
Algorithmic Introduction of
Π2-Cuts

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Michael Peter Lettmann, MSc
Matrikelnummer 1429618

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ. Prof. Dr. Phil. Alexander Leitsch
Zweitbetreuung: Ao. Univ. Prof. Dr. Matthias Baaz

Diese Dissertation haben begutachtet:

Jeremy Avigad Dale Miller

Alexander Leitsch

Wien, 5. September 2018
Michael Peter Lettmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Algorithmic Introduction of Π2
Cuts

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Michael Peter Lettmann, MSc
Registration Number 1429618

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dr. Phil. Alexander Leitsch
Second advisor: Ao. Univ. Prof. Dr. Matthias Baaz

The dissertation has been reviewed by:

Jeremy Avigad Dale Miller

Alexander Leitsch

Vienna, 5th September, 2018
Michael Peter Lettmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Michael Peter Lettmann, MSc
Belghofergasse 38, Top 1
1120 Wien
Österreich

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. September 2018
Michael Peter Lettmann

v

Danksagung

An dieser Stelle möchte ich meinen Dank an Alexander Leitsch aussprechen, der mich als
Betreuer durch mein Doktorratsstudium begleitete und mir stets mit seiner Expertise zur
Seite stand. Ich hoffe, ich konnte seinen hohen Ansprüchen an die Qualität der Forschung
sowie an die Pünktlichkeit gerecht werden.

Ferner möchte ich mich bei meinen Gutachtern Dale Miller und Jeremy Avigad bedanken,
deren Vorschläge nicht nur die Qualität dieser Arbeit enorm verbesserten, sondern auch
meine Sensibilität für verständliches Schreiben erhöhten.

Ein großer Dank gilt auch denen, die, bei verschiedenen Anlässen, Korrektur lasen.
Namentlich sind das Vanessa Knöll, Marc Lettmann, David Michael Cerna, Francesco
Antonio Genco, Timo Lang, Alexander Leitsch, Björn Lellmann und Roman Kuznets.

Nicht unerwähnt bleiben soll Gabriel Ebner, dem ich meine Programmierkenntnisse in
Scala verdanke und der mir bei der Ausführung der Massentests half. Ebenso half mir
Stefan Hetzl beim Verstehen der Π1-Schnitteinführung.

Während meines Studiums hatte ich die Chance die Professoren Alan Bundy und Nico-
las Peltier an deren jeweiliger Wirkungsstätte zu besuchen. Für die dort gewonnenen
Eindrücke und die erhaltene Hilfe bin ich sehr dankbar.

Des Weiteren war es mir eine Freude mit den Kollegen aus dem vierten Stock zu arbeiten.
Die Atmosphäre war sehr angenehm und man konnte sich auch außerhalb der Arbeitszeit
treffen. Danke an Francesco alias Franz, Paolo alias Paulchen, David, Anela, Timo, Tim,
Francesca, Matthias, Kees, Matteo, Michael, Revantha, Roman, Björn, Esther und Vlasta.
Danke auch an die Kollegen aus dem Doktorratskolleg und aus dem Freihaus.

Ich möchte Juliane Auerböck, Beatrix Buhl, Eva Nedoma und Anna Prianichnikova für
ihre gorße Hilfe danken.

Die Möglichkeit zur Dissertation verdanke ich dem Doktorratskolleg LogiCS, genauer
gesagt, dem FWF Projekt W1255-N23.

Zu guter Letzt möchte ich mich bei meinen Eltern, meinem Bruderherz und meiner
Verlobten bedanken, die mich trotz der großen Distanz in jeglicher Hinsicht unterstützten.

vii

Acknowledgements

At this point, I would like to extend my thanks to Alexander Leitsch who lead me through
my doctoral studies and assisted me with his great expertise. I hope that I met his high
demands on the quality of research and punctuality.

Moreover, I would like to thank my reviewers Dale Miller and Jeremy Avigad. Their
comments did not only improve the quality of this thesis, but also my ability to convey
my thoughts to the reader through writing.

Great thanks to those who proof read what I wrote during my studies. Namely, Vanessa
Knöll, Marc Lettmann, David Michael Cerna, Francesco Antonio Genco, Timo Lang,
Alexander Leitsch, Björn Lellmann, and Roman Kuznets.

I would also like to mention Gabriel Ebner whom I have to thank for my programming
skills in scala. He also was of great assistance for running the tests of the implementation,
as well as Stefan Hetzl helped me understanding the Π1-cut introduction method.

While studying I had the chance to visit the Professors Alan Bundy and Nicolas Peltier
at their institutions. I am very thankful for the impression the experience left on me.

Furthermore, it was a great pleasure to work with the colleagues of the fourth floor. The
atmosphere was very inviting and the thesis benefited also from the time we spent apart
from work. Thanks to Francesco aka Franz, Paolo aka Paulchen, David, Anela, Timo,
Tim, Francesca, Matthias, Kees, Matteo, Michael, Revantha, Roman, Björn, Esther, and
Vlasta. Thanks to the colleagues from the doctoral college and the Freihaus, too.

I would like to thank Juliane Auerböck, Beatrix Buhl, Eva Nedoma, and Anna Prianich-
nikova for the great help they provided.

I have to thank the doctoral college also for the opportunity to pursue my Ph.D. studies
and the FWF project W1255-N23 providing support and funding.

Last but not least, I would like to thank my parents, my brother, and my fiancée, who
were supporting me despite the huge geographical distance between us.

ix

Kurzfassung

Eines der wesentlichen Resultate innerhalb der Beweistheorie ist Gentzens ’Hauptsatz’,
der auch als Schnitteliminationstheorem bekannt ist. Dabei bezieht sich die Schnitteli-
mination auf eine Technik, welche den notwendigen Teil eines Lemmas in den Beweis
einbindet, um so die zusätzliche Struktur des Lemmas zu entfernen. Der daraus resultie-
rende schnittfreie Beweis erlaubt uns, den berechenbaren Inhalt zu untersuchen, welcher
wiederum von fundamentalen Interesse für das Forschungsgebiet ’Proof Mining’ sowie
für das automatische Generieren von Beweisen ist. Schnittfreie Beweise zeichnen sich
durch ein analytisches Verhalten aus, welches hauptsächlich an der Teilformeleigenschaft
deutlich wird. So tauchen im Beweis lediglich Formeln auf, die zugleich Teilformeln der
zu beweisenden Aussage sind. Ein sich aus der Schnittfreiheit ergebender Nachteil ist
die enorme Größe solcher Beweise, da die den Lemmas eigene Struktur den Beweis stark
verkleinern kann.

Aus diesem Grund streben wir in dieser Arbeit eine Umkehrung des Schnitteliminati-
onsalgorithmuses an, welche auf einer Verbindung zwischen der Theorie der formalen
Grammatiken und der Beweistheorie basiert. So werden wir Grammatiken charakterisie-
ren, die Beweisen mit Lemmas einer Stufe der arithmetischen Hierachie bis hin zu Π2
Formeln zugeordnet werden. Unter der Annahme einer solchen Grammatik versuchen
wir die schnittfreien Beweise so umzuschreiben, dass sie nun Schnitte enthalten und
dabei ihre Größe verringert wird. Hierzu betrachten wir die bereits bekannte Einführung
von Π1 Schnitten, präsentieren einen Algorithmus zur Einführung von Π2 Schnitten,
dessen Vollständigkeit für ein relevantes Fragment und die Ergebnisse die mithilfe einer
Implementierung erzielt wurden. Schlussendlich können wir zeigen, dass durch die Π2
Schnitteinführung eine exponentielle Kompression erreicht werden kann.

xi

Abstract

One of the crucial results in proof theory is Gentzen’s ’Hauptsatz’, also known as the
cut-elimination theorem. Cut-elimination is a technique to incorporate only the necessary
content of lemmas within a formal proof into the proof while eliminating the additional
structure of the lemma. The resulting object, a cut-free proof, gives insights about
the computational content of a proof and is of major interest for subjects such as
proof mining and automated theorem proving. Such proofs show an analytic behaviour
mainly discernible in the subformula property which tells us that within the proof only
subformulas of the statement are used. A drawback is the large size of cut-free proofs,
due to missing structure expressible by lemmas.

In this thesis, we propose an inversion of the cut-elimination method based on a connection
of formal grammars and proof theory. We specify characteristic grammars for cut formulas
according to the arithmetical hierarchy up to Π2 formulas and discuss whether the
existence of such a grammar allows us to rewrite a given cut-free proof, now with Π2-cut
formulas, in order to reduce the proof size. Thereby, we revisit Π1-cut introduction,
present an algorithm to introduce Π2 cuts which is shown to be complete for a fragment,
and discuss the decidability of the problem whether Π2 cuts exist for a given grammar.
Moreover, we show that our method of Π2-cut introduction achieves an exponential
compression of the proof size.

xiii

“Ich erblicke dagegen gerade in der Möglichkeit, solche Wahrheiten auf andere,
einfachere zurückzuführen, mag die Reihe der Schlüsse noch so lang und scheinbar
künstlich sein, einen überzeugenden Beweis dafür, daß ihr Besitz oder der Glaube
an sie niemals unmittelbar durch innere Anschauung gegeben, sondern immer nur
durch eine mehr oder weniger vollständige Wiederholung der einzelnen Schlüsse
erworben ist.”

Richard Dedekind, Was sind und was sollen die Zahlen? [Ded87]

Contents

Kurzfassung xi

Abstract xiii

Contents xvii

1 Introduction 1

2 Preliminaries 5
2.1 Notations . 5
2.2 G3c-Calculus . 8
2.3 Normal Forms . 11
2.4 Complexity Measurements . 13
2.5 Herbrand’s Theorem . 17
2.6 Grammars . 20

3 Revisiting Π1-Cut Introduction 25
3.1 Analysis of Π1 Cuts in Sequent Calculus 26
3.2 Schematic Π1 Grammars . 31
3.3 Schematic Extended Herbrand Sequents for Π1 Cuts 36
3.4 The Canonical Solution . 38
3.5 Application of Π1-Cut Introduction . 40
3.6 The Possible Compression of Π1 Cuts . 44

4 Π2-Cut Introduction 49
4.1 Motivation . 49
4.2 Analysis of Π2 Cuts in Sequent Calculus 50
4.3 Schematic Π2 Grammars . 58
4.4 Schematic Extended Herbrand Sequents for Π2 Cuts 61
4.5 The Solution Problem . 63
4.6 A Characterization of Solvability . 68
4.7 The Unification Method . 84
4.8 Generalizing the Cut Formula . 95
4.9 Proof Compression . 100

xvii

5 Implementation and Experiments 113
5.1 An Implementation for the Construction of Π2-Cut Formulas 113
5.2 Computing SΠ2-Gs . 117
5.3 Experiments . 118

6 Conclusion and Future Work 137
6.1 Conclusion . 137
6.2 Future Work . 138

A Problems of the TSTP 141
A.1 PUZ/PUZ035-5/Prover9—1109a.UNS-Ref.s 141
A.2 PUZ/PUZ035-6/Prover9—1109a.UNS-Ref.s 143

List of Figures 147

Index 149

Bibliography 153

CHAPTER 1
Introduction

In the history of mathematical logic, the beginning of proof theory is often dated back to
Hilbert’s program [Hil99, Hil00], even though the works by Frege [Fre79, Fre84], Peano
[Pea89a, Pea89b], Pasch [Pas82], Fano [Fan91] and Dedekind [Ded87] established already
many of its topics (see also [Ken72]). Apart from other tasks, Hilbert tried to formalize
mathematics in such a way that all true statements can be proven without loosing
consistency. But, as shown by Gödel [Göd31] the main obstacle cannot be overcome, i.e.
theories at least as strong as Peano arithmetic cannot be shown complete. Nonetheless,
a formalization of major parts of mathematics can be defined (see for example Zermelo-
Fraenkel set theory [Kun14]), the completeness of first-order logic is provable [Göd29], and
consistency results for theories such as Peano arithmetic [Gen35b] or even more powerful
subsets of second-order logic [Tak67] exist. One of the most celebrated contribution
among those is Gentzen’s paper [Gen35a] in which he describes a decision method for
intuitionistic logic and gives new proofs for the consistency of first-order logic and the
consistency of arithmetic without an induction schema via his ’Hauptsatz’, also known as
the cut-elimination theorem. In order to achieve this, he developed a calculus modifying
sequents, a binary relation of multisets of formulas, in which all provable and only the
provable formulas of first-order logic can be derived. The rules of the calculus except the
cut rule share an analytic behaviour, i.e. the premises of a rule only contain subformulas
of the conclusion. In the cut rule, one can introduce formulas independently and thereby,
one can model concepts such as mathematical lemmas in a formal way. By proving that
every application of the cut rule can be eliminated (cut-elimination), Gentzen concluded
that there is always a proof only containing subformulas of the theorem to be proven.
Since a proof of inconsistency of first-order logic corresponds to a proof of a sequent
only containing bottom, a symbol representing falsity, and no sequent-calculus rule apart
the cut rule can be applied to the sequent only containing bottom, there is no proof of
inconsistency. The same reasoning plays a major role in Gentzen’s consistency proof of
Peano arithmetic as shown by Takeuti [Tak87].

1

1. Introduction

Cut-elimination as presented by Gentzen (also called reductive cut-elimination) is a
stepwise application of reduction steps in which the cut formula, i.e. the formula introduced
into the proof by the cut rule, or its complexity is simplified until it eventually vanishes.
The resulting object does rarely appear in this form in mathematics but can be used
for proof mining (see, e.g., [Lei15] or [Koh08] for proof mining in general) or, as already
mentioned, for consistency proofs [Gen35a, Sch77].

Moreover, sequent calculus inspired many other research areas, e.g. automated theorem
proving. Tableau provers originated by inverting the applications of sequent-calculus
rules [Häh01] to find proofs of first-order statements. Here, the analytic behaviour of the
rules allows a goal-oriented search, although the task is semidecidable. A major drawback
of these provers is the large size of constructed proofs, a fact that is also explained by
cut-elimination: cut-free proofs are in general much bigger than proofs with cut. For
example: a single application of the cut rule with a formula of the form ∀x∃yC, C being
a quantifier-free formula, can reduce the size exponentially (see Section 4.9). Hereby,
one of the benefits of cut rules is illustrated, namely the formalization of patterns of a
proof in a compact form. Moreover, proofs with cuts are usually more structured and are
therefore more human readable. Since proofs constructed by automated theorem provers
are cut free (tableau methods) or contain at most simple universally closed disjunctions
of literals (resolution methods), we suggest a postprocessing in which the proofs gain
additional structure by the introduction of cuts.

In this thesis, we present algorithmic techniques to introduce cuts into cut-free proofs in
order to compress the proof size, structure the proof, and improve human readability. In
particular, we consider cut formulas of the shape ∀xC (see Chapter 3) and formulas of
the shape ∀x∃yD (see Chapter 4) where C and D are quantifier free. Both techniques
are based on a connection of proof theory and formal grammars [Het11, AHL15]. Proofs
with cut can be translated into tree grammars such that the production rules of the
grammar represent the term instantiations of the cut formula within the proof. By
computing the language of the grammar, one receives a Herbrand term set, i.e. a term
representation of a Herbrand sequent of the proven statement. A Herbrand sequent is a
propositional tautology consisting only of instances of the statement in consideration.
Therefore, Herbrand sequents contain all the necessary information of a cut-free proof.
This means that cut elimination can be done via grammars, i.e. cut-elimination can be
interpreted as the computation of a language by a grammar. This leads to the question
whether the method can be inverted. Assume a cut-free proof of a statement and that
we found a grammar whose language covers a Herbrand sequent of the cut-free proof.
Can we construct a proof with cut? Or in different words: Is cut elimination invertible?

In this work, we present all methods to invert cut elimination that appear in literature
which consist of the mentioned variants for formulas of the shape ∀xC and ∀x∃yD.
Nonetheless, there are various methods introducing cuts or similarly compressing struc-
tures into proofs. Closest to this work are other approaches which abbreviate or structure
given input proofs: in [WP10] an algorithm for the introduction of atomic cuts being
capable of exponential proof compression is developed. There exist several contributions

2

to proof compression by cut introduction in propositional logic: a method defined in
[FG07] is shown to never increase the size of proofs more than polynomially. Another
approach to the compression of first-order proofs is based on the introduction of definitions
for abbreviating terms and can be found in [VSU10].

Apart from inverting cut elimination, the introduction method presented here is in a
sense capable of creating non-analytic deduction steps, a tool required for automated
induction provers [Bun01]. Therefore, the generation of cuts or lemmas (to stress the
connection to mathematics) can also be motivated in a bigger framework, i.e. the analysis
of induction proofs and, in particular, their induction invariants. In fact, the computation
of non-analytic cuts may yield induction invariants for automated induction provers.
Similar work in this fashion is done in [BBHI05] where rippling, a method based on failed
proof attempts, is defined. Furthermore, [Col01] and [Col02] adopt an eager approach to
lemma generation in automated theory formation.

Occurring notations are consistent throughout the chapters. The most frequently used
symbols have an entry in Table 2.1 in Section 2.1. Moreover, there is an index chapter
attached which refers to the page of the corresponding definition. If the definition of a
concept has a corresponding symbol then there is a subentry referring to all occurrences
of this symbol. The structure of the work is as follows: In Chapter 2, we introduce
basic concepts that are well-known in the area of formal logic. Chapter 3 presents the
results known for Π1-cut introduction that are the basis for the present work. In Chapter
4, we discuss Π2-cut introduction. Thereby, we define the main obstacle (Section 4.4)
analogously to the main obstacle of Π1-cut introduction (Section 3.3). In contrast to the
Π1 case, we show that the Π2-cut introduction problem is not always solvable (Section
4.5) and proceed with a characterization of its solvability (Section 4.6). Afterwards,
we define a method to find solutions for a fragment via a unification method (Section
4.7). Since the former discussion was restricted to a Π2-cut formula without blocks of
quantifiers, we show in Section 4.8 that the results can be extended to more general
cut formulas. We conclude the chapter by proving the maximal possible compression
of a single Π2 cut which can be found with our method (Section 4.9), i.e. a exponential
compression. Chapter 5 presents an implementation of the unification method defined in
Section 4.7, the grammar generation algorithm used for computing SΠ2-Gs (see Section
4.3 and Section 5.2), and the corresponding experiments (Section 5.3). The work is
concluded by a discussion of the achieved results and the arisen questions (Chapter 6).

3

CHAPTER 2
Preliminaries

The following chapter is a collection of all necessary but well-known concepts of formal
logic that are required for the understanding of the present work. Readers, that are
familiar with the subject, might skip this chapter and use it as a reference to look up
definitions and notations.

More precisely, the chapter is structured as follows: Section 2.1 consists of a list of
notations. Whenever the reader might encounter a symbol in the present work he or she
cannot recognize, he or she might use Table 2.1 or the Index. While the Index contains all
defined concepts and a reference to the corresponding definition, Table 2.1 contains items
that are definitions itself (hence, the Index refers also to Table 2.1) or gives the symbols
of units of often used terminology such as: arbitrary terms are represented as r, s, t, or ri.
In Section 2.2, we present the G3c-calculus which is used to represent classical first-order
proofs. In classical first-order logic, there are many normal forms allowing a simpler
reasoning. In Section 2.3, we define the normal forms that are relevant for the present
work. Section 2.4 serves as a survey of all complexity measures. Some of them will also
be defined in the course of the following chapters, whereas the basic concepts are defined
only in Section 2.4. In Section 2.5, we briefly discuss Herbrand’s theorem and how we
are going to use it. In contrast to the other sections of the current chapter, Section 2.6 is
not of a proof theoretic character. It gives an introduction to formal tree grammars and
presents some necessary properties/definitions.

2.1 Notations

In this section, we give a list of all basic notations used in the present work. Table
2.1 contains four columns where the first column shows the name, the second column
shows the symbol for the concept, the third gives a short explanation or some remarks
(if necessary), and the fourth column shows the symbols used for representatives. The

5

2. Preliminaries

lines are in alphabetical order of the names. Note that in some cases, the used symbols
for different concepts overlap. This will only occur if it is not misleading.

Name Symbol:
Concept

Explanation/Remarks Symbols:
Representatives

F~r F is a formula of arity l (~r)
which is instantiated with ~r.
Represents F (~r).

l-ary A corresponding object with
arity l.

l-tuple A tuple of length l.
~r|i The i-th term in a tuple of

terms ~r.
∀x.F ∀x.F is a shorthand for

∀x (F).
∃x.F ∃x.F is a shorthand for

∃x (F).
Arity a (·) Gives the arity of an object,

i.e. a natural number.
Clauses C,D,R,Ci
Clause sets C,D, Ci
Concatenation
of Sequents

S ◦ T A new sequent consisting of
the merged antecedents and
succedents of the old sequents.

Constant (natu-
ral number)

Natural numbers used for rep-
resenting fixed parameters.

l,m, n, p, q, a, b

Constants A constant in the term lan-
guage.

a, b, c, d

Context of a se-
quent

Γ,∆,Λ,Π

Dual (·) If it is applied to a single object
without a negation in front it
adds a negation. Otherwise, it
drops the negation in front. If
it is applied to a set of objects,
it is applied to every single el-
ement and outputs the set of
results.

Eigenvariables Variables introduced by
a strong quantifier rules
(r : ∀,l : ∃). See also the entry
“Variables”.

α, β, γ, αi

6

2.1. Notations

Formulas F,G,A,B,C,D,
E,H,X

Functions A function in the term lan-
guage

f, g, h, fi

Indices Natural numbers used for rep-
resenting indices.

i, j, k

Length l (·) Gives the length of a tuple, i.e.
maps the tuple to the number
of objects in the tuple.

Literals L,M,N,K,H,W

Natural num-
bers

N See also the entries “Constant
(natural number)” and “In-
dices”.

l,m, n, p, q, a, b,
i, j, k

Positions p, q

Predicates P,Q,R

Proofs ϕ, χ, ψ

Set of free vari-
ables

F (·) Gives the set of variables not
bounded by a quantifier within
an object.

Set of natural
numbers

Nl The set of natural numbers
{1, . . . , l}

Set of produc-
tions

α→ r1, . . . , rl A shorthand for α → r1, . . . ,
α→ rl.

Set of variables V (·) Gives the set of variables oc-
curring in an object.

Sets {·} S, I, J,K

Sequents Γ ` ∆ A pair of multisets of formulas
separated by ` where the left
multiset is referred to as an-
tecedent and the right multiset
is referred to as succedent.

R,S, T,H,H,S

Strong quanti-
fiers

Quantifiers introduced by the
r :∀-rule or the l :∃-rule.

Substitutions [x\r], [~x\~r] Applied to an object, it re-
places a variable or tuple of
variables by a term or set of
terms.

σ, τ, υ, σi

Terms r, s, t, ri
Tuples of terms ~r,~s,~t, ~ri
Variables See also the entry “Eigenvari-

ables”.
x, y, z, xi

7

2. Preliminaries

Weak quanti-
fiers

Quantifiers introduced by the
l : ∀-rule or the r :∃-rule.

Table 2.1: Notations

Remark 1 In the definition of a sequent (see Table 2.1), we could also use sets instead
of multisets, since the G3c-calculus does not contain structural rules.

2.2 G3c-Calculus
We will work with the G3c-calculus defined in Table 2.2. It is a system in which first-
order proofs for classical statements can be represented and consists of a collection of
rules. These rules allow us to manipulate sequents (see Table 2.1) that represent two
multisets of formulas. Sequents can be interpreted as formulas itself, i.e. the formula
that corresponds to a sequent Γ ` ∆ is the conjunction of all formulas in Γ implying the
disjunction of all formulas in ∆ ∧

A∈Γ
A→

∨
B∈∆

B.

In order to understand a sequent more intuitively, we can also read it as: In the
presence/context of Γ, ∆ is provable/derivable. In contrast to the more common LK-
calculus (see [Gen35a] and [TS96, Chapter 3]), all the rules of the G3c-calculus are
invertible (Proposition 1). This is a necessary condition for parts of our algorithm (cf.
Sections 4.6 and 4.7).

Note that there is a slight difference between the original version of Kleene [Kle09] and
the here presented version of Troelstra and Schwichtenberg inspired by Dragalin [Dra87,
Part 1, §3]. In Kleene’s system, all formulas that appear in the conclusion must also
appear in the premise while, for instance, the formula F ∧ G in the conclusion of l :∧
does not appear in the premise (see also the discussion in [TS96, Subsection 3.5.11.]).

For every rule we call the sequent at the bottom the conclusion and for every rule except
Ax and l :⊥ we call the sequents on the top premises. In the following, we will think of
proofs as trees. This will facilitate the description of our approach to find a solution for
the schematic extended Herbrand sequent for Π2 cuts (see Chapter 4). Hence, the leaves
of a proof represent tautological axioms.

Note that in literature even trees where the leaves are non-tautological might be considered
as proofs since the non-tautological leaves can be seen as additional assumptions of the
proof. This implies a misleading usage of the word axiom. On the one hand the G3c-
calculus contains the rule Ax , a shorthand for axiom. On the other hand every leaf of a
proof tree is called an axiom, although it does not necessarily belongs to an application
of the Ax rule. In this work, the notion axiom will always denote a leaf of a proof tree,
whereas Ax and l :⊥, if necessary, will be called G3c-axiom. Moreover, we will introduce

8

2.2. G3c-Calculus

Ax
P,Γ ` ∆, P (P atomic) l :⊥ ⊥,Γ ` ∆

F,G,Γ ` ∆
l :∧

F ∧G,Γ ` ∆
Γ ` ∆, F Γ ` ∆, G

r :∧ Γ ` ∆, F ∧G

F,Γ ` ∆ G,Γ ` ∆
l :∨

F ∨G,Γ ` ∆
Γ ` ∆, F,G

r :∨ Γ ` ∆, F ∨G

Γ ` ∆, F G,Γ ` ∆
l :→

F → G,Γ ` ∆
F,Γ ` ∆, G

r :→ Γ ` ∆, F → G

∀xF, F [x\r],Γ ` ∆
l :∀ ∀xF,Γ ` ∆

Γ ` ∆, F [x\α]
r :∀ Γ ` ∆, ∀xF

F [x\α],Γ ` ∆
l :∃ ∃F,Γ ` ∆

Γ ` ∆,∃xF, F [x\r]
r :∃ Γ ` ∆,∃xF

where in r :∀ and l : ∃ the α is not free in the conclusion.

Table 2.2: G3c-Calculus [TS96]

the notions of a G3c-derivation and a G3c-proof. The first of which can contain axioms
apart form G3c-axioms and the latter will only contain G3c-axioms as leaves. For this
reason, we will speak about tautological and non-tautological leaves. In a potential
extension to a calculus containing equality, we would have to use the term quasi-tautology
because a sequent of the form ` r = r is not a tautology but a quasi-tautology.

Definition 1 Let S be a sequent. We call an arbitrary tree a G3c-derivation of S if
it has only sequents as nodes, has S as lowest element such that each edge corresponds
to a rule of G3c, i.e. each node is an axiom or a conclusion of a rule of G3c, and the
immediate successor(s) is/are the premise(s) of that rule.

Furthermore, we call a G3c-derivation a G3c-proof if it does not contain premises that
are not as well conclusions of another rule, i.e. each edge to a leaf of the corresponding
tree belongs to an instance of Ax or l :⊥.

We call the sequent that corresponds to the root node the end sequent.

Definition 2 Let S be a quantifier-free sequent. We call a G3c-derivation of S maximal
if the leaves of the tree cannot be conclusions of rules.

As already mentioned, the G3c-calculus is invertible. This is a useful property for proof
search since we can apply the rules backwards without loosing completeness, i.e. if a
sequent is provable and it is a conclusion of a rule all its premises are provable, too.

9

2. Preliminaries

Proposition 1 (Inversion Lemma [TS96, Proposition 3.5.4.]) Let ⇒ denote de-
ducibility in G3c.

1. If ⇒ F ∧G,Γ ` ∆ then ⇒ F,G,Γ ` ∆.

2. If ⇒ Γ ` ∆, F ∨G then ⇒ Γ ` ∆, F,G.

3. If ⇒ F ∨G,Γ ` ∆ then ⇒ F,Γ ` ∆ and ⇒ G,Γ ` ∆.

4. If ⇒ Γ ` ∆, F ∧G then ⇒ Γ ` ∆, F and ⇒ Γ ` ∆, G.

5. If ⇒ Γ ` ∆, F → G then ⇒ F,Γ ` ∆, G.

6. If ⇒ F → G,Γ ` ∆ then ⇒ Γ ` ∆, F and ⇒ G,Γ ` ∆.

7. If ⇒ Γ ` ∆, ∀xF then ⇒ Γ ` ∆, F [x\α], for any α such that α /∈ F (Γ,∆, F).

8. If ⇒ ∃xF,Γ ` ∆ then ⇒ F [x\α],Γ ` ∆, for any α such that α /∈ F (Γ,∆, F).

We refer to quantifiers that are introduced by r : ∀ or l : ∃ as strong quantifiers while
quantifiers that are introduced by l : ∀ or r : ∃ are referred to as weak quantifiers. We will
make use of the symbol ¬ to denote → ⊥. Moreover, we will abbreviate

Γ ` ∆, F Ax ⊥,Γ ` ∆
l :→

F → ⊥,Γ ` ∆
and

F,Γ ` ∆,⊥
r :→ Γ ` ∆, F → ⊥

by

Γ ` ∆, F
l :¬ ¬F,Γ ` ∆ and

F,Γ ` ∆
r :¬ Γ ` ∆,¬F

respectively. If ⊥ occurs on the right of a sequent, we are allowed to drop it. Whenever
we refer to the G3c-calculus from now on, we mean the version in which l :¬ and r :¬
are included. Moreover, we call the rules with two premises, i.e. r :∧, l :∨, and l : →,
binary rules and the rules with a single premise, i.e. l :∧, r :∨, r :→, l : ∀, r : ∀, l :∃, r :∃,
l :¬, and r :¬, unary rules.

We denote the extension of G3c-calculus with the Cut rule defined as

Γ ` ∆, C C,Γ ` ∆
Cut Γ ` ∆

the G3c+-calculus and in this context, we call C the cut formula. Other than all other
rules, the Cut rule is not analytic as its premises contain a formula that might be
unrelated to the conclusion. Moreover, C is not necessarily a subformula of any formula
in Γ or ∆. Intuitively, the Cut rule can be seen as the application of a lemma. While

10

2.3. Normal Forms

a proof of the left premise is a proof of the lemma in the current context, a proof of
the right premise is allowed to make use of the proven lemma C. This might result in a
simplification of the proof itself as known from mathematics where lemmas play a crucial
role. Of course, mathematical proofs are usually far beyond classical first-order logic, but
in Section 3.6 and in Section 4.9 we provide examples for classical first-order logic that
demonstrate the enormous compression that can be achieved by lemmas with a certain
structure.

For each G3c+-rule, we call the multisets Γ and ∆ the context while the other formulas
are called main formulas.

2.3 Normal Forms
It is well known that logical connectives can be simulated by others. In classical logic,
the formula F ∧G is equivalent to ¬ (¬F ∨ ¬G). This allows us to define normal forms
for formulas in which we ask for certain properties such as: only the connectives ∨ and
¬ shall occur. Of course, there are restrictions on how a normal form can be defined.
It is impossible to find for each classical formula an equivalent variant only using the
connective ∧.

In the present work, we will make use of the disjunctive normal form. In order to give a
formal definition, we look at the negation normal form in which the negation only occurs
in front of atoms. Note that we cannot define a negation normal form in intuitionistic
logic. If we want to transform an arbitrary formula into negation normal form we have
to apply the double negation elimination, i.e. two negations ¬ that appear directly after
each other can be dropped. This is only valid in classical logic.

Definition 3 (Negation Normal Form) A formula F is in negation normal form
(shorthand: NNF) if only the connectives ∀, ∃, ∧, ∨, and ¬ occur in F and all occurrences
of ¬ are in front of atoms.

Example 1 The formulas F =def P ∧ (Q ∨ ¬R) and G =def (P ∧Q) ∨ (P ∧ ¬R) are in
NNF while the formula P ∧ ¬¬P is not in NNF. Note that the formulas F and G are
equivalent. Hence, NNF is not a canonical normal form.

Let F,G be formulas of first-order logic. Consider the rewrite rules

F → G ⇒ ¬F ∨G
¬∀xF ⇒ ∃x¬F
¬∃xF ⇒ ∀x¬F

¬ (F ∨G) ⇒ ¬F ∧ ¬G
¬ (F ∧G) ⇒ ¬F ∨ ¬G

¬¬F ⇒ F

11

2. Preliminaries

where⇒ is the rewriting operation. We can apply a rewrite rule to a formula if it contains
a subformula of one of the forms appearing on the left of ⇒. During the application of a
rewrite rule, we replace the subformula according to the rule by the formula on the right
of ⇒. Then every formula C can be transformed into an equivalent formula D in NNF
by an exhaustive application of the defined rewrite rules. The last rewrite rule is the
mentioned double negation elimination.

A formula in NNF can easily be transformed into a formula in disjunctive normal form
(or conjunctive normal form). The drawback is an exponential blow up of the formula
size. This can be omitted if we transform into satisfiability-equivalent formulas instead
of equivalent formulas (cf. Tseitin transformation [Tse68]). The standard transformation
uses the distributivity of ∨ and ∧ as well as rules to shift the quantifiers in front:

F ∧ (G ∨H) ⇒ (F ∧G) ∨ (F ∧H) ,
(∀xF) ∧G ⇒ ∀x (F ∧G) ,
(∃xF) ∧G ⇒ ∃x (F ∧G) ,
(∀xF) ∨G ⇒ ∀x (F ∨G) , and
(∃xF) ∨G ⇒ ∃x (F ∨G)

for formulas F , G, and H. When shifting quantifiers in front, we have to take care that
the quantified variable x does not occur in G. This can be achieved by renaming.

Definition 4 (Disjunctive Normal Form) A formula F is in disjunctive normal
form (shorthand: DNF) if all quantifiers are in front (prenexed)

F = ∀~x1∃~y1 . . . ∀~xn∃~yn
(
F ′
)

with possibly empty tuples of variables ~xj , ~yk and the quantifier free body is of the form

F ′ = G1 ∨ . . . ∨Gl

where for all i ∈ Nl
Gi

def= Li1 ∧ . . . ∧ Limi

with Lij being an atom or a negated atom. Furthermore, we call Lij a literal and Gk a
clause of F for arbitrary i’s, j’s, and k’s.

In literature, clauses correspond usually to formulas in conjunctive normal form. The
normal form is analogously defined as the DNF, but ∧ is exchanged with ∨ and vice
versa. Since we only consider formulas in DNF, we are allowed to use the term clause to
denote subformulas of a formula in DNF as in Definition 4. As well as the NNF, the
DNF is not a canonical normal form, since different formulas in DNF can be logically
equivalent.

12

2.4. Complexity Measurements

2.4 Complexity Measurements
On several occasions, we will measure the complexity of different objects with respect to
changing parameters. To preserve a better overview, this section contains all complexity
measurements occurring in this work. Therefore, we will also mention definitions of
complexity which should be read first in the context of their chapter, but can be looked
up here. In these cases, we refer to the corresponding chapter.

2.4.1 Size of Sets

The size of a set is defined in the standard way, as the number of elements occurring in
the set. The concept can be defined without specifying the type of the elements within
the set.

Definition 5 (Size of a Set) Let S be a set of arbitrary elements then the size of a set
|S| is given by the number of elements in S.

2.4.2 Complexity of Sets of Tuples of Terms

In comparison to the size of a set, the definition of the complexity of a set deviates.
Indeed, we will only define the complexity of sets of tuples of terms. This definition
will play a role when considering a minimal G3c-derivation that instantiates a block of
quantifiers in order to get ground formulas which are instantiated with the tuples of the
set. Hence, the complexity of such a set corresponds to the minimal number of quantifier
inferences necessary to ground the formula.

Definition 6 (Instantiation Complexity) Let T =def {~r1, . . . , ~rl} be a set of m-tuples
of ground terms. Assume an m-ary predicate symbol P . Then we define the instantiation
complexity of T , denoted by]T , as the minimal number of quantifier inferences in a
cut-free proof of the sequent

∀x1 . . . xmP (x1, . . . , xm) ` P (~r1) ∧ . . . ∧ P (~rl) .

Example 2 Let ~r = (a, b, c) and ~s = (a, b, b) be tuples of terms r, s, t and T = {~r,~s}.
Figure 2.1 shows a proof of ∀x1, x2, x3P (x1, x2, x3) ` P (~r)∧P (~s) with a minimal number
of quantifier instantiations. Thus,]T = 4.

2.4.3 Complexity of Sequents

The definitions of this subsection should be read first in their corresponding sections.
They are concerned with the complexity of sequents depending on whether the sequents
represent the main content of a cut-free proof, a proof with Π1 cuts, or a proof with a
Π2 cut.

The following definition appears first in Section 2.5.

13

2. Preliminaries

Figure 2.1: Cut-free proof of ∀x1, x2, x3P (x1, x2, x3) ` P (~r) ∧ P (~s); Example 2

Ax
P (~r) , P (~s) ,Γ3 ` P (~r) Ax

P (~r) , P (~s) ,Γ3 ` P (~s)
r :∧

P (~r) , P (~s) ,Γ3 ` P (~r) ∧ P (~s)
l :∀

P (~r) ,∀x3P (a, b, x3) ,Γ2 ` P (~r) ∧ P (~s)
l :∀ ∀x3P (a, b, x3) ,Γ2 ` P (~r) ∧ P (~s)
l :∀ ∀x2, x3P (a, x2, x3) ,Γ1 ` P (~r) ∧ P (~s)
l : ∀ ∀x1, x2, x3P (x1, x2, x3) ` P (~r) ∧ P (~s)

with

Γ1
def= {∀x1, x2, x3P (x1, x2, x3)}

Γ2
def= Γ1 ∪ {∀x2, x3P (a, x2, x3)}

Γ3
def= Γ2 ∪ {∀x3P (a, b, x3)}

Definition 7 (Complexity of Herbrand sequents. See Definition 14.) Let

H
def= F [~x\~r1], . . . , F [~x\~rl] ` G[~y\~rl+1], . . . , G[~y\~rm].

be a Herbrand sequent. Then the complexity of H is defined as

|H| def=]{~r1, . . . , ~rl}+]{~rl+1, . . . , ~rm}

where]{·} denotes the instantiation complexity (Definition 6).

The following definition appears first in Section 3.1.

Definition 8 (Complexity of Π1-EHSs. See Definition 21.) Let

H def= F [~x\~r1], . . . , F [~x\~rl], G1 →
n1∧
j=1

G1[α1\s1,j], . . . , Gm →
nm∧
j=1

Gm[αm\sm,j] `

be a Π1-EHS. Then the complexity of H is defined as |H|Π1 =def]{~r1, . . . , ~rl}+∑m
j=1 nj.

The following definition appears first in Section 4.2.

Definition 9 (Complexity of Π2-EHSs. See Definition 28.) Let

H def= F [~x\~ri]li=1,
q∨
i=1

C[(x, y) \ (α, ri)]→
p∧
j=1

C[(x, y) \ (sj , βj)] ` G[~y\~sj]mj=1

be a Π2-EHS. Then the complexity of H is defined as

|H|Π2
def=]{~r1, . . . , ~rl}+]{~s1, . . . , ~sm}+ p+ q.

14

2.4. Complexity Measurements

2.4.4 Complexity of Proofs in G3c

In the course of this thesis, we will show that proofs containing cuts can be much smaller
than proofs without cuts (see Section 3.6 and Section 4.9). Apart from the question when
and how this is possible, we need terminology to speak about the size/complexity of a
proof. Depending on how concisely we want to compare the sizes, different measurements
are used. The quantifier complexity counts the number of weak quantifier instantiations
in a proof. Thereby, we ignore the propositional part of a proof and hence, logically
complex formulas are not treated differently than simple predicates as long as they have
the same quantification. Especially, if the proof size mainly depends on the occurring
terms, the quantifier complexity gives a easily computable and sufficient approximation
of the size of a proof. It plays a major role in cut introduction, since the propositional
structure of the context in such problems does not change, but its instantiations. Only
the cut formula changes the logical structure considerably.

Definition 10 (Quantifier Complexity) Let ϕ be a G3c-proof. We define the quan-
tifier complexity |ϕ|q as the number of weak quantifier inferences in ϕ.

As mentioned before, the quantifier complexity ignores the propositional part of a proof.
For this reason, we introduce the inference complexity which counts the number of all
occurring G3c-rules that are not G3c-axioms. This allows us to check whether an
introduced cut formula increases the proof size due to its logical structure. Even though
the computation of the inference complexity is not as simple as the computation of the
quantifier complexity, it is sufficiently easy to compute.

Definition 11 (Inference Complexity) Let ϕ be a G3c-proof. If ϕ is of the form

Ax Γ ` ∆ or l :⊥ Γ ` ∆ ,

then the inference complexity |ϕ|i is defined to be 0. If ϕ is of the form

χ ψBinary rule Γ ` ∆

with an arbitrary binary rule with G3c-subproofs χ and ψ, then |ϕ|i =def |χ|i + |ψ|i + 1.
If ϕ is of the form

χUnary rule Γ ` ∆

with an arbitrary unary rule with a G3c-subproof χ, then |ϕ|i =def |χ|i + 1.

15

2. Preliminaries

Even though the Inference complexity considers the propositional part of a proof, it
might miss some part of the proof that is relevant for its size: the term structure.
While the representation of a single term on an actual computer is dependent on the
underlying framework (and will not be discussed here), the nesting of terms and the
number of occurrences are entities relevant to proof size (independent of their symbolic
representation). In order to incorporate this as well, we define the symbol complexity
which counts every symbol occurrence of every sequent and the number of rules. Usually,
we do not compute the concise symbol complexity, but give upper bounds.

Definition 12 (Symbol Complexity) Let ϕ be a G3c-proof and Σ the corresponding
signature. Let S1, . . . , Sm be the sequents occurring in ϕ. The symbol complexity |Si|s of
a sequent Si for i ∈ Nm is equal to the number of occurrences of the symbols of the set
Σ ∪ {∧,∨,→,¬,∃,∀,`,⊥} and of the variables occurring in Si. The symbol complexity
|ϕ|s of the proof is defined as

|ϕ|s
def= |ϕ|i +

∑
i∈Nm

Si.

It is easy to see that the different measurements for G3c-proofs follow an order. While
the quantifier complexity is the most coarse one, the symbol complexity is the finest.

Proposition 2 (See Proposition 12 of [LL18]) Let ϕ be a G3c-proof. Then the
following inequalities hold:

|ϕ|q ≤ |ϕ|i ≤ |ϕ|s.

