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Kurzfassung

Die menschliche Mobilität ist ein bedeutender Gesundheitsindikator, vor allem für po-
tentiell gebrechliche, ältere Menschen. Die Analyse des menschlichen Gangs basiert
gegenwärtig auf kostenintensiven oder intrusiven Technologien. Tiefenkameras wie die
Microsoft Kinect bieten eine günstige und unaufdringliche Alternative zur Analyse der
menschlichen Mobilität.

In dieser Arbeit wird Mobilitätsanalyse mittels Analyse des menschlichen Gangs und
mittels automatischer Analyse des Timed UP & Go (TUG) Tests durchgeführt. Für beide
Ansätze des Mobilitätsassessments wird jeweils eine Methode basierend auf Tiefendaten
und eine Methode basierend auf Skelettdaten vorgestellt. Um die vorgestellten Ansätze
zur Mobilitätsanalyse zu evaluieren, werden drei Datensätze aufgenommen und manuell
markiert. Der erste Datensatz beinhaltet 234 Gangsequenzen von gesunden Erwachsenen,
die auf vordefinierten Bodenmarkierungen gegangen sind. Der zweite Datensatz enthält
22 Gangsequenzen von 11 älteren Erwachsenen und der dritte Datensatz enthält 11 TUG
Tests, die von älteren Erwachsenen durchgeführt werden.

Der erste Ansatz zur Mobilitätsanalyse untersucht den menschlichen Gang durch die
Extrahierung von fünf raum- und zeitabhängigen Gangparametern. Die extrahierten
Parameter sind unter anderem Schrittgeschwindigkeit, Schrittlänge und Schrittdauer. Als
erstes wird der vorgestellte Ansatz zur Ganganalyse auf dem ersten Datensatz, der aus
Gangsequenzen von gesunden Erwachsenen besteht, validiert. In diesem Datensatz werden
alle Zeitpunkte für das Auftreten der Ferse und das Abheben der Zehen händisch markiert
um den Fehler der extrahierten Gangparameter ermitteln zu können. Außerdem wurde
die Auswirkung von 3 verschiedenen Gangpfaden, 3 verschiedenen Schrittweiten und 2
verschiedenen Gangrichtungen auf den Fehler der Schrittlänge untersucht. Als zweites
wird die Methode zur Ganganalyse auf den zweiten Datensatz, der aus Gangsequenzen
von älteren Erwachsenen besteht, angewendet. In diesem Datensatz werden die Anzahl
der Schritte für jede Gangsequenz manuell markiert. Es zeigt sich, dass die vorgestellte
Methode, die auf dem Stand der Technik basiert, sich nur schlecht für die Erkennung von
Schritten von älteren Erwachsenen eignet. Mittels einer vorgeschlagenen Modifikation der
Methode können die Schritte allerdings korrekt erkannt werden. Weiters wird der Status
der Gebrechlichkeit der älteren Erwachsenen basierend auf Gangdaten, der benötigten
TUG Zeit und eines validierten Fragebogens ermittelt.
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Der zweite Ansatz zur Mobilitätsanalyse präsentiert eine Methode zur Kinect-basierten,
automatischen Analyse des TUG Tests. Aktuell wird die benötigte Zeit für den TUG
Test mit einer Stoppuhr von medizinischem Personal gemessen. Durch die automatische
Analyse der benötigten Zeit kann der Arbeitsaufwand für das medizinische Personal
gesenkt werden. Die vorgestellte Methode erkennt nicht nur die benötigte Zeit für den
Test, sondern auch den Beginn und das Ende von sechs Phasen des TUG Tests. Diese
werden erkannt, indem die Bewegung der Person basierend auf der Geschwindigkeit
des Schwerpunkts bzw. des zentralen Schultergelenks im Skelettmodel analysiert wird.
Der vorgestellte Ansatz zur Automatisierung des TUG Tests weist deutlich niedrigere
Fehler bei der Messung der benötigten Zeit, verglichen mit der Stoppuhr, auf. Weiters
zeigt ein Vergleich mit einer früheren Methode, dass der vorgestellte Ansatz auf dem
aufgenommenen Datensatz exaktere Ergebnisse, für die benötigte TUG Zeit und die
Erkennung der TUG Phasen, zurückliefert.



Abstract

Human mobility is an important health indicator, especially for older adults potentially
transitioning to frailty. Currently, the analysis of human mobility is based on expensive
or intrusive technologies. Depth camera devices, such as the Microsoft Kinect, have been
demonstrated to be a valid low-cost alternative for assessing a person’s mobility.

In this work, mobility assessment is approached based on the analysis of human gait and
the automated analysis of the Timed Up & Go (TUG) test. For both mobility assessment
approaches, one method for depth and one method for skeleton data is proposed. In
order to evaluate the proposed mobility analysis approaches, three human mobility
datasets have been acquired and manually labeled. The first dataset features 234 walking
sequences of healthy adults, who walk over predefined floor markers. The second dataset
is a gait dataset of 11 older adults that contains 22 walking sequences and the third
dataset consists of 11 TUG tests from elderly participants.

The first human mobility approach analyzes human gait by extracting five spatiotemporal
gait parameters from walking sequences. The extracted parameters are gait speed, stride
length, step length, stride time and step time. First, the proposed gait analysis approach
is validated on the healthy adults gait dataset. The dataset is manually labeled for
heel strike and toe-off events to allow measuring the error of both spatial and temporal
parameters. Moreover, extracted step lengths are evaluated under 3 different walking
paths, 3 different step sizes and 2 different walking directions. Second, the gait analysis
approach is applied on the elderly gait dataset to validate the approach under real-world
conditions. An evaluation based on the number of steps demonstrates, that current
state-of-the-art gait analysis approaches fail to correctly identify steps of older adults. A
modification is proposed in order to successfully detect steps of older adults and evaluated
on the elderly gait dataset. Moreover, the frailty status of the elderly participants is
assessed based on extracted gait information, TUG score and a validated questionnaire.

The second human mobility approach presents a Kinect-based automated analysis of
the TUG test. Currently, a medical assistant has to manually measure the time a
patient takes to complete the test with a stopwatch in order to obtain a TUG score. By
automatizing the assessment of the test, workload of medical staff is reduced. In addition
to automatically determining the TUG score, the proposed TUG analysis approach
detects the start and end of six TUG phases. TUG events are detected by analyzing
the movement of the subject based on the velocity of the centroid or spine shoulder
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joint. The proposed TUG analysis approaches show significantly lower TUG time errors
compared to the manually measured time using a stopwatch. Moreover, comparison with
a state-of-the-art approach shows improved accuracies for both the detection of TUG
score and TUG events.
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CHAPTER 1
Introduction

1.1 Introduction

Frailty is a geriatric condition that limits the ability of daily life activities and thereby
increases the risk of falls, disability, hospitalization and mortality and the need for
healthcare services [86]. It is one of the most problematic expressions of aging [59]. It
is highly prevalent among the older population. Around 5% of people aged over 60
years [291], 10% aged over 65 and between 25% and 50% over 85 suffer from frailty
syndrome [59].

1.1.1 Motivation: Why detect Frailty?

Human populations are growing old at an accelerated speed. The world population
of 65 years or older was estimated in 2004 at 461 million people [142] and in 2015 at
617 million [115]. Predictions for the next 10 years estimate an additional 236 million
people aged 65 and older, further accelerating the worldwide phenomenon of older
populations [115].

According to findings and evidences, frailty is not an irreversible process [299, 185]. Frail
elderly who are receiving medical care have been shown to have less cognitive or functional
decline, possess lower mortality rates and experience fewer falls [40]. Moreover, exercise
programs and increased activity have been shown to reduce adverse health outcomes and
to delay the progression of frailty [232, 208, 153]. Other potential treatments for frailty
include caloric and protein support, vitamin D and reduction of polypharmacy [185].

Hence, the early diagnosis of frailty may reduce its severity. This does not just benefit the
individuals, but also relieve the burden for their families and the society [40]. Moreover,
dropping the need for healthcare services reduces iatrogenic disability [152], which is the
effect of reduced independence after hospitalization.

1



1. Introduction

The most comprehensively researched model to determine the capabilities of frail elderly
persons is called comprehensive geriatric assessment (CGA) [289]. It is an interdisciplinary
diagnostic process including medical, psychological, social and environmental components.
However, it is a resource intensive process and therefore complex and expensive. New
methods of frailty assessments are required to find equally reliable but more efficient
ways for routine care [59].

1.1.2 Frailty: Definitions, models, detection and controversies

There is no agreement about the definition of frailty, but it is widely recognized as a
geriatric syndrome, that leads to functional decline among older adults [279].

Definition Many attempts have been made to describe frailty, e.g. the following:
Frailty is a condition or syndrome which results from a multi-system reduction in reserve
capacity [43]. Frailty is considered as the failure to integrate the complex responses
required to maintain function [179]. Frailty is a state that is multifactorial and that
implies vulnerability [225]. Frailty is the consequence of accumulated age-related defects
in different physiological systems [299]. Frailty is a state of increased vulnerability to
poor resolution of homoeostasis [40].

The following definition of Schuurmans et al. [240] is rated the highest by several
experts [101]: Frailty is a loss of resources in several domains of functioning, which leads
to a declining reserve capacity for dealing with stressors.

Frailty models Two principal models of frailty are considered by Clegg et al. [59]: The
first and most frequently used model [37] is the phenotype model of Fried et al. [86]. It
describes frailty based on five characteristics: Unintentional weight loss, weakness, poor
endurance, slowness and low physical activity level. Having one or two characteristics
defines intermediate subjects. Those with three or more characteristics are considered
frail. The second model is the Frailty Index (FI) [227]. It defines frailty based on a
cumulative deficit model. FI is computed as the equally weighted presence or absence of
92 parameters, e.g. diseases, disabilities, symptoms, signs or abnormal laboratory values.
While FI has the advantage that the status of frailty is gradable, the sheer number of
parameters require an extensive and elaborate assessment. Therefore both the phenotype
model and FI may also be considered complementary, as the former is suited for an
immediate frailty identification and the latter is suited for a comprehensive geriatric
assessment [47].

Frailty instrumentation A large number of frailty measuring procedures have been
proposed [67] e.g. standardized questionnaires, physical assessments or single measure-
ments of gait speed or grip strength [59]. Popular questionnaires include the Groningen
Frailty Indicator (GFI) [254], the Tilburg Frailty Indicator (TFI) [103] or the FRAIL
scale [275]. The main advantage of questionnaires is that they are easy to administer
(GFI, TFI and FRAIL scale consist of 15, 25 and 15 questions, respectively) and do not
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1.1. Introduction

Figure 1.1: Illustration of the Timed Up & Go (TUG) test [287].

require additional equipment. The biggest disadvantage of questionnaires is that they
depend on the personal valuation of the subject and therefore lack objective validity.

An alternative approach for measuring frailty is through physical assessments. A well-
known and simple test for assessing mobility is the Get-Up-and-GO test [171]. It consists
of a subject standing up, walking three meters, turning around and returning to sit back
down on the chair (see Figure 1.1). A clinical expert observes the subject and rates the
mobility on a scale from one to five.

Due to its subjective and imprecise scoring system, a modified version was proposed, the
Timed Up & Go (TUG) test [215]. The score in the TUG test is computed based on
the time taken for completing the test. There is no established norm for the TUG time
cutoff for identifying frailty. Rockwood et al. [226] choose a 19-second cutoff based on the
slowest 20% of TUG times from participants of the CSHA study [227], one of the largest
population-based studies to measure the TUG. Other cutoff values in the literature are 20
seconds (for the Edmonton frail scale [228]) and 30 seconds [113]. The TUG test is widely
considered to be a good indicator for frailty and future falls [246]. For example, having a
high duration for the TUG test completion is most closely related (together with having
any functional dependence) to needing institutionalized care after an operation [223].
However, its ability to identify prefail individuals and female individuals with a high fall
risk is still controversial [236, 269]. Moreover, there seems to be no advantage in using
TUG over gait speed when it comes to identifying frailty [236]. Furthermore, TUG is not
able to assess the fatigue effect due to its short duration [177].

Besides TUG, there are a large number of other physical assessments. Short Physical
Performance Battery (SPPB) [109] consists of a series of seven balance, gait speed and
chair stand tests. Berg Balance Scale (BBS) [27] consists of a series of 14 balance
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1. Introduction

tests which are performed consecutively. Another functional evaluation test is the 30-s
chair-stand (CST) test [131]. It consists of counting the number of sit-stand-sit cycles an
individual is able to complete within 30 seconds of the test. More information on the
various geriatric assessments can be found in the work of Vanswearing and Brach [276]

An advantage of physical assessments is that in a clinical setting a performance test
is considered more relevant than a self reported questionnaire because it informs the
clinician about actual functioning. [67]. A number of frailty measures also combine both
questionnaires and physical assessments, e.g. the Edmonton Frail Scale (EFS) [228],
which requires the patient to answer 10 questions and perform a TUG test.

Frailty controversies Frailty measurements are currently mainly used in research
settings and have little use in medical practice [202]. Frailty screening remains controver-
sial [40], since there is no consensus about a frailty definition [185] and no gold standard
to evaluate the accuracy of frailty grading between different approaches.

Researches agree on the inclusion of aspects regarding strength, balance, nutrition,
endurance, mobility, physical activity and cognition, but differ on adding components
from the psychological or social domain [100]. There is a correlation between physical
frailty and psychological problems as the cited characteristics (phenotype model) weight
loss, weakness, poor endurance, slowness and low physical activity level also apply e.g. to
depression. Therefore components from the psychological or social domain are included
in commonly used frailty measure questionnaires, e.g. EFS, TIF and GFI. But because
of these components, the majority of proposed frailty measures are considered subjective
or partially subjective as they contain self-reported items [37]. A future definition of
frailty cannot label a person frail simply because of self-perceived state of exhaustion,
mood problems, sadness, loneliness, etc.

Self-reported health is both biased [274] and culture-dependent [134]. While it has been
shown that subjective measures such as questionnaires are able to identify frail individuals,
e.g. [207, 102, 184], it is currently unknown how well they perform due to a lack of a gold
standard.

More evaluations are necessary in order to quantitatively assess not just how reliable the
existing approaches are but also how reliable and predictive their individual components
are. Van Campen states that frailty is an accumulation of not only physical but also
psychological and social deficits [273]. But a vision of frailty as a mental issue would be a
major shift in its concept since it is common sense that frailty is predominantly a physical
deficiency. It affects not only depressed, but also psychologically healthy and optimistic
personalities. Therefore, social and psychological components should be reconsidered in
favor of objective components like a patient’s mobility or strength.

Hence there is a need for objective and automatized assessments of frailty. A number of
objective approaches have been proposed to assess frailty. One approach is to measure
a subject’s grip strength based on a grip-ball or Jamar dynamometer [280]. Another
approach is the measurement of physical activity through wearable devices [191] or
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1.2. Detection of frailty using Kinect

presence sensors [237]. In this work, frailty is objectively and automatically assessed
through the analysis of human gait and the analysis of the TUG test.

1.2 Detection of frailty using Kinect
Kinect and other depth sensors such as Asus Xtion, Leap Motion Controller, estimate
the distance of objects in a given scene for each pixel. The first version of Kinect, the
Kinect v1, is officially called Kinect for Xbox 360 and was released in 2010. It is a depth
sensor based on the principle of structured light. It consists of an infrared projector and
an infrared CMOS sensor. The former is used to project an irregular pattern of dots
onto the scene. Depth is measured based on triangulation [309]. The more recent Kinect
v2, officially referred to as Kinect for Xbox One and released in 2014, is based on the
time-of-flight principle: Distances are obtained by measuring the phase of transmitted
and received modulated light [243, 107].

Due to low cost and simplicity of setting up the sensor it shows great potential for
various medical applications, e.g. physical therapy or Ambient Assistent Living (AAL)
applications. Potential applications most relevant for this work are monitoring of human
gait trough the extraction of spatiotemporal gait parameters and automatic analysis of
physical assessments.

Kinect offers the advantage of unobtrusively measuring a given scene without the need
for body-worn sensors or additional modifications of the environment. Moreover, Kinect
provides detailed scene information which enables a deeper analysis of gait and locomotion
compared to other unobtrusive sensors such as ambient presence sensors. Furthermore,
the privacy concerns of older adults to video-based monitoring systems are alleviated
when the monitoring is only based on silhouettes [69].

1.2.1 Gait Introduction

Two main phases in the gait cycle are considered: Stance phase, where the reference foot
is on the ground and swing phase, where the reference foot swings in the air to prepare
for the next footstep. Around 60% of the gait cycle is occupied by stance phase and the
remaining 40% is occupied by swing phase. The gait cycle has traditionally been further
divided into eight events. Five of them occur during stance phase [277].

1. Heel strike occurs when the heel of the swinging foot hits the ground. It is considered
as the beginning of a gait cycle. The body’s center of mass reaches its lowest point
during heel strike.

2. Foot-flat is reached when the plantar surface of the foot touches the ground and the
weight is transferred on the reference foot. It is also referred to as loading response
phase [167].

3. Midstance occurs when the swinging foot swings past the standing reference foot.
The body’s center of mass reaches its highest point during midstance.
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1. Introduction

4. Heel-off occurs when the heel is raised from the ground.

5. Toe-off is the phase when the foot leaves the ground and marks the end of the
stance phase.

The phases of the gait cycle are illustrated in Figure 1.2. A large number of spatial and
temporal parameters can be computed from the gait cycle, e.g. gait speed, step length,
step time, cadence, etc. They are summarized as spatiotemporal gait parameters. A
longer list of parameters can be found in the work of Muro et al. [189]. They list 24 gait
parameters that are relevant for medical applications, sports analysis and recognition
purposes.

Figure 1.2: Gait cycle phases [68, 302].

1.2.2 Relation between frailty and spatiotemporal gait parameters

Spatiotemporal gait parameters have been linked to older adults, frail adults and adults
with a history of falls in gait-related studies. The relation of frailty with a subset of
spatiotemporal gait parameter is reviewed as follows.

Gait speed

Gait speed is reported as one of the most useful criteria for the identification of physical
frailty [98, 230]. Furthermore, gait speed is considered as a robust predictor of future falls
and mobility impairments, hospitalizations and death [48, 183]. Moreover, the assessment
of gait speed alone is sufficient to predict adverse events in older person’s lives [183]. This
is further confirmed by Guralnik et al. [108], who report that gait speed alone performs
almost as well in predicting incident disability than a full SPPB.

Vanswearing and Brach [276] compare 16 measures of physical function including gait
speed regarding their appropriateness for older adults, their practical aspect and psycho-
metric properties. They point out that the continuous nature of the measurement of gait
speed allows to recognize minimal changes, which can be an early sign of physical decline.
The authors also prefer gait speed over the TUG test as there exist extensive amount of
comparative data for gait speed which help to determine its clinical meaningfulness.
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1.2. Detection of frailty using Kinect

Cadence

The data from Winter et al. [292], Elble et al. [78] and Kressig et al. [149] show almost no
difference in cadence between young, healthy older adults and older adults transitioning
to frailty.

Montero-Odasso et al. [182] report a smaller value in cadence for frail individuals compared
to non-frail individuals (118.3 steps per minute for nonfrail, 101.2 steps per minute for
frail subjects). Considering that Elble et al. [78] report a similar value of cadence (104
steps per minute) for healthy older adults as Montero-Odasso et al. [182] for frail adults,
cadence seems unrelated to frailty based on the subset of reviewed studies.

Step length and stride length

Wolfson et al. [293] compare gait parameters of older adults with a history of falls and
older adults with no fall history. They report a significant reduction in stride length
for the fallers (0.53 m) compared to the non-fallers (0.82 m). Significant reductions in
stride length for frail individuals are also confirmed by Maki [168], Montero-Odasso et
al. [182] and Woo et al. [294]. However, it can easily be inferred that gait speed and
stride length are highly correlated as cadence changes only slightly between non-frail and
frail individuals.

Gait Variability

While gait velocity received the most research attention among the frailty related gait
parameters, there is growing evidence that frailty is also linked with gait variability.

Hausdorff et al. [114] observe that increased gait variability is associated with future
falls among community-living older people. The authors also mention that stride time
variability shows a strong correlation with other measures such as strength, balance, gait
speed, functional status and mental health, but these other measures do not distinguish
future fallers from non-fallers.

Montero-Odasso et al. [182] report that the differentiation between three frailty status
groups (frail, prefrail and non-frail) on gait variability is more evident under fast pace
walking compared to usual walking. They also postulate that the increase in gait
variability in older adults with frailty reflects the inconsistency of the neuromuscular
system to maintain a steady gait. They conclude that future research is necessary to
determine if gait variability is useful as a measure of frailty in older individuals.

Barak et al. [18] compare the walking pattern of elderly people who experienced a fall
recently (”fallers”) with elderly people with no history of falls (”nonfallers”). The fallers
show less stable gait patterns and greater gait variability compared to the nonfallers.
The authors conclude that increased variability in gait may be an important gait risk
factor regarding falls.
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1. Introduction

Gait
parameter

normative
values
70+ [120]

non-
frail [182]

transitioning
to
frailty [149]

prefrail [182] frail [182] fearful
fallers [168]

Gait speed
(cm/s)

110.2± 17.3 124.2± 13.0 97± 23 95.2± 20.7 79.5± 19.4 66± 19

Cadence
(steps/min)

108.8± 11.4 118.3± 6.7 105.7± 12.7 106.3± 9.1 101.2± 21.1

Step length
(cm)

60.7± 7.8 63.7± 6.5 55.9± 7.7 50.7± 7.7

Stride
length (cm)

122.1± 15.5 127.6± 13.9 111± 11 108.8± 18.3 98.7± 16.3 83± 16

Stride time
(s)

1.10± 0.11 1.02± 0.06 1.14± 0.11 1.21± 0.14

Double
support
time (%)

31± 6 28.4± 3 32.1± 5.8 31.7± 4.7 34.3± 4.8 19.8± 5.5

Step length
variability
(%CV)

5.8± 5.3 5.0± 1.5 6.6± 2.9 6.7± 1.7

Stride
length
variability
(%CV)

4.3± 3.9 4.0± 1.5 5.1± 2.8 5.7± 2.2

Stride time
variability
(%CV)

4.4± 4.2 2.3± 1.1 2.99± 1.4 3.8± 2.0

Table 1.1: Comparison of mean and standard deviation of gait parameters in older adults
based on normative values and values for non-frail, pre-frail and frail subjects within the
literature. Data for normative values is taken from Hollman et al. [120] and averaged
over all age and gender groups based on their population count.

Comparison of non-frail and frail adults

Table 1.1 shows mean and standard deviation for several gait parameters from different
studies analyzing gait of older adults at usual walking speed. In the selected studies, the
studied subset of adults ranges from normative and non-frail older adults to frail adults
and adults with a history of falls. Based on this data, the most obvious change with more
progressed frailty is the reduced gait speed, step length and stride length. Moreover, an
increased stride time, a slightly reduced cadence and an increased variability for step
length and stride length can be observed. Double support time and stride time variability
do not distinguish the different groups of older adults within this subset of data. More
information on studies regarding the relation of spatiotemporal gait parameters and
frailty can be found in the survey of Schwenk et al. [242].

1.2.3 Contribution of this thesis

In this work, frailty detection approaches based on human gait analysis and TUG test
analysis are implemented and evaluated. Both approaches utilize the Kinect v2 depth
sensor.

The human gait analysis approach detects frailty based on five spatiotemporal gait
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1.2. Detection of frailty using Kinect

parameters. These parameters are gait speed, step length, stride length, step time and
stride time. Two gait datasets are acquired as a part of this work.

The first gait dataset consists of 18 walking sequences of 13 healthy adults for a total of
234 sequences. The 18 walking sequences consist of back and forth walking using three
different step sizes and three different walking paths. Spatial ground truth is obtained
based on markers attached to the floor. Temporal ground truth is obtained by manually
labeling heel-strike and toe-off events for all walking sequences. Extracted spatiotemporal
gait parameters are evaluated using the mean and standard deviation and the mean
absolute error for each parameter. Moreover, the effect of walking path and step size and
the effect of walking towards or away from the sensor are evaluated for the step length
parameter.

The second gait dataset is acquired from 11 elderly volunteers aged 85-95 who live in
a nursing facility. Each participant walks three meters back and forth for a total of 22
walking sequences. The number of steps during each walking sequence was manually
labeled. The proposed gait analysis approach is evaluated on the elderly gait dataset
based on the number of steps per walking sequence.

