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Abstract

The search for heavy Higgs bosons is an important step to probe the parameter space of the

Minimal Supersymmetric Standard Model. This work defines simplified models for heavy Higgs

bosons decaying to supersymmetric particles by using the SModelS framework. In doing so, a

new method to characterize simplified models for SUSY resonances using SModelS is proposed.

To evaluate the viable parameter space, limits from the dark matter relic density, the Higgs

and the flavor sector, as well as limits from LEP and LHC searches for supersymmetry are

applied to the pre-collected data sample from the ATLAS pMSSM analysis. Using this sample,

the parameter space resulting in maximal signal at the LHC is defined. The predicted cross

sections are computed for 14 TeV center-of-mass energy to determine the sensitivity of the High-

Luminosity LHC. Detailed studies of the heavy Higgs production, its decay and the resulting

signatures are performed for the full 19-dimensional pMSSM parameter space. As a result, a

reinterpretation of current mono-X analyses (X = h, W , Z) for resonant heavy Higgs searches

with higgsino- or bino-like LSPs, as well as a future displaced-vertex analysis with wino-like LSPs

are proposed.
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Kurzfassung

Ein wichtiger Schritt in der systematischen Analyse des Parameterraums des Minimal Supersym-

metrischen Standardmodells ist die Suche nach schweren Higgs Bosonen. Diese Arbeit definiert

vereinfachte Modelle für den Zerfall schwerer Higgs Bosonen in supersymmetrische Teilchen unter

der Verwendung von SModelS. Weiters wird eine neue Methode zur Verwendung des Programms

für resonante SUSY Analysen gezeigt. Der Datensatz des verfügbaren Parameterraums berück-

sichtigt aktuelle Grenzen der Dunklen Materie Dichte zum Zeitpunkt des Ausfrierens, Grenzen

im Higgs- und Flavor-Sektor, sowie LEP und LHC Analysen für Supersymmetrie. Um die Sensi-

tivität des High-Luminosity LHC, mit 3 ab

�1

integrierter Luminosität, zu bestimmen werden die

Wechselwirkungsquerschnitte für eine Schwerpunktsenergie von 14 TeV berechnet. Die detailierte

Studie der schweren Higgs Boson Produktion und dessen Zerfall berücksichtigt den gesamten

19-dimensionalen pMSSM Parameterraum. Dadurch wird der Bereich mit best-möglichem Sig-

nal am LHC ermittelt. Aufgrund des Ergebnisses dieser Arbeit wird eine Neuinterpretation

heutiger mono-X Analysen (X = h, W , Z) für resonante schwere Higgs Boson Produktionen

mit higgsino- oder bino-ähnlichen LSPs, sowie eine zukünftige Analyse für verschobene Vertices

mit wino-ähnlichen LSPs empfohlen.
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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) has been a remarkable

success for the Standard Model (SM) of Particle Physics. While this discovery has brought a

new era in this direction, there is no final word on whether the observed Higgs boson is a part

of an extended sector. The main focus of the LHC is now the search for physics beyond the

Standard Model (BSM), where the searches for heavy Higgs forms an important avenue.

Extended Higgs sectors appear in a variety of BSM scenarios. At the LHC, the searches for heavy

Higgs bosons are primarily carried out in SM final states. However, within BSM scenarios, Higgs

decays to new particles are possible. If the branching ratio to BSM particles is large, the Higgs

searches in SM final states are no longer effective.

Among the theoretical scenarios featuring an extended Higgs sector, supersymmetry (SUSY) is

a well motivated candidate. To successfully make predictions within the supersymmetric SM

extension, their parameter space can be reduced to 19 free parameters in the phenomenological

Minimal Supersymmetric Standard Model (pMSSM). While searches for direct production of

SUSY particles are extensively carried out at the LHC, it is also possible that the supersymmetric

heavy neutral Higgs decays to SUSY particles, with the Feynman-like diagram for the simplified

model of this process given in fig. 1.0.1. This opens another possibility to search for an extended

Higgs sector and thus, probe the pMSSM parameter space.

It has been previously shown that MSSM Higgs can in general have a large branching ratio to

SUSY particles [1], and correspondingly result in a large signal cross section at the LHC [2, 3].

Despite these early encouraging studies, a complete classification of supersymmetric Higgs to

SUSY final states and associate signatures at the colliders remains to be done.

This work aims to systematically classify pMSSM neutral heavy Higgs decays to SUSY final

states in a realistic parameter space of the phenomenological Minimal Supersymmetric Standard

Model. The study differs from the previous attempts in a few ways. First and foremost, it is

allowed for squarks and sleptons to also to be light, as the work uses a full scan of the parameter

space. Thus, not only the electroweak sector can be light, as has been focused on so far. Secondly,

a systematic and complete survey of possible pMSSM Higgs decay modes is performed. Finally,

the differences with respect to traditional LHC direct BSM searches are discussed and suggestions

for future avenues for searching for heavy Higgs bosons in SUSY final state are made.

Figure 1.0.1: Simplified model for a pMSSM neutral heavy Higgs H production in proton-proton
collisions with a decay to supersymmetric particles. The figure was created using
Jaxodraw-2.1 [4].
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1 Introduction

In doing so, the production mechanisms of heavy Higgs bosons at the LHC and their parameter

dependence are studied in detail using the SusHi framework. The viable parameter space is

evaluated in applying current constraints on the dataset. Limits on the light and heavy Higgs

sector are checked using HiggsSignals and HiggsBounds, respectively. Since the branching

ratios of e.g. B-meson decays and the anomalous magnetic moment of the muon are sensitive

to contributions from supersymmetric particles, limits in the flavor sector are applied using

SuperIso.

The SModelS framework is adopted to evaluate the LHC signatures from Higgs decaying to

supersymmetric particles and define the parameter space for maximal signal. A detailed study

of the production mechanism of heavy Higgs bosons and the underlying parameter dependence

of the branching ratios to supersymmetric particles has been performed. Since the dataset of

wino-like Lightest Supersymmetric Particles (LSPs) mostly contains long-lived sparticles and can

thus not be handled by the current version of the SModelS framework, a study on the lifetime

of the lightest chargino has been done to point out new ways of searching for supersymmetric

particles in displaced vertex signatures of future LHC analyses. Furthermore, limits from LHC

Run 1 searches and early studies from LHC Run 2 with 3.2 fb

�1

integrated luminosity were

studied to probe the impacts of direct LHC SUSY searches on this work.

This work is organized as follows:

• Section 2 gives a brief introduction into the Standard Model of Particle Physics. The main

focus lies on the Higgs sector and how electroweak symmetry breaking is introduced into

the SM. Furthermore, Standard Model issues are discussed, as supersymmetric models can

give a solution to its shortcomings.

• As supersymmetry is the main focus of this work, the phenomenological Minimal Super-

symmetric Standard Model (pMSSM) is discussed in section 3, where an introduction to

its particle content and the derivation of the SUSY particle masses is given. The focus

lies on the heavy Higgs boson, its production mechanisms, coupling to (supersymmetric)

particles and the decay to SUSY. Furthermore, the process of soft symmetry breaking and

how supersymmetry introduces a solution to the previously mentioned SM shortcomings

are highlighted.

• A detailed discussion about the codes used in this work, with a special focus on the SModelS
framework, is given in section 4. Furthermore, the analysis set-up, the pre-collected ATLAS

pMSSM dataset of the full parameter scan and the applied constraints are discussed. The

results for a study of the excluded parameter space is given in this section.

• The results of the systematic heavy Higgs decay analysis are given in section 5. Besides the

most dominant and most frequent occurring signatures from heavy Higgs decays, a detailed

study of the mono-X topology is performed. Furthermore, the underlying production

process and the branching ratios to SUSY particles are discussed. A study on the lifetime

of SUSY particles highlights the possibility of displaced vertex analyses on heavy Higgs

searches.

• Section 6 will summarize the work and give the proposals for current and future analyses

at the LHC.

• Detailed calculations performed within the scope of this work are given in appendix A.

Here, the diagonalization of the chargino mass matrix, the computation of the production

cross section of heavy Higgs bosons in gluon fusion processes and the minimization of the

superpotential is shown. Appendix B gives additional plots to the results of this work.
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2 The Standard Model of Particle Physics

The Standard Model (SM) of Particle Physics [5, 6] is a theoretical model of the building blocks

of our visible universe. Since most theories of new physics are an extension of the SM, this

section gives a brief introduction to its content. As the Higgs boson plays a crucial role in this

work, the process of electroweak symmetry breaking within the SM is discussed. Furthermore,

the shortcomings of the SM are highlighted.

2.1 The Standard Model Particle Content

The SM is based on quantum field theory and is described by the local gauge group SU(3)

C

⌦
SU(2)

L

⌦ U(1)

Y

, for the strong (SU(3)

C

) and the electroweak force (SU(2)

L

⌦ U(1)

Y

), where

the latter breaks into the weak and the electromagnetic interaction at low energies. It describes

all known elementary particles and their fundamental interactions, except the gravitational in-

teraction, which is not quantized yet. Its particle content, given in table 2.1.1, is classified

according to their spin, mass and quantum numbers and consists of fermions (spin-

1

2

), which are

again separated into quarks and leptons, gauge bosons (spin-1) and a scalar particle, the Higgs

boson (spin-0).

Quarks carry a color charge and are therefore the only fermions interacting with the strong force.

They build bounded colorless states containing either two or three (anti-)quarks, the mesons and

baryons, respectively. Due to this confinement, no free quarks are observable. Mesons are

confined states consisting of a quark and an anti-quark (e.g. pions), whereas three-quark states,

the baryons, contain a quark of each color (e.g. protons). In addition to the strong force, they

participate in the electromagnetic and the weak interaction.

Neutrinos, the neutral leptons, are considered as massless within the SM

1

and interact only via

the weak force. The electron, muon and tau, are leptons carrying an electric charge and thus

undergo the electromagnetic interaction. In addition they participate as every fermion to the

weak force.

Fermions are organized in three generations with identical quantum numbers, but increasing

mass. For all fermions, an anti-particle exists, having the same mass, but opposite electric and

color charge.

Gauge bosons are the mediator particles for fundamental forces, associated with the local gauge

groups within the SM. The electromagnetic force, mediated through massless photons, interacts

with charged particles among an infinite range. For SU(n) symmetry groups, there are n2 � 1

generators, leading to 8 gluons as the mediator particles of the strong force. Even though they

are massless, they carry a color charge, limiting the range of the strong force to about 10

�15

m.

The propagator of the weak interaction, the W and Z bosons, acquire mass due to electroweak

symmetry breaking [6], which thus limits the range of the weak force to about 10

�18

m. In the

process of symmetry breaking, the Higgs field plays a crucial role, where the interaction with

1Neutrino masses have been experimentally confirmed by neutrino oscillation experiments [7–9], but are not
included in the SM.
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2 The Standard Model of Particle Physics

this field also gives mass to charged leptons and quarks. The Higgs boson, the excitation of this

field, is the only scalar (spin-0) elementary particle in the SM.

Since the heavier particles are unstable, the visible universe mainly consists of up- and down

quarks, electrons, neutrinos

2

and photons.

FERMIONS

Quarks

Particle Symbol Spin Charge [e] Mass [MeV] [11] Generation Interaction

up quark u 1
2

2
3 2.2+0.6

�0.4
1

st gen.
down quark d 1

2 � 1
3 4.7+0.5

�0.4

charm quark c 1
2

2
3 1280± 30

2

nd gen.
electromagn.,

strange quark s 1
2 � 1

3 96

+8
�4 weak, strong

top quark t 1
2

2
3 173500± 1100 (pole)

3

rd gen.
bottom quark b 1

2 � 1
3 4180

+40
�30

Leptons

Particle Symbol Spin Charge [e] Mass [MeV] [11] Generation Interaction

electron e 1
2 �1 0.51

1

st gen.
electron-neutrino ⌫e

1
2 0 < 2⇥ 10

�6

muon µ 1
2 �1 105.66

2

nd gen.
electromagn.,

muon-neutrino ⌫µ
1
2 0 < 2⇥ 10

�6 weak

tau ⌧ 1
2 �1 1776.86± 0.12

3

rd gen.
tau-neutrino ⌫⌧

1
2 0 < 2⇥ 10

�6

BOSONS

Gauge Bosons

Particle Symbol Spin Charge [e] Mass [GeV] [11] Interaction Range [m]

photon � 1 < 10

�35 < 10

�27 electromagn. 1

W boson W 1 ±1 80.385± 0.015 weak ⇠ 10

�18

Z boson Z 1 0 91.1876± 0.0021 weak ⇠ 10

�18

gluon g 1 0 0 strong ⇠ 10

�15

Scalar Bosons

Particle Symbol Spin Charge [e] Mass [GeV] [11]

Higgs boson h 0 0 125.09± 0.24

Table 2.1.1: The particle content of the Standard Model of Particle Physics including fermions (quarks
and leptons), gauge bosons and the Higgs boson.

2Neutrinos have mass and therefore undergo a flavor oscillation process. Depending on the distance to the
neutrino source and the neutrino energy, neutrino detectors are able to measure an almost equal fraction of
each generation (neutrino flavor) [10].
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2 The Standard Model of Particle Physics

2.2 Electroweak Symmetry Breaking

The SM unifies the electromagnetic and the weak fundamental force to the electroweak interaction

associated with the non-abelian Glashow-Weinberg-Salam theory [12, 13], which is specified

with the SU(2)

L

⌦ U(1)

Y

gauge symmetry group. As referred before, this symmetry must be

spontaneously broken at low energies. To achieve the symmetry breaking, a Lagrangian for a

complex scalar field �h =

1p
2

(�+ i�) is considered

L = (@µ�h)
⇤
(@µ�h)� V (�h) (2.2.1)

V (�h) = µ2�⇤
h�h + �(�⇤

h�h)
2

(2.2.2)

=

µ2

2

(�2

+ �2

) +

�

4

(�2

+ �2

)

2

(2.2.3)

where V (�h) is the Higgs potential [6, 14, 15], which is bound from below

3

for � > 0 [18]. Terms

of the order of (�⇤
h�h)

n
, with n > 2 are forbidden, as they produce infinite values of the calculated

observables [19].

A minimal energy state can be found for the potential V (�h) being minimal. For µ2 > 0, the

minimum is given for �h = 0 and therefore a vanishing vacuum expectation value (vev) h�hi = 0.

For the case of µ2 < 0, the potential appears to have minimum energy states at

V (�h)min

=

µ2

2

⌫2 +
�

4

⌫4 = ��

4

⌫4 < 0 (2.2.4)

(�⇤
h�h)min

=

⌫2

2

(2.2.5)

⌫2 = �2

+ �2

= �µ2

�
> 0 (2.2.6)

with a vev value of ⌫ ⇡ 246 GeV [11]. The Lagrangian is invariant under local U(1) transforma-

tions �h ! ei↵(x)�h and therefore has an infinite number of minimum energy states along the

complex plane with a radius of ⌫ [18]. Spontaneous symmetry breaking occurs by choosing the

vacuum expectation value for the real component � = ⌫ with a vanishing imaginary component

� = 0 in vacuum. In fig. 2.2.1, the Higgs potential is given for a vanishing vev with µ2 > 0 (left)

and for µ2 < 0 in the real plane of the scalar field (right).

This process is commonly referred to as the Higgs mechanism [20, 21] and predicts the existence

of a neutral spin-0 boson, the Higgs boson, with a mass mh =

p
2|µ|. It is crucial, as it allows

the mediator particles of the weak force, the W and Z bosons to have mass [6, 14, 15]. The

Higgs boson, the last missing particle of the SM, has been discovered in proton-proton collisions

at the CMS [22] and ATLAS [23] experiment of the LHC in 2012.

2.3 Issues within the Standard Model

The SM has been tested extensively by e.g. particle colliders or cosmological experiments, which

are searching for deviations with unique precision at incredible high energies. It was able to

succeed in almost every aspect so far, but it still leaves open questions. This section will introduce

some of its problems. A possible solution for those issues is the introduction of supersymmetry,

as described in section 3.4.

3A local minimum allows tunneling effects. Thus, only a global minimum of the Higgs potential leads to vacuum
stability [16, 17].
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2 The Standard Model of Particle Physics

Figure 2.2.1: The Higgs potential V (�h) for a complex scalar field �h, � > 0 and µ2 > 0 (left) or µ2 < 0

(right). Figure taken from Ref. [18].

2.3.1 The Hierarchy Problem
The hierarchy problem, or fine-tuning problem, arises due to the major discrepancy between

the weak-scale, with the masses of the weak- and Higgs bosons of m
weak

⇡ 10

2

GeV, and the

Planck-scale of m
Planck

⇡ 10

18

GeV. The latter is defined using universal physical constants and

is the maximum energy up to where the Standard Model is considered as valid, since above that

scale gravitational effects become important.

In quantum field theory, the Higgs boson mass is sensitive to quadratically divergent corrections

proportional to the UV-cutoff energy ⇤

UV

of the SM, thus the Planck scale [24]. Those corrections

especially arise from heavy 3

rd

generation fermions, e.g. the top quark, with one example given

in fig. 2.3.1. It visualizes the Feynman diagram for an interaction of a virtual t¯t pair with the

Higgs boson. The Higgs mass including corrections due to the top quark is given by

m2

h = m2

0

+

�2

t

16⇡2

⇤

2

UV

+O(m2

weak

) (2.3.1)

where m
0

is the bare Higgs mass and �t is the Yukawa coupling of the top quark [15]. A non-

zero Higgs mass below the Planck-scale can only be the result of a precise (large) negative value

for m2

0

, canceling other corrections. Solutions to quadratical divergences typically involve the

introduction of new particles or extra-dimensions. One possibility to avoid unnatural fine-tuning

of a parameter is the introduction of a new symmetry, as it is done in supersymmetry.

Figure 2.3.1: Feynman diagram for corrections to the Higgs mass due to heavy fermions as e.g. the top
quark. The figure was created using Jaxodraw-2.1 [4].
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2 The Standard Model of Particle Physics

2.3.2 Gauge Coupling Unification
Coupling constants arise naturally in quantum field theory and are dimensionless numbers

4

de-

termining the strength of an interaction in the Lagrangian of the SM. The energy dependence

of the strength of the coupling parameters is commonly referred as running couplings [24] and

can be described by renormalization group equations. While the strength of non-abelian sym-

metry groups, as the SU(2)

L

and SU(3)

C

symmetry with their couplings g
2

and g
3

, respectively,

decreases at higher energies, the strength of abelian interactions, as e.g. U(1)

Y

with the cou-

pling g
1

increases. The calculations of the energy dependence of coupling constants predict the

gauge coupling strength at higher scales [25]. Fig. 2.3.2 shows the inverse couplings for the SM

in dependence of the logarithm of the energy, where ↵i = g2i /4⇡. As seen, the values of the

couplings are very similar at an energy scale of about m
GUT

⇡ 10

13

-10

17

GeV. However, they

do not exactly unify, which is expected and a requirement for a Grand Unified Theory (GUT).

