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Abstract Handling and stability properties of auto-
mobiles are most often studied from a practical point of
view by applying a reduced set of equations, where the
forward velocity is kept constant. At studying the full
set of equations of a basic nonlinear two-wheel vehicle
model, a supercritical Hopf bifurcation is found for an
oversteer vehicle. All state variables of the vehicle are
involved at small amplitude limit cycles in the vicinity
of the Hopf bifurcation point with the steering angle
(drive torque) as bifurcation parameter. At the tran-
sition to large amplitude relaxation cycles, the cyclic
motion of the vehicle may be separated into ‘slow’ lon-
gitudinal velocity-related segments, and ‘fast’ vehicle
yaw and side slip-related segments, indicating a singu-
lar perturbed system. Moreover, Canard phenomenon
is observed for both steering angle and drive torque
bifurcation parameters.
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1 Introduction

Nonlinear stability analysis at the limits of handling
of an automobile has become an important issue to
increase passive and active safety. Having automated
driving in mind, a clear understanding of nonlinear
vehicle dynamics is essential to suitably control actua-
tors that will replace the human driver.

When a human driver is controlling the lateral
dynamics of the car by steering, it has been shown
that the driver may destabilise the motion of the com-
bined nonlinear vehicle—driver system depending on
the available preview distance ahead of the vehicle.
Then, limit cycles of the steering wheel angle may
emerge when following a given trajectory [1-3]. How-
ever, it is more convenient so far, to consider stability
and handling behaviour of the vehicle for specific tra-
jectories only, such as straight-line driving and circular
cornering, as stability and steering behaviour are fun-
damentally related to each other [4]. For linear tyre
characteristics of the vehicle model, there is no differ-
ence in the stability analysis between the motion in a
straight-line or circular curve. It is a well-known result
of linear stability analysis, that the steady-state corner-
ing motion will become monotonically unstable for an
oversteer vehicle at the critical speed, resulting in a nar-
rowing spiral motion. The loss of stability occurs at zero
steering wheel angle, when slowly increasing speed and
slowly releasing the steering wheel to maintain steady-
state cornering at a constant radius of curvature. For
nonlinear tyre characteristics, the limit of stability can
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still simply be found from (measured) steering charac-
teristics, when the rate of change of steering angle w.r.t.
path curvature becomes zero for slowly tightening the
steering wheel at constant speed [4].

These findings are based on vehicle speed as given
parameter, with longitudinal and lateral dynamics
decoupled. Subsequently, this paper accounts for those
neglected coupling effects, which require a nonlinear
vehicle model with combined longitudinal and lateral
tyre forces. As an alternative to accelerator and gear
position applied by a driver, the effective torque at the
(substitutive) rear wheel is used as input to the vehicle
next to the steering angle. The velocity of the centre
of gravity of the vehicle, vehicle side slip angle, yaw
rate and angular velocity of the rear wheel are used as
a minimum set of state variables for a two-wheel vehi-
cle model. Instead of a monotonic loss of stability for
the linear oversteer vehicle for steady-state cornering, a
Hopf bifurcation has been found for the enhanced non-
linear vehicle model, already noted in [5] for a four-
wheel vehicle model, and continued limit cycles are
discussed. As a consequence of consideration of lon-
gitudinal dynamics in the equations of motion and the
influence of longitudinal tyre slip on the lateral tyre
force of an oversteer vehicle, the remarkable appear-
ance of Canard phenomenon could be revealed as a
main contribution of this paper.

Stability maps with steering angle and the drive
torque as bifurcation parameters have been presented in
[6] before. In contrast to this study, equilibrium points
of an understeer vehicle (without Hopf bifurcation)
were considered for continuation, while supercritical
Hopf bifurcations have been pointed out for different
characteristics of oversteer vehicles in [7]. Results have
been thoroughly discussed from a vehicle dynamics
point of view, focussing on respective handling dia-
grams. Longitudinal velocity and steering wheel angle
have been chosen as bifurcation parameters, and as a
consequence, the influence from longitudinal dynam-
ics has been neglected in [7]. In [8], the importance
of the longitudinal velocity in determining the location
of bifurcation points has been outlined, which was not
yet addressed in [9]. In the latter contribution, destabi-
lization is shown to be caused by a saddle-node bifur-
cation of a limit-oversteering vehicle, which strongly
depends on the saturation of the rear lateral tyre force.
As aconsequence, a front wheel steering controller was
designed to compensate the instability against the non-
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linear uncertainty from tyre behaviour; see also [10, 11]
for an extension to rear-wheel steering.