The TUG analysis approach detects frailty by automatically analyzing the TUG test.
This is achieved based on a computer vision approach that analyzes the movement of the
subject based on the velocity of the centroid or spine shoulder joint. Currently the TUG
test requires a medical assistant to use a stopwatch to measure the time a subject needs to
complete the test. With the proposed approach, the TUG time is measured automatically
and no interaction from an assistant is required. Moreover, additional parameters are
measured from the completion of the TUG test, e.g. time taken for sit-to-stand, walking,
turning, stand-to-sit, etc. In order to evaluate the proposed approach, a real-world
dataset of TUG recordings from 11 elderly participants is acquired and manually labeled.
The set of extracted TUG parameters is evaluated on the acquired dataset based on the
manual video annotation. Signed difference, absolute mean error and standard deviation
as well as precision and recall are used as evaluation metrics.

Furthermore, the potential frailty status of the elderly volunteers is evaluated based
on three different data sources: Spatiotemporal gait parameters from their walking
patterns, TUG score from their TUG assessments and an additional score from a frailty
questionnaire that has been repeatedly validated within the literature. While the acquired
dataset lacks the required quantity to make statistically meaningful conclusions, it shows
real-world examples of how each approach would classify the frailty status of older adults.

1.2.4 Organization

This thesis is organized as follows: Chapter 2 describes the state-of-the-art in several
areas related to human gait and depth sensors.

The methodology for the gait analysis and TUG automatization approaches are discussed
in chapter 3. First the silhouette extraction algorithm based on depth data is described
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and for each choice, alternatives from related works are discussed. Then the extraction
of footfalls and the analysis of various gait signals from both depth data and skeleton
data are specified. The last part of the chapter covers the proposed TUG automatization
approach.

Chapter 4 presents the results of this work. First the accuracy of extracted spatiotemporal
parameters using different gait signals is compared and evaluated with a manually labeled
ground truth. Second, the approach is evaluated on real-world gait data from 85 to
95 year old. Necessary adjustments are suggested and discussed based on the walk of
the elderly participants. Third, the two proposed TUG automatization methods are
evaluated based on TUG recordings from the elderly participants and compared against
a third state-of-the-art method.

Chapter 5 concludes the thesis. The most significant observations made during the
evaluation are discussed and an outlook for future studies is presented in the final
chapter.

10



CHAPTER 2
Related work

This chapter presents the state-of-the-art regarding human motion analysis, gait recogni-
tion and Kinect-related applications. The related works are structured into the following
four subsections:

1. Sensor Modality: The range of sensors that are used to gather human motion
information is outlined and their advantages and disadvantages are discussed. The
remaining subsections focus on the computer vision approach.

2. Kinect specification and viability: Available low-cost depth sensors are
discussed and compared. After that, Kinect is discussed from a hardware perspective
and a software perspective. From a hardware perspective the depth measurement
error is reviewed based on previous experiments. From a software perspective,
studies which extract spatiotemporal or kinematic parameters from Kinect are
reviewed and compared. A conclusion is made at the end of the subsection whether
Kinect is suitable for this work.

3. Gait Recognition and gait analysis: First the development of gait recognition
during the last two decades are summarized and previous and current taxonomies
are discussed. Then gait recognition and gait analysis based on Kinect are reviewed.
Moreover, relations and differences between gait recognition, general medical gait
analysis and gait analysis for frailty detection are discussed.

4. TUG Automatization: Existing approaches for Kinect-based analysis and
automatization of the TUG test are reviewed.
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2.1 Sensor modality for Human Gait Analysis

2.1.1 Motion Analysis Taxonomy

A common classification of motion analysis techniques distinguishes three categories:
Image processing or machine vision, floor sensors and wearable sensors [189, 89, 71].
Approaches based on machine vision are markerless approaches based on either color or
depth data. Floor sensors include all types of floor-based sensors, e.g. force platforms,
baropodometric mats, walking mats, etc. Wearable sensors include all body-worn sensors
and devices, e.g. pressure and force sensors, inertial sensors, active and passive markers,
electromyography, etc.

Tao et al. [267] divide human gait analysis into kinetics, kinematics and electromyography.
Gait kinetics studies the forces and moments that impel the movement of human limbs.
Gait kinematics describes lower extremity movements of joints and segments independently
of their mass and forces. Bontrager [68] reviews several gait instrumentation techniques
used for rehabilitation. He distinguishes between picture video, temporal gait, foot
pressure, motion, force and electromyography. Picture video is a simple recording viewed
by a clinical expert. Temporal gait includes techniques that measure the temporal aspects,
e.g. footswitches. Techniques based on pressure sensors, e.g. pressure mats and pressure
insoles, are categorized as foot pressure. Similarily, force plates, force measuring sandals
or force measuring walking aids belong to the force category. Techniques that measure
the kinematic aspects of gait, e.g. the movements of the lower limbs, are categorized as
motion. Wearable sensors, e.g. electrogoniometers, and marker-based motion capture
systems are classified as motion techniques.

Frenken [84] groups gait analysis approaches based on their sensor modality. Similar to
Tao et al. [267], sensors are grouped into kinetic and kinematic sensors and additionally,
into body-worn and ambient sensors. Body-worn sensors are used for EMG, accelerometers
or marker-based solutions. Ambient sensors are generally unobtrusive and may not even
require active participation. Markerless camera-based gait analysis falls into the ambient
and kinematic categories. Table 2.1 shows the taxonomy of Frenken.

Best and Begg [30] distinguish between kinematics/motion, Kinetics/force, pressure
mats/pressure insoles and electromyography. Their kinematics/motion category contains
footswitches, gait mats, marker-based and magnetic motion analysis systems and wearable
devices.

Surer and Kose [265] review several gait analysis technologies in a clinical context.
Marker-based and markerless systems, inertial measurements, force platforms and elec-
tromyography are evaluated regarding applications and limitations. The authors describe
several markerless approaches based on color cameras and point out their advantages of
not requiring intrusive markers or special hardware.

It should be noted that taxonomies made from a medical and practical perspective
generally do not consider markerless vision-based gait recognition, e.g. the works of Best
and Begg [30] or Bontrager [68], while taxonomies which use a scientific or technical
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Body-worn Ambient

Kinetic
1. Pressure and force sensors

in shoes

1. Pressure and force
sensors
on the ground
in treadmills
in furniture
in walkers

Kinematic

1. Time of flight
ultrasound

2. Visual
marker based

3. Electrical impulse
electromyography

4. Inertial forces
e.g. accelerometers, gyroscopes
body-worn
in clothing

5. Bending forces
electro-goniometer

1. Time of flight
RADAR
LIDAR

2. Visual
marker less
fluoroscopic

3. Presence sensors
home automation
RFID

Table 2.1: Classification of gait analysis approaches based on their sensor modality. [84]

perspective put it as one of their major categories [189]. This suggests that markerless
gait recognition, while being an important research topic, still has catching-up to do
to close the gap with existing gait analysis methods. However, current motion analysis
technologies, while being accurate and reliable, are usually not non-intrusive, require
special interaction from the subject or they require modifications of the environment.
Therefore there is great potential in a vision-based motion analysis solution, as none of
the currently deployed technologies offer an approach that may run unobtrusively and
independently in the background, while providing the same quality of information.

2.1.2 Wearable inertial sensors

Gait analysis systems based on wearable sensors attach various motions sensors to
the subject’s body, e.g. accelerometers (measures acceleration along sensitive axis),
gyroscopes (measures orientation from angular velocity), force sensors, strain gauges
(measures stretching), inclinometers (measures angle of slopes) or goniometers (measures
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Figure 2.1: Thigh, calf and foot angles obtained from a set of wearable accelerators and
gyroscopes [267].

angular changes) [267]. Figure 2.1 illustrates a set of inertial sensors attached to a
person’s lower limbs and their corresponding signals.

Wearable inertial sensors suffer from short battery life [75] and the need to be worn by
the subject, which makes them unsuitable for long-term monitoring [282]. Furthermore,
it has been shown that many older adults consider wearable devices to be invasive and
inconvenient [70]. Attempts of improving the usability have been made, e.g. by using
an accelerometer-enabled smartphone [266, 195], a smartwatch [130] or by placing the
sensors in the subject’s shoe [308].

2.1.3 Electromyography

Electromyography (EMG) measures electrical impulses that are used for muscle con-
traction. Muscle activity is detected either from electrodes that are attached to the
skin (surface EMG, see Figure 2.2a) or with needle electrolytes that is inserted into the
muscle (intramuscular EMG, see Figure 2.2b) [68, 174]. Both types are only suitable for
a laboratory setting [50]. Figure 2.3 shows an example of applying EMG to observe lower
limb muscle activity during pedaling.

2.1.4 Optical motion capture

Marker-based motion capture systems attach wearable markers onto the subject to
facilitate identification and localization of body parts. Markers can be active, e.g.
light emitting diodes (LEDs), or passive, e.g. retroreflective markers or fluoroscopic
markers [13]. These markers are detected by a system of circularly arranged cameras
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(a) (b)

Figure 2.2: Example of two sets of EMG utensils: (a) surface EMG. (b) intramuscular
EMG [68].

(usually between 6 to 50 [39]), that are placed in a recording studio. In case of passive
markers, infrared or visible lights are mounted beside the cameras and their light gets
reflected back into the cameras by the retroreflective markers. The reflection of the light
facilitates marker detection. In case of active markers, the light does not get reflected by
the markers but is instead radiated by LEDs, which are attached to the markers [39]. An
example for an active marker system is illustrated in Figure 2.4. Optical motion capture
is widely used for computer graphics animations, physical therapy or athlete training
optimization [4] and is already in use for decades [39]. Figure 2.4 illustrates an example
of extracting a skeleton model based on body-worn active markers.

Commercial optical marker-based motion systems have to be discriminated from mark-
erless approaches, as they avoid many computer vision problems by using a controlled
environment and special hardware [99]. Examples for commercial marker-based motion
capture systems are VICON 1 or Motion Analysis 2.

2.1.5 Electronic walkways

Electronic walkways or walking mats are embedded with pressure sensors that allow
the detection of footfalls as a person walks over the walkway. Gait parameters such
as walking speed, cadence, step length and step times are extracted from the footfalls
using a compatible software. While electronic walkways are used for medical gait
analysis [31, 182, 64, 278], they require an instructor and a clinical setting [148] and are
costly [307]. Examples for commercial systems of electronic walkways are GAITrite 3,

1https://www.vicon.com/, Accessed 2017-05-25
2http://www.motionanalysis.com/, Accessed 2017-05-25
3http://www.gaitrite.com/, Accessed 2017-05-15
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Figure 2.3: Example of a surface EMG applied on lower limbs during pedaling [122].

Tekscan Strideway System 4 or ProtoKinetics Zeno Walkway 5. Figure 2.5 shows
examples of commercial electronic walkways. Besides walkways, pressure sensors may
also be mounted within various other objects, e.g. in shoes [16], walking aids [272] or
furnitures [126].

2.1.6 Health Smart Homes

Home automation systems or health smart homes distribute various ambient senors
throughout a person’s home environment to monitor the person’s activities, health, etc.
Different sensors can be used for this purpose, e.g. pressure sensors, pressure mats, smart
tiles, passive and active IR sensors, sound sensors, magnetic switches or optical and
ultrasonic systems [237]. Except for a set of IR sensors and optical/ultrasonic systems,
which allow estimation of gait speed, smart home sensors are only able to measure the
current location and possibly the current activity of the subject. Figure 2.6 illustrates an
example for a health smart home system that combines ambient and body-worn sensors
to monitor the health and to track the activities of the subject.

Home automation systems provide potential unobtrusive long-term in-home monitoring
4https://www.tekscan.com/products-solutions/systems/strideway-system, Accessed 2017-07-15
5http://www.protokinetics.com/zeno-walkway/, Accessed 2017-05-15
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Figure 2.4: Illustration of an optical motion capture system based on active markers and
the extracted corresponding skeletal structure [143].

of frail or prefrail persons. Kaye et al. [140] measure walking speed and physical activity
(based on number of walks per day) from four passive infrared motion sensors in a row.
Pavel et al. [204, 203] use passive IR motion sensors, contact switches and active radio
frequency identification (RFID) to infer gait velocity and its variability. While physical
activity and walking speed are well-suited to estimate frailty, other gait-related changes
cannot be identified with ambient smart home sensors. Moreover, a large number of
sensors is required to to track the movement and the activities of the subject.

2.2 Kinect specification and viability
In this work the Kinect v2 sensor is utilized for the mobility analysis approach. In order
to verify this choice, depth sensing technologies and a number of low-cost depth sensors
are reviewed. Moreover, Kinect-based studies that analyze the depth measurement error
and studies that analyze the error on extracted mobility parameters are discussed. The
latter are discussed in more detail, as these studies resemble the gait analysis experiments
in this work.
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(a) (b) (c)

Figure 2.5: Three examples of commercial walkway systems: (a) GAITrite. (b) Tekscan
Strideway System. (c) ProtoKinetics Zeno Walkway.

Figure 2.6: U-Health smart home system, which consists of a set of ambient sensors,
body-worn sensors and actuators. [5].

2.2.1 Depth sensing technologies

Three main depth sensing technologies are found in computer vision research: Stereo
cameras, structured light and time-of-flight (ToF) cameras [52]:

Stereo cameras: Stereo vision reconstructs a scene based on a calibrated binocular
camera system [231] (see Figure 2.7a). It is inspired by human vision and its early research
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dates back to the 1960s [52]. Depth information is extracted using the triangulation prin-
ciple [123] and the binocular disparity [161], which is found after matching corresponding
points in a pair of stereo pictures. Disadvantages of stereo vision are its inability to find
matches in homogeneous object regions [147] and the high computational costs [123, 231]
of solving the correspondence problem, which refers to the matching of corresponding
pixels. Stereo vision is commonly used for gait recognition, e.g. [104, 125, 161].

Structured light: Structured light is the projection of a light pattern under geometric
calibration on an object [189]. The idea of structured light is based on stereo vision:
Instead of using two cameras, one camera is replaced by a light source that projects a
known pattern, called structured light [52]. Depth information is extracted by analyzing
the distortion of the observed pattern compared to the original projected pattern [234].
The working principle of structured light is shown in Figure 2.7c and 2.7d. Examples for
depth sensors based on structured light are the original Kinect v1 or Asus Xtion [106].
An advantage of structured light devices over ToF devices is that they are cheaper
to produce [52]. Disadvantages include problems with motion scenes, transparent and
reflective surfaces and superposition of the light pattern with reflections [189].

Time-of-flight and LIDAR: Both LIDAR and TOF cameras measure the time differ-
ence between emission and arrival of a transmitted pulse and its reflection [144]. Since
TOF cameras do not have an integrated mechanical scanner, they belong to a subclass of
LIDAR called non-scanning or scanner less LIDAR [124].

There are two functional principles for the technology of ToF cameras [147]. One ToF tech-
nology makes use of modulated, incoherent light, and is based on phase measurement using
standard CMOS or CCD technology (see Figure 2.7b), e.g. SwissRanger SR4000 [198] or
Kinect v2. The other employs optical shutter technology, e.g. Zcam [124, 301]. While
ToF cameras have problems with reflective surfaces and generally have low resolutions, 3D
acquisition is real-time and, unlike stereo vision and structured light, no depth calculation
is required [189].

Rotating multi-beam Lidar systems (RMB-LiDAR) provide a 360◦ FoV of the scene. The
vertical resolution depends on the number of the sensors and the horizontal angle resolution
depends on the rotation speed [24]. Both 2D LiDAR laser range scanner [199, 268] and
RMB-LiDAR [90, 23] are used for gait analysis.

It should be noted that there are several other camera based depth sensor technologies
available, e.g. depth-from-texture, depth-from-focus, depth-from-shading or depth-from-
motion [263]. While not measuring depth, infrared thermography, which creates visual
images based on surface temperatures, may also be used to extract silhouettes and gait
information [300].
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(a) (b)

(c) (d)

Figure 2.7: Working principles of three 3D sensing technologies: (a) Stereo vision [123].
(b) Time-of-flight [123]. (c-d) Structured light [94, 234].

2.2.2 Comparison of low-cost depth sensors

Mousavi and Khademi [186] compare four depth sensors (Leap Motion Controller 6, Asus
Xtion 7, Creative Senz3D 8 and Kinect v1). They report that the Leap Motion Controller
should be used for hand tracking with individual fingers, the Creative Senz3D for close
range tracking and Kinect v1 or Asus Xtion for tracking of full body motion. Similar to
the Creative Senz3D, the SoftKinetic DepthSense camera 9 is most suited for close range
tracking. The DepthSense 325 sensor is limited to a range of 1.5 meter [60]. While the
DepthSense 525 sensor driver offers extra modes for higher range, those modes run with

6https://www.leapmotion.com/product/desktop, Accessed 2017-06-22
7https://www.asus.com/3D-Sensor/Xtion_PRO/, Accessed 2017-06-22
8https://us.creative.com/p/web-cameras/creative-senz3d, Accessed 2017-06-22
9https://www.softkinetic.com/Products/DepthSenseCameras, Accessed 2017-06-22
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(a) (b) (c)

(d) (e) (f)

Figure 2.8: Low-cost depth sensing devices: (a) SoftKinetic DepthSense 325. (b) Asus
Xtion Pro. (c) Leap Motion Controller. (d) Creative Senz3D. (e) Microsoft Kinect v1.
(f) Microsoft Kinect v2.

low frames per second (2.5 meters at 15fps and 4 meters at 6fps 9). The discussed depth
sensors are depicted in Figure 2.8.

Gonzalez-Jorge et al. [106] perform accuracy and precision tests to compare the Kinect
v1 with ASUS Xtion. They use a standard artifact based on 5 spheres and 7 cubes.
Both sensors show a decrease in accuracy with larger range, fitting to a second order
polynomial. Outdoor measurements with sunlight are not possible for either sensor. Both
sensors show metrical potential for low-range indoor applications that do not have very
high accuracy requirements. Later, Gonzalez-Jorge et al. [107] compare Kinect v1 with
Kinect v2 using the same artifact. Accuracy is superior for the Kinect v2 at both 1 m
and 2 m range (-12 mm at 1 m range and -25 mm at 2 m range for Kinect v1, always <
-5 mm for Kinect v2). Precision is similar at 1 m range for both sensors and better at
2 m range for the Kinect v2. Measurement range is 4 m for the Kinect v2 and 6 m for
the Kinect v1. Amon and Fuhrmann [7] compare the face tracking ability of the Kinect
v1 and the Kinect v2 with their respective SDKs. They reported better performance in
nearly all tested measurements for Kinect v2.

Specifications for Asus Xtion, Kinect v1 and Kinect v2 are shown in Table 2.2. While
all three have sensors for RGB, depth and a microphone, the Kinect 2 sensor offers the
largest field of views and the largest resolutions for both color and depth stream.

Summary of depth sensor comparison

Kinect v2 shows better accuracy than its predecessor [107], Kinect v1, while Kinect v1
and Asus Xtion show similar performance [106]. Advantages of Kinect v1 over Kinect v2
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Depth
Camera

Sensors Depth Field of
View

Depth
Resolu-
tion

Color reso-
lution

FPS Depth
range

Asus
Xtion

RGB, depth and
microphone

58◦ H, 45◦ V 320× 240 640× 480 30 0.8− 3.5 m

Kinect 1 RGB, depth and
microphone

57.5◦ H, 43.5◦ V 320× 240 640× 480 30 0.4− 6 m

Kinect 2 RGB, depth and
microphone

71◦ H, 60◦ V 512× 424 1920×1080 30 0.5− 4.5 m

Table 2.2: Technical specifications of three depth cameras suited for tracking full body
motion [249, 106, 107].

are the larger depth range and that it comes with a tilt motor offering ±27◦ of vertical
tilt. Other depth sensors, such as the Creative Senz3D and the Leap Motion Controller
are not considered as they are not recommended for tracking of full body motion [186]
and the SoftKinetic DepthSense is only suitable for close range [60].

2.2.3 Kinect Validation

In order to evaluate the performance of Kinect as a tool for mobility analysis a literature
research was done. ”Kinect” and ”Accuracy” are used as keywords and Google scholar
is used as a platform. Retrieved papers are deemed relevant if they focused on either
studying the hardware capabilities or the software capabilities of Kinect. Papers with a
software focus include all papers that use depth data or skeleton tracking of the Kinect
SDK or a similar framework (OpenNI, OpenKinect, etc.) to extract mobility parameters.
Papers with a hardware focus include all papers that analyze the performance of Kinect
sensors based on the raw sensor streams.

Hardware perspective

Khoshelham and Elberink [141] analyze the accuracy and resolution of the Kinect v1 depth
stream for indoor applications. They report that both the error of depth measurements
and the depth resolution increase quadratically with distance. At the maximum range of
5 meters the error increases from a few millimeters to 40 millimeters and the resolution
is as large as 70 millimeters per pixel. The authors suggest that data should be acquired
within 1 to 3 meters for mapping applications.

Smisek et al. [249] examine the Kinect v1 regarding depth measurement resolution and
error properties. Moreover, they compare the accuracy of the Kinect v1 with a stereo
camera and a TOF camera when measuring planar targets. The stereo camera performs
the best (1.6 mm mean error), the Kinect is slightly inferior (2.4 mm mean error) and
the TOF camera performs the worst (27.6 mm mean error) among the three .
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Stoyanov et al. [262] evaluate the accuracy of a Kinect v1 against two TOF cameras
(SwissRanger SR-4000 and Fotonic B70) in an uncontrolled indoor environment. An
accurate standard actuated laser range is used as a ground truth. Within 3.5 meters,
the performance of the Kinect is comparable to the actuated laser sensor with the two
TOF cameras performing slightly worse. In their experiments with high range scans the
performance of the Kinect drops significantly behind the two TOF cameras. However,
none of the three sensors are comparable with the actuated laser in the high range
experiment.

Software perspective

Springer and Yogev [250] evaluate the literature regarding Kinect-based gait assessment.
They review 12 studies, which compare spatiotemporal gait parameters and kinematic
gait parameters obtained from a Kinect with a gold standard. They find good validity
only for a few spatiotemporal parameters (gait speed, step length and stride length) and
poor validity for all kinematic parameters. One of the limitations of their study is that
they do not differ between studies that used a Kinect v1 from studies which used a Kinect
v2. Furthermore, they remark that most studies are performed with healthy adults in
laboratory settings and that methodology varies greatly within the studies. Thus they
suggest that the methodological procedure needs to be standardized and further research
in real-world settings, involving people with pathological gait, is required.

Mousavi and Khademi [186] review studies focusing on Kinect-based rehabilitation. They
find out that Kinect is an acceptable tool for rehabilitation applications, but still has
several limitations due to occlusion and noise. They suggest to apply Kalman filtering,
sensor fusion and calibration to mitigate these issues.

Obdržálek et al. [197] compare the pose estimation (skeleton model) of the Kinect SDK
with a marker-based motion capture system during the performance of six physical
exercises. While performing the exercises, the subjects are either seated or standing
beside the chair. In controlled body postures, e.g. during standing and exercising arms,
the Kinect shows similar accuracy than the motion capture system. However, in general
poses including sitting and partial occlusions from the chair, the pose estimation error
was about 10 cm. However, they reported problems of the Kinect skeleton tracking with
occluding body parts, non-distinguishing depths (e.g. arms close to the body) and other
objects in the scene. Other problems are caused by the variable limb lengths, which led
to situations with non-anthropometric kinematic models.

Bonnechere et al. [34] compare segment lengths and joint angles obtained with the Kinect
v1 and with a wearable marker based system (Vicon). They use data from subjects
performing a deep squatting motion. Their results show poor accuracy for the majority of
segment lengths (especially arm, hand, trunk and thigh segments). The authors conclude
that the Kinect can be used for medical games, but its usefulness for biomechanical
applications is limited.
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Clark et al. [57] evaluate the accuracy of the Kinect v1 against a marker-based system
during three postural control tests. They report excellent concurrent validity and conclude
that the Kinect has the potential for a wide range of clinical applications. More recently,
Clark et al. [56] compare spatiotemporal gait parameters obtained from the skeletal
model of the Kinect v1 sensor with a marker-based system (3DMA). Spatiotemporal
parameters are computed from toe-off and ground contact events, which are detected
based on a velocity threshold in the movement direction. Foot swing velocity is estimated
as the peak velocity during swing phase. They report good agreement for gait speed,
step length and stride length (correlation coefficient > 0.9), but poor overall agreement
for swing velocity, step time and stride time. The authors conclude that the Kinect
offers significant advantages for assessing most spatiotemporal gait parameters, but the
parameters must be chosen carefully as some parameters cannot be accurately measured.

