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Abstract The equations governing pure torsion of prismatic beams with thin-walled closed cross sections,
known as Bredt’s formulas, are verified using the method of asymptotic splitting. In particular, the strong
formulation of the Saint-Venant problem of a straight beam is expanded asymptotically.We begin by validating
well-known technical assumptions for the shear stress distribution. Furthermore, the influence of a transverse
force acting on the beam is considered. This shear force causes a deformation of the cross section, and therefore
an adaption of Bredt’s formulas is needed. Two distinct formulations of the shear center, called the kinematic
and the energetic shear center, are obtained. The latter is verified in numerical experiments.

Keywords Bredt’s formulas · Asymptotic splitting · Single-cell cross section · Shear center

1 Introduction

Due to their lightweight compared to the stiffness, single- and multi-cell thin-walled beams are widely used in
engineering. Useful design tools for such structures are the formulas of Bredt, which in the case of a single-cell
cross section read

MT = μα JT, JT = 4A2
Γ

(∮
Γ

ds

h(s)

)−1

(1)

2AΓ μα =
∮

Γ

τds. (2)

In (1), the torque MT is expressed as a function of the shear modulus μ, the torsional rigidity JT, and the
rate of twist α. The area enclosed by the center line Γ is defined as AΓ , and the wall thickness h(s) varies
along the arc coordinate s. The formulas are derived under the engineering assumption of a constant shear
stress over the thickness. As a further assumption, shear stresses orthogonal to Γ are neglected. Equation(2)
relates the shear stress τ with the deformation. In [1], the same simplifications are used to obtain the position
of the shear center by using Bredt’s formulas as an approximation even in the case of combined bending and
torsion. We validate the engineering assumptions by an asymptotic analysis of an arbitrary single-cell cross
section. Therefore, we consider the Saint-Venant problem of a linear elastic beam. The analytical description
of linear elastic beams with arbitrary, also multiply connected cross sections, was done by Eliseev [2,3]. In the
limit of small thicknesses h, represented by a formal small parameter λ, the cross section can be characterized
by its center line and a small dimension orthogonal to it. The strong form of the equations is developed
asymptotically to obtain the principal terms of shear stresses and related quantities. The determination of the
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Fig. 1 Thin-walled single-cell cross section including vectors and the coordinate system

principal terms requires the solvability conditions of the minor terms, which is intrinsic to the procedure of
asymptotic splitting. This method has also been applied to the actual problem but with constant wall thickness
in [3] and to the problem of constrained warping of thin open cross sections as well as plate equations in [4–6].
Another possibility of an asymptotic analysis is shown in [7], in which also higher terms are derived, but again
only constant thickness is considered. Further asymptotic solutions of the problem were found by the authors
of [8,9], who used the weak formulation of the problem.

In the present paper, the solutions are used to verify Bredt’s formulas and to find expressions of the shear
centers. There are two definitions of the shear center. The first one defines it as the point, in which a single
shear force has to act such that no twisting occurs. The second one defines it as the position where the shear
force and an additional applied torque do not perform work on each other’s deformations. It can be shown that
for open thin cross sections these definitions are asymptotically equivalent, whereas in the case of multiply
connected ones these two are distinct. In the present paper, we show that even in the case of a single-cell cross
section with constant wall thickness the difference remains, a result that so far has not been reported in the
literature. The analytical results are validated numerically against the formulation of Lacarbonara [10].

2 Notations and formulation of the problem

We study stresses and displacements of a Saint-Venant solution for a prismatic beam, whose axis is directed
along the unit vector ez with coordinate z, and with the constant cross section placed orthogonal to it in the
(x, y)-plane with a position vector x = xex + yey (Fig. 1). In case of a thin-walled cross section, we describe
this position vector by

x = x0(s) + λnen, (3)

with the center line x0 as function of its arc length s, the coordinate n with − h
2 ≤ n ≤ h

2 orthogonal to
the center line(with unit vector en), and λ being a formal small parameter, representing the smallness of the
thickness h.