Next to [6], longitudinal slip and respective longitu-
dinal vehicle dynamics have been included in [12,13],
resulting in smaller areas of attraction to a stable equi-
librium point. As a further extension to bifurcation
analysis of equilibrium points, a method to use bifurca-
tion and continuation procedures also for evaluation of
vehicle stability during acceleration and braking has
been proposed in [14]. A four-wheel vehicle model
was introduced in [15] to account for effects from roll
moment distribution for both under- and oversteer vehi-
cles on bifurcation locations, neglecting longitudinal
dynamics.

The remainder of this paper is organized as follows.
The vehicle model with respective tyre/axle character-
istics is introduced in Sect. 2, and characteristic han-
dling properties of an oversteer vehicle will be pre-
sented. In Sect. 3, the Hopf bifurcation, identified in
the previous section, will be addressed, and continued
limit cycles discussed in more detail. In the final sec-
tion, main conclusions will been drawn.

2 Vehicle model and handling properties

The basic planar two-wheel vehicle model with rear-
wheel drive has been chosen to study the motion and
stability properties of an automobile, as shown in Fig. 1.
The state of the system is represented by the velocity
of the vehicle v, the yaw rate fﬁ, the vehicle side slip
angle B, and the angular velocity of the driven rear
wheel wg. The human driver (or a respective control
system) applies a front steering angle §r and a drive
torque My as input to the vehicle. Thus, the equations
of motion of the system read

mvcos f —m(y + B)vsin B = Fygp — Fypsindp

(la)
mvsin g+ m(y + B)vcos B = Fyr + FyFcosdp

(1b)
IyVr = lpFypcosSp — IRFygr (lc)
de)RZMR—VRFxR (ld)

Notation and parameters are given in Table 1.

For given v = const., small angles and subsequent
linearisation, longitudinal dynamics, (1a), (1d), decou-
ple from lateral dynamics (1b), (1c). To account for
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Fig. 1 Two-wheel vehicle model

coupling effects not only the full set of nonlinear equa-
tions in (1) has to be considered, but also the mutual
influence of longitudinal and lateral tyre forces. Fur-
ther, saturation of the tyre forces at large side slip angles
needs to be included in the tyre model. Here, the tyre
brush model is applied [16].

The lateral slip o, of the front tyre is derived from

kinematic considerations

. vsin B + 14y

oyr = tanap with tan(6r — ar) = vsinf+ iy
vcos B

(2)
The lateral and longitudinal slip o, g and o, g at the rear
tyre read
v )
OyR = — DR and o = ——2K (3)
[rRoR| [rRR|
with lateral and longitudinal slip velocities vsyg and

UsxR
Vgyr = vsinf — l,{p and vg g = VCOS B — rrwR
“4)

The absolute slip at front tyre o, where no longitu-
dinal force appears, as shown in Fig. 1, and at the rear
tyre oR,

or =|oyr| and of = ,/U)?R + oyzR ®))

are input to the tyre brush model [16],

for o; <oy
for o; > oy

(6)

F— { 1i Fzi 3607 — 3(6;07)* + (6;0:)°)
' Wi Fi

Table 1 Parameters of vehicle and simplified tyre/axle model

Parameter Abbr. Value Unit
Vehicle mass m 2000 kg
Vehicle yaw inertia Iy 2650 kg m?
Axle inertia 1y 6 kgm?
Front axle position CG F lF 1.45 m
Rear axle position CG R IR 1.50 m
Effective tyre radius IR 0.35 m
Eff. Front axle slip stiffness ~ 2c,ra% 3.6 x10° N
Eff. Rear axle slip stiffness ~ 2cpra% 2.6 x 10° N
Maximum force coefficient LF, AR 1 -

where F; withi = F, R represents the magnitude of
the total front and rear tyre/axle force, respectively.
The composite isotropic tyre/axle parameter 6;