Therefore, many theories of BSM physics include GUT scale unification of the gauge couplings,

which sets boundary conditions to the model and therefore strong constraints on their parameter

space.

Figure 2.3.2: Energy-dependence of the gauge couplings in the Standard Model. Figure taken from
Ref. [26].

2.3.3 Dark Matter
Even though the SM is the theory of all known elementary particles, it is only able to describe

about 4.9% [27] of the energy density in the universe. Astrophysical experiments as e.g. the

Planck satellite [28] revealed the existence of about five times more non-barionic matter than

visible matter.

First evidence of dark matter (DM) was measured by Fritz Zwicky in 1933 [29], when he studied

the velocity of galaxies in the Coma cluster in comparison to the gravitational force acting on

them. His measurements unveiled the missing of a large amount of non-luminous matter, leading

to the indication of dark matter. Since then, more and more effects of DM were uncovered. It

plays a crucial role in e.g. the structure formation in the early universe [30], Baryonic Acoustic

Oscillations (BAO) [31] and the anisotropies in the Cosmic Microwave Background (CMB) [27,

32, 33]. While some theories try to explain the effects of dark matter in modifying Newton’s

laws [34], another possibility is the introduction of a new particle not considered in the SM.

4Coupling constants are dimensionless for renormalizable theories.

7



3 Supersymmetry

One possibility of physics beyond the SM (BSM) was created as a conceptual idea in the early

70’s. Since then, the idea of supersymmetry (SUSY) encourages theorists and experimental-

ists in high-energy physics to search for new particles. In this section, basic concepts of the

Minimal Supersymmetric Standard Model (MSSM) and the phenomenological MSSM (pMSSM)

are introduced. In addition, their particle content and the derivation of supersymmetric parti-

cle (sparticle) masses are given. As it is the focus of this work, the production, coupling and

possible decays of MSSM Higgs bosons are discussed in detail. Furthermore, the conditions

for soft symmetry breaking are derived. Calculations, performed in this section are given in

appendix A.

3.1 The Minimal Supersymmetric Standard Model

MSSM is a non-trivial extension of the Poincaré group with the fermionic operator Q converting

bosonic states into fermionic ones and vice versa.

Q |bosoni = |fermioni
Q |fermioni = |bosoni (3.1.1)

Sparticles have, compared to their SM partners, equal quantum numbers, except the spin differs

half-integrally

5

[15, 35, 36]. The symmetry would imply an equal mass of a sparticle and its SM

partner, however this is ruled out by experimental data. Therefore, supersymmetry must be a

broken symmetry [35].

Standard Model Particles Supersymmetric Particles

Particle Symbol Spin Sparticle Symbol Spin

quark u, d, c, s, t, b 1/2 squark ũ, ˜d, c̃, s̃, ˜t, ˜b 0

lepton e, ⌫e, µ, ⌫µ, ⌧ , ⌫⌧ 1/2 slepton ẽ, ⌫̃e, µ̃, ⌫̃µ, ⌧̃ , ⌫̃⌧ 0

gluon g 1 gluino g̃ 1/2

photon � 1 bino ˜B 1/2

W , Z boson W±, Z 1 wino ˜W 1/2

Higgs boson h 0 higgsino ˜h 1/2

Higgs boson h,H,A,H±
0

Table 3.1.1: Standard Model particles and their superpartners. In addition, MSSM contains the neutral
and charged heavy Higgs bosons H, A and H± [35].

5In N = 1 MSSM, the superpartner of SM fermions, the sfermions, are spin-0 scalar particles [15, 35, 36].
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3 Supersymmetry

Due to soft symmetry breaking (SSB) (see section 3.3), sparticles with same electric charge

mix. Therefore, electroweak gauginos and higgsinos (electroweakinos) are mixed states called

neutralinos �̃0

and charginos �̃±
(see section 3.2.1). They arise as a mixture of the superpartners

of the SM states of the electroweak force and the SM Higgs boson. Their pure states are classified

as binos, winos and higgsinos. In addition, squarks and sleptons can be separated into right- and

left-handed components [15, 35]. Only left-handed sneutrinos are included in MSSM, as there

is no right-handed superpartner in the SM (see table 3.1.2). As gluinos are the only colored

fermions in MSSM, they have no mixing partners.

In general, superpartners of fermions are named with the prefix ‘s’ (for ‘scalar’) and the partners

of bosons are attached with the ending ‘ino’. All sparticles are labeled with a tilde.

Squarks Sleptons Gauginos/Electroweakinos

Sparticle Symbol Sparticle Symbol Sparticle Symbol

(left, right) selectron ẽL,R (left, right) up squark ũL,R lightest neutralino �̃0
1

(left, right) smuon µ̃L,R (left, right) down squark ˜dL,R next-to-lightest neutralino �̃0
2

(left, right) stau ⌧̃L,R (left, right) charm squark c̃L,R next-to-heaviest neutralino �̃0
3

electron - sneutrino ⌫̃e (left, right) strange squark s̃L,R heaviest neutralino �̃0
4

muon - sneutrino ⌫̃µ (left, right) top squark ˜tL,R lightest chargino �̃±
1

tau - sneutrino ⌫̃⌧ (left, right) bottom squark ˜bL,R heaviest chargino �̃±
2

gluino g̃

Table 3.1.2: MSSM sparticle content and their symbols. The subscript L and R denote left- and right-
handed sparticles, respectively.

3.2 Phenomenological Minimal Supersymmetric Standard
Model

The unconstrained MSSM introduces a large number (> 100) of free parameters. Therefore,

making generic predictions from MSSM is non-trivial. Using basic phenomenological assump-

tions [15, 35], the total number of free parameters can be drastically reduced. By including

• R-parity conservation and therefore a stable lightest supersymmetric particle

• electroweak and soft symmetry breaking

• no new source of CP-violation, thus all parameters are real

• no flavor changing neutral currents (FCNC) at tree level

• degenerate 1

st

and 2

nd

generation squark and slepton states

• negligible 1

st

and 2

nd

generation squark and slepton trilinear couplings Aq,l ⇡ 0

the number of free parameters is reduced to 19 (see table 3.2.1), as it is done in the so-called

phenomenological Minimal Supersymmetric Standard Model (pMSSM).

It contains mass parameters for the sfermion sector for left- and right-handed 1

st

and 2

nd

genera-

tion squarks q̃ (Mq̃1 = Mq̃2 , MũR = Mc̃R , M
˜dR

= Ms̃R) and sleptons

˜l (M
˜l1
= M

˜l2
, MẽR = Mµ̃R),

9



3 Supersymmetry

as well as for the left-handed 3

rd

generation squarks

˜Q (M
˜Q) and sleptons

˜L (M
˜L) and their right-

handed opponents (M
˜tR

, M
˜bR

, M⌧̃R). The trilinear couplings for the 3

rd

generation sfermions

connecting their left- and right-handed components are given by At, Ab and A⌧ .

Furthermore it includes parameters for the gaugino/higgsino sector with mass parameters for

binos and winos (M
1

, M
2

), as well as for higgsinos (µ). Those parameters strongly influence the

masses of neutralinos and charginos (see section 3.2.1). The gluino mass is given by M
3

.

Additional parameters arise from the Higgs sector with the pseudoscalar Higgs mass mA and the

ratio of the two Higgs doublet vacuum expectation values tan� = ⌫
2

/⌫
1

, which are used to e.g.

calculate the Higgs masses on tree level (see section 3.2.1).

Parameter Description

Ml̃1
= Ml̃2

Left-handed 1

st- and 2

nd gen slepton

MẽR = Mµ̃R Right-handed 1

st- and 2

nd gen slepton

ML̃ Left-handed 3

rd gen slepton

M⌧̃R Right-handed 3

rd gen slepton

Mq̃1 = Mq̃2 Left-handed 1

st- and 2

nd gen squark

MũR = Mc̃R Right-handed 1

st- and 2

nd gen up-type squark

Md̃R
= Ms̃R Right-handed 1

st- and 2

nd gen down-type squark

MQ̃ Left-handed 3

rd gen squark

Mt̃R
Right-handed 3

rd gen up-type squark

Mb̃R
Right-handed 3

rd gen down-type squark

M1 Bino mass parameter

M2 Wino mass parameter

M3 Gluino mass parameter

µ Higgsino mass parameter

mA CP-odd Higgs boson mass

tan� Ratio of the Higgs vev

At Trilinear top quark coupling

Ab Trilinear bottom quark coupling

A⌧ Trilinear ⌧ lepton coupling

Table 3.2.1: Soft parameters in the phenomenological Minimal Supersymmetric Standard Model [15, 35].

3.2.1 The pMSSM Particle Content
Most of the particle mass eigenstates within the pMSSM model arise due to the mixture of spar-

ticle states. While the electroweakinos are the result of the mixing of electroweak superpartners

due to soft symmetry breaking, the scalar sparticles undergo a left-right mixing being influenced

by the trilinear couplings. This section will introduce the procedure to calculate their sparticle

masses in pMSSM. Furthermore, the properties of the five Higgs bosons are introduced.
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3 Supersymmetry

Electroweakinos in pMSSM

The introduction of soft symmetry breaking in MSSM leads to the mixture of sfermions with

equal charge. Thus, superpartners of SM bosons mix to so-called electroweakinos, which can be

separated into neutral and charged neutralinos and charginos, respectively. The characteristics

of neutralinos (higgsino-, wino- or bino-like) and charginos (higgsino- or wino-like) are highly

dependent on the higgsino-gaugino-mixture and therefore the soft parameters M
1

, M
2

, µ and

tan�. Their masses are derived from the diagonalization of the neutralino- (chargino-) mass

matrix MN (MC)

MN =

0

B

B

@

M
1

0 �mZsW c� mZsW s�
0 M

2

mZcW c� �mZcW s�
�mZsW c� mZcW c� 0 �µ
mZsW s� �mZcW s� �µ 0

1

C

C

A

(3.2.1)

MC =

✓

M
2

p
2mW s�p

2mW c� µ

◆

(3.2.2)

using the 4⇥ 4 (2⇥ 2) unitary mixing matrices Z (U , V)

MD
N = Z⇤MNZ�1

(3.2.3)

MD
C = U⇤MCV�1

(3.2.4)

where sW ⌘ sin ✓W , cW ⌘ cos ✓W , ✓W is the Weinberg-angle, s� ⌘ sin�, c� ⌘ cos� and mZ

(mW ) is the mass of the Z (W ) boson [35]. The mixing matrices for the chargino sector can be

written as

6

U = Ou (3.2.5)

V =

(

Ov for det(MC) > 0

�
3

Ov for det(MC) < 0

(3.2.6)

Ou,v =

✓

c�u,v s�u,v

�s�u,v c�u,v

◆

(3.2.7)

where s�u,v ⌘ sin�u,v, c�u,v ⌘ cos�u,v and �
3

is the third Pauli matrix [35]. The mixing angles

�u and �v are given by

tan 2�u =

2

p
2mW (µ sin� +M

2

cos�)

M2

2

� µ2 � 2m2

W cos 2�
(3.2.8)

tan 2�v =

2

p
2mW (µ cos� +M

2

sin�)

M2

2

� µ2

+ 2m2

W cos 2�
. (3.2.9)

The diagonalization of the chargino mixing matrix MC has been performed within the scope of

this work and is given in appendix A.1. The diagonalization of the neutralino mixing matrix was

obtained numerically.

The neutralino (chargino) mass-eigenstates are labeled in the ordering |m�̃0
1
| < |m�̃0

2
| < |m�̃0

3
| <

|m�̃0
4
| (|m�̃±

1
| < |m�̃±

2
|). Those eigenvalues can become negative, having a crucial impact on

6Here, a positive value of M2 is assumed.

11



3 Supersymmetry

the branching ratio of heavy Higgs bosons decaying to electroweakinos. They then need to be

redefined using chiral rotations [35]. The lightest neutralino �̃0

1

is typically handled as the Lightest

Supersymmetric Particle (LSP), as it has to have no color or electric charge

7

. For minimal mixed

LSPs, and therefore (at least) one soft parameter of M
1

, M
2

or µ being significantly smaller than

the others, they can be classified as bino-like (M
1

⌧ M
2

, µ), wino-like (M
2

⌧ M
1

, µ) or higgsino-

like LSPs (µ ⌧ M
1

,M
2

)

8

.

Sfermions in pMSSM

For sfermions heavier than the electroweak gauge bosons, their masses arise due to the SU(2)

L

⌦
U(1)

Y

invariant soft terms in the superpotential V
soft

(see eq. 3.3.4). The sfermion mass eigen-

states are derived from the diagonalization of the 2⇥ 2 Hermitian mass matrix M
˜f , with 3⇥ 3

blocks for left- and right-handed components (M
˜fL
,M

˜fR
). Off-diagonal matrices mix left- and

right-handed states, where the trilinear couplings Af and terms originating from higgsino mass

terms in the superpotential are contributing [15].

M
˜f =

✓

m2

f +M2

L mfXf

mfXf m2

f +M2

R

◆

(3.2.10)

with

M2

L = M2

˜fL
+ (I3Lf �Qfs

2

W )m2

Zc2� (3.2.11)

M2

R = M2

˜fR
+Qfs

2

Wm2

Zc2� (3.2.12)

Xf = Af � µ(tan�)�2I3Lf
(3.2.13)

where mf is the mass of the SM fermion, Qf is the electromagnetic charge and I3Lf is the third

component of the weak isospin [35]. To diagonalize the sfermion mass-matrix, a rotation-matrix

for each sfermion state with a corresponding mixing angle is introduced [15].

O
˜f =

 

c�f̃
s�f̃

�s�f̃
c�f̃

!

sin 2�
˜f =

2mfXf

m2

˜f1
�m2

˜f2

(3.2.14)

The masses of the two sfermionic states arise then as a mixture of the left- and right-handed

component and is given by

m2

˜f1,2
= m2

f +

1

2

⇣

M2

L +M2

R ⌥
q

(M2

L �M2

R)
2

+ 4m2

fX
2

f

⌘

(3.2.15)

Large off-diagonal terms mfXf in the square root lead to strong mixing and thus creates splitted

sfermionic mass states with m
˜f1
⌧ m

˜f2
. Furthermore, for the special case of Xf ⇡ 0 or mf ⌧

ML,MR, the off-diagonal terms in the mass-matrix become negligible and no L � R mixing is

obtained.

7As discussed in section 3.4.3, the left-handed sneutrinos is disfavored as a DM candidate due to its strong
coupling to the Z boson.

8The numerical implementation of the characterization of the LSP is done according to the mixing matrix Z
for bino-like (Z2

11 > max(Z2
12,Z2

13 + Z2
14)), wino-like (Z2

12 > max(Z2
11,Z2

13 + Z2
14)) and higgsino-like LSPs

((Z2
13 + Z2

14) > max(Z2
11,Z2

12)) (see section 4.4).
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3 Supersymmetry

The Heavy Higgs Bosons in pMSSM

Supersymmetric models contain two Higgs doublets (Hu, Hd)
9

to break the electroweak and the

soft symmetry. The ratio of their vacuum expectation values, ⌫d and ⌫u, is given by tan� = ⌫u/⌫d,
which is one of the free parameters in pMSSM models. The vevs are normalized to the SM value

⌫2d + ⌫2u = ⌫2
SM

⇡ (246 GeV)

2

[11].

Due to their two Higgs doublets, MSSM models predict the existence of two neutral CP-even (h,

H), one neutral CP-odd (A) and a pair of charged scalar bosons (H±
). In addition, a neutral

and a pair of charged Goldstone bosons (G0

, G±
) are retrieved from the mixing of the real (�)

and complex (�) components of the Higgs doublets using the mixing angles ↵ and �, within their

ranges �⇡/2  ↵  0 and 0  �  ⇡/2 [14, 15, 35].

H
1

= Hd =

✓

H0

d
H�

d

◆

=

✓�

⌫d + �0

d + i�0

d

�

/
p
2

��
d

◆

hHdi = ⌫dp
2

(3.2.16)

H
2

= Hu =

✓

H+

u

H0

u

◆

=

✓

�+

u
�

⌫u + �0

u + i�0

u

�

/
p
2

◆

hHui = ⌫up
2

(3.2.17)

✓

H
h

◆

=

✓

c↵ s↵
�s↵ c↵

◆✓

�0

d
�0

u

◆ ✓

G0

A

◆

=

✓

c� s�
�s� c�

◆✓

�0

d
�0

u

◆

✓

G±

H±

◆

=

✓

c� s�
�s� c�

◆✓

�±
d

�±
u

◆

(3.2.18)

The mixing angles are connected due to the relation

sin 2↵ = �m2

H +m2

h

M2

H �m2

h

sin 2� (3.2.19)

where mh and mH are the masses of the neutral CP-even Higgs bosons. On tree-level, the Higgs

masses are determined by the two independent parameters tan� and the mass of the pseudoscalar

mA [14, 15, 35].

(mLO
H,h)

2

=

1

2



m2

A +m2

Z ±
q

�

m2

A +m2

Z

�

2 � 4m2

Am
2

Z cos

2

2�

�

mA�mZ������!⇡ m2

A (3.2.20)

(mLO
H±)

2

= m2

A +m2

W
mA�mZ������!⇡ m2

A (3.2.21)

Fig 3.2.1 was created using SusHi-1.6.1 [37, 38] and FeynHiggs-2.10.4 [39] and shows the

dependence of CP-even Higgs boson masses on mA. It is seen, that the light Higgs mass cannot

exceed the Z boson mass for leading order (LO) calculations. Therefore, radiative corrections

play a crucial role in the determination of the MSSM Higgs masses. These radiative corrections

arise mainly due to 3

rd

generation (s)particles leading to a dependence on the parameters for the

squark and slepton masses. In the decoupling limit

10 mA � mZ , h is SM-like and the masses of

the heavy Higgs bosons are (almost) degenerate (mA ⇡ mH ⇡ mH±).

3.2.2 Heavy Higgs Couplings
In this section, the coupling of the CP-even neutral heavy Higgs bosons to SM particles, squarks

and electroweakinos are described. Further details, as e.g. the coupling to the pseudoscalar A
or the charged Higgs bosons H±

can be found in the literature [14, 15, 35].

9In the literature, this notation is often replaced by Hd = H1 and Hu = H2, with their vacuum expectation
values ⌫d = ⌫1 and ⌫u = ⌫2.

10The decoupling limit is usually obtained for mA > 250 GeV [35].
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3 Supersymmetry

Figure 3.2.1: The CP-even Higgs boson masses in dependence of mA for tan� = 3 (left) and tan� = 20

(right) including corrections up to NNLO QCD for one specific set of parameters.

