
Master Thesis

Construction and Performance of
Polar Codes for Transmission over the

AWGN Channel

Author

Bashar Tahir, B.Sc.
# 01476041

Supervisor

Univ.Prof. Dipl.-Ing. Dr.techn. Markus Rupp

Co-supervisor

Univ.Ass. Dipl.-Ing. Dr.techn. Stefan Schwarz

Institute of Telecommunications
Technische Universität Wien

Vienna, Austria

October, 2017

institute of
telecommunications

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



Abstract

Polar codes attracted a lot of attention since they were introduced by Arıkan

in 2008 [1]. They are the first practical codes that are proven to achieve the

channel capacity at infinite length. The field of polar coding is an active field of

research, and one of its main topics is the code construction. The construction

of polar codes involves finding the set of the most unreliable bit positions,

usually called the Frozen set. The complement set is then used to transport

information bits.

In this thesis, we look at polar codes operating over the Additive White

Gaussian Noise (AWGN) channel and we consider two topics: their construc-

tion, and their performance against Turbo and Low-Density Parity-Check

(LDPC) codes. In the first part, we start with some construction algorithms

that are frequently used, and then we show a new construction algorithm and

demonstrate its performance. For the second part, we review the state-of-

the-art turbo and LDPC architectures and we benchmark their performance

against polar codes.

i



Contents

Abstract i

Contents iii

List of Figures v

List of Tables v

List of Abbreviations vi

1 Introduction 1

1.1 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Encoding and Decoding . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The AWGN Channel . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Soft Information and the L-value . . . . . . . . . . . . . . . . . 4

1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Polar Codes 6

2.1 Channel Polarization and Polar Codes . . . . . . . . . . . . . . 6

2.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The Non-Systematic Nature of Polar Codes . . . . . . . 10

2.2.2 Systematic Encoding . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Systematic or Non-Systematic . . . . . . . . . . . . . . . 12

2.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Successive Cancellation (SC) . . . . . . . . . . . . . . . . 12

2.3.2 List Successive Cancellation (List-SC) . . . . . . . . . . 16

3 Construction of Polar Codes for the AWGN Channel 20

3.1 The Problem of Optimum Construction . . . . . . . . . . . . . . 21

3.2 Bhattacharya Parameter Construction . . . . . . . . . . . . . . 22

ii



CONTENTS

3.3 Density Evolution with Gaussian Approximation (DEGA) Con-

struction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 New Construction and the Modified DEGA . . . . . . . . . . . 25

3.5 Polar Codes “Non-Universality” . . . . . . . . . . . . . . . . . . 30

4 Performance of Polar Codes versus Turbo and LDPC Codes 32

4.1 Turbo Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Low-Density Parity-Check (LDPC) Codes . . . . . . . . . . . . 37

4.2.1 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 The Performance Comparison . . . . . . . . . . . . . . . . . . . 41

5 Conclusion and Outlook 45

iii



List of Figures

1.1 The AWGN channel. . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 N copies of the channel W . . . . . . . . . . . . . . . . . . . . . 7

2.2 Combination of two input bits to form an equivalent channel W2. 7

2.3 Generation of the new channel W4. . . . . . . . . . . . . . . . . 7

2.4 Channel splitting for N = 4. . . . . . . . . . . . . . . . . . . . . 8

2.5 Polarization transform for N = 2. . . . . . . . . . . . . . . . . . 8

2.6 Polarization transform for N = 2. . . . . . . . . . . . . . . . . . 9

2.7 Polar encoder of length 4. . . . . . . . . . . . . . . . . . . . . . 10

2.8 SC polar decoder of length 2. . . . . . . . . . . . . . . . . . . . 12

2.9 SC polar decoder of length 4. . . . . . . . . . . . . . . . . . . . 14

2.10 SC polar decoding - Step 1: u0 can be decoded directly by

passing the LLRs through appropriate f nodes. . . . . . . . . . 14

2.11 SC polar decoding - Step 2: u1 can be decoded using the already

calculated LLRs and the value of û0, which is probably frozen

(i.e. zero). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.12 SC polar decoding - Step 3: u3 can be decoded now using û0

and û1 and their sum û0 ⊕ û1. . . . . . . . . . . . . . . . . . . . 15

2.13 SC polar decoding - Step 4: Finally u3 is decoded in a similar

way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.14 Tree representation of the SC decoder of length 4. . . . . . . . . 17

2.15 List-SC decoding for list sizes of L = 32, 16, 8, 4, 2, 1 from left

to right, N = 4096, R = 1/2. . . . . . . . . . . . . . . . . . . . . 18

2.16 List-SC with 16-bit CRC for list size L = 8, N = 1024, and R =

1/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 LLRs density evolution of the first bit channel through the

stages for the SC decoder of length 4. . . . . . . . . . . . . . . . 21

iv



3.2 Estimated BER using Monte-Carlo simulation vs. bit error

probabilities approximated by the new algorithm. . . . . . . . . 28

3.3 Performance of the different construction algorithms for N =

4096 and R = 1/2. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Probability of bit error for the 76th and 113th bit positions

for a polar code of length N = 128, obtained using the new

construction algorithm. . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Performance of the constructions at different Target SNRs for a

receiver operating at 3dB (N = 2048 and R = 1/2). . . . . . . . 31

4.1 LTE rate 1/3 turbo encoder [17]. . . . . . . . . . . . . . . . . . 33

4.2 The turbo decoder. . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Tanner graph of the example code. The red line indicates the

girth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 BER comparison for different code rates, K = 64 (For LDPC,

K = 60 for R = 1/2, 1/3, and 5/6.) . . . . . . . . . . . . . . . . 43

4.5 BER comparison for different code rates, K = 256 (For LDPC,

K = 252 for R = 1/2, and 1/3, and K = 260 for R = 5/6.) . . . 43

4.6 BER comparison for different code rates, K = 1024 (For LDPC,

K = 1020 for R = 1/2, 1/3, and 5/6.) . . . . . . . . . . . . . . . 44

4.7 BER comparison for different code rates, K = 4096 (For LDPC,

K = 4092 for R = 1/2, and 1/3, and K = 4100 for R = 5/6.) . . 44

List of Tables

4.1 Target SNR in dB for each configuration. . . . . . . . . . . . . . 41

v



List of Abbreviations

5G 5th generation wireless systems.

AWGN Additive White Gaussian Noise.

B-DMC Binary Discrete Memoryless Channel.

BCJR Bahl-Cocke-Jelinek-Raviv.

BEC Binary Erasure Channel.

BER Bit Error Ratio.

BPSK Binary Phase Shift Keying.

CN Check Node.

CRC Cyclic Redundancy Check.

DEGA Density Evolution with Gaussian Approximation.

HARQ Hybrid Automatic Repeat Request.

IEEE Institute of Electrical and Electronics Engineers.

LDPC Low-Density Partiy Check.

List-SC List Successive Cancellation.

LLR Log-Likelihood Ratio.

LTE Long-Term Evolution.

M-DEGA Modified Density Evolution with Gaussian Approximation.

MAP Maximum A Posteriori.

ML Maximum-Likelihood.

PM Path Metric.

QPP Quadratic Permutation Polynomials.

SC Successive Cancellation.

SISO Soft-Input Soft-Output.

SNR Signal-to-Noise Ratio.

VN Variable Node.

vi



1
Introduction

1.1 Channel Coding

The work of Shannon in his 1948 paper [2] marks a groundbreaking milestone

in the field of communications; it is his work that established what we now

know as Information Theory. One of his main results is that an error-free

communication over a noisy channel is possible, if the information transmission

rate is below or equal to a specific bound known as the Channel Capacity.

Since then, enormous efforts were put into finding new transmission techniques

starving to get closer and closer to the channel capacity.

Channel coding is one of the fundamental techniques that make such near-

capacity operation possible. By introducing a structured redundancy at the

transmitter (encoding), and exploiting it at the receiver (decoding), wide pos-

sibilities of error correction and detection can be achieved. The history of

practical channel coding has a long run, maybe starting with Binary Golay

codes [3] in 1949, Hamming codes [4] in 1950, Convolutional codes [5] in 1955,

Reed-Solomon codes [6] in 1960, Low-Density Parity-Check (LDPC) codes [7]

in 1960, then to the iterative decoding and capacity-approaching era of Turbo

codes [8] in 1993, the rediscovery of LDPC codes [9] in 1996, and the intro-

duction of Polar codes [1] in 2008. A very rich history indeed.

The goal of channel coding can be summarized as providing the receiver

with the ability to recover the transmitted information correctly with very high

probability.

1



1.2. ENCODING AND DECODING

1.2 Encoding and Decoding

The process of adding redundancy to the transmission is called Encoding. For

linear codes, this can be written in the general form of

c = uG, (1.1)

where c is the 1×N output (encoded) codeword, u is the 1×K information

word, and G is the K×N Generator matrix. As the name suggests, the matrix

G generates the code and so its properties. Usually, the code is defined over a

Galois Field GF(q) and thus all the entries in (1.1) as well as the operations of

addition and multiplication are defined over that field. We restrict ourselves

here to q = 2, i.e. the binary field, which is the most widely used field in

channel coding in specific, and in digital communications in general. Therefore

throughout this thesis, we will be dealing with bits. Alternatively, the code

can be described through its Parity Check matrix H, which is defined as

GHT = 0. (1.2)

Matrix H has a dimension of (N−K)×N , where each row represents a parity

check equation. A valid codeword satisfies all the parity check equations, i.e.

cHT = uGHT = 0. (1.3)

The encoding can be carried out either in systematic way where the input

bits appear directly at output codeword, or non-systematically where they do

not. Systematic encoding is usually preferred since it allows for easier rate

adaptation.

At the receiver side, the codeword is distorted due to noise and channel

impacts, and the goal is to retrieve the original information word u, or at least

find out if it is corrupted or not. The process of doing that is Decoding. It

encompasses error correction, error detection, or both of them. For example,

turbo codes offer great error correction capabilities. On the other hand, Cyclic

Redundancy Check (CRC) codes are bad with error correction, but are ex-

cellent at error detection. Error correction usually deals with sophisticated

algorithms that in many cases suffer from a relatively high complexity.