2c piaiz

3uiFy
includes the constant vertical tyre force F;, resulting
from CG position and vehicle weight, the tyre slip
stiffness 2cp,-al.2, as well as the maximum tyre force
coefficient u;, representing tyre—road contact condi-
tion. Total sliding of the respective tyre starts at slip
oy = 6; ' [16].

Lateral and longitudinal tyre/axle force F); and F);
finally read

(N

i

Fy,‘ZFi@ and inZFi& (8)
i Oi

Parameters of the tyre/axle model are listed in Table 1,

and normalized slip characteristics derived with these

parameters for the front and rear tyre/axle are shown in

Fig. 2.

Above all, handling properties of a vehicle are typ-
ically evaluated from the steady-state ‘handling dia-
gram’, as shown in Fig. 3, where the steering angle
8F (top) and the vehicle side slip angle 8 (centre) are
plotted over the normal acceleration of the centre of
gravity of the vehicle. The drive torque Mg required
to maintain constant velocity is shown at the bottom.
Since vehicle side slip angle B and yaw rate v as well
as the steering angle §r are small for sufficiently large
radius of curvature p, and velocity v is constant, the
reduced set of equations (1b), (1c) is normally used
to study handling properties, see e.g., [16]. Respective
curves are denoted ‘pure lateral model” in Fig. 3 and
show a good match with the full vehicle model up to
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Fig. 2 Normalized slip characteristics of front and rear simpli-
fied tyre/axle model

high normal accelerations. Since the mutual influence
of longitudinal and lateral tyre forces is not considered
in the pure lateral model, differences may be noted at
the limits of handling, in particular when inspecting the
required steering angle.

According to [16], 36F/0v = 0 defines the bound-
ary between over- and understeer of the pure lateral
model for steady-state cornering at constant radius of
curvature p. Since d6r/dv < 0O in Fig. 3, oversteer
handling characteristics are found for the vehicle setup
considered in this study. In [4] it has been revealed that

adF

a(l/p) v=const.

isrequired for stable steady-state cornering and positive
slopes of the front and rear lateral tyre/axle forces char-
acteristic ¢ and ¢g at the respective steady-state side
slip angles. Thus, stability properties of the automo-
bile may be directly read off model-based or measured
handling diagrams [17], which is very useful from a
practical point of view.

Stability in first approximation of vehicle model (1)
at steady-state cornering is examined by inspecting
the eigenvalues of the system MAx = AAx + BAu,
which results from linearisation, w.r.t. steady-state cor-
nering at varying operating points, with x = [v, ¥/,
B, wr]" and u = [6r, Mg]". Eigenvalues A, derive
from det(A — AM) = 0, and respective branches of real
parts are depicted in Fig. 4.

However, only up to three branches are shown, since
eigenvalues and corresponding eigenmodes mostly
dominated by wheel speed are below —200 1/s and of
less interest. In the vicinity of the critical speed [16],
two real eigenvalues combine to a conjugate-complex
eigenvalue (oscillatory mode), see also [5], with eigen-

dF drR >0 9)
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Fig. 3 Oversteer vehicle: (top) front steering angle 8 ; (centre)
vehicle side slip angle B; (bottom) drive torque Mg; constant
radius of curvature p = 50 m; Hopf bifurcation point x: éf =
2.38°, Mg = 359.13Nm

frequencies up to 0.5 Hz at the Hopf bifurcation point
indicated by x. Inspecting corresponding eigenvectors,
all state variables are involved; however, main compo-
nents are related to vehicle velocity v and wheel speed
wg. Transient tyre properties, e.g., [16], have been dis-
regarded, since they have only marginal impact on the
dynamics of the vehicle in the operational range of
interest, but add to the complexity of the model. Nev-
ertheless, the applied tyre model certainly may effect
the results [18], and more effort may be spent thereon
in the future.

