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Chapter 1
Introduction

Begin at the beginning...

Lewis Carroll, Alice in Wonderland

The Basel Committee defines operational risk as

”...the risk of loss resulting from inadequate or failed internal processes, people and
systems or from external events. This definition includes legal risk, but excludes
strategic and reputational risk.” [oBS05]

The Basel II capital accord rates operational risk among one of the three risk types for which a
bank has to maintain capital reserves to cover their risk exposure. In contrast to the other two
risk types, credit risk and market risk, operational risk includes many different inhomogeneous risk
drivers like fraud, natural disasters or human error.

When it comes to operational risk, it is also important to categorize the losses according to the busi-
ness area where they happened - e.g. in retail banking or investment banking. The high diversity
was already recognized by the Basel Committee in their 2002 loss data collection exercise, where
they defined 56 different basic Operational Risk Cells (ORC) based on 8 different business lines
and 7 different event types (see Figure 1.1).

The huge inhomogeneity of operational losses is by far not the only challenge when it comes to
operational risk. The risk is mainly driven by a few huge losses. The recent USD 13 billion (about
EUR 9.5 billion) mortgage settlement of JP Morgan is one example of what size a single loss could
possibly have. The potential that one single huge loss could even mean that the bank goes out of
business shows the importance of a proper Operational Risk Management (ORM) .

The Basel Committee incentivized a sound ORM by the introduction of the Advanced Measure-
ment Approach (AMA) for the calculation of the operational risk capital. After meeting several
qualitative and quantitative standards (see [oBS11] or [NG06]) for the ORM, the bank has the
potential to show to the regulator that it needs to maintain less capital for operational risk than it
would have needed with the standard calculation approach.
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Figure 1.1: The ORC - matrix according to the Basel Committee ([oBS03]). Business Lines marked with
”*” were not included in the original Basel II business lines, but are nevertheless used by the majority of the
AMA banks.

Figure 1.2: Step-by-Step Introduction of Operational Risk Management for the AMA [NG06]

To achieve this goal, the bank has to show that its measurement method is capable of capturing
the mentioned huge tail events and has to achieve a soundness standard comparable to a 99.9%
confidence interval of a one year period ([oBS11]). This measure is called the Operational Value
at Risk (OpVaR).

According to the Basel Committee, the operational risk measurement system must include the
following four key elements to meet the soundness standard ([NG06]):

(i) Internal loss data are the losses collected within a credit institution. Their systematic
collection forms the basis for the quantitative model. The model depends strongly on the
quality of loss data, therefore an application for the AMA can only be successful if the bank
can show a sufficient data quality process. Moreover, the bank needs to have a data history
of at least five years. Nevertheless even a data history of more than five years can never be
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sufficient to estimate quantiles of high order. For that reason, external loss data and scenarios
are needed.

(ii) External loss data are operational losses experienced by other banks. A credit institution
has many possibilities to obtain external data: either by buying from a commercial provider
or by joining a operational loss data consortium. Often it is preferable to join a consortium
because commercial provider often only offer access to publicly known operational losses.
The drawback of using consortium data is that it often lacks a proper description of the case
because it is made anonymous to protect the loss owner. One example for a data consortium
is the Operational Riskdata eXchange (ORX) Association.

(iii) Scenario analyses are assessments of operational risk made by experts considering possible
situations where operational losses could occur. The advantage of using scenario analyses
is a forward-looking aspect, while data is always backward-looking. However, it is often
questionable how reliable quantitative estimates by experts are, as they are subject to many
biases.

(iv) Factors reflecting the business environment and internal control systems (BEICF)
indicate, similar to scenario analyses, areas with a high risk of future operational losses before
they happened. BEICF work on a more quantitative basis than expert estimates. A prominent
BEICF are the so-called Key Risk Indicators (KRIs). The credit institution defines on its
own triggers for an early warning system, thinking about the roots of possible operational
losses.

Examples of KRIs are: (see [NG06])

• staff fluctuation rate

• days of sickness leave

• hours of overtime

• number and duration of system failures

• internal audit findings

• frequency of complaints

• wrong account entries

9



The thesis will be structured as follows:

Approaches in Operational Risk Modelling

The AMA gives banks a high flexibility in their model approaches. This led to a very diversified
universe of different AMA modelling techniques. The Bank of International Settlement (BIS)
undertook a survey amongst all AMA banks in 2009 to discover the range of practice for the AMA.
Together with these results, which can be found in [oBS09], this chapter will introduce and discuss
the most widely followed approaches in operational risk modelling and the mathematical models
behind them.

The Model in Practice of the Validation of the Model

The challenge in the AMA is to not only choose between one of the many different modelling
methods, but also to adapt them to the unique operational risk profile of a bank. The chapter will
explain the difficult procedure of finding the right approaches and how to specify them. Further-
more it will introduce a new technique based on Bayesian inference to include the different AMA
key elements.

Furthermore the regulator requires a bank to thoroughly validate the underlying model assump-
tions. The validation approach will be described in a separate chapter.

The described model is currently being used by a major Austrian bank for their AMA capital
calculation.

Appendix

In the course of the modelling work with the Austrian bank a R-Package has been developed
to aggregate all the functions and techniques that have been designed to find the AMA capital
requirement. Because this thesis should focus on the practical implementation of the AMA, the
most important codes and their documentation will be provided in the appendix.
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Chapter 2
Approaches in Operational Risk Modelling

All models are wrong, some models are
useful.

G. E. P. Box, Robustness in the Strategy
of Scientific Model Building

Before it is possible to define a sound risk measure for the AMA, one needs to define a model for
quantifying the operational risk of a bank. The industry standard (also mentioned in the guidelines
[oBS11], but nevertheless not obligatory) is the so-called Loss Distribution Approach (LDA).
Instead of looking at the cumulated one-year operational loss, one models the one-year frequency
of losses and the loss size (severity of loss) independently and puts them together in a second step.
This approach, very common in non-life insurance mathematics (see e.g. [Mik09] or [Str97]), has
the advantage to make the most out of the available data, as it uses single loss data instead of
cumulated yearly loss sums. Moreover, it is well understood by ORM experts (who usually also
think in terms of frequency and severity). The disadvantage is that there is no closed formula for
the yearly loss distribution, which has to be derived by either Monte Carlo simulations or numerical
approximations.

2.1 The Model

The first step is to define reasonable ORC based on the Business Line / Event Type description
provided by [oBS03]. If there is not enough data to model each cell of the ORC - matrix, it is also
possible to merge cells (e.g. instead of all 56 cells one could just rely on the 7 cells of the event
type).
It is assumed that within an ORC all losses occur independently from each other. Moreover we
assume that these single losses (denoted by Xi) descend from the same distribution F (.) on R>0

(e.g. log normal).
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The (random) yearly frequency is denoted by N . We assume that N is discretely distributed on
N ∪ {0} (with P (N = n) =: pn) and that the losses Xi occur independently from N . In this
framework, the yearly loss S in a particular ORC is now given by

S =
N∑
i=1

Xi.

As shown by Abraham Wald in [Wal44] and others, the above assumptions allow for simple formulas
for the first moments like

E[S] = E[X] · E[N ],

i.e. the average of the yearly loss is given by a simple multiplication of the average of the single losses
and the average frequency. However, we are primarily interested in the calculation of the OpVaR.
As mentioned, the OpVaR should achieve a standard comparable to a 99.9% confidence interval,
i.e. the OpVaR number for a single ORC should be greater or equal than S with 99.9% probability.
Because a bank is also interested in allocating the capital most efficiently, it will allocate the lowest
possible number that fulfils this standard, i.e.

OpVaR = inf{q ∈ R : P (S ≤ q) ≥ 0.999}. (2.1)

The risk measure depends on P (S ≤ q), for which, unfortunately, there is no closed formula like
Wald’s equation for the first moment. We will therefore heavily rely on numerical methods (see
Section 2.4).
Moreover, so far we have only looked at one single ORC. There are many methods to achieve
an OpVaR number for the whole operational risk of a bank. The easiest is just summing up the
individual OpVaR quantities of the single ORC (mentioned as the most conservative approach in
[oBS11]), however the more sophisticated methods will estimate a dependence structure between
the ORC.
However, in the beginning we have to concentrate on the two main building blocks: the frequency
and the severity.

2.2 Frequency Distribution

In theory, there is no reason to narrow down the range of possible discrete frequency distributions.
However, in practice, the two almost exclusively used frequency distributions are the Poisson distri-
bution and the Negative Binomial distribution. A survey of the Bank for International Settlement
(see [oBS09]) showed that 93% of the banks used the Poisson distribution as one of their possible
frequency distributions, whereas 19% are also using the Negative Binomial distribution as a possible
choice.
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2.2.1 The Poisson Distribution

The Poisson distribution has many nice properties, one of them is that it just depends on one single
parameter. The discrete probabilities are given by

pn =
λne−λ

n!
, n = 0, ...

for λ > 0.

Moments: We have very convenient formulas for the first two central moments:

E[N ] = Var[N] = λ.

Maximum Likelihood Estimator: Another nice property is the simple form of the Maximum
Likelihood Estimator (MLE). It equals to the average frequency in the sample:

λ̂ =
# data points in ORC

# years in data set
.

2.2.2 The Negative Binomial Distribution

The Negative Binomial distribution is not as convenient as the Poisson distribution, nevertheless
it can be very useful as it allows for more flexibility in fitting the distribution to the data.

pn =
(
k + r − 1

n

)
(1− p)rpk, n = 0, ...

for some r > 0 and p ∈ (0, 1).

Moments: The formulas for the first two moments are given by

E[N ] =
pr

1− p
, Var[N] =

pr
(1− p)2

.

Maximum Likelihood Estimator: Unfortunately, there is no closed formula for the MLE in the
case of a Negative Binomial distribution and we have to stick to numerical optimization methods.
However, due to the lack of a sufficient data time frame, it might not be recommendable to use
the yearly sample frequencies to estimate the parameters. Therefore, in practice, the following
estimation method is used:

(i) Fit a Negative Binomial distribution to monthly (or quarterly) frequency data and receive
the parameters rmon, pmon (or rqu, pqu).

(ii) Due to the convolution property of the Negative Binomial distribution the MLE is given by

r̂ = 12 · rmon, p̂ = pmon

(or r̂ = 5 · rqu, p̂ = pqu for a quarterly estimation period).

The convolution property is only valid if the underlying data set is independently distributed.
Therefore it is also reasonable to choose the estimation period in a way that independence over
time is still assured.
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2.2.3 Choice of Frequency Distribution

In practice, the starting hypothesis is that the frequency distribution is the Poisson (because of the
very convenient properties mentioned above). Only if it is reasonable to reject this hypothesis, the
Negative Binomial distribution will be assumed instead.

Of course, one could rely on statistical tests like the Kolmogorov-Smirnov test to test the Poisson
hypothesis, nevertheless a simple heuristic is often helpful. As mentioned above, for the Poisson
distribution we have that the average equals variance. However, in real life data, we often tend
to see Var[N] > E[N], i.e. overdispersion. In this case, it can be reasonable to use a Negative
Binomial distribution instead (which fulfils Var[N] > E[N]).

20 30 40 50 60 70 80

Poisson distribution
N. Binomial Distribution

P
oi

nt
 M

as
s

Figure 2.1: Point probabilities of a Poisson and a Negative Binomial distribution with the same average
frequency = 50. The figure shows that the Negative Binomial distribution exhibits a much larger variation
than the Poisson.

2.3 Severity Distribution

2.3.1 Truncated Data Sample

We usually have to fit the severity distribution to a truncated data sample, i.e. instead of all
the losses we are just able to see losses that are above a given threshold T :

• T as data collection threshold:
Usually, not every operational loss is actually recorded in a data base. That is because it needs
time to enter all details (like an exact description of what happened, where it happened, exact
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loss amount etc.) which is an effort that simply does not pay off if the loss amount is actually
very small. For this reason, banks do not oblige their employees to enter an operational loss if
the amount is below a certain threshold. In the case of the ORX database, the data collection
threshold amounts to EUR 20,000.

