
Diploma Thesis

Metamodel assisted optimisation of
glued laminated timber systems
by reordering laminations using

metaheuristic algorithms
submitted in satisfaction of the requirements for the degree of

Diplom-Ingenieur
of the TU Wien, Faculty of Civil Engineering

Diplomarbeit

Metamodel unterstützte Optimierung
von Brettschichtholz durch

Umordnen der Brettlagen unter Verwendung
von metaheuristischen Algorithmen

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs

eingereicht an der Technischen Universität Wien, Fakultät für Bauingenieurwesen

von

Sebastian Pech, BSc
Matr.Nr.: 01126795

unter der Anleitung von

Univ. Ass. Dipl.-Ing. Dr.techn. Georg Kandler
Ass. Prof. Dipl.-Ing Dr.techn Josef Füssl

Univ. Prof. Dipl.-Ing. Dr.techn. DDr.h.c. Josef Eberhardsteiner

Institut für Mechanik der Werkstoffe und Strukturen
Technische Universität Wien

Karlsplatz 13/202, A-1040 Wien

Wien, im September 2017

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



Danksagung

Ich möchte mich an dieser Stelle bei allen Personen bedanken die mich bei der
Umsetzung dieser Diplomarbeit und während meines Studiums unterstützt haben.
Besonders möchte ich meinem Betreuer Dipl.-Ing. Dr.techn. Georg Kandler danken,
der mir das Diplomarbeitsthema vorgeschlagen hat und mich während der Umsetzung
über alle Erwartungen hinaus unterstützt hat. Die Zusammenarbeit mit ihm hat mir
immer Freude bereitet und ich konnte im großen Maße davon profitiert.

Ass. Prof. Dipl.-Ing. Dr.techn. Josef Füssl möchte ich für die Unterstützung in den
letzten Wochen der Diplomarbeit und dem Zurverfügungstellen eines Arbeitsplatzes
für die Zeit der Umsetzung danken. Ihm und Univ.Prof. Dipl.-Ing. Dr.techn. DDr.h.c.
Josef Eberhardsteiner danke ich für die Chance am IMWS weiterhin Forschung zu
betreiben.
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther Raidl möchte ich für die Beratung

und Tipps zum Thema metaheuristische Algorithmen danken die besonders in der
Anfangsphase sehr hilfreich waren.

Bei Pivatdoz. Dipl.-Ing. Dr.techn. Christian Schranz MSc bedanke ich mich, dass
ich während meines Studiums als Studienassistent am EDV-Zentrum tätig sein durfte
und ich im Zuge dessen ihn und andere Kollegen am EDV-Zentrum als Freunde
gewinnen konnte.
Auch möchte ich mich bei meinen Eltern Sabine und Anton bedanken ohne die

es mir nicht möglich gewesen wäre dieses Studium zu machen. Meiner Freundin Lea
gebührt besonderer Dank da sie die Person war mit der ich während meines Studiums
die meiste Zeit verbracht habe und die mich in allen Phasen ertragen und unterstützt
hat.



Kurzfassung

Ein übliches Verfahren zur Optimierung des Tragverhaltens und des Rohstoffeinsatzes bei
Brettschichtholz (BSH) ist die Konstruktion von kombinierten BSH Trägern. Bei diesem Verfahren
werden stärkere Bretter in den äußeren und schwächere Bretter in den inneren weniger belasteten
Trägerlagen verbaut. Grundsätzlich ist diese Herangehensweise sinnvoll, allerdings biete sie Raum
für Verbesserungen. Besonders die Vernachlässigung der Holzmorphologie eines Brettes (z.B. Äste
und deren Lage) und die endgültige Position in einem BSH Träger sind von großer Bedeutung da
eine korrekte Beurteilung von Schwächungen im Holz nur in Kombination mit der tatsächlichen
Belastungssituation möglich ist. Beispielsweise kann diese Vernachlässigung dazu führen, dass ein
Ast die Festigkeitsklasse des gesamten Brettes reduziert, obwohl er im BSH Träger in einem gering
beanspruchten Bereich liegt und daher keinen Einfluss auf das Tragverhalten des Gesamtsystems
des Trägers hat.

Aus diesem Grund war das Ziel dieser Arbeit die Entwicklung einer Methode zur Optimierung
von BSH, die sowohl die mechanischen Eigenschaften als auch die tatsächlich auftretenden
Spannungen berücksichtigt. Dafür werden die Träger mit einem zweidimensionalen Finite Elemente
(FE) Modell analysiert, welches die Ermittlung der vorhandenen Spannungs- und Verzerrungsfelder
erlaubt.

Da der Berechnungsaufwand bei dieser Optimierungsaufgabe mit der Anzahl an Trägern und
Brettern schnell wächst, ist es erforderlich spezielle Algorithmen aus dem Bereich der Metaheuris-
tik zu verwenden. In dieser Arbeit finden Local Search, Iterated Local Search, Tabu Search und
genetische Algorithmen Verwendung. Anfangs werden die Algorithmen anhand eines vereinfachten
Problems unter der Annahme homogener Materialeigenschaften bewertet. Im nächsten Schritt
wird auf Basis dieses Modells die Lösbarkeit des Problems mittels deterministischer Algorithmen,
anstelle der nicht-deterministischen metaheuristischen Methoden diskutiert.
Um die eigentliche Problemstellung (mit inhomogener Steifigkeitsverteilung) innerhalb eines

vertretbaren Zeitraums lösbar zu machen wird die aufwändige Berechnung des FE Modells durch
Verwendung eines Metamodells umgangen. Die Ergebnisse der Optimierungsdurchgänge werden
statistisch ausgewertet, was die folgende Auswahl von geeigneten Lösungsmethoden zulässt:
Iterated Local Search eignet sich zum Finden von einigermaßen guten Resultaten in kurzer Zeit.
Genetische Algorithmen eignen sich zum Finden sehr guter Resultate, benötigen dafür aber mehr
Rechenzeit.
Im Vergleich zu den üblichen Methoden der Herstellung von BSH ist es möglich mit den

genannten Algorithmen bei gleicher Belastung Träger mit durchschnittlich 15 bis 20 % geringerer
Durchbiegung zu konstruieren. Das bedeutet, dass unter Verwendung der selben Bretter die
maximale Durchbiegung des schlechtesten Trägers um diesen Wert geringer ist. Zusammenfassend
lässt sich sagen, dass die genannten Optimierungsverfahren auf die Problemstellung anwendbar
sind und gute Ergebnisse in einem vertretbaren Zeitraum liefern. Darüber hinaus ist es aufgrund
der allgemeinen Formulierung der Algorithmen möglich sie im Bereich des Ingenieurholzbaus auf
ein breites Feld von Optimierungsaufgaben anzuwenden.





Abstract

A common approach for optimising the load-bearing behaviour of glued laminated timber (GLT)
beams, with respect to an efficient use of the raw material, is producing combined GLT beams.
Thereby, stronger boards, categorised based on a preceding strength grading method, are used
for the outer layers of the beam, whereas weaker boards are used to fill the less stressed inner
layers. This method, however, leaves room for improvement. Especially the omission of the real
morphology of a board (e.g. knot groups and their position) and their location in the final beam
setup is significant, since only this information together with the actual loading situation allows
for a proper evaluation of weaknesses in the GLT beam. For example, a certain knot which
reduces the strength grading class of a single board might be located in a not highly stressed
region in the GLT beam and, thus, is actually negligible when considering its load-bearing
behaviour.
For this reason, the objective of this thesis had been to develop an optimisation strategy for

GLT beams, able to take actual mechanical property distributions as well as the occurring stress
states in the final GLT beam within each individual board into account. To achieve this, the
GLT beams are analysed using a two dimensional finite element (FE) model, giving access to the
strain and stress field of each wooden board.

Subsequently, this information is exploited to find optimal GLT beam setups out of a defined
sample of wooden boards. As the complexity and the computational effort of this combinatorial
optimisation task quickly increases with the number of beams and wooden boards, a class of
special algorithms, namely metaheuristic search methods, where introduced. In particular, local
search, iterated local search, tabu search, and genetic algorithms where considered and are
discussed in detail. In a first step, the algorithms are assessed on a simplified problem, which
assumes homogeneous material properties for each board and, thus, allows the usage of beam
theory. Next, based on this simplified model, the solvability by deterministic algorithms, instead
of metaheuristic, non-deterministic algorithms is discussed.
In order to solve the original problem (with inhomogeneous stiffness distributions) within a

reasonable time, the evaluation of the computationally costly FE model is bypassed by defining
two types of metamodels, which are capable of approximating the FE model’s results after
an initial training phase on previously calculated results. All algorithms are tested multiple
times, allowing a statistical validation of each method. This validation results in a preference for
iterated local search, as an algorithm being capable of quickly finding moderately good results,
and genetic algorithms, being capable of finding good results, however needing more computation
time.
Comparing the results obtained from various optimisation approaches to commonly used

methods within the production of GLT beams, on average an improvement of 15 to 20 % could
be obtained, meaning that by using the same sample of wooden boards, the maximum deflection
of the worst GLT beam is smaller by this value. Summarised, it can be said that the used
metaheuristic search methods are applicable to this optimisation task and deliver good results
within a reasonable time. Furthermore, due to the general nature of the proposed algorithms
and definitions, they are applicable and expandable to a wide range of different optimisation
tasks in timber engineering.



Contents

1 Introduction 8
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Investigating the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Material model for timber boards 12

3 General discussion of optimisation methods 15
3.1 Optimisation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Metaheuristic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Local search and iterated local search . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Implementation of methods for optimisation 20
4.1 General formulation of the stated problem in terms of combinatorial optimisation 20

4.1.1 Definition of the function f(π∗) . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Definition of the map Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Simplification of the original problem . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Discussion of solution patterns . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Vectorized representation of beams and lamellas . . . . . . . . . . . . . . . . . . 26
4.4 Implementation of local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Implementation of iterated local search . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Implementation of tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Implementation of tabu search using candidate list solutions . . . . . . . . . . . . 30
4.8 Implementation of genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.8.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.8.2 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8.3 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8.4 Elitism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8.5 Chromosome repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8.6 Initial population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



Contents 7

5 Application of metaheuristic algorithms for the simplified problem 41
5.1 Practical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Application of local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Application of iterated local search . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Comparison of local search and iterated local search . . . . . . . . . . . . . . . . 43
5.5 Application of tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.6 Application of tabu search using candidate list strategies . . . . . . . . . . . . . . 44
5.7 Comparison of tabu search with and without using candidate list strategies . . . 46
5.8 Application of genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.9 Comparison of algorithms for the simplified problem . . . . . . . . . . . . . . . . 50

6 Application of metaheuristic algorithms for the original problem 52
6.1 Finite element model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Benchmark tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Approximation of the Finite element model . . . . . . . . . . . . . . . . . . . . . 55

6.2.1 Training- and test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.2 Comparing beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.3 Parameter sensitivity and weighting . . . . . . . . . . . . . . . . . . . . . 57
6.2.4 Eager learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2.5 Lazy learner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Implementation of metaheuristic algorithms for the non simplified problem . . . 66
6.3.1 Implementation of online learning . . . . . . . . . . . . . . . . . . . . . . 66
6.3.2 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.3 Iterated local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3.4 Comparison of local search and iterated local search . . . . . . . . . . . . 70
6.3.5 Tabu search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.6 Tabu search using candidate list strategies . . . . . . . . . . . . . . . . . . 70
6.3.7 Comparison of tabu search with and without using candidate list strategies 72
6.3.8 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.9 Comparison of the used metaheuristic algorithms for the non simplified

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Verification of the applicability of online learning . . . . . . . . . . . . . . . . . . 77

6.4.1 Online learning using the eager learner . . . . . . . . . . . . . . . . . . . . 77
6.4.2 Online learning using the lazy learner . . . . . . . . . . . . . . . . . . . . 78

6.5 Effects of variations in the optimisation problem . . . . . . . . . . . . . . . . . . 79
6.5.1 Quantification of a range of possible improvement for the practical example 80
6.5.2 Determining the effect of combined sets of LS15 and LS22 . . . . . . . . . 81
6.5.3 Determining the effect of an increased complexity . . . . . . . . . . . . . . 84
6.5.4 Optimisation with removal of bad lamellas . . . . . . . . . . . . . . . . . . 87

7 Summary & conclusion 92



Chapter 1

Introduction

1.1 Motivation

Throughout the previous years, wood consequently gained importance in fields of civil engineering
where usually mainly steel and concrete constructions were used. Especially buildings like the
HoHo in Vienna, a 24 storage wooden high-rise building, demonstrate the capabilities of wood as
a construction material. Besides its remarkable qualities in this concern, wood is a naturally
grown resource, thus it is not only contributing to lowering CO2 emissions in comparison to steel-
or concrete production, but rather it even reduces the CO2 content of the air. Therefore, under
the assumption of sustainable forestry, focusing on using wood as a building material can help
tackling nowadays climate change.

However, wood exhibits a quite complex mechanical behaviour, which is difficult to constitute
in a mechanical model. Therefore, existing design rules are often based on empirical findings,
which, especially in terms of efficiency, are unsatisfactory. In the scope of this thesis particularly
the process of visual strength grading is discussed. Visual strength grading is a practice, still
commonly used, where a wooden board is categorised based on visual characteristic [26] like

• knot sizes, -locations, -groups,

• fibre angles,

• location of the pith,

• width of annual tree rings,

• cracks,

• width of rough edges,

• curvature of the board,

• oxidative discolouration, rot and

• insect damage.

The process of visual grading of timber boards is regulated in ÖNORM DIN 4074-1 [39]. Especially
the first two characteristics, concerning knots and fibre angles, mainly define the grading class



1.1 Motivation 9

a wooden board is assigned to. The actual strength class of a timber board is allocated to the
grading class based on ÖNORM EN 1912 [41].
The task of optimising the load-bearing behaviour of GLT beams is commonly performed by

producing combined GLT beams, regulated by ÖNORM EN 14080 [40]. Herein, based on the
previously described classification, stronger boards are used for the outer layers of the GLT beam,
whereas weaker boards are used to fill the less stressed inner layers. This strategy, however,
leaves room for improvement, and particularly the following limitations have to be considered.

1. Currently, the classification methodology considers the spatial variability of mechanical
properties within wooden boards to a limited degree. However, knots and the resulting
fibre deviations lead to strong localised effects and spatial fluctuations of stiffness and
strength.

2. By using beam theory and assuming a homogeneous distribution of mechanical properties
along wooden boards for distinguishing areas of high and low stresses within the beam, the
actual structural behaviour of the beam cannot be represented very accurately.

3. The strength class is determined without considering the actual resulting stresses on the
lamella in the final structure. Thus, certain classification criteria might lead to a reduction
of the strength class of a lamella, although their impact within the final beam is neglectable.

Therefore, the grading process and the design process of GLT beams should be combined in
order to better utilise timber boards. Consequently, the aim of this work is to, subsequent to
the visual grading process of a given amount of timber boards, provide a desired amount of
GLT beam designs which exhibit, under the given conditions, an optimal load-bearing behaviour.
The improvement of the load-bearing behaviour is achieved by reordering lamellas such that the
deflection of every beam is as small as possible. Figure 1.1 depicts the process from unordered
stacked wooden boards to optimally constructed GLT beams. In this thesis, mainly the various
optimisation methods for finding solutions to the stated optimisation problem are assessed
and implemented. Finally, variations in the problem definition are discussed and the actual
improvement compared to commonly used methods for the construction of GLT beams is
determined.

The method proposed in this thesis utilises the data acquired during the visual grading process
to model the mechanical behaviour of each timber board. Thus, the mechanical properties of
each board are determined individually and not defined through a given class, hence spatial
stiffness fluctuations are considered. Moreover, a two-dimensional FE computation is performed
to determine the strains and stresses of each individual wooden board within the GLT beam
assembly. This method provides a basis for a more elaborate optimisation of the load-bearing
behaviour of GLT beams.



10 1 Introduction

Fig. 1.1: Problem illustration from unordered boards to assembled beams. Finding an optimal
algorithm to do this represents represents the general objective of this thesis.

1.2 Problem description

As indicated in Figure 1.1, the problems investigated throughout this thesis are of combinatorial
nature. The goal is to improve the structural behaviour of a set of beams only by means of
reordering the lamellas within the beams. In the following, a defined arrangement of lamellas
forming multiple beams will be referred to as beam setup.
In this context, numerous different optimisation tasks for GLT beams can be formulated:

• Find an arrangement of nl lamellas within nb beams, where every beam consists of nb,l
lamellas and nl > nb·nb,l, which minimises the maximum occurring deflection of a GLT beam
within the beam setup.

• Find an arrangement of nl lamellas within nb beams, where every beam consists of nb,l
lamellas and nl = nb·nb,l, which minimises the maximum occurring deflection of a GLT beam
within the beam setup.

• Find an arrangement of nl lamellas within one beam, which minimises the maximum
deflection of the beam.

The following sections give an insight into the complexity of the stated problems. The basic
concept and general considerations are explained by means of an example with nl = 50, nb = 5,
and nb,l = 10. This example is extended and explained in a more detailed manner in Section 5.1.



1.3 Structure of the thesis 11

1.2.1 Investigating the problem

Considering the most general case for the problem described in Section 1.2, where nl ≥ nb · nb,l,
the number of possible combinations for picking nb · nb,l lamellas out of nl lamellas, regarding
their order is given by (

nl
nb · nb,l

)
· nl! = nl!

(nl − nb · nb,l)!
. (1.1)

Considering that individual boards show a inhomogeneous stiffness distribution in longitudinal
direction (details in Chapter 2), the number of possible combinations must be reconsidered by
the fact that one lamella can be build into a beam in two ways. This leads to another 2nb·nb,l

possible combinations.
The resulting list of orders of lamellas can be reduced by considering that the order of the

beams inside this list does not affect the result in any ways. Since the number of possible
combinations of nb beams is nb!, the resulting equation describing the number of combinations is

2nb·nb,l · nl!
nb! · (nl − nb · nb,l)!

. (1.2)

For the stated example, taking into account that 0! = 1, the number of distinct combinations
is ≈ 2.8536× 1077. Referring to the benchmark tests for the FE model described in Section 6.1,
the average evaluation time of one beam is 292.3 ms. Therefore, the computation time for
evaluating all combinations would be about 2.64×1069 years. This makes it practically impossible
to determine the optimal result based on pure enumerative algorithms. Thus, optimisation
techniques are needed which are able to deliver near optimal results in a reasonable time frame.

1.3 Structure of the thesis

Chapter 2 gives an insight into current state of the art material models for timber boards.
Chapter 3 discusses various optimisation methods based on the problem description given in
this chapter. The actual implementation of the used algorithms is described in Chapter 4.
The application of those methods to a problem with reduced complexity is given in Chapter 5,
whereas the actual application to the original problem is given in Chapter 6. Chapter 6 also
shows the effects of different optimisation tasks and contains a discussion of the obtained results.
Concluding remarks and an outlook on future improvement possibilities are given in Chapter 7.



Chapter 2

Material model for timber boards

For a sound mechanical model of GLT, the mechanical behaviour of the “basic components”, the
individual timber boards, has to be determined. Numerous approaches incorporate extensive
experimental investigations ([13], [14]) to predict the mechanical properties of timber boards
based on morphological parameters – so-called indicating properties – such as visible knot area.
In recent years, however, numerical approaches became more and more popular for predicting the
effective mechanical properties of timber boards [22, 23, 34]. These approaches require detailed
knowledge of the knot morphology to identify the stiffness properties of individual timber boards.
The discussed data acquisition approach relies on laser scan data, which is obtained during

the grading process of individual wooden boards. The underlying utilized effect is the so-called
tracheid-effect, which describes the light propagation on a wooden surface. Due to the orthotropic
fibre structure of wood, a concentrated light source, e.g. a laser, spreads differently parallel to
the fibre than perpendicular. Thus, a laser dot deforms to an elliptical spot and reveals the
major material axis.

Based on the measured fibre angles, two different approaches are pursued at IMWS to obtain
the localised stiffness tensors:

• Directly using the wood fibre angles [28]. This approach is similar to Oscarsson et al. [42],
Petersson [43] and Olsson et al. [38].

• Reconstructing the knot morphology to perform 3D linear elastic FE analysis [29].

The direct procedure presented in [28], where the wood fibre angles are directly used to obtain
longitudinal stiffness distributions by transforming the clear wood stiffness tensor, additionally
uses an empirical model to determine the dive-angle [28, 37, 48]. The stiffness tensor is obtained
in each measurement point from a micromechanical model based on a multi-scale homogenisation
procedure [24]. Homogenising the values over each cross section results in a so-called stiffness
profile for each board, describing the variation of the local modulus of elasticity E in the
longitudinal direction x, hence E ≡ E(x). By using these stiffness profiles in combination with
a linear 2D FE model, an accurate mechanical model for predicting the effective stiffness of
GLT beams was developed by Kandler et al. [28].
For this work, stiffness profiles based on the latter approach are employed. Therefore, in the

following a brief summary of the procedures is given.



13

From the above mentioned laser scan data knot areas are identified on all four surfaces of the
board. Through an optimisation scheme the most probable knot arrangements are identified. A
detailed explanation of this reconstruction algorithm is presented in [29]. The main aspects of
the algorithm can be outlined as follows:

1. First, a three-dimensional fibre angle is computed through superposition of the in- and
out-of-plane fibre angles . Then individual knot areas are determined by comparing this
fibre angle in every point with a threshold value.

2. The pith location is estimated by fitting circles to the year rings, which are obtained from
photographs of the cross section, at both ends of the board. The pith is reconstructed by
connecting the arithmetic means of the centre points of those circles with a linear curve.

3. The actual knot is then reconstructed by a rotationally symmetric cone, defined by a cone
apex, a knot vector, and an opening angle. In a first step, the knot axis is reconstructed by
connecting all pairs of knot areas, obtained from step 1, which do not share the same face of
the board. For each of these knot axis candidates the quality of the fit is calculated based
on the normal distance between the axis and the pith (step 2) and the distance between the
two knot areas. Then the most promising knot axis are picked through an iterative scheme,
by removing knot axis candidates with a high quality fit from the pool of axis candidates.
In this way, in every step the most likely knot axis and all other candidates related to one
of the knot areas connected to the selected axis are removed from the pool of candidates.