et = ∂x0
∂s

(4)

is the unit tangential vector of the center line Γ of the thin-walled profile. With the curvature κ , we can write
the normal vector

en = −κ−1 ∂et
∂s

, (5)
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which is orthogonal to et . With the Frenet formula

∂en
∂s

= κet , (6)

the nabla operator is determined by

∇ = et
∂

hs∂s
+ en

∂

hn∂n
= (1 + nλκ)−1et

∂

∂s
+ λ−1en

∂

∂n
, (7)

with the Lamé coefficients

h2i = ∂x
∂i

· ∂x
∂i

. (8)

∇x = I2 holds with the identity tensor I2. Similar to the vectors et and en of the center line, there are a
tangential vector t and a normal vector n at the boundary of the cross section. Because of the varying thickness,
the directions of t and et as well as n and en are different. Note that we have ez = ex ×ey = −et ×en . Although
the small parameter λ has already been introduced, we present the general exact solution of the Saint-Venant
problem. The origin x = 0 is chosen as the area center of the cross section; therefore,

xA = 1

A

∫
A
xdA = 0. (9)

Now, we briefly present the basic relations of the solution of Saint-Venant for a prismatic beam, loaded by
moments M and forces Q. The moment M(L) and force Q are applied at z = L , as well as −M(0) =
M(L) + Lez × Q and −Q act at z = 0. The lateral surfaces of the beam are unloaded. We seek the stress
tensor T in the form

T = σzezez + τez + ezτ , (10)

with no in-plane components. The equilibrium equations for the axial component σz and for the shear stresses
τ are

σz = a + b(z) · x and ∇ · τ = −b′ · x, (11)

a being the mean axial stress, and b′ = ∂b/∂z determines the linear distribution of the axial stress in the cross
section. We can write

b′ = J−1 · Q0, with J =
∫
A
xxdA, (12)

with the tensor of the area moments of inertia J and the shear force Q0, which is the in-plane part of Q.
Furthermore, we have to satisfy the compatibility condition

Δτ = −(1 + ν)−1b′, (13)

written in the form of the Beltrami equation, with ν being Poisson’s ratio. The shear stress vector can be
expressed as

τ = ∇ϕ + ∇ψ × ez (14)

with

Δϕ = −b′ · x, (15)

Δψ = −ν(1 + ν)−1b′ × ez · x − 2μα (16)

in which μ is the shear modulus and α a constant. Later, we will see that α has the meaning of the average rate
of twist of the cross section. The boundary conditions are fulfilled if

τ · n = n · ∇ϕ + (ez × n) · ∇ψ = 0. (17)

The first term implies that the normal derivative of ϕ is zero at the boundaries, whereas the second term enforces
the tangential derivative of ψ to be zero. From this second expression, we conclude that ψ must be constant
at each closed contour of the boundary. In the case of a single-cell cross section, there are two such contours;
therefore, we choose one constant to be zero, the other one is yet undetermined.
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3 The method of asymptotic splitting

The asymptotic method used in this paper is based on introducing in the problem a formal small parameter λ,
which is first used to obtain a serial expansion for λ → 0, but is set equal to 1 after finishing the procedure (see
also in Andrianov [11]). Assuming the order of the principal terms in the solution, we balance the leading-
order terms in the equations. In general, the solution is not unique yet. Therefore, higher orders of λ have to
be considered. The method is demonstrated by considering a linear algebraic system

(C0 + λC1)u = f, detC0 = 0, λ → 0, (18)

which becomes singular, if λ tends to zero. Therefore, we seek u in the form of a power series in λ, starting
with λ−1:

u = λ−1u(0) + λ0u(1) + λu(2) + · · · (19)

Inserting u finds the principal order (λ−1) term to

C0u
(0) = 0 → u(0) =

∑
akϕk, with C0ϕk = 0. (20)

The solution u(0) is a linear combination of the fundamental solutions ϕk , but the coefficients ak are still
undetermined. Therefore, we have to consider the first minor order term (λ0):

C0u
(1) = f − C1u

(0). (21)

Both sides are multiplied by ψT
i , and the solutions of the conjugate system CT

0 ψi = 0; hence, we obtain

0 = ψT
i

(
f − C1

∑
akϕk

)
. (22)

This further condition results in a linear system for the coefficients ak . If this system is again singular, further
minor terms have to be considered. For a more detailed presentation of regular and singular perturbed linear
systems, see [12]. Depending on the problem, also boundary layers may arise [13]. Note that instead of
introducingλ itwould be possible to nondimensionalize the equations and search for a dimensionless parameter,
which is physically small. But in our opinion the introduction of λ is, at least when searching just the principal
terms, more convenient.