• T as tail threshold:
It seems to be a general property of operational loss data that the losses can hardly be fit
with any two-parameter distribution. The consequence could be to take distributions with a
high number of parameters, which again leads to numerical issues. [oBS09] shows that only
31% of the AMA banks fit a parametric distribution to the whole range of losses.

The alternative is quite simple: Instead of trying to fit a complicated distribution to the data,
one can concentrate exclusively on the tail that drives the operational risk capital. Usually it
is possible to fit a simple two-parameter distribution to tail data, i.e. to losses that are above
a predefined tail threshold. Below this threshold, another distribution can be assumed (e.g.
empirical).

In this framework we assume the following cumulative distribution function (cdf) F (x) of the
severity (see also [AK06]):

F (x) =

{
F b(x), x ≤ T,
1−

(
1− F b(T )

)
·
(
1− F t(x)

)
, x > T,

where F b(x) denotes the body cdf defined on [0,∞) and F t(x) denotes the tail cdf defined
on [T,∞). The tail cdf is usually a parametric distribution (according to [oBS09] almost 60%
of the AMA banks use either Log Normal, Generalized Pareto, Gamma or Weibull), which
needs to be fitted to the tail data - which is again a truncated data sample, as we only look
at losses above T .

2.3.2 Truncated vs. Shifted Distribution

Many popular continuous severity distribution families are defined on (0,∞). However, as seen
above we need distributions defined on (T,∞) for some T > 0. The problem therefore is to find a
method that fulfils:

F0(.), cdf on (0,∞)→ FT (.), cdf on (T,∞)

There are two popular methods that are currently being used in the practice, each of them has its
pros and cons.

(i) Truncation:

FT (x) =
F0(x)− F0(T )

1− F0(T )
· 1{x>T}

Advantages: Assuming that we indeed look at a truncated data sample that originated from
F0(.), we can easily see that

P (X ≤ x|X ≥ T ) =
P (T ≤ X ≤ x)
P (T ≤ X)

· 1{x>T} =
F0(x)− F0(T )

1− F0(T )
· 1{x>T},

15
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Figure 2.2: Illustration of the body-and-tail approach

and therefore the truncation is the natural choice for the distribution. However, we face the
problem that we cannot validate that the data sample indeed originated from F (.).

Disadvantages: Numerically, fitting a truncated distribution via maximum likelihood can be
very unstable. The problem is particularly severe for large values of F0(T ), i.e. 1−F0(T ) ≈ 0.
This problem has been analysed thoroughly in [Cop11].

(ii) Shifting:
FT (x) = F0(x− T ) · 1{x>T}

Advantages: The MLE in the case of the shifted distribution does in many cases even have
an analytical closed form (e.g. for the Log Normal) - and in most of the other cases, it can
be obtained by solving a well behaved optimization problem.

Disadvantages: If the probability density function f0 of F0(.) fulfils f0(0) = 0 we will have
fT (T ) = 0. This can lead to numerical problems in the maximum likelihood routine if the
data contains losses right above the threshold, where the density equals 0.
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Figure 2.3: The figure shows the difference between a truncated density and a shifted log normal density
with parameters µ = 10, σ = 1.5.

2.3.3 Popular Distribution Families

In the spirit of the above discussion of transformation methods only give candidates for distributions
on (0,∞) will be given.

Name Probability density function f(x)

Log Normal 1
xσ
√

2π
e−

(ln x−µ)2

2σ2

Generalized Pareto 1
σ

(
1 + ξ(x−µ)

σ

)(− 1
ξ
−1
)

Gamma xk−1e−
x
θ

θkΓ(k)

Burr ck xc−1

(1+xc)k+1

Weibull k
λ

(
x
λ

)k−1
e−(x/λ)k

2.3.4 Distribution Fitting Methods

There are several methods to obtain the parameters of a distribution. For each method, we assume
that our observations are independent and distributed with a density function f(.|θ) with parameter
θ.

Maximum Likelihood It is one of the best known and most widely followed methods to fit a
distribution to a given data sample. The maximum likelihood method means maximizing the
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joint density function of the observations (called the likelihood)

`(θ |x1, . . . , xn) :=
n∏
i=1

f(xi|θ)

with respect to the parameter θ. In other words, the MLE satisfies

θ̂ML = arg max
θ

`(θ |x1, . . . , xn).

For numerical reasons, the likelihood is often replaced by the logarithm of the likelihood
function, the log likelihood. In the case of a truncated probability distribution with density
fT (.) = (f0(.))/(1− F0(T )) the log likelihood takes the form

log `(θ |x1, . . . , xn) =
n∑
i=1

log fT (xi|θ) =
n∑
i=1

log f0(xi|θ)− n log(1− F0(T )).

The MLE has many nice properties (asymptotic consistency, asymptotic normality...). How-
ever, these properties only hold if the data sample does not differ too much from the assumed
probability distribution. In operational risk with its huge tail events, it is often useful to use
other, robust methods like quantile matching or Bayesian methods.

Methods of Moments (MoM) The idea of the MoM is to match the empirical sample moments
(e.g. sample mean, sample variance...) with the theoretical ones by finding the right distri-
bution parameters. As shown as in [Han82] this method can be generalized to minimize the
asymptotic variance of the estimator (generalized methods of moments).

Quantile Matching Quantile matching is very similar to MoM, however more popular amongst
operational risk modellers, because it is possible to give more weight to the tail. Instead of
matching moments of the distribution, one matches the theoretical distribution quantiles with
the sample moments. For a thorough discussion of the method in an operational risk context
have a look at [LR13].

Bayesian Methods In a Bayesian framework the parameter uncertainty is seen as a randomness
of the parameter, i.e. one assumes a probability distribution π(θ) on the parameters (the
so-called prior distribution). With observation, it is possible to update the prior distribution
with the new information and receive the posterior distribution π(θ|x) of the parameters.
This is done via the famous Bayes’ theorem

π(θ|x) =
`(θ|x)π(θ)∫
`(ϑ|x)π(ϑ)dϑ

. (2.2)

From this posterior distribution there are several methods to receive an estimator. The Max-
imum a posterior (MAP) estimate is the mode of the posterior distribution. The mean of
the posterior distribution has the property of minimizing the variance of the estimator, it is
called the Minimum Mean Square Error (MMSE) estimator.

Many different modellers tried to introduce Bayesian methods in Operational Risk ([She11]
gives a good overview). However, most of these models offer low flexibility when it comes
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to the underlying distribution. The reason is the computation of the posterior distribution.
Because of the integral in the denominator of the Bayes’ theorem (2.2), explicit expressions of
the posterior distribution exist only in special cases. These special cases include the so-called
conjugate distributions - in this case the posterior is in the same distribution family as the
prior distribution.
This means, to obtain a proper analytical expression of the posterior distribution and there-
fore an estimator of the parameters, the modeller is required to only choose the prior as well
as the underlying sample distribution from a very small set of these special cases (and in
general it is not possible to choose a truncated distribution).

A possible remedy is the use of numerical methods. The most widely followed numerical Bayes
method is Markov Chain Monte Carlo (MCMC). Instead of an analytic expression of the
prior, this method makes it possible to draw from the posterior distribution. The MCMC
method works with the so-called Metropolis-Hastings algorithm:

• Define some starting values θ0.

• Given θt−1, draw a sample X from a (multi-dimensional) Normal distribution with mean
vector θt−1 and covariance matrix Σ and define θ̂t = θt−1 +X.

• With the observations calculate the likelihood ratio

LR =
`(θt|x) · π(θt−1)
`(θt−1|x) · π(θt−1)

.

• Define α = min(LR, 1).

• Generate a uniform random variable U on (0, 1) and set

θt =

{
θ̂t, U < α

θt−1, else.

Each θt is a draw from the posterior distribution. With a sufficient sample size one can now
use empirical estimates to derive e.g. the MAP or the MMSE estimator.

The advantage of this method is that it works with almost any kind of prior or likelihood
function. The drawback is that it requires a proper analysis of the convergence of the Markov
chain (θt)t. Especially in the case of truncated distributions the convergence can be very slow
or the chain could even be divergent. [ZGFT13] provided some ideas to ensure convergence in
the case of truncated distributions and showed that the method is very stable even for small
sizes, providing much more robust results than the MLE.
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2.4 Numerical Methods for Determining the OpVaR of a Single
ORC

The purpose of computing is insight, not
numbers.

Richard W. Hamming

Once the severity distribution and the frequency distribution has been determined, the compound
loss distribution is theoretically already identified. In practice however, one has to rely on numerical
methods to receive quantities based on the compound distribution like the OpVaR. The three
most common methods are Monte Carlo (MC), Fast Fourier transform (FFT) and Panjer
Recursion.

2.4.1 Monte Carlo

The MC method is very simple and intuitive. One draws realizations from the compound loss
distribution (see Figure 2.4) and derives the empirical estimates from the sample.

The major drawback of the MC method is the high computational effort. To receive sufficiently
exact estimates of the OpVaR one needs very large sample sizes.
To increase the computation speed, [EF09] offers a good overview of two faster alternatives to the
MC method: the FFT method and the Panjer Recursion.

2.4.2 Fast Fourier Transform

Even though we do not have a simple expression for the distribution function of the compound loss
variable S, we can derive a fairly simple expression for the characteristic function of S. The
characteristic function φS(t) of S is defined as

φS(t) = E[eitS ], t ∈ R.

Assuming that the frequency is Poisson distributed with parameter λ, we have that (see [Ger79])

φS(t) = eλ(φX(t)−1)),

where φX is the characteristic function of the severity distribution. Assuming that the frequency
is Negative Binomial distributed with parameter r and p, we have

φS(t) =
(

1− p
1− p · φX(t)

)r
.

FFT is a numerical algorithm which is available for many different programming environments (e.g.
fft in R). Given a discrete distribution function on a set with M elements with probability mass
pk, it returns the discrete Fourier transform

φ̂j =
M∑
k=1

pke
i2πjk/M , j = 0, 1, . . . ,M − 1,
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Figure 2.4: Illustration of the MC method to determine the distribution of the compound yearly loss S.
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which is a discrete approximation of the characteristic function. There is also an inverse FFT (in R:
fft(..., inverse = TRUE)) which returns a distribution function given a DFT. The FFT method
to determine the OpVaR works as follows: (see also [EF09])

(i) Discretize the severity distribution, i.e. transform the (in general continuous) distribution to
a discrete distribution on the set {0, h, 2h, ..., (M−1)h} for some predefined bandwidth h and
truncation point M . This can be done by assigning the probability P (kh ≤ X < (k+ 1)h) to
either kh (forward difference) or (k+ 1)h (backward difference) - or assigning the probability
P (kh− h/2 ≤ X < kh+ h/2) to kh (stochastic rounding).

(ii) Use FFT on the discretized severity distribution to receive an approximation of φX(.). Use
one of the above formulas (depending on which frequency distribution was chosen) to receive
an approximation of φS(.).

(iii) Use the inverse FFT to finally obtain the distribution of S.

Numerical errors can descend from mainly two sources:

Discretization Error This error can be reduced by using smaller h. Moreover, by using hte
forward and backward difference discretization one can get error bounds for the discretization
error.

Aliazing Probability mass that lies above the truncation point Mh will erroneously be distributed
within the discretization grid. This error is called the aliazing error. In [GH99] an exponential
tilting method was presented that can reduce the error significantly: Before applying the
FFT on the discretized severity distribution, one multiplies transforms the point masses pj
by applying

pj → (e−θj) · pj , j = 0, . . . ,M − 1,

for some θ > 0. Then proceed with step (ii) and (iii) with the transformed distribution. After
step (iii), an inverse transformation step (multiplying by eθj) completes the procedure.

2.4.3 Panjer Recursion

This method is based on a convenient recursion formula for the compound probabilities, that was
first described in [Pan81].
Assume that the severity distribution is a discrete distribution on N with point masses pk. Then
the probability point masses qn of the compound loss S are given by the recursion

qn =
n∑
j=1

(
a+

bj

n

)
pjqn−j .