Proof:
The claim trivially holds. 2

Example 3 Let a, b, and c be constants and let P be a unary predicate, i.e. the signature
Σ is {a, b, c, P}. Consider the proof ϕ of Figure 2.2. Then the complexity measures are
as follows:

|ϕ|q = 1,
|ϕ|i = 3, and
|ϕ|s = 87.

2.4.5 Complexity of Grammars

The following definition appears first in Section 3.2 and Example 9 shows the computation
of the complexity of a schematic Π1 grammar.

16

2.5. Herbrand’s Theorem

Figure 2.2: Simple proof used for the computation of complexity measures; Example 3

ϕ
def=

Ax Γ, P (b) , P (c) ` P (b)

Ax Γ, P (c) ` P (c) , P (a) , P (b)
r :∨ Γ, P (c) ` P (c) ∨ P (a) , P (b)

l :→ Γ, P (c) ∨ P (a)→ P (b) , P (c) ` P (b)
l : ∀ ∀x (P (x) ∨ P (a)→ P (b)) , P (c) ` P (b)

with Γ =def ∀x (P (x) ∨ P (a)→ P (b))

Definition 13 (Complexity of SΠ1-Gs. See Definition 25.) Let G be an SΠ1-G
of the form 〈τ,N,Σ,Pr〉 and T be the set of all tuples of terms ~r such that τ → hF~r is a
production rule in Pr and hF is the freshly introduced function. Then the complexity |G|
of G is defined as

]T − l +m

where l is the number of tuples in T ,]T is the instantiation complexity of T (see Definition
6), and m is the number of production rules in G.

2.5 Herbrand’s Theorem
One of the most prominent theorems in mathematical logic is Herbrand’s theorem (see
[Her30]). It tells us that for every provable sequent S in classical first-order logic exists a
tautological sequent T consisting only of grounded formulas (the formulas do not contain
variables) occurring in S. Therefore, it can be seen as a projection of first-order logic
into propositional logic, of course only for the provable fragment.

Despite the strength of Herbrand’s original theorem, the literature typically states just
a weak variant. A discussion about this issue can be found in the paper [Bus95] which
formulates the statement in its strongest form and elaborates the connection between
the theorem and cut-elimination. Note that also in this work we will only use an
easy consequence: For every provable sequent without strong quantifiers, there exists a
Herbrand sequent. The construction of a sequent without strong quantifiers is provability
preserving and was already implicitly contained in Herbrand’s theorem, although the
concept of sequents was introduced by Gentzen [Gen35a] years after Herbrand’s thesis.

Definition 14 (Herbrand Sequent) A tautological sequent H of the form

F [~x\~r1], . . . , F [~x\~rl] ` G[~y\~rl+1], . . . , G[~y\~rm]

where F [~x\~ri] for i ∈ Nl are instances of F and G[~y\~rj] for j ∈ {l + 1, . . . ,m} are
instances of G is called a Herbrand sequent of ∀~xF ` ∃~yG. The complexity of H is
defined as

|H| def=]{~r1, . . . , ~rl}+]{~rl+1, . . . , ~rm}

17

2. Preliminaries

where]{·} denotes the instantiation complexity (Definition 6). For abbreviation, we will
write

[F [~x\~ri]]li=1 ` [G[~y\~ri]]mi=l+1

which reduces in Chapter 3 to
[F [~x\~ri]]li=1 ` .

Considering the complexity of Herbrand sequents, we took into account that Herbrand
sequents are used as representation of cut-free proofs (see Corollary 1 and Theorem
3). Hence, the complexity is the minimal number (instantiation complexity) of weak
quantifier inferences that is needed to introduce the tuples of terms. So we will always
find a cut-free proof with an equal quantifier complexity.

Corollary 1 (Corollary of Herbrand’s theorem) Let the sequent S =def ∀~xF ` ∃~yG
be provable. Then there exists a Herbrand sequent for S.

Moreover, we can find a Herbrand sequent preserving the quantifier complexity of the
proof. The following version is taken from [LL18] which is based on a version proven in
[HLRW14].

Theorem 3 Assume a sequent S =def ∀~xF ` ∃~yG. There is a Herbrand sequent H of S
with |H| = l iff there exists a cut-free proof ϕ of S such that |ϕ|q = l.

Proof Sketch:
A Herbrand sequent describes exactly the terms we have to introduce by weak quantifier
inferences. Let H be a Herbrand sequent of S with |H| = l. Then a cut-free proof ϕ
with |ϕ|q = l can be constructed in the following way: apply all propositional inferences
first and afterwards all quantifier rules.

Let ϕ be a cut-free proof of S. Then different terms for a given position of an atom can
only be produced by weak quantifier inferences. Hence, the number of weak quantifier
inferences in ϕ is equal to the number of different terms obtained by substitution, and
therefore |ϕ|q = |H| for H being the Herbrand sequent obtained from ϕ. 2

Every cut-free proof ϕ of a prenex end-sequent S can be transformed into a cut-free
proof χ of S (without increase of proof length) s.t. χ contains a midsequent S∗, i.e. a
sequent in χ such that all quantifier inferences in χ are below S∗ and all propositional
ones above [Gen35b].

Example 4 Let S =def P (a) ∨ P (b) ∨ P (c) ` ∃xP (x) be a sequent where P is a unary
predicate symbol and a, b, c are terms. The proof ϕ of Figure 2.3 is cut free. The

18

2.5. Herbrand’s Theorem

Figure 2.3: Cut-free proof ϕ; Example 4

Ax
P (a) ` P (a) , P (b) , P (c) , ∃xP (x) χ

l :∨
P (a) ∨ P (b) ∨ P (c) ` P (a) , P (b) , P (c) ,∃xP (x)

l :∃
P (a) ∨ P (b) ∨ P (c) ` P (a) , P (b) , ∃xP (x)

l :∃
P (a) ∨ P (b) ∨ P (c) ` P (a) ,∃xP (x)

l :∃
P (a) ∨ P (b) ∨ P (c) ` ∃xP (x)

with χ =def

Ax
P (b) ` P (a) , P (b) , P (c) , ∃xP (x) Ax

P (c) ` P (a) , P (b) , P (c) , ∃xP (x)
l :∨

P (b) ∨ P (c) ` P (a) , P (b) , P (c) ,∃xP (x)

midsequent of ϕ is

P (a) ∨ P (b) ∨ P (c) ` P (a) , P (b) , P (c) ,∃xP (x)

and therefore,
P (a) ∨ P (b) ∨ P (c) ` P (a) , P (b) , P (c)

is a Herbrand sequent of S. The complexity of the Herbrand sequent is

]{a, b, c} = 3

which is equal to the quantifier complexity |ϕ|q of ϕ.

As shown in the previous example, the Herbrand sequent serves as a representation of
the term instantiations of a cut-free proof. In the course of this thesis, we will elaborate
a connection between formal language theory and proof theory. Therefore, it will be
necessary to translate Herbrand sequents into formal language theory.

Definition 15 (Herbrand Term Set) Let H be a Herbrand sequent of the form

[F [~x\~ri]]li=1 ` [G[~y\~ri]]mi=l+1

of ∀~xF ` ∃~yG (see Definition 14). Let hF and hG be fresh functions such that a (hF) =
a (F) and a (hG) = a (G). Then the set

Hs
def= {hF~ri | i ∈ Nl} ∪ {hG~ri | i ∈ Nm\Nl}

is called a Herbrand term set of H.

Since we consider in Chapter 3 only Herbrand sequents of the form

[F [~x\~ri]]li=1 `,

19

2. Preliminaries

Figure 2.4: A tree representation of a term

f

g

a

f

α a

the Herbrand term set reduces in this chapter to

Hs
def= {hF~ri | i ∈ Nl}.

Example 5 Let us consider the Herbrand sequent of Example 4, i.e.

P (a) ∨ P (b) ∨ P (c) ` P (a) , P (b) , P (c) .

Then the Herbrand term set is defined as

{hP (a)∨P (b)∨P (c), hPa, hP b, hP c}

where a
(
hP (a)∨P (b)∨P (c)

)
= 0 and a (hP) = 1.

2.6 Grammars
The results considered in this work are based on relations between formal language
theory and proof theory [AHL15]. The way variables are replaced in the procedure
of cut-elimination can be defined by tree grammars modelling substitutions of terms.
[Het12] presents a characterization of the substitutions defining the Herbrand instances
of a proof after the elimination of a Π1 cut. In this section, we give some necessary
definitions for tree grammars in general , whereas the grammars for introducing cuts are
defined later (cf. Definitions 23, 24, 29, 30, and 45). A good overview of tree grammars
can be found in [CDG+08] and [GS97].

While usual grammars consider terms as strings, tree grammars are more closely related
to proof theory as they consider terms as labelled trees. A labelled tree, as we consider it
in tree grammars, is a tree where every node is labelled with a function of the considered
signature or with a variable; the number of ancestors of a node corresponds to the arity
of the label of the node. A simple example of a tree representing a term is shown in
Figure 2.4. Here, f is a binary function, g is a unary function, a a nullary function, and
α a variable. The term represented by the tree is f (g (a) , f (α, a)).

In general, we distinguish between terminals and nonterminals. The terminals denote
those symbols that cannot be removed or changed in an already constructed tree (except
in an unrestricted tree grammar). The nonterminals might change during the construction.

20

2.6. Grammars

Therefore, nonterminals behave like first-order variables, even though, first-order variables
do not have to be represented as nonterminals. The distinction between terminals and
nonterminals is necessary to decide whether a term is in the language of a tree grammar.
The language only contains terms without nonterminals (similar to grounded terms in
first-order logic).

A tree grammar consists basically of a signature, rewriting rules, and a starting symbol.
Additionally, there are nonterminals that are separated from the terms of the signature
and denote the terms to which the rewriting rules can be applied (the unrestricted tree
grammars are special, since they allow the rewriting rules to be applied to all terms). The
starting symbol is considered to be a nonterminal and provides, as the name suggests, a
starting point from which terms can be derived. A single step derivation exchanges a
subterm according to a rewriting rule. Consider again the term f (g (a) , f (α, a)) and
assume the rewriting rule α→ g (α). Then we can derive the term f (g (a) , f (g (α) , a))
in a single step and the terms {f (g (a) , f (r, a)) | r = gl (α) ∧ l ∈ N} in an arbitrary
number of derivations. A term r belongs to the language of a tree grammar if there
is a derivation of r according to the rewriting rules of the grammar beginning with
the starting symbol such that r does not contain nonterminals. Hence, the terms of
{f (g (a) , f (r, a)) | r = gl (α) ∧ l ∈ N} cannot be part of a language. If we also assume
the rewriting rule α→ b and the start production τ → f (g (a) , f (α, a)), the language
contains the terms {f (g (a) , f (r, a)) | r = gl (b) ∧ l ∈ N}.

The most general formal grammars, according to the Chomsky-hierarchy [Cho56], are the
unrestricted grammars (also called: type-0-grammars). For defining the G∗-unifiability
(cf. Section 4.7), we need a tree grammar without restrictions on the productions, i.e.
tree grammars that correspond to unrestricted grammars. For this reason, we introduce
the concept of unrestricted tree grammars.

Definition 16 (Unrestricted Tree Grammar) An unrestricted tree grammar G is a
tuple 〈τ,N,Σ,Pr〉 where N is a finite set of nonterminal symbols with arity 0 such that
τ ∈ N . Furthermore, Σ is a finite set of function symbols of arbitrary arities, i.e. a term
signature, satisfying N ∩Σ = ∅. The productions (or production rules) Pr consist of a
finite set of rules of the form r → s where r, s ∈ T (Σ ∪N), where T (Σ ∪N) denotes the
set of all terms definable from symbols in Σ∪N . As usual L (G), the language defined by
G is the set of all terminal strings (ground terms) derivable in G.

As mentioned before, the term unrestricted in the definition of an unrestricted tree
grammar refers to the form of the rewriting rules. These are able to exchange arbitrary
subterms of T (Σ ∪N), for example terms such as f (α, a) where f is a binary function
of Σ, a is a zeroary function of Σ, and α is a nonterminal. Therefore, unrestricted tree
grammars can be used to derive abstractions of terms, while most other grammars derive
only instances.

21

2. Preliminaries

A special case of unrestricted tree grammars are the regular tree grammars, that restrict
the form of the productions. They are similar to context-free grammars (also called:
type-2-grammars) of the Chomsky-hierarchy [Cho56], but not equivalent.

Definition 17 (Regular Tree Grammar) A regular tree grammar G is an unrestricted
tree grammar where the productions Pr are of the form α → r with α ∈ N and r ∈
T (Σ ∪N).

In general, tree grammars might contain cyclic productions that derive after a number of
applications the nonterminal they started with. A simple example is a production rule
that replaces a nonterminal with a term containing the same nonterminal, for instance
α→ g (α). By disallowing this behaviour (cf. Definition 18), the language of a regular
tree grammar becomes finite, since after a finite number of derivations all nonterminals
are replaced and we are not able to apply any other production rule.

The languages of grammars specifying Herbrand instances are finite (see [HLRW14]) and
therefore their productions may be assumed to be acyclic. Indeed, if the language of a
grammar G is finite and G is cyclic, there exists a grammar G′ such that G′ is acyclic and
its language is the same as the language of G, i.e. L (G) = L (G′).

Definition 18 (Acyclic Tree Grammar) We call a regular tree grammar acyclic if
there is a strict total order < on the nonterminals N such that for each rule α→ r in Pr
only nonterminals smaller than α occur in r.

Moreover, we are interested in grammars specifying substitutions. As substitutions are
homomorphic mappings on terms, variables have only to be replaced by single terms
within a derivation. Therefore, we need a restriction of derivations, rigid derivations (see
[JKV09]).

Definition 19 (Rigid Derivation) We call a derivation rigid with respect to a non-
terminal α if only a single rule for α is allowed to occur in the derivation.

The following example is a variant of Example 2 of [HLRW14]. It shows that allowing
only rigid derivations with respect to a nonterminal makes regular tree grammars more
concise. There are languages L which cannot be generated by a regular tree grammar,
but such a grammar generating L exists when only rigid derivations are admitted.

Example 6 Let Σ =def {0, f} where 0 is a constant and f is a unary function. On the one
hand, a simple pumping argument shows that the language L =def {g (r, r) | r ∈ T (Σ)}
where T (Σ) are all terms constructable with the terms of Σ is not regular. On the
other hand, L is generated by the tree grammar G =def 〈τ, {τ, α}, {0, f, g},Pr〉 where
Pr =def {τ → g (α, α) , α→ 0 | f (α)} if all derivations in G are rigid with respect to α.

22

2.6. Grammars

Definition 20 (Totally Rigid Acyclic Tree Grammar) We call an acyclic regular
tree grammar 〈τ,N,Σ,Pr〉 a totally rigid acyclic tree grammar if all derivations with
respect to all α ∈ N are rigid.

A totally rigid acyclic tree grammar is a special case of the rigid (acyclic) tree grammars
(see [JKV09]) in which only the derivations with respect to all α ∈ N ′ for N ′ ⊆ N have
to be rigid. In the course of this thesis, we will only make use of totally rigid acyclic tree
grammars.

23

CHAPTER 3
Revisiting Π1-Cut Introduction

In this section, we present the basic methods for introducing Π1 cuts in classical first-order
proofs. Thereby, we mainly follow the paper [HLRW14]. The interested reader might
also read [HLW12, HLR+14, EH15] where the same methodology is used to introduce
Π1 cuts in systems with equality or to introduce Π1-induction invariants.

Work on cut-introduction can be found at various places in the literature. Closest to
our work are those approaches which abbreviate or structure given input proofs: in
[WP10] an algorithm for the introduction of atomic cuts is developed that is capable of
exponential proof compression. There exist several contributions to proof compression
by cut-introduction in propositional logic: a method defined in [FG07] is shown to never
increase the size of proofs more than polynomially, [DFG08] describes compression by
cut-introduction in the more general context of cut-based abduction; the paper [DFG13]
presents a general framework for theorem proving with analytic and bounded cut. Another
approach to the compression of first-order proofs is based on introduction of definitions
for abbreviating terms and can be found in [VSU10].

In general, cut introduction can also be called lemma generation which itself is performed
in many different ways. In [Bun01, BBHI05, IB96], methods are presented to find proofs
with induction where the construction of lemmas is necessary. In automated theory
formation [Col01, Col02], an eager approach to lemma generation is adopted. One
common approach most of them share is that they try to define well performing heuristics,
either to find short proofs with cuts, to find theorems in theories, etc. Π1-cut introduction,
as we present it in this chapter, differs fundamentally from these methodologies. Instead,
it directly inverts Gentzen’s cut-elimination procedure. Therefore, we represent the
Herbrand sequent by a term language (Section 3.1) which itself will be covered by a
schematic Π1 grammar (Section 3.2). Then we compute a cut formula and a proof with
cut (Section 3.4). Section 3.5 presents how the method performs in practice and further
research topics.

25

3. Revisiting Π1-Cut Introduction

For simplicity, this chapter will only consider proofs that have an end sequent of the
form ∀~xF `. This is also no theoretical restriction, since every sequent is equivalent
to a sequent with formulas only occurring on the left. By applying l :∧ and prenexing,
we receive a sequent of the described form. After this chapter, we will again consider
formulas of the form ∀~xF ` ∃~yG. Moreover, we consider only cut formulas with a single
quantified variable instead of blocks of quantified variables. This is indeed a restriction,
but can easily be fixed (see Section 3.5).

3.1 Analysis of Π1 Cuts in Sequent Calculus

In Section 2.5, we determined that the main information of a cut-free proof, i.e. all
necessary term instantiations, can be stored in a Herbrand sequent. When cuts appear
in the proof, the existence of a Herbrand sequent is guaranteed by Gentzen’s Hauptsatz
(cut-elimination theorem, [Gen35b]). But after applying cut-elimination, the information
of the cut is lost, i.e. the Herbrand sequent does not suffice to represent proofs with
cut. Therefore, the notion of an extended Herbrand sequent was developed. In order to
explain this notion, we will regard a proof with a single cut which appears bottommost
in the corresponding proof tree. In such a proof, we can consider the two subproofs of
the premises of the cut-rule and derive their midsequents. These can be transformed
into Herbrand sequents that contain the whole information of the proof with cut, but in
two sequents. By applying l :→, we receive a single sequent still containing the whole
information (see Example 7).

In general, we can extract an extended Herbrand sequent for Π1 cuts from a proof with
Π1 cuts and an extended Herbrand sequent for Π1 cuts allows us to construct a proof
with Π1 cuts. But note that both proofs, the one we constructed using the extended
Herbrand sequent for Π1 cuts and the one that was used for extracting an extended
Herbrand sequent for Π1 cuts, are not necessarily the same. Only the quantifier inferences
are shared.

Example 7 Let P be a unary predicate symbol, a a constant, and f a unary function.
Let f la be an abbreviation for f . . . fa where f appears l times,

∀xF def= ∀x
(
Pa ∧ (Px→ Pfx) ∧ ¬Pf4a

)
,

and ∀yG =def ∀y
(
¬Py ∨ Pf2y

)
. The formula F is unsatisfiable, since the first two

conjuncts Pa and Px→ Pfx tell us that Pf la is true for all natural numbers l. This
contradicts the last conjunct ¬Pf4a. Hence we can prove the sequent ∀xF `. In such
a proof, we would have to show that Pz is true for z being fa, f2a, f3a up to f4a, i.e.
for every instance between fa and f4a starting with the given instance for z being a. If
we look closer on ∀xF , we see that in its presence ∀yG is provable. This gives us the
possibility to take two steps at once, i.e. we can prove directly Pf2a starting from Pa
and in a second step Pf4a starting from Pf2a. Then

26

3.1. Analysis of Π1 Cuts in Sequent Calculus

...
∀xF, F [x\α], F [x\fα] ` G[y\α]

l : ∀ ...
∀xF ` ∀yG

...
∀xF, F, ∀yG,G[y\a], G[y\f2a] `

l :∀ ...
∀xF,∀yG `

Cut ∀xF `

is a proof of ∀xF ` with a single cut. The sequents

∀xF, F [x\α], F [x\fα] ` G[y\α]

and
∀xF, F, ∀yG,G[y\a], G[y\f2a] `

are midsequents of the subproofs of the end sequents ∀xF ` ∀yG and ∀xF,∀yG `,
respectively. Note that we need the subformulas Pa and ¬Pf4a of F to get a midsequent
in the right branch of the proof. Therefore, we applied once the l : ∀ rule with the
substitution [x\x] to ∀xF , apart from the applications to ∀yG. Now, we can drop the
quantified formulas to get the corresponding Herbrand sequents, i.e.

F [x\α], F [x\fα] ` G[y\α] and
F,G[y\a], G[y\f2a] ` .

These represent the content of cut-free proofs of the two sequents ∀xF ` ∀yG and
∀xF,∀yG `. For technical reasons, we extend the sequents such that they have a shared
context for an application of a l :→-inference:

F [x\α], F [x\fα], F ` G[y\α] and
F [x\α], F [x\fα], F,G[y\a], G[y\f2a] ` .

These are still Herbrand sequents, albeit they are not minimal. In order to summarize
the information in one sequent, we apply an l :∧-inference and an l :→-inference

F [x\α], F [x\fα], F ` G[y\α] ϕ
l :→

F [x\α], F [x\fα], F,G[y\α]→
(
G[y\a] ∧G[y\f2a]

)
`

with

ϕ
def=

F [x\α], F [x\fα], F,G[y\a], G[y\f2a] `
l :∧

F [x\α], F [x\fα], F,G[y\a] ∧G[y\f2a] `

Finally, we get the extended Herbrand sequent for Π1 cuts

F [x\α] ∧ F [x\fα] ∧ F,G[y\α]→
(
G[y\a] ∧G[y\f2a]

)
` .

Note that F in the conjunction is actually superfluous. This single sequent represents the
content of a proof with a single Π1 cut of the sequent ∀xF `.

27

3. Revisiting Π1-Cut Introduction

Figure 3.1: Extracting an extended Herbrand sequent of a proof with several Π1 cuts

...
S1

...
S2Cut1 S3

...
S4Cut2 S5

(a) A schema of a proof with two Π1 cuts

H1 H2

undefined H3
undefined

(b) Replacing the subproofs with their proposi-
tional content, i.e. their Herbrand sequents

H1 H2
l :→ H1 H3

undefined

(c) Creation of the first Π1-EHS

H1 H2
l :→ H1 H3

l :→ H2

(d) Creation of the second Π1-EHS

The following definition gives us the general form of extended Herbrand sequents for Π1
cuts, even for proofs with more than a single Π1 cut. The general idea is the same as
shown in Example 7 and depicted in Figure 3.1. For a proof with Π1 cuts of a sequent S5
(see Figure 3.1a) we define a single tautological sequent H2 (see Figure 3.1d) containing
only propositional formulas representing the content of the proof. The first part of H2
consists of instantiations of the formulas in S5. This corresponds to the instantiations of
F in Example 7. The second part consists of formulas of the form G→

∧
i∈I Gσi where

σi are substitutions. G represents a cut formula and the substitutions σi tell us how the
cut formula is instantiated when occurring on the left side of the sequent (Note that a
Π1-cut formula on the right side of a sequent is only instantiated with an eigenvariable).
The logical connectives → and ∧ merely are a product of writing all information of
the two branches of a cut rule into one sequent, as in the last steps of Example 7. As
soon as we consider more than one Π1 cut, we have to take care of the eigenvariable
conditions. Assume a proof with many Π1 cuts for which we want to construct a Π1-EHS,
for instance as in Figure 3.1a. The topmost cut (Cut 1 of Figure 3.1a) can be treated
as in Example 7 giving us a representation, i.e. a Π1-EHS (cf. H1 in Figure 3.1c), of
a subproof which might occur in a branch of another Π1 cut (S3 is a premise of Cut 2,
cf. Figure 3.1a). Let us assume this cut occurs below and there is no cut in between.
Then for one branch of this cut rule (Cut2) the representation is not longer a Herbrand
sequent (more precisely a midsequent) but a Π1-EHS (H1 of Figure 3.1c) which can
be treated exactly the same way. The resulting Π1-EHS (H2 of Figure 3.1d) contains
the information of the topmost (Cut 1) and the second topmost cut (Cut 2). Moreover,
the Π1-EHS for the second topmost Π1 cut (Cut 2) contains the eigenvariables of the
topmost Π1 cut (Cut1) whereas the converse does not hold. The different occurrences of
the eigenvariables is expressed in the additional variable conditions of Definition 21.

Definition 21 (Extended Herbrand Sequent for Π1 Cuts) Let ~r1, . . . , ~rl be tuples
of terms, let G1, . . . , Gm be quantifier-free formulas, let α1, . . . , αm be variables, and let

28

3.1. Analysis of Π1 Cuts in Sequent Calculus

si,j for 1 ≤ i ≤ m, 1 ≤ j ≤ nj be terms such that

V (Gi) ⊆ {αi, . . . , αm} for all i and
V (si,j) ⊆ {αi+1, . . . , αm} for all i, j.

Then the sequent

H def= F [~x\~r1], . . . , F [~x\~rl], G1 →
n1∧
j=1

G1[α1\s1,j], . . . , Gm →
nm∧
j=1

Gm[αm\sm,j] `

is called an extended Herbrand sequent for Π1 cuts (shorthand: Π1-EHS) of ∀~xF ` if
H is a tautology.

The complexity of a Π1-EHS is defined as |H|Π1 =def]{~r1, . . . , ~rl}+∑m
j=1 nj.

While the first part, i.e.
F [~x\~r1], . . . , F [~x\~rl] `,

looks similar to the usual Herbrand sequent for end-sequents of the form ∀~xF `, the
second part is completely new. In Example 7, we extracted a Π1-EHS for a given proof.
Now, we want to construct a proof for a given Π1-EHS. In the example below, we
consider again only a single Π1 cut. The extension to many Π1 cuts can be achieved in
two ways: a naive one leading to unnecessary duplications of formulas and an elaborated
one using interpolation. After the example, we will briefly discuss the naive way. For the
advanced techniques see [HLRW14].

Example 8 Let P , a, f , f la, ∀xF , and ∀yG1 be as in Example 7. Then

S
def= Pa ∧ (Pα→ Pfα) ∧ ¬Pf4a,

Pa ∧
(
Pfα→ Pf2α

)
∧ ¬Pf4a,

¬Pα ∨ Pf2α→
(
¬Pa ∨ Pf2a

)
∧
(
¬Pf2a ∨ Pf4a

)
`

is a Π1-EHS with m = 1 and α1 = α. This is almost the same Π1-EHS as in Example
7, but we dropped the superfluous conjunct F . By inverting the steps, we can reconstruct
a proof with a single Π1 cut. Since S is a tautology, also

Pa ∧ (Pα→ Pfα) ∧ ¬Pf4a,

Pa ∧
(
Pfα→ Pf2α

)
∧ ¬Pf4a ` ¬Pα ∨ Pf2α

and

Pa ∧ (Pα→ Pfα) ∧ ¬Pf4a,

Pa ∧
(
Pfα→ Pf2α

)
∧ ¬Pf4a,(

¬Pa ∨ Pf2a
)
∧
(
¬Pf2a ∨ Pf4a

)
`

29

3. Revisiting Π1-Cut Introduction

are tautologies which are the premises of an l :→-rule with S as conclusion. This implies
that we are able to prove the two sequents

∀xF ` ∀yG1[α\y] and
∀xF,∀yG1[α\y] `

which leads to the proof

...
∀xF, F [x\α], F [x\fα] ` G1

l : ∀ ...
∀xF ` ∀yG1[α\y]

...
∀xF,∀yG1[α\y], G1[α\a], G1[α\f2a] `

l :∀ ...
∀xF,∀yG1[α\y] `

Cut ∀xF `

This example shows how proofs with single Π1 cuts can be obtained from Π1-EHSs. In
order to see that we are able to extend this procedure in a naive way to many Π1 cuts, let
us sketch the case with two Π1 cuts. Assume the Π1-EHS

Γ, A→
∧
i∈I

Aσi, B →
∧
j∈J

Bτj `

where Γ consists of formulas D[x\ri] for a quantifier-free formula D, A corresponds to G1
and B corresponds to G2 of Definition 21, and the variable conditions are also according
to the definition. Let V (A) ⊆ {y, z} and V (B) ⊆ {z}. Then also the sequents

Γ,
∧
j∈J

Bτj ` A,

Γ,
∧
i∈I

Aσi `, B,

Γ ` A,B, and
Γ,
∧
i∈I

Aσi,
∧
j∈J

Bτj `

are provable, and moreover, the sequents

∀xD,∀zB ` ∀yA,
∀xD,∀yA ` B,

∀xD ` ∀yA,B, and
∀xD,∀yA,∀zB `

are provable. This allows us to derive ∀xD ` with three applications of the cut rule:

...
∀xD ` ∀yA,B

...
∀xD,∀yA ` B

∀xD ` B
r : ∀ ∀xD ` ∀zB

...
∀xD,∀zB ` ∀yA

...
∀xD,∀yA,∀zB `

∀xD,∀zB `
∀xD `

.

30

3.2. Schematic Π1 Grammars

Note that the r : ∀-rule occurs necessarily after the cut with ∀yA as cut formula since the
corresponding eigenvariable might occur in A.

The drawback of the naive way is that we increase the number of Π1 cuts in comparison
to the number of implications in the Π1-EHS. This can be avoided by ensuring a linear
structure of the proof with Π1 cuts. In [HLRW14], the authors show via interpolation
that we do not have to increase the number of Π1 cuts.

As already mentioned, we do not show here how a proof with many Π1 cuts can be obtained
from a Π1-EHS without redundant duplications. This can be found in [HLRW14]. Even
though, the result is an essential improvement of the described method, it is not necessary
for the understanding of the course of this thesis. For completeness, we only mention the
following result guaranteeing the exact relationship between Π1-EHSs and proofs with
Π1 cuts. Note that the result below with its one to one complexity relations requires a
proof via interpolation. The definitions of the complexity measures |·|q and |·|Π1 can be
found in Definition 10 and Definition 21.

Theorem 4 (See [HLRW14]) ∀xF ` has a proof ϕ with Π1 cuts such that |ϕ|q = l iff
it has an Π1-EHS H with |H|Π1 = l.

The proof relies on Craig’s interpolation theorem (see [Cra57] and the presentation in
[Tak87, Chapter 4 Paragraph 23]) and is in this form a generalization of Proposition 2 in
[HLW12] which shows the result for a single Π1 cut.

3.2 Schematic Π1 Grammars
In [Het12, AHL15, Het11], Π1-EHSs are investigated via totally rigid acyclic tree gram-
mars (see Definition 20). This is part of the aim to define a direct correspondence of
cut-elimination and cut-introduction in formal grammar theory. The whole picture is
depicted in Figure 3.2 taken from [HLRW14]. It shows six objects, either from proof
theory or from formal grammar theory, and their relationship. While the objects on the
right are in some sense uncompressed, i.e. proofs without cuts, a list of all grounded
formulas (Herbrand sequent), or a list of all words in a language, the objects on the left
are their compressed analogues: A proof with Π1 cuts can be transformed into a cut-free
proof via cut-elimination which usually increases the proof size (line 1 of Figure 3.2); In
Corollary 2, we will show that a Π1-EHS can be transformed into a Herbrand sequent
(line 2 of Figure 3.2); Moreover, a schematic Π1 grammar (SΠ1-G) is a tree grammar
that by definition has a corresponding language which might cover the Herbrand term set
of a Herbrand sequent (line 3 of Figure 3.2). The horizontal relationships show that all
lines do basically the same, i.e. a correspondence of cut-elimination. Theorem 4 proves
that we can translate every proof with Π1 cuts into a Π1-EHS and vice versa preserving
the complexity. Later, we will see that every Π1-EHS can be represented by a schematic
Π1 grammar and vice versa (cf. Theorem 6). Since the relationships hold analogously on

31

3. Revisiting Π1-Cut Introduction

Figure 3.2: Proof-theoretic setting of Π1-cut introduction

proof ϕ with Π1 cuts cut-elimination−→ cut-free proof χ
l Theorem 4 l Theorem 3

Π1-EHS Corollary 2−→ Herbrand sequent
l Theorem 6 l trivial

SΠ1-Gs G defines−→ language L (G)

the right side, we could perform cut-elimination via defining schematic Π1 grammars,
computing its language, and constructing a propositional proof of the corresponding
Herbrand sequent.

In this section, we establish the relationship between Π1-EHSs and schematic Π1 gram-
mars and thereby the relationship between proofs with Π1 cuts and tree grammars.
Nonetheless, note the general aim of the chapter which is to invert cut-elimination for
Π1 cuts. This consists of two major parts. On one hand, we have to show that every
schematic Π1 grammar allows us to construct a Π1-EHS which is part of this section.
On the other hand, we need to find a tree grammar whose language corresponds to a
Herbrand sequent. Then we could move clockwise through the objects of Figure 3.2
starting from a cut-free proof of an end sequent S over a Herbrand sequent, a schematic
Π1 grammar, a Π1-EHS to a proof with Π1 cuts of the same sequent S. In the whole
work presented here, we focus on the relationship between tree grammars, extended
Herbrand sequents, and proofs with cuts which is of theoretical nature. For the problem
of computing a grammar, which requires more practical evaluation, we give the necessary
background, discuss occurring issues, and give a prototype algorithm (cf. Section 3.5 and
Chapter 5).

In order to define tree grammars that correspond to Π1-EHSs, we have to translate
objects of first-order logic to symbols of a tree grammar and vice versa. Since formulas
do not have a direct opponent in tree grammars, we define term representations: hF is
the representation of a formula F in a tree grammar. In order to translate such term
representations back into formulas we introduce the ∗-operator which replaces each term
representation by its original formula (hF ∗ =def F). Note that we can only translate back
into first-order logic, i.e. the ∗-operator does not apply to an arbitrary tree grammar.
There has to be a designated term that represents a formula. In the Definition 24 of
general schematic Π1 grammars, we refer to this functions as freshly introduced.

Definition 22 Let F be a quantifier-free l-ary formula and G be an arbitrary tree
grammar. Then the term representation hF of F in G is an l-ary function not occurring
in the signature of G (since we consider in this work always at most one grammar at the
time we do not denote its dependency on G).

32

3.2. Schematic Π1 Grammars

Let hF be an l-ary term representation of some formula F and ~r be an l-ary tuple of
terms. Then we denote the back translation of hF~r by the ∗-operator, i.e. hF~r∗ being
defined as hF~r∗ =def F~r.

This allows us to define tree grammars that directly correspond to a Π1-EHS. For this
reason, we introduce the term representation of the formula in the context hF , collect
all its term instantiations ~r1, . . . , ~rl, and define the starting points of every derivation
in the grammar by creating the productions {τ → hF~ri | 1 ≤ i ≤ l}. The terms hF~ri
contain the eigenvariables α1, . . . , αm which are considered as nonterminals. In the
original proof, the eigenvariables occur in Π1-cut formulas that are also instantiated with
the terms si,j for 1 ≤ i ≤ l, 1 ≤ j ≤ ni. For Π1 cuts the underlying intuition is quite
natural: Proving a formula (the cut-formula) once for an independent value (for the
eigenvariable αi), we can add it to the context (the left side of the sequent) and instantiate
it with the terms si,1, . . . , si,ni . As a consequence, if the instantiations of the context
contain an eigenvariable αi (in a proof with Π1 cut), the proof after cut-elimination
contains none of the eigenvariables αi, and all its occurrences should be replaced by
the instantiations si,1, . . . , si,ni . In the schematic Π1 grammar, we express this via the
productions {αi → si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ nm}.

Definition 23 Let

H = F [~x\~r1], . . . , F [~x\~rl], G1 →
n1∧
j=1

G1[α1\s1,j], . . . , Gm →
nm∧
j=1

Gm[αm\sm,j] `

be an Π1-EHS. Then the schematic Π1 grammar G (H) corresponding to H is defined
as the totally rigid acyclic tree grammar 〈τ,N,Σ,Pr〉 with N = {τ, α1, . . . , αm}, Σ being
the signature of H plus the term representation hF of F with a (hF) = a (F), and
Pr = {τ → hF~ri | 1 ≤ i ≤ l} ∪ {αi → si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ nm}.

This definition yields an object that is related to a Π1-EHS, since we used a Π1-EHS to
construct the grammar. It remains to show that the relationship can be reversed. This
is not obvious, since there is no information about the cut formula in the schematic Π1
grammar, whereas the context and all instantiations have a one-to-one correspondence.
For this reason, we have to define schematic Π1 grammars independent from Π1-EHSs.

Indeed, the main problem of Π1-cut introduction is to show that the left side of Figure
3.2 is invertible. If we are able to prove this, then the cut-elimination procedure described
above is also invertible whenever there is a schematic Π1 grammar that covers the
language of a Herbrand term set: Assume a cut-free proof χ. There is always a Herbrand
sequent which can be translated into a Herbrand term set Hs. If we find a schematic Π1
grammar whose language is a superset of Hs, then this superset is as well a Herbrand
term set, potentially containing some term representations of redundant formulas (for
practice it might be beneficial to allow supersets). The existence of a schematic Π1
grammar then implies the existence of a proof with Π1 cuts.

33

3. Revisiting Π1-Cut Introduction

Definition 24 (Schematic Π1 Grammar) Let ~r1, . . . , ~rl be terms with l (~rk) = n for
all k ∈ Nl, let α1, . . . , αm be variables, and let si,j for 1 ≤ i ≤ m, 1 ≤ j ≤ nj be terms
such that

V (si,j) ⊆ {αi+1, . . . , αm} for all i, j.

Then we call the totally rigid acyclic tree grammar 〈τ,N,Σ,Pr〉 with N = {τ, α1, . . . , αm}
and Pr = {τ → hF~ri | 1 ≤ i ≤ l} ∪ {αi → si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ nm} where hF is a
fresh function with a (hF) = n a schematic Π1 grammar (shorthand: SΠ1-G).

The definition is a simple abstraction of Definition 23. Only the direct correspondence to
first-order logic, i.e. the formula corresponding to hF , is missing. As we will see later
(cf. Theorem 6), if the language of a SΠ1-G covers a Herbrand term set, there is a
corresponding Π1-EHS.

In order to ensure, that the relationship between SΠ1-Gs and Π1-EHSs is meaningful,
we have to establish a measure. Since we considered so far mainly the non-propositional
part of proofs, it is natural to define a complexity measure of the grammar that is related
to the quantifier complexity of proofs. In the motivation of Definition 23, we explained
the relationship between the terms of the production rules and the instantiations within
a proof with Π1 cuts. Hence, we define the complexity of a SΠ1-G as the number of
weak quantifier inferences necessary to introduce the terms occurring as an argument of
hF (]T) plus the number of production rules with an eigenvariable on its left side (m− l).
Theorem 6 guarantees that the quantifier complexity of a proof constructed according to
a SΠ1-G is equal to the complexity of the grammar.

Definition 25 (Complexity of SΠ1-Gs) Let G be an SΠ1-G of the form 〈τ,N,Σ,Pr〉
and T be the set of all tuples of terms ~r such that τ → hF~r is a production rule in Pr
and hF is the freshly introduced function. Then the complexity |G| of G is defined as

]T − l +m

where l is the number of tuples in T ,]T is the instantiation complexity of T (see Definition
6), and m is the number of production rules in G.

Remark 2 Note that we subtract l in Definition 25 to avoid counting the production
rules with the starting symbol on the left twice.

Example 9 Consider again the Π1-EHS defined in Example 8. Then G = 〈τ,N,Σ,Pr〉
with N = {τ, α}, Σ = {f, a, hF } where hF is a fresh unary function, and Pr = {τ →
hFα, τ → hF fα, α→ a, α→ f2a} is the SΠ1-G corresponding to S. The fresh function
hF serves as an encoding of the formula F which was instantiated once with α and once
with fα. The other productions correspond to instantiations of the cut formula; we proved
∀x.¬Px∨ Pf2x (with the eigenvariable α) and used two instantiations of it, i.e. with the

34

3.2. Schematic Π1 Grammars

substitutions [x\a] and [x\f2a]. Note that there is no information about the cut formula
itself in the grammar, but there is information about the quantifier rules applied to the
cut formula. As we will see in the course of this chapter, the latter suffices to deduce a
cut formula.

The complexity of the grammar is

|G| =]{hFα, hF fα} − 2 + 4 = 2− 2 + 4 = 4.

The language is
L (G) = {hFa, hF f2a, hF fa, hF ff

2a}

which is a Herbrand term set of ∀xF ` (see also Example 10).

As mentioned above, one can perform cut-elimination based on SΠ1-Gs by computing
its language and constructing the corresponding Herbrand sequent as in Example 9.

Theorem 5 (See [Het12, AHL15, Het11]) If H is an Π1-EHS of ∀~xF `, then
L (G (H)) is a Herbrand term set Hs of ∀~xF ` where the fresh function (see Definition
15) is the term representation hF of F .

Proof:
See [Het12, AHL15, Het11]. 2

Corollary 2 If H is an Π1-EHS of ∀~xF `, then L (G (H))∗ ` is a Herbrand sequent of
∀~xF ` where (·)∗ is defined as in Definition 22.

Proof:
This is a direct consequence of 5. 2

In Example 9, we defined a SΠ1-G for the running example of this chapter and computed
its language. Theorem 5 states that the language is a Herbrand term set. In order to
check this, we need to translate back to first-order logic via (·)∗. Since the tree grammar
was defined according to a proof, hF ∗ is defined and we can proceed as in the following
example.

35

3. Revisiting Π1-Cut Introduction

Example 10 Let G be the SΠ1-G defined in Example 9. The function hF encodes the
formula F = Pa ∧ (¬Px→ Pfx) ∧ ¬Pf4a and therefore, L (G (H))∗ ` is

Pa ∧ (Pa→ Pfa) ∧ ¬Pf4a,

Pa ∧
(
Pf2a→ Pf3a

)
∧ ¬Pf4a,

Pa ∧
(
Pfa→ Pf2a

)
∧ ¬Pf4a,

Pa ∧
(
Pf3a→ Pf4a

)
∧ ¬Pf4a `

which is a Herbrand sequent for ∀xF `.

When considering again Figure 3.2 we see that Theorem 5 and Corollary 2 allow us
to follow one “path” through the objects: For a proof with Π1 cuts, we can define a
Π1-EHS and its corresponding SΠ1-G. The latter defines a language which is provably a
Herbrand term set (Theorem 5) and hence, gives us a Herbrand sequent H (Corollary 2).
Since a Herbrand sequent is a tautology, we can find a propositional cut-free proof which,
combined with the instantiation rules for the construction of H, is a cut-free proof of
the original statement. Hence, we performed cut-elimination via formal grammars. Now,
we want to invert this procedure. For this reason, we have to find for every SΠ1-G a
Π1-EHS.