This scheme is repeated until all axis are assigned. In case there are still knot areas
remaining in the pool, it is assumed that those knots only partly penetrate the board.
Their knot axis are reconstructed by estimating the angle of already reconstructed knot
axis.

4. The quality of this deterministic algorithm is further improved by minimising the recon-
struction error (difference between the actual knot areas and the knot areas obtained in
step 4) through a simulated-annealing optimisation scheme.

Based on these geometries, the 3D fibre angles within the volume of the board are computed.
The procedure utilizes the so-called grain-flow analogy [16, 17], which is based on the theoretical
behaviour of a laminar fluid flowing around elliptical obstacles. The analogy lies in the assumption
that knots act as obstacles and fibres, in the radial-tangential plane, represent trajectories of the
laminar fluid.
The resulting knot geometries and 3D fibre angles are passed to a linear elastic 3D finite

element analysis, where each knot group is loaded under a tension to estimate its effective stiffness.
The boundary conditions are applied such that one end of the knot group is fixed and the other
end is exposed to a prescribed deformation. The remaining boundary conditions were defined
such that the specimen could expand freely in the lateral directions. The effective modulus of
elasticity is computed from the resultant forces. Subsequently, this procedure is applied to all
knot groups, yielding a piecewise constant stiffness profile, as can be seen in Figure 2.1.



14 2 Material model for timber boards

Fig. 2.1: (a) Top view of a board. (b) Knots including small knots. (c) Knots without small
knots. (d) Resulting stiffness profiles for both described methods.



Chapter 3

General discussion of optimisation methods

3.1 Optimisation algorithms

Dependent on the type of problem a number of different optimisation strategies are available.
Goldberg [21] reviews three general types of search and optimisation techniques:

• Calculus-based methods which, can be further subdivided into

– indirect and

– direct methods,

• enumerative methods, and

• random search algorithms, such as e.g.

– simple random search,

– genetic algorithms,

– particle swarm optimisation,

– tabu search,

– simulated annealing,

– iterated local search,

– . . .

Indirect calculus-based methods usually seek local extrema by solving the equations resulting
from setting the gradient of the given function to zero [27]. Direct calculus-based methods
evaluate the local gradient at a function value and start moving in a related direction1[33].
The downside of those methods is, that in order to be applicable, the optimisation problem

must be formulated in terms of a piecewise continuous differentiable function. As it is not possible
to formulate the stated problem in such a manner, calculus-based methods are unsuitable.

Enumerative methods take a different, fairly simple approach by just evaluating every possible
solution in the search space. On the one hand, this approach guarantees the identification of
the global optimum, on the other hand, obtaining results in a reasonable time frame limits this

1These kind of algorithms are often referred to as “Hill-Climber” algorithms



16 3 General discussion of optimisation methods

approach to small search spaces or a low number of variables. For most optimisation problems
this limitation is so severe, that enumerative methods are often infeasible (See also Section 1.2.1).

This leaves random search algorithms as only viable solution for solving the described problem,
by evaluating the objective function at random points and saving the best resulting value. A
subclass of random search algorithms are the so-called metaheuristic algorithms. Blum et al. [5]
summarised the fundamental properties of metaheuristic approaches as followed:

• Metaheuristic algorithms (MAs) are used to guide a search process.

• The focus of MAs rather lies on exploring the search field to find a solution close to the
global optimum than to focus the search on only improving a solution and maybe converging
towards a local optimum.

• MAs are usually non-deterministic2.

• MAs are not specifically bound to a certain class of problems.

When working with metaheuristic algorithms it is very important to preserve the balance
between exploration and exploitation. Exploration corresponds to a rough evaluation of the
search space, whereas exploitation is necessary to refine an area of good solution towards the
optimum.

In Figure 3.1, grey circles visualise wide-spread solutions in different fields of the search space,
thus representing exploration, whereas the arrows depict the exploitation capabilities needed to
refine the found solutions. It can be seen that neither exploration- nor exploitation strategies
alone deliver values close to the global minimum of the function. By combining both approaches
it is possible to find such solutions within a sensible computation time. Algorithms with a low
capability of exploring and thus a small insight on the search space, tend to converge against local
optima, whereas algorithms which search a wide field of the solution space, resemble random
walks and perform poorly on finding an optimum.

Exploration
Exploitation
obj. Function

Fig. 3.1: Difference between the concepts of exploration end exploitation

Gendreau et al. [20] and Blum et al. [5] give a detailed insight into the implementation of
various metaheuristic algorithms. As the stated problem is a combinatorial optimisation (CO)

2Floyd [15] introduces “non-deterministic” as a description for algorithms with a kind of “free will”. Those
algorithms are not random but can produce a different outcome on different runs with equal input.



3.2 Metaheuristic algorithms 17

problem, the used metaheuristic must be able to cope with solutions encoded with discrete
variables. Especially for CO problems local search (LS), tabu search (TS), and genetic algorithms
(GAs) can yield viable solutions.

3.2 Metaheuristic algorithms

In the following sections, the most relevant algorithms for the problem described in Section 1.2
are discussed briefly to provide the reader, without any experience in this field, with a basic
knowledge to comprehend the assumptions and findings in the following sections. Furthermore,
commonly used vocabulary is introduced.
Details on the implementation and adaption for the stated problem are given in Chapter 4

and Section 4.1.

3.2.1 Local search and iterated local search

The basic LS is the simplest algorithm among the discussed. Lourenço et al. [33] describes LS as
follows: The target is to minimise the objective function f for a CO problem. Ω denotes the set
of all possible solutions s for the given problem.

As the name LS implies, the search procedure is not performed globally for all s ∈ Ω, rather a
local search in a neighbourhood Γ ⊂ Ω around s is performed.

Each step of the LS results in a new s∗ and ∀s : f(s) ≥ f(s∗) where s∗ ∈ Γ. The local optimum
can be found by recurring calls to the LS algorithm until a termination criterion is met.

LS procedures are inherently of deterministic nature, as f is evaluated for all s∗ in Γ. As this
procedure can be computationally costly, LS is usually endowed with a heuristic component in
form of only evaluating a random subset of Γ.

As Blum et al. [5] and Lourenço et al. [33] point out, the problem with LS algorithms is that
they strongly depend on how s, f and Γ are defined and that they can easily be trapped in a
local minimum.
Nonetheless LS performs well on the exploitation of areas of good solutions, therefore LS is

often combined with another MA which is capable of escaping local minima.
One implementation is the so-called iterated local search (ILS) mentioned by Lourenço et al.

[33]. The basic idea is that multiple LS algorithms search on different neighborhoods Γi. When
a local minimum occurs a perturbation is applied which results in a new neighborhood Γ′i.
The search is then continued within Γ′i until ∀s′ : f(s′) ≥ f(s′∗) for s′ ∈ Γ′i is satisfied. The
perturbation is accepted if s′∗ passes an acceptance test.

In the context of the current problem, a neighbourhood Γi could be defined based on a single
beam. Thus, the initial LS algorithms are limited to optimising one beam only. The perturbation
can then be applied in form of performing an exchange of lamellas between two beams. Therefore,
a new neighbourhood Γ′i is generated, which allows the LS to reach alternative areas of the
solution space.



18 3 General discussion of optimisation methods

3.2.2 Tabu search

As described by Bianchi et al. [3], TS is in simple terms an improved type of LS. The basic idea
is to allow LS to overcome local optima by allowing non-improving moves and simultaneously
preventing cycling back to previous solutions [19]. The basis on which TS operates are tabus
and aspiration criteria.
Tabus are moves or changes affecting the current solution which are prohibited for a certain

number of steps also referred to as the tabutenure [19]. The purpose of a tabu is to, as already
mentioned, prevent the algorithm from backtracking previous solutions.
Considering such moves in the context of the current problem, tabus can be formulated in

form of

• beam setups or

• beams

or alternatively in form operations like

• swapping two distinct lamellas li and lj or

• moving a lamella li back to a beam bi.

The tabutenure is used to discard tabus after a defined period of steps to allow the algorithm
to perform previously forbidden operations in a later state.

Aspiration criteria can be seen as a safety measure to allow the algorithm to revoke tabus to
reach solutions which, for example are better than the previously known best solution.
Beside the newly introduced concepts TS works based on the best improvement [3] method,

which distinguishes the algorithm from the concept LS is based on. LS accepts a solution s∗ only
if it matches the criterion f(s∗) ≤ f(s) where s denotes the best known solution, whereas TS
accepts the best solution within the neighborhood even if it does not match f(s∗) ≤ f(s) as long
as s∗ does not violate any tabus.

3.2.3 Genetic algorithms

The main idea of GAs is borrowed from evolutionary theory. That is, given enough time, a
population will adapt and improve over successive generations through concepts of natural
selection, mutation and recombination. Thus, GAs are a subclass of evolutionary algorithms
(EAs).

Goldberg [21] describes the fundamentals of GA as follows: The basis for every simple GA is a
data structure called a chromosome. Putting the term chromosome into a more mathematical
context, it could be represented by a vector or a list. The chromosome itself is constructed by
genes which can take different values called alleles. The position at which a gene is situated
within the chromosome is referred to as the gene locus.

The starting point for every GA is a population of individuals, usually represented by chromo-
somes, forming the first generation of solutions.
The operators involved in transition from one generation to the next are:



3.2 Metaheuristic algorithms 19

• selection,

• crossover and

• mutation.

During the selection phase, strong individuals, from the current population, are selected to form
the next generation. The crossover phase generates the offspring based on the parent population
and the mutation phase assures that the genetic diversity is maintained. The operators will be
discussed in detail in Section 4.8.

Reeves [44] mentions additional concepts like elitism, where a portion of the best individuals is
not replaced, and steady-state algorithms, where only one individual per generation is replaced.



Chapter 4

Implementation of methods for optimisation

4.1 General formulation of the stated problem in terms of
combinatorial optimisation

To be able to apply the discussed algorithms to the stated problem, a general and abstract
definition in a mathematical sense is needed. Based on the problem description given in Section 1.2,
this definition can, independently of the optimisation algorithms, be formulated as follows: Let
π : L→ L be a permutation of the set of lamellas L and g : l 7→ l∗ be a function which defines
the orientation of a lamella l. Then π∗ = g ◦ π returns a permutation of L with explicitly defined
orientations. Let Φ be a map Φ : π∗ → B which maps the lamella permutation from lamella
space into beam space B. Find a π∗ which minimises the objective function f(π∗).
This definition generalizes the problem description in Section 1.2. In most cases throughout

the work f performs operations based on the function qmax, which calculates the maximum
deflection of a given beam bi. Therefore, f is specialized for qmax as shown in Section 4.1.1.
The formulation for the map Φ in Section 4.1.2 is still kept general in terms of the problem

description, as π∗ is not further specialized. Φ is adapted for the usage of MAs.

4.1.1 Definition of the function f(π∗)

As stated above, f is considered to perform operations based on a function qmax. The objective
of this CO problem is to generate a beam setup where the value of qmax (maximum deflection of
a beam) is as small as possible. This leads to the formulation

f(π∗) = max {qmax(bi)|bi ∈ Φ(π∗)} . (4.1)

An alternative formulation in terms of reducing the mean value of qmax for the beam setup
would be possible. However, for practical reasons it is not applicable to the stated problem, as
solutions would be possible where superior beams compensate inferior ones. This compensation is
not granted within an actual construction. This statement is further exemplified in Section 4.2.1.

4.1.2 Definition of the map Φ

As will be discussed in subsequent sections, a vector or list is suitable for representing a lamella
order for a beam setup. The map Φ defines how this vector is linked to the actual GLT beams.



4.1 General formulation of the stated problem in terms of combinatorial optimisation 21

As the input chromosome or input vector1 is defined by the permutation π, the location within a
beam can be defined by the gene locus or the index, as shown in Figure 4.1.

In the following, two different index-to-beam links will be discussed. From the described MAs
from Section 3.2, LS, ILS and TS are independent of the linking type chosen for Φ. GAs on the
other hand are considered to be sensitive to the definition of Φ due to the processes involved
during crossover.

This is expressed in the so-called building block hypothesis described by Holland et al. [25] and
Goldberg [21]. The building block hypothesis states that a chromosomes fitness value is vastly
influenced by short subsequences of the chromosome. A detailed explanation and reasoning for
the described variations of Φ is given in Section 4.1.2.1.

Let L∗i denote the vector of lamellas for beam bi. Regarding the building block hypothesis L∗i
can be defined as

L∗i =
{
π∗(k)|k ∈ {i+ j · nb}

nb,l−1
j=0

}
, (4.2)

or alternatively without considering building blocks as

L∗i =
{
π∗(k)|k ∈ {nb,l · (i− 1) + j}nb,l

j=1

}
. (4.3)

Subsequently the mapping based on Equation (4.2) will be referred to as chromosome type A
and the mapping based on Equation (4.3) as chromosome type B. LS, ILS and TS will solely be
based on Equation (4.3).
In the context of this formulation L∗i equals bi, as the necessary structural information for

calculating the deflection is stored in qmax. Therefore, regardless of which of the two definitions
of L∗i

Φ(π∗) = {L∗i | i ∈ {1, . . . , nb}} . (4.4)

Figure 4.1 visualizes the map from lamella space to beam space for both chromosome types
for nl = 12, nb = 3 and nb,l = 4 (In favor of the readability only some of the mappings are
visualised).

4.1.2.1 Building block hypothesis

In the previous section one definition of Φ was made based on the so-called building block
hypothesis [21, 25].

The building block hypothesis states that a chromosomes fitness value is vastly influenced by
schemata with a short defining length and a higher than average fitness called building blocks.
In terms of GAs a schema [25] defines a basis for describing similarities of chromosomes.
As an example adapted to CO the schema 1, 2 ,* ,* is a template for the chromosomes

1, 2, 3, 4 and 1, 2, 4, 3 . The defining length of a schema is the distance between the
outer fixed genes. For the present example the defined length is 1.

1The terms input vector and input chromosome are in the current context synonymous. The term is switched in
favor of the terminology of the currently discussed optimisation procedure.



22 4 Implementation of methods for optimisation

Lamellas 1 2 3 4 5 6 7 8 9 10 11 12

(b1)
1
4
7
10

(b2)
2
5
8
11

(b3)
3
6
9
12

Type A

(b1)
1
2
3
4

(b2)
5
6
7
8

(b3)
9
10
11
12

Type B

Fig. 4.1: Example mapping from a lamella vector or chromosome to beams using chromosome
types A and B

The advantage of such short schemata over widespread ones is that their chance to survive a
crossover is higher due to the smaller amount of crossover points which separate the schema.

Figure 4.2 shows two different chromosomes A and B. The asterisks are used as place holders
for arbitrary alleles, which in the context of the building block hypothesis are not of concern.
The two genes with values 1 and 2 are in this example genes which, when combined contribute
an above average share on the chromosomes fitness. By performing a crossover operation in
most cases the chromosome is cut at a random position and recombined with another one. In
cases where the cut is made between the important genes they end up in two different new
chromosomes which means a probably good solution was destroyed. All possible locations for
cutting chromosomes A and B which destroy the schema are visualised by arrows. Clearly,
chromosome B has more destructive cut possibilities than chromosome A. Thus, the chance
that the shorter schema survives the crossover is higher than the chance that the longer schema
survives.

A 1 2 * * * *

B * 1 * * 2 *

Fig. 4.2: Building block hypothesis: Chromosomes with schemata of higher than average share
on the chromosomes fitness with different defining lengths.

It is arguable, that by the same reasoning coincidentally grouped “bad” lamellas are saved
from being destroyed by crossover. This is certainly true, however, such schemata are likely to
be removed during the selection phase due to under average fitness values.



4.2 Simplification of the original problem 23

The concept of building blocks can be transferred to GLT beams as follows: Supported by
the experiments made by Fink et al. [14] and Serrano et al. [47], and as shown in Section 4.2,
the further away a lamella is located from the beams centre of mass, the higher the impact on
the load-bearing behaviour. Therefore, for minimising Equation (4.1) it is important that “good
lamellas”2 end up located furthest from the beams centre of mass.

In terms of the build block hypothesis the conclusion can be drawn that in order to save good
solutions for Equation (4.1) from being destroyed by crossover the important locations within a
beam should be grouped together. Thus, resulting in the definition of Equation (4.2).

4.2 Simplification of the original problem

In order to gain a general insight on MAs and validate them as a possible optimisation procedure,
a problem with reduced complexity is investigated.
A possible approach towards reducing the complexity is neglecting the variability of the

longitudinal stiffness, represented by the so-called stiffness profile E(x), mentioned by Kandler
et al. [28], and instead considering each lamella with a constant stiffness E(x) = E.

As this optimisation problem solely serves the purpose of verifying MAs, the bending stiffness
of the overall beam setup is maximised, which in this simplified case is equal to minimising the
maximum displacement.
For the special case Ei(x) = Ei, the orientation of the lamellas becomes irrelevant, hence

π∗ ≡ π. Therefore, the bending stiffness of one beam is defined as

EIb(bi) =
∑

l∈Li≡bi

(
El · Il + El ·Al · z2

l,i

)
, (4.5)

where Al denotes the area of the cross section, Il the second moment of area of the cross section
and zl,i the distance of lamella l to the centre of mass of beam bi. In the present example, both
Al and Il are not only constant within each lamella, but equal for all lamellas, i.e. Al ≡ A and
Il ≡ I.

While the dimensions, cross sectional area A and stiffness values El are given, zl,i can be varied
by reordering the lamellas.
The objective function for the entire beam setup, in analogy to Equation (4.1), is defined as

f(π) = min {EIb(bi)|bi ∈ Φ(π)} . (4.6)

As can be seen from Equation (4.5), for maximising Equation (4.6) by reordering the lamellas,
the term El ·Al · z2

l,i needs to me maximised. In other words, the higher El the higher zl,i should
be.
This corresponds to the assumption made in Section 4.1.2.1 that “good lamellas” should be

placed furthest from the centre of mass of the beam. In this context, Equation (4.5) allows a

2The term “good lamella” is kept intentionally vague because for the current context and formulation it is not
important what is considered to be a “good lamella”.



24 4 Implementation of methods for optimisation

definition of the term “good lamella”: A Lamella l1 is assumed to be “better” than another
lamella l2 if E1 > E2.

4.2.1 Discussion of solution patterns

The following section tries to answer the questions if there is an algorithm which is capable of
constructing a solution pattern for Equation (4.6) in a deterministic manner, thus rendering the
need of using MAs useless.

Hypothesis 1 The desired arrangement which maximises Equation (4.6) can be generated by
sorting the lamellas in an descending order by their stiffness and placing them in an inward
spiral over all beams.

Considering the alternative objective of optimising the mean value of all beams’ bending
stiffnesses defined by Equation (4.5), the objective function can be defined as

fA(π) =
∑
bi∈Φ(π)EIb(bi)

nb
=̂

∑
bi∈Φ(π)

EIb(bi). (4.7)

Equation (4.7) can be transformed by substituting EIb(bi) with Equation (4.5) to

fA(π) =
∑

bi∈Φ(π)

∑
l∈Li≡bi

(
El · Il + El ·Al · z2

l,i

)
. (4.8)

El · Il and Al are independent of bi, i.e. they will assume the same values regardless of how the
lamellas are arranged in the beam setup. Thus, they can be factorized, which yields

fA(π) =
∑
l∈L

El · Il︸ ︷︷ ︸
constant by means of π

+ Al︸︷︷︸
constant

·
∑

bi∈Φ(π)

∑
l∈Li≡bi

(
El · z2

l,i

)
. (4.9)

The constant terms from Equation (4.9) can be neglected for the optimisation problem, which
leaves the term ∑

bi∈Φ(π)

∑
l∈Li≡bi

(
El · z2

l,i

)
(4.10)

to be maximised. The desired permutation π which satisfies the demand is clearly achieved by
ordering the lamellas in such a way that the stiffness increases with the distance to the centre of
mass of the beam.

Figure 4.3 exemplary shows the optimal arrangement of 15 lamellas spread over 3 beams. The
lamellas are numbered according to their stiffness. Lamella 1 has the highest stiffness, lamella 15
the lowest.
This solution pattern is capable of finding the best possible solution for Equation (4.7), but

fails on Equation (4.6) for unevenly distributed lamella stiffnesses.



4.2 Simplification of the original problem 25

1
7
13
12
6

2
8
14
11
5

3
9
15
10
4

Fig. 4.3: Optimal arrangement of lamellas with constant longitudinal stiffness, based on Hy-
pothesis 1

Assuming the following stiffness values E1,E2,E3,E4,E4,E4,E5,E6,E7 for 9 lamellas which
shall be distributed over 3 beams b1,b2,b3 where Ei > E(i+1). The algorithm assigns the
lamellas based on their stiffnesses as follows:

1. Top outer position: E1 → b1, E2 → b2, E3 → b3

2. Bottom outer position: E4 → b3, E4 → b2, E4 → b1

3. Middle position: E5 → b1, E6 → b2, E7 → b3

After step 1 the beams can be sorted by their bending stiffness as follows: b1 > b2 > b3.
Step 2 should regulate the stiffness descent from b1 to b3 but in this case, as all lamellas have

equal stiffnesses E4, the beam order does not change.
Step 3 should regulate the stiffness descent from step 2, but as there was no stiffness descent,

once again the order b1 > b2 > b3 is favoured, although the right solution to Equation (4.6)
would have been to assign the lamellas the other way around, to compensate step 2.

Therefore, the conclusion can be drawn that the solution patter provided by Hypothesis 1
cannot be used to find a suitable solution for maximising Equation (4.6).

Hypothesis 2 As lamellas with high stiffness values should be placed furthest from the centre of
mass, the optimum location for each lamella can be defined only based on the lamellas stiffness.

This hypothesis is based on the assumptions made in Hypothesis 1 but the algorithm is capable
to overcome the disadvantages of prescribing the order in which the lamellas are distributed over
the beams.

