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Kurzfassung

Ein wichtiger Fokus in der Entwicklung neuer statistischer Methoden liegt seit eini-

gen Jahren auf der Analyse hochdimmensionaler Daten. Klassische Regressions- und

Klassifikationsmethoden benötigen Datenmatrizen mit vollem Rang, die mehr Beobach-

tungen als Variablen beinhalten. In vielen Anwendungsgebieten (z.B. der Bioinformatik

oder Chemometrie) kann diese Anforderung aus praktischen Gründen nicht erfüllt wer-

den. Sparse modeling umfasst eine Klasse von Methoden, die durch einen Strafterm

Nullwerte bei der Koeffizientenschätzung bevorzugen und dadurch intrinsisch Variablen

selektieren.

Eine weitere Herrausforderung in vielen Anwendungsgebieten sind Ausreißer in den

Daten. Als Ausreißer werden Beobachtungen bezeichnet, die nicht der Struktur oder

dem Trend der Mehrheit der Daten entsprechen und dadurch die Verteilungsannahmen

klassischer Methoden verletzen und Modellschätzungen verzerren. Robuste Methoden

beschränken den Einfluss extremer Werte auf die Modellschätzung und liefern stabile

Modelle.

Diese Arbeit befasst sich mit robusten Methoden, die sparse modeling Ansätze inte-

grieren und dadurch anwendbar auf hochdimensionale Daten sind. Sparse partial robust

M regression ist eine robuste Methode, die partielle kleinste Quadrate Regression mit

sparse modeling verbindet. Die latenten Variablen eines niedrigdimensionalen Raumes

werden aus Linearkombinationen einer Teilmenge der originalen Variablen erzeugt. Mit

den latenten Variablen wird ein robustes Regressionsmodell erzeugt. Die Methode wird

für binäre Klassifikationsprobleme erweitert. Robust sparse optimal scoring ist eine weit-

ere robuste Klassifikationsmethode, die auch auf Mehrgruppenprobleme angewandt wer-

den kann und auf least trimmed squares regression basiert. Zuletzt werden zwei robuste

Methoden vorgestellt, die durch einen elastic net Strafterm sowohl Variablenselektion

integrieren als auch regularisierend auf die Koeffizienten wirken, wenn Variablen stark

korrelieren.





Abstract

The development of statistical methods for high-dimensional data has become an impor-

tant focus in recent research. Classical regression and classification approaches require

full rank data matrices, with more observations than variables. In many areas of ap-

plication (e.g. bioinformatics and chemometrics) this assumption is not met. Sparse

methods describe a class of approaches where a penalty is imposed on the coefficient

estimate to favour exact zero values and so intrinsically perform variable selection.

Another challenge in many applications are outliers in the data, which are obser-

vations that do not follow the structure of the majority of the data and so violate the

distribution assumptions which are necessary for classical model estimation. Robust

methods give stable estimates when outliers are present and model the relationship of

the majority of the data.

The focus of this thesis is on the development of regression and classification methods,

which are appropriate for high-dimensional data and data with outliers. Sparse partial

robust M regression is a robust and sparse regression method. A robust subspace is

identified, including only a subset of the original variables, where a robust regression

model is estimated. This approach is then extended to binary classification problems.

With the help of the optimal scoring approach, regression methods can be applied to

classification problems. Robust sparse optimal scoring is a classification method based on

least trimmed squares regression. Finally, sparse and robust linear regression and logistic

regression methods are introduced based on least trimmed squares with an elastic net

penalty, which induces sparsity and at the same time favours similar coefficient estimates

for highly correlated variables.
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CHAPTER1
Introduction

Robust and sparse modeling addresses two common problems in data analysis. The first

problem are outliers in the data, which are observations deviating from the pattern of the

majority. Outliers can be contaminated measurements or other suspicious observations

which one wants to exclude from the analysis or they are like the needle in a haystack

which the analyst is looking for. Identifying deviating observations can be used to obtain

warnings of production failures, in fraud detection or to detect uncommon changes in

the picture frames of a survey camera. Robust models provide a description of the data

based only on a majority, which is not distorted by few deviating observations.

Another challenge in many research areas is the steadily increasing amount of vari-

ables, which are measured in the experiments. Often it is assumed that only a small

subset of variables measures characteristics which are of interest for the experiment.

Then the challenge is to identify these variables of interest. Sparse modeling reduces

the number of variables which are included in the model by simultaneous variable selec-

tion and model estimation due to a penalty term in the objective function of the model

estimation.

1.1 Robust modeling

In statistical model estimation relationships between variables are derived from observed

data generally with the aim to gain understanding of the connection between the vari-

ables and/or to predict unknown outcomes. Ignoring outliers in this process can induce

severe problems for both aims. A single outlying observation can distort the estimated



1.2. Modeling with high-dimensional data

relationship between variables and predictions can become completely unreliable. There-

fore, robust methods, i.e. methods which are insensitive to a small fraction of observa-

tions which have extreme values, are an essential part of a statistician’s tool kit. The

underlying idea is to model the trend of the majority of the data.

Several approaches for robust regression analysis have been developed. Least

trimmed squares (LTS) regression (Rousseeuw, 1984) minimizes a trimmed sum over

the squared residuals, excluding the largest α% of the squared residuals from the model

estimation. A fast algorithm exists (Rousseeuw and Van Driessen, 2006) making it a

popular robust alternative to least squares regression. The choice of α is a trade-off be-

tween robustness (the tolerated fraction of outliers in the data) and statistical efficiency.

Another robust regression method is the MM-estimator (Yohai, 1987). Starting

with a highly robust coefficient estimate with low efficiency, its efficiency is improved

by iterative reweighting steps. For the reweighting, weights between zero and one are

assigned to each observation based on the size of the standardized residuals. Large

absolute residuals result in low weights, which reduces the influence of the observation

on the model estimation. Thus, a highly robust and efficient regression model is obtained.

In linear discriminant analysis (LDA) it is assumed that the data origins from g

groups, which have the same covariance structure. A pooled sample covariance estimate

is used to describe the within-group covariance structure. For robust classification mod-

els it is therefore crucial to obtain robust center and scatter matrices (Duda et al., 2012;

McLachlan, 2004). The minimum covariance determinant (MCD) estimator (Rousseeuw,

1985; Rousseeuw and Driessen, 1999) is a popular choice for robust LDA (Hubert and

Van Driessen, 2004; Todorov and Pires, 2007).

For a two group classification problem logistic regression is an alternative to LDA.

Robust logistic regression was introduced by Bianco and Yohai (1996) and further de-

velopment of the methodology presented in Croux and Haesbroeck (2003). All these

robust methods, same as their classical counterparts, are limited to applications where

more observations than variables are available.

1.2 Modeling with high-dimensional data

Many statistical methods assume a full rank data matrix, an assumption which is violated

if the number of variables exceeds the number of observations. Here we refer to data sets

with more variables than observations as high-dimensional data. With increasing number

of variables the data space quickly gets more and more empty, which is often referred to

2
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as the curse of dimensionality (see e.g. Beyer et al., 1999; Bennett et al., 1999). A large

number of observations is necessary to adequately describe the full space, which is often

unfeasible due to the limited number of observations (cost factor or other limits). The

manifold hypothesis states that the observations are not spread in the whole data space,

but located on a low dimensional manifold within the data space. This hypothesis is the

basis for dimension reduction techniques and sparse modeling.

Dimension reduction

Under the assumption that variance equals information, the principal component analy-

sis (PCA) is a well established method for dimension reduction. It is considered an un-

supervised method, since it is applied only to the predictor matrix. In regression or clas-

sification problems, where the target is to model the response or the class-membership,

the directions of highest variance of the predictors do not necessarily represent the most

useful information to achieve this target. Nevertheless, PCA is often applied to predictor

data before regression or discriminant analysis in practice.

Wold (1965) introduced the idea of partial least squares (PLS) regression. It is a

supervised dimension reduction and model estimation technique. First, latent variables

are obtained as linear combinations of the original variables such that they maximize

the covariance to the response vector. Second, a linear regression model is estimated on

the latent variables. The latent variables are constructed to be uncorrelated, so a stable

regression estimator is obtained even for data sets with high multicollinearity.

Also for linear discriminant analysis, PLS is an appropriate method. The second step

from PLS regression can be replaced by estimating an LDA model. It has been shown

that the PLS discriminant model maximizes the between group covariance (Barker and

Rayens, 2003).

Another approach to directly estimate a regression model based on high-dimensional

data is the Ridge estimator (Hoerl and Kennard, 1970). The model estimation is re-

stricted by a value the L2 norm on the coefficients is restricted. This leads to continuous

shrinkage of the coefficient estimates, adds a bias to the coefficients, but also reduces the

variance. With a proper restriction of the L2 norm the model precision can be improved

greatly by this bias-variance trade-off.

Sparse modeling

Sparse modeling combines model estimation with intrinsic variable selection. The un-

derlying assumption is that only a subset of variables contributes information to the

3
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model. Keeping uninformative variables in the model adds uncertainty to the predic-

tion. Therefore, it is desirable to exclude them.

The Lasso estimator (Tibshirani, 1996) is a regression estimator where a penalty term

is added to the sum of squared residuals in the objective function. This penalty is the L1

norm of the coefficient estimator, i.e. the sum of the absolute values of the coefficients.

Therefore, zero coefficients are favoured for variables which do not contribute relevant

information to explain the response. The influence of the penalty term is controlled by a

multiplicative tuning constant. The Lasso estimator is widely used. Detailed discussion

on recent developments are presented in Hastie et al. (2015).

The penalty in elastic net regression (Zou and Hastie, 2005) is a combination of

the penalties of Ridge and Lasso estimators. The property of Lasso to favour zeros

in the coefficients is preserved and by the L2 term of the penalty highly correlated

variables tend to obtain similar coefficient estimates. For the elastic net estimator two

tuning parameters need to be determined controling the overall influence of the combined

penalty and the mixing proportion between L1 and L2 penalty.

Even though PLS can be applied to high-dimensional data, the model precision still

suffers from uninformative variables. Sparse PLS (SPLS) was introduced by Chun and

Keleş (2010) to overcome this problem. The latent variables are constructed as a linear

combination of only a subset of the original variables. This method can be applied for

regression problems as well as for classification problems.

Sparse optimal scoring (Clemmensen et al., 2012) is another approach to obtain a

sparse classification model. A scoring vector transforms the categorical class-membership

into a continuous value, which is iteratively optimized. In this framework new develop-

ments in regression analysis can be transferred to classification problems.

1.3 Robust modeling for high-dimensional data

Identifying outliers in high-dimensional data can be a challenging task (Filzmoser et al.,

2008). So far, only few robust methods exist to model high-dimensional data and to

identify model-based outliers, which do not follow the trend of the majority.

The first sparse and robust regression method was introduced by Alfons et al. (2013)

and is based on the idea of LTS regression. Only a subset of observations are used

for the estimation of the model and sparsity is induced by an L1 penalty. After a

robust estimation is obtained, a reweighting step improves the efficiency of the method.

The robust PLS estimator called partial robust M regression (PRM) was introduced

4
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by Serneels et al. (2005). Both the dimension reduction and the regression on latent

variables are performed robustly. A sparse MM estimator was introduced in Öllerer

(2015) alongside with other robust methods for high-dimensional data.

1.4 Outline of the thesis

The thesis introduces new robust and sparse methods for regression and classification

problems. In Chapter 2 a sparse and robust PLS method is introduced. It combines

concepts from PRM (Serneels et al., 2005) and SPLS (Chun and Keleş, 2010). A

robust subspace is identified, including only a subset of the original variables, where a

robust regression model is estimated. This approach is extended to binary classification

problems in Chapter 3. Outliers are identified separately for each group. For the robust

analysis of multigroup classification problems for high-dimensional data a robust and

sparse classifier based on the optimal scoring approach is introduced in Chapter 4.

Chapter 5 presents a sparse regression method based on LTS regression with an elastic

net penalty. The method is applicable for linear and logistic regression.

The chapters consists of the following publications and submitted papers.

I. Hoffmann, S. Serneels, P. Filzmoser, C. Croux, Sparse partial robust M regression.

Chemometrics and Intelligent Laboratory Systems 2015; 149: 50–59.

I. Hoffmann, P. Filzmoser, S. Serneels, K. Varmuza, Sparse and robust PLS for binary

classification. J. Chemometrics 2016; 30: 153–162.

I. Hoffmann, P. Filzmoser, C. Croux, Robust and sparse multigroup classification by

the optimal scoring approach. Submitted for publication.

F. S. Kurnaz, I. Hoffmann, P. Filzmoser, Robust and sparse estimation methods for high

dimensional linear and logistic regression. Submitted for publication.
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CHAPTER2
Sparse partial robust M

regression

Abstract: Sparse partial robust M regression is introduced as a new re-

gression method. It is the first dimension reduction and regression algorithm

that yields estimates with a partial least squares like interpretability that are

sparse and robust with respect to both vertical outliers and leverage points.

A simulation study underpins these claims. Real data examples illustrate

the validity of the approach.

Key words: Biplot, Partial least squares, Robustness, Sparse estimation

2.1 Introduction

Sparse regression methods have been a major topic of research in statistics over the

last decade. They estimate a linear relationship between a predictand y ∈ Rn and a

predictor data matrix X ∈ Rn×p. Assuming the linear model

y = Xβ + ε, (2.1)

the classical estimator is given by solving the least squares criterion

β̂ = argmin
β
‖y −Xβ‖2 (2.2)
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with the squared L2 norm ‖u‖2 =
∑p

i=1 u
2
i for any vector u ∈ Rp. Thereby the predicted

responses are ŷ = Xβ̂. When the predictor data contain a column of ones, the model

incorporates an intercept.

Typically, but not exclusively, when p is large, the X data matrix tends to contain

columns of uninformative variables, i.e. variables that bear no information related to

the predictand. Estimates of β often have a subset of components
{
β̂j1 , ..., β̂jp̌

}
of small

magnitude corresponding to p̌ uninformative variables. As these components are small

but not exactly zero, each of them still contributes to the model and, more importantly,

to increased estimation and prediction uncertainty. In contrast, a sparse estimator of β

will have many components that are exactly equal to zero.

Penalized regression methods impose conditions on the norm of the coefficient vector.

The Lasso estimate (Tibshirani, 1996), where an L1 penalty term is used, leads to a

sparse coefficient vector:

min
β
‖y −Xβ‖2 + λ1‖β‖1, (2.3)

with ‖u‖1 =
∑p

i=1 |ui| for any vector u ∈ Rp. The nonnegative tuning parameter

λ1 determines the sparsity of the estimation and implicitly reflects the size of p̌. The

Lasso sparse regression estimate has become a statistical regression tool of widespread

application, especially in fields of research where data dimensionality is typically high,

such as chemometrics, cheminformatics or bioinformatics (Tibshirani, 2011). But, since

it is nonrobust, it may be severely distorted by outliers in the data.

Robust multiple regression has attracted widespread attention from statisticians since

as early as the 1970s. For an overview of robust regression methods, we refer to e.g.

Maronna et al. (2006). However, only recently, robust sparse regression estimators have

been proposed. One of the few existing sparse and robust regression estimators that is

robust to both vertical outliers (outliers in the predictand) and leverage points (outliers

in the predictor data), is sparse least trimmed squares regression (Alfons et al., 2013),

which is a sparse penalized version of the least trimmed squares (LTS) robust regression

estimator (Rousseeuw and Leroy, 2003).

In applied sciences, there is often a need for both regression analysis, and interpre-

tative analysis. In order to visualize the data and to interpret the high-dimensional

structure(s) in them, it is customary to project the predictor data onto a limited set

of latent components and then analyze the individual cases’ position as well as how

each original variable contributes to the latent components in a biplot. A first approach

would be to do a (potentially sparse) principal component analysis, followed by a (po-

8
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tentially sparse) regression. The main issue with that approach is that the principal

components are defined according to a maximization criterion that does not account for

the predictand. With this reason, partial least squares regression (PLS) (Wold, 1965)

has become a mainstay tool in applied sciences such as chemometrics. It provides a

projection onto a few latent components that can be visualized in biplots, and it yields

a vector of regression coefficients based on those latent components.

Partial least squares regression is both a nonrobust and a nonsparse estimator. Man-

ifold proposals to robustify PLS have been discussed, of which a good overview is given

in Filzmoser et al. (2009). One of the most widely applied robust alternatives to PLS

is partial robust M regression (Serneels et al., 2005). Likely its popularity is due to the

fact that it provides a fair tradeoff between statistical robustness with respect to both

vertical outliers and leverage points on the one hand and statistical and computational

efficiency on the other hand. From an application perspective, it has been reported to

perform well (Liebmann et al., 2010). Introduction of sparseness into the partial least

squares framework is a more recent topic of research (Lê Cao et al., 2008; Chun and

Keleş, 2010; Allen et al., 2013).

In this article, a novel estimator is introduced, called Sparse Partial Robust M re-

gression, which is up to our knowledge the first estimator to offer all three benefits

simultaneously: (i) it is based on projection onto latent structures and thereby yields

PLS like visualization, (ii) it is integrally sparse, yielding not only regression coefficients

with exact zero components, but also sparse direction vectors, and (iii) it is robust with

respect to both vertical outliers and leverage points.

2.2 The sparse partial robust M regression estimator

The sparse partial robust M regression (SPRM) estimator can be viewed at as either

a sparse version of the partial robust M regression (PRM) estimator (Serneels et al.,

2005), or as a way to robustify the sparse PLS (SPLS) estimator (Chun and Keleş,

2010). Therefore, its construction inherits some characteristics from both precursors.

In partial least squares, the latent components (or scores) T are defined as linear

combinations of the original variables T = XA, wherein the so-called direction vectors

ah (in the PLS literature also known as weighting vectors) are the columns of A. The

direction vectors maximize squared covariance to the predictand:

ah = argmax
a

cov2 (Xa,y) , (2.4a)

9



2.2. The sparse partial robust M regression estimator

for h ∈ {1, ..., hmax} under the constraints that

‖ ah ‖= 1 and aThX
TXai = 0 for 1 ≤ i < h. (2.4b)

Here, hmax is the maximum number of components we want to retrieve. We assume

throughout the article, that both predictor and predictand variables are centered, so

that

cov2 (Xa,y) =
1

(n− 1)2
aTXTyyTXa =

1

(n− 1)2
aTMTMa, (2.5)

with M = yTX. Regressing the dependent variable onto the scores, yields

γ̂ = argmin
γ

‖ y − Tγ ‖2=
(
T TT

)−1
T Ty. (2.6)

Then, since ŷ = T γ̂ and T = XA, one gets β̂ = Aγ̂.

In order to obtain a robust version of the partial least squares estimator, case weights

ωi are assigned to the rows of X and y. Let

X̃ = ΩX and ỹ = Ωy, (2.7)

with Ω a diagonal matrix with diagonal elements ωi ∈ [0, 1] for i ∈ {1, ..., n}. Outlying

observations will receive a weight lower than one. An observation is an outlier when it

has a large residual, or a large value of the covariate (hence a large leverage) in the latent

regression model (i.e. the regression of the predictand on the latent components). Let

ti denote the rows of T , ri = yi − tTi γ̂ are the residuals of the latent variable regression

model, where yi are the elements of the vector y. Let σ̂ denote a robust scale estimator

of the residuals; we take the median absolute deviation (MAD). Then the weights are

defined by

ω2
i = ωR

(ri
σ̂

)
ωT

(
‖ti −medj(tj)‖

medi ‖ti −medj(tj)‖

)
. (2.8)

More specifics on weight functions ωR and ωT will be discussed in Section 2.3.

With (2.5) and M̃ = ỹT X̃, the robust maximization criterion for the direction

vectors is

ah = argmax
a

aTM̃
T
M̃a, (2.9a)

under the constraints that

‖ ah ‖= 1 and aTh X̃
T
X̃ai = 0 for 1 ≤ i < h, (2.9b)

which is identical to maximization criterion (2.4) if Ω is the identity matrix.

10



Chapter 2: Sparse partial robust M regression

In order to obtain a fully robust PLS estimation, the latent variable regression needs

to be robustified too. Thereunto, note that the ordinary least squares minimization

criterion can be written as

γ̂ = argmin
γ

n∑
i=1

ρ
(
yi − tTi γ

)
, (2.10)

with ρ(u) = u2. Using a ρ function with bounded derivative in criterion (2.10) yields a

well-known class of robust regression estimators called M estimators. They are computed

as iteratively reweighted LS-estimators, with weight function ω(u) = ρ′(u)/u. The

resulting estimator is the partial robust M regression estimator (Serneels et al., 2005).

