variation also support the selection process for other types of models
by replacing decision tree-specific result metrics and visualizations.

11 CONCLUSION

This paper described TreePOD, a new approach for sensitivity-aware
selection of decision trees in the presence of multiple objectives. Be-
sides accuracy, especially the need for comprehensible models is in-
creasing [19]. To address this need, TreePOD fosters a global-to-local
strategy for model selection in order to guide also non-experts in sta-
tistical modeling towards a confident selection of suitable trees.

Based on TreePOD, we described a holistic workflow for decision
tree selection which combines aspects from white-box and black-box
integration of visualization and data mining [5]. A case study con-
ducted in pair-analysis with domain experts illustrated the ability of
TreePOD to solve a relevant problem in the energy sector, and con-
firmed that non-experts in statistics were able to efficiently identify
a suitable decision tree with high confidence. TreePOD is applica-
ble to classification problems independent of the application domain.
As one possible direction of future work, we believe that TreePOD is
conceptually transferable to other types of models for increasing the
efficiency and confidence in the selection process.
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Fig. 1. Analyzing relationships using our framework: The conditional distribution of the dependent variable natural gas consumption
is visualized over partitioned input features (a) and feature pairs (b), which are ranked by measures quantifying their relevance (c).

Abstract—Regression models play a key role in many application domains for analyzing or predicting a quantitative dependent
variable based on one or more independent variables. Automated approaches for building regression models are typically limited
with respect to incorporating domain knowledge in the process of selecting input variables (also known as feature subset selection).
Other limitations include the identification of local structures, transformations, and interactions between variables. The contribution of
this paper is a framework for building regression models addressing these limitations. The framework combines a qualitative analysis
of relationship structures by visualization and a quantification of relevance for ranking any number of features and pairs of features
which may be categorical or continuous. A central aspect is the local approximation of the conditional target distribution by partitioning
1D and 2D feature domains into disjoint regions. This enables a visual investigation of local patterns and largely avoids structural
assumptions for the quantitative ranking. We describe how the framework supports different tasks in model building (e.g., validation
and comparison), and we present an interactive workflow for feature subset selection. A real-world case study illustrates the step-wise
identification of a five-dimensional model for natural gas consumption. We also report feedback from domain experts after two months
of deployment in the energy sector, indicating a significant effort reduction for building and improving regression models.

Index Terms—Regression, model building, visual knowledge discovery, feature selection, data partitioning, guided visualization

1 INTRODUCTION

Regression analysis is a statistical technique for modeling a quanti-
tative dependent variable Y as a function of one or more continuous
or categorical independent variables X1 to Xn. Common applications
of regression models include prediction and sensitivity analysis of Y
with respect to changes of independent variables. The field of sta-
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tistical learning has developed many types of regression models and
techniques supporting the process of model selection [21]. This pro-
cess comprises identifying suitable values for model-specific parame-
ters as well as selecting a minimal descriptive subset of independent
variables, also known as feature subset selection [19] (we use the term
feature as a synonym for independent variable in this paper). Benefits
of having a minimal number of features include an improved model
interpretability, reduced training times, and a reduced probability of
overfitting while still providing an accurate fit [21].

In general, the trade-off between model complexity and accuracy
explains one challenge in building regression models. Another chal-
lenge arises from the inability of incorporating domain knowledge into
common automatic feature selection techniques (e.g., step-wise re-
gression [13]). As different techniques may yield different results and
often reflect aspects of the training data rather than domain knowledge,
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Fig. 2. Synthetic examples motivating goals of our framework. (a - c) Local variations of the conditional distribution of a dependent variable Y1
explain X1 as relevant due to a non-monotonic relationship with Y1, X2 as locally relevant, and X3 as irrelevant. Green rectangles indicate local
dispersion and gray rectangles show global dispersion of Y1 as measured by interquartile ranges. (d) Another dependent variable Y2 is explained
by the interaction of two features X4 and X5.

“automated variable selection procedures are no substitute for careful
thought” [1]. Additionally, many types of regression models imply
structural assumptions (e.g., linear relationships). Knowledge about
complex or local relationships (see Fig. 2a and b) as well as about
interactions of variables (see Fig. 2d) is thus crucial for selecting an
appropriate model type and for identifying suitable transformations
of variables such as the logarithm, polynomial basis expansions (e.g.,
X2 = X2

1 ) or binary operations (e.g., X3 = X1 ·X2). According to recent
studies of Kandel et al. [24], feature selection and transformation are
two of the most time-consuming challenges in data analysis.

This paper proposes an interactive framework for building regres-
sion models addressing these challenges. The approach combines a
visualization of relationships between features and a quantitative tar-
get and a quantification of these relationships for ranking them by
relevance. Using derived quantities like residuals as target supports
different tasks of model building including feature subset selection,
model validation, and model comparison. A central goal is to enable
the identification of complex relationships (e.g., having discontinuities
or local extrema) and local relationships (i.e., features explaining the
target across a part of their domain, see Fig. 2b). To achieve this goal, a
key idea is partitioning the feature space into disjoint regions for visu-
alization and for quantification, providing an adjustable level of detail
between a point-wise and a global analysis [29]. The framework sup-
ports inspecting individual features as well as pairs of features in order
to enable the discovery of arbitrary bivariate interactions (see Fig. 1).

The application background motivating this work is the need for
accurate prediction models in the energy sector. Most figures of this
paper and an exemplary case study (Sec. 5.1) refer to predicting the
consumption of natural gas in a large city. In this domain, a precise
knowledge of the combined effects of meteorological and other factors
on the consumption is crucial for minimizing costs and guaranteeing
supply. Operating on generic continuous or categorical data, however,
the proposed framework is not limited to any domain but addresses
very general issues of regression analysis and knowledge discovery.
Specifically, the contributions of this paper include:

• techniques for ranking variables and pairs of variables by their
usefulness in predicting a quantitative target.

• a design space of partition-based visualizations showing local
structures in the target distribution over one or two variables.

• applications of the framework for model validation and compar-
ison, and an interactive workflow for feature selection.

• an evaluation of the framework based on a case study of a real-
world modeling task and user feedback after two months of de-
ployment in the energy sector.

2 RELATED WORK
Interactive pattern discovery and model building are key issues of Vi-
sual Analytics. Examples include clustering [30], classification [47],
and learning distance functions [8]. This paper focuses on regression-
related tasks, such as feature selection and model validation.

Regression has traditionally been a key issue in statistics, resulting
in a variety of model types [21] as well as methods supporting model

selection [19], model comparison [27], and model validation [43]. Nu-
merous measures have been proposed for quantifying relationships,
many of them being limited to certain classes such as linear or mono-
tonic relationships (e.g., Pearson correlation). As a more general indi-
cator, the Maximum Information Coefficient (MIC) measures the mu-
tual information of two features based on partitioning them at multi-
ple resolutions [37]. Similar to our approach, the partitioning of MIC
largely avoids structural assumptions, but we do not require a catego-
rization of the dependent variable. More importantly, quantifying a
relationship by a single value incurs a loss of information which may
hide important structural aspects, e.g., due to data quality issues. For
this reason, a comparison of multiple measures is advisable [1].

The Rank-by-Feature Framework (RbFF) [39] has been proposed as
an interactive approach to support a comparison of statistical measures
in combination with a visualization of qualitative aspects. The ability
to handle univariate and bivariate measures and the good scalability for
high-dimensional data motivated us to adopt the layout of the RbFF for
our framework. However, the RbFF was neither designed to support
regression-related tasks in general, nor the detection of relationships
to a quantitative target in particular. The same is true for other tech-
niques supporting an exploration of high-dimensional data by ranking
visualizations based on screen-space metrics [50], class consistency
measures [41], and the interestingness of point clouds [44].

A variety of approaches addresses the identification of multi-
dimensional relationships in a more general sense. Besides common
multivariate visualization techniques like scatterplot matrices [11] and
parallel coordinates [23], some approaches explicitly denote a quan-
titative dependent variable. Guo et al. [18] support the discovery of
multivariate trends. An interactive visualization of the model parame-
ter space enables to detect multiple trends but is limited to linear mod-
els. Barlowe et al. [3] display distributions of partial derivatives for an
identification of multi-dimensional relationships. The authors describe
an interactive workflow for model construction, dimension reduction,
and knowledge discovery. However, the interpretation of the visual-
izations may require significant training and it remains unclear in how
far distributions of partial derivatives convey complex local structures.
Other approaches support an exploration of relationships based on vi-
sualizing high-dimensional scalar functions by showing topological
structures [16] or projections based on slicing [48, 45]. While use-
ful for understanding an existing model, most tasks related to model
building are not directly supported by such visualizations.

While some approaches address sensitivity analysis [17, 9], provid-
ing dedicated support for regression-related tasks has received little
attention in Visual Analytics so far. Friendly uses shaded mosaic dis-
plays [15] to visualize averaged model residuals or target values across
combinations of categorical dimensions. Described as a static dia-
gram, this approach does not address aspects of high-dimensional data
such as ranking and iterative feature selection. Moreover, handling
continuous variables is not discussed. Berger et al. [6] use regression
models for a continuous exploration of sampled parameter spaces, but
do not cover model building. HyperMoVal [32] addresses the valida-
tion of regression models by relating validation data to function graphs
of models based on slicing. However, this point-wise level of detail is



inappropriate to provide an overview over local structures.
Partition-based visualization techniques address this shortcoming

by providing an intermediate level of detail. Converting continuous
data to a frequency-based representation is often referred to as bin-
ning [40]. The goal is reducing complexity and ensuring the scalabil-
ity for many data samples while preserving local structures to some
degree. Variable binned scatterplots adapt bin size to the character-
istics of the data for visualizing large data without overlapping [20].
Slingsby et al. [42] explored the effects of alternative layouts in space-
filling hierarchical displays to show multiple aspects of large mul-
tivariate datasets. We provide a discussion of different layouts for
partition-based visualizations of 1D and 2D domains in the context
of regression.