Heavy Higgs Couplings to SM Particles

The mixing angles of the two Higgs doublet components ↵ and � influence the couplings of

pMSSM Higgs to SM particles. However, this reduces to a dependence on the pMSSM free

parameter tan� for the decoupling regime (mA � mZ). In table 3.2.2, the couplings of the

neutral Higgs bosons to up- and down-type fermions (g
�uū, g

�d ¯d), as well as to vector bosons

(g
�V V ), normalized to the SM couplings (gSM

) are given.

As seen in the table, the pseudoscalar A has no coupling to vector bosons at tree-level and

therefore their production in vector boson fusion or Higgs radiation processes (see section 3.2.4)

is suppressed. For mA � mZ , the couplings of the heavy neutral Higgs bosons (H, A) to

fermions are strongly dependent on tan� leading to crucial effects in heavy Higgs production

mechanisms. For large values of tan�, the coupling to down-type fermions can be significantly

enhanced. Since the interaction vertex to fermions is proportional to its mass (g
�f ¯f / mf ), the

coupling to the bottom quark becomes dominant for tan� >
p

mt/mb ⇠ 6.4 [14, 15, 35].

� g�uū/g
SM
�uū g�dd̄/g

SM
�dd̄ g�V V /gSM

�V V

h cos↵/ sin� ! 1 � sin↵/ cos� ! 1 sin(� � ↵) ! 1

H sin↵/ sin� ! cot� cos↵/ cos� ! tan� cos(� � ↵) ! 0

A cot� tan� 0

Table 3.2.2: Neutral MSSM Higgs couplings normalized to SM-Higgs couplings (gSM ) for up-type
fermions (g�uū), down-type fermions (g�dd̄) and vector bosons (g�V V ) and the decoupling
limit mA � mZ [40].

The coupling of the CP-even heavy Higgs H to vector bosons becomes negligible for mA � mZ

and the behavior of the light neutral Higgs h becomes SM-like. Furthermore, the vertex ZAh is

also proportional to cos(� � ↵) (! 0 for mA � mZ), while the vertex ZAH is proportional to

sin(� � ↵) (! 1 for mA � mZ). The trilinear couplings Zhh and ZHH are forbidden by the

spin of the particles and ZhH is forbidden due to CP-invariance

11

[35].

11Since the CP-symmetry is broken, the coupling ZhH can exist [35].
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Heavy Higgs Couplings to Sfermions

The couplings of heavy neutral Higgs bosons to sfermions are potentially large, as they include

terms proportional to their SM partner mass squared m2

f and terms proportional to their trilinear

couplings Af . Furthermore, couplings to the bottom squark are enhanced for large values of tan�
and can exceed the values to top squarks. It should be noted, that the coupling to sfermions is

not proportional to their mass, but to their SM partner mass. Therefore, mainly decays to 3

rd

generation sfermions are considered. For the decay of Higgs bosons to squarks, the Lagrangian

for the interaction

12

of heavy Higgs bosons to squarks can be written as

LHq̃q̃ =
X

q̃

CHq̃q̃H q̃⇤ q̃ (3.2.22)

CHq̃q̃ =

✓

�

I3Lq �Qqs2W
�

m2

Z cos(� + ↵) +m2

qr
q
1

1

2

mq (Aqr
q
1

+ µrq
2

)

1

2

mq (Aqr
q
1

+ µrq
2

) Qqs2Wm2

Z cos(� + ↵) +m2

qr
q
1

◆

(3.2.23)

where CHq̃q̃ contains the couplings to squarks, ru
1

= sin↵/ sin�, ru
2

= � cos↵/ sin�, rd
1

=

� cos↵/ cos� and rd
2

= � sin↵/ cos�. For the decoupling regime, where mH � mZ , the Higgs

mixing angle ↵ is negligible and thus, only ru
2

and rd
1

are non-vanishing. Furthermore, the trilinear

couplings of the 1

st

and 2

nd

generation squarks are set to zero in pMSSM. Due to the light mass

of the SM light quarks, the coupling of 1

st

and 2

nd

generation squarks can be approximately

reduced to the diagonal terms in the matrix given above, leading to a strong dependence on

cos�, and thus the pMSSM soft parameter tan�.

The interaction matrices to sleptons can be found in Ref. [35].

Heavy Higgs Couplings to Electroweakinos

The couplings to electroweakinos is affected by the soft symmetry breaking and the gaugino-

higgsino mixing to neutralinos and charginos (see section 3.2.1). Therefore, the couplings for

left- and right-handed electroweakinos to the CP-even neutral heavy Higgs

gL
�̃±
i �̃⌥

j H
= gR

�̃±
j �̃⌥

i H
=

1p
2sW

(cos↵Vj1 Ui2 + sin↵Vj2 Ui1) (3.2.24)

gL,R
�̃0
i �̃

0
jH

=

1

2sW
(Zj2 � tW Zj1) (cos↵Zi4 � sin↵Zi3) + i $ j (3.2.25)

is strongly dependent on the neutralino (chargino) mixing matrices Z (U , V) and therefore on the

soft parameters M
1

, M
2

, µ and tan� [14, 35]. Furthermore, due to the appearance of the Higgs

doublet mixing angle ↵, the couplings also depend on the Higgs masses, thus the parameter mA.

For the decoupling regime (mA � mZ), the mixing angle ↵ is small, thus, therms proportional

to sin↵ become negligible.

3.2.3 Heavy Higgs Decays
As squarks and slepton masses are expected to be heavy, the decay of heavy Higgs bosons to

SUSY particles was not in the main focus of previous analyses. However, it it possible for some

sparticles to be light, as it is for electroweakinos or in limited cases, as e.g. for strong sfermion

mixing, for 3

rd

generation sfermions. Studies of the pMSSM parameter space demonstrated a

branching ratio for heavy Higgs bosons H decaying to SUSY particles of up to 90 %, depending

on tan� [1]. As it is of importance for this work, this section will focus on the decay of heavy

Higgs bosons to electroweakinos.

12Here, no quartic interaction terms are considered.
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The decay width � of a neutral heavy Higgs boson H decaying to electroweakinos is defined as

�(H ! �̃i�̃j) ⇠ mH

"

�

(gLHij)
2

+ (gRHij)
2

�

 

1� m2

�̃i

m2

H

�
m2

�̃j

m2

H

!

� 4 ✏i ✏j g
L
Hij g

R
Hij

m�̃i m�̃j

m2

H

#

(3.2.26)

where �̃i�̃j can be a pair of neutralinos (�̃0

i �̃
0

j ) or charginos (�̃±
i �̃

⌥
j ), ✏i (✏j) is the sign of the ith

(jth

) electroweakino mass-eigenvalue and gLHij (gRHij) is the coupling constant for left- (right-)

handed electroweakinos (see section 3.2.2) [14, 15, 35]. As seen, the coupling is enhanced for

one negative mass eigenvalue (✏i 6= ✏j) or unequal sign of the left- and right-handed couplings

(sign(gLHij) 6= sign(gRHij)). Thus, an asymmetric decay into a light and a heavy electroweakino

is preferred if kinematically allowed.

Fig. 3.2.2 shows the calculated branching ratios B(H ! �̃�̃) = �(H ! �̃�̃)/�
total

for the decay

of H to neutralinos (left plot) and to charginos (right plot) for one specific set of parameters

(bino-like LSP, M
1

< µ < M
2

) in dependence of the Higgs mass. As seen in eq. 3.2.26 and

fig. 3.2.2, the decay width is enhanced for asymmetric decays (H ! �̃0

1

�̃0

2

or H ! �̃±
1

�̃⌥
2

) if

kinematically allowed. Furthermore, these plots show a preferred decay to a pair of charginos.

Figure 3.2.2: Branching ratios of heavy CP-even Higgs bosons (H) decaying to a pair of neutralinos
(left) and a pair of charginos (right) for a bino-like LSP dataset (M1 < µ < M2).

3.2.4 Higgs Boson Production Processes
The production of neutral Higgs bosons at the LHC is mainly given through the processes given

in table 3.2.3, where V (V ⇤
) are on-shell (off-shell) vector bosons and Q are 3

rd

generation

quarks [14, 15, 25]. In fig. 3.2.3, the Feynman diagrams for the main production processes of

MSSM Higgs bosons are given.

Production Mechanism Process

Higgs Radiation qq̄ ! V ⇤ ! V + h/H

Vector Boson Fusion qq ! V ⇤qV ⇤q ! qq + h/H

Gluon Fusion gg ! h/H/A

Bottom Quark Annihilation gg ! Q ¯QQ ¯Q ! Q ¯Q+ h/H/A

b¯b ! h/H/A

Table 3.2.3: Main processes of neutral Higgs production at the LHC.

16
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The production of the pseudoscalar A is suppressed for Higgs radiation and vector boson fusion

processes, as it does not couple to SM vector bosons on tree-level (see section 3.2.2). The coupling

to vector bosons to the neutral CP-even heavy Higgs boson is negligible for the decoupling

regime, which is why these processes are not considered in this work (see table 3.2.2). Therefore,

the dominating production processes are gluon fusion, where 3

rd

generation (s)quarks mainly

contribute to the triangle diagram, and the bottom quark annihilation processes, where two

bottom quarks annihilate to the Higgs boson.

For the gluon fusion process, two Feynman diagrams contribute equally to the total cross section

of heavy Higgs productions (see fig. A.2.1). The cross section is calculated using Feynman rules

and Feynman parameters (see Ref. [24]) with the final result for leading order calculations and

SM fermion contributions being

� (gg ! H) / ↵2

sm
2

H [⌧ (1 + (1� ⌧) f (⌧))]2 (3.2.27)

f (⌧) =

8

<

:

arcsin

2

⇣

1p
⌧

⌘

for ⌧ � 1

⇣

log

⇣

1+

p
1�⌧

1�
p
1�⌧

⌘

� i⇡
⌘

2

for ⌧ < 1

(3.2.28)

where ⌧ = (2mf/mH)

2

, ↵S is the strong coupling parameter, mf is the mass of the fermion

considered in the triangle and mH is the Higgs mass [41]. Due to their large mass, 3

rd

generation

quarks dominate in the calculation of the cross section in gluon fusion processes, with the contri-

bution of down-type quarks being enhanced for large tan�. The contribution of 3

rd

generation

sfermions

˜f is suppressed by a factor of mf/m ˜f , but can become important for low sfermion

masses m
˜f . The calculation of the triangle diagram in gluon fusion processes was reproduced

within the scope of this work and is given in appendix A.2.

As a result of up-type (down-type) couplings being suppressed (enhanced) by a factor of 1/ tan�
(tan�) (see table 3.2.2), large tan� (& 7) lead to bottom quark annihilation being the dominant

production channel of H [14, 15, 35]. Thus, two b-quark jets in the detector give an additional

handle on the search for resonant heavy Higgs bosons at the LHC.

Study on the Heavy Higgs Production Cross Section

Fig. 3.2.4 visualizes the calculated cross sections for neutral CP-even heavy Higgs boson produc-

tions in both processes, gluon fusion and bottom quark annihilation. The Higgs mass (upper

plots) and tan� dependence (lower plots) is visualized for one specific set of parameters. For

these calculations, all sfermions are assumed to be heavy (m
˜f ⇡ 1.5 TeV).

The behavior of the calculated cross section in gluon fusion changes for tan� & 7 as a result

of b-quark contributions dominating the triangle diagram. The bump at mH ⇠ 350 GeV (see

fig. 3.2.4, upper left) arises as a result of additional on-shell t-quark contributions in the triangle

diagram of gluon fusion processes, which is again suppressed for large tan� values.

The center-of-mass energy dependence for both production processes is shown in fig. 3.2.4 (lower

plots). In this work, the cross sections are calculated for

p
s = 14 TeV to determine the sensitivity

of the High-Luminosity LHC (HL-LHC) [42, 43] with 3 ab

�1

integrated luminosity. For future

colliders with center-of-mass energies of about

p
s ⇡ 100 TeV (e.g. the hadronic Future Circular

Collider FCC-hh [44]), an increase of the computed cross sections of more than one order of

magnitude is expected.
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3 Supersymmetry

Figure 3.2.3: Main production channels for heavy Higgs bosons at the LHC. Higgs radiation (upper left)
and vector boson fusion (lower left) are negligible for the decoupling regime (mH � mZ).
The main production processes are gluon fusion (middle), and bottom quark annihilation
(right). The figures were created using Jaxodraw-2.1 [4].

Figure 3.2.4: The Higgs boson production cross sections of gluon fusion (solid) and bottom quark
annihilation (dashed) processes in dependence of the Higgs mass (m�) (upper plots,p
s = 14 TeV) and the center-of-mass energy

p
s (lower plots) for tan� = 3 (left) and

tan� = 20 (right) for one specific set of parameters. These figures where calculated using
SusHi-1.6.1 [37, 38].
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3 Supersymmetry

3.3 Soft Symmetry Breaking in MSSM

Since the Higgs mechanism, as applied in the SM (see section 2.2), does not break supersymmetry,

a term leading to soft symmetry breaking (SSB) has to be added to the Lagrangian of MSSM. SSB

is necessary to allow heavier masses of sparticles compared to their SM partners. Furthermore,

if supersymmetry and the electroweak symmetry are broken, sparticles with same electric charge

mix.

In SUSY, two Higgs doublets with opposite hypercharge generate the masses of fermions with a

given isospin. In addition, they are responsible for generating the masses of the W and Z boson.

The superpotential VH , which is minimized to create soft symmetry breaking, is given by

VH = VD + VF + V
soft

(3.3.1)

VD =

g2
2

8

h

4|H†
1

·H
2

|2 � 2|H
1

|2|H
2

|2 + �|H
1

|2�2 + �|H
2

|2�2
i

+

g2
1

8

�|H
2

|2 � |H
1

|2�2 (3.3.2)

VF = µ2

�|H
1

|2 + |H
2

|2� (3.3.3)

V
soft

= m2

H1
H†

1

H
1

+m2

H2
H†

2

H
2

+Bµ (H
2

H
1

+ h.c.) (3.3.4)

where VD contains the quartic Higgs interactions, VF is the F term and V
soft

is the potential

arising from the soft SUSY breaking Higgs mass and the bilinear term. To achieve electroweak

symmetry breaking in MSSM, a soft SUSY breaking is a requirement [15]. Minimizing the

superpotential with

@VH

@H0

1

=

@VH

@H0

2

= 0 (3.3.5)

leads to the two necessary conditions for SSB

Bµ =

(m2

H1
�m2

H2
) tan 2� +m2

Z sin 2�

2

(3.3.6)

µ2

=

m2

H2
sin

2 � �m2

H1
cos

2 �

cos 2�
� m2

Z

2

(3.3.7)

where mH1 and mH2 are the scalar masses

13

. These conditions are especially important for

pMSSM, as it allows to lower the number of free parameters.

A detailed calculation of minimizing the superpotential was performed within the scope of this

work and is given in appendix A.3.

3.4 Standard Model Issues within Supersymmetry

There are many reasons, why SUSY is considered as the most promising extension of the SM.

Despite its simplicity, it is able to tackle some of the main problems of the Standard Model. This

section will give a brief overview of the main shortcomings of the SM (see section 2.3), and how

SUSY introduces a solution.

13The scalar masses mH1 and mH2 can be replaced with the more physical soft parameters µ and mA [15].
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3.4.1 Hierarchy Problem in SUSY
A possible solution to the hierarchy problem, as described in section 2.3.1, arises due to the equal

contribution of fermionic and bosonic (s)particles to the corrections of the Higgs mass. Their

equal contribution, but with opposite sign, cancels the quadratic terms in the calculation of the

Higgs mass (see eq. 2.3.1). In addition to the one example of the top quark contribution (see

fig. 3.4.1, left), corrections to the Higgs mass are added as a result of the top squark loop (see

fig. 3.4.1, right).

However, an exact cancellation of the quadratic contributions of the corrections is only possible for

particles and sparticles with equal (or close to equal) mass. To make the Higgs mass renormalized,

the supersymmetry breaking scale, and therefore the lightest MSSM particles, are expected to be

not far from 1 TeV. This effect has strong impacts on the heavy Higgs bosons arising in MSSM

(see section 3.2.1), resulting in an upper limit for their mass.

Figure 3.4.1: Feynman diagram for corrections to the Higgs mass due to top quarks (left) and stops
(right). The figure was created using Jaxodraw-2.1 [4].

3.4.2 Gauge Coupling Unification in SUSY
In the SM, the gauge couplings of the symmetry groups SU(3)

C

, SU(2)

L

and U(1)

Y

, labeled

as g
3

, g
2

and g
1

, respectively, do not exactly unify at the GUT-scale (see section 2.3.2). Many

theories of BSM physics address this problem by introducing new multiplets and therefore new

particles at high energy scales leading to corrections of the energy dependence of the couplings.

This can lead to gauge coupling unification at the GUT scale, paving the way for a Grand Unified

Theory.

Sparticles, introduced in Supersymmetric Grand Unified Theories (SUSY GUT), are held to have

masses at the TeV-scale. Thus, additional corrections to the gauge couplings arise due to the

contribution of those particles [45]. Fig. 3.4.2 shows the inverse couplings for SUSY GUT in

dependence of the logarithm of the energy, where ↵i = g2i /4⇡ for MSSM. As seen, the couplings

unify at an energy scale of about m
GUT

⇡ 10

16

GeV due to additional sparticle contributions at

10

4

GeV.

The boundary conditions as a result of enforcing gauge coupling unification reduces the number

of free parameters and constraints the SUSY GUT models. One example is the extension of

MSSM with enforced GUT scale unification, the minimal supergravity model (mSUGRA) [36],

with only 5 free parameters.

The gauge coupling unification at the GUT scale is not enforced in pMSSM and therefore not

considered in this work.

20



3 Supersymmetry

Figure 3.4.2: Energy-dependence of the gauge coupling constants in MSSM. Figure taken from Ref. [26].

3.4.3 Dark Matter Candidates
Another aspect of supersymmetry is that, other than the Standard Model, it is able to provide

a neutral stable particle, which can act as a DM candidate. In MSSM, the baryon (B) and

lepton number (L) is no longer conserved due to gauge invariant terms in the superpotential.

The introduction of a Z
2

symmetry, the R-parity

R = (�1)

3(B�L)+2s
(3.4.1)

where s is the spin of the particle, assures the conservation of those quantities again [15]. As

a result, supersymmetric particles are produced in even numbers and decay in odd numbers

of sparticles. The latter leads to a stable supersymmetric particle which can act as a DM

candidate.