Imposing sparseness on the PRM estimator can now be achieved by setting an L1

penalty to the direction vectors ah in (2.9a). To get sufficiently sparse estimates the

sparseness is imposed on a surrogate direction vector c instead (Zou et al., 2006). More

specifically,

min
c,a
−κaTM̃T

M̃a+ (1− κ)(c− a)TM̃
T
M̃(c− a) + λ1 ‖ c ‖1 (2.11a)

under the constraints that

‖ ah ‖= 1 and aTh X̃
T
X̃ai = 0 for 1 ≤ i < h. (2.11b)

The final estimate of the direction vector is given by

ah =
ĉ

‖ĉ‖
, (2.12)

with ĉ is the surrogate vector minimizing (2.11a). In this way, we obtain a sparse

matrix of robustly estimated direction vectors A and scores T = XA. After regressing

the dependent variable on the latter using criterion (2.10) we get the sparse partial

robust M regression estimator. Note that the sparsity of the estimated directions carries

through to the vector of regression coefficients.

This definition leads to a complex optimization task in which three parameters need

to be selected hmax, κ and λ1. Nevertheless, Chun and Keleş (2010) have shown that the

optimization problem does not depend on κ for any κ ∈ (0, 1/2] for univariate y (which

is the case throughout this article). Therefore, the three parameter search reduces to the

number of latent components hmax and the sparsity parameter λ1. How these parameters

can be selected will be discussed in detail in Section 2.4. The next section outlines a

fast algorithm to compute the SPRM estimator.

11



2.3. The SPRM algorithm

2.3 The SPRM algorithm

The SPRM estimator can be implemented in a surprisingly straightforward manner.

Chun and Keleş (2010) have shown that imposing sparsity on PLS estimates according to

criterion (2.11) yields analytically exact solutions. Denote by zh the classical, nonsparse

PLS direction vectors of the deflated X matrix, i.e. zh = ET
hy/ ‖ ET

hy ‖, wherein

Eh is X deflated in order to fulfil the orthogonality side constraints in (2.11b). Hence,

E1 = X and Eh+1 = Eh− ththTEh/‖th‖2 where th is the score vector computed in the

previous step. Then the exact SPLS solution is given by

wh = (|zh| − λ1/2)� I (|zh| − λ1/2 > 0)� sgn(zh), (2.13)

wherein I(·) denotes the indicator function that yields a vector whose elements equal 1

if the argument is true and 0 otherwise, and � denotes the Hadamard (element wise)

vector product. In (2.13), |zh| is the vector of the absolute values of the components of

zh, and sgn(zh) is the vector of the signs of the components. By putting the vectors

wh in the columns of W for h = 1, ..., hmax, the sparse direction vectors in terms of the

original, not deflated variables are given by A = W (W TXTXW )−1.

Formula (2.13) can be replaced by an equivalent expression. Let η denote a tuning

parameter with η ∈ [0, 1). Then we redefine

wh =

(
|zh| − ηmax

i
|zih|

)
� I

(
|zh| − ηmax

i
|zih| > 0

)
� sgn(zh), (2.14)

with zih being the components of zh. The parameter η determines the size of the

threshold, as a fraction of the maximum of zh, beneath which all elements of vector wh

are set to zero. Since the range of η is known in this definition, it facilitates the tuning

parameter selection via cross validation (see Section 2.4).

Computation of the M estimators in (2.10) boils down to iteratively reweighting the

least squares estimator. We use the redescending Hampel weighting function giving a

good trade-off between robustness and efficiency (Hampel et al., 1986).

ω(x) =


1 |x| ≤ a
a
|x| a < |x| ≤ b

q−x
q−b

a
|x| if b < |x| ≤ q

0 q < |x|

, (2.15)

wherein the tuning constants a, b and q can be chosen as distribution quantiles. For the

residual weight function ωR in (2.8) we take the 0.95, 0.975 and 0.999 quantiles of the

standard normal, for ωT the corresponding quantile of a chi-square distribution.

12



Chapter 2: Sparse partial robust M regression

Algorithm 2.1: The SPRM algorithm.

X and y denote robustly centered data (by column-wise median).

1. Calculate initial case weights:

• Calculate distances for xi (ith row of X) and yi:

di =
‖xi‖

medj ‖xj‖
and

ri =
|yi|

cmedj |yj |
for i ∈ {1, ..., n}

where c = 1.4826 for consistency of the MAD.

• Define initial weights ωi =
√
ωT (di)ωR(ri) for Ω (see (2.8)).

2. Iteratively reweighting:

• Weight data:

Xω = ΩX

yω = Ωy

• Apply the sparse NIPALS to Xω and yω and obtain scores T ω, directions

Aω, coefficients β̂ω and predicted response ŷω.

• Calculate weights for scores and response.

– Center diag(1/ω1, ..., 1/ωn)T ω by the median and scale the

columns with the Rousseeuw and Croux (1993) robust scale estimator

Qn to obtain T̃ .

– Calculate distances for t̃i (ith row of T̃ ) and the robustly centered and

scaled residuals ri for i ∈ {1, ..., n}:

di =
‖t̃i‖

medj ‖t̃j‖

ri =
|yω,i − ŷω,i −medk(yω,k − ŷω,k)|

cmedj |yω,j − ŷω,j −medk(yω,k − ŷω,k)|

– Update weights ωi =
√
ωT (di)ωR(ri).

Repeat until convergence of β̂ω.

3. Denote estimates of the final iteration by A and β̂ and the scores by T = XA.
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Figure 2.1: The Hampel (solid) weighting function with standard normal 95%, 97.5%
and 99.9% quantiles as cutoffs and the Fair (dashed) weighting function with parameter
c = 4.

Note that in the original publication on partial robust M regression (Serneels et al.,

2005), the Fair function was recommended (both weighting functions are plotted in

Figure 2.1), but the authors consider the Hampel redescending function superior over

the Fair function, because (i) it yields case weights that are much easier to interpret,

since they are exactly 1 for the regular cases, exactly 0 for the severe outliers and in

the interval (0,1) for the moderate outliers and because (ii) the tuning constants for

the cutoffs can be set according to intuitively understandable statistical values such as

quantiles from a corresponding distribution function.

The algorithm to compute the SPRM estimators iteratively reweights a sparse PLS

estimate. This sparse PLS estimate is computed as in Lee et al. (2011), who outline

a sparse adaptation of the NIPALS computation scheme (Wold, 1975), where in each

step of the NIPALS the obtained direction vector of the deflated X matrix is modified

according to Equation (2.14) in order to get sparseness. The starting values of the

SPRM algorithm have to be robust. Failing to estimate robust starting values, would

lead to an overall nonrobust estimator. Algorithm 2.1 presents the computing scheme

and details the starting values. We iterate until convergence, that is whenever the

relative difference in norm between two consecutive approximations of β̂ is smaller than

a specified threshold, e.g. 10−2. An implementation of the algorithm is available on

14



Chapter 2: Sparse partial robust M regression

CRAN in the package sprm (Serneels and Hoffmann, 2014).

2.4 Model selection

The computation of the SPRM estimator requires specification of hmax, the number of

latent components, and the sparsity parameter η ∈ [0, 1) (see Equation (2.14)). For

η = 0 the model is estimated including all variables, for η tending towards 1 almost no

variables are selected.

A grid of values for η is searched and hmax = 1, 2, ...,H. With k-fold robust cross

validation the best parameter combination is selected. For each combination of hmax

and η the model is estimated k times based on a training set containing (100−k) percent

of the data, and then evaluated for the remaining data, constituting the validation set.

All observations are considered once for validation and so we obtain a single prediction

for each of them. As robust cross validation criterion the one sided α% trimmed mean

is calculated from the squared prediction errors, such that the largest α% errors which

may come from outliers, are excluded. We choose the parameter combination where this

measure of prediction accuracy is smallest.

The model selection procedure in the following is based on 10-fold cross validation.

For the robust methods, the one sided 15% trimmed mean squared error is applied as

decision criterion and for the classical methods the mean squared error of prediction is

used for validation. The parameter hmax has a value domain from 1 to 5 and for SPLS

and SPRM the sparsity parameter η is chosen among ten equally spaced values from 0

to 0.9.

2.5 Simulation study

In this section the properties of SPRM and the related methods PRM, PLS and SPLS

are studied by means of a simulation study. The predictand is generated according to

the model

yi = tiγ + ei for 1 ≤ i ≤ n, (2.16)

where the score matrix T = XA, for a given matrix of direction vectors A.

Let X be an n × p data matrix with columns generated independently from the

standard normal distribution. We generate the columns ah (h = 1, . . . , hmax) of A such

that only the first q ≤ p elements of each ah are nonzero. Thereby, the data matrix

X is divided into q columns of relevant variables and p − q columns of uninformative
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2.5. Simulation study

variables. The nonzero part ofA is given by the eigenvectors of the matrixXT
qXq, where

Xq contains the first q columns of X. This ensures that the side conditions for ah hold

(see (2.11b)). The components of the regression vector γ ∈ Rhmax are drawn from the

uniform distribution on the interval [0.5, 1.5]. The errors ei are generated as independent

values from the standard normal distribution. In a second experiment, we investigate

the influence of outliers. The first 10% of the errors are generated from N(15, 1) instead

of N(0, 1). To induce bad leverage points, the first 5% of the observations xi are replaced

by vectors of random values from N(5, 0.1). This will demonstrate the stability of the

robust methods when compared to the classical approaches.

In the simulation study, mrep = 200 data sets with n = 60 observations are gener-

ated according to (2.16) for various values of p. While q = 6 is fixed, we will increase

p gradually and therefore decrease the signal to noise ratio. This illustrates the effect

of uninformative variables on the four model estimation methods and incorporates low

dimensional as well as high-dimensional settings. For every generated data set we com-

pute the estimator β̂
j

(for 1 ≤ j ≤ mrep) with sparsity parameter η and hmax selected

as described in Section 2.4. Note that the true coefficients βj are different for every

simulation run, since every data set is generated with a different regression vector γ.

Performance Measures: To evaluate the simulation results, the mean squared error

(MSE) is used as a measure of the accuracy of the model estimation.

MSE(β̂) =
1

mrep

∑
1≤j≤mrep

‖β̂j − βj‖2 (2.17)

Furthermore, let β̂
j

0 be the subvector of βj corresponding to the uninformative variables.

In the true model βj0 is a vector of zeros. Nonzero values of β̂
j

0 contribute to the model

uncertainty. One main advantage of sparse estimation is to reduce this uncertainty by

setting most coefficients of uninformative variables exactly to zero. The mean number of

nonzero values in β̂
j

0 is reported for both sparse methods to illustrate whether this goal

was achieved. Furthermore, the mean number of nonzero coefficients of the informative

variables, is reported.

The last quality criterion discussed in this section is the prediction performance of

the estimated model for new data of the same structure. A test data set with n = 60

observations is generated according to the model in each repetition. For 1 ≤ j ≤ mrep

the estimated response of the test data is denoted by ŷjtest and the true response is yjtest.
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Chapter 2: Sparse partial robust M regression

Table 2.1: Mean percentage of correct zero coefficients, i.e. zero coefficients of uninfor-
mative variables, for SPLS and SPRM for simulations with (a) clean training data and
(b) training data with 10% outliers.

(a) without outliers

p− q 20 100 200 300 500
SPLS 91.2 97.6 98.4 99.1 98.0
SPRM 75.5 93.4 95.1 96.8 94.5

(b) with outliers

p− q 20 100 200 300 500
SPLS 43.5 38.7 36.2 39.3 35.5
SPRM 76.9 91.0 94.2 98.1 97.6

Table 2.2: Mean percentage of correct nonzero coefficients, i.e. nonzero coefficients of the
six informative variables, for SPLS and SPRM for simulations with (a) clean training
data and (b) training data with 10% outliers.

(a) without outliers

p− q 20 100 200 300 500
SPLS 65.8 54.1 52.0 48.4 46.6
SPRM 70.0 53.8 47.8 46.7 44.8

(b) with outliers

p− q 20 100 200 300 500
SPLS 65.2 70.1 71.3 68.4 72.2
SPRM 68.8 53.8 49.3 45.0 41.3

Then the mean squared prediction error (MSPE) is computed as

MSPE =
1

mrep

∑
1≤j≤mrep

‖ŷjtest − y
j
test‖2. (2.18)

Results for clean data: In the absence of outliers (see Figure 2.2a and 2.3a), the

overall performance of the classical methods SPLS and PLS is slightly better than for

the robust counterparts SPRM and PRM, respectively. In Figure 2.2a it is seen that

the MSE is smallest for SPLS. If all variables are informative, so p − q = 0, then PLS

performs as good as SPLS; but for an increasing number of uninformative variables PLS

quickly becomes less reliable. The same can be observed for the mean squared prediction

error in Figure 2.3a. Both Figures 2.2a and 2.3a show that SPRM is not as accurate
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Figure 2.2: Mean squared error of the coefficient estimates for PLS, PRM, SPLS and
SPRM for simulations with (a) clean training data and (b) training data with 10%
outliers.

as SPLS, but performs much better than PLS and PRM for settings with increasing

number of uninformative variables.

Table 2.1a underpins the advantage of sparse methods. It shows that the average

percentage of uninformative variables excluded from the model is close to 100%. SPLS is

again slightly better than SPRM, but for both estimates few uninformative variables are

included, leading to reduced estimation error in comparison to PLS and PRM. The MSE

for the estimation of β0 is given in Figure 2.4a. SPLS and SPRM have a comparably

good performance, even though SPRM has less zero components in β̂
j

0. That means that

the nonzero coefficient estimates of the uninformative variables are very small for SPRM.

PRM gives surprisingly good results for the MSE of β̂0 and outperforms PLS. Table 2.2a

shows the mean percentage of nonzero coefficients for the informative variables. For

both SPLS and SPRM only roughly half of the six informative variables are included.

The sensitivity of SPLS, i.e. the proportion of nonzero correctly identified as such, is

reported to be close to 100% in other simulation settings (Chun and Keleş, 2010), but in

this simulation setting the true nonzero coefficients can be close to zero. SPRM includes

slightly less variables, but gives very comparable results to SPLS.

Results for data with outliers: Outliers distort the estimation of PLS and SPLS

heavily. Figures 2.2b and 2.3b show that the performance of PLS and SPLS strongly de-
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Figure 2.3: Mean squared prediction error for PLS, PRM, SPLS and SPRM for simula-
tions with (a) clean training data and (b) training data with 10% outliers.
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Figure 2.4: Mean squared error of the coefficient estimates of the uninformative variables
for PLS, PRM, SPLS and SPRM for simulations with (a) clean training data and (b)
training data with 10% outliers.
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teriorates, while the robust methods are hardly influenced by the presence of the outliers.

Furthermore, the robust methods behave as expected as the number of uninformative

variables increases: The MSE and MSPE for PRM increase remarkably, whereas SPRM

shows only a slight increase, which illustrates the advantage of sparse estimation.

In Table 2.1b it is seen that SPRM excludes nearly all uninformative variables from

the model, whereas SPLS fails to identify them up to a high degree. For all settings, less

than half of the uninformative variables are excluded. Hence, the estimation of β0 is

distorted for the classical methods as shown in Figure 2.4b. Not only the uninformative

variables are affected by this trend. In Table 2.2b, the average percentage of nonzero

coefficients corresponding to informative variables, are shown. From these results, it is

evident that SPLS includes more informative variables compared to the case without

outliers, which can be explained by the relatively large number of contributing variables

in the models. For SPRM only marginal changes are observed compared to the results

for data without outliers.

Increasing the number of outliers: An important focus in the analysis of robust meth-

ods, is to study how an increasing percentage of outliers affects the model estimation.

We use the same simulation design, again with mrep = 200 repetitions for each consid-

ered number of outliers. In each step the number of outliers increases by two (one of

these two is a bad leverage point) till 50% outliers are generated. The mean squared

prediction error as defined in (2.18) is calculated. Figures 2.5a and 2.5b display the

MSPE for increasing number of outliers, each graph for a fixed number of uninformative

variables.

We observe for the robust methods PRM and SPRM hardly any change in the quality

of the prediction performance of the estimated models for up to 33% contamination. The

classical methods yield distorted results even for only 3% contamination. Figure 2.5b

show that this high robustness of PRM and SPRM remains when there is a large number

of (uninformative) variables. We conclude that the robust methods clearly outperform

PLS and SPLS in presence of outliers, while SPRM gives better mean squared prediction

error than PRM for percentages of outliers up to 33 percent.

Nonnormal error distributions: A common assumption in model (2.16) is that the

errors ei come from a normal distribution. We simulate data with p = 500, q = 6

and n = 60 as described previously for the setting without outliers, but replace the

error term ei by random values from heavy tailed distributions. In Table 2.3, the MSE

of the coefficients MSE(β̂) estimated for simulated data with normal error terms are
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Figure 2.5: Mean squared prediction error for PLS, PRM, SPLS and SPRM illustrating
the effect of increasing number of outliers for data with (a) 20 uninformative variables,
(b) 500 uninformative variables.

Table 2.3: Mean value (and standard error) of the mean squared error of the coefficient
estimates MSE(β̂) for simulated data with error terms from the standard normal distri-
bution, the t distribution with 3 and 2 degrees of freedom and Laplace distribution with
dispersion parameter 1 and 2.

N t3 t2 L1 L2

PLS 2.00 (.05) 2.25 (.06) 2.77 (.11) 2.04 (.05) 2.72 (.05)
PRM 2.10 (.05) 2.13 (.05) 2.18 (.05) 2.06 (.05) 2.31 (.06)
SPLS 0.60 (.02) 1.29 (.07) 2.29 (.15) 1.06 (.04) 2.94 (.09)
SPRM 0.88 (.04) 1.16 (.05) 1.22 (.05) 1.15 (.05) 2.43 (.09)

compared to those from data with error terms from the t distribution with 3 and 2

degrees of freedom and the Laplace distribution with a dispersion parameter of 1 and

of 2. The mean squared error of the coefficient estimates behaves as expected for the

t distributions. It increases significantly for the classical methods as the number of

degrees of freedom decreases from three to two, in which case more extreme values are

generated. For error terms from the Laplace distribution, the advantage of the robust

methods gets more pronounced for the Lapalce distribution with the higher dispersion

parameter, which generates more extreme values.

Computation time and convergence: The computation time of the robust sparse NI-

PALS algorithm strongly depends on the number of iterations needed till convergence
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of the robust and sparse coefficient estimates β̂ω as described in Algorithm 2.1 in step

2. This varies with the structure of the data. In the simulation study with ten percent

outliers in the data and p = 500 on average five iterations are needed, i.e. the sparse

NIPALS algorithm, which is computationally efficient for a univariate response, has to

be applied on average five times. On a standard PC (Intel i7-4790K) the average com-

putation time for the estimation of a model based on these data with fixed parameters

η = 0.5 and hmax = 2 is 0.12 seconds.

2.6 Application

Sparse regression methods and big data go hand in hand. Therefore, there are manifold

applications of those methods in the omics fields (e.g. the microarray CHIP-chip data

(Chun and Keleş, 2010)), but they have also found their way into chemometrics (e.g.

Filzmoser et al., 2012) or medicine (e.g. the application on NMR spectra of neural cells

(Allen et al., 2013)). Even though sparse regression methods are of great use when data

dimensionality is high, they can already be beneficial when applied to low dimensional

problems (which, in the context of classification, has been reported in Filzmoser et al.

(2012)). Therefore, in the first example we will focus on data of moderate dimensionality,

followed by a gene expression example to illustrate the application to high-dimensional

data.

The gloss data: The data consist of n = 58 polymer stabilization formulations,

wherein the p = 7 predictors are the respective concentrations of seven different classes

of stabilizers. The actual nature of the classes of stabilizers, as well as the respective

concentrations, are proprietary to BASF Corp. and cannot be disclosed. The response

variable targets to quantify the quality of stabilization by measuring how long it takes

for the polymer to lose 50% of its gloss when weathered (in what follows, simply called

the gloss). The target is to predict the gloss from the stabilizer formulations. The data

were scaled with the Qn scale for the robust methods (Rousseeuw and Croux, 1993) and

for the classical methods with the standard deviation.

PLS, SPLS, PRM and SPRM use the 10-fold cross validation procedure described in

Table 2.4: Prediction performance for polymer stabilizer data.

PLS PRM SPLS SPRM

15% TMSPE 2099382 2218181 2113960 2047858
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Figure 2.6: The PRM and SPRM biplots for the gloss data example.

Section 2.4. The optimal number of latent components for PLS and PRM was detected

to equal 1. For SPRM the optimal number of latent components is 4 and the sparsity

parameter was found to be η = 0.6; for SPLS we have hmax = 3 and η = 0.9.