Using partitioning for iterative feature subset selection, the work by
May et al. [29] is most similar to ours. Mutual information measures
between a target and partitioned features are visualized individually
for each partition to show the local relevance while global aggregates
rank features by relevance. Operating on a categorical target, their
approach also supports classification while the required categorization
of continuous targets introduces a problematic loss of detail for regres-
sion. In contrast, our framework does not categorize the target. This
enables the visualization of local distributions as required for many
tasks in regression. Moreover, our framework supports pairs of fea-
tures as needed for detecting interactions between features.

3 A PARTITION-BASED FRAMEWORK FOR REGRESSION
This section introduces our framework for regression-related tasks.
The approach is to support an exploration of relationships between
a feature space X of continuous or categorical independent variables
X1 to Xn and a quantitative target T . As shown in Fig. 1, the main
layout elements of our framework comprise tables of measures quan-
tifying the relevance for individual features (1D) and pairs of features
(2D) with respect to T as well as corresponding small-multiple visu-
alizations conveying structural details of relationships. These visual-
izations include a list of plots (1D) and a half-diagonal matrix of plots
showing all pair-wise combinations of features (2D). Ordering a table
by a measure also ranks the corresponding small-multiple visualiza-
tion as a guidance to potentially relevant plots (inferring an ordering
for the matrix is discussed in previous work [31]).

The basis of visualization and ranking is the fact that relationships
between a feature Xi or a pair of features Xi,Xj (henceforth abbreviated
as Xi[,Xj]) and T manifest in local variations of the conditional distri-
bution P(T |Xi[,Xj]) (see Fig. 2). Expressing the local mean values
of the conditional distribution as a function is the fundamental con-
cept of regression [21]. The key idea of our framework is approximat-
ing P(T |Xi[,Xj]) by partitioning the one- or two-dimensional domains
into disjoint regions. Inspired by May et al. [29], the rationale is to
provide an adjustable and computationally efficient level of intermedi-
ate detail between a point-wise and a global analysis.

The subsequent sections describe different aspects of partition-
based exploration of relationships: Section 3.1 discusses general con-
siderations and approaches to partitioning Xi[,Xj]. Section 3.2 de-
scribes partition-based visualizations that approximate the conditional
distribution of T . Section 3.3 discusses a partition-based quantifica-
tion of relevance. In addition to exploring relationships between X
and a user-selected dependent variable Y (i.e., T = Y ), Section 3.4
describes the application of our framework to common tasks in sta-
tistical modeling by using various derived quantities as T . Details on
how to perform the partitioning, the visualization, the ranking, and the
application are to a large degree independent of each other and can
be extended separately, which is the motivation for us to refer to our
approach as a framework. Section 3.5 then extends this framework to
support an interactive workflow for feature subset selection.

3.1 Partitioning Xi[,Xj]
This section discusses general aspects of partitioning Xi[,Xj] which are
the basis for partition-based visualization and ranking in subsequent
sections. In computer science, subdivision is a key concept to reduce
a complex problem to a set of more simple ones. In the context of
multidimensional data, examples of hierarchical subdivision include

search algorithms [12] and image processing [38]. In statistics, tree-
based methods in general [21] and regression trees in particular have
received substantial attention in literature due to their ability to flexibly
capture relationships of complex structure [7, 14].

Our approach to approximate P(T |Xi[,Xj]) is inspired by regres-
sion trees in that an adaptation to complex structures is based on con-
sidering disjoint regions of Xi[,Xj] separately from each other. How-
ever, we have different goals and constraints than most approaches to
building regression trees. Rather than building an accurate regression
tree for prediction, the goal of our approach is to locally approximate
P(T |Xi[,Xj]) for a potentially large number of features. Due to this
goal, an individual partitioning is required for each Xi[,Xj], as opposed
to applying the same partitioning to all features [34]. The result of par-
titioning Xi[,Xj] is a set of disjoint regions where any data sample is
contained in one region. For one-dimensional partitioning, each re-
gion is described by either a category if Xi is categorical or an interval
if Xi is continuous. For two-dimensional partitioning, these restrictions
independently apply to Xi and Xj, i.e., a region of two continuous fea-
tures is an axis-aligned rectangle. Besides simplicity, the main reason
for these restrictions is to enable a flexible visualization (see Sec. 3.2).

We identified three requirements for partitioning Xi[,Xj]: 1) Gen-
eral applicability: Assumptions about the distribution of Xi[,Xj]
should be avoided. 2) Fast computation: In the sense of Visual Analyt-
ics, the ultimate goal is to provide an interactive framework enabling
workflows which tightly couple user-centric and computation-centric
steps (see Sec. 3.5). Significant delays should thus be avoided when
users change T , X or partition-specific parameters. Therefore, parti-
tioning all Xi[,Xj] should be feasible within at most a few seconds also
in case of a large number of features for 1D and especially 2D analysis.
3) Adjustability: The degree of detail should be adjustable intuitively.
This implies that regions should have a similar size in some sense in
order to make regions comparable for a given distribution of data.

Concerning adjustability, the size of a region can be interpreted in
different ways, i.e., as the size in the domain of Xi[,Xj], or as the size
with respect to the number of data samples. As a consequence, our
framework supports two different approaches for partitioning Xi[,Xj].
Domain-uniform partitioning. This approach subdivides each con-
tinuous feature Xi into N intervals of equal domain size between the
minimum and the maximum of Xi. The parameter N thus adjusts the
degree of detail of the partitioning. For categorical features, the cate-
gorization is taken as subdivision. For feature pairs, the regions are the
Cartesian product of the individual subdivisions of Xi and Xj. Domain-
uniform partitioning has linear effort and is very fast. However, the
distribution of data samples within Xi[,Xj] is ignored. While this may
be desirable, it is generally a problem in the presence of outliers and
non-uniform distributions. Specifically, many resulting regions may
be empty or contain a statistically insignificant number of samples.

Frequency-uniform partitioning. The goal of this approach is to
define regions containing an identical (or at least similar) number of
data samples, i.e., having a same relative frequency. Inspired by Kd-
trees [5], the key concept is based on a binary hierarchical subdivision
of continuous features by recursively splitting the data at the median
of the respective subset of samples. In order to be also applicable to
ordinal data, our consideration is that data samples having identical
values in Xi[,Xj] must be assigned to the same region. In this case,
we shift the splitting location into the direction that generates more
equally-sized subsets. For nominal data, the categorization is taken
as the subdivision even for differently sized categories. For feature
pairs, the subdivisions of Xi and Xj are interleaved, starting with the
feature where the median is closer to the center of the domain. In case
of a categorical feature Xi and a continuous Xj, the approach splits Xj
separately for each category of Xi, i.e., the subdivision of Xi is done
first. The recursion stops if either (1) the entire subset of data sam-
ples has identical values in Xi[,Xj] or (2) a split would create at least
one region having less than a user-defined minimal significance Smin
of data samples, or (3) the recursion of any dimension has reached a
maximal depth Dmax. The reason for criterion 3 is to enforce a com-
parable degree of detail for any feature Xi in different pair-wise com-
binations Xi,Xj and Xi,Xk which is largely independent of Xj and Xk.
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Fig. 3. Our design space of partition-based visualizations of relationships. While domain-preserving layouts are more intuitive to interpret,
frequency-preserving layouts compensate for non-uniform distributions of Xi[,Xj ].

Without criterion 3, Xj being categorical could lead to a much more
fine-grained subdivision of Xi than achieved for Xk being continuous.
In general, Dmax is the key parameter for adjusting the degree of detail
while Smin ensures the significance for subsequent processing indepen-
dently of the number of data samples.

An alternative to domain-uniform and frequency-uniform partition-
ing could be to maximize homogeneity of a region with respect to the
structure of P(T |Xi[,Xj]), as done for building regression trees [7].
However, finding optimal positions for splitting involves more com-
putational effort, contradicting our requirement of fast computation.
Moreover, changing T in the course of a workflow also requires a
complete re-computation of the partitioning, which is not the case for
domain- and frequency-uniform partitioning. For these reasons, our
implementation of the framework currently does not support partition-
ing approaches that depend on the structure of P(T |Xi[,Xj]). Con-
ceptually, however, supporting these approaches would be compatible
with the visualization and ranking mechanisms described below, pro-
vided that the shape of the resulting regions complies with the require-
ments stated above.

3.2 Partition-Based Visualization of Relationships
As motivated above, the key idea of our framework is to support an
analysis of local variations of the conditional distribution P(T |Xi[,Xj])
by partitioning Xi[,Xj] into disjoint regions. This section discusses
considerations regarding the representation of this partitioning for
visualization. As opposed to quantitative relevance measures (see
Sec. 3.3), the goal of the visualization is to convey qualitative aspects
of relationships such as location, shape, and significance of structures.
In addition to considerations regarding the partitioning itself as dis-
cussed in Sec. 3.1, we identified two central design issues regarding
partition-based visualizations of P(T |Xi[,Xj]): How to layout regions
within a plot, and how to visually represent P(T |Xi[,Xj]).

3.2.1 Layout
As for partitioning, the size of each region Rk can either be interpreted
as the covered part of the domain Xi[,Xj] or as the number of con-
tained samples, i.e., the relative frequency of Rk. Our framework con-
sequently discriminates two options for using the visual attribute space
in order to assign a size and a location to each Rk. As will be discussed
below, these layout options affect the X-axis for 1D domains and both
axes for 2D domains (see Fig. 3).

Domain-preserving layout. Space is used to linearly represent the
domain Xi[,Xj] between the minimal and maximal values of data sam-
ples in Xi[,Xj]. As for traditional function plots, extents of structures
in Xi[,Xj] are thus directly perceptible.