As described for the FFT method, we can use stochastic discretization to receive a discrete severity
distribution and make use of the Panjer recursion.
This method gives the exact probability distribution of S (besides the discretization error). How-
ever, [EF09] showed that FFT can be considerably faster in computation.
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2.5 Dependence Structures

So far, we only discussed models based on one single ORC. Assuming we completed the modelling
procedure for each our M ORC (e.g. M = 56 if one decides to model on each Basel II cell), we
obtain M loss distributions

Sj =
Nj∑
k=1

Xj,k, j = 1, . . . ,M.

To having been able to use the LDA, we used the following independence assumptions so far:

(i) Independence of the single losses Xj,k, k = 1, . . . within each ORC

(ii) Independence between Xj,k, k = 1, . . . and the frequency Nj

The question to the operational risk modeller is now where to assume dependence between the
ORC. According to [oBS09] 21% of the AMA banks assume dependency between the frequen-
cies Nj , 12% assume dependency between the severities Xj,k, j = 1, . . . ,M (even though this could
violate independence assumption (i)) and 33% assume dependency between the compound losses Sj .

After this first choice the next choice that has to be made is how to model dependence. [oBS09]
showed that the majority of operational risk modellers use a copula approach.

A copula is a joint cumulative distribution function of aM -dimensional random vector (U1, U2, ..., UM )
on the unit cube [0, 1]M → [0, 1] with uniform marginals:

C(u1, u2, ..., uM ) = P (U1 ≤ u1, U2 ≤ u2, . . . , UM ≤ uM )

The fundamental result regarding copulas is the theorem of Sklar (see [Skl59]). It states that for any
joint distribution F (x1, x2, ..., xM ) with marginals F1(x1), F2(x2), ..., FM (xM ) there exists a Copula
C such that

F (x1, x2, ..., xM ) = C
(
F1(x1), F2(x2), . . . , FM (xM )

)
.

In other words, any joint distribution can be described by its marginals and a copula to describe
the dependence structure.

Conversely, a copula composed with random variables is a realization of the joint distribution of
those random variables. Therefore, if the dependence is assumed on the compound losses, we can
use the following algorithm to simulate realization of the total operational loss:

(i) Model aggregate loss distributions for each ORC

(ii) Fit copula to dependence structure of the ORC

(iii) Simulate a sample (U1, U2, . . . , UM ) from the copula distribution

(iv) The final sample is constructed as

(S1, S2, . . . , SM ) =
(
F−1

1 (U1), F−1
2 (U2), . . . , F−1

M (UM )
)
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(v) Calculate the OpVaR of the (empirical) distribution of the sum of random variables

S1 + S2 + · · ·+ SM .

An open question still remains: which copula is the right one for modelling the operational risk
dependence structure?

A simple way to construct families of copulas is to take a parametric family of multi-dimensional
distributions F (.|θ) and define

CF |θ(u1, u2, ..., uM ) = F
(
F−1

1 (u1|θ), F−1
2 (u2|θ), . . . , F−1

M (uM |θ)
∣∣∣θ).

Popular examples are the multivariate Normal distribution (Gaussian copula) and the multivariate
t distribution (t-copula).
The survey in [oBS09] states that amongst the banks who use copulas, almost all use either Gaus-
sian copula or t-copula. The Gaussian copula is very easy to fit to data (it is only necessary to
estimate the correlation), however it does have a major disadvantage when it comes to the de-
pendence between very high tail losses. As shown as in [ELM03] using a Gaussian copula implies
asymptotic tail independence. Therefore, to introduce a dependence between very high losses in
the tail, one could instead rely on the t-copula with tail dependence.

For the t-copula, the parameter θ consists of the elements of the correlation matrix Σ and the
degrees-of-freedom parameter df .

The Σ Matrix is estimated by utilizing a robust measure of rank correlation, Kendall’s Tau τK .
There exist the following relationship between τK and the elements of Σ (see [MFE10]):

τk(xi, xj) =
2
π

arcsin Σij (2.3)

After estimating Σ, one can finally obtain df by using maximum likelihood:

(i) Estimate Marginals F̂1(.), F̂2(.), ..., F̂M (.) (aggregate loss distributions)

(ii) Estimate Copula parameters by MLE:

θ̂ = arg max
df

(
T∑
t=1

log c
(
F̂1(x1), F̂2(x2), . . . , F̂M (xM )

∣∣∣df,Σ)) ,
where c denotes the t-copula density.
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Figure 2.5: Comparison between simulations of t-copulas with different degrees of freedom (df). df =∞ is
the Gaussian copula.
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Chapter 3
The Model in Practice

In theory, there is no difference between
theory and practice. But, in practice,
there is.

Jan L. A. van de Snepscheut

As shown in the previous chapter, there is a huge variety of different AMA modelling techniques.
The challenge for each bank is to choose the most adequate approach for their specific operational
risk profile. Furthermore, to implement the different key elements, the modeller often needs to
develop new approaches to achieve the Basel II soundness standards. The chapter will describe
these difficulties and how to handle them based on the operational risk profile of a major Austrian
bank. Figure 3.1 gives an overview of all the model steps.

Throughout this chapter, the following notation will be used:
Y . . . number of years
n . . . number of observations

3.1 Choice of ORC

With the help of the experts in ORM it was decided to choose the ORC according to the 7 event
types. This has several reasons:

• The amount of loss data is not sufficient to model on each of the single 56 ORC proposed by
the Basel committee.

• Using the business lines as ORC instead of the event types has the disadvantage that the
losses within a business line are far less homogeneous than losses within an event type.

• For the inclusion of insurance in the model it is also recommendable to model on event types,
as insurances usually offer polices based on event types.
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Figure 3.1: Illustration of the AMA model for a single ORC
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3.2 Frequency Distribution Step

With the methods described in Section 2.2 a frequency distribution is estimated for each event type.
Because of its simplicity the Poisson distribution is always the preferred one. However, for some
event types the Poisson assumption cannot be validated. The validation process works as follows:

(i) Fit a Poisson distribution to the quarterly loss frequencies Nqu of a particular event type

(ii) Calculate a 95% confidence interval by assuming independence of the quarterly loss frequen-
cies. The lower and upper end of the confidence interval (c`, cu) are given by the equations

0.025 = 1− P (Nqu > c`)4·Y , 0.975 = P (Nqu ≤ cu)4·Y .

Note that the event that any of the observed quarterly loss frequency is below c` is the
complementary event that all observed independent events are above c`. If there are any
quarterly frequency observations outside of this confidence interval, a Negative Binomial
distribution is estimated instead.

3.3 Severity Distribution Step

3.3.1 Model Assumptions

We assume the following cdf F (.) of the severity:

F (x) =

{
F̂ (x), x ≤ T,
1−

(
1− F̂ (T )

)
·
(

1− Φ
(

log(x−T )−µ
σ

))
, x > T,

(3.1)

where F̂ (.) denotes the empirical cumulative distribution function (ECDF) and Φ(.) the cdf of the
standard normal distribution. The tail threshold T > 0, µ ∈ R and σ > 0 are the parameters to be
determined.

Only the shifted log normal is taken as possible tail distribution. This choice was made after
considering two points:

• In the course of the modelling procedure not only the distribution parameters µ and σ are
fitted to the data, but also the tail threshold T (many banks fix the tail threshold to some
arbitrary number instead of fitting it). Therefore we already have enough flexibility by just
using one distribution family, the log normal distribution.

• Instead of a truncated distribution a shifted distribution will be used. As mentioned in
the previous chapter, shifted distributions offer a higher numerical stability, which will be
especially important for our MCMC fitting technique later on.
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Figure 3.2: The Two-Stage Bayes approach includes the different AMA elements: internal data, external
data and scenarios. Each stage reduces the uncertainty in the parameter estimate.

3.3.2 The Two-Stage Bayes Approach

In the first place, the best way to convey
to the experimenter what the data tell him
about θ is to show him a picture of the
posterior distribution.

G.E.P. Box & G.C. Tiao, Bayesian
Inference in Statistical Analysis (1973)

To calculate the OpVaR, we extrapolate far beyond our internal data. Therefore we have to expect
a large uncertainty in the parameter estimates. With external data we have a possible source of
information to decrease this uncertainty. A Bayesian approach is a way to formalize this: We model
the uncertainty of the parameters by assuming that they are random and follow some distribution.
From our internal data we can derive this distribution empirically. Afterwards we use Bayesian
updating with external data to narrow this distribution to a smaller confidence interval and thus
reducing the uncertainty (see Figure 3.2).

Stage One

In a first step we assume a non-informative prior, Jeffrey’s prior, on the parameters µ and σ, i.e. we
assume to have no knowledge about the parameters a priori. Jeffrey’s prior, introduced in [Jef61], is
defined as the square root of the determinant of the Fisher information matrix. It is non-informative
in a sense that it assigns uniform weight on the distributions indexed by the parameters (µ, σ) (see
[Bal97]). Another notable property of Jeffrey’s prior is its translation invariance (it includes no
information about the location of the distribution, e.g. it does not depend on µ in the case of the
normal distribution). The density of this prior in the case of a normal distribution is given by (see
[Roe02])

π(µ, σ) =
√

2
σ2
.
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In a first step we want to use our internal data set to determine a distribution of our parameters
with less uncertainty. It is not trivial to determine this posterior distribution analytically, therefore
we decided to use the MCMC method (see Section 2.3.4). In the case of a shifted log normal
distribution it works as follows:

• We define some starting values θ0 = (µ0, σ0).

• Given θt−1, we draw a sample (X,Y ) from a two dimensional Normal distribution with mean
vector θt−1 and covariance matrix Σ and define θ̂t = (µt−1 +X,σt−1 + Y ).

• We calculate the likelihood ratio

LR =

(∏
i ϕ(log(xinti − T ), µt, σt)

)
· π(µt, σt)(∏

i ϕ(log(xinti − T ), µt−1, σt−1)
)
· π(µt−1, σt−1)

,

where xinti are all data points of our internal data above the threshold and ϕ the density
function of the normal distribution. For the moment, we assume the tail threshold T as
given. The final threshold T will be determined in a later step.

• We define α = min(LR, 1).

• We generate a uniform random variable U on (0, 1). We set

θt =

{
θ̂t, U < α

θt−1, else.

Each θt is a sample from the posterior distribution of µ and σ.

As suggested in [GRG96], we choose the covariance matrix of the random walk Σ such that the
acceptance ratio, i.e. how often U < α in a way that it is at about 25 percent. In particular we
will look at Σ of the form (

ρ 0
0 ρ/2

)
with ρ > 0 such that the observed acceptance ratio is at the target acceptance ratio of 25 percent.
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Figure 3.3: The two plots show the convergence of the θt. Even for different starting values θ0 we have
a fast convergence (in a sense that the distribution of θ does not change). Nevertheless we define an initial
burnin period of 10 Percent.

To ensure the choice of the right sample size for the markov chain it is required to do convergence
analysis. For that reason, we will use the R-package coda ([PBCV06]). It provides several tools for
our purpose.

First of all, it is worth mentioning that drawing from the Markov chain (θt)t is not the same
as drawing from an independent sample of the posterior distribution. The reason is the positive
autocorrelation in the chain, which is defined as

R(t) :=
E [(θs − E[θs])(θs+t − E[θs])]

E [(θs − E[θs])2]
, t > 0,

for some predefined lag t. The simple rule is: the lower the autocorrelation, the lower the required
sample size. coda provides the function effectiveSize() that calculates the corresponding size for
an independent sample, which is usually much lower than for the MCMC. According to experience,
one has to at least generate a ten times larger sample to receive the same results as compared to
an independent sample.

Besides the test for autocorrelation, there is a variety of statistical tests for convergence analysis.
In [G+91] it was proposed to test for the equality of the means of the first and last part of the
Markov chain. As shown in [G+91], under the null hypothesis of equal means, the difference of the
means divided by its standard error, which is estimated by taking into account any autocorrelation,
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is asymptotically normal distributed.
A proposed proportion of the two parts for estimating the means is the first 10% and the last 50%,
however it is also recommended to try different proportions as well (see Figure 3.4). coda provides
the function geweke.diag() to get the standardized difference of the means.