4 Bredt’s formulas of a single-cell cross section

First, the shear stress is determined to validate that it is constant over the thickness, and next the displacements
are used to identify this constant.

4.1 Validation of the assumptions of the shear stress τ

The equilibrium equations and the compatibility conditions are equivalent to two partial differential equations
(15), (16), namely Poisson equations for the functions ϕ and ψ . From (12), we conclude with

dA = λ(1 + λκn)dn ds (23)

that

b′ = λ−1b(0)′ + λ0b(1)′ + · · · . (24)

Seeking the solution for ϕ as

ϕ = λ−1ϕ(0) + λ0ϕ(1) + λ1ϕ(2) + · · · , (25)
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and inserting into (15), we find
[(

(1 + nκλ)−1 ∂

∂s

)2

+ λ−1κ(1 + λκn)−1 ∂

∂n
+ λ−2 ∂2

∂n2

]

×
(
λ−1ϕ(0) + λ0ϕ(1) + λ1ϕ(2) + · · ·

)
= −λ−1b(0)′ · x0 + · · · . (26)

With a series expansion in terms of λ, this equation can be arranged by orders of λ−3, λ−2 and λ−1. Hence,
we obtain

∂2

∂n2
ϕ(0) = 0, (27)

∂2

∂n2
ϕ(1) + κ

∂

∂n
ϕ(0) = 0, (28)

∂2

∂n2
ϕ(2) + κ

∂

∂n
ϕ(1) + ∂2

∂s2
ϕ(0)(s) = −b(0)′ · x0(s). (29)

The boundary conditions on the outer and inner surface are n · ∇ϕ
∣∣
n=±h/2 = 0. With

n

∣∣∣∣
n=±h/2

= ∓ ez × ∂x/∂s
|ez × ∂x/∂s| = ±en − 1

2
λ

∂

∂s
het + λ

2
hκen + · · · , (30)

the boundary condition becomes
(

−1

2
λ
∂h

∂s

∂

∂s
± λ−1 ∂

∂n
+ λ0

hκ

2

∂

∂n
+ · · ·

)(
λ−1ϕ(0) + ϕ(1) + λϕ(2) + · · ·

) ∣∣∣∣
n=±h/2

= 0. (31)

Collecting terms of different orders in the boundary condition yields

λ−2 : ∂ϕ(0)

∂n

∣∣∣∣∣
n=±h/2

= 0, (32)

λ−1 :
(

±∂ϕ(1)

∂n
+ hκ

2

∂ϕ(0)

∂n

)∣∣∣∣∣
n=±h/2

= 0, (33)

λ0 :
(

±∂ϕ(2)

∂n
+ hκ

2

∂ϕ(1)

∂n
− 1

2

∂h

∂s

∂ϕ(0)

∂s

)∣∣∣∣∣
n=±h/2

= 0. (34)

Together with (27), (28), and (29), we conclude that ϕ(0) = ϕ(0)(s) and ϕ(1) = ϕ(1)(s), as well as

ϕ(2) = −n2

2

(
b(0)′ · x0 − ∂2ϕ(0)

∂s2

)
+ C1(s)n + C2(s). (35)

Inserting ϕ(2) into the two boundary conditions of order λ0 at n = ±h/2 gives

−1

2

∂h

∂s

∂ϕ(0)

∂s
+ h

2

(
−b(0)′ · x0 − ∂2ϕ(0)

∂s2

)
± C1(s) = 0, (36)

such that C1(s) must vanish, and we have

∂

∂s

(
h

∂ϕ(0)

∂s

)
+ hb(0)′ · x0 = 0, (37)
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from which ϕ(0) can be computed. To start the asymptotics of ψ , it is imperative to know the order of the
right-hand side terms. Therefore, we compute the torque to