Frequency-preserving layout. Space is used to represent the rel-
ative frequency of each region, i.e., the X-axis in the 1D case or the

entire plot in the 2D case represent 100% of the data. This layout thus
generates a space-filling visualization as discussed extensively in the
literature [4]. In 2D, the layout depends on how the data has been par-
titioned. For frequency-uniform partitioning, we directly represent the
hierarchical structure of the subdivision, i.e., at each hierarchy level,
the split of the respective axis is proportional to the frequency of the
hierarchy nodes. For domain-uniform partitioning, we first subdivide
the visual space in proportion to the feature being distributed more
uniformly, and then to the other one (compare to Mosaic plots [15]).
The benefit of a frequency-preserving layout is the optimal utilization
of visual space and the direct perception of the significance of regions.
The main drawback is a difficult interpretation regarding the extents
and relative positions of regions in Xi[,Xj].

In our framework, options for partitioning Xi[,Xj] and for layout
can be chosen independently from each other. This defines a design
space of partition-based visualizations where each combination has
different advantages and disadvantages (see Fig. 3). In general, a suit-
able partitioning for visualization depends on the distribution of data
samples. Less uniform distributions typically increase the necessity
of distortion by frequency-uniform partitioning in order to guarantee
a significant degree of detail for dense areas. To ensure flexibility,
the partitioning granularity is controlled by the user. As a commonly
used choice, we set the default number of splits per dimension to 4

√
n

for domain-uniform mode, with n being the number of samples. For
frequency-uniform mode, we use Dmax = 4 and Smin = 10 as default
subdivision limits. A suitable layout depends on the task. In context of
model building, for example, detecting transformations benefits from
a domain-preserving layout, while assessing the significance of local
structures requires a frequency-preserving layout. We briefly discuss
each combination individually:

Domain-uniform partitioning / domain-preserving layout. In
our experience, this combination is the easiest to interpret. While
particularly useful if large parts of Xi[,Xj] are uniformly distributed,
entirely disregarding the frequency of regions introduces a visual bias
for non-uniform distributions and makes it very sensitive to outliers.

Frequency-uniform partitioning / domain-preserving layout.
This combination may be a suitable compromise to avoid distortion
for non-uniform distributions. It is less sensitive to outliers which are
included in outer regions. As a non-intuitive aspect, however, the dif-
ferent size of regions may falsely suggest a different significance and
makes very dense regions difficult to perceive.

Domain-uniform partitioning / frequency-preserving layout.
This combination is suitable if domain-uniform partitioning is required
for application-specific reasons, but the significance must be visual-
ized due to a non-uniform distribution of Xi[,Xj]. However, the parti-
tioning may provide an insufficient resolution for dense regions.
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Fig. 4. The goodness-of-fit varies with the number of recursive subdivi-
sions performed by a piece-wise linear ranking model QXi .

Frequency-uniform partitioning / frequency-preserving layout.
This is the most effective combination to compensate for non-uniform
distributions and outliers. A sufficient degree of detail is provided
also for very dense regions. The layout ensures a sufficient size for
perceiving the result at the cost of introducing a potentially significant
distortion regarding the location of regions in Xi[,Xj].

3.2.2 Representation
After assigning a size and location to each region Rk, a key design
issue concerns the visualization of the distribution P(T |Xi[,Xj]). We
distinguish between visualizing features and pairs of features (Fig. 3).

Visualization of P(T |Xi). While the X-axis is used to represent
the domain or the relative frequencies, the Y-axis depicts P(T |Xi).
Many options have been proposed in literature to visualize univari-
ate distributions, e.g., variants of box plots [46, 35] and color-based
histograms [28]. Very similar to box plots, our approach displays the
median (black line), the quartiles (dark gray) and the 0.05 and 0.95
percentiles (light gray). As the main benefit, visualizing the median
along multiple regions resembles familiar function graphs and the lo-
cal dispersion is directly readable. The main drawback concerns the
inability to adequately visualize multi-modal distributions.

Visualization of P(T |Xi,Xj). In this case, the layout defines both
axes and the visual proportions of each region may vary significantly,
making a direct representation of P(T |Xi,Xj) difficult. In order to limit
the visual complexity, our current implementation visualizes a single
distribution measure at a time by color, i.e., the average, the median,
the variance, or the interquartile range. Depending on the task, the user
may choose between a linear and a diverging transfer function (see
Sec. 3.4) and may adjust its scaling. In future work, we intend to exper-
iment with techniques for displaying multiple aspects of P(T |Xi,Xj) at
the same time, e.g., using saliency to display variance.

3.3 Partition-Based Relevance Ranking of Features
While the visualization of relationships provides qualitative informa-
tion, many applications also require quantitative measures. In particu-
lar, a purely visual inspection of a high-dimensional feature space X is
impractical especially for a pair-wise analysis. This section thus dis-
cusses methods for ranking Xi[,Xj] by quantitative measures that ex-
press the relevance for P(T |Xi[,Xj]). In statistics, a common approach
to automated feature selection is based on fitting a regression model for
each candidate and ranking respective goodness-of-fit measures (also
known as wrapper approach to feature ranking [27]). We adapt this
approach by building a separate model QXi[,Xj] for each Xi[,Xj] in a
way that flexibly adapts to the structure of P(T |Xi[,Xj]). As discussed
in Sec. 3.1, regression trees comply with this requirement [7, 21]
and are used as the model type of QXi[,Xj]. More specifically, we
build piece-wise linear regression trees in order to exploit local linear-
ity [36]. The hierarchical subdivision of QXi[,Xj] (i.e., the tree) is based
on frequency-uniform partitioning in order to enable an adaptation to
non-uniform distributions. Conceptually, however, piece-wise linear
models in our framework may be based on any subdivision approach,
including domain-uniform partitioning or hierarchical subdivision ap-
proaches seeking optimal splits (see Sec. 3.1). The partitioning can
be chosen independently for the visualization and the ranking, as they
address different goals and face different constraints.

In automated approaches to model building, feature ranking is often
used to incrementally refine an existing model M by adding or remov-
ing features (known as forward- or backward step-wise selection) [21].
This typically involves fitting variants of M that differ by the added or
removed feature. In contrast, our ranking quantifies the relevance of
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Fig. 5. The effect of increasing the complexity of QXi on the measure R2

for three features. (a, b) Goodness-of-fit curves as common in statistics
are indicated by grayscales in our framework. They show the complexity
of QXi required to capture relationships of different frequencies (c).

Xi[,Xj] for P(T |Xi[,Xj]) without making assumptions about the source
of T (see Sec. 3.4). If used for interactively building a model M
(Sec. 3.5), the models QXi[,Xj ] are independent from M with respect
to the model type and complexity. Being used for an approximation
of relevance rather than for prediction, QXi[,Xj] also has a different pur-
pose. For this reason, shortcomings of our type of regression trees
are less problematic in our case, including discontinuities and a sub-
optimal choice of split-points by frequency-uniform partitioning.

After fitting QXi[,Xj], the quantification of relevance is based on the
goodness-of-fit measure R2 which is well-known and can be computed
with linear effort [1]. Conceptually, integrating additional measures
into our framework is straightforward (e.g., correlation measures).

As a general issue of statistical learning, model selection faces a
trade-off between maximizing accuracy and minimizing model com-
plexity, also known as the bias – variance trade-off [21]. In our case,
the ability of QXi[,Xj ] to adapt to high-frequency structures depends
on the number of splits which is determined by the parameter Dmax
as introduced in Sec. 3.1 (see Fig. 4). While a coarse subdivision is
less prone to noise, the detection of complex structures may require a
fine-grained subdivision. An appropriate model complexity thus de-
pends on P(T |Xi[,Xj]) and on domain knowledge about the features.
In statistics, a common approach to analyze the effect of increasing
model complexities is by plotting them against error metrics as curves
(see Fig. 5a). Motivated by this approach, we compute a sequence
Seq{QXi[,Xj]} of models QXi[,Xj] for each Xi[,Xj] for increasing values
of Dmax, and we compute R2 measures for all variants of QXi[,Xj].

As shown in Fig. 5, detecting high-frequency relationships requires
more splits while the number of splits has hardly any effect on low-
frequency relationships and irrelevant features. This holds as long as
each leaf contains a significant number of samples, as ensured by the
parameter Smin of frequency-preserving partitioning. For this reason,
the ability to detect complex structures depends on the overall number
of data samples, which is true in general for statistical learning [21].

The result of the quantification is shown as a table where columns
represent increasing complexities of QXi[,Xj] and rows correspond to
the features or pairs of features Xi[,Xj] (see Fig. 5c). Each row thus
represents a goodness-of-fit curve which is visually indicated by the
background color of cells (see Fig. 5b). Vertically, each column can
be considered a cut through the curves that can be used for ordering
the table and for ranking the coordinated small-multiple display.

3.4 Applying the Framework to Model Building Tasks
The previous sections focused on task-independent concepts for rank-
ing and visualizing relationships between features and a general quan-
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Fig. 6. Derived quantities as target T support different tasks in building regression models. (a) Residuals show the local prediction bias of a model,
i.e., a tendency towards over- or under-estimation. (b) The difference of residual magnitudes indicates local superiority for a pair of models. (c) The
point-wise variance of predictions by multiple models represents their local uncertainty.

titative target T . This section describes the application of the frame-
work to common tasks in statistical modeling. The key idea is using
different derived quantities as T . Henceforth, Y denotes actual obser-
vations of a dependent variable and ŶM denotes corresponding predic-
tions of Y by a model M. We identified the following set of tasks:

• Identification of explaining features (T = Y ). Relating fea-
ture candidates to actual observations of Y helps in determin-
ing the features or pair-wise combinations of features having the
strongest explanatory power (see Fig. 1). The direct visualiza-
tion of P(Y |Xi[,Xj]) resembles 1D and 2D function plots which
typically makes the interpretation straightforward for domain ex-
perts. However, dominating relationships tend to obscure less
distinct relationships for ranking and visualization (e.g., the ef-
fect of Temperature is dominating in Fig. 1).