To evaluate the four methods, leave-one-out cross validation was performed and the

one sided 15% trimmed mean squared prediction error (TMSPE) is reported in Table

2.4. SPRM performs slightly better according to the TMSPE. Another advantage of

sparse robust modeling in this example is the interpretability. Figure 2.6 compares the

biplots of PRM and SPRM for the first two latent components. In the sparse biplot

variables V1, V2 and V3 are excluded and so it is easier to grasp in which way the latent

components depend on the original variables, and how the individual cases differ with

respect to the selected variables.

The NCI data: The National Cancer Institute provides data sets of measurements

from 60 human cancer cell lines (http://discover.nci.nih.gov/cellminer/). The

40th observation has to be excluded due to missing values, i.e. n = 59. The gene

expression data comes from an Affymetrix HG-U133A chip and was normalized with

the GCRMA method. It is used to model log2 transformed protein expression from a

Lysate Array. From the gene expression data only the 25% of the variables with highest

variance are considered, which leads to p = 5571, as was similarly conducted by Lee

et al. (2011). The protein data consists of measurements of 162 expression levels. Since

the proposed method is designed for univariate response we modeled the relationship for
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Figure 2.7: Boxplots of normed TMSPE of 162 responses from the NCI data for PLS,
PRM, SPLS and SPRM.

each protein expression separately and obtain 162 models for each of the competitive

methods.

As before, the model selection is done using 10-fold cross validation (see Section

2.4) and the selected models are evaluated with the 15% TMSPE. For each of the 162

different responses the TMSPE of each estimated model is divided by the smallest of

the four TMSPEs. This normed TMSPE is a value equal to 1 (for the best method) or

larger and we can compare it across the different responses (see Figure 2.7). Overall, the

combination of sparsity and robustness leads to a superior evaluation. The median of the

normed TMSPE of the SPRM models is very close to 1 and therefore, we can conclude

that for half of the models SPRM is either the best or very close to the best model. PLS

is not an appropriate method for these data, since the TMSPE differs strongly from the

best model in most cases.

For purpose of illustration, we focus on Keratin 18 as response. It has the highest

variance of all responses and its expression is an often used criterion for the detection of

carcinomas (Oshima et al., 1996). Table 2.5 presents the number of latent components

and the number of selected variables (i.e. having nonzero estimated coefficients) for each

method, together with the TMSPE. The SPRM model gives the best result with only

6 out of 5571 variables selected. Even PRM performs better than SPLS in this high-

dimensional setting, which underpins the importance of robust estimation for these data.

Figure 2.8 shows the biplot of scores and directions for the first two latent components

24



Chapter 2: Sparse partial robust M regression

Table 2.5: Model properties for NCI gene expression data with protein expression of
Keratin 18 as response variable.

PLS PRM SPLS SPRM

15% TMSPE 3.22 1.72 2.03 1.24
no. of latent components 4 2 2 3
no. of selected variables 5571 5571 78 6

of the SPLS and the SPRM model. For SPRM, the first latent component is determined

by the variables KRT8 and KRT19. The expression of these genes is known to be closely

related to the protein expression of Keratin 18 and they are used for the identification

and classification of tumor cells (Schelfhout et al., 1989; Oshima et al., 1996). KRT8

has previously been reported to play an important role in sparse and robust regression

models of these data (Alfons et al., 2013). The biplot further unveils some clustering in

the scores and provides insight into the multivariate structure of the data. The biplot

of the SPLS model (Figure 2.8a) cannot be interpreted since this model including 78

variables is too complex. Interestingly, in the SPLS biplot KRT8 and KRT19 are also

the genes which have the largest positive influence on the first latent component.

Note that the case weights ωi of the robust models presented in Figure 2.9 are as

expected: they are one for the bulk of the data, exactly zero for the potential outliers

and in the interval (0,1) for a few observations, which is an immediate consequence

of adopting the Hampel weighting function (Equation (2.15) and Figure 2.1). Hence,

outliers can easily be identified. The detection of potential outliers differs between PRM

and SPRM, but the pattern is similar.

2.7 Conclusions

SPRM is a sparse and robust regression method, which performs dimension reduction in

a manner closely related to partial least squares regression. It performs intrinsic variable

selection and retrieves sparse latent components, which can be visualized in biplots and

interpreted better than nonsparse latent components especially for high-dimensional

data. Since sparse methods eliminate the uninformative variables, higher estimation

and prediction accuracy is attained. The SPRM estimation of latent components and

the selection of variables is resistant to outliers. To reduce the influence of outliers on the

model estimation, an iteratively reweighted regression algorithm is used. The resulting

case weights can be used for outlier diagnostics.
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2.7. Conclusions
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Figure 2.8: The SPLS and SPRM biplots for the gene data example with protein ex-
pression of Keratin 18 as response.
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Chapter 2: Sparse partial robust M regression

We demonstrated the importance of robustness and sparsity properties in a simula-

tion study. The method was shown to be robust with respect to outliers in the predictors

and in the response and achieved good results for settings with high percentage of out-

liers. The informative variables were detected accurately. We illustrated the performance

of SPRM on a data set of polymer stabilization formulations of moderate dimensionality

and on high-dimensional gene expression data. An implementation of the SRPM, as

well as visualization tools and the cross-validation model selection method outlined in

Section 2.4, is available on CRAN in the package sprm (Serneels and Hoffmann, 2014).

The extension of SPRM regression for a multivariate response is a next step to take.

Note that few papers combine sparseness and robustness for multivariate statistics, an

exception is Croux et al. (2013) for principal component analysis. The development

of prediction intervals around the SPRM prediction is another challenge left for future

research. A bootstrap approach seems reasonable, but its validity remains to be inves-

tigated. Obtaining theoretical results on breakdown point or consistency of the model

section is out of the scope of this paper. Few theoretical results are available in the

PLS literature, and this only for the nonrobust and nonsparse case. In this paper we

proposed and put into practice a new sparse and robust partial least squares method,

which we believe to be valuable for data scientists confronted with prediction problems

involving many predictors and noisy data.
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CHAPTER3
Sparse and robust PLS for binary

classification

Abstract: Partial robust M regression (PRM), as well as its sparse coun-

terpart sparse partial robust M regression (SPRM), have been reported to

be regression methods that foster a partial least squares alike interpretation,

while having good robustness and efficiency properties, as well as a low com-

putational cost. In this paper, the partial robust M discriminant analysis

classifier (PRM-DA) is introduced, which consists of dimension reduction

through an algorithm closely related to PRM and a consecutive robust dis-

criminant analysis in the latent variable space. The method is further gen-

eralized to sparse PRM-DA (SPRM-DA) by introducing a sparsity penalty

on the estimated direction vectors. Thereby, an intrinsic variable selection is

achieved, which yields a better graphical interpretation of the results, as well

as more precise coefficient estimates, in case the data contain uninformative

variables. Both methods are robust against leverage points within each class,

as well as against adherence outliers (points that have been assigned a wrong

class label). A simulation study investigates the effect of outliers, wrong class

labels and uninformative variables on the proposed methods and its classi-

cal PLS counterparts, and corroborates the robustness and sparsity claims.

The utility of the methods is demonstrated on data from mass spectrometry

analysis (TOF-SIMS) of meteorite samples.



3.1. Introduction

Key words: Discriminant analysis, Partial least squares, Robustness, Su-

pervised classification, Variable selection

3.1 Introduction

Partial Least Squares (PLS) (Wold et al., 2001), is a powerful and popular method for

compressing high-dimensional data sets. Commonly it is applied to two data blocks

(predictors and response) and projects the data onto a latent structure such that the

squared covariance between the blocks is maximized. PLS can deal with a high number

of variables p and small sample size n and it is not affected by multicollinearity. Fur-

thermore, it is popular in applied sciences because of the relative ease with which results

can be visualized and interpreted. The latent components and scores can be displayed

in biplots, which support the interpretation of the model and the understanding of the

multivariate data structure.

Many classification methods can only be applied to data with more observations

than variables. PLS is a well established tool for effective dimension reduction in the

classification setting. Nguyen and Rocke (2002) proposed a two step approach for binary

classification based on PLS. First the class memberships are modelled as binary variables

and are treated for the projection on the latent structure as if they were a continuous

response. In the second step a standard classifier, e.g. Fisher’s LDA, is applied to

the transformed data in the low dimensional space. This method is here referred to as

PLS-DA.

The feasibility of such approaches has been discussed by Kemsley (1996) and in

more detail by Barker (2000) and Barker and Rayens (2003). They established the

theoretical connection between PLS on binary response and classification and showed

that PLS directions maximize the between group variance. PLS classification methods

have been applied with considerable success in various scientific research areas, as well as

in industry and production. They were used to analyze food quality with conventional

sensory profiling data Rossini et al. (2012), to classify waste water pollution Sääksjärvi

et al. (1989) and infrared spectra of olive oils and plant seeds Kemsley (1996). They have

been used for tumor classification with micro-array data Pérez-Enciso and Tenenhaus

(2003) and for fault diagnosis in chemical processes Chiang et al. (2000).

Nevertheless, these methods have their drawbacks Kettaneh et al. (2005). For ex-

perimental data two challenges arise frequently which will be addressed here, namely
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Chapter 3: Sparse and robust PLS for binary classification

outliers, i.e. samples which are not coherent with the general trend of the data, and un-

informative variables, which contain no explanatory power for the response and which

commonly appear in large quantity in high-dimensional data sets.

Contamination, defect of instruments or wrong assumptions about the distribution

of the data, may lead to apparently unreasonable measurements in the samples. In clas-

sical PLS, outliers have a much higher influence on the model estimation than ordinary

observations and thereby, they distort the model. To avoid this problem in the regres-

sion framework, various robust PLS methods have been developed (for an overview, see

Filzmoser et al. (2009)). Partial Robust M regression (PRM) (Serneels et al., 2005)

is among the most popular of these methods, for its trade-off between robustness and

(statistical and computational) efficiency. It is robust with respect to leverage points

(outliers in the predictor space) and vertical outliers (outliers in the response).

PRM-DA is presented here as a robust alternative to PLS-DA. It inherits the ad-

vantages of a PLS method, such as the ability to deal with high-dimensional data,

multicollinearity and the possibility to illustrate the model in biplots for interpretation.

Furthermore, PRM-DA is closely related to PRM regression and as such, has good ro-

bustness properties, a high statistical efficiency, and is computationally fast. Due to the

data structure of classification problems, the PRM algorithm for regression cannot be

directly applied to a binary response but needs specific modifications for the detection

of outliers. This aspect is presented in Section 3.3.

Another problem of increasing importance is the extraction of relevant variables from

the data set. Variables which do not provide information about the class membership add

unnecessary uncertainty to the model. For data with a high percentage of uninformative

variables, biplots become overloaded and a sound interpretation of the model becomes

tedious or even impossible Kettaneh et al. (2005). These issues can be countered by

sparse modeling. An overview of existing sparse methods in Chemometrics is given in

Filzmoser et al. (2012). A sparse coefficient estimate is obtained by imposing a penalty

term (e.g. the L1 norm of the coefficient vector), thanks to which uninformative variables

are excluded from the model. In case the data contain uninformative variables, sparsity

improves model precision and a parsimonious model is easier to interpret. Chun and

Keleş (2010) introduced a sparse PLS regression method, which was adapted by Chung

and Keleş (2010) to the classification setting. Following this approach, the sparse and

robust classifier SPRM-DA is introduced in Section 3.4, which performs intrinsic variable

selection and is related to SPRM regression (Hoffmann et al., 2015).

For the selection of the optimal model, the number of PLS components and a sparsity
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3.2. Projection onto latent structure for discriminant analysis

parameter are determined through K-fold cross validation. The procedure is described

in Section 3.5. To demonstrate the performance of the methods, simulation studies are

conducted in Section 3.6 and data examples from mass spectrometry are given in Section

3.7.

3.2 Projection onto latent structure for discriminant

analysis

In the binary classification problem, the data consist of observations from two different

populations, henceforth referred to as group A and group B . Let nA and nB denote the

number of observations of groups A and B, respectively, and n = nA + nB. The data

matrix X ∈ Rn×p with p variables can be divided into two subsets XA ∈ RnA×p and

XB ∈ RnB×p containing the observations of groups A and B. In order to disencumber

notation, we assume without loss of generality that XA form the first nA rows of X,

followed by the observations XB of group B.

The first step of PLS-DA, the projection onto latent structure, is methodically equiv-

alent to that in PLS regression. The class memberships of the data are coded in the

vector ỹ with 1 for group A and −1 for group B. It is centred and scaled and further

treated as if it were a continuous response, denoted by y. Furthermore, assume that X

is column-wise centred.

Dimension reduction is achieved by projection of the original variables onto a latent

structure, such that the covariance between the projection of the predictors and the

response is maximized. In detail, the direction vector wh of a PLS model (also known

as weighting vector) maximizes

wh = argmax
w

cov2 (Xw,y) , (3.1a)

for h ∈ {1, ...,H} subject to

‖ wh ‖= 1 and wT
hX

TXwi = 0 for 1 ≤ i < h. (3.1b)

The direction vectors form the columns of W ∈ Rp×H and define the latent components

or scores T ∈ Rn×H as linear combinations of the data, i.e. T = XW . Since y and X

are centred, an estimate of the (squared) covariance in (3.1a) is

cov2 (Xw,y) =

(
1

n− 1
yTXw

)2

. (3.2)
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Many algorithms exist to solve the maximization problem (3.1a) with this standard

estimator. One of the most prominent is the NIPALS algorithm (Wold, 1975), which

will be used in what follows.

After the dimension reduction of the data to dimensionality H < p, a standard

classifier can be applied to the scores ti, which are the rows of T . Here a simple lin-

ear classification rule is used, Fisher’s Linear Discriminant Analysis (LDA). It assumes

equal covariance structure of both groups. The classical pooled within-groups covariance

estimate is defined by

Σ̂ =
1

n− 2

∑
k∈{A,B}

∑
i∈Ck

(ti − µ̂k)(ti − µ̂k)T (3.3)

with µ̂k =
1

nk

∑
i∈Ck

ti for k ∈ {A,B}

where CA = {1, ..., nA} is the index set for group A and CB = {nA + 1, ..., n} for group

B. Following the LDA decision rule, a new observation x is then assigned to that group

k ∈ {A,B} that has the largest value of the discriminant score

δk(x) = (xTW )T Σ̂
−1
µ̂k −

1

2
µ̂Tk Σ̂

−1
µ̂k + log(πk), (3.4)

wherein πk are the prior probabilities of group adherence, and πA + πB = 1.

Kemsley (1996) has shown that the first PLS direction maximizes the univariate

between-groups variance. Hence, good group separation can be expected from PLS

dimension reduction, which facilitates classification in the score space. A more detailed

discussion on the relationship between LDA and PLS is given in Barker and Rayens

(2003). It establishes the theoretical foundation to use PLS dimension reduction for

classification methods.

3.3 Robust discriminant analysis with PRM

Outliers in the data distort model estimation and therefore, predictions. Hence, it is

essential to verify whether outliers are present in the data and to control their influence.

In regression analysis, two types of outliers are generally distinguished: leverage points

(outliers in the X space) and vertical outliers (in the y space). Within the framework

of discriminant analysis, we need to deal with leverage points separately for each group,

since each population has its own data structure. For each group those samples are

identified which have values beyond a certain threshold, given the (robustly estimated)
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3.3. Robust discriminant analysis with PRM

covariance structure of the data. The concept of vertical outliers in regression cannot be

directly translated to discriminant analysis, since the response is a categorical variable.

However, in practice, errors may occur in the encoding of the group membership. These

cases areadherence outliers. We label observations as adherence (y) outliers, if the

supervised group membership, i.e. the class coded in y, is intrinsically wrong. This can

be assessed by evaluating its position in the estimated score space.

A powerful tool in robust statistics to identify and diminish the influence of outliers,

is the concept of M-estimation. Weights between zero and one are assigned to each

sample to regularize its influence on the model estimation, whereas weights smaller than

one reduce the contribution of an observation to the estimation of the model parameters

(and eventually, a zero weight excludes it). In Serneels et al. (2005) and Hoffmann et al.

(2015), it has been described how the concept of M regression can be translated to the

PLS regression problem. PLS regression, as well as PLS classification, consists of two

steps, which both need to be robustified against the influence of outliers. The first step

of PLS-DA is the dimension reduction by projection onto the latent structure. The

direction of that projection may be distorted by outliers. In order to construct a robust

method, case weights are used in the covariance maximization step (Eq. (3.2)). The

data are then iteratively reweighted to find optimal weights. These weights are then also

used to perform weighted, robust LDA in the score space. An overview of the algorithm

is presented in Algorithm 3.1.

The initial weights are derived from the position of an observation within its group.

In high-dimensions, the distances have less informative value since they get more and

more similar with increasing dimensionality (Hall et al., 2005). Therefore, the weights

are not directly obtained from the distances in the original space. Instead, group-wise

PCA is used for dimension reduction, as it has been similarly applied in Filzmoser et al.

(2008): The data are split into the two groups XA and XB, and each column is robustly

scaled. Then a classical PCA model is estimated for each group, where the number of

components Hk for k ∈ {A,B} can be determined by, e.g., the broken stick rule 1, i.e.

to retain the hth component if its eigenvalue is larger than 1/p
∑p

i=h 1/i. Since the data

is scaled robustly, the classical variance is dominated by the outliers. Therefore, the

first PCA components will highlight variables, which are important for the detection of

outliers.

The squared Mahalanobis distance of an observation x with respect to a center µ

1Note that for these purposes, several alternative criteria could be applied. A good overview is given
in (Jackson, 1993).
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and covariance Σ is defined as

MD2(x;µ,Σ) = (x− µ)TΣ−1(x− µ). (3.5)

Outliers can be detected by the robust squared Mahalanobis distance in the PCA score

space, here defined for group A,

d̃i = MD2(tPCAi ; µ̂PCAA , Σ̂
PCA
A ) for i = 1, ..., nA. (3.6)

It is the distance of the i-th PCA score vector tPCAi to µ̂PCAA , the robust centre in the

PCA score space of group A, given Σ̂
PCA
A , the robust covariance estimate of the PCA

scores. Robust centre and covariance are determined by a fast, high breakdown joint

estimate of location and covariance. Estimators suitable for these purposes are e.g. the

MM estimator (M. Salibián-Barrera and Willems, 2006) or the Fast MCD algorithm

(Rousseeuw and Driessen, 1999). The results shown in this article are computed using

robust starting values based on Fast MCD. In the same way, distances for observations

from group B are obtained. Then the distances used for outlier detection are

di =
d̃i

medj∈Ck
d̃j
χ2
Hk

(0.5) for i ∈ Ck and k ∈ {A,B}. (3.7)

The robust squared Mahalanobis distance is approximately χ2
Hk

distributed with the

dimension of the data as degrees of freedom if the majority of the data is normally

distributed. By the transformation in (3.7), the median of di equals χ2
Hk

(0.5), the 0.5

quantile of the chi-squared distribution with Hk degrees of freedom equal to the number

of principal components of the model of group k.

The initial weights are calculated from the distances di using Hampel’s redescending

weighting function

ω1(d) =


1 |d| ≤ Q1

Q1

|d| Q1 < |d| ≤ Q2

Q3−d
Q3−Q2

Q1

|d| if Q2 < |d| ≤ Q3

0 Q3 < |d|.

(3.8)

A sensible choice for the parameters Q1, Q2 and Q3 are the 0.95, 0.975 and 0.99 quantiles

of the chi-squared distribution with as degrees of freedom the number of components used

in the PCA model. Then the initial weights are ωi = ω1(di) for i = 1, ..., n. A diagonal

matrix Ω = diag(ω1, ..., ωn) is used to downweight the observations. Let XΩ = ΩX

be the weighted data matrix, where every observation has been multiplied by its case
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3.3. Robust discriminant analysis with PRM

weight. The weighted response is denoted by yΩ = Ωy. Then the PLS maximization

criterion is solved for the weighted data,

ŵh = argmax
w

cov2(XΩw,yΩ), (3.9a)

subject to

‖ ŵh ‖= 1 and ŵT
hX

T
ΩXΩŵi = 0 for 1 ≤ i < h. (3.9b)

The actual maximum is found by applying the NIPALS algorithm to the weighted data.