Models containing the Lightest Supersymmetric Particle (LSP) as a DM candidate have to fulfill

the requirements concerning the DM relic density ⌦�̃0
1
h2 [46], the density of the DM particle at

the freeze-out in the early universe, where h is the Hubble constant. Thus, neutralinos have to

be produces in sufficient quantities in the early universe, leading to constraints on the neutralino

mass and the DM to SM annihilation cross section.

Left-handed sneutrinos are disfavored as a DM candidate due to their strong coupling to the Z
boson and therefore they are either excluded by direct DM experiments or annihilate too rapidly,

leading to a small relic abundance [47]. The lightest neutralino �̃0

1

is therefore held as a DM

candidate in supersymmetry, as is has no color or electric charge.
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The main goal of this work is the systematic analysis of heavy Higgs bosons decaying to SUSY

particles within pMSSM for the full 19-dimensional parameter space. Therefore, a pre-collected

dataset of the ATLAS collaboration is used. This set is particularly useful, as it applied a full

19-dimensional pMSSM parameter scan. In addition to the already applied constraints, the

parameter sets are checked against current constraints of the Higgs and flavor sector by us-

ing the codes HiggsBounds-4.3.1, HiggsSignals-1.4.0 and SuperIso-3.6, respectively. The

SModelS-1.1.1 framework allows to characterize decays in a model independent way using Sim-

plified Model Spectra (SMS) and is able to apply current constraints of the CMS and ATLAS

experiment.

This section gives an introduction to simplified models and the codes used in this work. The

SModelS framework is discussed in more detail, as it is crucial for characterizing decay modes

of the heavy Higgs boson. Furthermore, the ATLAS pMSSM dataset is introduced. A detailed

study of the excluded parameter space within this dataset has been performed, with its results

given in this section.

4.1 Simplified Model Spectra

The general interpretation of experimental results from BSM physics searches in collider ex-

periments has become difficult, as their results can be interpreted in a variety of theoretical

BSM models. One approach is the use of Simplified Model Spectra (SMS), where effective La-

grangians

14

with only a limited number of new particles are used. In this interpretation technique,

the process can be described using the masses and branching ratios of the new particles, as well

as the the production cross section of the effective interaction. These parameters are directly

related to observables in high-energy physics experiments. Thus, SMS approach assumptions are

not a function of the color, spin or polarization of the particles.

The results then are typically given in upper limits for the product of the cross section and the

branching ratio � ⇥ B for given particle masses [48] or in so-called efficiency map results, where

constraints are given on the total signal of one specific signal region (see section 4.2.3). As an

example for upper limit results, constraints on the decay of a supersymmetric quark into a quark

and a neutralino q̃ ! q+ �̃0

1

can be given as an upper limit on �⇥B as a function of the sparticle

masses mq̃, m�̃0
1

[49]. Even though, limits derived in the form of Simplified Model Spectra are

significantly weaker, they can be interpreted in any theoretical full model.

The Feynman diagrams for full models can also be reduced to SMS topologies with Feynman-

like graphs. One example is given in fig. 4.1.1, where the full model (left) of a Drell-Yan-like

neutralino and chargino production is re-drawn in an SMS equivalent topology (right), only

showing the detectable SM particles and missing transverse energy (MET) at the end of each

branch [49]. The production of the W boson in proton-proton collisions is redrawn in an effective

interaction, visualized as a circle with two outgoing legs.

14Here, ‘effective Lagrangians’ is meant in a sense that only a limited number of parameters are used.
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Figure 4.1.1: Feynman diagram for a full model (left) and the SMS topology (right). Figure taken from
Ref. [49].

4.2 The SModelS Framework

Current searches for supersymmetry at the LHC are still without success, pushing the constraints

on sparticle masses to the TeV scale. As simple BSM models are already excluded, the systematic

scan for new particles has become difficult. Due to a varying mass spectrum of theoretical

models, thus having different branching ratios of the included particles, an interpretation of

current collider constraints is non-trivial.

The SModelS-1.1.1 framework [49–51] addresses this problem by creating SMS topologies of a

given input in an SLHA file format. These SLHA files contain the mass spectrum, the production

cross sections and the decay branching ratios. The PySLHA [52] reader is used to read the input

SLHA files. By decomposing the supersymmetric input spectra for the given model into SMS

topologies, each resulting topology can then be tested separately against limits from LHC direct

SUSY searches. Fig. 4.2.1 gives a schematic overview of the SModelS working principle.

Figure 4.2.1: The working principle of the SModelS framework. Figure taken from Ref. [49].
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Simplified Models are defined by taking all possible decay modes into account (see fig. 4.2.2).

For each resulting topology, the output is reduced to the relevant signal. Thus, it only contains

the SM particles visible to the detector and MET in every branch, where only the � ⇥ B values

associated with the topology are stored (see fig. 4.1.1, right plot). The information of intermediate

new particles is not of particular interest for the analysis and therefore not stored. This allows

to decompose an input spectrum in a model independent way.

Figure 4.2.2: The decomposition procedure in the SModelS framework. Figure taken from Ref. [51].

To reduce the computing time of the decomposition, SModelS provides a �
cut

parameter. It

allows to neglect topologies with cross sections below the cut value. Since in this work SModelS
is used for the calculation of an unusually low production cross section of the mother particle

and therefore have to use an unusually low absolute �
cut

value of 10

�9

fb, a change of the

input parameter so a relative cut-value compared to the initial state production cross section

is proposed. This is particularly important for using SModelS for BSM searches, as it is done

here.

After decomposing the input of the theoretical model, the predicted � ⇥ B values of the SMS

topologies are compared to current upper limits from LHC direct SUSY searches at the CMS and

ATLAS experiment (see section 4.2.4). This is trivial for analyses of one particular topology, as

the experimental results provide the cross section and the masses of the analyzed BSM particles

(see section 4.2.3). However, most analyses constrain the sum of topologies, as e.g. mass degen-

erate light sleptons

˜l (m
˜l = mẽ = mµ̃). For those, it is a necessity to combine the decomposed

spectra before applying experimental constraints (see fig. 4.2.1, middle part).

Currently, SModelS is applicable for any BSM scenarios obeying a Z
2

symmetry (e.g. R-Parity).

New particles are produced in even numbers, which then decay to an odd number, resulting in

a missing transverse energy (MET) in the final state at the LHC.

Within SModelS, the production process is represented as an effective production, where the

detailed interaction is unknown and shown as a circle with two legs. The formalism is not

capable of directly decomposing resonant searches, as e.g. the heavy Higgs and its decay to

supersymmetric particles for this work. Therefore, the effective interaction is computed using

the product of the MSSM Higgs production cross section and the branching ratio of its decay

to SUSY particles �(pp ! H) ⇥ B(H ! SUSY SUSY ). This value is provided as an input to

the code, which is a particularly new and innovative way to classify the signatures from resonant

searches using SModelS. Fig. 4.2.3 visualizes the resonant heavy Higgs production, with its decay

to SUSY particles (left) and how it is provided in SModelS (right).
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Figure 4.2.3: Feynman-like diagram for resonant heavy Higgs productions at proton-proton collisions
with its decay to SUSY particles (left) in SMS topologies and how it is provided to the
SModelS framework (right). The figures were created using Jaxodraw-2.1 [4]

4.2.1 The SModelS Notation
During the decomposition procedure and in the final output, the SModelS framework uses bracket

notation describing the simplified model topologies. Since SModelS can deal with BSM obeying

the Z
2

symmetry, the output includes two branches enclosed by square brackets. In each branch,

again the vertices are enclosed by brackets and separated with commas. However, for better

readability and due to the simple signatures in the output, a simplified version of the bracket

notation is used in this work.

As the Z
2

symmetry leads to BSM particle pair productions, every branch includes MET at

the end of the decay chain. In the output, electrons and muons are combined to light leptons

(labeled l), as well as gluons and light quarks (u, d, c, s) are combined to jets.

Fig. 4.2.4 visualizes the SModelS notation principle with an example of a simple decay process.

There, the outermost brackets enfold each branch ([[l+],[⌫]] and [[l�, l+]]), separated with a

comma. The branches are sorted in size, each containing a list of vertices, again separated with

commas. The notation for the vertices include the final state SM particles of the decay process.

In the example given in fig. 4.2.4, the BSM particle of the upper branch decays to a light lepton

([l+]) and an intermediate new particle. The latter again decays into a neutrino ([⌫]) and the

final BSM particle, detectable as MET. The particle in the lower branch decays with an off-shell

neutral particle (e.g. the Z boson), visualized as two light leptons in one vertex ([l�, l+]).

Figure 4.2.4: Conversion of a Simplified Models Spectrum to the bracket notation used in SModelS.
Figure taken from Ref. [50].

4.2.2 Compression of Elements within SModelS
The SModelS framework uses two simplifications during the decomposition procedure, mass com-

pressions and invisible compressions. These processes are useful to reduce the output in having

fewer cascade decays. Thus, the result is more likely to be experimentally constrained.

25



4 Analysis Setup

• Invisible Compression

The process of invisible compression is used to neglect invisible decay products in the SMS

topologies. One example is given in fig. 4.2.4, where the decay into a neutrino will not

be visible to the detector. This vertex is then compressed, with the effective final state

momentum being the sum of the neutrino and the final state momenta. Thus, the analysis

performed by the framework results in equivalent topologies compared to experimental

searches.

• Mass Compression

Mass compression is performed for small mass splittings between two BSM states. SModelS
uses mass compressions to omit decays to nearly degenerate states. The parameter for the

mass difference can be adjusted to the experimental setup. The main advantage is the

resulting simplified topology being shorter and soft final states are reduced. The procedure

for mass compression is illustrated in fig. 4.2.5.

In this work, a limit on the mass splittings of �m = 5 GeV is used for this procedure.

This is of particular importance for the higgsino-like LSP dataset, where the mass difference

between the lightest chargino and the two lightest neutralinos is small. Therefore the decay

of a heavy Higgs to a pair of charginos can lead to mono-W signatures, where the light

chargino decays invisibly (‘soft’) to the LSP (see fig. 5.0.1).

Figure 4.2.5: Mass compression in SModelS. Final states with masses lower than 5 GeV (soft final states)
will not be visible in the software output. Figure taken from Ref. [50].

4.2.3 The SModelS Database
The database of the SModelS framework is based on SMS results from current LHC direct SUSY

searches. It takes the constraints from publications and preliminary results from the CMS and

ATLAS experiments into account. However, the user is able to specify the database for their

purposes. The experimental results can be categorized in upper limit and efficiency map results.

• Upper Limit Results

Upper limit (UL) results provide experimental limits on the product of the cross section

and the branching ratio �⇥B and are thus able to constrain one specific simplified model.

The 95 % C.L. limits are typically provided by experiments in UL maps as a function of

the BSM particle masses. One example is the previously mentioned decay of a squark into

a quark and a neutralino q̃ ! q+ �̃0

1

, where upper limit constraints on the signal (�⇥B)
UL

are given as a function of the sparticle masses mq̃, m�̃0
1

[49].

• Efficiency Map Results

Efficiency map (EM) results constrain the total signal of one specific signal region, given

by

P

� ⇥ B ⇥ ✏. Here, the efficiency ✏ is denoted for the product of the acceptance and
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the efficiency A ⇥ ✏. The total signal is calculated using efficiency maps, which are grids

of simulated efficiencies for specific simplified models and signal regions. These maps are

computed by determining the number of signal events after applying all cuts using Monte-

Carlo data.

4.2.4 The SModelS Output
After performing the previously discussed decomposition procedure, the theoretical predictions

(signal cross sections) are compared with experimental upper limits (� ⇥ B)
UL

for ATLAS and

CMS results, where SMS interpretations are currently available.

The theory predictions for each topology are confronted with experimental constraints with

95 % C.L. by calculating the r-value

r =

(� ⇥ B)
th

(� ⇥ B)
UL

⇢

> 1 (excluded)

< 1 (not excluded)

(4.2.1)

where a model is excluded for at least one prediction being r > 1. A detailed description about

the procedure of comparing theoretical predictions to UL-type and EM-type results can be found

in Ref. [50].

In addition, SModelS categorizes its output containing the SMS topologies and their calculated

� ⇥ B values into blocks of missing topologies, long-cascade decays and asymmetric decays.

• Missing Topologies

The SModelS output provides useful information about so-called missing topologies. In

other words, these are topologies for which no corresponding SMS result was found in the

SModelS database, independent of the particle masses. Using the decomposition output,

topologies with equal final states are summed, resulting in indistinguishable initial states.

The topologies are accompanied by their theoretical prediction of � ⇥ B.

As this work is classifying the Higgs decays to supersymmetric particles and defining new

ways to search for MSSM Higgs at the LHC, the missing topologies module is of special

interest. By applying SModelS with a reduced database

15

, the missing topology block

categorizes the main possible decay modes of a particle. Missing topologies are further

classified into long-cascade decays and asymmetric decays.

• Long-Cascade Decays

Long-cascade decays are a subgroup of the missing topologies module. This block provides

information about the mother particles and the theoretical prediction of � ⇥ B of special

decay chains with more than one intermediate state in at least one branch. The expected

signal is grouped according to their mother particles.

To analyze the possible decays of the heavy Higgs boson in this work, the long-cascade

module is used to study the complexity of the decay process. Long-cascade decays arise

mainly from heavy mother particles with kinematically allowed sub-decays to intermediate

sparticle states. Since large cross sections are the result of low Higgs masses, it is expected

that they are suppressed within the conditions of this work.

15SModelS cannot be operated without a database. Therefore, a reduced database with only one insignificant
entry is used to classify all possible decay modes. In this work, the decay into a stop pair (pp ! H ! ˜t˜t)
has been chosen. The dataset mostly contains heavy top squarks, thus this decay process is kinematically
forbidden, which has been checked numerically.

27



4 Analysis Setup

• Asymmetric Decays

Asymmetric decays are a subgroup of the missing topologies module, where one branch

of the SMS topology differs from the other. The module provides information about the

mother particles and the theoretical prediction of � ⇥ B. The theoretical predictions are

then grouped according to their initially produced particles. Long-cascade decays are not

included in the output of this module.

4.3 Additional Frameworks

In order to obtain the valid parameter space of pMSSM for resonant heavy Higgs searches,

constraints from the flavor and Higgs sector have been applied to the pre-collected dataset us-

ing SuperIso-3.6, HiggsBounds-4.3.1 and HiggsSignals-1.4.0. Furthermore, the produc-

tion cross section of the CP-even neutral heavy Higgs has been calculated as an input for the

SModelS-1.1.1 framework with SusHi-1.6.1. The following will give a brief introduction to

those additional frameworks used in this work.

4.3.1 SuperIso
SuperIso-3.6 [53, 54] computes flavor physics observables, such as the branching ratios, lifetime

and masses of mesons (e.g. ⇡+,K+, D+

s , B
+, Bs), within the Standard Model, the general two

Higgs doublet (2HDM) and a variety of supersymmetric models.

The computation of isospin symmetry breaking observables turn out to be very restrictive to the

parameter space of BSM physics models, as sparticles strongly contribute to those measured val-

ues. Especially rare B meson decays, with the flavor changing neutral current (FCNC) transitions

b ! s�, constrain the parameter space of MSSM. This work uses SuperIso to calculate NLO

supersymmetric contributions to FCNCs and other rare decays. Therefore, SM inputs and the

19 free parameters of pMSSM are used to calculate the branching ratios, where B(B ! Xs�),
B(Bs ! µ+µ�

) and B(B+ ! ⌧+⌫⌧ ) are from special interest. Furthermore, the anomalous

magnetic moment of the muon aµ =

1

2

(gµ � 2) [55] is computed and checked against current

observations.

Details about the applied constraints of the flavor sector are given in section 4.4, with the ranges

of the calculated observables given in table 4.4.3.

4.3.2 HiggsBounds
Limits on the MSSM heavy Higgs sector are checked using HiggsBounds-4.3.1 [56, 57], written

in Fortran. It is able to handle a variety of BSM physics models containing both, neutral and

charged Higgs bosons. HiggsBounds applies limits from heavy Higgs searches at LEP, Tevatron

and the LHC, where for the latter, analyses performed at a center-of mass energy of

p
s = 7 TeV

and 8 TeV are taken into account.

By using the SLHA input-files with specified values for the Higgs masses, branching ratios and

their production cross section, HiggsBounds computes the predicted signal rates for specific

search channels considered in its experimental database. Their relevant quantities are the prod-

uct of the cross sections and the branching ratios, denoted with Q
model

(X), where X is the
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production and decay process. HiggsBounds first determines the analysis with the highest sta-

tistical sensitivity X
0

using the expected experimental limits Q
expec

. In a second step, it performs

the exclusion test by calculating the ratio to the observed limit Q
obs

k
0

=

Q
model

(X
0

)

Q
obs

(X
0

)

⇢

> 1 (excluded)

< 1 (not excluded)

(4.3.1)

to be able to exclude parameter sets at 95 % C.L.. The detailed statistical method to ensure a

true 95 % C.L. exclusion limit is given in Ref. [56].

For their calculations, HiggsBounds requires special input blocks in the SLHA file format to

calculate the theoretical predictions Q
model

. This block contains the effective couplings of neutral

Higgs bosons (h, H, A) to SM bosons, and 3

rd

generation fermions and can be provided by e.g.

SPheno [58, 59]. The dataset used in this work already contains these SLHA blocks, which is

why SPheno is not used here

16

.

It is recommended to use HiggsBounds in combination with HiggsSignals, to probe the full

Higgs sector.

4.3.3 HiggsSignals
HiggsSignals-1.4.0 [60] is a Fortran code based on HiggsBounds and allows to test a given

parameter set in the SLHA file format against current limits from LEP, Tevatron and the LHC

for a variety of models (e.g. MSSM). HiggsSignals compares the expected signal of heavy Higgs

bosons with current observations. It applies either a mass-centered or a peak-centered approach

for calculating the compatibility of a given input with experimental results. These approaches

are complementary.

• The mass-centered �2

method

In the mass-centered �2

method, HiggsSignals computes the expected signal of every

neutral Higgs boson at the corresponding fixed Higgs mass in the given input-file and

compares it to signal rate measurements of the above mentioned experiments. These cal-

culations assume a fixed Higgs boson mass, with a �2

test being performed at that mass.

The signal-rates of multiple Higgs bosons are combined, if it is not able to resolve them in

experimental results.

• The peak-centered �2

method

The peak-centered �2

method tries to assign to each observed local excess in experimental

results any number of Higgs bosons provided by the input model. For those signals, the

corresponding Higgs masses enter in the calculation of the �2

value [60]. It is tested, if the

observed Higgs boson signal at a given mass is compatible with the influences of all Higgs

bosons in the given model. Therefore, typically channels with a high mass resolution, i.e.

h ! �� and h ! ZZ ! 4l, are used.

