
An optimizing Compiler for
the Abstract State Machine

Language CASM
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Philipp Paulweber
Matrikelnummer 0727937

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Andreas Krall
Mitwirkung: Projektass. Dipl.-Ing. Roland Lezuo

Wien, 21.04.2014
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien ⇧ Karlsplatz 13 ⇧ Tel. +43-1-58801-0 ⇧ www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

An optimizing Compiler for
the Abstract State Machine

Language CASM
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science (MSc)

in

Computer Engineering

by

Philipp Paulweber
Registration Number 0727937

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Andreas Krall
Assistance: Projektass. Dipl.-Ing. Roland Lezuo

Vienna, 21.04.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien ⇧ Karlsplatz 13 ⇧ Tel. +43-1-58801-0 ⇧ www.tuwien.ac.at

Preface
Vorwort

Corinthian Abstract State Machine
Language, Interpreter and Compiler

The origin of the name Corinthian is unclear
whether it is taken from ”the letters, the pillars,
the leather, the place, or the mode of behavior”

Puck, The Sandman by Neil Gaiman

Funding: This work is partially supported by the Austrian Research Promotion Agency (FFG)
under contract 827485, Correct Compilers for Correct Application Specific Processors and Catena
DSP GmbH.

Förderung: Diese Arbeit wurde teilweise von der Österreichische Forschungsförderungsge-
sellschaft (FFG) unter der Vertragsnummer 827485, Correct Compilers for Correct Application
Specific Processors, und von der Firma Catena DSP GmbH gefördert.

i

Declaration
Erklärung zur Verfassung der Arbeit

Philipp Paulweber
Guntherstraße 1 / 32, 1150 Wien

I hereby declare that this master thesis has been completed by myself by using the listed refer-
ences only. Any sections, including tables, figures, etc. that refer to the thoughts, listed parts of
the Internet or works of others are marked by indicating the sources. Moreover, I confirm that I
did not hand in the present thesis at any other university or department.

Hiermit erkläre ich, dass ich diese Diplomarbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit
- einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe. Weiters ist diese Arbeit zuvor keiner anderen Stelle oder
Institution als Studiums- oder Prüfungsleistung von mir vorgelegt worden.

(Location, Date) (Signature Author)

iii

Acknowledgments
Danksagungen

First I want to thank my advisor, professor Andreas Krall, for his great support and feedback
during this master’s thesis. He always motivated me with challenging questions and interesting
discussions regarding the development of the compiler. Especially for letting me develop the op-
timizing compiler and the optimization passes with such a high degree of freedom. I also want
to thank Roland Lezuo for the support during the practical part and his technical comments. Fur-
thermore, I want to thank both, Andreas Krall and Roland Lezuo, for giving me the opportunity
to contribute as co-author in a scientific paper and to publish my ideas of the optimizing com-
piler implementation in [49]. Special thanks to my classmates and friends Stefan Mödlhamer
and Jürgen Maier for their technical comments, proof-reading and friendship. Many thanks to
my friends Jessica Cornils, Sandra Kirchner and Lukas Raneburger for their precise comments
and time-consuming proof-reading as well as their long-term friendship. I also want to thank
my parents, Adele and Peter Paulweber, for their continuous support during every educational
footstep I went through and that they always believe in me. And last of all, I want to thank my
girlfriend, Magdalena Rösch, for her encouraging support and understanding during the work of
this thesis – it would not have been possible without you.

Zuerst möchete ich meinem Betreuer, Prof. Andreas Krall, für seine tolle Betreuung und sein
Feedback während des gesamten Projekts danken. Die interessanten Diskussionen und her-
ausfordernden Fragen haben mich während der Entwicklung des Compilers sehr motiviert und
unterstützt. Ich möchte Roland Lezuo für die Unterstützung im praktischen Teil und die vie-
len technischen Kommentare bezüglich der schriftlichen Arbeit danken. Ich möchte beiden,
Andreas Krall und Roland Lezuo, auch dafür danken, dass ich bei einer wissenschaftlichen
Arbeit als Koautor meine Ideen vom optimierenden Compiler einbringen durfte und diese in
[49] publiziert worden sind. Speziell möchte ich meinen Studienkollegen und Freunden Ste-
fan Mödlhamer and Jürgen Maier meinen Dank ausprechen. Dafür, dass sie mir mit technis-
chen Kommentaren zur Arbeit geholfen haben und generell für ihre Freundschaft. Ein weit-
eres großes Dankeschön geht an meine Freunde Jessica Cornils, Sandra Kirchner und Lukas
Raneburger für die präzisen Kommentare und das sehr Zeit-Aufwändige Korrekturlesen sowie
deren langjährige Freundschaft. Ich möchte auch meinen Eltern, Adele und Peter Paulweber,
danken für die Förderung und Unterstützung meiner Ausbildungen und, dass sie immer an mich
glauben. Zum Schluss möchte ich meiner Freundin, Magdalena Rösch, für ihre aufmunternde
Unterstützung während der gesamten Zeit danken – diese Arbeit wäre ohne dich nicht möglich
gewesen.

v

Abstract
Kurzfassung

The Abstract State Machine (ASM) is a well known formal method which is based on an alge-
braic concept. This thesis describes the Corinthian Abstract State Machine (CASM) language
which is an implementation of an ASM-based general purpose programming language. Fea-
tures of this language are its combination of sequential and parallel execution semantics and a
statically strong type system. Furthermore, this thesis outlines an optimizing run-time and code
generator which enables an optimized execution of CASM programs. The code generator is a
CASM to C source-to-source translator and the run-time is implemented in C as well. Moreover
the CASM optimizing compiler (run-time and code generator) includes a novel optimization
framework with the specialized CASM Intermediate Representation (IR). The CASM IR en-
ables powerful analysis and transformation passes which are presented in detail. The evaluation
of this thesis shows that CASM is currently the best performing ASM implementation avail-
able. Benchmark results show that the CASM compiler is 2 to 3 orders of magnitude faster than
other ASM implementations. Furthermore, the presented optimization passes eliminate run-time
costs which increases the execution speed of CASM generated programs by a factor 2 to 3 even
further.

Die Abstrakte Zustandsmaschine (Abstract State Machine, ASM) ist eine mathematisch basierte
formale Methode. In dieser Arbeit wird die Corinthian Abstract State Machine (CASM) Pro-
grammiersprache vorgestellt, welche eine konkrete Implementierung einer ASM basierenden
Allzweck-Programmiersprache ist. CASM unterstützt das Verschachteln von paralleler und se-
quenzieller Ausführungssemantik und ist eine statisch getypte Sprache. In dieser Arbeit wird
die Laufzeit-Umgebung (Run-Time) und der Codegenerator von CASM vorgestellt, wobei beide
Teile auf optimierte Ausführung des erzeugten Programms bezüglich der Ausführungszeit aus-
gelegt sind. Der Codegenerator erzeugt aus dem CASM Quellcode ein C Programm und die
dazugehörige Run-Time ist ebenfalls in C implementiert. Der optimierende Compiler, bestehend
aus Codegenerator und Run-Time, beinhaltet zusätzlich ein neues Optimierungs-Framework
mit einer speziellen CASM Zwischendarstellung (Intermediate Representation, IR). Basierend
auf dieser CASM IR werden verschiedene Analysen und Transformationen in dieser Arbeit
beschrieben. Die Evaluierung zeigt, dass CASM gegenüber anderen ASM Implementierun-
gen die Performanteste ist. Die Ergebnisse von Benchmark-Tests zeigen, dass die generierten
Programme zwei bis drei Größenordnungen schneller ausgeführt werden als von anderen ASM
Implementierungen. Das Optimierungs-Framework und die vorgestellten Transformationen ver-
bessern die Ausführungszeit der generierten Programme noch weiter um den Faktor 2 bis 3.

vii

Contents

Preface i

Declaration iii

Acknowledgments v

Abstract vii

1 Introduction 1
1.1 Terminology . 2
1.2 Motivation . 3
1.3 Problem Statement . 3
1.4 Methodological Approach . 3
1.5 Structure of this Thesis . 3

2 Related Work 5
2.1 ASM Languages, Interpreters & Compilers 5
2.2 Other Languages, Compilers & Optimizations 8

3 CASM Language 11
3.1 Overview . 11
3.2 Syntax & Semantics . 13

3.2.1 Literals . 14
3.2.2 Type System . 15
3.2.3 Specifications . 16
3.2.4 Statements . 20
3.2.5 Expressions . 23

4 CASM Run-Time & Code Generator 29
4.1 Overview . 29

4.1.1 AST, Annotation and Typed-AST . 30
4.1.2 Typed-AST Interpreter . 30
4.1.3 Analysis of Legacy Compiler . 30

4.2 Run-Time . 31

ix

CONTENTS

4.2.1 Memory Allocator . 32
4.2.2 Function Structure . 32
4.2.3 Updates, Pseudo State & Update-Set 34
4.2.4 Kernel . 37
4.2.5 Types, Operators & Built-ins . 38
4.2.6 Shareds . 43
4.2.7 Providers . 44
4.2.8 Printing, Debugging & Tracing . 46
4.2.9 Miscellaneous . 47

4.3 Code Generator . 48
4.3.1 Generation Phases . 49
4.3.2 Generation Example . 54

5 CASM Optimization Framework 55
5.1 Overview . 55
5.2 Pass Manager, Registry & Pipeline . 56

5.2.1 Pass Information & Interface . 57
5.2.2 Pass Statistics . 57

5.3 CASM Intermediate Representation . 58
5.3.1 Instructions . 59
5.3.2 Statements . 60
5.3.3 Scopes . 60

5.4 Passes . 60
5.4.1 Framework Internal Passes . 61
5.4.2 Printer Passes . 61
5.4.3 Analysis Passes . 62
5.4.4 Transformation Passes . 64

6 Evaluation 71
6.1 Compiler . 71

6.1.1 CASM Interpreter vs Legacy Compiler vs Compiler 71
6.1.2 AsmL vs CoreASM vs CASM . 73

6.2 Optimizing Compiler . 75
6.3 MIPS Instruction Set Simulator . 78

7 Conclusion 79
7.1 Future Work . 80

7.1.1 Run-Time & Code Generation . 80
7.1.2 Optimizations . 80

A Appendix 83
A.1 List of Acronyms . 83
A.2 List of Listings . 84
A.3 List of Figures . 85

x

A.4 List of Tables . 86

Bibliography 87

CASM Run-Time API 93

Index 95

xi

CHAPTER 1
Introduction

”The Abstract State Machine (ASM) thesis states that, for every computer system
A, there is an ASM B such that B is behaviorally equivalent to A and in particular
step-for-step simulates A” [34]

An Abstract State Machine (ASM) is used to formalize the semantics of programming languages
[37], to describe and simulate micro-processors [63] or to construct cycle-accurate Instruction
Set Simulator (ISS) applications [48]. Latter is the main motivation and focus of this thesis
where an ISS is verified against its specification with use of an ASM language implementation.
This verification method is known as compiler back-end verification [45]. The problem is that
everything has to be verified for safety-critical applications – the source code and the hardware.
But the used compiler which translates the source code to machine code can introduce incorrect
translations. A common solution to this problem is translation validation [45] where the source
code and the produced machine code is checked for semantically equivalence.