Starting with the PLS model estimated from data weighted with the initial weights,

the case weights are updated iteratively. The score matrix T = XŴ is divided into

TA and TB with scores which belong to group A and B, respectively. From these

matrices, robust Mahalanobis distances are calculated with the fast MCD estimator

and then transformed as in (3.7). As before, the weighting function is applied to these

distances di and the weights obtained, are wti = ω1(di). In the algorithm for regression,

the calculation of these weights is simplified, because the side constraint = 0 leads

to uncorrelated scores. For the classification setting, it is important to consider the

covariance structure of the groups.

To identify observations which have probably the wrong coding of the class mem-

bership, we use an LDA related approach. Barker and Rayens (2003) showed that for a

classification problem with two groups, the first PLS direction is the direction that max-

imizes between group variance. Considering this property, we assume that projection on

the first PLS component will lead to good group separation. Let t
(s)
1 denote the vector

of the group wise scaled (not centred) scores of the first component and let m denote

the midpoint between the two robust group centers of t
(s)
1 . We use m as the point of

separation. For each group the observations with values of t
(s)
1 on the wrong side of m

will be down-weighted. We define

v = (t
(s)
1 −m1n)T ỹ, (3.10)

where ỹ is the vector with the class memberships coded as 1 and -1, and 1n is a vector of

ones. The entries vi of v are negative for those observations for which the corresponding

value of the vector t
(s)
1 does not accord with the given class membership in ỹ. Values

smaller than a negative threshold should be excluded from the model estimation, since

the label in ỹ may be incorrect. For this purpose we use a modified Tukey’s Biweight
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function

ω2(v) =


0, v ≤ c(

1−
(
v
c

)2)2
if c < v ≤ 0

1, v > 0

(3.11)

c :=

N−1(0.01) if N−1(0.01) < 0

0 else
(3.12)

with the 0.01 quantile N−1(0.01) of the normal distribution N(med(v), 1). The weights

are denoted by wyi = ω2(vi) for i = 1, ..., n.

The final case weights for the reweighting of the data are defined as

ωi =
√
ω1 (di)ω2 (vi). (3.13)

For some situations the weights ω2 (vi) are not reasonable, e.g. when the known class

membership of the observations is reliable. Then only the robust distances within each

group should be considered, i.e. ωi = ω1 (di). The data are weighted with the updated

case weights Ω = diag(ω1, ..., ωn). The reweighting of X by XΩ = ΩX is repeated till

convergence of the case weights ωi.

In the second step of PRM-DA, a robust linear classifier is applied to the scores

T = XŴ . Robust estimates are plugged into the LDA decision rule described in (3.4)

using the weights derived in the first step. They are defined by

µ̂k =

∑
i∈Ck

ωiti∑
i∈Ck

ωi
for k ∈ {A,B} and (3.14)

Σ̂ =
1

(
∑n

i=1 ωi)− 2

∑
k∈{A,B}

∑
i∈Ck

ωi(ti − µ̂k)(ti − µ̂k)T .

as in Todorov and Pires (2007).

Algorithm 3.1: The PRM-DA algorithm

1. Calculate initial case weights:

• Estimate for each group a PCA model with group-wise robustly scaled data.

• Choose the number of components of the PCA models by the broken stick

rule.
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3.3. Robust discriminant analysis with PRM

• Calculate the robust MD2 (3.5) of the PCA scores for group A

d̃i = MD2(tPCAi ; µ̂PCAA , Σ̂
PCA
A ) for i = 1, ..., nA (3.15)

and analogous for group B.

• Distances are transformed to di as described in (3.7) and the initial case

weights are defined by ωi = ω1(di).

2. Centre data robustly about the column wise median: X

Centre and scale response with mean and standard deviation: y

3. Reweighting process: Repeat until convergence of the case weights.

• Weight data:

XΩ = diag(ω1, ..., ωn)X

yΩ = diag(ω1, ..., ωn)y

• Apply NIPALS algorithm for H components to XΩ and yΩ and obtain robust

direction matrix WΩ. Define scores T = XWΩ.

• Calculate weights for outliers in the predictor space.

– Split scores T into group A and B, denoted by TA and TB.

– Calculate the robust MD2

d̃i = MD2(ti; µ̂k, Σ̂k) for i ∈ Ck and k ∈ {A,B}. (3.16)

– ωti = ω1(di) with

di =
d̃i

medj∈Ck
d̃j
χ2
H(0.5) for i ∈ Ck and k ∈ {A,B}, (3.17)

where χ2
H(0.5) is the 0.5 quantile of the chi-square distribution with H

degrees of freedom.

• Calculate weights for potentially wrong class labels.

– Robustly scale the first column of T group wise: t
(s)
1

– Let m be the midpoint between robust group centres of t
(s)
1 .

– Define measure of group coherence

v = (t
(s)
1 −m1n)ỹ
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Chapter 3: Sparse and robust PLS for binary classification

– Define ωyi = ω2(vi).

• Update case weights ωi =
√
ωtiω

y
i .

4. Classify with LDA decision rule (3.4) in the score space based on robust estimates

described in (3.14).

3.4 Sparse robust discriminant analysis with SPRM

Sparse models are constructed such that only certain variables contribute to the predic-

tion. In PLS based models, sparsity can be achieved when complete rows of W are zero.

Then the corresponding variables have no influence on the scores T = XW .

Chun and Keleş (2010) introduced a sparse PLS regression method, which was ex-

tended by Chung and Keleş (2010) to the classification setting. The central idea is to

penalize the estimation of the direction vector wh by an L1 norm penalty. To gain more

flexibility in the estimation and therefore more sparsity in the model, a surrogate direc-

tion vector c is introduced and the PLS criterion (3.9a) for downweighted data, with the

standard covariance estimator (3.2) as plug-in, is modified to:

min
c,w
−1

2

(
yTΩXΩw

)2
+

1

2

(
yTΩXΩ(c−w)

)2
+ λ1‖c‖1 (3.18a)

subject to

‖ŵ‖ = 1 and ŵTXT
ΩXΩwi = 0 for 1 ≤ i < h. (3.18b)

with ĉ and ŵ are the vectors minimizing (3.18a). The final estimate of the direction

vector is

ŵh =
ĉ

‖ĉ‖
for h = 1, ...,H. (3.18c)

The parameter λ1 is the sparsity parameter, which controls for the amount of zeros in

ĉ.

Algorithm 3.2: The sparse NIPALS algorithm

Let X denote a column wise centred matrix and y the centred response.

Define E1 = X. For h = 1, ...,H:

• zh = ET
hy/‖ET

hy‖
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3.5. Parameter selection

• vh = (|zh| − ηmaxi |zih|)� I (|zh| − ηmaxi |zih| > 0)� sgn(zh)

• th = Ehvh

• Eh+1 = Eh − thtThEh/‖th‖2

where � is the Hadamard (or element wise) matrix product. The weighting vectors vh

of the deflated matrix Eh form the columns of V . Then the sparse PLS direction vectors

for the transformation of X are defined by W = V (V TXTXV )−1 and the scores are

T = XW .

The minimization problem (3.18) has an exact solution Chun and Keleş (2010),

thanks to which a sparse NIPALS algorithm can be constructed. In Algorithm 3.2

weighting vectors are penalized by a fraction η ∈ [0, 1) of its largest entry. The expression

ηmaxi |zih| replaces λ1 to facilitate the parameter selection as described in Section 3.5

since the range of η is known. So the complexity of the models can be varied from the

full model to a nearly empty model.

In Hoffmann et al. (2015) this approach was robustified for regression analysis. Here

the related SPRM-DA algorithm for classification is introduced, which follows the steps

described in Algorithm 3.1 for PRM-DA with the sparse NIPALS (see Algorithm 3.2)

instead of the NIPALS.

3.5 Parameter selection

For PRM-DA models, the number of latent components H needs to be determined

and for the sparse methods additionally the sparsity parameter η has to be specified

(see Algorithm 3.2). K-fold cross validation is a common tool to decide for the model

parameters. Thereunto, the samples are divided randomly into K subsets. Each subset

is used once as test data, while the rest of the samples are the training data. For a

fixed parameter combination H and η, the model is estimated on the training data and

the class membership is predicted for the test data. To compare the predictions across

different models, a robust cross validation criterion is introduced.

Since the predicted class membership of outliers is not reliable, its effect on the

evaluation should be downweighted. Let MA := {i : yi = 1 ∧ sign(ŷi) = −1} denote

the set of indices of misclassified observations from group A within the test data and

CA := {i : yi = 1} all indices from group A test data (analogous for group B). Within
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Chapter 3: Sparse and robust PLS for binary classification

each cross validation loop, weights are calculated for the test data according to their

position in the estimated score space. Let ω1, . . . , ωn denote the resulting weights of all

test observations. Then we define the robust misclassification rate as

rmcr =

(∑
i∈MA

ωi∑
i∈CA

ωi
+

∑
i∈MB

ωi∑
i∈CB

ωi

)
2

. (3.19)

The class membership of an observation with weight zero has no influence at all on this

decision criterion, whereas the misclassification of an observation which is not considered

as outlier has the largest influence. This reflects the idea that observations with increas-

ing distance from the main data structure have diminishing influence on the choice of

the model. The model with minimum robust misclassification rate is chosen as optimal

model.

For data without outliers, i.e. weights equal to one, this criterion is the common

misclassification rate, which gives equal importance to the correct classification of both

groups, independent of their group size,

mcr =

(
cA
nA

+ cB
nB

)
2

, (3.20)

where cA and cB denote the number of misclassified observations which belong to group

A and B, respectively.

3.6 Simulation studies

We generate data coming from two groups under the assumption that the variables follow

a latent structure. Therefore, letD ∈ Rn×q consist of a blockDA with nA = 60 rows and

a second block DB with nB = 60 rows coming from multivariate normal distributions

with mean (M,−M, ...,−M) ∈ Rq and (M, ...,M) ∈ Rq, respectively, and with equal

covariance. The covariance matrix has a block structure with two uncorrelated blocks of

equal size; the covariance between the variables of each block is 0.7 and each variable has

variance 1. The size of M determines whether or how much the groups are overlapping.

We set M = 1 and q = 10. Then y, which consists of the group memberships, is defined

as yi = 1 for i = 1, ..., nA and yi = −1 for i = nA + 1, ..., n.

We set H = 2 and apply the NIPALS algorithm to D and y in order to obtain a

direction matrix A and loadings P . The scores are T = (D − µ̂)A, where µ̂ is the

column wise estimated centre of D. Then the generated data is given by

X = TP +E, (3.21)
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3.6. Simulation studies

where the values of E ∈ Rn×p come from the independent normal distribution N(0, 0.22).

In this study, the data X is manipulated in three different ways to simulate common

data problems: (i) Outliers in the predictor space: 10% outliers are generated by replac-

ing the first 0.2nA rows of X by independent values coming from a normal distribution

with mean (0, 10M, ..., 10M) and a diagonal covariance matrix with variance 0.1 for each

variable. (ii) Wrong class labels: in group B, 10% of the group labels yi are switched to

1. (iii) Uninformative variables: the rows of TP ∈ Rn×q are extended by values from

a p − q = 500 dimensional normal distribution with zero mean, variances of one and

covariances of 0.1. These 500 variables give no information about the class membership.

For the evaluation of the proposed methods, PRM-DA and SPRM-DA as well as their

classical counterparts PLS-DA and SPLS-DA, training and test data are generated. The

parameters are selected with 10-fold cross validation as described in Section 3.5, with

choices of H = 1, ..., 5 and for the sparse methods η = 0, 0.1, ..., 0.9. For the selected

parameters a model is estimated on the whole training data set. The model is then

evaluated on the test data. Depending on the simulation setting the training data is

contaminated with abnormal observations, i.e. outliers in the predictor space or wrong

class labels. The test data is free from such contamination and so the accuracy of

the classification model can be evaluated with the misclassification rate mcr defined in

(3.20).

Figure 3.1 summarizes the results of the simulation study. The contamination in the

predictor space leads to a heavy increase of the mcr for the classical methods (see Figure

3.1a). Also wrong class labels distort the classical methods, while no qualitative change

in the mcr is visible for the robust methods (see Figure 3.1b). The limitations of PRM-

DA and PLS-DA get visible when uninformative variables are added to the predictors

(see Figure 3.1c). The effect of the combination of all three data problems is presented

in Figure 3.1d. PLS-DA and SPLS-DA fail completely with a median misclassification

rate of approximately 50%, which could have been obtained with equal likelihood from

random group assignment. The median misclassification rate of PRM-DA does not

represent reasonable models either and shows that the method is no longer robust to

outliers in the presence of these 500 noise variables. The best results are obtained by

SPRM-DA. While the interquartile range increases by the modification of the data, the

median misclassification rate of SPRM-DA remains nearly the same.
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Figure 3.1: Misclassification rate of test data.
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3.7. Mass spectra of extraterrestrial material

3.7 Mass spectra of extraterrestrial material

COSIMA (Kissel et al., 2007) is a TOF-SIMS (time-of-flight secondary ion mass spec-

trometry) instrument. It is on-board of ESA’s Rosetta mission, where it collects dust

particles of the comet Churyumov-Gerasimenko on gold or silver targets to study their

chemical composition (Schulz et al., 2015). A twin laboratory instrument of COSIMA,

located at Max Planck Institute for Solar System Research (Göttingen Germany), was

used to analyze samples of meteorites from the Natural History Museum Vienna to

support the analysis of the comet data.

One challenge is to identify the exact positions of comet dust particles on the target

and to take measurements there. The spectra are typically obtained at rectangular grid

positions located in the estimated area of the particles. The resulting data set consists

of spectra taken on the grain as well as spectra from the background of the target.

We demonstrate the utility of the proposed methods for different research questions

related to TOF-SIMS measurements on two meteorites (both prepared on the same

target). One is meteorite Ochansk (observed fall 30 Aug 1887 near Perm, Russia), the

other is meteorite Tieschitz (observed fall 15 Jul 1878 near Olomouc, Czech Republic);

both are ordinary chondrites. The number of spectra used is 63 spectra from target

background (gold), 155 spectra measured at or near an Ochansk particle, and 25 spectra

measured at or near a Tieschitz particle. An original TOF-SIMS spectrum consists of

the numbers of secondary ions in 30,222 flight-time bins for the mass range 0 to 400.52

mu. Preprocessing of the spectral data is briefly summarized as follows: mass range

used 1 - 150 mu; only mass windows for inorganic ions are considered (Varmuza et al.,

2011); signals from the primary ions (115In+) excluded; resulting in p = 2612 variables.

Because qualitative aspects are of interest, the spectra were normalized to a constant

sum (100) of the ion counts (rows in matrix X).

Mislabelled data: TOF-SIMS spectra are measured across grids in the area where

the material of interest is suspected. For the Ochansk measurements, visual inspection

is possible to locate the grain, but the meteorite material may be spread invisibly in a

larger area. At the edge of the meteorite, the spectra consist of a mixture of background

and meteorite. For TOF-SIMS measurements of comet grains, it is difficult to locate

the dust particles precisely and the recognition of potentially relevant spectra becomes

especially important.

We split the spectra measured on and in the neighbourhood of the meteorite (group

A) and background spectra (group B) randomly into five subsets, such that the sizes
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Figure 3.2: SPRM-DA model for Ochansk and background spectra

of the groups across each split are approximately the same. Sequentially, each of the

subsets is used as test data, while the rest is training data. An SPRM-DA model is

estimated on the training data and the parameters of the model are chosen as described

in Section 3.5 with 10 fold cross validation within the training set. Then the model is

used to predict the class membership and to calculate weights of the test data.

To obtain a meaningful model, it is important for the estimation that spectra are used

which were actually measured on the meteorite, i.e. that those spectra which come from

the grain with a high probability have weight one. Class assignment of test samples to a

group is only reliable for observations that are embedded in training data with weights

equal to one. So one has to look jointly at weights and class prediction to gain more

insight into the structure of the data and the meaning of the classification model.

The results for group A are shown in Figure 3.2a given the x- and y-coordinates

of the measurements on the target. The weights for potentially mislabelled data ωyi

are represented by the grey tone, black for weight one and continuously lighter grey

for weights smaller than one. Small weights mean, that the corresponding sample is

located close to the background samples. The area with black samples in Figure 3.2a

coincides well with the area where the grain is visible on the target. All these spectra are
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Figure 3.3: Selected range of the loadings of the first component for SPRM-DA model.

predicted to belong to group A. It shows that this approach builds classification models

based on the relevant data and by prediction of the weights also gives information about

the applicability domain of the models.

For illustrative purposes, an SPRM-DA model is estimated for the complete data

set. The parameters found with 10 fold cross validation are H = 5 and η = 0.1. The

remaining number of variables (mass bins) in the model is 128. Figure 3.2b shows the

scores of both groups for the first two components. From this two dimensional projection

we can already see that samples from the meteorite group (circles) which are close to

the background data (triangles) have small weights, i.e. are colored in light grey. Figure

3.3a shows that in the sparse loadings of the first component the magnesium isotopes

are relevant for the separation between meteorite and background.

Outliers in the predictor space: Data from the meteorite Ochansk (group A) are

compared to data of Tieschitz (group B). In this context the measurements on the two

meteorite grains should form the two discriminant groups, while off grain measurements

or other irregular data are considered as outliers. A pre-selection of grain spectra secures

that the groups are not dominated by background spectra. Therefore, models of a

meteorite grain and background data as described in the previous paragraphs are used

to predict the class membership of the test data. Samples from the meteorite group

that are assigned to the background group, are excluded. This leads to nA = 155 and
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Figure 3.4: Score plots for models of Ochansk and Tieschitz.

nB = 25. Due to the small group size we use 5 fold cross validation to choose the model

parameters. They are H = 2 and η = 0.2, which leads to a model with 30 mass bins.

In spite of the pre-selection, we expect the main source of outliers to come from

background measurements considered as meteorite spectra. To validate the model, the

group of background spectra is projected into the SPRM score space. Figure 3.4a shows,

that several Ochansk spectra (and one Tieschitz spectra) are located in the same area

as the background spectra. Since the scores in this area receive weights smaller than

0.1, they are reasonably identified as outliers and they are not relevant for the model

estimation. In comparison, Figure 3.4b shows the score plot for an SPLS model with

two components. Background spectra projected into the score space are spread over

the whole area of the Ochansk spectra, so that in the group of Ochansk no distinction

between spectra measured on grain or off grain is possible.

The SPRM model separates the two ordinary chondrite meteorites well and the first

component gives insight into the different elemental compositions of the two meteorites

(see Figure 3.3b). Tieschitz has higher counts for sodium and iron and Ochansk for

magnesium and potassium. This is also visible in the mean spectra of the two groups in

Figure 3.5.
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Figure 3.5: Selected mass ranges of mean spectra for Ochansk (black, solid line) and
Tieschitz (grey, dashed line).

3.8 Conclusion

In this paper, a novel methodology for robust and when necessary, sparse, classifica-

tion has been outlined. Several methods exist to estimate robust or sparse classification

models, but to the best of our knowledge this is the first proposal of a sparse and robust

method for binary classification. It inherits the visualisation and interpretation advan-

tages that PLS-DA offers over many machine learning tools, the latter tendentiously

yielding black box solutions. In contrast to classical PLS-DA, however, the new method

is robust both to leverage points within each class, as well as to class adherence outliers.

The method thanks its robustness essentially to a double pronged iterative reweighting

scheme wrapped around the (sparse) NIPALS algorithm. Thereby, it is very germane

to the earlier (sparse and non-sparse) partial robust M regression method for regression

and has similar robustness and sparsity properties 2.

A simulation study has shown that outliers (leverage points and adherence outliers),

as well as the presence of uninformative variables, can mislead PLS-DA and artificially

inflate the misclassification rate. The new methods, on the contrary, still yield virtually

unaffected misclassification performance in the presence of outliers. The sparse method

(SPRM-DA) is the only method that also yields pristine performance when the data con-

2Implementations of these two methods have been made publicly available through the R package
sprm, which can be downloaded through the CRAN network since 2014. Both new classification methods,
as well as cross-validation and visualisation tools, have been appended to the same package in the latest
version update (Serneels and Hoffmann, 2015).
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Chapter 3: Sparse and robust PLS for binary classification

tain both outliers and a non-negligible number of uninformative variables, even though

also in this setting, PRM-DA still outperforms both classical methods, showing that the

impact of outliers is the more harsh type of contamination studied. The simulations have

also shown that for data without outliers, the performance of (S)PLS-DA and (S)PRM-

DA is very similar. One would usually expect a slight advantage of the classical over

the robust methods, in particular for very low sample sizes, because under normality

the classical methods are known to be statistically more efficient than robust methods

(Maronna et al., 2006). In practice, however, only the robust method allows to verify if

outliers are present or not by investigating the case weights. The performance of SPRM-

DA has been tested on a data set from meteorite samples, where it has largely managed

to identify outliers and to classify samples according to the compositional classes they

should belong to.
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CHAPTER4
Robust and sparse multi-group

classification by the optimal

scoring approach

Abstract: We propose a robust and sparse classification method based on

the optimal scoring approach. It is also applicable if the number of vari-

ables exceeds the number of observations. The data are first projected into

a low-dimensional subspace according to an optimal scoring criterion. The

projection only includes a subset of the original variables (sparse modeling)

and is not distorted by outliers (robust modeling). In this low-dimensional

subspace classification is performed by minimizing a robust Mahalanobis dis-

tance to the group centers. The low-dimensional representation of the data

is also useful for visualization purposes. We discuss the algorithm for the

proposed method in detail. A simulation study illustrates the properties of

robust and sparse classification by optimal scoring compared to the non-

robust and/or non-sparse alternative methods. Two real data applications

are given.