Thus, HiggsSignals is capable of comparing the (combined) expected signal rates from the

neutral MSSM Higgs bosons with current light Higgs measurements. In this work, a mass-

centered �2

approach with an exclusion limit of 90 % C.L. is applied. It was found, that the

in this work used parameter sets are highly sensitive to the limit set by HiggsSignals (see

section 4.4.1).

16An early self-collected flat-prior parameter scan of this work showed a calculation error within SPheno. This
lead to a large amount of parameter sets being mistakenly excluded by HiggsBounds. Therefore, collecting a
dataset was not possible within this work. According to the creator of SPheno, this problem is solved in the
upcoming version.
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4.3.4 SusHi
The production of heavy Higgs bosons in MSSM are studied in this work using the SusHi-1.6.1
framework [37, 38]. The provided input-files in the SLHA file format can be used to calculate the

production cross section for the neutral and charged Higgs bosons within various BSM models, as

MSSM, NMSSM, mSUGRA and 2HDM. The calculations include gluon-fusion and heavy quark

annihilation processes (see fig. 3.2.3). For the latter, only bottom quark annihilations are taken

into account in this work, as they can become dominant for large tan� values in 2HDM and

(N)MSSM.

• The gluon fusion process

The gluon fusion process is the most dominating production channel for low values of

tan� in 2HDM and (N)MSSM. In leading order calculations, the (virtual) 3

rd

generation

(s)fermions are mainly contributing in the triangle (calculation given in appendix A.2). In

SusHi, the gluon fusion process can be calculated up to NNLO QCD corrections and up

to N

3

LO for the neutral CP-even Higgs boson production in the heavy-top limit [61]. In

supersymmetric models, the contribution of squarks q̃ is typically suppressed by a factor of

mq/mq̃. Thus, only the contribution of light bottom squarks

˜b in the triangle can become

significant for low sbottom masses and large tan� with enhanced Yukawa coupling.

• The bottom quark annihilation process

Even though, the contribution of bottom quark annihilation processes for Higgs produc-

tions is negligible within SM calculations, it becomes the dominating process for a large

parameter (sub-)space within 2HDM and (N)MSSM. The processes of b¯b ! � and gg ! b¯b�
can be calculated up to NNLO QCD using bottom quark PDFs.

SusHi can be linked to various Higgs-related frameworks, as FeynHiggs [39] to calculate the

MSSM Higgs boson masses, or HiggsBounds and HiggsSignals to check against current exper-

imental constraints. SusHi is furthermore linked to the LHAPDF library [62], which provides a

variety of PDF sets for (s)quarks and gluons, used within the calculations.

The detailed calculations of (N)NLO corrections within the SusHi framework are given in Ref. [37,

38]

4.4 The ATLAS pMSSM Dataset

For the study within this work, a pre-collected and categorized dataset from a multi-dimensional

flat-prior pMSSM parameter scan is used [63–67]. The scan is performed for the full 19-

dimensional parameter space with its ranges given in table 4.4.1. The upper limit of 4 TeV

for the mass parameters are chosen to ensure all new states are kinematically accessible at the

LHC. A further increase above 4 TeV has very little effects in most cases [67]. A higher maximal

value for At is implied, as it especially affects corrections to the Higgs mass [67]. The point selec-

tion [67] of the scan requires the parameter sets to satisfy pMSSM assumptions (see section 3.2),

positive mass-squared values (no tachyons) and the LSP being the lightest neutralino �̃0

1

. The

SM input values for the scan are given in table 4.4.2.

The SUSY spectrum is calculated using SOFTSUSY-3.4.0 [68–70], where all parameter sets re-

sulting in an error within the spectrum computation are discarded

17

. To ensure the accuracy

of the SUSY mass spectrum, the values are recalculated using SuSpect [71]. Parameter sets

with deviations of more than 50 % are removed. The Higgs masses are re-computed using

17A detailed description about the occurring error messages can be found in the appendix of Ref. [67].
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Lower Limit Parameter Upper Limit Description

90 GeV  Ml̃1
= Ml̃2

 4000 GeV Left-handed 1

st- and 2

nd gen slepton

90 GeV  MẽR = Mµ̃R  4000 GeV Right-handed 1

st- and 2

nd gen slepton

90 GeV  ML̃3
 4000 GeV Left-handed 3

rd gen slepton

90 GeV  M⌧̃R  4000 GeV Right-handed 3

rd gen slepton

200 GeV  Mq̃1 = Mq̃2  4000 GeV Left-handed 1

st- and 2

nd gen squark

200 GeV  MũR = Mc̃R  4000 GeV Right-handed 1

st- and 2

nd gen up-type squark

200 GeV  Md̃R
= Ms̃R  4000 GeV Right-handed 1

st- and 2

nd gen down-type squark

100 GeV  MQ̃3
 4000 GeV Left-handed 3

rd gen squark

100 GeV  Mt̃R
 4000 GeV Right-handed 3

rd gen up-type squark

100 GeV  Mb̃R
 4000 GeV Right-handed 3

rd gen down-type squark

0 GeV  |M1|  4000 GeV Bino mass parameter

70 GeV  |M2|  4000 GeV Wino mass parameter

80 GeV  |µ|  4000 GeV Higgsino mass parameter

200 GeV  M3  4000 GeV Gluino mass parameter

0 GeV  |At|  8000 GeV Trilinear top quark coupling

0 GeV  |Ab|  4000 GeV Trilinear bottom quark coupling

0 GeV  |A⌧ |  4000 GeV Trilinear ⌧ lepton coupling

100 GeV  |mA|  4000 GeV CP-odd Higgs boson mass

1  tan�  60 Ratio of the Higgs vacuum expectation values

Table 4.4.1: Parameter range for the pMSSM scan [67].

FeynHiggs-2.10.0 [39], where the light Higgs mass includes corrections up to N

3

LO and has to

be within 5 GeV of the calculations of SOFTSUSY. The branching ratios of the given parameter sets

are computed using SUSY-HIT-1.3 [72], HDECAY-5.11 [73] and MadGraph5_aMC@NLO-2.1.1 [74],

where any sets resulting in a negative branching ratio or a decay width larger than �

total

> 1 TeV

are discarded [67].

The pre-collected data sample, stored in the SLHA file format, already satisfies current limits

of 22 distinct ATLAS analyses, given in Ref. [67]. Table 4.4.3 shows the additionally applied con-

straints, where the observables within the flavor sector are computed using micrOMEGAs-3.5.5 [75].

Here, especially the branching ratios of B(B ! Xs�), B(Bs ! µ+µ�
) and B(B+ ! ⌧+⌫⌧ )

are constraining pMSSM models, where 2� constraints are applied. The computed value of

B(Bs ! µ+µ�
) is rescaled by a factor of (1 � 0.088)�1

to compare the values with experi-

mental data, as proposed in Ref. [76]. Furthermore, the deviation of the anomalous magnetic

moment of the muon �(g � 2)µ and the electroweak parameter �⇢ are computed, where 3�
constraints are applied. The latter uses limits from the radiative corrections to the Z boson

coupling strength �T , with �⇢ = ↵�T and ↵(mZ) = 1/128.

The LSP is a stable DM candidate and thus has a cosmological abundance. Nevertheless it is not

clear, if it solely responsible for the DM content in the universe. Therefore, the cold dark matter

relic density ⌦

CDM

h2 is taken as an upper limit on the LSP abundance. The code micrOMEGAs
is used to compute the neutralino-nucleon cross sections, which are then scaled to calculate the

effective dark matter cross sections [67]. These values are allowed to be a factor of four higher
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Parameter Value Description

↵(mZ) 127.918 QED coupling parameter

↵s(mZ) 0.1198 QCD coupling parameter

mZ 91.1875 GeV Z boson mass

�Z 2.4952 GeV Total Z boson decay width

sin

2 ✓W 0.22264 sin

2 of the Weinberg angle

mW 80.398 GeV W boson mass

�W 2.140 GeV Total W boson decay width

ms(1 GeV) 0.128 GeV Strange quark mass

mpole

c 1.666 GeV Charm quark pole-mass

mb 4.164 GeV Bottom quark mass

mpole

b 4.80 GeV Bottom quark pole-mass

mpole

t 172.6 GeV Top quark pole-mass

Vus 0.2255

Vcb 41.6⇥ 10

�3

CKM-matrix elements
Vub 4.31⇥ 10

�3

Vub/Vcb 0.104

mB 5.279 GeV B-meson mass

fB 0.216 GeV B-meson decay constant

⌧B 1.643 ps B-meson mean lifetime

fBs 0.230 GeV Bs-meson decay constant

⌧Bs 1.47 ps Bs-meson mean lifetime

Table 4.4.2: Standard Model input parameters for the pMSSM parameter scan [63].

than experimental limits, as uncertainties of nucleon form factors are taken into account [67].

Combined LEP results are applied to the parameter sets, where especially constraints on the

invisible width of the Z boson (�

inv

(Z) < 2 MeV) and lower limits on sparticle masses are taken

into account. Due to the latter, charged sparticles have to have a mass above 100 GeV, light

squarks have to be heavier than 200 GeV. A lower limit for chargino masses of 103 GeV is the

result of sneutrino masses being heavier than 160 GeV and the mass splitting between the lightest

chargino and the LSP being at least 2 GeV [67].

Due to expected theory uncertainties, the range of the light Higgs boson mass is fixed to be

between 124 and 128 GeV.

The above mentioned constraints are already applied in the pre-collected data sample. In addi-

tion, the parameter sets have to obey 2� limits from experimental heavy Higgs searches, which

are checked in this work using the code HiggsBounds-4.3.1 [57, 60, 77]. Constraints in the light

Higgs sector are checked using HiggsSignals-1.4.0 [60], where a limit of 90 % C.L. is applied.

As previous constraints only limit the range of the light Higgs boson, HiggsSignals strongly

influence the valid parameter space (see section 4.4.1).

In addition to the already applied constraints within the flavor sector, the same conditions are

used by checking the parameter sets with SuperIso-3.6 [53, 54] to ensure no anomalies in the
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Lower Limit Parameter Upper Limit Description

�0.0005  �⇢  0.0017 Electroweak parameter

�17.7⇥ 10

�10  �(g � 2)µ  43.8⇥ 10

�10 Anomalous magnetic moment of the muon

2.69⇥ 10

�4  B(b ! s�)  3.87⇥ 10

�4 Branching ratio FCNC

1.6⇥ 10

�9  B(Bs ! µ+µ�
)  4.2⇥ 10

�9 Branching ratio Bs ! µµ

66⇥ 10

�6  B(B+ ! ⌧+⌫⌧ )  161⇥ 10

�6 Branching ratio B+ ! ⌧+⌫⌧

⌦�̃0
1
h2  0.1208 Cold dark matter energy density

�

inv(SUSY)

(Z)  2 MeV Z boson decay width to invisible

100 GeV  mX̃± Lightest charged sparticle mass

103 GeV  m
�̃±
1

Lightest chargino mass

200 GeV  mq̃ Lightest squark mass

124 GeV  mh  128 GeV Light Higgs boson mass

Table 4.4.3: Constraints applied to the MSSM parameter scan [67].

applied codes.

SLHA files containing long-lived sparticles (c⌧ > 1 mm) are removed from the analysis, as the

SModelS framework cannot handle the resulting displaced vertex signatures. Since the aim of

this work is to characterize decays of the neutral CP-even heavy Higgs H to supersymmetric

particles, parameter sets where H solely decays to SM particles are discarded.

A detailed list of the number of removed files is given in table 4.4.5.

The total parameter sample is, according to the dominant part of the neutralino mixing matrix Z,

categorized into three parts: bino-like, wino-like and higgsino-like (see table 4.4.4). In this work,

we only use the bino- and higgsino-set. Due to the small mass difference between the lightest

chargino �̃±
1

and the wino-like LSP, a majority of the parameters in the wino-set result in long-

lived charged particles, leading to displaced vertex signatures in the detector (see fig. 4.4.1 and

table 4.4.5). Since the newest version of the SModelS framework, being able to process displaced

vertex signatures, is currently under development, a future analysis of the wino-set using SModelS
is proposed.

Type Definition Sample Size

Bino-like LSP Z2
11 > max(Z2

12,Z2
13 + Z2

14) 31.112

Higgsino-like LSP (Z2
13 + Z2

14) > max(Z2
11,Z2

12) 59.044

Wino-like LSP Z2
12 > max(Z2

11,Z2
13 + Z2

14) 39.816

Table 4.4.4: Sample size after applying all constraints and definition of the categorized parameter
sets [67].

4.4.1 Study of the Excluded Parameter Space
Direct SUSY searches of the ATLAS experiment already constrain the pMSSM parameter space,

especially those resulting in light 3

rd

generation squark and slepton masses. Upper limits from

22 ATLAS searches and constraints on the SUSY mass spectrum, the invisible Z boson decay
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width, the cold dark matter relic density and the limits of the flavor sector (see section 4.4 and

table 4.4.3), already exclude about 41 % of the initial sample size. Limits in the Higgs and

flavor sector, as well as necessary conditions for this analysis further reduce the valid number of

parameter sets. This section will give a detailed study on the excluded parameter sets due to the

in this work applied constraints. A detailed listing of the excluded sets in the applied ordering

is given in table 4.4.5.

About 5.4 % (12.1 %) of the initial higgsino-like LSP (bino-like LSP) dataset is excluded due

to SLHA files not containing H decays to SUSY particles. Furthermore, 5.3 % (4.2 %) contain

long-lived sparticles and can thus not be analyzed by the SModelS framework. A limited number

of SLHA files are removed, as the resulting �⇥B values are below the �
cut

parameter of SModelS
(see section 4.2). These parameter sets contain very heavy Higgs bosons, reducing their produc-

tion cross section. Furthermore, heavy LSPs lead to small branching ratios to SUSY particles.

Thus, these parameter sets are not significant for this work.

For the valid parameter sets it is interesting to note the large amount of excluded sets by

HiggsSignals, using 90 % C.L within its mass-centered �2

method. Initial limits only fix the

light Higgs mass range. Therefore, HiggsSignals is able to exclude the sets as a result of limits

on the Higgs boson signal rates. A check of current constraints within the light and heavy Higgs

sector is proposed for all SUSY parameter scans, as fixing the light Higgs mass is not sufficient.

It should be noted, that the dataset is highly sensitive to the applied limit of HiggsSignals.
An increase to 95 % C.L. reduces the dataset to about 18.000 and 38.500 valid points for the

bino-like and higgsino-like LSP set, respectively.

Constraints Bino-like LSP Higgsino-like LSP Wino-like LSP

Initial sample size (ATLAS) 103.410 126.684 80.233

Initial valid sample size (ATLAS) 61.370 77.981 43.680

No decay mode to SUSY particles 7.432 4.223 3.864

Long-lived sparticles (c⌧ > 1 mm) 2.591 4.128 (36.817)

Excluded by SuperIso (2�/3�) 1.781 1.957

Excluded by HiggsBounds (2�) 120 154

Excluded by HiggsSignals (90 % C.L.) 18.168 8.122

Not processed (max(� ⇥ B) < 10

�9 fb) 166 353

Valid sample size 31.112 59.044 39.816

Table 4.4.5: Breakdown of the excluded parameter sets. The wino-like LSP dataset is not treated in
the analysis using SModelS and therefore, no constraints are applied.

Fig. 4.4.1 visualizes the fraction of the ATLAS pMSSM parameter study as a function of the

light chargino lifetime c⌧ . SLHA files with lifetimes of sparticles above c⌧ > 1 mm are discarded

in this study. As seen, the majority of the parameter sets in the wino-like LSP sample contain

charginos with a lifetime of about c⌧(�̃±
1

) ⇡ 50 mm as a result of the lowest electroweakino mass

parameter being M
2

and thus, the small mass difference between the chargino and the LSP.

Due to the large amount of long-lived sparticles in the wino-like LSP dataset, this set has not

been studied using SModelS. Nevertheless, the dependence of the chargino lifetime on the lightest

chargino and the heavy Higgs mass has been analyzed for wino-like LSPs. For this study, no

constraints from the light and heavy Higgs sector were applied. Decays of heavy Higgs bosons

into wino-like LSPs mainly lead to displaced vertex signatures in the detector. Promising results
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Figure 4.4.1: Lifetime of the lightest chargino c⌧(�̃±
1 ) for the categorized parameter sets.

can be found for the calculated cross sections, as discussed in section 5.7.

The excluded parameter sets in the mA � tan� plane (upper plots) and in the relevant elec-

troweakino soft parameter planes (middle/lower plots) for higgsino-like and bino-like LSPs are

visualized in fig. 4.4.2 for the exclusion of long-lived sparticles and parameter sets with no decay

mode of heavy Higgs bosons to SUSY particles. Fig. 4.4.3 gives the sets for the exclusion in the

flavor and Higgs sector.

Removed parameter sets as a result of heavy Higgs bosons only decaying to SM particles are the

result of low Higgs masses (mA ⇡ mH) and heavy sparticles. Therefore, a decay is kinematically

forbidden. The large electroweakino masses are the result of large values of the relevant soft

parameters M
1

, M
2

and µ (see fig. 4.4.2, middle/lower plots). Here, especially a large value of

the lowest soft parameter (µ for higgsino-like LSPs, M
1

for bino-like LSPs) plays a crucial role,

as it leads to heavy LSPs. Squarks and sleptons are in general heavy for those datasets.

Long-lived sparticles arise due to small mass-differences to the LSP. Typically, the lightest

chargino �̃±
1

, or in limited cases light tau sleptons ⌧̃ or bottom squarks

˜b are long-lived in

the underlying dataset. The latter are mainly due to strong mixing of left-/right-handed com-

ponents and thus, one eigenstate having a mass close to the LSP mass. A decay into their SM

superpartner and the LSP is then kinematically forbidden. Light charginos arise due to a highly

mixed electroweakino sector, where the lightest neutralinos and the lightest chargino are nearly

degenerate in mass (see fig. 4.4.2, middle/lower plots).

As seen in fig. 4.4.3, the analyses on heavy Higgs bosons included in HiggsBounds are mainly

able to exclude specific regions with heavy Higgs masses of about mH ⇡ mA ⇡ 1 TeV for a

range of tan� between 30 < tan� < 50, where the Yukawa couplings to down-type squark is

strongly enhanced. It is expected, that other excluded parameter sets are not included in the

initial dataset, as they are already removed due to limitations of ATLAS analyses.

Furthermore, a large amout of excluded parameter sets by HiggsSignals is found for positive

values of the higgsino mass parameter µ > 0. It is not known, if this is the result of strong

constraints from the above mentioned experiments or an enhanced signal due to contributions

of sparticles. No anomalies were found during the analysis of the excluded parameter space.