There are a lot of di↵erent approaches, implementations and extensions of ASMs. The ASM
thesis itself was defined by Gurevich in the Lipari Guide [32]. Gurevich’s main idea was to
improve and generalize the Turing’s thesis, but later on he developed and proved the ASM thesis
for sequential algorithms [10]. Nowadays, the ASM method is ”a practical and scientifically
well-founded systems engineering method” which closes the gap between soft- and hardware
validation and verification techniques.

The Corinthian Abstract State Machine (CASM)1 language is a concrete implementation of
an ASM. It consists of a statically strong type system and supports mixing of sequential and par-
allel execution semantics which suits the needs for developing and modeling of an Instruction
Set Architecture (ISA) for an ISS very well. CASM consists of an interpreter which supports
numeric and symbolic execution of CASM programs. The interpreter is used mainly to eval-
uate small applications of system units of a larger project. Furthermore, CASM consists of

1the definition of Corinthian is given at page i

1

CHAPTER 1. INTRODUCTION

an optimizing compiler which supports code generation to C and numeric execution of CASM
programs. The compiler is used especially for large programs with rather long execution times.

1.1 Terminology
This thesis contains besides the CASM language definition the complete description of the
CASM optimizing compiler. To avoid misinterpretation of commonly used expressions and
terms, their definition is given as followed:

domain A domain is a set of values and can be composed of arbitrary sub-domains. A compo-
sition of arbitrary sub-domains is also known as relation.

type A type is a specific value domain, e.g. an integer type includes all negative and positive
integer values.

function A function f maps a domain D to a co-domain C. The domain is defined by a relation,
which includes none, one or multiple types.

f : D! C

state A state is a consistent view of a function’s co-domain.

global state The global state represents the co-domain of all functions.

location A location l is a pair l = (f , x), where f is a function name and x is a tuple of elements
(function arguments) and the length of the tuple equals the dimension of the function f .
[32]

update An update u is a pair u = (l, v), where l is a location and v is a concrete value of a
specific type. [32]

update-set An update-set is a container which handles arbitrary updates.

rule A rule describes state transitions by producing updates to function locations.

composition A composition enables di↵erent execution semantics – sequential and parallel.

side e↵ect free Something is side e↵ect free if no update is produced whatsoever.

conflict update A conflict update occurs if two or more updates contain the same location. This
introduces an inconsistent view of the global state. In CASM an inconsistent view results
in an error.

sub-machine state A sub-machine state is introduced if sequential composition is used. Each
sequential operation result in a sub-machine state which is merged with the next sequential
operation. [11]

step An ASM step writes all gathered updates from the update-set to the global state.

2

1.2 Motivation
Current implementations of ASM languages mentioned in Section 2.1 do not perform very well.
Especially for large programs the execution times are too high and unfeasible. The mixing of
parallel and sequential execution semantics in ASM languages introduces sub-machine states
and partial updates which are not handled very well by available ASM tools.

1.3 Problem Statement
In the course of this work a new optimized run-time and code generator is implemented and
compared to the prototype implementation [48] (aka legacy compiler), the interpreter and other
available ASM tools. The syntax of the CASM language shall be completely supported. Fur-
thermore, an optimizing compiler shall enable multiple passes to perform various analyses and
transformations. The results shall increase the execution time by one order of magnitude.

1.4 Methodological Approach
First of all, the current prototype implementation must be analyzed to detect weak spots of per-
formance. After that a new design for the code generator and run-time can be made. The design
should handle functions with n-dimensional relations, an optimized handling of updates and an
enhanced implementation for integer types with sub-ranges. The next step is to implement a
compiler framework which enables optimizations for di↵erent passes.

1.5 Structure of this Thesis
This thesis is structured as follows: Chapter 2 gives an overview of the state-of-the-art regarding
ASM tools, optimizations and compiler frameworks. Chapter 3 gives a detailed introduction into
the CASM language and describes all syntax elements with their semantics.

Chapter 4 gives an overview of the new design and a detailed description of the implemen-
tation of the CASM run-time and code generator. It includes the analysis of the prototype im-
plementation from [48] and then a full description of all used data-structures, components and
Application Programming Interface (API) C functions and macro signatures of the run-time.
Additionally the complete generation process of the code generator is described.

Chapter 5 first gives an overview of the CASM compiler optimization framework with a
novel CASM Intermediate Representation (IR) and then the implementation of several passes
are outlined.

Chapter 6 presents an empirical evaluation of the new CASM compiler. The focus is set on
the execution time speedup compared to the prototype implementation. Furthermore, the new
optimization framework with its passes is evaluated for a specific application in detail.

Chapter 7 gives a conclusion of the work and outlines some future work topics.

3

CHAPTER 2
Related Work

Over the past 20 years since the ASM theory was defined, several ASM language specifications
and software tools have been designed and developed [9]. First this chapter gives a chronological
overview of several ASM languages, interpreters and compilers. Second some related work
regarding optimizations, analyses and transformations are described. Thereafter some compiler
frameworks are outlined as well.

2.1 ASM Languages, Interpreters & Compilers
In 1993 Gurevich formulated the ASM thesis1 in the Lipari Guide [32]. Together with a team
at Microsoft Research he developed the major implementation of an ASM specification called
AsmL [52]. The specification of the AsmL language was designed to fulfill several properties
which are simple, precise, executable, testable, inter-operable, integrated, scalable and analyz-
able [33]. According to [33] these properties were the main reasons for the design and creation
of AsmL, because their was no other language at the time which satisfied all of these features.
The implementation of AsmL is directly integrated into the Microsoft .NET run-time. Therefore
AsmL can use all the .NET objective and structuring language features like ”enumerations, del-
egates, methods, events, properties and exceptions” [33]. The language is heavily influenced by
imperative ones like C# (C Sharp) [35], Java [40], Haskell [36], Standard Meta-Language (SML)
[30] and Vienna Development Method (VDM) [55]. The main core of the language is called
AsmL-S where the S stands for simple which is a subset of the AsmL specification to provide
only basis functionality. The only supported data-type in AsmL-S are maps. The main language
properties for an ASM specification are the finite choice and parallelism which is stated in [32],
but AsmL has also some extensions. It includes sequential composition, sub-machine states and
partial updates. Gurevich and Tillmann explored that partial updates [34] have a huge impact
on the performance of an ASM implementation which were produced during the execution of
an ASM step. They have shown how it is possible to implement ASM data-structures e�ciently

1prior known as evolving algebra

5

CHAPTER 2. RELATED WORK

and also used this technique in the AsmL compiler. The resulting compiler and the software
built on top are currently the most advanced available ASM tools.

In 1998 Castillo presented the ASM Workbench [19]. It is an open and extensible tool en-
vironment for ASM models. The kernel of this tool is implemented in SML [30] and consists
of an interpreter, debugger, type-checker and a graphical user interface. The ASM models are
described in the Abstract State Machine-based Specification Language (ASM-SL). Castillo in-
troduced this language which was mainly influenced by SML but he added a ”type-system to
structure the data-model” [19]. The general focus of this ASM implementation is the extensi-
bility and modularity.

Schmid [60] used ASM-SL from Castillo as input specification and developed a source-to-
source compiler which translates the ASM language to C++ [64] in 1999. The overall motivation
was to generate source code for a big railway simulation tool which was written and debugged in
the ASM Workbench, but the execution speed of the ASM Workbench interpreter was too slow.
Schmid translates with its compiler functions directly to C++ Standard Template Library (STL)
[13] container classes. Besides this translation, Schmid introduces a free-type data-type which
is a universal data-type to all present types from ASM-SL. Furthermore, Schmid uses a double
bu↵ering technique to redirect location updates and lookups of ASM functions. This approach
can only deal with parallel execution semantics and does not include sub-machine steps which
is a major drawback for this compiler implementation.

In 1999 Schmid also introduced the ASM-based interpreter AsmGofer [67] [59]. The in-
terpreter is an extension to the programming language Gofer [39] which is a subset language
of Haskell [36]. Schmid adopted the run-time of Gofer to support updatable functions, but no
further changes where made. AsmGofer uses the same type-system which is given by the Gofer
language. According to the author, the interpreter executes scripts with ”signatures, rules, func-
tions and data structures” [67]. It is important to mention that AsmGofer implements almost
all features of the Lipari Guide [32]. Especially the multi-agent concept to execute or fire mul-
tiple rules in parallel. Furthermore, AsmGofer also includes TkGofer [66] to support and build
graphical user interfaces. But the major drawback of this interpreter implementation is that it
is heavily integrated into the Gofer environment and that it is only an interpreter. The resulting
interpreting speed of an AsmGofer script is impractical in a ”performance critical application”
[59]. Schmid used AsmGofer also for the ASM-SL to C++ compiler for validation purposes
[60].