• Analysis of prediction bias (T =Y −ŶM). Visualizing the resid-
uals of M reveals areas of over- or underestimation, i.e., the local
bias of M. An appropriate scaling of T should be symmetric
around the neutral value 0. In 2D, we use a diverging transfer
function as suggested for this purpose [49] (see Fig. 6a). The pre-
diction bias provides important information for detecting effects
currently not captured by M. This includes relevant features be-
ing not yet part of M, in which case the prediction bias supports
incremental feature selection (see Sec. 3.5). Another application
is detecting an insufficient model complexity. For instance, mod-
eling a non-linear effect of Xi by a linear term will show distinct
areas of over- and underestimation in plots of Xi. In general,
consulting the shape and size of areas comprising visually simi-
lar regions may facilitate identifying suitable transformations of
features for model building. Conversely, small and incoherent
areas often indicate noise rather than real effects.

• Assessment of prediction accuracy (T = |Y −ŶM |). Visualizing
the distribution of residual magnitudes of M reveals local differ-
ences in the prediction quality, exposing badly fitted areas.

• Comparison of two models (T = |Y − ŶM1| − |Y − ŶM2|). Vi-
sualizing the point-wise difference of residual magnitudes of the
models M1 and M2 provides an overview of local model supe-
riority (see Fig. 6b). The sign of the regional average of T in-
dicates which model tends to be locally better (negative for M1,
positive for M2), while the magnitude indicates by how much.
The scaling of T is symmetric around 0, suggesting a diverging
transfer function. Typical applications include model selection
and the identification of composite models. In this case, ranking
supports the selection of useful classifiers and the visualization
may suggest decision boundaries.

• Exposing uncertainty of model ensembles (T =
Var(ŶM1 ... ŶMn)). In this case, T is the point-wise vari-
ance of predictions of Y by the models M1 to Mn. In other

words, for the kth record of the dataset, the n predictions ŷkM1
to ŷkMn are aggregated by their variance or other measures
of dispersion. Sources of model ensembles include different
training data sets, variation of model-specific parameters, and
different types of prediction models. A common application of
ensemble data is analyzing the uncertainty of a prediction [22].
Our framework supports the identification of areas in 1D or 2D
feature sub-spaces causing uncertainty (see Fig. 6c).

It should be noted that the tasks involving models operate solely on
point-wise predictions of these models. They neither make assump-
tions about M, nor is access to an evaluable representation of M re-
quired. This makes the framework applicable to the validation and
comparison of any type of quantitative prediction from any source. In
the context of renewable energy, assessing and comparing forecasts of
meteorological quantities from different providers is of great practical
importance (e.g., day-ahead forecasts of temperature at a specific lo-
cation). In this case, the prediction is based on physical rather than
statistical models. Analysts in the energy sector do not have access
to such models themselves, but still, the framework has successfully
been applied for assessment and (composite) selection of providers.

3.5 Interactive Feature Subset Selection
This section describes extensions to the framework supporting an in-
teractive workflow for feature selection (Sec. 5.1 illustrates an exam-
ple). The principle of the workflow is based on forward selection of
features in step-wise regression [1]. The key idea is to iteratively add
features and transformations thereof to a model predicting a depen-
dent variable Y . Each iteration seeks to reduce the remaining variance
while ensuring that the selection is reasonable according to the domain
knowledge of the user. In contrast to previous sections, this workflow
requires the ability to create an evaluable regression model M for any
number of features by fitting M to existing training data. A prereq-
uisite of the workflow is thus the availability of training data DT . In
order to avoid overfitting, we also support the discrimination of sepa-
rate validation data DV for visualization, goodness-of-fit quantification
and ranking. Both DT and DV must contain known values of Y .

We distinguish between two stages: During initial model identi-
fication, M does not yet exist and the framework shows the actual
observations (i.e., T = Y ). The goal of this stage is to verify the ex-
istence of useful features, potentially inferring a particular regression
model type from the structure of relationships, and building an initial
model M1 based on a relevant feature or pair of features. The sub-
sequent model refinement stage analyzes the local bias of a current
version Mi of the model (i.e., T = Y − ŶMi ). The goal of this stage
is to identify relevant additional (transformations of) features for fit-
ting Mi+1 by extending the independent variables of Mi and continuing
with model refinement, or to quit the workflow.

Our framework supports both stages, e.g., comparing different mea-
sures for ranking (pairs of) features with respect to T and partitioning



the data for visualization depending on the distribution of samples.
Features can be added to Mi by clicking on their visual representation.
This triggers the fitting of Mi+1 which is set as the current model vari-
ant after completion, updating the ranking and visualization to con-
sider the residuals of Mi+1. As a desirable effect, including a feature
in Mi+1 reduces the explanatory power of redundantly correlated fea-
tures which are ranked lower in the next iteration as well. During
model refinement, a list called Quantitative Model Overview (QMO)
displays the root-mean-square-error (RMSE) and optionally also the
global bias (i.e., the average of Y − ŶMi ) for all variants of M. The
QMO thus quantifies the gained accuracy for each iteration. Being
computed on DV , increasing model complexities may cause increas-
ing values of the RMSE, which is a typical stopping criterion [21].

Additional feature candidates can be added to the investigation at
any time, as well as transformations of features. An example offered
by our implementation is a user-defined categorization of continuous
values. This can facilitate the modeling of differently structured areas
by fitting separate models for different parts of the data (i.e., building
treed models, see Sec. 5.1). Other examples include bivariate feature
transformations like multiplication in order to model interactions, as
well as simple transformations like squaring and taking the logarithm.
However, the interactive specification of transformations is a topic in
its own right and details are beyond the scope of this paper.

There are several options for extending the workflow. First, vi-
sualizing Mi as a high-dimensional function during model refine-
ment provides additional means for validation. Our implementation
of the framework offers an interactive visualization based on hyper-
slices [32] for this purpose (see Sec. 4). Second, multivariate visu-
alizations like parallel coordinates help to relate the distribution of
residuals across multiple variants of M. Third, it may often be reason-
able to return to previous variants of M and to try out and compare dif-
ferent choices of features, e.g., if the QMO shows only modest gains
of accuracy. Our implementation preserves previous model variants
and supports back-ward steps. However, providing an adequate visual
support for hierarchical branching of models is up to future work.

A limitation of assessing single Xi[,Xj] for step-wise model re-
finement is that useful higher-dimensional interactions of individually
weak features might not get noticed. In contrast to best-subset selec-
tion methods (e.g. see Hastie [21]), manual step-wise selection is not
guaranteed to produce feature subsets yielding a minimal RMSE, es-
pecially in the context of high-dimensional data (|X | � 10). However,
a model with the minimal RMSE is not necessarily the best choice in a
given application context. Additional reasons for choosing a step-wise
approach are a superior run-time performance, comprehensibility and
straightforward incorporation of expert knowledge. While identify-
ing two-dimensional interactions is supported directly, a detection of
higher-dimensional interactions is left for future work (see Section 6).

An application by real users (Sec. 5) has shown that this workflow
supports two tasks. First, it supports interactive feature selection for
building interpretable regression models. Conceptually, the workflow
is applicable to any type of regression model. However, training times
of at most several seconds are beneficial for smooth working. As the
second task, the workflow supports the detection of more subtle re-
lationships which are otherwise masked by more dominating effects.
In this case, the model itself is of less interest, as it is rather used to
subtract dominating effects from the data, exposing more subtle ones.

4 SYSTEM INTEGRATION AND IMPLEMENTATION

Our framework has been implemented as part of Visplore, a system
for visual exploration and model building. Additional views of Vis-
plore like histograms, scatterplots, and parallel coordinates support a
flexible analysis of multivariate data by linked ad-hoc selections and
derived data columns. In context of model building, they enable an
interactive specification of training and validation data for ensuring
an appropriate data quality (e.g., by removing outliers). Regression
models can be identified and managed by the user. Supported types
of models currently include generalized linear models, support vector
regression based on the library LIBSVM [10], and piece-wise linear
regression trees. Internally, a common interface for fitting and evalu-

ation enables an integration of additional model types. An implemen-
tation of HyperMoVal [32] supports a detailed point-wise validation
of identified regression models (see Fig. 7i). All parts of Visplore im-
plement a multi-threading architecture [33] to maintain interactivity
regardless of the data size and the effort of involved computations. In
case of the proposed framework, multi-threading is used for comput-
ing the relevance measures and the visualization. Intermediate results
such as subsets of plots or ranking measures are displayed as soon
as they become available in order to minimize delays. All parts are
written in C++ and use OpenGL for rendering.

Regarding the performance of frequency-uniform partitioning, stor-
ing the order of values for each feature as a re-usable index enables an
efficient implementation also for analyzing feature pairs. Specifically,
computing the indices of 35 continuous features and 42869 data sam-
ples took 0.03 seconds in our implementation (recorded on an Intel
i7-2600k CPU @ 3,4 Ghz). Computing the partitioning with Dmax
set to 10 and Smin set to 8 took another 0.19 seconds for the 35 fea-
tures (1D) and 3.30 seconds for all 630 feature pairs (2D). Regarding
the performance of ranking, computing the measures took addition-
ally 0.38 seconds in 1D and 11.8 seconds in 2D. As a computationally
cheaper yet less accurate alternative to fitting a linear model per re-
gion, fitting a constant model (i.e., the median value of each region)
only took 0.15 seconds in 1D and 4.44 seconds in 2D. In general, com-
puting percentiles of the distribution P(T,Xi[,Xj]) as also required for
visualization benefits from storing the order of T as an index, enabling
linear effort and re-usage across all Xi[,Xj].

5 EVALUATION
For evaluating our framework, Sec. 5.1 demonstrates a case study of
interactive feature selection in the energy sector. Sec. 5.2 then reports
user feedback by 11 analysts after two months of deployment.