2



1.3. THE AWGN CHANNEL

1.3 The AWGN Channel

The Additive White Gaussian Noise (AWGN) channel is one of the most com-

mon approaches to model distortions from many random sources, such as ther-

mal vibrations in matter, shot noise, radiations from objects and space, etc.

By the central limit theorem, the sum of many of these random sources tend

to be Gaussian distributed. The term additive comes from its additive nature

in the sense that it is added on the top of our desired signal, and being white

means that at different instants, it is uncorrelated. The model is shown in

Figure 1.1 below.

xl

nl

yl

Figure 1.1: The AWGN channel.

At instant l, the channel output is given by

yl = xl + nl (1.4)

where xl is the source output at instant l drawn according to some distribution,

yl is the channel output, and nl ∼ N (0, σ2) is the zero mean AWGN with

variance σ2. The distribution of nl is equal to

fnl(nl) =
1√

2πσ2
exp

(
− n2

l

2σ2

)
. (1.5)

As we mentioned previously, one of the important results in information theory

is the channel capacity. For the AWGN channel, this is given by [2]

CAWGN =
1

2
log
(

1 +
Px
σ2

)
, (1.6)

where Px = E{|xl|2} is the mean power of the source. Any transmission rate

higher than the channel capacity will produce a non-zero probability of error,

and therefore the information is irrecoverable. Our focus in this thesis will be

on the transmission over the AWGN channel.

3



1.4. SOFT INFORMATION AND THE L-VALUE

1.4 Soft Information and the L-value

One of the key-enablers for the high coding gain in the modern era of channel

coding is the soft information processing. Instead of passing sliced bits (by

hard decision) to the decoder which are either 0 or 1, pass the reliability of

that decision as well. Since bits take only two values, this soft information can

be calculated as follows

`xl =
Pr{xl = 0|yl}
Pr{xl = 1|yl}

, (1.7)

where Pr{xl = i|yl} is the posterior probability of xl = i given the channel

output yl, and therefore `xl is the posterior ratio of xl. For numerical purposes,

we usually take the log of that expression

Lxl = log

(
Pr{xl = 0|yl}
Pr{xl = 1|yl}

)
, (1.8)

here Lxl is called the posterior L-value. Using Bayes rule, it can be written as

Lxl = log

(
Pr{yl|xl = 0}Pr{xl = 0}
Pr{yl|xl = 1}Pr{xl = 1}

)
,

= log

(
Pr{yl|xl = 0}
Pr{yl|xl = 1}

)
+ log

(
Pr{xl = 0}
Pr{xl = 1}

)
,

= LLRxl + Lprior
xl

,

(1.9)

where the first term is the log-likelihood ratio (LLR) of the bit xl, and the

second term is the prior ratio of xl. In many cases, the bits are uniformly

distributed, i.e. Pr{xl = 0} = Pr{xl = 1}, and therefore

Lxl = LLRxl . (1.10)

That is why it is common that the log posterior ratio and the LLR are both

called the L-value, and it is understood from the context which probability it

is representing. But as mentioned, in many cases they are equal.

It can be immediately seen that the sign of the L-value represents the

hard decision of the bit. If it is positive then the bit is 0, otherwise it is 1.

The magnitude of the L-value represent the reliability of that decision. Of our

interest is the LLR when operating over the AWGN channel. Assuming Binary

4



1.5. THESIS OVERVIEW

Phase Shift Keying (BPSK) in which 0 is mapped to 1, and 1 is mapped to -1,

the LLR is equal to

LLRxl = log

(
Pr{yl|xl = 0}
Pr{yl|xl = 1}

)
,

= log

( 1√
2πσ2

exp
(
− (yl−1)2

2σ2

)
1√
2πσ2

exp
(
− (yl+1)2

2σ2

)),
= 2yl/σ

2.

(1.11)

This expression becomes more complicated when higher order mapping is used.

Accounting for the reliability of decisions is of great importance. For example,

consider the simple repetition coding scheme where each bit is transmitted

twice. The receiver calculates the L-values and let us assume they are equal

to −0.01 and 5.00. If we go for sign decision, the first output says the bit

is 1, while the second output says the bit is 0. At this point, the decoder is

confused as it cannot tell which output is correct. However, if we account for

reliabilities then the decoder will choose the second output since it has much

higher reliability and the bit will be decoded as 0.

1.5 Thesis Overview

In Chapter 2, we discuss the principle of polarization and how it can be used

as a method for channel coding: polar codes. We look into the non-systematic

nature of polar codes and into possible systematic encoding. We finish the

chapter considering the decoding algorithms, namely the Successive Cancel-

lation (SC) decoding and its extension of list decoding and CRC-aided list

decoding. Chapter 3 deals with the construction aspect of polar codes over

the AWGN channel. We show a new construction algorithm and compare it

against some other constructions. We also consider the topic of polar codes’

non-universality. In Chapter 4, we compare the performance of polar codes

against turbo and LDPC codes. Finally, we provide some concluding remarks

and outlook in Chapter 5.

5



2
Polar Codes

Polar codes where introduced by Arıkan in 2008 [1] and since then they gained a

lot of attention. They are the first practical codes that are proven to achieve the

channel capacity at infinite length. Moreover, their finite length performance

under list successive cancellation decoding has been shown to be competitive

against modern state-of-the-art schemes such as turbo and LDPC codes. They

also enjoy low complexity operation encoding-wise and decoding-wise as well.

All of these aspects make them a very interesting research topic with respect

to both theory and practice.

2.1 Channel Polarization and Polar Codes

The principle of polar coding is based on channel polarization. This chan-

nel polarization or the polarization transform consists of two steps: channel

combining and channel splitting. We provide here a high level description of

polarization, since it is pretty technical.

Channel Combining

Assume we have N bits that we wish to transmit over a Binary Discrete Mem-

oryless Channel (B-DMC) W , like the AWGN channel we considered in (1.11).

Each transmission accounts for a use of W , or in other words transmitting

each bit through a copy of W as shown in Figure 2.1. Channel combining is

performed through the mapping (u0, u1) 7→ (u0⊕u1, u1), i.e. we start by taking

pairs of the input bits and combine them together to form a new 2-inputs 2-

outputs channel W2. This is shown in Figure 2.2. The next step is to combine

6



2.1. CHANNEL POLARIZATION AND POLAR CODES

u0 y0W

u1 y1W

uN yNW

Figure 2.1: N copies of the channel W .

u0 y0W

u1 y1W

W2

Figure 2.2: Combination of two input bits to form an equivalent channel W2.

each of these new channels in a similar manner to produce a super channel W4

(with appropriate selection of the bits) as shown in Figure 2.3. The process

continues until the channel WN is generated.

y0W

y1W

W2

y2W

y3W

W2

u0

u1

u2

u3

W4

Figure 2.3: Generation of the new channel W4.

7



2.1. CHANNEL POLARIZATION AND POLAR CODES

u0

u1

u2

u3

y0

y1

y2

y3

W

W

W

W

c0

c1

c2

c3

Figure 2.4: Channel splitting for N = 4.

Channel Splitting

In the second stage, the combined multi-input channels are split back into set

a set of N binary-input channels. This is shown in Figure 2.4

The overall operations of channel combining and splitting can be done

recursively using the kernel of length N = 2

F =

[
1 0

1 1

]
. (2.1)

For longer lengths, the transform is given by [1]

F⊗n = F⊗ F . . .⊗ F (n times), (2.2)

where F⊗n is the Kronecker product of F with itself n times, and n = log2(N).

This is the polarization transform and as can be seen it exists for lengths that

are equal to powers of 2.

Channel Polarization

So how does it work and why is it called polarization? Let us take the transform

of length 2 shown in Figure 2.5 below.

u0

u1

c0

c1

Figure 2.5: Polarization transform for N = 2.

8



2.1. CHANNEL POLARIZATION AND POLAR CODES

The output is mapped to some modulation symbols and transmitted. At

the receiver side, the decoder first attempts to decode u0 using the two channel

outputs. This is possible since this is effectively a truncated parity check

code with u0 not being present at the output. Now assume there is a genie

that tells the decoder the true value of u0 irrespectively of what was received.

Knowing the value of u0 from the genie, the decoder can then combine the

two channel outputs coherently to generate a more reliable decision for u1.

For the measure of reliability, Arıkan used the Bhattacharya parameter Z(W ),

which is a statistical distance that ranges from 0 (totally reliable) to 1 (totally

unreliable). Denoting the Bhattacharya parameter for the upper channel by

Z(W
′
) and for the lower channel by Z(W

′′
), Arıkan showed that with the aid

of such genie, the parameters evolve according to

Z(W ) ≤ Z(W
′
) ≤ 2Z(W )− Z(W )2,

Z(W
′′
) = Z(W )2.

(2.3)

The terminology for upper and lower channels are shown in Figure 2.6.

Figure 2.6: Polarization transform for N = 2.

The first line in (2.3) tells us that the reliability of the upper channel cannot

be better than the original channel, it is at best the same, but in general it is

degraded. The second line tells us that with the help of the genie, the reliability

of the lower channel is higher than the original channel, i.e. it is upgraded. If

we now consider the transformation for longer lengths such as that in Figure

2.4, then there will be more of these upgraded and degraded channels. The

important result is that at infinite length, the bit channels will polarize in the

sense that a set of the channels will be infinitely upgraded (totally reliable)

and the other set will be infinitely degraded (totally unreliable). If we put

the information bits only into the reliable set and put foreknown bits (usually

zeros) into the unreliable set (Frozen set), then the channel capacity can be

achieved. The process of doing that is called Polar coding.

