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Abstract
In an extension of speculations that physical space–time is a fractal which might itself be 
embedded in a high-dimensional continuum, it is hypothesized to “compensate” for local 
variations of the fractal dimension by instead varying the metric in such as way that the 
intrinsic (as seen from an embedded observer) dimensionality remains an integer. Thereby, 
an extrinsic fractal continuum is intrinsically perceived as a classical continuum. Con-
versely, it is suggested that any variation of the metric from its Euclidean (or Minkowskian) 
form can be “shifted” to nontrivial fractal topology. Thereby “holes” or “gaps” in space-
time could give rise to (increased) curvature.

Keywords Entanglement · Quantum state · Quantum indeterminism · Quantum 
randomness

Embedded observers and agents  (Boskovich 1966; Toffoli 1978; Svozil 1994; Rössler 
1998) are operationally bound by self-reflexive, intrinsic methods and means available 
from within the very system they exist. Such observers have no access to extrinsic, Pla-
tonistic entities which are beyond their operational physical capacities. [They may, none-
theless, have inspirational “afflatus” or ideas about some external truth; but would not be 
able to prove this in any effable way (Jonas 2016) beyond zero-knowledge proof methods.] 
Indeed the situation embedded observers have to cope with appear much more severe as 
in the allegory of the cave mentioned by Plato (2000, Book 7, 514a–517e, pp. 220–223), 
in that the latter assumes the existence of a supposedly ontologic level: an observer can be 
“dragged right out into the sunlight.” The assumption of such ontologic level could, from 
an idealistic stance (Stace 1934), be considered problematic, as any observer appears to be 
permanently captivated in a Cartesian prison (Descartes 1996, Second Meditation, 26–29, 
pp.  17–20) [see also Putnam’s “brain in the vat” metaphor  (Putnam 1981,  Chapter  1), 
among others], and “in the strict sense only a thing that thinks.” As idealistic philosophy 
has it  (Segal and Goldschmidt 2017), “the world is mental through-and-through.” Poin-
caré has pointed out in the introduction to La valeur the la science (Poincaré 1905, 1913), 
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“Does the harmony the human intelligence thinks it discovers in nature exist outside of this 
intelligence? No, beyond doubt a reality completely independent of the mind which con-
ceives it, sees or feels it, is an impossibility. A world as exterior as that, even if it existed, 
would for us be forever inaccessible.”

Therefore, when it comes to the formalization of physical theories, any such framework 
ought to include and use, as much as can be possibly afforded, intrinsic, that is, operation-
ally feasible, elements of physical description  (Bridgman 1934). Gaussian geometry, for 
example, characterizes a surface with totally intrinsic methods (Nottale 1993, Section 3.2, 
pp.  46, 47). It appears prudent to include epistemic considerations rather than uncriti-
cally assume that one deals with ontic elements of perception. Poincaré’s and even more 
and explicitly so Einstein’s conceptions and constructions of space and time follow this 
pursuit in that they operationalize physical time by conventionalizing, in particular, time 
synchronizations.

Nevertheless, quasi-extrinsic perspectives may shed new light on old physical subjects 
and concepts. Thereby, such extrinsic formalizations and situations, suggesting and utiliz-
ing means and methods available from a hypothetical outside, external viewpoint, may 
appear very different, even exotic and counterintuitive, from the point of view of embed-
ded, intrinsic observers. In particular, based on Hausdorff measures and fractal dimension 
theory (Hurewicz and Wallman 1948; Rogers 1970; Kenneth 2014; Mattila 1995; Montiel 
et al. 1996; Adda 2007; Edgar 2008; Porchon 2012) of fractals (Mandelbrot 1982), it has 
been suggested that, while (i) extrinsically and ontologically, space-time might be a frac-
tal set with possibly non-integer dimension (Ord 1983; Nottale and Schneider 1984), (ii) 
intrinsically and epistemically, that is, from an operational point of view, it might appear 
as if observers embedded in such fractals would experience not much phenomenologi-
cal differences as compared to “inhabiting” standard continua such as ℝn  (Zeilinger and 
Svozil 1985; Svozil and Zeilinger 1986, 1988; Svozil 1986, 1987). In other words, the frac-
tal space-time concept can be put to some extreme by speculating that, for all practical 
purposes, intrinsically embedded observers cannot differentiate between, say, three-dimen-
sional continua ℝ3 and some continuous fractal which is a (possibly stochastic) generaliza-
tion of the Cantor set of fractal dimension three (Svozil 1986), and which is embedded in a 
larger-dimensional continuum, say, ℝd , with d > 3.