5.1 Case Study: Modeling Natural Gas Consumption
This section demonstrates our framework by building a regression
model predicting the natural gas consumption of a large city as the
dependent variable Y . Based on real data, this case study has been con-
ducted by an analyst in the energy sector to investigate the influence
of meteorological and calendric aspects as the independent variables
X . This represents a direct application of the workflow described in
Sec. 3.5. The data comprise hourly measurements for approximately
five years (42869 samples) which are split into three years of training
data DT and two years of validation data DV (annually interleaved).

For initial model identification, the 1D overview shows the con-
ditional distribution of the consumption for each feature, i.e. T = Y
(Fig. 7a). Ranking the features by relevance immediately identifies
Temperature and Day of Year as having a dominant effect on the tar-
get. Comparing their measures shows a slightly higher relevance of
Temperature for coarse subdivisions while the relevance of Day of
Year increases with the level of detail and exceeds Temperature for
Dmax = 5 (Fig. 7b). Knowing that the data only comprises 5 years, the
analyst considers Temperature as the more useful feature for an initial
model M1. Since the visualization suggests a non-linear relationship
with at least one point of inflection, M1 is fitted based on DT as a third
degree polynomial, i.e., a linear model including squared and cubic
basis expansions. The Quantitative Model Overview shows an RMSE
of 24853 units for DV (Fig. 7c), confirming the information gain by
M1 as compared to the standard deviation of Y (52812 units).

Building M1 updates the 1D overview for an analysis of its resid-
uals for DV in order to identify effects explaining the remaining vari-
ance, i.e., T =Y −ŶM1 (Fig. 7d). Temperature now ranks much lower
as well as Day of Year, whose effect is partly captured by M1 due to
correlation with Temperature. In contrast, the ranking now identifies
Hour as most relevant for the target. The visualization of the condi-
tional distribution shows a consumption profile as a function having
multiple local extrema (e.g., a distinct rise to a morning peak). This
complex structure precludes simple low-degree polynomial basis ex-
pansions as before. Instead, the analyst categorizes Hour into morning
[0am,6am), day [6am,8pm) and evening [8pm-0am) in order to build
M2 as a treed linear model. For each identified category of Hour, M2
thus comprises a separate function including linear, squared, and cubic
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Fig. 7. A case study for model building. (a, b) Ranked overviews suggest Temperature as most relevant for predicting the target Natural Gas
Consumption by a model M1. (c, d) Analyzing the local prediction bias suggests Hour as additional feature for reducing the error measure RMSE.
(e, f) Frequency-preserving layout reveals the insignificance of a trend caused by a non-uniform distribution of Wind Speed. (g) Analyzing the local
prediction bias for feature pairs reveals multiple interactions that inform further model refinements (c). (h) Comparing two model variants enables
an assessment of local model superiority. (i) Additional views support an application of the final model for sensitivity analysis.

terms for Temperature as well as linear and squared terms for Hour.
This enables a substantial reduction of the RMSE to 14384 units.

Another update of the 1D overview to analyze the residuals of M2
(T =Y −ŶM2) shows that the effect of Hour is captured well (Fig. 7e).
Being correlated with Hour, the relevance of the feature Global Ra-
diation is also reduced while Day of Year, Wind Speed, and a classifi-
cation of days into weekends and working days lead the ranking. The
visualization of Wind Speed suggests a strong effect which seemingly
contradicts its ranking below Day of Year. However, switching the lay-
out to frequency-preserving reveals the low significance of high wind
speeds due to the sparsity of the data (Fig. 7f). Since no single feature
seems to explain the remaining variance well, the analyst now turns to
inspecting pair-wise interactions of features in the 2D overview.

Considering the average local prediction bias (T =Y −ŶM2) for vi-
sualization and ranking in fact suggests useful pair-wise interactions
of Day of Year, Temperature and Wind Speed (Fig. 7g shows the ma-
trix for the five top-ranking features). The top-ranking pair reveals
that the effect of Temperature significantly depends on the time of the
year. Another plot shows a substantial underestimation for high wind
speeds at low temperatures. The analyst hypothesizes that the reason
might be a meteorological effect known as ”wind-chill factor”. While
previous 1D overviews indicated a general tendency of increased con-
sumption at high wind speed, the analysis of interactions enables a
more comprehensive understanding of the influence of Wind Speed.
Furthermore, 1D and 2D views suggest a general overestimation of

the consumption on weekends, e.g., due to the different consumption
by industry. Capturing these effects by refining M2 enables a further
reduction of the RMSE for DV (Fig. 7c): M3 extends M2 by adding
cubic, squared and linear terms for Day of Year and refines the regres-
sion tree by a discrimination of summer (April to Sept.) and winter
(remaining months). M4 further refines the tree based on Weekend.
Finally, M5 extends M4 by adding linear, squared, and cubic terms for
Wind Speed plus interactions of the form A ·B, A2 ·B and A ·B2 between
Wind Speed and Temperature to account for the wind-chill factor.

Compared to M4, however, the significant additional complexity of
M5 only reflects in a modest reduction of the RMSE. In order to val-
idate the superiority of M5, assigning the difference of residual mag-
nitudes as target of the 2D overview enables a local comparison of
M4 and M5 (T = |Y − ŶM4| − |Y − ŶM5|). In order to compensate
for non-uniform distributions of features like Temperature and Wind
Speed, the analyst applies the frequency-based partitioning and the
frequency-preserving layout (Fig. 7h). While the dominance of yel-
low tones confirms the superiority of M5 for large parts of the domain,
the visualization also indicates areas where M4 is superior. The ana-
lyst is surprised that considering Wind Speed increased the prediction
accuracy especially for weekends while a coherent blue area in the
combination of Day of Year and Temperature indicates a negative ef-
fect for certain temperatures especially during spring and summer. In
general, however, the analyst is satisfied with M5 as the final result of
the workflow. An implementation of HyperMoVal [32] as an addi-



tional view of the system enables a detailed follow-up analysis of M5,
e.g. regarding a sensitivity analysis of natural gas consumption and a
model-based detection of outlying data samples (Fig. 7i).

5.2 User Feedback
Our framework has been deployed to 11 experts of two companies in
the energy sector, i.e., an IT-service provider and a national power grid
operator. The growing share of renewable energy and the advent of
smart grids increasingly necessitate accurate prediction for risk man-
agement in this field. The experts have been dealing with prediction
models for years and use MARS [14] as the prevailing model type.
They have been using our framework on a daily basis for two months.
While operational models are still built using external software, the
experts employ our framework for the identification of useful features,
interactions, and transformations of features as well as for the valida-
tion and comparison of identified (MARS-)models.

Before using our framework, these tasks were based on the inspec-
tion of data tables, static graphics, and correlation coefficients in tools
like Excel and Matlab. They reported that generating, validating and
comparing models was intransparent and required extensive trial-and-
error. Establishing and validating hypotheses for new data or new
models required approximately the work of one day.

According to the experts, our framework enables them to obtain the
same insights within half an hour. A formerly empirical process of
knowledge acquisition has been turned into a systematic one, saving
substantial amounts of time. They consider the involved visualization
as intuitive and fast to interpret and also suitable for a presentation to
decision-makers and other stake holders. One expert stated that the
process of communicating findings and arguing model deficiencies to
end customers in the energy sector has been sped up from hours or
even days to minutes using our visualizations.

Technologically, one analyst claimed that our ranking mechanism is
more helpful in analyzing relationships than previously used correla-
tion metrics, as it unveils non-linear structures of arbitrary shape. The
1D- and 2D-visualizations are consulted at a ratio of around 30:70 per-
cent during the analysis, as interactions of two or more features gener-
ally play a very important role. The analysts generally prefer domain-
uniform partitioning and -layout for their superior interpretability, but
they usually employ the frequency-preserving approaches to check the
significance of unexpected findings. In conclusion, the interviewed
domain experts envision a high relevance of our framework for the en-
ergy sector. Their key suggestion for future work concerned a direct
integration of the model type MARS in our framework.

6 DISCUSSION AND FUTURE WORK

As the key idea of Visual Analytics, our framework tightly integrates
visualization, computation, and interaction at three levels. First, quan-
titative measures based on regression trees rank visualizations by rel-
evance. Second, visualizing derived quantities supports diverse tasks
in model building. Third, tightly coupling model visualization with
model training enables an efficient loop of incremental discovery, re-
finement, and validation. Our framework thus supports all elements of
the Visual Analytics Process as described by Keim et al. [26].

Furthermore, our framework addresses all six high-level tasks of
visualization-based knowledge discovery as defined by Amar and
Stasko [2]: 1) It exposes uncertainty of single models by showing
the local variance of their residuals and of model ensembles by vi-
sualizing their point-wise variance. 2) It concretizes relationships by
depicting and quantifying the conditional distribution of targets over
domains of features and pairs of features. 3) It supports to formulate
cause and effect by explicitly distinguishing between dependent and
independent variables and expressing their relationship as regression
model for investigation. 4) It directly addresses the determination of
domain parameters by the workflow for step-wise feature selection.
5) It enables a multivariate explanation by considering pair-wise in-
teractions between features as well as via the identification of multi-
dimensional regression models. 6) It confirms hypotheses which are
formulated as target dimensions or prediction models by visualizing
the local structure of their conditional distribution.

Regarding scalability, a key benefit of partitioning is to avoid clut-
ter for any number of data samples. The goal to enable interactive
workflows restricts the computational complexity of methods for par-
titioning and ranking, which informed several design decisions as dis-
cussed in previous sections. The achieved performance supports tens
of thousands of data samples and dozens of features even for a pair-
wise analysis (see the measurements in Sec. 4) and can further be in-
creased by using piece-wise constant rather than linear regression trees
for ranking. In fact, sparse data is much more limiting the detection
of significant relationships than large data which is a general prob-
lem of statistical learning [21]. Due to ranking features by relevance,
the framework scales well for an individual inspection of truly high-
dimensional data (i.e., hundreds of dimensions). A pair-wise analysis
is inherently more challenging due to a quadratic growth of combina-
tions. However, ranking also supports this case and enables to show
only the most relevant part of the matrix.