Weber et al. [288] investigate the tracking accuracy of Kinect v1 compared to an optical
marker based system. While they report excellent accuracy for the human gait relevant
angles, they also reported that Kinect does not provide reliable segment lengths. As a
remedy, they suggest to apply the Levenberg-Marquardt algorithm to ensure that the
measured segment lengths are constant to prevent variation in segment length over time.

Paolini et al. [200] validate their foot tracking method which is based on a color camera
and a Kinect v1 sensor. A colored 3D patch is attached to the tracked foot and the
color information is utilized to track the foot. For their evaluation experiment twelve
healthy subjects walk on a treadmill under three different walking conditions. They
report excellent correlation between the foot tracking of their method and a marker-based
reference system.

Llorens et al. [162] compare the accuracy and jitter of marker-based optical, electro-
magnetic and skeleton tracking from a Kinect v1. Participants are recorded during the
activities of a virtual reality rehabilitation system. The skeleton tracking performs second
behind the marked-based optical system regarding accuracy and performs worst regarding
jitter.

Chang et al. [50] evaluate the performance of Kinect v1 during motion tracking compared
to an optical marker-based system. Two participants perform six different types of
upper limb movement. They conclude that Kinect’s accuracy is competitive with the
marker-based system.

Yang et al. [305] investigate the reliability of standing balance assessment with Kinect
v1. The authors find excellent test-retest reliability and good concurrent validity when
compared to a marker-based motion analysis system.

Pfister et al. [209] compare a Kinect v1 with a VICON marker-based system regarding
angular displacement, stride timing and tracking ability. For their experiment twenty
subjects walk on a treadmill with three different velocities. They observe the highest
accuracy of Kinect for the stride parameters and worse accuracy for kinematic knee and
hip parameters. Variability is lower at the slowest gait velocity. Another observation is
that the tracking shows problems when the knees are crossed. They reported that on
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average, 8 to 18% of steps are missed by the Kinect v1 tracking. They summarize that
the Kinect is an acceptable tool to measure stride times, but currently unacceptable for
clinical measurements. However, it may be clinically acceptable with some improvements
regarding hip and knee measurements.

Dutta [77] evaluate the usage potential of the Kinect v1 for posture and movement
assessments in the workplace. He compares the accuracy of the relative positions
of four cubes placed within the Kinect’s field of view with an optical marker-based
system (VICON). He reports root-mean-squared errors between 5.7 and 10.9 millimeters
and concludes that the Kinect may be used for ergonomic assessments with further
development.

Baldewijns et al. [14] calculate step length and step time from Kinect depth image
sequences. They apply the player detection algorithm from the SDK to distinguish
between pixels belonging to the person and to the background. Afterwards they apply
connected component analysis and calculate the mean position of all pixels from the
biggest foreground object to obtain the center of mass. The X- and Y-coordinates of the
center of mass are then used to determine the step length and the step time. Evaluation
with an electronic walkway (GAITRite) shows good accuracy for walking sequences and
poor accuracy for single steps.

Stone and Skubic [255] compare the accuracy of walking speed, stride time and stride
length between two Kinect v1 sensors and a web camera system. They report good
accuracy with measurement errors ranging from 0.1% to 6.1%. Their results show better
performance for the Kinect placed within walking direction (looking towards the subject)
compared to the Kinect positioned perpendicular to the walking direction. The authors
also use the same experimental setup to measure gait variabilities for stride length, stride
time and stride velocity [259]. The web camera system is more accurate for stride length
variability, but the Kinects show superior accuracy for detecting stride time variability
and stride velocity variability.

Regazzoni et al. [222] compare an RGB sensor system consisting of six RGB cameras and
a RGB-D system consisting of two Kinects v1 regarding accuracy of joint positions and
tracking of fast movements. They report that the overall performance is around the same
between the two systems and that both systems are not recommended for applications
requiring high precision.

Geerse et al. [93] evaluate a multi-Kinect v2 gait analysis system against a marker based
system. Various gait parameters, such as walking speed, cadence, step length, stride
length, step width, step time and stride time, are extracted from the 10 meter long gait
sequences. They report that both gait parameters and the time series of the body points
match well with their control evaluation system.

Eltoukhy et al. [79] investigate the accuracy of spatiotemporal gait parameters obtained
from a Kinect v2 sensor when compared with an infrared camera motion analysis system.
The authors conclude that the Kinect v2 sensor has the potential to be an effective
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clinical tool for sagittal plane knee and hip joint kinematics as well as spatiotemporal
parameters such as step characteristics.

Mentiplay et al. [173] measure the accuracy of spatiotemporal and kinematic param-
eters obtained with a Kinect v2 sensor. They report excellent concurrent validity for
spatiotemporal parameters and poor to modest validity for kinematic parameters such as
ankle flexion, knee flexion or hip flexion.

Hotrabhavananda et al. [121] evaluate the accuracy of stride length, stride time and
walking speed obtained from both the Kinect v2 skeletal model and the depth image
stream. Like Stone and Skubic [255], correlation coefficient time series is used to extract
footstep locations from the depth data. Gait parameters are measured during the
performance of the TUG test and the Figure of 8 Walk Test and comparison is done with
a marker-based motion analysis system. The authors report an absolute mean percentile
error of less than 3% for both the skeleton and the depth data. They also report higher
accuracy for stride length and stride time measurements using the Kinect depth stream
and slightly higher accuracy for the walking speed using the skeletal model.

Staranowicz et al. [252] examine the accuracy of stride length and stride duration obtained
from the skeletal model of a Kinect v1. They mount the Kinect on a mobile robot which
follows the observed subjects and compare their results with a marker based system
(VICON). They report good accuracy with an average stride length error of 1.4 centimeters
and an average stride duration error of 0.018 seconds.

Abiddin et al. [1] measure the accuracy of right hip angle and right knee joint angle
obtained from the skeletal model of a Kinect v1 compared to an optical marker based
system (VICON). They report a correlation coefficient of 0.996 for right hip angles and
0.987 for right knee angles, which is equal to an absolute mean difference of 0.7 degrees
for right hip angles and 0.68 degrees for right knee angles. They conclude that Kinect can
be an effective tool for to measure gait parameters depending on the required accuracy
level.

Auvinet et al. [9] measure heel-strike accuracy of the Kinect sensor under the assumption
that it can be estimated from extreme values of the knee joints distance. Knee joint
distances are found by estimating the knee height in the depth stream as a constant
fraction of the total height of the subject. Optoeletronic data is used to confirm the
assumption of determining heel-strikes as extreme values of knee joints.

Dolatabadi et al. [74] evaluate spatiotemporal gait parameters using two Kinect v2 sensors
and an electronic walkway (GAITRite). They report correlation coefficients from 0.9 to
0.98 for all gait parameters and conclude that the Kinect v2 is a valid clinical tool for
measuring selected parameters.

González et al. [105] compare a wearable inertial system and a Kinect v1 with an
electronic walkway (GAITRite) as a reference system. They report slightly lower relative
and absolute errors for the wearable inertial system compared to their Kinect system.
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Furthermore, the Kinect system is evaluated from two different heights (65cm and 240cm)
and no substantial difference regarding the Kinect sensor height is found.

Bonnechère et al. [33] compare segment lengths and joint angles obtained with the skeletal
model of the Kinect v1 with a marker based system (VICON). Parameters are obtained
from subjects performing a deep squatting motion. The authors report poor accuracy for
segment lengths, especially during motion, and good accuracy for most joint angles.

Fernández-Baena et al. [81] compare the accuracy of joint angles between Kinect v1
and an optical marker-based system (VICON). Even though the authors report mean
accuracy errors ranging from 5◦ to 17◦, they conclude that Kinect is useful for clinical
applications. Like other authors, they suggest to improve Kinect accuracy by imposing a
fixed segment length constraint.

Xu et al. [298] evaluate the accuracy of heel strike and toe-off events with a Kinect v1
sensor and a marker based system (Optotrak Certus System) during treadmill walking.
Heel strike occurrences are determined as distance maxima between the ankle joint of
the front foot and the hip center joint. Toe-off events are found as distance maxima
between the ankle joint of the rear foot and the hip center joint. Their results show
better accuracy for heel strike timing (0.18 to 0.30 frames) than for toe-off event timing
(-2.25 to -2.61 frames).

Gieser et al. [97] evaluate the accuracy of the Kinect v1 skeletal model for rehabilitation
exercises. Subjects are asked to simply walk around and move their arms. The authors
find significant differences between the Kinect and an optical marker-based system
(VICON) with an average difference of at least 5 cm per joint.

Funaya et al. [87] examine the accuracy of a Kinect v1 (OpenNI) with a marker based
system (MAC3D) for assessing balance disorders. Six healthy subjects are recorded
during the performance of several balance assessments. They propose their own system
for finding temporal and spatial correspondences between the two sensor systems and
they report adequate accuracy for standard balance tests.

Schmitz et al. [239] study the accuracy and repeatability of joint angles of the Kinect
v1 sensor compared to a marker-based system (Motion Analysis Corporation) and an
inclinometer. The authors find comparable accuracies for the Kinect-based system and
the marker-based system for parameters such as flexion-extension, ab-adduction and
axial rotation. The Kinect-based system is more accurate for estimating adduction angles
and the marker-based system is better at estimating abduction angles.

Seung-kook Jun et al. [133] compare the joint angle accuracy of the Kinect v1 skeleton
model with a marker-based motion capture system (VICON) during squatting movements.
The authors observe that the performance of the Kinect v1 critically depends on the
subject being in the recommended field of view and that only one subject can be seen
at a time. Significant errors are reported for the Kinect system and they conclude
that the Kinect has only limited usefulness for medical applications. They are able
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to improve Kinect’s accuracy with post processing such as Kalman filtering [137] or
kinematic calibration.

Staranowicz et al. [253] evaluate their multi-Kinect skeleton fusion algorithm based on
two spatiotemporal gait parameters: Stride length and stride width. In their experiment,
three subjects walk in a straight line towards a Kinect v1 and a Kinect v2 sensor. Ground
truths for stride length and stride width are obtained trough stick tape markers on the
floor. For stride width, their fusion method performs the best, with the Kinect v2 being
second and the Kinect v1 being third. For stride length, the Kinect v2 outperforms both
their fusion method and the Kinect v1 with a significant difference between the Kinect
v2 and the Kinect v1 (0.5 cm versus 2.3 cm mean deviation).

Wiedemann et al. [290] analyze the accuracy of 8 joint angles during a set of static
posture including 14 seated and two standing postures. They report low median error
rates for upper body and knee angle joints and large error rates for neck and hip angles.
VICON is used as a gold standard.

Table 2.3 and Table 2.3 show the discussed papers on the accuracy of the Kinect v1 in
chronological order. Datasets, experiment setups and extracted parameters vary greatly
within the discussed studies. While this makes comparing the results of individual papers
difficult, trends can still be recognized:

• The reported measurement errors for the extracted parameters are low enough to
consider Kinect v1 good or adequate for the majority of applications. Only a few
authors deem the sensor to be only limitedly useful.

• Several papers report problems due to varying and unreliable segment lengths [288,
81, 34, 33]. Segments lengths are the distance of adjacent joints and these distances
are not treated as a constant by the Kinect SDK. For an arbitrary segment, a
positional error of either joint causes a variation in segment length. In order to
prevent variation in segment lengths over time several authors suggest to apply a
constraint on segment lengths after their lengths are known.

• There is no noticeable difference for the height of the sensor placement [105].
However, only one study examines the effect of sensor height on the error of
extracted parameters. Moreover, as the official recommendations suggest a sensor
height between 0.6 and 1.8 meters 10, this should be further evaluated in future
studies.

• Skeleton joints show poor performance regarding jitter [162].

• As already pointed out by Springer and Yogev [250], the Kinect is more reliable for
the estimation of spatiotemporal parameters than for the estimation of kinematic
parameters.

10https://support.xbox.com/de-AT/xbox-360/accessories/sensor-placement
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Method Year Experiment Setup Ground
truth

Parameters Conclusion

[255] 2011 Straight walking
path recorded from
two angles

MOCAP Walking speed, stride
time and stride length

good accuracy; worse
performance for the Kinect
placed perpendicular to the
walking path

[259] 2011 Straight walking
path recorded from
two angles

MOCAP Variabilities of stride
time, stride length and
stride velocity

Sufficient accuracy for
variability of stride velocity,
worse than web-camera system
for stride length variability

[81] 2012 Rehabilitation
exercises

MOCAP joint angles (OpenNI
skeleton)

useful for clinical applications

[197] 2012 six physical exercises MOCAP joint accuracy similar accuracy to MOCAP for
controlled poses; significant
errors for general poses

[50] 2012 upper limb motor
tasks

MOCAP motion tracking
performance

accuracy competitive to
marker-based system

[34] 2012 deep squatting
motion

MOCAP segment lengths &
joint angles

limited usefulness for
biomechanical applications

[77] 2012 Four cubes placed in
front of the Kinect

MOCAP root-mean-squared
distance error (cm)

error between 5.7 and 10.9
millimeters; potential to
perform ergonomic assessments

[57] 2012 postural control tests
(forward reach test &
standing balance
test)

MOCAP distance reached,
trunk flexion angle,
joint accuracy & trunk
flexion angle

excellent concurrent validity
and potential to assess postural
control in a clinical setting

[288] 2012 treadmill walking MOCAP segment lengths &
joint angles

good accuracy for joint angles,
unreliable segment lengths

[133] 2013 squatting motion MOCAP joint angles limited usefulness; improved
accuracy after applying Kalman
filter

[252] 2013 robot following and
recording walking
subject

MOCAP stride length and
stride duration

good average accuracy

[33] 2013 squatting motion MOCAP joint angles & segment
lengths

bad accuracy for segment
lengths,
good accuracy for joint angles

[56] 2013 straight 2.5 meter
walkway towards the
Kinect

MOCAP spatiotemporal
parameters

good agreement for gait speed,
step length and stride length;
poor agreement for swing
velocity, step time and stride
time

[87] 2013 Four different
balance tests

MOCAP distance between
joints and markers

adequate accuracy

[97] 2014 arbitrarily walking
around

MOCAP joint accuracy significant errors (≥ 5 cm per
joint)

[14] 2014 Straight walking
path with four
walking patterns

GAITRite step length & step
time

good accuracy for walking
sequences worse accuracy for
single steps

[209] 2014 treadmill walking MOCAP angular displacement,
stride timing and
tracking ability

good accuracy for stride
parameters; bad accuracy for
kinematic knee and hip
parameters; currently
unacceptable for clinical
measurements

[239] 2014 A jig with a
ball-and-socket joint
to simulate a leg was
placed in multiple
static postures

MOCAP joint angles similar accuracy to
marker-based system

Table 2.3: Chronological list of studies regarding Kinect v1 accuracy, based on a software
perspective (part 1)
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Method Year Experiment Setup Ground
truth

Parameters Conclusion

[305] 2014 three standing
balance tests

MOCAP average velocity of the
center of mass and
position variability

Calibration with linear
equations enables Kinect to
reliably evaluate standing
balance

[200] 2014 treadmill walking MOCAP absolute difference &
correlation coefficient

excellent correlation with
marker-based system

[222] 2015 free body
movements, e.g.
crossing arms,
kneeling down, etc.

RGB
sensor
system

motion tracking under
different conditions,
e.g. slow movement,
fast movement

good agreement with reference
system; not recommended for
applications with high precision
requirements

[298] 2015 treadmill walking MOCAP heel strike & toe-off
events

good accuracy for heel strike,
bad accuracy for toe-off timings

[9] 2015 treadmill walking opto-
electronic

heel-strike timing good accuracy

[162] 2015 virtual reality
rehabilitation
system

MOCAP
& electro-
magnetic

accuracy and jitter of
joints

three times the accuracy error
of the optical marker-based
solution, bad results regarding
jitter

[105] 2016 Two Kinects placed
on different sensor
heights
perpendicular
towards a 4.27
meter walkway

GAITRite step time and stride
time

slightly worse accuracy than
inertial sensors; no substantial
difference regarding the Kinect
sensor heights

[1] 2016 Five meter walkway MOCAP hip, knee and ankle
joint angle

effective tool for gait analysis

Table 2.4: Chronological list of studies regarding Kinect v1 accuracy, based on a software
perspective (part 2)

• Marker-based motion capture (MOCAP) systems are by far the most popular choice
as a ground truth. However, one approach also uses floor markers, which is the
choice for obtaining a spatial ground truth used in this work.

Table 2.5 shows the six discussed papers for Kinect v2 accuracy. As shown in the table,
conclusions are generally favorable with the exception of the accuracy of kinematic
parameters [173]. Only one paper (Staranowicz et al. [253]) uses both Kinect v1 and
Kinect v2 in their experiment and compared their performance for the computation of
spatiotemporal gait parameters. Kinect v2 performs better than Kinect v1 for both
estimated parameters.

It should be noted that, compared to Kinect v1, the accuracy of Kinect v2 seems
understudied as it received considerably less attention within the scientific community.
While a large amount of papers are found for the accuracy of Kinect (see Table 2.3 and
Table 2.4), only a few papers of those focus on Kinect v2 accuracy (see Table 2.5).

Several reviewed studies show that the Kinect is a viable tool for the extraction of
spatiotemporal gait parameters. Based on this observation, the measurement error for
the spatiotemporal parameters extracted in this work is expected to be reasonably low.
Moreover, when working with the Kinect SDK skeleton model, possible improvements
should be considered. These include applying a constraint for segment lengths or applying
a Kalman filter on the position of the joints. While other improvements have been tested,
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Method Year Experiment Setup Ground
truth

Parameters Conclusion

[93] 2015 Straight 10-meter
walkway with 4
Kinect v2 placed
every 2.5 meters

MOCAP spatiotemporal
parameters

excellent absolute accuracy

[173] 2015 comfortable and
fast paced walking
trials towards the
Kinect

MOCAP spatiotemporal and
kinematic

good accuracy for
spatiotemporal parameters,
bad accuracy for kinematic
parameters

[253] 2015 straight line
towards two
Kinects (1 Kinect
v1 & 1 Kinect v2)

stick
tape
floor
markers

stride width and
stride length

Kinect v2 outperformed
Kinect v1 for both stride
width (slightly) and stride
length (significantly)

[290] 2015 14 seated and 2
standing body
postures

MOCAP 8 Joint angles good accuracy for upper body
angles and knee angles; poor
accuracy for neck and hip
angles

[74] 2016 Straight walking
towards the Kinect
under different
walking conditions
(normal speed,
walking while
counting
backwards, fast
paced walking)

GAITRite spatiotemporal
parameters

valid clinical tool

[121] 2016 Timed Up & Go
test

MOCAP stride length, stride
time and walking
speed

Better accuracy for stride
length & stride time using the
depth stream and better
accuracy for walking speed
using the skeleton model

[79] 2017 treadmill walking MOCAP spatiotemporal and
kinematic

potential to be an excellent
clinical tool

Table 2.5: Chronological list of studies regarding Kinect v2 accuracy

e.g. using multiple Kinect sensors or using a sensor fusion approach, there is no clear
consensus about their potential error reductions. However, these potential improvements
are not evaluated within the scope of this work.

2.3 Gait recognition and gait analysis
Gait recognition refers to the identification of a person from its walking style [244].
Other research domains are covered in their respective surveys, e.g. recognition of
activities [217, 4], faces [127], gestures [205], hand pose estimation [80], etc.

While gait recognition is a different area of application than vision-based human gait
analysis, it can be seen that the pipeline of steps applied for both gait recognition and
gait analysis is very similar. The main difference between both applications is that
gait recognition applies a classifier on the extracted gait parameters (also called gait
signature), while this is not necessarily true for gait analysis.
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2.3.1 Overview: Past and Present

One of the earliest surveys of vision-based motion analysis was done by Aggarwal et
al. [3] in 1995. They describe methods of articulated and elastic non-rigid motion and
classify them as either approaches with or approaches without a priori shape models. This
classification relies on whether prior knowledge of the object shape is incorporated into
the motion analysis technique. For model-based approaches, they distinguish between
stick figure representation and volumetric models.

Cedras and Shah [46] identify two main steps for gait recognition: Creation of a motion
model based on the extracted motion information and matching the input with the
previously constructed model. They distinguish three types of motion information:
Region-based features, optical flow and trajectory-based features.

Aggarwal and Cai [2] review three categories: Body structure analysis, tracking and
activity recognition. Body structure analyis, which is highly similar to pose estimation, is
split into model-based and model-free. They further divide approaches based on the way
they represent the human body: As a Stick figure, a 2D contour or a 3D volume. Tracking
is divided into single-view and multi-view. Gavrila [91] distinguish 2D approaches from
3D approaches. For 2D, approaches are split depending on whether or not they use a
shape model.

The taxonomy of Moeslund and Granum [180, 181] groups approaches based on the
subsequent phases of human motion analyis: Initialization, tracking, pose estimation and
recognition. Pose estimation is further divided into model-free, indirect model-based and
direct model-based. Tracking, pose estimation and recognition highly overlap with the
three categories proposed by Aggarwal and Cai [2].

Wang et al. [285] use similar categories as [2, 180, 181]: Human detection, human
tracking and human behavior understanding. Human tracking is further subdivided into
model-based, region-based, active contour-based and feature-based.

Wang and Singh [284] review two phases of gait recognition: Tracking and motion
analysis. Both tracking and motion analysis are split into two categories: Model-based
and model-free (model-free tracking was called motion-based tracking).

Menier et al. [172] distinguish three categories for markerless motion tracking: Learning-
based, model-free and model-based methods. Wang et al. [283] review gait recognition
methods prior to 2011, focusing on gait image representation, feature dimensionality
reduction and gait classification. They distinguish gait image representations as either
model-based or model-free. Ji and Liu [128] review human detection, pose estimation
and behavior understanding, focusing on view-invariant approaches.

Lee et al. [154] consider model-based and model free gait recognition approaches. Both
categories are further divided into two subcategories: Model-based approaches are divided
based on the features used, either waveform derived features together with image features
or using time as an implicit feature by using the set of images directly. Model-free
approaches are subdivided into temporal correspondence and spatiotemporal motion
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Figure 2.9: A general structure for human body motion analyis and its recognition
applications.

summary. Temporal correspondence refers to comparing features between the test input
and existing patterns, e.g. spatial comparison on a frame by frame basis. Instead of
comparing individual frames, spatiotemporal motion summary refers to comparison of
summarized motion features, e.g. by utilizing statistical approaches.

Surveys generally distinguish based on the dimensionality of the approach [2, 91], based on
the phases of motion analysis [180, 181, 284] or based on the usage of shape models [216,
233, 154].

Due to the complexity of gait recognition, scientific papers specialize on a small part, e.g.
system initialization and camera calibration, segmentation and tracking, pose estimation,
feature extraction, classification and recognition, etc. For a viable gait recognition system,
all of these steps have to be considered. Figure 2.9 shows the general structure of a
motion analysis system, based on several motion analysis surveys [180, 284, 216].

2.3.2 Gait recognition

Two major types of gait recognition approaches are considered, model-based and model-
free.

Model-free gait recognition:

Model-free approaches analyze the motion of the subject or the shape made during the
walk [32]. They consist of the following steps: Subject detection, silhouette extraction,
feature extraction and classification [244]. Gait features are typically extracted from
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silhouette shapes, contours or the whole motion of the human body [283]. Different
types of features may be extracted, e.g. based on silhouette shape [286], silhouette width
vector [136], Fourier descriptors [187], optical flow [159], etc. or based on the dynamics
information such as temporal alignment [235, 297, 244].

The majority of gait recognition research is done on model-free approaches [154]. For
human identification, model-free approaches have the advantage of being generally faster
and less sensitive to the quality of the gait sequences [244]. Model-free approaches are
also called motion-based [286], feature-based [51] or appearance-based [297] approaches.

One specific example for a model-free gait features is gait energy image (GEI) [169], which
is simply the mean body silhouette in the sagittal plane over several gait cycles. GEI
encodes the continuous changes of pose during human walking as a moving probability
graph [151, 158]. Higher values within the GEI correspond to regions where the human
body appears frequently during the walking motion [158]. GEI is used as a gait feature
representation in several model-free gait recognition methods, e.g. Bashir et al. [19].
Other model-free approaches include encoding silhouettes, e.g. using central moments [38]
or Hu moments [229], or encoding contours, e.g. based on shape contexts [21].