For the sake of comparison, both branches of real
parts of the eigenvalues of the pure lateral model are
depicted in Fig. 4 as well. As expected, monotonic loss
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Fig. 4 Real parts of eigenvalues Ay for the full and pure lateral
model: full operational range (top) and detail (bottom); constant
radius of curvature p = 50m; Hopf bifurcation point x: §p =
2.38°, Mg = 359.13Nm

of stability is found in this case. A larger critical speed
for the loss of stability can be noticed for the pure lateral
model compared with the full vehicle model, basically
due to the disregarded mutual influence of longitudinal
and lateral tyre/axle forces.

In the next section, the dynamic behaviour of the
full vehicle model before and after a loss of stability
is assessed by means of numerical continuation of the
Hopf bifurcation in more detail. In this way, the effec-
tiveness of actuators on modifying the dynamics of the
vehicle can be obtained, if the inputs vary more slowly
than the vehicle dynamics. The maximum and mini-
mum control inputs, i.e., bifurcation parameters, result
in a range of possible trajectories illustrating the actu-
ator’s capabilities.

3 Numerical analysis of the Hopf bifurcation
3.1 Bifurcation diagram

At the Hopf bifurcation point shown in Fig. 4, a fam-
ily of periodic solutions bifurcates from the steady-

25 :
Periodic (P) .

é Hopf ~ (H) e (H)
E 2l 8=2.3° (A) % a—"11 S) |
= Sat Rear (B) o (B)
E Sat Front (C)
Ry 51 5p=0.5° (D) 1T |
g Static  (S) ——
-g ©
L 10 R
oh
=
K=
£ 9 1
g

0 L L L L L

0 0.5 1 1.5 2 2.5 3

steering angle 8,in °

Fig. 5 Bifurcation diagram for periodic solutions. The solution
amplitude is characterized by the smallest value vy min of the
forward velocity of the vehicle v,. The symbols ‘Sat Rear” and
‘Sat Front’ indicate periodic orbits, at which the saturation of the
respective tyre force occurs first. (Color figure online)

state solutions. This branch of solutions was calculated
using the continuation software MatCont [19] and the
continuation package Hom [20], using the multiple
shooting method Bndsco [21] for solving the boundary
value problems. As distinguished bifurcation parame-
ter steering angle 67 (and drive torque Mg, but not
shown here) is used, the remaining parameters are kept
fixed.

The bifurcation diagram is displayed in Fig. 5: At
the Hopf point, section I, a family of stable periodic
solutions with small amplitude is found, which coex-
ists with the unstable steady state (dashed blue line). At
8F = 2.3° an almost vertical segment is observed, sec-
tion II: For an extremely small variation of the param-
eter 6, the diameter of the periodic solution increases
strongly. Along this steep part, the tyre forces reach
their saturation values. After both tyres experience
saturation, the steep segment finishes and for larger
periodic oscillations the steering angle decreases quickly,
section III, until the velocity component in the longitu-
dinal direction of the vehicle v, = v cos B approaches
zero, after which no more periodic solution can be
found.

A result similar to Fig. 5 is found with drive torque
Mp as bifurcation parameter instead of the steer-
ing angle 6, however, in contrast to §, amplitudes
increase with increasing Mg.

The periodic solutions corresponding to the marked
points in Fig. 5 are displayed in the (v, ¥)-phase plane
(top) and (v, B)-phase plane (bottom) of Fig. 6: Three
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Fig. 6 Several periodic (full lines) and singular solutions
(dashed lines) in the (v, 1/})—phase plane (top), and (v, B)-phase
plane (bottom); line colours correspond to markers in Fig. 5.
(Color figure online)

orbits look very similar and almost agree for larger val-
ues of v, while the solution for §p = 0.5° significantly
differs from the other ones. Along the steep segments
at the leftmost parts of the orbits, the solution jumps
quickly from the upper branch to the lower one (top).