Operating on generic categorical and continuous data, the approach
is generally applicable to regression tasks in any domain. While the
examples and the evaluation in this paper refer to the energy sec-
tor, preliminary tests also indicated a direct applicability to regression
tasks in engineering, process optimization, and clinical trial analysis.

We see many directions for future work. 1) Partition-based ranking
is conceptually also applicable to higher-order interactions but faces
challenges regarding the exponential growth of combinations and the
visualization. We intend to address these aspects for triples of fea-
tures involving volume visualization for representation. 2) We intend
to design and evaluate concepts to simultaneously visualize bias and
variance of distributions in 2D. 3) While the current workflow sup-
ports a rather linear process for model building, we intend to design
concepts for addressing a hierarchical process, i.e., supporting multi-
ple model variants as refinements of a common base model. 4) The
identification of feature transformations is currently solely based on
the interpretation of the visualization by the user. An automated sug-
gestion of suitable transformations could be an important help. 5) As
suggested by the experts evaluating our approach, we intend to inte-
grate additional types of regression models (e.g., MARS [14]) or even
support a direct integration with statistics software such as R [25]. 6)
While explicitly designed for regression, we intend to investigate an
adaptation of the framework for classification.

7 CONCLUSION
This paper proposed a partition-based framework to support multi-
ple tasks related to building regression models. As a key benefit,
the framework provides a global overview over local relationships
of any structure for features and pairs of features. We described a
model-based method for quantifying relationships that provides guid-
ance by ranking relationships for an efficient investigation of high-
dimensional feature spaces. Both ranking and visualization flexibly
adapt to non-uniform distributions as well as categorical features, and
are computationally sufficiently inexpensive to scale for large and
high-dimensional data. We discussed the application to a variety of
tasks in building and validating regression models. A workflow for
interactive model building enables a seamless integration of domain
knowledge in the selection of features and transformations, and it sup-
ports a discovery of subtle relationships by compensating for dominant
effects using regression. A real-world case study illustrated the appli-
cation for building a complex model, and feedback by analysts in the
energy sector suggested a significant effort reduction for model build-
ing. Motivated by these results, we believe that our framework will
have a positive impact on regression in many fields.
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ABSTRACT
This poster presents lessons learned from deploying the visual ana-
lytics system Visplore as an extension of a time series management
software in the energy sector. Visplore addresses a variety of tasks
in analysis and statistical modeling. Without guidance, however,
our experience showed that new users often have difficulties to find
effective setups for their tasks. In this poster, we describe task-
tailored dashboards with restricted flexibility as one approach to
improve the adoption by target users. Based on a use case of corre-
lation analysis, we illustrate how dashboards allow users to address
tasks without extensive training of the visualization software. We
demonstrate how integrating Visplore dashboards with a time se-
ries management tool enables to offer a visual frontend for analysis
and data selection. We report preliminary experience feedback, and
we discuss challenges and opportunities of dashboards compared to
software with unrestricted flexibility.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—User-Centered Design

1 BACKGROUND
Statistical modeling for forecasting involves extensive preprocess-
ing and analysis of time series. To this end, our project partner
HAKOM Solutions distributes a software for time series manage-
ment to companies in the energy sector. This time series manager
(TSM) supports the integration of multiple data sources and opera-
tions such as the resampling of time rasters, but offers very limited
visualization capabilities.

As an extension to the TSM addressing this limitation, HAKOM
distributes Visplore, our system for visual exploration and statistical
modeling. Visplore supports a broad range of views, including scat-
ter plots, line graphs or parallel coordinates, as well as specialized
visualizations for model building and validation [2, 4]. The user
may flexibly create, parameterize and layout any number of views.
All views are linked by ad-hoc selections and derived data columns,
and implement a multi-threading architecture to enhance large data
scalability [5]. In context of the cooperation with HAKOM, the
goal is to establish Visplore as a flexible visualization and analysis
frontend for time series-based modeling tasks in the energy sector,
that can be deployed along with the TSM.

As a first attempt, we integrated the full, unrestricted version of
Visplore with HAKOM’s TSM. Time series from a database could
be imported into an empty workbench, and analyzed using Vis-
plore’s entire feature palette. This flexibility matched the require-
ments of expert users very well, as also shown by the evaluations
of published Visplore views and workflows (e.g., [2]). However,
our experience showed that it often asked too much of new users
who had difficulties to find effective view configurations for a given
task. Inspired by the general trend towards guidance in visual anal-
ysis, as well as the success of dashboards in Tableau [6] and other
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business intelligence solutions, we decided to investigate whether
task-specific dashboards with restricted flexibility would improve
the adoption by our target users.

2 TASK-TAILORED DASHBOARDS
Task-tailored dashboards are predefined configurations of parame-
terized views and interaction components like selections, that ad-
dress one particular, well-defined task. For dashboards, the func-
tionality of the system is deliberately restricted. In contrast to the
unrestricted version, no additional views can be opened, and only a
limited set of visual parameters can be controlled to minimize the
complexity.

2.1 Identifying Tasks and Appropriate Dashboards
In cooperation with HAKOM and end customers in the energy sec-
tor, we first identified questions and tasks that might benefit from
dashboards. The result included tasks such as data quality profil-
ing, correlation analysis and the discovery of patterns like seasonal
effects or anomalies, as well as model-related tasks such as identi-
fying suitable training data, comparing the accuracy of prediction
models, and analyzing the uncertainty of prediction ensembles. In
an iterative process of suggestion and feedback, we then created
Visplore dashboards addressing the identified tasks.

2.2 Example: A Dashboard for Correlation Analysis
Figure 1 shows a dashboard for analyzing pairwise correlations be-
tween a target variable (“GAS CONSUMPTION”) and explanatory
variables. Calendar heat maps provide an overview of the target
variable’s distribution over time with respect to hours, months, and
days of the week. A scatter plot matrix shows pairwise correlations
and Pearson correlation coefficients, as well as a detail plot for a
selected pair of variables [3]. Selecting a subset of time intervals
in the calendar highlights the corresponding data in the correlation
view, and compares the correlation based on all data points vs. the
selected subset (see Fig. 1b). This allows an interactive discov-
ery of variations in the explanatory power of variables, e.g., due to
daily or seasonal effects. Please refer to the supplementary video
for a thorough demonstration of this dashboard, as well as another
dashboard addressing the detection of data quality issues [1].

2.3 Integration with the TSM: a Visual Frontend
Our previous experiences showed the importance of a seamless in-
tegration into existing workflows as a prerequisite for the adoption
of visual analytics software. This has two implications: first, Vis-
plore dashboards must be easily accessible from the TSM. Sec-
ond, dashboards should have explicit results that can be accessed
for downstream processing. Concerning the first goal, a list of ap-
propriate dashboards is assembled dynamically in the TSM for a
user-defined set of time series. Choosing from the list sends the
data to Visplore and loads the respective configuration of views.
Concerning the second goal, discovered patterns can be communi-
cated back to the database as selections of data subsets at any time.
This information is exported to the clipboard and can be pasted into
the database using a spreadsheet frontend offered by the TSM. The
dashboards thus address a full workflow of visual knowledge dis-
covery and communication of findings (see Fig. 1). Use cases in-
clude labeling of identified clusters, masking outliers or measure-
ment errors, or selecting training data for external modeling.



a) Sending data from TSM to Visplore dashboard

c) Sending selection 
information back to TSM

...

...

b) Strong correlation with 
Temperature, except for 
selected months (summer)

Figure 1: Analyzing the correlation of natural gas consumption and meteorological factors. Time series are sent to Visplore from the HAKOM
time series manager (a). Temperature exhibits a strong Pearson correlation with GAS CONSUMPTION, but selecting the summer months in the
calendar indicates a substantially weaker correlation for this season (b). Exporting the selection as a new time series makes this information
available in the database for follow-up tasks (c).

3 PRELIMINARY EXPERIENCE FEEDBACK
Nine collaboratively identified dashboards for model-related tasks
have been distributed by HAKOM for five months, and were
demonstrated to potential customers in the energy sector. As a gen-
eral observation, despite their restrictions, dashboards were consid-
ered more convincing and more easily applicable by new users than
the unrestricted version of Visplore. This confirms that task-tailored
dashboards are an effective way of conveying the value of interac-
tive visualization. Customers agreed that collaboratively identified
dashboards provide an efficient way of harnessing both the domain
expert’s experience with a task, and the visualization expert’s expe-
rience with the software and visualization as such.

HAKOM is confident that dashboards are easier to market as
an extension of the TSM than the unrestricted version of Visplore,
while at the same time raising the interest of expert users for more.
They plan to offer a set of dashboards as a demo version along with
every deployment of their product TSM by the end of 2014.

4 DISCUSSION: CHALLENGES AND OPPORTUNITIES
A key challenge in dashboard design refers to identifying the ideal
arrangement and number of views per dashboard [6]. Adding views
may widen the scope of addressable tasks at the cost of increased
complexity and reduced screen space per view.

Another challenge is keeping the number of control elements low
while maintaining applicability to varying data characteristics such
as different numbers, lengths, scales and distributions of time series.
Automatic data-specific adjustment can mitigate this to a certain de-
gree, but can typically not take the semantics of data into account.
For example, adjusting the visualized data range to exclude outliers
may produce a better overview in the presence of measurement er-
rors, but will be counterproductive if outliers are meaningful. For
such reasons, we found that easily accessible controls for adjust-

ing displayed ranges and filters are crucial, while automation can
provide intelligent defaults. In general, we consider the process of
removing controls as an opportunity for identifying usability defi-
ciencies also in the unrestricted version.