Model-based gait recognition:

Model-based gait recognition approaches fit a structural model, a motion model or both to
the person in every frame of the walking sequence [32, 303]. A structural model describes
the topology of the human body, e.g. head, torso, knees and ankles. Parameters, e.g.
static parameters such as lengths of body parts or dynamic parameters such as stride
length, angular velocities or trajectories, are measured on the estimated body model. The
process of creating a body model is called pose estimation [180, 128]. A motion model
describes the kinematic or dynamic aspects of the motion of each body part [303]. In other
words, a motion model describes how the person moves [32]. An example for employing
a motion model-based approach is the work of Cunado et al. [62, 63]. They represented
the periodic thigh angular motion during gait as Fourier series (see Figure 2.10f).

Different types of structural models are used (see Figure 2.10a- 2.10e). The level of
details varies between just the subjects’ height to the combination of structural and
dynamic information of the subject [180]. Examples for simple structural models are a
five segment stick figure [196] or the aspect ratios between certain limbs [112]. Examples
for detailed models are the works of Gavrila and Davis [92] and Plänkers and Fua [214].
Gavrila and Davis use two components to represent the human body in 3D: A stick figure
to represent the skeletal structure and a representation of the surrounding flesh using
volumetric primitivies. Plänkers and Fua [214] use metaballs to represent the flesh of the
subject and a polygonal structure to represent the skin, in addition to a kinematic model
that represents the bone structure. The estimated pose is generally not very detailed,
typically only positions of major limbs or a rough description of the human body are
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(a) (b) (c)

(d) (e) (f)

Figure 2.10: Different body models used in model-based approaches: (a) 2D ribbon
model [2, 157]. (b) 2D Cardboard model [132]. (c) Stick figure or skeletal model [172].
(d) Volumetric model [2, 119]. (e) 3D surface model [45]. (f) Motion model [63].

used as a pose representation [180] Elaborate, surface-based shape models are instead
found for computer graphics applications, e.g. free-viewpoint video [45].

One of the earliest model-based gait recognition methods is the approach by Niyogi and
Adelson [196]. They create an XYT image cube from a walking sequence using time
as the third dimension. Then active contour snakes are used to detect spatio-temporal
patterns of a person’s walk in the XT plane. Applying this procedure to multiple levels
in the XT plane creates bounding contours of the walking person. A simple five-stick
body model is fitted to the motion of the bounding contours. Gait information is then
acquired from the periodic angle signals from upper and lower leg. A drawback of this
approach is its limitation to side view.

BenAbdelkader et al. [22] estimate two spatiotemporal parameters, stride length and
cadence, for human identification. Both parameters are estimated from the periodicity
of gait. They use the width of the walker’s bounding box as a function over time to
estimate the periodicity. Stride length is estimated from the periodicity and the total
distance traveled. Cadence is estimated from the periodicity and the total walking time.
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Model-based methods have the advantage of being invariant to viewing angle and
scale [283] and being more robust to occlusion and noise [244].

The described structure and taxonomies for gait recognition also applies to gait recognition
based on depth data. The gait analysis methods implemented in this work are based
on depth data and skeleton tracking. Both approaches are model-based. Gait analysis
based on skeleton model is clearly model-based, as it utilizes the ankle joint coordinates
provided by the pose estimation step. While the gait analysis approach based on depth
data does not estimate the whole human pose, it estimates the position of the feet and is
therefore also model-based. Hence the advantage of model-based methods also applies to
the gait analysis methods implemented in this work. Therefore it is expected that the
viewing angle does not influence the error of the extracted spatiotemporal parameters.

Pose Estimation Pose estimation estimates the configuration of the human body in
an image or image sequence [233].

3D model-based pose estimation is the most widely investigated approach for pose
estimation [128], due to the fact that 2D human models are only suitable for motion
parallel to the image plane [216].

Two types of pose estimation approaches are distinguished, model-based and model-
free [216, 128]. Some authors consider additional categories, e.g. Moeslund and
Granum [180] divide model-based into direct model use and indirect model use. Sarafianos
et al. [233] consider part-based pose estimation, a subcategory of model-based approaches,
and hybrid approaches, a combination of model-based and model-free approaches.

Poppe [216] divide model-based pose estimation into a modeling and an estimation phase.
The modeling phase constructs a function that returns the image likelihood, based on a
set of parameters describing body shape, body appearance and camera. The estimation
phase minimizes the error between projection of the human body model and image
observations. He distinguishes two types of body models, kinematic models and shape
models. Kinematic models describe the human body with segments linked by joints. Shape
models may use 2D patches, e.g. rectangular patches, volumetric shapes, e.g. spheres,
or surfaces to describe the human body. Model-free pose estimation approaches are
classified as learning-based and example-based. Learning-based approaches use training
data to learn a function from image space to pose space. Example-based approaches
store exemplars together with their pose description in a database. A pose estimate for
an input image is obtained by performing similarity search and interpolation of candidate
poses.

Poppe [216] describes five image descriptors used for pose estimation in model-based
approaches: Silhouettes and contours, edges, 3D reconstructions, motion and color and
texture. Perez-Sala et al. [206] consider similar descriptors as Poppe [216]: Silhouettes
and contours, intensity and color and texture, motion information, logical information and
depth information. From the list of available image descriptors, only 3D reconstruction
and depth information are relevant for this work.
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A scene can be reconstructed in 3D when stereometry, a depth sensor or multiple
cameras are used. Two common techniques for using multiple RGB cameras are volume
intersection and a voxel-based approach. For volume intersection [36, 42] the silhouette
of the subject is first extracted in multiple, calibrated camera views. Then the silhouettes
from each camera view get projected into a discretized volume space and a human
body model can be fitted to the resulting volume. Another possibility is a voxel-based
approach [53, 175, 260]. Stone and Skubic [260] extract silhouettes from each of two
RGB cameras. They compute 3D objects formed by the intersection of the projection of
a single connected component from each silhouette image per camera. Voxel objects are
classified as either human or non-human based on two features: Connected component
usage and position corrected volume. In order to allow long-term observation, they use
an update procedure based on the frame-to-frame motion estimated from the overlapping
blocks: Blocks which contain motion are prevented from updating, blocks which contain
non-human voxels update quickly and background pixels update slowly. They also detect
footfalls in order to estimate spatiotemporal gait parameters [257]. Voxels are projected
to the ground plane and then grouped into clusters, which represent footfalls.

Stereometry uses triangulation to calculate the depths of corresponding points of a
calibrated pair of cameras. This approach resembles human vision and is used for human
pose estimation, e.g. Haritaoglu et al. [112].

Depth information can be directly used for 3D reconstruction to obtain a point cloud
of the subject. Furthermore, several new depth-specific descriptors have been proposed
due to the popularity peak after the release of Microsoft Kinect, e.g. Gabor filters over
depth maps [220] or saliency of depth maps [212]. The additional depth information
facilitates human pose estimation. One approach of Schwarz et al. [241] uses a graph-
based representation of the 3D point cloud obtained from depth data to compute geodesic
distances between different body parts. The information is then combined with the
optical flow computed from two successive intensity image frames in order to estimate
a skeleton model of the subject. Pose estimation from depth frames is even feasible
from single depth images without considering temporal information, e.g. the approach
of Shotton et al. [245], which is used for the pose estimation of Kinect v1. Figure 2.11
illustrates the basic pipeline used for the Kinect v1 skeletal tracking approach.

In this work the pose estimation of the Kinect v2 SDK is utilized for gait analysis. It fits
a skeleton model with 25 joints on the subject within the field of view. It is important to
note that a number of alternative pose estimation methods exist and may perform better
in some scenarios, e.g. when sitting. For example, Cippitelli et al. [55] propose the use of
anthropometric models to locate the position of 6 joints in side view. Evaluation with a
marker based system shows lower errors of the trajectories compared to the corresponding
trajectories obtained with the Kinect SDK. However, in this work a view-invariant pose
estimation approach is required and therefore the Kinect v2 SDK is chosen.
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Figure 2.11: Basic pipeline of the Kinect v1 skeletal tracking system [146].

2.3.3 Gait recognition based on Kinect

Depth sensors such as Kinect have the advantage of providing a depth value for every
pixel of the scene [52], offering a 2.5D view of the scene. Depth information, restricted to
a single viewpoint, is referred to as 2.5D [264]. Depth imagery simplifies various computer
vision tasks, e.g. background subtraction or contour detection [52].

The Kinect v1 and the Kinect v2 sensors have been a popular choice for both gait
recognition and gait analysis based on depth information. The following scientific
publications show efforts that have been exerted for gait recognition based on Kinect.

Gabel et al. [88] compare the accuracy of gait parameters they extracted from the skeleton
model produced by the Kinect SDK with parameters extracted from wearable sensors.
They extract the direction of progress and the walking speed from the change in position
of the center of mass. Stride time and stride length are extracted based on a state
machine consisting of a HEEL, TOE and SWING state.

Preis et al. [218] extract thirteen biometric features consisting of 11 segment lengths,
step length and walking speed from the Kinect v1 skeletal data. Gianaria et al. [95] use
the Kinect skeleton model to extract a set of anthropometric features and gait features.
Their feature set consists of segment lengths, distances between joints, variances of joint
movements and two spatiotemporal gait parameters, gait speed and stride length. Stride
length is obtained as the distance between two stationary positions of a foot.

Ball et al. [15] recognize 4 individuals applying unsupervised clustering on skeleton data
obtained from the Kinect using K-means with an accuracy of 43.6%. Yang et al. [304]
recognize humans based on gait features, including a novel set of relative distance-based
features, using a Kinect v1 and KNN classification.

Jiang et al. [129] use the Kinect v1 skeleton model to obtain bone lengths as a static feature
and joint angles as a dynamic feature for human recognition. Nearest neighbor was used
as a classifier. Munsell et al. [188] perform action classification and human identification
based on the Kinect v1 skeleton model and SVM. They extract a high-dimensional feature
set consisting of joint coordinates, radial and elevation motion patterns and proportions
between joints.
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Milovanovic et al. [178] store 3D keypoints of the Kinect skeleton model of each frame of
a walking sequence in a single image row. The resulting image contains the whole joint
coordinate information transferred into a 2D image representation. Person identification
is done using content-based image retrieval techniques on the result images.

Sinha et al. [247] propose two types of gait features obtained from the Kinect skeleton
data. They use area features, which represent the area of upper or lower body parts, and
distance features, which represent the distances between the upper body centroid and
different joints of upper or lower limbs. An adaptive neural network is used for human
classification. They report an overall average accuracy of only 25.2%, which increased to
86% after they extract gait cycles manually.

Banerjee et al. [17] apply unsupervised clustering on shape descriptors such as bounding
box information and image moments to distinguish the gait from two elderly residents
and their visitors. Possibilistic C-Means clustering is used to identify the gait patterns
from the residents and temporary visitors, which are considered outliers.

Hofmann et al. [117] adapts Gait Energy Images (GEI) [169] to depth information from
a Kinect v1. In contrary to GEI obtained from color information, using the depth
information provided by the Kinect offers a more reliable way to obtain an accurate
silhouette. For their nearest-neighbor classification they calculate a feature descriptor
from the silhouette by applying histograms of oriented gradients (HOG) [65], averaging
the gradient histograms over a gait cycle and applying dimensionality reduction.

Liu et al. [160] propose a side-view gait recognition method using joint angles of the
Kinect v2 skeleton model. Dikovski et. al. [72] evaluate different feature sets obtained
from the skeletal data of a Kinect v1 for recognizing humans based on their gait. They
report lower body parts having better gait information than upper body parts and
features like height or joint distances performing better than angular features.

Andersson et al. [8] use 20 anthropometric and 60 gait features extracted from a Kinect
v1 to identify individuals with a KNN classifier. Gait features consist of joint angles and
spatiotemporal gait parameters such as stride length, gait cycle time and gait velocity.
Anthropometric features consist of 19 segment lengths and the subject’s height. They
observe that when used separately, anthropometric attributes are significantly more useful
than gait attributes.

Ahmed et al. [6] observe the spatio-temporal changes of relative angles among different
pairs of skeletal joints for Kinect v2 gait recognition.

The discussed Kinect-based gait recognition approaches are summarized in Table 2.6.
The majority of the approaches utilize the skeleton model provided by the Kinect SDK
pose estimation. Therefore the majority of gait recognition features are directly related
to the skeleton model, e.g. joint trajectories, joint angles or segment lengths.
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Article year sensor Depth
data/Skeleton
data

Gait recognition features

Ball et
al. [15]

2012 Kinect v1 skeleton data 18 lower limb joint angle features

Hofmann
et al. [117]

2012 Kinect v1 depth data depth-based gait energy image computed
from silhouette

Banerjee
et al. [17]

2012 Kinect v1 depth data bounding box information and image
moments computed from silhouette

Munsell et
al. [188]

2012 Kinect v1 skeleton data joint coordinates, radial motion patterns
and proportions between joints

Preis et
al. [218]

2012 Kinect v1 skeleton data segment lengths, step length and
walking speed

Gianaria
et al. [95]

2013 Kinect v1 skeleton data segment lengths, stride length, walking
speed, distances between several joints
and variance of joint movements

Sinha et
al. [247]

2013 Kinect v1 skeleton data area of upper or lower body parts and
distance between upper body centroid
and several limb joints

Milovanovic
et al. [178]

2013 Kinect v1 skeleton data joint coordinates stored in image

Dikovski
et. al. [72]

2014 Kinect v1 skeleton data 7 sets of features consisting of segment
lengths and joint angles

Jiang et
al. [129]

2014 Kinect v1 skeleton data segment lengths and joint angles

Ahmed et
al. [6]

2015 Kinect v2 skeleton data relative joint angle features

Andersson
et al. [8]

2015 Kinect v1 skeleton data gait features and anthropometric
attributes

Yang et
al. [304]

2016 Kinect v1 skeleton data relative coordinates of the skeleton joints

Liu et
al. [160]

2016 Kinect v2 skeleton data joint angle features from side-view

Table 2.6: Overview of Kinect-based gait recognition approaches.

2.3.4 Gait analysis for medical purposes

The field of health care based on depth imaging includes a large amount of applications,
e.g. rehabilitation, automatizing patient setup in diagnostic imaging, sleep monitoring,
assistive technology for blind or handicapped people [20]. Applying Kinect for physical
therapy and rehabilitation is covered in a survey by Mousavi and Khademi [186].

Researches deploy Kinect for gait analysis for the detection of gait pathologies such as
gait asymmetry, the detection of Parkinson’s disease, Multiple Sclerosis and general gait
abnormalities. The following papers show how Kinect can be utilized for this purpose.

Kastaniotis et al. [139] use the Kinect to record both healthy subjects and Multiple
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Sclerosis patients performing the 2-minute walk tests. They are able to estimate the walked
distance from the depth data (with minor errors) and distinguish between the healthy
subjects and the patients (88% correct classifications). They use Linear Discriminant
Analysis as a classifier on a view invariant representation of the skeleton information
provided by the Kinect SDK.

Prochazka et al. [219] distinguish between healthy, elderly subjects and individuals with
Parkinson’s disease based on mean stride lengths (normalized by leg lengths of the
subjects) obtained from the skeleton model of the Kinect v1. They use a flat stride length
threshold for the classification and achieved 91.7% accuracy.

Rocha et al. [224] use a Kinect v1 to discriminate between three Parkinson’s disease
subjects and three control subjects. They calculate 34 different gait parameters from
which the variance of the central shoulder velocity is chosen as it best distinguishes
between three states of Parkinson’s disease.

Parajuli et al. [201] propose a system distinguishing between normal and abnormal gaits
as well as sitting and walking. They record one dataset for each activity using a Kinect
v1 positioned at 1 meter height. They choose an SVM classifier and experimented with
different parameter inputs to improve the result. Tucker et al. [271] ensure medication
adherence among Parkinson’s disease patients by observing the gait patterns using a
Kinect v1. Their method makes use of the skeleton model obtained from four different
walking directions.

Dao et al. [66] use the skeleton data obtained from a Kinect v1 to classify between normal
and abnormal gait using a linear SVM. Bera et al. [25] inspect the gait pattern of elderly
people to detect pain within selective body joints. They apply several post-procession and
data reduction steps on the coordinates of the joints obtained from a Kinect v1 before
classifying the data using a linear SVM. Ndayikengurukiye and Mignotte [193] distinguish
normal gait from abnormal gait by visualizing gait as a high-frequency spectral energy
map and applying a number of classifiers.

Auvinet et al. [10] analyze the difference in body volume between normal and pathological
walk using a set of three Kinect v1 sensors. Each camera is calibrated before applying
volume reconstruction and volume analysis to obtain the gait parameters. Later Auvinet
et al. [11] use a Kinect v1 to record subjects walking on a treadmill for the measurement
of gait asymmetry. They convert frames of the depth stream into a point cloud and
reproject them onto an orthographic plane. Left-right differences are assessed by using
horizontal flipping on key depth maps, which are averaged, ideal representations of gait
cycles. Their method is validated using healthy subjects and subjects simulating the
gait pathology with an asymmetric sole. More recently, Auvinet et al. [12] propose a
gait asymmetry index based on the longitudinal spatial difference between lower-limb
movements during gait cycle, which they obtain using Kinect. Their asymmetry index
performs better at distinguishing asymmetrical gait compared to common spatiotemporal
gait parameters for healthy subjects.

Kaenchan et al. [135] use a system consisting of three Kinects v1 to analyze the upper-
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body posture and detect unbalanced gait. Nguyen et al. [194] present a pose estimation
method based on the Kinect v1 depth stream for motion asymmetry detection. Dolatabadi
et al. [73] distinguish between healthy and pathological gait using the trajectories of the
skeleton joints of the Kinect v2 as features for their classification algorithm.

Chaaraoui et al. [49] use a skeleton-based spatiotemporal feature called joint motion
history for abnormal gait detection. The feature is built by normalizing the skeletons,
tracking the motion over a segment of frames in order to combine spatial and temporal
information and applying dimensionality reduction. Both Kinect v1 and Kinect v2 are
used in their evaluation.

Clark et al. [58] examine the reliability of a gait analysis system for the assessment of
people who suffered from a stroke. They extract seven spatiotemporal gait parameters
using a Kinect v1 sensor and compare them with various clinical assessments, e.g. the
TUG test. Even though they report a slightly higher variance for the Kinect-derived
parameters compared to the clinical assessments, the overall scores are similar on all
measures. They conclude that Kinect-derived parameters are highly reliable, but also
very redundant.

Leightley et al. [156] recognize motions such as chair rise, tandem balance or walking 4
meters from Kinect v2 skeleton data. They first group skeletal joints into five groups,
one for each human extremity plus head and torso. Then a feature set is computed from
the five body groups based on Euler angles, Euclidean distance, body lean angle and
center-of-mass. A feature reduction step is applied before classifying the motion as one of
five motion categories. After the classification of the motion type, they also compare the
feature vector with mobility models generated from healthy subjects in order to classify
a person’s mobility as either good or poor.

Ye et al. [306] use the skeleton model of Kinect v2 for the classification of gait phases
between stroke patients and healthy subjects. They identify nine gait phases between two
consecutive heel strikes with the same foot. Gait patterns are characterized based on 12
proposed gait parameters, e.g. the ratio between the distance of the feet and the height
of the hips or the angle between knee and hip during thigh raise. A neural network based
on a non-linear autoregressive exogenous (NARX) model is used for the classification
step.

Table 2.7 shows a summary of the described medical gait analysis approaches. Since
human gait is related to a large number of medical conditions, the applications of the
reviewed approaches are manifold. However, the procedure of the approaches is similar.
Based on either Kinect depth or skeleton data a set of gait parameters is extracted and
optionally, the parameters are used for classification.

2.3.5 Frailty detection and fall risk assessment

A specific medical gait analysis application is the detection of frailty and fall risk. The
goal is to identify frail subjects or potential fallers and separate them from vigorous
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Article Year Application Sensor Depth
data/Skeleton
data

Gait features

Auvinet et
al. [10]

2011 Gait
asymme-
try

3 Kinect
v1

depth data Gait frequency obtained by applying
Fourier transformation on the centroid
movement

Auvinet et
al. [11]

2012 Gait
asymme-
try

Kinect v1 depth data Gait asymmetry index computed from
key depth maps

Parajuli et.
al [201]

2012 Abnormal
gait

Kinect v1 skeleton data Skeleton joint coordinates

Gabel et
al. [88]

2012 Gait
analysis

Kinect v1 skeleton data Stride duration and arm angular
velocities

Kaenchan
et al. [135]

2013 Abnormal
body
posture

multiple
Kinect v1

skeleton data Upper-body tilt

Kastaniotis
et al. [139]

2014 Multiple
Sclerosis
assess-
ment

Kinect v1 skeleton data Euler angles of selected limbs

Rocha et
al. [224]

2014 Parkinson’s
disease as-
sessment

Kinect v1 skeleton data 34 gait parameters, e.g. central shoulder
velocity variance

Chaaraoui
et al. [49]

2015 Abnormal
gait

Kinect v1
and
Kinect v2

skeleton data Joint motion history computed from
several skeleton frames

Auvinet et
al. [12]

2015 Gait
asymme-
try

Kinect v1 depth data Gait asymmetry index computed from
comparing the spatial position of the left
and the right legs at their respective step
cycle

Prochazka
et al. [219]

2015 Abnormal
gait

Kinect v1 skeleton data Normalized mean stride lengths

Dao et
al. [66]

2015 Abnormal
gait

Kinect v1 skeleton data Gait features based on hip progression
line, foot steps and X-rotation angle
extracted from a Biovision Hierarchy file

Bera et
al. [25]

2015 Joint pain
detection

Kinect v1 skeleton data Skeleton joint velocities

Tucker et
al. [271]

2015 Medication
adherence

Kinect v1 skeleton data Large (1890-dimensional) feature set
consisting of joint coordinates, joint
velocities, joint accelerations and ratios
between joints

Clark et
al. [58]

2015 Stroke
patient as-
sessment

Kinect v1 skeleton data 7 spatiotemporal gait parameters, e.g.
mean gait speed, step length, step length
asymmetry, etc.

Leightley
et al. [156]

2016 Abnormal
gait

Kinect v2 skeleton data Feature set from 5 body groups based on
Euler angles, Euclidean distance, body
lean angle and center-of-mass

Ndayikengurukiye
and
Mignotte [193]

2016 Abnormal
gait

Kinect v1 depth data high-frequency spectral energy maps

Ye et
al. [306]

2017 Stroke
patient
detection

Kinect v2 skeleton data 12 gait parameters, e.g. ratio of foot
distance and hip height, angle between
knee and hip during thigh raise, etc.

Table 2.7: Summary of Kinect-based gait analysis approaches for gait analysis in a
medical context.
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walkers. An example for a fall prevention approach based on physical activity is the work
of Planinc and Kampel [213]. They monitor the activity of elderly subjects based on alert
lines, which describe the subject’s inactivity during one minute intervals. If a significant
amount of intervals of an alert line are outside the range µ± 2σ (µ denotes the mean and
σ denotes the standard deviation of previous alert lines), a change in long-term mobility
is detected and an alarm is generated. Fall prevention technologies are reviewed in a
survey by Hamm et al. [110]. The authors focus on prevention and intervention systems
regarding pre-fall prevention, post-fall prevention, fall injury prevention and cross-fall
prevention. The following papers describe existing work on frailty detection and fall risk
assessment based on gait analysis.

Phillips et al. [210] analyze the association of changes in in-home gait speed and stride
length immediately before a fall with occurring fall events. The raw depth data of a
Kinect sensor, which is located on a small shelf near the ceiling, is used to detect walks.
A logistic regression model is used to predict falls based on gait parameters obtained from
the walks within 30 days before a fall as well as random 30-day windows for residents
with no falls. They observe a significant association of both gait speed and stride length
changes with the occurrence of falls. Their model estimates, that a cumulative decline in
gait speed of 2.54cm/s within 7 days in in-home gait speed increases the odds to undergo
a fall within the next 3 weeks by 4.2 compared to a resident falling with no observed gait
changes. For stride length they observe that a decrease of 2.5 cm over 7 days increased
the odds of falling by 6.8.