9



2.2. ENCODING

2.2 Encoding

2.2.1 The Non-Systematic Nature of Polar Codes

As was mentioned in the previous section, the idea of the polar coding differs

from conventional coding schemes in the sense that the code works by increas-

ing the reliabilities of some set of the bit positions at the cost of reducing the

reliabilities of the others (the frozen set). Due to that, the input to the po-

lar encoder is the full word of dimension N consisting of the information bits

placed at the reliable set together with foreknows bit placed at the frozen set,

which leads to the following description of the encoding process

c = uG = uF⊗n, (2.4)

where c is the output codeword, G is the generator matrix which is equal

to the polarization transform, and u is the input word. Notice that both c

and u have the same dimension of N . This is due to the discussion above

regarding the input word containing both the information bits and the frozen

bits. For obvious reasons, the encoded codeword is not necessary systematic.

The encoder for a polar code of length 4 is shown in Figure 2.7.

u0

u1

u2

u3

c0

c1

c2

c3

Figure 2.7: Polar encoder of length 4.

2.2.2 Systematic Encoding

It is possible to perform polar encoding in a systematic way. Everything works

the same as before, the only difference is that we transform the input word

u in such way that after applying the polarization transform, the information

bits appear at the output codeword [10]. This can be performed by writing

10



2.2. ENCODING

the output codeword as follows

c = uFcGFc + uFGF , (2.5)

where uFc is the input part corresponding to information bits, uF is the input

part corresponding to the frozen bits, GFc is the matrix formed by the rows of

the polarization transform that corresponds to the information bits (reliable)

positions, and similarly GF corresponds to the frozen set rows. Let us break

c into two parts as well

cFc = uFcGFcFc + uFGFFc ,

cF = uFcGFcF + uFGFF ,
(2.6)

where GFFc is the submatrix formed by the intersection of the rows in F with

columns in F c, and similarly are the other submatrices. Therefore if cFc is the

systematic part of the output codeword, the bits at the reliable positions must

satisfy

uFc = (cFc − uFGFFc)G
−1
FcFc . (2.7)

It turns out for GFcFc to be invertible, the information bits must appear at

the output codeword at the same positions as they appeared at the input [10].

This justifies why we used cFc to refer for the systemic part of the output

codeword in the first place. Therefore if the information bits are b, we set

cFc = b and perform (2.7). The result is inserted into the reliable positions

of the polarization transform as before. At the receiver side after performing

decoding, the decoded bits need to be detransformed in order to obtain the

true information bits.

An interesting result is that the Bit Error Ratio (BER) performance of

systematic polar codes is actually better (∼ 0.3dB) than the non-systematic

counterpart for the same constructed code. An explanation of this is given

in [11], where they attributed that gain to the re-encoding process in (2.7).

Further techniques for low-complexity operation of systematic polar codes can

be found in [12].

11



2.3. DECODING

f

g

u0
^

u0
^

u1
^

L0

L1

Lu0

Lu1

Figure 2.8: SC polar decoder of length 2.

2.2.3 Systematic or Non-Systematic

At this point, one might question whether it pays off to perform systemic

encoding for the sake of the extra gain. We need to recall that going for the

systematic approach requires extra calculations not only at the transmitter

side, but at the receiver side as well (for detransformation). Most of the

work and also what has been proposed for the standardization process in 5th

generation wireless systems (5G) is the use of non-systematic polar codes. The

reasons are mainly because on the one hand, it lacks the extra calculations that

are required otherwise by the systematic approach, and on the other hand

many of the Hybrid Automatic Repeat Request (HARQ) schemes for polar

codes such as Incremental Freezing [13], does not impose any requirements on

the polar code systematic-wise. Because of that and since the extra gain is not

that substantial, it makes sense to go with non-systematic encoding.

2.3 Decoding

2.3.1 Successive Cancellation (SC)

The recursive structure of the polarization transform permits a very simple

decoding scheme based on successive cancellation (SC). If we consider the

polarization transform of length 2, we see that it is nothing more than a trun-

cated parity check code, where the truncated part from the output is the bit

u0. Based on this, we can immediately see that the decoding can be performed

by replacing the XOR and connection nodes by the probabilistic f and g nodes

shown in Figure 2.8. For input LLRs La and Lb, those nodes calculate [14]

12



2.3. DECODING

f(La, Lb) = log

(
eLa+Lb + 1

eLa + eLb

)
,

g(La, Lb, s) = (−1)usLa + Lb,

(2.8)

where us is termed the partial sum, which is the sum of the previously decoded

bits that are participating in the current sum (or node g, from the decoder

point of view). In this example, us = u0 because there is no other bit that is

participating in this sum (truncated parity check if you will).

Since u0 is not present at the output then its L-value is zero and therefore

we end up only with the extrinsic information from the parity bit and u1. This

is what node f calculates, and it can be done in a robust manner using the

Min-Sum approximation, i.,e.

f(La, Lb) ≈ sign(La)sign(Lb) min (|La|, |Lb|). (2.9)

Node g on the other hand has an L-value for u1 and therefore it can add it up

to the extrinsic information from the other bits. A critical point here, is that

node g assumes that us is totally correct, meaning that it affects the calculation

of the extrinsic information by only changing the sign of parity bit L-value.

For polar codes, the first bit u0 is usually frozen and so it is set to zero. Since

the decoder knows the frozen set, it sets u0 to zero as well and produces an

LLR for u1 equal to

Lu1 = g(L0, L1, u0) = L0 + L1, (2.10)

which improves the reliability of u1, thus producing the coding gain.

For the remaining part of the thesis, we adopt the following terminology

shown in Figure 2.9. The LLRs through the decoder are addressed through

which stage (columns) s and which bit channel (rows) i they are at, with stage

zero being the channel LLRs stage. This is denoted as L
(s)
i in the figure. The

sequence of decoding a polar code of length 4 is shown in Figures 2.10-2.13.

If a specific bit is frozen, then we can directly set it to zero. The partial sum

us can be calculated recursively as well. There is no specific way, it can be

figured out directly from the polarization transform.

The SC decoder suffers from two major drawbacks, the first one is its

suboptimality. It can be seen that the way the decoder proceeds is in a stage

13



2.3. DECODING

f

g

f

g

f

g

f

g

u0
^ u1

^

u1
^u2

^

u0
^

u0
^

u1
^

u2
^

u3
^

L0
(0)

L1
(0)

L2
(0)

L3
(0)

L0
(2)

L1
(2)

L2
(2)

L3
(2)

L0
(1)

L1
(1)

L2
(1)

L3
(1)

Figure 2.9: SC polar decoder of length 4.

f

g

f

g

f

g

f

g

u0
^ u1

^

u1
^u2

^

u0
^

u0
^

u1
^

u2
^

u3
^

L0
(0)

L1
(0)

L2
(0)

L3
(0)

L0
(2)

L1
(2)

L2
(2)

L3
(2)

L0
(1)

L1
(1)

L2
(1)

L3
(1)

Figure 2.10: SC polar decoding - Step 1: u0 can be decoded directly by passing
the LLRs through appropriate f nodes.

14



2.3. DECODING

f

g

f

g

f

g

f

g

u0
^ u1

^

u1
^u2

^

u0
^

u0
^

u1
^

u2
^

u3
^

L0
(0)

L1
(0)

L2
(0)

L3
(0)

L0
(2)

L1
(2)

L2
(2)

L3
(2)

L0
(1)

L1
(1)

L2
(1)

L3
(1)

Figure 2.11: SC polar decoding - Step 2: u1 can be decoded using the already
calculated LLRs and the value of û0, which is probably frozen (i.e. zero).

f

g

f

g

f

g

f

g

u0
^ u1

^

u1
^u2

^

u0
^

u0
^

u1
^

u2
^

u3
^

L0
(0)

L1
(0)

L2
(0)

L3
(0)

L0
(2)

L1
(2)

L2
(2)

L3
(2)

L0
(1)

L1
(1)

L2
(1)

L3
(1)

Figure 2.12: SC polar decoding - Step 3: u3 can be decoded now using û0 and
û1 and their sum û0 ⊕ û1.

15



2.3. DECODING

f

g

f

g

f

g

f

g

u0
^ u1

^

u1
^u2

^

u0
^

u0
^

u1
^

u2
^

u3
^

L0
(0)

L1
(0)

L2
(0)

L3
(0)

L0
(2)

L1
(2)

L2
(2)

L3
(2)

L0
(1)

L1
(1)

L2
(1)

L3
(1)

Figure 2.13: SC polar decoding - Step 4: Finally u3 is decoded in a similar
way.

by stage manner. At each stage, and at each node within the stage, two

inputs participate in generating the output for the next stage. A near-optimum

decoder would calculate/update the L-values across all the stages in a joint

manner instead. For example, a joint decoder would attempt to solve a check

equation that is defined by the whole sum of u0 ⊕ u1 ⊕ u2 ⊕ u3 for the first

output of the polar encoder instead of trying to solve it successively.

The second drawback is with respect to the decoding latency. In gen-

eral, and especially for long codes, the SC decoder suffers from relatively high

latencies that are inevitable due to its successive nature, which limits the pos-

sibilities for parallel implementations.

2.3.2 List Successive Cancellation (List-SC)

The first drawback regarding the suboptimality can be addressed by incorpo-

rating a list technique into the decoding process [15]. We start by considering

the tree structure of the SC decoder. We have seen that the decoder starts by

decoding the first bit (if not frozen), then having its value, it proceeds to the

second bit, and similarly, it continues to the consecutive bits until reaching

the last bit. This can be represented as the tree shown in Figure 2.14. For

each decoded bit, we consider both possibilities of whether it has been decoded

16



2.3. DECODING

u0

u1

u2 u2

u3 u3 u3 u3

u1

u2 u2

u3 u3 u3 u3

0
1

Figure 2.14: Tree representation of the SC decoder of length 4.

correctly or not. In other words, for each bit we take the two possibilities of

being zero or one, irrespectively of its LLR. This effectively creates additional

decoding branch for each bit. Unfortunately, doing this for each bit is not fea-

sible, since the number of branches will grow up exponentially leading to the

Maximum-Likelihood (ML) decoder complexity (and performance). In order

to keep a reasonable complexity, we limit the number of branches at any level

to a maximum of the list size. For example, if the list size is 4, then at any

level, only 4 decoding-paths are allowed to survive. By looking at Figure 2.14,

we see that the first two levels have at most 4 branches, however on the third

level we have 8 branches and therefore some of them have to be dropped. For

this, a Path Metric (PM) is developed based on the LLRs of the bits. These

path metrics are tracked down through the tree, and when more branches are

available, only those with the smallest path metrics are allowed to survive.