During the construction of the solution pattern the algorithm evaluates Equation (4.5) for the
placed lamellas for each beam to decide which needs the current lamella the most.
To assure that every lamella is used at its most efficient position they are placed in an

descending order by their stiffness value, starting from the outer layers of the beams. This
restriction also follows Hypothesis 2, as the most efficient way of placing the lamellas (without
further knowledge of the beam they will be located in) is the proposed order.

Assuming the following stiffness values 2 · E1,E1,E1,E1,E2,E2 for 6 lamellas which shall be
distributed over 2 beams b1,b2 where Ei > E(i+1), the algorithm assigns the lamellas based
on their stiffnesses as follows:

1. Top outer position: 2 · E1 → b1, E1 → b2



26 4 Implementation of methods for optimisation

2. Bottom outer position: E1 → b2, E1 → b1

3. Middle position: E2 → b2, E2 → b1

After step 1 the beams can be sorted by their bending stiffness as follows: b1 > b2. Based on
the order after the first step b2 gets E1. As the bending stiffness of b2 now equals the bending
stiffness of b1 and b1 offers a more efficient position, E1 is assigned to b1. This results in the
order b1 > b2. The last step is based on the same reasoning as steps 2, therefore the final order
is b1 > b2.
Let the distance of the outer lamellas to the centre of mass of the beam be 1. By evaluating

Equation (4.5) for Il = 1 and Al = 1, the beam bending stiffnesses can be expressed by

EIb,1 = 2 · E1 + 2 · E1︸ ︷︷ ︸
l1

+E1 + E1︸ ︷︷ ︸
l4

+ E2︸︷︷︸
l6

= 6 · E1 + E2 and (4.11)

EIb,2 = E1 + E1︸ ︷︷ ︸
l2

+E1 + E1︸ ︷︷ ︸
l3

+ E2︸︷︷︸
l5

= 4 · E1 + E2. (4.12)

However, the solution which fulfills Equation (4.6) is obtained by assigning all lamellas with a
stiffness value of E1 to beam b2 and the remaining ones to b1, which leads to

EIb,1 = 2 · E1 + 2 · E1︸ ︷︷ ︸
l1

+E2 + E2︸ ︷︷ ︸
l5

+ E2︸︷︷︸
l6

= 4 · E1 + 3 · E2 and (4.13)

EIb,2 = E1 + E1︸ ︷︷ ︸
l2

+E1 + E1︸ ︷︷ ︸
l3

+ E1︸︷︷︸
l4

= 5 · E1. (4.14)

Both Equation (4.13) and Equation (4.14) give results that are greater than the one given by
Equation (4.12). This confirms that the solution provided by Hypothesis 2 cannot be used to
find a solution which reliably maximises Equation (4.6).

This observations further leads to the following conclusion: In order find an optimal solution
to Equation (4.6), the algorithm must be able to place lamellas at locations where they are not
at their full potential, which means it is not possible to construct a solution pattern solely based
on lamella stiffnesses.
Therefore, even this simplified problem cannot be solved by using a purely deterministic

algorithm. Hence it is inevitable to perform the optimisation based on MAs.

4.3 Vectorized representation of beams and lamellas

For solving the described problem numerous different algorithms for

• solving the actual optimisation problem or

• calculating the deflection of a beam or

• approximating deflections of beams



4.4 Implementation of local search 27

are needed. Thus, a universal representation is required, satisfying the demand of all algorithms.
In Section 4.1, possible solutions to the CO problem were assumed to be in form of permutations

of a vector of lamellas. In Section 4.1.2, the map Φ was introduced which maps a vector of lamellas
to a vector of beams, thus, effectively returning a vector of vectors of lamellas. Furthermore, the
function g was introduced in Section 4.1 which defines the orientation of a lamella.

Taking all that into account a representation is needed which is capable of storing the lamella
and its assigned orientation.
Throughout this work two different representations are used:

• a pure integer representation, capable of storing the bare minimum of data and

• a lamella data type, storing the entire data needed for one lamella.

In principle storing the entire data in one type is preferred over storing just its number. The
advantage of this representation is, that in order to allow communication between the described
algorithms no interface is needed, as all algorithms utilize the same lamella data type.

However, some of the used algorithms are not capable of dealing with a non-integer representa-
tion. Furthermore, as there is need for storing beams i.e. vectors of lamellas in hash tables [8,
p. 219] (see Section 6.1) a more simplified and hashable representation is needed.

As already stated, the minimum amount of information needed to specify a lamella’s usage are
its id and orientation. For the described problem, the orientation can be one of two directions i.e.
the lamella is flipped or not. It is possible to use the following integer representation for lamella
i:

Lamella i :

2 · i, if flipped

2 · i− 1, otherwise
(4.15)

Essentially this means every lamella can be represented by the pair of the i-th even and odd
number.

4.4 Implementation of local search

As described in Section 3.2.1, the algorithm for performing a LS is of rather simple nature, as is
it just needs to pick solutions s∗ from a neighbourhood Γ and validate them against the best
known solution s. The newly obtained solution is then only accepted if it matches the criterion
f(s) ≥ f(s∗).

In terms of the simplified example from Section 4.2, an optimal solution is found by maximising
Equation (4.6). However, since LS searches for a minimum, f is defined as the inverse of
Equation (4.6) (In this case using the inverse of Equation (4.6) is applicable since EIb(bi) > 0).

The space for feasible solutions s and s∗ is L. The neighbourhood Γ around the current solution
s is generated by performing every possible swap of two lamellas within s, thus generating beam
setups with a high resemblance to s. The number of possible swaps for nl lamellas which generate
a new beam setup, and thus the size of the neighbourhood Γ, is obviously (nl−1)·nl

2 .



28 4 Implementation of methods for optimisation

As the algorithm should be tested for the actual optimisation problem, it is already adapted
to a computationally intensive objective function, by adding a stochastic component as follows:
To reduce the number of calls to the objective function f , LS uses the first randomly picked
solution s∗ for which f(s) ≥ f(s∗). Of course the downside of this approach is that probably
good solution are overlooked, but as stated in Section 1.2.1, it is not possible to evaluate every
solution.

Additionally, the LS algorithm is endowed with a termination criterion [19, p. 48] which stops
the search on newly generated neighbourhoods after Nc steps of no improvement3.

In terms of the original problem, the algorithm can be adapted by extending the neighbourhood
definition Γ to include changes in the lamellas orientation. Therefore, Γ around the current
solution s is generated by performing every possible swap of two lamellas and flipping every
lamella. Hence |Γ| = (nl−1)·nl

2 + nl.
In contrast to the simplified problem Equation (4.1) can directly be used as objective function.

4.5 Implementation of iterated local search

As described in Section 3.2.1, LS can be enhanced by applying perturbations to generate new
not yet visited neighbourhoods.
A reasonable definition of the neighbourhood is as follows: The LS algorithms are bound to

one beam only and the perturbation is applied in form of an interchange of lamellas between
two distinct beams. This implies that the LS operates on a smaller neighbourhood than the one
proposed in Section 5.2. Figure 4.4 shows an overview of the described algorithm.
For the stated problem, nb different LS computations are employed in an inner loop, where

each is defined as follows: Let the objective function for LSi – based on Equation (4.5) – be
defined as

f(si) = (EIb(si))−1 (4.16)

and let the neighbourhood Γi around the current solution si be generated by performing every
possible swap of two lamellas within si. Therefore, |Γi| = (nb,l−1)·nb,l

2 .
Each LSi run is endowed with a convergence criterion which stops the search on Γi after

Nc steps of no improvement. This guarantees the optimal layout for each beam, given the
corresponding set of lamellas.

After all nb LS computations have converged, the worst solution denoted by sk and a randomly
chosen solution denoted by sm, sm 6= sk are picked.
Subsequently, the perturbation is implemented by defining a new LS which searches in the

neighbourhood Γ′ = Lk × Lm where Lk denotes the lamellas used in solution sk and Lm denotes
the lamellas used in solution sm. For the pair pi ∈ Γ′ of lamellas to be swapped between the

3In detail this criterion is implemented by comparing the maximum value of the last Nc values with the minimum
value of the last Nc values. The comparison is made in an approximate manner for float numbers where half of
the significant digits are compared.



4.5 Implementation of iterated local search 29

Start Generate
random beams

LS in all Γi
LS1

s1

. . .

. . .

LSnb

snb

Conv. reached
for all LSi?No

Select sk and sm

Yes

Generate Γ′

LS in Γ′

sk sm

Update beams

Conv. reached? NoStop Yes

Inner loop

Perturbation
Outer loop

Fig. 4.4: Overview of the implemented ILS algorithm.

solutions sk and sm two new solutions s′k,i and s′m,i are generated. The corresponding objective
function f ′ is defined as

f ′ :


0, if f(s′k,i) < f(sk) and f(s′m,i) < f(sk)

1, if s′k,i = sk and s′m,i = sm

2, otherwise.

(4.17)

This leads to the effect that a perturbation is only accepted if the newly generated beams are
better than the previously worst beam sk. Consequently, in case f ′ = 0, the resulting beams
s′∗k,i and s′∗m,i replace sk and sm respectively. For this LS procedure, no convergence criterion is
needed, as the search stops immediately after finding a pair pi which satisfies f ′ = 0.

As a convergence criterion, for ultimately stopping the outer loop, the coefficient of variation
cv is used which decreases as all beams become similar. Therefore, further LS on Γ′ will not lead
to any improvement. The criterion can be formulated as cv[f(si)|i ∈ {1, . . . , nb}] ≤ εc.
As well as LS, ILS can be adapted to the original problem by extending the neighbourhood

definition.
For this implementation the neighbourhood Γi around the solution si is extended – in addition

to performing every possible swap – by flipping every lamella within si. Therefore, |Γi| =
(nb,l−1)·nb,l

2 + nb,l. As the purpose of the neighbourhood Γ′ is the exchange of lamellas between
different solutions, there is no need for extending this definition as during this swap the orientation
of both lamellas remains unchanged.



30 4 Implementation of methods for optimisation

The objective function for ILS can be defined based on Equation (4.1) as

f(si) = qmax(si). (4.18)

Furthermore, the objective function for performing swaps between beams can be inherited, as
it is defined in terms of Equation (4.18).

4.6 Implementation of tabu search

As described in Section 3.2.2, the foundation of TS are tabus and aspiration criteria. The tabus
for the stated problem are defined as follows:

1. Do not reverse the previous swap, i.e. do not swap one of the involved lamellas back to the
previous position.

2. Do not move one of the involved lamellas to the beam they came from.

Every tabu is endowed with an adapted tabu tenure NT,i. As the first tabu is less strict than the
second one, the tabu tenure NT,1 is higher than the tabu tenure NT,2.
The aspiration criteria is implemented in form of accepting solutions which are better than

the previously known best solution.
Similar to the LS implementation described in Section 4.4, TS is endowed with a convergence

criterion to stop after Nc steps of no improvement and a heuristic component to reduce the
search space. In case of TS, the heuristic used for LS is not applicable, as the algorithm at
first needs to gain knowledge about the objective function values within the neighbourhood.
Gendreau et al. [19] proposed a solution to only evaluate a randomized portion Γ′, |Γ′| = Nn of
the neighbourhood Γ around s to reduce the computation amounts.

For the original problem, the above tabu definition is simply extended by

3. Do not flip a previously flipped lamella back.

The comparison of lamellas for tabus 1 and 2 is performed by neglecting the orientation of the
lamella. Thus, it is not necessary to adapt these tabus, as they cannot be tricked by flipping
a lamella i.e. it is not possible that a lamella is moved back to a beam (tabu 2) or back to a
position (tabu 1) after it was flipped.

The aspiration and the convergence criterion are inherited from the definition for the simplified
problem.
The neighbourhood Γ around the current solution s is generated similar to LS, described in

Section 4.4, however the heuristic component needs to be adapted as described above.

4.7 Implementation of tabu search using candidate list solutions

An alternative solution, proposed by Gendreau et al. [19], to reduce the number of needed
evaluations is to generate a useful subset Γ′ of Γ by means of candidate list strategies. The



4.8 Implementation of genetic algorithms 31

implementation of ILS in Section 4.5 is based on the same principle, as swaps between beams
are explicitly made for the worst and one of the other beams. Therefore, the list of candidates
of swaps is reduced to a smaller subset of the search space, which has a higher chance of
improving the worst beam. In terms of a TS implementation this can be realized by redefining
the neighbourhood Γ around s to a neighbourhood Γ′ around s which favours moves from weak
to strong beams. In this implementation Γ′ is defined by:

1. Allowing repositioning of lamellas only between the worst beam and one of the others and

2. allowing repositioning of lamellas within arbitrary beams.

The tabus for movement 1 can be inherited from the initial tabu search implementation. For
movement 2 only tabu 1 is needed, as the swap is performed only within a single beam.
In context of the original problem, the neighbourhood Γ′ around s is extended by

3. Allow flips of lamellas.

The tabus for movement 1 (between beams) and movement 2 (within beams) can be inherited
from the simplified problem, however – as described in Section 4.6 – comparison must be
performed solely based on the lamella ID. The tabu for the newly added movement 3 equals the
one for the simplified problem.

4.8 Implementation of genetic algorithms

Within the GA approach, Equation (4.6) can be used as objective function or – in terms of GAs
– as fitness function which shall be maximised.

In contrast the objective function for the original problem needs to me minimised, hence as
qmax(bi) 6= 0∀ bi the fitness function can be expressed as

min
{ 1
qmax(bi)

|bi ∈ Φ(π∗)
}
. (4.19)

The GA is mainly implemented based on the procedures laid out in Goldberg [21], Reeves
[44], Baker [2], Blickle et al. [4], Fox et al. [18] and Larranaga et al. [31]. Numerous selection-,
crossover- and mutation methods are implemented, which will be described in the following
section. Generally it should be noted that, there is no preference of any of the following described
methods as their behaviour and effect on the optimisation procedure varies from problem to
problem. Thus, the following sections are presented in a general manner, details on the actual
applied operations are given in Section 5.8 and Section 6.3.8.

4.8.1 Selection

In the selection stage, the GA procedure aims at mimicking the concept of survival of the fittest.
Consequently, individuals are assigned a fitness value, reflecting its performance. The selection is
then implemented such that it trends to select fitter individuals over less-fit ones. In the following
the employed selection procedures are discussed.



32 4 Implementation of methods for optimisation

Roulette wheel selection is implemented based on the description by Goldberg [21]. This
algorithm selects chromosomes by virtually spinning a roulette wheel with slots sized according
to the chromosomes fitness fi, as shown in Figure 4.5a. The number of spins depends on the
desired number of members in the mating pool. In this implementation the population size is
assumed to be constant during the optimisation procedure, thus the number of spins equals the
number of individuals in the population, denoted by Np. Furthermore, this selection approach
allows for multiple copies of the same individual in the mating pool.
The slot size or probability P [i] a member i is part of the mating pool is determined by

P [i] = fi∑Np

i=1 fi
, (4.20)

where fi denotes the individual’s fitness.
This form of selection is insofar problematic as in an early stage, where the average fitness

value is far from the maximum fitness value, chromosomes with higher fitnesses are selected
disproportionately more often and therefore the algorithm tends to converge against those
members of the population and loose its exploratory capabilities. On the other hand, in a later
stage the populations mean fitness value could already be close to the maximum value, while
showing significant differences between the population members. By using a roulette wheel
selection in this stage P [i] would be almost identical for all Np members, as the absolute difference
between the values for fi is small. Therefore, the resulting roulette wheel is not biased for fitter
population members, thus resulting in an entirely random selection.
Goldberg [21] mentions fitness scaling as a useful procedure to improve both the early stage

and the later stage. An approach is to perform linear scaling, which requires a relationship
between the raw fitness f and the scaled fitness f ′ as follows:

f ′ = a · f + b. (4.21)

Further, to ensure that average members remain average members by means of the raw fitness
and the scaled fitness, the following relation must hold:

f ′avg = favg (4.22)

The scaling is applied by prescribing the probability of the best member being part of the
mating pool to be relative to the average fitness. This relation can be formulated in terms of the
scaling factor Cmult as follows:

f ′max = Cmult · favg. (4.23)

By specializing Equation (4.21) for Equation (4.22) and Equation (4.23), a and b can be
expressed in terms of the raw fitness and Cmult as

a = (Cmult − 1) · favg
(fmax − favg)

and b = (1− a) · favg. (4.24)



4.8 Implementation of genetic algorithms 33

As Equation (4.21) can yield negative values for under average members it needs to be redefined
as:

f ′ =

a · f + b, b > −a · f

0, otherwise
(4.25)

According to Goldberg [21], for population sizes between 50 and 100 members, Cmult typically
ranges from 1.2 to 2.

Reeves [44] states that roulette wheel selection is problematic as the actual number of times a
chromosome is selected may be very different from its expected value. Thus, being subject to
stochastic effects.

Stochastic universal selection (SUS) is implemented based on the description by Baker [2].
SUS is capable of overcoming the stochastic variability that affects roulette wheel selection. Baker
[2] uses following terms to assess selection methods for GAs:

Bias: Bias is defined as the absolute difference between the expected number of copies of
a chromosome in the mating pool and the actual number of copies. Ideally zero bias
should be achieved to reduce the influence of stochastic effects.

Spread: Spread is defined as the range of actual number of copies a chromosome has in the
mating pool. The minimum spread is defined as the spread that permits zeros bias. For
a chromosome i the minimum spread can be expressed as

{bE[i]c, dE[i]e}, (4.26)

where b•c is the greatest integer less than • and d•e is the smallest integer greater than
•.

To reuse the analogy of the roulette wheel one can imagine SUS as a roulette wheel with Np

equally spaced arms where the slot size equals the expected value of the corresponding individual.
A single spin results in Np selected chromosomes. As the Np arms are equally spaced and the
sum of the slot sizes equals Np a chromosome i is guaranteed to have at least bE[i]c and not more
than dE[i]e copies in the mating pool. Therefore, SUS has minimum spread. This is obvious
when looking at Figure 4.5b, as it is impossible for e.g. individual 6 to have more than one copy
in the mating pool whereas individual 5 always ends up with at least 2 copies. Furthermore, SUS
is zero biased, as in a randomly ordered population the outcome is solely based on the initial
spin and the slot size on the roulette wheel.
As the mating pool resulting from SUS is grouped by individuals, it is inevitable to shuffle

the resulting list in order to prevent the following crossover operation from crossing two equal
individuals.

Linear ranking is implemented based on the description by Reeves [44]. In the case of linear
ranking it is assumed, that the probability of an individual being selected can be determined



34 4 Implementation of methods for optimisation

P [1]

P [2]P [3]

P [4]

P [5]

P [6]

(a) Basic roulette selection for 6 individuals

E[1]

E[2]E[3]

E[4]

E[5]

E[6]

(b) SUS for 6 individuals with a 6-armed spinner

Fig. 4.5: Comparison of roulette wheel selection and SUS using a roulette wheel

solely by ranking according to the individuals fitness in an descending order. This assumption
causes some loss off information, as the actual distribution of the fitness values is omitted, but
it allows to formulate a simpler selection method, which is independent of rescaling the fitness
values, as described for roulette selection. The probability P [k] that an individual ranked k is
selected is defined by:

P [k] = a+ b · k, (4.27)

where a and b are constant scalars.
As P [k] is a probability distribution the condition

Np∑
k=1

(a+ b · k) = 1 (4.28)

must be satisfied.
Equation (4.28) can be rewritten in from of an arithmetic series for the Np-th element as

a ·Np + b · Np · (Np + 1)
2 = 1. (4.29)

Reeves [44] introduces the selection pressure Ψ, which expresses the desired ratio between the
probabilities that the best individual is contained in the mating pool and the median individual
is contained in the mating pool as follows:

Ψ = P [best]
P [median] , (4.30)

The selection pressure can be specialized for the case that Np is even in form of

Ψ = a+ b ·Np

a+ b · Np

2
(4.31)

and for the case that Np is odd in form of

Ψ = a+ b ·Np

a+ b · Np+1
2

. (4.32)



4.8 Implementation of genetic algorithms 35

From Equation (4.29), Equation (4.31) and Equation (4.32), definitions for a and b can be
derived.
The even case is defined as

a = 2−Ψ
M + Ψ− 1 and b = 2 · (Ψ− 1)

M · (M + Ψ− 1) , (4.33)

the odd case is defined as

a = 2 ·M −Ψ · (M + 1)
M · (M − 1) and b = 2 · (Ψ− 1)

M · (M − 1) , (4.34)

where 1 ≤ Ψ ≤ 2.

Tournament selection is implemented as described by Reeves [44] and Blickle et al. [4]. Tour-
nament selection is a selection method where a set of t individuals is selected randomly from the
population and compared. The best is chosen to be added to the mating pool. This process is
repeated until the desired number of elements needed to form the next generation is obtained.
Generally the algorithm is very efficient because the population does not need to be sorted

beforehand, but it has similar downsides as roulette wheel selection as it is also subject to
stochastic effects due to randomly selecting the subset of t individuals.

4.8.2 Crossover

During crossover the individuals, selected in the selection phase, are combined to form the
subsequent generation. Thereby mainly characteristics of strong individuals are inherited as, due
to the fitness based selection, the probability a former strong individual is involved in a crossover
is higher. As the stated problem is of combinatorial nature it is important that the GA uses
crossover algorithms which preserve this nature. That is, each gene (representing a individual
lamella) can only occur once in each chromosome. Therefore, usually after a phase of copying
parts of the parent chromosomes to the child chromosome a reconstruction phase is performed
which re-establishes a correct sequence.

Ordered crossover (OX) is implemented as described by Fox et al. [18]. The idea behind OX
is to preserve the order of a subsequence of genes from one parent and the relative order of the
remaining genes from the other parent. The subsequence is defined by two random cuts and is
moved to the same position within the child. Starting from the second cut, the remaining genes
from the other parent are moved to the child, skipping every gene contained in the previously
moved subsequence. The second child can be generated in the same manner by swapping the
parents. Figure 4.6 shows an example for OX.