Gianaria et al. [96] extract frailty-related gait parameters from the walking phase of a
TUG test in front of a Kinect v2 sensor. The spatiotemporal and postural parameters are
TUG time, covered distance, walking time, walking speed, swing time, double support
time and torso inclination angle. Spatiotemporal parameters are estimated from the
skeleton data. Their algorithm assigns each foot one of two states, depending if the foot
is moving or standing still, based on a movement threshold. One of the drawbacks of
this algorithm is that the Kinect pose estimation does not register the movement of the
foot when it’s occluded by the other foot. Torso inclination angle is estimated as the
angle between walking direction and spine joints. Excessively tilted forward postures are
related to increased fall risk. The obtained parameters are compared with TUG time
and Tillburg Frailty Indicator score [103] for correlations.

Dolatabadi et al. [75] track gait parameters of an elderly subject with hip replacement
surgery on one side with a Kinect v1. The spatiotemporal gait parameters step length,
stance time per side, stride length and cadence are extracted over the course of 9 weeks.
Swing and stance phases per foot are detected based on the movement of the ankle joint.
Skeletal data with a center of mass outside of the Kinect view range is discarded. The
authors find significantly smaller step lengths before the operation on the operated side
and no changes on the non-operated side. They also notice an improvement in gait
characteristics within the first 6 weeks after the operation.

Stone and Skubic [255] estimate walking speed, stride time and stride length for in-home
fall risk assessment. They use background subtraction to create the subject’s silhouettes
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on each frame and use it to obtain a point cloud of the subject. Both feet are extracted
from the point cloud using a fixed height threshold. The remaining feet point cloud is
projected onto the ground and a correlation coefficient is computed for each frame. The
resulting correlation coefficient signal is used to extract footsteps. Gait sequences, which
have an erroneous step sequence, are filtered out and do not affect their evaluation. Later,
Stone et al. [261] propose a system for automated health alerts in case of sudden changes
of in-home gait parameters. Walking speed, stride length and stride time are continuously
monitored based on their previously proposed approach. Alerts are generated when
the measured parameters are outside of a threshold of their standard deviation. Their
method is evaluated based on three retrospective case studies. More recently, Stone
et al. [256] use average in-home gait speed as a metric for fall risk assessment. They
evaluate the metric based on how well it can predict the score of a set of traditional
clinical assessments with average gait speed performing the best.

Dubois and Charpillet [76] develop a fall risk assessment system based on the depth
stream of a Kinect v1. First, a background subtraction algorithm is applied using the
difference between the running average depth and the current depth values. Then the
center of mass is calculated as the average of the remaining foreground pixels. The
maxima of the vertical displacement of the center of mass during the walk are then used
to obtain the positions of the feet during stance phases. The spatiotemporal parameters
step length, step duration and walking speed are extracted based on the footfall positions
and timings. For their evaluation they use four different walking setups: Normal walking
perpendicular to the camera, small step walking perpendicular to the camera, walking
with long skirts perpendicular to the camera and normal walking towards the camera.
Comparison with an electronic walkway (GAITRite) as a reference system shows small
errors for all walking setups except for walking towards the camera, where the error is
significantly larger.

Table 2.8 shows a summary of the described papers for frailty detection and fall risk
assessment based on Kinect-based gait analysis. Again, the functional principle resembles
previous approaches on gait recognition and medical gait analysis. However, a few
observations can be made regarding the differences. First, unlike previously discussed
approaches on gait recognition and medical gait analysis, the majority of the approaches
are based on the raw depth data instead of skeleton data. One reason is that the set of
joints offered by the skeleton data is not needed for the extraction of basic spatiotemporal
parameters such as gait speed, step length or step time. From the discussed approaches,
only Gianaria et al. [96] utilize skeleton data since they extracted additional parameters
regarding gait and posture such as swing time, double support time or torso inclination
angle.

2.3.6 Gait analysis summary: Relation to this thesis

In this subsection, gait recognition and medical gait analysis approaches are reviewed. A
general structure for gait recognition approaches is presented based on previous surveys
regarding gait recognition based on color information. By discussing a large number of
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Article Year Application Sensor Depth
data/Skeleton
data

Gait features

Stone and
Sku-
bic [255]

2011 Fall risk
assess-
ment

Kinect v1 depth data gait speed, stride length, stride time

Dolatabadi
et al. [75]

2013 Gait mon-
itoring

Kinect v1 skeleton data step length, stance time per side, stride
length and cadence

Stone et
al. [261]

2014 Health
alerts

Kinect v1 depth data gait speed, stride length and stride time

Dubois and
Charpil-
let [76]

2014 Fall risk
assess-
ment

Kinect v1 depth data step length, step time and walking speed

Stone et
al. [256]

2015 Fall risk
assess-
ment

Kinect v1 depth data average gait speed

Gianaria et
al. [96]

2016 Frailty as-
sessment

Kinect v2 skeleton data TUG time, covered distance, walking
time, walking speed, swing time, double
support time and torso inclination angle

Phillips et
al. [210]

2016 Fall risk
assess-
ment

Kinect depth data gait speed and stride length

Table 2.8: Summary of frailty detection and fall risk assessment through Kinect-based
gait analysis.

Kinect-based approaches it is demonstrated, that the presented general structure for gait
recognition also applies to Kinect-based gait recognition and gait analysis.

Moreover, approaches in gait recognition, medical gait analysis and gait-based frailty
detection and fall risk assessment are reviewed. The majority of gait recognition and
medical gait analysis approaches use skeleton data over depth data. Furthermore, both
gait recognition and medical gait analysis commonly apply a classifier on the extracted
gait parameters. However, this is not the case for frailty detection or fall risk assessment
approaches. Due to the lack of a definition for frailty, there is no ground truth about the
frailty status of subjects and therefore classification is ambiguous.

2.4 TUG analysis based on Kinect

Automatizing TUG is approached based on various sensor modalities, e.g. color cam-
eras [29, 248], using wearable IMUs [116] or based on ambient sensors [85]. More
information for automatizing TUG tests based on different sensor technologies can be
found in the survey of Sprint et al. [251].

TUG automatization based on depth sensors has the advantage that TUG can be recorded
unobtrusive, no additional equipment is required and there is no need for subjects to use
body-worn sensors while performing the TUG test. The following results are deemed
relevant based on a literature search for TUG automatization based on Kinect.

Vernon et al. [281] investigate the potential of Kinect v1 as a medical instrument for
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TUG test analysis. The Kinect sensor is placed off-center of the walking area, facing the
armchair. Due to their camera setup, part of the walking phase and the turning phase
are not in the sensor field of view. Their method recognizes the following seven TUG
events: Standing, first step, first stride, both times the participant was 2 m from the
camera and the final sitting position. They identify start and end as the beginning and
end of trunk joint movement. The standing event is found when the shoulder center joint
reached peak height. First step and first stride are detected from ankle velocity. Based
on these seven TUG events, a set of seven TUG parameters is extracted: Peak trunk
flexion angle and peak trunk angular velocity during standing, first step length, first
stride length, gait speed and turn time. Due to the lack of vision during the turn event,
they roughly estimate turn time as the time between reaching the point 2 meters from
the camera twice. Thirty individuals with stroke participate in their evaluation. Test-rest
reliability is assessed using intraclass correlation coefficient, redundancy using Spearman’s
correlation and score prediction using multiple regression. Except trunk flexion angle,
all of their Kinect-based TUG parameters are considered reliable. Most parameters are
deemed redundant with TUG time, except first step length and trunk flexion angle. They
conclude that utilizing the Kinect for TUG analysis provides additional information that
may be predictive for changes in performance over time. The accuracy of the detected
TUG event is not assessed in their work.

Kitsunezaki et al. [145] use Kinect to automatically measure TUG time and time for
the 10 meter walk test. Their method measures TUG time based on the trajectories
of the head and hip joint. Additionally, a cubic space is defined around the chair and
conclusions are made about the pose and position of the subject based on the number
of joints inside the cubic space. They experiment with three different positions for the
Kinect sensor: in front of the chair, at the side of the chair and above the chair, looking
down. Each position has some errors, but the position in front of the chair is chosen as the
best. Their approach is evaluated using the stopwatch time from a physical rehabilitation
expert as a gold standard. The average time difference between the stopwatch and their
system is 0.33 seconds. Healthy adults are used for their evaluation.

Lohmann et al. [164] propose a TUG automatization method, sTUG, based on the
skeleton data of two Kinect v1. Two Kinects are used to make sure the whole TUG area
is covered. The two skeleton models are not merged, instead they simply pick either of
the two skeleton models depending on the position of the subject. They use the trajectory
of the shoulder center joint and its first and second derivative for the detection of TUG
events. In addition to TUG time, the following 10 events are detected: Start moving, end
uprising, start walking, start rotating, max turn, end rotating, start accelerating, end
accelerating, end moving and start lowering. Their method is evaluated with 5 elderly
and 4 healthy participants using a stopwatch and aTUG [85], an ambient sensor based
TUG automatization approach. Detected TUG events match well with those from both
aTUG and the manual video annotation. TUG time between their method and aTug
differs consistently with approximately 1.5s difference. While aTug detects the start of
the TUG test after the subject lifts from the chair, sTUG detects the forward motion
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before uprising as the start.

Kargar et al. [138] analyze TUG test performance using a Kinect v1 placed at a height
of 120 cm in front of the 12 elderly participants. They extract three features from the
skeletal data: The total number of steps taken during the TUG test, the average duration
of each step and the turn duration. For their TUG analysis, they recognize three different
phases: Seated phase, walking phase, and turning phase. Seated phase is detected based
on the distance between the hip joint and the camera. As soon as the person starts
walking, the distance decreases and only reaches its constant maximum again after sitting
down. Turning phase is estimated based on the absolute difference of the two elbow
joints in x-direction (left and right from the sensor). After turning starts, the difference
in x-direction decreases and reaches its minimum in the middle of turning. All remaining
frames between seated phase and turning phase are considered walking phase. For their
evaluation, a geriatric expert assesses the videos and categorizes subjects into potential
fallers and non-fallers. The three extracted features are used to discriminate potential
fallers from non-fallers using Bag of Words and SVM. The accuracy of the extracted
TUG phases is not evaluated.

Cippitelli et al. [54] apply a sensor fusion approach to combine data from the skeleton
model of Kinect v1 and an inertial measurement unit (IMU). They use their time
synchronization method on the extraction of parameters of the TUG test. Data from
Kinect is utilized for obtaining step lengths and cadence, the duration of the sit-to-stand
(STS) phase, the duration of the back-to-sit (BTS) phase, the duration of the turning
phase and the total tug time. Step length and cadence are estimated from peaks of the
distance between both feet joints. The STS phase is detected based on the assumption
that standing up requires to lean forward to put the center of mass over the feet. The
movement of leaning forward is detected as a minimum followed by a maximum from the
y-coordinate (height) of the head joint trajectory. The BTS phase is identified analogue
by looking for a maximum followed by minimum followed by returning to default height.
Turning phase is identified from shoulders and head joints. An orientation vector is
computed from these three points and the angle between the orientation vector and the
reference direction is used to estimate the beginning and the end of the turning phase.
For their evaluation three trials are conducted by 20 healthy subjects and the mean and
standard deviation for all obtained parameters were computed. However, the accuracy of
their approach is not evaluated. Their recorded dataset is available online 11.

Table 2.9 shows a summary of the described TUG automatization approaches. It is
observed that none of the previous approaches use Kinect v2 as a depth sensor and
only one out of five approaches evaluate the error of individual TUG events. 3 out of 5
papers evaluate the results with a stopwatch and only one approach uses manual video
annotation as a ground truth. All approaches use the skeleton model of the Kinect
pose estimation. Four out of five approaches use the trajectories of specific joints, the
distance between joints or the distance between a joint and the sensor as a feature for

11http://www.tlc.dii.univpm.it/blog/databases4kinect#IDTUG, Accessed 2017-07-12
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2.4. TUG analysis based on Kinect

Article Participants Data TUG events Feature Study evaluation

Lohmann
et al. [164]

4 healthy,
5 elderly

Kinect v1
skeleton

TUG time, 10
TUG events

velocity and
acceleration of
shoulder center
joint; distance of
left and right
shoulder joints

mean difference of
detected TUG time
was -0.12 compared
to -0.10 for
stopwatch and 1.36
for aTUG [85]

Kitsunezaki
et al. [145]

6 healthy
adults

Kinect v1
skeleton

start and end
(TUG time)

trajectories of
head and hip;
cubic box
around chair

average TUG time
error of 0.33 seconds
compared to
stopwatch

Kargar et
al. [138]

12 elderly
partici-
pants

Kinect v1
skeleton

average step
number, step
duration and
turn duration

distance
between sensor
and hip joint;
distance of
elbow joints

classification of
fallers and non-fallers

Cippitelli
et al. [54]

20
healthy
subjects

Kinect v1
skeleton
and IMU

TUG time and
duration for
STS, turning
and BTS

trajectories of
shoulder and
head joints

mean and standard
deviation of TUG
events; dataset
available online

Vernon et
al. [281]

30 elderly
with
stroke

Kinect v1
skeleton

7 TUG events trajectory of
trunk joint and
shoulder center
joint

Spearman correlation
of TUG time assessed
with Kinect and
stopwatch was 0.99;
TUG parameters
redundant; error of
single TUG events
not assessed

Table 2.9: Summary of TUG analysis approaches based on Kinect.

the extraction of TUG parameters. While Lohmann et al. [164] use the distance between
two joints for the detection of turn events, all other TUG parameters are obtained by
using the velocity or the acceleration of the shoulder center joint.
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CHAPTER 3
Methodology

This chapter describes the proposed approaches for gait analysis and TUG automatization.
The first part of this chapter describes the techniques used to extract a gait signal from
human walking and how spatiotemporal parameters are estimated from the gait signal
and the person’s centroid. This process is referred to as gait analysis. In this work, gait
analysis is approached based on both skeleton and depth data obtained from a Kinect v2.
The approaches are chosen from the review of related works from the previous section.
The gait analysis approach based on depth data is based on the work of Stone et al. [255]
and Hotrabhavananda et al. [121]. The approach based on skeleton data is based on the
work of Clark et al. [56] and Gianaria et al. [96]. Adaptions are made due to differences
in the dataset. The exact methodology used is described as follows.

The second part of this chapter describes the proposed approach for automatically
analyzing the TUG test based on Kinect v2. Both skeleton and depth data of Kinect
v2 are utilized for estimating the time needed to complete the TUG test and for the
detection of six TUG phases. The proposed approach for depth data and skeleton data is
based on sTUG, proposed by Lohmann et al. [164] and discussed previously in the related
works. The proposed approach differs from sTUG, since the center shoulder velocity is
used instead of the center shoulder acceleration. The exact methodology for the TUG
automatization approach is described in this chapter.

For both the gait analysis and the TUG automatization approach, an assumption is
made that there is only one person in the scene at any time and that the background
environment is stationary. In order to be deployed in a dynamic real-world environment
a robust multiple-person tracking approach and an update procedure for handling a
dynamic setting are required.
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3. Methodology

(a) Examples for depth frames of different walk-
ing sequences.

(b) Depth frame samples depicting older people
executing a TUG test.

3.1 Gait Analysis

The goal of the gait analysis approach is to extract a set of spatiotemporal parameters.
It is shown in the related works that the extraction of spatiotemporal parameters of
a person’s walk allows to draw conclusions about the person’s health status. In this
work, gait speed, step length, stride length, step time and stride time are estimated from
walking sequences recorded with a depth sensor. The 5 spatiotemporal parameters are
extracted from both Kinect depth data and skeleton data. The approach based on depth
data is described first.

3.1.1 Depth data

Figure 3.1a and 3.1b show examples for depth data frames in two different scenes. Darker
pixels represent image points close to the sensor and lighter pixels represent image points
farther away from the depth sensor. White pixels represent image points with no depth
measurement. These pixels occur commonly in case of shiny object materials or around
the border of the image.

Background model estimation

In related works, a background model is established from a set of background training
images captured prior to recording the subject [255, 55, 121]. In the cited works, outliers
from the background model are considered as foreground. However, no prior background
frames are recorded for the datasets acquired in this work. Therefore the approaches
used in the cited works are not valid for the recorded dataset and a different approach is
required to obtain a background model.

Related work Piccardi [211] reviews several background subtraction methods including
Running Gaussian Average, Temporal Median Filter, Mixture of Gaussians, Kernel density
estimation, etc. Only single-valued background models are considered as there are no
outdoor scenes which have constant background motion from wind, rain, etc. Single-
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3.1. Gait Analysis

valued background extraction techniques such as running Gaussian average (RGA) and
temporal median filter (TMF) provide sufficient accuracy for the purpose of this work.
Their disadvantage is that they perform poorly in outdoor scenes with constant motion
and they do not consider spatial correlations.

Comparing RGA and TMF Modified versions of running Gaussian average (RGA)
and temporal median filter (TMF) are implemented. Typically, these methods update
their background model based on the last n frames [211]. However, this is not suitable for
short image sequences that require successful background subtraction starting with the
first frame. Instead the whole image sequence Ω consisting of N images Ik, k ∈ {1, ..., N}
is considered for the computation of the background model and the background model is
not updated for the successive frames. While this substantially increases computational
effort and memory requirements, it allows utilization of later frames for the silhouette
extraction of earlier frames. For longer image sequences, the image sequence Ω can
be subsampled to decrease memory requirements, while still obtaining an adequate
background model [61].

Running Gaussian Average Standard RGA computes µt using α as a weight that
controls update speed [296].

µt = αIt + (1− α)µt−1 (3.1)

In the modified RGA µΩ and σΩ are simply the mean and standard deviation in the
temporal dimension with each frame of Ω being weighed equally. Furthermore, the binary
foreground image Fk is obtained from input image Ik by the inequality

Fk = µΩ − Ik > k;σΩ (3.2)

The term |Ik − µΩ| in the original RGA is replaced with µΩ − Ik as pixels are only
considered foreground if they are closer to the camera than the background. Pixel with
no depth measurement (see section 3.1.1) are ignored for the calculation of µΩ and σΩ
and excluded for the calculation of the normalization factor 1

N . If the number of pixels
with no depth measurement in the temporal dimension exceedes the threshold 3N

4 , this
particular pixel of µΩ is treated as ∞.

Temporal Median Filter Lo and Velastin [163] propose the idea of using the last
n frames as a background model. Similar to the modified RGA, a modified TMF is
applied to the whole image sequence Ω. Pixels with no measured depth are treated as
∞ for the purpose of median calculation. The calculation of the median is adapted to
avoid artifacts caused by the mean of a scalar depth value and pixels with no depth
measurements, which are treated as ∞ (see Figure 3.3).
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3. Methodology

(a) Foreground extraction based on running Gaussian
average. From left to right: Input frame Ik, mean µΩ,
standard deviation σΩ, foreground Fk

(b) Foreground extraction based on tem-
poral median filter. Left to right: Input
image Ik, median x̃Ω, foreground Fk

Figure 3.2: Comparison of running Gaussian average and temporal median filter for
foreground extraction in regions where the subjects stays stationary over a significant
amount of frames.

x̃(i, j) =

xN+1
2

(i, j), N uneven
xN

2
(i, j), N even

(3.3)

x̃(i, j) represents the median of the set of corresponding pixels xk(i, j), k ∈ {1, ..., N},
which are sorted by their depth value. Foreground Fk of an input frame Ik is extracted
by the inequality

Fk = x̃Ω − Ik > T (3.4)

The depth threshold T = 0.2 m is used in this work. No-measured depth pixels (∞
values) are removed in a later step (see section 3.1.1).

Temporal median filter is chosen over running Gaussian average as it provides a more
robust silhouette in regions where the subjects remains for a relatively long time. This
is especially critical for image sequences of the TUG test, as elderly subjects spend a
significant amount of time near the chair for standing up and sitting down. Figure 3.2
shows a few examples where RGA shows ghosting artifacts in the area near the chair but
TMF does not. However, it should be noted that TMF shows the same ghost artifacts if
the subjects spends 50% or more time in an area.

Depth hole filling

In order to obtain a robust silhouette of the subject, pixels on the background model x̃Ω
with no measured depth value are filled. Since pixels with no depth measurement are
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3.1. Gait Analysis

(a) Artifacts occur when the amount of pix-
els with successful depth measurement and no
depth measurement (white pixels) is equal in
the temporal dimension.

(b) Estimated background model using the
adapted median formula of equation 3.3.

Figure 3.3: Final estimated background model using TMF with standard median formula
(left image) and adapted median formula (right image).

treated as ∞ in the TMF background model x̃Ω, any measured depth value for these
pixels would be closer to the sensor and therefore be detected as foreground. Moreover,
all pixels with no measured depth value that separate the subject’s limbs are filled on
the input frame Ik in order to avoid separated limbs.

Related work Signal filtering is a preprocessing step which can be used not just for
removing noise but also for recovering missing depth information (holes) [111, 28]. Naive
approaches use existing image filters used for monochromatic images such as Gaussian
filters, average filters or median filters. While they are suitable to remove noise, they are
not ideal for filling depth holes. Another drawback is that they only work for regions
where the underlying depth data is in favor of the filter [111]. More sophisticated methods
can be used in order to remove holes from a sequences of depth images.

Berdnikov and Vatolin [26] identify two characteristics of holes in depth data and their
algorithm picks a filling scheme accordingly. While it works better than the naive
approach, it does not consider additional information such as temporal information and
depth and color values. Camplani and Saglado [44] apply a joint bilateral filter to fill
holes in depth images. A bilateral filter has the advantage of preserving edges, due
to weighing neighboring pixels based on both spatial and depth value distance. More
specific, they use temporal information to iteratively a depth map model Dm, which is
a consistent depth map of the scene. The consistency of each pixel in the depth map
is stored in a separate consistency map Cmap. Missing pixels in a new depth frame
are replaced by their corresponding pixel in Dm if they are considered reliable enough
based on its corresponding value in Cmap. Then a joint bilateral filter is applied on the
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3. Methodology

Figure 3.4: Left image: Single frame Ik. Center image: median x̃Ω. Right image: Final
background model x̃′Ω after applying hole-filling.

depth frame using both the pixel similarity in Dm and the similarity in the intensity
domain. Missing pixels in Dm are filled over time based on reliable neighborhood pixels
or corresponding non-missing pixels from new depth frames.

Several papers [176, 238, 221] consider the relation of RGB image and depth image
and apply a sensor fusion approach for filling depth holes. Milani and Calvagno [176]
detect segments in the RGB data and interpolated missing depth values based on the
assumption that the transition of depth values is smooth within each segment. Schmeing
and Jiang [238] improve the depth image using a superpixel segmentation algorithm
to replace corrupted edges with correct ones. Qi et al. [221] adopt an RGB inpainting
approach based on information fusion for hole filling in depth maps. Since depth images
lack the texture information to detect object boundaries, boundaries are detected on the
corresponding color image and their position is projected onto the depth image.

Hole-filling of the background model The discussed techniques also have their
disadvantages. For example, sensor fusion techniques need a secondary data input, e.g.
RGB or stereo, which is not available for the recorded data. The joint bilateral filtering
approach [44] does not guarantee to fill all depth holes in a limited number of frames.
Especially in corner regions their depth hole filling technique proceeds slowly. In this
work Euclidean distance is used to replace all no-measured depth pixel in x̃Ω with their
nearest non-hole pixel. Figure 3.4 shows two examples of hole filling applied on x̃Ω to
obtain the final background model x̃′Ω.

56



3.1. Gait Analysis

Figure 3.5: Extracting silhouette Sk from frame Ik. From left to right: Original frame
Ik, median filtered frame Ĩk, difference x̃′Ω − Ĩk, thresholding x̃′Ω − Ĩk > T , resulting
silhouette Sk.

Silhouette Extraction

The depth holes in areas where body limbs, e.g. legs and trunk, are separated by a
line of no-measured depth pixels, are filled by applying a 2D median filter with a 7× 7
neighborhood. Depth hole filling in the remaining area is not necessary as only the
silhouette is used for further processing. After applying the median filter, foreground
extraction is applied based on the modified TMF of equation 3.4. The silhouette of
the subject is then obtained as the blob with the largest number of foreground pixels.
Identifying the largest blob as the main subject is a simple, but effective way to remove
small blobs caused by noise. Extracting the biggest blob as the foreground object is
applied in previous works, e.g. [150, 14].

Algorithm 3.1 shows pseudo code for the extraction of silhouettes Sk, k ∈ {1, ..., N} from
image sequence Ω. This algorithm works under the assumption that there is exactly one
person in front of the depth camera during the whole video sequence. This is a reasonable
assumption, which is applied in previous works, e.g. [150, 255]. However, extending this
approach to detect silhouettes of multiple subjects is possible. Figure 3.5 shows examples
of extracted silhouettes using algorithm 3.1.