I suggest here to take a further speculative step by shifting the nontrivial topological 
structure of such fractals to the metric of the (embedding) space. Because even for non-
integer dimensions, intrinsic observers might, for all practical purposes, not be able to dif-
ferentiate between two operationally indistinguishable premises: they may either exist in a 
space with standard (Euclidean, Minkowski) metric whose support is a fractal continuum; 
or they may inhabit a space-time whose support is a classical, integer dimensional con-
tinuum (say, ℝ3 ), but the Riemannian metric of the space is somehow non-standard and, in 
particular, non-Euclidean or non-Minkowskian.

For the sake of an intuitive, informal example of why “cutting out holes” in a given set 
and “gluing together” the remaining pieces might affect the geometric properties of the 
object, consider a situation depicted in Fig. 1, in which segments of a unit circle are elimi-
nated, and the remaining pieces form a new circle of smaller radius.

Another fractal example is (as often) of the Cantor set type (Mattila 1995, Section 4.10). 
Suppose from a unit circle the middle third segment 
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 and 
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)
 remain, as is depicted in Fig. 2a. From these remaining pieces, the 

respective middle third segments are cut out again, as is depicted in Fig. 2b–e; and so on ad 
infinitum. Thereby a continuum of measure zero is obtained: at the n’th construction stage, 
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encode each first remaining third by 0 and each third remaining third by 1, and associate these 
respective bits with the n’th digits of a binary number. In the limit this construction creates the 
binary unit continuum [0, 1] . However, at each construction stage, the set “loses” one third of 
its length, so that, in the limit this length converges to zero; that is, lim

n→∞

(
2

3

)n

= 0 . To 
avoid the scale dependence of the measure, Hausdorff introduced a non-integer exponential 
dimensional scale factor d applied to the measure of the remaining pieces. This “dimension” d 

Fig. 1  An intuitive and informal 
example may help to understand 
why “cutting out holes” in a 
continuum might yield different 
radii if one “glues” together the 
remaining pieces. a Consider 
an original circle with radius 1; 
b pieces of 30◦ are cut out of a, 
thereby effectively reducing the 
length of the set by a factor of 
two; c those pieces are “glued 
together” to yield a half-circle; d 
alternatively one can draw a full 
circle with a reduced radius of 
half the original radius
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Fig. 2  A fractal example of why “cutting out holes” or “creating gaps” in a continuum in a scale invariant 
manner might yield different radii if the remaining pieces are scaled by the fractal dimension and subse-
quently “pasted” together. a Consider an original circle with radius 1; b the middle third segment 
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is cut out of a, thereby effectively reducing the length of the set by a factor of 1
3
 ; c the middle third segments [
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)
 and 
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)
 are cut out of the remaining segments in b, thereby effectively reducing the length 

of the set by a factor of 1
3
 ; d–e shows the iteration of this construction; f alternatively one can draw a full 

circle with a pasting of the upscaled segments and a reduced radius r ≈ 0.8 from Eq. (2)
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is defined by an “Umklapp property” d = inf

{

d ≥ 0
|||
lim

n→∞

[

2
(

1

3

)d
]n

= 0

}

 , yielding 

2n
(

1

3

)nd

= 2n+1
(

1

3

)(n+1)d

 , and finally d =
log(2)

log(3)
.