As future work, we would like to evaluate the effect of dash-
boards on the long-term adoption of Visplore, and their potential to
gain customers for the unrestricted version of the software.
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ABSTRACT
Statistical forecasting of time series in the energy sector comprises
many tasks that benefit from a tight involvement of domain ex-
perts. Examples include the assessment of data quality, the selec-
tion of descriptive time series as model inputs, or the identification
of structural breaks. As a prerequisite for designing visualizations
to support these tasks, this paper presents a detailed analysis of
forecasting tasks in the energy sector. As a second contribution, it
presents lessons learned from the development and the commercial-
ization of visualization dashboards addressing the identified tasks.

Index Terms: I.6.9.f [Simulation, Modeling and Visualization]:
Visualization—Visualization Systems and Software

1 INTRODUCTION
Statistical forecasting of time series plays a key role for many tasks
in the energy sector. Examples include the prediction of energy
production and demand to guarantee supply, or the forecasting of
energy prices for a cost-efficient allocation of resources. In the
past decades, the energy market has undergone substantial organi-
zational changes, such as the liberalization of markets, the growing
share of renewable sources or the advent of smart grids. As a result
of growing decentralization, the numbers of available time series
like sensor measurements or forecast targets have increased sub-
stantially. At the same time, increased competition forces market
players to react to changes quickly, and to update forecast models
continuously in order to outperform others. Thus, domain experts
are constantly faced with questions like: Which parts of the regu-
larly acquired data are appropriate for the training and validation of
models? Is the quality of forecast models sufficient? How can the
accuracy of forecasts be improved? Which model variant should be
used, and when?

Interactive visualization is a powerful tool to address such ques-
tions effectively, as demonstrated in the energy sector and be-
yond [4, 7, 12]. At the VRVis Research Center, we have developed
Visplore, a system for visual exploration and statistical analysis.
Visplore comprises a large set of views, including bar charts, line
charts or scatter plots, as well as dedicated views for model vali-
dation [7] and model comparison [4]. Any number of views can
be interactively created and parameterized. All views are linked by
selections of data subsets and data attributes, and support a multi-
threading architecture to enhance large data scalability [8]. In co-
operation with HAKOM Solutions, an IT-service provider who dis-
tributes a platform for time series management and forecasting to
more than 40 customers in the energy sector, our goal is to establish
Visplore as a complementary visualization frontend for established
forecasting tools and workflows.

As described in previous work [5], the approach is to define task-
tailored dashboards, i.e., predefined configurations of parameter-
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ized views that address one particular analysis task. For a seam-
less integration into existing workflows, dashboards are accessible
directly from existing tools such the HAKOM Time Series Man-
ager (TSM) or forecasting software. A key finding of our previous
work [5] was that pre-configured dashboards are considered as eas-
ier to market than the full version of Visplore. The flexibility of
Visplore caters to expert users but often asked too much of new
users, who had difficulties to assemble effective configurations for
their tasks. The focus of the discussion in previous work were chal-
lenges and opportunities of dashboard design as opposed to deploy-
ing the full, unrestricted construction kit directly [5]. In contrast,
the contribution of this paper can be summarized as follows:

• A task analysis of statistical forecasting in the energy sector;

• A discussion of dashboard system implementation aspects;

• Lessons learned for dashboard commercialization.

2 TASK ANALYSIS: FORECASTING IN THE ENERGY SECTOR
In cooperation with HAKOM, we compiled a structured list of re-
curring tasks and questions related to forecasting in the energy sec-
tor. In addition to deepening our understanding of the forecasting
process as such, the goal was to identify potential gaps in prevalent
workflows that might benefit from task-tailored dashboards. A first
key insight of this process was that forecasting is typically regarded
as a cycle of two distinct phases in the energy sector.

In the model identification phase, the goal is to obtain a sat-
isfactory prediction model with respect to measures like accuracy,
stability, or the cost of regularly acquiring input time series such as
weather forecasts. This phase can benefit significantly from a hu-
man in the loop, since understanding structures, relationships and
trade-offs as conveyed by visualization is crucial for an efficient
identification and selection of models [4]. The phase comprises
several tasks as described below, and is illustrated in Figure 1a.

The operational phase refers to the application of an established
model to regularly acquired data for forecasting. It also includes the
maintenance of the model by incorporating new training data and
performing regular validation. In practice, the operational phase
is often automated to a large degree, and human analysts are only
involved to the extent of monitoring data and and prediction qual-
ity. However, when the prediction quality of an operational model
deteriorates over time, e.g., due to changes of initial assumptions,
the model identification phase is returned to for a refinement of the
model. Tasks of the operational phase are described below, and
illustrated in Figure 1b.

A second result of the task analysis concerned the flow of in-
sights and data between tasks, i.e., which outputs of a task are inputs
to another (see Fig. 1). This information was important for integrat-
ing dashboards into existing workflows, as described in Sec. 3.

The structured characterization of tasks was a guiding roadmap
in the development of our task-tailored dashboard solution (Sec-
tion 3). Furthermore, we used it to structure marketing material
such as videos and flyers, as well as a presentation at a user confer-
ence for 20 companies in the energy sector. Feedback by these com-
panies suggested that it was understood well, and allowed them to
effectively match the benefits of the respective dashboards to needs
and gaps in their current workflows.
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Figure 1: Statistical forecasting tasks in the energy sector are performed in two distinct phases. The goal of the model identification phase (a) is
obtaining a satisfactory model. In the operational phase (b), the model is used for forecasting, and regularly adapted based on new data.

In the following, we provide a detailed description of tasks, their
interplay, and their typical extent in the two phases.

Task 1: Data quality assessment refers to the identification of
data problems such as missing data, constraint violations or anoma-
lies. Aside from understanding and communicating such problems,
the goal is to exclude time series or time periods with insufficient
quality for downstream tasks like the training and validation of
models, while avoiding a selection bias, i.e., maintaining a repre-
sentative sample. Data quality assessment is a recurring task in
both phases of the forecasting process, however, typically to a dif-
ferent extent: while model identification benefits from a thorough
understanding of the frequency or causes of anomalies, users mon-
itoring the regular fitting of an operational model typically prefer a
concise summary.

Task 2: Model definition refers to defining the “interface” and
structure of a model, i.e., the model type and complexity, input time
series and transformations or interactions thereof, qualitative situa-
tions to be treated separately, as well as all model parameters that
are defined rather than estimated from training data. For example,
a forecast model for natural gas consumption could be defined as a
MARS model [1] based on temperature, time of day and consump-
tion values of previous hours and days, that will fit separate coeffi-
cients for holidays and for workdays. Model definition is inherently
a task of the model identification phase, but is typically returned to
when the definition of an operational model becomes invalid over
time. Sub-tasks to support an informed model definition include:

Assessment of data descriptiveness. This task refers to under-
standing whether time series or interactions thereof are suitable pre-
dictors of a target time series, and under which circumstances. The
goal is to obtain a subset of descriptive model input time series, and
possibly also a subset of suitable time periods if descriptiveness
varies over time.

Identification of structural breaks refers to understanding sudden
shifts in the structure of time series, daily profiles, distributions,
correlations or dependencies that should be modeled separately. An
example of a structural break is shown in Fig. 2, where the daily
load profile of a power line differs significantly for parts of the year.
The goal is to characterize boundaries between structures to support
an informed model parameterization and composition.

Task 3: Model fitting refers to the statistical estimation of co-
efficients according to a model definition, driven by concrete in-
stances of training data. In the operational phase, fitting is typically
performed frequently in regular intervals to keep the model up to
date.

Task 4: Model validation. This task refers to validating pre-
dictions of a model against validation data of a reference time se-

ries. The primary goal is to obtain insights about accuracy, bias and
stability of the model that help refining the model definition. Vali-
dation is performed in both phases, but typically more extensively
during the identification of the initial model definition, as described
below. Sub-tasks include:

Assessment of accuracy refers to investigating the magnitude of
the prediction error with respect to a reference time series. The
main goal is to understand whether the accuracy is sufficient, and
if not, to characterize periods and situations of insufficient perfor-
mance for refining the model definition. A typical approach is to
inspect key performance indicators such as the root-mean-square
error or mean absolute percentage error on multiple aggregation
levels, e.g., globally, or for different weather situations, and to com-
pare the prediction and reference time series in detail for periods of
bad performance. As a secondary insight of this task, inadequate
validation data (e.g., outliers) also manifests as large deviations,
which relates this task to data quality assessment.

Analysis of systematic bias. The goal of this sub-task is to detect
and characterize systematic over- or underestimations of a refer-
ence time series, e.g., at certain times of the day, weather situations
or prices. The prediction bias provides information for detecting
effects currently not captured by the model, e.g., due to omitted in-
put time series, insufficient model complexity, or the omission of
structural breaks [4]. Thus, this sub-task is typically a part of the
model identification phase, and not regularly performed for every
re-fitting of an operational model.

Assessment of stability refers to investigating the development of
model performance across different validation data sets, e.g., sensor
measurements of different days. A volatile prediction quality may
indicate an insufficiently descriptive model definition, or an over-
fitted model [2]. Single outliers in an otherwise stable development
might point to exceptional validation data that should be investi-
gated in further detail. Stability monitoring is typically performed
in the operational phase as a sanity check of regularly updated fits.

Task 5: Model comparison and selection. This task refers to
the comparison of multiple candidate models for the same predic-
tion target. A typical approach is to compare key performance indi-
cators based on deviations from a reference time series on multiple
aggregation levels. This supports the goal of identifying the best-
fitting model globally as well as for different situations individually,
e.g., different times of day, or different market or weather situations.
Furthermore, the comparison of model superiority across different
data subsets supports the identification of decision boundaries for
building composite models. Thus, this task is typically part of the
model identification phase.
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Figure 2: A dashboard for assessing time series plausibility. After
selecting the time series “Power Load” in the statistical overview (a),
its detailed inspection as overlaid day curves reveals two distinct daily
profiles (b). Selecting one of the two clusters reveals the pattern as
a distinct part of the year between May and September (c).