Algorithm 3.1: Pseudo code for the extraction of silhouettes Sk from the image
sequence Ik, k ∈ {1, ..., N}.
Input: A sequence of depth images I1, I2, .., IN

Output: Binary silhouettes S1, S2, ..., SN

1 Estimate background median x̃Ω based on TMF;
2 Remove depth holes from background median x̃Ω to obtain final background model

x̃′Ω;
3 for k ← 1 to N do
4 Apply median filter to frame Ik to remove noise and minor holes between limbs;
5 Extract foreground Fk from frame Ik and background model x̃′Ω;
6 Extract largest blob from Fk as the silhouette of the subject;
7 end
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3. Methodology

Figure 3.6: Left image: Original input frame. Right image: Resulting point cloud

Point cloud conversion

Since the silhouette does not have any 3D information of the subject, it has to be
converted into a point cloud in order to determine the position and the walking posture.
The point cloud is first obtained in camera coordinates and then transformed into world
coordinates.

Transformation to camera coordinates Transforming the depth image Ik from
image coordinates to camera coordinates creates a 2.5-D point cloud representation of
the scene. Coordinates can be transformed from image coordinates (u, v) to camera
coordinates (Xc, Yc, Zc) using intrinsic camera parameters [83].

XC

YC

ZC

 =


(u−Ox) Iz

fx

(v−Oy) Iz

fy

Iz

 (3.5)

Ox, Oy denote the coordinates of the principal point. fx, fy denote the focal length in x
and y direction and Iz is the depth value of pixel (u, v). Pc = {XC , YC , ZC} denotes the
corresponding point in camera coordinates. Figure 3.6 shows the point cloud conversion
of a depth frame based on equation 3.5.

Transformation to world coordinates A transformation from camera coordinates
to world coordinates is obtained by [83]

Pw =

R t

0ᵀ 1

Pc (3.6)
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3.1. Gait Analysis

Pw and Pc are points of homogeneous coordinates in world coordinates (Pw) and camera
coordinates (Pc). R denotes the rotation matrix from camera to world coordinates and t
is a translation vector. R and t have been estimated based on the position and inclination
of the floor plane. The RANSAC variant MSAC [270] is used to estimate the floor plane
Pfloor from the point cloud obtained from the intrinsic parameter transformation step.
Given the estimated floor plane Pfloor, R can be directly computed as

R = I + [~v]× + [~v]2×
1− ~a ·~b
‖~v‖2

(3.7)

where I is the 3× 3 identity matrix, ~a is the normal vector of the estimated floor plane
in camera coordinates, ~b = (0, 1, 0)ᵀ is the normal vector of the floor plane in world
coordinates, v = ~a×~b and [v]× is the skew-symmetric cross-product matrix of ~v, which
is defined as

[~v]× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0


Equation 3.7 is valid for all unit vectors ~a,~b except cos(∠(~a,~b)) = −1. The case that ~a
and ~b point in opposite directions is avoided by always picking the floor plane normal
vector ~a with a positive y-coordinate (vertical coordinate a2 > 0).

Alternatively, R can also be obtained from the three Euler angles (φ, θ, ψ) of the set of
extrinsic coordinates, e.g. by φ = arccos a2, θ = 0 and ψ = arcsin a1 with ~a = (a1, a2, a3)
being the normal vector of the estimated floor plane Pfloor. It should be noted that
the value of θ (rotation among the vertical vector) is independent of ~a and therefore
ambiguous. A second plane, e.g. the plane of the opposite wall, would have to be
estimated to determine θ.

Footprint extraction A point cloud representation of the subject in the scene is
obtained by transforming all pixels of input frame Ik that are part of its corresponding
silhouette Sk from image coordinates into world coordinates. The feet of the subject
can be extracted by applying a vertical threshold Tvert on the point cloud of the subject.
Tvert = 0.5 meter is used in this work. As pointed out by Stone and Skubic [255], the
threshold needs to be large enough to obtain enough information when the subject is
far from the sensor. Moreover, points that are very close to the ground are considered
background during the background extraction algorithm (see section 3.1.1).

Footprint are obtained by projecting the remaining feet point cloud onto the ground
plane. This can be achieved by simply cutting the vertical component of each point.
The remaining points, which are above Tvert, are used to compute the subject’s centroid.
Figure 3.7 shows an overview of all previously described steps for obtaining footprints
from a series of depth images.
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3. Methodology

Figure 3.7: Overview of performed steps to obtain the subject’s centroid and footprints
from a depth image sequence.

3.1.2 Gait signals

The time series of a subject’s footprints is used to compute several periodic gait signals.
Four different gait signals for depth data and and one additional gait signal for skeleton
data are computed and evaluated in this work. The extracted gait signals are based on
correlation coefficient, distance of the feet, horizontal and vertical oscillation and ankle
joint velocity.

Correlation coefficient time series

Extracting footsteps from the correlation coefficient time series (CCTS) is originally
proposed in [255] and later also used in [121]. The idea is that the correlation coefficient
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3.1. Gait Analysis

reaches its peak during a double support phase and reaches zero when the feet are parallel.

First, the projected footprint is normalized regarding position and rotation. This is done
by subtracting the mean and rotating the footprint depending on the walking direction.
The resulting normalized footprint has its centroid at the origin and is walking towards
the positive z-axis. Then the following correlation coefficient is computed for each frame
from the normalized ground-projected footprint.

p =
∑N

n=1 xnyn

N
(3.8)

xn and yn denote the coordinates of the nth, n ∈ {1, ..., N} point of the ground-projected
point cloud of the subject’s feet. The correlation coefficient of equation 3.8 is computed
for each frame of a walking sequence to obtain the CCTS. As illustrated in Figure 3.8,
peaks of the CCTS correspond to heel strikes and double support phases, while roots
correspond to midstance phases. In the work of [255, 121], CCTS is filtered using a
median filter and a moving average filter of a variable window size, which depends on the
frame rate and the walking speed of the subject. Footsteps are then detected as minima
and maxima of CCTS.

Feet distance time series

The idea of using the feet distance time series is a commonly used approach as it is
applied in the work of Hotrabhavananda et al. [121], Prochazka et al. [219] and Cippitelli
et al. [54] for the extraction of spatiotemporal parameter from Kinect skeleton data.
Moreover, Auvinet et al. [10] detect double support from the anterior-posterior knee
distance and Bobick and Johnson [32] consider the distance of the feet during the double
support phase as a feature for gait recognition.

In this work, the positions of the two feet are estimated from the projected point cloud
of the feet using unsupervised clustering. K-means clustering with 2 clusters is used to
estimate the centroids C1 and C2 for both feet. Figure 3.9 shows an example of K-means
clustering applied on the data of a single footstep. The distance of the feet is then
estimated as the Euclidean distance of cluster C1 and C2.

dfeet = ‖C1 − C2‖ (3.9)

Peaks of the feet distance time series relate to heel strikes and double support phases.
Troughs relate to midstance phases, when both feet are the closest. This is illustrated in
Figure 3.10.

Horizontal and vertical oscillation

Various spatial displacements such as horizontal and vertical oscillation can be observed
during gait [190]. While one foot is in the air, the walking person puts his center of mass
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Figure 3.8: From point cloud of walking subject to CCTS: Upper row: Point cloud
of silhouette. Center row: Ground-projected footprint (red line indicates correlation
coefficient). Bottom row: filtered CCTS

Figure 3.9: Extracting left and right foot positions using K-means clustering during
a single footstep. Top row: ground-projected point cloud of the feet. Bottom row:
Separation of feet trough K-means clustering.

on the standing foot in order to balance. Alternatively balancing on each foot creates a
horizontal oscillation. The effect of vertical oscillation is caused by lowering the trunk
during double support phase and raising the trunk during midstance phase in order to
balance the weight. Both horizontal and vertical displacement is computed based on the
trajectory of the center of mass of the subject’s point cloud.
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3.1. Gait Analysis

Figure 3.10: Feet distance: Peaks correspond to double support phases and troughs
correspond to midstance phases.

Horizontal Oscillation The horizontal oscillation (HO) is computed by measuring the
horizontal displacement during a straight walk. The distance from the ground-projected
centroid C to the line with starting point P and end point Q is obtained by projecting
~CP on the normal vector of line ~PQ.

dHO = ~n · ~r
‖n‖

(3.10)

where ~n is the (unnormalized) normal vector of line ~PQ and r = ~CP is a vector from
point C to the first point of the line P . Figure 3.11 shows an example for the HO
time series obtained from a walking sequence. It can be seen that peaks and troughs
correspond to midstance phases of the respective foot and turning points correspond to
double support phases. Peaks and troughs of the HO time series are used to estimate
footstep timings and positions.

Vertical Oscillation Vertical oscillation (VO) describes the vertical displacement due
to the pelvis moving up and down during walking. The vertical displacement is simply
the vertical coordinates of the centroid cy normalized by the mean vertical coordinate
µcy . Peaks of the VO time series correspond to midstance phases and troughs correspond
to double support phases (see Figure 3.12).

Signal filtering

All gait signals are filtered using a median filter with the window size proposed by Stone
and Skubic [255].

w = f ∗ k
v

(3.11)
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Figure 3.11: Horizontal oscillation during a walking sequence: Peaks and troughs
correspond to midstance phases. Turning points correspond to double support phases
since the weight is equally distributed when both feet are on the ground.

Figure 3.12: Vertical oscillation: Peaks correspond to midstance phases and troughs
correspond to double support phases.

where v is walking speed in meters per second, f is frame rate and k is a constant
parameter. The authors use k = 16.6 and inches per second as a metric for walking
speed, therefore k = 0.4216 is used to adjust for the different metric. The authors point
out, that k could potentially be adjusted based on the subject’s height, but this is not
considered as it would only have a minor effect.

After applying the median filter, a Gaussian filter is applied with σCC = w
2 for filtering

the correlation coefficient signal. For all other gait signals, a smaller value σ = w
4 is used,

as these signals have a doubled frequency. For CCTS, two consecutive peaks represent
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3.1. Gait Analysis

(a) Kinect v2 skeleton model. (b) Skeleton model and point cloud.

Figure 3.13: Left image: Joints of the Kinect v2 skeleton model. Right image: Skeleton
model and point cloud of corresponding frame.

one stride, but only a single step for feet distance or vertical velocity.

3.1.3 Skeleton Data

Kinect v2 SDK provides pose estimation for a skeleton model that consists of the
trajectories of 25 body joints. Kinect v2 skeleton model is illustrated in Figure 3.13a,
while Figure 3.13b shows the skeleton model with its corresponding point cloud. Skeleton
joints are filtered using a Gaussian filter with the same standard deviation σf as used for
depth data.

The same gait signals based on correlation coefficient, feet distance, vertical and horizontal
oscillation have also been extracted from the skeleton data. Similar to the work of Gabel
et al. [88], the center of mass is computed as the mean of joints that belong to the human
trunk, including spine, shoulder and hip joints. Correlation coefficient is estimated based
on the inclination of the ground-projected positions of both ankle joints. As with depth
data, the position is previously normalized by subtracting the mean followed by a rotation
based on the walking direction. Feet distance is computed as the Euclidean distance
of both ankle joints. Horizontal and vertical oscillations are estimated based on the
trajectory of the center of mass.

Ankle Velocity

An additional gait signal based on ankle velocity is extracted from the skeleton data.
This approach is similar to Clark et al. [56] and Gianaria et al. [96], who use velocity
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Figure 3.14: Merging footsteps detected on either left or right ankle velocity based on
spatial proximity. Here the start and end position of the walking sequence are merged
since they fall in the same area.

thresholds for the feet trajectories to extract footstep events. In the present thesis, ankle
velocity for both ankles is determined as the derivative of the ground-projected ankle
trajectory. Peaks correspond to swing phases and troughs correspond to midstance
phases of the respective foot. The time when both feet velocities are low indicates double
support time. Footsteps are detected from both left and right ankle velocity and get
merged if the Euclidean distance of their locations is within a small threshold. Detecting
the same footstep from both left and right signal occurs commonly on start and end
positions as well as in situations when the stationary foot occludes the movement of the
foot which is in swing phase. Figure 3.14 illustrates the extraction of footstep locations
from both ankle velocities.

Signal gap filling

When the Kinect pose estimation fails no skeleton information is provided for the specific
frame. This causes gaps in the trajectories and therefore also in the extracted gait signals.
Small gaps in the signal are filled using spline interpolation. Cubic spline interpolation
is used over other interpolation methods such as piecewise cubic hermite interpolating
polynomial (PCHIP) or linear interpolation since the underlying signal is oscillatory.
Figure 3.15 shows a comparison of the three mentioned interpolation techniques for filling
signal gaps. Gaps smaller than 1.5 seconds are interpolated, while larger gaps are not
changed. If more than 50% of the skeleton information of a walking sequence is missing
the walking sequence is skipped.
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3.2. TUG Automatization

Figure 3.15: Comparison of linear interpolation, piecewise cubic Hermite interpolating
polynomial (PCHIP) and cubic spline interpolation for fillings gaps caused by failed
skeleton model extractions. Unlike the former two, cubic spline interpolation preserves
the oscillating nature of gait.

3.1.4 Extraction of spatiotemporal parameters

Keypoints of gait signals such as minima, maxima, inflection points or roots can be
used to extract time and spatial occurrence of regular gait events such as heel strikes,
midstances, etc. Inflection points have the disadvantage that they occur commonly
with minor curvature changes and are therefore not sufficiently stable. Roots have the
disadvantage that a minor shift in amplitude towards the positive or negative side of the
y-axis causes significant errors for the footstep detection. Therefore only minima and
maxima are used for the detection of footsteps for all gait events.

Spatial gait parameters are obtained from the temporal occurrence of footsteps combined
with the spatial trajectory of the movement of the ground-projected point cloud centroid.
Step length is measured as the distance between two consecutive steps projected onto the
walking direction in order to avoid inaccurately measuring lateral foot spacing as a part of
step length. Stride length is measured as the distance between two consecutive footsteps
of the same foot. Step times and stride times are measured based on the corresponding
time stamps of detected footsteps. Gait speed is measured as distance traveled divided
by time elapsed.

3.2 TUG Automatization

The goal of the proposed TUG automatization approach is to extract TUG time and
the start and end of six TUG phases without any user input. The following assumptions
have been made regarding the setup of the TUG and the sensor. Kinect is placed
perpendicular to the 3 meter walkway on a table with medium height. The distance
from the walkway to the Kinect is smaller than the maximum viewing range of the
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sensor. Figure 3.16 shows a schematic placement of Kinect in a scene based on the two
assumptions. While the following approach is described based on the assumption that
Kinect is placed perpendicular to the walking direction of the subject, it can also be
applied for a different setup by updating the coordinates based on the walking direction.
A preprocessing routine that detects the initial setup is required in this case.

The six TUG phases that are detected from the described approach are chair rise C1,
walk #1 W 1, turn #1 T 1, walk #2 W 2, turn #2 T 2 and sit down C2. The start and
end event of each TUG phase are detected for a total of twelve detected TUG events.
It should be noted that it is possible that these events overlap, e.g. turning and sitting
down may be performed simultaneously by a particular subject. Moreover, there may
also be a significant pause between two events, e.g. a subject may look back at the chair
for several seconds to prepare for sitting down after turning.

TUG Automatization approach In order to detect twelve TUG events two generic
functions have been defined. The first one, G(f(x), Is, Ie), returns the beginning and
the end of the longest consecutive occurrence of the logical condition f(x) being true
in the interval [Is, Ie]. The second function F(f(x), n, Is, Ie) returns the beginning and
the end of the highest n peaks within the interval [Is, Ie]. Unlike sTUG [164], events are
not detected in the order they take place. Instead, events which are less challenging to
detect, e.g. walking, are detected first followed by more challenging events, e.g. chair rise
and sit down or turning. This has the advantage that the interval of occurrence can be
narrowed down based on the information of previously detected events.

Skeleton data The derivative (velocity) of the trajectory of the spine shoulder joint
ss′ in x and y direction (ss′x and ss′y) is used for the detection of the walking, chair rise
and sit down events. For turning, the distance between the left and the right shoulder
joint in x direction sdx = |slx − srx| is used. While shoulders are close to parallel during
walking, their distance in x direction (parallel to walking direction) reaches a maximum
in the middle of turning. A Gaussian filter with σ = 5.0 is applied to both ss and its
derivative ss′. A Median filter with window size 15 followed by a Gaussian filter with

Figure 3.16: Scheme of the TUG recording scene; Kinect is placed perpendicular to the
walking direction. red: x-axis, blue: y-axis, green: z-axis.
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3.2. TUG Automatization

Figure 3.17: Applying a median filter and a Gaussian filter on sdx; blue: unfiltered, green:
median filter, red: median filter and Gaussian filter.

σ = 5 are applied to sdx before the extraction of turn events. The median filter is used
to remove outliers caused by noise from either shoulder joint (see Figure 3.17). The start
and end of the following three TUG phases are detected based on the following criteria:

• walking: The first walking event W 1 takes place after rising from the chair. It is
caused by a steady movement away from the chair in x-direction. It is detected
by searching for W 1 = G(ss′x > T, ssstart, ssend) with T = 1

2σss′
x
. σss′

x
denotes the

standard deviation of the derivative of ss in x-direction. During the second walking
event W 2 the subject returns to the chair. Similar to the first walking event, it is
caused by a steady movement towards the chair in x-direction. It is detected by
searching for W 2 = G(ss′x < T, ssstart, ssend) with T = −1

2σs′
x
.

• chair rise and sit down: The chair rise and sit down events mark the beginning and
end of the TUG. Rising from the chair is detected as C1 = G(ss′y > 0, ssstart,W 1

start).
Sitting down is detected as C2 = G(ss′y < 0,W 2

end, ssend).

• turning: The first turn takes place between the two walks and the second turn is
done right before sitting down. Turns are detected by looking for the two highest
peaks in sdx: (T 1, T 2) = F(sdx, 2,W 1

start, C
2
end). The peaks are ordered based on

their time of occurrence and assigned accordingly.

Figure 3.19 illustrates the detection of the 6 TUG phases based on the skeleton data.
The left side shows the detection of the TUG phases within the signal of the whole TUG
sequence. The right side illustrates detected TUG phases with the corresponding TUG
movements. Figure 3.20a shows additional examples of detected TUG events based on
the skeleton approach.
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Figure 3.18: TUG analysis from depth data

Figure 3.19: Detection of 6 TUG phases based on skeleton data. The left side shows the
occurrence of detected TUG phases within the signal of a whole TUG sequence. The
right side shows enlarged snippets of detected TUG phases with the corresponding TUG
movements.

(a) TUG analysis from skeleton data (b) TUG analysis from depth data

Figure 3.20: Detection of chair rise and sit down events (upper images), walking events
(center images) and turn events (bottom images) during the performance of a TUG test.
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3.2. TUG Automatization

Figure 3.21: Applying a median filter and a Gaussian filter on com′y; blue: unfiltered,
green: median filter, red: median filter and Gaussian filter.

Depth data For depth data, the center of mass com of the point cloud of the subject
is used instead of the trajectory of the joint ss. A median filter with a windows size of 1
second or 30 frames and a Gaussian filter with σ = 5.0 is applied on com′. A median
filter with a large window size is used since com′ is less stable and more noisy than ss′
due to potential errors in the silhouette extraction. Figure 3.21 shows the effect of the
median filter and the Gaussian filter on com′y.

For the detection of turns the movement direction during the first walk ~dW and the
normalized ground projected movement direction from frame to frame ~d(k) are computed.

~d(k) = ‖comxy(k + l)− comxy(k)‖ (3.12)

comxy(k) denotes the ground-projected position of the center of mass com and l is a
constant with l = 2 being used. Then the function ∆(k) ∈ [−1, 1] is computed, which
represents the similarity of the current walking direction with the walking direction of
the first walk.

∆(k) = ~dW · ~d(k) (3.13)

∆(k) = 1 denotes the same walking direction as the first walk and ∆(k) = −1 denotes
the opposite walking direction. A median filter with window size 30 is applied on ∆
before the extraction of turn events. Based on the center of mass trajectory com and the
function for indicating turns ∆, the following criteria are used for the detection of TUG
events:

• walking: The detection of walking events is done analogue to the skeleton data.
The only difference is that com′x is used instead of ss′x.
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• chair rise and sit down: Like walking, chair rise and sit down events are detected
analogue to the skeleton data. Besides using com′y instead of ss′y a higher threshold
is used to better cope with noise. Chair rise is detected as
C1 = G(com′y > T1, comstart,

W 1
start+W 1

end
2 ) with T1 = 1

2σcom′
y
.

Sitting down is detected as
C2 = G(com′y < T2,

W 2
start+W 2

end
2 , comend) with T2 = −1

2σcom′
y
.

• turning: Detecting turning events from a single trajectory is an ill-posed problem,
since there is no or little movement when a person turns while standing on the
same spot. In order to detect the first turn, the transition from the walking
direction of the first walk to the walking direction of the second walk has to be
found. This is achieved by (−, T 1

start) = G(∆ > T1,∆start,∆end) with T1 = 0.9 and
(T 1

end, T
2
start) = G(∆ < T2,∆start,∆end) with T2 = −0.9. The end of the first turn

is detected when the current walking direction reaches the walking direction of
the second turn (∆ < −0.9). The beginning of the second turn is found when the
walking direction differs again from the walking direction of the second walk, which
marks the end of the (∆ < −0.9) condition. The end of the second turn is found
when ∆ reaches zero after the event T 2

start or the end of ∆ is reached.

Examples for detected TUG events using the approach based on the depth data are
shown in Figure 3.20b.
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CHAPTER 4
Results

This chapter describes the three acquired datasets and presents the obtained results for
the proposed methodology. The chapter is divided in three parts as follows. The first
part of the chapter describes the two acquired gait datasets for gait of both healthy and
elderly adults and the acquired TUG test dataset of elderly adults. The second part
presents the results for the gait analysis approach on both gait datasets and discusses
the most important findings. The third part covers the results of the proposed TUG
analysis approaches and compares them with a previously proposed method by Lohmann
et al. [164]. Figure 4.1 shows an overview how each dataset is evaluated. The first row
shows the three dataset, the second row shows the data type used for each dataset, then
the extracted time series per data type, the extracted parameters for each time series
and the bottom row shows the evaluation metrics applied on the parameters.

4.1 Data acquisition
A review of existing datasets is made and since no suitable public datasets are found,
three datasets have been acquired as a part of this work.

4.1.1 Review of public data sets

Cai [41] discusses 46 RGBD datasets for object detection and tracking, human activity
analysis, object and scene recognition, simultaneous localization and mapping and hand
gesture analysis. Only three datasets are reviewed for human activity analysis and none of
the reviewed datasets are relevant for this work. Firman [82] reviews 96 RGBD datasets
for various applications and two can be considered relevant for this work, Kinect 3D
Active and TST TUG.

Kinect 3D Active [155] includes recordings of standardized medical assessments including
the TUG test. Participants are between 18 and 81 years old. TST TUG [54] contains
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Figure 4.1: Overview of the evaluation of the acquired datasets and the proposed methods.
The following abbreviations have been used: Ankle speed (AS), correlation coefficient
(CC), feet distance (FD), horizontal oscillation (HO), vertical oscillation (VO), mean µ,
standard deviation σ and mean absolute error |e|.

a TUG test performed by 20 healthy participants and is available online 1. While the
authors use this data to extract several TUG parameters which are also relevant for this
work, e.g. time duration of the sit-to-stand phase, step length, cadence and TUG time,
they do not evaluate the accuracy of their results. Instead, only mean and standard
deviation of each parameter is provided in the paper. Moreover, their dataset does not
include subjects with gait pathologies, making it unsuitable to assess the eligibility in
real-world usage.

Kinect 3D Active and TST TUG do not have a labeling for TUG events and the accuracy
of TUG event extraction is not yet assessed on these datasets. Since no comparable

1http://www.tlc.dii.univpm.it/blog/databases4kinect#IDTUG, Accessed 2017-07-12
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4.1. Data acquisition

results exist for these datasets and manual labeling would be necessary, these datasets
are not used for the evaluation of the TUG automatization approach presented in
section 3.2. For RGBD gait datasets, existing public datasets, e.g. TUM Gait [118] or
DGait Database [35], are intended for gait recognition. While they include a large number
of walking sequences, they do not have a labeling for the accuracy of spatiotemporal gait
parameters.