3.3 Schematic Extended Herbrand Sequents for Π1 Cuts

On the one hand, we noticed in Section 3.2 that SΠ1-Gs can be used to compute a
Herbrand sequent since their language covers the Herbrand term set (see Definition 15)
and therefore, they contain the main information of a cut-free proof. On the other hand,
we already mentioned in Example 9 that the grammars do not give any information about
how the cut formula looks like. Without the corresponding Π1-EHS, the SΠ1-G is just
a compressed representation of the instantiations. But if we were able to find always a
cut formula for an arbitrary SΠ1-G, they would yield much more: the SΠ1-Gs would be
the exact correspondence of proofs with Π1 cuts in formal language theory, they would
allow us to compute proofs with cuts by simply computing a covering SΠ1-G of the
term representation of the Herbrand sequent. By covering we mean that the language
of the grammar is a superset of the term set. Hence, the question arises whether we
can construct cut formulas for SΠ1-Gs. Formally, this leads to the schematic extended
Herbrand sequent for Π1 cuts. It consists of all the information of a SΠ1-G, but put in
the format of a Π1-EHS. Hence, we have to represent the missing cut formulas which
is done by introducing second-order variables X1, . . . , Xm. The problem of finding cut
formulas can thus be seen as second-order unification problem: there exists formulas
G1, . . . , Gm such that the replacement of the variables X1, . . . , Xm with these formulas
yields a Π1-EHS. Everything apart from the cut formula/second-order variable is the
same as in the definition of a Π1-EHS.

36

3.3. Schematic Extended Herbrand Sequents for Π1 Cuts

Definition 26 (Schematic Extended Herbrand Sequent for Π1 Cuts) Let S be
the provable sequent ∀~xF ` and [F [~x\~ri]]li=1 ` be a Herbrand sequent for S. Let G =
〈τ,N,Σ,Pr〉 be an SΠ1-G with the fresh function hF where a (hF) = l (~ri), with N =def
{τ, α1, . . . , αm}, and with

Pr def= {τ → hF~ri | 1 ≤ i ≤ a}∪
{αi → si,j | 1 ≤ i ≤ m, 1 ≤ j ≤ nm}
V (si,j) ⊆ {αi+1, . . . , αm} for all i, j

such that the language of G covers the Herbrand term set, i.e.

L (G) ⊇ {hF~ri | i ∈ Nl}.

Then

S (S) def= [F [~x\~ri]]ai=1, X1α1 →
n1∧
j=1

X1s1,j , . . . , Xmαm →
nm∧
j=1

Xmsm,j `

where X1, . . . , Xm are monadic second-order variables is called a schematic extended
Herbrand sequent for Π1 cuts (shorthand: Π1-SEHS).

A solution of a Π1-SEHS S (S) is a substitution σ = [Xi\λαi.Gi]mi=1 such that F (Gi) ⊆
{αi, . . . , αm} and S (S)σ is a tautology.

Example 11 Let G be defined as in Example 9 and let P , a, f , f la, and ∀xF be defined
as in Example 7. Then

S def= F [x\α], F [x\fα], Xα→
(
Xa ∧Xf2a

)
`

is a Π1-SEHS of ∀xF `. Note that the sequent is equivalent to S of Example 8 if we
replace X with λx.

(
¬Px ∨ Pf2x

)
. Since S is a tautology, λx.

(
¬Px ∨ Pf2x

)
is a solution

of S. Moreover, the example shows that a solution of Π1-SEHS gives us a Π1-EHS at
hand which can be used to construct a proof with Π1 cuts as in Section 3.1 for a single
Π1 cuts or as in [HLRW14, EHL+18] for several Π1 cuts.

Revisiting the way we have taken, we see that the existence of a SΠ1-G for the Herbrand
term set of a cut-free proof may lead to a proof with Π1 cuts. Assume we already found
an SΠ1-G, then the main problem of Π1-cut introduction reduces to find a solution for
the corresponding Π1-SEHS which gives us a Π1-EHS at hand. This will be solved in
the following section. The question how to find a grammar efficiently is addressed in
[EEH17] which will be discussed in Section 3.5.

37

3. Revisiting Π1-Cut Introduction

3.4 The Canonical Solution
In this section, we address the problem of finding a solution for a Π1-SEHS. Fortunately,
the solution of a Π1-SEHS is fully determined by the formula F of the end-sequent
∀xF `. This means that we do not only find at least one solution, but we can actually
give a canonical solution which is based on the formula F . In case of a single Π1 cut,
we are able to give an intuition why this is possible. We know from cut-elimination
via SΠ1-Gs that the language of a SΠ1-G covers a Herbrand term set. The language
for a single cut consists of productions α → s applied to instantiations of the term
representation of the context hF~r. Hence, applying this productions as substitutions
[α\s] to the instantiations F [~x\~r] of the formula F yields a Herbrand sequent. Now,
consider the form of a Π1-SEHS with a single Π1 cut

F [~x\~r1], . . . , F [~x\~ra], Xα→
n∧
j=1

Xsj `

and apply an l :→-rule backwards. We get the two premises

F [~x\~r1], . . . , F [~x\~ra],
n∧
j=1

Xsj ` ,

F [~x\~r1], . . . , F [~x\~ra] ` Xα.

If we replace X with a conjunction over all instantiations of F as they occur in the SΠ1-G,∧n
j=1Xsj ` turns into a Herbrand sequent. Thus, the first premise is provable. Moreover,

Xα becomes the conjunction over all instantiations of F , i.e. F [~x\~r1] ∧ . . . ∧ F [~x\~ra]
making also the second premise provable. As soon as we consider several Π1 cuts, the
intuition becomes more complicated. Still, the main idea is to create on one side a
Herbrand sequent and to match on the other side the instantiations of the context. The
structure then looks like:

F [~x\~r1], . . . , F [~x\~ra], C1 → C2, . . . , Cm → Cm+1 `

where C1 is the conjunction over all instantiations F [~x\~r1], . . . , F [~x\~ra] of the context,
Ci → Ci+1 is the implication corresponding to the i-th cut formula, and Cm+1 ` is a
Herbrand sequent. Obviously, the sequent is a tautology, since Cm+1 ` is a Herbrand
sequent. In general, the solution can be simplified, but at the moment we are merely
interested in the solvability of Π1-SEHSs.

Definition 27 (Canonical Substitution) Let S be a Π1-SEHS. Define

C1
def=

a∧
i=1

F [~x\~ri] and

Ci+1
def=

nj∧
j=1

Ci[αi\si,j] for i = 1, . . . ,m.

38

3.4. The Canonical Solution

Then
σ

def= [Xi\λαi.Ci]mi=1

is called the canonical substitution of S.

Example 12 Let S be defined as in Example 11. Then

C1
def= F [x\α] ∧ F [x\fα]
= Pa ∧ (Pα→ Pfα) ∧ ¬Pf4a ∧

Pa ∧
(
Pfα→ Pf2α

)
∧ ¬Pf4a,

C2
def= C1[α\a] ∧ C1[α\f2a] = (F [x\α] ∧ F [x\fα]) [α\a] ∧ (F [x\α] ∧ F [x\fα]) [α\f2a]
= Pa ∧ (Pa→ Pfa) ∧ ¬Pf4a ∧

Pa ∧
(
Pfa→ Pf2a

)
∧ ¬Pf4a ∧

Pa ∧
(
Pf2a→ Pf3a

)
∧ ¬Pf4a ∧

Pa ∧
(
Pf3a→ Pf4a

)
∧ ¬Pf4a,

and σ =def [X\λα.C1] is a solution of S since

Sσ = F [x\α], F [x\fα], C1 → C2 `

is a tautology. Note that C1 is equal to F [x\α] together with F [x\fα]. Hence,

...
C1 ` C1

...
C1, C2 `

l :→
C1, C1 → C2 `

sketches a valid proof if C1, C2 ` or even C2 ` is a tautology. Therefore, we compare
C2 ` with the Herbrand sequent of Example 10. Since they are the same, we can conclude
that Sσ is a tautology. Thus σ is a solution.

Indeed, a canonical substitution of a Π1-SEHS is always a solution. In order to prove
this, we consider at first the last element of the chain of implications in

F [~x\~r1], . . . , F [~x\~ra], C1 → C2, . . . , Cm → Cm+1 `,

i.e. Cm+1 (cf. Lemma 1). If Cm+1 ` is a tautology (Herbrand sequent) and C1 matches
F [~x\~r1], . . . , F [~x\~ra], the canonical substitution is a solution (cf. Lemma 2). The proofs
are straight forward and can be found in [HLRW14]. The interested reader might look
them up or prove them as an exercise. We will henceforth call a canonical substitution a
canonical solution.

39

3. Revisiting Π1-Cut Introduction

Lemma 1 (See [HLRW14]) Let S and Ci be defined as in Definition 27. Then Cm+1 `
is a tautology.

Lemma 2 (See [HLRW14]) Let S be a Π1-SEHS and σ be its canonical substitution.
Then σ is a solution of S.

Since a canonical substitution is always a solution, cut introduction via tree grammars
is possible for Π1 cuts. For every SΠ1-G, we find a Π1-EHS and thus, a proof with Π1
cuts.

Theorem 6 (See [HLRW14]) ∀xF ` has a Π1-EHS H with |H|Π1 = l iff there is a
SΠ1-G G with |G| = l such that ∧

~r∈L(G)
F [~x\~r] `

is a tautology.

This completes the theoretical backbone. Obstacles which are left to be tackled are the
grammar computation and the beautification of the cut formula. Even though, there
exists already work on that (cf. [EEH17, EHL+18]), we will only sketch some of the main
ideas in the following section.

3.5 Application of Π1-Cut Introduction

In this section, we discuss two different applications of Π1-cut introduction and sketch
the grammar-computation approach of [EEH17]. We do not describe the algorithm for
the grammar computation in full detail, but we explain the main structure and properties
of the method. This provides the necessary basis for understanding its behaviour applied
in the context of Π1-cut introduction and in the context of Π2-cut introduction (cf.
Section 5.2). In literature [HLRW14, EHL+18], there is also an alternative approach for
computing SΠ1-Gs which we do not present here, since it is not used in the Π2 case.
Nonetheless, we will provide information about its performance in the applications.

Both applications of Π1-cut introduction are taken from [EHL+18]. On one hand, we
look at the more theoretical outcome of cut introduction: it can introduce lemmas with
mathematical meaning and makes thereby automatically generated proofs more human
readable. On the other hand, we investigate the results of applying Π1-cut introduction
to a large set of cut-free proofs with respect to values such as compressibility, compression
ratio, grammar size, etc.

40

3.5. Application of Π1-Cut Introduction

3.5.1 Computation of Schematic Π1 Grammars

Even though, formal grammars are heavily used for text compression [SS82, NMW97,
LM99, KY00], there is little research about finding minimal tree grammars for a fixed
type of tree grammar such as SΠ1-Gs. Usual methods for compressing sets of terms
(most often just a single term) allow changing the type, which is forbidden in our setting.
We need a fixed one because of the specific requirements in the context of cut introduction
where only SΠ1-Gs have a direct correspondence to proofs with Π1 cuts. For this reason,
we consider the algorithm of [EEH17]. Another difference of this approach is that this
algorithm might find grammars whose language is a superset of the set of terms we
want to compress. Since the term set represents a Herbrand sequent which is a set of
quantifier-free formulas, a superset is also a Herbrand sequent. It just contains some
additional formulas.

The algorithm itself is based on a polynomial-time reduction to theMaxSAT optimization
problem (for a list of MaxSAT solvers see [ALMP08]). MaxSAT is a variant of the
Boolean satisfaction problem (SAT). The authors describe their method themselves in
the following three steps (see the Introduction of [EEH17]):

1. Compute a larger grammar that covers the term set and contains a covering
subgrammar of minimal size, in polynomial time.

2. Produce a MaxSAT problem that encodes the minimization of this large grammar.

3. Use a MaxSAT solver to obtain a solution to the MaxSAT problem, and return
the minimal VTRATG corresponding to this solution.

VTRATG stands for vectorial totally rigid acyclic tree grammars which are totally rigid
acyclic tree grammars (see Definition 20) where the nonterminals are vectors. They allow
vectors in order to introduce Π1 cuts with blocks of quantifiers, but obviously we can
apply the algorithm also in our simpler setting. The minimization is with respect to the
number of production rules.

An important assumption, the authors made, is to fix the number of nonterminals. This
is due to two properties of the minimization: On the one hand, the reduction is only
polynomial with respect to a fixed number of nonterminals. On the other hand, the
problem of covering a language with a minimal tree grammar becomes trivial if we allow
an arbitrary number of nonterminals.

Theorem 7 (See [EH18]) Let T be finite set of terms, and l0, . . . , lm be natural numbers
such that |T | ≤

∏m
i=0 li. Then there exists a VTRATG G of size

∑m
i=0 li such that its

language is T .

As already mentioned in [EEH17]: “In particular, for every set of terms L of size |L| ≤ 2n
there exists a covering VTRATG of size 2n.” Nonetheless, this result does not directly

41

3. Revisiting Π1-Cut Introduction

apply to SΠ1-Gs. The size of a VTRATG is determined by the number of production
rules. Since the productions of a VTRATG map vectors to vectors, there is no direct
correspondence to the quantifier complexity.

3.5.2 Introduction of Meaningful Lemmas

The following example shows that automatic cut introduction can formulate lemmas such
as transitivity and anti-symmetry. Due to the advanced algorithm used for this test case,
we only present the results. Note that techniques such as beautification are required but
not defined in the present work.

Example 13 (See [EHL+18]) The example is based on Exercise 2 in Birkhoff’s classic
text book on lattice theory [Bir67]. Assume a lattice defined via meet and join and prove
that whenever there is a cycle of four elements where each is smaller or equal to the next
one, then all must be equal. One proof is to show first transitivity and then anti-symmetry.
Formally, we can prove the sequent

S
def=

∀x.x = x,

∀x, y, z. (x = y ∧ y = z)→ x = z,

∀x, y.x = y → y = x,

∀x1, x2, x3, x4. (x1 = x2 ∧ x3 = x4)→ f (x1, x3) = f (x2, x4) ,
∀x, y, z.f (f (x, y) , z) = f (x, f (y, z)) ,
∀x, y.f (x, y) = f (y, x)
` (f (a, b) = a ∧ f (b, c) = b ∧ f (c, d) = c ∧ f (d, a) = d)→ a = b ∧ b = c ∧ c = d

where f denotes the meet, i.e. the greatest lower bound of two elements. Starting with
a manually formalized proof containing the two mentioned lemmas, transitivity and
anti-symmetry, we can apply cut-elimination. For the resulting cut-free proof, we can
extract a Herbrand sequent and a Herbrand term set. As shown in [EHL+18], we can
automatically generate a SΠ1-G (in the paper denoted as decomposition), compute the
canonical solution, and get after some beautification the final solution

((f (α2, α1) = α2 ∧ α1 = f (α1, α2))→ α1 = α2)∧
((f (α2, α3) = α2 ∧ f (α1, α2) = α1)→ f (α1, α3) = α1) .

The beautification removes superfluous assumptions and direct copies of axioms included
in the solution. Note that this increases the size of the decomposition.

42

3.5. Application of Π1-Cut Introduction

Figure 3.3: Compression ratio (size of decomposition divided by size of term set) depending
on the term set size. This Figure is taken from [EHL+18].

3.5.3 Experiments with Thousands of Solutions from Theorem
Provers

In order to show the practical relevance of Π1-cut introduction, we consider the TSTP
library (Thousands of Solutions from Theorem Provers, see [Sut09]). In [EHL+18], the
authors discuss the results after running Π1-cut introduction on all importable first-order
proofs available on November 2015. Even though the basis of the cut-introduction
algorithm is as we presented it in this thesis, they use a much more advanced version
applicable to proofs with equality (cf. also [HLW12, HLR+14]). They were able to import
68198 out of 138005 proofs (49.41%) of which 32714 were trivial, i.e. every term started
with a different symbol making a compression via Π1-cut introduction impossible. After
running the computation on a Debian Linux system with an Intel i5-4570 CPU and 8 GiB
RAM with a maximal runtime of one minute for each instance, they got 19122 (53.90%)
decompositions (SΠ1-Gs) and 12035 lemmas (33.92%).

Figure 3.3 illustrates the achieved compression in terms of quantifier complexity. Since
the quantifier complexity can already be computed knowing only the SΠ1-G, we can
plot the compressions even for cases in which the construction of the canonical solution
fails (due to its large size and the runtime). The figure shows the relation between the
compression ratio and the term-set size. Since the size of the term set corresponds to
a Herbrand sequent, it represents the quantifier complexity of a cut-free proof. The
compression ratio is the size of the decomposition (SΠ1-G) divided by the size of the
term set. Hence, a compression ratio of one corresponds to no compression whereas a

43

3. Revisiting Π1-Cut Introduction

compression ratio of 1/a with 1 < a denotes that we compressed the quantifier complexity
by a factor of a. The figure is split in two parts: in the left part all results are plotted
where a lemma was computed, in the right part the results are added where only a
decomposition was computed, but no lemma.

Most proofs were computed for term sets of a size between 10 and 50. The compression
ratio reaches for a few examples the value 0.3, but according to [EHL+18], the values
are most often 0.5. Due to the relative small natural numbers of the term-set sizes, we
can observe some concrete lines in the plot. Comparing the left part with the right
part, the cut introduction fails especially for large term-set sizes. Here, the canonical
solution probably becomes to large, since it grows exponentially. Even tough, the final
solution might be much smaller, the algorithm still computes the canonical solution.
An alternative could be the computation of a solution via the unification method that
will be presented in Section 4.7 (even tough, it was designed for Π2-cut introduction).
This method does not guarantee to find a solution, but it especially searches for small
solutions in a direct way (cf. Section 5.3). Since the compression ratio for large term-set
sizes improves considerably (see the right plot of Figure 3.3), we should also investigate
heuristic methods.

3.6 The Possible Compression of Π1 Cuts

In the previous section, we provided a practical evaluation of Π1-cut introduction.
Nonetheless, we did neither give theoretical bounds to the maximal compression of a
single Π1 cut nor of several Π1 cuts. In this section, we will briefly discuss the maximal
compression of a single Π1 cut which also yields a maximal compression of several Π1
cuts and show an example that achieves the best compression for several Π1 cuts. For
simplicity, we will only consider the quantifier complexity (see Definition 10).

3.6.1 The Maximal Compression of a single Π1 Cut

In the course of Chapter 3, we showed a direct correspondence between SΠ1-Gs and
proofs with Π1 cuts. More precisely, we saw that even the complexity of a SΠ1-G gives
us the quantifier complexity of a corresponding proof with Π1 cuts (see Theorem 6). The
compression is then given by comparing the size of the Herbrand term set with the size
of the SΠ1-G. Let us consider a cut-free proof ϕ, its corresponding Herbrand term set
Hs, and a proof χ with a single Π1 cut which corresponds to the SΠ1-G G that covers
Hs. The size of a SΠ1-G is

]T +m− l

(see Definition 25).]T is the instantiation complexity (see Definition 6) of the tuples
of terms T , which is the quantifier complexity of instantiating the context in χ. l is
the number of productions starting with the starting symbol τ and m is the number of
all production rules. Hence, m− l is the number of production rules starting with an
eigenvariable as nonterminal. Since χ contains only a single Π1 cut, there is only a single

44

3.6. The Possible Compression of Π1 Cuts

eigenvariable α. Thus, a term in the language of G is of the form

r[α\s]

where τ → r and α→ s are productions of G (note that the grammar is totally rigid, see
Definition 19 and Definition 20). In order to maximize the number of terms we can cover
by such a grammar, we assume that for each term t in the language there is a unique
pair of production rules

(τ → r, α→ s)t
such that r[α\s] = t. The number of such pairs is]T · (m− l). Since Hs is covered by
the language of G, we can assume that]Hs is equal to]T · (m− l) to achieve the best
compression. Now, we have to find two natural numbers p and q with p =def]T and
q =def m − l such that p + q, i.e.]T − l + m, is minimal and p · q =]T · (m− l). Let
n =def]T · (m− l), then p+ q is minimal if p = q =

√
n. This corresponds to the problem

of finding a rectangle with minimal perimeter for a fixed area. Therefore, we achieve the
best compression if the size of the SΠ1-G is the square root of the size of the Herbrand
term set, i.e. the rectangle is a square. This corresponds to a quadratic compression.

Proposition 8 Let ϕ be a minimal cut-free proof of a sequent S and G a SΠ1-G covering
the Herbrand term set of ϕ containing only two nonterminals. Let χ be a proof of S after
applying Π1-cut introduction with respect to G and according to Theorem 6. Then

|χ|q ≤ |ϕ|q2.

When considering SΠ1-Gs for proofs with several Π1 cuts, this effect is iterated. Consider
a SΠ1-G G where n1 is the number of productions with the starting symbol on the left.
Let α2, . . . , αm be the other nonterminals such that the productions of the form αi → r
map on terms r that contain only nonterminals with higher index, i.e. the nonterminals
of r are a subset of {αi+1, . . . , αm}. By ni we denote the number of production rules with
the nonterminal αi on the left. The maximal number of different terms in the language
of G is

n1 · . . . · nm.
The size of the grammar is given by

]T + n2 + . . .+ nm.

Again the maximal compression is achieved if]T = n1 = n2 = . . . = nm. Moreover, if we
were able to introduce n1 cuts (cf. the following subsection), i.e. m = n1 = n2 = . . . = nm,
then the compression would be exponential. Let n be the number of Π1 cuts and let the
number of productions with an arbitrary fixed nonterminal on the left also be n. Then
the maximal number of different terms in a corresponding SΠ1-G is

nn+1

while the size of the grammar is
(n+ 1) · n.

45

3. Revisiting Π1-Cut Introduction

Proposition 9 Let ϕ be a minimal cut-free proof of a sequent S and G a SΠ1-G covering
the Herbrand term set of ϕ containing n+ 1 nonterminals. Let χ be a proof of S after
applying Π1-cut introduction with respect to G and according to Theorem 6. Then

|χ|q + 1 ≤ (|ϕ|q)n .

3.6.2 Compressing A Schema of Cut-Free Proofs with a Schematic
Number of Π1 Cuts

In the previous section, we discussed the best theoretical compression that can be achieved
by introducing Π1 cuts. Now, we want to show with the help of an example that we
are able to obtain an exponential compression. For this reason, we have to consider a
schema of sequents for which we introduce a schematic number of Π1 cuts. Let fna be a
shorthand for f . . . fa = f (. . . f (a) . . .) such that f occurs n times. Then we can define
the schema of sequents Sn as follows:

P (a) , ∀x.P (x)→ P (fx) ` P (fna) .

The left-hand side of Sn gives the theory in which the predicate P is true for a and for
f . . . fa with an arbitrary number of f -s, especially for fna. Thus, every instance of Sn
where n is a fixed natural number is a provable sequent. A cut-free proof of an instance
of Sn necessarily needs n instantiations of ∀x.P (x)→ P (fx), i.e.

P (a)→ P (fa) , . . . , P
(
fn−1a

)
→ P (fna) .

A Herbrand sequent is then given by

P (a) , P (a)→ P (fa) , . . . , P
(
fn−1a

)
→ P (fna) ` P (fna) .

This is the running example of [HLRW14]. Moreover, in Example 7, we saw an instance
of a variant of Sn where n = 4 and the whole sequent is pressed in a single formula. The
sequent is proven with the help of a single Π1 cut which can be simplified to the formula

∀x.P (x)→ P
(
f2x

)
.

This formula is easily provable in this context, i.e. the sequent

P (a) , ∀x.P (x)→ P (fx) ` P (fna) ,∀x.P (x)→ P
(
f2x

)
is provable. Once proven, the cut formula allows us to make two steps at once. Just
assume, we would add ∀x.P (x)→ P

(
f2x

)
to the theory:

P (a) , ∀x.P (x)→ P (fx) , ∀x.P (x)→ P
(
f2x

)
` P (fna) .

Then we can define a smaller Herbrand sequent (for simplicity let n be an even number):

P (a) , P (a)→ P
(
f2a

)
, . . . , P

(
fn−2a

)
→ P (fna) ` P (fna) .

46

3.6. The Possible Compression of Π1 Cuts

It only needs half the instantiations in comparison to the first Herbrand sequent. Indeed,
the larger n becomes the more compression can be achieved. Let m be a fixed natural
number and consider Sn for n being 2m. Then we are able to introduce m cuts with the
cut formulas:

∀x.P (x)→ P
(
f21

x
)

...

∀x.P (x)→ P
(
f2m

x
)
.

Let Γ =def {P (a) ,∀x.P (x)→ P (fx)} and ∆ =def {P
(
f2m

a
)
}. In order to define a valid

G3c+-proof, we need to prove the following sequents:

Γ ` ∆,∀x.P (x)→ P
(
f2x

)
, (3.1)

Γ,∀x.P (x)→ P
(
f2x

)
` ∆,∀x.P (x)→ P

(
f4x

)
, (3.2)

Γ,∀x.P (x)→ P
(
f4x

)
` ∆,∀x.P (x)→ P

(
f8x

)
, (3.3)

...

Γ,∀x.P (x)→ P
(
f2m−1

x
)
` ∆,∀x.P (x)→ P

(
f2m

x
)
, (3.4)

and

Γ,∀x.P (x)→ P
(
f2m

x
)
` ∆. (3.5)

The last sequent needs only a single instantiation to be proven. All others need three
instantiations: one application of the r : ∀-rule and two application of the l : ∀-rule to the
formula with the highest superscript on the left (in total only two weak quantifier rules).
In case of the second sequent this produces the tautology

Γ,∀x.P (x)→ P
(
f2x

)
, P (α)→ P

(
f2α

)
, P
(
f2α

)
→ P

(
f4α

)
` ∆, ∀x.P (x)→ P

(
f4x

)
, P (α)→ P

(
f4α

)
.

All together, we get 2 ·m+ 1 weak quantifier instantiations. By combining all sequents
via the Cut -rule we obtain a proof of S2m with m Π1 cuts and a quantifier complexity of
2 ·m+ 1. The structure of the proof is as follows:

(3.1) (3.2)
Cut Γ ` ∆, ∀x.P (x)→ P

(
f4x

)
(3.3)

Cut ... (3.4)
Cut

Γ ` ∆,∀x.P (x)→ P
(
f2m

x
)

(3.5)
Cut

S2m

47

3. Revisiting Π1-Cut Introduction

If we want to proof S2m without cuts, we have to instantiate ∀x.P (x)→ P (fx) 2m-times
to get the Herbrand sequent

P (a) , P (a)→ P (fa) , . . . , P
(
f2m−1a

)
→ P

(
f2m

a
)
` P

(
f2m

a
)
.

Hence, we obtain an exponential decrease from 2m to 2 ·m + 1 by introducing m Π1
cuts which proves the bound of Proposition 9 to be sharp. [HLRW14] presents also an
improved version of Π1-cut introduction which is able to compute these cut formulas and
therefore, is able to compress the proof exponentially (not only in terms of quantifier
complexity; cf. Section 7.2.2. of the mentioned paper).

48

CHAPTER 4
Π2-Cut Introduction

The problem of Π2-cut introduction can be characterized in an analogous way as the
problem of Π1-cut introduction in Chapter 3. The Sections 4.2 to 4.4 are similar to
the Sections 3.1 to 3.3 and can be seen as a generalization. However, Section 4.5 shows
that Π2-cut introduction is not always solvable, i.e. in general there is no canonical
solution as in the Π1 case. In the Sections 4.6 and 4.7, we give a full characterization
of the conditions that have to be fulfilled in order to find a solution and discuss how
we can decide if there are solutions of a certain type, the so called balanced solutions
(see Definition 43). In Section 4.8, we show that the presented methods can be extended
in order to introduce cut formulas of the form ∀~x∃~yC where C is quantifier free and ~x
and ~y are tuples of variables. In Section 4.9, we conclude the chapter by showing the
maximal possible proof compression our method can achieve. The main definitions and
statements of the chapter are taken from [LL18].

4.1 Motivation

In Section 3.5, we presented two possible applications of Π1-cut introduction. On the one
hand, Π1-cut introduction gives us a method at hand that is able to introduce lemmas
with mathematical meaning. On the other hand, it decreases the proof size making
them more human readable and reducing the required space to store the proofs. Both
applications can be carried over to the Π2 case becoming even more powerful. The
potential meaning of cut formulas with an alternation in the quantifiers is much higher
than the one of purely universal quantifiers. The Π2 statement for all (∀) values x exists
(∃) a value y already defines the notion of a total function. Moreover, the compression
that can be achieved relates as follows: while a single Π2 cut can achieve an exponential
compression as we prove in Section 4.9, one needs several Π1 cuts to achieve the same
compression (see Section 3.6).

49

4. Π2-Cut Introduction

Apart from this, by giving an decision algorithm for a fragment of the Π2-cut introduction
problem we developed techniques that are promising for automated induction and a more
direct introduction of cut formulas. In [LP18], we show how to use the abstraction methods
of Definition 40 of Section 4.7 to generalize the concept of literals. Instead of single
literals, we think of all literals of a common shape. For instance, P (ffa) , P (fx) , P (fb)
might be seen as a single literal P (fα) where α is a variable representing the terms
fa, x, and b. This common literal can be treated as normal literals or be separated again.
In the context of clause tableaux methods, this may lead to the automatic introduction
of cuts achieving an exponential compression. Thereby, even the efficiency of the search
algorithm can be increased.

4.2 Analysis of Π2 Cuts in Sequent Calculus
In the same way as Herbrand sequents are not sufficient to represent proofs with Π1 cuts,
the Π1-EHS is not sufficient to represent proofs with Π2 cuts. Hence, we need a new
concept of extended Herbrand sequents for handling Π2 cuts.

We proceed as in Section 3.1 and extract from a proof with a Π2 cut an extended Herbrand
sequent for Π2 cuts. The construction of an extended Herbrand sequent for Π2 cuts again
follows the idea to store the information of all quantifier instantiations that correspond
to a proof with Π2 cuts in a single sequent. Furthermore, the sequent should be in a form
such that we are able to reconstruct a proof with Π2 cuts. Afterwards, we generalize the
concept for proofs with at most a single Π2 cut of the form ∀x∃yC where x and y are
single variables and C is a quantifier free formula. In Section 4.8, we extend the method
to formulas with blocks of quantifiers. Note that there is a difference to Chapter 3 where
we introduced several cuts at once.

Example 14 (Cf. Example 3 of [LL18]) Let P be a binary predicate symbol, a a
constant, and f , g, h be unary functions. Let F =def P (x, fx) ∨ P (x, gx), G =def
P (a, y1) ∧ P (hy1, y2), and C =def P (z1, z2). We are going to consider a theory in which
F is true for all x. Hence, there is for every term r a partner s such that P (r, s) is true
where s is fr or gr. When showing that there are witnesses to satisfy G we can make
use of this intuition by introducing the cut formula ∀z1∃z2P (z1, z2). Figure 4.1 shows a
proof of

S
def= ∀x.P (x, fx) ∨ P (x, gx) ` ∃y1, y2.P (a, y1) ∧ P (hy1, y2)

with the mentioned Π2 cut. Without rearranging the rules, we can extract the two
midsequents of the subproofs ϕl and ϕr:

∀xF, F [x\α] ` P (α, gα) , P (α, fα) ,∃z2.C[z1\α],∃y1, y2G and
∀xF,∀z1∃z2C,P (a, β1) , P (hβ1, β2) ` G[(y1, y2) \ (β1, β2)],Π.

The first midsequent corresponds to the proof that the cut formula can be proven in the
given theory. The second midsequent uses the cut formula to prove the existence of

50

4.2. Analysis of Π2 Cuts in Sequent Calculus

Figure 4.1: Proof with a single Π2 cut; Example 14

ϕl
r :∀ ∀xF ` ∀z1∃z2C,∃y1, y2G

ϕr
l :∀ ∀xF,∀z1∃z2C ` ∃y1, y2GCut ∀xF ` ∃y1, y2G

with

ϕl
def=

Γ, P (α, fα) ` P (α, fα) ,∆l Γ, P (α, gα) ` P (α, gα) ,∆r
l :∨ ∀xF, F [x\α] ` P (α, gα) , P (α, fα) ,∃z2.C[z1\α],∃y1, y2G
l : ∀ ∀xF ` P (α, gα) , P (α, fα) ,∃z2.C[z1\α],∃y1, y2G

r : ∃ ∀xF ` P (α, fα) ,∃z2.C[z1\α], ∃y1, y2G
r : ∃ ∀xF ` ∃z2.C[z1\α],∃y1, y2G

,

ϕr
def=

Λl, P (a, β1) ` P (a, β1) ,Π Λr, P (hβ1, β2) ` P (hβ1, β2) ,Π
r :∧ ∀xF,∀z1∃z2C,P (a, β1) , P (hβ1, β2) ` G[(y1, y2) \ (β1, β2)],Π
r :∃ ∀xF,∀z1∃z2C,P (a, β1) , P (hβ1, β2) ` ∃y2.G[y1\β1], ∃y1, y2G
r : ∃ ∀xF,∀z1∃z2C,P (a, β1) , P (hβ1, β2) ` ∃y1, y2G

l :∃ ∀xF,∀z1∃z2C,P (a, β1) , ∃z2.C[z1\hβ1] ` ∃y1, y2G
l :∀ ∀xF,∀z1∃z2C,P (a, β1) ` ∃y1, y2G

l :∃ ∀xF,∀z1∃z2C,∃z2.C[z1\a] ` ∃y1, y2G

,

Γ def= {∀xF},

∆l
def= {P (α, gα) ,∃z2.C[z1\α], ∃y1, y2G},

∆r
def= {P (α, fα) , ∃z2.C[z1\α],∃y1, y2G},

Π def= {∃y2.G[y1\β1],∃y1, y2G},

Λl
def= {∀xF,∀z1∃z2C,P (hβ1, β2)}, and

Λr
def= {∀xF,∀z1∃z2C,P (a, β1)}

51

4. Π2-Cut Introduction

witnesses satisfying G. The corresponding Herbrand sequents are

P (α, fα) ∨ P (α, gα) ` P (α, fα) , P (α, gα) and
P (a, β1) , P (hβ1, β2) ` P (a, β1) ∧ P (hβ1, β2) .

Here, the usual structure of Π2 cuts becomes apparent: Since both premises of the
corresponding Cut-rule will eventually introduce an eigenvariable, the instantiations of
the context can be separated. In the first Herbrand sequent, there is only an instantiation
of F and in the second Herbrand sequent, there is only an instantiation of G. We will
make use of this property and divide the context always into two parts; one interacting only
with the cut formula when occurring in the left branch (in later examples and definitions
also denoted with F) and one interacting with the cut formula when occurring in the right
branch (in later examples and definitions also denoted with G). As in the Π1 case (see
Example 7), we extend the Herbrand sequents such that they have a shared context and
apply an l :∧-inference, an r :∨-inference, and an l :→-inference:

χl χr
l :→

T

with

χl
def=

P (α, fα) ∨ P (α, gα) ` P (α, fα) , P (α, gα) , P (a, β1) ∧ P (hβ1, β2)
r :∨

P (α, fα) ∨ P (α, gα) ` P (α, fα) ∨ P (α, gα) , P (a, β1) ∧ P (hβ1, β2)
,

χr
def=

P (α, fα) ∨ P (α, gα) , P (a, β1) , P (hβ1, β2) ` P (a, β1) ∧ P (hβ1, β2)
l :∧

P (α, fα) ∨ P (α, gα) , P (a, β1) ∧ P (hβ1, β2) ` P (a, β1) ∧ P (hβ1, β2)
,

and

T
def= P (α, fα) ∨ P (α, gα) ,

(P (α, fα) ∨ P (α, gα))→ (P (a, β1) ∧ P (hβ1, β2)) ` P (a, β1) ∧ P (hβ1, β2) .

By construction, T is a tautology and thus, an extended Herbrand sequent for Π2 cuts.

In Example 14, we built an extended Herbrand sequent for Π2 cuts for a proof with
a single Π2 cut. In contrast to the Π1 case where we extended this concept to several
cuts, we consider here only a single cut. The structure of the extended Herbrand sequent
for Π2 cuts is the same as in the Π1 case, i.e. it consists of two parts: The first part
is a set of instantiations of the context, but now split into two formulas (once F and
once G). The second is an implication representing the information of the cut formula.
The major difference to the Π1 case, appears in the second part where a conjunction
is not only implied by a formula, but by a disjunction of formulas. This is due to

52

4.2. Analysis of Π2 Cuts in Sequent Calculus

multiple instantiations of the cut formula in the left branch. While in the Π1 case the
cut formula in the left branch was only instantiated with a new eigenvariable, we see
now several instantiations of the second quantifier (in Example 14, the second quantifier
in the left branch was instantiated with fα and gα). Moreover, the increased number
of eigenvariables with different occurrences require a more complex treatment of the
variable conditions.

Definition 28 (Extended Herbrand Sequent for Π2 Cuts; See Definition 5 of
[LL18]) Let T1 be the set of tuples of terms {~r1, . . . , ~rl} and T2 be the set of tuples
of terms {~s1, . . . , ~sm} where all tuples of a single set have the same length, let C be a
quantifier-free formula, let α, β1, . . . , βp be variables, and let ri, sj for 1 ≤ i ≤ q, 1 ≤ j ≤ p
be terms such that

V (ri) ⊆ {α} for all i and
V (sj) ⊆ {β1, . . . , βj−1} for all j > 1 and

V (s1) = ∅.

Then the sequent

H def= F [~x\~ri]li=1,
q∨
i=1

C[(x, y) \ (α, ri)]→
p∧
j=1

C[(x, y) \ (sj , βj)] ` G[~y\~sj]mj=1

is called an extended Herbrand sequent for Π2 cuts (shorthand: Π2-EHS) of ∀~xF ` ∃~yG
if H is a tautology.

The complexity of a Π2-EHS is defined as |H|Π2 =def]T1 +]T2 + p+ q.

The definition of a Π2-EHS is very similar to the definition of a Π1-EHS. Obviously, the
cut formula becomes more complicated. Moreover, we consider a version with a single
cut formula C. This is due to the much more complicated nesting of the eigenvariables
and terms that might contain eigenvariables in a proof with more than a single Π2
cut. Another interesting change is that we consider a different end sequent. Of course,
∀~xF ` ∃~yG is more general than ∀~xF `. But the main reason for this extension is that,
from now on, we will assume that the formulas F and G are constructed such that

F [~x\~ri]li=1,
q∨
i=1

C[(x, y) \ (α, ri)]→
p∧
j=1

C[(x, y) \ (sj , βj)] ` G[~y\~sj]mj=1

being a tautology implies the provability of the sequents

F [~x\~ri]li=1 `
q∨
i=1

C[(x, y) \ (α, ri)]

and
p∧
j=1

C[(x, y) \ (sj , βj)] ` G[~y\~sj]mj=1.

53

4. Π2-Cut Introduction

This can be assumed because the formulas F and G can always be extended such that
this property holds. In this form, the reasoning becomes much simpler (depending on
the branch, we can ignore one of the formulas ∀~xF or ∃~yG and their instantiations) and
all statements and definitions also hold for the original case.

Again, the Π2-EHS allows us to construct a proof with cut, this time a proof with a
single Π2 cut. We consider the Π2-EHS extracted in Example 14.

Example 15 (Cf. Example 3 of [LL18]) Let P , a, f , g, h, F , G, and T be as in
Example 14. Then T is a Π2-EHS with

q = 2, r1 = fα, r2 = gα,

p = 2, s1 = a, s2 = hβ1.

Now, we want to invert the process described in Example 14 and construct a proof with
a single Π2 cut that corresponds to T . From T (which is tautological), we obtain the
tautological sequents

P (α, fα) ∨ P (α, gα) ` P (α, fα) ∨ P (α, gα)

and

P (a, β1) ∧ P (hβ1, β2) ` P (a, β1) ∧ P (hβ1, β2) .

This implies that we are able to prove

∀xF ` ∀z1∃z2C

∀z1∃z2C ` ∃y1, y2G

with the formula C = P (z1, z2) by introducing the quantifiers in a suitable order. Fur-
thermore, the addition of formulas to either side does not destroy the provability (in
sequent calculi with structural rules, this can be done by weakening). Hence, the following
sequents are also provable:

∀xF ` ∀z1∃z2C,∃y1, y2G

∀xF,∀z1∃z2C ` ∃y1, y2G.

This can be arranged to a proof with a single Π2 cut which is depicted in Figure 4.2. In
general, the obtained proof is not necessarily equal to the proof of the extraction procedure
as in Example 14. Here, the proofs of Figure 4.1 and 4.2 are actually identical.

Other than in Chapter 3 (more precisely Example 8), we do not consider several cuts at
once. Hence, the described procedure corresponds exactly to the general case of introducing
a Π2 cut via a Π2-EHS: We construct propositional proofs for both premises of the
l :→-rule applied to the Π2-EHS, extend them downwards by introducing the necessary
quantifiers, and finally apply a Cut-rule.

54

4.2. Analysis of Π2 Cuts in Sequent Calculus

Figure 4.2: Reconstructed proof with a single Π2 cut; Example 15

ϕl
r :∀ ∀xF ` ∀z1∃z2C,∃y1, y2G

ϕr
l :∀ ∀xF,∀z1∃z2C ` ∃y1, y2GCut ∀xF ` ∃y1, y2G

where

ϕl
def=

Γ, P (α, fα) ` P (α, fα) ,∆l Γ, P (α, gα) ` P (α, gα) ,∆r
l :∨ ∀xF, F [x\α] ` P (α, gα) , P (α, fα) , ∃z2C[z1\α], ∃y1, y2G
l :∀ ∀xF ` P (α, gα) , P (α, fα) , ∃z2C[z1\α], ∃y1, y2G

r :∃ ∀xF ` P (α, fα) ,∃z2C[z1\α], ∃y1, y2G
r :∃ ∀xF ` ∃z2C[z1\α], ∃y1, y2G

and

ϕr
def=

Λl, P (a, β1) ` P (a, β1) ,Π Λr, P (hβ1, β2) ` P (hβ1, β2) ,Π
r :∧ ∀xF,∀z1∃z2C,P (a, β1) , P (hβ1, β2) ` G[(y1, y2) \ (β1, β2)],Π
r :∃ ∀xF,∀z1∃z2C,P (a, β1) , P (hβ1, β2) ` ∃y2G[y1\β1],∃y1, y2G
r :∃ ∀xF,∀z1∃z2C,P (a, β1) , P (hβ1, β2) ` ∃y1, y2G

l :∃ ∀xF,∀z1∃z2C,P (a, β1) ,∃z2C[z1\hβ1] ` ∃y1, y2G
l :∀ ∀xF,∀z1∃z2C,P (a, β1) ` ∃y1, y2G

l :∃ ∀xF,∀z1∃z2C,∃z2C[z1\a] ` ∃y1, y2G

with

Γ def= {∀xF},

∆l
def= {P (α, gα) ,∃z2C[z1\α],∃y1, y2G},

∆r
def= {P (α, fα) ,∃z2C[z1\α], ∃y1, y2G},

Π def= {∃y2G[y1\β1], ∃y1, y2G},

Λl
def= {∀xF,∀z1∃z2C,P (hβ1, β2)}, and

Λr
def= {∀xF,∀z1∃z2C,P (a, β1)}.