Another useful statistical test was proposed in [HW83], which was programmed in coda as hei-
del.diag(). The so-called Heidelberg-Welch test checks the null hypothesis that the markov chain
sample was generated from a stationary distribution. The idea is that an desirable result would be
that the test cannot reject the null even for a small proportion of the chain.

The test is performed for the first 10%, then for the first 20%, and so on, until the first 50%. If the
test rejects the null for any of these samples, it would indicate that a larger MCMC sample is needed.

The last test for stationarity is especially important for the next step: fitting a continuous distri-
bution to the markov chain observations, to make things more tractable for the next step.

We assume that µ follows a normal distribution with mean τ and variance ν and for σ we assume
that 1

σ2 follows a Gamma distribution with shape α and rate β (σ ∼ fG−2). Furthermore we assume
the independence of σ and µ.

We fit the parameters via the maximum likelihood estimation.

Finally we can derive the following posterior distribution of the parameters:

π(µ, σ|xint) = ϕ(µ|τ, ν) · fG−2(σ|α, β).
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(α = 0.05) for the test statistics.
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Figure 3.5: Internal data alone already leads to a great reduction of parameter uncertainty.

Stage Two

We will now use external data to reduce parameter uncertainty even more. Therefore we repeat
the procedure from the step before with the external data instead of internal data, with only three
differences.

(i) Instead of Jeffrey’s prior we use the posterior distribution given internal data, i.e.

πext(µ, σ) = π(µ, σ|xint).

(ii) As already mentioned ORX data is collected only above a threshold of TORX = 20,000. If
T ≥ TORX, we can ignore this fact, because we only look at data above this threshold. But
if T < TORX we have to account for the fact of this truncated data sample. This can be done
by using the truncated normal density function for determining LR:

ϕtrunc (log(x− T ), µ, σ) =
ϕ (log(x− T ), µ, σ)

1− Φ
(

log(TORX−T )−µ
σ

)1x≥TORX ,

and we set

ϕext =

{
ϕ, T ≥ TORX,

ϕtrunc, T < TORX.

See also below to see how the adapted LR looks like.

Another important difference concerns the a priori selection of the data. External consortium
data combines many different banks and therefore different risk profiles than the one of our
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Figure 3.6: After inclusion of external data, parameter uncertainty is reduced to a minimum.

bank. In general losses are made anonymous, but they come with some labels like income
size (Small, Medium or Large) and region (Western Europe, Eastern Europe, North America
...). With the help of our operational risk experts we determined a procedure to match ORX
data with our risk profile.

Because our business in Asia or North America is marginal, we only consider data from the
regions Western Europe and Eastern Europe . Furthermore we exclude all losses from West-
ern Europe that do not match our income size. In Eastern Europe we decided to not exclude
losses by income size because we are a major player in that region and the income size, which
is calculated globally, would only distort this fact.

Another distortion factor we have to consider is that RBI has its major operational risk drivers
in Eastern Europe (61 percent of the gross income and 85 percent of all operational losses),
whereas in the ORX data base Eastern Europe is under represented (only 3 percent of all
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losses). We tackle this problem by an adaption of the likelihood ratio LR:(∏
i ϕ

ext (log(xwesti − T ) , µt, σt)λ
west ∏

j ϕ
ext
(
log(xeastj − T ), µt, σt

)λeast)
· πext(µt, σt)(∏

i ϕ
ext (log(xwesti − T ), µt−1, σt−1)λ

west ∏
j ϕ

ext
(
log(xeastj − T ), µt−1, σt−1

)λeast
)
· πext(µt−1, σt−1)

,

(3.2)

i.e. we reweight the likelihood function to correct for the regional bias. The weights λ are
chosen to match our risk profile:

λwest = pwest ·
nwestORX + neastORX

nwestORX

, λeast = (1− pwest) ·
nwestORX + neastORX

neastORX

, pwest =
neastint

nwestint + neastint

where neast, nwest is the respective amount of data in the ORX or internal data.

With these adaptions, we again start our MCMC procedure.
To finally arrive at estimates for µ and σ in (3.1), we use the MMSE estimate, i.e. the mean of the
MCMC samples.
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Scenarios

The problem with experts is that they do
not know what they do not know.

Nicholas Nassim Taleb, The Black Swan

Our business experts deliver scenarios of the following form:

• Expected Annual Frequency How often the scenario is expected to happen in a year,
denoted by λi

• Median The 50% - quantile of the scenario loss, denoted by Qi50

• Reasonable Worst Case The 99% - quantile of the scenario loss, denoted by Qi99

Because the threshold in our model is in most cases much higher than the median, we will not
explicitly use the median estimate of the expert in our model. However, we need the information
for benchmarking the risk of the particular scenario and to be able to give immediate feedback to
the expert regarding the scenario.

Given σ and the 99% - quantile given by the i-th scenario we can calculate the distribution parameter
µ in our body/tail model by:

µ(Qi99, σ) = log(Qi99 − T )− Φ−1
(

1− 0.01/
(

1− F̂ (T )
))
· σ.

Therefore we can translate every scenario into an opinion of the expert on the distribution parameter
µ. Furthermore, we decided that an high expected frequency of the scenario should be considered
in the model by an increased weight of the resulting scenario estimate of µ.

To finally incorporate the scenario in our final capital number we make the following assumption:
The distribution of µ is a mixture of the posterior distribution given by our internal/external data
and the forward looking estimates of the experts. The weights are given by the proportion of the
loss frequency these estimates represent. For σ however, we assume that the distribution is fully
determined by our data. If we denote the MMSE estimators of the Two-Stage Bayes approach by
µData, σData , our final MMSE estimator including the scenario analyses are given by σ̂ = σData and

µ̂ =
1
λ
·

(
λDataµData +

nscen∑
i=1

λiµ(Qi99, σ
Data)

)
with λ = λData +

nscen∑
i=1

λi.
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Tail Threshold

Changing the threshold T has the following effect on the estimator θ̂T = (µ, σ):

DECREASING ↘: More data in the tail, decreasing variance of estimator, but data is less
homogeneous, bias increases

INCREASING ↗: Less data in the tail, more homogeneous data and therefore smaller bias, but
at the cost of a higher estimator variance

It is not a simple task to have a small estimator variance Var(θ̂T ) and estimator bias Bias(θ̂T ) at
the same time. A possible idea to find an optimal threshold is to minimize the sum of both with
respect to the threshold, i.e. minimizing the Mean Squared Error (MSE):

T̂ = argminT MSE(θ̂T ) = Var(θ̂T ) +
(

Bias(θ̂T )
)2

= E
[
(θ̂T − θT )2

]
,

where θT denotes the ”true” value of the parameter.

This idea to estimate the distribution threshold has been brought up by many authors, see e.g.
[DdHPdV01], [GO01], [FdHP03]. Also have a look at [SM12] for a good overview of some similar
methods. These papers deal with the estimation of the threshold in the Pareto case, and obtain
the MSE by bootstraping the parameter hyperdistribution. However, in a Bayesian framework like
it is used in the Two-Stage Bayes approach, it is possible to just use the MCMC sample chain to
estimate the MSE.

Estimation will be based on two points:

• For calculating the MSE, the sample chain after the first step of the MCMC procedure (after
inclusion of internal data) is used

• As ”true” parameter the MMSE parameter after the second step (inclusion of external) is
used.

In this way both the bias of the internal data parameter with regard to the external data is mini-
mized as well as the variance of the internal data parameter.

This means the MSE for each threshold is estimated by

1
n

n∑
i=1

(
µi(T )− µext(T )

)2 +
1
n

n∑
i=1

(
σi(T )− σext(T )

)2
.

However, blindly taking the threshold that minimizes the MSE can take to numerical problems (see
Figure 3.7). A solution is to not only rely on the MSE criterion, but to use several other measures
as well:

• Stability of Parameters: A small change of the threshold should not change the model
parameters significantly. We measure the parameter stability in terms of 99.9% quantile of
the compound loss distribution.
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Figure 3.7: The calculation of the MSE also highly depends on the underlying data. In the figure above we
see that due to some data issues (two high severity losses have very similar height, which is numerically not
optimal when using a shifted log normal) the MSE as a function of the threshold looks highly unstable. The
global minimum is at about 150 data points in the tail - but would it not be more optimal to use the area
around 700 data points, where the MSE seems to be more stable and comparably low?

• Goodness of Fit: As we assume a log normal tail distribution, the data above T should have
a reasonable good distribution fit. We measure the goodness of fit (GoF) with the Anderson-
Darling test p-value. We plot both the quantile estimate and the GoF measure on a plot as
a function of the number of data points in the tail.

• Enough Data Points for Tail Distribution Estimation: One important point is still to
have enough data points in the tail for reasonable estimation results. For this reason, given
that two different threshold are very similar in term of the above criteria, one should always
choose the smaller one.

The final procedure to determine the tail threshold is based on the following (see also Figure 3.8):

(i) Based on the above criteria, ”stable” regions for the threshold are defined.

(ii) Within these regions, the threshold that minimizes the MSE is chosen.
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Figure 3.8: Via a graphical assessment stable regions are defined, i.e. regions, where the goodness of fit
(measured by the Anderson Darling p-value, see also Section 4.2) and the quantile estimates do not seem to
fluctuate too much. Within these regions, the threshold that minimizes the MSE is determined (purple line,
the brown line shows the global minimum of the MSE).

Results

An advantage of the Two-Stage Bayes approach is that we can easily benchmark our internal data
with external data: With the distribution of the parameters given internal data we can also derive a
distribution of the OpVaR, as it only depends on the threshold and the two parameters. In this way
we can compare the final OpVaR number after inclusion of external data to the range of possible
numbers before inclusion and derive a confidence level.

Stage 1 Stage 2 with Scen.
EL01 - Internal Fraud
EL02 - External Fraud
EL03 - Employment Practices and Workplace Safety
EL04 - Clients, Products and Business Practices
EL05 - Natural Disasters and Public Safety
EL06 - Technology and Infrastructure Failures
EL07 - Execution, Delivery, and Process Management

Table 3.1: OpVaR Numbers (EUR Mio) based on the MMSE estimators of the posterior distribution of µ
and σ after each stage in the Bayesian approach. Numbers are censored to ensure data privacy.
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µ σ Threshold T

EL01 - Internal Fraud 9.97 1.97 10000
EL02 - External Fraud 10.30 1.64 7000
EL03 - Employment Practices and Workplace Safety 8.96 1.66 4000
EL04 - Clients, Products and Business Practices 11.65 1.95 45000
EL05 - Natural Disasters and Public Safety 6.38 1.74 2000
EL06 - Technology and Infrastructure Failures 10.27 1.85 2000
EL07 - Execution, Delivery, and Process Management 12.13 1.71 2000

Table 3.2: Final Parameters for the Severity distribution

rho.int rho.ext
EL01 - Internal Fraud 0.15 0.015
EL02 - External Fraud 0.05 0.002
EL03 - Employment Practices and Workplace Safety 0.10 0.010
EL04 - Clients, Products and Business Practices 0.05 0.002
EL05 - Natural Disasters and Public Safety 0.01 0.006
EL06 - Technology and Infrastructure Failures 0.12 0.006
EL07 - Execution, Delivery, and Process Management 0.40 0.003

Table 3.3: Parameters for Σ

3.4 Dependency Modelling Step

To derive the final capital requirement for the bank, it is also important to have a look at the
dependencies between the ORC. Assuming that the ORC are independent and every frequency
distribution is Poisson, a simple formula makes it possible to calculate the OpVaR, because in this
case the total loss sum

7∑
i=1

Ni∑
k=1

Xi,k

has the same distribution as
N̂∑
k=1

X̂k

where N̂ is Poisson, where the parameter λ equals the sum of the Poisson rates λi of the individual
ORC. The severity X̂ is distributed with the mixture distribution of the severity distributions Fi,
i.e.

X̂ ∼ F (.) =
1
λ

7∑
i=1

λiFi(.).

This can be shown by using the formula for the characteristic function of the compound loss S and
the convolution property of the characteristic function.