Mz =
∫
A
x × τ · ezdA = ez ·

∫
A
x × ∇ϕdA −

(∮
∂A

n · xψds − 2
∫
A

ψdA

)
. (38)

Knowing the result for the special case of pure torsion of a circular ring , we conclude from (38) that the
principal order of ψ has to be λ0 and the rate of twist has to be α = λ−1α(0) + · · · . Therefore, the boundary
conditions areψ(n = +h/2) = 0 andψ(n = −h/2) = λ0C (0) +· · · . Withψ = λ0ψ(0) +· · · , the asymptotic
equations are

λ−1 : ∂2ψ(0)

∂n2
= 0, (39)

λ0 : ∂2ψ(1)

∂n2
= −κ

∂ψ(0)

∂n
− 2μα(0) − ν

1 + ν
b(0)′ × ez · x0, (40)

with the principal solution

ψ(0) = C (0)
(
1

2
− n

h

)
. (41)

Finally, one can insert the results into (14) to compute the shear stress vector

τ =
(
et

∂

∂s
+ λ−1en

∂

∂n

)
(λ−1ϕ(0)(s) + λ0ϕ(1)(s) + · · · ) (42)

+
(
et

∂

∂s
+ λ−1en

∂

∂n

)[
λ0C (0)

(
1

2
− n

h

)
+ · · ·

]
× ez (43)

= λ−1et
∂ϕ(0)

∂s
− λ−1en × ezC (0)/h + · · · . (44)

Hence, the principal term of the shear stress vector,

τ = λ−1

(
∂ϕ(0)

∂s
+ C (0)

h

)
et + · · · = λ−1τ(s)et + · · · , (45)

is constant through the thickness and tangential to the center line. With b = 0 in pure torsion, ϕ(0) = 0 holds.
Setting λ = 1, the shear stress vector is τh = C (0)et , and C (0) is computed from the circulatory theorem

1

μα

∮
τds = 2AΓ . (46)

With the shear flow T = τh = C (0) Bredt’s formulas are obtained. In this paper, we are further interested in
the extension of Bredt’s formulas to account for shear forces. With the definition of the shear flow

T (s) =
∫ +h/2

−h/2
τdn, (47)

the integration of τ across the thickness yields

h
∂ϕ(0)

∂s
= τh − C (0) = T − C (0). (48)

Inserting this formula into (37) yields the known equations

∂T

∂s
+ hb(0)′ · x0 = ∂T

∂s
+ h

∂σz

∂z
= 0, (49)

with b(0)′ · x0 = ∂σz/∂z , from which we find the shear flow

T (s) = T0 −
∫ s

0
hb(0)′ · x0ds. (50)

Next, we establish a further condition to evaluate T0 = T (s = 0), which follows from the continuity of the
displacements.
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4.2 Consideration of the displacements

Due to the absence of in-plane stresses in the cross-sectional plane, the in-plane strains ε0 = (∇u0)sym =
−νI2εz are caused only by the Poisson effect, with the 2D identity tensor I2 and the axial strain εz . The resulting
displacements u = u0 + uzez according to Hooke’s law applied to the principal strains and the axial stress σz ,
including an additional in-plane rigid body motion U0 + ωez × x as well as an additional axial displacement
Uz(x), are

u0 = −(ν/E)(ax + b · xx − 1

2
bx · x) + U0(z) + ω(z)ez × x, (51)

uz = 1/E(az + [b(L)z − (Lz − z2/2)b′] · x) +Uz(x). (52)

For details of this classical result, see [2]. The displacement Uz(x) may be used, too, to obtain the solution,
but as seen below, usage of the stressesUz(x) is not needed. The displacements are inserted into Hooke’s law,

τ (x)/μ = ∂zu0 + ∇uz . (53)

If we insert the displacements as well as ψ and ϕ into Hooke’s law and take the rotor ∇×, we find α = ω′; see
Eliseev [2]. This is the proof of the above statement that α is the mean rate of twist. It should be mentioned
that because of Poisson’s ratio the rate of twist is not constant within the cross section. The resulting equation
splits into a part, which depends on z and one part, which is independent of z. Both must hold on their own.
The part dependent of z is