55

4. Π2-Cut Introduction

Figure 4.3: Propositional proof based on the Π2-EHS; Proof of Theorem 10

F [~x\~ri]li=1 ` C[(x, y) \ (α, ri)]qi=1, G[~y\~sj]mj=1
r :∨ ...r :∨

F [~x\~ri]li=1 `
q∨
i=1

C[(x, y) \ (α, ri)], G[~y\~sj]mj=1 χ

l :→
F [~x\~ri]li=1,

q∨
i=1

C[(x, y) \ (α, ri)]→
p∧
j=1

C[(x, y) \ (sj , βj)] ` G[~y\~sj]mj=1

with

χ
def=

F [~x\~ri]li=1, C[(x, y) \ (sj , βj)]pj=1 ` G[~y\~sj]mj=1
l :∧ ...
l :∧

F [~x\~ri]li=1,
p∧
j=1

C[(x, y) \ (sj , βj)] ` G[~y\~sj]mj=1

We obtain a result analogous to that in Π1-cut introduction. The Π2-EHS corresponds
to a proof with a single Π2 cut. More precisely: We are able to construct a proof ϕ with a
Π2 cut if and only if there is a Π2-EHS such that its complexity as defined in Definition
28 is the quantifier complexity (see Definition 10) of ϕ. Thus, Π2-cut introduction can
be formulated in the following way: construct a Π2-EHS for a given cut-free proof.

Theorem 10 (See Theorem 2 of [LL18]) The sequent ∀~xF ` ∃~yG has a proof ϕ with
a single Π2 cut ∀x∃yC such that |ϕ|q = n iff it has a Π2-EHS H of the form

F [~x\~ri]li=1,
q∨
i=1

C[(x, y) \ (α, ri)]→
p∧
j=1

C[(x, y) \ (sj , βj)] ` G[~y\~sj]mj=1

with |H|Π2 = n.

Proof:
Concerning the left-to-right direction, the proof follows the steps of Example 14. We
pass through the proof ϕ and read off the instances of quantified formulas (of both the
end-formula and the cut). We obtain a Π2-EHS H with |H|Π2 ≤ |ϕ|q (which can be
padded with dummy instances if necessary in order to obtain |H|Π2 = |ϕ|q).

Concerning the right-to-left direction, we conclude from the validity of the proof depicted
in Figure 4.3 that the proof of Figure 4.4 is valid. The provability of

F [~x\~ri]li=1 ` C[(x, y) \ (α, ri)]qi=1, G[~y\~sj]mj=1

56

4.2. Analysis of Π2 Cuts in Sequent Calculus

Figure 4.4: General shape of a constructed proof with Π2 cut; Proof of Theorem 10

ψl
r : ∀ ∀~xF ` ∀x∃yC,∃~yG

ψr
l :∀ ∀~xF, ∀x∃yC ` ∃~yG

Cut ∀~xF ` ∃~yG

with

ψl
def=

...
Γ, F [~x\~ri]li=1 ` C[(x, y) \ (α, ri)]qi=1, ∃y.C[x\α], ∃~yG

l :∀ ...
l :∀ ∀~xF ` C[(x, y) \ (α, ri)]qi=1,∃y.C[x\α], ∃~yG
r :∃ ...
r :∃ ∀~xF ` C[(x, y) \ (α, r1)],∃y.C[x\α],∃~yG
r :∃ ∀~xF ` ∃y.C[x\α], ∃~yG

and

ψr
def=

...
∀~xF, ∀x∃yC,C[(x, y) \ (sj , βj)]pj=1 ` G[~y\~sj]mj=1,∆

r : ∃ ...
r : ∃ ∀~xF, ∀x∃yC,C[(x, y) \ (sj , βj)]pj=1 ` ∃~yG (∗)
l : ∃ ...

l :∀ ∀~xF, ∀x∃yC,C[(x, y) \ (s1, β1)] ` ∃~yG (∗)
l :∃ ∀~xF, ∀x∃yC,∃y.C[x\s1] ` ∃~yG

.

Γ is the set consisting of ∀~xF and all of its partly instantiated versions appearing during
the derivation of F [~x\~ri]li=1.

57

4. Π2-Cut Introduction

Figure 4.5: Proof-theoretic setting of Π2-cut introduction

proof ϕ with Π2 cuts cut-elimination−→ cut-free proof χ
l Theorem 10 l Theorem 3

Π2-EHS See [AHL15]−→ Herbrand sequent
↓ Definition 30 � partially by Theorem 17 l trivial

SΠ2-Gs G defines−→ language L (G)

is given by the extended Herbrand sequent being a tautology and it implies the provability
of

Γ, F [~x\~ri]li=1 ` C[(x, y) \ (α, ri)]qi=1,∃y.C[x\α],∃~yG.

Note that we defined F and G such that

F [~x\~ri]li=1 ` C[(x, y) \ (α, ri)]qi=1

is provable. The reasoning for the right branch is analogous. In the proofs, the dots
represent multiple applications of r :∨, l :∧, l : ∀, r : ∃, or l : ∃. In the particular case
between the sequents marked with (∗), the dots denote an alternating application of l :∀
and l :∃ (p− 1 times).

Given that every term of H is used exactly once in a quantifier rule, the quantifier
complexity is equal to |H|Π2 . 2

4.3 Schematic Π2 Grammars
As in the Π1 case, there seems to be a connection between formal grammars (see
Section 2.6) and proofs with Π2 cuts. In [AHL15], they elaborate an association between
proofs with Π2 cuts only and context-free tree grammars such that the grammars yield
Herbrand sequents for the proofs. This leads to the question whether these tree grammars
correspond to proofs with Π2 cuts as SΠ1-Gs correspond to proofs with Π1 cuts. For
this reason, we introduce the concept of schematic Π2 grammars. In contrast to the Π1
case, we consider again only a version for a single cut.

Again, we want to show the validity of all relations as in Figure 3.2, but for the Π2 case.
Unfortunately, there is no canonical solutions for Π2-cut introduction as we will see in
the course of this chapter. For this reason, there are some gaps in the proof-theoretic
setting depicted in Figure 4.5.

The right side of Figure 4.5 is equivalent to the right side of Figure 3.2. It shows the
relations among cut-free proofs, Herbrand sequents, and the Herbrand term set considered
as the language of a grammar. If we only consider the information of the quantifier

58

4.3. Schematic Π2 Grammars

inferences in χ, they are interchangeable. On the other side, we see the relations among
proofs with Π2 cuts. While the quantifier inferences of ϕ can be stored in a Π2-EHS
and a proof with Π2 cuts corresponding to these inferences can be constructed from the
Π2-EHS, the situation changes when we also consider schematic Π2 grammars (here:
SΠ2-Gs). We can still extract a schematic Π2 grammar for an Π2-EHS, but the converse
does not hold (see Section 4.5). In Section 4.7, we will show the desired property for a
fragment: If there is balanced solution, we will find a Π2-EHS (see Theorem 17).

Altogether, we can perform cut-elimination on proofs with Π2 cuts via schematic Π2
grammars, but Π2-cut introduction via schematic Π2 grammars is only possible for a
fragment. The procedure itself is as in the Π1 case: First we translate the Herbrand
sequent of a cut-free proof into a set of terms for which we search a schematic Π2 grammar.
Afterwards, we compute a Π2-EHS that corresponds to the grammar and construct a
proof with Π2 cuts on the basis of the Π2-EHS.

In comparison to the SΠ1-G, the schematic Π2 grammar contains additional conditions
that are either due to the more complex setting or to the new representation of the
end sequent in consideration. As already mentioned in the previous section, we assume
that the end sequent of the cut-free proof is split into two parts: ∀~xF ` ∃~yG. For this
reason, the starting symbol of the schematic Π2 grammar maps on two different terms,
one representing F and one representing G. This becomes more apparent in Definition
30. Moreover, we distinguish between two types of eigenvariables that occur within a
proof with a single Π2 cut. The eigenvariable α corresponds to the universal quantifier in
the cut formula and the eigenvariables β1, . . . , βp correspond to the existential quantifier.
Thus, there are also two types of nonterminals apart from the starting symbol. For
simplicity, we denote them by the same lower-case Greek letters. The conditions on the
corresponding production rules are due to the eigenvariable conditions.

Definition 29 also introduces the ∃-multiplicity and the ∀-multiplicity. Both names
are chosen to stress the connection of schematic Π2 grammars to Π2-EHSs. The ∃-
multiplicity corresponds to the number of weak quantifier rules applied to the existential
quantifier in the potential cut formula. The ∀-multiplicity corresponds to the number of
weak quantifier rules applied to the universal quantifier in the potential cut formula.

Definition 29 (Schematic Π2 Grammar; See Definition 9 of [LL18])
Let t1, . . . , tl and t′1, . . . , t′m be terms, let α, β1, . . . , βp be variables, and let r1, . . . , rq and
s1, . . . , sp be terms such that

V (ri) ⊆ {α} for all i,
V (sj) ⊆ {β1, . . . , βj−1} for all j > 1,
V (s1) = ∅,
V (ti) ⊆ {α} for all i, and

V
(
t′j

)
⊆ {β1, . . . , βp} for all j.

59

4. Π2-Cut Introduction

Then we call the totally rigid acyclic tree grammar G = 〈τ,N,Σ,Pr〉 with the set of
nonterminals N = {τ, α, β1, . . . , βp} and the productions

Pr def= {τ → ti | i ∈ Nl} ∪ {τ → t′j | j ∈ Nm}∪
{α→ sj | j ∈ Np} ∪ {βj → risj | j ∈ Np, i ∈ Nq}

(where rs stands for r[α\s] with r being a term (possibly) containing the variable α)
a schematic Π2 grammar (shorthand: SΠ2-G). We call q the ∃-multiplicity and p the
∀-multiplicity.

As in the Π1 case, we define a corresponding SΠ2-G for each Π2-EHS with end sequent
∀~xF ` ∃~yG. Since we want to use an ordinary term grammar without tuples, we generate
function symbols hF , hG where hF is of the arity of the length of ~x and hG is of the arity
of the length of ~y. So every term tuple ~ri occurring in F [~x\~ri]li=1 is represented by hF (~ri)
and every term tuple ~sj occurring in G[~y\~sj]mj=1 is represented by hG (~sj). Moreover, the
two different function symbols allow us to distinguish tuples of terms belonging either to
F or G even if the two formulas have the same number of free variables.

Definition 30 (Schematic Π2 Grammars of Π2-EHSs; See Definition 10 of
[LL18]) Let H be a Π2-EHS as in Definition 28. We define G (H) = 〈τ,N,Σ,Pr〉,
the schematic Π2 grammar corresponding to H, where N = {τ, α, β1, . . . , βp} and the
production rules Pr as well as the variable occurrences are as in Definition 29, except for
the start symbol τ where we have

τ → hF~r1 | . . . | hF~rl | hG~s1 | . . . | hG~sm.

We call the production rules τ → hF~r1 | . . . | hF~rl F -productions and the production
rules τ → hG~s1 | . . . | hG~sm G-productions.

At this point, it becomes apparent why we have chosen the form ∀xF ` ∃yG as end
sequent. In an SΠ2-G we have terms depending on α and terms depending on some
βi with i ∈ Np. These terms correspond to the function symbols hF and hG, i.e. we
implicitly ask for formulas that can be separated within one sequent (by a comma on the
right side, a comma on the left side, or the sequent symbol). This separated formulas
depend either on α or on some βi with i ∈ Np. Hence, there are no atoms that depend
on both, α and βi for i ∈ Np.

Example 16 The SΠ2-G G (S) = 〈τ,N,Σ,Pr〉 corresponding to T of Example 14 is
defined as follows:

N
def= {τ, α, β1, β2}

60

4.4. Schematic Extended Herbrand Sequents for Π2 Cuts

Pr def=

{ τ → hFα | hGβ1β2,

α→ a | hβ1,

β2 → fhβ1 | ghβ1,

β1 → fa | ga }.

Even though, α, β1, and β2 denote the eigenvariables in the proof we use the same symbols
to represent the nonterminals. If we would insist on technical purity, we would have to
introduce a new symbol for each nonterminal. When thinking of the correspondence to
proofs with Π2 cuts, we can intuitively read the production rules in the following way:
Once proven for α and β1, we can exchange α and β1 with an arbitrary term and we
need the terms a and hβ1 and fa, ga, respectively. Moreover, once proven for β2, we
can exchange β2 with an arbitrary term. Now, the question arises whether we need the
terms fhβ1, ghβ1 or the terms fhfa, fhga, ghfa, ghga. For this reason, we compare the
single instantiation of the cut where β2 is introduced the first time in ϕ (see Figure 4.1),
i.e. P (hβ1, β2) in ϕr, and compare it with the set of instantiations of the cut formula
in the other branch ϕl, i.e. P (α, fα) and P (α, gα). Hence, β2 has to be once fα and
once gα while α has to be mapped on hβ1. Thus, we need the terms fhβ1, ghβ1. The
∃-multiplicity and the ∀-multiplicity is 2.

4.4 Schematic Extended Herbrand Sequents for Π2 Cuts

As in the Π1 case (see Section 3.3, we have a correspondence between proofs with a single
Π2 cut and the Π2-EHS and we can extract from a Π2-EHS a SΠ2-G whose language
covers the term set of a Herbrand sequent. Moreover, the SΠ2-G does not contain any
information of the cut formula. If we were able to find a cut formula for each such
grammar, we could introduce Π2 cuts by computing SΠ2-Gs. For this reason, we will
again abstract the extended Herbrand sequent.

While Herbrand sequents represent cut-free proofs, Π2-EHS represent proofs with Π2
cuts. In order to introduce (yet unknown) cut-formulas we consider the Herbrand sequent
of a cut-free proof and specify the Herbrand term set by a SΠ2-G. The unknown cut
formula is represented by a second-order variable X. Other than in the Π1 case, we only
consider a single second-order variable which depends on two arguments. Moreover, we
have two types of eigenvariables, one (α) introduced for a universal quantifier and one
(β1, . . . , βp) introduced for an existential quantifier. Another difference to the Π1-SEHS
is the disjunction in the premise of the implication which complicates its solvability (see
the α-problem and β-problem in Section 4.6).

Definition 31 (Schematic Extended Herbrand Sequent for Π2 Cuts; See Defi-
nition 12 and 13 of [LL18]) Let S be the provable sequent ∀~xF ` ∃~yG and [F [~x\~ri]]li=1 `
[G[~y\~sj]]mj=l+1 be a Herbrand sequent for S. Let G = 〈τ,N,Σ,Pr〉 be an SΠ2-G with

61

4. Π2-Cut Introduction

the fresh functions hF , hG where a (hF) = l (~ri) and a (hG) = l (~sj), with N =def
{τ, α, β1 . . . , βp}, and with

Pr def= {τ → hF~ri | i ∈ Na} ∪ {τ → hG~sj | j ∈ Nb}∪
{α→ sj | j ∈ Np} ∪ {βj → risj | j ∈ Np, i ∈ Nq}

such that the language of G covers the Herbrand term set, i.e.

L (G) ⊇ {hF~ri | i ∈ Nl} ∪ {hG~sj | j ∈ Nm}.

Then
S (S) def= [F [~x\~ri]]ai=1,

q∨
k=1

Xαrk →
p∧

k=1
Xskβk ` [G[~y\~sj]]bj=1

(where X is a two-placed predicate variable) is called a schematic extended Herbrand
sequent for Π2 cuts (shorthand: Π2-SEHS) corresponding to G.

A solution of a Π2-SEHS S (S) is a substitution σ = [X\λαβ.C] such that F (C) ⊆
{α, β} and S (S)σ is a tautology.

Furthermore, we call
[F [~x\~ri]]ai=1 ` [G[~y\~sj]]bj=1

the reduced representation of S (S).

We will often say a formula C is a solution of a Π2-SEHS meaning that the corresponding
substitution [X\λαβ.C] (or sometimes [X\λxy.C]) is a solution.

The Π2-SEHS is an abstraction of a Π2-EHS as well as the Π2-EHS is a Π2-SEHS
S (S) for which a solution has been found, i.e. a substitution σ = [X\λαβ.G] such that
S (S)σ is a tautology. Further explanation can be found in Example 17.

Note that we did not require

L (G) = {hF~ri | i ∈ Nl} ∪ {hG~sj | j ∈ Nm};

indeed, if we generate a proper superset of the Herbrand term set, we still obtain a
Herbrand sequent of S (but not a minimal one). Generating supersets can be beneficial
to the construction of cut-formulas. A solution of a Π2-SEHS gives us a cut formula for
a proof with a Π2 cut.

Example 17 (See Example 5 of [LL18]) In Example 14, we defined the Π2-EHS T :

P (α, fα) ∨ P (α, gα) ,
(P (α, fα) ∨ P (α, gα))→ (P (a, β1) ∧ P (hβ1, β2)) ` P (a, β1) ∧ P (hβ1, β2)

62

4.5. The Solution Problem

for the end sequent

S
def= ∀x.P (x, fx) ∨ P (x, gx) ` ∃y1, y2.P (a, y1) ∧ P (hy1, y2) .

Later, we generated the corresponding SΠ2-G G = 〈τ,N,Σ,Pr〉 (see Example 16) where

N
def= {τ, α, β1, β2}

Pr def=

{ τ → hFα | hGβ1β2,

α→ a | hβ1,

β2 → fhβ1 | ghβ1,

β1 → fa | ga }.

Then T witnesses the solvability of the Π2-SEHS S (S) corresponding to G, defined as

P (α, fα) ∨ P (α, gα) ,
(Xαfα ∨Xαgα)→ (Xaβ1 ∧Xhβ1β2) ` P (a, β1) ∧ P (hβ1, β2) ,

for which the solution σ =def [X\λαβ.P (α, β)] has been found. When applying σ to
S (S), we get the tautological sequent T . Hence, we can construct a proof with a single
Π2 cut.

4.5 The Solution Problem
While a Π1-SEHS is always solvable (see Section 3.4), Π2-SEHS do not necessarily have
solutions. In this section, we will present two counter examples, the first of which seems
to be avoidable by redefining SΠ2-Gs. The second example shows that there is no easy
solution of this problem.

The examples are based on very simple proofs and differ only in a constant: Assume two
binary predicates with the corresponding symbols P and Q such that the first is always
true when the second argument is the unary function f applied to the first argument, i.e.
P (x, fx). The second predicate is always true when the second argument is the unary
function g applied to the first argument, i.e. Q (x, gx). The conditions on P and Q only
differ in the function applied to x. To express this in sequent calculus, one way is to add
the formula ∀x.P (x, fx) ∧Q (x, gx) to the context on the left side of the sequent.

The first proof shows the existence of witnesses such that P holds when the first argument
is a and that at the same time Q holds when the first argument is as well a. This can
be expressed as ∃x, y.P (a, x) ∧ Q (a, y). The statement is obviously provable and the
witnesses are fa and ga. A cut-free proof is depicted in Figure 4.6a.

The second proof is the same as the first, except that the constants for P and Q are
different. We want to show the existence of witnesses such that P holds when the first

63

4. Π2-Cut Introduction

Figure 4.6: Simple cut-free proofs used to show the non-existence of a canonical solution
of Π2-cut introduction problem

Ax Γ, P (a, fa) , Q (a, ga) ` P (a, fa) ,∆ Ax Γ, P (a, fa) , Q (a, ga) ` Q (a, ga) ,∆
r :∧ Γ, P (a, fa) , Q (a, ga) ` P (a, fa) ∧Q (a, ga) ,∆

l :∧ Γ, P (a, fa) ∧Q (a, ga) ` P (a, fa) ∧Q (a, ga) ,∆
r :∃ Γ, P (a, fa) ∧Q (a, ga) ` ∆
r :∃ Γ, P (a, fa) ∧Q (a, ga) ` ∃x, y.P (a, x) ∧Q (a, y)
l :∀ ∀x.P (x, fx) ∧Q (x, gx) ` ∃x, y.P (a, x) ∧Q (a, y)

where

Γ def= ∀x.P (x, fx) ∧Q (x, gx) and

∆ def= {∃x, y.P (a, x) ∧Q (a, y) ,∃y.P (a, fa) ∧Q (a, y)}

(a) Same constants

Ax Γl, P (a, fa) ` P (a, fa) ,∆ Ax Γr, Q (b, gb) ` Q (b, gb) ,∆
r :∧ Γ, P (a, fa) , Q (a, ga) , P (b, fb) , Q (b, gb) ` P (a, fa) ∧Q (b, gb) ,∆
l :∧ Γ, P (a, fa) ∧Q (a, ga) , P (b, fb) , Q (b, gb) ` P (a, fa) ∧Q (b, gb) ,∆
l :∧ Γ, P (a, fa) ∧Q (a, ga) , P (b, fb) ∧Q (b, gb) ` P (a, fa) ∧Q (b, gb) ,∆
r : ∃ Γ, P (a, fa) ∧Q (a, ga) , P (b, fb) ∧Q (b, gb) ` ∃y.P (a, fa) ∧Q (b, y) ,∆′
r : ∃ Γ, P (a, fa) ∧Q (a, ga) , P (b, fb) ∧Q (b, gb) ` ∃x, y.P (a, x) ∧Q (b, y)
l : ∀ Γ, P (a, fa) ∧Q (a, ga) ` ∃x, y.P (a, x) ∧Q (b, y)

l :∀ ∀x.P (x, fx) ∧Q (x, gx) ` ∃x, y.P (a, x) ∧Q (b, y)

where

Γ def= ∀x.P (x, fx) ∧Q (x, gx) ,

Γl
def= {∀x.P (x, fx) ∧Q (x, gx) , Q (a, ga) , P (b, fb) , Q (b, gb)},

Γr
def= {∀x.P (x, fx) ∧Q (x, gx) , P (a, fa) , Q (a, ga) , P (b, fb)},

∆ def= {∃x, y.P (a, x) ∧Q (b, y) ,∃y.P (a, fa) ∧Q (b, y)}, and

∆′ def= ∃x, y.P (a, x) ∧Q (b, y)

(b) Different constants

64

4.5. The Solution Problem

argument is a and that at the same time Q holds when the first argument is b instead
of a. This can be expressed as ∃x, y.P (a, x) ∧Q (b, y). A cut-free proof is depicted in
Figure 4.6b.

In general, one could say that in these examples there is no need to introduce cuts. But
if already there cut introduction fails, their simplicity rather suggests that the problem
occurs more often, also in more complex examples. Nonetheless, the reason why cut
introduction fails lays in the chosen SΠ2-G. Abstracting the left context by the term
hFα where hF is the term representation of P (x, fx)∧Q (x, gx) and α might be replaced
with a or b is still fine. Indeed, the abstraction of the conclusion is particularly chosen to
fail. Here, we introduce in one formula two nonterminals (eigenvariables): hGβ1β2 where
hG is the term representation of either P (a, x) ∧Q (a, y) or P (a, x) ∧Q (b, y). Since the
conclusion is a conjunction of two atoms with different predicate symbol and since we
have to prove both parts by the potential cut formula, the cut formula would then have
to introduce both eigenvariables at once which is impossible.

Lemma 3 (See Lemma 2 of [LL18]) Let F =def P (x, fx) ∧ Q (x, gx) and G =def
P (a, x) ∧Q (a, y) and consider the sequent S =def ∀F ` ∃G, the Π2-SEHS S (S)

P (α, fα) ∧Q (α, gα) ,
(Xαfα ∨Xαgα)→ (Xaβ1 ∧Xaβ2) ` P (a, β1) ∧Q (a, β2) ,

with the corresponding SΠ2-G G = 〈τ,N,Σ,Pr〉 where N =def {τ, α, β1, β2} and

Pr def=

{ τ → hFα, τ → hGβ1β2,

α→ a, α→ a,

β2 → fa, β2 → ga,

β1 → fa, β1 → ga }.

Then S (S) does not have a solution.

Proof:
We prove the lemma by contradiction. Let us assume a valid cut-formula C that
corresponds to the grammar G. A maximalG3c-derivation ϕ of the reduced representation
produces the leaves

{ P (α, fα) , Q (α, gα) ` P (a, β1) ;
P (α, fα) , Q (α, gα) ` Q (a, β2) }.

As C is valid, the following sequents have to be tautologies

65

4. Π2-Cut Introduction

A def=

{ P (α, fα) , Q (α, gα) ` P (a, β1) , C (α, fα) , C (α, gα) ;
P (α, fα) , Q (α, gα) ` Q (a, β2) , C (α, fα) , C (α, gα) ;
C (a, β1) , C (a, β2) , P (α, fα) , Q (α, gα) ` P (a, β1) ;
C (a, β1) , C (a, β2) , P (α, fα) , Q (α, gα) ` Q (a, β2) }

as are the following sequents

B def=
{ P (α, fα) , Q (α, gα) ` C (α, fα) , C (α, gα) ;
C (a, β1) ` P (a, β1) ;
C (a, β2) ` Q (a, β2) }.

The possibility to drop P (a, β1) and Q (a, β2) in the first two lines of A and P (α, fα) ,
Q (α, gα) in the last two lines of A in order to obtain the sequents in B is obvious
(Neither the formulas C (α, fα) , C (α, gα) can contain an atom depending on β1 or β2
nor C (a, β1) and C (a, β2) can contain an atom depending on α). In order to prove that
we can also ignore C (a, β2) in the third line, we assume that T =def C (a, β1) ` P (a, β1)
is not provable. Hence, there is a non-tautological branch Γ1 ` ∆1, P (a, β1) in every
maximal G3c-derivation ϕ of T . Given that C (a, β2) has the same logical structure as
C (a, β1), we can apply the same G3c-rules of ϕ to C (a, β2) and get the sequent Γ2 ` ∆2.
The atoms of the sets Γ1 and ∆1 are the same as the atoms in Γ2 and ∆2 except for
those which depend on the second argument of C, i.e. they contain β1 or β2. Thus, the
sequent Γ1,Γ2 ` ∆1,∆2 is not a tautology and also the atom P (a, β1) is not an element
of Γ1 ∪ Γ2. Then also S′ =def Γ1,Γ2 ` ∆1,∆2, P (a, β1) is not a tautology. But S′ is
a leaf of every proof tree of C (a, β1) , C (a, β2) ` P (a, β1). This is a contradiction and
therefore, T has to be a tautology. Analogously, we can prove that C (a, β2) ` Q (a, β2)
has to be a tautology if C (a, β1) , C (a, β2) ` Q (a, β2) is a tautology.

If the sequents in B are provable, then we can replace in their proofs α with a, β1 with
ga, and β2 with fa to get the provable sequents

{ P (a, fa) , Q (a, ga) ` C (a, fa) , C (a, ga) ;
C (a, ga) ` P (a, ga) ;
C (a, fa) ` Q (a, fa) }.

Now we can apply two times the Cut -rule

χ C (a, ga) ` P (a, ga)
Cut

P (a, fa) , Q (a, ga) ` P (a, ga) , Q (a, fa)

with

66

4.5. The Solution Problem

χ
def=

P (a, fa) , Q (a, ga) ` C (a, fa) , C (a, ga) C (a, fa) ` Q (a, fa)
Cut

P (a, fa) , Q (a, ga) ` Q (a, fa) , C (a, ga)

and derive the sequent P (a, fa) , Q (a, ga) ` Q (a, fa) , C (a, ga). But this sequent is not
valid and by contradiction, there is no cut formula. 2

In general, this example suffices to show that there is not always a solution for a Π2-
SEHS. But at this point, one can argue that we have to refine the definition of SΠ2-G. If
production rules have to be unique, then the given example would be inappropriate (the
production rules with β1 and β2 on the left map on the same terms and are, therefore,
not unique). The Π2-SEHS of Lemma 4 only contains unique production rules.

Lemma 4 (See Lemma 1 of [LL18]) Let F =def P (x, fx) ∧ Q (x, gx) and G =def
P (a, x) ∧Q (b, y). Assume the sequent S =def ∀F ` ∃G, the Π2-SEHS S (S)

P (α, fα) ∧Q (α, gα) ,
(Xαfα ∨Xαgα)→ (Xaβ1 ∧Xbβ2) ` P (a, β1) ∧Q (b, β2) ,

with the corresponding SΠ2-G G = 〈τ,N,Σ,Pr〉 where N =def {τ, α, β1, β2} and

Pr def=

{ τ → hFα, τ → hGβ1β2,

α→ a, α→ b,

β2 → fb, β2 → gb,

β1 → fa, β1 → ga }.

Then S (S) does not have a solution.

Proof:
In order to prove the lemma we provide a model equating a and b because such models,
together with Lemma 3 entail the non-existence of a cut formula. Let a be the natural
number 0, b be the natural number 2, λx.f be the successor function λx.sx, and λx.g be
λx.ssx. As a model we consider the natural numbers modulo 2. Hence, the interpretation
of a and of b are both the common representative of the equivalence class of even numbers.
Furthermore, we can interpret P as the relation that is true iff its arguments are not
equal and Q is true iff its arguments are equal. In this model, a is equal to b and hence,
there cannot be a cut-formula. 2

The lemmas show that Π2-cut introduction as formulated in this thesis is not always
solvable. In the following sections, we concentrate on the solvability of a relevant fragment
and a complexity analysis. An interesting topic that is not addressed is whether there

67

4. Π2-Cut Introduction

are completely solvable reformulations of Π2-cut introduction. One candidate strongly
suggested by Remark 3 is to add equality in order to allow case distinctions. In this
scenario, we would be able to find a cut formula. When comparing the size of the cut
formula in the remark with the actual end sequent, we see that this would increase
the complexity of potential cut formulas significantly. This is due to the additional
expressibility. Since it is already hard to find Π2-cut formulas as outlined in this thesis,
it seems more reasonable to first consider a scenario without equality.

Remark 3 (See Remark 2 of [LL18]) If we take a sequent calculus with equality and
add the formula ¬a = b to the left of the end-sequent, i.e. an additional assumption, then

∀x∃y.C (x, y) def= ∀x∃y. (x = a→ P (x, y)) ∧ (¬x = a→ Q (x, y))

is a valid cut formula that corresponds to the given SΠ2-G. Furthermore, the proof
depicted in Figure 4.7 is a valid proof with Π2 cut corresponding to the SΠ2-G of Lemma
4. Note that the sequents in Line (4.1) and in Line (4.2) are only provable in a sequent
calculus with equality where the rules

Γ, r = r ` ∆Ref := Γ ` ∆
Γ, r = s,R[x\r], R[x\s] ` ∆

Rep := Γ, r = s,R[x\r] ` ∆

with atomic R are added (see [TS96, Section 4.7]).

Both examples show that, in general, we cannot expect to find a solution for a Π2-SEHS.
Moreover, it is difficult to give an easy restriction to the grammar such that the solvability
is guaranteed.

4.6 A Characterization of Solvability

As outlined in the previous section, we cannot hope for a canonical solution, since there
are unsolvable Π2-SEHSs. In order to find out whether a Π2-SEHS is solvable, we
have to characterize some conditions for the introduction of Π2 cuts. In general, the cut
formula can be any logical combination of literals in the given signature such that the
result is a Π2 formula. For this reason, we define a restriction of the search space such
that the solvability for this restricted search space is decidable. Assume a finite number
of literals and that all formulas are in prenexed DNF. Then there is only a finite number
of combinations up to redundancies that are Π2 formulas.

In order to define such a restriction, we introduce the concept of a so called starting set,
i.e. a finite set of sets of literals. It may contain a set of clauses that is interpreted as a
formula in DNF a solution for the Π2-SEHS. Later, we will define starting sets that
always contain a solution as a subset for certain classes of solutions.

68

4.6. A Characterization of Solvability

Figure 4.7: Proof of the counterexample in a system with equality; Remark 3

ϕl
r :∀ Γl ` ∀x∃y.C (x, y) , D

ϕr
l : ∀ Γl, ∀x∃y.C (x, y) ` D

Cut ¬a = b,∀x.P (x, fx) ∧Q (x, gx) ` ∃x, y.P (a, x) ∧Q (b, y)

with

ϕl
def=

...
Γl, P (α, fα) ∧Q (α, gα) ` C (α, gα) , C (α, fα) ,∆l

l :∀ Γl ` C (α, gα) , C (α, fα) ,∆l
r :∃ Γl ` C (α, fα) , ∃y.C (α, y) , ∃x, y.P (a, x) ∧Q (b, y)
r :∃ Γl ` ∃y.C (α, y) ,∃x, y.P (a, x) ∧Q (b, y)

,

ϕr
def=

...
Γr,¬a = b, C (a, β1) , C (b, β2) ` P (a, β1) ∧Q (b, β2) ,∆r

r : ∃ Γr,¬a = b, C (a, β1) , C (b, β2) ` ∆r
r : ∃ Γr,¬a = b, C (a, β1) , C (b, β2) ` ∃x, y.P (a, x) ∧Q (b, y)

l :∃ Γr,¬a = b, C (a, β1) ,∃y.C (b, y) ` ∃x, y.P (a, x) ∧Q (b, y)
l :∀ Γr,¬a = b, C (a, β1) ` ∃x, y.P (a, x) ∧Q (b, y)

l : ∃ Γr,¬a = b,∃y.C (a, y) ` ∃x, y.P (a, x) ∧Q (b, y)

,

D
def= ∃x, y.P (a, x) ∧Q (b, y) ,

Γl
def= {¬a = b,∀x.P (x, fx) ∧Q (x, gx)},

∆l
def= {∃y.C (α, y) , ∃x, y.P (a, x) ∧Q (b, y)},

Γr
def= {∀x.P (x, fx) ∧Q (x, gx) , ∀x∃y.C (x, y)},

∆r
def= {∃y.P (a, β1) ∧Q (b, y) ,∃x, y.P (a, x) ∧Q (b, y)},

the axiomatic leaves

{ Γl, α = a, P (α, fα) , Q (α, gα) ` P (α, fα) , C (α, gα) ,∆l;
Γl, α = a, P (α, fα) , Q (α, gα) ` α = a,Q (α, fα) , P (α, gα) ,∆l;
Γl, P (α, fα) , Q (α, gα) ` α = a,Q (α, fα) , Q (α, gα) ,∆l;
Γr,¬a = b,¬a = a→ Q (a, β1) , C (b, β2) , P (a, β1) ` P (a, β1) ,∆r;
Γr, C (a, β1) , b = a→ P (b, β2) , Q (b, β2) ` a = b,Q (b, β2) ,∆r },

and the leaves

{ Γr,¬a = b,¬a = a→ Q (a, β1) , C (b, β2) ` a = a, P (a, β1) ,∆r; (4.1)
Γr, C (a, β1) , b = a→ P (b, β2) , b = a ` a = b,Q (b, β2) ,∆r } (4.2)

69

4. Π2-Cut Introduction

Definition 32 (Starting Set; See Definition 16 of [LL18]) Let O be a set of
variables. We call a finite set of finite sets of literals AO such that V

(
AO

)
⊆ {x, y} ∪ O

for designated variables x, y a starting set. The variables β1, . . . , βp, and α may not occur
in O. If O = ∅, we abbreviate A∅ by A.

Below, we present a method to check whether a starting set contains a solution for a
given Π2-SEHS. By “contain”, we mean that there is a combination of literals within
the starting set that actually gives us a solution.

In general, we assume that the set of variables in the reduced representation (see Definition
31) contains only the eigenvariables α, β1, . . . , βp. This is not a restriction because all
other variables can be treated as constants. Hence, we can treat the variables in O as
constants such that O can be considered empty. Thus, we will always consider O to be
empty.

In order to decide, whether a formula is a solution for a Π2-SEHS, we can substitute the
formula for the second order variable and check whether the result is a tautology. This
can be done by constructing a proof. Since the sequent is propositional, this is decidable,
but still costly. If the formula was not a solution and we want to check another formula,
we would have to construct another proof. In order to avoid the permanent construction
of new proofs, we use the invertibility of G3c and apply as many rules as possible to the
reduced representation of the Π2-SEHS, i.e. the part that is not dependent on the cut
formula. As a result, we get a set of sequents, some of them being already a tautology,
some of them not. Since all these sequents occur as subsequents in a proof where we add
the solution, i.e. the cut formula, we only have to consider the non-tautological sequents.
The others are already tautologies and will stay tautological. Below, we define a normal
form for the representation of the non-tautological leaves of the reduced representation.
This can then be used to decide whether a formula is a solution.

Apart from just storing the non-tautological leaves, we also distribute the literals occurring
in the sequents into three sets which will for simplicity be written as sequents. This
proves to be useful, since there are never literals containing both types of eigenvariables,
i.e. α and some βi’s. Hence, for certain parts of the problem we can ignore the set of
literals containing α and for other parts we can ignore the set of literals containing
some βi’s (see the α-problem and β-problem in the course of this section). The literals
containing neither of both have always to be considered.

Proposition 11 (Non-Tautological Leaves; See Proposition 3 of [LL18]) Let R
be the reduced representation of a Π2-SEHS as in Definition 31 and ϕ be a maximal
G3c-derivation (see Definition 1 and Definition 2) of R. Let NTA (ϕ) be the set of
non-tautological leaves of ϕ, i.e. the leaves that do not belong to an Ax- or an l :⊥-rule,
and S ∈ NTA (ϕ). Then S is of the form

A(S) ◦B(S) ◦N(S)

where

70

4.6. A Characterization of Solvability

• A(S) (A stands for “alpha”) is the sequent of all atoms in S containing α,

• B(S) (B stands for “beta”) is the sequent of all atoms in S containing a non-empty
subset of the variables {β1, . . . , βp}, and

• N(S) (N stands for “neutral”) is the sequent of all atoms in S neither containing
α nor βi-s.

Proof:
Let P be an atom occurring in S. We know that P is a subformula of the reduced
representation R. The reduced representation R =def [F [~x\~ri]]ai=1 ` [G[~y\~sj]]bj=1 can be
divided into two parts: [F [~x\~ri]]ai=1 ` and ` [G[~y\~sj]]bj=1. In the first part, neither of
the variables β1, . . . , βp appear; in the second part, the variable α does not appear. P
is either a subformula occurring in the first or second part, i.e. it cannot contain both,
variables of the set {β1, . . . , βp} and the variable α. 2

The proposition gives us a representation of the leaves, but in this form, we are not able
to distinguish between atoms occurring on the left-hand side of a sequent and atoms
occurring on the right-hand side of the sequent.

Definition 33 (Literal Normal Form; See Definition 17 of [LL18]) Let S =def
P1, . . . , Pl ` Q1, . . . , Qm be a sequent containing only atoms. Then we define the literal
normal form D (S) of the sequent S as ¬Q1, . . . ,¬Qm, P1, . . . , Pl `.

Now each literal carries the information on which side of the sequent it occurs. If it is an
atom, it occurs on the left-hand side. If it is a negated atom, it occurs on the right-hand
side. Hence, we can define a normal form of the sequents.

Apart from the normal form, we will define the set of all literals that can be mapped on
a literal of a non-tautological leaf containing α. This will become important in Definition
36 and can be ignored in the meantime.

Definition 34 (Non-Tautological Leaves in Literal Normal Form; See Defini-
tion 18 of [LL18]) Let NTA (ϕ) be the set of non-tautological leaves of a maximal
G3c-derivation ϕ of a reduced representation R. We define the set of non-tautological
leaves in literal normal form

DNTA (ϕ) def= {D (S) | S ∈ NTA (ϕ)}.

Let S ∈ DNTA (ϕ). Then S is also of the form

A(S) ◦B(S) ◦N(S)

where

71

4. Π2-Cut Introduction

• A(S) is the sequent of all literals in S containing α,

• B(S) is the sequent of all literals in S containing a non-empty subset of the variables
{β1, . . . , βp}, and

• N(S) is the sequent of all literals in S neither containing α nor βi-s.

Let T be the set of all literals. For all literals L ∈ A(S) let

ξ (L) def= {M |M ∈ T ∧ V (M) ⊆ {x, y} ∧ ∃i ∈ NqM [(x, y) \ (α, ri)] = L}

where ri for i ∈ Nq is as in Definition 31 then

A−1 (S) def=
⋃

L∈A(S)
ξ (L)

denotes the set of all literals that can be mapped to an element of A(S).

By means of this normal form, we are able to reformulate the necessary conditions for
Π2-cut introduction. Let us reconsider the Π2-SEHS

S def= [F [~x\~ri]]ai=1,
q∨

k=1
Xαrk →

p∧
k=1

Xskβk ` [G[~y\~sj]]bj=1.

Instead of finding a substitution for X such that S becomes a tautology, we have to
find a substitution σ =def [X\Ĉ] such that, for all leaves S ∈ DNTA (ϕ) of the reduced
representation R corresponding to S, the sequent

S ◦
(q∨
k=1

Ĉαrk →
p∧

k=1
Ĉskβk

)

is a tautology. Hence, we can divide it into two problems:

• the β-problem of S,
S ◦ (Xs1β1, . . . , Xspβp `)

and

• the α-problem of S,
S ◦ (` Xαr1, . . . , Xαrq) ,

and say that C is a solution of the β-problem and the α-problem if there is a substitution
σ for X such that σ is of the form λxy.C where β1, . . . , βp, or α may not occur in C and
the sequents of the β-problem and α-problem for all S ∈ DNTA (ϕ) become tautologies. A
shared solution for the β-problem and the α-problem is also a solution for the Π2-SEHS.

72

4.6. A Characterization of Solvability

Now we want to find formulas inDNF that are solutions. We assume an arbitrary starting
set AO that is a collection of literals not containing β1, . . . , βp, or α (see Definition 32).
Again, we can set O to ∅. The characterization we give in this section finds (for a given
starting set) all possible solutions of the β-problem and the α-problem and therefore, of
the Π2-SEHS. For a finite starting set we can implement a terminating algorithm in
order to find all solutions that can be built by the literals in the starting set based on this
characterization. Hence, after defining the characterization, we have to construct starting
sets containing solutions. In Section 4.7, we define a method constructing finite starting
sets, such that it always finds a solution if there is a balanced solution (see Definition 43).
However, the concept of balanced solution is not needed in the characterization below.