The other extreme of dependency is full dependence. A simple heuristic is that full dependence
of the underlying frequency distributions, in a sense that N1 = N2 = · · · = N7, implies that the
bank’s OpVaR is ”not very different” to the sum of the individual single-ORC OpVaR ([BK] showed
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an asymptotic equality). The sum can be seen as a conservative estimate of the total OpVaR, but
one has to be careful: in general the subadditivity inequality

OpVaRtotal := OpVaR

(
7∑
i=1

Ni∑
k=1

Xi,k

)
≤

7∑
i=1

OpVaR

(
Ni∑
k=1

Xi,k

)
=: OpVaRcons

does NOT hold, especially in cases of distributions with fat tails. See also [NECD06] for an analysis
of this matter. However, amongst operational risk modellers dependency modelling is seen as
illustrated in Figure 3.9: OpVaRcons as an upper bound of the capital requirement (and according to
[oBS11] the obligatory capital requirement if the bank cannot show the soundness of its dependency
modelling step) and the independent case as a lower bound.
Neither of the extreme dependency cases are realistic - the true total capital requirement will lie in
between. For this particular model, the following decisions had been taken:

• Dependency is modelled between the compound losses Si =
∑Ni

k=1Xi,k.

• We use a t-copula to model the dependency. As described in Section 2.5, this makes it possible
to include tail dependency. We use monthly data to estimate the t-copula.

3.4.1 Results

The final results for the OpVaR are calculated via a MC simulation.

Dependence Assumption OpVaR Addon
independence 0%
Gaussian copula
t-copula
total dependence

Table 3.4: OpVaR Numbers (EUR Mio) using different assumptions for the dependence structure. The
addon is calculated based on the ideal case of independence. Numbers are censored to ensure data privacy.
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Figure 3.9: The dependence structure has a significant impact on the final capital requirement.
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3.5 Allocation of Capital

One major problem with the LDA is that changes in the management of operational risk will need
much time until they can be reflected in the capital requirement. Therefore the capital requirement
as such is not a good incentive for a better ORM. However, a bank with many different units (e.g.
subsidiaries across the world) can use another mechanism for incentivization: the allocation of the
capital to each of these units.

Simple allocation mechanism like allocation in terms of percentage of gross income are easy to
implement, but they give no motivation to think about how to prevent operational losses. Therefore
this model allocates the capital based on a score with the following points:

Data Quality Is the unit cooperative in terms of providing well documented loss data?

Scenario Quality Are the scenarios well structured and are the chosen experts reliable?

Frequency of Losses Did the unit produce more or less losses than others?

Frequency of High Losses How many losses above a threshold (EUR 1 Million) happened in
the unit?

Another important part of the scorecard are the Key Risk Indicators. KRIs give a good picture
of potential risk in the units. For this reason numbers like the staff fluctuation, number and dura-
tion of system failures play an important part in the final allocation algorithm.

Based on this scorecard the units get more or less capital than they would based on a simple gross
income allocation. This gives the unit an incentive to look at the above points and to improve their
ORM.

3.6 Open Issues

Although the model in its current version should reflect the risk profile of the bank appropriately,
there are still open issues for future work. The most important are

• Insurance: The Basel II accord allows to decrease the capital requirement if the bank can
show that it is insured against operational risk losses. The model should therefore not only
include an insurance module, but also be able to show for which event types an insurance
would be most reasonable to decrease the risk.

• Explaining the Model to the Business: A good model should not only be used for the
capital requirement. It should also help to improve the ORM and show where the riskiest
areas are. This can only take place if the model produces an explainable output that is trusted
by the business experts. It is an open question how this could look like.
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Chapter 4
Validation of the Model

’That’s right,’ shouted Vroomfondel, ’we
demand rigidly defined areas of doubt and
uncertainty!’

Douglas Adams, The Hitchhiker’s Guide
to the Galaxy (1979)

Before a model can be approved by the regulator, it is obligatory to set up a process of inter-
nal validation of the model. [oBS11] explicitly states that a validation activity should include
evalution of

• Distributional assumptions

• Dependency assumptions

• The four key elements of the AMA

• Qualitative aspects (e.g. internal controls, use test, reporting, documentation of the model,
role of senior management and organisational aspects)

Even though qualitative aspects should play an important role in the validation to ensure a proper
risk management of bank, this thesis will concentrate on the first three quantitative aspects of an
internal model validation.

4.1 Testing the Distribution Assumptions

4.1.1 EDF Statistics

Many statistical tests to assess the goodness of fit of a distribution have been developed on the
idea of measuring some kind of distance between the empirical distribution function (EDF) of the
observations x1, ..., xn, defined as

F̂n(x) =
1
n

n∑
i=1

1xi≤x,
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and a given theoretical cdf F (.). According to the Glivenko-Cantelli Theorem (see [Can33]) and
other, stronger results like the Kolmogorov theorem ([Kol33]) it is well known that, for an increas-
ing sample size, F̂n converges to ”true” cumulative distribution function. Based on this idea, these
measures of distance (also known as EDF statistics) should give a good picture of the goodness of fit.

The most popular of these statistics is the Kolmogorov-Smirnov test (KS test) statistic (see [Smi48]).
It is defined as

KS =
√
n sup |F̂n(x)− F (x)|.

However, the KS test has been shown not to be very powerful in some cases (see [Ste74]). Moreover,
for operational risk models, it is particular important to use tests that assign a higher weight to
the tail proportion of the distribution. An alternative to the KS test are statistics based on the
measure (see [AD52])

n

∫ ∞
−∞

(F̂n(x)− F (x))2Ψ(x)dF (x), (4.1)

where Ψ(.) is a nonnegative weighting function chosen by the experimenter. There are many propos-
als in literature how to chose Ψ(.). Cramér (see [Cra28]) and von Mises (see [VM28]) independently
proposed to use ΨCM ≡ 1, which is now known as the Cramér-von Mises (CvM) criterion .

However, as explained, for the purposes of tail modelling it would be useful to put weight on the
tail. One test that fulfils this criterion is the Anderson-Darling test (AD test) (see [AD54]), which
is based on

ΨAD(x) =
1

F (x) (1− F (x))
.

The F (x) and the (1− F (x)) term ensure a high weight on both the lower and the upper tail of
the distribution. A useful modification for operational risk, where the capital mainly depends on
the upper tail, was suggested in [CRF05]:

ΨAD2(x) =
1

(1− F (x))2

[CRF05] also suggested a modification to the KS test:

KS∗ =
√
n sup |

√
Ψ(x)(F̂n(x)− F (x))|, (4.2)

where Ψ(.) can be used to weight the different parts of a distribution similiar as in (4.1), using for
example ΨAD and ΨAD2 .

The computation of the statistics based on (4.2) (supremum type statistics) and (4.1) (quadratic
type statistics) does not seem trivial. However, there are some computation formulas (see [CRF05]
for their derivation, even for truncated distributions). See Table 4.1 for the computation formulas
for the most important EDF statistics.

To be able to do statistical inference, we have to derive the p-values under the null hypothesis
that the data indeed is distributed with cdf F (.). Since there are in general no closed formulas for
the distribution of the test statistics, it is necessary to bootstrap the p-values, i.e. to simulate test
statistics under the null hypothesis and derive their empirical distribution.

48



Supremum type statistics:
√
n sup |Ψ(x)(F̂n(x)− F (x))|

Weight Ψ(x) Computing formula

KS: 1
√
nmax

{
sup
j

{
j
n − yj

}
, sup

j

{
yj − j−1

n

}}
1

F (x)(1−F (x))

√
nmax

{
sup
j

{
j
n
−yj√

yj(1−yj)

}
, sup

j

{
yj− j−1

n√
yj(1−yj)

}}

Quadratic type statistics: n
∫∞
−∞(F̂n(x)− F (x))2Ψ(x)dF (x)

Weight Ψ(x) Computing formula

CvM: 1 n
3 + 1

n

∑n
j=1(1− 2j)yj +

∑n
j=1 y

2
j

AD: 1
F (x)(1−F (x)) −n+ 1

n

∑n
j=1(1− 2j) log yj − 1

n

∑n
j=1 (1 + 2(n− j)) log(1− yj)

1
(1−F (x))2

1
n

∑n
j=1 (1− 2(n− j)) 1

1−yj + 2
∑n

j=1 log(1− yj)

Table 4.1: Computing formulas for EDF statistics (see [CRF05]). We denote the ordered observations by
x(j), i.e. x(1) ≤ · · · ≤ x(n). Moreover we set yj := F̂n(x(j)).

4.1.2 Graphical Tools

Graphical tools are also very useful in the assessment of the goodness of fit of a distribution. In the
case of a continuous distribution it can be very helpful to overlay the histogram of the observations
with the theoretical density function.

The most popular graphical tool is the QQ-plot, which compares the empirical and the theoretical
quantiles (see Figure 4.1). If the data is distributed according to the theoretical distribution, the
points on QQ-plot are expected to form a line.

4.1.3 Distribution Assumptions

Distribution assumptions are made at several parts of the model:

• Distribution of the frequency (Poisson / negative binomial)

• Distribution of the severity tail (shifted log normal)

• Hyperdistribution of the severity distribution parameters µ and σ in the MCMC procedure
(µ is normal and 1/σ2 is Gamma)

The frequency data is very scarce, therefore the validation of the frequency distribution assumption
relies on the graphical assessment of the goodness of fit.
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Figure 4.1: Graphical tools to assess the goodness of fit. For the above plots a log normal distribution with
parameters µ = 11 and σ = 2.5 is assumed.
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To assess the goodness of fit of the severity tail distribution, we also have to bear in mind that
the final parameter estimate depends on three different data elements (internal and external data,
scenarios).

Scenarios are forward looking, therefore we should not include them into a backward looking sta-
tistical test. For that reason we define the null hypothesis as

H0 : Xi|Xi>T ∼ F (x) = Φ
(

log(x− T )− µData

σData

)
,

where µData and σData are the MSE estimates after inclusion of external data.
To come to conclusion whether the null hypothesis should be rejected, it is needed that both the
graphical tools and the p-values of the mentioned statistics are considered and assessed. In partic-
ular, the AD test should not reject with α = 0.05.

A similar validation of the hyperparameter distribution of the MCMC procedure after the first step
(inclusion of internal data) is also undertaken. In this case, we define the null as

H0 : µ ∼ Φ
(
µhyper, σhyper

)
,

1
σ2
∼ Gamma(αhyper, βhyper),

where µhyper, σhyper, αhyper and βhyper are the parameters fitted to the realizations of the MCMC
of the first internal data step.
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4.2 Testing the Dependency Assumptions

4.2.1 Assessing the Dependence Structure

For the purpose of capital estimation, the most conservative assumption is perfect dependence
(which implies that the OpVaR of the bank equals the sum of the individual ORC-OpVaR). There-
fore it has to be validated whether the dependency is less than perfect.

For this reason graphical tools which are able to capture several dimensions are very useful. One
idea could be to make a scatterplot (i.e. plotting data pairs on two axes of a plot) to analyze
the dependence. However, it is recommended to use a scale-free graphical representation of the
dependence (see [GF07]). This can be achieved by plotting the pair of ranks. Perfect dependence
implies that the copula equals the Frechet upper bound (see [Fré51]), i.e. in two dimensions

CFrechet(u1, u2) = min{u1, u2}.

Figure 4.2 shows how simulations from a comontone copula looks like: the rank plots seems to form
a line. The more dispersed the plot looks like, the less dependence can be assumed. Figure 4.2 also
gives a picture of other forms of dependence that can be assessed by the pair of ranks.

4.2.2 Goodness of Fit of the Copula

After assessing the dependence in general, it would be of great interest to assess the goodness of
fit of a particular copula. In the case of distributions, the histogram/density-plot and the QQ-plot
was already mentioned. In the case of copulas, it is possible to produce similar pictures (see Figure
4.3):

• In the case of a continuous copula (like the Gaussian or t-copula), we also can plot a two-
dimensional density in form of a contour plot.

• We can compare the values of the theoretical copula with the values of the empirical copula
for a paired data set (x1

i , x
2
i ), i = 1 . . . n, which is defined as

Ĉn(u1, u2) =
1
n

n∑
i=1

1{x1
i≤u1,x2

i≤u2}.