4.1.2 Dataset 1: Gait of healthy adults

The gait dataset is used to evaluate the accuracy of extracted spatiotemporal parameters
based on the described and implemented approach. In order to evaluate the accuracy
under different conditions, multiple viewing angles, sensor heights and different step
widths are used. Choices and details regarding participants, sensor, sensor positioning,
walking path specifications and ground truth acquisition are discussed in this section.

Participants A total of 13 healthy subjects (11 male and 2 female) aged between 24
and 77 years participate in the gait recording.

Sensor choice Kinect v2 is chosen as a sensor for several reasons: First, the superior
field of view, resolution and accuracy discussed in section 2.2.2. Second, the observation
that the amount of accuracy experiments done with Kinect v2 is significantly less than
Kinect v1 and third, because it does not have the interference problems caused by
structured light of Kinect v1.

Walking path specifications Three straight walking paths in two directions each are
used to evaluate the effect of viewing angle on parameter accuracy. The walking paths
are facing away and towards the sensor, fronto parallel to the sensor and diagonal to the
sensor. Figure 4.2a illustrates the position of the walking paths compared to the sensor.

Recommendations for the assessment of gait variabilities suggest, that the distance for
assessing gait variability should be at least 20 m [192] or 12 continuous steps [166].
Considering that the walk should be recorded from different viewing angles and Kinect v2
only supports a maximum range of 4 meters, multiple walks back and forth are necessary.
Therefore each walking path is taken three times back and forth in order to reach the
suggested 20 meters walking distance.

Sensor and Sensor positioning Two Kinect v2 are placed on top of each other in
different heights using tripods. Kinect v2 #1 is placed at 1.2 meter height tilted down
around 10◦ and Kinect v2 #2 close to the ceiling at 2.4 meters with a downward tilt of
around 25◦. The experimental setup is shown in Figure 4.5a. In order for a point on the
ground to be within the field of view of the sensor the minimum distance from the sensor
position is given by

d = h tan(π2 −
α

2 + γ) (4.1)
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(a) Three walking paths with walking two
directions each.

(b) Markers with different step lengths
placed in the field of view of both Kinects.

Figure 4.2: Specifications of the walking paths (left image) and placement of the ground
markers (right image).

Figure 4.3: Required distance d for the subjects’ feet to be within the vertical field of
view α from the Kinect placed in height h.

where d represents the distance from the walking subject, h denotes the sensor height, γ
is the tilt of the Kinect sensor (negative in case of a downward tilt), h depicts the height
of the sensor and α is the vertical field of view of the camera. Equation 4.1 is illustrated
in Figure 4.3. For Kinect #1 the minimum distance between the subject and the sensor
is 1.43 meters and for Kinect #2 the minimum distance is 1.68 meters.
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(a) (b) (c)

Figure 4.4: Left image: Point shaped markers placed in the center. Center image:
X-shaped markers with lateral spacing. Right image: Line-shaped markers perpendicular
to the walking direction.

Ground truth acquisition

Spatial ground truth Ground markers are used to determine the ground truth for
step length and stride length during the evaluation of the walking sequences. In order to
pick a suitable ground marker, three different types of markers are tested in a small gait
experiment with four participants. Subjects are asked to step on top of the markers that
are placed in a 4.5 meter long hallway. Two persons are below average height (152cm
and 160cm height) and two persons are above average height (182cm and 185cm). All
markers are placed on the ground using stick tape.

The first type of tested markers, simple point markers (see Figure 4.4a), indicates the
position of either foot in the center of the walking path. These markers make the
individuals step inward with each foot in order to reach the marker and they made
gait less natural. The second type of tested markers is x-shaped (see Figure 4.4b) and
indicates the position of left and right foot separately with lateral spacing. All four
participants report that these markers require additional focus in order to correctly reach
the markers with the heel strike. The third type of tested markers is line-shaped (around
20cm long) and is illustrated in Figure 4.4c. They can be stepped on by either foot
and do not require the subject to step inward due to their length. All four subjects
report that they prefer the line-shaped markers, since they require the least amount of
additional focus and therefore facilitate the most natural walk among the three tested
markers. The chosen line-shaped markers distributed on the three walking paths are
shown schematically in Figure 4.2b and in the actual experimental setup in Figure 4.5b.
The same line-shaped stick tape markers are also used by Staranowicz et al. [253] in their
gait experiment.

Determining step lengths The goal is to use close to average step lengths in order
to facilitate natural walkings. Montero-Odasso et al. [182] report an average stride length
of 1.4 meters under fast walking pace and 1.27 meters under usual walking pace among
healthy individuals. Based on this data the ground markers are put in a distance of 63
cm for normal step length and 70 cm for large step length. An additional small step
length of 55 cm is added to the previous two.

Determining temporal ground truth In order to obtain the temporal ground truth
for each walking sequence, all walks are manually inspected to label the frame number of
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(a) Sensor setup: Two Kinect
v2 placed in different heights
using tripods.

(b) Walking path setup: Differently colored line markers indicate
different step length: blue: short steps. red: normal steps. yellow:
large steps.

Figure 4.5: Left image: Experimental setup. Right image: Line shaped markers have
been used to indicate three different step lengths in three directions.

each heel strike and toe-off event. Recorded videos from an additional RGB camera are
used for the manual ground truth annotation.

Figure 4.6 shows color images and corresponding depth images of the acquired gait
dataset from both Kinect #1 and Kinect #2. Sample frames for Kinect #2 are shown
on the left side and sample frames for Kinect #1 are shown on the right side.

4.1.3 Dataset 2 and dataset 3: Elderly gait and TUG tests

The purpose of the second and third dataset is to evaluate the TUG automatization
method presented in section 3.2 and to evaluate the extraction of gait parameters with
the gait of older adults. Residents of a nursing facility in Grieskirchen, Austria are
asked to participate in performing the TUG test. Additionally they are asked to walk
along a three meter walking path back and forth once. A total of eleven participants, 7
female and 4 male, volunteer to participate. Participants are between 85 and 95 years
old with a mean age of µage = 89.3 years and a standard deviation of σage = 3.6 years.
All participants are asked to perform the TUG test once. Failed TUG tests, e.g. due
to unclear instructions, are repeated until the test was performed smoothly. 9 out of 11
participants prefer to use a walking aid for walking and during the performance of the
TUG test. No participant requires physical assistance in order to complete the TUG
test and the two walking sequences. The experimental setup used for the recording and
several sample images are shown in Figure 4.7. A Kinect v2 sensor was placed fronto
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Figure 4.6: Sample images and corresponding depth frames of recorded walking sequences
from two different heights: Kinect #2 (left images) and Kinect #1 (right images).

parallel to the TUG walking path on a table with 77 cm height around 3.5 meters away
from the path.

In order to further evaluate the physical condition of the participants they are asked five
questions from a frailty questionnaire, FRAIL scale [275]. FRAIL scale questionnaire
consists of the following five questions:

• ”How much of the time during the past 4 weeks did you feel tired?” Responding
”All of the time” or ”Most of the time” corresponds to 1 point.

• ”By yourself and not using aids, do you have any difficulty walking up 10 steps
without resting?” Responding ”Yes” corresponds to 1 point.

• ”By yourself and not using aids, do you have any difficulty walking several hundred
yards?” Responding ”Yes” corresponds to 1 point.

• For 11 illnesses, participants are asked, ”Did a doctor ever tell you that you have
[illness]?”. Responding ”Yes” for 5 or more illnesses corresponds to 1 point. The
illnesses include hypertension, diabetes, cancer, chronic lung disease, heart attack,
congestive heart failure, angina, asthma, arthritis, stroke, and kidney disease.

• ”How much do you weigh with your clothes on but without shoes? [current weight]”.
”One year ago in (MO, YR), how much did you weigh without your shoes and with
your clothes on? [weight 1 year ago]”. 1 point is scored if (([weight 1 year ago] -
[current weight])/[weight 1 year ago]) > 0.05.
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(a) Picture of the TUG setup. red: x-axis, green:
z-axis, blue: y-axis

(b) Elderly participants during their perfor-
mance of the TUG test.

Figure 4.7: TUG recording setup (left image) and samples during recording (right image).
Red stick tape was used to mark the line 3 meters away from the armchair.

A total score of 0 represents robust, 1-2 represents pre-frail and 3-5 represents frail
individuals. FRAIL scale is validated in a clinical context for identifying frail persons and
persons at risk of frailty [184, 165, 295]. Since the original FRAIL questionnaire is only
available in English, the questionnaire is translated to make it suitable for the German
speaking population in the nursing facility. A translated version of the questionnaire is
depicted in Appendix A.

4.2 Gait evaluation
The gait accuracy evaluation focuses on the evaluation of gait for the healthy gait dataset
and the elderly gait dataset.

Figure 4.8 shows an example of extracted footsteps for all 18 walking sequences of one
participant. The location of the extracted footsteps is extracted based on the ankle speed
signal from skeleton data. In this example the absolute step length error is 2.14 cm per
step.

Figure 4.8 shows an example of extracted footsteps using four gait signals based on depth
data. The spatial location of each detected footstep is visualized beside the signal and
the first and last footstep are connected with a line to indicate their correspondence.
It can be seen that the signals of horizontal oscillation and vertical oscillation are less
regular compared to the signals of correlation coefficient and feet distance.

Results for healthy gait dataset

The results on the healthy gait dataset are based on the Kinect #1, which is placed 1.2
m. The following spatiotemporal gait parameters are extracted from each gait signal:
Gait speed, step length, step time, stride length and stride time. Mean and standard
deviation as well as mean absolute error are used as evaluation metrics. Additionally, for
the step length parameter the mean absolute error is examined under different conditions.
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Figure 4.8: Detected footsteps from the extracted 18 walks of a whole walking sequence.
The first two walks of a particular walking direction are small steps, followed by two
walks of medium steps and two walks of large steps. The mean absolute step length error
over all 18 walks on this particular walking sequence is 2.14 cm.

The conditions are three different walking paths, three different step sizes and if the
subject walked away or towards the sensor.

Four gait signals are implemented for depth data and five gait signals for skeleton data:
Correlation coefficient, feet distance (FD), horizontal oscillation (HO), vertical oscillation
(VO) and ankle speed (AS). Correlation coefficient is evaluated twice, once as described
in the methodology (here referred as CCTS) and once exactly as stated in the paper
of Stone and Skubic [255] (here referred as CC). The main difference between the two
signals is that the authors of the paper used moving average filters on the signal, the
center of mass and the time series.

Table 4.1 shows the mean and standard deviation for four extracted gait parameters
over all 234 walking sequences. For depth data, the correlation coefficient method of
Stone and Skubic [255] and the feet distance method perform the best with the smallest
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Figure 4.9: Detected footsteps for four gait signals (HO, VO, FD and CCTS) on one
walking sequence. For each gait signal, the corresponding spatial locations for the detected
footsteps are visualized.

standard deviation increase compared to the ground truth. For skeleton data, the ankle
speed method shows similar performance as the top two methods for depth data, while
all other skeleton-based methods show significantly higher standard deviations. VO and
HO show poor results for both depth data and skeleton data with the results for skeleton
data being slightly superior. The reason for the high error rates of VO and HO is that
the vertical and horizontal oscillation during gait is not significant enough to robustly
and accurately detect all footsteps. Signals obtained from VO and HO are irregular and
not sufficiently smooth to be well-suited for gait analysis.

The absolute mean error and the relative mean error for five parameters over all walking
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Mean and standard deviation per parameter

Gait signal Step length
(cm)

Step time
(ms)

Stride
length (cm)

Stride time
(ms)

Ground truth 62.7± 6.3 679± 59 125.3± 12.6 1352± 91

Depth

CCTS 63.0± 10.0 679± 98 125.8± 15.8 1323± 142
CC [255] 62.1± 8.5 665± 76 124.6± 13.6 1321± 115
Feet distance 62.8± 8.4 657± 77 124.6± 14.9 1305± 130
VO 64.2± 19.5 706± 217 128.6± 24.5 1399± 287
HO 66.6± 37.0 737± 396 125.8± 43.4 1392± 484

Skeleton

Ankle speed 61.8± 8.4 662± 126 123.2± 13.9 1313± 162
CCTS 65.8± 21.4 734± 232 126.7± 20.9 1394± 236
CC [255] 63.7± 17.1 702± 184 125.2± 18.6 1360± 204
Feet distance 68.0± 20.6 734± 225 133.9± 29.4 1441± 335
VO 63.2± 13.8 686± 157 126.7± 20.0 1370± 235
HO 64.7± 29.3 712± 318 126.3± 34.6 1380± 397

Table 4.1: Mean and standard deviation of extracted spatiotemporal gait parameters for
both ground truth and various gait signals.

sequences are shown in Table 4.2. The absolute mean error is computed as the averaged
absolute difference from the ground truth. Similar to the previous result, the smallest
error is found for the correlation coefficient approach of Stone and Skubic [255] and the
feet distance approach for the depth data and the ankle speed approach for the skeleton
data.

From all extracted parameters, gait speed shows the lowest error for all gait signals. This
is expected, since gait speed is calculated as distance traveled divided by time elapsed
and therefore it is not affected by wrong footstep detections within a walking sequence.
Moreover, this is consistent with previous observations, e.g. the work of Dubois and
Charpillet [76]. They report that gait speed is the most accurate of three estimated gait
parameters (step length, step time and gait speed).

Table 4.3 shows a the absolute mean step length error based on three different walking
paths. For depth data and correlation coefficient, the walking path has almost no effect
on the accuracy. For the feet distance signal, best performance is obtained for fronto
parallel walking and diagonal walking shows the worst performance. Gait signals based
on skeleton data are generally more affected by the direction of the walking path. Ankle
speed and correlation coefficient perform worst for diagonal walking, however, the effect
is not as noticeable for the ankle speed data. Considering only the best performing
gait signals, depth CC, depth FD and skeleton AS, the walking path does not have a
significant effect on the step length error. This is expected, as both depth and skeleton
approaches are model-based and therefore considered invariant to viewing angle.
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Mean absolute error per parameter

Data
Source

CCTS CC [255] FD HO VO AnkSp

Step length error (mm)

Depth 48 (7.6%) 45 (7.2%) 41 (6.5%) 254
(40.6%)

142
(22.6%)

−

Skeleton 84
(13.4%)

73
(11.6%)

104
(16.3%)

191
(30.5%)

79
(12.6%)

38 (6.1%)

Stride length error (mm)

Depth 75 (6.0%) 62 (5.1%) 61 (5.0%) 317
(25.8%)

152
(12.3%)

-

Skeleton 93 (7.5%) 81 (6.6%) 156
(12.6%)

226
(18.1%)

102
(8.2%)

51 (4.1%)

Step time error (s)

Depth 0.06
(8.8%)

0.04
(6.6%)

0.05
(8.0%)

0.28
(41.8%)

0.16
(24.3%)

-

Skeleton 0.10
(15.0%)

0.08
(12.1%)

0.12
(17.9%)

0.21
(31.9%)

0.10
(14.7%)

0.08
(12.4%)

Stride time error (s)

Depth 0.07
(5.7%)

0.05
(3.7%)

0.07
(5.3%)

0.33
(25.3%)

0.18
(13.3%)

-

Skeleton 0.09
(7.1%)

0.09
(6.6%)

0.18
(13.8%)

0.25
(18.6%)

0.12
(9.4%)

0.08
(6.3%)

Gait speed error (mm/s)

Depth 16.3
(1.70%)

10.7
(1.12%)

26.4
(2.75%)

8.99
(0.94%)

28.11
(2.94%)

-

Skeleton 34.7
(3.62%)

27.7
(2.89%)

18.8
(1.96%)

29.6
(3.09%)

16.3
(1.70%)

15.2
(1.58%)

Table 4.2: Mean absolute error over all walking sequences of several spatiotemporal
gait parameters. The following additional abbreviations were used: Feet distance (FD),
horizontal oscillation (HO), vertical oscillation (VO) and ankle speed (AnkSp).
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4.2. Gait evaluation

Step length: Mean absolute error (cm) per walking direction

Data Gait signal All views Frontal
view

Diagonal
view

Fronto
parallel
view

Depth

CC [255] 45 45 42 44
CCTS 48 48 45 47
Feet distance 41 58 37 29
Horizontal
oscillation

254 212 266 284

Vertical
oscillation

142 154 228 51

Skeleton

Ankle speed 38 37 43 34
CC [255] 73 62 103 54
CCTS 84 66 135 58
Feet distance 104 136 125 50
Horizontal
oscillation

191 196 178 209

Vertical
oscillation

79 50 72 112

Table 4.3: Comparison of mean absolute step length error in mm based on three different
walking directions and different gait signals.

A comparison of step length mean and average step length error based on three different
step lengths is shown in Table 4.4. Larger step lengths show a slightly increased step
length error, but this increase is relative to the increase in step length. After normalizing
the step length error based on the size of the corresponding step, the different step sizes
do not show a significant effect on the step length error for all gait signals. Therefore the
proposed gait analysis approach is considered independent of the step size.

Table 4.5 compares the mean absolute step length error between walking towards the
Kinect sensor and walking away from the sensor. HO and VO are not considered further
as they both showed poor performance in the previous results. While almost no difference
is found for the depth data, the difference for the skeleton data is significant. For skeleton
AS, the mean absolute error increases from 2.7 cm to 4.6 cm when walking away along
the z-axis instead of walking towards the sensor. For skeleton CC and skeleton FD the
increase is even larger: 10.1 cm instead of 3.1 cm for skeleton CC and 20.9 instead of 6.3
for skeleton FD. The step length error is approximately three times as large for walking
away compared to walking towards the sensor. Therefore the poor overall results of
skeleton CC and skeleton FD are caused by poor accuracy when walking away from the
sensor.

The reason for the higher errors is that the Kinect pose estimation is trained for subjects
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Step length: Mean and mean absolute error in cm per step size

Data Gait signal Small steps Medium steps large steps

mean error mean error mean error

Ground truth 55 0 63 0 70 0

Depth

CC [255] 56.2 3.9 62.7 4.8 69.5 4.9
CCTS 57.2 4.7 63.9 5.0 69.5 4.7
Feet distance 57.4 4.4 63.8 4.3 69.3 5.0
Horizontal
oscillation

61.7 22.4 68.5 26.0 73.2 30.3

Vertical
oscillation

61.6 13.9 64.3 14.7 67.3 13.8

Skeleton

Ankle speed 55.4 3.5 63.2 4.0 69.1 4.1
CC [255] 58.2 6.4 64.7 7.2 69.7 8.5
CCTS 60.5 8.1 66.1 8.2 72.4 9.2
Feet distance 61.9 9.8 68.6 9.7 75.5 12.2
Horizontal
oscillation

59.9 15.1 65.2 19.1 70.3 23.9

Vertical
oscillation

58.6 9.7 63.3 6.6 69.2 7.2

Table 4.4: Comparison of mean step length and mean absolute step length error in cm
based on three different step sizes.

facing the Kinect sensor.Moreover, when walking towards the sensor, there is no occlusion
at the time of the heel-strike for the foot swinging forward. When walking away from
the sensor, the foot swinging forward is likely to be occluded from the standing foot
that supports the body weight at the time of the heel-strike. Figure 4.10 shows ground-
projected ankle joints from two walking sequences, one walking towards the sensor and
one walking away from the sensor. Left and right ankle joints are connected with a line
to illustrate their temporal correspondence. Both original and filtered joints are shown.
In the case of walking towards the sensor, it can be seen that the lateral distance remains
roughly equal during the whole walking sequence. Moreover, footsteps (stationary ankle
positions) are clearly visible as clusters. However, when walking away from the sensor,
the ankle joint positions are highly inaccurate for the left footsteps, which represents
the occluded foot. In this case it is likely that false positives occur for the footsteps of
the occluded foot. The joint coordinate remains stationary during the time of occlusion,
which may cause a peak or trough in the gait signal and therefore a false footstep may
be detected at this location.

When comparing the results of individual participants, it is noticeable that one participant
wearing a floor-length skirt has the highest error rates among all participants. For example
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4.2. Gait evaluation

Step length: Mean absolute error (cm) for walking towards/away from the
sensor

Data Gait signal Towards the sensor Away from the sensor

frontal diagonal frontal diagonal

Ground truth 55 0 63 0 70 0

Depth CC [255] 4.3 3.9 4.8 4.5
Feet distance 6.8 3.3 4.7 4.2

Skeleton Ankle speed 2.7 3.9 4.6 4.7
CC [255] 3.1 4.3 10.1 19.6
Feet distance 6.3 5.4 20.9 21.9

Table 4.5: Mean absolute step length error in cm based on walking towards the sensor
or walking away from the sensor. Frontal refers to walking parallel to the z-axis and
diagonal refers to walking in a 45◦ angle from the z-axis towards and away from the
sensor.

the step length errors for this participant is 13.8 cm for the depth FD signal, 6.0 cm for
the depth CC signal [255] and 9.2 for the skeleton AS signal. This indicates that the
correlation coefficient signal is the most robust towards occlusion of the feet among the
tested signals.

4.2.1 Evaluation of elderly gait

The best three performing gait signals from the accuracy evaluation are further evaluated
on the walking sequences of the older adults. This is a particularly challenging dataset
for several reasons. The first reason is that the majority of older adults in the dataset use
extremely small steps while barely lifting their feet from the ground. Second reason is
that 9 out of 11 elderly adults use a walker for additional balance and stability support.
The occlusions of the leg and feet caused by the walking aid leads to a noticable decrease
in skeleton joint accuracy. In case of the depth data, the walking aid is arbitrarily
considered foreground or background, depending whether the silhouettes of the subject
and the walking aid are connected or not. While this problem could possibly be solved
with an adapted silhouette extraction method, one purpose of this evaluation is to see
how the evaluated approaches behave with the additional noise.

An evaluation based on the number of steps for each walking sequence is conducted.
For all 11 elderly participants, both walking sequences are considered and the steps for
each walking sequence are counted. As shown in Table 4.6, none of the top 3 original
gait signals show adequate accuracy for the older adults’ gait. The reason for the poor
performance on the gait of older adults is the window size in equation 3.11. It decreases
for faster gait and increases for slower gait, however, the frequency of the gait signal
is determined by the cadence and not by gait speed. The equation is based on the
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Walking towards the sensor

Walking away from the sensor

Figure 4.10: Ground-projected corresponding ankle joints of the skeleton model for a
walking sequence towards the sensor (top row) and away from the sensor (bottom row).
Left column shows unfiltered corresponding ankle joints and right column row shows
filtered ankle joints.

assumption that a faster gait is caused by a larger cadence and should therefore be
filtered with a smaller filter size compared to a slower gait. However, this assumption
is wrong, since the natural reduction in walking speed among older people is caused
by a reduction in stride length instead of a decrease in cadence [292]. Normalizing the
filter size based on gait speed instead of cadence like in equation 3.11 leads to very large
window sizes for very slow walkers and subsequently over-filtering of the signal. Therefore,
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4.2. Gait evaluation

Original Adjusted

Depth Skeleton Depth Skeleton

P# Ground
truth

CC [255] Feet
distance

Ankle
speed

CC [255] Feet
distance

Ankle
speed

#1 5 5 7 5 5 6 5
5 5 6 6 5 5 6

#2 7 7 6 9 7 7 9
7 7 7 7 7 7 7

#3 9 9 10 14 9 10 10
8 8 8 9 8 9 9

#4 9 8 7 9 9 10 11
7 5 3 7 7 10 11

#5 12 6 5 0* 13 13 0*
15 8 8 11 15 17 15

#6 6 6 5 6 6 6 6
9 8 8 9 9 8 9

#7 10 10 9 12 10 10 14
10 9 7 10 10 11 11

#8 9 8 7 13 9 12 9
10 9 5 9 10 12 11

#9 6 6 6 0* 6 6 0*
7 5 6 10 7 9 11

#10 10 7 4 8 10 13 10
9 7 4 9 10 11 9

#11 8 6 3 7 8 9 9
5 4 2 5 5 5 6

# of correct items 9 3 8 21 7 8

Table 4.6: Evaluation for the number of steps for both described and adjusted gait signals.
The following abbreviation was used: P# for the participant number. The asterisk
denotes that no skeleton tracking was available for this walking sequence.

the following adjusted window size is applied to solve this problem

w = f ∗ k (4.2)

Again, the frame rate f and the height constant k are used for determining the filter size,
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but gait speed is replaced with cadence and cadence is estimated as a constant 1 stride
per second. This is feasible as cadence changes only slightly between young, old and frail
gait and similar to height, the possible range of cadence between different subjects is
small. However, the value for cadence can also be learned over time for long-term gait
assessment.