A solution of the Π2-SEHS has to solve the β-problem as well as the α-problem. Therefore,
we formulate the restrictions obtained by them and gradually eliminate all subsets of A
that are not solutions. First we consider the β-problem. In Definition 35, we eliminate
all subsets of A that do not turn the β-problem into a tautology. Consider the sequent
of the β-problem: If we substitute a possible solution in DNF for X, then the sequent
branches into all possible sequents with one clause for each Xs1β1, . . . , Xspβp on the
left-hand side of the sequent. In Definition 35, the choice of these p arbitrary clauses is
represented by the p-tuple (C1, . . . , Cp) where Ci is instantiated with si and βi for i ∈ Np.
For each choice, we guarantee the provability by demanding an axiomatic constant (T1),
an axiomatic literal (T2), or an interactive literal (T3). These literals cover every possible
case in which there is a literal and its dual on the left-hand side of the sequent. Finally,
we can shift the negated literal to the right and receive a tautological axiom.

Definition 35 (Set of Possible Sets of Clauses; See Definition 19 of [LL18])
Let R be a reduced representation of a Π2-SEHS S and ϕ be a maximal G3c-derivation
of R. Let S ∈ DNTA (ϕ), p be the ∀-multiplicity (see Definition 29) of S, and C be a
set of clauses. Let ~Cp be the set of all p-tuples (C1, . . . , Cp) where Ci ∈ C for i ∈ Np. If
~C ∈ ~Cp, ~C = (C1, . . . , Cp), and i ∈ Np we write ~C (i) for Ci. Furthermore, let A be a
starting set, N(S), B(S) as in Definition 34, and si for i ∈ Np as in Definition 31.

We define the three conditions – (T1) axiomatic constant, (T2) axiomatic literal, (T3)
interactive literal –

T1
(
~C, S

) def= ∃i ∈ Np∃L ∈ ~C (i) : L[x\si] ∈ N(S),

T2
(
~C, S

) def= ∃i ∈ Np∃L ∈ ~C (i) : L[(x, y) \ (si, βi)] ∈ B(S),

T3
(
~C
) def= ∃i, j ∈ Np∃L ∈ ~C (i) ∃M ∈ ~C (j) : L[(x, y) \ (si, βi)] = M [(x, y) \ (sj , βj)],

and

T
(
~C, S

) def= T1
(
~C, S

)
∨ T2

(
~C, S

)
∨ T3

(
~C
)
.

Then
Cl (A) def= {C ⊆ A | ∀~C ∈ ~Cp∀S ∈ DNTA (ϕ) : T

(
~C, S

)
}

73

4. Π2-Cut Introduction

Figure 4.8: Cut-free proof ϕ; Example 18

Ax
F, P (a, fa) , Q (a, ga) ` P (a, fa) , Q (a, fa) , G

r :∨
F, P (a, fa) , Q (a, ga) ` P (a, fa) ∨Q (a, fa) , G

l :∧
F, P (a, fa) ∧Q (a, ga) ` P (a, fa) ∨Q (a, fa) , G

r :∃
F, P (a, fa) ∧Q (a, ga) ` ∃x.P (a, x) ∨Q (a, x) ϕ

l :∨
F, (P (a, fa) ∧Q (a, ga)) ∨ (P (a, ga) ∧Q (a, fa)) ` ∃x.P (a, x) ∨Q (a, x)

l :∀ ∀x. (P (x, fx) ∧Q (x, gx)) ∨ (P (x, gx) ∧Q (x, fx)) ` ∃x.P (a, x) ∨Q (a, x)

with

ϕ
def=

Ax
F, P (a, ga) , Q (a, fa) ` P (a, ga) , Q (a, ga) , G

r :∨
F, P (a, ga) , Q (a, fa) ` P (a, ga) ∨Q (a, ga) , G

l :∧
F, P (a, ga) ∧Q (a, fa) ` P (a, ga) ∨Q (a, ga) , G

r :∃
F, P (a, ga) ∧Q (a, fa) ` ∃x.P (a, x) ∨Q (a, x)

and

F
def= ∀x. (P (x, fx) ∧Q (x, gx)) ∨ (P (x, gx) ∧Q (x, fx))

G
def= ∃x.P (a, x) ∨Q (a, x)

is the set of possible sets of clauses.

A possible set of clauses, i.e. an element of the set of possible sets of clauses need not be
a solution for the corresponding Π2-SEHS since the α-problem might not be satisfied.
Consider the following example in which we construct a non-empty set of possible sets of
clauses that does not contain a solution.

Example 18 (See Example 6 of [LL18]) Consider the proof ϕ of Figure 4.8. It
proves the sequent

∀x. (P (x, fx) ∧Q (x, gx)) ∨ (P (x, gx) ∧Q (x, fx)) ` ∃x.P (a, x) ∨Q (a, x)

with the two binary predicate symbols P and Q. Obviously, the left-hand side of the sequent
guarantees that there are witnesses fa, ga making P (a, fa)∨Q (a, fa)∨P (a, ga)∨Q (a, ga)
true. Furthermore, let G = 〈τ,N,Σ,Pr〉 be a SΠ2-G with N =def {τ, α, β} and

Pr def= {τ → hFα | hGβ, α→ a, β → fa | ga}

74

4.6. A Characterization of Solvability

where τ → hFα is the only F -production and τ → hGβ is the only G-production according
to Definition 30. Then we can define the Π2-SEHS

(P (α, fα) ∧Q (α, gα)) ∨ (P (α, gα) ∧Q (α, fα)) ,
(Xαfα ∨Xαgα)→ Xaβ ` P (a, β) ∨Q (a, β)

with the reduced representation

(P (α, fα) ∧Q (α, gα)) ∨ (P (α, gα) ∧Q (α, fα)) ` P (a, β) ∨Q (a, β) .

A maximal G3c-derivation χ gives us the set of non-tautological leaves

DNTA (χ) = {S1;S2}

S1
def= P (α, fα) , Q (α, gα) ,¬P (a, β) ,¬Q (a, β) `

S2
def= P (α, gα) , Q (α, fα) ,¬P (a, β) ,¬Q (a, β) ` .

The sequents N(S1) and N(S2) are empty and thus, also their duals N(S1) and N(S2) are
empty. The sequents B(S1) and B(S2) are equal and compute to P (a, β) , Q (a, β) `. In
order to solve the β-problem, we can concentrate on finding axiomatic literals. Since the
cut formula in the β-problem is instantiated by [(x, y) \ (a, β)], the literals P (x, y) , Q (x, y)
are good candidates. Let us consider the starting set A =def {{P (x, y) , Q (x, y)}} and
compute Cl (A). The only subsets of A are the empty set and A itself. The empty set
does not fulfill any of the conditions of a possible set of clauses. The only clause in A
is {P (x, y) , Q (x, y)} which contains for each S ∈ DNTA (χ) an axiomatic literal, i.e.
P (a, β) and Q (a, β). Thus, Cl (A) = {A}. But the Π2-SEHS where X is replaced with
λxy.P (x, y) ∧Q (x, y) is not a tautology. A maximal G3c-derivation of

(P (α, fα) ∧Q (α, gα)) ∨ (P (α, gα) ∧Q (α, fα)) ,
(P (α, fα) ∧Q (α, fα)) ∨ (P (α, gα) ∧Q (α, gα))

→ P (a, β) ∧Q (a, β) ` P (a, β) ∨Q (a, β)

gives us the non-tautological leaves

{P (α, fα) , Q (α, gα) ` P (a, β) , Q (a, β) , Q (α, fα) , P (α, gα) ;
P (α, gα) , Q (α, fα) ` P (a, β) , Q (a, β) , P (α, fα) , Q (α, gα) }.

This is due to the existence of a leaf S in DNTA (χ) that fulfills the following property:
we find for each term fα and gα an atom P (α, fα) or Q (α, gα) that does not appear in
the leaf S.

In Definition 36, we generalize the property in the end of Example 18 and define a set
ACl (S) for each leaf S that contains only allowed clauses. Clauses as {P (x, y) , Q (x, y)}
in the previous example are excluded.

75

4. Π2-Cut Introduction

In order to understand the necessity of this property for all clauses, we have to ex-
amine the behaviour of a set of clauses on the right of a sequent, i.e. the α-problem.
Consider a single clause {L} ∪ C and a single instantiation (the ∃-multiplicity q is
1) such that L[(x, y) \ (α, r1)] /∈ A(S) for the non-tautological leaf S. Then neither
S ◦ (` L[(x, y) \ (α, r1)]) nor S ◦ (` L[(x, y) \ (α, r1)] ∧ C[(x, y) \ (α, r1)]) is provable. If
we extend the number of instantiations q without gaining an instantiation 1 ≤ j ≤ q such
that for all literals M in {L} ∪ C, then the substituted variant M [(x, y) \ (α, rj)] is not
an element of A(S) the sequent T

S◦(` L[(x, y) \ (α, r1)] ∧ C[(x, y) \ (α, r1)])◦ . . .◦(` L[(x, y) \ (α, rq)] ∧ C[(x, y) \ (α, rq)])

stays non-tautological. For each instantiation of L∧C, we find a literal that does not occur
in A(S). Thus, there is at least one non-tautological leaf in a maximal G3c-derivation of
T . If we consider the case that there is more than a single clause and one clause does not
fulfill the described property, we can eliminate this clause. Note that if we consider the
clauses made of formulas that are solutions of the β-problem, those clauses are solutions
of the β-problem themselves, i.e. we are allowed to eliminate all but one clause without
making the solution invalid.

Definition 36 constructs the set of all clauses with the described property for a given leaf
S.

Definition 36 (Allowed Clauses and Refined Allowed Clauses; See Definition
20 of [LL18]) Let R be a reduced representation of a Π2-SEHS S, ϕ be a maximal
G3c-derivation of R, and S ∈ DNTA (ϕ). Let A−1 (S) be defined as in Definition 34. Let

M (i) ⊆ A−1 (S) such that |M (i)| = i then

ACl (S) def=
⋃

i≤|A−1(S)|
{M (i) | ∃j ∈ Nq∀L ∈M (i) : L[(x, y) \ (α, rj)] ∈ A(S)}

is the set of allowed clauses.

Let A be a starting set as defined in Definition 32. We denote the set of refined allowed
clauses RCl (S) as

RCl (S) def= ACl (S) ∩ A.

A useful tool for the application of the set of allowed clauses in practice can be obtained
from the following proposition. It shows that the allowed clauses are closed under the
subset relation. For practice, this can be used in the following way: If we checked a
clause C and figured out that it is not an allowed clause, we do not have to check any
other clause that contains C as a subset.

Proposition 12 (See Proposition 4 of [LL18]) Let R be a reduced representation of
a Π2-SEHS S, ϕ be a maximal G3c-derivation of R, S ∈ DNTA (ϕ) and ACl (S) the set
of allowed clauses. If C is an element of ACl (S) and D is a subset of C, then D is an
element of ACl (S).

76

4.6. A Characterization of Solvability

Proof:
The claim trivially holds by definition of ACl (S). 2

Now we can formulate the conditions that guarantee the provability of the sequent of
the α-problem. Again, we need for each non-tautological leaf an axiomatic constant, an
axiomatic literal, or an interactive literal. The differences to Definition 35 are due to the
different behaviour of formulas in disjunctive normal form on different sides of a sequent
in a proof in sequent calculus. In particular, the q-tuples and the Cartesian product of
the subspaces ~L (C) are only necessary to be able to consider all collections of literals (of
the potential cut formula) with a corresponding substitution that can occur together in
a leaf. This is indeed very technical, but can be read as follows:

1. We consider for all potential solutions occurring in Cl (A)

2. all leaves after applying a maximal number of G3c rules to

3. all α-problems where the potential solution in consideration is substituted for X

4. and check whether it contains an axiomatic constant, an axiomatic literal, or an
interactive literal.

Note that there is a α-problem for every leaf of the maximal G3c-derivation of the
reduced representation. Moreover, we define two sets of solution candidates; one by using
the allowed clauses and the other by using the refined allowed clauses (see Definition 36).

Definition 37 (Set of Solution Candidates; See Definition 21 of [LL18]) Let R
be a reduced representation of a Π2-SEHS S and ϕ be a maximal G3c-derivation of
R. Let S ∈ DNTA (ϕ), q be the ∃-multiplicity, and C be a set of clauses. Let ~L (C) be
the set of all q-tuples (L1, . . . , Lq) where Li ∈ C for i ∈ Nq and C ∈ C. If ~L ∈ ~L (C),
~L = (L1, . . . , Lq), and i ∈ Nq we write ~L (i) for ~Li. Let ~C =def

∏
C∈C

~L (C) be the
Cartesian product of the subspaces ~L (C) where C ∈ C. If ~C ∈ ~C and ~L ∈ ~L (C) is
the element of ~C that corresponds to the subspace ~L (C) we write L (C, i) for ~L (i).
Furthermore, let A be a starting set, D be either the set of allowed clauses of the set of
refined allowed clauses, N(S), B(S) as in Definition 34, and ri for i ∈ Nq as in Definition
31.

We define the three conditions – (T ′1) axiomatic constant, (T ′2) axiomatic literal, (T ′3)

77

4. Π2-Cut Introduction

interactive literal –

T ′1

(
C, ~C, S

) def= ∃C ∈ C∃i ∈ Nq : L (C, i) [y\si] ∈ N(S) ,

T ′2

(
C, ~C, S,D

) def= ∃C ∈ C∃I ∈ D ∀i ∈ Nq : L (C, i) ∈ I,

T ′3

(
C, ~C

) def= ∃C,D ∈ C∃i, j ∈ Nq : L (C, i) [(x, y)\(α, ri)] = L (D, j)[(x, y)\(α, rj)],

and

T ′
(
C, ~C, S,D

) def= T ′1

(
C, ~C, S

)
∨ T ′2

(
C, ~C, S,D

)
∨ T ′3

(
C, ~C

)
.

Then, for D = ACl (S), the set

Sol (A) def= {C ∈ Cl (A) | ∀~C ∈ ~C ∀S ∈ DNTA (ϕ) : T ′
(
C, ~C, S,D

)
}

is called the set of solution candidates, and, for D = RCl (S), the set of refined solution
candidates (for a given starting set and a given Π2-SEHS in DNF).

The difference between the refined solution candidates and the solution candidates is
based on the definition of the refined allowed clauses and the allowed clauses. While the
allowed clauses are independent of the starting set, there are only finitely many refined
allowed clauses, since we intersect the set of allowed clauses with the finite starting set.
If this set were not finite, the condition ∃I ∈ D (there exists an allowed clause) in the
axiomatic literal T ′2 would not be computable. Fortunately, the following theorem shows
that it does not matter which definition we use. All solution candidates are also refined
solution candidates.

Theorem 13 (See Theorem 5 of [LL18]) The set of refined solution candidates
coincides with the set of solution candidates.

Proof:
If C is a refined solution candidate, then C is a solution candidate by definition.

Assume C is a solution candidate. The only difference to a refined solution candidate is
the axiomatic literal. C being a solution candidate, there is a clause C in C and an allowed
clause I such that for all i ∈ Nq the literal L (C, i) is an element of I. Furthermore, C
is an element of Cl (A), i.e. C ⊆ A. Altogether, L (C, i) is a literal occurring in A and
there is a subset J of I such that I ⊇ J = ⋃

i∈Nq
L (C, i). By Proposition 12, J is an

element of ACl (S) and therefore, J is a refined allowed clause. Since it is always possible
to construct a refined allowed clause for a given axiomatic literal, C is also an element of
the set of refined solution candidates. 2

78

4.6. A Characterization of Solvability

Example 19 (See Example 7 of [LL18]) If we consider Example 18 again and
compute Sol (A), we will get the empty set. RCl (A) consists of all clauses C that are an
element of the starting set A such that there is an index i ∈ Nq for all literals L in the
clause C with L[(x, y) \ (α, ri)] ∈ A(S). For the two non-tautological leaves S1, S2, we get
the sequents

A(S1) def= P (α, fα) , Q (α, gα) `,

A(S2) def= P (α, gα) , Q (α, fα) ` .

The only element of the starting set is {P (x, y) , Q (x, y)}, and q = 2. For i = 1, the
substituted literals are {P (α, fα) , Q (α, fα)} and for i = 2 the substituted literals are
{P (α, gα) , Q (α, gα)}. In both cases and independent from the chosen leaf (j ∈ N2), one
of the substituted literals is not an element of A(Sj). For instance: Since Q (α, fα) of
the substituted literals {P (α, fα) , Q (α, fα)} does not appear in

A(P (α, fα) , Q (α, gα) ,¬P (a, β) ,¬Q (a, β) `) = (P (α, fα) , Q (α, gα) `)

and P (α, gα) of the substituted literals {P (α, gα) , Q (α, gα)} does not appear in

P (α, fα) , Q (α, gα) `

we conclude
RCl (P (α, fα) , Q (α, gα) ,¬P (a, β) ,¬Q (a, β) `) = ∅.

Hence, Sol (A) is empty.

Remark 4 (See Remark 3 of [LL18]) The condition of Definition 36 of allowed
clauses is necessary.

Proof:
Assume a solution σ of a Π2-SEHS S such that the substituted formula C is in DNF
and no clause fulfills the condition of Definition 36, i.e. there is a leaf S for all clauses
C and all i ∈ Nq such that we find literals Li,C where Li,C [(x, y) \ (α, ri)] /∈ A(S). Let
L be the set of all Li,C [(x, y) \ (α, ri)] with C ∈ S and i ∈ Nq. Then A(S) ◦ (` L) is a
non-tautological sequent whose initial sequent appears in every proof of Sσ. Therefore,
σ cannot be a solution. 2

In a first step, we can show that each solution candidate is actually a solution. Hence,
the conditions of Definition 35 and Definition 37 are sufficient and guarantee that every
solution candidate solves both the α-problem and the β-problem.

Theorem 14 (Soundness; See Theorem 6 of [LL18]) Let

S def= [F [~x\~ri]]ai=1,
q∨

k=1
Xαrk →

p∧
k=1

Xskβk ` [G[~y\~sj]]bj=1

79

4. Π2-Cut Introduction

be a Π2-SEHS, Sol (A) 6= ∅ be defined as in Definition 37 for a given starting set A,
and C ∈ Sol (A). Let C =def DNF (C) be the formula in DNF corresponding to C and
σ =def [X\λxy.C]. Then Sσ is a tautology, i.e. solution candidates and refined solution
candidates are solutions.

Proof:
If we want to prove that

Sσ = [F [~x\~ri]]ai=1,
q∨

k=1
λxy.Cαrk →

p∧
k=1

λxy.Cskβk ` [G[~y\~sj]]bj=1

is a tautology, we have to prove the sequents

[F [~x\~ri]]ai=1 ` λxy.Cαr1, . . . , λxy.Cαrq, [G[~y\~sj]]bj=1 and (4.3)
[F [~x\~ri]]ai=1, λxy.Cs1β1, . . . , λxy.Cspβp ` [G[~y\~sj]]bj=1 (4.4)

representing the substituted α-problem and the substituted β-problem. First, we show
that the sequent (4.4) is a tautology. Assume it is not provable. The formulas λxy.Cskβk
for k ∈ Np are formulas in DNF which can be interpreted as sets of sets of literals. In
G3c a sequent with a disjunction on the left

Γ,
∨
i∈I

Di ` ∆

is true if the sequents
Γ, Di ` ∆

are true for all i ∈ I. Hence, if the sequent (4.4) is not provable, then there are clauses
D1, . . . , Dp in C such that, for Ci =def DNF ({Di}),

[F [~x\~ri]]ai=1, λxy.C1s1β1, . . . , λxy.Cpspβp ` [G[~y\~sj]]bj=1 (4.5)

is not provable.

Now we apply the rules of a maximal G3c-derivation ϕ of

R = [F [~x\~ri]]ai=1 ` [G[~y\~sj]]bj=1

and let the instantiations λxy.C1s1β1, . . . , λxy.Cpspβp untouched. The non-tautological
leaves of R can be represented by DNTA (ϕ) where A(S) ◦B(S) ◦N(S) for S ∈ DNTA (ϕ)
is defined as in Definition 34. Hence, we can add the literals of the clauses λxy.C1s1β1,
. . . , λxy.Cpspβp to B(S) and N(S) to get a representation of the non-tautological leaves
of a maximal G3c-derivation of the sequent (4.5). The part of literals that has been
added to B(S) will be denoted by B and the part that has been added to N(S) will be
denoted by N . If the sequent (4.5) is not provable, there has to be a non-tautological
leaf S′, such that

∀L,M ∈ S′ ◦B ◦N.L 6= M.

80

4.6. A Characterization of Solvability

But this implies that there is no axiomatic constant (T1), axiomatic literal (T2), or
interactive literal (T3). Thus it contradicts Definition 35 and the sequent (4.4) is provable.

Now we have to prove that the sequent (4.3) is a tautology. We will again assume that
it is not a tautology and derive a contradiction. Let us assume there are n clauses
D1, . . . , Dn in C. Thus, the sequent

[F [~x\~ri]]ai=1 ` λxy.C1αr1, . . . , λxy.Cnαr1, . . . , λxy.C1αrq, . . . , λxy.Cnαrq, [G[~y\~sj]]bj=1

where Ci =def DNF ({Di}) is also not a tautology. Now we apply the rules of a maximal
G3c-derivation ϕ of R again and let the clauses be untouched. Given that the sequent
above is not a tautology, there is also a leaf S′ in the derivation that is not a tautology.
We find in each λxy.Ciαrj for i ∈ Nn and j ∈ Nq a literal Lk with k =def (i− 1) · q + j
such that

S′
def= S ◦ (` L1, . . . , Ln·q)

is not a tautology. But this implies that there is neither an axiomatic constant (T ′1), nor
an axiomatic literal (T ′2), nor an interactive literal (T ′3) and this contradicts Definition
37. Hence, the sequent (4.3) is a tautology. 2

Furthermore, we can show that the Definitions 35 and 37 do not eliminate solutions,
i.e. if there is a subset in the starting set A that is a solution, then this set will also be
an element of Sol (A). Important is the dependency on the starting set A. Hence, the
theorem is called “Partial Completeness” to indicate that only the existence of a sufficient
starting set could guarantee full completeness. In Section 4.7, we give a construction of a
starting set (see Definition 42) that allows us to formulate a completeness theorem for a
relevant fragment (see Theorem 17).

Theorem 15 (Partial Completeness; See Theorem 7 of [LL18]) Let

S def= [F [~x\~ri]]ai=1,
q∨

k=1
Xαrk →

p∧
k=1

Xskβk ` [G[~y\~sj]]bj=1

be a Π2-SEHS, A be a starting set, and C ⊆ A. Let C =def DNF (C) and σ =def [X\λxy.C].
If Sσ is a tautology, then C ∈ Sol (A) where Sol (A) is as in Definition 37.

Proof:
Let us assume that there is a solution C for the Π2-SEHS that is a subset of the
starting set A but C is not an element of Cl (A) of Definition 35. Let ϕ be a maximal
G3c-derivation of

[F [~x\~ri]]ai=1 ` [G[~y\~sj]]bj=1.

81

4. Π2-Cut Introduction

If C is not an element of Cl (A) but C ⊆ A then

∃~C ∈ ~Cp∃S ∈ DNTA (ϕ) : ¬T
(
~C, S

)
with

¬T
(
~C, S

) def= ¬T1
(
~C, S

)
∧ ¬T2

(
~C, S

)
∧ ¬T3

(
~C
)
,

¬T1
(
~C, S

) def= ∀i ∈ Np∀L ∈ ~C (i) : L[x\si] /∈ N(S),

¬T2
(
~C, S

) def= ∀i ∈ Np∀L ∈ ~C (i) : L[(x, y) \ (si, βi)] /∈ B(S), and

¬T3
(
~C
) def= ∀i, j ∈ Np∀L ∈ ~C (i)∀M ∈ ~C (j) : L[(x, y) \ (si, βi)] 6= M [(x, y) \ (sj , βj)]

where ~Cp is defined as in Definition 35. Let S be an element of DNTA (ϕ) of the form
A(S) ◦ B(S) ◦N(S). There is a p-tuple of clauses (D1, . . . , Dp) with Di ∈ C for i ∈ Np
fulfilling the following property: let Ci =def DNF ({Di}) for i ∈ Np then

S ◦ (λxy.Cs1β1, . . . , λxy.Cspβp `)

is not a tautology. But then also

[F [~x\~ri]]ai=1,
p∧

k=1
λxy.Cskβk ` [G[~y\~sj]]bj=1

is not a tautology, i.e. C is not a solution and, by contradiction, C ∈ Cl (A).

Now we assume C /∈ Sol (A). As C ∈ Cl (A), we find an element ~C ∈ ~C and a leaf
S ∈ DNTA (ϕ) such that

∀C ∈ C ∀i ∈ Nq : L (C, i) [y\si] /∈ N(S) ,
∧ ∀C ∈ C ∀I ∈ RCl (S) ∀i ∈ Nq : L (C, i) /∈ I,
∧ ∀C,D ∈ C ∀i, j ∈ Nq : L (C, i) [(x, y) \ (α, ri)] 6= L (D, j)[(x, y) \ (α, rj)]

where ~C is defined as in Definition 37 and RCl (S) is defined as in Definition 36. Let
C = {C1, . . . , Cn}, then, for all of them, we find q literals

L (C1, 1) , . . . , L (C1, q) , . . . , L (Cn, 1) , . . . , L (Cn, q)

such that the sequent

S◦


` λxy.DNF ({L (C1, 1)})αr1, . . . , λxy.DNF ({L (C1, q)})αrq,
. . . ,

λxy.DNF ({L (Cn, 1)})αr1, . . . , λxy.DNF ({L (Cn, q)})αrq


82

4.6. A Characterization of Solvability

does not contain an axiomatic constant (T ′1), an axiomatic literal (T ′2), or an interactive
literal (T ′3). Furthermore, S is not a tautology and the literals

λxy.DNF ({L (C1, 1)})αr1, . . . , λxy.DNF ({L (C1, q)})αrq,
. . . ,

λxy.DNF ({L (Cn, 1)})αr1, . . . , λxy.DNF ({L (Cn, q)})αrq
do not contain the eigenvariables β1, . . . , βp. Hence, none of the literals occurs in A(S),
B(S), or N(S) and the sequent is not a tautology. This contradicts the assumption that
C is a solution and is not an element of Sol (A). Thus, C ∈ Sol (A). 2

As already mentioned, we need a starting set for every possible reduced representation
in order to prove full completeness. Section 4.7 shows that we can define starting
sets, provided that a balanced solution of the Π2-SEHS exists. The characterization is
complete inasmuch as it will always computes a solution if a solution can be constructed
by the clauses of the starting set. So the problem reduces to find appropriate starting
sets.

Finally we show that, whenever Sol (A) 6= ∅ for a given starting set A, the problem of
Π2-cut introduction is solvable. This completes, omitting the dependency on the starting
set, the main goal of Π2-cut introduction: Starting from a cut-free proof, we construct
a proof with a Π2 cut using a Π2-EHS and a SΠ2-G according to Figure 4.5. More
precisely:

1. We start with a cut-free proof and a SΠ2-G.

2. We formulate the Π2-SEHS.

3. (We find a starting set.)

4. We specify all subproblems by Definition 35 and Definition 37 and get the set of
solution candidates.

5. We construct a Π2-EHS for an arbitrary solution candidate.

6. We construct a proof with Π2 cut.

Theorem 16 (See Theorem 8 of [LL18]) Let

S def= [F [~x\~ri]]ai=1,
q∨

k=1
Xαrk →

p∧
k=1

Xskβk ` [G[~y\~sj]]bj=1

be a Π2-SEHS corresponding to a Herbrand sequent of a cut-free proof of the sequent
S =def ∀~xF ` ∃~yG and a SΠ2-G G covering the Herbrand term set of S. Let Sol (A) 6= ∅
be defined as in Definition 37 for a given starting set A, and C ∈ Sol (A). Let C =def
DNF (C) be the formula corresponding to C and V (C) ⊆ {x, y}. Then there exists a proof
of S with one cut and the cut formula ∀x∃yC.

83

4. Π2-Cut Introduction

Proof:
If there is an element C in Sol (A) for a given starting set A and a given Π2-SEHS, we
are able to construct a proof with a Π2 cut. Consider the Π2-SEHS

[F [~x\~ri]]ai=1,
q∨

k=1
Xαrk →

p∧
k=1

Xskβk ` [G[~y\~sj]]bj=1

and the clause set C ∈ Sol (A) for the starting set A. Let C =def DNF (C). Then there
are maximal G3c-derivations χ and ψ with tautological leaves of the sequents

[F [~x\~ri]]ai=1 `
q∨

k=1
λxy (C)αrk, [G[~y\~sj]]bj=1

and
[F [~x\~ri]]ai=1,

p∧
k=1

λxy (C) skβk ` [G[~y\~sj]]bj=1,

respectively. The proof below is valid and contains a single Π2 cut:

χ

Γ, [F [~x\~ri]]ai=1 `
q∨

k=1
λxy (C)αrk, [G[~y\~sj]]bj=1,∆′

...
∀~xF ` ∀x∃yC,∃~yG

(ϕ)

∀~xF, ∀x∃yC ` ∃~yG
Cut ∀~xF ` ∃~yG

with

ϕ
def=

ψ

Γ′, [F [~x\~ri]]ai=1,
p∧

k=1
λxy (C) skβk ` [G[~y\~sj]]bj=1,∆

...

.

This is guaranteed by the Theorems 14 and 10 and, hence, solves the main problem of
this chapter. 2

4.7 The Unification Method
In the previous section, we developed a method to check whether a given starting set
contains a solution for a Π2-SEHS. However, we did not explain how such starting sets
can be constructed. In this section, we present a method that produces a starting set for
a given reduced representation of a Π2-SEHS. This starting set will contain a solution if
there is a so-called balanced solution.

84

4.7. The Unification Method

In order to understand the construction of the starting set, we take a look at the leaves
DNTA (ϕ) of a maximal G3c-derivation ϕ of a given reduced representation R. If we do
not consider interactive literals as in Definition 37 (T ′3) and as in Definition 35 (T3), then
a solution of the corresponding Π2-SEHS contains for each leaf S in DNTA (ϕ) at least
one literal L with V (L) ⊆ {x, y}, such that L becomes an element of A(S), B(S), or
N(S) under the correct substitution for x and y. Hence, the first approach consists in
collecting all literals that can be instantiated to at least one element of A(S), B(S), or
N(S). Then we consider all possible sets containing a subset of these literals (see the
naive starting set in Definition 44).

Definition 38 (See Definition 22 of [LL18]) A literal L with V (L) ⊆ {x, y} inter-
acts with a literal in A(S), B(S), or N(S) if there are substitutions [(x, y) \ (t1, t2)]
corresponding to the Π2-SEHS such that L[(x, y) \ (t1, t2)] is an element of A(S), B(S),
or N(S). We say [(x, y) \ (t1, t2)] corresponds to the Π2-SEHS (see Definition 31) if
t1 = α ∧ t2 = ri for some i ∈ Nq or t1 = sj ∧ t2 = βj for some j ∈ Np where
α, β1, . . . , βp, r1, . . . , rq, s1, . . . , sp are as in Definition 31.

Let us assume that a literal L of the solution interacts twice with a literal in A(S),
B(S), or N(S): L[(x, y) \ (α, ri)] = Lα and L[(x, y) \ (sj , βj)] = Lβ. We call Lα and Lβ
interacting literals. In a reduced representation R and therefore, also in all elements
of DNTA (ϕ) with a maximal G3c-derivation of R the literals occur in the form of Lα
or Lβ. We will present a method that searches for interacting literals and constructs
afterwards the common shape of Lα and Lβ , i.e. L with V (L) ⊆ {x, y}. The basic idea of
the unification method to be defined below is to find all interacting literals and use them
for the construction of a starting set. The benefit of this approach is that on one side the
number of interacting literals that have a common shape is relatively small and on the
other side the literals seem to be most promising, since they can form tautological leaves
for the α-problem and the β-problem. Theorem 17 will show that the naive approach
and the approach via interacting literals find solutions – in case balanced solutions exist.
Thus, so far, the unification method is the most efficient method for this fragment.

In the first step, we collect for each S ∈ DNTA (ϕ) all pairs of literals which are potential
candidates for interacting literals.

Definition 39 (Unification Candidates; See Definition 23 of [LL18]) Let S be a
Π2-SEHS with the corresponding reduced representation R of S. Let S, S′ ∈ DNTA (ϕ)
for a maximal G3c-derivation ϕ of R. Then

UC
(
S, S′

) def= {(L,M) | L ∈ A(S) ∪N(S) ∧M ∈ B
(
S′
)
∪N

(
S′
)
}

is the set of unification candidates for the leaves S and S′.

85

4. Π2-Cut Introduction

Example 20 Let S be as in Example 17:

P (α, fα) ∨ P (α, gα) , (Xαfα ∨Xαgα)→ (Xaβ1 ∧Xhβ1β2) ` P (a, β1) ∧ P (hβ1, β2) .

Let ϕ be the maximal G3c-derivation

S1 S2r :∧
P (α, fα) ` P (a, β1) ∧ P (hβ1, β2)

S3 S4r :∧
P (α, gα) ` P (a, β1) ∧ P (hβ1, β2)

l :∨
P (α, fα) ∨ P (α, gα) ` P (a, β1) ∧ P (hβ1, β2)

of the reduced representation R =def P (α, fα) ∨ P (α, gα) ` P (a, β1) ∧ P (hβ1, β2) with

S1
def= P (α, fα) ` P (a, β1) ,

S2
def= P (α, fα) ` P (hβ1, β2) ,

S3
def= P (α, gα) ` P (a, β1) ,

S4
def= P (α, gα) ` P (hβ1, β2) ,

S1 = ¬P (a, β1) , P (α, fα) `,
S2 = ¬P (hβ1, β2) , P (α, fα) `,
S3 = ¬P (a, β1) , P (α, gα) `, and
S4 = ¬P (hβ1, β2) , P (α, gα) ` .

Then NTA (ϕ) = {S1, S2, S3, S4} and DNTA (ϕ) = {S1, S2, S3, S4}. The set of unification
candidates for S1 and S2 is {(P (α, fα) ,¬P (hβ1, β2))} and the union over all sets of
unification candidates I =def

⋃
S,S′∈DNTA(ϕ) UC (S, S′) is

{ (P (α, fα) ,¬P (a, β1)) , (P (α, fα) ,¬P (hβ1, β2)) ,
(P (α, gα) ,¬P (a, β1)) , (P (α, gα) ,¬P (hβ1, β2)) }.

Since all interacting literals also occur as a unification candidate, we have to define a
method constructing the common shape. In general, this is an anti-unification problem.
In this particular case, we have to take care of the grammar G in consideration. While a
general anti-unification problem would replace arbitrary terms by an arbitrary number of
variables, we have to ensure that the common shape, i.e. the resulting literal which might
occur in a cut formula, can be mapped on the interacting literals via substitutions that
correspond to the grammar. Moreover, the common shape is not allowed to contain any
of the eigenvariables/nonterminals. For this reason, we introduce a specific unrestricted
tree grammar (see Definition 16). It is based on the given SΠ2-G, but with a slightly
changed signature and new production rules. We add the two variables x and y to the
signature, i.e. as terminals, in order to have fresh and common variables for the cut
formula. Note that we only consider Π2-cut formulas with two quantified variables. The
variable x will correspond to the universally quantified variable and the variable y will
correspond to the existentially quantified.

Concerning the new production rules, the most important ones are collected in the sets
S2 and S3. When comparing with the original SΠ2-G, we recognize that terms can be
mapped to the universally quantified variable x if the terms correspond to substitutions

86

4.7. The Unification Method

of x in the proof of the potential cut formula. Analogously, terms can be mapped to y if
they correspond to substitutions of y in the proof of the potential cut formula. Since
several of those terms are terminals (and not nonterminals) in the considered grammar,
we have to use an unrestricted tree grammar.

Definition 40 (See Definition 24 of [LL18]) Let G =def 〈τ,N,Σ,Pr〉 be a SΠ2-G
with the nonterminals τ, β1, . . . , βp, and α. We define the unrestricted tree grammar
G∗ =def 〈τ,N,Σ∗,Pr∗〉 by

Σ∗ def= Σ ∪ {x, y} and Pr∗ def= S1 ∪ S2 ∪ S3 with

S1
def= {ρ | ρ is an F -production or a G-production}

(see Definition 30),

S2
def= {α→ x, r1 → x, . . . , rq → x}, and

S3
def= {s1α→ y, . . . , spα→ y, β1 → y, . . . , βq → y}.

Example 21 The SΠ2-G G of Example has the production rules

τ → hFα | hGβ1β2,

α→ a | hβ1,

β2 → fhβ1 | ghβ1, and
β1 → fa | ga.

Then the corresponding grammar G∗ has the production rules

τ → hFα | hGβ1β2,

α→ x, a→ x, hβ1 → x,

β2 → y, β1 → y, fα→ y and
gα→ y.

Note that in a proof of a potential cut formula with the two quantified variables x and y
will eventually be instantiated such that the pair (x, y) will be replaced with:

(α, fα) , (α, gα) , (a, β1) , (hβ1, β2) .

The substitutions of G∗ concerning α, β1, and β2 result from turning these substitutions
around. Instead of replacing x with α, we substitute x for α, i.e. α→ x.

Concerning the definition of the unification method, we need a notion of a derivation
applied to a literal. A derivation d consists of a finite number of positions p1, . . . , pn and
production rules r1 → s1, . . . , rn → sn. If we apply d to a literal L, i.e. L|d, then we

87

4. Π2-Cut Introduction

replace sequentially the terms ri with si at the positions pi for i = 1 until i = n. Let Lj
be the literal after the j-th replacement. If pj+1 does not occur in Lj , then Lj+1 = Lj .

Now, that we have settled the framework for the construction of common shapes of
interacting literals, from now on called G∗-unified literal, we can define the method that
computes G∗-unified literals. For this reason, we consider all unification pairs and try to
unify them according to the fresh grammar G∗. In case this unification process succeeds,
we add the G∗-unified literal to set which in the end will define a new starting set for the
Π2-cut introduction algorithm. Since this unification corresponds to the grammar G∗, we
call it G∗-unification.

Definition 41 (G∗-Unifiability; See Definition 25 of [LL18]) Assume a Π2-SEHS
with the corresponding reduced representation R and SΠ2-G G. Let S, S′ ∈ DNTA (ϕ) for
a maximal G3c-derivation ϕ of R, (L,M) ∈ UC (S, S′), and G∗ = 〈τ,N,Σ∗,Pr∗〉 as in
Definition 40.

We say (L,M) is G∗-unifiable if there are derivations d and e in G∗ such that L|d = M |e
and V (L|d) ⊆ {x, y}. Furthermore, we call L|d the G∗-unified literal of (L,M).

We call R G∗-unifiable if we find for every S ∈ DNTA (ϕ) an S′ ∈ DNTA (ϕ) such that
there is a G∗-unifiable unification candidate in UC (S, S′).

Formally, we define the maximal set of G∗-unified literals as

MGUL
(
S, S′

) def= {L | L is a G∗-unified literal of (L1, L2) ∈ UC
(
S, S′

)
}.

Example 22 Consider the unification pair (P (α, fα) ,¬P (hβ1, β2)) of Example 20 and
the grammar G∗ of Example 21. The pair is G∗-unifiable and the G∗-unified literal is
P (x, y). The necessary substitutions are

α→ x, fα→ y, hβ1 → x, β2 → y.

In the construction of a starting set for a unifiable reduced representation R, we use all
possible clauses that consist of G∗-unified literals.

Definition 42 (Starting Set for G∗-unifiable Sequents; See Definition 26 of
[LL18]) Let R =def [F [~x\~ri]]ai=1 ` [G[~y\~sj]]bj=1 be a G∗-unifiable reduced representation
of a Π2-SEHS with the corresponding SΠ2-G G. Let ϕ be a fixed maximal G3c-derivation.
For each pair of leaves S, S′ ∈ DNTA (ϕ), we defined in Definition 41 the maximal set of
G∗-unifiable literals MGUL (S, S′). Then the starting set for the G∗-unifiable sequent R
(shorthand: starting set for G∗-unifiable sequents) is defined as

U(R) def= {C | C ⊆
⋃

S,S′∈DNTA(ϕ)
MGUL

(
S, S′

)
}.

88

4.7. The Unification Method

Example 23 Let R and I be as in Example 20 and G∗ be as in Example 21. The
starting set U(R) for the G∗-unifiable sequent R is A =def {{P (x, y)}}. The set of
solution candidates Sol (A) is {A} and hence, the only solution in the starting set is
∀x∃yP (x, y).

The benefit of the starting set for G∗-unifiable sequents is the low costs of its computation
and the relative small size in comparison with the naive starting set. Indeed, the set
can be computed in polynomial time. Moreover, the computation of the set of solution
candidates, when considering all possible clauses consisting of a given set of literals as in
the naive starting set and the starting set for G∗-unifiable sequents, is at least exponential
in the number of literals. This is due to the computation of the powerset of the set of
literals.

Lemma 5 (See Lemma 3 of [LL18]) Let R be the reduced representation of a given
Π2-SEHS with the corresponding SΠ2-G G, l be the number of atoms occurring in R,
and m be the length of an encoding of R. Let p and q be the ∀-multiplicity and the
∃-multiplicity, respectively. Then the starting set for G∗-unifiable sequents U(R) can be
constructed in polynomial time O

(
l2 ·m3 · (p+ q)

)
.

Proof:
Note that the set of pairs we can build by picking two atoms of R is a superset of all
unification candidates and that checking whether an element of this superset is actually
a unification candidate can be done in less than m2 operations. The size of this superset
is l2. For each pair, we have to compare at most m symbols in order to unify them. The
unification itself compares two symbols with each other or checks whether the symbols
can be replaced simultaneously with x (there are 2 ·(p+ 1) cases) or y (there are 2 ·(q + p)
cases). Altogether, there exists a constant a such that a ·

(
l2 ·m3 · (p+ q)

)
is an upper

bound to the number of operations to construct the starting set for G∗-unifiable sequents
U(R). 2

As mentioned before, the starting set for G∗-unifiable sequents suffices to find balanced
solutions. Balanced solutions ensure that every solution of an α-problem or a β-problem
contains at least one (T ′1),(T ′2),(T1), or (T2) as in Definition 35 and Definition 37. That
is, we avoid the case where the cut formula interacts with itself.

Definition 43 (Balanced Solution; See Definition 27 of [LL18]) Let

S def= [F [~x\~ri]]ai=1,
q∨

k=1
Xαrk →

p∧
k=1

Xskβk ` [G[~y\~sj]]bj=1

89

4. Π2-Cut Introduction

be a Π2-SEHS, C be a finite set of sets of literals not containing the variables α, β1, . . . , βp,
and C =def DNF (C) such that

H def= [F [~x\~ri]]ai=1,
q∨

k=1
(λxy.C)αrk →

p∧
k=1

(λxy.C) skβk ` [G[~y\~sj]]bj=1

is a tautology. Let ϕ be a maximal G3c-derivation of H. We say [X\λxy.C] is a balanced
solution if, in all axioms of H, at least one of the active formulas is not an ancestor of
C in ϕ. With a slight abuse of language, we also say C or C is a balanced solution.