The result is a two dimensional ”PP”-plot.

Normally one has to work with more than two dimensions. However, in this case the assessment
can be made for all possible combination of pairs.

4.2.3 Dependency Assumptions

The dependency assumptions of the model that have to be tested are

• t-copula dependence structure between ORC
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• Independence of the hyper parameter distributions of µ and σ after the first step in the
MCMC procedure

For the latter point the rank plot and Kendall’s tau will be assessed to see if independence is a
reasonable assumption.

To validate the t-copula dependence structure between the ORC, the graphical tools are used to
review the goodness of fit for the copula.
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Figure 4.2: The Gaussian copula gives a good picture of how perfect dependence / independence / perfect
negative dependence looks like. The correlation parameter ρ ∈ [−1, 1] interpolates between perfect dependence
(ρ = 1), independence (ρ = 0) and perfect negative dependence (ρ = −1). The above plots show 10,000
simulations from a Gaussian copula with different values for ρ.
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Figure 4.3: Graphical tools to assess the goodness of fit of the copula. For the above plots a t-Copula with
df = 1 and a positive correlation of 0.9 is assumed.
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4.3 Reviewing the Key Elements of the AMA

The last requirement for the quantitative model validation is to review the use of the four key
elements (internal data, external data, scenarios, BEICF).

The inclusion of the key elements is a requirement of the AMA approach. However, there is no
prescribed way how to include them. The Bayesian framework offers a possible solution to this
problem: internal data is treated as the starting point for the estimation, external data is used
to lower the uncertainty of the parameter. Scenarios (that also incorporate BEICF in their esti-
mation) are then used to adapt the estimate and to include a forward looking aspect into the model.

For validation purposes, the questions are:

• Does every source have a significant impact on the OpVaR?

• If yes, how strong is the influence of each element?

The Bayesian framework of the Two-Stage Bayes approach can also be of great use for that matter.
With an analysis of the parameter hyper distributions after each step of data inclusion (see e.g.
Figure 3.6 or Figure 3.2), the impact of each key element becomes visible. A future challenge still
remains: What is the optimal impact of each data element? Should this be chosen by a model,
or even an expert? In the end it remains difficult to pinpoint the operational risk profile of an
individual credit institute, it is a task that has to be done with the help of the individual stake
holders in the bank.
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Chapter 5
Conclusion

...and go on till you come to the end: then
stop.

Lewis Carroll, Alice in Wonderland

The development of the AMA capital model bears many challenges. The described approach was
developed to met some of them:

• Many different inhomogeneous risk drivers: The model uses a multivariate approach
with seven different ORC. A copula is used to capture the dependence structure within the
different model cells.

• Fat tails of the loss distributions: Although it is very hard or even impossible to capture
tail risk with a model, many measures were taken to reduce the possibility of missing the
identification of a high risk area. First of all the body-tail approach ensures a high concen-
tration of the modelling effort on the tail. Moreover, inclusion of the key elements via the
Two-Stage Bayes approach provides another sources of data to point out tail risk.

• Robust, yet risk sensitive OpVaR: A good model should react to changes in the op-
erational risk, nevertheless it should be robust to insignificant data changes. The Bayesian
MCMC procedure can be seen as a robust way to estimate the severity distribution (see
[ZGFT13]). Moreover there is the approach for the threshold choice that guarantees for a
stable fit of the severity distribution and therefore ensures stability of the model.

• Validation of the model: As shown in the previous chapter, the model is not just used as a
black box that outputs some capital number. Each important model assumption is thoroughly
validated and tested via a validation framework.

Yet, it has to be clear that a model can produce a capital number, but managing operational risk
is so much more than just looking at one number.
It is about defining sufficient control mechanisms to prevent future losses. It is about raising the
awareness for hidden risks in the daily business.
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Sound operational risk management requires the cooperation of every employee of the institute.
Everyone can help to prevent fraud by reporting suspicious behaviour. Everyone has to be honest
to their clients to prevent legal cases due to flawed advice. Everyone can ensure that they are fit
for their work and help to decrease the number of executional errors.

A model can be a good start to discuss the operational risk in a bank.

But it is definitely not the end.
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Chapter 6
Appendix

6.1 Codes

I can remember the exact instant when I
realized that a large part of my life from
then on was going to be spent in finding
mistakes in my own programs.

Maurice Wilkes (1949)

The following functions were were written in the programming language R. Besides the base pack-
ages, the following packages are needed to run the codes:

• actuar ([DGP08]): provides a very efficient distribution discretizing algorithm.

• laeken ([AT13]): robust estimates to fit the pareto distribution.

• maxLik ([HT11]): very efficient algorithm for maximum likelihood optimization

• evir: provides the cdf of the generalized Pareto distribution

• mvtnorm ([GB09]): provides the multivariate Normal and t-distribution

For every described function, a full documentation (in terms of the usual R-help file documentation
and the code) is given. The functions are categorized in the two most challenging tasks: distribution
fitting for the severity and numerical calculation of the OpVaR.
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6.1.1 Fitting of the Severity Distribution

MCMC Function to fit a truncated distribution via Monte Carlo Markov Chain
Methods.

Description

MCMC fits a truncated log normal distribution and returns samples from the posterior distri-
bution of the parameters

Usage

MCMC(data, threshold,
Sigma = 0.05 * matrix(c(1, 0, 0, 0.5), ncol = 2),
n = 1e+05, weights = NULL, prior.method = "Jeffrey",
mean.par = NULL, sigma.par = NULL, shape.par = NULL,
rate.par = NULL, mu.int = NULL, sigma.int = NULL,
start = c(12, 2), burnin = 0.5)

Arguments

data Positive loss data

threshold Threshold for the truncated distribution

Sigma Covariance matrix for the MCMC random walk

n number of iterations in the MCMC procedure

weights If not NULL, weighted maximum likelihood will be performed.

prior.method Either ”Jeffrey” (uninformed prior) or ”NormalGamma” (informed prior)

mean.par Mean parameter of mu in ”NormalGamma”

sigma.par Standard deviation parameter of mu in ”NormalGamma”

shape.par Shape parameter of sigma in ”NormalGamma”

rate.par Rate parameter of sigma in ”NormalGamma”

mu.int Confidence interval of mu for restricted MCMC

sigma.int Confidence interval of sigma for restricted MCMC

start Start parameters for random walk in MCMC method

burnin Percentage of sample that will be thrown away from the start

Value

Parameters, sample
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Examples

body.data <- rlnorm(100,sdlog = 1.5, meanlog = 11)
tail.data <- rlnorm(100,sdlog = 2.5, meanlog = 11)
loss.data <- c(body.data[body.data <= 1e05], tail.data[tail.data > 1e05])
## Not run: mod <- MCMCfitter(loss.data, threshold = 0.8e05)

Code

function (data, threshold, Sigma = 0.05 * matrix(c(1, 0, 0, 0.5),
ncol = 2), n = 1e+05, weights = NULL, prior.method = "Jeffrey",
mean.par = NULL, sigma.par = NULL, shape.par = NULL, rate.par = NULL,
mu.int = NULL, sigma.int = NULL, start = c(12, 2), burnin = 0.5)

{
narrow <- !(is.null(mu.int) | is.null(sigma.int))
if (is.null(weights))

weights = rep(1, length(data))
if (!prior.method %in% c("Jeffrey", "NormalGamma"))

stop("Prior not defined!")
if (prior.method == "Jeffrey") {

prior <- function(mu, sigma, threshold) {
if (threshold > -Inf) {

u.star <- (threshold - mu)/sigma
alpha <- dnorm(u.star)/(1 - pnorm(u.star))
A = (1 - alpha^2 + u.star * alpha)/sigma^2
B = alpha * (1 - u.star * alpha + u.star^2)/sigma^2
C = (2 + u.star * alpha - alpha^2 * u.star^2 +
u.star^3 * alpha)/sigma^2

}
else {

A = 1/sigma^2
B = 0
C = 2/sigma^2

}
return(sqrt(A * C - B^2))

}
}
if (prior.method == "NormalGamma") {

prior <- function(mu, sigma, threshold) {
prior.sigma <- dinvgamma(sigma^2, shape = shape.par,

scale = rate.par) * 2 * sigma
prior.beta <- dnorm(mu, mean = mean.par, sd = sigma.par)
return(prior.sigma * prior.beta)

}
}
exp.data = data
threshold = log(threshold)
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data = log(exp.data[exp.data > exp(threshold)])
weights <- weights[exp.data > exp(threshold)]
rw <- rmvnorm(n, mean = c(0, 0), sigma = Sigma)
mu = start[1]
sigma = start[2]
acc = NULL
former.lhood = dnorm(data, mean = mu, sd = sigma)/(1 - pnorm(threshold,

mean = mu, sd = sigma))
mchain = matrix(NA, ncol = 2, nrow = n)
colnames(mchain) = c("mu", "sigma")
for (i in 1:n) {

cand.mu = mu + rw[i, 1]
cand.sigma = sigma + rw[i, 2]
if (cand.sigma <= 0) {

mchain[i, 1] = mu
mchain[i, 2] = sigma
next

}
if (narrow) {

if (cand.sigma > sigma.int[2] | cand.sigma < sigma.int[1] |
cand.mu > mu.int[2] | cand.mu < mu.int[1]) {
mchain[i, 1] = mu
mchain[i, 2] = sigma
next

}
}
Tt = 1
cand.lhood = dnorm(data, mean = cand.mu, sd = cand.sigma)/(1 -

pnorm(threshold, mean = cand.mu, sd = cand.sigma))
lhood.ratio = exp(sum(weights * (log(cand.lhood) - log(former.lhood))) +

log(prior(cand.mu, cand.sigma, threshold)) - log(prior(mu,
sigma, threshold)))

alpha = min((lhood.ratio)^(1/Tt), 1)
if (!is.nan(alpha)) {

if (runif(1) < alpha) {
mu = cand.mu
sigma = cand.sigma
former.lhood = cand.lhood
acc = c(acc, TRUE)

}
}
mchain[i, 1] = mu
mchain[i, 2] = sigma

}
acc.rate = sum(acc)/n
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ma <- function(x, n.m = n/100) {
filter(x, rep(1/n.m, n.m), sides = 2)

}
par(mfrow = c(2, 1), oma = c(0, 0, 2.5, 0))
plot(1:nrow(mchain), mchain[, 1], "l", col = "grey", main = "Mu",

xlab = "Samples", ylab = "")
lines(1:nrow(mchain), ma(mchain[, 1]), col = "black")
plot(1:nrow(mchain), mchain[, 2], "l", col = "grey", main = "Sigma",

xlab = "Samples", ylab = "")
lines(1:nrow(mchain), ma(mchain[, 2]), col = "black")
burnin = round(burnin * n)
mchain <- mchain[(burnin + 1):nrow(mchain), ]
means <- apply(mchain, 2, mean)
Sigma <- var(mchain)
output <- list(acc.rate = acc.rate, means = means, Sigma = Sigma,

sample = mchain)
return(output)

}

fittruncdistr Function to fit a truncated distribution to a given data sample.

Description

fitttruncdistr does truncated maximum likelihood fitting for a given threshold function

Usage

fittruncdistr(data, threshold, distr, start = NULL,
fix.arg = NULL, pos = TRUE, upper.threshold = Inf,
method.pareto = "ml", weights = NULL)

Arguments

data Positive loss data

threshold Threshold for the truncated distribution

distr string of a function with pdistr, qdistr and ddistr function, e.g. ”norm”

start starting value for optimization. For the most common distributions it is not
necessary to give a starting value

fix.arg arguments which should be held fix in the optimization

pos until now two different forms of optimization are implemented: arbitrary num-
ber of parameters, all positive (pos = TRUE) or two parameters, one arbitrary,
they other one positive e.g. (pos = c(FALSE,TRUE))
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upper.threshold

fitting a distribution between two points on the real line
method.pareto

method for finding the shape of pareto (distr = ”pareto1”). Provided by package
laeken. Can be one of c(”ml”, ”Hill”, ”ISE”, ”QQ”, ”PDC”, ”WML”).

weights If not NULL, weighted maximum likelihood will be performed.