A source-to-source compiler named eXtensible Abstract State Machine (XASM) was intro-
duced by Anlau↵ in 2000 [2]. The di↵erence to Schmid’s compiler [60] is that Anlau↵ translates
its own ASM language XASM to C [41]. Furthermore, this language is the first one which has
a component-based design pattern to allow programmers to reuse and structure ASM compo-
nents. To achieve more flexibility in XASM it is possible to declare a function as external and
the implementation of this function can be in plain C. It is also possible to embed a XASM
model in a C project. Anlau↵ extended the normal ASM specification by adding language con-
structs like constructor terms, regular expressions and the “once”-rule [2]. He provided a very
rich-featured graphical debugging and animation interface to e.g. perform stepwise execution or
visualize the parse tree etc. Unfortunately, there is no ongoing development of this project and

6

the tools are not available any more.
In 2005 the CoreASM open source project started, which was another ASM language with

full tool support [15]. Farahbod stated in [24] that this language was designed to be as ”close
as possible to the mathematical definition of pure ASMs”. Further his motivation derived from
the fact that all current ASM languages are too detailed and CoreASM represents the so called
Ground Model which is perfectly fitting the problem space of an abstract software model [24].
An important aspect of the design is the extensibility of the language in form of plug-ins. For
example via a plug-in Signals it is possible to send and receive data between two running ASM
agents. Other plug-ins are Math, Graph, Observer, JASMine and Barun [15]. All syntactic sugar
is implemented in CoreASM through plug-ins as well. To cover the requirement to have a real
abstract model, the language is untyped. The execution of a CoreASM model is done via the
CoreASM interpreter. All tools are freely available on the project website [15].

Another general approach to ASM systems is the ASM mETAmodelling framework (ASMETA)
project [57]. It is a meta-model based specification designed by Gragantini [27]. He de-
scribes ASMETA as an instance of the underlying Object Management Group (OMG) meta-
model framework which uses the XML Metadata Interchange (XMI) format and parts of the
Model Driven Architecture (MDA) framework to create a unifying abstract mathematical model.
ASMETA has its own compiler called AsmetaL with a graphical environment, an interpreter
(simulator) AsmetaS and an integrator to other ASM languages e.g. CoreASM. AsmetaL is
also the name for the ASMETA language. The language is based on the principle of map-
ping Meta-Object Facility (MOF) to Extended Backus-Naur Form (EBNF) grammar. Similar to
other languages, the syntax is divided into ”a header, a body, a main rule and an initialization”
specification [27]. ASMETA is relying on a static type-system. Due to the generic concept of
AsmetaL, the composition of ASM components is supported as well. Drawbacks of the language
are that constructs like choose or forall are not implemented. Benefits are advanced logging of
ASM transactions, random simulation, multiple extension features via Java interfaces and very
feature-rich Eclipse [21] tools.

In 2007 Ouimet introduced the Timed Abstract State Machine (TASM) [56]. This approach
extends the normal ASM theory to have functional and non-functional constraints in sequential
and parallel execution semantics by specifying an execution time property for a rule evaluation.
Therefore, modeling of real-time system behavior is possible with TASM. Language features
are hierarchical composition like in [2] and the mixing of sequential and parallel compositions.
TASM supports for multiple ASM systems synchronization channels in the Calculus of Commu-
nication Systems (CCS) style, to synchronize two machines through a receiver and sender chan-
nel [56]. Furthermore, the language has integrated a resource concept which allows specifying
and modeling of non-functional resource consumptions e.g. power consumption and memory
consumption.

Since 2012, Lezuo [48] has developed the new ASM language CASM in the course of the
Correct Compilers for Correct Application Specific Processors (C3Pro) project [14]. CASM
was mainly derived from the CoreASM language, because first evaluations were made in this
specification to verify compilers and instruction set simulators [47]. The first version of the
CASM interpreter and compiler are written in Python [65]. The interpreter supports numeric and

7

CHAPTER 2. RELATED WORK

symbolic execution whereas the compiler is translating the ASM model directly into a numeric
execution-only C++ program. For the translation to C++, Lezuo uses a simple direct translation
and ASM objects like functions are represented via STL container classes. Limitations of the
first compiler are the restriction of functions with only 0-, 1- or 2-ary domains.

In 2013 Inführ presented a new interpreter for the CASM language [38]. This interpreter
is written in C++ and re-implements the Python-based CASM interpreter of Lezuo [48]. The
lexing, parsing, numeric and symbolic interpreting of CASM programs is covered by this im-
plementation. This interpreter is the origin of this thesis. All adoptions of the language, the new
compiler and run-time where combined with this tool to have an all-in-one CASM interpreter
and compiler.

2.2 Other Languages, Compilers & Optimizations

Currently there are no explicit mentioned ASM analyses and transformations to achieve more
performance of the resulting program. The transformation approaches of this thesis are mainly
influenced by redundant memory access elimination, data-structure modifications and reducing
run-time costs. Analysis algorithms are derived from classic sequential Data-Flow Analysis
(DFA) procedures [20].

The major focus of optimizing CASM is set to reduce run-time costs similar to load/store
elimination transformation algorithms presented by Barik [7] or Lo [51]. Another idea similar
to load/store elimination is copy avoidance presented by Debray [18]. All these transformations
are minimizing the run-time costs.

Besides the classical DFA [42] through dependency graphs, modern compilers use the Single
Static Assignment (SSA) graph [53] to represent a program. Glesner presented in 2004 a SSA
representation for formal ASM specifications [31].

In 2004, Edwards presented the Shim language, which is a mix of ”imperative C-like seman-
tics for software and RTL-like semantics for hardware” to describe soft-/hard-ware components
in a unified language [22]. For this language a compiler exists, which can either emit C or
Very High Speed Integrated Circuit Hardware Description Language (VHDL) source code. An
example I2C bus controller is demonstrated by the author.

The CASM compiler and its optimizations are mainly influenced by the following compiler
frameworks: A prime example for a compiler framework is the Low Level Virtual Machine
(LLVM). Lattner introduced it in 2004 and outlined a very flexible way to organize analyses
and transformations into a unified pass structure [43]. Furthermore, the LLVM IR enables a
decoupling of source and target languages. A lot of the present passes from LLVM inspired the
pass structure of the CASM compiler [50]. Additionally the IR of LLVM inspired the CASM IR
as well.

Another well-known compiler is the GNU Compiler Collection (GCC) [62] [29]. It was
the first open-source cross compiler toolchain. Originally it was designed for the GNU’s Not
Unix (GNU) Operating System (OS) but nowadays it is the de facto open-source standard com-
piler on a Unix/Linux OS. It supports over 20 source languages and over 70 target computer
architectures. Since 2003 the compiler has introduced a new mid-end IR with SSA support

8

which is called GENERIC and the sub-set GIMPLE [54].
Wilson presented in [68] the SUIF compiler system. It is a flexible, extensible and according

to the author easy to use compiler framework. The design of SUIF is based on a so called
kernel which is never changed and the passes built on top are constantly replaced through more
powerful ones. There exists a lot of libraries and packages which can be integrated into SUIF
e.g. a Control Flow Graph (CFG) or bit-vector package [61]. The SUIF compiler has its own
2-layer IR. The SUIF IR is used to represent a program in form of statements and expressions.
The second layer is the Machine-SUIF IR. The Machine-SUIF IR enables ”to develop machine-
specific optimizations for existing or future machine models” [61].

Besides all the existing frameworks, the ROSE [58] source-to-source and/or binary-to-binary
compiler framework uses the parsed Abstract Syntax Tree (AST) as internal IR. Internal com-
piler behavior is optimized for AST transformations and traversals. The analysis part of ROSE
is using several concepts at once. It is possible to create CFG and even include Satisfiability
Modulo Theories (SMT) solver, symbolic execution ”and abstract interpretation” [58]. In the
transform part ROSE o↵ers AST modification functions which are not only modifying the AST
itself, they even keep the symbol tables in a consistent state. One focus of ROSE is program
visualization, another focus is support of the language OpenMP [16].

The CETUS compiler infrastructure [17] is a more specialized framework for analyses and
transformations of parallel programs. The target language is C. CETUS is written in Java and
the IR is constructed through a Java class hierarchy. Due to the parallel focus, CETUS has loop
and array analyses and transformations.

9

CHAPTER 3
CASM Language

Originally CASM was influenced by the CoreASM language [48]. Nowadays, the language has
diverged and CASM evolved a lot of new features. This chapter describes in detail the syntax
and semantics of the CASM language.

3.1 Overview

Before the details of the syntax and semantics of CASM are presented, some examples are
outlined to get familiar with the CASM language and its behavior. The first example is the
paragon of every language to outline the basics, the hello world example:

1 CASM HelloWorld // program/module name
2
3 init example // set top-level program rule to ’example’
4 // equals an update: program(self) := @example
5
6 rule example = // definition & declartion of rule ’exmaple’
7 {
8 print "Hello, World!" // simple print statement
9

10 program(self) := undef // set top-level program rule to ’undef’
11 } // equals a termination of the program

Listing 3.1: CASM Hello World Example

Every CASM program starts with the module header specification in line 1 which declares
the module name of the current program. This module name will be used to extend CASM in
a later implementation with a module-based/component-based hierarchy design. In line 3 the
top-level rule of the execution agent, is set by the init specification. When the program starts,
the init-rule will be called as soon as the CASM kernel has been loaded.

In line 6 the rule example is declared and defined, which is the only rule in this small example.
The rule defines a parallel block statement from line 7 to 11 with a print and an update statement.
The print statement in line 8 outputs the hello world message to the standard output stream. Line

11

CHAPTER 3. CASM LANGUAGE

10 contains an update of the location program at self with the value undef. The function program
is a special CASM function to control the execution ASM agent’s top-level rule which is called
after an ASM calculation step.