Example 24 We can define a very simple example of a Π2-SEHS where the solution is
not balanced. For this reason, we consider the obviously provable sequent

S
def= ∀xP (x, fa) ` ∃yP (a, y) .

By instantiating x with a and y with fa we obtain a G3c-axiom. Nonetheless, we can
define the Π2-SEHS

S def= P (α, fa) , Xαfα→ Xaβ ` P (a, β) .

A solution of the problem is

σ =def [X\λxy.P (x, fa) ∧ (¬P (a, fx) ∨ P (a, y))].

with the corresponding Π2-EHS

H def= P (α, fa) , P (α, fa) ∧ (¬P (a, fα) ∨ P (a, fα))→
P (a, fa) ∧ (¬P (a, fa) ∨ P (a, β)) ` P (a, β) .

Consider the maximal G3c-derivation depicted in Figure 4.9. Then the solution σ is not
a balanced solution since the active formulas of

Γl, P (α, fa) , P (a, fα) ` P (a, fα) ,∆l

and
Γr, P (a, fa) ` P (a, fa) , P (a, β) ,∆r

are all ancestors of the instantiations of the cut formula, i.e. of

P (α, fa) ∧ (¬P (a, fα) ∨ P (a, fα))

or
P (a, fa) ∧ (¬P (a, fa) ∨ P (a, β)) .

90

4.7. The Unification Method

Figure 4.9: Proof with a non-balanced Π2-cut formula; Example 24

ϕl ϕr
l :→ H

of H where

ϕl
def= Ax

Sl

Ax Γl, P (α, fa) , P (a, fα) ` P (a, fα) ,∆l
r :¬

Γl, P (α, fa) ` ¬P (a, fα) , P (a, fα) ,∆l
r :∨ Γl, P (α, fa) ` ¬P (a, fα) ∨ P (a, fα) ,∆l

r :∧ Γl, P (α, fa) ` P (α, fa) ∧ (¬P (a, fα) ∨ P (a, fα)) ,∆l

ϕr
def=

Ax Γr, P (a, fa) ` P (a, fa) , P (a, β) ,∆r
l :¬ Γr, P (a, fa) ,¬P (a, fa) ` P (a, β) ,∆r

Ax
Sr

l :∨ Γr, P (a, fa) ,¬P (a, fa) ∨ P (a, β) ` P (a, β) ,∆r
l :∧ Γr, P (a, fa) ∧ (¬P (a, fa) ∨ P (a, β)) ` P (a, β) ,∆r

Γl
def= {∀xP (x, fa)},

Γr
def= {∀xP (x, fa) ,∀x∃y.P (x, fa) ∧ (¬P (a, fx) ∨ P (a, y))},

∆l
def= {∃y.P (α, fa) ∧ (¬P (a, fα) ∨ P (a, y)) ,∃yP (a, y)},

∆r
def= {∃yP (a, y)},

Sl
def= Γl, P (α, fa) ` P (α, fa) ,∆l, and

Sr
def= Γr, P (a, fa) , P (a, β) ` P (a, β) ,∆r.

Indeed, whenever a Π2-SEHS has a balanced solution, we find a solution when taking
the starting set for G∗-unifiable sequents as starting set. That does not mean that every
literal of a balanced solution is the G∗-unified literal of two interacting literals, but we
will find a solution consisting only of such literals.

Theorem 17 (See Theorem 9 of [LL18]) Let

S def= [F [~x\~ri]]ai=1,
q∨

k=1
Xαrk →

p∧
k=1

Xskβk ` [G[~y\~sj]]bj=1

be a Π2-SEHS with the reduced representation R and SΠ2-G G. Assume that S has a
balanced solution. Then the set of solution candidates Sol (U(R)) (defined as in Definition
37) is not empty where U(R) is the starting set for the G∗-unifiable sequent R as in
Definition 42.

91

4. Π2-Cut Introduction

In order to prove the theorem, we present the same result for the naive starting set
instead of the starting set for G∗-unifiable sequents U(R) and conclude that Sol (U(R))
is also not empty. Unlike the starting set for G∗-unifiable sequents, the naive starting set
collects “naively” all literals that might be relevant for the construction of a balanced
solution. That is why the naive starting set is not useful for practical purposes.

Definition 44 (Naive Starting Set; See Definition 28 of [LL18]) Let R be a
reduced representation of a Π2-SEHS and ϕ be a maximal G3c-derivation of R. We
define for each leaf S ∈ DNTA (ϕ) of the form A(S) ◦B(S) ◦N(S) the sets

NA (S) def= {L | ∃i ∈ Nq (λxy.L)αri ∈ A(S) ∪N(S) ∧ V (L) ⊆ {x, y}} and

NB (S) def= {L | ∃i ∈ Np (λxy.L) siβi ∈ B(S) ∪N(S) ∧ V (L) ⊆ {x, y}}.

Then
N (R) def= {C | C ⊆

⋃
S∈DNTA(ϕ)

NA (S) ∪NB (S)}

is called the naive starting set.

Example 25 In comparison to the starting set for G∗-unifiable sequents, the naive
starting set is much bigger. For this reason, we consider again the reduced representation
R and the set of non-tautological axioms DNTA (R) of Example 20. Then the naive
starting set N (R) is

{P (x, fx) , P (x, gx) , P (x, y) , P (a, y) , P (hy, y)}.

By construction of the naive starting set, the existence of a solution candidate, i.e. a
solution by Theorem 14, in the presence of a balanced solution is a direct consequence of
Theorem 15. We only need to show that every literal of the balanced solution occurs in
the naive starting set.

Corollary 3 (See Corollary 1 [LL18]) Let

S def= [F [~x\~ri]]ai=1,
q∨

k=1
Xαrk →

p∧
k=1

Xskβk ` [G[~y\~sj]]bj=1

be a Π2-SEHS with the reduced representation R. Assume that S has a balanced solution.
Then the set of solution candidates Sol (N (R)) (defined as in Definition 37) is not empty
where N (R) is the naive starting set as in Definition 44.

Proof:
Let [X\λxy.C] be a balanced solution where C is in DNF. Definition 43 of a balanced
solution implies that every literal L of C is either an element of N(S) ∪N(S) for a leaf

92

4.7. The Unification Method

S ∈ DNTA (ϕ) of the maximal G3c-derivation ϕ of the Π2-SEHS or it is an element of
the sets NA (S) and NB (S). For a literal L of N(S) ∪N(S), we can define λxy.L even
though L is variable free. Hence, L is an element of NA (S) or NB (S). By Theorem 15,
C ∈ Sol (N (R)) where C is the set of clauses corresponding to C. 2

Given a solution which is a subset of the naive starting set, we define a new solution that
is a subset of the starting set for G∗-unifiable sequents.

Lemma 6 (See Lemma 4 of [LL18]) Assume that Sol (N (R)) contains a balanced
solution for a given Π2-SEHS, for a maximal G3c-derivation ϕ of its reduced represen-
tation R, and for the naive starting set N (R). Let G be the corresponding SΠ2-G. Then
Sol (U(R)) 6= ∅ for the starting set U(R) for G∗-unifiable sequents.

Proof:
Let C ∈ Sol (N (R)) be a balanced solution. We choose an arbitrary literal L of C that is
not an element of any set of literals in U(R). If there are none, all literals of C occur in
U(R). Since we consider in U(R) all possible sets with a finite number of literals, C is an
element of U(R), Sol (U(R)) 6= ∅, and we are done. Otherwise, we distinguish between
two cases

L ∈
⋃

S∈DNTA(ϕ)
NA (S) and {L} /∈ U(R) (4.6)

L ∈
⋃

S∈DNTA(ϕ)
NB (S) and {L} /∈ U(R) . (4.7)

First, we consider (4.6). In this case, there is a leaf S ∈ DNTA (ϕ) and there is a j ∈ Nq
such that

(λxy.L)αrj ∈ A(S) ∪N(S) .
By {L} /∈ U(R), there is no leaf S′ such that M ∈ B(S′)∪N(S′) where ((λxy.L)αrj ,M)
is G∗-unifiable with the G∗-unified literal L. If C ∈ C and C = {L} is a unit clause then
the sequent

((λxy.L) s1β1, . . . , (λxy, L) spβp `) ◦ S
is not a tautology and C is not a solution. Thus if C ∈ C and C contains L, it cannot be
a unit clause. So we define the new clause D = C\{L} and we know that D is not empty.
A maximal G3c-derivation of the sequent T ◦ (` D)1, where D = (C\{C}) ∪ {D} and T
is an arbitrary element of DNTA (ϕ), contains only axioms also appearing in T ◦ (` C).
Hence, the new sequent is also a tautology and D is a solution of the α-problem.

Now, we consider the sequent (D `) ◦ T for an arbitrary T ∈ DNTA (ϕ). If it were not a
tautology, there would be a leaf S′ ∈ DNTA (ϕ) and an i ∈ Np such that

(λxy.L) siβi ∈ B
(
S′
)
∪N

(
S′
)

1For a set of clauses C and a sequent S, we abbreviate S ◦ (` DNF (C)) with S ◦ (C)

93

4. Π2-Cut Introduction

(Note that the given solution is a balanced solution. Otherwise, we would have to consider
the case that (λxy.L) siβi appears in D, too.). But then there exists the G∗-unifiable pair(

(λxy.L)αrj , (λxy.L) siβi
)

and L is an element of U(R) contradicting our assumption; we conclude that (D `) ◦ T
is a tautology, i.e. D is also a solution of the β-problem.

By using this procedure, we can erase all literals in C that are elements of⋃
S∈DNTA(ϕ)

NA (S)

but do not appear in a clause of U(R).

Now let us consider (4.7). In this case there is a leaf S ∈ DNTA (ϕ) and there is a j ∈ Np
such that (λxy.L) sjβj ∈ B(S) ∪N(S). Given that {L} /∈ U(R), there is no leaf S′ such
that M ∈ A(S′) ∪ N(S′) where

(
M, (λxy.L) sjβj

)
is G∗-unifiable with the G∗-unified

literal L. Let C be a clause containing L. Assume C is the only clause in C then C is not
a solution because S ◦ (` C) contains the branch

S ◦ (` (λxy.L)αr1, . . . , (λxy.L)αrq)

which is not a tautology. Therefore, C does not only contain the clause C and we can
define D = C\{C}. Since C contains more than one clause, D is not empty. A maximal
G3c-derivation of the sequent T ◦ (D `), where T is an arbitrary element of DNTA (ϕ),
only contains axioms also appearing in S ◦ (C `). Hence, the new sequent is also a
tautology and D is a solution of the β-problem.

Now we consider the sequent T ◦ (` D) for an arbitrary T ∈ DNTA (ϕ). If it were not a
tautology, there would be a leaf S′ ∈ DNTA (ϕ) and an i ∈ Nq such that (λxy.L)αri ∈
A(S′) ∪N(S′). But then there exists the G∗-unifiable pair(

(λxy.L)αri, (λxy.L) sjβj
)
.

So we obtain L ∈ U(R) contradicting our assumption; again we conclude that T ◦ (` D)
is a tautology, i.e. D is a solution of the α-problem.

With this procedure, we can erase all literals of C that are elements of⋃
S∈DNTA(ϕ)

NB (S)

but do not appear in a clause of U(R).

By an exhaustive application of these two methods, we get a solution that is a subset of
U(R). 2

94

4.8. Generalizing the Cut Formula

Since the naive starting set is sufficient to find balanced solutions and since we know that
the existence of a solution for the naive starting set guarantees a solution for the starting
set for G∗-unifiable sequents, we can finally prove Theorem 17.

Proof of Theorem 17
The proof can be obtained by combining Corollary 3 and Lemma 6. 2

Together with the results of Section 4.6, i.e. Theorem 16, we solved the problem of finding
Π2 cuts for SΠ2-G for the class of balanced solutions.

4.8 Generalizing the Cut Formula

In the previous sections, we considered (for the sake of simplicity) only cut formulas of
the form ∀x∃yC (x, y) for single variables x, y. This section’s purpose is to generalize the
approach to the construction of cut formulas of the form ∀~x∃~yC (~x, ~y) for variable tuples
~x, ~y. Most definitions and proofs remain almost unchanged by replacing terms by tuples
of terms. We indicate the changes in the most important definitions and theorems and
reformulate the crucial definitions of the previous sections.

Let ~x be a tuple of variables and ~r be a tuple of terms such that a (~x) = a (~r) = l. We
write [~x \~r] for the substitution [~x |1\~r |1] . . . [~x |l\~r |l]. Let ~s be a tuple of terms (possibly)
containing variables of ~x and a (~s) = m. Then we write ~s~r for (~s |1[~x \~r], . . . , ~s |m[~x \~r]).

To extend the notion of grammars, we have to allow production rules to handle tuples.
A production rule of the form ~α → ~r applied to a term s is the replacement of the
nonterminals α1, . . . , αa(~α) according to [~α \~r], i.e. we substitute ri for αi at a designated
position.

Definition 45 (SΠ2-G with Tuples of Variables; See Definition 29 of [LL18])
Let G be a totally rigid acyclic tree grammar of the form 〈τ,N,Σ,Pr〉 with N =
{τ, ~α, ~β1, . . . , ~βp} and a

(
~βi
)

= a
(
~βj
)
for i, j ∈ Np. We call G a schematic Π2 grammar

with tuples of variables (shorthand: SΠ2-GT) if the production rules are of the following
form:

τ → hF~t1 | . . . | hF~tl | hG~tl+1 | . . . | ~tm,
~α→ ~s1 | . . . | ~sp, and
~βi → ~r1~si | . . . | ~rq~si for i ∈ Np

95

4. Π2-Cut Introduction

where

V
(
~ti
)
⊆ V (~α) for i ∈ Nl,

V
(
~ti
)
⊆ V

(
~β1
)
∪ . . . ∪ V

(
~βp
)

for i ∈ (Nm\Nl) ,

V (~si) ⊆ V
(
~β1
)
∪ . . . ∪ V

(
~βi−1

)
for i ∈ (Np\N1) , and

V (~s1) = ∅.

We call p the ∀-multiplicity, q the ∃-multiplicity and denote a (~α) by q∀ and a
(
~β1
)
by

q∃.

Example 26 (See Example 8 of [LL18]) Let a, b, c be constants, f, g, h unary func-
tions, hF a function with arity six, hG a function with arity four, and ~α = (α1, α2) , ~β =
(β1, β2) , ~γ = (γ1, γ2). We define the SΠ2-GT G = 〈τ,N,Σ,Pr〉 with τ being the desig-
nated starting symbol, N =def {τ, ~α, ~β,~γ}, a (~α) = a

(
~β
)

= a (~γ) = 2, and

Pr def=

{ τ → hF (α1, α1, α2, α2, α2, α2) | hG (β1, β2, γ1, γ2)
~α→ (a, b) | (c, c)
~γ → (fc, gc) | (fc, hc)
~β → (fa, fb) | (fa, hb) }.

The language consists of the words

hF (a, a, b, b, b, b) , hF (c, c, c, c, c, c) ,
hG (fa, fb, fc, gc) , hG (fa, fb, fc, hc) ,
hG (fa, hb, fc, gc) , hG (fa, hb, fc, hc) .

A corresponding Π2-EHS with tuples of variables (an extended Herbrand sequent for Π2
cuts with tuples of variables or shorthand: Π2-EHST) can be extracted from the proof
depicted in Figure 4.10. The proven sequent is of a similar structure as the proven sequent
of Example 14, but with two predicate symbols. The formula Γ gives us witnesses for the
second argument of P and Q when the first argument is known. This is generalized in the
cut formula that formalizes the existence of witnesses. Hence, we can prove the special
case in which we assume the first argument of either P or Q to be certain constants, i.e.
∆ is provable.

Since the Π2-EHS with tuples of variables is exactly as in Definition 28, but with tuples of
variables, we omit its definition here and proceed with the schematic extended Herbrand
sequent. Note that the Π2-EHS with tuples of variables is a solved schematic extended
Herbrand sequent for Π2 cuts with tuples of variables which can be used to give a precise
definition.

96

4.8. Generalizing the Cut Formula

Figure 4.10: Proof with a Π2 cut with tuples of quantifiers; Example 26

...
Γ ` ∀x1, x2∃y1, y2C,∆

...
Γ, ∀x1, x2∃y1, y2C ` ∆

Cut Γ ` ∆

where

Γ def= ∀x, y.P (x, fx) ∨Q (y, gy) ∨Q (y, hy) ,

∆ def= ∃z1, . . . , z4. (P (a, z1) ∨Q (b, z2)) ∧ (P (c, z3) ∨Q (c, z4)) ,

C
def= P (x1, y1) ∨Q (x2, y2) ,

and

P (α1, fα1) ∨Q (α2, gα2) , P (α1, fα1) ∨Q (α2, hα2) ,
P (a, β1) ∨Q (b, β2) , P (c, γ1) ∨Q (c, γ2)

are all quantifier-free instantiations of the cut formula in the proof,

P (α1, fα1) ∨Q (α2, gα2) ∨Q (α2, hα2) ,
(P (a, β1) ∨Q (b, β2)) ∧ (P (c, γ1) ∨Q (c, γ2))

are all quantifier-free instantiations of the context Γ ` ∆ in the proof.

Definition 46 (Π2-SEHS with Tuples of Variables; See Definition 30 of [LL18])
Let S be the provable sequent ∀~z1F ` ∃~z2G and Hs be a Herbrand term set of S. Let
G = 〈τ,N,Σ,Pr〉 be a SΠ2-GT as in Definition 45 with the nonterminals N =def

{τ, ~α, ~β1, . . . , ~βp} and the production rules

Pr def=
{ τ → hF~t1 | . . . | hF~tl | hG~tl+1 | . . . | ~tm,
~α→ ~s1 | . . . | ~sp,
~βi → ~r1~si | . . . | ~rq~si for i ∈ Np }

97

4. Π2-Cut Introduction

where

V
(
~ti
)
⊆ V (~α) for i ∈ Nl,

V
(
~ti
)
⊆ V

(
~β1
)
∪ . . . ∪ V

(
~βp
)

for i ∈ (Nm\Nl) ,

V (~ri) ⊆ V (~α) ,

V (~si) ⊆ V
(
~β1
)
∪ . . . ∪ V

(
~βi−1

)
for i ∈ (Np\N1) , and

V (~s1) = ∅.

Let L (G) be the language of G generated only by rigid derivations, Hs ⊆ L (G), and X be
a (q∀ + q∃)-place predicate variable. Then we call the sequent

S (S) def= [F [~z1\~ti]]li=1,
q∨

k=1
X~α~rk →

p∧
k=1

X~sk~βk ` [G[~z2\~tj]]mj=l+1,

a schematic extended Herbrand sequent for Π2 cuts with tuples of variables (shorthand:
Π2-SEHST) corresponding to G and S. Furthermore, we call

[F [~z1\~ti]]li=1 ` [G[~z2\~tj]]mj=l+1

the reduced representation of S (S).

Example 27 (See Example 9 of [LL18]) Let G be as in Example 26. Then we can
define the Π2-SEHST

P (α1, fα2) ∨Q (α2, gα2) ∨Q (α2, hα2) ,
(Xα1α2fα1gα2 ∨Xα1α2fα1hα2)→ (Xabβ1 ∧Xccγ1γ2)
` (P (a, β1) ∨Q (b, β2)) ∧ (P (c, γ1) ∨Q (c, γ2)) .

The corresponding end sequent is Γ ` ∆ for Γ and ∆ as in Example 26.

Definition 47 (See Definition 31 of [LL18]) Let S be a provable sequent, G a SΠ2-
GT with the nonterminals {τ, ~α, ~β1, . . . , ~βp} as in Definition 45, and S the corresponding
Π2-SEHST. Let the sequent S[X\λ~x~y.C] be a tautology where C may not contain any
variable in ~α or ~βi with i ∈ Np. Then we call [X\λ~x~y.C] a solution of the Π2-SEHST
S. With a slight abuse of language, we call C or λ~x~y.C a solution.

Example 28 (See Example 10 of [LL18]) A solution of the Π2-SEHST of Example
26 is

[X\λx1x2y1y2.P (x1, y2) ∨Q (x2, y2)].

98

4.8. Generalizing the Cut Formula

Obviously, Definition 47 generalizes the concepts of the previous sections. For q∀ = 1
and q∃ = 1, the generalization tallies with the method described in the Sections 4.2 – 4.4.
Furthermore, the rest of the procedure has only to be adjusted to operate with tuples
of variables. The starting set with tuples of variables of quantifiers now contains the
designated variables x1, . . . , xq∀ and y1, . . . , yq∃ and may not contain variables of ~α or ~βj
with i ∈ Np (compare to Definition 32). The set of possible sets of clauses with tuples
of variables, the set of refined allowed clauses with tuples of variables, and the set of
solution candidates with tuples of variables can be defined accordingly.

The main theorem for the characterization generalizes to the case of blocks of quantifiers.

Theorem 18 (See Theorem 10 of [LL18]) Let

S def= [F [~z1\~ti]]li=1,
q∨

k=1
X~α~rk →

p∧
k=1

X~sk~βk ` [G[~z2\~tj]]mj=l+1

be a Π2-SEHST corresponding to a Herbrand sequent S of a cut-free proof of T =def
∀~z1F ` ∃~z2G and a grammar G covering the Herbrand term set of S. Let Sol (A) 6= ∅ be
the set of solution candidates with tuples of variables for a given starting set with tuples
of variables A, and C ∈ Sol (A). Let V (C) ⊆ V (~x) ∪ V (~y). Then there exists a proof of
T with one cut and the cut formula ∀~x∃~yDNF (C).

Moreover, we can easily adjust the unification method of Section 4.7 by replacing the
production rules of Definition 40 with

Pr∗ def= S1 ∪ S2 ∪ S3 with

S1
def= {ρ | ρ is a F -production or a G-production}

(see Definition 30),

S2
def= {~α→ ~x,~r1 → ~x, . . . , ~rq → ~x}, and

S3
def= {~s1~α→ ~y, . . . , ~sp~α→ ~y, ~β1 → ~y, . . . , ~βq → ~y}.

Then we can prove the non-emptiness of the set of solution candidates with tuples of
variables by assuming the existence of a balanced solution as in the simplified case.

Theorem 19 (See Theorem 11 of [LL18]) Let S =def ∀~z1F ` ∃~z2G, G be a SΠ2-GT,
and

S def= [F [~z1\~ti]]li=1,
q∨

k=1
X~α~rk →

p∧
k=1

X~sk~βk ` [G[~z2\~tj]]mj=l+1

be a Π2-SEHST for S and G with the reduced representation R. Assume that S has a
balanced solution σ. Then the set of solution candidates with tuples of variables Sol (U(R))
is not empty where U(R) is the starting set for the G∗-unifiable sequent R with tuples
(where we consider production rules for tuples).

99

4. Π2-Cut Introduction

4.9 Proof Compression

In Section 4.7 we have defined a method to find balanced solutions for Π2-SEHS. Here
we demonstrate their potential of proof compression via Π2 cuts. To this aim, we consider
the following sequence of sequents. Let n ≥ 2 be a natural number and

An
def= ∀x (P (x, f1x) ∨ . . . ∨ P (x, fnx)) ,

B
def= ∀x, y (P (x, y)→ P (x, fy)) ,

Zn
def= P (x1, fx2) ∧ P (fx2, fx3) ∧ . . . ∧ P (fxn−1, fxn) ,

Cn
def= ∀x1, . . . , xn (Zn → P (x1, gxn)) , and

D
def= ∃x, yP (x, gy) .

Then the sequents

Sn
def= An, B,Cn ` D (4.8)

are provable. Note that the examples of the Sections 4.2-4.6 are often variants of some
instance of Sn, mostly of S2. The intuition behind the sequents stays the same: An
guarantees witnesses for the second argument of P which can be used to find instantiations
of Zn. This becomes more apparent when we consider a proof with cut. For every variable
x, we find a witness y such that P (x, fy) is true. Since the sequents

An, B ` ∀x∃yP (x, fy)
∀x∃yP (x, fy) , Cn ` D

are provable, there is a proof with a single Π2 cut

...
An, B,Cn ` ∀x∃yP (x, fy) , D

...
An, B, Cn,∀x∃yP (x, fy) ` D

An, B,Cn ` D

As will be shown below, a minimal cut-free proof of Sn will at least exponentially
increase with respect to n whereas a proof with the displayed Π2 cut will only linearly or
polynomially increase. Furthermore, a sequence of SΠ2-Gs whose language covers the
Herbrand term set of the cut-free proof is constructed. The corresponding sequence of
Π2-SEHSs is solvable, where the solution is for each instance [X\λxy.P (x, fy)]. We
show that the method defined in Section 4.7 is able to find this solution since P (x, fy)
is a balanced solution.

Before we start to analyse the complexity of our example, we adjust the form of the
end-sequents Sn. In the presented method we require a sequent of the form ∀~xF ` ∃~yG.

100

4.9. Proof Compression

But as already mentioned we can transform each sequent into this format. Let A′n, B′,
C ′n, and D′ be the quantifier free part of An, B, Cn, and D (we rename the variables)

A′n
def= P (x1, f1x1) ∨ . . . ∨ P (x1, fnx1) ,

B′
def= P (x2, x3)→ P (x2, fx3) ,

C ′n
def= (P (y1, fy2) ∧ P (fy2, fy3) ∧ . . . ∧ P (fyn−1, fyn))→ P (y1, gyn) , and

D′
def= P (yn+1, gyn+2) .

Furthermore, let ~x =def (x1, x2, x3) be the tuple of the three variables occurring in A′n
and B′ and ~yn =def (y1, . . . , yn+2) be the tuples of the n + 2 variables occurring in C ′n
and D′. Let C ′n be the negation of C ′n, i.e.

C ′n
def= (P (y1, fy2) ∧ P (fy2, fy3) ∧ . . . ∧ P (fyn−1, fyn)) ∧ ¬P (y1, gyn) .

Then we can define equivalent sequents

S′n
def= ∀~x.A′n ∧B′ ` ∃~yn.C ′n ∨D′. (4.9)

From now on S′n will always refer to the rewritten sequence of sequents that is in the
correct form for the method presented in Section 4.7. Sn will refer to the original version.

4.9.1 Minimal Cut-Free Proofs

In this section we consider cut-free proofs of Sn for a fixed natural number n. For
convenience we will compute lower bounds on the complexity of minimal proofs of S′n
in terms of complexity measurements defined below. In particular, we will show that
minimal proofs of Sn always have a smaller complexity than minimal proofs of S′n no
matter which complexity measurement we choose. Moreover, by constructing minimal
bounds for the complexity of minimal proofs of Sn we also construct minimal bounds for
the complexity of minimal proofs of S′n.

Lemma 7 (See Lemma 5 of [LL18]) Let ϕn be a minimal proof of the sequent Sn
(see Equation (4.8)) in terms of quantifier (see Definition 10), inference (see Definition
11), or symbol (see Definition 12) complexity and χn be a minimal proof of the sequent S′n
(see Equation (4.9)) in prenex normal form in terms of quantifier, inference, or symbol
complexity, respectively then

|ϕn|ζ ≤ |χn|ζ

where ζ ∈ {i, q, s}.

Proof:
Each minimal proof of Sn can be transformed into a minimal proof of S′n since all

101

4. Π2-Cut Introduction

instantiations of variables in ϕn are also required in χn. Therefore, the only difference is
that in χn are additional inferences that correspond to the connectives in

A′n ∧B′,
C ′n ∨D′, and
C ′n

which do not exist in ϕn. 2

In order to compute the complexities of minimal proofs of Sn we have to show some
properties of minimal proofs. In a first step we show that in a minimal proof (with respect
to an arbitrary complexity measurement) all atoms that appear in an instantiation of
An, B, Cn, or D are active in an axiom. In a second step, we will show that every of the
mentioned formulas is instantiated at least once. This allows us to define a procedure
that constructs a minimal set of terms occurring in a minimal proof. The procedure then
assumes an instantiation of An that implies an instantiation of B and of a part of Cn
which then implies some instantiations of An and so on.

Lemma 8 (See Lemma 6 of [LL18]) Let ϕn be a minimal proof in terms of quantifier,
inference, or symbol complexity of the sequent Sn and

P (a, f1a) ∨ . . . ∨ P (a, fna) ,
P (b1, b2)→ P (b1, fb2) ,
(P (c1, fc2) ∧ P (fc2, fc3) ∧ . . . ∧ P (fcn−1, fcn))→ P (c1, gcn) ,
P (d1, gd2)

be instantiations of An, B, Cn, and D for some proof-specific terms a, b1, b2, c1, . . ., cn,
d1, and d2. Then there are axioms for each atom

P (a, f1a) , . . . , P (a, fna) , P (b1, b2) , P (b1, fb2) ,
P (c1, fc2) , P (fc2, fc3) , . . . , P (fcn−1, fcn) , P (c1, gcn) , and
P (d1, gd2)

in which the respective atom is active.

Proof:
The proof works for all four formulas in a similar way. We will only consider the formula

Aan
def= P (a, f1a) ∨ . . . ∨ P (a, fna) .

Assume there is an i ∈ Nn such that P (a, fia) is not active in any axiom. Then we can
order ϕn such that the l :∨-rules that apply to Aan are the rules in the new minimal proof

102

4.9. Proof Compression

χ that appear at the top of the corresponding proof tree. Let Aan,Γ ` ∆ be a sequent in
χ in which Aan appears. The provability implies that also P (a, fia) ,Γ ` ∆ is provable.
Hence, Γ ` ∆ is already tautological and we can drop all the l :∨-rules applied to Aan (and
even the instantiation rules). Thus, there is a proof with smaller quantifier, inference,
and symbol complexity which contradicts the assumption that ϕn was already minimal
in these terms. Hence, there is no such instantiation. 2

Remark 5 (See Remark 4 of [LL18]) Note that Lemma 8 does not describe a general
property of minimal proofs. Consider, for instance, the proof

Ax ∀x.P (x) ∧Q (x) , P (a) , Q (a) ` P (a)
l :∧ ∀x.P (x) ∧Q (x) , P (a) ∧Q (a) ` P (a)
l : ∀ ∀x.P (x) ∧Q (x) ` P (a)

of the sequent ∀x.P (x) ∧Q (x) ` P (a). The proof is minimal but the atom Q (a) is not
active.

In Lemma 8, we showed that for each instantiated formula An, B, Cn, or D the cor-
responding atoms have to be active in some axiom. Now, we show that each of these
formulas are instantiated at least once.

Lemma 9 (See Lemma 7 of [LL18]) Let ϕn be a proof of the sequent Sn. Then the
formulas

P (a, f1a) ∨ . . . ∨ P (a, fna) ,
P (b1, b2)→ P (b1, fb2) , and
(P (c1, fc2) ∧ P (fc2, fc3) ∧ . . . ∧ P (fcn−1, fcn))→ P (c1, gcn)

with some proof-specific terms a, b1, b2, c1, . . ., cn appear on the left side of some sequents
in ϕn and the formula

P (d1, gd2)

with some proof-specific terms d1, d2 appears on the right side of some sequent ϕn.

Proof:
Note that at least one formula has to be instantiated. Otherwise, there cannot be a
valid proof. By showing that an instantiation of an arbitrary formula enforces all other
formulas to be instantiated at least once we will complete the proof. This can easily
be seen by Lemma 8 and the facts that all potential atoms of An can only build valid
axioms with potential atoms of B (Γ, P (a, fia) ` P (b1, b2) ,∆ with a = b1 and fia = b2),

103

4. Π2-Cut Introduction

all potential atoms of B have to build axioms with An and Cn, and so on. In the end,
we have to instantiate An, B, Cn, and D. 2

Now we can describe sets of instantiations that belong to a minimal proof of Sn. We will
not write down the whole proof because of its large size. But by proving the minimality
of the number of instantiations we will implicitly give a sketch of the proof and show its
validity.

Lemma 10 (See Theorem 13 of [LL18]) Let n ≥ 2. Then the sets

A1
n

def= {a},

A2
n

def= {fh1a | h1 ∈ {f1, . . . , fn}},

Ai
n

def= {fhi−1 . . . fh1a | h1, . . . , hi−1 ∈ {f1, . . . , fn}},

A′n
def=

n−1⋃
i=1

Ai
n,

B′ def= {(r, fir) | r ∈ A′n ∧ i ∈ Nn},

C′n
def= { (r1, . . . , rn, r1, rn) | r1 = a ∧ r2 = h1r1 ∧ r3 = h2fr2 ∧ . . .

. . . ∧ rn = hn−1frn−1 ∧ h1, . . . , hn−1 ∈ {f1, . . . , fn} }, and

D′ def= {(a, r) | r = rn ∧ ∃r1, . . . , rn−1 (r1, . . . , rn−1, rn) ∈ C′n}

are instantiations of the formulas An, B, Cn, and D such that the corresponding fully
instantiated sequent S↓n is tautological and there is a minimal (in terms of quantifier,
inference, or symbol complexity) proof ϕn of Sn with the midsequent S↓n.

Proof:
By Lemma 9 we can assume an instantiation (r1, . . . , rn) of Cn. Let a =def r1. As atomic
subformulas of an instantiated formula in a minimal proof have to be active (see Lemma
8) we know that P (a, fr2) of

(P (a, fr2) ∧ P (fr2, fr3) ∧ . . . ∧ P (frn−1, frn))→ P (a, grn)

has to be active in an axiom. In an axiom, P (a, fr2) appears on the right side of the
sequent and hence, the only formula that can become P (a, fr2) on the left side of the
sequent is P (x, fy) of

B = ∀x, y (P (x, y)→ P (x, fy)) .

Then x has to be equal to a and y has to be equal to r2. By applying Lemma 8 again
we have to find the counterpart of P (x, y) = P (a, r2). Hence, there has to be an
instantiation of

An = ∀x (P (x, f1x) ∨ . . . ∨ P (x, fnx)) ,

104

4.9. Proof Compression

i.e.
P (a, f1a) ∨ . . . ∨ P (a, fna) .

Given that this is the only possibility we can conclude that there have to be instantiations
of B where x is equal to a and y is equal once to f1a, . . ., once to fn−1a, and once to
fna and instantiations of

Cn = ∀x1, . . . , xn (Zn → P (x1, gxn))
Zn = P (x1, fx2) ∧ P (fx2, fx3) ∧ . . . ∧ P (fxn−1, fxn)

such that x1 = a and x2 takes the same n terms as y in B. The term r2 of the first
assumed instantiation might actually be one of these instantiations, i.e. it might be f1a,
. . ., fn−1a, or fna.

So far we described A1
n, the parts of B′ where A′n is replaced with A1

n, the first two
elements of the tuples in C′n, and the first element of the tuples in D′. With the second
elements f1a, . . . , fna of the tuples in C′n we have to go through the same procedure as
we did with a. That is, we will get new instantiations of An, i.e. A2

n, a new part of B′ and
the third elements of the tuples in C′n. After n applications of this procedure, the sets of
the statement are fully constructed. Moreover, all atoms of the instantiated formulas
appear as an active formula in an axiom and we cannot drop a single instantiation without
making the proof invalid. Thus, the instantiations correspond to a minimal proof of Sn
in terms of quantifier complexity. As all proofs contain at least as many instantiations as
the given one there also has to be a corresponding minimal proof in terms of inference
and symbol complexity. 2

Finally, we can compute a lower bound for the various complexities of a minimal cut-free
proof of S′n. The lower bound is guaranteed by the minimal number of terms occurring
in a cut-free proof.

Theorem 20 Let ϕn be a minimal cut-free proof of S′n. Then

|ϕn|ζ ≥ nn

for ζ ∈ {i, q, s}.

Proof:
In Lemma 7, we proved that every minimal cut-free proof of S′n is larger with respect to
all the considered complexity measures in comparison to a minimal cut-free proof χ of
Sn. Hence, we only have to show that

|χ|ζ ≥ nn

for ζ ∈ {i, q, s}. By Proposition 2, we get

|χ|q ≥ nn

105

4. Π2-Cut Introduction

implies
|χ|i ≥ nn and |χ|s ≥ nn.

Therefore, we consider the sets of instantiations of Lemma 10 and the corresponding
Herbrand sequent S↓n:

|S↓n| =]A′n +]B′ +]C′n +]D′.

By

]A′n =
n∑
i=1

ni−1,

]B′ = (n+ 1) ·
n∑
i=1

ni−1,

]C′n = nn−1 +
n∑
i=1

ni−1, and

]D′ = nn−1 + 1

the complexity sums up to

|S↓n| = nn + 6 · nn−1 + 4 · nn−2 + . . .+ 4 · n+ 5 > nn

for n ≥ 3 and
|S↓n| = nn + 6 · nn−1 + 5 > nn

for n = 2. In any case, it follows that

|χ|ζ ≥ nn

and thereby
|ϕn|ζ ≥ nn

for ζ ∈ {i, q, s}. 2

4.9.2 A Proof Schema with a Π2 Cut

After computing a lower bound for the complexity of a minimal cut-free proof of S′n for a
fixed n we want to generate a cut formula by the method of Section 4.7 and analyse the
complexity of the corresponding proof schema with cut. Therefore, we define a schema
of SΠ2-Gs Gn. Following the intuition described in the beginning of this section, the end
sequent is represented with two terms: with hFn and with hGn . The first part contains
the eigenvariable/nonterminal α and will be used to prove the cut formula and the second
part contains the eigenvariables/nonterminals β1, . . . , βn−1 and will be proven by the cut
formula.

106

4.9. Proof Compression

Definition 48 (Schema of SΠ2-Gs) Let

Nn
def= {τ, α, β1, . . . , βn}

and

Prn
def=

{ τ → hFn (α, α, f1α) | . . . | hFn (α, α, fnα) ,
τ → hGn (a, β1, . . . , βn−1, a, βn−1) ,
α→ fβn−1 | . . . | fβ1 | a,

βn−1 → f1fβn−2 | . . . | fnfβn−2,

...
β2 → f1fβ1 | . . . | fnfβ1,

β1 → f1a | . . . | fna }

where hFn and hGn are function symbols that correspond to the λ-terms λ~x.A′n ∧B′ and
λ~y.C ′n ∨D′, respectively. We define the schema of grammars Gn =def 〈τ,Nn,Σn,Prn〉.

Remark 6 Note that the language L (Gn) of Gn for a fixed number n covers the Herbrand
term set of S↓n of the previous section.

Definition 49 (Schema of Π2-SEHSs) Let n be a fixed number and Gn as in Definition
48. Then

Sn
def=

[
(
λ~x.A′n ∧B′

)
ααfiα]ni=1,

n∨
k=1

Xαfkα→ Xfaβ1 ∧
n−1∧
k=2

Xfβk−1βk `
(
λ~y.C ′n ∨D′

)
aβ1 . . . βn−1aβn−1

is a Π2-SEHS for S′n with the reduced representation

Rn
def= [

(
λ~x.A′n ∧B′

)
ααfiα]ni=1 `

(
λ~y.C ′n ∨D′

)
aβ1 . . . βn−1aβn−1.

The Definitions 48 and 49 describe a problem to which we can apply the method of
Section 4.7 (see also Subsection 5.3.1). First, we apply a maximal G3c derivation ϕn to

107

4. Π2-Cut Introduction

the reduced representation Rn. Then we collect all leaves

{ P (α, hα) ,
{¬P (α, fiα) | i ∈ S}, {P (α, ffiα) | i ∈ Nn\S},
{¬P (a, fβ1) | j = 1},
{¬P (fβ1, fβ2) | j = 2}, . . . , {¬P (fβn−2, fβn−1) | j = n− 1},
{P (a, gβn−1) | j = n},
¬P (a, gβn−1) `
| h ∈ {f1, . . . , fn}, S ⊆ Nn, j ∈ Nn }

and all non-tautological ones

DNTA (ϕn) =

{ P (α, fkα) ,
{¬P (α, fiα) | i ∈ S}, P (α, ffkα) , {P (α, ffiα) | i ∈ Nn\ (S ∪ {k})},
{¬P (a, fβ1) | j = 1},
{¬P (fβ1, fβ2) | j = 2}, . . . , {¬P (fβn−2, fβn−1) | j = n− 1},
¬P (a, gβn−1) `
| k ∈ Nn, S ⊆ (Nn\{k}) , j ∈ Nn−1 }.

In each leaf there is a least one conjunct of A′n (first line of DNTA (ϕn)). Hence, if we
branch B′ with the corresponding term of the chosen disjunct only the branch containing
the succedent of this B′ is not a tautology (second line of DNTA (ϕn)). Given that each
leaf contains the instantiation of D′ (fifth line of DNTA (ϕn)) we have to look at the
branch containing the antecedent of the instantiation of C ′n. Otherwise the leaf is a
tautology. The antecedent is a conjunction that moves to the right of the sequent after
branching C ′n and therefore, we have to pick an arbitrary conjunct (third and fourth line
of DNTA (ϕn)).

We will not construct the whole set of unification candidates because most of them are
obviously not G∗-unifiable. The only interactive literals are P (α, ffiα) and ¬P (a, fβ1)
or P (α, ffiα) and ¬P (fβj , fβj+1) with i ∈ Nn, j ∈ Nn−2. The maximal set of G∗-unified
literals is independent from the chosen non-tautological leaf and consists of the single
literal P (x, fy). Then the starting set for G∗-unifiable sequents is

U(Rn) = {S | S ⊆ {P (x, fy)}} = {∅, P (x, fy)}

accordingly. We can ignore the empty set because Rn is not a tautology. The set of
possible sets of clauses (see Definition 35) is Cl (U(Rn)) = {{P (x, fy)}} and the set of
solution candidates (see Definition 37) is

Sol (U(Rn)) = {{P (x, fy)}}.

108

4.9. Proof Compression

Figure 4.11: Sketch of a schema of proofs with Π2 cut

...
Γ, [(λ~x.A′n ∧B′)ααfiα]ni=1 ` [P (α, ffiα)]ni=1,∃yP (α, fy) ,∃~y.C ′n ∨D′

l : ∀ ...
l : ∀

∀~x.A′n ∧B′ ` [P (α, ffiα)]ni=1,∃yP (α, fy) ,∃~y.C ′n ∨D′
r :∃ ...
r : ∀

∀~x.A′n ∧B′ ` ∀x∃yP (x, fy) ,∃~y.C ′n ∨D′ χ
Cut

∀~x.A′n ∧B′ ` ∃~y.C ′n ∨D′

with

χ
def=

Γ′, P (a, fβ1) , [P (fβi, fβi+1)]n−2
i=1 ` (λ~y.C ′n ∨D′) aβ1 . . . βn−1aβn−1,∆

r :∃ ...
r :∃

Γ′, P (a, fβ1) , [P (fβi, fβi+1)]n−2
i=1 ` ∃~y.C ′n ∨D′

l :∃ ...
l :∀

∀~x.A′n ∧B′,∀x∃yP (x, fy) ` ∃~y.C ′n ∨D′

where Γ, Γ′, and ∆ are redundant formulas created during the process of instantiating
the quantifiers.