Value

Parameters of the fit

Examples

body.data <- rlnorm(100,sdlog = 1.5, meanlog = 11)
tail.data <- rlnorm(100,sdlog = 2.5, meanlog = 11)
loss.data <- c(body.data[body.data <= 1e05], tail.data[tail.data > 1e05])
fittruncdistr(loss.data,distr = "lnorm", threshold = 1e05)

Code

function (data, threshold, distr, start = NULL, fix.arg = NULL,
pos = TRUE, upper.threshold = Inf, method.pareto = "ml",
weights = NULL)

{
if (is.null(weights))

weights <- rep(1, length(data))
if (length(weights) != length(data))

stop("Weights do not have the right length!")
if (is.infinite(upper.threshold)) {

weights <- weights[data > threshold]
data <- data[data > threshold]

}
else {

weights <- weights[data > threshold & data <= upper.threshold]
data <- data[data > threshold & data <= upper.threshold]

}
pdistname <- paste("p", distr, sep = "")
if (!exists(pdistname, mode = "function"))

stop(paste("The ", pdistname, " function must be defined"))
ddistname <- paste("d", distr, sep = "")
if (!exists(ddistname, mode = "function"))

stop(paste("The ", ddistname, " function must be defined"))
if (is.null(start)) {

if (distr == "norm") {
n <- length(data)
sd0 <- sqrt((n - 1)/n) * sd(data)
mx <- mean(data)
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start <- list(mean = mx, sd = sd0)
}
if (distr == "lnorm") {

if (any(data <= 0))
stop("values must be positive to fit a lognormal distribution")

n <- length(data)
ldata <- log(data)
sd0 <- sqrt((n - 1)/n) * sd(ldata)
ml <- mean(ldata)
start <- list(meanlog = ml, sdlog = sd0)
pos = c(FALSE, TRUE)

}
if (distr == "llogis") {

ldata <- log(data)
n <- length(ldata)
m <- thetaHill(data, x0 = threshold)
v <- (n - 1)/n * var(ldata)
start <- list(shape = m, rate = sqrt(3 * v)/pi)

}
if (distr == "burr") {

m <- mean(data)
m2 <- mean(data^2)
theta1 = 1 + sqrt(m2/(m2 - m^2))
theta2 = m2/m * (1 - sqrt((m2 - m^2)/m2))
start <- list(shape1 = theta1, shape2 = theta1, scale = theta2)

}
if (distr == "pareto1") {

if (method.pareto == "Hill") {
return(list(estimate = c(shape = thetaHill(data,
x0 = threshold), min = threshold), maximum = NA))

}
if (method.pareto == "ISE") {

return(list(estimate = c(shape = thetaISE(data,
x0 = threshold), min = threshold), maximum = NA))

}
if (method.pareto == "PDC") {

return(list(estimate = c(shape = thetaPDC(data,
x0 = threshold), min = threshold), maximum = NA))

}
if (method.pareto == "QQ") {

return(list(estimate = c(shape = thetaQQ(data,
x0 = threshold), min = threshold), maximum = NA))

}
if (method.pareto == "WML") {

return(list(estimate = c(shape = thetaWML(data,
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x0 = threshold), min = threshold), maximum = NA))
}
m <- mean(data)
m2 <- mean(data^2)
theta1 = 1 + sqrt(m2/(m2 - m^2))
start <- list(shape = theta1, min = threshold)

}
if (distr == "pareto" | distr == "pareto2") {

m <- mean(data)
m2 <- mean(data^2)
theta1 = 1 + sqrt(m2/(m2 - m^2))
theta2 = m2/m * (1 - sqrt((m2 - m^2)/m2))
start <- list(shape = theta1, scale = theta2)

}
if (distr == "gpd") {

gpd.mod <- gpd(data, threshold = threshold)
return(list(estimate = (c(unlist(gpd.mod$par.ests),

mu = threshold)), maximum = -gpd.mod$nllh.final))
}
if (distr == "pois") {

start <- list(lambda = mean(data))
}
if (distr == "exp") {

start <- list(rate = 1/mean(data) * 0.001)
}
if (distr == "gev") {

n <- length(data)
sigma0 <- sqrt(6 * var(data))/pi
mu0 <- mean(data) - 0.57722 * sigma0
xi0 <- 0.1
theta <- c(xi0, sigma0, mu0)
negloglik <- function(theta, tmp) {

y <- 1 + (theta[1] * (tmp - theta[3]))/theta[2]
if ((theta[2] < 0) || (min(y) < 0))
out <- 1e+06

else {
term1 <- length(tmp) * logb(theta[2])
term2 <- sum((1 + 1/theta[1]) * logb(y))
term3 <- sum(y^(-1/theta[1]))
out <- term1 + term2 + term3

}
out

}
fit <- optim(theta, negloglik, hessian = TRUE, tmp = data)
if (fit$convergence)
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warning("optimization may not have succeeded")
par.ests = list(xi = fit$par[1], mu = fit$par[3],

sigma = fit$par[2])
return(list(estimate = (c(unlist(par.ests))), maximum = -fit$value))

}
if (distr == "gamma") {

n <- length(data)
m <- mean(data)
v <- (n - 1)/n * var(data)
start <- list(shape = m^2/v, rate = m/v)

}
if (distr == "nbinom") {

n <- length(data)
m <- mean(data)
v <- (n - 1)/n * var(data)
size <- if (v > m)

m^2/(v - m)
else 100
start <- list(size = size, mu = m)

}
if (distr == "geom") {

m <- mean(data)
prob <- if (m > 0)

1/(1 + m)
else 1
start <- list(prob = prob)

}
if (distr == "beta") {

if (any(data < 0) | any(data > 1))
stop("values must be in [0-1] to fit a beta distribution")

n <- length(data)
m <- mean(data)
v <- (n - 1)/n * var(data)
aux <- m * (1 - m)/v - 1
start <- list(shape1 = m * aux, shape2 = (1 - m) *

aux)
}
if (distr == "weibull") {

m <- mean(log(data))
v <- var(log(data))
shape <- 1.2/sqrt(v)
scale <- exp(m + 0.572/shape)
start <- list(shape = shape, scale = scale)

}
if (distr == "logis") {

67



n <- length(data)
m <- mean(data)
v <- (n - 1)/n * var(data)
start <- list(location = m, scale = sqrt(3 * v)/pi)

}
if (distr == "cauchy") {

start <- list(location = median(data), scale = IQR(data)/2)
}
if (distr == "unif") {

start <- list(min = 0, max = 1)
}

}
if (is.infinite(upper.threshold)) {

fnobj <- function(par) {
z.H = 1 - do.call(pdistname, c(list(threshold), as.list(par),

as.list(fix.arg)))
NlogL = sum(weights * log(do.call(ddistname, c(list(data),

as.list(par), as.list(fix.arg)))/z.H))
if (is.na(NlogL))

NlogL = -.Machine$double.xmax
return(NlogL)

}
}
else {

fnobj <- function(par) {
z.H = do.call(pdistname, c(list(upper.threshold),

as.list(par), as.list(fix.arg))) - do.call(pdistname,
c(list(threshold), as.list(par), as.list(fix.arg)))

NlogL = sum(weights * log(do.call(ddistname, c(list(data),
as.list(par), as.list(fix.arg)))/z.H))

if (is.na(NlogL))
NlogL = -.Machine$double.xmax

return(NlogL)
}

}
n.par <- length(start)
if (length(pos) == 1) {

if (pos == TRUE) {
A <- diag(n.par)
B <- rep(0, n.par)

}
}
else {

if (length(pos) == 2) {
A <- matrix(as.numeric(pos), 1, 2)

68



B <- 0
}
else {

A <- diag(pos)[pos, ]
B <- numeric(sum(pos))
if (sum(pos) == 1)

A <- t(as.matrix(A))
}

}
opttryerror <- try(mod <- maxLik(logLik = fnobj, start = unlist(start),

constraints = list(ineqA = A, ineqB = B), method = "BFGS"),
silent = TRUE)

if (inherits(opttryerror, "try-error")) {
mod <- optim(unlist(start), function(x) {

-fnobj(x)
})
mod$estimate <- mod$par
mod$maximum <- -mod$value

}
return(mod)

}

gof_tail_for_fitter

Function to asssess the fit of a truncated distribution.

Description

Returns statistics and several plots to assess the fit of a truncated distribution.

Usage

gof_tail_for_fitter(data, threshold, distr, pars,
log.scale = FALSE, upper.threshold = Inf)

Arguments

data Positive loss data
threshold Threshold where the tail starts
distr String of a function with pdistr, qdistr and ddistr function, e.g. ”norm”
pars Parameters of distr can be added (as a list)
log.scale Indicates whether the distribution should be tested on the logarithm of the

data
upper.threshold

Possible upper threshold of the distribution
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Value

Different distribution tests, a QQ Plot and a histogram

Examples

body.data <- rlnorm(100,sdlog = 1.5, meanlog = 11)
tail.data <- rlnorm(100,sdlog = 2.5, meanlog = 11)
loss.data <- c(body.data[body.data <= 1e05], tail.data[tail.data > 1e05])
gof_tail_for_fitter(loss.data, threshold = 1e05,
distr = "lnorm", pars = list(meanlog = 11, sdlog = 2.5))

Code

function (data, threshold, distr, pars, log.scale = FALSE, upper.threshold = Inf)
{

if (log.scale) {
data <- log(data[data > threshold])
threshold <- log(threshold)

}
else {

data <- data[data > threshold]
}
data <- data[order(data)]
pdistname <- paste("p", distr, sep = "")
if (!exists(pdistname, mode = "function"))

stop(paste("The ", pdistname, " function must be defined"))
ddistname <- paste("d", distr, sep = "")
if (!exists(ddistname, mode = "function"))

stop(paste("The ", ddistname, " function must be defined"))
qdistname <- paste("q", distr, sep = "")
if (!exists(qdistname, mode = "function"))

stop(paste("The ", qdistname, " function must be defined"))
tailcdf1 <- function(x) {

as.numeric((do.call(pdistname, c(list(x), as.list(pars)))))
}
tailcdf <- function(x) {

eval <- tailcdf1(x)
if (!is.na(eval)) {

return(eval)
}
else return(0)

}
tailcdf <- Vectorize(tailcdf)
z.H <- tailcdf(threshold)
if (is.infinite(upper.threshold)) {

z.U <- 1
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taild1 <- function(x) {
as.numeric((do.call(ddistname, c(list(x), as.list(pars)))))

}
taild <- function(x) {

eval <- taild1(x)/(1 - z.H)
if (!is.na(eval)) {

return(eval)
}
else return(0)

}
taild <- Vectorize(taild)
tailq1 <- function(x) {

as.numeric((do.call(qdistname, c(list(x), as.list(pars)))))
}
tailq <- function(q) {

tailq1(q * (1 - z.H) + z.H)
}
tailq <- Vectorize(tailq)

}
else {

z.U <- tailcdf(upper.threshold)
taild1 <- function(x) {

as.numeric((do.call(ddistname, c(list(x), as.list(pars)))))
}
taild <- function(x) {

eval <- taild1(x)/(z.U - z.H)
if (!is.na(eval)) {

return(eval)
}
else return(0)

}
taild <- Vectorize(taild)
tailq1 <- function(x) {

as.numeric((do.call(qdistname, c(list(x), as.list(pars)))))
}
tailq <- function(q) {

tailq1(q * (z.U - z.H) + z.H)
}
tailq <- Vectorize(tailq)