Currently CASM supports a single-agent ASM executable model and that is the reason why
the argument of the function program uses the self -reference CASM-keyword. So this program
is calling the rule example at the beginning and prints out the hello world string and after the
first ASM step the program terminates. This happens because the top-level rule equals undef.
The following listing shows the output of the hello world program:

1 Hello, World!
2 1 step later...

Listing 3.2: Output of the Hello World Example

In the above output besides the hello world string also the amount of the calculated ASM
steps is printed out. To get an even better impression of the capabilities of CASM, the next
example is more complex:

1 CASM Swap init foo
2
3 function x : -> Int initially {1}
4 function y : -> Int initially {2}
5
6 rule printf = print "x = " + x + ", y = " + y
7
8 rule foo =
9 {|

10 call printf
11
12 {
13 x := y
14 y := x
15 }
16
17 call printf
18
19 let tmp = x in {|
20 x := y
21 y := tmp
22 |}
23
24 call printf
25
26 program(self) := undef
27 |}

Listing 3.3: CASM Swap Example

This swap example introduces several other CASM concepts. First of all in line 3 and 4
two functions are defined with an initial value of x := 1 and y := 2. Functions in an ASM
language are not limited in their parameter and value domain, because of the mathematical
function model. In theory e.g. the function x can have a value in the range [�1,1]. To print
out the current sub-machine state of these two functions, a rule with the name printf is defined
in line 6. The init-rule is set to the rule foo which is defined in line 8.

The rule foo starts by declaring a sequential block, so every execution step inside, is processed
sequentially. Furthermore, a printf rule is called three times to output the current sub-machine
state of the two functions. Between the first two calls a nested parallel block is declared. This

12

block performs a swap algorithm in parallel execution semantics. Because the two updates
are surrounded by a parallel block, CASM fetches the actual state value of the two functions
and produces an update-set after line 13 with {x = 2}. After line 14 the update-set becomes
{x = 2, y = 1}. In line 15 the parallel block ends and so the update-set is merged into the parent
update-set from the sequential block. To show that the swap has happened the printf rule is
called to output the sub-machine state of the functions x and y.

To get the origin state for the functions x and y, another swap algorithm is performed in line
19. This time the swap is performed in a sequential execution semantics. A binding is needed
to store the intermediate value of one function. CASM provides a let statement which binds
an expression to an identifier. The bound expression is read-only. In the swap example the let
tmp = x is defined and creates a nested sequential block to perform the swap. It results into the
update-set at line 21 with {x = 1, y = 2}. The let statement ends in line 22 and the update-set
is merged with the upper update-set which results in {x = 2, x = 1, y = 1, y = 2}. The console
output is shown in the following listing:

1 x = 1, y = 2
2 x = 2, y = 1
3 x = 1, y = 2
4 1 step later...

Listing 3.4: Output of the Swap Example

3.2 Syntax & Semantics
The following subsections outline in detail the CASM language syntax in proper EBNF [28].
First some EBNF production rules are described which are used all over the CASM language
definition.
identifier ::= (* C variable naming convention *) ;
identifier -list ::= identifier { "," identifier } ;
expression ::= (* see Section ’Expressions’ *) ;
expression -list ::= expression { "," expression } ;
type ::= (* see Section ’Type System’ *) ;
parameter ::= identifier [":" type] ;
parameter -list ::= parameter { "," parameter } ;

Like in other modern languages an identifier is an alpha-numeric string. In general there is
no constraint on the identifier label, but due to the fact that CASM is compiled to C, the label
should respect the C naming convention, that a variable never starts with one or two underscores,
because these are reserved for language implementers and compiler engineers. Additionally the
use of two underscores at the end of a variable name has also some limitations, because the
compiler uses them to represent e.g. temporal calculations, etc. (see Chapter 4).

The CASM syntax is divided into a literal, type system, specification, statement and expres-
sion part.

13

CHAPTER 3. CASM LANGUAGE

3.2.1 Literals
literal ::= "undef" | "self" | "true" | "false" | number | string | range | ruleref | list ;
number ::= (* C signed integer value in decimal or hexadecimal notation *) ;
string ::= (* C character array aka string surrounded by "" *) ;
range ::= "[" number ".." number "]"

| "[" identifier ".." identifier "]" ;
ruleref ::= "@" identifier ;
list ::= "[" [expression -list] "]" ;

Literals represent a concrete value of a specific data-type. CASM consists of primitive and non-
primitive types which are described in the following Section 3.2.2. Currently CASM supports 8
di↵erent constant literals. They are defined as follows:
Undefined (undef) The undef literal is the universal value which every data-type includes in its

value domain. Functions, lets, etc. can have any time the ‘value’ undef.

Agent Self Reference (self) A special literal in CASM is the self keyword. It returns the
reference to the current executing ASM agent. Currently CASM supports only one ASM
agent. This implies that the self reference is always the same agent. By supporting this
self reference mechanism, the extension of CASM to a multi-agent ASM system in the
future is simplified. Furthermore, the self reference is mainly used to retrieve the location
of the program function which corresponds to the ASM agent top-level rule. The program
function is predefined by CASM (see Section 3.2.3).

Boolean Values (true, false) Basic Boolean values are expressed in CASM through the true
and false keyword.

Number A valid number in CASM corresponds to a valid number in C e.g. 123, -456, 0x789ace,
etc. Either decimal or hexadecimal notation can be used.

String The CASM string literal corresponds to the C, C++ or Java string literal e.g. ”text”,
”this is a string in CASM”, etc.

Range To represent a range of integer numbers CASM provides the static or dynamic range
syntax. It is possible to determine the range during run-time by loading the value of
the given variable name through an identifier label. Ranges are mainly used in the later
defined forall statement (see section 3.2.4).

Rule Reference The rule reference (short ruleref) is a pointer to a specified rule in the CASM
program. It is created by using the ‘at’ (@) character and a rule identifier name. These
references are mainly used e.g for the later defined indirect call of rules (see Section
3.2.4).

List A main feature of CASM is the support of tuple- and list-based data-types. The list literal
is used to initialize such structures. Empty square brackets ([]) result either in an empty
tuple- or list-based data-type depending on the annotation (see Section 4.1.1).

14

3.2.2 Type System
type ::= identifier

| identifier "(" type { "," type } ")"
| identifier "(" number ".." number ")" ;

The type system of the CASM language is straight forward. The identification of the types is
done after the parsing. This enables a flexible compiler structure and allows extending the type
system with new types without changing the syntax of the language. The grammar above defines
three possible patterns for a type. The first and last pattern is the syntax for primitive types and
the second one is for the non-primitive data-types.

It is important to mention that all CASM types can either have a value of their specific value
domain or they can be undefined. Furthermore, the conversion between di↵erent data-types is
done in CASM explicitly through the later introduced built-in intrinsics (see Section 3.2.5).

Primitive Types

The CASM language contains 6 di↵erent primitive data-types, which are:

Boolean (Boolean) The Boolean type is the simplest type in most programming languages and
the value domain B is defined as:

B = { undef, true, false }

Enumeration (enum) Enumerations can be defined through a unique name N and with a distinct
identifier set M = {M0,M1, . . . ,Mn�1} of length n which implies a direct ordered relation
r : 0 7! M0, 1 7! M1, . . . , n � 1 7! Mn�1 (see Section 3.2.3). The resulting value domain
EN for the specific enumeration with name N is given by:

EN = { undef } [
8>><
>>:

n�1[

i=0

r(i)

9>>=
>>;

Integer (Int) The integer value domain I of the data-type Int is statically defined through:

I = { undef } [Z , Z . . . set of integers

Ranged Integer (Int()) For a ranged integer type Int(a..b) where a and b are numerical liter-
als, the resulting value domain I[a,b] is defined as:

I[a,b] = { undef } [{ a x b | x 2 Z } , Z . . . set of integers

String (String) The value domain S of the type String is either undef or all possible strings.
The set Strings forms an infinite set. S is defined as:

S = { undef } [Strings

Rule Reference (RuleRef) Every CASM program has a static known amount of rules. RuleRef-
erences is the set of all possible ruleref literals of the existing rules in the program. So the
value domain R of the data-type RuleRef corresponds to:

R = { undef } [RuleReferences

15

CHAPTER 3. CASM LANGUAGE

Non-Primitive Types

The non-primitive data-types in CASM are similar to pointer/reference/object types. They have
a specific behavior and to modify this behavior, CASM provides data-type specific intrinsics.

Tuple (Tuple) In CASM it is possible to declare Tuple-based data-types of arbitrary sub-types.
For example the type Tuple(Int,String,Int,Boolean) results in a quadruple data-type of
two integers, one Boolean and one String sub-type. A Tuple in CASM can have the value
undef. The value domain TH where H is the value domain of all sub-types of the Tuple is
defined as:

TH = { undef } [H

List (List) A List-based data-type in CASM can be declared with a generic sub-type e.g.
List(Int) results in an integer-based list. The value domain LH of the List data-type
can either be undef or the list itself. H is the set of all possible list elements.

LH = { undef } [H

Internal Types

In CASM there are two types not visible for the programmer, because these types are only used
compiler internally - the Undef and Self data-type.

Undefined (Undef) The compiler uses the Undef data-type for unclear type relations e.g. the
undef literal is by default of type Undef if the annotation can not resolve the type correctly.
Therefore the value domain U of Undef consists only of the value undef.

U = { undef }

Agent Reference (Self) Currently CASM supports only the single agent execution of an ASM
model and to represent this single agent the Self data-type is used. This special data-type
consists only of the self reference literal and its value domain A (for agent) is defined as:

A = { self }

3.2.3 Specifications
CASM ::= header body { body } ;
body ::= init | enum | derived | function | provider | rule ;

A CASM model is structured into a module header and a body specification section. The body
specifications can have an arbitrary order and thus it is possible e.g. to split a CASM program
into multiple files. The CASM interpreter/compiler currently supports only a single compilation
file, but the split specification parts can be concatenated to one compilation file. Therefore a
simple code reuse and structuring can be applied to a CASM program.

16

Module Header Specification
header ::= "CASM" identifier ;

The module header specification1 is used to group all CASM objects e.g. functions to one mod-
ule. Currently the CASM header is not directly used, because the component-based approach
is not implemented yet. But the module header is indispensable so that all current CASM pro-
grams can be also used in the future.

Init-Rule Specification
init ::= "init" identifier ;

The init-rule specification1 defines the starting top-level rule of the ASM agent. If this speci-
fication is not defined, the CASM engine is not able to execute the model and will return an error.