3 A DASHBOARD SOLUTION FOR FORECASTING

This section describes our approach of supporting forecast-related
tasks using predefined visualization dashboards. First, we describe
the process of designing dashboards based on our software Vis-
plore, and discuss an exemplary dashboard supporting the assess-
ment of time series plausibility (Sec. 3.1). Afterwards, we discuss
selected implementation issues including an application layer API
for customizing dashboard behaviour outside the Visplore imple-
mentation, as well as the integration of dashboards in arbitrary host
applications (Sec. 3.2)

3.1 Dashboard Design in Visplore
Visplore is a software tool for exploratory analysis of multivariate
data in linked views. It is developed at the VRVis Research Center
and has been used in various fields since 2004. Supported types of
views include time series graphs and table views, as well as scatter-
plots, parallel coordinates, and other well-known visualizations of
multivariate data. Furthermore, Visplore provides task-specific vi-
sualizations as described in previous work, e.g., an adapted version
of the rank-by-feature framework [9, 6] as well as dedicated views
for the validation of prediction models [7, 4]. All views of Visplore
support the concept of linking and brushing of data records, e.g.,
time stamps of time series. The user may define a selection by cre-
ating query components such as 1D intervals (e.g., in histograms),
sets of categories (e.g., months in a calendar), and many others via
brushing, causing all other views to update immediately.

Any number of views can be parameterized and arranged in a
desired layout using drag-and-drop. Dashboard design in Visplore
can thus be seen as visual programming based on existing system
parts. Dashboards as shown in Figure 2 can be assembled within
a few minutes. The resulting configurations, i.e., views and their
layout can be stored in an xml-based format. Using this format,
the assignment of time series to views is based on tags instead of
actual time series names. For example, a rank-by-feature view can
be configured to rank all time series with a tag “model inputs” by
their correlation with a time series tagged as “target”. This allows
applying dashboards to new data, while the actual data is supplied
in the form of tagged time series to the dashboard, e.g., by a host
application (see Sec. 3.2).

In an iterative process of suggestion and feedback with
HAKOM, we created Visplore dashboards supporting the tasks
identified in Section 2. As one example, Figure 2 shows a dash-

board supporting the assessment of time series plausibility, address-
ing the tasks data quality assessment and identification of structural
breaks. In contrast to the unrestricted version of Visplore, no addi-
tional views can be opened, and only a limited set of visual param-
eters can be controlled. This minimizes the complexity and allows
focusing on a particular, well-defined task.

As a recurring design principle, we arrange views in dashboards
ordered by their aggregation granularity from top to bottom and
from left to right [11]. In the example, a statistical overview in
the top left corner shows the value distributions of time series as
histograms and computes descriptive statistics for the currently se-
lected time stamps (Fig. 2a). Selecting a time series in this overview
by a click immediately shows the respective time series in the linked
views for a detailed investigation, e.g., as line graph, or, as shown
in the figure, as overlaid curves by day (Fig. 2b). We arrange al-
ternative views of similar information granularity (e.g., time series
vs. day curves) as tabbed views in the same dashboard position, if
they do not rely on being visible at the same time. In the example,
investigating day curves of the time series “Power Load” reveals
two distinct daily profiles: days with a sudden positive local peak
at 22:00h, and days with a slightly lower peak at 23:00h. Select-
ing one of the clusters using a line intersection brush highlights the
selected days in red color. A linked calendar that encodes the se-
lection of days using the size of heatmap cells reveals this cluster
as a distinct part of the year between May and September (Fig. 2c).
The discovery of this structural break can be used in the definition
of a composite forecast model for the power load, with a decision
boundary based on the day of the year. A button for exporting the
current selection information to the clipboard as an indicator time
series (see previous work [5]) allows making the selected data sub-
set available in host applications, e.g., a forecasting engine.

3.2 Selected Implementation Issues
Visplore was initially designed as a standalone application rather
than a construction kit for task-tailored dashboards. In recent years,
the design of dashboards and their integration in existing tools and
workflows has become a primary use-case, for the energy sector
and beyond. As the flexibility of each dashboard is deliberately
limited regarding aspects like the parameterization of views, multi-
ple dashboard-relevant features had to be implemented. Examples
include hover-triggered control elements for adjusting value ranges,
filters and visual parameters directly from within views, or show-
ing time series automatically in other views when clicked on their
name, e.g., for details on demand (see Sec. 3.1). However, many
dashboards called for interactions and workflows that were too task-
specific to warrant becoming core features like the examples above.
An example is the application of a particular transformation to a
time series before showing it in other views, e.g., normalized, or
sorted by value as duration curve. Another example is to initially
focus views on a particular aspect of the data that is meaningful to
a customer, e.g., a particular category or time frame.

To avoid an explosion of highly customized feature implemen-
tations in Visplore, we realized an application layer in the form
of a Visplore API, with interfaces to languages such as Python1.
The current state of a dashboard such as data values, selections or
view parameters can be queried and modified via calls to this API.
By specifying a startup script for a dashboard in Python, custom-
tailored behaviour can be realized without changing the implemen-
tation of Visplore. Typical examples include setting data-driven or
customer-specific defaults, registering callbacks for state changes
such as the selection of time series or time stamps, or adding new
GUI elements such as buttons based on the GUI toolkit PyGtk2.

As an important requirement for adoption, a seamless integration
of dashboards into existing tools and workflows is essential [5]. On

1https://www.python.org
2www.pygtk.org



a usability level, this implies that dashboards are easily accessible,
e.g., from appropriate places in a host application. On a technical
level, this involves the transfer of time series data to Visplore dash-
boards, as well as the transfer of explicit findings and results from
dashboards back to the host application.

In the energy sector, the first tool that integrated Visplore was the
HAKOM Time Series Manager (TSM). In an early version, we im-
plemented a dedicated importer for a data format provided by TSM
on our side. However, as additional host applications became rele-
vant, we decided to define a client-agnostic data exchange protocol
enabling communication with arbitrary host applications. Via TCP
network instructions, the protocol defines the exchange of a mul-
tivariate data table along with optional meta information for rows,
columns or values in the JSON3 format. As a special case, this al-
lows Visplore to receive a set of time series with tags as required
for our dashboards (see Sec. 3.1). A single description document of
the protocol enables host application developers to transform data
into our format, while our side does not need to know of the host’s
data model.

Regarding the communication of dashboard results, multivari-
ate tables can be sent in the same manner as JSON via TCP. An
example is sending an indicator time series encoding the currently
selected time stamps as dichotomous information, i.e. “selected”,
vs. “not selected”. In case host applications do not provide a TCP
listener for accepting dashboard results, we also support an alterna-
tive export to the clipboard of the operating system. Supporting a
user-triggered paste from clipboard is typically a more lightweight
extension of host applications.

4 LESSONS LEARNED FOR COMMERCIALIZATION
A generic exploration system like Visplore matches the require-
ments of expert users very well, but is not easy to market as
such [5]. In contrast, task-tailored dashboards address well-defined
questions and the benefits are communicable more precisely. They
typically require less training time, and are more straightforward to
document and to test for developers than the full construction kit.

Regarding the scope of dashboard solutions, we experienced that
dashboard individualization, i.e., tailoring to specific tasks of spe-
cific customers, is just as important as offering an off-the-shelf se-
lection of dashboards. A standardized suite of dashboards enables
efficient marketing and support, and is typically a good starting
point for conveying the benefits of visualization based on a didac-
tic story. However, many customers immediately asked for addi-
tional dashboards or adaptations of existing ones. Aside from a
preference of familiar diagrams and terminologies, a main reason
for individualization are the varying requirements of different user
groups [10]. Expert analysts, for example, appreciate flexible dash-
boards with multiple linked views, drill-down possibilities, or the
export of results for downstream analyses. Users whose task is the
regular monitoring or reporting of indicators will prefer a concise
summary over complex visualizations, and appreciate a quick ex-
port of graphics. In this respect, the configuration possibilities of
Visplore (Sec. 3.1) are an invaluable asset that enables delivering
everything from simple monitoring dashboards to flexible explo-
ration systems. This is instrumental to offering “dashboard design
as a service”, which we expect to be a promising strategy comple-
menting off-the-shelf solutions.

Regarding cooperation with industry partners, we have experi-
enced various benefits of different collaboration forms. Direct co-
operation with end customers is extremely helpful in understanding
the needs and tasks of real users. On the other hand, the cooperation
with HAKOM as a generic IT service provider in the energy sector
enables multiplier effects on several levels. Due to their overview of
the market, they are aware of visualization opportunities in preva-
lent workflows, and to abstract tasks to a level that can be addressed

3http://json.org

efficiently by dashboards. Regarding marketing, their knowledge of
the domain is helpful for translating the academic value of visual-
ization to a business value that decision makers in the energy sector
understand [3]. Finally, the integration of Visplore in their Time
Series Manager enables HAKOM to market dashboards to their ex-
isting customer base as an extension of their software.

A recurring challenge in deploying a visualization system is to
identify, reach and convince the person responsible for introducing
visualization to an organization [3]. It is not guaranteed that the
person making this decision is present in the initial demonstration
meeting, and one typically does not get many chances. To be less
dependent on the internal communication of conveyed benefits, we
have found demonstration videos a very effective form of presen-
tation that can be passed on internally. This increases the chances
of reaching all key actors including decision makers as well as ac-
tual users, who will not only hear the exact intended wordings, but
actually see the visualization system in action.

Visualization is not yet as prevalent in the context of energy fore-
casting as in other fields like Business Intelligence. A possible rea-
son could be that many tasks that benefit from human insights have
only become pressing in the more recent past, e.g,. identifying su-
perior models for market behaviour than other competitors, or an
accurate forecasting of weather-dependent renewable power pro-
duction. As future work, we would like to investigate the long term
adoption of dashboards in the energy sector, as we believe the full
potential for visualization in the field has not yet been explored.
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