0 = U′
0 + E−1[b(L)z − (Lz − z2/2)b′]. (54)

In the following, we consider only the part of the equation which is independent of z, which reads

τ/μ = ∇Uz + ν

E
b′ ·

(
−xx + 1

2
I2x · x

)
+ αez × x. (55)

Next we take the principal terms of the equation and integrate along the center line Γ ,∮
Γ

τds/μ =
∮

Γ

et · τds/μ

= α(0)2AΓ +
∮

Γ

et · ∇Uzds︸ ︷︷ ︸
0

+ ν

E
Q0 ·

(
J(0)

)−1 ·
∮ (

−et · x0x0 + 1

2
et (x0 · x0)

)
ds, (56)

with AΓ being the area enclosed by the center line. With ∂x0/∂s = et and integration by parts, we find∮
Γ

τds = 2α(0)AΓ μ + ν

2(1 + ν)
Q0 ·

(
J(0)

)−1 ·
∮

Γ

et (x0 · x0)ds, (57)

where we already can see (2) in the case of pure torsion (Q0 = 0). According to the Stokes theorem,∮
∂AΓ

v · dx =
∫
AΓ

∇ × v · ezdAΓ , (58)

the integral on the right-hand side can be transformed to an area moment of first order, which does not vanish,
because the coordinate system was set in the gravity center of the cross section, which is not the gravity center
of the embedded area. This leads finally to an expression for the remaining unknown C (0),

C (0)
∮

Γ

ds

h
=

∮
Γ

τds = 2α(0)AΓ μ − ν

1 + ν
b(0)′ · xΓ AΓ × ez, (59)

with AΓ xΓ = ∫
AΓ

xdAΓ . According to Eliseev[3], the work conjugate of the moment Mz is

θ ′
z = α(0) − ν

E
b(0)′ · xΓ × ez . (60)
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Inserting θ ′
z into the above equation results in

C (0)
∮

Γ

ds

h
=

∮
Γ

τds = 2AΓ μθ ′
z . (61)

Further, by inserting τ = T/h, we obtain T0 as

T0 =
(∮

Γ

ds

h

)−1 [
2AΓ μθ ′

z +
∮

Γ

1

h

(∫ s

0
b(0)′ · x0h ds

)
ds

]
. (62)

With (48), we can write the leading order λ0 of the torque as

Mz = ez ·
∫

x × τdA = ez ·
∮

Γ

x0 × etτ(s)hds

= 2AΓ T0 − b(0)′ ·
∮

Γ

(∫ s

0
x0hds

)
pds

= μJTθ ′
z +

∮
Γ

(
2AΓ

(∮
Γ

ds

h

)−1 1

h
− p

) (∫ s

0
b(0)′ · x0h ds

)
ds (63)

with p = en · x0. Integrating by parts and noting
∮
x0hds = 0, we obtain

Mz =μJTθ ′
z + b(0)′ ·

∮
Γ

(
−2AΓ

(∮
Γ

ds

h

)−1 ∫ s

0

1

h
ds̄ +

∫ s

0
p ds̄

)
x0h ds. (64)

With the abbreviations

2a(s) =
∫ s

0
p ds̄, b(s) =

∫ s

0

ds̄

h
, B =

∮
ds

h
,

we have

Mz = μJTθ ′
z + b(0)′ ·

∮
Γ

(
2a(s) − 2AΓ

B
b(s)

)
x0h ds. (65)

The terms in the brackets represent the principal term of the warping functionW from pure torsion; therefore,
we can write

Mz = μJTθ ′
z + b(0)′ ·

∮
Γ

Wx0h ds. (66)

If we assume pure torsion (b′ = 0), the rate of twist α(0) is equal to θz , and we get

MT = Mz

∣∣∣∣
b(0)′=0

= μα(0) JT, (67)

which validates (1). Repeating (61), the adapted second formula of Bredt including shear forces is

∮
Γ

τds = 2AΓ μθ ′
z .