Key words: High-dimensional data, Linear discriminant analysis, Penaliza-

tion, Robustness, Supervised classification, Variable selection



4.1. Introduction

4.1 Introduction

In linear discriminant analysis (LDA) the data originate from K different populations.

The aim is to find linear decision boundaries to separate the observations from the

K groups as well as possible and to predict the class membership of new, unlabeled

observations. Several formulations for LDA exist. Fisher’s approach to LDA searches

for directions that maximize the between-group variance given the within-group variance.

Equivalently, one can take the conditional class densities as multivariate normal with

the same covariance matrix, and apply the Bayes classification rule. The formulation

for LDA considered in this paper is optimal scoring (Hastie et al., 1994). It recasts

the classification problem into a regression framework and models the class membership

with a quantitative parameter for each class.

While these different approaches to LDA yield the same classification results (John-

son et al., 2002; Witten and Tibshirani, 2011) they are all limited to settings where

n > p. Optimal scoring enables us to transfer new developments in high-dimensional

regression analysis to the classification context. In regression analysis the problem of

high-dimensional data, in particular data with more variables than observations, attracts

a lot of attention. A variety of sparse methods have been developed. The best known

is the Lasso regression estimate (Tibshirani, 2011). For a response y and a column-wise

centered and scaled predictor matrix X, it is defined as

min
β

1

n
‖y −Xβ‖2 + λ‖β‖1

for regression coefficients β, where the L1 norm is ‖a‖1 =
∑p

i=1 |ai|, for a vector a =

(a1, . . . , ap)
T . Fast algorithms have been developed for Lasso regression (Efron et al.,

2004; Wu and Lange, 2008). The Lasso shrinks several of the estimated regression

coefficients to zero, and is therefore said to be sparse. The zero coefficients correspond

to the variables that are not selected to be used in the model. Hence, the Lasso performs

simultaneous model estimation and variable selection. The sparsity tuning parameter is

λ, and increasing values of λ will favor more coefficients equal to zero which results in

sparser models. This is especially useful for data sets including uninformative variables

which do not contribute information to predicting the response. When uninformative

variables are excluded, the precision of the estimation increases and the models are easier

to interpret. Recently, Clemmensen et al. (2012) proposed a sparse version of multigroup

LDA, by adding an L1 penalty to the objective function of the optimal scoring problem.

This leads to a sparse discriminant analysis method applicable for n < p as well.
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Chapter 4: Robust and sparse multi-group classification

In this paper we propose a robust version of sparse optimal scoring. It is robust

because it is resistant to outliers. It is well known that outliers may render a statistical

method completely unreliable. This will not happen if a robust method is used. A vari-

ety of robust classification methods have been proposed (Hubert and Van Driessen, 2004;

Todorov and Pires, 2007), but generally they are not applicable for data with n < p.

Vanden Branden and Hubert (2005) proposed a robust classifier for high dimensions

based on SIMCA, but it does not use sparse modeling, so all variables are included in

the model. A sparse and robust classification method based on partial least squares was

proposed by Hoffmann et al. (2016); however it was only for binary classification prob-

lems. Robust optimal scoring, even the non-sparse case, was not previously considered

in the literature.

The paper is structured as follows. In Section 4.2, we review the optimal scoring

approach to linear discriminant analysis. In Section 4.3, we introduce the proposed

method and present the algorithm in detail. In Section 4.4, a strategy is outlined to select

the sparsity tuning parameter. A simulation study competing with existing alternative

methods is presented in Section 4.5. Illustrations using real-world examples are given in

Section 4.6.

4.2 Optimal scoring for multigroup classification

We follow the notation of Clemmensen et al. (2012) to outline the optimal scoring

method. Let X be the n×p data matrix with the observations x1, . . . ,xn in its rows and

Y an n×K matrix of dummy variables coding the class membership of the observations,

i.e. yik = 1 if and only if observation xi belongs to group k, and zero otherwise. The

rows of Y are denoted by y1, . . . ,yn. The columns of X are centered to have mean

zero and scaled to have unit variance. The aim of optimal scoring is to find projection

vectors β̂1, . . . , β̂H , such that each Xβ̂h is a good prediction of the corresponding vector

Y θ̂h, for h = 1, . . . ,H. The vector Y θ̂h then contains the scores of the group which

each observation belongs to. The K components of the score vector θ̂h are the numeric

scores assigned to each of the groups. One takes H smaller than the number of groups

K, commonly H = K − 1.

The projection vectors β̂h and the score vectors θ̂h are obtained sequentially. Let

D = 1
nY

TY be a K×K diagonal matrix of class proportions. Set θ̂0 = 1K , the K-vector
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4.3. Robust and sparse optimal scoring

of ones. Then solve for h = 1, . . . ,H

min
βh,θh

1

n
‖Y θh −Xβh‖2 s.t. θThDθh = 1, QT

hDθh = 0,

where Qh = [Qh−1, θ̂h−1] is a K × h matrix. Here, ‖.‖ stands for the Euclidean norm.

The sparse optimal scoring method of Clemmensen et al. (2012) simply adds an L1

penalty to the objective function.

min
βh,θh

1

n
‖Y θh −Xβh‖2 + λ‖βh‖1 s.t. θThDθh = 1, QT

hDθh = 0. (4.1)

Estimators β̂h and θ̂h that solve (4.1) can be obtained iteratively. Starting with a

random vector for θh, one computes the Lasso for βh. For a given βh there exists an

explicit solution of (4.1) for θh. One iterates further until convergence. For details, see

Clemmensen et al. (2012).

Once the projection vectors are obtained, a standard LDA is performed in a low-

dimensional space of dimension H. Let denote by z1, . . . ,zn the projected observations

in the rows of Z = XB, B = [β̂1, . . . , β̂H ]. Denote the group averages of the projected

observations by mk = 1
nk

∑
i∈Ck

zi, where Ck denotes the index set for observations

from class k, and nk is the number of observations in class k, for k = 1, ...,K. The

within-group covariance matrix is

S =
1

n−K

K∑
k=1

∑
i∈Ck

(zi −mk)(zi −mk)
T .

The Mahalanobis distance of an observation z to the center mk is given by

MD(z;mk,S) =
(
(z −mk)

TS−1(z −mk)
)1/2

.

An observation x, transformed to z = xTB, is then assigned to the class k with smallest

value of

MD(z;mk,S)2 − 2 log(πk).

Here, πk is the prior probability belonging to group k, with π1, . . . , πK = 1. In the

following, πk is set to the class proportion of group k, so πk = nk/n.

4.3 Robust and sparse optimal scoring

We now propose an optimal scoring algorithm for data containing outliers and possibly

more variables than observations. Furthermore, not all variables contribute information
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Chapter 4: Robust and sparse multi-group classification

about the class membership of the observations. We refer to these variables as uninfor-

mative variables. Our goal is to reduce the number of uninformative variables by sparse

estimation. The data matrix X is robustly centered by the coordinate-wise median and

each column is scaled by the median absolute deviation (MAD) (Hampel, 1974). The

MAD is defined by MAD(a1, . . . , an) = 1.48 medi |ai−medj aj | where 1.48 is a factor to

get consistency at a normal distribution.

The aim is to reduce the influence of outlying observations on the model estimation.

A common and powerful approach to achieve this in a regression model is the iteratively

re-weighted least squares algorithm. Given a robust initial estimator, the influence

of observations with large residuals is down-weighted by case weights. The coefficient

estimates and the case weights are iteratively re-estimated. Here we will take a related

approach.

Initial estimation

The vectors β̂h and θ̂h are estimated sequentially for h = 1, . . . ,H. As before, θ̂0 = 1K .

First, we obtain initial estimates for β̂h and θ̂h. It is important that they are robust with

regard to outliers and can be computed in high dimensions. These initial estimates are

used to begin the iterative procedure to get the final β̂h and θ̂h. Appendix 4.7 provides

the full details for their computation.

Outlier weights

Residuals are computed as

ri = yTi θ̂h − xTi β̂h for i = 1, ..., n.

The observations will be weighted so that potential outliers will receive less weight. The

weights are calculated based on the residuals. Weights are calculated separately for each

group. The robustly standardized residuals where we center by the median and scale by

the MAD are denote r
(s)
i .

Hampel’s re-descending weighting function (Hampel et al., 1986) is applied to the

standardized residuals to obtain weights for each observation. This weighting function
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Figure 4.1: Hampel’s re-descending weighting function.

is given as

ωH(r) =


1 |r| ≤ q1

q1
|r| q1 < |r| ≤ q2

q3−r
q3−q2

q1
|r| if q2 < |r| ≤ q3

0 q3 < |r|

where the parameters q1, q2 and q3 are set to the 0.95, 0.975 and 0.999 quantiles of the

standard normal distribution, respectively (see Figure 4.1). The case weights are then

ωi = ωH(r
(s)
i ) for i = 1, ..., n. Under the assumption that the residuals are normal, 90%

of the observations will receive the weight ωi = 1 and 0.2% will receive the weight ωi = 0.

Solving the weighted sparse optimal scoring problem

Let Ω be a diagonal matrix with the case weights ω1, ..., ωn on the diagonal. Then

define the weighted data matrices as Ỹ = Ω1/2Y and X̃ = Ω1/2X. The diagonal

matrix D̃ = 1∑
ωi
Ỹ
T
Ỹ contains on its diagonal the share of the total weight coming

from each group’s observations. The weighted sparse optimal scoring problem is defined

as

min
βh,θh

1∑
ωi
‖Ỹ θh − X̃βh‖2 + λ‖βh‖1 s.t. θTh D̃θh = 1, QT

h D̃θl = 0. (4.2)

If no outliers are detected, all weights are one,
∑
ωi = n, Ω is the identity matrix and

Eq. (4.2) is the standard optimal scoring problem Eq. (4.1).
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Equation (4.2) is solved by an alternating iterative scheme. For a given θ̂h, it reduces

to the weighted Lasso regression problem

β̂h = argmin
β

1∑
ωi

n∑
i=1

(yTi θ̂h − xTi β)2ωi + λ‖β‖1. (4.3)

which is equivalent to solving the Lasso for the weighted data, with the sparsity param-

eter given by λ
∑
wi/n. For a given β̂h, the optimization problem Eq. (4.2) is solved

by

θ̂h = c
{
I −Qh(QT

h D̃Qh)−1QT
h D̃
}

(D̃
−1
Ỹ
T
X̃β̂h) (4.4)

where c is a scalar so that θ̂h fulfills the side constraint θ̂
T

h D̃θ̂h = 1. The derivation

of Eq. (4.4) is given in Appendix 4.7. Notice that the last part in parentheses in Eq.

(4.4) is proportional to (Ỹ
T
Ỹ )−1Ỹ

T
X̃β̂h, the OLS estimate of θh when regressing Ỹ

on X̃β̂h without side constraints.

After computing β̂h and θ̂h, new residuals ri and case weights ωi, for i = 1, . . . , n,

are calculated as described previously. New estimates of coefficient and score vectors are

computed based on the re-weighted data as in Eq. (4.3) and Eq. (4.4).

Convergence criterion

Let ωj1, . . . , ω
j
n denote the case weights and β̂

j

h and θ̂
j

h the estimates in the jth iteration

step. Then the weighted mean residual sum of squares with Lasso penalty in the jth

iteration step is

Ljh =

n∑
i=1

(yTi θ̂
j

h − xTi β̂
j

h)2ωji +
n∑
i=1

ωjiλ‖β̂
j

h‖1.

The convergence criterion for stopping the iterative procedure is defined as |Ljh −
Lj−1
h |/Ljh < 10−4.

Classification rule

The iterative procedure outlined in the previous subsections provides a projection matrix

B = [β̂1, . . . , β̂H ]. We project the data onto an H-dimensional subspace, i.e. Z = XB,

with the rows z1, . . . ,zn. We observed that for a large sparsity parameter λ, the last

column(s) of B may consist of only zeros. Then the dimension of the classification

problem on the projected data is reduced automatically.

Instead of computing sample averages and covariance matrices of the projected data,

we compute a robust location and covariance matrix estimator. For this, we take the
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minimum covariance determinant (MCD) described in Rousseeuw and Driessen (1999).

The robust group centers mk, for k = 1, . . . ,K, are the MCD location estimates of

the projected observations from the kth group, i.e. of zi, i ∈ Ck. Then the projected

observations are centered group-wise, z̃i = zi−mk for i ∈ Ck and k = 1, ...,K. A robust

covariance estimate S from these pooled centered observations is obtained by the MCD

covariance matrix estimate (Rousseeuw and Driessen, 1999). The decision rule for a new

observation x is as follows: Project x onto the subspace, z = xTB and compute the

Mahalanobis distances to the group centers mk with respect to S. Assign x to group

argmin
k=1,...,K

(z −mk)
TS−1(z −mk)− 2 log(πk).

4.4 Model selection and evaluation

Two steps are necessary for the proper evaluation of the proposed method. First, a

strategy to select an optimal sparsity parameter is needed, second, the prediction per-

formance for new observations is evaluated. We split the data randomly into calibration

data and test data.

To select the optimal sparsity parameter λ∗, five-fold cross validation is performed

on the calibration set. We split the calibration data randomly into J = 5 blocks of

approximately equal size such that the observations from each class are evenly spread

across the blocks. Each of the five blocks is used in turn as a validation set and the rest as

a training set. For a sequence of values for the sparsity parameter λ1, . . . , λL (covering

the range between the full and the empty model) classification models are estimated

using the training data and evaluated on the validation data. Since the decision for the

optimal sparsity parameter λ∗ should not be influenced by outliers, we propose using a

weighted misclassification rate (wmcr) for evaluation. For the jth validation set, which

consists of nj observations xj1, . . . ,x
j
nj define

wmcr(xj1, . . . ,x
j
nj
, λ) =

1

K

∑
k=1,...,K

∑
i∈Mj

k(λ)
wji (λ)∑

i∈Cj
k
wji (λ)

, (4.5)

where Cjk is the index set of all observations from the validation set belonging to group k,

and M j
k(λ) is the subset of Cjk containing the indices of misclassified observations (for the

model estimated using the sparsity parameter λ). The weight wji (λ) of an observation xji

is derived from the Mahalanobis distance to its closest center in the projected subspace,
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i.e.

MDj
i (λ) = min

k=1,...,K
MD

(
xjTi B;mk,S

)
,

where B, mk and S are estimated on the jth training set with sparsity parameter λ.

Then the weight is defined as

wji (λ) =

{
1 MDj

i (λ)2 ≤ χ2
H(0.975)

1/MDj
i (λ) else

,

where χ2
H(0.975) denotes the 97.5% quantile of the χ2 distribution with H degrees of

freedom. When all weights are equal to one, the wmcr is equivalent to the misclassi-

fication rate (mcr), the mean of the proportion of misclassified observations from each

group.

The tuning parameter can now be selected such that the average wmcr for each of

the J = 5 validation sets is minimized, i.e.

λ̃ = argmin
λ∈{λ1,...,λL}

1

J

∑
j

lj(λ),

where, for easier notation, lj(λ) = wmcr(xj1, . . . ,x
j
nj , λ), for j = 1, . . . , J .

We then use the one-standard-error rule (Hastie et al., 2015): choose the model with

the largest sparsity parameter such that its average wmcr is still within one standard

error of the minimum average wmcr. Thus, the optimal sparsity parameter with the

one-standard-error rule is

λ∗ = max

λ ∈ {λ, . . . , λL} | 1

J

J∑
j=1

lj(λ) <
1

J

J∑
j=1

lj(λ̃) + se(l1(λ̃), . . . , lJ(λ̃))

 ,

where se(a1, . . . , aJ) =
√

var(a1, . . . , aJ)/J denotes the standard error. This strategy

favors more parsimonious models and is a safeguard against over-fitting. With the opti-

mal sparsity parameter λ∗ the final model is estimated using the whole of the calibration

data, and we obtain B, mk and S.

For the evaluation of the model, the class memberships of test data are predicted.

Since the evaluation should not be distorted by outliers in the test data, we use the

weighted misclassification rate from Eq. (4.5). In the simulation study, test data are

generated without outliers and all weights are set to equal one.
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4.5 Simulation study

Simulation schemes: The data are generated from K = 3 different p-dimensional normal

distributions representing three groups. The distributions have equal covariance struc-

ture, but different mean vectors. For group k (k = 1, 2, 3), let the mean be a vector

of length p with value 2 for the kth variable and zeros elsewhere. So, the number of

informative variables is q = 3. The diagonal of the covariance matrix is a vector of ones.

The covariance between the informative variables is 0.1 and zero between all others. The

number of observations is n = 120, where each group consists of nk = 40 observations.

In the first scenario of this simulation study, the effect of increasing p ∈
{3, 13, 23, 53, 103, 203} is illustrated, i.e. of increasing the number of uninformative vari-

ables while the number of informative variables q = 3 is fixed. The second scenario shows

the effect of outliers on the methods, also for increasing p ∈ {3, 13, 23, 53, 103, 203}. Out-

liers are included in the calibration data by taking 10% of the observations of the first

group and replacing their values for the first variable by random values from N(−10, 1).

Hence, there are still two uncontaminated informative variables. Finally, in a third

scenario, the number of uninformative variables is set to 50 and the third informative

variable is removed, i.e. p = 52. Outliers are again only generated in the first group by

replacing the values of the first variable by random values from N(−20, 1). This setting

is more challenging because only one uncontaminated informative variable remains, and

because the outliers take on more extreme values. The percentage of outliers in the first

group ranges from 0% to 45% in increments of 5%, allowing us to observe the influence

of increasing levels of contamination.

Methods and evaluation: The results from robust sparse optimal scoring (rSOS) and

classical sparse optimal scoring (cSOS) are compared. For settings where non-sparse

classification methods can be applied (i.e. n > p), models are estimated with LDA and

robust LDA (rLDA). The latter method uses the MCD of the pooled centered data as

the robust covariance matrix estimator, where the centers of each group are estimated by

the location MCD estimator, as outlined in Hubert and Van Driessen (2004). Recall that

LDA is equivalent to classical optimal scoring. to create a benchmark, we first remove

all uninformative variables and outliers from the calibration data and then apply LDA.

This benchmark method cannot be applied in practice, since one does not know which

variables are informative and which observations are outliers. We refer to this method

as the oracle; it gives an estimate of the lower boundary for the best misclassification

rate we can achieve with linear boundaries.
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Figure 4.2: Misclassification rate (mcr) averaged over 100 simulation runs as a function
of p, the number of variables. (a) Scenario 1: models estimated on clean calibration
data; (b) Scenario 2: models estimated on calibration data with 10% outliers in one
group.

For robust and classical sparse optimal scoring the sparsity parameter λ is selected

with five-fold cross validation using the calibration data (n = 120) from a grid of values

between 0.1 and 2 with a increment size 0.05, as described in Section 4.4.

To evaluate the models, test data of size n = 120 are generated in the same way as the

calibration data, but without outliers for all scenarios. The predicted class membership

of the test data is compared to the known, true class membership and the misclassifica-

tion rate (mcr) is reported. Other quality criteria of the model concern the number of

correctly selected variables. The false negative rate (FNR) is the fraction of informative

variables not included in the model, the false positive rate (FPR) refers to the fraction

of uninformative variables included in the model.

Simulation results: The results from the first scenario demonstrate the advantage of

sparse modeling when the number of uninformative variables increases. Figure 4.2 (a)

shows the misclassification rate for test data, averaged over 100 simulation runs. The

benchmark mcr for this simulation design is about 12.5%, as can be seen from the

results of the oracle. Hardly any difference between the performance of cSOS and rSOS

is visible in this setting. The mcr of both methods remains stable despite an increasing

number of uninformative variables. In very low dimensions, for instance p = 3, LDA

and rLDA slightly outperform cSOS and rSOS, but when p increases, LDA and rLDA

quickly break down and give bad classification results, even when p is still smaller than
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n. This shows that excluding uninformative variables is crucial for the quality of the

prediction performance.