For LLR-based List-SC decoder, this path metric can be calculated as [16]

PMi[l] = φ
(
PMi−1[l], L

(s)
i [l], ûi[l]

)
, (2.11)

where PMi[l] is the path metric at level i and decoding-path l, and L
(s)
i [l] and ûi[l]

are defined as before but now they have decoding-path dependency as well. The

function φ() is given by

φ
(
a, b, u

)
= a+ log

(
1 + e−(1−2u)b

)
, (2.12)

17



2.3. DECODING

which is approximated via [16]

φ̃
(
a, b, u

)
=

a, if u = 1
2
[1− sign(b)],

a+ |b|, else.
(2.13)

We continue with the creation and termination of branches until the last bit is

reached. At the end, the decoding path with the lowest path metric is chosen.

An interesting observation here is that those decoding paths can be im-

plemented as parallel SC decoders, i.e. if the list size is equal to four, then

in principle we could have four SC decoders running in parallel each decoding

one of the four paths, and after each level they can exchange information re-

garding the new branches. This is an important aspect since the extra gain

obtained by the list decoder does not have a substantial impact on the de-

coding latency. It does however impact the memory requirements, since the

whole decoded bits and the associated LLRs need to be copied from one path

to another, roughly four times the memory for a list size of four, unless some

efficient management/addressing techniques are applied.

Figure 2.15 shows the performance of the list decoder for different list sizes

L. The simulation is carried out over the AWGN channel with BPSK signaling

for code length N = 4096 and rate R = 1/2.

Figure 2.15: List-SC decoding for list sizes of L = 32, 16, 8, 4, 2, 1 from left to
right, N = 4096, R = 1/2.

18



2.3. DECODING

In [15], the authors observed that it can happen where the selected path

at the final stage (i.e. the one with lowest path metric) is not the true path,

even though the true path was actually in the final list of survivors. Based

on this, a Cyclic Redundancy Check (CRC) extension was proposed for the

list decoder. The idea is that at the final list, a CRC detection is performed

on the surviving paths, and if one of them satisfies it, then it is the correct

path. Otherwise, select the path with the lowest path metric and hope it has

the fewest bit errors. Figure 2.16 shows the performance of the CRC-aided list

decoder. The CRC used is based on the 16-bit Long-Term Evolution (LTE)

polynomial [17], for list size L = 8, code length N = 1024, and rate R = 1/2

with BPSK over the AWGN channel.

Figure 2.16: List-SC with 16-bit CRC for list size L = 8, N = 1024, and R =
1/2.

One can observe that the list curve is exhibiting a relative saturation to-

wards the SC curve. This is not the case with Figure 2.15, at least in the same

range of BER. We attribute this to the code construction, or in other words,

there is potential for a better curve slope if a more sophisticated construction

is used for this code length. The CRC-aided list decoder seems to be more

robust against the construction imperfection and provides much better perfor-

mance. This of course comes at the cost of running CRC detection on each of

the surviving paths of the final list.

19



3
Construction of Polar Codes for
the AWGN Channel

In this chapter we discuss some concepts regarding the construction of polar

codes, specialized to the AWGN channel. Polar code construction deals with

the problem of finding the set of the most unreliable bit positions, or com-

monly called the frozen set. These unreliable positions are fed with foreknown

bits (zeros usually), while the other set is used to transport information. The

receiver has to know the frozen set, otherwise it cannot tell which bits are used

for information transport. Unfortunately this set is not only dependent on the

code length and rate, but also on the channel conditions as well. Such depen-

dency on the channel categorizes polar codes under the class of non-universal

codes. However, it has been shown in [18] that the non-universality is a prop-

erty of the suboptimal SC decoder and not the code itself. So effectively, we

are constructing the code that makes the SC decoder perform the best. In the

case of the AWGN channel, this corresponds to the dependency on the receiver

Signal-to-Noise Ratio (SNR). This is actually a drawback, since the polar code

needs to be reconstructed every time the SNR changes in order to guarantee

optimum performance. Fortunately, the dependency is not extremely strict

in the sense that a code constructed for a specific SNR can maintain a good

performance over a range of neighboring SNRs as well. There have been some

efforts into the design of universal polar codes such as [19], however it comes at

the cost of lower decoding performance, limitations on the code length, or an

increase in complexity. We consider here the construction for the SC decoder

(non-universal) since it is the low-complexity approach at the moment.

20



3.1. THE PROBLEM OF OPTIMUM CONSTRUCTION

3.1 The Problem of Optimum Construction

As mentioned already, constructing polar codes boils down to finding the set of

the most reliable bit positions. One possibility of construction is through the

tracking of Bhattacharyya parameter as was considered in Chapter 2. However,

it has been shown that the parameters’ updates are achieved with equality

only for the Binary Erasure Channel (BEC) [1]. For any other channel, it is

not exact and therefore an optimal tracking of the channels reliability is not

possible with that method. One can attempt to go for the extreme case in

which we try to track the whole probability densities of the LLRs through the

decoder starting from the channel stage towards the decision stage, and based

on those densities we can figure out a way to decide which “density” is more

reliable, roughly speaking. Unfortunately, this is a very difficult task, mainly

due to the non-linear transformation given by the node f operation in (2.7).

To demonstrate why it is difficult, consider the following example. Let

us take the polar code of length 4 and assume an all-zero transmission with

BPSK modulation over the AWGN channel of variance σ2 = 0.5. Now, let

us take a look at the distributions of LLRs of the first bit channel across all

the stages (refer to Figure 2.9 for the terminology), i.e. the distribution of

L
(0)
0 , L

(1)
0 , and L

(2)
0 . This is shown in Figure 3.1 below.

Figure 3.1: LLRs density evolution of the first bit channel through the stages
for the SC decoder of length 4.

As can be seen, at the channel stage we start with a Gaussian distributed

LLR L
(0)
0 , and as the LLR passes through node f transformations, the Gaus-

sianity is lost and we end up with some different densities. Therefore, it is

clear that direct analytical tracking of the densities through the SC decoder

is very difficult. For this, we need to find simpler methods. We consider next

21



3.2. BHATTACHARYA PARAMETER CONSTRUCTION

some of the possible construction algorithms. Other constructions with varying

performance and complexity can be found in [20–23].

3.2 Bhattacharya Parameter Construction

Perhaps the simplest way for constructing polar codes (for the AWGN channel)

is to assume that the Bhattacharya parameter updates approximately hold.

Following the terminology of Figure 2.9, these can be written as

Z(b
(s)
i ) ≈ 2Z(b

(s−1)
i )− Z(b

(s−1)
i )2, if node f,

Z(b
(s)
i ) = Z(b

(s−1)
i )2, if node g,

(3.1)

where Z(b
(s)
i ) is the Bhattacharya parameter of ith bit channel at the sth stage.

Notice that the parameter depends on the parameter at the previous stage of

the ith bit channel only, and not on the other (i + N/2) bit channel. The

reason for that is any two inputs to any node are processed by the same se-

quence of nodes at the previous stages as depicted in Figure 2.9. For example,

L
(1)
0 and L

(1)
1 , which are inputs to node f of bit u0, both result from node f

calculation at the previous stage. Therefore, they have the same statistical

properties assuming that at the channel stage all inputs have the same statis-

tical properties, which is usually the case. Based on this, we pick the input

that is on the same level as the current one in order to simplify notation.

The construction algorithm proceeds as follows: Start at the channel stage

with the Bhattacharya parameter of the underlying AWGN channel. Assuming

binary transmission with unity power and a noise variance of σ2, it is given by

ZAWGN = exp
(
− 1

2σ2

)
= exp

(
− SNR

2

)
. (3.2)

Next, evolve the parameter through the decoder nodes until reaching the last

stage (decision stage), then the bit channels with the lowest parameters are

the most reliable ones. Because of the similarity between the inputs within

the stages statistical-wise, the evolution of the parameter can be done in a

recursive way. In other words, at the channel stage, all the inputs have the

same Bhattacharya parameter and therefore we only calculate it once. For the

next stage, the whole first half of the nodes will have the same parameter, and

the other whole half will have another one, therefore we only need to calculate

22



DEGA Construction

it twice, at the third stage each whole quarter will have new same parameter,

etc. The construction algorithm is given in Algorithm 1 below.

Algorithm 1 Bhattacharya parameter construction

Input: Target SNR (TarSNR) in dB, Code length (N )
Output: Vector of final stage Bhattacharya parameters (Z)

Initialization: Z[0] = exp(−10TarSNR/10/2)
1: for i = 1 to log2(N) do
2: j = 2i−1

3: for k = 0 to j − 1 do
4: z = Z[k]
5: Z[k] = 2z − z2
6: Z[k + j] = z2

7: end for
8: end for
9: return Z

The output vector is then sorted from lowest to highest, and the low-

est K positions are used for information transport. Depending on the en-

coder/decoder implementation, bit reversal sorting might be needed as well.

3.3 Density Evolution with Gaussian Approxi-
mation (DEGA) Construction

The most popular construction for polar codes operating over the AWGN chan-

nel is Density Evolution with Gaussian Approximation (DEGA). As the name

suggests, DEGA tries to evolve the densities of the LLRs through the decoder

starting from the channel stage towards the decision stage. However, as we

have seen in section 3.1, this is very difficult since even if we start with Gaus-

sian densities at the channel stage, the resulting densities at the next stages

are no longer Gaussians. DEGA relaxes this by assuming that they are ap-

proximately Gaussians, and therefore throughout the decoder it only has to

track the mean and the variance of the LLRs. The LLR of the binary AWGN

channel is equal to

L = 2y/σ2, (3.3)

where y is the channel output. Under the assumption of all-zero transmission,

the mean value of the LLR above

m = E{L} = 2/σ2, (3.4)

23



DEGA Construction

and the variance

var{L} = 4/σ2 = 2m. (3.5)

This relationship between the mean and the variance is assumed to hold at all

stages [24], i.e. at any stage we have a Gaussian distributed LLR with mean

m
(s)
i and variance 2m

(s)
i . Therefore we do not have to track the variance, but

rather only the mean, and in case we need it, we just invoke the relationship

above.