In the case of pure torsion, with θ ′
z = α(0), we recover (2).
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4.3 Shear center

The kinematic shear center x∗ is defined as the point where a shear force Q0 causes no twisting of the beam
(α = 0). The torque resulting from the shear stresses τ has to compensate the torque caused by the shear force,
that is,

Mz

∣∣∣∣
α=0

= ez · x∗ × Q0 = Q0 · ez × x∗. (68)

Next, we substitute Mz considering α = 0 and get

Q0 · ez × x∗ = − JT
ν

2(1 + ν)
b(0)′ · xΓ × ez + b(0)′ ·

∮
Γ

Wx0h ds.

We substitute b′(0) from (12), cancelQ0, and multiply the resulting equation with ×ez . The resulting equation
is

x∗ =
(
J(0)

)−1
(
JT

ν

2(1 + ν)
xΓ +

∮
Γ

Wx0h ds × ez

)
. (69)

Expressions for the coordinates of the shear center can be written in a simple form if the principal axes of
inertia coincide with the axes of the coordinate system, because J = Jyexex + Jxeyey , and therefore also its
inverse is diagonal. For the x-component, we then write

x∗ = ex · x∗ = 1

Jx

∮
Γ

yWhds + ν

1 + ν

JT
2Jx

xΓ . (70)

In contrast to the kinematic shear center, the energetic shear center x∗∗ is defined at the point where an acting
shear force has no influence in the work conjugate of the torque Mz , which implies that θ ′

z has to be zero. This
results in

x∗∗ = J−1 ·
∮

Γ

Wx0hds × ez, (71)

respectively, the x-coordinate

ex · x∗∗ = 1

Jx

∮
Γ

yWhds. (72)

The two shear centers only differ in the term containing ν. They coincide if xΓ = xA(= 0). The difference also
disappears if ν = 0, which represents rigidity of the projection of the cross section onto the cross-sectional
plane.

5 Numerical example

Next, the above theoretical considerations are validated numerically.We consider two cross sections symmetric
to the x-axis (Fig. 2). The first one is a thin hollow square profile with the right wall being βh thick and the
other three walls being h thick. The second one has the shape of a hollow C-profile with a constant wall
thickness. For the first one, we study the convergence of the asymptotic solution; the second example was
chosen to proof the statement that for thin single-cell cross sections with constant thickness the difference of
the two shear centers vanishes is wrong [14]. The computation is done by the above analytical formulas as well
as numerically. We approach the exact three-dimensional solution by using the method of finite differences.
The numerical solution makes no assumption about the thickness of the cross section. Instead of solving the
above Laplace equations for the stress functions (15) and (16), the basis of the finite difference scheme are the
equations established by Lacarbonara [10] (only the x-component is needed in the two symmetric examples):

ΔW2 = −2
y

Jx
, (73)



4044 C. Schmidrathner

x

y

h βh

a

a x

y

h

a/3

a

a

a/3

Fig. 2 Specific cross sections with xΓ �= xA (both are symmetric to the x-axis)

n · ∇W2

∣∣∣∣
∂A

= − ν

Jx

[
1

2
(x2 − y2)ny − xynx

]
, (74)

ex · x∗ = x∗ = − 1

2(1 + ν)

∮
Γ

W2x · ds + ν

4(1 + ν)Jx

∫
A
x(x · x)dA. (75)

This approach is called the displacement approach, because it is based on computing the divergence of both
sides of (55) and representing the displacement Uz(x) as a superposition of three warping functions W1, W2,
and W :

ΔUz = −2E−1b′ · x = Q0x

E
ΔW1 + Q0y

E
ΔW2 + αΔW. (76)

It can be seen easily that W is the well-known ”ordinary” warping function from the problem of pure torsion.
It should be noted that the above equations for W2 are only valid if the coordinate axes are principal axes
of inertia. The advantage of the displacement approach of Lacarbonara compared with equations (15) and
(16) is that the boundary condition is a Neumann one, which is known at all boundaries, whereas the above
formulation uses the Prandtl stress function, which is constant at the different boundaries, but a priori unknown
and has to be calculated with compatibility conditions (see above for C (0)).