So, effectively, the “price” of scale independence of the measure is the non-intuitive fact 
that the dimension of this set is not a natural number. In an ad hoc attempt to maintain some 
positive integer dimensionality of the set one may go one step further and attempt to change 
the metric. Thereby the intrinsic dimensional parameter is forced to become a natural number 
equal to or smaller than the dimension of the external embedding space.

For the sake of an example, note that the volume of a ball of radius r in d-dimensional 
Euclidean space is V(d, r) =

�√
�r

�d

∕Γ(d∕2 + 1) . Suppose further that this measure of vol-
ume (which, strictly speaking, does not contain a dimensional parameter based upon Haus-
dorff’s “Umklapp property” of the measure) nevertheless has an analytic continuation for real 
d ≥ 0 . Then, by “shifting” the dimensionality d parameter to the “curvature” r; that is, by

one obtains a “radius” r associated with the Cantor set by inserting d = log 2∕log 3 ; that is,

By abduction one may infer the following general desiderandum for the parametrization of 
“volume” as it relates to fractal dimensionality and curvature:

Thereby the terms

1. fractal dimension d on the left hand side of (3) refers to the dimension of the fractal 
object, as seen extrinsically, whereby the object is embedded in a space of extrinsic, 
higher dimensionality n;

2. outer, extrinsic curvature, parametrized by the radius R on the left hand side of (3), 
stands for the curvature of the fractal object within an embedding space;

3. target dimension m on the right hand side of (3), refers to the intrinsic dimension of 
the object “forced” to be a natural number; thereby the fractal set will, operationally 
and intrinsically, not be perceived as fractal but rather as a conventional continuum ℝm 
of smaller or equal dimensionality than the embedding space, but of higher or equal 
dimensionality than the fractal; that is, 

4. intrinsic curvature, parametrized by the radius r on the right hand side of (3), refers to 
the curvature experienced intrinsically upon pretension of the target dimensionionality.

Corresponding to (4), as compared to the extrinsic radius, one obtains a smaller or equal 
intrinsic radius; that is

(1)V(d, 1) = V(1, r),

(2)r =
�

d

2

2Γ
(

d

2
+ 1

) =
�

log 2

2 log 3

2Γ
(

log 2

2 log 3
+ 1

) ≈ 0.8.

(3)V(d,R) = V(m, r).

(4)d ≤ m ≤ n;

(5)R ≥ r.
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Nottale (2011, Section 4.5) [for earlier discussions see Refs. Nottale (1993, Section 3.10) 
and  2001] and Nottale, Célérier, and Lehner have suggested a different, somewhat con-
verse, “dual” approach by considering a scale relativity for gauge field theories, which is 
based upon (Nottale et al. 2006) “curvature at large scale and fractality at small scales.” 
Thereby  (Nottale 2011,  Section  4.5.3, p.  129), “the metric elements and its curvature 
are everywhere explicitly scale dependent and divergent when the resolution scale tends 
to zero.” This approach has been motivated by an a priori, given, fractal support of field 
theory. It presents no attempt to “re-encode” or “renormalize” the curvature and the metric 
in the presence of a fractal support such that this support intrinsically appear trivial in its 
topology.

Of course, these considerations are tentative, highly speculative and need further scru-
tiny. To quote a Referee, “the formal derivation remains an open question.” Many issues 
and questions remain, among them how to conceptualize the shift (back & forth) from the 
“fractality of the continuum” to the metric; and vice versa in more general situations. Also, 
it needs to be seen how to obtain curvature from an originally flat (zero curvature) space-
time. In the end, there might appear a possibility to extend the formalism of general rela-
tivity by “punching” scale invariant “holes” or “gaps” into space-time; thereby creating a 
theory of gravity which generalizes, or at least offers an alternative viewpoint to, relativity 
theory by assuming a fractal geometric support with non-curved standard metrics.
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