Enumeration Specification
enum ::= "enum" identifier "=" "{" identifier -list "}" ;

Through the enum specification a new named enumeration type can be defined. The identifier of
the enum has to be unique just like the defined enumerated values e.g.:

1 enum Channel = { Alice, Bob, Charlie, Dan, Eve }
2
3 enum Weekday = { Monday, Thuesday, Wednesday , Thursday, Friday, Saturday, Sunday }

Listing 3.5: Enumeration Examples

Derived Specification
derived ::= "derived" identifier ["(" [parameter -list] ")"] [":" type] "=" expression ;

The derived specification can be used to define reusable side e↵ect free expressions. The derived
name has to be unique and it can be defined with typed2 or not typed parameters and/or return
type. If no return type and/or parameter types are used, the CASM compiler front-end annotates
the type from the defined expression otherwise the specified type will be used e.g.:

1 derived constant_value = 2014
2
3 derived isNotEqual(a, b) = (a != b)
4
5 derived calculate(a : Int, b : Int) : Int = a + b

Listing 3.6: Derived Expression Examples

The derived constant_value gets a return type of integer data-type, because of the constant
integer number. The isNotEqual derived’s return type will be annotated with a Boolean data-
type, because the root expression is a not equal comparison. The parameters are not annotated,
because multiple types can be checked for inequality. In the last example calculate, the return
type and parameters are directly defined.

1 an example usage is shown in Listing 3.1
2 valid CASM types are described in Section 3.2.2

17

CHAPTER 3. CASM LANGUAGE

Function Specification
function ::= "function" [property] identifier ":" relation [initially]
property ::= identifier

| "(" [identifier -list] ")"
relation ::= [type { "*" type }] "->" type
initially ::= "initially" "{" init-list "}" ;
init-list ::= init-list "," [expression]

| expression ;

The function specification in CASM is very expressive. A function f has a distinct name and a
mathematical relation. The relation defines domain D in which the function can be used and a
co-domain (target set) C which holds the corresponding values. Due to the mathematical concept
in ASM languages all specified functions are by default undefined over the complete domain.
The following equation expresses the function specification as:

f : D! C, 8x 2 D | x 7! undef , undef 2 D

In some cases in a CASM model a function should have predefined values at distinct locations
in the domain. For this use case the optional initially syntax is provided by the language. It al-
lows defining the co-domain for a sub-set of the domain of a function with arbitrary expressions.
The co-domain can even depend on another function’s co-domain.

Furthermore, a function in CASM can have optional property behaviors which can be spec-
ified through a list of identifiers. So it is possible to set multiple properties for a function. The
current supported properties are:
controlled Every function is by default controlled in CASM, which means that this function

can be updated any time during the execution.

defined A function is defined means that all elements of the domain are mapped to the default
value C0 of the type domain C: f : D! C, 8x 2 D | x 7! C0
For example if a function has an Int co-domain the default value is 0 which would result
in: f : D! I, 8x 2 D | x 7! 0
With this property it is e.g. possible to initialize a modeled memory block.

static Declaring a function static results in a read-only or not updatable function for the whole
execution of the model. The only way to set specific values for a function is to initialize it
with the initially keyword.

symbolic The symbolic property enables symbolic execution of a specific function only in the
CASM interpreter. The interpreter ignores this property if it executes the program in
numeric mode. Lezuo [45] describes this in more detail.

undead By setting a function to undead, the CASM compiler will not optimize out this function
even if he detects that this function will never be written or read. This is a special property
for the later introduced Dead Function Elimination pass which is described in section
5.4.4.

The following Listing 3.7 shows some examples of function specifications:

18

1 function x : -> Int
2
3 function (controlled) y : Int * Int -> Int
4
5 function (static) z : Int -> Int initially { 0 -> 10, 10 -> 0 }
6
7 function a : -> Int initially { z(0) }
8
9 function (static, defined) b : Int -> Int

Listing 3.7: Function Examples

Function x has no domain which implies that it is a 0-ary function whereas the function y
is a binary function which results in a 2D-domain from (�1,�1) to (1,1). The z function
creates a 1D-domain and initializes some distinct points to a constant value through the initially
keyword. Function a initializes its co-domain with an initial value from function z. Function b
uses the defined keyword and this initializes the co-domain of function b over the whole domain
with the value 0 which corresponds to b : D ! C, 8x 2 D | x 7! 0. All of those example
functions have an Int type co-domain.

One function is always defined by default – the program function. As mentioned earlier
the program function stores the current top-level rule of the single ASM execution agent. It is
always added to the input program before the annotation process starts (see Section 4.1.1). The
following Listing 3.8 shows the internally defined program function described in the CASM
language:

1 function program : Self -> RuleRef initially { @/* init rule */ }

Listing 3.8: Program Function

Rule Specification
rule ::= "rule" identifier ["(" [parameter -list] ")"] [dump] = statement { statement } ;
dump ::= "dumps" "(" identifier -list ")" "->" identifier

[{ "," "(" identifier -list ")" "->" identifier }] ;

Another prime specification in CASM is the rule. The ASM method defines rules as the only
valid structure to modify the global state. Rules act as state transitions which can be fired one
after another. A rule in CASM has a distinct name and at least a single statement.

Through the introduction of rule calling in section 3.2.4, a rule can have optional parameters
to e.g. control the rule behavior. As with derived specifications, rule parameters are annotated
through the compiler if the type was not specified3. A rule in CASM has no return value, because
rules can only create updates to the update-set which will be later applied to the global state.

Rules can have an optional dump specification which allows defining multiple debug output
streams to print out all updates of the listed functions. Listing 3.9 shows an example for rule
specifications with and without a dump specification:

3more information about annotation is provided in Section 4.1.1

19

CHAPTER 3. CASM LANGUAGE

1 rule foo = skip
2
3 rule run(arg : Int) = print arg
4
5 rule loop dumps (cnt) -> trace =
6 {
7 cnt := cnt + 1
8
9 call run(cnt)

10
11 if cnt = 10 then program(self) := undef
12 }

Listing 3.9: Rule Examples

The first rule is the smallest possible rule in CASM with a name and a skip statement. In
the second rule, a parameter arg is defined and the rule performs a print statement to output the
content of this argument. For the last rule a function cnt is assumed which stores a counter value
and this rule loop increases the cnt by creating an update to it. Furthermore, a call to the rule
run is performed. The if statement checks if the current state value of the cnt is equal to 10 and
creates an update to terminate the program if this condition is true.

Provider Plug-in Specification
provider ::= "provider" identifier ;

A provider is the CASM external interface to include user-defined e.g. functions, rules, etc. The
detail of this mechanism is described in Section 4.2.7. It is important that the provider plug-
in is not available in the CASM interpreter. If a CASM program is executed with the CASM
interpreter and a provider is used, the execution will be aborted.

3.2.4 Statements
statement ::= trivial | conditional | compositional ;
trivial ::= skip | diedie | impossible | print | debuginfo | update

| push | pop | forall | iterate | objdump ;
conditional ::= assert | assure | case | if ;
compositional ::= call | let | seqblock | parblock ;

The statements in CASM are grouped in three categories – trivial, conditional and compositional.

Skip Statement
skip ::= "skip" ;

Every language defines at least on syntactic element which performs no operation at all and
CASM uses the skip statement for that. It can be used e.g. to specify a rule which has no
behavior.

20

Diedie, Impossible, Assert and Assure Statement
diedie ::= "diedie" ;
impossible ::= "impossible" ;
assert ::= "assert" expression ;
assure ::= "assure" expression ;

To abort an ongoing execution at a specific point in the program, diedie or impossible can be
used. The di↵erence between diedie and impossible is that latter aborts a symbolic trace in the
interpreter without an error. Only for compiled execution diedie and impossible are equivalent.

The statements assert and assure are used to check if an expression and/or condition holds
in a specific point in the program. If the condition is false, the execution of the program will
be aborted and an appropriate error message will show up. The di↵erence between assert and
assure is that latter creates path conditions along the execution path during symbolic interpreta-
tion. Only for compiled execution assert and assure are equivalent.

Print and Debuginfo Output Statement
print ::= "print" expression { "+" expression } ;
debuginfo ::= "debuginfo" identifier expression { "+" expression } ;

The print statement in CASM enables a standard output to the command line. If an output of
distinct messages should not always be visible it is possible to define a so called debuginfo chan-
nel with the debuginfo statement, which is deactivated by default and can be activated through a
command line parameter of the compiler. Both statements use the plus character as concatena-
tion operator of multiple expressions.

If-Then-Else and Case Statement
if ::= "if" expression "then" statement ["else" statement] ;
case ::= "case" expression "of" case-list { case-list } "endcase" ;
case-list ::= ["default" | identifier | number | string] ":" statement ;

To branch to a specific point in the program, the if statement can be used. According to [32] a
choose statement was defined to evaluate a statement set in a non-deterministic behavior. CASM
uses a case statement similar to other high-level languages to have a deterministic behavior
and add syntactic sugar to the language which provides an alternative to the if statement. The
following Listing 3.10 example below shows an example case statement:

1 function bar : -> Boolean
2
3 rule foo =
4 {
5 case bar of
6 true: print "yes"
7 default: print "?"
8 false: print "no"
9 endcase

10 }

Listing 3.10: Case Example

21

CHAPTER 3. CASM LANGUAGE

Let Statement
let ::= "let" identifier "=" expression "in" statement ;

In CASM there are no local variables or local states. The let binding enables to bind the value of
an expression to an identifier. This identifier acts like a local state for the underlying statement
and is read-only.

Push and Pop Statement
push ::= "push" expression "into" identifier ;
pop ::= "pop" identifier "from" identifier ;

The push and pop statement can be used to modify a list-based data-type in CASM. The push
statement does not only insert a new value to a list, it creates a new update of the list. The pop
statement does not only return the first value of a list, it removes the value from the list and
creates an update of the list. Therefore the list-based parameter in the push and pop statement
has to be an updatable location.