Table 4.1 (a) shows the quality of the variable selection for cSOS and rSOS. The

false negative rate is slightly higher for cSOS whereas the false positive rate is slightly

higher for rSOS. Overall, both rates are low for both methods, which implies that the

variable selection with the L1 penalty achieves good results.

In the second scenario, the effect of 10% outliers is investigated, as illustrated in

Figure 4.2 (b). The benchmark given by the oracle is again about 12.5%, as expected.

For p = 3, the robust methods rLDA and rSOS outperform the classical methods LDA

and cSOS. Increasing the number of variables heavily affects both LDA rLDA. The

method which performs best is rSOS, since it can cope with both increasing dimensions

and outliers. Note that for cSOS, the presence of outliers substantially increases the

mcr, but the number of uninformative variables has no further notable effect; for rSOS,

the mean mcr slightly increases when p approaches its highest value.

Table 4.1 (b) shows that cSOS fails to identify the informative variables in presence

of outliers. The FNR of cSOS is around 33% in this scenario, since the first of the three

informative variables, the contaminated one, is not included in the model anymore. In

this scenario, the variables selected by cSOS do not contain any outliers, but since the

information present in the first variable is lost, it still leads to an increased mcr. With

(a) Scenario 1
p 3 13 23 53 103 203

FNR cSOS 0.02 0.02 0.02 0.04 0.01 0.04
FNR rSOS 0.01 0.02 0.02 0.02 0.00 0.02
FPR cSOS 0.02 0.02 0.01 0.01 0.00
FPR rSOS 0.04 0.03 0.02 0.01 0.02

(b) Scenario 2
p 3 13 23 53 103 203

FNR cSOS 0.32 0.32 0.32 0.33 0.33 0.33
FNR rSOS 0.05 0.03 0.07 0.05 0.06 0.08
FPR cSOS 0.02 0.02 0.00 0.00 0.00
FPR rSOS 0.07 0.05 0.03 0.04 0.02

Table 4.1: Variable selection: the false negative rate (FNR) and the false positive rate
(FPR) is averaged over 100 simulation runs for classical and for robust SOS for (a)
Scenario 1: models estimated on clean calibration data; (b) Scenario 2: models estimated
on calibration data with 10% outliers in one group.
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Figure 4.3: Scenario 3: Misclassification rate (mcr) averaged over 100 simulation runs
as a function of increasing outlier proportion; p = 52.

rSOS, this information can be recovered; rSOS down-weights the outliers and is able to

reveal that this first variable contributes enough information to be selected. Comparing

the FNR of rSOS in Table 4.1 (a) and (b) shows an increase in the setting with outliers,

but considerably smaller compared with cSOS. Finally, note that the FPR for rSOS is

low, but slightly higher than for cSOS. In the second scenario, rSOS selects 4.7 variables

on average, which is somewhat more than the average of 2.2 variables for cSOS.

Scenario three illustrates how the percentage of outliers influences the classification

performance of the different methods. Figure 4.3 pictures the mcr as a function of the

proportion of outliers in the calibration data, for p = 52. The benchmark given by the

oracle is about 22.2% and indicates a lower boundary for the mcr. When there are no

outliers, cSOS and rSOS are close to the oracle. However, as soon as there are only

5% outliers, the cSOS is strongly affected in its prediction performance, whereas rSOS

continues to give reasonable results for larger percentages of outliers. As expected, the

mcr of LDA and rLDA is inflated due to the p−q = 50 uninformative variables resulting

in a high mean mcr, which increases slightly for higher percentages of contamination.

Computations are performed in R (R Core Team, 2016). For classical sparse optimal

scoring, R code is available in the package sparseLDA (Clemmensen and Kuhn, 2012).
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Figure 4.4: Fruit data: (a) visualization of 219 test observations in the projected sub-
space (b) Mahalanobis distance of each projected test observation to its group center.
Observations with weights smaller than one are colored in gray.

The code for robust sparse optimal scoring is included in the package rrcovHD (Todorov,

2016).

4.6 Examples

Fruit data: This data set consists of n = 1095 measurements with p = 256 wavelengths

from K = 3 different cultivars of the cantaloupe melon, named D, M and HA. We have

490 measurements from group D, 106 from group M and 499 from group HA. It is a well

known benchmark data set to demonstrate the stability of robust classification methods

(Hubert et al., 2008; Hubert and Van Driessen, 2004; Vanden Branden and Hubert,

2005). From former analyses it is known that the change of illumination led to outliers.

The data are split into calibration and test data (80% versus 20%) 5 times, such that

all observations are included once in the test data and the observations from each class

are evenly distributed across the test sets. For each calibration data set, the optimal

sparsity parameter λ∗ is selected as described in Section 4.4. We select it from a fine

cSOS rSOS

average mcr 0.028 (.0062) 0.041 (.0068)
average wmcr 0.016 (.0116) 0.009 (.0029)

Table 4.2: Fruit data: average (w)mcr is the (weighted) mcr averaged over the five test
data sets. Standard errors are reported in parentheses.
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grid starting with 10−4 up to 10−1 with increment size 0.002, covering model sizes from

nearly full to empty. The weighted misclassification rate wmcr is calculated from the

test data as in Eq. (4.5). The weights from the rSOS model are also used to calculate

the wmcr for cSOS. Thereby observations which are detected as outliers by the rSOS

model have small influence on the wmcr of cSOS.

The procedure is repeated for all calibration and test sets. The results are summa-

rized in Table 4.2. It shows that the mcr of the cSOS is smaller than the mcr of the rSOS.

On the other hand, the wmcr has a lower value for rSOS than for cSOS. The classical

method tries to model the outliers, and since outliers are present in the test data, it

achieves better results as well. The robust method, on the other hand, mainly models

the non-outliers. So the weighted misclassification rate, which excludes the outliers, is

lower for rSOS than for cSOS.

To visually depict the results, we randomly select one of the five data splits and apply

rSOS to the calibration data. Figure 4.4 (a) shows the test observations projected onto

the subspace. The ellipses defined by the sets {z ∈ R2|MD (z;mk,S) =
√
χ2

2(0.975)},
for k = 1, 2, 3 enclose those observations which are considered non-outliers and which

did receive weight one in the wmcr. The observations outside of the ellipses are colored

in gray. Most outliers are from group HA which is in line with previous analyses (Van-

den Branden and Hubert, 2005). In Figure 4.4 (b) the Mahalanobis distances of each

test observation to its group center are shown. The horizontal line represents the cut-off

value
√
χ2

2(0.975). Again we see that many observations of HA have a large Mahalanobis

distance in the projected space. Figure 4.4 (b) pinpoints other anomalous observations

in all three groups.

Olive oil data: The data set olitos (Armanino et al., 1989) available in the R pack-

age rrcovHD (Todorov, 2016) contains n = 120 measurements on olive oil samples with

p = 25 variables from fatty acids, sterols and triterpenic alcohols. The olive oils orig-

inate from Tuscany in Italy and are grouped into K = 4 classes representing different

regions of production with group size 50, 25, 34 and 11. In this example, the number of

variables is quite low, but rSOS can still be an appropriate method. We will compare its

results to cSOS as well as to LDA and rLDA. To estimate and evaluate the models, the

same approach is taken as described previously for the fruit data. The optimal sparsity

parameter is searched on a grid from 0.01 to 1 with step size 0.05, which covers various

model sizes from the full model to the empty model.

Table 4.3 summarizes the quality of the resulting models. With an average wmcr

65



4.7. Conclusion

0 20 40 60 80 100 120

0
1

2
3

4
5

6

Index

M
a

h
a

la
n

o
b

is
 d

is
ta

n
c
e

s

region 1

region 2

region 3

region 4

Figure 4.5: Olive oil data: Mahalanobis distances from rSOS of each projected obser-
vation to its group center. Observations with weights smaller than one are colored in
gray.

of 13.3%, our proposed method rSOS performs better on this data set than the other

methods. An interesting additional finding is that the mcr is lowest for rSOS with 15.3%.

This may happen if there is no pattern in the outlier configuration.

The classical sparse method cSOS outperforms LDA slightly, and robust LDA has a

much lower prediction quality than all other methods. Figure 4.5 shows the Mahalanobis

distances from the rSOS estimator of the projected test data. Especially regions 3 and 4

have some observations with large distances to its group centers in the projected space.

In Figure 4.6, the projection of all observations into the subspace is visualized.

4.7 Conclusion

This paper introduces a robust and sparse optimal scoring method for multigroup clas-

sification. It yields a new supervised classification method, applicable if the number

of variables is large with respect to the sample size and with the possible presence of

LDA rLDA cSOS rSOS

average mcr 0.178 (.0645) 0.358 (.1460) 0.175 (.0308) 0.153 (.0312)
average wmcr 0.183 (.0604) 0.353 (.1201) 0.175 (.0431) 0.133 (.0282)

Table 4.3: Olive oil data: average (w)mcr is the (weighted) mcr averaged over the five
test data sets. Standard errors are reported in parentheses.
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Figure 4.6: Olive oil data: pairwise scatter plots of data projected into the 3-dimensional
subspace derived from rSOS. Observations with weight smaller than one are colored in
gray.

outliers in the data. Using an iterative algorithm, it searches for an optimal projection

into a subspace using only a subset of the original variables: the most informative ones.

Potential outliers are down-weighted, reducing their influence in the search for this op-

timal projection. The final classification is then carried out in this (K − 1)-dimensional

subspace. As shown in the examples in Section 4.6, the resulting low-dimensional rep-

resentation of the data is also useful for visualization and interpretation.

The algorithm we developed, which is outlined in Section 4.3, is implemented and

publicly available in the R-package rrcovHD (Todorov, 2016). This package contains

outlier detection methods and robust statistical procedures for high dimensions. A call

to the function SosDiscrRobust, with the data matrix and the class memberships as

input, returns the estimated model.

Only few proposals exist so far for robust classification in high dimensions. Our

proposal has the important feature of being sparse, simultaneously performing variable

selection and model estimation, by using a (robust) Lasso-type approach. The simula-

tion study has shown the importance of considering both sparse modeling and robust

estimation. If either of them is missing, the prediction performance may decrease dras-

tically.
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Appendix

Derivation of expression (4.4) for the score vector estimates

Let ω1, ..., ωn be case weights for each observation. Ω is a diagonal matrix with these

case weights in the diagonal. Then the weighted data matrices are Ỹ = Ω1/2Y and

X̃ = Ω1/2X. The diagonal matrix with weighted class proportions is D̃ = 1∑
ωi
Ỹ
T
Ỹ .

The optimization problem (4.2) in step h for a given β̂ can be rewritten as

min
θ
‖X̃β̂ − Ỹ θ‖2 s.t. θT D̃θ = 1 and Cθ = 0 ∈ Rh (4.6)

with C = QT D̃, and we drop the index h for ease of notation.

We use the method of Lagrange multipliers. The Lagrangian associated with Eq.

(4.6) is given by

L = (X̃β̂ − Ỹ θ)T (X̃β̂ − Ỹ θ)− η(θT D̃θ − 1)− 2γTCθ.

The partial derivative set to zero gives

∂L

∂θ
= −2Ỹ

T
(X̃β̂ − Ỹ θ)− 2ηD̃θ − 2CTγ = 0.

Hence,

θ = (Ỹ
T
Ỹ − ηD̃)−1(Ỹ

T
X̃β̂ +CTγ).

To solve for the Lagrange multipliers η and γ, the side constraints are used.

0 = Cθ = C(Ỹ
T
Ỹ − ηD̃)−1Ỹ

T
X̃β̂ +C(Ỹ

T
Ỹ − ηD̃)−1CTγ

So,

γ = −
(
C(Ỹ

T
Ỹ − ηD̃)−1CT

)−1
C(Ỹ

T
Ỹ − ηD̃)−1Ỹ

T
X̃β̂.

We conclude

θ = (Ỹ
T
Ỹ − ηD̃)−1{

I −CT (C(Ỹ
T
Ỹ − ηD̃)−1CT )−1C(Ỹ

T
Ỹ − ηD̃)−1

}
(Ỹ

T
X̃β̂). (4.7)
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Since Ỹ
T
Ỹ is proportional to D̃, there exists a scalar c such that

(Ỹ
T
Ỹ − ηD̃)−1 = cD̃

−1
.

Formula (4.7) can be simplified to

θ = c
{
I − D̃−1

CT (CD̃
−1
CT )−1C

}
D̃
−1
Ỹ
T
X̃β̂.

Due to the symmetry of D̃ and with the definition of C = QT D̃ we obtain

θ = c
{
I −Q(QT D̃Q)−1QT D̃

}
D̃
−1
Ỹ
T
X̃β̂.

The scalar c can then be scaled so that the side constraint θT D̃θ = 1 is fulfilled.

Algorithm for the computation of the initial estimates for βh and θh

Input: h,Qh,X,Y , λ

(i) Compute D = 1
nY

TY .

(ii) Generate θ∗, a random vector from N(0, 1) of length K.

(iii) Compute θ̂h = c
{
I −Qh(QT

hDQh)−1QT
hD
}
θ∗, with c so that θ̂

T

hDθ̂h = 1.

Apply the following steps twice:

1. For fixed θ̂h, apply sparse least trimmed squares (sparse LTS) regression (Alfons

et al., 2013) to the response Y θ̂h and predictors X.

Let a = 0.5n and ‖r‖21:a =
∑a

i=1 r
2
(i) denote the sum of the a smallest squared

elements of the vector r. The sparse LTS estimator is a robust version of the

Lasso and defined as

min
β

1

a
‖Y θh −Xβ‖2(1):(a) + λ‖β‖1.

As in Alfons et al. (2013), a re-weighting step is carried out afterwards yielding

β̂h.

2. For fixed β̂h, apply least absolute deviation (LAD) regression with response Xβ̂h

and predictor matrix Y :

θ∗ = argmin
θ
‖Y θ −Xβ̂h‖1.
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The LDA estimator is robust with regard to outliers in the dependent variable,

but not to leverage points (i.e. outliers in the covariate space). Since the covari-

ates are dummy variables here, leverage points cannot occur. Then we apply the

transformation for satisfying the side constraints:

θ̂h = c
{
I −Qh(QT

hDQh)−1QT
hD
}
θ∗.

Output: Initial estimators β̂h and θ̂h
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CHAPTER5
Robust and sparse estimation

methods for high-dimensional

linear and logistic regression

Abstract: Fully robust versions of the elastic net estimator are introduced

for linear and logistic regression. The algorithms used to compute the esti-

mators are based on the idea of repeatedly applying the non-robust classical

estimators to data subsets only. It is shown how outlier-free subsets can be

identified efficiently, and how appropriate tuning parameters for the elastic

net penalties can be selected. A final reweighting step improves the effi-

ciency of the estimators. Simulation studies compare with non-robust and

other competing robust estimators and reveal the superiority of the newly

proposed methods. This is also supported by a reasonable computation time

and by good performance in real data examples.

Key words: Elastic net penalty, Least trimmed squares, C-step algorithm,

High-dimensional data, Robustness, Sparse estimation



5.1. Introduction

5.1 Introduction

Let us consider the linear regression model which assumes the linear relationship between

the predictors X ∈ Rn×p and the predictand y ∈ Rn×1,

y = Xβββ + εεε, (5.1)

where βββ = (β1, . . . , βp)
T are the regression coefficients and εεε is the error term as-

sumed to have standard normal distribution. For simplicity’s sake, we assume that

y = (y1, . . . , yn)T is centered to mean zero, and the columns of X are mean-centered

and scaled to variance one. The ordinary least squares (OLS) regression estimator is

the common choice in situations where n the number of observations in the data set is

greater than p the number of predictor variables. However, in presence of multicollinear-

ity among predictors, the OLS estimator becomes unreliable, and if p exceeds n it cannot

even be computed. Several alternatives have been proposed in this case; here we focus on

the class of shrinkage estimators which penalize the residual sum-of-squares. The ridge

estimator uses an l2 penalty on the regression coefficients Hoerl and Kennard (1970),

while the lasso estimator uses an l1 penalty instead Tibshirani (2011). Although this

no longer allows for a closed form solution for the estimated regression coefficients, the

lasso estimator becomes sparse, which means that some of the regression coefficients are

shrunk to zero. This means that lasso acts like a variable selection method by returning

a smaller subset of variables relevant for the model. This is appropriate in particular

for high-dimensional low sample size data sets (n � p), arising from applications in

chemometrics, biometrics, econometrics, social sciences and many other fields, where

the data include many uninformative variables which have no effect on the predictand

or contribute very little information to the model.

There is also a limitation of the lasso estimator, since it is able to select only at most

n variables when n < p. If n is very small, or if the number of informative variables

(variables which are relevant for the model) is expected to be greater than n, the model

might perform poorly. As a way out, the elastic net (enet) estimator has been introduced

Zou and Hastie (2005), which combines both l1 and l2 penalties:

β̂ββenet = arg min
βββ

{
n∑
i=1

(yi − xTi βββ)2 + λPα(βββ)

}
(5.2)

Here, y = (y1, . . . , yn)T , the observations xTi form the rows of X, and the penalty term
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Pα is defined as

Pα(βββ) = (1− α)
1

2
‖βββ‖22 + α‖βββ‖1 =

p∑
j=1

[
(1− α)

1

2
β2
j + α|βj |

]
. (5.3)

The entire strength of the penalty is controlled by the tuning parameter λ ≥ 0. The

other tuning parameter α is the mixing proportion of the ridge and lasso penalties and

takes value in [0, 1]. The elastic net estimator is able to select variables like in lasso

regression, and shrinks the coefficients according to ridge regression. For an overview of

sparse methods, see Filzmoser et al. (2012).

A further limitation of the previously mentioned estimators is their lack of robustness

with regard to outliers. In practice, the presence of outliers in data is quite common, and

thus robust statistical methods are frequently used, see, for example Liang and Kvalheim

(1996); Liang (1996). In the linear regression setting, outliers may appear in the space

of the predictand (so-called vertical outliers), or in the space of the predictor variables

(leverage points) Maronna et al. (2006). The Least Trimmed Squares (LTS) has been

among the first robust estimators proposed which is fully robust against both types of

outliers Rousseeuw and Leroy (2003). It is defined as

β̂ββLTS = arg min
βββ

h∑
i=1

r2
(i)(βββ), (5.4)

where the r(i) are the ordered absolute residuals |r(1)| ≤ |r(2)| ≤ · · · ≤ |r(n)|, and

ri = yi − xTi βββ Rousseeuw (1984). The number h is chosen between b(n + p + 1)/2c
and n, where bac refers to the largest integer ≤ a, and it determines the robustness

properties of the estimator Rousseeuw (1984). The LTS estimator also became popular

due to the proposal of a quick algorithm for its computation, the so-called FAST-LTS

algorithm Rousseeuw and Van Driessen (2006). The key feature of this algorithm is the

“concentration step” or C-step, which is an efficient way to arrive at outlier-free data

subsets where the OLS estimator can be applied. This only works for n > p, but recently

the sparse LTS regression estimator has been proposed for high-dimensional problems

Alfons et al. (2013):

β̂ββsparseLTS = arg min
βββ

{
h∑
i=1

r2
(i)(βββ) + hλ‖βββ‖1

}
. (5.5)

This estimator adds an l1 penalty to the objective function of the LTS estimator, and

it can thus be seen as a robust counterpart of the lasso estimator. The sparse LTS

73



5.1. Introduction

estimator is robust with regard to both vertical outliers and leverage points, and a fast

algorithm has also been developed for its computation Alfons (2013).