Note that the set of solution candidates is independent from n. By Theorem 15 follows
that P (x, fy) is a solution and by Theorem 16 we find a proof with a single Π2 cut that
is ∀x∃yP (x, fy). Then we can define a proof of S′n as sketched in Figure 4.11.

In order to check its correctness we investigate the two sequents

[
(
λ~x.A′n ∧B′

)
ααfiα]ni=1 ` [P (α, ffiα)]ni=1 and

P (a, fβ1) , [P (fβi, fβi+1)]n−2
i=1 `

(
λ~y.C ′n ∨D′

)
aβ1 . . . βn−1aβn−1.

This corresponds to the α-problem and the β-problem. Note that DNTA (ϕn) can be
divided into two sets that are the non-tautological leaves of maximal derivations of
[(λ~x.A′n ∧B′)ααfiα]ni=1 ` and ` (λ~y.C ′n ∨D′) aβ1 . . . βn−1aβn−1. More precisely:

{ P (α, fkα) ,
{¬P (α, fiα) | i ∈ S}, P (α, ffkα) , {P (α, ffiα) | i ∈ Nn\ (S ∪ {k})}
| k ∈ Nn, S ⊆ (Nn\{k}) }

109

4. Π2-Cut Introduction

is the set of non-tautological leaves of the first sequent and

{ {¬P (a, fβ1) | j = 1},
{¬P (fβ1, fβ2) | j = 2}, . . . , {¬P (fβn−2, fβn−1) | j = n− 1},
¬P (a, gβn−1) `
| j ∈ Nn−1 }.

is the set of non-tautological leaves of the second sequent. The first set always contains a
literal of the form P (α, ffkα) with k ∈ Nn that occurs also in [P (α, ffiα)]ni=1. Therefore,

[
(
λ~x.A′n ∧B′

)
ααfiα]ni=1 ` [P (α, ffiα)]ni=1

is a tautology. Moreover, one of the literals of P (a, fβ1) , [P (fβi, fβi+1)]n−2
i=1 occurs in

the second set of non-tautological leaves proving that

P (a, fβ1) , [P (fβi, fβi+1)]n−2
i=1 `

(
λ~y.C ′n ∨D′

)
aβ1 . . . βn−1aβn−1

is a tautology. Since the considered sequents are subsequents of the sequents occurring
in the proof sketch with Π2 cut, we approve the correctness of the proof.

Finally, we can compute the size of a proof with a single cut and the cut-formula
∀x∃yP (x, fy).

Theorem 21 Let n be a natural number, Gn be as in Definition 48, and Sn be as in
Definition 49. Then there is a solution of Sn such that the corresponding proof ϕ′n fulfils
the following properties:

|ϕ′n|q = 4 · n+ 3,
|ϕ′n|i = 9 · n+ 3,
|ϕ′n|s ≤ 2 · p (n) · |ϕ′n|i + |ϕ′n|i

where p (·) is a polynomial.

Proof:
First we count the number of instantiations in the proof ϕ′n that was sketched above. Let
|A′n ∧B′| be the number of instantiations of ∀~xA′n ∧B′ of the left-hand side of the end
sequent S′n and let |C ′n ∨D′| be the number of instantiations of the right-hand side of
the end sequent S′n. Then

|A′n ∧B′| = n+ 2 and
|C ′n ∨D′| = n+ 2.

110

4.9. Proof Compression

The number of weak quantifier inferences applied to the cut formula or one of its ancestors
is 2 · n− 1. Hence, the number of weak quantifier inferences is

1 · n+ 2
+ 1 · n+ 2
+ 2 · n− 1
= 4 · n+ 3

proving the first property. For the second property, we count the separate G3c-rules,
occurring in the proof, independently. Let |ϕ|ζ with ζ being the label of a G3c-rule be
the number of appearances of ζ in ϕ. Then

|ϕ′n|l : ∀ + |ϕ′n|r : ∃ = 4 · n+ 3,
|ϕ′n|r : ∀ = 1,
|ϕ′n|l : ∃ = n− 1,
|ϕ′n|l :∧ = n,

|ϕ′n|r :∧ = n− 1,
|ϕ′n|l :∨ = n− 1,

|ϕ′n|r :∨ = 1,
|ϕ′n|l :→ = n,

|ϕ′n|r :→ = 0,
|ϕ′n|l :¬ = 0,

and
|ϕ′n|r :¬ = 1

and the number of inferences in ϕ′n sums up to

|ϕ′n|i = 9 · n+ 3.

To give an upper bound on the symbol complexity we have to compute the maximal
symbol complexity of the sequents appearing in the proof ϕ′n. Therefore, we will assume
a polynomial p (·) of one argument such that the maximal size of each sequent in the
proof is smaller than p (n). The existence of such a function can easily be proven. Note
that, considering the sequents in the premises and in the conclusion of a G3c-rule,
only in the weak quantifier rules the symbol complexity of the conclusion is smaller
than the symbol complexity of one of the premises. Therefore, the maximal symbol
complexity of a sequent occurring in ϕ′n can be bounded by the symbol complexity of a
sequent containing ∀~xA′n ∧ B′, ∀x∃yP (x, fy) ` ∀x∃yP (x, fy) , ∃~yC ′n ∨D′ and all of its
|ϕ′n|l : ∀ + |ϕ′n|r : ∃ + |ϕ′n|r : ∀ + |ϕ′n|l : ∃ instantiations occurring in ϕ′n. Thus, the degree of
p (·) is 2. Given p (·) we can define the upper polynomial bound

2 · p (n) · |ϕ′n|i + |ϕ′n|i,

i.e. for each of the |ϕ′n|i different G3c-rules there are at most 2 sequents as premises plus
the rules itself. 2

While the complexity in terms of logical inferences, in terms of weak quantifier inferences,
or in terms of symbol complexity is bigger than nn for the cut free proofs the introduction
of the Π2 cut decreases the complexity by an exponential factor.

111

CHAPTER 5
Implementation and Experiments

The method described in Section 4.7 is implemented in theGAPT (General Architecture
for Proof Theory) framework that is a collection of data structures, algorithms, parsers,
and other components common in proof theory and automated deduction [EHR+16].
The implementation can be found in all releases after version 2.5. GAPT is imple-
mented in Scala, licensed under the GNU General Public License, and available at
https://logic.at/gapt. At the web page of the GAPT system, a user manual is offered.
The code can also be found at the GitHub repository https://github.com/gapt/gapt.

In this chapter, we will discuss the implementation of the unification method (Section
5.1), an algorithm for the construction of SΠ2-Gs (Section 5.2), and experiments (Section
5.3). In each section, we consider version 2.9. of GAPT, the current one at the time of
writing.

5.1 An Implementation for the Construction of Π2-Cut
Formulas

In this section, we describe the most important parts of the implementation and necessary
background of the underlying GAPT system. We compare at first the input of the
proveWithPi2Cut method with Π2-SEHSs and SΠ2-Gs and explain afterwards the
gStarUnify method as well as the LiteralWithIndexLists class in more detail.
The description touches only the computation of a cut formula. For information about
the generation of SΠ2-Gs see Section 5.2.

5.1.1 The Pi2SeHs Type

The main function of the program is the

proveWithPi2Cut(endSequent: Sequent[Formula],

113

https://logic.at/gapt
https://github.com/gapt/gapt

5. Implementation and Experiments

seHs: Pi2SeHs,
y: Var, x: Var): (Option[LKProof])

method. The endSequent object is of type Sequent[Formula] where Formula is
a defined type of the GAPT system for the representation of formulas. Furthermore,
Sequent[A] is also a defined type of the GAPT system that represents a sequent of
objects of type A. Therefore, endSequent is just a representation of a provable sequent
for which we want to find a proof with a Π2 cut corresponding to the sequent S of
Definition 31.

New to the system is the Pi2SeHs class. It collects the information of a single SΠ2-G G
(see Definition 29) together with the reduced representation and defines several functions
for it. In addition to endSequent, the two classes contain all information of a Π2-SEHS.
In order to define a new Pi2SeHs object we require

• the reduced representation R,

• the universal eigenvariable α,

• the list of the existential eigenvariables β1, . . . , βp (starting with the smallest index
according to Definition 29, i.e. with the βi not occurring in the production rule of
another βj),

• the list of terms s1, . . . , sp according to Definition 29, and

• the list of terms r1, . . . , rq with α ∈ V (ri) for i ∈ Nq according to Definition 29.

The last two arguments of the proveWithPi2Cut method are optional. They allow the
user to name the quantified variables of the potential cut formula. The default values
are xCut and yCut unless those names are occupied. If they are already used or if the
names the user chose are already used, the algorithm will give them fresh similar names.

5.1.2 The Structure of the Algorithm

The proveWithPi2Cut method consists only of a call to the introducePi2Cut
method and a proof building part where a proof with cut is constructed if a cut formula
has been found. The introducePi2Cut method calls the gStarUnify method to
compute a set of literals which are used to construct potential cut formulas. In this
construction process, the LiteralWithIndexLists class is heavily used to check
whether a valid cut formula was found. In the following, we describe the steps of the
introducePi2Cut method.

114

5.1. An Implementation for the Construction of Π2-Cut Formulas

introducePi2Cut

The input of the introducePi2Cut method is an object of type Pi2SeHs and two
names for the variables in the cut formula. As the theory suggests, Pi2SeHs-objects
allow us the computation of

• the ∀-multiplicity and the ∃-multiplicity,

• all substitutions for the cut formula,

• the production rules of the SΠ2-G,

• the DNTA (ϕ) of a maximal G3c-derivation ϕ of the reduced representation, and

• the set of all literals occurring in DNTA (ϕ).

There is also a method to compute a Herbrand sequent. Note that, we store only
non-tautological leaves if they are not a superset of another non-tautological leaf (Every
solution of the subset is also a solution of the superset).

In a first step, introducePi2Cut calls the gStarUnify method asking for a set I of
G∗-unified literals corresponding to the SΠ2-G G defined by the Pi2SeHs object. We
postpone the discussion of gStarUnify to the next section and concentrate on the
introducePi2Cut method.

In a next step, we compute index lists for each literal of I. They consist of pairs of
numbers representing an index of a substitution and an index of a non-tautological leaf
S such that the literal with this specific substitution makes S tautological. A list of
the form {(2, 3) , (2, 4)} states that the leaf number 2 is tautological if we add the literal
substituted with the substitution represented by 3 and 4. In the implementation the list
is stored as {(2, (3, 4))}. Moreover, we distinguish between two index lists: the index list
with substitutions containing the eigenvariable α and the index list with substitutions
containing some of the eigenvariables β1, . . . , βp. Hence, one type of index list only
considers the α-problem while the other type considers the β-problem.

Assume a literal L with the index lists I and J where

• I considers the α-problem,

• I contains a pair (i, S) with non empty S for each leaf i,

• J considers the β-problem, and

• J contains a pair (i, S) with non empty S for each leaf i.

Obviously, L itself can be used to construct a cut formula since it solves the α-problem
and the β-problem. Usually, such a literal does not exist and we have to construct

115

5. Implementation and Experiments

clauses out of literals and sets of clauses out of clauses. The benefit of computing all the
index lists is that we can directly compute whether a new constructed clause or set of
clauses is a solution. Assume the two literals L1, L2 with the index lists I1, J1 and I2, J2,
respectively where

• I1, I2 consider the α-problem,

• I1 only contains a pair for the leaf with number 3, i.e. I1 = {(3, S)} with non empty
S,

• I2 only contains a pair for the leaf with number 4, i.e. I2 = {(4, S)} with non empty
S,

• J1, J2 consider the β-problem,

• J1 only contains a pair for the leaf with number 3, i.e. J1 = {(3, S)} with non
empty S, and

• J2 contains a pair (i, S) with non empty S for each leaf i.

Then we can assign new index lists I ′, J ′ to the clause L1 ∧ L2. On one hand, the
clause makes a leaf of the β-problem tautological if one of the literals made it already
tautological, i.e. J ′ = J1∪J2. In the given example, J ′ contains for each leaf i a pair (i, S)
with non empty S. On the other hand, the clause only makes a leaf of the α-problem
tautological if both literals made it already tautological, i.e. I ′ = I1 ∩ I2. In the given
example, I ′ is empty. In summary, we intersect the index lists for the α-problem and
union the index lists for the β-problem in the construction procedure of a new clause.

When constructing sets of clauses, we can again assign new index lists. For the same
reasons, we union the index lists for the α-problem and intersect the index lists for the
β-problem in the construction procedure of a new clause, i.e. we exchange intersections
with unions and vice versa. This is due to the symmetric behaviour of r :∧ and l :∨ as
well as r :∨ and l :∧.

As soon as a set of clauses, a clause, or a literal is found with index lists that contains a
pair (i, S) with non empty S for each non-tautological leaf i, the method terminates and
outputs this formula with renamed variables.

gStarUnify

One of the major contributions of the paper [LL18] was the introduction of the so called
G∗-unifiability. When we consider cut-introduction in general, the only restriction to a
potential cut formula is given by the signature. The G∗-unifiability gives us a method at
hand that yields a small number of literals that might occur in the cut formula. Thereby,
we lose the universality of the solution, i.e. we will only find a cut formula if there is a
balanced solution.

116

5.2. Computing SΠ2-Gs

In the gStarUnify method, we begin by partitioning all literals occurring in the non-
tautological leaves of the reduced representation in the sets alphaPos, alphaNeg,
betaPos, betaNeg, neutralPos, and neutralNeg. As the names suggest, they
consist of the literals that occur positively (Pos) or negatively (Neg) in a non-tautological
leaf and contain the eigenvariable α (alpha), one of the eigenvariables β1, . . . , βp (beta),
or none of them (neutral).

Afterwards, we build the unification candidates as in Definition 39. But instead of
constructing them naively, we only build pairs of a positive (Pos) and a negative (Neg)
literal. Moreover, we do not pair two neutral literals.

The implementation of the unification is straight forward, as we check all differences
occurring at any position of the literals of a unification candidate and unify them according
to the given grammar if possible. All G∗-unified literals are collected in a set which is
then returned.

5.2 Computing SΠ2-Gs
The focus of this thesis was to find Π2-cut formulas for an already known SΠ2-G. In
order to introduce cuts into cut-free proofs, we have to compute a covering grammar first.
The grammar computation is a difficult problem on its own and we only give a survey
over the possible solutions including a first prototype (cf. also Section 5.3).

For a better presentation, we first describe how the prototype addresses the problem
of finding a ’good’ SΠ2-G, i.e. a grammar with a minimal size with respect to a fixed
number of nonterminals {α, β1, . . . , βp}. The core of the algorithm is described in
[EEH17] and was developed for Π1-cut introduction with many cuts (therefore, the
number of eigenvariables/nonterminals is not necessarily one). It computes totally rigid
acyclic tree grammars by reducing this problem in polynomial time to the MaxSAT
optimization problem (for a list of MaxSAT solvers see [ALMP08]). Thereby, we can
enforce the algorithm to only compute totally rigid acyclic tree grammars that also fulfill
the requirements of being a SΠ2-G. Moreover, we ask for at least one production rule of
the form α→ r where α is the eigenvariable of the universally quantified variable of the
potential cut formula. Then the algorithm finds a minimal SΠ2-G for a fixed number of
nonterminals.

Even though the described approach computes SΠ2-Gs, there are several problems that
are of future interest:

• The number of nonterminals.
As mentioned, the algorithm needs a fixed number of nonterminals for which it
finds an optimal grammar. Whether the number of nonterminals is optimal can, so
far, only be determined by brute-force search. For practical applications it might
be interesting to investigate the statistical impact of the size of the cut-free proof
on the optimal number of nonterminals. For a general theoretic solution, it seems

117

5. Implementation and Experiments

to be most promising to define a new method that is able to increase the number
of nonterminals in the process of computing the grammar.

• The additional requirements of SΠ2-Gs. (Cf. Subsection 5.3.1)
As SΠ1-Gs for many cuts, SΠ2-Gs have many eigenvariables. But there are two
types of eigenvariables: the one introduced for the universal quantifier (α) and
the ones introduced for the existential quantifier (β1, . . . , βp). The experiments
showed that the algorithm finds much more solutions if we ask for at least one
production rule of the form α→ r. This suggests a closer investigation of the role
of the different eigenvariables for computing solvable Π2-SEHSs.

• Non-solvable Π2-SEHSs.
The existence of non-solvable Π2-SEHSs as well as the restrictions of the current
implementation, which was designed to compute balanced solutions, lead to the
following non-exhaustive list of questions: Are there relevant fragments of SΠ2-
Gs that are always solvable? Which properties increase the probability of the
solvability/existence of balanced solutions? Is there useful information in non-
solvable grammars that can be used in the computation of a new grammar?

5.3 Experiments

When testing the implementation of the methods described in this thesis, one has to
make several choices. This starts already with the implementation of a SΠ2-G finding
procedure, even though the thesis focuses on the search for a cut formula. If we only
want to test G∗-unification, we do not only need a provable end sequent; we also need a
reduced representation and the corresponding SΠ2-G, i.e. a Π2-SEHS. Unfortunately,
this is not feasible for large scale experiments. For the experiments, we have to consider
already existing databases of proofs and those do not contain any information about
SΠ2-Gs. Hence, we can test the G∗-unification only for a few examples or together with
an implementation of a grammar finding method.

We distinguish between two kinds of experiments in this section. The first concentrates
on experiences about different aspect of the implementation for a few examples while
the second one describes a run of the full algorithm – with different parameters – based
on examples from a large scale database. The partitioning follows the structure of the
Subsections 3.5.2 and 3.5.3.

5.3.1 Experiences with the Automated Introduction of Π2 Cuts

Checking the applicability of the G∗-unification method of Section 4.7 is difficult, since
we require a SΠ2-G and a provable end sequent. Computing SΠ2-Gs by hand is too
time consuming, but nonetheless, we check the method in some interesting cases. These
tests gave us the confidence that the method behaves well and is able to find interesting
cut formulas. But they do not tell anything about the practice.

118

5.3. Experiments

In the thesis, we have already introduced one schema of examples for which SΠ2-Gs
exist, i.e. the sequents S′n of Section 4.9 with the schema of SΠ2-Gs of Definition 48.
Moreover, we showed that, in theory, the method should find the cut formula for each
instance. In order to check our code, we implemented some instances of the schema with
the corresponding grammars. Indeed, we also checked some simple modifications.

These examples can be found in the the file:

gapt/tests/src/test/scala/gapt/cutintro/
IntroducePiCutTest.scala

One instance is depicted in Figure 5.1. The two outermost functions “"This" should”
and “"be computed correctly" in” can be ignored. They only ensure that this
tests can be executed in a special mode for checking the correctness of the major parts
of the algorithm. The actual implementation of the example are the definitions that
start with val. A3, B1, B2, B3, C3, and D encode the formulas occurring in the reduced
representation Rere. Other than in the theoretical part of the thesis the eigenvariables
are x and y1, y2. This is due to the GAPT framework which requires variables to start
with one of the letters u, v, w, x, y, z. The functions f1, f2, and f3 correspond to the
functions f1, f2, and f3 in S′n telling us that n is actually 3. seHs is of type Pi2SeHs
and needs – apart from the reduced representation – information about the grammar.
Hence, we find as input the eigenvariables and terms on which the eigenvariables are
mapped to. The last three lines define the names of the variables in a potential cut
formula and call the introducePi2Cut method. The result is directly checked, as it
should be

(Option(fof"P($xName,f($yName))"), yName, xName)

Above the example, we find the following lines:

//
// Number of non-tautological leaves
// 24
// Number of unified literals
// 1
// No ’allowed clauses’ were computed
// Number of checked Formulas
// 1

These lines are comments and give us information about the performance of the example.
The number of non-tautological leaves without counting supersets is 24. For these, we
computed only 1 G∗-unified literal. For this simple example, no allowed clause had to be
computed. Note that we do not count unit clauses, since they are checked separately.

119

5. Implementation and Experiments

Figure 5.1: Implemented instance of S′n of Section 4.9

"This" should {
"be computed correctly" in {

val A3 = fof"P(x,f1(x))|P(x,f2(x))|P(x,f3(x))"
val B1 = fof"P(x,f1(x))->P(x,f(f1(x)))"
val B2 = fof"P(x,f2(x))->P(x,f(f2(x)))"
val B3 = fof"P(x,f3(x))->P(x,f(f3(x)))"
val C3 = fof"(P(c,f(y1))&P(f(y1),f(y2)))->P(c,g(y2))"
val D = fof"P(c,g(y2))"
val Rere = A3 +: B1 +: B2 +: B3 +: C3 +: Sequent() :+ D
val seHs = new Pi2SeHs(Rere, fov"x",

List(fov"y1", fov"y2"),
List(fot"c", fot"f(y1)"),
List(fot"f1(x)",

fot"f2(x)",
fot"f3(x)"))

val xName = fov"xName"
val yName = fov"yName"
introducePi2Cut(seHs, yName, xName) must_==

((Option(fof"P($xName,f($yName))"),
yName,
xName))

}
}

Altogether, we checked exactly one formula, i.e. P(xName,f(yName)), which gave us
already a solution.

This example shows that – given the correct grammar – we are able to find the cut formula
with the current implementation. The same file contains also S′4 that behaves similarly
to the lower instance, but produces 96 non-tautological leaves. In order to check the
robustness, we modified the example and replaced the binary predicate symbol P (x, y)
with the binary formulas P (x) ∨Q (y) or (P (x) ∧Q (y)) ∨ (P (y) ∧Q (x)). We checked
several instances of these formulas as well. All tests were successful, but the performance
changed. The costs to construct a formula such as (P (x) ∧Q (y)) ∨ (P (y) ∧Q (x)) is
much higher than producing a single literal. More precisely, for the most complex example,
we computed 6 G∗-unified literals which allow in general 26 different clauses. Depending
on the instance (the highest was 3), we computed up to 7 allowed clauses and checked
up to 14 formulas until we found the solution.

Altogether, these examples show that the G∗-unification method reduces the search space
significantly and allows us to search for Π2-cut formulas in complex frameworks, even

120

5.3. Experiments

Figure 5.2: Pigeonhole principle

∀n ∈ N, f : N→ Nn∃i ≤ n ∈ N∀m ∈ N∃j ≥ m ∈ N.f (j) = i

(a) The infinite pigeonhole principle

∀f : N→ N2∃i, j ≤ 2 ∈ N.i < j ∧ f (i) = f (j)

(b) A finite variant of the pigeonhole principle

though, it does not guarantee finding a solution.

Another example in the same file is the reduced representation of one Π2 cut of a variant
of the pigeonhole principle. The pigeonhole principle is an important problem in the
proof theory community [Tao07]. In its most general version, it says that if we distribute
an infinite number of pigeons over a finite number of holes, we will find a hole containing
an infinite number of pigeons. In order to prove this, we introduce lemmas telling us that
a fixed hole either contains an infinite number of pigeons or we can ignore it for the rest
of the reasoning. Since there is a finite number of holes, we will eventually find such a
hole containing infinitely many pigeons.

Formally, we can represent the pigeonhole principle as depicted in Figure 5.2a. In this
form, we would require an induction rule in order to proof it. For this reason, we consider
an instance of it, i.e. we restrict the number of holes and look only for two distinct
pigeons appearing in the same hole (see Figure 5.2b). Moreover, we consider f as an
uninterpreted function in order to avoid the quantification over a higher type. This
variant is taken from [AHL15] and was also used for applying analytic methods to it (see
[BHL+04, BBS97, Her95, Urb00]). One proof of this variant relies on two Π2 cuts with
the cut formulas

∀x∃y.x ≤ y ∧ f (y) = 0 and
∀x∃y.x ≤ y ∧ f (y) = 1.

In the corresponding framework (we need associativity of “=”, a binary maximum
function, and some further theory), we can show that

` ∀x∃y.x ≤ y ∧ f (y) = 0,∀x∃y.x ≤ y ∧ f (y) = 1

is provable. Moreover, both formulas imply the variant of Figure 5.2b. Now, we can
extract the Π2-EHS of the uppermost cut and forget about the cut formula itself. This
gives us a Π2-SEHS and its encoding is depicted in Figure 5.3.

Since our current implementation cannot handle equality, we introduced the predicate Pg
(g for “Gleichheit”, a German expression denoting equality) with the necessary axioms
instead. The predicate symbol Pkl (kl for “kleiner”, a German expression denoting less)
says that the first argument is less than the second. The symbol Pklg (klg for “kleiner

121

5. Implementation and Experiments

Figure 5.3: Π2-SEHS corresponding to the pigeonhole principle

val T1 = fof"Pkl(0,y1)&Pg(f(0),f(y1))"
val T2 = fof"Pkl(y1,y2)&Pg(f(y1),f(y2))"
val I0 = fof"Pklg(c,M(c,x))&Pg(f(M(c,x)),0)"
val Gamma1 = fof"Pklg(c,M(c,x))&Pklg(x,M(c,x))"
val Gamma21 = fof"Pg(f(M(c,x)),0)|Pg(f(M(c,x)),s(0))"
val Gamma22 = fof"Pg(f(0),0)|Pg(f(0),s(0))"
val Gamma23 = fof"Pg(f(y1),0)|Pg(f(y1),s(0))"
val Gamma24 = fof"Pg(f(y2),0)|Pg(f(y2),s(0))"
val Delta11 = fof"(Pg(f(y1),0)&Pg(0,f(y2)))->

Pg(f(y1),f(y2))"
val Delta12 = fof"(Pg(f(y1),s(0))&Pg(s(0),f(y2)))->

Pg(f(y1),f(y2))"
val Delta13 = fof"(Pg(f(0),0)&Pg(0,f(y1)))->

Pg(f(0),f(y1))"
val Delta14 = fof"(Pg(f(0),s(0))&Pg(s(0),f(y1)))->

Pg(f(0),f(y1))"
val Delta21 = fof"Pklg(s(0),y1)->Pkl(0,y1)"
val Delta22 = fof"Pklg(s(y1),y2)->Pkl(y1,y2)"
val Ref1 = fof"Pg(f(y1),0)->Pg(0,f(y1))"
val Ref2 = fof"Pg(f(y2),0)->Pg(0,f(y2))"
val Ref3 = fof"Pg(f(y1),s(0))->Pg(s(0),f(y1))"
val Ref4 = fof"Pg(f(y2),s(0))->Pg(s(0),f(y2))"
val Rere = Ref1 +: Ref2 +: Ref3 +: Ref4 +:

Gamma1 +:
Gamma21 +: Gamma22 +: Gamma23 +: Gamma24 +:
Delta11 +: Delta12 +: Delta13 +: Delta14 +:
Delta21 +: Delta22 +:
Sequent() :+ T1 :+ T2 :+ I0

val seHs = new Pi2SeHs(Rere, fov"x",
List(fov"y1", fov"y2"),
List(fot"0", fot"s(y1)"),
List(fot"M(c,x)"))

val xName = fov"xName"
val yName = fov"yName"
introducePi2Cut(seHs, yName, xName)

122

5.3. Experiments

gleich”, a German expression denoting less than or equal) consequentially allows the two
arguments to be equal as well. As already mentioned, we also add a binary maximum
function M. The eigenvariables are x for the universal eigenvariable and y1 and y2 for
the two existential eigenvariables. The productions starting with an eigenvariable are:

x→ 0 | s(y1),
y2→ M(c,s(y1)),

y1→ M(c,s(0)).

In the test run, we checked whether the algorithm produces

Pklg(xName,yName)&Pg(f(yName),s(0))

or a permutation of it as cut formula. For this reason we add to introducePi2Cut(
seHs, yName, xName):

must beOneOf(
(Option(fof"Pklg($xName,$yName)&Pg(f($yName),s(0))"),

yName,
xName),

(Option(fof"Pg(f($yName),s(0))&Pklg($xName,$yName)"),
yName,
xName))

The test was successful and the method found the required cut formula. During the
construction, it computed only three G∗-unified literals, one allowed clauses, and had to
check only one formula. Altogether, this first experiences show that the implementation
finds cut formulas for well defined SΠ2-Gs.

In a next step, we wanted to see whether our prototype implementation of the grammar
finding method can compute the SΠ2-Gs of Definition 48. For this reason, we have
incorporated the sketched proofs of Figure 4.11 in the GAPT system. In order to run
the examples within GAPT, we have to run two commands that are depending on the
instance Inst:

import examples.ExponentialCompression._
val proof = instantiateProof.Instantiate(le"preOmega Inst")

Inst has to be a natural number encoded as successors of 0, for instance (s 0),
(s (s 0)), (s (s (s 0))), etc. Due to the GAPT framework and the schematic
implementation, there are slight differences to the proofs in Figure 4.11. Since we only
use it as a starting point to which we apply a cut-elimination algorithm, we only have to
ensure that the Herbrand sequents of the corresponding cut-free proofs are as expected.

123

5. Implementation and Experiments

This is indeed the case and we can apply our method. For running a cut-elimination
algorithm, GAPT offers several methods. Starting with the fastest, they are:

val cfProof = normalizeLKt.lk(proof)
val cfProof = eliminateCutsET(LKToExpansionProof(proof))
val cfProof = cutNormal(proof)

Note that the second command produces an expansion proof. In general, we could
transform it back to a sequent-calculus proof, but our method can also be applied to
expansion proofs. The last cut-elimination method is very slow and should only be
applied to low instances.

Before starting the cut-introduction algorithm, we have to define the eigenvariables and
have to decide how many we want to consider. In this particular case, we know exactly
the number of eigenvariables, i.e. (Inst+1) many existential eigenvariables. The number
of universal eigenvariables is independent of the example and always 1. In order to define
them, we run the two commands:

val alpha = FOLVar("xa")
val betas = for (i <- 1 to (Inst+1)) yield FOLVar(s"y$i")

where (Inst+1) has to be replaced with the actual number. Note that GAPT requires
strings for variables to start with one of the characters u,v,w,x,y, or z. Finally, we
can run the method by the call

Pi2CutIntroduction(cfProof,alpha,betas.toVector)

Before discussing the performance of the cut-introduction method, we provide some
information about the sizes of the proofs. For simplicity, we only give the number
of occurring sequents. The instantiations of preOmega, i.e. the proofs we apply cut
elimination to, are growing linearly with the instantiation:

32, 65, 90, 115, 140, 165, . . .

The cut-free proofs are much larger, but there size also depends on the used cut-elimination
algorithm. We get the following sizes:

normalizeLKt.lk : 18, 91, 696, 7419, 101558, . . .
cutNormal : 18, 89, 654, 6735, . . .

As expected, the size of the cut-free proofs is increasing fast.

When running the Pi2CutIntroduction command, we can get further information
by running it together with the verbose function:

124

5.3. Experiments

verbose(Pi2CutIntroduction(cfProof,alpha,beta.toVector))

For the first instance, i.e. Inst being 0, we get the following output:

[Pi2CutIntro] Language size: 4
start computing grammar
[Pi2CutIntro] Found grammar of size: 6
x0 -> ’a1:P(x,fn(0,x))’(f(a))
x0 -> ’a2:P(x,y)->P(x,f(y))’(f(a), fn(0, f(a)))
x0 -> ’a0:P(f(x),f(z))->P(f(x),g(z))’(a, fn(0, f(a)))
x0 -> ’s0:P(x,g(y))’(f(a), fn(0, f(a)))
xa -> fn(0, f(a))
y1 -> f(a)
start computing cut formula
[Pi2CutIntro] Could not find cut formula.
res0: Option[gapt.proofs.lk.LKProof] = None

The lines start computing... only inform the user in which phase the algorithm is.
The language size gives us the number of terms in the Herbrand term set. Here, it found
a grammar of size 6, i.e. there are 6 production rules, where xa and y1 are – as defined
before – the eigenvariables and x0 is the starting symbol. Even though -> seems to be
the symbol of a production rule, it is not. For the first four lines starting with x0, it
can be read as such, but the production rules for the eigenvariables are xa→ f(a) and
y1→ fn(0, f(a)). This is due to technical reasons. Anyhow, in this particular case,
the productions starting with an eigenvariable are irrelevant anyway. They do not occur
on the right side of any other production rule. They only occur in the grammar because
we force the algorithm to compute a grammar containing at least one production starting
with the universal eigenvariable. This is motivated by much better results during the
experiments (see Subsection 5.3.2). In order to be able to read the right side of such a
line, we look at

x0 -> ’a2:P(x,y)->P(x,f(y))’(f(a), fn(0, f(a)))

The right side can be split in two parts: ’a2:P(x,y)->P(x,f(y))’ and (f(a),
fn(0, f(a))). The first is the term that correspond to the formula P (x, y) →
P (x, f (y)). There are two variables occurring in the formula: x and y. In the second
part, we find a tuple containing two terms: f(a) and fn(0 ,f(a)). They have to be
substituted for the variables in the first part such that we get the term

’a2:P(f(a),fn(0 ,f(a)))->P(f(a),f(fn(0 ,f(a))))’

representing the formula

P (f (a) , f0 (f (a)))→ P (f (a) , f (f0 (f (a)))) .

125

5. Implementation and Experiments

The string a2 is just a label. For better readability and better comparison to Definition
29, we introduce the term representations hs0,ha0,ha1, and ha2. They represent the
formulas on the right side of the production rules with x0 on the left side such that – for
instance – ha2 (fa, f0fa) translates to

P (f (a) , f0 (f (a)))→ P (f (a) , f (f0 (f (a)))) .

Altogether, we get the SΠ2-G G (0) with the nonterminals x0,xa,y1 and the production
rules

x0→ hs0 (fa, f0fa) | ha0 (a, f0fa) | ha1 (fa) | ha2 (fa, f0fa) ,
xa→ fa

y1→ f0fa.

Of course, we could not find a cut formula for this grammar.

The next instantiation – Inst being (s 0) – is already much more interesting. Thereby,
we had surprisingly two different outcomes depending on the machine we run the method
on, once on the laptop of Grabriel Ebner from the Institute of Discrete Mathematics and
Geometry at TU Wien and once on the author’s computer at the university. Both use
a Debian Linux system as operating system and there are no relevant difference that
explain the different behaviour. The outcomes are:

[Pi2CutIntro] Language size: 17
[Pi2CutIntro] Found grammar of size: 9
x0 -> ’a2:P(x,y)->P(x,f(y))’(f(xa), fn(0, f(xa)))
x0 -> ’a0:P(f(x),f(y))&P(f(y),f(z))->P(f(x),g(z))’(a, y1, y2)
x0 -> ’a2:P(x,y)->P(x,f(y))’(f(xa), fn(s(0), f(xa)))
x0 -> ’a1:P(x,fn(0,x))|P(x,fn(s(0),x))’(f(xa))
x0 -> ’s0:P(x,g(y))’(f(a), y1)
xa -> fn(s(0), f(xa))
xa -> fn(0, f(xa))
y1 -> y2
y2 -> a
[Pi2CutIntro] Cut formula: P(f(xCut), f(yCut)): o

and

[Pi2CutIntro] Language size: 17
[Pi2CutIntro] Found grammar of size: 9
x0 -> ’a0:P(f(x),f(y))&P(f(y),f(z))->P(f(x),g(z))’(a, y1, y2)
x0 -> ’s0:P(x,g(y))’(f(a), y1)
x0 -> ’a1:P(x,fn(0,x))|P(x,fn(s(0),x))’(f(y2))
x0 -> ’a2:P(x,y)->P(x,f(y))’(f(y2), y1)

126

5.3. Experiments

xa -> fn(s(0), f(xa))
xa -> fn(0, f(xa))
xa -> a
y1 -> y2
y2 -> a
[Pi2CutIntro] Could not find cut formula.

Both produce a SΠ2-G, but only for one of them the method finds a cut formula. In
order to understand the differences, we translate the outcomes to the corresponding
SΠ2-Gs. For a better comparison to the grammars of Definition 48, we also translate the
symbols. The starting symbol x0 occurs in the grammars as τ and the other nonterminals
xa,y1,y2 are represented by α, β2, β1, respectively. Note that y1 corresponds to β2.
The representations of terms corresponding to the formulas will be abbreviated by hζ
where ζ is s0,a0,a1, or a2. Thus, hs0 represents ’s0:P(x,g(y))’ and hs0 (fa)β2
represents ’s0:P(x,g(y))’(f(a), y1). The productions of the first SΠ2-G G′ are

τ → hs0 (fa, β2) | ha0 (a, β2, β1) | ha1 (fα) | ha2 (fα, f0fα) | ha2 (fα, f1fα) ,
α→ β1 | a,
β2 → f0fβ1 | f1fβ1,

β1 → f0fa | f1fa.

When comparing with G1 of Definition 48, there are only small differences. Since the
implementation does not require the end sequent to be in the form ∀~xF ` ∃~yG, we get
different term representations. The only non technical difference is the function f that
occurs once in the τ -productions and once in the α-productions. This affects also the
computed cut formula such that in the one case, the cut formula is ∀x∃yP (fx, fy) and
in the other case, it is ∀x∃yP (x, fy).

The second grammar G′′ has the productions

τ → hs0 (fa, β2) | ha0 (a, β2, β1) | ha1 (fβ1) | ha2 (fβ1, β2) ,
α→ β1 | a,
β2 → f0fβ1 | f1fβ1 | a,
β1 → f0fa | f1fa | a.

Note that all productions from the starting symbol contain β1 or β2, but α does not occur
anywhere. In fact, every literal occurring in the corresponding reduced representation

P (β1, f0β1) ∨ P (β1, f1β1) , P (fβ1, β2)→ P (fβ1, fβ2) ,
P (fa, fβ1) ∧ P (fβ1, fβ2)→ P (fa, gβ2) ` P (fa, gβ2)

contains β1 or β2. Hence, there cannot be a G∗-unified literal and our method fails to
find a cut formula. Indeed, the considered grammar could be read as a grammar for the
introduction of a Σ1 formula with two existential quantifiers, since the α-productions

127

5. Implementation and Experiments

are irrelevant. By dropping the α-productions, the grammar becomes even smaller.
This suggests that the concept of a minimal SΠ2-G is not a good criteria for Π2-cut
introduction.

Altogether, we have seen that the method is able to find cut formulas when the SΠ2-G is
chosen correctly. The current implementation suffers of the absence of a suited grammar
computing algorithm. Since the used variant was designed for Π1-cut introduction where
every SΠ1-G leads to a proof with Π1 cuts, it concentrates on finding minimal grammars.
Even though, this works well for the Π1 case (see [EHL+18, HLR+14]), in the Π2 case,
the computed grammars produce non G∗-unifiable reduced representations. Thus, we
cannot find a solution.

5.3.2 Experiments with Thousands of Solutions from Theorem
Provers

Apart from checking single examples, we executed the full algorithm – grammar compu-
tation and cut-formula construction – on the TSTP library (Thousands of Solutions
of Theorem Provers; see [Sut09]). More precisely, we imported the prover9-part of the
TSTP library into GAPT, similarly to the experiments of [HLR+14]. As in [HLR+14],
the main motivation is the (comparatively) easy import due to the simple and clean proof
output format Ivy. This library contains 6394 resolution proofs (53 more have been added
since the publication [HLR+14]). Of those, 37 could not be parsed and 3512 contain
equality reasoning. The rest is translated into sequent calculus proofs. Moreover, 1488 of
the proofs without equality have a trivial language, since every term in the corresponding
Herbrand term set has its own root symbol. Hence, there are 1357 relevant proofs to
which our algorithm was applied.

The performance comparison was conducted on a Debian Linux system with an Intel
i5-4570 CPU and 8 GiB RAM. The timeout was set to 5 minutes and the experiments were
executed in version 2.11 of GAPT. Since we were mainly interested in the performance
of the cut-formula construction (cf. Subsection 5.3.1), we did not consider whether the
found grammar of a problem has smaller size than the Herbrand term set. Nonetheless,
we computed the number of problems for which a compressing grammar was found.
Depending on the number of nonterminals 325 to 365 compressions were found. This
corresponds to approximately 25, 23% of all cases. Since this number is relatively small,
we applied the algorithm to all 1357 problems and tried to introduce cuts even when
the size of the found grammar was larger than the size of the Herbrand term set. For
the course of this subsections, when speaking about an application, we refer to a single
attempt to introduce a cut for one of these 1357 problems with our algorithm. A successful
application is consequentially an application of our method to one problem where the
result is a proof with a cut that corresponds to the automatically computed grammar.
Moreover, the algorithm will be applied in different modes and so we might speak about
the successful applications referring to those applications that were successfully conducted
in the current mode.

128

5.3. Experiments

Number of solutions % % without timeouts
SΠ1-G 32 2, 36% 3, 07%
SΠ2-G with one β 68 5, 01% 6, 37%
SΠ2-G with two β’s 137 10, 10% 13, 44%
SΠ2-G with three β’s 135 9.96% 13, 61%
SΠ2-G with four β’s 142 10, 47% 14, 29%
SΠ2-G with five β’s 138 10, 18% 14, 33%
Arbitrary grammar 252 18, 58% 21, 36%

Table 5.1: Performance of the full algorithm on the TSTP library

As already mentioned, we applied the method in different modes. In a first execution,
we added no special constraints. The grammar finding algorithm requires a number of
nonterminals/eigenvariables. There is always one universal eigenvariable. We decided to
apply the algorithm with different numbers of existential eigenvariables; with “1 β”, “2
β’s”, “3 β’s”, and “4 β’s”. This means that the algorithm searches only for SΠ2-Gs with
the nonterminals {τ, α, β1, . . . , βn} where τ is the designated starting symbol, α is the
nonterminal corresponding to the universal eigenvariable, n is the number of β’s, and
βi is the nonterminal corresponding to the existential eigenvariable. In the execution
without further constraints, we found only 16 cut formulas.

After some further experiments, we ensured that the computed grammar contains at
least a single production with the universal eigenvariable as left side. The performance
improved considerably. Table 5.1 shows how many cut formulas were computed depending
on the number of β’s. The first column depicts the absolute number of solutions,
the second column the percentage of successful applications, and the third column
the percentage of successful applications without regarding timeouts (32 | 32/1357 ≈
2, 36% | 32/(1357 − 313) ≈ 3, 07). A special case is the first line in which results for
SΠ1-Gs are depicted. SΠ1-Gs containing only the nonterminals τ and α can be extended
to SΠ2-Gs by adding dummy productions and dummy nonterminals. For this reason, we
also computed the minimal SΠ1-G for introducing a single cut and translated it into a
SΠ2-G. Then we applied the G∗-unification method as we did for the other cases. The
last line of the table are the combined results, i.e. at least one application found a cut
formula and at least one application had not a timeout.