Forall Statement
forall ::= "forall" identifier "in" expression "do" statement ;

The forall statement in CASM allows evaluating the specified statement block in a parallel ex-
ecution semantics. The parallelism of the statement block is controlled either through a given
numerical range or a list of elements. For example it is possible to initialize a function to a spe-
cific value by creating multiple updates to the locations which can be expressed with the forall
statement as:

1 function array : Int -> Int
2
3 rule foo =
4 {
5 forall i in [10 .. 20] do array(i) := i * i
6 }

Listing 3.11: Forall example

In the example of Listing 3.11, a unary function array is updated to its sub-domain from
[10, 20] with the square product of the range element. It is important that the updates are pro-
duced in parallel execution semantics. Due to the fact that in the sequentialization of such code it
may occur that the update array(15) := 15⇤15 is produced before array(11) := 11⇤11 and so on.

Fixpoint Iteration Statement
iterate ::= "iterate" statement ;

The iterate statement can be used in CASM to perform a fixpoint iteration. The iteration aborts
when there are no updates produced any more. The statement block of the iterate has a sequen-
tial execution semantics. Note that if constantly updates were produced, the iterate will never
reach the fixpoint and the execution results in an infinite loop.

22

Rule Invocation Statement
call ::= identifier

| "call" identifier ["(" expression -list ")"]
| "call" "(" expression ")" ["(" expression -list ")"] ;

The call statement is used to invoke another rule inside a rule specification. Three di↵erent call
forms are available. If a rule has no parameter, the identifier name of the rule is interpreted as
the syntax call identifier. These latter forms are known as direct rule calling. An indirect rule
call is possible by passing a value of a rule reference type. It is important to mention that the
CASM call statement semantics has a call-by-value semantics. The parameters of a rule call are
evaluated before the actual call.

Function Update Statement
update ::= identifer ["(" identifier -list ")"] ":=" expression ;

The key statement in CASM is the function update. By assigning an expression to a distinct
location loc := expr a new update is produced and properly inserted into the current update-
set. Nevertheless, producing and inserting of updates is a non-trivial operation which will be
described in detail in Section 4.2.3.

Parallel and Sequential Composition Statement
parblock ::= "par" statement { statement } "endpar"

| "{" statement { statement } "}" ;
seqblock ::= "seqblock" statement { statement } "endseqblock"

| "{|" statement { statement } "|}" ;

In CASM parallel and sequential execution semantics can be mixed by using the nested compo-
sition of parallel and sequential blocks. Each block can contain one or more statements.

Objdump Statement
objdump ::= "objdump" "(" identifier ")" ;

Through the objdump statement, information about a specific identifier can be printed at run-
time. Furthermore, it allows printing specific debug information about the implemented object
e.g. the address or address space location etc. This statement is mainly used for the CASM
compiler development.

3.2.5 Expressions
expression ::= "(" expression ")"

| unaryoperator expression
| expression binaryoperator expression
| literal
| location ;

In CASM an expression is composed of either an expression surrounded by parenthesis, an ex-
pression and a unary operator, two expressions combined with a binary operator, a literal or a
location.

23

CHAPTER 3. CASM LANGUAGE

Operators
unaryoperator ::= "not"
binaryoperator ::= "and" | "or" | "xor" | "+" | "-" | "*" | "%" | "/"

| "=" | "!=" | "<" | "<=" | ">" | ">=" ;

The operations are similar to other high-level languages structured into arithmetic, logical and
Boolean operators. Due to the use of the additional value undef, every operator has an extended
operator semantics. There are also some type restrictions for almost all operators, except for the
equality and inequality operators. Table 3.1 and 3.2 outline the operator semantics of CASM.

not undef Boolean
undef not Boolean

Table 3.1: Unary Logic Operator Semantics

BINOP = {and, or, xor} undef Boolean
undef undef undef

Boolean undef Boolean BINOP Boolean

BINOP = {<, >} undef Number
undef undef undef

Number undef Number BINOP Number

BINOP = {<=, >=} undef Number
undef true undef

Number undef Number BINOP Number

= undef Literal
undef true false

Literal false Literal == Literal

! = undef Literal
undef false true

Literal true Literal ! = Literal

BINOP = {+,�, ⇤,%, /} undef Number
undef undef undef

Number undef Number BINOP Number

Table 3.2: Binary Logic and Arithmetic Operator Semantics

24

Location Expression
location ::= identifer ["(" expression -list ")"] ;

The location syntax has multiple functionality. The obvious use is the function lookup. By
specifying a function name and the optional point in its domain the co-domain or location can
be retrieved e.g. the expression program(self) corresponds to a lookup to the function program
at the self position. It is important that a lookup of a function value has to respect the context
in which it was evaluated. By context means either if it was a parallel or a sequential execution
block.

If the identifier does not equal a function name it can either be a let binding name, a CASM
built-in intrinsic or a CASM shared utility operation. In the case of a let identifier the value is
always statically known during run time, because an expression is bound to the identifier before
it is used.

Built-ins

The CASM compiler currently defines the following built-in intrinsics:

die() This built-in allows aborting the program inside an expression.

String hex(Int) Translates an integer decimal number into the corresponding hexadecimal
notation. The return value is a string.

Int pow(Int, Int) The pow intrinsic can be used to calculate the nth power of a given variable
base a and exponent n:

pow(a, n) =
(
undef : a = undef _ n = undef

an : otherwise

Int rand(Int, Int) CASM supports through the rand built-in an integer based random value
generator. The lower and upper bound of the uniform distributed random value is given
by an integer value a and b e.g. rand(21,34) equals the range [21, 34].

Boolean symbolic(<T>) This intrinsic returns the value true if an expression of a generic type
T is symbolic, otherwise the value false is returned. This built-in is only implemented in
the interpreter.

Int Boolean2Int(Boolean) Explicit cast from the value b of type Boolean to an Int i is given
by the translation:

Boolean2Int(b) =

8>>><
>>>:

undef : b = undef
0 : b = false
1 : b = true

25

CHAPTER 3. CASM LANGUAGE

Boolean Int2Boolean(Int) Explicit cast from the value i of type Int to value b of type Boolean.
The translation convention is based on the C programming language which is:

Int2Boolean(i) =

8>>><
>>>:

undef : i = undef
false : i = 0
true : otherwise

Int Enum2Int(<N>) Explicit cast from an enumeration value n of type N to the integer i of type
Int is given by their order of the identifier set M. The translation is defined as:

Enum2Int(n) =
(
undef : n = undef

i : n 2 M, n 7! i | 0 i |M| � 1

<N> Int2Enum(Int) Explicit cast of an integer number i of type Int to an enumeration identifier
Mn type N with the identifier set M is translated according to:

Int2Enum(i) =
(

Mi : 0 i |M| � 1
undef : otherwise

List(<T>) app(List(<T>), <T>) To append an element e of a generic type T to a list l of type
List(T), CASM provides the built-in app. A new list with the appended element is re-
turned after the evaluation of this intrinsic.

app(l, e) =
(
undef : l = undef _ e = undef
l [e : otherwise

List(<T>) cons(<T>, List(<T>)) The cons built-in has the same behavior as the above app
built-in. The only di↵erence is the arrangement of the built-in parameter signature:

cons(e, l) = app(l, e)

List<T> tail(List(<T>)) The tail built-in removes the first element l0 of generic type T from
a list l of type List(T) and returns the resulting ‘tail’ of the list:

tail(l) =
(
undef : l = undef
l \ {l0} : otherwise

<T> nth(List(<T>), Int) <T> nth(Tuple(<T>), Int) To access a specific element ei of generic
type T at an index i of type Int either in a list l of type List(T) or a tuple l of type Tuple(T),
the nth built-in can be used. The behavior of nth is defined as:

nth(l, i) =
(

ei : ei 2 l, 1 i |l|
undef : otherwise

<T> peek(List(<T>)) peek allows retrieving the first element l0 of a generic type T form a list
l of type List(T). The built-in peek can also be described through the nth built-in:

peek(l) = nth(l, 1) =
(
undef : l = undef

l0 : otherwise

26

Shareds

Another important functionality of CASM are shared expressions (shareds). It is an extensible
structure with a distinct interface to define multi-purpose procedures which are shared between
the interpreter and the compiler. It is important that shareds have no side-e↵ects and produce no
updates whatsoever. Currently the major shareds are named with a prefix BV*. BV stands for bit
vector. These BV operations allow bit-true bit vector manipulations/operations. An example of
a bit vector operation is:

Int BVand(Int, Int, Int) Performs a bitwise and operation on a given bit width. The first
parameter is the width and the last two are the first and the second operand:

BVand(w, op1, op2) =

8>>><
>>>:

die() : w = undef
undef : op1 = undef _ op2 = undef

(op1)2 ^ (op2)2 : otherwise

All available shareds are listed in the dissertation from Lezuo in [45].

27

CHAPTER 4
CASM Run-Time & Code Generator

This chapter describes in detail the new implementation of the CASM compiler. As mentioned
in the related work chapter the new run-time and code generation is integrated into the CASM
interpreter implementation from Inführ [38]. Since this implementation, a lot of improvements
and adoptions were made to design, develop and integrate the new optimized CASM run time
and the new code generation which performs a typed AST to C source-to-source translation.
At the beginning of the design process of this work, the python-based prototype compiler from
[46] was integrated into the interpreter structure to have a first reference implementation and a
baseline for later measurements to evaluate the new design. This prototype implementation will
be referred from now on as the legacy compiler1. The legacy compiler has several drawbacks e.g.
ine�cient translation of ASM functions and the prototypic status made it necessary to re-design
the run-time and the code generation to achieve an optimized execution speed of the generated
CASM program.

4.1 Overview
Before the details of the legacy compiler are outlined, a general summary of the current inter-
preter/compiler is given. Like all compilers, the CASM tool (interpreter and compiler) consists
of a front-end and a back-end. The front-end is composed of a combined lexer and parser struc-
ture which is generated via the open-source tools (f)lex and yacc [44]. The result is an AST
according to the defined syntax from Chapter 3. The AST is processed in the front-end by the
annotation process to a typed AST. In the annotation process all used types are identified and
checked if they are used correctly in the input program. With a correct and complete typed
AST the CASM tool can either interpret or generate code in the back-end for the input CASM
program. The following Figure 4.1 presents the current structure of the CASM tool:

1includes the legacy run-time and legacy code generator implementation

29

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

CASM
Source

Lexer
Parser

AST

Annotation

Typed
AST

Codegenerator

Interpreter

Target
C

Binary

Runtime

Legacy
Codegenerator

Legacy
Target
C++

Legacy
Binary

Figure 4.1: CASM Interpreter and Compiler Structure

4.1.1 AST, Annotation and Typed-AST

The CASM AST is a tree representation of the input program. A CASM AST node consists of
the following properties: a distinct type, a data content field, a left and a right child pointer, a
static and an inferred type, a symbol table entry pointer and a unique counter value. The AST
node type is not hierarchic, because of the use of this generic type field which is defined through
a C enumeration type.