Corresponding trajectories of the centre of gravity
of the vehicle in the road plane are shown in Fig. 7.
Trajectories start at the Hopf bifurcation point. After a
period of transition (black lines), limit cycles emerge
for 6 = 2.3° and §p = 0.5°. The change of the
steering angle (as possible action of the driver) from
8r = 2.38° to 6F = 2.3° is small from a practical
point of view; nevertheless, the steady limit cycle is
reached quickly for §p = 2.3°. The respective limit
cycles are indicated by the colours corresponding to
Fig. 6 for illustration, before next limit cycles follow
(black lines again).

Trajectories found in section I, with increasing cycle
times from about 10 to 15 s as the steering angle §r
decreases, have almost circular shape. Since the devia-
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Fig. 7 Trajectories of the centre of gravity of the vehicle in the
road plane. Initial states correspond to Hopf bifurcation point,
steering angle §p = 2.3° or 6 = 0.5°: black segments starting
at (0,0) represent transitions to limit cycles; coloured segments
represent one limit cycle corresponding to Fig. 6. (Color figure
online)

tions from the steady-state circular path are small, only
aslight ‘drift’ of the circular trajectory can be observed.
In contrast, for the pure lateral model, a saddle point
has been identified in [7], instead of the Hopf bifurca-
tion point, for a similar oversteer vehicle configuration,
besides a second saddle that define a basin of attraction
of a stable node. Although both models show a fun-
damentally different loss of stability, monotonic and
periodic, resulting motions are similar just after loss of
stability, and neglecting longitudinal dynamics is con-
firmed for section I.

Applying a constant steering angle, when stability is
lost close to the Hopf bifurcation point, in the ‘opposite’
direction, no limit cycle will appear, full blue line in
Fig. 5. Instead, a steady-steady circular path will result
corresponding to the chosen steering angle (and fixed
drive torque).

Trajectories found in section III show moderate
dynamics for a large part of the cycle time, but fast
longitudinal and lateral dynamics at the final part, as
shown in Figs. 7 and 8.

When velocity is increased beyond the critical speed,
while cornering at constant radius, it is known from
experience, that an expert driver may recover stability
[16], by steering to a large steering angle for a vehicle
with limit oversteer. This can also be concluded from
the respective handling diagram. Bifurcation analysis
may indicate, that instead of finding and adjusting a
stable singular point, a stable limit cycle nearby with
slow dynamics may be an alternative to large steering
activities.
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Fig.8 Velocity v(r), yaw rate 1/}(1) and B(¢) of the Periodic solu-
tions marked in Fig. 5, starting when the yaw rate ¥ is minimum

3.2 Observations in the regime of exploding solution
amplitudes

The most remarkable feature of the periodic solution
branch is the almost vertical segment, section II, in
the bifurcation diagram, Fig. 5: For a tiny variation of

the bifurcation parameter the diameters of the orbits
grow significantly and the periodic solutions seem to
just change their range for small values of the veloc-
ity v; during most of the time all these solutions seem
to follow slowly the same trajectory. Most of the tested
packages for solving boundary value problems failed
to converge in this parameter domain and very small
steps had to be used in the continuation method. The
largest one of the numerically computed Floquet mul-
tipliers, which should have been equal to 1, grew up
to 10,000, while the remaining multipliers were less
than 107, indicating a very strong contraction of
neighbouring solutions. Such a behaviour is frequently
observed close to homoclinic solutions, but no nearby
saddle point could be found and the periodic orbits
continuously increased in size, while they wouldn’t
have changed their size when approaching ahomoclinic
orbit.

Since the motion along the smooth segments of the
periodic solutions was quite slow, we suspected, that
some kind of singular perturbations causes the strange
behaviour: The stiff tyre forces should constrain the
wheels to almost slip-free motions. As can be seen in
Fig. 8, the yaw rate v/ (r) varies strongly at the end-
points and behaves regularly in the interior domain,
while the velocity component v(¢) just displays a kink
at the endpoints. Also wg (1) shows a smooth behaviour,
while the angle B(¢) displays similar boundary layers
as y. One might therefore conclude that v and wg are
the ‘slow’ variables and 1/ and f8 are the fast ones. But
in this model, we obtain a much better agreement with
the predictions from singular perturbation theory, if we
consider v as slow variable and wg, ¥ and B as fast
ones.