Following our terminology, DEGA performs the following updates [25]

m
(s)
i =


φ−1

(
1−

(
1− φ

(
m

(s−1)
i

))2)
, if node f,

2m
(s−1)
i , if node g,

(3.6)

where the function φ() is given by the approximation [26]

φ(x) =


exp(−0.4527x0.86 + 0.0218), 0 < x < 10,√
π

x
exp

(
−x

4

)(
1− 10

7x

)
, x ≥ 10,

and the inverse function φ−1() might be approximated numerically with a

piecewise function. The DEGA construction is given in Algorithm 2.

Algorithm 2 DEGA construction

Input: Target SNR (TarSNR) in dB, Code length (N )
Output: Vector of final stage LLRs mean values (M)

Initialization: M [0] = 2× 10TarSNR/10

1: for i = 1 to log2(N) do
2: j = 2i−1

3: for k = 0 to j − 1 do
4: m = M [k]
5: M [k] = φ−1

(
1− (1− φ (m))2

)
6: M [k + j] = 2m
7: end for
8: end for
9: return M

Here the larger is the mean of the LLR, the higher is the reliability of

the bit channel. The same discussion from last section regarding the sorting

applies here as well.

24



3.4. NEW CONSTRUCTION AND THE MODIFIED DEGA

3.4 New Construction and the Modified DEGA

In this section, we show a new construction algorithm based on our work

in [27]. The idea here is to characterize the reliability of the bit channels using

the probability of bit error. Since it is dealing with the probability of error,

this method gives us a performance analysis of the bit channels as well. For

the remaining part, we assume the inputs to the encoder are all zeros, and the

transmission is carried out using BPSK. Consider the decoding of the bit u0

in Figure 2.10. It will be decoded correctly if its LLR L
(2)
0 is positive. This

is satisfied if and only if the two input LLRs L
(1)
0 and L

(1)
1 to its node f , are

both positive or both negative. In either case, the output will be positive and

u0 is decoded correctly. We also notice that the two inputs to any node are

processed by the same sequence of nodes in the previous stages, and therefore

their statistical properties are the same. Denoting PC{b(s)i } as the probability

of correct decision of the bit channel i at stage s, and similarly PE{b(s)i } as the

probability of error, the probability of decoding u0 correctly can be calculated

as

PC{b(2)0 } = PC{b(1)0 }PC{b
(1)
1 }+ PE{b(1)0 }PE{b

(1)
1 }, (3.7)

i.e. u0 will be decoded correctly if the inputs to its node f are both correct

or both incorrect. Since the two inputs have the same statistical properties as

discussed above, then

PC{b(2)0 } = PC{b(1)0 }2 + PE{b(1)0 }2. (3.8)

Under our assumption of all-zero transmission, we now notice that the output

of the channel b
(1)
0 will be positive if and only if the two inputs to its corre-

sponding node f , are both positive or both negative, which is the same case

considered above. Based on this, we generalize (3.8) to

PC{b(s)i } = PC{b(s−1)i }2 + PE{b(s−1)i }2,

= (1− PE{b(s−1)i })2 + PE{b(s−1)i }2, (3.9)

= 1− 2PE{b(s−1)i }+ 2PE{b(s−1)i }2,

25



3.4. NEW CONSTRUCTION AND THE MODIFIED DEGA

and the probability of error is then

PE{b(s)i } = 1− PC{b(s)i },

= 2PE{b(s−1)i } − 2PE{b(s−1)i }2, (3.10)

= 2PE{b(s−1)i }(1− PE{b(s−1)i }).

We consider now the decoding of bit u1. Under the all-zero transmission, the

output of its node g is equal to

L
(2)
1 = L

(1)
0 + L

(1)
1 . (3.11)

Unfortunately, this requires invoking the underlying distribution of the LLRs,

which is no longer Gaussian as mentioned in the previous sections. At this

point, we drop optimality, and similarly to DEGA, we approximate them with

Gaussian densities. If the partial sum us = u0 is correct, the parameter Z in

(3.2) evolves to Z2 when the bit channel is transformed by a node g according

to (2.3), i.e.

Z(b
(s)
i ) = [Z(b

(s−1)
i )]2 = exp(−SNR

(s−1)
i ). (3.12)

In other words, under correct feedback, node g (in the Gaussian sense) improves

the SNR of the transformed bit channel by a factor of two. We now proceed

and calculate the probability of error based on the SNRs. For AWGN channels,

the tail probability is given by the Q-function

PE{b(s)i } = Q

(√
SNR

(s)
i

)
, (3.13)

from which the calculation of SNR follows directly as

SNR
(s)
i = Q−1

(
PE{b(s)i }

)2
, (3.14)

where the Q−1() is the inverse Q-function. As shown in (3.12), the SNR will

double, and therefore the probability of error at the next stage after passing

through node g is given by

PE{b(s)i } = Q

(√
2SNR

(s−1)
i

)
, (3.15)

26



3.4. NEW CONSTRUCTION AND THE MODIFIED DEGA

which can be expanded using (3.14) into

PE{b(s)i } = Q
(√

2 Q−1
(
PE{b(s−1)i }

))
. (3.16)

Summarizing, the bit error probability of the ith bit channel evolves from stage

(s− 1) to (s) according to

PE{b(s)i } =


2PE{b(s−1)i }(1− PE{b(s−1)i }), if node f,

Q
(√

2 Q−1
(
PE{b(s−1)i }

))
, if node g.

(3.17)

The construction algorithm is given in Algorithm 3 below.

Algorithm 3 The new construction algorithm

Input: Target SNR (TarSNR) in dB, Code length (N )
Output: Vector of final stage bit error probabilities (P )

Initialization: P [0] = Q(
√

10TarSNR/10)
1: for i = 1 to log2(N) do
2: j = 2i−1

3: for k = 0 to j − 1 do
4: p = P [k]
5: P [k] = 2p(1− p)
6: P [k + j] = Q

(√
2 Q−1 (p)

)
7: end for
8: end for
9: return P

Since we have direct access to the probability of bit error, let us check how

good is the approximation given by the algorithm. We run a Monte-Carlo

simulation with 109 repetitions for a polar code of length 16, and estimate the

average BER of the individual bit channels (positions). We make sure that

all the fedback bits are correct, since the construction algorithm assumes the

best-case scenario in which all the fedback bits are correct. The results are

then compared against our algorithm. This is shown in Fig. 3.2

The SNR is set to 1 dB here. We can see that the algorithm did very well in

approximating the bit error probabilities. The results might vary depending on

the SNR and the code length. It might be needed to check the precision of the

algorithm for much longer lengths, however performing such simulations would

be computationally complex since we are trying to obtain BER estimates for

each bit channel.

27



3.4. NEW CONSTRUCTION AND THE MODIFIED DEGA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit Channel

10−6

10−5

10−4

10−3

10−2

10−1

100

B
E
R

Monte-Carlo

New Algorithm

Figure 3.2: Estimated BER using Monte-Carlo simulation vs. bit error prob-
abilities approximated by the new algorithm.

For the binary AWGN channel, the mean value of the LLR is related to

the SNR through

SNR
(s)
i =

(m
(s)
i )2

2m
(s)
i

=
m

(s)
i

2
. (3.18)

Using (3.14), we get

m
(s)
i = 2Q−1

(
PE{b(s)i }

)2
. (3.19)

We’ve shown in the probability analysis that passing through node f evolves

the error probability as in (3.16), i.e.

m
(s)
i = 2Q−1

(
2PE{b(s−1)i }(1− PE{b(s−1)i })

)2
, (3.20)

with

PE{b(s−1)i } = Q

√m
(s−1)
i

2

 . (3.21)

28



3.4. NEW CONSTRUCTION AND THE MODIFIED DEGA

The result is the following

m
(s)
i =


2Q−1

(
2PE{b(s−1)i }(1− PE{b(s−1)i })

)2
, if node f,

2m
(s−1)
i , if node g.

(3.22)

We call this the Modified-DEGA (M-DEGA) and different to the original

DEGA, the node f update is formulated in terms of the Q() and Q−1() func-

tions. Such formulation should provide better accuracy than DEGA, due to

the vast methods out there for the the calculation of the Q function and its

inverse in an efficient and accurate manner.

Finally let us see how the four algorithms we considered in the previous

three sections stand off against each other. Figure 3.3 shows the performance

of the different algorithms for code length N = 4096 and rate R = 1/2 signaled

over the AWGN channel with BPSK. It can be observed that the Bhattacharya

construction performs the worst. The other constructions perform similar to

each other, with slight gain for the new algorithms compared to DEGA at the

low SNR regime.

Figure 3.3: Performance of the different construction algorithms for N = 4096
and R = 1/2.

29



3.5. POLAR CODES “NON-UNIVERSALITY”

3.5 Polar Codes “Non-Universality”

Let us end this chapter by showing the effect of non-universality on the perfor-

mance of polar codes. Recall that at the start, we mentioned that this property

turned out to be a property of the SC decoder and not of the polar code itself.

So for the following results, it should not be taken as performance measure of

the code itself, but rather a limitation of the SC decoder.

In Figure 3.4 the probability of bit error for the 76th and 113th bit channels

are obtained using the new construction algorithm for a code length of N =

128. What should be observed here is that as long as the SNR is less than

3dB, the 113th bit position is more reliable than the 76th position. For SNRs

higher than 3dB, the converse is true and the 76th bit position is much more

reliable and should be chosen for information transport. If we plot the whole

128 probability of errors then we will see a lot of these intersections across

almost all the bit channels. This is the reason why the design (target) SNR

plays a crucial role, and this why the polar code needs to be reconstructed if

the current receiver SNR is far away from the design SNR. Remember that this

is a limitation of the SC decoder, meaning that if a ML decoder is employed,

the non-universal behavior would disappear [28].