Exlcuded sets by SuperIso mainly arise due to small deviations in the calculation of the flavor

sector observables of SuperIso to the previously applied code micrOMEGAs. Here, especially the

increasing amount of excluded parameter sets for large tan� is seen. The enhanced Yukawa

couplings to down-type squarks leads to non-negligible contributions of those sparticles to the

flavor observables.
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Figure 4.4.2: Study of the excluded parameter sets due to long-lived sparticles or no decay mode to
sparticles in the relevant parameter planes for the higgsino-like and bino-like LSP datasets.

36



4 Analysis Setup

Figure 4.4.3: Study of the excluded parameter sets in the Higgs- and flavor sector in the relevant
parameter planes for the higgsino-like and bino-like LSP datasets.
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5 Results

The aim of this work is the systematic analysis of the viable pMSSM parameter space using

SusHi-1.6.1 [37, 38] to calculate the production cross sections and SModelS-1.1.1 [49, 50, 52,

78–80] to classify decay channels of heavy Higgs bosons (H). A reduced database is used in the

SModelS framework to retrieve all possible decay modes of H to sparticles within the missing

topology block. Thus, no additional constraints from LHC direct SUSY searches are applied

(see section 4). Nevertheless, studies on current constraints from LHC Run 1 and Run 2 are

given in section 5.5. Furthermore, the regions with maximal signal at the LHC are identified

for the signatures of heavy Higgs decays. A systematic study of the parameter dependence for

heavy Higgs production and decays is done for the resulting signatures. Since the wino-like

LSP dataset contains mostly long-lived charged particles, it is not possible to analyze it using

SModelS. However, a brief study on the lifetime of light charginos in this set is performed.

The resulting missing topology signatures of the bino- and higgsino-like LSP dataset are domi-

nated by the asymmetric decay of the heavy Higgs boson to a light and a heavy electroweakino

state. The decay of the latter leaves an on- or off-shell vector boson (Z,W ) or light Higgs (h)

signature in the detector. For the off-shell states, the dominating channels are Z⇤,W ⇤ ! jet jet
and Z⇤, h⇤ ! b¯b, where jets are light quarks of the 1

st

and 2

nd

generation (jet 2 {u, d, s, c}) or

gluons. In a limited number of files, the soft W boson decays leptonically (W ⇤ ! l ⌫l), where a

single 1

st

or 2

nd

generation lepton (l 2 {e, µ}) is visible to the detector.

The analysis of the missing topologies can be presented in two ways, either by showing the most

frequent missing topologies in a certain parameter space, or by selecting for each parameter point

the missing topology with the highest cross section. The upper plots in fig. 5.0.2 visualizes the

five most frequent occurring signatures from resonant heavy Higgs decays to supersymmetric

particles. The most dominating ones is given in the lower plots.

Mono-X signatures (X = h, W , Z) are found to be the most frequent occurring, as well as

the most dominant missing topologies, having the highest cross sections in up to 41 % of the

data points. They occur as a result of the asymmetric decay of a heavy Higgs to a light and

a heavy neutralino or chargino, as asymmetric decays are preferred for heavy Higgs bosons if

kinematically allowed (see section 3.2.3). Fig. 5.0.1 visualizes the Feynman diagrams for the

simplest heavy Higgs decays with mono-X signatures. In these decay processes, the heavier

electroweakino state decays with an on-shell X (X = h, W , Z) to the final state, with the lighter

state being stable or decaying to soft objects.

Mono-Z and mono-h signatures appear due to the asymmetric decay of H to neutralinos, with

a soft decay of the lighter state and a decay of the heavier neutralino to a Z or h boson and the

LSP

18

. Even though, the vertex �̃0

i ! h�̃0

1

(i 2 {2, 3}) is larger compared to �̃0

i ! Z�̃0

1

[35] in

the bino-like LSP dataset with highly mixed bino-/higgsino-like LSPs (see section 5.1.1), mono-

Z signatures dominating the Higgs decay is found. This is the result of the following: The

branching ratios of electroweakinos decaying to on-shell Z and h are very similar, even though,

18As given in table 5.0.1, the decay into the LSP can be replaced with a kinematically allowed decay to an
electroweakino, which then decays soft.
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Figure 5.0.1: Feynman diagrams for heavy Higgs decays with mono-X signature (i < j). The figures
were created using Jaxodraw-2.1 [4].

the latter is slightly larger. The larger branching ratio for decays to h is the result of the coupling

of the light Higgs to the admixture of bino-/higgsino-components, where Z stronger couples to

the pure higgsino-component of electroweakinos [35]. However, for decays to Z bosons, more

decay modes are possible, as e.g. the mass difference of two neutralinos being below the light

Higgs mass and thus a decay into the latter is kinematically forbidden. SModelS sums over the

initial states with same final signatures, leading to larger � ⇥ B values for mono-Z signatures.

Besides H decaying into a light and heavy neutralino state, mono-Z and mono-h signatures are

also found for Higgs decaying to a pair of charginos. There, the heavier chargino �̃±
2

decays to

the lighter one (�̃±
2

! Z/h �̃±
1

) and both light charginos decay to soft final states and the LSP. If

kinematically allowed, this process can be dominant, as the decay to higgsino- and wino-like states

are preferred (see section 5.1.1). Thus, decays of Higgs to charginos results in higher branching

ratios compared to an asymmetric decay to neutralinos. Furthermore, both possible channels

(H ! �̃+

1

�̃�
2

and H ! �̃�
1

�̃+

2

) are summed. The soft decay reduces the total � ⇥ B ⇥ B
soft

only

marginally, as the branching ratio to soft final states is summed over all possible decay modes

(W ⇤
soft

! jet jet and W ⇤
soft

! l ⌫l, with l 2 {e�, e+, µ�, µ+} and jet 2 {u, d, s, c}).
Mono-W signatures are the result of H decaying into a light and heavy chargino, where the (light)

heavy state decays to an (soft off-shell) on-shell W boson and the LSP, with W ⇤
soft

! jet jet,
leading to two soft jets (�m < 5 GeV) not visible to the detector.

In addition, this signature can be the result of a H decay to two neutralinos, where the heavier

state further decays to a W boson and a light chargino. The latter then decays soft to the LSP.

Only a minority of the bino-like LSP dataset contains mono-W signatures, as the lightest chargino

state is higgsino-like and thus, a decay to a W boson is suppressed. Furthermore, suppressed

decays of the higgsino-like neutralinos �̃0

2

and �̃0

3

to the lightest chargino are found, reducing the

number of decay channels with mono-W signature. The wino-like chargino �̃±
2

and neutralino

�̃0

4

, where the decay into a W boson is preferred, are likely to be heavy, as the soft parameter

M
2

is not expected to be low (see section 5.1.1).

Furthermore, additional on- and off-shell vector bosons are found in the dominating missing

topologies in up to 12 % of the parameter sets. The more complex signatures ((W),(jet,jet)),(jet,jet)

and ((Z),(jet,jet)),(jet,jet) in the bino-like LSP dataset is the result of the preferred coupling of

Higgs to mixed higgsino-/wino-like states (see section 5.1.1). Thus, large Higgs masses allow

a decay to the wino-like �̃0

4

and the higgsino-like �̃0

2

or �̃0

3

, where the latter is preferred. Due

to this decay being kinematically allowed and having large branching ratios, additional decays

of the heavier neutralinos to the LSP leads to more complex signatures with on- and off-shell

bosons in the detector. It should be noted, that this is not the only process playing a role. As

SModelS sums over all initial states, the same signature can be a result of many initial states.

Thus, for high Higgs masses, more complex signatures can become dominant.

The (inv),(inv) signature is the result of H decaying to a pair of LSPs, light neutralinos (e.g.
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�̃0

2

) or charginos (�̃±
1

), where the latter two have to decay soft. These processes are often the

only possible decays of H to SUSY particles, as all other states are heavy. Thus, this signature

is dominant for low Higgs or large sparticle masses. This is especially the case for the bino-like

LSP dataset, where the mass difference of the LSP and next-to LSP (NLSP) can be large.

Decays of a heavy electroweakino (neutralino or chargino) to an intermediate slepton state can

be dominant in up to 4 % of the dataset, leading to two single light leptons in one branch. To

this signature, the H decay to a LSP and a heavy neutralino state are contributing in addition.

The heavy neutralino then decays with an intermediate chargino state into the LSP, where two

leptonically decaying off-shell W bosons (W ⇤ ! l ⌫l) leave each a single lepton in the detector.

This process can be enhanced, as the final � ⇥ B value is a sum over all final light lepton states

(l 2 {e�, e+, µ�, µ+}).
Heavy Higgs bosons with low masses (mH . 700 GeV) are disfavored by ATLAS direct SUSY

searches or do not contain a decay to SUSY particles. Thus, the analyzed data includes only

decoupled Higgs states leading to the coupling of the heavy Higgs bosons to vector bosons being

suppressed (see section 3.2.2).

Furthermore, lower bounds on the stop and sbottom masses disfavor a direct decay to those

pairs (H ! ˜t˜t/˜b˜b) or stops and sbottoms as an intermediate state. Due to strong constraints

on the squark and slepton mass, only a minority of the parameter sets contain direct decays of

heavy Higgs to light squarks and light sleptons leading to the signatures (jet),(jet) and (l),(l)

(see section 5.3). Therefore, these signatures are dominant for large Higgs masses or due to

the enhancement as a result of low tan� values. Nevertheless, the dilepton signature can be

interesting, as additional contributions of H decaying into a chargino pair can result in the same

signature and thus, the total signal is enhanced. There, the charginos decay to the LSP and an

off-shell W boson each, where the leptonic decay of the latter leave each a single lepton in the

detector.

The detailed physical process of those missing topologies is given in table 5.0.1. It should be

noted, depending on the characteristics of the electroweakinos and thus the hierarchy of the soft

parameters, the decay to two heavier states (e.g. H ! �̃0

3

�̃0

2

) can be preferred compared to e.g.

H ! �̃0

3

�̃0

1

. Thus, in the table, the LSP can be replaced by any other light electroweakino, which

then decays soft. Additionally, more complex decays have to be considered, as SModelS sums

over all mother particles with the same final signature.

MSSM Higgs decaying to supersymmetric particles and possible mono-X signatures have been

previously discussed in [1–3]. However, this study differs from the previous attempts, as it is a

systematic and complete survey of all pMSSM Higgs productions and decay modes. Furthermore,

it allowing for squarks and sleptons to be light. This is the result of the full 19-dimensional

pMSSM parameter scan of this work.

5.1 Heavy Higgs Decays with Mono-X Signature

In this section, the mono-X signatures (X = h, W , Z) of heavy Higgs bosons are discussed in

more detail, as they are the most interesting signatures for experimental analyses. Fig. 5.1.1

shows the production cross section of heavy Higgs bosons in proton-proton collisions decaying

to a chargino or neutralino pair with mono-W signatures for higgsino-like LSPs (upper plots)

calculated with SusHi-1.6.1 [37, 38] and SModelS-1.1.1 [49, 50, 52, 78–80]. It is given in the

�̃±
2

� �̃±
1

chargino mass plane, and in the mA � tan� parameter plane, including cross sections

up to O(10 fb) for

p
s = 14 TeV. Future colliders, as e.g. the hadronic Future Circular Collider

(FCC-hh) [44], are expected to have a center-of-mass energy of about

p
s ⇡ 100 TeV, leading to
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Topology Decay Processes Information

(inv),(inv) H ! �̃±
k �̃⌥

l ! W ⇤
soft

�̃0
1 W

⇤
soft

�̃0
1 k, l 2 {1, 2}

H ! �̃0
1 �̃

0
1 i, j 2 {1, 2, 3, 4}

H ! �̃0
i �̃

0
j ! X⇤

soft

�̃0
1 X

0⇤
soft

�̃0
1 X,X 0 2 {Z, h}

(inv),(higgs) H ! �̃0
1 �̃

0
j ! �̃0

1 h �̃0
1 j 2 {2, 3, 4}

H ! �̃±
1 �̃⌥

2 ! W ⇤
soft

�̃0
1 h �̃⌥

1 ! W ⇤
soft

�̃0
1 ZW ⇤

soft

�̃0
1

(inv),(Z) H ! �̃0
1 �̃

0
j ! �̃0

1 Z �̃0
1 j 2 {2, 3, 4}

H ! �̃±
1 �̃⌥

2 ! W ⇤
soft

�̃0
1 Z �̃⌥

1 ! W ⇤
soft

�̃0
1 ZW ⇤

soft

�̃0
1

(inv),(W) H ! �̃±
1 �̃⌥

2 ! W ⇤
soft

�̃0
1 W �̃0

1 j 2 {3, 4}

H ! �̃0
1 �̃

0
j ! �̃0

1 W �̃±
1 ! �̃0

1 W W ⇤
soft

�̃0
1

(inv),(jet,jet) H ! �̃0
1 �̃

0
j ! �̃0

1 Z
⇤ �̃0

1 j 2 {2, 3, 4}

H ! �̃±
1 �̃⌥

2 ! W ⇤
soft

�̃0
1 W

⇤ �̃0
1

H ! �̃±
1 �̃⌥

2 ! W ⇤
soft

�̃0
1 Z

⇤ �̃⌥
1 ! W ⇤

soft

�̃0
1 Z

⇤ W ⇤
soft

�̃0
1

(W),(jet,jet) H ! �̃±
1 �̃⌥

2 ! W ⇤ �̃0
1 W �̃0

1 i, j 2 {2, 3, 4} ,

H ! �̃0
i �̃

0
j ! Z⇤ �̃0

1 W �̃±
1 ! Z⇤ �̃0

1 W W ⇤
soft

�̃0
1 i < j

((Z),(jet, jet)),(jet,jet) H ! �̃±
1 �̃⌥

2 ! W ⇤ �̃0
1 Z �̃⌥

1 ! W ⇤ �̃0
1 ZW ⇤ �̃0

1 i, j, k 2 {2, 3, 4} ,

H ! �̃0
i �̃

0
j ! Z⇤ �̃0

1 Z �̃0
k ! Z⇤ �̃0

1 Z Z⇤ �̃0
1 i, k < j

((W),(jet, jet)),(jet,jet) H ! �̃±
1 �̃⌥

2 ! W ⇤ �̃0
1 W �̃0

j ! W ⇤ �̃0
1 W Z⇤ �̃0

1 i, j 2 {2, 3, 4} , i < j

H ! �̃0
i �̃

0
j ! Z⇤ �̃0

1 W �̃±
k ! Z⇤ �̃0

1 W W ⇤ �̃0
1 k 2 {1, 2}

(inv),((jet),(jet)) H ! �̃0
1 �̃

0
j ! �̃0

1 jet q̃ ! �̃0
1 jet jet �̃

0
1 j 2 {2, 3, 4}

H ! �̃±
1 �̃⌥

2 ! W ⇤
soft

�̃0
1 jet q̃ ! W ⇤

soft

�̃0
1 jet jet �̃

0
1 q̃ 2

n

ũ, ˜d, c̃, s̃
o

L,R

(inv),((l),(l)) H ! �̃0
1 �̃

0
j ! �̃0

1 l ˜l ! �̃0
1 l l �̃

0
1 j 2 {2, 3, 4}

H ! �̃±
1 �̃⌥

2 ! W ⇤
soft

�̃0
1 l

0
˜l ! W ⇤

soft

�̃0
1 l

0 l �̃0
1

˜l 2 {ẽ, µ̃}L,R

H ! �̃0
1 �̃

0
j ! �̃0

1 W
⇤ �̃±

1 ! �̃0
1 W

⇤ W ⇤ �̃0
1 W ⇤ ! l ⌫l

(jet),(jet) H ! q̃ q̃ ! jet �̃0
1 jet �̃

0
1 q̃ 2

n

ũ, ˜d, c̃, s̃
o

L,R

H ! q̃ q̃ ! jet �̃±
k jet �̃±

k ! jetW ⇤
soft

�̃0
1 jetW

⇤
soft

�̃0
1 k 2 {1, 2}

(l),(l) H ! ˜l ˜l ! l �̃0
1 l �̃

0
1

˜l 2 {ẽ, µ̃}L,R

H ! ˜l ˜l ! l �̃±
k l �̃±

k ! lW ⇤
soft

�̃0
1 lW

⇤
soft

�̃0
1 k 2 {1, 2}

H ! �̃±
k �̃±

k ! W ⇤ �̃0
1 W

⇤ �̃0
1 W ⇤ ! l ⌫l

Table 5.0.1: Missing topologies for heavy Higgs decays and their detailed decay process given by the
SModelS output. The subscript ‘soft’ represents undetected soft decay products (M

soft

<
5 GeV) and ‘*’ notes off-shell particles. The latter will be visible to the detector due to the
dominant decays W ⇤, Z⇤ ! jet jet and Z⇤, h⇤ ! b¯b. Electrons and muons are combined
to light leptons (l), as well as gluons and light quarks (u, d, c, s) are combined to jets as
mentioned in the text. It should be noted, that LSPs as decay product can be replaced by
the process �̃ ! X⇤

soft

�̃0
1, where �̃ can be any neutralino or chargino and X⇤

soft

can be any
non-colored state not visible to the detector.
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Figure 5.0.2: Most frequent occurring (upper plots) and most dominating (lower plots) missing topolo-
gies in the mA � tan� parameter plane for bino-like LSPs (left) and higgsino-like LSPs
(right).
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an increase of the cross sections of more than one order of magnitude (see fig. 3.2.4, lower plots).

Furthermore, the computed cross sections for mono-Z signatures for bino-like LSPs (lower plots)

are given in the �̃0

3

� �̃0

1

neutralino mass plane and the mA � tan� parameter plane, leading to

similar results. The Feynman diagram presenting the processes of heavy Higgs decays resulting

in mono-X signatures are shown in fig. 5.0.1. The plots for other mono-X topologies for both

datasets are given in appendix B.1.

In each of the cases, a large cross section for the mono-X topology can be obtained for a light

MSSM Higgs mass (here: mA ⇡ mH), it falls smoothly as the mass of the Higgs increases as

expected. The nearly constant behavior of �⇥B with tan� is the result of a strongly decreasing

branching ratio being compensated by an increasing total production cross section of the heavy

Higgs boson as given in section 5.6.

It is interesting to note that the mass difference of the LSP and the next-to LSP (NLSP) or

next-to-next-to LSP (NNLSP) can be large giving rise to potentially hard X in the final state.

Mono-X signatures come most-likely with up to two b-jets as a result of the heavy Higgs pro-

duction process, giving an additional handle on resonant heavy Higgs searches at the LHC (see

section 5.1.2).