Cycle crossover (CX) is implemented as described by Fox et al. [18]. CX is based on the
principle that every position of a gene within the child is based on the position the same gene is
located within one of the parents. This is done by searching for a sequences of genes which can



36 4 Implementation of methods for optimisation

Parent 1: A B C D E F G H I J K

Parent 2: K A G F B D H I J C E

Child 1: A B D H E F G I J C K

Respectively for child 2:

Child 2: C E F G B D H I J K A

1. Move E,F,G from parent 1 to child 1.

2. Move I,J,C from parent 2 to child 1.

3. Skip E as it was already moved in
step 1.

4. Move K from parent 2 to child 1

5. Move A from parent 2 to child 1

6. Skip G,F as both were already
moved in step 1.

7. Move B,D,H from parent 2 to child 1

Fig. 4.6: Example for OX [18, p. 286] including the steps needed for generating child 1

be moved to a child without interfering with the genes at the remaining positions of the other
parent. Thus, one child consists of two subsets of parent genes where each subset is disjoint from
the positions of the second subset. The child can then be constructed by combining the two
subsets.
The subsets can be generated by first selecting a single gene k from parent 1 which is used

as a seed for the following operations. Then the conflicting location within parent 2 i.e. the
position X where the gene with the same value as gene k is located is obtained and the gene l
from parent 1 at the conflicting position X is used as the next gene k which is copied to the
child from parent 1. This process is repeated until a position X is reached which has already
been copied, thus the cycle is closed and the remaining genes from parent 2 can be copied to the
child. Figure 4.7 shows an example for CX including both subset extracted from parent 1.

Partially mapped crossover (PMX) is implemented as described by Fox et al. [18] and Lar-
ranaga et al. [31, p. 138]. PMX uses, equally to OX, a subsequence of genes defined by two cuts
from one parent and copies them to one child. The remaining places are filled by respecting the
order and the position of the remaining genes from the other parent. This is implemented by at
first copying the defined subset from parent 1 to the child. Then the genes within the subsets
from parent 1 and parent 2 are explicitly mapped, as shown in Figure 4.8. As all mappings have
been declared the genes from parent 2 can be copied to the child, in case one copy violates the
nature of the CO problem the corresponding mapping is used to replace the gene.

Larranaga et al. [31] states that it is possible that mappings could build a chain of mappings.
This happens if one mapping targets a gene within the subsequence e.g. the subsequences A,D,F

and D,C,G result in the mappings A↔ D, D ↔ C and F ↔ G. When the algorithm requests
the mapping for the gene to replace A with, the first occurring mapping is A↔ D. But as D is
contained in the subsequence, it is not suitable for a replacement as it violates the nature of the
CO problem. Thus, the mapping D ↔ C is used and C is added to the child, in place of A



4.8 Implementation of genetic algorithms 37

Parent 1: H K C E F D B L A I G J

Parent 2: A B C D E F G H I J K L

Subset 1: H L A I J

Subset 2: K C E F D B G

Child 1: H B C D E F G L A I K J

Child 2: A K C E F D B H I J G L

1. Generate subset 1
a) Pick H from parent 1 as a

starting point. H replaces A
from parent 2.

b) Pick A from parent 1 to
compensate the replaced A
from parent 2. A replaces I
from parent 2.

c) Pick I . . .

d) Pick L from parent 1 to
compensate the replaced L
from parent 2. L replaces H
thus the cycle is closed.

2. Generate subset 2 by picking the position not contained in subset 1 from parent 1.

3. Move subset 1 to child 1

4. Fill the remaining empty position in child 1 with the genes at the matching position from
parent 2.

5. Move subset 2 to child 2

6. Fill the remaining empty position in child 2 with the genes at the matching position from
parent 2.

Fig. 4.7: Example for CX [18, p. 287] including the generation of both children

Parent 1: H G A B C J I E D F

Parent 2: I H D E F G A C B J

Child 1: H J A E F G I B D C

Respectively for child 2:
Child 2: I H D B C J A F E G

1. Define mappings for B,C,J from
parent 1 and E,F,G from parent 2:
B ↔ E, C ↔ F and J ↔ G.

2. Move E,F,G from parent 2 to child 1.

3. Move I , D , H and A from
parent 1 directly to child 1, as no
mapping restricts these movements.

4. Put B into child 1 at the position of
E in parent 1 (B ↔ E).

5. Put C into child 1 at the position of
F in parent 1 (C ↔ F ).

6. Put J into child 1 at the position of
G in parent 1 (J ↔ G).

Fig. 4.8: Example for PMX [18, p. 287]



38 4 Implementation of methods for optimisation

4.8.3 Mutation

In the mutation phase the GA tries to maintain the diversity of the population by applying small
random changes to the population generated by crossover. Similar to the crossover operators
described in Section 4.8.2, mutation needs to preserve the combinatorial nature of the problem.
Therefore, mutation is applied in form of

1. swapping two lamellas or

2. replacing an entire individual with a random beam setup.

Larranaga et al. [31] refers to the first method as exchange mutation or swap mutation.
The mutation is performed by selecting two positions within the chromosome at random and
performing a swap. This form of mutation is sufficient for the simplified problem described in
Section 4.2. In order to perform a useful mutation for the original problem, the algorithm is
further extended by a flip operation which changes the orientation of a lamella. The applied
mutation method is picked randomly by equal chances.

4.8.4 Elitism

Another concept borrowed from evolutionary theory is elitism, which describes the survival of the
fittest individuals over multiple generations. It is implemented as described by Reeves [44], that
is εc of the fittest individuals are moved directly to the next population. This method assures
that the best performing solutions are not destroyed by crossover and mutations. The size of the
mating pool is determined by Np − εc.

4.8.5 Chromosome repair

Reeves [45] addresses the situation of different permutations actually representing same solutions.
It was already mention in Section 1.2, that the order in which the beams occur within a
chromosome, has no effect on the actual solution.

The crossover operations from Section 4.8.2 are designed to generate offspring which is based
on its parents. Therefore, when combining two equal chromosomes the generated offspring must
be equal as well. From Figure 4.9 it can be seen that although chromosomes 1 and 2 represent
the same solution for nb = 3 and nb,l = 4 (as they consist of equal beams), after applying PMX,
two new solutions are created.
The repair process is performed by sorting the beams within the chromosome according to

the number of the lamella at the first location within the beam. The sorting process is applied
directly after the mutation was performed. Figure 4.10 shows the same problem definition with
repaired chromosomes. As expected the generated offspring now matches the parents.

4.8.6 Initial population

Multiple sources [44, 46, 49] address the generation of the initial population. The aim is to
obtain a diversified initial population, which covers the search space adequately. Otherwise



4.8 Implementation of genetic algorithms 39

Parent 1: 02 10 04 01 08 11 05 12 03 06 07 09

Beam 01 Beam 02 Beam 03

Parent 2: 03 06 07 09 08 11 05 12 02 10 04 01

Child 1: 03 06 07 01 08 11 05 12 02 10 04 09

Child 2: 02 10 04 09 08 11 05 12 03 06 07 01

Fig. 4.9: Example for not repaired chromosome 1 and 2 representing equal solution.

Parent 1: 02 10 04 01 03 06 07 09 08 11 05 12

Beam 01 Beam 02 Beam 03

Parent 2: 02 10 04 01 03 06 07 09 08 11 05 12

Child 1: 02 10 04 01 03 06 07 09 08 11 05 12

Child 2: 02 10 04 01 03 06 07 09 08 11 05 12

Fig. 4.10: Example for repaired chromosome 1 and 2 representing an equal solution.

an unsuitable initial population could cause premature convergence or reduce the exploratory
capabilities of the GA.
Reeves [46] proposed the principle that every solution within the search space should be

reachable by crossover only. This implies that every allele must be at each locus at least once
within the population. Based on this principle, Reeves [46] derived an equation to calculate
the probability that every allele is present at every locus based on the population size, the
chromosome length and the number of alleles.
This approach apparently works for problems with small number of alleles, but for larger

numbers the minimum population size tends to be too large to be usable [46]. Furthermore,
the used principle does not hold for CO problems, since herein, as described in Section 4.8.2,
the used crossover operations incorporate swapping operations and therefore are able to reach
solutions with alleles at positions which were not present in the initial population.

Coelho et al. [7], Reeves [44], and Talbi [49] propose the usage of latin hypercube sampling to
generate a pseudo random initial population. A latin hypercube sample j for discrete variables
can be obtained by generating random permutations πi of all alleles for every gene i and using
the gene values πi(j) for the solution j. For CO problems, where the genes cannot be sampled
independently, latin hypercube sampling is not applicable as well. Therefore, the method used in
this work is a modified implementation of the so-called algorithm P used for shuffling, introduced
by Knuth [30, p. 139]. The algorithm picks an entry at a random position within the vector
which shall be shuffled and swaps it with the element at the last position. The element, which is



40 4 Implementation of methods for optimisation

now at the last position, is at its final location within the shuffled vector, thus the next randomly
chosen element is swapped with the second last element. This process is repeated until every
element was swapped.
Herein, the algorithm is modified such that lamellas are evenly distributed over all available

positions. In detail, a randomly chosen position is rejected in case the lamella was used an
above-average amount of times at this position.

Figure 4.11 shows a comparison for nb = 5, nb,l = 10, and Np = 100 of a purely random shuffle
shown in Figure 4.11a and the adapted pseudo random version shown in Figure 4.11b, where for
every possible location within a beam the number of times a lamella was used at this location is
plotted.

(a) Pure random shuffle (b) Pseudo random shuffle

Fig. 4.11: Number of lamellas at locations within beams. Location 1 corresponds to the top
location and location 10 to the bottom location.

Figure 4.11 clearly shows that the modified algorithm generates a more homogeneous distribu-
tion of the lamellas through the beams. This approach of generating the initial population is
insofar advantageous, as it is not possible that a lamella only occurs at certain locations within
the beams. Thus, the starting solution is guaranteed to have a broader overview of the solution
space than a starting solution generated at random.

The algorithm is further extended for generating an initial population respecting the orientation
of a lamella. This is implemented based on the representation scheme proposed in Equation (4.15).
The initial vector, which shall be shuffled is build solely from not flipped lamellas. After one
position was picked randomly, the lamella associated with this position gets a random orientation
assigned i.e 1 or 0 is added to the lamella ID. As the ID now contains the orientation, it is
compared against the times it was used at the desired position and is rejected in case of an
above-average amount of times.



Chapter 5

Application of metaheuristic algorithms for the
simplified problem

5.1 Practical example

In the following numerous example calculations are performed and optimisation approaches are
discussed to verify or support certain ideas. Thereby the values for nl, nb and nl,b are set to:

nl = 50,
nb = 5, and
nl,b = 10.

The lamella data used in this test sample comprises the lamellas 59–109 (except lamella 71 due
to missing data of E(x)) of the grading class LS22, from the experiments in [47].
The GLT beam test setup is shown in Figure 5.1. The dimensions and loads used for the

present example are:

a1 = 1.38 m
a2 = 1.38 m
a3 = 0.63 m
F = 5.0 kN

The lamellas are assumed to have equal cross sectional dimensions of lh = 0.033 m in height
and w = 0.09 m in width.

5.2 Application of local search

The LS is at first performed starting from a single random beam setup to gain insight into
the algorithms behaviour. The progress of the optimisation procedure is shown in Figure 5.2.
Obviously the algorithm converged against a solution, however it is not clear what the actual
best solution is, thus the performance of one algorithm is assessed in comparison to the other



42 5 Application of metaheuristic algorithms for the simplified problem

a3 a2 a1 a2 a3

wF/2 F/2

Fig. 5.1: Definition of dimensions for the test setup considered

discussed algorithms. Furthermore, the actual improvement entirely depends on the quality of
the initial solution, thus it is not used as an criterion for measuring the performance of the used
algorithms. Details on the possible range of improvement are given in Section 6.5.1.

The optimisation shown in Figure 5.2 was performed in about 3 s on a 2015 MacBook Pro with
a 3.1 GHz Dual-Core Intel i7 CPU and 16 GB RAM. The time needed for the optimisation is, of
course, only a rough estimate of the average time needed for the optimisation, as it is strongly
depended on the influence of background processes. Nevertheless, it provides the reader a first
impression of the duration of the discussed procedures.
For more complex objective functions, the overhead of the computation time spent on the

algorithm can be neglected in relation to the computation time needed for evaluation of the
objective function. Therefore, in order to provide a basis for comparing different algorithms, the
progress is always plotted in comparison to the number of distinct calls1 to the objective function.
Thus, eliminating the variability involved when actually comparing the computation time.

Fig. 5.2: Exemplary optimisation progress of the LS algorithm starting with a random beam
setup for Nc = 50.

1The reasoning for capturing only distinct functions calls is further explained in Section 6.1



5.3 Application of iterated local search 43

5.3 Application of iterated local search

Similar to LS, the ILS algorithms is tested starting from a random initial beam setup. Figure 5.3
shows that ILS converged to a similar value as LS. The algorithm needed about 2 s to performed
the optimisation task. When comparing the bending stiffness of a single beam to the value of the
objective function of the optimisation problem, the effect of exchanging lamellas between beams
is recognizable, as an exchange of lamellas on the one hand weakens a strong beam and on the
other hand improves a weak beam. Particularly exchanges between the currently strongest beam
and the weakest beam can be clearly seen in the progress curves.

100 200 300
3.8

3.9

4

4.1

4.2

4.3

Iteration steps

B
en

d
in
g
st
iff
n
es
s
[M

N
m

2
]

Beam 1
Beam 2
Beam 3
Beam 4
Beam 5
Objective function

0 0.2 0.4 0.6 0.8 1

·104

3.8

3.9

4

4.1

4.2

4.3

Calls to EIb(bi)

B
en

d
in
g
st
iff
n
es
s
[M

N
m

2
]

Objective function

100 200 300
3.8

3.9

4

4.1

4.2

4.3

Iteration steps

B
en

d
in
g
st
iff
n
es
s
[M

N
m

2
]

Beam 1
Beam 2
Beam 3
Beam 4
Beam 5
Objective function

0 0.2 0.4 0.6 0.8 1

·104

3.8

3.9

4

4.1

4.2

4.3

Calls to EIb(bi)

B
en

d
in
g
st
iff
n
es
s
[M

N
m

2
]

Objective function

Fig. 5.3: Exemplary optimisation progress of a ILS run for Nc = 25 and εc = 0.0001.

5.4 Comparison of local search and iterated local search

For comparison of LS and ILS both algorithms are tested on 1000 randomly chosen beam setups.
The results of these runs are shown in Figure 5.4. The black line within the shaded area is the
5 % trimmed mean of the objective function, i.e. for computation of the mean value curve, the
highest 5 % and the lowest 5 % of values are neglected. The reason for evaluating the trimmed
mean is that it is less sensitive to outliers while still preserving a reasonable estimate of the mean
value. The shaded area spans the distance from the first to the third quartile and the grey outer
lines mark the minimum and the maximum values of the objective function.
From Figure 5.4 the following conclusion can be drawn:

1. The shaded areas marking the inner quartile range show that the 1000 runs are narrowly
distributed around the mean value curves. While in the overlapping areas of LS and ILS
any statement has to be carefully evaluated, in the remaining parts, significant differences
for both mean value curves are observed.



44 5 Application of metaheuristic algorithms for the simplified problem

Fig. 5.4: Comparison of 1000 LS and ILS runs starting from equal beam setups.

2. ILS initially needs more computations to improve the starting solution. This could be
caused by the initial task of ILS of improving every single beam, as the worst beam
– defining the value of the objective function – consists of mainly weak lamellas, thus
the potential range of improvement is low. Nevertheless, at the point where ILS mainly
improves the current solution by explicitly moving lamellas from superior beams to inferior
ones, the improvement rate rapidly increases and ultimately ILS converges faster than LS.

3. LS gets stuck at local optima more often than ILS which can be seen by looking at the
maximum value path (which in this case is the lower grey solid curve) in Figure 5.4, as ILS
is “trapped” at a later stage than LS

5.5 Application of tabu search

TS is initially performed on a random beam setup. The progress of the optimisation procedure
for the run for Nc = 100, Nn = 200, NT,1 = 50 and NT,2 = 10 is shown in Figure 5.5. Although
a heuristic component is used, the number of evaluations of Equation (4.5) compared to the ones
needed by LS or ILS is larger by about a factor of 4. As a consequence TS spent about 41 s of
computation time on optimising the initial beam setup. The solution the algorithms converged
to, is similar to the solutions obtained by the other algorithms.

5.6 Application of tabu search using candidate list strategies

The extension of TS by using a neighbourhood generated by means of candidate list strategies,
should have a similar effect as the LS adaption ILS. In contrast to ILS, TS using candidate list
solution never actually operates on a single beam, nevertheless the progress of improving single



5.6 Application of tabu search using candidate list strategies 45

Fig. 5.5: Exemplary optimisation progress of a TS algorithm starting with a random beam
setup.

beams can be calculated by evaluating Equation (4.5) for every beam contained in the current
best solution. The progress for Nc = 100, Nn = 100, NT,1 = 50 and NT,2 = 10 is shown in
Figure 5.6. Similar to the progress of ILS, the effect of deteriorating a strong beam to improve the
weakest beam is recognizable in Figure 5.6. The time needed for the optimisation was about 6 s.
This reduction in comparison to the original TS implementation is also reflected in a comparably
fast convergence.

100 200 300 400
3.7

3.8

3.9

4

4.1

4.2

Iteration steps

B
en

d
in
g
st
iff
n
es
s
[M

N
m

2
]

Beam 1
Beam 2
Beam 3
Beam 4
Beam 5
Objective function

0 0.5 1 1.5 2 2.5

·104

3.7

3.8

3.9

4

4.1

4.2

Calls to EIb(bi)

B
en

d
in
g
st
iff
n
es
s
[M

N
m

2
]

Objective function

100 200 300 400
3.7

3.8

3.9

4

4.1

4.2

Iteration steps

B
en

d
in
g
st
iff
n
es
s
[M

N
m

2
]

Beam 1
Beam 2
Beam 3
Beam 4
Beam 5
Objective function

0 0.5 1 1.5 2 2.5

·104

3.7

3.8

3.9

4

4.1

4.2

Calls to EIb(bi)

B
en

d
in
g
st
iff
n
es
s
[M

N
m

2
]

Objective function

Fig. 5.6: Progress of each beam during a TS based on candidate list.



46 5 Application of metaheuristic algorithms for the simplified problem

5.7 Comparison of tabu search with and without using candidate list
strategies

For comparison of the implemented TS algorithms, both are tested on 1000 randomly chosen
beam setups. The results of this runs are shown in Figure 5.7. The black line within the shaded
area is the 5 % trimmed mean of the objective function. The shaded area spans the distance from
the first to the third quartile and the grey outer lines mark the minimum and the maximum
values of the objective function.

Similar to ILS, using candidate list strategies and performing purposeful swaps results in a
faster convergence for Equation (4.6). However, the discussed effect of a late increase of the
improvement rate of ILS can not be observed for TS using candidate list solutions, since the
algorithms initially improves beams by exchange of lamellas with other beams.

Fig. 5.7: Comparison of 1000 TS runs with and without the usage of candidate list solutions.

5.8 Application of genetic algorithms

The large number of different parameters and different operations applicable within GAs makes
finding an optimal parameter set a challenging task. De Jong [10] discusses this topic on a
general level and compares the usage of static and dynamic parameter setting strategies.

As the fitness landscape of the stated problem does not change during the run, online parameter
tuning will not be used. De Jong [10] further proposes so-called parameter sweeps, where every
possible value and combination of parameters is tested, in order to find an optimal static
parameter setting. The computational effort for these tests for a number of different initial
populations is, similar to the problem discussed in this thesis, very large. Therefore, the tuning
process is done by using racing algorithms [35].



5.8 Application of genetic algorithms 47

The basic idea of racing algorithms is, that every set of parameters (a model) is tested in
parallel on different initial populations (a point) resulting in a value for the objective function
(this can be seen as the error as usually optimisation is performed in form of a minimisation, thus
the better the result the smaller the error). With every point tested on a model the average error
of all tested points for this model is evaluated, thus giving an estimate of the models true error.
By using statistical bounds the accuracy of this estimation is evaluated. In case the accuracy
exceeds a certain threshold, models which are significantly worse than the best ones are discarded
and the algorithm continues its focus on promising models. By employing this technique, it is not
necessary to evaluate every possible parameter value and combination on a number of different
starting populations as unpromising combinations are not tested in their entirety.
For this purpose, the free software package irace [32] is used. The parameters are bound to

the following ranges and values2:

Population size: 20–100

Fitness scaling: 1.0–20.0; in case the selection function is SUS or roulette-selection

Mutation rate: 0.0–1.0

Crossover rate: 0.0–1.0

Elitism: 0–10

Crossover function: PMX, OX, CX

Mutation function: swap two lamellas, replace with random beam setup

Selection function: Roulette-selection, SUS, tournament-selection, linear ranking

Tournament size: 2–10; in case the selection function is tournament-selection

Selection pressure: 1.0–2.0; in case the selection function is linear ranking

Chromosome type: A or B

Initial population: pure random or pseudo random

The parameters are tuned on the example from Section 5.1 on a number of 250 and 1000
generations. The maximum number of experiments is set to 10000, where one experiment is one
optimisation run, with a given parameter model.
The 5 best parameter configurations are shown in Table 5.1. Herein the best parameter

configurations are those which delivered, on average, the best results while maintaining a small
inner quartile range, for both 250 and 1000 generations. The solution quality for the 5 parameter
combinations is shown in Figure 5.8.

2Ranges delimited by integer numbers refer to integer numbers within the given ranges, whereas ranges not
delimited by integers refer to all numbers within the given range with a precision of 2 decimal places.



48 5 Application of metaheuristic algorithms for the simplified problem

The results clearly state which functions should be used to perform selection, crossover and
mutation. Further, it is obvious that the pseudo random initial population and the chromosome
type B outperform their counterparts.