5.1 Finite difference scheme

The numerical solution is obtained by discretizing the Laplace equation in the two-dimensional domains (Fig.
2) using the finite difference method. To keep it simple, the differences Δx and Δy are constant. In the case
of a node (i, j) inside the domain, the scheme requires five points and reads

Wi+1, j
2 − 2Wi, j

2 + Wi−1, j
2

Δx2
+ Wi, j+1

2 − 2Wi, j
2 + Wi, j−1

2

Δy2
= −2yi

Jx
. (77)

At the boundaries, the scheme has to be adapted. In our case, the normal vectors are only horizontal or vertical
which simplifies this process. Therefore, we have four different kinds of boundary conditions, depending on
the direction of the normal vector. For example, the boundary conditions at a straight boundary with constant
x = xiBC and ny = 0 are

nx
∂W2

∂x
= + ν

Jx
xynx → ∂W2

∂x
= ν

Jx
xy. (78)
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Fig. 3 Analytical and numerical solutions of kinematic and energetic shear centers of the square cross section with β = 2 (left)
and the hollow C-section (right)

As we can see, the component and the sign of nx are not important in this equation. The discretized form is

WiBC+1, j
2 − WiBC−1, j

2

2Δx
= ν

Jx
xiBC y j . (79)

Analogous relations are obtained for the other boundaries as well. Hence, the numerical scheme is complete.
At a certain boundary, the appropriate node is substituted by one of the boundary conditions. If the middle
node (i , j) is a convex corner, two points have to be replaced. Concave corners are treated like inner nodes.
Because there are only Neumann boundary conditions, the solution is determined up to an additive constant,
and the solution for an arbitrary point is set to zero, e.g., the left-low corner W 0,0

2 = 0. Note that in (75) the
term

∮
Γ

W 0,0
2 x · ds = W 0,0

2

2

∮
Γ

∇(x2 + y2) · ds = 0, (80)

vanishes, which confirms the arbitrariness of W 0,0
2 .

5.2 Numerical results

The solution is obtained for parameters ν = 0.3, a = 1, β = 2 and different thickness values h. We choose
Δx = Δy and at least six points per wall thickness of the thinner walls. Then, the convergence is tested by
repeated reduction of Δx and Δy by the factor 2. As we can see in Fig. 3, for small wall thicknesses (large
ratios a/h), the two centers, measured from the left outer edge, remain distinct, and the numerical solutions
tend toward the asymptotic expressions. Note that x∗ and x∗∗ are computed from (70) and (72), added by xA,
measured from the left edge.

Next, the error due to variable thickness of the cross section is discussed. Therefore, the energetic shear
center x∗∗ of the quadratic cross section is presented as a function of the wall thickness ratio β. Three thickness
values h = a

500 ,
a
100 ,

a
20 , with a = 1 are considered. In Fig.4, the asymptotic results are compared with the

numeric ones. For β = 1, the cross section is double-symmetric, and therefore both solutions are independent
of h exactly at the center of the cross section, a fact which would count for the kinematic shear center, too.
With increasing β, the shear center at first shifts to the right up to a maximum value and decreases again. The
maximum value of the shear center of the curve h/a = 0.05 is at a point at which the thickness of the wall is
about 25% of the square’s length.

After this numerical validation of the asymptotic equations for the shear centers, we proceed with a further
instructive example, showing that also for a warping-free cross section xΓ �= xA is possible. It is well known
that cross sections with constant thickness, which represent tangential polygons, are warping-free. Therefore,
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Fig. 4 Energetic shear center x∗∗ of the hollow quadratic cross section

we consider an isosceles triangle, with basis c, height H and the angle γ opposite to c, with the x-axis being
the axis of symmetry. Then, the positions of xΓ and xA in the limit h → 0, counted from the basis, are

xΓ = H

3
(81)

xA = H

2(1 + sin γ
2 )

. (82)

We can see that only in the case of γ = π
3 , which represents an equilateral triangle, the two expressions are

equal.