5.1.1 Study of the Parameter Dependence
The behavior of the cross sections for mono-X signatures are studied in dependence of the

underlying soft parameters. Fig. 5.1.2, upper plots, show the production cross section of heavy

Higgs bosons with mono-W signatures in the electroweakino soft parameter plane M
1

� µ (left)

and M
2

� µ (right). For higgsino-like LSPs and thus, a low µ, large cross sections are found

for low M
2

values. Therefore, the plots show a preferred coupling of heavy Higgs bosons to

highly mixed higgsino-like and wino-like electroweakinos. Results with the highest cross sections

are independent of the M
1

soft parameter and thus, no preferences for the bino-like component

are obtained. Due to the low wino and higgsino mass parameters, a large coupling of the

lightest electroweakinos to the W and Z bosons, thus mono-W (⇤)
and mono-Z(⇤)

signatures, is

expected.

The lower plots visualize the production cross section of heavy Higgs bosons with mono-Z sig-

natures in the M
2

�M
1

(left) and µ�M
1

(right) soft parameter plane for bino-like LSPs. The

highest cross sections are found for low values of µ and therefore a heavy Higgs decay to mixed

bino- and higgsino-like states. Even though, decays to wino-/higgsino-mixed electroweakinos are

preferred, the necessity of a large gaugino-higgsino mixing for heavy Higgs couplings leads to

low values of µ for bino-like LSPs. Nevertheless, the wino-like �̃0

4

and �̃±
2

play a crucial role

in the dominating signatures of heavy Higgs decays, as the decay into those particles has large

branching ratios if kinematically allowed. This leads to either more complex signatures (e.g.

((Z/W),(jet,jet)),(jet,jet)) or potentially hard final state bosons.

The results for other signatures are given in appendix B.1.1. For the higgsino-like LSP dataset

with mono-Z (upper plots) and mono-h (middle plots), the highest cross sections are again found

for low values of M
2

and µ. The results for the bino-like LSP dataset with mono-h signature

(lower plots) show large cross sections for low values of µ and M
1

.

Thus, a maximal signal at the LHC is found for Higgs decaying to highly mixed higgsino-gaugino

states, independent of the decay mode. Decays to mixed states dominate over decays to pure

higgsino-, bino-, or wino-like LSPs. Therefore, a future analysis of the wino-like LSP dataset

with the next update of the SModelS framework is proposed. This update will be able to process

long-lived particles, as they dominate in the wino-like LSP dataset (see table 4.4.5). Large cross
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Figure 5.1.1: Cross sections for heavy Higgs searches with mono-W (upper plots) signature in the �̃±
2 -

�̃±
1 mass plane (left) and the mA � tan� parameter plane (right) for higgsino-like LSPs,

as well as with mono-Z (lower plots) signature in the �̃0
3 � �̃0

1 mass plane (left) and the
mA � tan� parameter plane (right) for bino-like LSPs.
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sections for resonant heavy Higgs searches for low values of the higgsino mass-parameter µ are

expected in this dataset (see section 5.7).

5.1.2 Study of the Production Process
In addition, the production channel of a heavy Higgs decaying with mono-X signatures are

studied in this work. Fig. 5.1.3 show the ratio of the cross sections for the two production

channels from proton-proton collisions, gluon fusion ggH and bottom quark annihilation bbH.

The upper plots visualize the results for higgsino-like LSPs resulting in mono-W signatures.

Since the gluon fusion process is only dominant for low tan� (. 7) given in green, mono-X
signatures from heavy Higgs decays with large cross sections are mainly the result of H being

produced in bottom quark annihilation processes (red). Thus, up to two additional b-jets in the

detector are expected, giving an additional handle on the search for resonant heavy Higgs bosons

at the LHC.

The bino-like LSP dataset with mono-Z signature (lower plots) show similar results. Bottom

quark annihilation is the dominating production process of heavy Higgs bosons for about 98 %

of the analyzed parameter space.

The outlier points with high tan� and a large cross section due to gluon fusion contain light

bottom squarks (

˜b
1

,˜b
2

). Therefore the domination gluon fusion production mechanism is the

result of light sbottoms in the triangle-diagram with its contribution being enhanced by a large

tan� value.

The results for other mono-X signatures are given in appendix B.1.2. Similar results are found

for the higgsino-like LSP dataset with mono-Z (upper plots) and mono-h signature (middle plots)

and for the bino-like LSP dataset with mono-h signature (lower plots). The Feynman diagram

for those production processes are given in fig. 3.2.3.

5.2 Invisible Heavy Higgs Decays

For low masses of the Higgs bosons H, a decay to heavy SUSY particles can become kinematically

forbidden. Thus, the only relevant decay products are two stable LSPs, where this process results

in solely missing transverse momentum in the detector. In principle, this process is similar to

the expected (reversed) thermal DM freeze-out mechanism in the early universe, where the LSP

acts as a suitable dark matter candidate. There, the annihilation of SM particles to DM can

work for a wide range of couplings and DM masses. Nevertheless, the assumption is made, that

the DM particle interact sufficiently with SM particles.

Due to this link to the thermal freeze-out, the search for MET at the LHC becomes interesting.

This work suggests the production of DM in SM annihilations to heavy Higgs bosons. However,

to design a successful experimental search strategy, the production have to include at least one

QCD jet resulting from initial state radiation. For heavy Higgs bosons produced in bottom quark

annihilation processes, the additional production of up to two potentially hard b-jets can thus

be used to trigger events with large missing transverse momentum.

Fig. 5.2.1 visualizes the calculated cross sections for heavy Higgs productions at 14 TeV center-of-

mass energy times the branching ratio leading to these signatures. As seen, potentially large cross

sections for fairly light Higgs bosons are found. The �⇥B values reduce drastically for increasing

Higgs masses, as then other decay processes become dominant. The (inv),(inv) signature is the
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Figure 5.1.2: Cross sections for heavy Higgs searches with mono-W (upper plots) signature in the M1�µ
(left) and the M2 � µ soft parameter plane (right) for higgsino-like LSPs, as well as with
mono-Z (lower plots) signature in the M2�M1 (left) and the µ�M1 soft parameter plane
(right) for bino-like LSPs.
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Figure 5.1.3: Fraction of gluon-fusion (�ggH) to bottom quark annihilation (�bbH) cross sections for
heavy Higgs production with mono-W (upper plots) signature in the �̃±

2 � �̃±
1 mass plane

(left) and the mA � tan� parameter plane (right) for higgsino-like LSPs, as well as with
mono-Z (lower plots) signature in the �̃0

3 � �̃0
1 mass plane (left) and the mA � tan�

parameter plane (right) for bino-like LSPs.
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dominating process, having the highest cross section, for the majority of the bino-like LSP dataset

and a significant amount of the higgsino-like LSP dataset (see fig. 5.0.2, lower plots).

5.3 Heavy Higgs Decays with Dijet and Dilepton Signature

Even though, the coupling of heavy Higgs bosons to 3

rd

generation sfermions is preferred, strong

lower limits on squark masses disfavor a decay to those sparticles. They are kinematically

forbidden for regions in the parameter space, where large production cross sections of H are

expected. However, the initial decay of H to a pair of light squarks

✓

q̃ 2
n

ũ, ˜d, c̃, s̃
o

L,R

◆

or

light sleptons

⇣

˜l 2 {ẽ, µ̃}L,R
⌘

can be interesting, as it leaves dilepton or dijet signatures in the

detector. Fig. 5.3.1 shows the �⇥B values for heavy Higgs bosons decaying to squarks for bino-

like LSPs in the q̃� �̃0

1

and the mA � tan� plane. As seen, a dijet signature in the detector can

have potentially large cross sections in a very limited parameter space. Future results on direct

SUSY searches and their limits on the mass of light squarks are able to probe the parameter

space resulting in this signature.

The results with dilepton signature and results for higgsino-like LSPs with dijet and dilepton

signature are less promising and are given in appendix B.2. Here, the strong dependence on tan�
is visible. As given in section 3.2.2, the pMSSM coupling of H to 1

st

and 2

nd

generation squarks

can be reduced to the diagonal terms of CHq̃q̃, as the decoupling regime leads to a negligible

sin↵ and the mass of the SM quarks is low. Thus, the light squark coupling strongly depends

on cos� and is therefore enhanced for low values of tan�.

However, only a limited number of parameter sets contain light squarks and light sleptons and

are thus kinematically reachable for Higgs decaying to those particles. Nevertheless, additional

contributions of H decaying into a chargino pair can result in the same signature and thus, the

total � ⇥ B value is enhanced for the dilepton signature. There, the charginos decay to the LSP

and an off-shell W boson each, where the leptonic decay of the latter leave each a single lepton

in the detector.

5.4 Long-Cascade Decays

Additionally, the SModelS framework is used to classify complex long-cascade decays, with more

than one intermediate sparticle per branch (see section 4.2.4). These signatures are the re-

sult of heavy Higgs bosons decaying to heavy electroweakino states. For the latter, decays to

intermediate sparticle states become then kinematically allowed.

Fig. 5.4.1 shows the ratio of the cross section to long-cascade decays �(pp ! H ! long cascade)
to the total cross section of heavy Higgs productions in proton-proton collisions �(pp ! H) in

the mA� tan� parameter plane. Long-cascade decays are negligible in regions of the mA� tan�
parameter plane where large production cross sections are expected. Thus, simple decay processes

with e.g. mono-X signatures in the detector are dominating the heavy Higgs boson decay to

sparticles.
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Figure 5.2.1: Cross sections of invisible heavy Higgs decays in the �̃0
3 � �̃0

1 mass plane (left) and the
mA � tan� parameter plane (right) for higgsino-like (upper plots) and bino-like LSPs
(lower plots).
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Figure 5.3.1: Cross sections for heavy Higgs searches with dijet signature in the q̃� �̃0
1 mass plane (left)

and the mA � tan� parameter plane (right) for bino-like LSPs.

Figure 5.4.1: Ratio of the cross section to long-cascade decays �(pp ! H ! long cascade) to the total
cross section �(pp ! H) in the mA � tan� parameter plane for bino-like LSPs (left) and
higgsino-like LSPs (right).
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5.5 Constraints from LHC Direct SUSY Searches

The previous analyses used SModelS with a reduced database. It is thus able to classify all

possible heavy Higgs boson decays without considering current SUSY analyses at the LHC. To

apply constraints from CMS and ATLAS searches, the SLHA files are tested against the most

updated simplified model limits from 8 TeV LHC direct SUSY searches using the full SModelS
database. Two analyses from CMS [81] and ATLAS [82] are able to exclude about 3.67 %

(1.27 %) of the remaining SLHA files for the higgsino-like (bino-like) LSP dataset, with the

excluded points given in fig. 5.5.1, upper (lower) plots. The low number of excluded files is

expected, as constraints from 22 distinct ATLAS analyses [67] are already applied to the initial

dataset (see section 4.4). Excluded SLHA files are therefore not included in this analysis.

It should be noted, that the exclusion due to the ATLAS constraints arise from a preliminary

conference note, not their follow-up final publication. The latter applies weaker constraints on

the parameter space. It is expected, that this is the result of the changed number of signal

regions in the final publication.

Studies of the pMSSM parameter set with hadronic 13 TeV LHC Run 2 ATLAS constraints

from early direct SUSY searches with 3.2 fb

�1

integrated luminosity exclude additionally 13.8 %

(18.4 %) of the higgsino-like (bino-like) LSP dataset [83, 84]. The excluded points are shown

in fig. 5.5.2 in the mA � tan� parameter plane for higgsino-like LSPs (upper plots) on top

(left) and below (right) the valid parameter sets. Similar results are found for the bino-like LSP

dataset (lower plots). The excluded SLHA files have no influence on the most frequent and most

dominant missing topologies given in fig. 5.0.2 and are not able to exclude a certain region of

the mA � tan� parameter plane.

5.6 Complementarity with Direct Heavy Higgs Searches

Current analyses of heavy Higgs boson decays assume a decay to SM particles. Previous works

already showed a potentially high branching ratio of H to supersymmetric particles for low tan�
values [1]. A study of the branching ratio of H to all SUSY particles for the full 19-dimensional

MSSM parameter space of the ATLAS pMSSM dataset shows similar results. Fig. 5.6.1, upper

plots, show a peak branching ratio of about B(H ! SUSY SUSY ) ⇡ 60% for low tan� values.

Therefore, a solely analysis of H ! SM SM is insufficient for certain regions of the parameter

space.

As a result of this work, analyses taking decays to sparticles into account are proposed to probe

the full pMSSM parameter space.

For low tan�, the contribution of decays to squarks is enhanced. However, the main contribution

comes from decays to electroweakinos, where the tan� dependence is highly non-trivial.

The branching ratio value is decreasing to about 10% for high tan� being nearly independent

on mA. However, the approximately constant � ⇥ B in dependence of tan� (see fig. 5.1.1)

is the result of increasing heavy Higgs production cross sections (see fig. 5.6.1, lower plots) for

regions with decreasing branching ratios. This is the result of increasing couplings of heavy Higgs

bosons to down-type quarks and bottom quark annihilations becoming the dominant production

process.
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Figure 5.5.1: Parameter sets excluded by 8 TeV LHC Run 1 SUSY searches performed in the g̃ � �̃0
1

(left) and the g̃� q̃ (right) mass plane for higgsino-like (upper plots) and bino-like (lower
plots) LSPs, where q̃ is the lightest squark.
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Figure 5.5.2: Parameter sets excluded by 13 TeV LHC Run 2 SUSY searches performed by [83, 84]
in the mA � tan� parameter plane for higgsino-like (upper plots) and bino-like (lower
plots) LSPs. The left plot shows the excluded sets on top, the right plot below the valid
parameter sets.
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Figure 5.6.1: Branching ratio of heavy Higgs bosons decaying to SUSY particles (upper plots) and the
total cross section of heavy Higgs boson production in the mA � tan� parameter plane
for bino-like LSPs (left) and higgsino-like LSPs (right).
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5.7 Results for Wino-like LSPs

The small mass difference of the LSP to the light chargino �̃±
1

leads to a long lifetime of the latter

and therefore displaced vertex signatures in the detector. As the current version of SModelS
cannot handle displaced vertices, the wino-like LSP dataset was not included in the previous

study. The cross sections in dependence of the lifetime c⌧ and the light chargino (heavy Higgs)

mass of heavy Higgs bosons decaying to a pair of charginos including the long-lived light chargino

(H ! �̃±
1

�̃⌥
i , i 2 {1, 2}) for wino-like LSPs is given in fig. 5.7.1, left (right). Promising results

with cross sections up to 50 fb for

p
s = 14 TeV are found, as a highly mixed higgsino-/wino-like

LSP state is preferred for heavy Higgs decays (see section 5.1.1).

Thus, resonant heavy Higgs searches for wino-like LSPs with displaced vertex signatures are a

potentially good candidate for future long-lived sparticle searches at the LHC. It should be noted,

that constraints from the light and heavy Higgs sector have not been applied to the wino-like

LSP dataset.

Figure 5.7.1: Cross sections for heavy Higgs bosons decaying to charginos (H ! �̃±
1 �̃

⌥
i , i 2 {1, 2}) in

dependence of the light chargino lifetime c⌧(�̃±
1 ) and its mass (left) and the heavy Higgs

mass (right) for wino-like LSPs.
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6 Conclusion

The discovery of the Higgs boson at the LHC in 2012 has been a remarkable success for the

Standard Model of Particle Physics. Nevertheless, it is incomplete, as e.g. it is only able to

describe about 4.9 % of the energy density in the universe. One possibility of physics beyond the

SM is the introduction of supersymmetry. It tackles a number of issues arising within the SM

by introducing superpartner particles in addition to the SM particle content. Due to the high

number of free parameters within the Minimal Supersymmetric Standard Model, it is difficult to

make predictions within the model. By applying basic assumptions, this number can be reduced

to 19 free parameters, being called the phenomenological Supersymmetric Standard Model.

Supersymmetric models contain two Higgs doublets, leading to the existence of three neutral

and a pair of charged Higgs bosons. While the light CP-even neutral Higgs is held as the SM

Higgs boson with a mass of mh ⇡ 125 GeV [11], the others are approximately degenerate in mass

for the decoupling regime. The search for heavy Higgs bosons is therefore an important step to

probe the full parameter space of MSSM.

For this analysis, a pre-collected data sample of a full 19-dimensional flat prior parameter scan is

used. The dataset is categorized into higgsino-like, bino-like and wino-like LSP sets, according to

the characteristics of the lightest neutralino. It already applies constraints from the dark matter

relic density, LEP and ATLAS searches for SUSY particles, and requires the light Higgs to be

within a certain mass range. Furthermore, constraints from the Higgs and the flavor sector are

applied by using the frameworks HiggsBounds, HiggsSignals and SuperIso.

The SModelS framework is applied to analyze the remaining parameter sets and characterize

possible signatures resulting from heavy Higgs bosons decaying to supersymmetric particles.

SModelS is able to decompose a given input spectra into simplified models, which are then

matched with results from direct SUSY searches of the CMS and ATLAS experiment at the

LHC. Furthermore, it detects missing topologies, which have not been considered by experimental

searches yet. A reduced database of the SModelS framework is used to identify all possible heavy

Higgs decays within the missing topology block. Since it is not able to handle resonant searches,

a unique method of using the framework is proposed. By providing the calculated product of the

production cross section, computed with SusHi, and the branching ratio of the decay to SUSY

particles �(pp ! H) ⇥ B(H ! SUSY SUSY ) in the input-file, it is possible to apply SModelS
for resonant heavy Higgs searches.

The analyzed datasets for higgsino-like and bino-like LSPs show mono-X (X = h, W , Z) signa-

tures being the most frequent occurring and most dominating topologies in resonant heavy Higgs

searches. These signatures are the result of the asymmetric decay of H to a pair of neutralinos

or charginos, where the lighter state decays soft to the LSP (�m < 5 GeV) and the heavier state

decays to the LSP and X. The calculated production cross section resulting in those signatures

revealed values up to O(10 fb) for a center-of-mass energy of

p
s = 14 TeV. For bino-like LSPs,

the lightest chargino being higgsino-like suppresses a decay to W bosons. Thus, mono-W signa-

tures, where the main underlying process is a heavy Higgs boson decaying to a pair of charginos,

are not found in the most frequent and most dominating missing topology block for the bino-like

LSP dataset.
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In any case, large cross sections are obtained for a light MSSM Higgs mass. Furthermore, a

detailed study of their underlying parameter sets showed large cross sections for highly mixed

electroweakino states, preferring mixed higgsino-/wino-like LSPs. Mono-X signatures will have

additional b-jets in the detector as a result of bottom quark annihilation being the dominant

heavy Higgs production process for about 98 % of the analyzed pMSSM parameter space. Since

cross sections with long-cascade decay signatures are negligible, the decay of heavy Higgs bosons

to sparticles will dominantly result in simple topologies.