Compared to the 16 solutions of the first application, we were able to increase the number
of solutions by a factor of more than 15. Note that we only ensured that there is a
production with the universal eigenvariable on the left side. In total, we found cut
formulas for 18, 58% of the 1357 problems. Unfortunately, the cut formulas are almost
all purely universal or purely existential. The only actual Π2-cut formulas – that were
found during the tests on the TSTP library – have the quantifier free bodies

truth(isa(x,knight)) & truth(isa(other,y))

129

5. Implementation and Experiments

| truth(isa(other,y)) & truth(isa(x,knave))

and

truth(isa(x,knave)) & truth(isa(other,y))
| truth(isa(x,knight)) & truth(isa(other,y))

where x is the universally quantified variable, y is the existentially quantified variable, &
encodes ∧, and | encodes ∨. They were found for the problems

PUZ/PUZ035-5/Prover9---1109a.UNS-Ref.s

(see Appendix A.1) and

PUZ/PUZ035-6/Prover9---1109a.UNS-Ref.s

(see Appendix A.2) of [Sut09].

We visualized the results for different types of SΠ2-Gs in Figure 5.4. The blue bars
represent the number of solutions found, as in Table 5.1. While the applications with
more than one β produce a similar amount of solutions, we get only few solutions for
the simple grammars containing either only one existential eigenvariable or being a
transformed SΠ1-G. We can also see that the number of timeouts increases with the
number of β’s. As we will see below, this is mainly due to the grammar computation. The
higher amount of timeouts might also effect the number of found solutions. Nonetheless,
we believe that for the TSTP library the consideration of even more β’s would not
effect the performance considerably. A high number of β’s makes only sense when the
considered example has a large term set. If the considered language is large and also the
number of nonterminals is high, the algorithm will most likely end in a stack overflow
error. The last bar contains all other possible outcomes which most often means that for
the considered grammar no balanced solution exists. In few cases – each below 5% – we
either run out of memory, had a stack overflow, or had some other exception.

Figure 5.5 presents how much time each part of the algorithm required. It shows only
the relative times for completed executions. Hence, an execution that run into a timeout
is not considered, because we could not compute the ratios between the various parts
in case of a timeout. In each subfigure, we can see a cake diagram with five colours:
Blue represents the amount of time spent for the construction of the cut formula, i.e.
the construction of the DNTA (ϕ) (for some ϕ; see Section 5.1), the G∗ unification, and
the combining of the literals to formulas in DNF. Red represents the time spent for
minimizing the “stable” grammar while green represents the time spent for finding such a
grammar. For the discussion of this section, we can put them together and consider them
as the time spent for computing a grammar. Yellow shows the time spent for parsing

130

5.3. Experiments

Figure 5.4: Number of solutions compared to timeouts and other unsolved problems;
Subsection 5.3.2

the problem and brown is the rest. All ratios are the average over all executions (for the
considered type of grammar) for which the algorithm terminated without timeout.

As mentioned above, the time spent for computing the grammar – more precisely for
minimizing the stable grammar – increases with the number of existential eigenvari-
ables. This confirms the result of [EEH17]. Interestingly, the ratio for the cut-formula
construction shrinks, i.e. the absolute amount of time stays approximately constant.

In Figure 5.6 and Figure 5.7, we compare the times spent for the formula construction
with the times spent for the grammar computation according to the size of the Herbrand
term set. The axes are both logarithmic to base 10 and the y-axe gives the logarithmic
time in milliseconds. Again, we can make a similar observation as in Figure 5.5: The more
eigenvariables the grammar has, the more time the grammar algorithm needs while the
formula construction stays almost constant. Moreover, there is an interesting behaviour
for term-set sizes around 1, 5 (around 31 terms). Independent from the considered
grammar, the cut-formula construction is expensive for those problems. Surprisingly,
this changes completely when the term-set sizes are larger than 100 (in the figures at 2).
This is probably due to the grammars that are computed for large term-set size. Since
the grammars are minimal, we find most likely only a few G∗-unified literals and hence,
the formula construction is relatively cheap. This explanation is also supported by the
fact, that the biggest term-set size for which a cut-formula was computed is 44.

In summary, we can say that there is a potential for an efficient implementation of cut
introduction via the G∗-unification method. It reduces the search space considerably
and is already able to compute a significant amount of cuts, even though the computed

131

5. Implementation and Experiments

Figure 5.5: Distribution of spent time (relative)

(a) Distribution for SΠ1-Gs (b) Distribution for SΠ2-Gs with one β

(c) Distribution for SΠ2-Gs with two β’s (d) Distribution for SΠ2-Gs with three β’s

(e) Distribution for SΠ2-Gs with four β’s (f) Distribution for SΠ2-Gs with five β’s

132

5.3. Experiments

Figure 5.6: Spent time compared to the size of the term set I; Subsection 5.3.2

(a) Distribution for SΠ1-Gs

(b) Distribution for SΠ2-Gs with one β

(c) Distribution for SΠ2-Gs with two β

133

5. Implementation and Experiments

Figure 5.7: Spent time compared to the size of the term set II; Subsection 5.3.2

(a) Distribution for SΠ2-Gs with three β

(b) Distribution for SΠ2-Gs with four β

(c) Distribution for SΠ2-Gs with five β

134

5.3. Experiments

grammars are not suited for this setting (for Π1-cut introduction they are well suited).
Unfortunately, the short comings of the current implementation do not allow us to find
interesting cut formulas. Apart from the grammars, this is also due to the relatively
small sizes of term sets for which a solution was found.

In order to overcome these short comings, there are two possible directions of research.
One way would be to allow an interactive construction of grammars such that the user
can verify whether a grammar is likely being solvable. Easy non-solvable cases as in the
previous subsection could be avoided. Another idea would be the development of a new
guideline for the grammar computation. We saw already that minimality is not a good
criterion for SΠ2-Gs. Instead, the grammar computation should increase the probability
that there are G∗-unified literals. The condition that the computed grammars contain at
least one production with the universal eigenvariable as nonterminal on the left side is a
property increasing this probability. The existence of such a production makes it more
likely that the corresponding reduced representation contains the universal eigenvariable,
since the production affects the size of the grammar anyway, no matter if it is used or
not. In order to get a minimal grammar, the probability increases that the grammar
makes use of this production and replaces a term in the reduced representation with the
universal eigenvariable. Note that this way, we would also need more time for the formula
construction; more G∗-unified literals have to be constructed and can be combined to a
formula. Nonetheless, it would still be completely automatic.

135

CHAPTER 6
Conclusion and Future Work

6.1 Conclusion
In Chapter 2 and Chapter 3, we have presented definitions and notations required for an
understanding of the problems in the realm of Π2-cut introduction. Afterwards, we have
revisited Π1-cut introduction which also serves as a basis to understand major concepts
such as extended Herbrand sequents, schematic grammars, and schematic extended
Herbrand sequents (Sections 3.1, 3.2, and 3.3, respectively). In Section 3.4, we showed
that Π1-cut introduction via schematic grammars is always solvable and can be extended
to more general frameworks, for instance cut introduction within first-order logic with
equality or the introduction of several cut formulas with blocks of quantifiers at once
(cf. [EH15, EHL+18, HLW12, HLRW14, HLR+14]). Moreover, in Section 3.5 we have
seen applications of cut introduction, i.e. the introduction of meaningful lemmas and the
compression of proofs.

The main chapter of this work is Chapter 4. We have introduced Π2-EHSs, SΠ2-Gs, and
Π2-SEHSs which are generalizations of Π1-EHSs, SΠ1-Gs, and Π1-SEHSs, respectively.
The question approached is whether there is a proof with a Π2 cut whenever there is a
SΠ2-G for a given cut-free proof. Section 4.5 provides two counterexamples, which imply
that in general we are not able to construct a proof with Π2 cut. Hence, we have given
a full characterization of the Π2-cut introduction problem in Section 4.6 reducing the
problem to the definition of a suitable starting set. A starting set is a collection of literals
that might occur in the cut formula. This characterization allows us to decide whether
a combination of these literals is correct (Theorem 14 and Theorem 15). In Chapter
4, we have proceeded with a practical approach: The unification method presented in
Section 4.7 is able to find a solution for a Π2-SEHS whenever there is a balanced solution
(see Definition 43 and Theorem 17). Even though the balanced solutions are a proper
fragment of all solutions, they are the most promising in terms of inference and symbol
complexity, since they do not contain interactive literals (see Definition 35 and Definition

137

6. Conclusion and Future Work

37). Moreover, we have seen that the corresponding starting set can be constructed in
polynomial time. The problem of finding out whether there exists a finite starting set
with an inherent correct combination of literals for the general case is not treated in this
work. Section 4.8 has shown that the methods, apart from the tedious notation, can
easily be extended to Π2-cut formulas with blocks of quantifiers. A demonstration of
the compressive power of balanced solutions (Section 4.9) concludes the chapter. The
presented unification method is able to find Π2-cut formulas that compress a sequence of
cut-free proofs exponentially.

An implementation of the unification method of Section 4.7 is available in the GAPT
framework since version 2.5. In Section 5.1, we have presented how we implemented
the method. In order to find suitable grammars, we have used the grammar generation
algorithm developed in [EEH17] which, as discussed in Section 5.2, leaves room for
improvement. Section 5.3 then summarizes the results achieved with this implementation.
While the construction of a cut formula is feasible, the implementation is lacking a
suitable grammar computing method (even though the current method behaves well in
the Π1 case).

6.2 Future Work

Comparing Π1-cut introduction with Π2-cut introduction provides a natural guide for
further research. While Π1-cut introduction can be performed in the presence of equality
and we are able to introduce several Π1 cuts at once, the Π2-cut introduction is still
restricted to the introduction of a single cut. On the one hand, the inclusion of equality
may provide better solutions to Π2-SEHSs or even solutions for Π2-SEHSs that were
not solvable before (see Remark 3). On the other hand, the introduction of several Π2
cuts at once seems less promising since already the introduction of a single Π2 cut can
fail. The latter gives also a hint on how likely Π3-cut or even Πn-cut introduction find cut
formulas for a given schematic grammar. Introducing a single Π2 cut corresponds to the
introduction of several Π1 cuts where the cut formulas of all these Π1 cuts are equal up
to some terms. Analogously, introducing a single Π3 cut corresponds to several Π2 cuts
and introducing a Πn cut corresponds to several Πn−1 cuts. However, with an increasing
complexity of the cut formula also the possible proof compression and the probability
of meaningful lemmas increase. Especially in the context of inductions, techniques for
introducing complex cut formulas might provide methods for the search of induction
invariants.

Since the decidability of the Π2-cut introduction problem has not been tackled, the
following question arises: Is there an algorithm that takes as input a Π2-SEHS and
outputs a cut formula whenever there is one or a negative answer otherwise? In order to
answer this question, the introduction of a normal form for cut formulas with respect to
a fixed set of quantifier rules seems promising. The major idea is to restrict the literals
potentially occurring in a cut formula. The restriction itself should not only be based on
the signature, but on some notion of nesting degree that allows us the limit the number

138

6.2. Future Work

of occurring terms and thereby, restricts the number of literals to a finite set.

A drawback of the presented methods for introducing cuts is that both, Π1-cut and
Π2-cut introduction, require a cut-free proof. It would be desirable to construct lemmas
in the process of proving a theorem. While resolution based provers are already capable
of producing lemmas that are simple universally closed disjunctions of literals, there
have been several attempts to integrate the cut rule into tableau provers (see [LMG94]
and [Häh01]). The major problem is to decide when an application of the cut rule is
reasonable and how to restrict the cut formula. [LP18] is a first step of the incorporation
of grammar related cut-introduction techniques into theorem provers. By merging
literals sharing a similar shape, all usual refinements of tableau based methods are
able to reduce the proof size up to an exponential factor. In schematic grammars, the
nonterminals represent eigenvariables of a proof with cut that are generalizations or
abstractions of terms occurring in designated formulas in a cut-free proof. Assume a
clause {P (a, fx) , P (b, fx) , P (c, fx)}. Following this idea, we can represent the same
clause by {P (α, fx)} where α abstracts the terms a, b, and c. In [LP18], we propose a
tableau calculus that builds proofs using such abstractions, we show that the calculus
is compatible with the usual tableau methods, and that we can achieve an exponential
compression of proofs. Note that while in the present work we use DNFs, in [LP18]we
use DNFs. Beside improvements of this tableau method, integrations of this idea into
resolution provers are worth investigating.

One aim of lemma generation is the construction of induction invariants. While first-order
theorems are always provable without cut, this is no more the case when the system
contains an induction rule. In order to automate provers capable of induction or increase
the amount of automation in such provers, we have to provide the provers abstraction
techniques. One line of future research is a combination of the approach of [LP18] and an
extension of the SiLK calculus presented in [CL17]. The SiLK calculus gives a framework
to construct proof schemata, i.e. a system for first-order logic with induction (see [LPW17]
and also [ACP09, ACP10, ACP11a, ACP11b, AP11, AEP13, Cer14, DLRW13] for further
information), implicitly enforcing the soundness of the links of the proof schemata. In
order to use this calculus for proof search, we suggest a rule to abstract terms of sequents:
Let S (r) be a sequent where the term r occurs. Then we can try to prove S (α) where
α might be unified with a term t that is smaller than r. Afterwards, we try to prove
S (t+ sn) where s is the successor function and S (t+ n) can appear as leaf in the
corresponding proof tree. This simulates an induction over n. First work on this has
been presented at the PARIS workshop on July 7 & 8, 2018 in Oxford, UK where we
defined a more suitable calculus and a first draft of an abstraction rule.

As mentioned in Section 5.2, the algorithm for computing SΠ2-Gs is only a prototype
and requires further optimizations. In particular, due to the existence of non solvable
Π2-SEHSs, the discovery of properties of SΠ2-Gs that guarantee the solvability of the
corresponding Π2-SEHSs would improve the presented methods decisively. Moreover, a
more reasonable implementation of the algorithm should exploit interaction between the
grammar computation and the computation of a cut formula.

139

APPENDIX A
Problems of the TSTP

A.1 PUZ/PUZ035-5/Prover9—1109a.UNS-Ref.s

%---
% File : PUZ035-5 : TPTP v7.2.0. Released v2.0.0.
% Domain : Puzzles
% Problem : Knights and Knaves #36
% Version : [Sto95] axioms.
% Theorem formulation : Definite answer "yes".
% English : On an island, there live exactly two types of
% people: knights and knaves. Knights always tell the
% truth and knaves always lie. I landed on the
% island, met two inhabitants, asked one of them: "Is
% one of you a knight?" and he answered me. What can
% be said about the types of the asked and the other
% person depending on the answer I get?

% Refs : [Smu78] Smullyan (1978), What is the Name of This
% Book? The Ri
% : [Sto95] Stolzenburg (1995), Email to Geoff
% Sutcliffe.
% : [BFS95] Baumgartner et al. (1995), Model
% Elimination, Logic Pr
% : [BFS97] Baumgartner et al. (1997), Computing
% Answers with Mode
% Source : [Sto95]
% Names :

141

A. Problems of the TSTP

% Status : Unsatisfiable
% Rating : 0.00 v7.1.0, 0.17 v7.0.0, 0.12 v6.3.0, 0.00 v2.1.0
% Syntax : Number of clauses : 9 (2 non-Horn;
% 1 unit; 6 RR)
% Number of atoms : 20 (0 equality)
% Maximal clause size : 3 (2 average)
% Number of predicates : 2 (0 propositional;
% 1-2 arity)
% Number of functors : 6 (4 constant;
% 0-2 arity)
% Number of variables : 14 (4 singleton)
% Maximal term depth : 3 (2 average)
% SPC : CNF_UNS_RFO_NEQ_NHN

% Comments : Query allows for disjunctive answer
% X/Y = knave/knave ; knight/knave ; knight/knight
%---
%----Everyone’s either a knight or a knave
cnf(everyone_a_knight_or_knave,axiom,

(truth(isa(P,knight))
| truth(isa(P,knave)))).

cnf(not_both_a_knight_and_knave,axiom,
(~ truth(isa(P,knight))
| ~ truth(isa(P,knave)))).

cnf(knights_make_true_statements1,axiom,
(truth(S)
| ~ truth(isa(P,knight))
| ~ says(P,S))).

cnf(knights_make_true_statements2,axiom,
(truth(isa(P,knight))
| ~ truth(S)
| ~ says(P,S))).

%----Definitions for or
cnf(or1,axiom,

(truth(A)
| truth(B)
| ~ truth(or(A,B)))).

cnf(or2,axiom,

142

A.2. PUZ/PUZ035-6/Prover9—1109a.UNS-Ref.s

(truth(or(A,B))
| ~ truth(A))).

cnf(or3,axiom,
(truth(or(A,B))
| ~ truth(B))).

cnf(says_yes,axiom,
(says(asked,or(isa(asked,knight),isa(other,knight))))).

cnf(query,negated_conjecture,
(~ truth(isa(asked,X))
| ~ truth(isa(other,Y)))).

%---

A.2 PUZ/PUZ035-6/Prover9—1109a.UNS-Ref.s

%---
% File : PUZ035-6 : TPTP v7.2.0. Released v2.0.0.
% Domain : Puzzles
% Problem : Knights and Knaves #36
% Version : [Sto95] axioms.
% Theorem formulation : Definite answer "no".
% English : On an island, there live exactly two types of
% people: knights and knaves. Knights always tell the
% truth and knaves always lie. I landed on the
% island, met two inhabitants, asked one of them: "Is
% one of you a knight?" and he answered me. What can
% be said about the types of the asked and the other
% person depending on the answer I get?

% Refs : [Smu78] Smullyan (1978), What is the Name of This
% Book? The Ri
% : [Sto95] Stolzenburg (1995), Email to Geoff
% Sutcliffe.
% : [BFS95] Baumgartner et al. (1995), Model
% Elimination, Logic Pr
% : [BFS97] Baumgartner et al. (1997), Computing
% Answers with Mode
% Source : [Sto95]
% Names :

143

A. Problems of the TSTP

% Status : Unsatisfiable
% Rating : 0.00 v7.1.0, 0.17 v7.0.0, 0.12 v6.3.0, 0.14 v6.2.0,
% 0.00 v2.1.0
% Syntax : Number of clauses : 11 (3 non-Horn;
% 1 unit; 7 RR)
% Number of atoms : 24 (0 equality)
% Maximal clause size : 3 (2 average)
% Number of predicates : 2 (0 propositional;
% 1-2 arity)
% Number of functors : 7 (4 constant;
% 0-2 arity)
% Number of variables : 16 (4 singleton)
% Maximal term depth : 4 (2 average)
% SPC : CNF_UNS_RFO_NEQ_NHN

% Comments : Query allows for definite answer
% X/Y = knight/knave.
%---
%----Everyone’s either a knight or a knave
cnf(everyone_a_knight_or_knave,axiom,

(truth(isa(P,knight))
| truth(isa(P,knave)))).

cnf(not_both_a_knight_and_knave,axiom,
(~ truth(isa(P,knight))
| ~ truth(isa(P,knave)))).

cnf(knights_make_true_statements1,axiom,
(truth(S)
| ~ truth(isa(P,knight))
| ~ says(P,S))).

cnf(knights_make_true_statements2,axiom,
(truth(isa(P,knight))
| ~ truth(S)
| ~ says(P,S))).

%----Definitions for or
cnf(or1,axiom,

(truth(A)
| truth(B)
| ~ truth(or(A,B)))).

144

A.2. PUZ/PUZ035-6/Prover9—1109a.UNS-Ref.s

cnf(or2,axiom,
(truth(or(A,B))
| ~ truth(A))).

cnf(or3,axiom,
(truth(or(A,B))
| ~ truth(B))).

%----Axioms for not
cnf(not1,axiom,

(truth(C)
| truth(not(C)))).

cnf(not2,axiom,
(~ truth(C)
| ~ truth(not(C)))).

cnf(says_yes,axiom,
(says(asked,not(or(isa(asked,knight),isa(other,knight))))

)).

cnf(query,negated_conjecture,
(~ truth(isa(asked,X))
| ~ truth(isa(other,Y)))).

%---

145

List of Figures

2.1 Cut-free proof of ∀x1, x2, x3P (x1, x2, x3) ` P (~r) ∧ P (~s); Example 2 14
2.2 Simple proof used for the computation of complexity measures; Example 3 . 17
2.3 Cut-free proof ϕ; Example 4 . 19
2.4 A tree representation of a term; Section 2.6 20

3.1 Extracting an extended Herbrand sequent of a proof with several Π1 cuts;
Section 3.1 . 28

3.2 Proof-theoretic setting of Π1-cut introduction; Section 3.2 32
3.3 Compression ratio depending on the term set size; Subsection 3.5.3 43

4.1 Proof with a single Π2 cut; Example 14 . 51
4.2 Reconstructed proof with a single Π2 cut; Example 15 55
4.3 Propositional proof based on the Π2-EHS; Proof of Theorem 10 56
4.4 General shape of a constructed proof with Π2 cut; Proof of Theorem 10 . . . 57
4.5 Proof-theoretic setting of Π2-cut introduction; Section 4.3 58
4.6 Simple cut-free proofs used to show the non-existence of a canonical solution

of Π2-cut introduction problem; Section 4.5 64
4.7 Proof of the counterexample in a system with equality; Remark 3 69
4.8 Cut-free proof ϕ; Example 18 . 74
4.9 Proof with a non-balanced Π2-cut formula; Example 24 91
4.10 Proof with a Π2 cut with tuples of quantifiers; Example 26 97
4.11 Sketch of a schema of proofs with Π2 cut; Subsection 4.9.2 109

5.1 Implemented instance of S′n of Section 4.9; Subsection 5.3.1 120
5.2 Pigeonhole principle; Subsection 5.3.1 . 121
5.3 Π2-SEHS corresponding to the pigeonhole principle; Subsection 5.3.1 122
5.4 Number of solutions compared to timeouts and other unsolved problems;

Subsection 5.3.2 . 131
5.5 Distribution of spent time (relative); Subsection 5.3.2 132
5.6 Spent time compared to the size of the term set I; Subsection 5.3.2 133
5.7 Spent time compared to the size of the term set II; Subsection 5.3.2 134

147

Index

Nl, 7
S ◦ T , 6
G∗-unifiability, 88
G∗-unifiable, 88
G∗-unified literal, 88
a (·), 6
l (·), 7
N, 7
V (·), 7
A−1 (·), 72, 76
F -productions, 60
G-productions, 60
α-problem, 72
β-problem, 72
∃-multiplicity, 60, 96
∀-multiplicity, 60, 96
q∃, 96
q∀, 96
∗-operator, 33

(·)∗, 33, 35, 36
F (·), 7
G3c+-calculus, 10
G3c-calculus, 8–10

G3c-axiom, 8
G3c-derivation, 9
end sequent, 9
maximal, 9

G3c-proof, 9
G3c-rule
binary rules, 10
conclusion, 8
main formula, 11
premise, 8

unary rules, 10
~r|i, 6

allowed clauses, 76
ACl (·), 75–78

axiomatic constant (α), 77
T ′1, 77, 78, 81, 83, 89

axiomatic constant (β), 73
T1, 73, 81, 82, 89

axiomatic literal (α), 77
T ′2, 77, 78, 81, 83, 89

axiomatic literal (β), 73
T2, 73, 81, 82, 89

balanced solution, 89, 90, 95

canonical solution, 39
canonical substitution, 39, 40
complexity of proofs

inference complexity, 15
|·|i, 15, 16, 106, 110, 111

quantifier complexity, 15, 16
|·|q, 15, 16, 18, 19, 31, 45, 46, 56,
105, 110

symbol complexity, 16
|·|s, 16, 106, 110

complexity of term sets
instantiation complexity, 13
]·, 13, 14, 17–19, 29, 34, 35, 44, 45,
53, 106

context, 11

disjunctive normal form, 12
DNF, 12, 68, 73, 78–80, 92, 130, 139

149

extended Herbrand sequent for Π1 cuts,
29

Π1-EHS, 14, 28–37, 40, 50, 53, 137
complexity, 14, 29
|·|Π1 , 14, 29, 31, 40

extended Herbrand sequent for Π2 cuts,
53

Π2-EHS, 14, 53, 54, 56, 58–62, 83,
90, 96, 121, 137

complexity, 14, 53
|·|Π2 , 14, 53, 56, 58

extended Herbrand sequent for Π2 cuts
with tuples of variables, 96

Π2-EHS, 96

Herbrand sequent, 17
complexity, 14
|·|, 14, 17, 18, 106

Herbrand term set, 19

interactive literal (α), 78
T ′3, 77, 78, 81, 83, 85

interactive literal (β), 73
T3, 73, 81, 82, 85

literal
interacting, 85
interacts, 85

literal normal form, 71
D (·), 71

maximal set of G∗-unified literals, 88
MGUL (·), 88

naive starting set, 92
N (·), 92, 93

negation normal form, 11
NNF, 11, 12

refined allowed clauses, 76
RCl (·), 76, 78, 79, 82

schematic Π1 grammar, 31, 33, 34
SΠ1-G, 17, 31, 32, 34–38, 40–46, 58,

59, 118, 128–130, 132, 133, 137

schematic Π2 grammar, 58–60
SΠ2-G, 3, 58–61, 63, 65, 67, 68, 74,

83, 86–89, 91, 93, 95, 100, 106,
107, 113–115, 117–119, 123, 126–
130, 132–135, 137, 139

schematic Π2 grammar with tuples of
variables, 95

SΠ2-GT, 95–99
schematic extended Herbrand sequent for

Π1 cuts, 36, 37
Π1-SEHS, 37–40, 61, 63, 137
solution, 37

schematic extended Herbrand sequent for
Π2 cuts, 62

Π2-SEHS, 62, 63, 65, 67, 68, 70, 72–
81, 83–85, 88–93, 100, 107, 113,
114, 118, 121, 122, 137–139

reduced representation, 62
solution, 62

schematic extended Herbrand sequent for
Π2 cuts with tuples

solution, 98
schematic extended Herbrand sequent for

Π2 cuts with tuples of variables,
97, 98

Π2-SEHST, 98, 99
set of all literals, 72
T , 72

set of non-tautological leaves, 70
NTA (·), 70, 71, 86

set of non-tautological leaves in literal
normal form, 71

DNTA (·), 71–73, 75–78, 80, 82, 85,
86, 88, 92–94, 108, 109, 115, 130

set of possible sets of clauses, 73, 74
Cl (·), 73, 75, 77, 78, 81, 82, 108

set of refined allowed clauses with tuples
of variables, 99

set of refined solution candidates, 78
set of solution candidates, 77, 78

Sol (·), 78–84, 89, 91–93, 108
set of solution candidates with tuples of

variables, 99

150

Sol (·), 99
size of a set, 13
|·|, 13, 76

starting set, 70
A, 70, 73, 75–84, 89

starting set for G∗-unifiable sequents, 88
U (·), 88, 89, 91–94, 108

starting set for G∗-unifiable sequents with
tuples, 99

U (·), 99
starting set with tuples of variables, 99
A, 99

strong quantifiers, 10

term representation, 32
h(·), 17, 19, 20, 32–38, 60–63, 65, 67,

74, 75, 87, 95–97, 106, 107, 126,
127

tree grammar
acyclic, 22, 23
regular, 22, 23
rigid derivation, 22, 23
totally rigid acyclic, 23, 31, 33, 34,

60, 117
unrestricted, 21, 22

unification candidates, 85
UC (·), 85, 86, 88

weak quantifiers, 10

151

152

Bibliography

[ACP09] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A Schemata
Calculus for Propositional Logic. In Martin Giese and Arild Waaler, editors,
Automated Reasoning with Analytic Tableaux and Related Methods, volume
5607 of Lecture Notes in Computer Science, pages 32–46. Springer Berlin
Heidelberg, 2009.

[ACP10] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. A Decidable Class
of Nested Iterated Schemata. In Proceedings of the 5th international conference
on Automated Reasoning, IJCAR’10, pages 293–308, Berlin, Heidelberg, 2010.
Springer-Verlag.

[ACP11a] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. Decidability and
Undecidability Results for Propositional Schemata. Journal of Artificial
Intelligence Research, 40(1):599–656, 2011.

[ACP11b] Vincent Aravantinos, Ricardo Caferra, and Nicolas Peltier. Linear Temporal
Logic and Propositional Schemata, Back and Forth. In Proceedings of the
2011 Eighteenth International Symposium on Temporal Representation and
Reasoning, TIME ’11, pages 80–87, Washington, DC, USA, 2011. IEEE
Computer Society.

[AEP13] Vincent Aravantinos, Mnacho Echenim, and Nicolas Peltier. A Resolution
Calculus for First-Order Schemata. Fundam. Inform., 125(2):101–133, 2013.

[AHL15] Bahareh Afshari, Stefan Hetzl, and Graham Emil Leigh. Herbrand Dis-
junctions, Cut Elimination and Context-Free Tree Grammars. In 13th
International Conference on Typed Lambda Calculi and Applications, TLCA
2015, July 1-3, 2015, Warsaw, Poland, pages 1–16, 2015.

[ALMP08] Josep Argelich, Chu-Min Li, Felip Manya, and Jordi Planes. The First and
Second Max-SAT Evaluations. Journal on Satisfiability, Boolean Modeling
and Computation, 4:251–278, 2008.

[AP11] Vincent Aravantinos and Nicolas Peltier. Schemata of SMT-Problems. In
Proceedings of the 20th international conference on Automated reasoning with

153

analytic tableaux and related methods, TABLEAUX’11, pages 27–42, Berlin,
Heidelberg, 2011. Springer-Verlag.

[BBHI05] Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. Rippling:
Meta-Level Guidance for Mathematical Reasoning. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2005.

[BBS97] Franco Barbanera, Stefano Berardi, and Massimo Schivalocchi. "Classical"
programming-with-proofs in λPA

Sym: An analysis of non-confluence. In
Theoretical Aspects of Computer Software, Third International Symposium,
TACS ’97, Sendai, Japan, September 23-26, 1997, Proceedings, pages 365–390,
1997.

[BHL+04] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter, and Hen-
drik Spohr. Cut-Elimination: Experiments with CERES. In Logic for
Programming, Artificial Intelligence, and Reasoning, 11th International Con-
ference, LPAR 2004, Montevideo, Uruguay, March 14-18, 2005, Proceedings,
pages 481–495, 2004.

[Bir67] Garrett Birkhoff. Lattice Theory, volume 25. American Mathematical Society,
1967.

[Bun01] Alan Bundy. The Automation of Proof by Mathematical Induction. In
Andrei Voronkov and John Alan Robinson, editors, Handbook of Automated
Reasoning, volume 1, pages 845–911. Elsevier, 2001.

[Bus95] Samuel R. Buss. On Herbrand’s theorem. In Logic and Computational
Complexity, pages 195–209. Springer, 1995.

[CDG+08] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Christof Löding, Sophie Tison, and Marc Tommasi. Tree Automata:
Techniques and Applications. http://www.grappa.univ-lille3.fr/tata, 2008.

[Cer14] David M. Cerna. A Tableaux-Based Decision Procedure for Multi-Parameter
Propositional Schemata. In Intelligent Computer Mathematics - International
Conference, CICM 2014, Coimbra, Portugal, July 7-11, 2014. Proceedings,
pages 61–75, 2014.

[Cho56] Noam Chomsky. Three models for the description of language. Information
Theory, IRE Transactions on, 2(3):113–124, 1956.

[CL17] David M. Cerna and Michael Lettmann. Integrating a Global Induction
Mechanism into a Sequent Calculus. In International Conference on Auto-
mated Reasoning with Analytic Tableaux and Related Methods, pages 278–294.
Springer, 2017.

[Col01] Simon Colton. Automated Theory Formation in Pure Mathematics. PhD
thesis, University of Edinburgh, 2001.

154

[Col02] Simon Colton. Automated Theory Formation in Pure Mathematics. Springer,
2002.

[Cra57] William Craig. Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. The Journal of Symbolic Logic, 22(3):269–285,
1957.

[Ded87] Richard Dedekind. Was sind und was sollen die Zahlen? Friedrich Vieweg &
Sohn, Braunschweig, 1939 (1887).

[DFG08] Marcello D’Agostino, Marcelo Finger, and Dov Gabbay. Cut-Based Abduction.
Logic Journal of the IGPL, 16:537–560, 2008.

[DFG13] Marcello D’Agostino, Marcelo Finger, and Dov Gabbay. Semantics and
proof-theory of depth-bounded Boolean logics. Theoretical Computer Science,
480:43–68, 2013.

[DLRW13] Cvetan Dunchev, Alexander Leitsch, Mikheil Rukhaia, and Daniel Weller.
Cut-Elimination and Proof Schemata. In Logic, Language, and Computation
- 10th International Tbilisi Symposium on Logic, Language, and Computation,
TbiLLC 2013, Gudauri, Georgia, September 23-27, 2013. Revised Selected
Papers, pages 117–136, 2013.

[Dra87] Albert G. Dragálin. Mathematical intuitionism: Introduction to proof theory.
American Mathematical Soc., 1987.

[EEH17] Sebastian Eberhard, Gabriel Ebner, and Stefan Hetzl. Algorithmic compres-
sion of finite tree languages by rigid acyclic grammars. ACM Transactions
on Computational Logic (TOCL), 18(4):26:1–26:20, 2017.

[EH15] Sebastian Eberhard and Stefan Hetzl. Inductive theorem proving based on
tree grammars. Annals of Pure and Applied Logic, 166(6):665–700, 2015.

[EH18] Sebastian Eberhard and Stefan Hetzl. On the Compressibility of Finite
Languages and Formal Proofs. Information and Computation, 259:191–213,
2018.

[EHL+18] Gabriel Ebner, Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel
Weller. On the Generation of Quantified Lemmas. Journal of Automated
Reasoning, pages 1–32, 2018.

[EHR+16] Gabriel Ebner, Stefan Hetzl, Giselle Reis, Martin Riener, Simon Wolfsteiner,
and Sebastian Zivota. System description: GAPT 2.0. In 8th International
Joint Conference on Automated Reasoning, IJCAR, pages 293–301, 2016.

[Fan91] Gino Fano. Sui postulati fondamentali della geometria proiettiva in uno spazio
lineare a un numero qualunque di dimensioni. 1891.

155

[FG07] Marcelo Finger and Dov Gabbay. Equal Rights for the Cut: Computable
Non-analytic Cuts in Cut-based Proofs. Logic Journal of the IGPL, 15(5–
6):553–575, 2007.

[Fre79] Gottlob Frege. Begriffsschrift. Eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. 1879.

[Fre84] Gottlob Frege. Die Grundlagen der Arithmetik. Eine logisch mathematische
Untersuchung über den Begriff der Zahl. Verlag von Wilhelm Koebner, 1884.

[Gen35a] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematis-
che Zeitschrift, 39:176–210,405–431, 1934-1935.

[Gen35b] Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathe-
matische Annalen, 112:493–565, 1935.

[Göd29] Kurt Gödel. Über die Vollständigkeit des Logikkalküls. PhD thesis, 1929.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1):173–
198, 1931.

[GS97] Ferenc Gécseg and Magnus Steinby. Tree Languages. In Handbook of formal
languages, pages 1–68. Springer, 1997.

[Häh01] Reiner Hähnle. Tableaux and Related Methods. In Handbook of Automated
Reasoning (in 2 volumes), pages 100–178. Elsevier, 2001.

[Her30] Jacques Herbrand. Recherches sur la théorie de la démonstration. 1930.

[Her95] Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des
séquents comme calcul de lambda-termes et comme calcul de stratégies gag-
nantes. (Computing with sequents: on the interpretation of sequent calculus
as a calculus of lambda-terms and as a calculus of winning strategies). PhD
thesis, Paris Diderot University, France, 1995.

[Het11] Stefan Hetzl. Proofs as tree languages. 2011.

[Het12] Stefan Hetzl. Applying Tree Languages in Proof Theory. In Adrian-Horia
Dediu and Carlos Martìn-Vide, editors, Language and Automata Theory and
Applications, pages 301–312. Springer, 2012.

[Hil99] David Hilbert. Grundlagen der Geometrie. B. G. Teubner, 4th edition, 1913
(1899).

[Hil00] David Hilbert. Mathematische Probleme. Nachrichten von der Gesellschaft
der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse,
1900:253–297, 1900.

156

[HLR+14] Stefan Hetzl, Alexander Leitsch, Giselle Reis, Janos Tapolczai, and Daniel
Weller. Introducing quantified cuts in logic with equality. In S. Demri,
D. Kapur, and C. Weidenbach, editors, Automated Reasoning, volume 8562
of LNAI, pages 240–254. Springer, 2014.

[HLRW14] Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel Weller. Algorithmic
introduction of quantified cuts. Theoretical Computer Science, 549:1–16,
2014.

[HLW12] Stefan Hetzl, Alexander Leitsch, and Daniel Weller. Towards algorithmic
cut-introduction. In Logic for Programming, Artificial Intelligence, and
Reasoning, pages 228–242. Springer, 2012.

[IB96] Andrew Ireland and Alan Bundy. Productive Use of Failure in Inductive
Proof. Journal of Automated Reasoning, 16(1–2):79–111, 1996.

[JKV09] Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid Tree Automata.
In LATA, pages 446–457. Springer, 2009.

[Ken72] Hubert C Kennedy. The origins of modern axiomatics: Pasch to Peano. The
American mathematical monthly, 79(2):133–136, 1972.

[Kle09] Stephen Cole Kleene. Introduction to Metamathematics. Ishi Press, 2009.

[Koh08] Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their
Use in Mathematics. Springer Science & Business Media, 2008.

[Kun14] Kenneth Kunen. Set theory: An introduction to independence proofs, volume
102. Elsevier, 2014.

[KY00] John C Kieffer and En-Hui Yang. Grammar-Based Codes: a New Class of
Universal Lossless Source Codes. IEEE Transactions on Information Theory,
46(3):737–754, 2000.

[Lei15] Alexander Leitsch. On proof mining by cut-elimination. Mathematical Logic
and Foundations, 55:173–200, 2015.

[LL18] Alexander Leitsch and Michael P. Lettmann. The problem of Π2-cut-
introduction. Theor. Comput. Sci., 706:83–116, 2018.

[LM99] N. Jesper Larsson and Alistair Moffat. Off-Line Dictionary-Based Compres-
sion. In Data Compression Conference, DCC 1999, Snowbird, Utah, USA,
March 29-31, 1999., pages 296–305, 1999.

[LMG94] Reinhold Letz, Klaus Mayr, and Christoph Goller. Controlled Integration
of the Cut Rule into Connection Tableau Calculi. Journal of Automated
Reasoning, 13(3):297–337, 1994.

157

[LP18] Michael P. Lettmann and Nicolas Peltier. A Tableaux Calculus for Reducing
Proof Size. In Automated Reasoning - 9th International Joint Conference,
IJCAR 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, pages 64–80, 2018.

[LPW17] Alexander Leitsch, Nicolas Peltier, and Daniel Weller. CERES for First-Order
Schemata. J. Log. Comput., 27(7):1897–1954, 2017.

[NMW97] Craig G. Nevill-Manning and Ian H. Witten. Identifying Hierarchical Structure
in Sequences: A Linear-Time Algorithm. Journal of Artificial Intelligence
Research, 7:67–82, 1997.

[Pas82] Moritz Pasch. Vorlesungen über neuere Geometrie, 1882.

[Pea89a] Giuseppe Peano. Arithmetices Principia: Nova methodo exposita. Fratres
Bocca, 1889.

[Pea89b] Giuseppe Peano. I principii di geometria logicamente esposti. Fratelli Bocca,
1889.

[Sch77] Helmut Schwichtenberg. Proof Theory: Some Applications of Cut-Elimination.
In Studies in Logic and the Foundations of Mathematics, volume 90, pages
867–895. Elsevier, 1977.

[SS82] James A. Storer and Thomas G. Szymanski. Data Compression via Textual
Substitution. J. ACM, 29(4):928–951, 1982.

[Sut09] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure:
The FOF and CNF Parts. Journal of Automated Reasoning, 43(4):337–362,
2009.

[Tak67] Gaisi Takeuti. Consistency proofs of subsystems of classical analysis. Annals
of mathematics, pages 299–348, 1967.

[Tak87] Gaisi Takeuti. Proof theory. Studies in Logic and the Foundations of Mathe-
matics 81. North-Holland, 2nd edition, 1987.

[Tao07] Terence Tao. Soft analysis, hard analysis, and the finite convergence principle.
Essay posted May, 23, 2007.

[TS96] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory, volume 43
of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, The Pitt Building, Trumpington Street, Cambridge, United Kingdom,
second edition, 1996.

[Tse68] G. S. Tseitin. On the complexity of derivation in propositional calculus.
Studies in Constrained Mathematics and Mathematical Logic, 1968.

158

[Urb00] Christian Urban. Classical Logic and Computation. PhD thesis, 2000.

[VSU10] Jiři Vyskočil, David Stanovský, and Josef Urban. Automated Proof Compres-
sion by Invention of New Definitions. In E. M. Clark and A. Voronkov, editors,
Logic for Programming, Artifical Intelligence and Reasoning (LPAR-16), vol-
ume 6355 of Lecture Notes in Computer Science, pages 447–462. Springer,
2010.

[WP10] Bruno Woltzenlogel Paleo. Atomic Cut Introduction by Resolution: Proof
Structuring and Compression. In E. M. Clark and A. Voronkov, editors, Logic
for Programming, Artifical Intelligence and Reasoning (LPAR-16), volume
6355 of Lecture Notes in Computer Science, pages 463–480. Springer, 2010.

159

	Kurzfassung
	Abstract
	Contents
	Introduction
	Preliminaries
	Notations
	G3c-Calculus
	Normal Forms
	Complexity Measurements
	Herbrand's Theorem
	Grammars

	Revisiting Pi1-Cut Introduction
	Analysis of Pi1 Cuts in Sequent Calculus
	Schematic Pi1 Grammars
	Schematic Extended Herbrand Sequents for Pi1 Cuts
	The Canonical Solution
	Application of Pi1-Cut Introduction
	The Possible Compression of Pi1 Cuts

	Pi2-Cut Introduction
	Motivation
	Analysis of Pi2 Cuts in Sequent Calculus
	Schematic Pi2 Grammars
	Schematic Extended Herbrand Sequents for Pi2 Cuts
	The Solution Problem
	A Characterization of Solvability
	The Unification Method
	Generalizing the Cut Formula
	Proof Compression

	Implementation and Experiments
	An Implementation for the Construction of Pi2-Cut Formulas
	Computing SPi2-Gs
	Experiments

	Conclusion and Future Work
	Conclusion
	Future Work

	Problems of the TSTP
	PUZ/PUZ035-5/Prover9—1109a.UNS-Ref.s
	PUZ/PUZ035-6/Prover9—1109a.UNS-Ref.s

	List of Figures
	Index
	Bibliography