Figure 3.4: Probability of bit error for the 76th and 113th bit positions for a
polar code of length N = 128, obtained using the new construction algorithm.

30



3.5. POLAR CODES “NON-UNIVERSALITY”

Next, let us consider the impact of the target SNR on a fully operational

long polar code. In Figure 3.5, the receiver is operating at a fixed SNR of

3dB. We try to transmit with different polar codes of length N = 2048 and

rate R = 1/2 constructed at different target SNRs and plot the resulting

average BER for each setting. There is some good news, and that is the polar

code maintains a good performance not only at the target SNR but also on a

considerable range around it. So as long as the receiver SNR does not change a

lot, the polar code will still give good performance. The codes were constructed

using the new algorithm and so this figure also shows its good performance in

which the curve minimum is obtained when the target SNR almost matches

the operating SNR of 3dB.

Figure 3.5: Performance of the constructions at different Target SNRs for a
receiver operating at 3dB (N = 2048 and R = 1/2).

31



4
Performance of Polar Codes ver-
sus Turbo and LDPC Codes

In this chapter, we take a look at the performance of polar codes against two of

the most popular capacity-approaching codes: Turbo and LDPC codes. The

content of this chapter is mainly based on our work in [29], with extensions

regarding the scenario of very short code length and the use of CRC-aided list

decoding for polar codes. We start by reviewing state-of-the-art architectures

for those coding schemes, and finish with a BER comparison against polar

codes.

4.1 Turbo Codes

Turbo codes, introduced in 1993 [8], represent a major breakthrough in the field

of channel coding. They represent a class of codes that can perform very close

to the capacity limit. The iterative turbo decoding scheme itself paved the way

for many of current modern near-optimum iterative receivers. In its common

form, turbo coding is performed by a parallel concatenation of two recursive

convolutional encoders separated by an interleaver. The task is then to design

the code polynomials for the individual encoders, and to use an appropriate

random-like interleaver (the reason for this will become clear later). At the

receiving side, two decoders are used, each one decodes the streams of the

corresponding encoder, and by exchanging probabilistic information, the two

decoders can iteratively help each other in a manner similar to a turbo engine,

hence the name.

32



4.1. TURBO CODES

4.1.1 Encoding

Due to the convolutional nature, the encoding can be carried out efficiently

using a combination of memory elements and XOR gates. Figure 4.1 shows the

turbo encoder used in LTE [17], where a Quadratic Permutation Polynomials

(QPP) interleaver is used [30]. The outputs of the first encoder are a systematic

stream ul and a parity stream p
(1)
l , while the second encoder generates a parity

stream p
(2)
l only. This makes it a rate 1/3 code.

D D D

Turbo
Interleaver

D D D

p
l

(1)

p
l

(2)

ul

ul

Figure 4.1: LTE rate 1/3 turbo encoder [17].

Such encoding scheme induces a state structure in the code based on how

the memory elements are used (and the memory length). The knowledge of

the state transitions is crucial later on for the decoder. Also, the starting and

the ending state of both encoders need to be known at the receiver, otherwise

performance loss will occur. In LTE, this is handled via trellis termination.

The design of the interleaver is important as well and it needs to provide

random-like behavior rendering the original and interleaved streams as if they

were uncorrelated. This is essential for the turbo gain, since it will be unlikely

that the original stream and its interleaved counterpart undergo the same

encoding, transmission, and/or decoding conditions.

One can observe that the encoding is of low complexity, and combined

with the high clock speeds of modern architectures, encoding latency is not a

problem.

33



4.1. TURBO CODES

4.1.2 Decoding

The turbo decoder consists of two Soft-Input Soft-Output (SISO) decoders.

The soft decoder is basically a bit-wise Maximum A Posteriori (MAP) decoder,

which is implemented efficiently using the BCJR algorithm [31]. Each decoder

acts on the streams of the corresponding encoder.

Let us first consider the SISO (BCJR) decoder assuming only one encoder

is employed. For information bit ul at time l, received codeword y, the L-value

of ul is given by

Lul = log

(
P{ul = 0|y}
P{ul = 1|y}

)
. (4.1)

Due to the Trellis structure of the convolutional code, these probabilities can

be written as [14]

Lul = log

(∑
U0
P{sl−1 = s′, sl = s,y}∑

U1
P{sl−1 = s′, sl = s,y}

)
, (4.2)

where sl is the state at time l, U0 is the set of pairs (s′, s) for the state transition

s′ → s when ul = 0, and U1 is the set of pairs (s′, s) for the transition when

ul = 1. Using the BCJR algorithm, these probabilities can be factorized as

P{sl−1 = s′, sl = s,y} = αl−1(s
′)γl(s

′, s)βl(s). (4.3)

In the log-domain, the final expression for the L-value is given by [14]

Lul = max
U0

∗[αl−1(s
′) + γl(s

′, s) + βl(s)]

−max
U1

∗[αl−1(s
′) + γl(s

′, s) + βl(s)],
(4.4)

The max∗ function is equal to

max∗(a, b) = max(a, b) + log(1 + e−|a−b|), (4.5)

and the probabilities αl and βl are calculated using the forward and backward

recursions [31]

αl(s) = max
s′

∗[αl−1(s
′) + γl(s

′, s)],

βl−1(s
′) = max

s

∗[βl(s) + γl(s
′, s)],

(4.6)

34



4.1. TURBO CODES

where γl(s
′, s) is the Branch Metric, in which for the AWGN channel with

variance σ2 is equal to

γl(s
′, s) =

1

2

(
ulL

prior
ul
− ‖yl − cl‖22 /σ

2
)
. (4.7)

Here, Lprior
ul

is the prior information about the bit ul, yl = [yul ypl ] is the channel

output of the systematic and the parity stream at time l, and cl = [ul pl] are the

generated systematic and parity bits according to the state transition s′ → s

at time l. This metric can be shortened as

γl(s
′, s) = ulL

prior
ul

/2 + (ulyul + plypl)/σ
2, (4.8)

where the other terms of the `2-norm were dropped because they are indepen-

dent of U0 and U1 and therefore will cancel each other during the subtraction

in (4.4). After some manipulation, (4.4) can be written as

Lul = 2yul/σ
2 + Lprior

ul
+ max

U0

∗[αl−1(s
′) + plypl/σ

2 + βl(s)]

−max
U1

∗[αl−1(s
′) + plypl/σ

2 + βl(s)].
(4.9)

The first term is basically the channel LLR of the bit ul, the second term is

prior information, and the third term is the new information obtained by the

decoding process

Lul = Lchannel
ul

+ Lprior
ul

+ Lnew
ul
. (4.10)

Given the operation of the BCJR algorithm, the turbo decoder operates as

follows: The systematic stream and the first parity stream are fed to the first

decoder, while an interleaved version of the systematic stream and the second

parity stream are fed to the second one. The first decoder starts, and instead

of generating a final LLR, it generates a cleared up version, called extrinsic

information Le. The extrinsic information is exactly equal to Lnew
ul

in (4.10).

This is interleaved π(l), and sent to the second decoder. The second decoder

makes use of this extra information by considering it as prior, therefore the

total L-value at the second decoder (2) is given by

L(2)
ul

= Lchannel
uπ(l)

+ Le(1→2)
uπ(l)

+ Lnew(2)
ul

. (4.11)

This leads to more reliable decoding compared to the case where it does not

35



4.1. TURBO CODES

have the additional information from the first decoder. In a similar manner, it

generates extrinsic information for the first decoder, and instead of interleaving,

it performs deinterleaving π−1(l), and at this point, an iteration is completed.

On the next iteration, the first decoder starts same as before, but now it

has extrinsic information from the second decoder, i.e.

L(1)
ul

= Lchannel
ul

+ Le(2→1)
uπ−1(l)

+ Lnew(1)
ul

, (4.12)

and therefore a more reliable output is calculated. Notice that the new prior

information obtained from the other decoder does not only enter in the total

L-value in (4.10), but also in the path metric in (4.7). This is why the new

information generated by each decoder is improved over the iterations. The

decoding continues until a stopping criterion is satisfied, or the maximum

number of iterations has been reached. An illustration of the decoder is shown

in Figure 4.2 below.

In (4.5), an approximation can be made by neglecting the log term,

max∗(a, b) = max(a, b). (4.13)

The decoding algorithm using this substitution is called Max-Log-MAP [32],

offering lower complexity at the cost of some performance loss.

BCJR
(1)

BCJR
(2)

Figure 4.2: The turbo decoder.

36



4.2. LOW-DENSITY PARITY-CHECK (LDPC) CODES

4.2 Low-Density Parity-Check (LDPC) Codes

LDPC codes were first proposed by Gallager in 1960 [7]. At that time, they

were considered too complex for practical implementation. In 1996 [9], LDPC

codes were rediscovered and their capacity-approaching performance was proven.

Shortly in [33], the decoding was realized efficiently using the iterative Sum-

Product algorithm. As the name implies, LDPC codes are block codes with a

sparse parity check matrix. Such sparsity facilitates low complexity encoding

and decoding. An example code is the following

H =


1 1 0 0 1 0

1 0 1 1 0 0

0 0 1 0 1 1

0 1 0 1 0 1

 . (4.14)

One cannot see the sparsity at this very short length, but we give it here

to explain some of the main principles. In general, the main parameters of

a parity check matrix are the column and row weights, and the Girth. The

weight of a column is the number of ones in that column. Similarly, the row

weight is the number of ones in that row. If all the columns and rows are of

equal weight, then the code is called regular, otherwise it is called irregular.

Irregular codes are known to have better capacity achieving capabilities [34].