Furthermore, constraints on sparticle masses from hadronic LHC Run 1 analyses are applied

to the dataset. Especially two analyses are able to exclude approximately 3.67 % (1.27 %) of

the parameter sets for higgsino-like (bino-like) LSPs. Studies, performed in Ref. [83] and [84]

used early results from LHC Run 2, with 3.2 fb

�1

integrated luminosity to additionally constrain

the pMSSM dataset. By applying this study, it was possible to show the additional exclusion of

13.8 % (18.4 %) of the remaining higgsino-like (bino-like) LSP dataset. However, these constrains

resulting from hadronic SUSY searches are not able to exclude a certain region of the pMSSM

parameter space.

Since the branching ratio of heavy Higgs bosons to supersymmetric particles can be up to 60 %

for low tan� values, the solely consideration of direct Higgs search analyses, where the heavy

Higgs decays to SM particles, is insufficient to probe the full pMSSM parameter space. Thus, e.g.

resonant heavy Higgs searches with a decay to SUSY particles are crucial for future analyses.

As a preferred decay of the heavy Higgs boson to highly mixed higgsino-/wino-like LSPs is

found, large cross sections are expected for the signatures of the analyzed wino-like LSP dataset.

However, the small mass difference of the LSP to the light chargino �̃±
1

results in displaced

vertex signatures not able to be handled by SModelS yet. A brief analysis showed expected

�(pp ! H) ⇥ B(H ! �̃±�̃⌥
) values for decays to a pair of charginos of up to 50 fb for a

center-of-mass energy of

p
s = 14 TeV.

Even though, the production process of heavy Higgs boson in proton-proton collisions, as well

as its decay to supersymmetric particles is highly dependent on the underlying parameters of

the 19-dimensional pMSSM parameter space, the process mainly results in simple signatures,

as e.g. mono-X (X = h, W , Z). This study showed large cross sections for those topologies

being reachable for the future LHC update. The high-luminosity LHC, with a total of 3 ab

�1

integrated luminosity will therefore be able to probe the pMSSM parameter space by searching

for heavy Higgs bosons decaying to sparticles. For future colliders with a center-of-mass energy

of about

p
s ⇡ 100 TeV, an increase of the cross sections of more than one order of magnitude is

expected.

Thus, a re-interpretation of current mono-X analyses for dark matter searches is proposed. Fur-

thermore, the search for heavy Higgs bosons decaying to wino-like LSPs is a promising candidate

for future displaced vertex analyses.
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The detailed calculations performed within the scope of this work are given in the following in

addition to the theoretical background of section 3. It includes the diagonalization of the chargino

mass matrix and the computation of their mixing angles (see section A.1), the calculation of the

production cross section for heavy Higgs bosons from gluon fusion processes with a top quark

triangle (see section A.2) and the minimization of the superpotential to retrieve the parameter

conditions leading to soft symmetry breaking (see section A.3).

A.1 The Diagonalization of the Chargino Mass Matrix

The diagonalization of chargino mass matrix MC (see eq. 3.2.2) is an important step to derive

the chargino masses. Here, a detailed calculation of the chargino mixing angles �u and �v (see

eq. 3.2.19) is performed according to Ref. [35]. The diagonalization of the neutralino mixing

matrix Z was obtained numerically.

The chargino masses are derived from the diagonalization of the chargino mass matrix

MC =

✓

M
2

p
2mW s�p

2mW c� µ

◆

by using the 2⇥ 2 unitary mixing matrices U and V

MD
C = U⇤MCV�1

�MD
C

�

2

= U⇤MCM†
C(U⇤

)

�1

= VM†
CMCV�1

and the rotation matrix Ou,v

U = Ou

V =

(

Ov for det(MC) > 0

�
3

Ov for det(MC) < 0

Ou,v =

✓

c�u,v s�u,v

�s�u,v c�u,v

◆

where s�u,v ⌘ sin�u,v and c�u,v ⌘ cos�u,v. For the case det(MC) > 0, the masses of the

charginos are derived with

�MD
C

�

2

= OvM†
CMCO

�1

v =

=

✓

c�u,v s�u,v

�s�u,v c�u,v

◆✓

M
2

p
2mW c�p

2mW s� µ

◆✓

M
2

p
2mW s�p

2mW c� µ

◆✓

c�u,v �s�u,v

s�u,v c�u,v

◆

=

=

✓

Ac2�v
+ 2BCs�vc�v +Ds2�v

BC(c2�v
� s2�v

) + (D �A)s�vc�v

BC(c2�v
� s2�v

) + (D �A)s�vc�v As2�v
� 2BCs�vc�v +Dc2�v

◆

!

=

 

m2

�̃±
i

0

0 m2

�̃±
j

!
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where i, j 2 {1, 2} and the substitutions

A = M2

2

+ 2m2

W c2�

B =

p
2mW

C = M
2

s� + µc�

D = 2m2

W s2� + µ2.

are used. The comparison of the results leads to the conditions

m2

�̃±
i
= Ac2�v

+ 2BCs�vc�v +Ds2�v

m2

�̃±
j
= As2�v

� 2BCs�vc�v +Dc2�v

0 = BC(c2�v
� s2�v

) + (D �A)s�vc�v

where from the latter, the mixing angles are derived using t�v ⌘ tan�v.

BC(c2�v
� s2�v

) = (A�D)s�vc�v

BCc2�v
(1� t2�v

) = (A�D)c2�v
t�v

t
2�v =

2t�v

1� t2�v

=

2BC

A�D

=

2

p
2mW (M

2

s� + µc�)

M2

2

� µ2

+ 2m2

W (c2� � s2�)
| {z }

2c2�

The calculation is similar for deriving the mixing angle �u. The final result is thus given by

tan 2�u =

2

p
2mW (µ sin� +M

2

cos�)

M2

2

� µ2 � 2m2

W cos 2�

tan 2�v =

2

p
2mW (µ cos� +M

2

sin�)

M2

2

� µ2

+ 2m2

W cos 2�

59



A Detailed Calculations

A.2 The Calculation of Gluon Fusion Processes

The production cross section of CP-even neutral heavy Higgs bosons is calculated on leading

order for the gluon fusion processes visualized in fig. A.2.1. Only the top quark contribution

with its mass mt = m and SM processes are taken into account. This calculation is done using

Feynman rules and Feynman parameters according to Ref. [24, 41].

Figure A.2.1: The two Feynman diagrams for heavy Higgs production in gluon fusion processes at
leading order with equal contributions. The figures were created using Jaxodraw-2.1 [4].

The Feynman rules for each propagator given in fig. A.2.1 are

Description Factor

External gluon ✏µ(p)

External scalar 1

Fermion loop -1

Fermion propagator i(/p+m)

p2�m2+i✏

Quark-gluon vertex ig�µta

Yukawa vertex �i�

Table A.2.1: Feynman rules for the calculation of the cross section in gluon fusion processes.

where ta =

1

2

�a
and �a

are the Gell-Mann matrices [85]. The amplitude of the vertex is there-

fore

iM = �
|{z}

fermion loop

both diag.

z}|{

2

Z

d4k

(2⇡)4
1

|{z}

ext. scalar

Yukawa vertex

z }| {

(�i�)
i(/k + /p

1

+m)

(k + p
1

)

2 �m2

+ i✏
| {z }

fermion prop.

vertex

z }| {

(ig
1

�µta)

i(/k +m)

k2 �m2

+ i✏
| {z }

fermion prop.

vertex

z }| {

(ig
2

�⌫tb)
i(/k � /p

2

+m)

(k � p
2

)

2 �m2

+ i✏
| {z }

fermion prop.

ext. gluon

z }| {

✏µ(p1) ✏µ(p2)
| {z }

ext. gluon

.

The fermion triangle is a closed loop with no free Dirac indices. Therefore, taking the trace of
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the amplitude simplifies the calculation of the amplitude to

iM = �2�g
1

g
2

✏µ✏⌫t
atb
Z

d4k

(2⇡)4
Tr

8

>

>

<

>

>

:
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2 �m2
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A
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k2 �m2
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2

+m)
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2

)

2 �m2

+ i✏
| {z }

C

9

>

>

=

>

>

;

with A, B and C being Feynman parameters for the denominator of the fractions. By using the

rules for Feynman parameters according to Ref. [24], the denominator of iM is calculated with

1

ABC
=

Z

1

0

dx dy dz �(x+ y + z � 1)

2!

(xA+ yB + zC)

3

=

Z

1

0

dx dy dz �(x+ y + z � 1)

2

D3

D = xA+ yB + zC =

= x(k + p
1

)

2

+ yk2 + z(k � p
2

)

2 �m2

(x+ y + z) + i✏(x+ y + z) =

= k2 �m2

+ i✏+ xp2
1

+ zp2
2

+ 2xkp
1

� 2zkp
2

=

= k2 + 2k(xp
1

� zp
2

)�m2

+ i✏ =

= l2 ��+ i✏

where x + y + z = 1 and massless gluons (p2
1

= p2
2

= 0) are assumed. In the last step, the

momentum k is shifted to l = k+xp
1

� zp
2

. The substitution � = m2� 2xzp
1

p
2

= m2�xzm2

H
can be interpreted as an effective fermion loop, where 2p

1

p
2

is the Higgs boson mass squared

m2

H . Since there is no y dependence (D = D(x, z)), the initial integral can be written as

Z

1

0

dx dy dz �(x+ y + z � 1)

2

D3

(x, z)
=

Z

1

0

dx

Z

1�x

0

dz
2

D3

(x, z)

The fact that the trace of an odd number of Dirac matrices vanishes reduces the numerator

of iM. Furthermore, the expressions

/k =

/l � x/p
1

+ z/p
2

and the �-matrix anti-commutation

relation /p�µ = 2pµ � �µ/p are inserted. In addition, the gluon polarization being transverse to

the momentum (✏(pi)pi = 0) is used. Since the equation now depends on the magnitude of l, it

can be shown that odd powers of l vanish (see Ref. [24]).

Z

d4l

(2⇡)4
lµ

D3

= 0

Z

d4l

(2⇡)4
lµl⌫

D3

=

Z

d4l

(2⇡)4

1

4

gµ⌫ l2

D3
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Therefore, the numerator can be written as

Tr
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where the fact that the trace of any product of an odd number of �µ vanishes is adopted. By

using the �-matrix identities
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The amplitude, with k being shifted and the integrals being separated into a term proportional

to l2/D3

and a term proportional to 1/D3

, can then be written as
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dimension d and a diverging limit for d ! 4. Due to this diverging limit, no Wick rotation can be

inserted here [24]. The solution to the integrals can be found in tables and leads to the result
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where the latter is divergent for d ! 4 [41]. This divergence is avoided by using ✏ = 4 � d and

expanding the �-function and the factor (1/�) to

�

⇣ ✏

2

⌘

=

2

✏
� � +O(✏)

✓

1

�

◆✏

=

✓

1

�

◆

0

+

✓

1

�

◆

0

log

✓

1

�

◆

✏+O(✏2) = 1� ✏ log�+O(✏2)

where the Euler-Mascheroni constant � ⇡ 0.577 [86] is used. The integral then simplifies to

Z

ddl

(2⇡)d
l2

(l2 ��)

3

4� d

d
=

i

(4⇡)
d
2

d

4

�

(

✏
2)

z }| {

✓

2

✏
� �

◆

(

1
�)

✏

z }| {

(1� ✏ log�)

✏

d
+O(✏) =

i

32⇡2

+O(✏).

The term in the remaining integral with its polarization pre-factors ✏µ✏⌫ in the limit ✏ ! 0 is

then

✏µ✏⌫g
µ⌫

i
32⇡2

z }| {

Z

ddl

(2⇡)d
l2

(l2 ��+ i✏)3
4� d

d
�

� ✏µ✏⌫

✓

(4xz � 1)p⌫
1

pµ
2

+

✓

1

2

� xz

◆

m2

Hgµ⌫ +m2gµ⌫
◆

�i

32⇡2�
z }| {

Z

d4l

(2⇡)4
1

(l2 ��+ i✏)3
=

=

i✏
1

✏
2

32⇡2

�
✓

(4xz � 1)(p
1

✏
2

)(p
2

✏
1

) +

✓

1

2

� xz

◆

m2

H✏
1

✏
2

�m2✏
1

✏
2

◆ �i

32⇡2

�

=

=

i

32⇡2

 

✏
1

✏
2

+

(4xz � 1)(p
1

✏
2

)(p
2

✏
1

) +

�

1

2

� xz
�

m2

H✏
1

✏
2

�m2✏
1

✏
2

m2 � xzm2

H

!

=

=

i

32⇡2

(4xz � 1)(p
1

✏
2

)(p
2

✏
1

) + (m2 � xzm2

H)✏
1

✏
2

+

�

1

2

� xz
�

m2

H✏
1

✏
2

�m2✏
1

✏
2

m2 � xzm2

H

=

=

i

32⇡2

(4xz � 1)(p
1

✏
2

)(p
2

✏
1

) + (�2xz + 1

2

)m2

H✏
1

✏
2

m2 � xzm2

H

=

=

i

32⇡2

4xz � 1

m2 � xzm2

H

✓

(p
1

✏
2

)(p
2

✏
1

)� m2

H

2

✏
1

✏
2

◆

=

=

i

32⇡2

1� 4xz

⌧ � 4xz

⌧

m2

✓

m2

H

2

✏
1

✏
2

� (p
1

✏
2

)(p
2

✏
1

)

◆

=

where � = m2 � xzm2

H and ⌧ = 4m2/m2

H . The total amplitude is then given by

iM =

�i�g
1

g
2

tatb

4⇡2

⌧

m

✓

m2

H

2

✏
1

✏
2

� (p
1

✏
2

)(p
2

✏
1

)

◆

Z

1

0

dx

Z

1�x

0

dz
1� 4xz

⌧ � 4xz

For the integration of the Feynman parameters x and z, ⌧ > 4xz is used to calculate the gluon

fusion process with an on-shell top quark loop. The solution to the integrals can be found in
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tables [41].
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The cross section can then be retrieved from the amplitude-squared |M|2 using Fermi’s Golden

Rule. Therefore, the sum over the spin polarization for the gluon states are calculated as given

in Ref. [41].
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The kinematics of the decay mode is considered in the phase space integral over the momentum q
of the Higgs boson and its energy EH
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reduces to a numerical factor.
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which is the final result in this calculation according to eq. 3.2.27. The sum of the gluon momenta

can be replaced by the center-of-mass energy

p
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.
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A.3 Minimizing the Superpotential

Soft symmetry breaking is a necessity to achieve electroweak symmetry breaking in SUSY models

(see section 3.3). A detailed calculation of the minimization of the superpotential is performed

according to Ref. [15]. Here and in the following, the notation Hd = H
1

and Hu = H
2

is used to

be consistent with the literature. Minimizing the superpotential VH (see eq. 3.3.1) leads to the

soft symmetry breaking conditions given in eq. 3.3.5.
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the following two conditions are obtained
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In this section, additional results to those given in section 5 are shown. The following plots

visualize the cross sections for mono-X signatures in the �̃0

3

� �̃0

1

neutralino mass planes, as well

as in the relevant mA � tan� parameter planes (see fig. B.1.1). The highest cross sections up to

O(10 fb) are found for low Higgs masses, nearly independent of the soft parameter tan�. The

cross section falls smoothly as the mass of the Higgs increases.

Furthermore, additional plots of the soft parameter study are presented. Here, the cross sections

for mono-X signatures are given in the soft parameter planes M
1

�µ and M
2

�µ for higgsino-like

LSPs and in the soft parameter planes M
2

� M
1

and µ � M
1

for bino-like LSPs, showing the

highest cross sections for highly mixed higgsino-/gaugino-states (see fig. B.1.2).

For bino-like LSPs, the highest cross sections are found for low values of µ and thus for mixed

bino- and higgsino-like states. Even though, decays to wino-/higgsino-mixed electroweakinos are

preferred, the necessity of a large gaugino-higgsino mixing for heavy Higgs couplings leads to low

values of µ for bino-like LSPs. The higgsino-like LSP dataset show large cross sections for highly

mixed higgsino-/wino-like states, nearly independent of the signature.

Additional plots showing the bottom quark annihilation process being the dominant production

channel for heavy Higgs bosons are given in the �̃0

3

��̃0

1

neutralino mass planes and the mA�tan�
parameter planes for mono-X topologies (see fig. B.1.3). Up to two potentially hard b-jets in the

detector give an additional handle on the search for resonant heavy Higgs bosons at the LHC.

Dijet and dilepton signatures are mostly negligible for higgsino-like and bino-like LSPs, as shown

in the lightest squark-LSP (q̃� �̃0

1

), lightest slepton-LSP mass planes (

˜l� �̃0

1

) and the mA�tan�
parameter planes (see fig. B.2.1). In these plots, the strong tan� dependence of the cross section

is visible. As a result of the dominant entries of the H coupling matrix to light squarks CHq̃q̃

being dependent on cos�, the coupling is enhanced for low values of tan�.

Additional contributions of H decaying into a chargino pair can result in the same dilepton

signature and thus, the total � ⇥ B value is enhanced. There, the charginos decay to the LSP

and an off-shell W boson each, where the leptonic decay of the latter leave each a single lepton

in the detector.

A detailed description of the results is given in section 5.
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B.1 Heavy Higgs Production with Mono-X Signature

Figure B.1.1: Cross sections for heavy Higgs searches with mono-Z (upper plots) and mono-h (middle
plots) signature for higgsino-like LSPs, as well as with mono-h (lower plots) signature
for bino-like LSPs in the �̃0

3 � �̃0
1 mass plane (left) and the mA � tan� parameter plane

(right).
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B Additional Results

B.1.1 Study of the Parameter Dependence

Figure B.1.2: Cross sections for heavy Higgs searches with mono-Z (upper plots) and mono-h (middle
plots) signature for higgsino-like LSPs in the M1�µ (left) and the M2�µ soft parameter
plane (right), as well as with mono-h (lower plots) signature for bino-like LSPs in the
M2 �M1 (left) and the µ�M1 soft parameter plane (right).
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B.1.2 Study of the Production Process

Figure B.1.3: Fraction of gluon-fusion (�ggH) to bottom quark annihilation (�bbH) cross sections for
heavy Higgs production with mono-Z (upper plots) and mono-h (middle plots) signature
for higgsino-like LSPs, as well as with mono-h (lower plots) signature for bino-like LSPs
in the �̃0

3 � �̃0
1 mass plane (left) and the mA � tan� parameter plane (right).
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B.2 Heavy Higgs Decays with Dijet and Dilepton Signature

Figure B.2.1: Cross sections for heavy Higgs searches with dijet (upper plots) and dilepton (middle
plots) signature for higgsino-like LSPs, as well as with dilepton (lower plots) signature
for bino-like LSPs in the q̃� �̃0

1 and ˜l� �̃0
1 mass plane (left) and the mA�tan� parameter

plane (right).
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