The annotation process derives for every node which is not typed the corresponding type.
This is done by an integrated type merge utility which is described by Inführ in [38]. Further-
more, the annotation assures the correct type usage for function values and arguments and it
also makes sure that the rule parameters and derived parameters are correct. The result of this
annotation is the typed AST which the code generator uses to generate the target C program.

4.1.2 Typed-AST Interpreter

The typed AST interpreter of [38] was constantly adapted by Lezuo [48] to make it compatible to
the current run-time implementation. Especially the shared mechanism which will be described
in Section 4.2.6 is fully integrated into the interpreter. Furthermore, by default the interpreter is
activated and is interpreting a CASM input program. By using the command line option -s the
interpreter performs a symbolic execution of the CASM input program. It should be mentioned,
that there is no other ASM tool which enables symbolic execution of ASM specifications. For
the sake of correctness the numeric interpretation is used as another CASM reference implemen-
tation to analyze the new compiler implementation (see Chapter 6).

4.1.3 Analysis of Legacy Compiler

First of all, the legacy compiler is a proof-of-concept implementation from Lezuo [46]. The run-
time is written in C++ and the generated code of a program is C++ too. Due to the heavy use of
C++ STL container classes a lot of ine�cient behaviors regarding execution time are introduced.
The most time consuming part of the execution is spent on in library routines e.g. to re-balance
AVL trees, or re-size hash maps etc. Additionally to that the update-set is directly translated

30

to a STL set implementation. CASM functions are only supported up to a 2D domain. For
each function domain (0-ary, unary or binary) there is a template implementation. Furthermore,
the update and lookup behavior of a function and the update-set modifications are very tightly
coupled with the function implementation itself.

The provider plug-in which is described in Section 4.2.7 was originally introduced by Lezuo
[46]. The new run-time API for the provider di↵ers from the legacy compiler, so all providers
are ported to the new run-time implementation. Regarding types, the only generated ones are
enumerations. The rest is implemented directly in the run-time or mapped to a corresponding
STL container e.g. List to std::list or Tuple to boost::tuples::tuple. Another drawback of the
C++ run-time and generated code is that the compilation time from C++ to an execution binary
is very high. This is because of the heavy use of the C++ template mechanism.

4.2 Run-Time

The new run-time of CASM does not have a clear separation between generated and non-
generated components, because some functionality is statically implemented and some of it
has to be generated via the code generator. For example special CASM types like Tuple are gen-
erated and not implemented statically at all. Statical parts of the run-time are implemented in
multiple header files. By default every implemented C function in the run-time is marked static
inline. This property is essential, otherwise the overhead of function calls in the translated pro-
gram is bigger than the actual computation. Furthermore, everything that is not implemented as
a C function is defined through C preprocessor macros. The run-time defines several interfaces
for the generated code, external plug-ins, debugging and tracing facilities. Figure 4.2 outlines
the composition of the CASM run-time, its generated components and their dependencies.

Kernel

Function
Structure

Update-Set
Structure

Memory
Allocator Rules

Functions

Update-Set

Init-State

Miscellaneous
Providers
Shareds
Types

Operators
Built-ins

Types
Operators
Built-ins

Figure 4.2: CASM Run-Time Components

All components except for the dashed ones are statically implemented in C and the rest is
generated through the CASM code generator which is described in Section 4.3. The following
subsections describe in detail every listed statically implemented run-time component from the
figure above.

31

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

4.2.1 Memory Allocator

The need for a specific memory allocator in the run-time implementation arises from the dif-
ferent requirements which an optimized run-time should have - fast allocation of updates, fast
deallocation of all updates at once and dynamic memory allocation for List and Tuple types. In
CASM there are two separate regions where memory is allocated. The first one is reserved for
static defined variables which are either located in the data section of the binary or the alloca-
tion is done directly in a local C function scope. The second region is intended for dynamic
memory allocation requests. This is supported in the run-time through a specialized, simple and
fast memory allocation algorithm. Three di↵erent memory allocation behaviors are supported
by this allocation algorithm: allocate-never-release, allocate-release-everything and allocate-
deallocate.

The first behavior allocate-never-release addresses the need to allocate a bunch of data, ker-
nel memory, etc. dynamically at start-up. Due to the fact that this memory can not be released
during run-time, this memory allocation will not be released until to the program is terminated.
In the run-time implementation this memory block is called _casm_mem_global.

Secondly, the allocate-release-everything behavior is used for dynamic memory allocations
which can be deallocated at once at a given time instance. In the CASM run-time this moment
is exactly after the update-set is applied to the global state, because all updates which were
allocated with this behavior are irrelevant after the apply. In the run-time this memory area is
named _casm_mem_stack, because it is constantly increased and then decreased to an amount of 0.
This allocation behavior is very fast, because at start-up a huge memory block is allocated and
during run-time only a pointer has to be increased by the allocation byte amount. To perform
this allocation algorithm only a few Central Processing Unit (CPU) cycles are needed.

The last behavior allocate-deallocate is used for the data-types List and Tuple to hold their
dynamically created data elements and release them if it is necessary. So it can be interpreted as
a heap memory and that is why it is called _casm_mem_heap in the run-time.

4.2.2 Function Structure

To implement the function specification which is defined in Section 3.2.3 di↵erent approaches
were made. The basic problem, to represent an n-ary function relation in a bounded linear
address memory space is well known for functional programming languages. The first approach
was to represent a CASM function with a prefix compressed trie data-structure [6]. But that
was discarded very soon in the development, because the memory and execution time overhead
for n-ary functions with n > 2 was not suitable for an optimized and performance critical run-
time, were every CPU cycle is important. Some data-structures inspired by Bagwell [4] [5]
have improved the general idea, but the lookup of a multi-dimensional location was too slow.
Furthermore, during the development the idea came up to bind a CASM location directly to
a fixed memory address in the Random Access Memory (RAM) to directly apply a value to an
updated location of a function without re-fetching the same memory address. This idea is named
branding in the run-time.

The current implementation is based on a simple array hash-map with linear probing [3]

32

0 1 2
. . .

n

Linear Probing

Branded Hash-Map
Branded Hash Value

Bucket

Location
Address

Function

Location

Figure 4.3: CASM Branded Hash-Map Function Structure

and a geometric hashing [69] algorithm to project the n-ary function arguments to a unique
integer hash value key. The geometric hashing scheme is generated for every CASM function
separately through the code generator (see Section 4.3.1). To achieve the branding behavior of
a function, an inverse strategy is implemented to the classic hash-map data-structures, where
a bucket of the hash-map is marked as used (branded), when the bucket is looked up and not
when it is set. This behavior is based on the fact that during run time a function has always
to be looked up first, even when it is updated, because an update in the CASM run-time has
to lookup the unique memory address location of the updated function (see 4.2.3). Therefore
the data-structure is named branded hash-map. Figure 4.3 outlines the branded hash-map data-
structure. This generalized approach to represent n-ary function relations is used especially for
domains with a large size like Int and String data-types which are commonly used in CASM
programs. But the other types which have a statically known size like Boolean, RuleRef, etc.
can be optimized by translating them directly to C arrays to avoid the hashing overhead and to
achieve more performance (see Section 4.3.1).

To support di↵erent CASM function representations, a C structure named casm_function is
used which is currently only composed of a void pointer field state. This state field stores
the memory address of the statically (data section) or dynamically (CASM global memory
area) allocated function structure which equals in ASM terms the global state of the func-
tion. All functions together form the global state of the CASM input program and are gen-
erated in the code generator through a C array of the casm_function type. The address of
one function is obtained by the macro CASM_LOCATION(NAME) where NAME is the function name.
Furthermore, the run-time also defines the macros CASM_TABLE_READ(LOCATION, KEY, VALUE) and
CASM_TABLE_WRITE(LOCATION, KEY, VALUE) which are wrapper to the underlying branded hash-
map structure to the function location LOCATION that can be fetched through CASM_LOCATION().
The KEY parameter is the geometric hashed function argument value and the parameter VALUE is
either the read or the written CASM value from the branded hash-map function structure.

A function getter and setter interface enables direct access to the global state of a function.
The code generator uses this interface to define the specified functions of the input program.
The getter interface should not be confused with a lookup of a location, because a lookup should
not directly access the global state before the update-set is checked first for partial updates (see
Section 4.2.3). For a function also a printer and objdump interface can be defined (objdump

33

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

statement, see Section 3.2.4). The getter, setter, printer and object dump interface is defined
through the following EBNF syntax:
setter ::= "DEFINE_CASM_FUNCTION_SET" "(" identifier "," param { "," param } ")" "{" "}" ;
getter ::= "DEFINE_CASM_FUNCTION_GET" "(" identifier "," param { "," param } ")" "{" "}" ;
printer ::= "DEFINE_CASM_FUNCTION_PRINT" "(" identifier "," "void" "*" "value" ","

"uint8_t" "def" ")" "{" "}" ;
objdump ::= "DEFINE_CASM_FUNCTION_OBJDUMP" "(" identifier ")" "{" "}" ;
param ::= "ARG" "(" type "," identifier ")" ;

4.2.3 Updates, Pseudo State & Update-Set

Besides the function management the creation and handling of updates are the major and crucial
operations for the run-time.