An LDPC code can be represented graphically in terms of a Tanner graph

[35]. Such description is very powerful. Each row, which is a check equation,

is represented by a Check Node (CN), and each column, corresponding to one

of the bits, is represented by a Variable Node (VN). The “1”s in the matrix

represent the connections between the CNs and VNs. Figure 4.3 shows the

Tanner graph of the example code.

CN1 CN2 CN3 CN4

VN1 VN2 VN3 VN4 VN5 VN6

Figure 4.3: Tanner graph of the example code. The red line indicates the girth.

37



4.2. LOW-DENSITY PARITY-CHECK (LDPC) CODES

The girth of the code is defined as the shortest cycle in its associated Tanner

graph. This in indicated by the red line (of length 6) in the figure. The

existence of very short cycles increases the correlation between the extrinsic

messages exchanged during the iterative decoding, causing slow convergence

and in turn, poor performance.

4.2.1 Encoding

The encoding can be described in the general form of

c = uG, (4.15)

where c is the output codeword, u is the input block, and G is the generator

matrix. For LDPC codes, the parity check matrix H is the design parameter

and not the generator matrix G. However, the generator matrix can still be

obtained from a given parity check matrix. This is usually done by putting H

into systematic form using Gauss-Jordan Elimination, and then the generator

matrix is found directly [14].

Two problems exist, first, the parity check matrix is designed for a specific

input block length, and therefore using other lengths is not possible. The

second problem lies in the transformation of H into systematic form, since it

can get too complicated for long block lengths. The first problem is handled

using Quasi-Cyclic (QC) LDPC codes, and those can easily support variable

input sizes through Lifting [36]. The second problem can be mitigated by

utilizing a structure similar to Repeat-Accumulate (RA) codes [37] or some

other upper-triangular based structures. Such structures allow direct encoding

from the parity check matrix through fast and low-complexity operations [38]

such as back-substitution.

Quasi-Cyclic (QC) LDPC Codes

An LDPC code is called Quasi-Cyclic, if the parity matrix can be divided

into equal sized square submatrices of some dimension Z0, that are either the

identity matrix, a circular shift of it, or the all zero matrix. This allow us to

describe the H matrix in terms of the circular shifts. Such description is called

the Exponent matrix E(H), with elements of 0 for the identity matrix, larger

than 0 for the circular shifts, or -1 for the all zero matrix.

38



4.2. LOW-DENSITY PARITY-CHECK (LDPC) CODES

With QC codes, variable input sizes are easily supported via Lifting. In

Floor-based lifting [36], the following is performed

eij(Hnew) =


−1, if eij(Hold) = −1,⌊
eij(Hold) · Znew

Zold

⌋
, if eij(Hold) ≥ 0,

(4.16)

Where eij(H) is the element at the ith row and jth column of the exponent

matrix E(H). This transforms the old parity matrix with submatrix dimension

Zold to a new matrix with submatrix dimension Znew. Therefore, by varying

Znew wide range of block lengths can be supported.

Repeat Accumulate (RA) LDPC Codes

The parity check matrix of a RA code can be divided into two submatrices

H = [H1 H2] (4.17)

The matrix H1 is some parity matrix of dimension (N−K)×K. The second

matrix H2 is of dimensions (N −K)× (N −K), and has a very nice structure.

Except of its first column, H2 has a double diagonal structure that allows

for direct encoding from the parity check matrix through back-substitution,

without the need to calculate the generator matrix. This is possible since the

first K columns of H are related to the systematic part, and therefore parity

check results until the Kth coefficient of the check equations can be readily

calculated. Each parity bit is then the sum of its partial parity check result

and the previous parity bit.

4.2.2 Decoding

Decoding of LDPC codes is performed with the Sum-Product algorithm [33].

This is based on message passing between the CNs and VNs in the Tanner

graph. At the start, the VNs send the channel LLRs Lj to the connected CNs.

The CNs then perform the parity checking calculation probabilistically and

pass new messages to their connected VNs according to [14]

Li→j = 2 tanh−1
[ ∏
j′∈N(i)−{j}

tanh(Lj′→i/2)

]
, (4.18)

39



4.2. LOW-DENSITY PARITY-CHECK (LDPC) CODES

where Li→j is the message passed from the ith CN to jth VN, Lj→i is the

message passed from the jth VN to the ith CN, and N(i) is the set of VNs

connected to the ith CN. The VNs receive these messages, add them up, and

then pass new messages to the connected CNs according to

Lj→i = Lj +
∑

i′∈N(j)−{i}

Li′→j, (4.19)

where N(j) is the set of CNs connected to the jth VN. At this point, one

iteration is finished, and the total LLR can be calculated as

Lj(total) = Lj +
∑
i∈N(j)

Li→j. (4.20)

The sequence in which the nodes are scheduled can affect the performance.

The one described above, in which all the CNs, and then all the VNs up-

date their messages in parallel, is called the Flood schedule. An improved

performance can be achieved if serial scheduling is performed. This is called

Layered Belief Propagation (LBP) [39,40] and there exist many variants of it.

In Column Message Passing schedule [41], it starts with the first VN, gets the

messages from its connected CNs, processes them, and then generates mes-

sages back to those CNs. The second VN starts and does the same. Such

schedule creates a turbo effect, since within each iteration, a VN already sees

improvement in the CNs messages due to the previous VNs. LBP offers almost

double the convergence (half number of iterations) to that of the flood schedule

under the same complexity per iteration [42].

An approximation can be made to (4.18) in the form

Li→j =

( ∏
j′∈N(i)−{j}

αj′→i

)
· min
j′∈N(i)−{j}

βj′→i, (4.21)

where αj′→i and βj′→i are the sign and magnitude of Lj′→i, respectively. This

is the min-sum approximation [43], and offers lower complexity decoding, but

again, at the cost of some performance loss.

40



4.3. THE PERFORMANCE COMPARISON

4.3 The Performance Comparison

In this section we compare the performance of polar codes against turbo and

LDPC codes. We transmit using BPSK over the AWGN channel. We consider

code rates of R = 1/3, 1/2, 2/3, and 5/6, and information lengths of K =

64, 256, 1024, and 4096. These settings should be sufficient to show the

performance of polar codes across a wide range of high reliability scenarios,

as well as scenarios of high throughput. For convolutional and turbo codes,

we chose those of LTE [17]. For LDPC, we used the IEEE 802.16 codes [44],

and since it does not support codes of rate 1/3, an extension method has

been applied to the rate 1/2 code in a fashion similar to [45]. As for polar

codes, they were constructed using the new algorithm given in (3.17), and by

searching for suitable Target SNRs. The selected SNRs are listed in Table 4.1

for each configuration.

K R = 1/3 R = 1/2 R = 2/3 R = 5/6

64 −0.5 4 6.5 8

256 2 3.5 6 7.5

1024 1.75 3 5.25 7.5

4096 1.5 2.25 4.75 7

Table 4.1: Target SNR in dB for each configuration.

The rate adaptation for convolutional and turbo codes was obviously done

by puncturing. For LDPC, there is no rate adaption since for each rate we

used a different parity check matrix that fits that rate. For polar codes, since

the encoder size is limited to powers of 2, we chose the next power of 2 that

fits our input length and the extra positions were handled by applying zeros to

the encoder bottom positions. As their corresponding outputs do not depend

on the upper positions, then they are also equal to zero and can be removed

from the output codeword. At the decoder, the LLRs of these positions are

set to a very high positive value, reflecting a +∞ LLR.

Regarding the number of iterations and decoding algorithms, we follow our

results in [29], in which for turbo codes, the number of iterations are set to 8

and the decoding algorithm is MAX-Log-MAP. For LDPC codes, the number

of iterations is 16 and Layered Min-Sum is used for decoding. One should

also mention that there exist modified algorithms that try to improve the

41



4.3. THE PERFORMANCE COMPARISON

approximate algorithms through lookup tables, offsetting, or low complexity

functions. These of course come at the cost of extra computations or memory

consumption. For polar codes, we used the CRC-based list decoder with list

size of 8 and the approximation in (2.9). The CRC used is based on the 16-bit

version of LTE [17]. The different code lengths are addressed in terms of the

information block length K and the rate R. The reason for using K instead

of N is to simplify the encoding process by having K fixed. The results are

shown in Figures 4.4-4.7.

At the short information length of K = 64, the polar code beats both

turbo and LDPC codes at all code rates. This makes it an attractive choice

for the control channels in mobile communications, since the transmission of

short messages is usually employed there. For fairness, we should keep in

mind that CRC-aided decoding was used and therefore the information length

is effectively 64− 16 = 48 bits. In other words, there is a rate reduction. Once

a sufficient length is reached, we see that the schemes start to perform close

to each other.

From these results, it is evident that polar codes are an edge-to-edge com-

petitor with the current state-of-the-art coding schemes of turbo and LDPC,

even beating them at some point. However, it still has its own problems,

namely one needs to consider that the list SC decoding of polar codes suffers

from a relatively high decoding latency, and the excellent performance we see

here is due to the use of CRC extension on top of that. This places an even ex-

tra complexity on the decoder, since the CRC detection needs to be performed

on each of the surviving paths of the final list. Nonetheless, with appropriate

design of the decoding architectures, one can hope that the impact of those

issues are decreased.

42



4.3. THE PERFORMANCE COMPARISON

Figure 4.4: BER comparison for different code rates, K = 64 (For LDPC,
K = 60 for R = 1/2, 1/3, and 5/6.)

Figure 4.5: BER comparison for different code rates, K = 256 (For LDPC,
K = 252 for R = 1/2, and 1/3, and K = 260 for R = 5/6.)

43



4.3. THE PERFORMANCE COMPARISON

Figure 4.6: BER comparison for different code rates, K = 1024 (For LDPC,
K = 1020 for R = 1/2, 1/3, and 5/6.)

Figure 4.7: BER comparison for different code rates, K = 4096 (For LDPC,
K = 4092 for R = 1/2, and 1/3, and K = 4100 for R = 5/6.)