The contribution of this work is twofold: A new sparse and robust regression estima-

tor is proposed with combined l1 and l2 penalties. This robustified elastic net regression

estimator overcomes the limitations of lasso type estimators concerning the low number

of variables in the models and concerning the instability of the estimator when there is

high multicollinearity among the predictors Tibshirani (2011). As a second contribution,

a robust elastic net version of logistic regression is introduced for problems where the

response y is a binary variable encoded with yi ∈ {0, 1}, referring to the class member-

ships of two groups. The logistic regression model is yi = πi + εi, for i = 1, . . . , n, where

πi denotes the conditional probability for the ith observation,

πi = Pr(yi = 1|xi) =
ex

T
i βββ

1 + ex
T
i βββ
, (5.6)

and εi is the error term assumed to have binomial distribution. The most popular way

to estimate the model parameters is the maximum likelihood (ML) estimator which is

based on maximizing the log-likelihood function or, equivalently, minimizing the negative

log-likelihood function,

β̂ββML = arg min
βββ

n∑
i=1

d(xTi βββ, yi), (5.7)

with the deviances

d(xTi βββ, yi) = −yi log πi − (1− yi) log(1− πi) = −yixTi βββ + log
(

1 + ex
T
i βββ
)
. (5.8)

The estimation of the model parameters with this method is not reliable when there

is multicollinearity among the predictors and is not feasible when p > n. To solve these

problems, Friedman et al. Friedman et al. (2010) suggested minimizing a penalized

negative log-likelihood function,

β̂ββenet = arg min
βββ

{
n∑
i=1

d(xTi βββ, yi) + nλPα(βββ)

}
. (5.9)

Here, Pα(βββ) is the elastic net penalty as given in Equation (5.3), and thus this estimator

extends (5.2) to the logistic regression setting. Using the elastic net penalty also solves

the non-existence problem of the estimator in case of non-overlapping groups Albert and

Anderson (1984); Friedman et al. (2010, 2016). Robustness can be achieved by trimming

the penalized log-likelihood function, and using weights as proposed in the context of
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robust logistic regression Croux and Haesbroeck (2003); Bianco and Yohai (1996). These

weights can also be applied in a reweighting step which increases the efficiency of the

robust elastic net logistic regression estimator.

The outline of this paper is as follows: In Section 5.2, we introduce the robust and

sparse linear regression estimator and provide a detailed algorithm for its computation.

Section 5.3 presents the robust elastic net logistic regression estimator. Some important

details which are different from the linear regression algorithm are mentioned here. Sec-

tion 5.4 explains how the tuning parameters for the proposed estimators can be selected;

we prefer an approach based on cross-validation. Since LTS estimators possess a rather

low statistical efficiency, a reweighting step is introduced in Section 5.5 to increase the ef-

ficiency. The properties of the proposed estimators are investigated in simulation studies

in Section 5.6, and Section 5.7 shows the performance using real data examples. Section

5.8 provides some insight into the computation time of the algorithms, and Section 5.9

presents out conclusion.

5.2 Robust and sparse linear regression with elastic net

penalty

A robust and sparse elastic net estimator in linear regression can be defined with the

objective function

Q(H,βββ) =
∑
i∈H

(yi − xTi βββ)2 + hλPα(βββ) (5.10)

whereH ⊆ {1, 2, . . . , n} with |H| = h, λ ∈ [0, λ0], and Pα indicates the elastic net penalty

with α ∈ [0, 1] as in Equation (5.3). We call this estimator the enet-LTS estimator, since

it uses a trimmed sum of squared residuals, like the sparse LTS estimator (5.5). The

minimum of the objective function (5.10) determines the optimal subset of size h,

Hopt = arg min
H⊆1,2,...,n:|H|=h

Q(H,β̂ββH), (5.11)

which is supposed to be outlier-free. The coefficient estimates β̂ββH depend on the subset

H. The enet-LTS estimator is given for this subset Hopt by

β̂ββenetLTS = arg minQ(Hopt,βββ). (5.12)

It is not trivial to identify this optimal subset, and in practice one has to use an

algorithm to approximate the solution. This algorithm uses C-steps: Suppose that
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the current h-subset in the kth iteration of the algorithm is denoted by Hk, and the

resulting estimator by β̂ββHk
. Then the next subset Hk+1 is formed by the indexes of

those observations which correspond to the h smallest squared residuals

r2
k,i = (yi − xTi β̂ββHk

)2, for i = 1, . . . , n. (5.13)

If β̂ββHk+1
denotes the estimator based on Hk+1, then by construction of the h-subsets one

can conclude:

Q(Hk+1, β̂ββHk+1
) ≤ Q(Hk+1, β̂ββHk

) ≤ Q(Hk, β̂ββHk
) (5.14)

This means that the C-steps decrease the objective function (5.10) successively, and

lead to a local optimum after convergence. The global optimum is approximated by

performing the C-steps with several initial subsets. However, in order to keep the runtime

of the algorithm low, it is crucial that the initial subsets are chosen carefully. As outlined

in Alfons et al. (2013), for a certain combination of the penalty parameters α and

λ, elemental subsets are created consisting of the indexes of three randomly selected

observations. Using only three observations increases the possibility of having no outliers

in the elemental subsets. Let us denote these elemental subsets by

Hs
el = {js1, js2, js3}, (5.15)

where s ∈ {1, 2, . . . , 500}. The resulting estimators based on the three observations are

denoted by β̂ββHs
el

. Now the squared residuals (yi−xiβ̂ββHs
el

)2 can be computed for all obser-

vations i = 1, . . . , n, and two C-steps are carried out, starting with the h-subset defined

by the indexes of the smallest squared residuals. Then only those 10 h-subsets with the

smallest values of the objective function (5.10) are kept as candidates. With these can-

didate subsets, the C-steps are performed until convergence (no further decrease), and

the best subset is defined as that one with the smallest value of the objective function.

This best subset also defines the estimator for this particular combination of α and λ.

Basically, one can now apply this procedure for a grid of values in the interval α ∈
[0, 1] and λ ∈ [0, λ0]. In practice, this may still be quite time-consuming, and therefore,

for a new parameter combination, the best subset of the neighbouring grid value of α

and/or λ, is taken, and the C-steps are started from this best subset until convergence.

This technique, called warm starts, is repeated for each combination over the grid of α

and λ values, and thus the start based on the elemental subsets is carried out only once.

The choice of the optimal tuning parameters αopt and λopt is detailed in Section 5.4.

The subset corresponding to the optimal tuning parameters is the optimal subset of size
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h. The enet-LTS estimator is then calculated based on the optimal subset with αopt and

λopt.

5.3 Robust and sparse logistic regression with elastic net

penalty

Based on the definition (5.9) of the elastic net logistic regression estimator, it is straight-

forward to define the objective function of its robust counterpart based on trimming,

Q(H,βββ) =
∑
i∈H

d(xTi βββ, yi) + hλPα(βββ), (5.16)

where again H ⊆ {1, 2, . . . , n} with |H| = h, and Pα is the elastic net penalty as defined

in Equation (5.3). As outlined in Section 5.2, the task is to find the optimal subset which

minimizes the objective function and defines the robust sparse elastic net estimator for

logistic regression. It turns out that the algorithm explained previously in the linear

regression setting can be successfully used to find the approximative solution. In what

follows, we will explain the modifications that need to be carried out.

C-steps: In the linear regression case, the C-steps were based on the squared residu-

als (5.13). Now the h-subsets are determined according to the indexes of those

observations where the deviances d(xTi β̂ββHk
, yi) have the smallest values. However,

we must ensure that the selected observations have the same group proportions as

the original data. Denote n0 and n1, the number of observations in both groups,

with n0 + n1 = n. Then h0 = b(n0 + 1)h/nc and h1 = h − h0 define the group

sizes in each h-subset. A new h-subset is created with the h0 indexes of the small-

est deviances d(xTi β̂ββHk
, yi = 0) and with the h1 indexes of the smallest deviances

d(xTi β̂ββHk
, yi = 1).

Elemental subsets: In the linear regression case, the elemental subsets consisted of the

indexes of three randomly selected observations, see (5.15). Now four observations

are randomly selected to form the elemental subsets, two from each group. This

makes it possible to compute the estimator, and the two C-steps are based on

the h smallest values of the deviances. As before, this is carried out for 500

elemental subsets, and only the “best” 10 h-subsets are kept. Here, “best” refers

to an evaluation that is borrowed from a robustified deviance measure proposed

in Croux and Haesbroeck Croux and Haesbroeck (2003) in the context of robust
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5.3. Robust and sparse logistic regression with elastic net penalty

logistic regression (but not in high dimensions). These authors replace the deviance

function (5.8) used in (5.7) by a function ϕBY to define the Bianco Yohai (BY)

estimator

β̂ββBY = arg min
βββ

n∑
i=1

ϕ(xTi βββ; yi), (5.17)

a highly robust logistic regression estimator, see also Bianco and Yohai (1996).

The form of the function ϕBY is shown in Figure 5.1, see Croux and Haesbroeck

(2003) for details.

We use this function as follows: Positive scores xTi β̂ββ of group 1, i.e. yi = 1, refer to

correct classification and receive the highest values for ϕBY , while negative scores

refer to misclassification, with small or zero ϕBY values. We observe the opposite

behaviour for the scores of group 0, see Figure 5.1. When evaluating an h-subset,

the sum of the h values of ϕBY (xTi β̂ββH) for i ∈ H is computed, and this sum

should be as large as possible. This means that we aim at identifying an h-subset

where the groups are separated as much as possible. Points on the wrong side have

almost no contribution, but also the contribution of outliers on the correct side is

bounded. In this way, outliers will not dominate the sum.

With the best 10 h-subsets, we continue the C-steps until convergence. Finally,

the subset with the largest sum ϕBY (xTi β̂ββH) for all i ∈ H forms the best index set.

−30 −20 −10 0 10 20 30

0.
0

0.
5

1.
0

1.
5

Scores

ϕ B
Y

Group 1
Group 0

Figure 5.1: Function ϕBY used for evaluating an h-subset, based on the scores xTi β̂ββ for
the two groups.
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The selection of the optimal parameters αopt and λopt is discussed in Section 5.4. The

subset corresponding to these optimal tuning parameters is defined as the optimal subset

of size h. The enet-LTS logistic regression estimator is then calculated on the optimal

subset with αopt and λopt.

Note that at the beginning of the algorithm for linear regression, the predictand is

centered, and the predictor variables are centered robustly by the median and scaled by

the MAD. While carrying out the C-steps of the algorithm, we additionally mean-center

the response variable and scale the predictors by their arithmetic means and standard

deviations, calculated on each current subset, see also Alfons et al. (2013). The same

procedure is applied for logistic regression, except for centering the predictand. In the

end, the coefficients are back-transformed to the original scale.

5.4 Selection of the tuning parameters

Sections 5.2 and 5.3 outlined the algorithms to arrive at a best subset for robust elastic

net linear and logistic regression, for each combination of the tuning parameters α ∈ [0, 1]

and λ ∈ [0, λ0]. In this section, we define the strategy to select the optimal combination

αopt and λopt, leading to the optimal subset. For this purpose, we are using k-fold cross-

validation (CV) on those best subsets of size h, with k = 5. In more detail, for k-fold

CV, the data are randomly split into k blocks of approximately equal size. In case of

logistic regression, each block needs to consist of observations from both classes with

approximately the same class proportions as in the complete data set. Each block is

left out once, the model is fitted to the “training data” contained in the k − 1 blocks,

using a fixed parameter combination for α and λ, and it is applied to the left-out block

with the “test data”. In this way, h fitted values are obtained from k models, and they

are compared to the corresponding original response by using the following evaluation

criteria:

• For linear regression we take the root mean squared prediction error (RMSPE)

RMSPE(α, λ) =

√√√√1

h

h∑
i=1

r2
i (β̂ββα,λ) (5.18)

where ri = yi − xTi β̂ββα,λ presents the test set residuals from the models estimated

based on the training sets with a specific α and λ (for the sake of simplicity we

omit the index k denoting the models where the k-th block was left out and the

corresponding test data from this block).
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• For logistic regression we use the mean of the negative log-likelihoods or deviances

(MNLL)

MNLL(α, λ) =
1

h

h∑
i=1

di(β̂ββα,λ), (5.19)

where di = d(xTi β̂ββα,λ, yi) presents the test set deviances from the models estimated

based on the training sets with a specific α and λ.

Note that the evaluation criteria given by (5.18) and (5.19) are robust with regard to

outliers, because they are based on the best subsets of size h, which are supposed to be

outlier-free.

In order to obtain more stable results, we repeat the k-fold CV five times and calculate

the average of the corresponding evaluation measure. Finally, the optimal parameters

αopt and λopt are defined as that couple for which the evaluation criterion gives the

minimal value. The corresponding best subset is determined as the optimal subset.

Note that the optimal couple αopt and λopt is searched on a grid of values α ∈ [0, 1]

and λ ∈ [0, λ0]. In our experiments, we used 41 equally-spaced values for α, and λ was

varied in steps of size 0.025λ0. For determining λ0 in the linear regression case, we used

the same approach as in Alfons et al. Alfons et al. (2013) which is based on the Pearson

correlation between y and the jth predictor variable xj on winsorized data. For logistic

regression, we replaced the Pearson correlation by a robustified point-biserial correlation:

denote by n0 and n1 the group sizes of the two groups, and by m0
j and m1

j the medians

of the jth predictor variable for the data from the two groups, respectively. Then the

robustified point-biserial correlation between y and xj is defined as

rpb(y, xj) =
m1
j −m0

j

MAD(xj)
·
√

n0n1

n(n− 1)
,

where MAD(xj) is the MAD of xj , and n = n0 + n1.

5.5 Reweighting step

The LTS estimator has a low efficiency, and thus it is common to use a reweighting

step Rousseeuw and Leroy (2003). This idea is also used for the estimators introduced

here. Generally, in a reweighting step the outliers according to the current model are

identified and downweighted. For the linear regression model we will use the same

reweighting scheme as proposed in Alfons et al. Alfons et al. (2013), which is based on
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standardized residuals. In case of logistic regression we compute the Pearson residuals

which are approximately standard normally distributed and given by

rsi =
yi − πi

πi (1− πi)
, (5.20)

with πi the conditional probabilities from (5.6).

For simplicity’s sake, let us also denote the standardized residuals from the linear

regression case by rsi . Then the weights are defined by

wi =

1, if |rsi | ≤ Φ−1(1− δ)

0, if |rsi | > Φ−1(1− δ)
i = 1, 2, . . . , n, (5.21)

where δ = 0.0125, such that 2.5% of the observations are flagged as outliers in the normal

model. The reweighted enet-LTS estimator is defined as

β̂ββreweighted = arg min
βββ

{
n∑
i=1

wif(xi; yi) + λupdnwPαopt(βββ)

}
, (5.22)

where wi, i = 1, . . . , n stands for the vector of binary weights (according to the current

model), nw =
∑n

i=1wi, and f corresponds to squared residuals for linear regression or

to the deviances in case of logistic regression. Since h ≤ nw, and because the optimal

parameters αopt and λopt have been derived from h observations, the penalty can act

slightly differently in (5.22) than for the raw estimator. For this reason, the parameter

λopt has to be updated, while the αopt regulating the tradeoff between the l1 and l2

penalty is kept the same. The updated parameter λupd is determined by 5-fold CV, with

the simplification that αopt is already fixed.

5.6 Simulation studies

In this section, the performance of the new estimators is compared with different sparse

estimators in different scenarios. We consider both the raw and the reweighted versions of

the enet-LTS estimators, and therefore aim to show how the reweighting step improves

the methods. The raw and reweighted enet-LTS estimators are compared with their

classical, non-robust counterparts, which are the linear and logistic regression estimators

with elastic net penalty Friedman et al. (2010). In case of linear regression we also

compare with the reweighted sparse LTS estimator of Alfons et al. (2013). All robust

estimators are calculated taking the subset size h = b(n + 1) · 0.75c such that their

performances are directly comparable.
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5.6. Simulation studies

For each replication, we choose the optimal tuning parameters αopt and λopt over

the grids α and λ with 5-times repeated 5-fold CV as described in Section 5.4. To

select the tuning parameters for the classical estimators with elastic net penalty, we

first draw the same grid for α, namely α ∈ [0, 1], with 41 equally spaced grid points.

Then we use 5-fold CV as provided by the R package glmnet, which automatically checks

the model quality for a sequence of values for λ, taking the mean squared error as an

evaluation criterion. Finally, the tuning parameters corresponding to the smallest value

of the minimum cross-validated error are determined as the optimal tuning parameters.

In order to be coherent with our evaluation, the tuning parameters for the sparse LTS

estimator are determined in the same way as for the enet-LTS estimator. All simulations

are carried out in R R Development Core Team (2017).

Note that we simulated the data sets with intercept. As described at the end of

Section 5.3, the data are centered and scaled at the beginning of the algorithm and only

in the final step are the coefficients back-transformed to the original scale, where the

estimate of the intercept is computed.

Sampling schemes for linear regression: Let us consider two different scenarios

by means of generating a “low-dimensional” data set with n = 150 and p = 60 and a

“high-dimensional” data set with n = 50 and p = 100. We generate a data matrix where

the variables are forming correlated blocks, X = (Xa1 ,Xa2 ,Xb), where Xa1 , Xa2 and

Xb have the dimensions n×pa1 ,n×pa2 and n×pb, with p = pa1 +pa2 +pb. Such a block

structure can be assumed in many application, and it mimics different underlying hidden

processes. The observations of the blocks are generated independently from each other,

from a multivariate normal distribution Npa1
(0,Σa1) with Σa1 = ρ

|j−k|
a1 , 1 ≤ j, k ≤ pa1 ,

Npa2
(0,Σa2) with Σa2 = ρ

|j−k|
a2 , 1 ≤ j, k ≤ pa2 , and Npb(0,Σb) with Σb = ρ

|j−k|
b , 1 ≤ j,

k ≤ pb, respectively. While the first two blocks belong to the informative variables

with sizes of pa1 = 0.05p and pa2 = 0.05p, the third block represents uninformative

variables with pb = 0.9p. Furthermore, we take ρa1 = ρa2 = 0.9 to allow for a high

correlation among the informative variables, and ρb = 0.2 to have low correlation among

the uninformative variables.

To create sparsity, the true parameter vector βββ consists of zeros for the last 90% of

the entries referring to the uninformative variables, while the first 10% of the entries are

assigned to a value of one. The response variable is calculated by

yi = 1 + xTi βββ + εi, (5.23)

where the error term εi is distributed according to a standard normal distribution
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N (0, 1), for i = 1, . . . , n.

This is the design for the simulations with clean data. For the simulation scenarios

with outliers, we replace the first 10% of the observations of the block of informative

variables with values coming from independent normal distributions N (20, 1) for each

variable. Further, the error terms for these 10% outliers are replaced by values from

N (20σ̂y, 1) instead of N (0, 1), where σ̂y represents the estimated standard deviation of

the clean predictand vector. In this way, the contaminated data consist of both vertical

outliers and leverage points.

Sampling schemes for logistic regression: We also consider two different scenar-

ios for logistic regression, a “low-dimensional” data set with n = 150 and p = 50 and a

“high-dimensional” data set with n = 50 and p = 100. The data matrix is X = (Xa,Xb),

where Xa has the dimension n×pa and Xb is of dimension n×pb, with p = pa+pb. The

data matrices are generated independently from Npa(0,Σa) with Σa = ρ
|j−k|
a , 1 ≤ j,

k ≤ pa, and Npb(0,Σb) with Σb = ρ
|j−k|
b , 1 ≤ j, k ≤ pb, respectively. While the first

block consists of the informative variables with pa = 0.1p, the second block represents

uninformative variables with pb = 0.9p. We take ρa = 0.9 for a high correlation among

the informative variables, and ρb = 0.5 for moderate correlation among the uninforma-

tive variables.

The coefficient vector βββ consists of ones for the first 10% of the entries, and zeros

for the remaining uninformative block. The elements of the error term εi are generated

independently from N (0, 1). The grouping variable is then generated according to the

model

yi =

0, if 1 + xTi βββ + εi ≤ 0

1, if 1 + xTi βββ + εi > 0
i = 1, 2, . . . , n. (5.24)

With this setting, both groups are approximately the same size.

Contamination is introduced by adding outliers to the informative variables only.

Denote n0 the number of observations in class 0. Then the first b0.1n0c observations of

group 0 are replaced by values generated from N (20, 1). In order to create “vertical”

outliers in addition to leverage points, we assign those first 0.1n0 observations of class 0

a wrong class membership.