Tab. 5.1: 5 best parameter combinations for the simplified problem

Parameter combination: 1 2 3 4 5
Population size Np 90 100 90 90 87
Mutation rate pm 0.96 0.88 0.92 0.89 0.93
Crossover rate pc 0.85 0.79 0.95 0.84 0.98
Elitism εc 3 1 2 2 2
Crossover function fc Partially mapped crossover
Mutation function fm Swap
Selection function fs Tournament selection
Chromosome type B
Initial population Pseudo random initial population
Tournament size t 8 6 7 7 7

1 2 3 4 5
4.85

4.86

4.87

4.88

Parameter combinations

B
en
d
in
g
st
iff
n
es
s
[M

N
m

2
]

Fig. 5.8: Solution quality for the parameter combinations shown in Table 5.1

Figure 5.9 exemplary shows the optimisation procedure of the 5 different parameter combina-
tions from Table 5.1. The computation time needed for the 5 different GA runs varies between
33 s and 47 s.

Figure 5.10 shows a comparison of the different parameter combinations starting from 100
different initial populations. Figure 5.10a shows the 5 % trimmed mean valued of the fitness
function for the 5 best parameter configurations. As all 5 parameter configurations deviate only
marginally from each other, the trend of the optimisation procedure in Figure 5.10b, is only
shown for parameter configuration 1.



5.8 Application of genetic algorithms 49

Fig. 5.9: Exemplary optimisation progress of the 5 best parameter combinations from Table 5.1

(a) Comparison of the 5 % trimmed mean value
of the fitness functions for the 5 best param-
eter combinations

(b) Optimisation progress of 100 run for param-
eter combination 1

Fig. 5.10: Comparison of 100 optimisation runs using the 5 best parameter combinations



50 5 Application of metaheuristic algorithms for the simplified problem

5.9 Comparison of algorithms for the simplified problem

Table 5.2 shows a summary of the results obtained from the MAs tested for the simplified
problem. The 5 % trimmed mean of all discussed algorithms is shown in Figure 5.11. Based on
theses results, it is possible to draw the following conclusions:

1. The best solution for Equation (4.6) is reached by LS. The other algorithms manage to
reach similar values.

2. The worst solution is also given by LS, which roots in the discussed drawback of LS being
trapped at local optima. This is further reflected in the standard deviation as LS has the
highest value of all discussed algorithms.

ILS and TS using candidate list solutions, in comparison to their counterparts, managed to
escape from local optima, which is reflected in higher worst values and a slightly smaller
standard deviation.

In regards of the worst solution, GAs performed best, as the worst solutions are close to the
average solutions of the other algorithms. This is further reflected in the smallest standard
deviation of all discussed algorithms.

3. On average, GAs performed best, while ILS and TS using candidate list solution performed
poorest.

4. ILS reached the smallest average value first. Both ILS and TS using candidate list solution
converged significantly faster than their counterparts.

5. LS and ILS converged significantly faster than TS and GAs and still yield high performing
solutions for the simplified problem. Regarding the average step count to reach the smallest
value, GAs required 9.36 – 12.47 times more steps as ILS.

6. The exploratory capabilities of GAs outperform the ones of the others, as only a small
portion of the runs never reach the smallest average value.

Generally all algorithms manage to find a near optimal solution to Equation (4.5) and all
procedures prove the be applicable to the task of optimising GLT beams, since the relative error
between the worst and the best solution is only 2 %. As for the simplified problem the complexity
is reduced, it could be the case that exploitation is more important than exploration, thus LS
still yields good solutions. Nevertheless, the effects of trying to maintain diversity within the
solution space are reflected in a higher robustness of GAs and TS.



5.9 Comparison of algorithms for the simplified problem 51

Tab. 5.2: Solutions of 1000 runs for each optimisation procedure. For the GAs the objective
function was f(π), whereas for the other approaches, the objective function reads
1/f(π), compare Equation (4.6).

LS ILS TS TS (cand.) GA 1 GA 2 GA 3 GA 4 GA 5
Best1 4.120 4.118 4.119 4.119 4.119 4.119 4.118 4.119 4.119
Worst1 4.038 4.082 4.079 4.082 4.103 4.105 4.101 4.101 4.103
Avg.1 4.111 4.108 4.109 4.108 4.114 4.115 4.114 4.114 4.115
Std.1 0.007 0.006 0.006 0.006 0.003 0.003 0.003 0.004 0.003
Stepcount for reaching the smallest avg. value of 4.108
Earliest 2511 1128 19393 4165 17997 19377 14958 20586 15353
Avg. 7151 3881 47339 13765 38196 48395 40836 36336 40202
Never2 26.9 38.9 36.9 44.0 6.0 7.0 8.0 9.0 6.0
1 [MN m2] 2 [%]

Fig. 5.11: Comparison of the 5 % trimmed mean values of the discussed metaheuristic algorithms



Chapter 6

Application of metaheuristic algorithms for the
original problem

6.1 Finite element model

As stated in Section 1.2 and Section 4.2, for the actual problem it is necessary to consider that
the lamella stiffness varies in longitudinal direction, which can be described by the stiffness
profile E(x). Therefore, it is not longer possible to perform the optimisation process based on
Equation (4.5) but rather, as mentioned in Section 4.1.1, the deflection of the beam needs to be
calculated by using a FE model.
The FE model used in this work is based on the one described by Kandler et al. [28]. The

FE grid is constructed from 2D plane-stress elements based on quadratic shape functions. The
element height is defined in such a way that each lamella consists of two elements in height, the
greatest element length value is 25 mm. The bond between the layers is assumed to be perfect.

As stated by Kandler et al. [28], a transversal isotropic material behaviour is assumed. Further,
only changes in the longitudinal stiffness profile E(x) are considered, the Poisson’s ratios ν21 and
ν23 and the shear modulus G12 are assumed to be constant for every lamella. Thus, the stiffness
tensor for each lamella reads

C =


E2

1
−E2·ν2

21+E1
E1·E2·ν21
−E2·ν2

21+E1
0

E1·E2·ν21
−E2·ν2

21+E1
E1·E2

−E2·ν2
21+E1

0
0 0 G12

 (6.1)

The values are obtained from the micro-mechanical model described by Hofstetter et al. [24],
which is also employed in Kandler et al. [28]. The main parameters for the micro-mechanical
model are mass density and moisture content. The mass density is known for each lamella and,
at the time of evaluation, the moisture content was 12 %.

As the evaluation of the objective function, particularly the calculation of the deflection using
the FE model, is crucial for the computation time of the optimisation process, the FE model is
optimised as follows:

1. All finite elements have equal dimension.



6.1 Finite element model 53

2. One finite elements corresponds to exactly one lamella, i.e. it does not overlap or cross
lamella boundaries.

3. Considering 1. and 2., it is possible to evaluate the element stiffness matrices for every
finite element within every lamella once, before the actual optimisation algorithm is run.
The global stiffness matrix can be assembled by matching the mesh coordinates with the
lamella permutation L∗i from Equation (4.2) or Equation (4.3).

4. Previously calculated solutions for the deflection qmax, mentioned in Section 4.1.1, are
stored. In case some parameter set is used at a later stage, instead of a time-expensive
recomputation, the algorithm can access the result from memory. This is especially useful
as the described MAs mostly perform small changes or tend to exploit already well-known
search areas in later stages of the optimisation process. This can easily be illustrated by
examining the neighbourhood definition Γ for LS, introduced in Section 5.2:

Γ consists of beam setups generated by performing every possible swap of two lamellas.
For the stated example from Section 5.1, Γ consists of (nl−1)·nl

2 = 1225 solutions, where
each solution contains 5 beams. Therefore, the neighbourhood consists of a total of 6125
beams, which have to be analysed. Assuming that the beams contained in the current
solution s have all been calculated, a swap can generate one new beam, in case two lamellas
within a beam were swapped, or two new beams, in case two lamellas between two beams
were swapped. The number of swaps resulting in one newly generated beam are, similar
to the total number of solutions, given by an arithmetic series. For the practical example
this results in (nb,l−1)·nb,l

2 · nb = 225 solutions which result in one new beam. Hence, the
remaining 1000 solutions generate two new beams each, therefore Γ consists – in the worst
case – of 2225 previously unknown beams which is approximately only a third of the beams
contained in Γ.

5. The outer distances a3 shown in Figure 5.1 are not taken into account as they have no
impact on the load-bearing behaviour of the beam.

Figure 6.1 shows the resulting stresses for a completely random beam. The effect of the varying
longitudinal stiffness profile E(x) is clearly visible as darker areas in the beam, corresponding to
weaker sections, attract less stresses. Consequently the strains in those areas are greater than in
the surrounding region.

6.1.1 Benchmark tests

Due to the high impact of the objective functions computation time on the computation time
needed for the overall optimisation progress, a benchmark test of the described FE model is
performed. In combination with the number of needed objective function evaluations from
Section 5.1, a first estimate of the time needed for the optimisation can be made.
The evaluation of the objective function involves the following steps:.

1. Assembly of the mesh based on the lamella permutation L∗i ,



54 6 Application of metaheuristic algorithms for the original problem

a3 a2 a1 a2 a3

E(x) [104 ×MPa]

0.5 1 1.5 2

σ1 [10−2 ×MPa]

−4 −2 0 2 4

ε1 [10−6]

−3 −2 −1 0 1 2 3

σ2 [10−3 ×MPa]

−2 −1.5 −1 −0.5 0

ε2 [10−6]

−10 −8 −6 −4 −2 0

σ12 [10−3 ×MPa]

−4 −2 0 2 4

ε12 [10−5]

−1 −0.5 0 0.5 1

F/2 F/2

a3 a2 a1 a2 a3

E(x) [104 ×MPa]

0.5 1 1.5 2

σ1 [10−2 ×MPa]

−4 −2 0 2 4

ε1 [10−6]

−3 −2 −1 0 1 2 3

σ2 [10−3 ×MPa]

−2 −1.5 −1 −0.5 0

ε2 [10−6]

−10 −8 −6 −4 −2 0

σ12 [10−3 ×MPa]

−4 −2 0 2 4

ε12 [10−5]

−1 −0.5 0 0.5 1

F/2 F/2

a3 a2 a1 a2 a3

E(x) [104 ×MPa]

0.5 1 1.5 2

σ1 [10−2 ×MPa]

−4 −2 0 2 4

ε1 [10−6]

−3 −2 −1 0 1 2 3

σ2 [10−3 ×MPa]

−2 −1.5 −1 −0.5 0

ε2 [10−6]

−10 −8 −6 −4 −2 0

σ12 [10−3 ×MPa]

−4 −2 0 2 4

ε12 [10−5]

−1 −0.5 0 0.5 1

F/2 F/2

a3 a2 a1 a2 a3

E(x) [104 ×MPa]

0.5 1 1.5 2

σ1 [10−2 ×MPa]

−4 −2 0 2 4

ε1 [10−6]

−3 −2 −1 0 1 2 3

σ2 [10−3 ×MPa]

−2 −1.5 −1 −0.5 0

ε2 [10−6]

−10 −8 −6 −4 −2 0

σ12 [10−3 ×MPa]

−4 −2 0 2 4

ε12 [10−5]

−1 −0.5 0 0.5 1

F/2 F/2

a3 a2 a1 a2 a3

E(x) [104 ×MPa]

0.5 1 1.5 2

σ1 [10−2 ×MPa]

−4 −2 0 2 4

ε1 [10−6]

−3 −2 −1 0 1 2 3

σ2 [10−3 ×MPa]

−2 −1.5 −1 −0.5 0

ε2 [10−6]

−10 −8 −6 −4 −2 0

σ12 [10−3 ×MPa]

−4 −2 0 2 4

ε12 [10−5]

−1 −0.5 0 0.5 1

F/2 F/2

a3 a2 a1 a2 a3

E(x) [104 ×MPa]

0.5 1 1.5 2

σ1 [10−2 ×MPa]

−4 −2 0 2 4

ε1 [10−6]

−3 −2 −1 0 1 2 3

σ2 [10−3 ×MPa]

−2 −1.5 −1 −0.5 0

ε2 [10−6]

−10 −8 −6 −4 −2 0

σ12 [10−3 ×MPa]

−4 −2 0 2 4

ε12 [10−5]

−1 −0.5 0 0.5 1

F/2 F/2

a3 a2 a1 a2 a3

E(x) [104 ×MPa]

0.5 1 1.5 2

σ1 [10−2 ×MPa]

−4 −2 0 2 4

ε1 [10−6]

−3 −2 −1 0 1 2 3

σ2 [10−3 ×MPa]

−2 −1.5 −1 −0.5 0

ε2 [10−6]

−10 −8 −6 −4 −2 0

σ12 [10−3 ×MPa]

−4 −2 0 2 4

ε12 [10−5]

−1 −0.5 0 0.5 1

F/2 F/2

a3 a2 a1 a2 a3

E(x) [104 ×MPa]

0.5 1 1.5 2

σ1 [10−2 ×MPa]

−4 −2 0 2 4

ε1 [10−6]

−3 −2 −1 0 1 2 3

σ2 [10−3 ×MPa]

−2 −1.5 −1 −0.5 0

ε2 [10−6]

−10 −8 −6 −4 −2 0

σ12 [10−3 ×MPa]

−4 −2 0 2 4

ε12 [10−5]

−1 −0.5 0 0.5 1

F/2 F/2

Fig. 6.1: FE model results of a completely random GLT beam



6.2 Approximation of the Finite element model 55

2. assembly of the global stiffness matrix and

3. solving the system equilibrium K · ~q = ~p.

To eliminate random effects due to background processes, the times needed for each step are
recorded for 1000 different beams. The results of those tests are displayed in Table 6.1. All
computations were made on a 2015 MacBook Pro with a 3.1 GHz Dual-Core Intel i7 CPU and
16 GB RAM.

Referring to the number of distinct objective function evaluations from Section 5.1, ranging
from 1.2×104 for ILS to 1.3×105 for GAs, the total computation time ranges from 59 minutes
to 633 minutes.

Tab. 6.1: Resulting average and standard deviation of the computation time, as well as its
relative amount of the benchmark tests of 1000 different beams. Step 1 refers to the
mesh assembly, step 2 to the assembly of the global stiffness matrix and step 3 to
solving the system equilibrium equation.

Avg. time [ms] Share on time [%] Std.dev. of time [ms]
Step 1 0.8 0.3 0.3
Step 2 80.9 27.7 56.4
Step 3 210.6 72.0 38.1
Total 292.3 - 72.8

As this approach only considers the computation time of the mechanical model and thus, is
certainly the lower bound of execution time, an alternative method for approximating the results
from the FE model is needed.

6.2 Approximation of the Finite element model

As shown in Section 6.1.1, the computational effort for evaluating the FE model is too large to be
used efficiently with the proposed MAs. Coelho et al. [7] suggests approximating the FE model
with an online learning regression model further referred to as metamodel. The term online
learning refers to the task of continuously updating the metamodel, instead of defining it once.
Coelho et al. [7] emphasize the usage of online learning, since during the optimisation process
the solutions space is narrowed down to a set of solutions close to the optimum. Thus, the
learning algorithm should change its focus to this new part of the solution space. Details on the
implementation and usefulness of online learning are given in Section 6.2.4.2 and Section 6.2.5.2.

In the following sections, two different types of learning algorithms are described and adapted
to the given problem. Section 6.2.4 describes the implementation of a so-called eager learner
based on a least squares problem [27, p. 245]. Section 6.2.5 describes the implementation of a
so-called lazy learner using k-nearest-neighbour (kNN) [9] classification.

The main difference between eager- and lazy learning algorithms is in the time of evaluation of
the training data. Aha [1] characterises the main differences between lazy and eager learning
algorithms as follows:



56 6 Application of metaheuristic algorithms for the original problem

Lazy learners initially only store the input. The process of making a prediction is performed
at time a request is made. Eager learners, on the other hand, build the metamodel beforehand,
based on the complete available information set and defer the input data after the training
process is finished. An advantage of eager learners is that, since the computationally expensive
learning phase is performed beforehand, predictions can be made – compared to lazy learners
– very fast. Nevertheless, the lazy learner can profit from postponing the generation of the
metamodel, as every model is based on the characteristics of the vicinity of the query point,
which can significantly improve the prediction quality.

6.2.1 Training- and test set

Both types of algorithms performed training on 5000 beams generated based on the described
example from Section 5.1. For validation, a test set of another 500 beams is generated.

Both of the sets are created by the pseudo random initial population generator mentioned in
Section 4.8.6 to achieve well distributed lamella permutations.

6.2.2 Comparing beams

The lazy learner as well as the eager learner need a beam representation on basis of which
the algorithms are capable of comparing beams or performing calculations. For the purpose of
comparing beams, it is possible to calculate the similarity between two lamella permutations
L∗a and L∗b by comparing their integer representations mentioned in Section 4.3. This method
solely considers lamella numbers and orientations and completely neglects the similarity between
lamellas. E.g in case two lamellas have identical material parameters this method is not capable
of recognizing their similarity.
An alternative method for comparing beams or lamellas can be implemented by comparing

the corresponding stiffness profile E(x). This is achieved by sampling the E(x) profiles with a
given resolution and use the result as a row vector. A beam can be described by a matrix Bi

build up from the row vectors representing the corresponding lamellas as follows:

Bi =


Ei,1,1 Ei,1,2 . . . Ei,1,Nx

Ei,2,1 Ei,2,2 . . . Ei,2,Nx

...
... . . .

...
Ei,nb,l,1 Ei,nb,l,2 . . . Ei,nb,l,Nx

 , (6.2)

where Ei,j,k is the value of the sampled E(x) function for the lamella at position j in vector L∗i .
Nx denotes the number of samples generated based on the resolution. The value for Ei,j,k is
calculated by computing the moving average with a window size of lb

Nx−1 where lb denotes the
beam length. Respectively for Ei,j,1 and Ei,j,Nx the window size is lb

2·(Nx−1) . Alternatively, a
nearest neighbour interpolation could be implemented. However, for the present case, a moving
average is more suitable since, in order to reduce the computational effort, Nx is chosen to be
small opposed to the number of FE used for one lamella. Thus, in case a knot area is between



6.2 Approximation of the Finite element model 57

two sample points, such that the nearest neighbour interpolation is not detecting it, the knot
vanishes.

For being able to perform operations in a vector space, for Bi the alternative vectorial
representation is chosen:

~Bi =



Ei,1,1

Ei,1,2
...

Ei,1,Nx

Ei,2,1

Ei,2,2
...

Ei,2,Nx

...
Ei,nb,l,1

Ei,nb,l,2
...

Ei,nb,l,Nx



. (6.3)

6.2.3 Parameter sensitivity and weighting

In Section 4.1.2.1 and Section 4.2, it was shown that by using strong lamellas in the outer layers
of a beam, the resulting beam bending stiffness is increased. By implication this means, outer
layers are of more importance for the resulting bending stiffness or deflection of the beam. Thus,
to be able to compare beams in the context of the deflection qmax, resulting from the FE model,
the effect of knots at different locations within the beam are examined. The corresponding
results will also provide the eager learner with an initial solution for the weighting vector. The
reasoning behind weighting the Ei,j,k values in ~Bi for the lazy learner, is to reduce ~Bi to the
characteristics relevant for the resulting deflection qmax and thus providing a proper basis for
comparing different beams. The geometry and loads for the FE model are used from the example
in Section 5.1.

The resulting position dependent sensitivity is stored in a matrix similar to Bi in Equation (6.2).
This sensitivity matrix is obtained by extracting two different element stiffness matrices KEcw

from the clearwood section and KEknot from a random knot section. Both matrices are extracted
from lamella 59 of the grading class LS22. Subsequently 100 random variations of KEknot are
generated from:

KEi,knot = KEknot − 0.5 ·KEknot ·X, (6.4)

where X is a random variable uniformly distributed between 0 and 1. It should be noted that
this relation yields different results as if the modulus of elasticity in longitudinal direction, E1,
was varied. However, in a realistic scenario it is reasonable to assume also variations in the other



58 6 Application of metaheuristic algorithms for the original problem

material parameters E2, G12 and ν21. Also, this approach is only used to assess the sensitivity,
thus the approximation error introduced by Equation (6.4) can be accepted.

To gain insight on how a weak zone i at a defined location (x, y) affects the resulting maximum
deflection, the element stiffness matrix KEi,knot is assigned to the corresponding finite element
at location (x, y) and – to guarantee a reasonable weak zone size – to two horizontal neighbours
within the beam mesh. The element stiffness matrix KEcw is assigned to the remaining elements.
For the resulting system, the maximum deflection is computed and stored for the given location
(x, y) and the weak zone i. This step is repeated for all 100 random variations of KEknot for all
y at 8 pre-defined vertical axis uniformly distributed between the left end and the centre of the
beam (utilizing the symmetry of geometry and loads). The values between the 8 vertical axis are
linearly interpolated.

A measure of sensitivity of qmax to a certain location is obtained through the standard deviation
of all qmax resulting from all 100 KEi,knot at this location. The underlying idea is that the
GLT system is insensitive to knot sections at locations with a low standard deviation of qmax.
Consequently, the system is sensitive to knot areas at locations where a high standard deviation
of qmax is observed.

To be able to to use the obtained weighting independently of KEi,knot and KEcw, the weighting
vector is normalized by the maximum standard deviation. Furthermore, to apply the vector to
different geometries the width is scaled to a range from 0 to 1 and the height to a range from -1
to 1. It should be noted, that in case of a change in the boundary conditions, e.g. supports at
different coordinates, the sensitivity analysis has to be recomputed.
Figure 6.2 shows the resulting normalized weighting function for the given problem. It is

clearly visible that locations further from the centre of mass of the beam and closer to the middle
of the beam have a higher impact on the deflection.

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

normalised beam width

no
rm

al
ise

d
be

am
he

ig
ht

0

0.2

0.4

0.6

0.8

1

Fig. 6.2: Position dependent normalised weights for variations in E(x) affecting qmax



6.2 Approximation of the Finite element model 59

Similar to the matrix representation for a beam derived in Section 6.2.2 the obtained weights
can be sampled into a weighting matrix W. For being able to perform operations in a vector space,
W is stored in a vectorial representation ~W , based on the same logic as used in Equation (6.3).