}
z <- tailcdf(data)/z.U
n <- length(data)
rvs <- matrix(runif(n * 5000, min = z.H, max = z.U), nrow = 5000,

ncol = n)
rvs <- apply(rvs, 1, function(x) {
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x[order(x, decreasing = FALSE)]
})
KS <- KS.test(z, n, z.H)
KS.pvalue <- 1 - ecdf(apply(rvs, 2, KS.test, n = n, z.H = z.H))(KS)
V <- V.test(z, n, z.H)
V.pvalue <- 1 - ecdf(apply(rvs, 2, V.test, n = n, z.H = z.H))(V)
AD <- AD.test(z, n, z.H)
AD.pvalue <- 1 - ecdf(apply(rvs, 2, AD.test, n = n, z.H = z.H))(AD)
AD.up <- AD.up.test(z, n, z.H)
AD.up.pvalue <- 1 - ecdf(apply(rvs, 2, AD.up.test, n = n,

z.H = z.H))(AD.up)
AD2 <- AD2.test(z, n, z.H)
AD2.pvalue <- 1 - ecdf(apply(rvs, 2, AD2.test, n = n, z.H = z.H))(AD2)
W2 <- W2.test(z, n, z.H)
W2.pvalue <- 1 - ecdf(apply(rvs, 2, W2.test, n = n, z.H = z.H))(W2)
AD2.up <- AD2.up.test(z, n, z.H)
AD2.up.pvalue <- 1 - ecdf(apply(rvs, 2, AD2.up.test, n = n,

z.H = z.H))(AD2.up)
Chi2 <- chi2.test(z, n, z.H)
Chi2.pvalue <- 1 - ecdf(apply(rvs, 2, chi2.test, n = n, z.H = z.H))(Chi2)
AD.up.mod1 <- AD.up.mod1.test(z, n, z.H)
AD.up.mod1.test.pvalue <- 1 - ecdf(apply(rvs, 2, AD.up.mod1.test,

n = n, z.H = z.H))(AD.up.mod1)
value <- matrix(c(KS, V, AD, AD.up, AD2, W2, AD2.up, Chi2,

AD.up.mod1, KS.pvalue, V.pvalue, AD.pvalue, AD.up.pvalue,
AD2.pvalue, W2.pvalue, AD2.up.pvalue, Chi2.pvalue, AD.up.mod1.test.pvalue),
ncol = 2)

rownames(value) <- c("KS", "V", "AD", "AD.up", "AD2", "W2",
"AD2.up", "Chi2", "AD.up.mod1")

colnames(value) <- c("Statistic", "P-Value")
if (!log.scale) {

hist(log(data), freq = FALSE, ylim = c(0, 1))
curve(taild(exp(x)) * exp(x), add = TRUE, col = "red")
pseq <- (1:(n - 1))/n
y <- log(tailq(pseq))
plot(y, log(data[order(data)][-n]), main = "QQ-Plot",

xlab = "Theoretical Quantile", ylab = "Sample Quantile")
abline(a = 0, b = 1, col = "red")

}
else {

hist(data, freq = FALSE, ylim = c(0, 1))
curve(taild(x), add = TRUE, col = "red")
pseq <- (1:(n - 1))/n
y <- tailq(pseq)
plot(y, data[order(data)][-n], main = "QQ-Plot",
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xlab = "Theoretical Quantile",
ylab = "Sample Quantile")

abline(a = 0, b = 1, col = "red")
}
d0 <- tailq(pseq) - data[order(data)][-n]
vio.ratio <- sum((sign(d0) * (sign(d0) + 1)/2)/length(d0))
w.vio.ratio <- sum((d0 * (sign(d0) + 1)/2)/sum(abs(d0)))
value <- rbind(value, matrix(c(vio.ratio, w.vio.ratio, NA,

NA), ncol = 2))
n.value <- nrow(value)
rownames(value)[(n.value - 1):n.value] <- c("Vio.Ratio",

"W.Vio.Ratio")
return(value)

}

fitter Fit a truncated distribution to a given data sample and assess the fit.

Description

fitter includes truncated maximum likelihood for a given threshold function AND tools for the
analysis of GOF.

Usage

fitter(data, threshold, distr, start = NULL,
fix.arg = NULL, pos = TRUE, method = "mle",
log.scale = FALSE, upper.threshold = Inf,
method.pareto = "ml", blocksize = NULL,
quantiles = NULL, se.out = FALSE, weights = NULL)

Arguments

data Positive loss data

threshold Tail threshold for the truncated distribution

distr string of a function with pdistr, qdistr and ddistr function, e.g. ”norm”

start Starting value for optimization. For the most common distributions it is not
necessary to give a starting value

fix.arg Arguments which should be held fix in the optimization

pos Until now two different forms of optimization are implemented: arbitrary num-
ber of parameters, all positive (pos = TRUE) or two parameters, one arbitrary,
they other one positive e.g. (pos = c(FALSE,TRUE))
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method Parameter estimation method: can be one of c(”mle”, ”blocks”, ”QQ”, ”chisq”,
”AD.up”, ”AD2.up”, ”AD”, ”AD.up.mod1”,
”AD.up.mod2”, ”AD2.up.mod1”, ”AD2.up.mod2”). Until now ONLY ”mle”,
”blocks” (fitting the distribution of blockwise maxima) and ”QQ” (quantile
matchin algorithm) works.

log.scale indicates whether the distribution should be fitted on the logarithm of the data
upper.threshold

fitting a distribution between two points on the real line
method.pareto

method for finding the shape of pareto (distr = ”pareto1”). Can be one of
c(”ml”, ”Hill”, ”ISE”, ”QQ”, ”PDC”, ”WML”), see documentation of package
”laeken” for more information.

blocksize Used for parameter estimation via blockwise maxima.

quantiles Used for the quantile matching optimization to find the parameters.

se.out If TRUE and method = ”mle”, the standard errors for the optimization will be
returned.

weights If not NULL, weighted maximum likelihood will be performed.

Value

Analysis of GOF, parameters

Examples

body.data <- rlnorm(100,sdlog = 1.5, meanlog = 11)
tail.data <- rlnorm(100,sdlog = 2.5, meanlog = 11)
loss.data <- c(body.data[body.data <= 1e05], tail.data[tail.data > 1e05])
## Not run: mod <- fitter(loss.data,distr = "lnorm", threshold = 1e05)

Code

function(data,threshold,distr,start= NULL,
fix.arg = NULL,pos = TRUE,method = "mle",
log.scale = FALSE,upper.threshold = Inf,
method.pareto = "ml",blocksize = NULL,
quantiles = NULL, se.out = FALSE, weights = NULL){

if(! (method %in% c("mle","blocks", "QQ", "chisq",
"AD.up","AD2.up", "AD","AD.up.mod1",
"AD.up.mod2", "AD2.up.mod1","AD2.up.mod2"))) {

stop("Method not known!")
}

if(log.scale){
obs <- log(data)
obs.t <- log(threshold)
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obs.ut <- log(upper.threshold)
}else{
obs <- data
obs.t <- threshold
obs.ut <- upper.threshold

}
if(method == "mle"){
mod <- fittruncdistr(data = obs,threshold = obs.t,distr = distr,

start = start, fix.arg = fix.arg, pos = pos,
upper.threshold = obs.ut,
method.pareto = method.pareto, weights = weights)

pars <- as.list(c(mod$estimate,
unlist(fix.arg)))

likelihood <- mod$maximum
}
if(method == "blocks"){

if(!is.infinite(upper.threshold))
stop("No Upper Threshold possible in Block

Maxima ML")
if(is.null(blocksize)) stop("Please define blocksize")
NC = blocksize
tmp = matrix(
obs[obs>=obs.t][1:(NC*floor(length(obs[obs>=obs.t])/NC))],
nrow = NC)

NR = dim(tmp)[1]
mm = apply(tmp, 2, max)
mod <- fittruncmax(data = mm,

threshold = obs.t,distr = distr,
mlen = NR,start = start,
fix.arg = fix.arg, pos = pos,
method.pareto = method.pareto)

pars <- as.list(c(mod$estimate,
unlist(fix.arg)))

likelihood <- mod$maximum
}

if(method == "QQ" | method == "chisq" |
method == "AD.up" | method == "AD" |
method == "AD2.up" | method == "AD2.up.mod2" |
method == "AD2.up.mod1" |
method == "AD.up.mod1" | method == "AD.up.mod2"){

if(!is.infinite(upper.threshold))
stop("No Upper Threshold possible with this method")

if(method == "QQ") if(is.null(quantiles))
stop("Please define quantiles")
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mod <- matchqtruncdistr(data = obs, threshold = obs.t,
distr = distr,method = method,
quantiles = quantiles, start = start,
fix.arg = fix.arg)

pars <- as.list(c(mod$estimate,
unlist(fix.arg)))

}

if(is.finite(upper.threshold)){
data <- data[data <= upper.threshold]}

stats <- gof_tail_for_fitter(data = data,threshold = threshold,
distr = distr,pars,log.scale = log.scale,
upper.threshold = upper.threshold)

if(method == "mle" | method == "blocks"){
n.data <- length(data>=threshold)
BIC <- -2*likelihood + length(mod$estimate)*log(n.data)
AIC <- 2*(length(mod$estimate) - likelihood)
ICs <- c(AIC = AIC, BIC = BIC)
LLH <- c(LogLH = likelihood)
if(se.out == TRUE){ hessian <- mod$hessian

fisher_info<-solve(-hessian)
prop_sigma<-sqrt(diag(fisher_info))
prop_sigma<-diag(prop_sigma)
prop_sigma<-c(diag(prop_sigma))
upper<-unlist(mod$estimate)+1.96*prop_sigma
lower<-unlist(mod$estimate)-1.96*prop_sigma
return( list(Parameters = unlist(pars),

Stats = stats, IC = ICs,
LLH = LLH,

interval.lower = c(lower),
interval.upper = c(upper)))}

return( list(Parameters = unlist(pars), Stats = stats,
IC = ICs, LLH = LLH) )

}else{
if(method == "QQ"){
return(list( Parameters = unlist(pars), Stats = stats,

Empq = mod$empq, Quantiles = mod$quantiles))
}else{

return(list( Parameters = unlist(pars), Stats = stats,
Method = method, Value = mod$value))
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}
}

}

6.1.2 Determining the OpVaR

compquantile Computation of a quantile of a compound Poisson distribution via
FFT

Description

Given a compound Poisson distribution, i.e. a random sum of a given distribution function f,
this function uses FFT to compute the quantile in a very efficient and fast way.

Usage

compquantile(q, f, ..., lambda, h = 0.01, lim = 500,
intervals = FALSE)

Arguments

q Quantile (e.g. 0.999)

f Distribution function

... Parameters of f

lambda Parameter lambda of the Poisson RV

h Stepsize of discretization for FFT

lim Max. limit of discretization

intervals If true, numeric error intervals are given.

Value

Quantile and the error intervals

Examples

compquantile(0.999, plnorm, meanlog = 11, sdlog = 1.5, lambda = 20, h = 1e06, lim = 1e08,
intervals = TRUE)
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Code

function (q, f, ..., lambda, h = 0.01, lim = 500, intervals = FALSE)
{

if (!intervals) {
return(compquantiletilt(q, f, ..., lambda = lambda, h = h,

lim = lim, method = "rounding"))
}
else {

qs <- numeric(3)
qs[1] <- compquantiletilt(q, f, ..., lambda = lambda,

h = h, lim = lim, method = "upper")
qs[2] <- compquantiletilt(q, f, ..., lambda = lambda,

h = h, lim = lim, method = "rounding")
qs[3] <- compquantiletilt(q, f, ..., lambda = lambda,

h = h, lim = lim, method = "lower")
names(qs) <- c("lower", "middle", "upper")
return(qs)

}
}

function (q, f, ..., lambda, h = 0.01, lim = 500, method = "rounding")
{

M <- 2^(ceiling(log(lim/h, base = 2)))
theta <- 20/M
cdf <- function(x) f(x, ...)
if (method == "lower")

corr <- 1
else corr <- 0
disc <- discretize(cdf, from = 0, to = (M - corr) * h, by = h,

method = method)
disc <- exp(-theta * (0:(M - 1))) * disc
fhat <- fft(disc, inverse = FALSE)
P <- exp(lambda * (fhat - 1))
g <- cumsum(exp(theta * (0:(M - 1))) * Re(1/M * fft(P, inverse = TRUE)))
if (g[M] >= q) {

i <- (min(which(g >= q)) - 1) * h
}
else {

stop("Limit is too low!")
}
return(i)

}
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