Performance measures: To evaluate the different estimators, training and test

data sets are generated according to the sampling schemes explained earlier. The models

are fit to the training data and evaluated on the test data. The test data are always

generated without outliers.
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As performance measures we use the root mean squared prediction error (RMSPE)

for linear regression,

RMSPE(β̂ββ) =

√√√√ 1

n

n∑
i=1

(
yi − β̂0 − xTi β̂ββ

)2
, (5.25)

and the mean of the negative log-likelihoods or deviances (MNLL) for logistic regression,

MNLL(β̂ββ) =
1

n

n∑
i=1

d(β̂0 + xTi β̂ββ, yi), (5.26)

where yi and xi, i = 1, . . . , n, indicate the observations comprising the test data set, β̂ββ

denotes the coefficient vector and β̂0 stands for the estimated intercept term obtained

from the training data set. In logistic regression we also calculate the misclassification

rate (MCR), defined as

MCR =
m

n
(5.27)

where m is the number of misclassified observations in the test data after fitting the

model to the training data. Furthermore, we consider the precision of the coefficient

estimate as a quality criterion, defined by

PRECISION(β̂ββ) =

√√√√ p∑
i=0

(
βi − β̂i

)2
, (5.28)

In order to compare the sparsity of the coefficient estimators, we evaluate the False

Positive Rate (FPR) and the False Negative Rate (FNR), defined as

FPR(β̂ββ) =
|{j = 0, . . . , p : β̂j 6= 0 ∧ βj = 0}|
|{j = 0, . . . , p : βj = 0}|

, (5.29)

FNR(β̂ββ) =
|{j = 0, . . . , p : β̂j = 0 ∧ βj 6= 0}|
|{j = 0, . . . , p : βj 6= 0}|

. (5.30)

The FPR is the proportion of non-informative variables that are incorrectly included in

the model. On the other hand, the FNR is the proportion of informative variables that

are incorrectly excluded from the model. A high FNR usually has a bad effect on the

prediction performance since it inflates the variance of the estimator.

These evaluation measures are calculated for the generated data in each of 100 sim-

ulation replications separately, and then summarized in boxplots. The smaller the value

for these criteria, the better the performance of the method.
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Figure 5.2: Root mean squared prediction error (RMSPE) for linear regression. Left:
low-dimensional data set (n = 150 and p = 60); right: high-dimensional data set (n = 50
and p = 100).

Results for linear regression: The outcome of the simulations for linear regression

is summarized in Figures 5.2–5.5. The left plots in these figures are for the simulations

with low-dimensional data, and the right plots for the high-dimensional configuration.

Figure 5.2 compares the RMSPE. All methods yield similar results in the low-dimensional

non-contaminated case, while in the high-dimensional clean data case the elastic net

method is clearly better. However, in the contaminated case, elastic net leads to poor

performance, which is also the case for sparse LTS. Enet-LTS performs even slightly

better with contaminated data, and there is also a slight improvement visible in the

reweighted version of this estimator. The PRECISION in Figure 5.3 shows essentially

the same behavior. The FPR in Figure 5.4, reflecting the proportion of incorrectly-added

noise variables to the models, shows a very low rate for sparse LTS. Here, the elastic net

even improves in the contaminated setting, and the same is true for enet-LTS. A quite

different picture is shown in Figure 5.5 with the FNR. Sparse LTS and elastic net miss

a high proportion of informative variables in the contaminated data scenario, which is

the reason for their poor overall performance. Note that the outliers are placed in the

informative variables, which seems to be particularly difficult for sparse LTS.

Results for logistic regression: Figures 5.6–5.10 summarize the simulation re-

sults for logistic regression. As before, the left-handed plots refer to the low-dimensional

data, and the right plots to the high-dimensional data. Within one plot, the results
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Figure 5.3: Precision of the estimators (PRECISION) for linear regression. Left: low-
dimensional data set (n = 150 and p = 60); right: high-dimensional data set (n = 50
and p = 100).
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Figure 5.4: False positive rate (FPR) for linear regression. Left: low-dimensional data
set (n = 150 and p = 60); right: high-dimensional data set (n = 50 and p = 100).
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Figure 5.5: False negative rate (FNR) for linear regression. Left: low-dimensional data
set (n = 150 and p = 60); right: high-dimensional data set (n = 50 and p = 100).

for uncontaminated and contaminated data are compared directly. The misclassifica-

tion rate in Figure 5.6 is around 10% for all methods, and it is slightly higher in the

high-dimensional situation. When there is contamination, however, this rate increases

enormously for the classical method elastic net.

The average deviances in Figure 5.7 show that the reweighting of the enet-LTS esti-

mator clearly improves the raw estimate in both low-dimensional and high-dimensional

settings. It can also be seen that elastic net is sensitive to outliers. The precision of the

parameter estimates in Figure 5.8 reveal a remarkable improvement for the reweighted

enet-LTS estimator compared to the raw version, while the contamination does not have

any clear effect on the classical elastic net estimator.

The FPR in Figure 5.9 shows a certain difference between uncontaminated and con-

taminated data for the elastic net, but otherwise the results are quite comparable. A

different picture can be seen in the FNR in Figure 5.10, where especially in the low-

dimensional case the elastic net is very sensitive to the outliers. Overall, we conclude

that the enet-LTS performs very well when there is contamination, even though this

was not immediatly apparent when we looked at the precision alone, and it also yields

reasonable results for clean data.

The results for various different choices of n and p are presented in Table 5.1 and

5.2. Shown are the average values of the quality measures over m = 100 replications

for clean and contaminated data scenarios, respectively. Table 5.1 and 5.2 support the
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Figure 5.6: Misclassification rate for logistic regression. Left: low-dimensional data set
(n = 150 and p = 50); right: high-dimensional data set (n = 50 and p = 100).
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Figure 5.7: The mean of negative likelihood (MNLL) function for logistic regression.
Left: low-dimensional data set (n = 150 and p = 50); right: high-dimensional data set
(n = 50 and p = 100).
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Figure 5.8: Precision of the estimators (PRECISION) for logistic regression. Left: low-
dimensional data set (n = 150 and p = 50); right: high-dimensional data set (n = 50
and p = 100).
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Figure 5.9: False positive rate (FPR) for logistic regression. Left: low-dimensional data
set (n = 150 and p = 50); right: high-dimensional data set (n = 50 and p = 100).
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Figure 5.10: False negative rate (FNR) for logistic regression. Left: low-dimensional
data set (n = 150 and p = 50); right: high-dimensional data set (n = 50 and p = 100).

results given in Figures 5.6–5.10.

5.7 Real data applications

In this section, we will focus on applications with logistic regression and compare the non-

robust elastic net estimator with the robust enet-LTS method. The model selection is

conducted as described in Section 5.4. Model evaluation is done with leave-one-out cross

validation, i.e. each observation is used as test observation once, a model is estimated

based on the remaining observations, and the negative log-likelihood is calculated for

the test observation. In these real data examples, it is unknown if outliers are present.

In order to prevent potential outliers from influencing the evaluation of a model, the

25% trimmed mean of the negative log-likelihoods is calculated in order to compare the

methods.

Analysis of meteorite data

The time-of-flight secondary iron mass spectroscope COSIMA Kissel et al. (2007) was

sent to the comet Churyumov-Gerasimenko in the Rosetta space mission by the ESA to

analyze the elemental composition of comet particles which were collected there Schulz

et al. (2015). As reference measurements, samples of meteorites provided by the Natural
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Table 5.1: Results for logistic regression with no contamination: mean of negative log-
likelihood (MNLL), misclassification rate (MCR), bias of the estimators (Bias), false
positive rate (FPR) and false negative rate (FNR), averaged over m = 100 runs.

No Contamination
Setting Method MNLL MCR Bias FPR FNR

with n=25 enet-LTS 0.587 0.262 9.88 0.316 0.494
and p=50 elastic net 0.551 0.268 9.84 0.183 0.514

with n=25 enet-LTS 0.363 0.161 2.95 0.188 0.308
and p=100 elastic net 0.335 0.150 2.80 0.195 0.221

with n=25 enet-LTS 0.587 0.262 9.88 0.316 0.494
and p=1000 elastic net 0.551 0.268 9.84 0.183 0.514

with n=50 enet-LTS 0.278 0.116 2.44 0.224 0.145
and p=50 elastic net 0.279 0.113 2.16 0.282 0.093

with n=50 enet-LTS 0.239 0.103 2.65 0.180 0.224
and p=100 elastic net 0.236 0.102 2.61 0.201 0.195

with n=50 enet-LTS 0.463 0.200 9.73 0.232 0.486
and p=1000 elastic net 0.400 0.177 9.66 0.210 0.334

with n=150 enet-LTS 0.235 0.096 3.00 0.316 0.055
and p=50 elastic net 0.210 0.088 1.61 0.311 0.025

with n=150 enet-LTS 0.183 0.073 2.69 0.180 0.157
and p=100 elastic net 0.182 0.073 2.39 0.309 0.061

with n=150 enet-LTS 0.311 0.136 9.38 0.059 0.590
and p=1000 elastic net 0.257 0.112 9.29 0.180 0.239

with n=500 enet-LTS 0.216 0.097 1.45 0.484 0.000
and p=50 elastic net 0.176 0.075 1.13 0.338 0.002

with n=500 enet-LTS 0.139 0.060 1.92 0.367 0.016
and p=100 elastic net 0.121 0.048 1.57 0.292 0.013

with n=500 enet-LTS 0.182 0.079 8.89 0.075 0.461
and p=1000 elastic net 0.156 0.061 8.83 0.155 0.180
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Table 5.2: Results for logistic regression with contamination: mean of negative log-
likelihood (MNLL), misclassification rate (MCR), bias of the estimators (Bias), false
positive rate (FPR) and false negative rate (FNR), averaged over m = 100 runs.

Contaminated
Setting Method MNLL MCR Bias FPR FNR

with n=25 enet-LTS 0.216 0.097 1.45 0.484 0.000
and p=50 elastic net 0.176 0.075 1.13 0.338 0.002

with n=25 enet-LTS 0.434 0.190 3.04 0.288 0.271
and p=100 elastic net 0.831 0.518 3.51 0.182 0.789

with n=25 enet-LTS 0.726 0.412 10.04 0.401 0.551
and p=1000 elastic net 0.791 0.497 10.11 0.146 0.880

with n=50 enet-LTS 0.323 0.137 2.27 0.217 0.157
and p=50 elastic net 0.805 0.527 2.71 0.273 0.703

with n=50 enet-LTS 0.253 0.108 2.78 0.189 0.231
and p=100 elastic net 0.776 0.523 3.46 0.194 0.816

with n=50 enet-LTS 0.607 0.322 9.88 0.219 0.605
and p=1000 elastic net 0.756 0.511 10.09 0.079 0.937

with n=150 enet-LTS 0.259 0.102 2.96 0.272 0.060
and p=50 elastic net 0.709 0.543 2.49 0.234 0.682

with n=150 enet-LTS 0.201 0.080 2.79 0.187 0.141
and p=100 elastic net 0.711 0.524 3.36 0.181 0.800

with n=150 enet-LTS 0.409 0.191 9.51 0.077 0.605
and p=1000 elastic net 0.714 0.517 10.07 0.370 0.622

with n=500 enet-LTS 0.216 0.095 1.64 0.462 0.005
and p=50 elastic net 0.701 0.547 2.47 0.308 0.530

with n=500 enet-LTS 0.131 0.056 2.46 0.288 0.034
and p=100 elastic net 0.701 0.534 3.33 0.252 0.664

for n=500 enet-LTS 0.262 0.105 9.05 0.076 0.477
and p=1000 elastic net 0.702 0.526 10.06 0.121 0.807
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Chapter 5: Robust and sparse linear and logistic regression

History Museum Vienna were analyzed with the same type of spectroscope at Max

Planck Institute for Solar System Research in Göttingen.

Here we apply our proposed method for logistic regression to the measurements

from particles from the meteorites Ochansk and Renazzo with 160 and 110 spectra,

respectively. We restrict the mass range to 1-100mu, consider only mass windows where

inorganic and organic ions can be expected as described in Varmuza et al. (2011) and

variables with positive median absolute deviation. So we obtain p = 1540 variables.

Furthermore, the data is normalized to have constant row sum 100.

Table 5.3 summarizes the results of the comparison of the methods. The trimmed

MNLL is much smaller for the enet-LTS estimator than for the classical elastic net

method. The reweighting step improves the quality of the model further. The selected

tuning parameter αopt is much smaller for enet-LTS than for the classical elastic net

method which strongly influences the number of variables in the models.

number variables trimmed MNLL

elastic net 136 0.00866
enet-LTS raw 294 0.00030
enet-LTS 397 0.00014

Table 5.3: Renazzo and Ochansk: Number of variables in the optimal models and
trimmed mean negative log-likelihood from leave-one-out cross validation of the opti-
mal models.

Figure 5.11 compares the Pearson residuals of the elastic net model and the enet-LTS

model. In the classical approach, no abnormal observations can be detected. With the

enet-LTS model, several observations are identified as outliers by the 1.25% and 98.25%

quantiles of the standard normal distribution and they are marked as horizontal lines

in Figure 5.11. Closer investigation showed that these spectra lie on the outer border

of the measurement area and might have been measured on the target instead of the

meteorite particle. Their multivariate structure for those variables which are included

in the model is visualized in Figure 5.12, where we can see that in some variables they

have particularly large values compared to the majority of the group.

Analysis of the glass vessels data

Archaeological glass vessels were analyzed with electron-probe X-ray micro-analysis to

investigate the chemical concentrations of elements in order to learn more about their

origin and the trade market at the time of their making in the 16th and 17th century
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number variables trimmed MNLL

elastic net 50 0.004290
enet-LTS raw 375 0.000345
enet-LTS 448 0.000338

Table 5.4: Glass vessel data: number of variables in the optimal models, and trimmed
mean negative log-likelihood from leave-one-out cross validation of the optimal models.

Janssens et al. (1998). Four different groups were identified, i.e. sodic, potassic, potasso-

calcic and calcic glass vessels. To demonstrate the performance of logistic regression,

two groups are selected from the glass vessels data set. The first group is the potassic

group with 15 spectra, the second group is the potasso-calcic group with 10 spectra. As

in Filzmoser et al. (2008), we remove variables with MAD equal to zero, resulting in

p = 1905 variables.

The quality of the selected models is described in Table 5.4. The trimmed mean

of the negative log likelihoods is much smaller for enet-LTS than for elastic net. The

reweighting step in enet-LTS hardly improves the model, but includes more variables.

Again, both enet-LTS models include more variables than the elastic net model. In the

elastic net model the penalty gives higher emphasis on the l1 term, i.e. αopt = 0.8; for

enet-LTS it is αopt = 0.05.

We can expect the coefficient estimates to behave differently. Figure 5.13 (left) shows

coefficients of the reweighted enet-LTS model corresponding to variables associated with

potassium and calcium. The band which is associated with potassium has positive

coefficients, i.e. high values of these variables correspond to the potassic group which

is coded with ones in the response. High values of the variables in the band which

is associated with calcium will favor a classification to the potasso-calcic group (coded

with zero), since the coefficients for these variables are negative. Furthermore, it can

be observed that neighboring variables, which are correlated, have similar coefficients.

This is favored by the l2 term in the elastic net penalty. In Figure 5.13 (right) the

coefficient estimates of the elastic net model are visualized. Fewer coefficients are non-

zero than for enet-LTS which was favored by the l1 term in the elastic net penalty, but

in the second block of non-zero coefficients, neighboring variables receive very different

coefficient estimates.
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Figure 5.13: Glass vessels: coefficient estimate of the reweighted enet-LTS model (left)
and coefficient estimate of the elastic net mode (right) for a selected variable range.

5.8 Computation time

For our algorithm, we employ the classical elastic net estimator as it is implemented in the

R package glmnet Friedman et al. (2016). So, it is natural to compare the computation

time of our algorithm with this method. In the linear regression case we also make a

comparison with the sparse LTS estimator implemented in the R package robustHD

Alfons (2013). To calculate the estimators, we take a grid of five values for both tuning

parameters α and λ. The data sets are simulated as in Section 5.6 for a fixed number of

observations n = 150, but for a varying number of variables p in a range from 50 to 2000.

In Figure 5.14 (left: linear regression, right: logistic regression), the CPU time is reported

in seconds, as an average over 5 repetitions. In order to show the dependency on the

number of observations n, we also simulated data sets for a fixed number of variables

p = 100 with a varying number of observations n = 50, 100, . . . , 500. The results for

linear and logistic regression are summarized in Figure 5.15. The computations are

performed on an Intel Core 2 Q9650 @ 3000 GHz×4 processor.

Let us first consider the relationship of the computation time to the number of

variables p for linear regression, shown in the left plot of Figure 5.14. Sparse LTS

increases greatly with the number of variables p since it is based on the LARS algorithm

which has a computational complexity of O(p3 + np2) Efron et al. (2004). Even for the

smallest number of considered variables, the computation time is considerably higher

than for the other two methods. The reason is that for each value of λ and each step in
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Figure 5.14: CPU time in seconds (log-scale), averaged over 5 repetitions, for fixed
n = 150 and varying p; left: for linear regression; right: for logistic regression.
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Figure 5.15: CPU time in seconds (log-scale), averaged over 5 repetitions, for fixed
p = 100 and varying n; left: for linear regression; right: for logistic regression.
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the CV the best subset is determined starting with 500 elemental subsets. In this setting,

at least 25,000 estimations of a Lasso model are needed, because for each cross-validation

step at each of the 5 values of λ, two C-steps for 500 elemental subsets are carried out,

and for the 10 subsamples with lowest value of the objective function, further C-steps

are performed. In contrast, the enet-LTS estimator starts with 500 elemental subsets

for only one combination of α and λ, and takes the warm start strategy for subsequent

combinations. This saves computation time, and there is indeed only a slight increase

with p visible when compared to the elastic net estimator. A total of approximately 1,700

elastic net models are estimated in this procedure. This number is considerably fewer

than for the sparse LTS approach. The computation time of sparse LTS also increases

with n due to the computational complexity of LARS, while the increase is only minor

for enet-LTS, see Figure 5.15 (left).

The results for the computation time in logistic regression are presented in Figure

5.14 (right) and 5.15 (right). Here we can only compare the classical elastic net estima-

tor and the proposed robustified enet-LTS version. The difference in computation time

between elastic net and enet-LTS is again due to the many calls of the glmnet function

within enet-LTS. The robust estimator is considerably slower in logistic regression when

compared to linear regression for the same number of explanatory variables or observa-

tions. The reason is that more C-steps are necessary to identify the optimal subset for

each parameter combination of α and λ.

5.9 Conclusions

In this paper, robust methods for linear and logistic regression using the elastic net

penalty were introduced. This penalty allows for variable selection, can deal with high

multicollinearity among the variables, and is thus very appropriate in high-dimensional

sparse settings. Robustness has been achieved by using trimming. This usually leads to a

loss in efficiency, and therefore a reweighting step was introduced. Overall, the outlined

algorithms for linear and logistic regression turned out to yield good performance in

different simulation settings, and also with respect to computation time. Particularly, it

was shown that the idea of using “warm starts” for parameter tuning saves computation

time, while still maintaining precision. A competing method for robust high-dimensional

linear regression, the sparse LTS estimator Alfons (2013), does not use this idea, and is

thus much less attractive concerning computation time, especially when there are many

explanatory variables. We should also admit that for other simulation settings (not
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shown here), the difference between sparse LTS and the enet-LTS estimator is not so

big, or even marginal, depending on the exact setting.

For this reason, a further focus was on the robust high-dimensional logistic regression

case. We consider such a method highly relevant, since in many modern applications

in chemometrics or bio-informatics, one is confronted with data information from two

groups, and one has to find a classification rule and to identify marker variables which

support the rule. Outliers in the data are frequently a problem, and they can affect the

identification of the marker variables as well as the performance of the classifier. For

this reason, it is desirable to treat outliers appropriately. It was shown in simulation

studies as well as in data examples that in the presence of outliers the new proposal still

works well, while its classical non-robust counterpart can lead to poor performance.

Identifying outliers beforehand and continuing with the classical procedures on the

cleaned data would be an alternative to using robust estimators. However, it is not

at all trivial to identify multivariate outliers in high dimensions, and there are almost

no methods available for this purpose (see e.g. Filzmoser et al. (2008)). Besides, we

are mainly interested in model outliers. Our model is sparse which means that some

variables are not included and therefore outliers in these variables do not need to be

down-weighted.

Note that in Park and Konishi (2016), a logistic regression method with elastic net

penalty is proposed using weights to reduce the influence of outliers. Their approach is to

perform outlier detection in a PCA space, obtain weights based on robust Mahalanobis

distances in the PCA score space and derive weights from these distances. These weights

are then used to down-weight the negative log likelihoods in the penalized objective

function to reduce the influence of outliers. However, it is not guaranteed that outliers

can be detected in the PCA score space. An increasing number of uninformative variables

will disguise observations deviating from the majority only in few informative variables,

but these hidden outlying observations can still distort the model. Therefore, model

based outlier detection is highly recommended as proposed in our algorithm.

The algorithms used to compute the proposed estimators are implemented in R func-

tions, which are available upon request from the authors. The basis for the computation

of the robust estimator is the R package glmnet Friedman et al. (2016). This package

also implements the case of multinomial and Poisson regression. Naturally, a further ex-

tension of the algorithms introduced here could explore these areas of research. Further

work will be devoted to the theoretical properties of the family of enet-LTS estimators.
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