6.2.4 Eager learner

The basic idea behind the implementation of the eager learner is that the FE model calculations
can be approximated solely based on the vector ~Bi. The resulting approximate deflection qmax is
calculated by performing an inner product on the vector ~Bi and a weighting vector ~w:

qmax,approx. = ~Bi · ~w (6.5)

The training is performed based on two different variations of ~Bi.

1. Using the inverse of every entry in ~Bi. This is insofar arguable as a higher modulus of
elasticity reduces the deflection. Thus, the index originally representing the k-th sampled
element, in the lamella at location j in beam i is used as follows:

~Bi[j, k] = 1
Ei,j,k

(6.6)

2. In addition to the variation in 1., weighting every element Ei,j,k by Ei,j,k

E[ ~Bi]
where E[ ~Bi] is

the average of all values in ~Bi. This weighting is indented to simulate the effect that stiffer
regions tend to attract stresses. Thus, the index originally representing the k-th sampled
element, in the lamella at location j in beam i is used as follows:

~Bi[j, k] = 1
Ei,j,k

· E[ ~Bi]
Ei,j,k

(6.7)

To obtain the unknown values of the weights ~w, a least squares approach [27, p. 245] is used:

Minimize: L = 1
n

n∑
i=1

(1
2
(
qmax,i − ~Bi · ~w

)2
+ α

2

Nx·nb,l∑
j=1

(
[wj ]−

)2
︸ ︷︷ ︸
Constraint ∀wj |wj≥0

)
, (6.8)

where n is the number of beams in the training set, wj is the j-th element in the weighting vector
~w, α is the scaling factor for the non-smooth penalty function and the notation [•]− is defined as
max{0,−•} [27, p. 507]. The non-smooth penalty function constrains wj to positive values. The
constraint for only positive values of wj , assures that ~Bi · ~w stays positive, i.e. the deflection
returned by the learner cannot be negative. Nevertheless, the eager learner is also tested for
α = 0.



60 6 Application of metaheuristic algorithms for the original problem

The gradient of L for wj results in:

∂L

∂wj
=


1
n

∑n
i=1

((
qmax,i − ~Bi · ~w

)
· (−Bi,j)

)
if wj > 0

1
n

∑n
i=1

((
qmax,i − ~Bi · ~w

)
· (−Bi,j) + α · wj

)
if wj < 0

(6.9)

where Bi,j is the j-th element in vector ~Bi.
The actual values for ~w are obtained by performing a numerical optimisation by using the

Limited-memory-BFGS (L-BFGS) algorithm [27, p. 177]. L-BFGS is based on the BFGS
algorithm which is a quasi-Newton method. Quasi-Newton methods usually approximate the
hessian matrix, needed for estimating the next step of the optimisation. More precisely, in case
of the BFGS algorithm, the inverse of the hessian matrix is approximated.
Since the hessian matrix contains all second order derivatives for all variables subject to the

optimisation, storage and manipulation is usually very memory intensive. Thus, L-BFGS stores
the inverse of the hessian implicitly, by storing a certain number of vectors its constructed
from (usually between 3 and 20 [27, p. 177]). Though L-BFGS approximates the second order
derivatives, the gradient ∂L

∂wj
is reguired.

The gradient function used for L-BFGS is computed by using stochastic gradient descent
(SGD) [6] on a random number of beams from the training set. The usage of SGD reduces the
number of calls to the gradient function by calculating the gradient based on a portion of the
training set. Furthermore, the added stochastic effect reduces the chance that the optimisation
gets stuck at a local minimum.

6.2.4.1 Results

As stated above, the eager learner is trained based on the two different variations of ~Bi. Addi-
tionally, for each variation the constraint α is either respected or ignored (i.e. α 6= 0, α = 0).
Therefore, in total, four different parameter combinations, as shown in Table 6.2, are tested.

Tab. 6.2: Parameter combinations for the eager learner

SGD size1 α w0
2 Var. of ~Bi Resolution3

1 50 0.0 10−3 1 50
2 50 0.0 10−3 2 50
3 50 1.0 10−12 1 50
4 50 1.0 10−12 2 50
1 The number of samples for which the gradient is
calculated. 2w0 is initially populated based on the
sensitivity vector from Section 6.2.3, scaled by the
given factor. 3 The resolution is given in number of
segments in longitudinal direction per lamella.

The performance of the learning algorithm is tested with a test set of 500 beams and compared
against the deflection obtained by the FE model. The quality of the approximation is determined



6.2 Approximation of the Finite element model 61

by the so-called coefficient of determination [11, p. 484] denoted by R2. The coefficient of
determination measures the precision of a linear regression model of explaining variation in the
input data. For R2 = 1.0 the linear regression model perfectly fits the sample data, for R2 = 0.0
the model cannot explain any variations in the sample data. As can be seen from the results in
Figure 6.3 parameter sets 1 and 3 (using no further weighting of Ei,j,k), perform better on the
test set.

Fig. 6.3: Approximated deflection of the test set compared against the deflection obtained by
the FE model

Especially for GAs the absolute value of the deflection is not crucial, as solutions are compared
against each other. Rather, it is more important that the approximation is able to correctly
predict whether one beam is better than another one, for a large number of beam pairs. Thus,
the performance is further rated by comparing the results of a tournament selection, as described
in Section 4.8.1, using a tournament size of t = 6. The selection process is repeated 20000 times
to reduce the stochastic effects involved in the selection method. Figure 6.4 shows the results in
form of a probability density function, indicating if a certain beam is a member of the newly
generated population. Thicker lines illustrate the density based on the FE model calculation,
thinner lines the approximations using the eager learner. The quality of the approximation is
quantified by the correlation coefficient [11, p. 209] of the density functions, resulting from the
FE model and the learning algorithm. The correlation coefficient ranges between −1 and 1,
where −1 is a total negative linear correlation, 0 is no linear correlation and 1 is a total positive
linear correlation.

Similar to Figure 6.3, Figure 6.4 shows that the parameter sets 1 and 3 outperform the others.
Furthermore, even though the learning algorithm is entirely unfamiliar with the test set, the
selection based on the approximate model matches the one based on the FE model well.



62 6 Application of metaheuristic algorithms for the original problem

Fig. 6.4: Probability density of beams being part of the selected population when using an eager
learner compared against using the deflection obtained by the FE model

6.2.4.2 Online learning

The above statement about the eager learners performance is true for the given random test
set, which consists of well distributed lamella permutations. However, as already mentioned, in
later runs of MAs, solutions tend to become more similar. Therefore, the learning algorithm is
tested on another set of beams generated by selecting out of 10000 pseudo-randomly generated
beams the 100 best beams, i.e. the ones with the lowest deflection. For the reduced test set,
qmax has a coefficient of variation of 3.35 × 10−4, whereas for the original test set of 10000
beams, qmax has a coefficient of variation of 553.82× 10−4. Once again tournament selection as
described Section 6.2.4.1 is performed for both the learning based approximation and the FE
model solution.

Figure 6.5a shows that the eager learner, both with and without positive-weight-constraint, is
not longer capable of distinguishing the differences between the beams. Therefore, to sustain the
performance of the learning algorithm, online learning is applied to sufficiently approximate the
narrowed down solution space. A detailed description on how online learning is incorporated
with the optimisation procedure, is given in Section 6.3.1.

Figure 6.5b shows parameter sets 1 and 2 after a retraining phase on the new training
set. Parameter set 1 now outperforms parameter set 3 when comparing the results shown in
Figure 6.5b. Another benefit of using parameter set 1 is that during the initial learning phase,
set 1 converged after 1674 calls to the objective function whereas set 3 needed 7047 calls. This is
manly due to the missing constraint for parameter set 1. The resulting negative weights in ~w,
seem to be compensated for the vectors ~Bi in the current context. Therefore, in the following
steps, only parameter set 1 is used for the eager learner.



6.2 Approximation of the Finite element model 63

(a) Tournament selection before retraining (b) Tournament selection after retraining

Fig. 6.5: Probability density of beams being part of the selected population when using an eager
learner compared against using the deflection obtained by the FE model for beams
having similar deflection

6.2.5 Lazy learner

kNN methods as described by Cover et al. [9] find application when trying to classify unclassified
samples based of their resemblance to previously classified samples. This classification method
infers the class of the unknown sample, based on the k samples with the most resemblance to
the unknown sample. In this work, however, an adapted version is incorporated which is able to
perform regression instead of classification tasks. In case of regression, each stored sample is
assigned a numerical (usually real) value. For the stated problem, each beam is represented in
form of a matrix Bi and qmax is obtained from the FE model. To predict the deflection qmax

for a given beam without the need to employ the computationally expensive FE model, the
regression is performed by inference from the k nearest neighbours with already known values.
Herein, by k nearest neighbours it is referred to the k most similar specimens. The similarity
between samples is usually expressed in the distance di, where d1 is the distance to the sample
closest to the unknown sample and dk the distance to the furthest.
For larger values of k it is often useful to define a distance weighting function, as proposed

by Dudani [12], to consider the effects of more similar samples and less similar samples within
the group of the k selected samples. The method used herein introduces the weight wi for the k
values qi,max as follows:

wi = 1
di
, di 6= 0. (6.10)

The resulting equation for the approximation q′max can be formulated as

q′max =
∑k
i=1wi · qi,max∑k

i=1wi
. (6.11)



64 6 Application of metaheuristic algorithms for the original problem

For finding the k most similar samples and calculating wi, the “distance” between two beams
~Bi and ~Bj is calculated employing the vectorial beam representation introduced in Section 6.2.2.
Using a weighted euclidean distance, the distance di,j between the beams i and j is defined as

di,j =

√√√√√Nx·Nb,l∑
k

(Bi,k −Bj,k)2 ·Wk, (6.12)

where Bi,k is the k-th feature of ~Bi, Bj,k is the k-th feature of ~Bj , and Wk is the k-th feature of
the weighting vector ~W from Section 6.2.3.

6.2.5.1 Results

Similar to the eager learner, training is performed on the training test set by adding the sample
data to the knowledge of the lazy learner.
Since the performance of the kNN regression strongly depends on k, the learner is tested for

values of 5, 15, 25 and 50 nearest neighbours.
Figure 6.6 shows the deflections obtained from the lazy learner compared against the deflections

obtained from the FE model. The results for different values of k are very similar which might
be due to the inverse distance weighting. With increasing values of k a slight drift from the
FE-based deflection rotation of the scattered points and the linear regression curve is noticeable.
This can be explained by k approaching the total number of stored samples and thus, the results
obtained by the learner consist of information based on the same samples. Considering a case
without inverse distance weighting, where the learners prediction is made by calculating the
mean value of the k nearest neighbours for larger k every prediction would be equal.

Figure 6.7 shows the result from tournament selection, performed on the test set. Once again,
the variations due to different values of k are minimal.

6.2.5.2 Online Learning

The reasons for using online learning for the eager learner are also applicable to the lazy learner.
The tournament selection on the test set of 100 beams (as described in Section 6.2.4.2) results in
the probability density shown in Figure 6.8. Similar to the eager learner, the original lazy learner
performs poorly on similar beams. The online learning for the lazy learner is not implemented in
form of a re-training phase but by adding the newly found solutions to the information storage
of the lazy learner. Thus, the density functions for the retrained learner are not plotted, as the
learner just returns the exact results of the FE model.
The computation time of a prediction from the lazy learner strongly depends on the number

of samples contained in its storage, as for every prediction the distance between the unknown
sample and the stored samples needs to be calculated. By removing samples which are hardly
contained in solutions, the prediction time can be heavily reduced. This is implemented by
keeping track on how often a sample occurred within a solution. When the ratio between this



6.2 Approximation of the Finite element model 65

Fig. 6.6: Approximated deflection of the test set compared against the deflection obtained by
the FE model

Fig. 6.7: Probability density of beams being part of the selected population when using a lazy
learner compared against using the deflection obtained by the FE model



66 6 Application of metaheuristic algorithms for the original problem

Fig. 6.8: Probability density of beams being part of the selected population when using a lazy
learner, compared against using the deflection obtained by the FE model, for beams
having similar deflection

number and the total number of predictions of the learner falls below a given threshold, the
sample is discarded.

6.3 Implementation of metaheuristic algorithms for the non
simplified problem

6.3.1 Implementation of online learning

Section 6.2.4.2 and Section 6.2.5.2 describe how online learning is performed on the learning
algorithms level. Yet how and when it is performed on the optimisation algorithms level has
not been defined. The implementation depends on the one hand on whether an eager or a lazy
learner is used, and on the other hand if the type of optimisation algorithm is population based
or not. Furthermore, it is important to notice that, by performing online learning, equal solutions
can result in different values for the objective function at different stages of the optimisation
progress. Hence after a retraining phase it is crucial to update all stored solutions from earlier
stages which will be compared to solutions in later stages, e.g. the currently best known solution
or solutions used for convergence criteria.

6.3.1.1 Eager learning for population based algorithms

The advantage of population based algorithms like GAs is that both the learning algorithm
and the optimiser can operate on the same defined set of samples. Hence the learner is able to
perform training on the solution space the optimiser is likely to explore.



6.3 Implementation of metaheuristic algorithms for the non simplified problem 67

This is implemented as follows: The eager learner starts pre-trained on the training samples
described in Section 6.2.1. The optimisation is then performed until the convergence criterion is
met. Afterwards retraining is performed on the last population and the optimisation process is
continued. Subsequently this process is repeated until no further improvement is achieved.

6.3.1.2 Lazy learning for population based algorithms

The online learning for the lazy learning algorithm is implemented such that every K steps the
optimisation process is interrupted and the deflection is calculated for Nr beams from the best
performing populations, using the FE model. The solutions obtained by the FE model are then
added to the knowledge of the lazy learner and the optimisation process is continued.

6.3.1.3 Learning for non population based algorithms

The difficulty involved in the implemented non population based algorithms is that at a given
moment within the optimisation procedure, only one defined solution is available. Training
on this solution only is not sensible as the learning algorithm would loose its generalization
capabilities. Therefore, the implementation of LS, ILS, TS and TS using candidate list solutions
use the eager learner without online learner. As the lazy learner learns by adding more samples
to its knowledge, it is possible to perform online learning in the same manner as described in
Section 6.3.1.2, with the adaption of Nr = nb, i.e. every K steps the optimisation procedure is
interrupted, the beams contained in the current solution are calculated using the FE model and
the results are added to the knowledge of the lazy learner. The eager learner as well as the lazy
learner are pre-trained on the training set described in Section 6.2.1.

6.3.2 Local search

As the purpose of the following sections is the comparison of the optimisation algorithms, online
learning is, in favour of faster computation, not considered, since it has, in-between the learning
phases, no effect on the algorithm.

The algorithm is at first tested starting from a completely random beam setup, once using the
eager learner and once using the lazy learner. The results of those runs are shown in Figure 6.9
where Figure 6.9a shows the result for the eager learner and Figure 6.9b the result for the lazy
learner.
The path shown in Figure 6.9b converges, compared to the path shown in Figure 6.9a, at

an earlier stage of the optimisation procedure. Furthermore, this is clarified when comparing
the deflection of the initial beam setup with the deflection at convergence (both values are
obtained using the FE model). The optimiser using the eager learner managed to improve the
initial solution by 17 % whereas the one using the lazy leaner improved the solution by 14 %.
This suggests that the lazy leaner is not able differentiate between beams at later stages of the
algorithm, thus the returned set of nearest neighbours is constant, resulting in equal values for
qmax. The LS algorithm using the eager learner needed about 50 s to optimise the beam setup,
the one using the lazy learner about 31 s. The lazy learner was obviously faster due to the lower



68 6 Application of metaheuristic algorithms for the original problem

(a) Exemplary optimisation progress resulting
from approximating the FE model with the
eager learner

(b) Exemplary optimisation progress resulting
from approximating the FE model with the
lazy learner

Fig. 6.9: Comparison of two LS runs using different learning algorithms, staring from the same
beam setup

number of calls to the objective function. Nevertheless, the ratio between the calls to the eager
learner and the lazy leaner is approximately 10, whereas the ratio of the computation times
is only 1.6, thus exemplifying the previously discussed disadvantage of lazy learners having to
build the metamodel on every request. To verify the observations both algorithms are tested
on additional 100 randomly generated beam setups. The results of those runs are shown in
Figure 6.10.

Figure 6.10b shows that the previously made assumptions holds for different starting configura-
tions as well. Furthermore, the results amplify the problem of the lazy learner, as the maximum
value path is far from the 5 % trimmed mean and even the best obtained results perform poorly
compared to the results from the eager learner. This suggests that, in order for the lazy learner
to perform as well as the eager learner, periodic updates of the stored samples, with deflections
obtained from the FE model, are necessary. Anticipating the discussion in Section 6.4.2 this
renders lazy learner for the stated problem useless due to the increased computational effort.
Therefore, the lazy learner will not be used in further calculations.

6.3.3 Iterated local search

As well as LS, ILS is tested on a random beam setup. Figure 6.11 shows one exemplary
optimisation run performing ILS on the original problem. ILS needed about 16 s to optimise
the beams setup, which is, compared to LS, an immense reduction of the computation time.
Nevertheless, both algorithms converge against a similar result.



6.3 Implementation of metaheuristic algorithms for the non simplified problem 69

(a) Optimisation progress resulting from ap-
proximating the FE model with the eager
learner

(b) Optimisation progress resulting from ap-
proximating the FE model with the lazy
learner

Fig. 6.10: Comparison of two LS runs using different learning algorithms starting from 100
different beam setups

Fig. 6.11: Exemplary optimisation progress of a ILS run for Nc = 25 and εc = 0.0001



70 6 Application of metaheuristic algorithms for the original problem

6.3.4 Comparison of local search and iterated local search

For comparison LS and ILS are tested on 100 randomly chosen beam setups. The results of those
runs are shown in Figure 6.12.

As well as for the simplified problem ILS converges faster than LS and tends to overcome local
minima. This assumption is in so far visible as the maximum path of LS in Figure 6.12 shows
an early convergence. In Section 5.3 the late increase of the improvement rate of ILS for the
simplified problem is discussed. This behaviours is also observable for the optimisation of the
original problem.

Fig. 6.12: Comparison of 100 LS and ILS runs starting from equal beam setups

6.3.5 Tabu search

Figure 6.13 shows a TS run on the original problem for Nc = 50, Nn = 200, NT,1 = 50, NT,2 = 10
and NT,3 = 50 using the eager learner. Similar to the simplified problem, in comparison to LS,
TS converges slower. The computation time needed for the shown optimisation run was about
140 s.

6.3.6 Tabu search using candidate list strategies

Figure 6.14 shows a TS run using a candidate list solution on the original problem for Nc = 50,
Nn = 200, NT,1 = 50, NT,2 = 10, and NT,3 = 50 using the eager learner. Compared to the original
TS algorithm, TS using candidate list strategies converged faster, thus the computation time
was reduced to about 67 s. By evaluating qmax for all beams at every stage of the optimisation,
the effect of performing meaningful swaps of lamellas between beams is perceptible.



6.3 Implementation of metaheuristic algorithms for the non simplified problem 71

Fig. 6.13: Optimisation progress of a TS algorithm starting with a random beam setup

100 200 300

4.4

4.6

4.8

5

5.2
·10−2

Iteration steps

M
ax

.
d
efl
ec
ti
on

[m
m
]

Beam 1
Beam 2
Beam 3
Beam 4
Beam 5
Objective function

0 2 4 6

·104

4.4

4.6

4.8

5

5.2
·10−2

Calls to learner

M
ax

.
d
efl
ec
ti
on

[m
m
]

Objective function

100 200 300

4.4

4.6

4.8

5

5.2
·10−2

Iteration steps

M
a
x
.
d
efl

ec
ti
on

[m
m
]

Beam 1
Beam 2
Beam 3
Beam 4
Beam 5
Objective function

0 2 4 6

·104

4.4

4.6

4.8

5

5.2
·10−2

Calls to learner

M
ax

.
d
efl

ec
ti
on

[m
m
]

Objective function

Fig. 6.14: Optimisation progress of a TS algorithm using candidate list solution starting with a
random beam setup



72 6 Application of metaheuristic algorithms for the original problem

6.3.7 Comparison of tabu search with and without using candidate list strategies

For comparison both TS algorithms are tested on 100 randomly chosen beam setups. The results
of those runs are shown in Figure 6.15. As well as for ILS, by performing meaningful swaps
through candidate list strategies, TS converges faster. Compared to LS and ILS this adaption has
a stronger impact and, therefore, the TS algorithm using candidate list strategies prematurely
converges. This causes the algorithm to get “trapped” at a solution far from the solution obtained
by the original TS algorithm. Furthermore, the effect of premature convergence is noticeable as
the maximum value path is far from the 5 % trimmed mean path.

Fig. 6.15: Comparison of 100 TS runs with and without the usage of candidate list solutions

6.3.8 Genetic algorithms

As described in Section 5.8, to overcome the difficulty of finding the optimal parameter combi-
nation for the GA, the software package irace [32] was used, to perform automatic parameter
tuning. The parameter bounds are, in most parts, derived from Section 5.8. Nevertheless, as
stated in Section 4.8.3, the mutation function must be adapted for the original problem. Hence
the parameters for irace from Section 5.8 are adapted as follows:

Mutation function : swap two lamellas or flip one, replace with random beam setup

The parameter sweeps are performed on the example from Section 5.1, using no online learning on
a number of 250 and 1000 generations. The maximum number of experiments is, in comparison to
the simplified problem, reduced to 5000, since optimising the original problem is computationally
more expensive.
The best 5 parameter configurations are shown in Table 6.3. Herein the best parameter

configurations are those which delivered on average the best results while maintaining a small



6.3 Implementation of metaheuristic algorithms for the non simplified problem 73

inner quartile range, for 250 and 1000 generations. The solution quality for the 5 parameter
combinations is shown in Figure 5.8. Similar to the simplified problem the results show a
clear preference of the GAs operations. Compared to the parameter combinations for the
simplified problem – shown in Table 5.1 – the best results are now achieved by using a completely
random initial population, larger mutation rates of up to 100 % and solutions waiving elitism.
Interestingly, parameter combination 3 uses a mutation rate of 100 % an no elitism, thus even
the best population members are mutated in every generation.