6 Conclusions

In this paper, we studied the asymptotic behavior of the solutions of the Saint-Venant problem for a linear
elastic beam with a hollow cross section under the action of torsion and shear force bending. Assuming
thin-walled cross sections, we introduced the small parameter λ, representing the thinness of the walls. After
expressing the strong form of the equations in terms of λ and merging terms of equal order, we first managed
to validate the engineering assumptions. Further, we got well-known formulas, like for the shear flow and
finally Bredt’s formulas for the torsion of rods. We noticed that if the Poisson effect is not neglected within the
cross section, the second formula of Bredt has to be adapted by using the energetic twist rate θ ′

z instead of the
kinematic one. The leading-order terms of the kinematic and energetic shear centers were derived assuming
a variable thickness of the cross section. In the final numerical investigation of two hollow cross sections, the
exact location of the shear centers was calculated for different thickness values. A good agreement with the
obtained asymptotic formulas was observed when the thickness is small. Furthermore, it has been shown that
the energetic and kinematic shear centers are in general distinct even in the case of a single-cell hollow cross
section with a constant small thickness. The opposite statement, which is sometimes met in the literature [14],
is thus proven to be incorrect.

Acknowledgements Open access funding provided by TU Wien (TUW).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Validation of Bredt’s formulas for beams with hollow cross sections 4047

References

1. Parkus, H.: Mechanik der festen Körper (Mechanics of Solids). Springer, Berlin (2005)
2. Eliseev, V.: Constitutive equations for elastic prismatic bars. Mech. Solids 1, 70–75 (1989)
3. Eliseev, V., Grekova, M.: Elasticity relations and Saint-Venant problem for rods with multiply connected cross-section and

thin-walled rods, VINITI, 3591-B90.17 (1990)
4. Vetyukov, Y.: The theory of thin-walled rods of open profile as a result of asymptotic splitting in the problem of deformation

of a noncircular cylindrical shell. J. Elast. 98, 141–158 (2010)
5. Vetyukov, Y.: Hybrid asymptotic-direct approach to the problem of finite vibrations of a curved layered strip. Acta Mech.

223(2), 371–385 (2012)
6. Vetyukov, Y., Staudigl, E., Krommer, M.: Hybrid asymptotic-direct approach to finite deformations of electromechanically

coupled piezoelectric shells. Acta Mech. 229(2), 953–974 (2018)
7. Isola, F., Ruta, G.: Outlooks in Saint Venant theory part 1, formal expansions for torsion of Bredt-like sections. Arch. Mech.

46, 1005–1027 (1994)
8. Rodriguez, J., Viano, J.: Asymptotic derivation of a general linear model for thin-walled elastic rods. Comput. Methods Appl.

Mech. Eng. 147, 287–321 (1997)
9. Morassi, A.: Torsion of thin tubes: a justification of some classical results. J. Elast. 39, 213–227 (1995)

10. Lacarbonara, W., Achille, P.: On solution strategies to Saint-Venant problem. J. Comput. Appl. Math. 206, 473–497 (2007)
11. Andrianov, I., Awrejcewicz, J., Manevitch, L.I.: Asymptotical Mechanics of Thin-walled Structures. Springer, Berlin (2004)
12. Bauer, S., Filippov, S., Smirnov, L., Tovstik, P., Vaillancourt, R.: Asymptotic Methods in Mechanics of Solids. Birkhäuser,

Basel (2015)
13. Višik, M., Ljusternik, L.: Regular degeneration and boundary layer for linear differential equations with small parameter.

Am. Math. Soc. Transl. 20(2), 239–364 (1962)
14. Andreaus, U., Ruta, G.: A review of the problem of the shear centre(s). Contin. Mech. Thermodyn. 10, 369–380 (1998)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	Validation of Bredt's formulas for beams with hollow cross sections by the method of asymptotic splitting for pure torsion and their extension to shear force bending
	Abstract
	1 Introduction
	2 Notations and formulation of the problem
	3 The method of asymptotic splitting
	4 Bredt's formulas of a single-cell cross section
	4.1 Validation of the assumptions of the shear stress τ
	4.2 Consideration of the displacements
	4.3 Shear center

	5 Numerical example
	5.1 Finite difference scheme
	5.2 Numerical results

	6 Conclusions
	Acknowledgements
	References