In singular perturbation theory, one studies problems
with the structure

ex = f(x,y,¢), (10)
y=gx,y, 8, (1)

where ¢ is a small parameter. The fast and slow vari-
ables are given by x and y, respectively. Setting e = 0
one obtains the reduced problem

0= f(x,y,0), (12)
y=2g(x,y,0), (13)

which is a differential-algebraic system and governs the
slow behaviour. The algebraic equation (12) is solved
for the fast variables x: x = h(y) and the slow dynam-
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ics is governed by the reduced equation

y=gm(y),y,0. (14)

Equation (12) need not be solvable for all possible val-
ues of y;if y(¢) approaches a point, where (12) becomes
singular, the fast variable usually jumps away from the
critical manifold x = k(y). Alsoif the critical manifold
becomes unstable, the solutions usually drift quickly
away from it.

In our model, the fast dynamics is caused by the
large forces acting on the tyres. It would therefore seem
reasonable, to regard a common reciprocal of the tyre
stiffness parameters as perturbation parameter ¢. But
one would have to make the tyres infinitely stiff for
studying the reduced problem with ¢ = 0.

Instead of explicitly choosing some perturbation
parameter ¢ and looking for the critical manifold with
& = 0, we simply searched for fixed values of the veloc-
ity v the stationary values for the fast variables:

p=0. =0

The corresponding families of partially stationary
solutions are displayed by dashed lines in Fig. 6: Along
the lower branch of these V-shaped curves we have
v > 0, whereas at the upper part v decreases; the
eigenvalues are stable along the lower part and unsta-
ble along the upper part: The periodic solution for
8 = 0.5° closely follows the corresponding singu-
lar solution along the stable lower branch, while the
other three displayed periodic solutions follow it also
along the unstable upper part, until they jump back to
the lower branch.

This type of behaviour was already observed for
several nonlinear oscillations, like the Van der Pol-
equation, and accurately proven in [22] by geomet-
ric singular perturbation theory: Close to the tip of
the singular curve a family of periodic orbits grows
from a Hopf bifurcation and closely follows the sin-
gular curves. The quick increase in the solution ampli-
tudes for tiny variations of parameters is called ‘Canard
explosion’ and a corresponding bifurcation diagram is
shown in [22] (therein denoted Fig. 7a), which closely
resembles the diagram in Fig. 5.

wr =0.

4 Conclusions

Main findings of the analysis of the stability of steady-
state cornering of a basic nonlinear two-wheel vehicle
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model with oversteer characteristic and coupled longi-
tudinal and lateral dynamics are

— A supercritical Hopf bifurcation point has been
found when stability is lost at large lateral accel-
eration. In contrast, an unstable saddle appears [7],
for a model that neglects longitudinal effects with
longitudinal velocity as a given parameter but sim-
ilar tyre/axle characteristics.

— Small amplitude limit cycles close to the Hopf
bifurcation point emerge with the steering angle
(drive torque) as bifurcation parameter, followed
by large amplitude relaxation cycles.

— Due to the large tyre forces, the system is singularly
perturbed and a ‘Canard explosion’ is observed,
during which relaxation oscillations occur.

— Evaluation of the small amplitude limit cycle
behaviour by respective phase plots and trajecto-
ries of the vehicle motion confirms the use of a
pure lateral vehicle model sufficiently close to the
loss of stability.

— Nonlinear stability and bifurcation analysis has
revealed that a stable limit cycle with small ampli-
tude and slow dynamics may be an attractive alter-
native to finding and adjusting stable singular points
for a human driver or steering robot.

To confirm and extend the results of this paper, the
influence of the applied tyre model shall be studied
in the future. Also the singular perturbation behaviour
needs to be investigated more rigorously.
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