Tab. 6.3: Top 5 parameter combinations for the original problem using the eager learner

Parameter combination: 1 2 3 4 5
Population size Np 79 89 93 94 100
Mutation rate pm 0.94 0.94 1.0 0.99 0.99
Crossover rate pc 0.9 0.55 0.97 0.88 0.86
Elitism εc 1 1 0 0 3
Crossover function fc Partially mapped crossover
Mutation function fm Swap or flip
Selection function fs Tournament selection
Chromosome type B
Initial population Random initial population
Tournament size t 10 8 9 9 9

1 2 3 4 5
4.28

4.29

4.3

4.31

4.32

4.33

·10−2

Parameter combinations

M
ax

.
d
efl
ec
ti
o
n
[m

m
]

Fig. 6.16: Solution quality for the parameter combinations shown in Table 6.3

Figure 6.17 exemplary shows the optimisation procedure of 5 GA runs using different parameter
combinations. The computation time needed for each of the 5 parameter combinations varies
between 136 s and 170 s.
Figure 6.18 shows a comparison of the 5 different parameter combinations, starting from 50

different initial populations.



74 6 Application of metaheuristic algorithms for the original problem

Fig. 6.17: Optimisation progress of the 5 best parameter combinations from Table 5.1

The 5 % trimmed mean value curves of all combinations are shown in Figure 6.18a. As all 5
parameter configurations deviate only marginally from each other, the trend of the optimisation
procedure in Figure 6.18b is only shown for parameter configuration 1.

(a) Comparison of the mean value of the fitness
function for the top 5 parameter combina-
tions

(b) Optimisation progress of 100 run for param-
eter combination 1

Fig. 6.18: Comparison of 100 optimisation runs using the top 5 parameter combinations



6.3 Implementation of metaheuristic algorithms for the non simplified problem 75

6.3.9 Comparison of the used metaheuristic algorithms for the non simplified
problem

Table 6.4 shows a summary of the results obtained from the MAs tested for the original problem.
The 5 % trimmed mean of all discussed algorithms is shown in Figure 6.19. Based on these
results, it is possible to draw the following conclusions:

1. TS using candidate list strategies performed – though it converged faster than TS – worst,
as it converges against local minima. This is also reflected in a relatively high standard
deviation and a large amount of runs which were not able to at least reach the smallest
average value of the other algorithms. Therefore, TS using candidate list solution is, in
the current implementation, not able to perform as well as the other discussed algorithms.
Thus it is not used in further calculations.

2. The best solutions are reached by LS and ILS, albeit the other algorithms performed
similar.

3. When comparing the worst solutions of the test runs, the GAs and TS managed to reach
the lowest deflection. Similar to the simplified problem, despite LS found the best solution,
the runs also contained the worst solutions of all discussed algorithms. This is further
reflected in the high standard deviation shown by LS.

4. ILS managed to reach the highest average deflections significantly faster than all other
algorithms.

5. The GA using parameter combination 4 outperforms the other GAs, as this combination
delivers the lowest standard deviation of all algorithms, the highest best value of all GAs,
and performs on average similar to LS. Furthermore, the GA using parameter combination
4 shows the lowest amount of runs which never reach the highest average value. This might
root in the slightly higher mutation rates and not using elitism, which provides a broader
search field.

Generally, it should be noted that all algorithms, except TS using candidate list solutions,
deliver results within a range of 1.0 %, between the best and the generally worst result obtained
by LS. This emphasizes the usage of MA for the task of optimising GLT beams.
Based on the above conclusions it is possible to pick two algorithms, applicable to different

use cases:

1. ILS should be used when it is important to find good solution in a minimal amount of time.
Compared to LS, ILS reaches good solutions faster and is likely to be able to escape local
minima. However, compared to GAs and TS the algorithm is less robust.

2. GAs should be used when it is important that the algorithm delivers good solution in
every run and when computation time is of secondary importance. Apparently, parameter
combination 4 delivers the best results among the other GAs. When using algorithms



76 6 Application of metaheuristic algorithms for the original problem

Tab. 6.4: Solutions of 100 runs of LS, ILS, TS and TS using candidate list solutions, where
f(π∗) is used as the objetive function and 50 runs of GAs where 1/f(π∗) is used as
objective function.

LS ILS TS TS (cand.) GA 1 GA 2 GA 3 GA 4 GA 5
Best1 4.278 4.278 4.279 4.288 4.281 4.281 4.279 4.281 4.280
Worst1 4.324 4.316 4.303 4.478 4.309 4.304 4.308 4.301 4.307
Avg.1 4.287 4.289 4.288 4.323 4.290 4.290 4.288 4.288 4.290
Std.1 0.008 0.007 0.006 0.029 0.006 0.006 0.006 0.004 0.006
Stepcount for reaching the highest avg. value of 4.29 (Excluding LS using candidate lists)
Earliest 10001 2824 38123 19217 20698 33076 31593 38136 30735
Avg. 18971 5936 58534 19217 44564 46857 59335 59943 51850
Never2 26.0 38.0 33.0 99.0 38.0 42.0 30.0 22.0 38.0
1 [10−2 mm] 2 [%]

Fig. 6.19: Comparison of the 5 % trimmed mean values of the discussed metaheuristic algorithms



6.4 Verification of the applicability of online learning 77

without elitism, it is important to notice that the best solution is not necessarily contained
in the last generation.

6.4 Verification of the applicability of online learning

To verify the usefulness of the online learning procedure described in Section 6.3.1, the example
from Section 5.1 is optimised using learners, trained on the training set described in Section 6.2.1.

6.4.1 Online learning using the eager learner

As described in Section 6.3.1 the retraining phase for the learner starts after convergence of
the optimisation procedure. To be able to measure the success of an optimisation the initial
deflection is calculated. Table 6.5 shows the best individual contained in the random initial
population. The evaluation of the objective function results in 4.8146× 10−5 mm.

Tab. 6.5: Comparison of the deflections obtained by the eager learner and the FE model, for
the best individual contained in the initial population

Beam Eager Learner [mm] FE model [mm] Loss [mm]1

1 4.6083× 10−5 4.5906× 10−5 3.1189× 10−14

2 4.5692× 10−5 4.6021× 10−5 1.0838× 10−13

3 4.7319× 10−5 4.6070× 10−5 1.5587× 10−12

4 4.7310× 10−5 4.4703× 10−5 6.7936× 10−12

5 4.7891× 10−5 4.8146× 10−5 6.5375× 10−14

1 The values are obtained by using the loss function from Sec-
tion 6.2.4.

The optimisation is performed using parameter set 4 from Table 6.3, resulting in the deflections
shown in Table 6.6. Evaluating the objective function for the deflections obtained by the FE
model, results in 4.3897× 10−5 mm. Compared to the initial function values from Table 6.5, the
deflection is reduced by 8.83 %.

Tab. 6.6: Comparison of the resulting deflections – after an optimisation run on the practical
example (Section 5.1) using the eager learner – with deflections obtained by the FE
model

Beam Eager Learner [mm] FE model [mm] Loss [mm]1

1 4.2849× 10−5 4.3099× 10−5 6.2141× 10−14

2 4.2906× 10−5 4.2956× 10−5 2.4705× 10−15

3 4.2888× 10−5 4.2843× 10−5 1.9722× 10−15

4 4.2898× 10−5 4.3246× 10−5 1.2087× 10−13

5 4.2877× 10−5 4.3897× 10−5 1.0390× 10−12

1 The values are obtained by using the loss function from Sec-
tion 6.2.4.



78 6 Application of metaheuristic algorithms for the original problem

The training set to perform further training is generated by picking the unique beams from
the last population of the GA. For the given optimisation run this results in a number of 208
different beams, hence the computationally costly FE model needs to be evaluated for 208 times.

Table 6.7 shows the resulting deflections after the optimisation is performed, using the retrained
eager learner. The objective function evaluates to 4.3409×10−5 mm. This matches a reduction of
9.84 % compared to the initial value from Table 6.5, hence compared to the result obtained without
using online learning, the deflection is further reduced by 1.01 %. However, the computation
for reaching this reduction is a lot more costly as the retraining of the learning algorithm
involves actually calculating the FE model and, furthermore, optimising the metamodel based
on the newly obtained deflections. Hence, online learning helps finding better solution, it is
computationally costly.

Tab. 6.7: Comparison of the resulting deflections – after an optimisation run on the practical
example (Section 5.1) using the retrained eager learner – with deflections obtained by
the FE model

Beam Eager Learner [mm] FE model [mm] Loss [mm]1

1 4.3194× 10−5 4.3409× 10−5 4.6065× 10−14

2 4.2836× 10−5 4.3252× 10−5 1.7319× 10−13

3 4.2855× 10−5 4.2786× 10−5 4.6562× 10−15

4 4.2944× 10−5 4.3040× 10−5 9.2099× 10−15

5 4.2902× 10−5 4.3386× 10−5 2.3383× 10−13

1 The values are obtained by using the loss function from Sec-
tion 6.2.4.

6.4.2 Online learning using the lazy learner

As already mentioned in Section 6.3.2, the problem involved when using the lazy learner is that
convergence occurs at an early stage of the optimisation, as the algorithm runs out of differing
neighbours. Hence the solution returned consists of the same set of neighbours, though different
beams are evaluated. The online learning implementation from Section 6.3.1.2 suggested that
the learning phases are performed at every K steps during the optimisation run, on a portion of
the current population of size Nr. Initially the lazy learner is trained on the starting population.
Figure 6.20 shows the optimisation process using the lazy learner for K = 10 and Nr = 50.
The requirement of online learning for kNN is apparent in Figure 6.20 as the optimisation

progress converges at an early stage. Furthermore, it is visible that by providing the kNN
algorithm with new samples, the fitness function changes and the algorithm is able to leave the
previous minima. The resulting optimised beam setup, in comparison to the values obtained
by the FE model, is shown in Table 6.8. The objective function evaluates to 4.4565× 10−5 mm,
which is a reduction of 7.44 % to the best solution contained in the initial population. Compared
to the results obtained through the eager learner, the lazy learner is not even performing as well
as the eager learner without online learning. Besides the recurring evaluations of the FE model



6.5 Effects of variations in the optimisation problem 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

·105

4.3

4.35

4.4

4.45

·10−5

Calls to learner

M
ax

.
d
efl
ec
ti
on

[m
m
]

Objective function

Converges Learning phase

Fig. 6.20: Optimisation procedure for a GA using the lazy learner and online learning.

are computationally intense. Therefore, the lazy learner is, in its present implementation, not
applicable to the stated problem and will not be used in further calculations.

Tab. 6.8: Comparison of the resulting deflections – after an optimisation run on the practical
example (Section 5.1) using online learning and a lazy learner – with deflections
obtained by the FE model

Beam Eager Learner [mm] FE model [mm] Loss [mm]1

1 4.3935× 10−5 4.3865× 10−5 5.0298× 10−15

2 4.3590× 10−5 4.3618× 10−5 7.7284× 10−16

3 4.4429× 10−5 4.3792× 10−5 4.0567× 10−13

4 4.4943× 10−5 4.4565× 10−5 1.4285× 10−13

5 4.4162× 10−5 4.4119× 10−5 1.8624× 10−15

1 The values are obtained by using the loss function from Sec-
tion 6.2.4.

6.5 Effects of variations in the optimisation problem

This section examines the effects of variations in the definition of the optimisation problem and
gives an insight on how much improvement of the load bearing behaviour is possible. Furthermore,
the effects of using lamellas from different grading classes to build combined GLT beams are
investigated.
In the following sections the term GA refer to a GA using parameter combination 4 from

Table 6.3 and calculated deflections always refer to the results obtained from the FE model. This
applies unless otherwise specified.



80 6 Application of metaheuristic algorithms for the original problem

6.5.1 Quantification of a range of possible improvement for the practical example

Up until now the performance of an optimisation was always measured against the initial solution.
As the initial solution is almost entirely random1, the performance depends on how “good” the
initial guess of the solution was.
In Section 6.3.2 and Section 6.4.1 a performance measure of this kind was applicable as only

performances based on equal initial values were compared. To be able to determine a possible
range of improvement, the objective function from Equation (4.1) shall be – instead of being
minimised – maximised, hence resulting in a π∗ containing the beam with the maximum possible
deflection. The optimisation is performed by using the GA on the example from Section 5.1.
Instead of optimising the inverse of Equation (4.1), Equation (4.1) can directly be used as

fitness function.
The optimisation process was stopped after 2000 generations. The progress shown in Figure 6.21

clearly illustrates that the algorithm converged.

Fig. 6.21: Optimisation progress for finding the worst possible solution for Equation (4.1) for
the practical example

The “best” solution results in a deflection of 6.1658× 10−5 mm. Hence compared to the results
from Section 6.4.1 of

• 4.3897× 10−5 mm without online learning and

• 4.3409× 10−5 mm with online learning,

the actual possible improvements are

• 28.81 % and

1See Section 4.8.6 for a discussion on pure random and pseudo random initial populations.



6.5 Effects of variations in the optimisation problem 81

• 29.60 %.

Thus, the improvement by using online learning is reduced to 0.79 %.
Commonly, GLT beams are constructed entirely random – besides the construction of combined

GLT beams, as discussed in Section 1.1. Therefore, to assess the possible improvement compared
to the common practice, 1000 random beams, constructed from the 50 lamellas, are calculated
using the FE model. On average the worst resulting beam has a deflection of 5.176× 10−5 mm.
The coefficient of variation for the tested sample is 0.035 Thus, the actual possible improvements,
compared to the randomly generated beams are

• 15.19 % and

• 16.13 %.

6.5.2 Determining the effect of combined sets of LS15 and LS22

As describe in Chapter 1 it is common practice to optimise the material usage for GLT beams by
combining lamellas of different grading classes in one beam.

To determine how “infecting” a set of lamellas of a higher grading class (LS22), with lamellas
from a lower grading classes (LS15), changes the outcome of the optimisation, a new set of
lamellas for the practical example is generated.
Table 6.9 shows the lamellas from [47] used for this test set.
The column ID contains the frequently mentioned lamella ID. The column Nr., combined with

the grading class from column GC, allow the identification of a lamella in the experiments from
Serrano et al. [47].
Column E(x) contains the longitudinal stiffness profile of each lamella. All profiles within

Table 6.9 are equally scaled to be comparable.
Lamellas 1–20 are picked from grading class LS15, lamellas 21–50 from grading class LS22.

When comparing the longitudinal stiffness profiles of both grading classes, it is obvious that the
lamellas from LS15 have overall lower values for E(x) and a larger number of weaknesses i.e.
knots.

Based on the influence of weaknesses at certain locations within a beam, derived in Section 6.2.3,
the expected outcome when optimising the given lamellas is, that lamellas of grading class LS15
end up in areas of less influence. This assumption matches the common practice when building
combined GLT beams, as usually the outer layers of the beam are assembled with lamellas of
higher grading class than the inner layers.

As described in Section 6.5.2, to be able to quantify the performance of the optimisation, at first
the worst solution is considered. By using a GA the largest possible deflection is 7.7578×10−5 mm.
Furthermore, to obtain the improvement compared to a beam constructed according to common
practice 1000 random beams are generated. Herein, in order to consider that combined GLT
beams are build with stronger lamellas in the outer layers, the beams are constructed such that
the outer two layer on each side of the beam only consist of lamellas of grading class LS22. The
resulting beams have a average deflection of 5.4958× 10−5 mm with a coefficient of variation of



82 6 Application of metaheuristic algorithms for the original problem

Tab. 6.9: Lamellas used in the optimisation problem

ID GC Nr. E(x)

01 LS15 43
02 LS15 44
03 LS15 45
04 LS15 46
05 LS15 47
06 LS15 48
07 LS15 49
08 LS15 50
09 LS15 51
10 LS15 52
11 LS15 53
12 LS15 54
13 LS15 55
14 LS15 56
15 LS15 57
16 LS15 58
17 LS15 59
18 LS15 60
19 LS15 61
20 LS15 62
21 LS22 80
22 LS22 81
23 LS22 82
24 LS22 83
25 LS22 84

E(x) is equally scaled for every lamella

ID GC Nr. E(x)

26 LS22 85
27 LS22 86
28 LS22 87
29 LS22 88
30 LS22 89
31 LS22 90
32 LS22 91
33 LS22 92
34 LS22 93
35 LS22 94
36 LS22 95
37 LS22 96
38 LS22 97
39 LS22 98
40 LS22 99
41 LS22 100
42 LS22 101
43 LS22 102
44 LS22 103
45 LS22 104
46 LS22 105
47 LS22 106
48 LS22 107
49 LS22 108
50 LS22 109



6.5 Effects of variations in the optimisation problem 83

0.04. The actual optimisation task is performed using ILS – as described in Section 6.3.3 – and a
GA.

Figure 6.22 shows a comparison of both used algorithms. ILS returns a solution which gives a
deflection of 4.5798× 10−5 mm, the GA gives a deflection of 4.5076× 10−5 mm.
Compared to the worst value, it is possible to improve the solution by

• 40.92 % using ILS and

• 41.85 % using the GA,

whereas compared to the average random solution by

• 16.67 % using ILS and

• 17.98 % using the GA.

This result substantiates that, obviously by using lamella sets with diverse lamella qualities,
the possible range of improvement is larger compared to homogeneous sets like the one used for
the practical example. Furthermore, it is remarkable that ILS only differs by 0.93 % from the
result obtained by the GA, though ILS only needs 4312 calls to the objective function, where as
the GA needs 137168.

Fig. 6.22: Comparison of ILS and GA for the optimisation problem using different grading
classes

The final solution obtained from the GA is shown in Table 6.10.
A visualization of the longitudinal stiffness profile E(x) for every beam contained in this

solution is shown in Figure 6.23a.
When looking at the marked area A in beam 1 it is apparent how the optimisation algorithm

manages to gather “weak” areas close to the beams centre of mass. Furthermore, when examining



84 6 Application of metaheuristic algorithms for the original problem

Tab. 6.10: Near optimal beam setup for the optimisation problem with combined lamellas from
grading classes LS15 and LS22

Location1 Beam 1 Beam 2 Beam 3 Beam 4 Beam 5
1 16∗ 21 28 32 36∗
2 14∗ 33 47 37∗ 35∗
3 03 46 05∗ 18 43
4 17 25∗ 31 23∗ 13
5 20 11∗ 22∗ 44∗ 49∗
6 01 12∗ 38∗ 09∗ 07
7 10 27 08 48 45∗
8 04 50 06 39 19
9 24∗ 15 02∗ 30∗ 29
10 41 26 40 42∗ 34∗

Deflection [10−5mm] 4.4753 4.4575 4.5067 4.5076 4.4642

Lamella IDs marked with an asterisk are flipped
1 The location is defined from top to bottom of the beam.

the clearwood areas from beam 3 or beam 5, a colour gradient from light grey to darker grey is
noticeable, depicting the decreasing longitudinal stiffness E(x) towards the inner layers.
Figure 6.23b shows the locations of lamellas from grading class LS15 in the final solution.

Against the initial assumption, the best solution is not obtained by placing those weaker lamellas
on the inner layers. The actual result is quite contrary as beams 1, 2, and 3 have lamellas from
grading class LS15 within the outer two layers. Furthermore, beam 1 is almost entirely build
from grading class LS15, without being – referring to Table 6.10 – the beam with the highest
deflection.

6.5.3 Determining the effect of an increased complexity

To be able to tell the applicability of the described optimisation algorithms for more complex
problems, the number of used lamellas is doubled. The optimisation is performed

1. for nl = 100, nn,l = 10, nb = 10 and

2. for nl = 100, nn,l = 5, nb = 20,

to figure out how the number of lamellas per beam affects the performance of the optimisation.
For both examples the geometry described in Section 5.1 is used, as no requirements for the

beam height were made. Of course, for the second example the FE-mesh and the metamodel for
the eager learner are updated accordingly.

The lamellas used for the examples are 41–94, 96–135 and 142–147 of grading class LS15. The
selection was only refined to exclude lamellas with incomplete stiffness profiles.



6.5 Effects of variations in the optimisation problem 85

(1)

(2)

(3)

(4)

(5)

A

E(x) [MPa]
0.5 1 1.5

·104

(a) Heatmap of E(x) for every beam contained
in the best solution. Area A clearly shows
how “weak” regions are gather close to the
centre of mass.

(1)

(2)

(3)

(4)

(5)

(b) Beams contained in the best solution with
highlighted locations of lamellas from grad-
ing class LS15

Fig. 6.23: Resulting beam setup from the optimisation using a GA

6.5.3.1 Increased complexity using 10 lamellas per beam

Initially the worst value for the given setup is obtained using a GA. The resulting solution has a
deflection of 9.4077×10−5mm. On average, the resulting deflection of 1000 random combinations
is 6.9738× 10−5mm with a coefficient of variation of 0.047.

The actual optimisation is performed using ILS and the GA. The solutions resulting from the
optimisers have a deflection of

• 5.3559× 10−5 mm for ILS and

• 5.4261× 10−5 mm for the GA.

The improvement compared to the worst solution is

• 43.07 % for ILS and

• 42.32 % for the GA,

the improvement compared to the average of the random combinations is

• 23.2 % for ILS and

• 22.2 % for the GA.



86 6 Application of metaheuristic algorithms for the original problem

Seemingly ILS performed better than the GA, though when looking at the deflections obtained
by the metamodel of

• 5.1633× 10−5 for ILS and

• 5.1568× 10−5 for the GA.

it is apparent that the GA still outperformed ILS, but due to the inexact representation of the
metamodel, the deflection obtained from the FE model is coincidentally lower when using the
solution obtained from ILS.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

E(x) [MPa]
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

Fig. 6.24: Near optimal solution for the optimisation problem with increased complexity.