44



5
Conclusion and Outlook

We considered in this thesis some aspects of polar codes operating over the

AWGN channel. We touched on the problem of the construction in Chapter

3 in which we found a new way to construct polar codes and showed that it

can deliver very good performance. We also compared the performance of po-

lar codes against the state-of-the-art turbo and LDPC codes and the results

showed that polar codes provide a very competitive performance. However,

this is not everything, the operation complexity of those coding schemes re-

garding the encoding and decoding algorithms and the possibility for parallel

implementations, is by itself a separate sophisticated topic that shows the other

side of the story with respect to the achievable throughput.

The construction of polar codes we considered here is based on the fact that

the SC decoder is employed. The codes were optimized to ensure that the SC

decoder performs the best. However, under the other types of decoders, it is

unclear how a good construction would look like, but at least, we know that the

non-universal behavior of polar codes is due to the SC decoder and therefore

the use of other decoders might end this problem forever. Unfortunately, no

other decoder can provide the same low-complexity that the SC decoder enjoys.

Therefore, finding an alternative low-complexity decoder for polar codes can

be a very interesting research topic.

45



References

[1] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,”
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073,
July 2009.

[2] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, July 1948.

[3] M. Golay, “Notes on digital coding,” Proc. IRE. 37: 657, 1949.

[4] R. W. Hamming, “Error detecting and error correcting codes,” The Bell
System Technical Journal, vol. 29, no. 2, pp. 147–160, April 1950.

[5] P. Elias, “Coding for noisy channels,” IRE Convention Record, pp. 37–46,
1955.

[6] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Fields,” Journal of the Society for Industrial and Applied Mathematics,
vol. 8, no. 2, pp. 300–304, 1960.

[7] R. G. Gallager, Low Density Parity Check Codes,. Sc.D. thesis, MIT,
Cambridge, 1960.

[8] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo-codes. 1,” in IEEE International
Conference on Communications, 1993. ICC ’93 Geneva. Technical Pro-
gram, Conference Record, vol. 2, May 1993, pp. 1064–1070 vol.2.

[9] D. J. C. MacKay and R. M. Neal, “Near shannon limit performance of
low density parity check codes,” Electronics Letters, vol. 33, no. 6, pp.
457–458, Mar. 1997.

[10] E. Arikan, “Systematic Polar Coding,” IEEE Communications Letters,
vol. 15, no. 8, pp. 860–862, August 2011.

[11] L. Li, W. Zhang, and Y. Hu, “On the Error Performance of Systematic
Polar Codes,” ArXiv e-prints, Apr. 2015.

[12] G. Sarkis, I. Tal, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross,
“Flexible and Low-Complexity Encoding and Decoding of Systematic Po-
lar Codes,” IEEE Transactions on Communications, vol. 64, no. 7, pp.
2732–2745, July 2016.

46



REFERENCES

[13] B. Li, D. Tse, K. Chen, and H. Shen, “Capacity-achieving rateless polar
codes,” in 2016 IEEE International Symposium on Information Theory
(ISIT), July 2016, pp. 46–50.

[14] W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. Cam-
bridge University Press, 2009.

[15] I. Tal and A. Vardy, “List decoding of polar codes,” in 2011 IEEE In-
ternational Symposium on Information Theory Proceedings (ISIT), July
2011, pp. 1–5.

[16] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-Based Suc-
cessive Cancellation List Decoding of Polar Codes,” IEEE Transactions
on Signal Processing, vol. 63, no. 19, pp. 5165–5179, Oct. 2015.

[17] “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and
channel coding,” 3rd Generation Partnership Project (3GPP), TS 36.212,
2016.

[18] E. Sasoglu, Polar coding theorems for discrete systems. PhD thesis,
EPFL, 2011.

[19] S. H. Hassani and R. Urbanke, “Universal polar codes,” in 2014 IEEE
International Symposium on Information Theory, June 2014, pp. 1451–
1455.

[20] I. Tal and A. Vardy, “How to Construct Polar Codes,” IEEE Transactions
on Information Theory, vol. 59, no. 10, pp. 6562–6582, Oct 2013.

[21] R. Pedarsani, S. H. Hassani, I. Tal, and E. Telatar, “On the construction
of polar codes,” in 2011 IEEE International Symposium on Information
Theory Proceedings, July 2011, pp. 11–15.

[22] D. Kern, S. Vorkper, and V. Khn, “A new code construction for polar
codes using min-sum density,” in 2014 8th International Symposium on
Turbo Codes and Iterative Information Processing (ISTC), Aug 2014, pp.
228–232.

[23] Y. Zhang, A. Liu, K. Pan, C. Gong, and S. Yang, “A Practical Construc-
tion Method for Polar Codes,” IEEE Communications Letters, vol. 18,
no. 11, pp. 1871–1874, Nov 2014.

[24] D. Wu, Y. Li, and Y. Sun, “Construction and Block Error Rate Analysis
of Polar Codes Over AWGN Channel Based on Gaussian Approximation,”
IEEE Communications Letters, vol. 18, no. 7, pp. 1099–1102, July 2014.

[25] P. Trifonov, “Efficient Design and Decoding of Polar Codes,” IEEE Trans-
actions on Communications, vol. 60, no. 11, pp. 3221–3227, November
2012.

47



REFERENCES

[26] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-
product decoding of low-density parity-check codes using a gaussian ap-
proximation,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp. 657–670, Feb 2001.

[27] B. Tahir and M. Rupp, “New construction and performance analysis of
Polar codes over AWGN channels,” in 2017 24th International Conference
on Telecommunications (ICT), May 2017, pp. 1–4.

[28] E. Arikan, N. ul Hassan, M. Lentmaier, G. Montorsi, and J. Sayir, “Chal-
lenges and some new directions in channel coding,” Journal of Commu-
nications and Networks, vol. 17, no. 4, pp. 328–338, Aug. 2015.

[29] B. Tahir, S. Schwarz, and M. Rupp, “BER comparison between Con-
volutional, Turbo, LDPC, and Polar codes,” in 2017 24th International
Conference on Telecommunications (ICT), May 2017, pp. 1–7.

[30] J. C. Ikuno, S. Schwarz, and M. Simko, “LTE Rate Matching Performance
with Code Block Balancing,” in 17th European Wireless 2011 - Sustainable
Wireless Technologies, April 2011, pp. 1–3.

[31] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate (corresp.),” IEEE Transactions on
Information Theory, vol. 20, no. 2, pp. 284–287, Mar. 1974.

[32] W. Koch and A. Baier, “Optimum and sub-optimum detection of coded
data disturbed by time-varying intersymbol interference [applicable to
digital mobile radio receivers],” in Global Telecommunications Confer-
ence, 1990, and Exhibition. ’Communications: Connecting the Future’,
GLOBECOM ’90., IEEE, Dec. 1990, pp. 1679–1684 vol.3.

[33] D. J. C. MacKay, “Good error-correcting codes based on very sparse ma-
trices,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp.
399–431, Mar. 1999.

[34] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 569–584, Feb. 2001.

[35] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans-
actions on Information Theory, vol. 27, no. 5, pp. 533–547, Sep. 1981.

[36] S. Myung, K. Yang, and Y. Kim, “Lifting methods for quasi-cyclic LDPC
codes,” IEEE Communications Letters, vol. 10, no. 6, pp. 489–491, June
2006.

[37] D. Divsalar, H. Jin, and R. McEliece, “Coding theorems for turbo-like
codes,” Proc. 36th Annual Allerton Conf. on Communication, Control,
and Computing, pp. 201–210, Sep. 1998.

48



REFERENCES

[38] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density
parity-check codes,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 638–656, Feb. 2001.

[39] H. Kfir and I. Kanter, “Parallel versus sequential updating for belief prop-
agation decoding,” Physica A Statistical Mechanics and its Applications,
vol. 330, pp. 259–270, Dec. 2003.

[40] M. M. Mansour and N. R. Shanbhag, “Turbo decoder architectures for
low-density parity-check codes,” in Global Telecommunications Confer-
ence, 2002. GLOBECOM ’02. IEEE, vol. 2, Nov. 2002, pp. 1383–1388
vol.2.

[41] P. Radosavljevic, A. de Baynast, and J. R. Cavallaro, “Optimized Mes-
sage Passing Schedules for LDPC Decoding,” in Conference Record of the
Thirty-Ninth Asilomar Conference on Signals, Systems and Computers,
2005., Oct. 2005, pp. 591–595.

[42] D. E. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in IEEE Workshop on Signal Processing Sys-
tems, 2004. SIPS 2004., Oct. 2004, pp. 107–112.

[43] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iter-
ative decoding of low-density parity check codes based on belief propaga-
tion,” IEEE Transactions on Communications, vol. 47, no. 5, pp. 673–680,
May 1999.

[44] “IEEE Standard for Air Interface for Broadband Wireless Access Sys-
tems,” Institute of Electrical and Electronics Engineers (IEEE), IEEE
Std 802.16, 2012.

[45] H. J. Joo, S. N. Hong, and D. J. Shin, “Design of rate-compatible RA-
type low-density parity-check codes using splitting,” IEEE Transactions
on Communications, vol. 57, no. 12, pp. 3524–3528, Dec. 2009.

49


	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Channel Coding
	Encoding and Decoding
	The AWGN Channel
	Soft Information and the L-value
	Thesis Overview

	Polar Codes
	Channel Polarization and Polar Codes
	Encoding
	The Non-Systematic Nature of Polar Codes
	Systematic Encoding
	Systematic or Non-Systematic

	Decoding
	Successive Cancellation (SC)
	List Successive Cancellation (List-SC)


	Construction of Polar Codes for the AWGN Channel
	The Problem of Optimum Construction
	Bhattacharya Parameter Construction
	Density Evolution with Gaussian Approximation (DEGA) Construction
	New Construction and the Modified DEGA
	Polar Codes ``Non-Universality"

	Performance of Polar Codes versus Turbo and LDPC Codes
	Turbo Codes
	Encoding
	Decoding

	Low-Density Parity-Check (LDPC) Codes
	Encoding
	Decoding

	The Performance Comparison

	Conclusion and Outlook