Figure 4.11 shows a comparison of CC filtered with the original window size (see equa-
tion 3.11) and the adjusted window size of equation 4.2 for the walk of three participants.
The CC signal filtered with the original window size is shown in Figure 4.11a and the
CC signal filtered with the adjusted window size is shown in Figure 4.11b. It can be seen
that the filter size of the original window size is too large and the peaks and troughs of
the unfiltered signal (illustrated as black signal) disappear after applying the median
filter. In total, the problem of over-filtering for very slow walkers occurred for 5 out of 11
participants.It should be noted that even though this window size is applied in several
papers [258, 255, 121], none of them reported this problem.

From the results of the adjusted window size in Table 4.6, only adjusted correlation
coefficient performs well. The presumed reason is that both feet distance and ankle
velocity signals are strongly affected by the additional noise of the dataset and correcting
the filter size does not solve this problem. While the correlation coefficient time series
describes two steps per wavelength, both the feet distance and ankle velocity signals only
describe one step per wavelength, doubling the frequency. This exposes an important
observation regarding the advantage of the correlation coefficient signal over the other gait
signals: In order for a gait signal to be maximally robust towards noise, one wavelength
should represent one whole gait cycle.

4.2.2 Gait results summary

Considering both the gait accuracy evaluation and the evaluation of the best-performing
gait signals on the gait of older adults, the adjusted correlation coefficient based on
depth data shows the best performance. While the results are similar for the first gait
evaluation, only the adjusted correlation coefficient shows satisfying results on the elder
people’s gait dataset (see Table 4.6). Moreover, since it is based on depth data, it does
not have the range limitation of the skeleton tracking and the additional inaccuracy
when subjects are walking away from the sensor. Furthermore, skeleton data is not fully
reliable for the older adults gait dataset as no skeleton tracking is available for 2 out of
22 walking sequences.

4.2.3 Frailty comparison: Gait, TUG and questionnaire

The frailty status of the elderly participants is evaluated based on four sources: Gait speed
determined from adjusted correlation coefficient, stride length determined from adjusted
correlation coefficient, TUG score and the result of the FRAIL scale questionnaire. The
following cutoff values are used based on Table 1.1, the TUG score cutoff of the Edmonton
Frail Scale [228] and the suggested evaluation of the FRAIL scale [184]
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4.2. Gait evaluation

(a) Original filter window size proposed by
Stone and Skubic [255] is too large for slow
walkers.

(b) Adjusted window size with movespeed
replaced by cadence and cadence set to a
constant 1 stride per second.

Figure 4.11: Correlation coefficient filtered with original window size used by [255, 121]
(left image) and adjusted window size (right image). The black line illustrates the
unfiltered signal.
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P# Gait
speed
(m/s)

frailty
status

Stride
length
(m)

frailty
status

TUG
time

frailty
status

FRAIL
scale

frailty
status

#1 1.04 robust 1.06 pre-frail 9.8 robust 0/5 robust
#2 0.78 pre-frail 0.85 frail 19.9 pre-frail 3/5 frail
#3 0.57 frail 0.68 frail 22.0 frail 3/5 frail
#4 0.35 frail 0.51 frail 26.2 frail 4/5 frail
#5 0.27 frail 0.25 frail 53.0 frail 3/5 frail
#6 0.57 frail 0.63 frail 16.9 pre-frail 0/5 robust
#7 0.41 frail 0.57 frail 25.2 frail 3/5 frail
#8 0.34 frail 0.62 frail 27.7 frail 3/5 frail
#9 0.45 frail 0.76 frail 21.4 frail 2/5 pre-frail
#10 0.43 frail 0.32 frail 47.1 frail 3/5 frail
#11 0.40 frail 0.58 frail 27.7 frail 3/5 frail

Table 4.7: Comparison of detected frailty status between gait speed, stride length, TUG
test and FRAIL scale among the 11 participants.

• Gait speed: Robust > 1.0 m/s. Frail < 0.85 m/s.

• Stride length: Robust > 1.2 m. Frail < 1.0 m.

• TUG score: Robust < 10 s. Frail > 20 s.

• FRAIL scale questionnaire: Robust = 0. Frail ≥ 3.

Table 4.7 shows the assigned frailty status for each of the frailty measures and each
participant. 9 participants are assigned frail based on gait speed, 10 based on stride length
and 8 based on TUG score and FRAIL scale questionnaire. Participant #6 is especially
interesting. He is assigned at the same time to be robust, pre-frail and frail based on
different frailty measures. This participant is noticeably jolly during the interview and
confident in his abilities to perform activities of daily life independently. However, despite
his positive nature and not using a walking aid, his low gait speed and stride length
suggest possible mobility impairments. His data match the values that are common for
physical frailty.

4.3 TUG automatization results

The proposed TUG automatization approaches based on depth and skeleton data are
evaluated on the acquired elderly TUG test dataset. For the purpose of evaluation, the
start and end events of six TUG phases are labeled using manual video inspection.
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4.3. TUG automatization results

TUG time is estimated as the elapsed time between the first and last TUG event.
Additionally, a stopwatch is used during the recording of the TUG test and manually
obtained TUG times are compared with the automatically estimated TUG times.

4.3.1 Skeleton Timed Up and Go

For the purpose of evaluation, the TUG automatization method of Lohmann et al. [164],
called Skeleton Timed Up and Go (sTUG), is implemented in addition to the described
methods. Their approach detects a total of ten TUG events during the duration of
the TUG test. Nine TUG events detected in their approach are also detected in the
approaches proposed in this work. sTUG uses thresholds for the acceleration of joint
trajectories to detect the events start moving Ms, start walking Ws, end uprising Ue, start
lowering Ds and end moving Me. The events start rotating Rs and end rotating Re are
detected based on the distance of the two shoulder joints. The events start accelerating
As and end accelerating Ae, which represent the end of the first walk and the beginning
of the second walk, are detected based on thresholding the velocity in walking direction.
In order to evaluate both walk times, an additional event end walking We is detected
based on their approach. We is detected as the end of the second walk using the same
method they used for detecting As and Ae.

The paper of Lohmann et al. [164] has inconsistencies and not all details are specified in
their paper. Therefore the following assumptions have been made for the implementation:

• The usage of their coordinate system is inconsistent: While they originally define
y-axis as walking direction and z-axis as upward vector, walking direction is later
referred to as z-axis and upward direction is referred to as y-axis during their
definition of gait events. Therefore y-axis and z-axis are interchanged, as it would
not make sense otherwise. This concerns the detection of the events start moving
Ms, end uprising Ds, start walking Ws, start accelerating As, end accelerating Ae,
end moving Me and start lowering Ds. The usage of x-axis is consistent with their
original coordinate system definition.

• For the events start rotating and end rotating minimum and maximum are inter-
changed. This is assumed to be a mistake in the paper, since the derivation of a
trough is trough followed by a peak, not the other way around.

• Both end uprising and start lowering are referred to as Ds. This is assumed to be
a mistake in the paper and Ue is estimated based on the definition given in the
description for the end uprising event.

• The definition of end accelerating Ae is equivalent with the definition of start
accelerating As, end accelerating is even referred to as As in the paper. This is
assumed to be a mistake in the paper and the definition for end accelerating is
assumed to be Ae = tmin(scy, Tm, Se,m).
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• No signals filters are specified, therefore the same filters have been applied as in
the proposed method.

• Thresholds l1, l2 and l3 are not specified and set to 3
4σss with the exception of

the threshold for the end uprising event Ue, which was set to 3
20σss. The only

thresholds that is specified was the mean walking speed used for the detection of
start accelerating As and end accelerating Ae.

• Shoulder center trajectory sc is replaced with spine shoulder trajectory ss. This is
necessary since the authors used Kinect v1 and the skeletal model differs slightly
compared to Kinect v2.

• The equivalent events for the start and end of turn #2 T 2
s and T 2

e are not defined
in their paper so these events are not implemented.

4.3.2 TUG analysis results

The proposed approach based on skeleton data is referred to as Skeleton TUG and the
proposed approach based on depth data as Depth TUG.

Figure 4.12 shows the result of Skeleton TUG, Depth TUG and sTUG for participant
#1. Detected events are illustrated in the top left for Depth TUG, in the top right for
Skeleton TUG and in the bottom for sTUG. TUG time is computed as the elapsed time
between start of chair rise C1

s (start moving Ms for sTUG) and the end of sitting down
C2

e (end moving Me for sTUG). It can be seen that Depth TUG, Skeleton TUG and
sTUG detect both the start and end event within a ±1 second deviation from the ground
truth for this participant with Skeleton TUG detecting these events the most accurately.
For the remaining events, sTUG also detects them within a ±1 second deviation. For
Depth TUG, the end of the second walk W 2

e and the detection of the start and end of the
second turn are detected too late. For Skeleton TUG, start sitting down C2

s is detected
significantly too early.

Figure 4.13 shows the results of the obtained TUG times, manually labeled ground
truth and stopwatch in seconds for all 11 participants. The most notable outliers are
participants #4, #5 and #7 for the sTUG method. The average error for TUG time is
0.294 s for Depth TUG, 0.227 s for Skeleton TUG, 0.536 s for the stopwatch and 2.549 s
for sTUG.

Table 4.8 shows the mean absolute error for TUG time and the 6 TUG phases. Precision
and recall for total TUG time and TUG phases are computed based on the overlap of
the groundtruth interval and the detected interval. The resulting F1 scores are 0.824 for
Depth TUG, 0.857 for Skeleton TUG and 0.695 for sTUG.

The mean absolute error of single TUG events and its standard deviation are shown in
Table 4.9. The same data is also illustrated in Figure 4.14. From the 10 TUG events
extracted from the three approaches, only the end of the first walking sequence W 1

e has
a lower error for sTUG compared to skeleton TUG and depth TUG. For all other events
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Participant #1

Depth TUG Skeleton TUG

sTug results

Figure 4.12: Detection of TUG events for participant #1 based on Depth TUG, Skeleton
TUG and sTUG. Top left: Depth TUG results. Top right: Skeleton TUG results. Bottom:
sTUG results.
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Figure 4.13: Comparison of TUG times obtained from depth TUG, skeleton TUG and
sTUG with ground truth and stopwatch results for all eleven participants.

Mean absolute error, precision and recall of TUG phases

TUG
time

Chair
rise
time

Walk
#1
time

Turn
#1
time

Walk
#2
time

Turn
#2
time

Sit
down
time

Depth
TUG

mean error (s) 0.294 0.182 1.324 1.227 2.364 2.222 0.730
Precision 0.998 0.874 0.900 0.929 0.729 0.467 0.783
Recall 0.986 0.877 0.938 0.65 0.995 0.473 0.943

Skeleton
TUG

mean error (s) 0.227 1.024 0.903 1.061 1.224 2.182 1.570
Precision 0.997 0.647 0.961 0.793 0.831 0.832 0.593
Recall 0.990 0.928 0.906 0.871 0.983 0.759 0.952

sTUG
mean error (s) 2.503 2.003 - 1.342 - - 2.097
Precision 0.941 0.294 0.809 0.769 0.719 - 0.438
Recall 0.947 0.574 0.961 0.772 0.790 - 0.345

Table 4.8: Mean absolute error, precision and recall for TUG time and the six TUG
phases obtained from depth TUG, skeleton TUG and sTUG [164].

both the mean error and standard deviation are similar or higher than Depth TUG or
Skeleton TUG.

Table 4.10 shows the average difference between detected TUG events and the corre-
sponding ground truth. It shows that the majority of TUG events are detected too early
for sTUG. For Depth TUG, the only event which has a clear bias is the end of walk #2
W 2

e , which is consistently detected too late. For Skeleton TUG, the end of chair rise C1
e

and the end of walk #2 W 2
e are detected too late by 1 second on average. The start of

the sit down event C2
s is detected too early by around 1.5 seconds.
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Absolute mean error (s) and its standard deviation for 12 TUG events

Depth TUG Skeleton TUG sTUG

Chair rise start 0.22± 0.16 0.16± 0.13 2.05± 3.80
Chair rise end 0.26± 0.18 1.10± 0.65 3.58± 4.42

Walk #1 start 0.65± 1.13 0.49± 0.89 2.945.52
Walk #1 end 0.89± 1.01 0.68± 1.03 0.46± 0.39

Turn #1 start 0.79± 0.40 0.61± 0.72 1.31± 2.87
Turn #1 end 0.53± 0.39 0.82± 0.62 0.79± 0.86

Walk #2 start 0.35± 0.31 0.37± 0.25 0.77± 0.83
Walk #2 end 2.08± 1.57 1.04± 0.80 2.01± 3.27

Turn #2 start 1.64± 1.46 1.33± 1.38 -
Turn #2 end 3.02± 1.87 1.13± 1.52 -

Sit down start 0.70± 0.64 1.61± 1.15 1.27± 1.07
Sit down end 0.094± 0.089 0.13± 0.08 1.51± 1.07

Table 4.9: Absolute mean error and standard deviation in seconds for all detected TUG
events

Average signed difference (s) of 10 detected TUG events

C1
s C1

e W 1
s W 1

e T 1
s T 1

e W 2
s W 2

e C2
s C2

e

Depth TUG 0.21 0.23 0.04 0.22 0.52 -0.08 -0.28 2.08 -0.45 -0.05
Skeleton TUG 0.1 1.1 0.43 -0.19 -0.08 0.47 -0.17 1.01 -1.57 -0.10
sTUG [164] -1.81 -0.84 -2.83 0.18 -1.02 -0.53 -0.52 -1.12 0.12 -0.84

Table 4.10: Average signed difference of detected TUG event times and ground truth in
seconds. The following abbreviations have been used: Chair rise start C1

s and end C1
e ,

walk #1 start W 1
s and end W 1

e , turn #1 start T 1
s and end T 1

e and sit down start C2
s and

end C2
e .

4.3.3 TUG analysis discussion

The average time for sit-to-stand is 1.7 s, for walk #1 3.3 s, for turn #1 1.8 s, for walk
#2 3.4 s, for turn #2 1.6 s and for sitting down 1.0 s. This observation is consistent
with the study by Manckoundia et al. [170], who show that sit-to-stand takes longer than
stand-to-sit for elderly subjects.

One reason for the poor performance of sTUG on this dataset is that their approach
works on the assumption, that the subject does not move before and after the TUG.
However, this assumption is not necessarily true when working with elderly subjects, who
often need multiple attempts to perform a certain movement or additional instruction
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Figure 4.14: Absolute mean error and standard deviation in ms for 12 TUG events. The
dotted line separates the five gait phases. For each phase, the first three values represent
the error of the start event of the phase and the last three values represent the error of
the end event of the phase.

before rising from the chair. Moreover, Kinect skeleton tracking is noisy and not reliable
when the subject is sitting. This commonly causes sTUG to detect the start moving event
too early. Two examples for this are the movement of participant #4 and participant #5,
as shown in Figure 4.15 and Figure 4.16. The detection of the start chair rise events Ms

for sTUG is depicted in the top left from the bottom part of the figures. It can be seen
that there are a lot of acceleration spikes at the beginning, but the participant only starts
to rise from the chair at approximately 12 seconds for participant #4 and approximately
20 seconds for participant #5. Therefore joint acceleration as a sole feature as used by
STUG is not robust enough for the detection of TUG events.

Moreover, sTUG detects the beginning of TUG as the point where the subject starts to
lean forward to move his center of gravity over his feet, followed by the subject lifting the
body from the chair. However, this approach does not consider that the subject might
move his upper body back and forth prior to starting the TUG. Therefore it is necessary
to verify that the subject stands up from the chair shortly after leaning forward. An
approach to achieve this is the cubic space approach used by Kitsunezaki et al. [145].
They count the number of joints inside a virtual cubic space around the chair in order to
find the transition from sitting on the chair to standing up and walking away from the
chair.
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Participant #4

Depth TUG Skeleton TUG

sTug results

Figure 4.15: Detection of TUG events for participant #4 based on Depth TUG, Skeleton
TUG and sTUG. Top left: Depth TUG results. Top right: Skeleton TUG results. Bottom:
sTUG results.
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Participant #5

Depth TUG Skeleton TUG

sTug results

Figure 4.16: Detection of TUG events for participant #5 based on Depth TUG, Skeleton
TUG and sTUG. Top left: Depth TUG results. Top right: Skeleton TUG results. Bottom:
sTUG results.
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(a) Blue line: Position of spine shoulder joint in y-direction (height).

(b) Blue line: Velocity of spine shoulder joint in y-direction (upwards).

Figure 4.17: An older person needing two attempts of standing up. The failed attempt
can be easily identified in the joint height trajectory (top image), but not in its derivative
(bottom image).

Another reason why sTUG tends to identify the start moving event too early is that an
examiner starts the stopwatch only when the patient’s hips are no longer touching the
chair [145] instead of when the patient is leaning forward. As pointed out by Kitsunezaki
et al. [145], it is challenging to detect standing up or sitting down movements due to the
very slow movements of old adults. Even the proposed methods are probably not robust
enough to perform well on a larger dataset. One option to increase the robustness of the
approach is to additionally consider the trajectory of the joint position in addition to the
velocity. By looking at the current position of the subject, the current TUG state can
be verified and certain state transitions are only allowed if the subject is in the correct
position. Moreover, this can help to resolve cases like the one depicted in Figure 4.17.
One subject attempts to rise from the chair, but is unsuccessful and sits down again before
making a second attempt. When only a derivative of the joint trajectory is considered,
the resulting peaks can easily be falsely classified.

In addition to the increased robustness, future methods should also consider the additional
challenges present in a real-world setting. It is common during a TUG test that a second
person is walking around, e.g. a medical assistant being nearby to assist the patient if
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necessary [145]. This creates additional challenges for consistently tracking the subject
and a second sensor might be be necessary to consistently resolve this problem. Moreover,
it is common for older adults to execute the TUG incorrectly. Future methods should
also be able to determine whether the TUG is executed correctly or whether certain
movements are missed and the trial should be repeated.
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CHAPTER 5
Conclusion

In this thesis, a Kinect v2 sensor was used to assess mobility based on both human gait
and automatized Timed Up & Go (TUG) tests. For both types of mobility assessment
an approach based on depth data and an approach based on skeleton data was presented.
These two approaches have been compared according to the error of the retrieved
parameters.

Three Kinect datasets were acquired. The first dataset features gait of healthy adults.
Thirteen participants aged 24 to 77 years walked twice over 9 sets of predefined floor
markers to accumulate a gait dataset of 234 walking sequences. Toe-off and heel-strike
events were manually labeled, which allowed evaluation not just for spatial but also for
temporal gait parameters. The second dataset features elderly gait. It consists of 22
walking sequences of 11 elderly subjects, 85 years and older. The number of steps was
manually labeled for each walking sequence. The third dataset consists of 11 TUG tests
from the same subjects who participated for the elderly gait dataset. The start and end
of six TUG phases were manually labeled. These TUG phases are chair rise, walking
away from the chair, turning, walking towards the chair, turning before sitting down and
sitting down. All three acquired datasets are available online.

In the first part of this work gait analysis approaches based on both Kinect depth and
skeleton data were proposed. The gait analysis approaches were based on gait signals,
which were obtained from the movement of the lower limbs, e.g. the correlation coefficient
time series or the time series of the feet distance. Five spatiotemporal gait parameters
were extracted from each gait signal, gait speed, step length, stride length, step time and
stride time. Evaluation on both - healthy and elderly - gait datasets showed that the
correlation coefficient time series based on depth data performed the best. Moreover, it
was the most robust towards external influences, e.g. walking direction, use of a walking
aid, wearing a floor-length skirt, etc. From the assessed spatiotemporal parameters,
gait speed was the most accurate parameter, followed by stride parameters and step
parameters. This was expected and consistent with previous studies.
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5. Conclusion

The experiments in this work showed, that state-of-the-art gait analysis approaches that
work well with healthy adults in a laboratory setting may not work well for the gait of
older adults. Gait from older adults in a real-world setting is more challenging for a
number of reasons, e.g. the potential use of walking aids, small step lengths, slow gait
speeds, etc. The acquired elderly gait dataset can help in evaluating future gait analysis
approaches to be more robust towards the gait of older adults. However, due to the
limited size of the acquired elderly gait dataset, a larger gait dataset of older adults is
desirable for future works.

The choice between using the raw depth data and the skeleton model of Kinect should
be made based on the complexity of the required parameters. For mobility parameters
that depend on several body limbs or joints, Kinect skeleton tracking is preferable over
raw depth data as it provides a reliable, efficient and accurate pose estimation. However,
based on related literature, frailty is linked to simple gait parameters such as gait speed
and step length. Depth data should be favored over skeleton tracking for assessing these
simple gait parameters for a number of reasons. First, it is independent of the walking
direction of the subject. Second, it has less range limitation, which increases the potential
field of view of the sensor. Third, it is independent of the subject’s pose. And fourth, it
is more robust towards partial occlusions, which may cause the skeleton tracking to fail.

In the second part of this work, approaches for the analysis of the Timed Up & Go
(TUG) test were presented and evaluated on the acquired elderly TUG test dataset. Both
depth and skeleton data were used to automatically assess TUG time and the start and
end of six TUG phases. TUG time and TUG events were assessed by analyzing the
movement of the subject based on either the center shoulder joint velocity or the centroid
velocity. The approach based on skeleton data performed slightly superior compared to
the approach based on depth data regarding the error of detected TUG times and TUG
phases. However, both approaches showed significantly lower error rates for the TUG
time when compared with the time obtained from a manual stopwatch. Moreover, the
two approaches have been further evaluated with a previously presented approach and
superior results were obtained not just for the detection of the TUG time, but also for
the detection of TUG events.

The experiments in this work showed, that the TUG test can be automatically analyzed
by a single Kinect sensor. Moreover, they showed that TUG analysis based on joint
acceleration as a sole feature is not able to robustly measure TUG times and detect TUG
events. It was shown that the proposed approach worked well on the acquired TUG
test dataset. However, it may not be robust enough for future real-world datasets that
include failed movement attempts or other atypical behavior. Potential improvements
of the proposed approach should consider the position of the subject in relation to the
chair instead of solely considering the movement of the subject. This ensures that the
movement state of the subject can be continuously tracked and mistakes - caused by
the subject’s movement being different than expected - can be avoided. Furthermore, a
large, manually labeled TUG test dataset is needed for the evaluation of future TUG
automatization approaches.
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To sum up, it was shown that human mobility analysis based on Kinect has the potential
to assess frailty in older adults.
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5. Conclusion

Appendix

A Translated FRAIL scale questionnaire in German

F.R.A.I.L – Fragebogen 17. November 2016

Alter:

Geschlecht: [   ] weiblich [   ] männlich

Wie oft während der letzten 4 Wochen haben Sie sich müde gefühlt?
Mögliche Antworten: Dauernd, oft, manchmal, selten, nie.

[ ] Dauernd [   ] Oft [   ] Manchmal [   ] Selten [   ] Nie

Haben Sie irgendwelche Schwierigkeiten, alleine und ohne Gehhilfe 10 Stufen einer Stiege zu steigen
ohne zu pausieren?

[   ] Ja [   ] Nein

Haben Sie irgendwelche Schwierigkeiten, alleine und ohne Gehhilfe einige Hundert Meter zu gehen?

[   ] Ja [   ] Nein

Hat Ihnen Ihr Doktor gesagt, dass Sie eine oder mehrere der folgenden Krankheiten haben?

Bluthochdruck? [   ] Ja [   ] Nein

Diabetes oder Zuckerkrankheit? [   ] Ja [   ] Nein

Krebs, ausgenommen ein kleiner Hautkrebs? [   ] Ja [   ] Nein

Chronische Lungenerkrankung? [   ] Ja [   ] Nein

Herzinfarkt? [   ] Ja [   ] Nein

Herzinsuffizienz? [   ] Ja [   ] Nein

Angina? Bzw. Brust- oder Herzenge? [   ] Ja [   ] Nein

Asthma? [   ] Ja [   ] Nein

Arthritis oder Gelenkentzündung? [ ] Ja [   ] Nein

Schlaganfall? [   ] Ja [   ] Nein

Nierenerkrankung? [   ] Ja [   ] Nein

Wie viel wiegen Sie inklusive Kleidung aber ohne Schuhe? Gewicht: [              ] kg

Wie viel wogen Sie vor einem Jahr inklusive Kleidung aber ohne Schuhe? Gewicht: [              ] kg
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