Figure 6.24 shows the resulting distribution of E(x) in the beams. Again it is possible to spot
areas within the inner layers where weaknesses are gathered.
Figure 6.25 shows the trace of the optimisation procedure for both the GA and LS. It is

clearly visible that both algorithms converged. ILS needed 11083 calls to the objective function.
Compared to the results from Section 6.5.2, this is an increase of 157.03 %.

As the GA stops after a certain generation, comparing the final number of calls to the objective
function is not sensible. More significant is a comparison of the points at which the deflection
path converged, shown in Figure 6.22 and Figure 6.25. This comparison suggests that the effort
for the GA is about doubled.



6.5 Effects of variations in the optimisation problem 87

Fig. 6.25: Comparison of ILS and GA for the optimisation problem with increased complexity

6.5.3.2 Increased complexity using 5 lamellas per beam

The optimisation for 5 lamellas per beam is performed in the same manner as described in
Section 6.5.3.1.

However, one significant difference occurred. ILS now converges after 3833 steps, which is even
faster than for the problem using 50 lamellas from Section 6.5.2. The GA converged after about
1.6× 105 which is at least better than for the example using 10 lamellas per beam.

The latter is obvious when specializing Equation (1.2) for nl = nb · nb,l as

2nb·nb,l · nl!
nb!

. (6.13)

When increasing the number of beams nb while preserving nl = nb · nb,l the numerator is fixed
where as the denominator increases factorially, hence reducing the complexity of the problem.

The fast convergence of ILS might be a result of the beam focused optimisation, as the
complexity of optimising a single beam was significantly reduced.

6.5.4 Optimisation with removal of bad lamellas

Up until this point the optimisation task was always bound to nl = nb · nb,l. As stated in
Section 1.2 another interesting task is to optimise the arrangement for nl > nb · nb,l.
This adaption allows the algorithm to sort out “bad” lamellas, which are of non use when

building GLT beams.
To be able to cope with this task, the described implementations of the MAs from Section 6.3

need to be adapted. As ILS and GAs prove the perform well for the given task, the changes are
only made for those two algorithms.



88 6 Application of metaheuristic algorithms for the original problem

6.5.4.1 Adaption of the genetic algorithm for sorting out bad lamellas

During crossover, selection, and mutation the GA is unaware of the existence of beams since
the chromosome equals π∗. To allow the algorithm to utilize lamellas that will not be build into
a beam, π∗ must contain all lamellas. Hence the initial definition of π∗, given in Section 4.1
remains intact for nl > nb · nb,l.

In Section 4.8 two additional states of the algorithm are mentioned, namely the generation of
the initial population and the chromosomes repairing phase.
The initial population is dependent on the generated beams in so far as when generating a

pseudo random initial population the locations within the beams are recorded. However, as the
parameter sweep from Section 6.3.8 clearly favours a pure random initial population, this phase
needs no adaption as well.

The chromosome repair on the other hand entirely depends on the resulting beams and should
be able to neglect the order of unused lamellas. Thus, the used implementation is not applicable.
As shown π∗ remains as defined, hence the remaining unverified part of Equation (4.1) is

Φ. The parameter sweep from Section 6.3.8 favoured a chromosome representation without
considering building block, hence further only Equation (4.3) will be used.
As Equation (4.3) is defined in terms of nb,l and under the assumption that every beam

contains an equal number of lamellas, it is possible to generate L∗i for all bi independent of nl.
Furthermore, the definition of Φ in Equation (4.4) is made in terms of nb, hence it also holds for
nl > nb · nb,l.
Additionally, this defines the arrangement of the chromosome, as all lamellas at positions

larger than nb ·nb,l are not assigned to a beam. By implication this means the first nb ·nb,l places
in the chromosome define the resulting beams.
These findings leave the need to solely adapt the chromosome repair function.

6.5.4.2 Chromosome repair for sorting out bad lamellas

The implementation described in Section 4.8.5 performs the following steps to repair a chromo-
some:

1. Use Φ to generate a vector of beams from the chromosome.

2. Sort the vector of beams by the id of the top most lamella in every beam.

3. Reassemble the chromosome based on the sorted vector of beams.

The flaw in context of this work flow is, that during step 1 the unused lamellas are discarded.
Therefore, the unused lamellas need to be considered during the reassembly and furthermore,

as stated in Section 6.5.4.1, as well repaired in form of sorting them based on the lamella ID.
This ensures that during crossover equal parent chromosomes result in equal child chromosomes.

Hence the previous work flow is extended as follows.

4. Sort the unused lamellas based on the lamella ID.



6.5 Effects of variations in the optimisation problem 89

5. Attach the sorted, unused lamellas to the reassembled, incomplete chromosome from step 3.

6.5.4.3 Adaption of the iterated local search algorithm for sorting out bad lamellas

As described in Section 5.3, ILS optimises beams on different scopes, namely local to the beam
and between two defined beams.

As the introduced change of nl > nb · nb,l does not affect nb,l, the local optimisation procedure
is inherited as defined.
The extension takes place on the level of the interchange of lamellas between beams, as not

only swaps between two beams, but also swaps between one beam and the set of unused lamellas
shall be performed.

In accordance to the suggested implementation it is viable to assume that the unused lamellas
build a beam as well. Hence it is possible to apply the neighbourhood definition Γ′ from
Section 5.3.

However, a swap between a beam and the set of unused lamellas is not made under the same
restriction. Therefore, the objective function f ′ from Equation (4.17) must be adapted as follows.

f ′ :


0, if f(s′k,i) < f(sk)

1, if s′k,i = sk and s′m,i = sm

2, otherwise

(6.14)

This leads to the effect that a perturbation is only accepted if the actual beam, involved in the
swap, is better than the previously worst beam. In comparison the restriction of not worsening
beam bm or solution sm is omitted as in this case bm is not part of the actual solution. For
interchange of lamellas between actual beams, Equation (4.17) can still be used.
The algorithm is endowed with a second convergence criterion, which ensures that after a

number of unsuccessful tries of swapping lamellas with the set of currently not used ones, the
focus is set on optimising the actual beams.

6.5.4.4 Results of the optimisation for sorting out bad lamellas

The optimisation is performed using ILS and the GA. Both algorithms are tested on the example
described in Section 6.5.2 for nb = 4 and nb,l = 10. Therefore, a number of 10 lamellas can be
removed from the final solution. Figure 6.26 shows the trace of both optimisation processes.

For the reformulated problem the GA converged a lot faster, whereas ILS needed longer. The
performance reduction of ILS might root in the fact that swaps with the set of unused lamellas
become less improving over time as the number of “bad” lamellas increases. Furthermore, the
number of times performing swaps with better beams is reduced as the number of possible swap
locations is increased.
Nevertheless, both algorithms return the following similar deflections of

• 4.3806× 10−5 mm for ILS and



90 6 Application of metaheuristic algorithms for the original problem

Fig. 6.26: Comparison of ILS and GA using parameter set 4 for the optimisation problem of
sorting out bad lamellas

• 4.3514× 10−5 mm for the GA.

During the optimisation procedure the following lamellas are removed from the final solution.

ILS: 1,7,8,12,20,23,38,44,45,49

GA: 1,7,8,9,13,20,22,38,44,49

Both list obviously correspond very well. Compared to the solution for nb = 5 in Section 6.5.2,
mainly lamellas from the inner layers are remove. Figure 6.27 shows the locations where the
removed lamellas were build into the beam in the final solution from Section 6.5.2. Lamellas
highlighted in light grey are removed by ILS, lamellas highlighted in dark grey by the GA. The
remainder is removed by both algorithms.

Figure 6.27 clearly shows the correlation between putting weak lamellas into the inner layers
and the adapted algorithms being able to spot those weak lamellas.



6.5 Effects of variations in the optimisation problem 91

(1)

(2)

(3)

(4)

(5)

Fig. 6.27: Locations of lamellas removed during the optimisation procedure in the near optimal
solution of Section 6.5.2. Light grey lamellas are removed by ILS, dark grey ones by
the GA. The remaining ones are removed by both algorithms.



Chapter 7

Summary & conclusion

Chapter 1 gives an introduction to the problem and discusses the complexity of the optimisation
task. In Chapter 2, a general overview on the current state of the art for timber board material
models was given. Chapter 3 introduces the concept of metaheuristic algorithms, as a possible
tool for solving hard optimisation tasks. In Chapter 4 a general, abstract definition of the problem
and its components is derived, to allow applicability almost independently of the optimisation or
search scheme. Furthermore, the implementation of LS, ILS, TS, and GAs is described for a
simple model as well as for a more complex problem (the original problem proposed in Chapter 1).

In Chapter 5 the discussesed MAs are applied to the simplified problem. At the beginning of
Chapter 6 the implementation of a FE model for performing the optimisation task is discussed,
raising the issue of having a computationally costly calculation model. Thus, two learning
algorithms are introduced, that are capable of estimating the results of the FE model. Based on
these learning algorithms the original problem is solved and validated. The chapter closes with
various adaptations of optimisation tasks for the described problem.

Based on the obtained results the following conclusions can be drawn:

• The task of reducing the deflection of multiple beams through rearranging the lamellas
is not, even for the simplified problem addressed in Section 4.2, easily solvable, since the
lamellas used to form a beam cannot be seen as individuals. Furthermore, in order to achieve
the objective to minimise the maximum deflection of all beams, lamellas might be placed
at unobvious positions, where their potential is not fully exploited. Therefore, to obtain
good solutions for the optimisation problem, in a reasonable time frame, metaheuristic
algorithms are needed.

• The introduced metaheuristic algorithms prove to be applicable for performing combinatorial
optimisation tasks for GLT beams and are capable to find near optimal solutions to the
stated problem. Nevertheless, ILS and GA managed to outperformed the others as specialist
in their domain:

– ILS is able to find solutions to the stated problem with a minimum amount of objective
function evaluations. However, the solution quality strongly depends on the initial
solution.

– GAs found some of the best solutions for the problem, yet needing almost 10 times
more evaluations of the objective function than ILS. Nevertheless, they also prove



93

to be very robust, thus delivering very good solutions, independently of the initial
population.

• Both used learning algorithms are able to estimate the maximum deflection of a beam, after
training on results from the FE model, very well. Nevertheless, the lazy learner using kNN
methods strongly depends on periodic updates of its stored samples – with newly generated
results from the FE model – thus, requiring costly evaluations during the optimisation
procedure.

The discussed eager learner, utilising a metamodel in form of linear polynomial regression,
performs well, even without updating the model during runtime, therefore being favoured
in place of the lazy learner.

• The range of possible improvement depends on the quality of the lamellas i.e. the variability
and value of E(x) of the lamellas. Compared to the worst possible beam, built from lamellas
subject to the optimisation, the possible improvement is larger when dealing with lamellas
of grading class LS15 than when dealing with lamellas of grading class LS22. This is in so
far reasonable, as lamellas from grading class LS15 have a larger variability in E(x), thus
the algorithm can construct more diverging solutions through precisely orienting lamellas
in a way that weaknesses are concentrated in specific areas of the beam (with high or low
impact depending on the desired outcome, see Section 6.2.3).

For the discussed examples in Chapter 6 the possible improvement, compared to how GLT
beams and combined GLT beams are commonly produced, ranges from about 15 % – 20 %.

• It is even possible to improve GLT beams assembled under consideration of placing lamellas
of higher grading classes in the outer layers of the beam, as during grading the lamella is
not classified with respect to its actual usage. This is shown in Section 6.5.2 as against the
initial assumption of placing lamellas of a lower grading class within the inner layers of the
beam, they are also used in the beam’s outer layers.

The scope of this thesis was to find and validate optimisation schemes for the task of optimising
GLT beams. Bases on this work, the following extensions and variations regarding the optimisation
task and the algorithms are conceivable:

• Throughout this work the structural system of a two point bending test was examined. The
advantage of this system for the scope of the present thesis is its simplicity and predictability
due to the symmetry of loads and geometry. Nevertheless, the implementation of a FE
model allows complex structural systems to be solved as well, like:

– Continuous beams where the highest stresses appear at multiple locations along the
beams longitudinal axis

– Constructions with holes or girder notches

– Spatial structures



94 7 Summary & conclusion

• The optimisation schemes used in this work are currently only capable of dealing with
wooden boards of equal length and beams consisting of one lamella per beam layer. In
order to further optimise the load-bearing behaviour an extension towards allowing multiple
boards per layer, connected by finger joints, is conceivable. Herein the location of the finger
joints could be subject to the optimisation as well, meaning the algorithm would be capable
of cutting boards and removing knot groups to further improve the final structural system.

• Beside changes in the definition of the optimisation task, the used optimisation schemes
could be enhanced as follows:

– Combining metaheuristic algorithms. A common approach is to combine local search
algorithms with genetic algorithms. Such combinations are referred to as memetic
algorithms [36]. By combination of such algorithms it is possible to take advantage of
the special capabilities of each algorithm. Like for memetic algorithms the task of
maintaining the overall scope of the search space is subject to the genetic algorithm
and the refinement of single solutions is subject to the local search.

– Using advanced versions of genetic algorithms like steady-state genetic algorithms.

– Implementing parallel genetic algorithms, e.g by using the so-called island model [50],
to reduce the computation time.

• Improving the metamodel for better predictions of deflections from the FE model. Herein
especially methods from the field of machine learning like

– support vector machines and

– artificial neural networks

could be applied. Especially artificial neural networks using deep learning prove to be
applicable to a variety of different machine learning tasks, including regression.



Bibliography

[1] D. W. Aha. “Editorial”. In: Artificial Intelligence Review 11.1-5 (1997), pp. 7–10.

[2] J. E. Baker. “Reducing bias and inefficiency in the selection algorithm”. In: Proceedings of
the second international conference on genetic algorithms. 1987, pp. 14–21.

[3] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr. “A survey on metaheuristics
for stochastic combinatorial optimization”. In: Natural Computing 8.2 (2008), pp. 239–287.

[4] T. Blickle and L. Thiele. “A Comparison of Selection Schemes used in Evolutionary
Algorithms”. In: Evolutionary Computation. Citeseer. 1997.

[5] C. Blum and A. Roli. “Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison”. In: ACM Computing Surveys 35.3 (2003), pp. 268–308.

[6] L. Bottou. “Large-scale machine learning with stochastic gradient descent”. In: Proceedings
of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[7] R. F. Coelho, M. Herrera, M. Xiao, and W. Zhang. “On-line Metamodel-Assisted Opti-
mization with Mixed Variables”. In: Evolutionary Algorithms and Metaheuristics in Civil
Engineering and Construction Management. Springer, 2015, pp. 1–15.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT
Press, 1990.

[9] T. Cover and P. Hart. “Nearest neighbor pattern classification”. In: IEEE transactions on
information theory 13.1 (1967), pp. 21–27.

[10] K. De Jong. “Parameter setting in EAs: a 30 year perspective”. In: Parameter setting in
evolutionary algorithms. Springer, 2007, pp. 1–18.

[11] J. L. Devore. Probability and Statistics for Engineering and the Sciences. Cengage Learning,
2010.

[12] S. A. Dudani. “The distance-weighted k-nearest-neighbor rule”. In: IEEE Transactions on
Systems, Man, and Cybernetics 4 (1976), pp. 325–327.

[13] J. Ehlbeck and F. Colling. “Die Biegefestigkeit von Brettschichtholzträgern in Abhängigkeit
von den Eigenschaften der Brettlamellen”. In: Bauen mit Holz 89.10 (1987), pp. 646–655.

[14] G. Fink, A. Frangi, and J. Kohler. “Bending tests on GLT beams having well-known local
material properties”. In: Mater Struct 48.11 (Oct. 2014), pp. 3571–3584.

[15] R. W. Floyd. “Nondeterministic Algorithms”. In: ACM 14.4 (1967), pp. 636–644.



96 Bibliography

[16] C. Foley. “A three-dimensional paradigm of fiber orientation in timber”. In: Wood Science
and Technology 35.5 (2001), pp. 453–465.

[17] C. Foley. “Modeling the effects of knots in structural timber”. Ph.D. Thesis. Division of
Structural Engineering, Lund Unversity, 2003.

[18] B. Fox and M. McMahon. “Genetic operators for sequencing problems”. In: Foundations
of genetic algorithms 1 (1990), pp. 284–300.

[19] M. Gendreau and J.-Y. Potvin. “Tabu Search”. In: Handbook of metaheuristics. Springer,
2010, pp. 41–59.

[20] M. Gendreau, J.-Y. Potvin, et al. Handbook of Metaheuristics. 2nd ed. International Series
in Operations Research & Management Science 146. Springer US, 2010.

[21] D. E. Goldberg. Genetic Algorithms in Search, Omptimization & Machine Learning.
Addison-Wesley Publishing Company, Jan. 1989.

[22] P. Guindos and M. Guaita. “A three-dimensional wood material model to simulate the
behavior of wood with any type of knot at the macro-scale”. In: Wood science and technology
47.3 (2013), pp. 585–599.

[23] C. Hackspiel, K. de Borst, and M. Lukacevic. “A numerical simulation tool for wood
grading model development”. In: Wood science and technology 48.3 (2014), pp. 633–649.

[24] K. Hofstetter, C. Hellmich, and J. Eberhardsteiner. “Development and experimental
validation of a continuum micromechanics model for the elasticity of wood”. In: European
Journal of Mechanics-A/Solids 24.6 (2005), pp. 1030–1053.

[25] J. H. Holland, C. Langton, and S. W. Wilson. Adaption in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence.
MIT Press, 1992.

[26] C.-J. Johansson. “Grading of timber with respect to mechanical properties”. In: Timber
engineering (2003), pp. 23–43.

[27] N. Jorge and J. W. Stephen. Numerical optimization. Springer, 2006.

[28] G. Kandler, J. Füssl, E. Serrano, and J. Eberhardsteiner. “Effective stiffness prediction of
GLT beams based on stiffness distributions of individual lamellas”. In: Wood Science and
Technology 49.6 (July 2015), pp. 1101–1121.

[29] G. Kandler, M. Lukacevic, and J. Füssl. “An algorithm for the geometric reconstruction
of knots within timber boards based on fibre angle measurements”. In: Construction and
Building Materials 124 (2016), pp. 945–960.

[30] D. E. Knuth. The Art of Computer Programming Vol. 2. Addison–Wesley, 1997.

[31] P. Larranaga, C. M. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic. “Genetic algorithms
for the travelling salesman problem: A review of representations and operators”. In: Artificial
Intelligence Review 13.2 (1999), pp. 129–170.



Bibliography 97

[32] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle. “The irace
package: Iterated racing for automatic algorithm configuration”. In: Operations Research
Perspectives 3 (2016), pp. 43–58.

[33] H. R. Lourenço, O. C. Martin, and T. Stützle. “Iterated local search: Framework and
applications”. In: Handbook of metaheuristics. Springer, 2010, pp. 363–397.

[34] M. Lukacevic and J. Füssl. “Numerical simulation tool for wooden boards with a physically
based approach to identify structural failure”. In: European Journal of Wood and Wood
Products 72.4 (2014), pp. 497–508.

[35] O. Maron and A. W. Moore. “The racing algorithm: Model selection for lazy learners”. In:
Lazy learning. Springer, 1997, pp. 193–225.

[36] P. Moscato and C. Cotta. “A modern introduction to memetic algorithms”. In: Handbook
of metaheuristics. Springer, 2010, pp. 141–183.

[37] A. Olsson and J. Oscarsson. “Three dimensional fibre orientation models for wood based on
laser scanning utilizing the tracheid effect”. In: WCTE 2014, World Conference on Timber
Engineering, Quebec City, Canada, August 10-14, 2014. 2014.

[38] A. Olsson, J. Oscarsson, E. Serrano, B. Källsner, M. Johansson, and B. Enquist. “Prediction
of timber bending strength and in-member cross-sectional stiffness variation on the basis
of local wood fibre orientation”. In: European Journal of Wood and Wood Products 71.3
(2013), pp. 319–333.

[39] ÖNORM DIN 4074-1: Sortierung von Holz nach der Tragfähigkeit. Teil 1: Nadelschnittholz.
Norm. Sept. 1, 2012.

[40] ÖNORM EN 14080: Holzbauwerke – Brettschichtholz und Balkenschichtholz – Anforderun-
gen. Norm. Aug. 1, 2013.

[41] ÖNORM EN 1912: Bauholz für tragende Zwecke – Festigkeitsklassen – Zuordnung von
visuellen Sortierklassen und Holzarten. Norm. Oct. 15, 2013.

[42] J. Oscarsson, E. Serrano, A. Olsson, and B. Enquist. “Identification of weak sections in
glulam beams using calculated stiffness profiles based on lamination surface scanning”.
In: WCTE 2014, World Conference on Timber Engineering, Quebec City, Canada, August
10-14, 2014. Université Laval. 2014.

[43] H. Petersson. “Use of optical and laser scanning techniques as tools for obtaining improved
FE-input data for strength and shape stability analysis of wood and timber”. In: IV
European conference on computational mechanics, Paris, France. 2010.

[44] C. R. Reeves. “Genetic algorithms”. In: Handbook of metaheuristics. Springer, 2010, pp. 109–
139.

[45] C. R. Reeves. “Genetic algorithms for the operations researcher”. In: INFORMS journal
on computing 9.3 (1997), pp. 231–250.

[46] C. R. Reeves. “Using Genetic Algorithms with Small Populations.” In: ICGA. Vol. 590.
1993, p. 92.



98 Bibliography

[47] E. Serrano and B. Enquist. Mechwood II Glulam tests. Tech. rep. Linnaeus University
Växjö Sweden, 2014.

[48] S.-P. Simonaho, J. Palviainen, Y. Tolonen, and R. Silvennoinen. “Determination of wood
grain direction from laser light scattering pattern”. In: Optics and Lasers in Engineering
41.1 (2004), pp. 95–103.

[49] E.-G. Talbi. Metaheuristics: from design to implementation. Vol. 74. John Wiley & Sons,
2009.

[50] D. Whitley. “An overview of evolutionary algorithms: practical issues and common pitfalls”.
In: Information and software technology 43.14 (2001), pp. 817–831.