Updates

A CASM update is represented through a C structure named casm_update that has to be declared
with the macro CASM_UPDATE_TYPE(). Because the update structure has a pointer parameter field
args and this field represents a uint64_t array and the actual size is calculated in the code gen-
erator. It is using it to store a compressed form of the argument values (packed arguments) to
the update structure. The setter function uses it to speed up the access to a function location.
Furthermore, this field also is used in the function printer interface to decode the update argu-
ments (see Section 4.2.2). The other casm_update structure fields are a Generic type value named
value, an Unique Identifier (UID) for the updated function named func and the line number from
the input program where the update was contained for debug and error information purposes.
To perform an update the statement macro CASM_UPDATE() is used which will be described in the
following sub-section.

Pseudo State

An important property of an update is the so called pseudostate counter. It tracks the parallel
and sequential composition nesting depth of a CASM program during run-time and is stored
inside the update-set structure which will be described in the following sub-section. An even
pseudostate counter value equals a parallel execution block, an odd value equals a sequential ex-
ecution block. This property is assured inside the fork and merge statements of the run-time (see
Section 4.2.3). Additionally the fork/merge statements of the run-time are incrementing/decre-
menting the pseudostate counter by every entering/exiting of a parallel to sequential or a sequen-
tial to parallel composition block. Listing 4.1 illustrates the pseudo state in- and decrementing.

1 rule r =
2 { // <-- 0
3 {| // <-- 1
4 |} // <-- 0
5 {| // <-- 1
6 { // <-- 2
7 {| // <-- 3
8 |} // <-- 2
9 } // <-- 1

10 |} // <-- 0
11 }

Listing 4.1: Pseudo State Counter

34

Update-Set

Through an update-set structure all updates are handled in the correct parallel and sequential
execution semantics. The run-time implements a single update-set structure which supports the
following functionality:

function update create new updates and add them to the update-set

forking every entry from the parallel to sequential or from sequential to parallel execution se-
mantics the update-set has to create (fork) a new update-set for the underlying composition
block

merging every exit from the parallel to sequential or from sequential to parallel execution se-
mantics the update-set has to merge the inner update-set with the outer one

function lookup a lookup of a function location has to check the update-set first if a sequential
update has been inserted before

applying writes all created updates after the execution of one step to the global state

The update-set itself is implemented as a C structure (casm_updateset) with an uint64_t field
pseudostate and a linked_hashmap* field set. A linked hash-map [23] is a hybrid data-structure. It
is a combination of a hash-map and a linked list data-structure. Every new inserted value in the
hash-map is linked to a previous value. For an optimized execution behavior a single linked list
data-structure is used pointing where new elements are inserted to the start of the list. The hash-
map implementation maps an uint64_t key to a void* value. The hash function for the hash-map
key is an optimized case for CASM. It is constructed by setting the upper 48 bits to the memory
address location of an updated function and the lower 16 bits to the current pseudo state counter.
This hash-function implies that the pseudo state counter is limited to 216 � 1 nested composition
blocks. If this maximum is reached, the CASM program aborts with an error message. The 48
bits for the location memory address is justified, because modern CPU architectures currently
use a maximum virtual address size of 48 bits. Figure 4.4 on page 36 visualizes the update-set
data-structure.

This casm_updateset structure is defined and allocated in the CASM kernel initialization
phase (see Section 4.2.4) and the address of this update-set is passed to every rule call and
every update-set API function.

The CASM_UPDATE() macro implements the function update functionality (update statement,
see Section 3.2.4). A new update is allocated always in the CASM stack memory area (see
Section 4.2.1). This macro initializes an update with the new value, an UID of the updated
function and debug information. The function location gets packed into the args field of a
casm_update structure. The hash value of the args field is used to access the update-set structure.
There are two cases – parallel and sequential access. If the update-set is accessed in a parallel
execution block and the key already exists, the run-time has detected a conflicting update. If
the update-set is accessed in a sequential execution block, an existing key in the update-set

35

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

. . .

Update-Set
Pseudo
State

(16 bit)

Location
Address
(48 bit)

Key

Function
UID Value

Packed
Arguments

Update

Last

First

Figure 4.4: CASM Linked Hash-Map Update-Set Structure

overwrites the value. The update-set implements directly the sequential merge at update creation.
This speeds up the later mentioned merge operations.

The CASM_UPDATESET_FORK_PAR() and CASM_UPDATESET_FORK_SEQ() fork functions implement the
forking functionality (parallel and sequential composition, see Section 3.2.4) of the update-set.
If the current execution semantics is parallel, the SEQ fork has to be used and vice versa. Both
functions increment the pseudostate counter value of the update-set structure. Additionally they
check via a C assert() if the fork is valid. An invalid fork would be if e.g. the current com-
position is parallel and a nested parallel composition block forked. The same applies for the
sequential case.

The CASM_UPDATESET_MERGE_PAR() and CASM_UPDATESET_MERGE_SEQ()merge functions implement
the merging functionality (parallel and sequential composition, see Section 3.2.4) of the update-
set. Both functions’ decrement the pseudostate counter value from the update-set structure.
Those functions assure valid merges from either SEQ to PAR or PAR to SEQ. A merge modifies the
key of the updates. If the pseudo state from a key is greater or equal the current pseudo state it
gets decremented by one. If an update has a smaller pseudo state the merge is done. After a key
is decremented it gets inserted into the update-set again. If a merge from sequential to parallel
is performed, conflicting updates can occur. Otherwise the keys can be overwritten.

Besides the function update, the function lookup functionality (location expression, see Sec-
tion 3.2.5) of the update-set is the most critical operation regarding execution time. Because the
amount of lookups of function locations is always greater or equal to the amount of updating
function locations. Even if only one update is performed in a CASM program, the run-time
has to lookup the location memory address to perform the update. The CASM_LOOKUP() macro
retrieves the current semantically correct (sub-machine) state of a function location. Semanti-
cally correct (sub-machine) state means that if the lookup is executed in a nested composition
block, the lookup has to check the update-set first if there was a sequential update to the lookup
location. This behavior is implemented by getting the location memory address and the global

36

state first. With the retrieved address the lookup can check the update-set for possible sequential
updates. If an update is found the lookup returns the value. Otherwise the lookup returns the
global state.

The applying functionality of the update-set is done by the C function CASM_UPDATESET_APPLY().
It iterates over all updates in the updateset structure by using the linked list behavior. Every it-
eration writes the update value to the location address. The apply of an update-set is called from
the CASM kernel in the step phase after the top-level rule has returned (see Section 4.2.4).

In the CASM kernel start-up phase it is possible to pass a command line parameter which
enables a step-based output of the update-set before it is applied to the global state. This print-
ing functionality is implemented in the C function CASM_UPDATESET_PRINT(). It iterates over all
updates and calls the generated printer of the corresponding updated function.

The CASM_DUMPING_UPDATES() macro prints the produced updates at the end of a rule for the
used dumps specification (see Section 3.2.3). It simply iterates over all updates and checks if an
update has the same function NAME and if so an internal debuginfomessage is printed (see Section
4.2.8).

The code generator uses the macro CASM_UPDATE_INITIALLY() to directly write into the global
state of a CASM program by generating sequences of this macro calls into the initialization file
(see Section 4.3.1).

4.2.4 Kernel

The kernel of the CASM run-time controls the execution of the translated CASM program.
Therefore the kernel has to perform the following phases: start-up, initialization, step and final-
izing phase.

In the start-up phase of the CASM kernel, some data-values e.g. to track the executed CASM
steps are defined. Additionally the command line passed to the CASM program is checked. The
available commands of the kernel are listed in the following section. After the start-up the
initialization phase takes over. It defines and allocates CASM memory regions, allocates and
initializes the update-set, allocates the global state, initializes the global state from the generated
initially component (see Section 4.3.1) and sets the top-level rule to the specified init rule (see
Section 3.2.3). After that the kernel enters the main execution loop which is the step phase.
This phase checks first if the current execution step counter is smaller than the maximal defined
one. If the maximal value is reached the loop is aborted, otherwise the current top-level rule is
called. After the return of the top-level rule, the resulting update-set is applied to the global state.
The top-level rule is loaded through a lookup of the function program(self) and if the value is
undefined the main loop aborts. If not, the step counter is incremented and the body of the main
loop is repeated. When the loop aborts the kernel enters the finalizing phase. This phase first
prints the amount of performed CASM steps and then it releases all allocated memory blocks
and terminates the CASM program.

To include the kernel in a C program the run-time provides the macro CASM_MAIN(INIT_RULE).
This macro defines the C main() function and it includes all the CASM kernel phases which are
described in the above paragraph. Furthermore, through the parameter INIT_RULE the init rule

37

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

identifier can be specified.

Kernel Command Line Options

-u Prints after every return of the top-level rule the calculated update-set with the current step
counter value to the standard output stream.

-d <arg> Enables the debuginfo channel-based messages. The <arg> parameter can be a comma
separated string with multiple channels of the CASM program. If <arg> equals the string
“all”, all debuginfo channels are activated at once. Per default all channels are deactivated.

-M <arg> This option allows defining an upper bound of executed CASM steps. If <arg> equals
0, the top-level rule will not be executed. Per default this maximal step counter value is
defined as the greatest 64 bit unsigned integer value (UINT64_MAX).

-updateset-size <arg> Through this command line option the compiled CASM program can
use the specified start size <arg> for the update-set initialization. Otherwise a default
value will be used by the kernel.

-q Disables all outputs of the compiled CASM program.

-s Outputs after every CASM step the memory consumption of the three memory areas and a
statistic of the update-set structure. If the CASM program is also generated with a special
command additional access information and timings are printed (see Section 4.2.8).

-v Enables the verbose mode of the run-time. For example it outputs the update-set with an
internal representation after every CASM step.

-V Outputs the source CASM file name, the used command line of the code generator to gen-
erate the CASM program, the time stamp and the used include paths and libraries for
compilation.

4.2.5 Types, Operators & Built-ins

The only assumption in the run-time implementation is a 64 bit host computer architecture to
represent pointers and every numeric value in one generic C void* data field.

Types

Upon the architecture assumption an internal type named Generic is defined which is imple-
mented as a C structure of a void pointer (64 bit) value and an uint8_t unsigned integer (8 bit)
defined field:

1 typedef struct _Generic
2 {
3 void* value;
4 uint8_t defined;
5 } Generic;

Listing 4.2: Generic Type

38

So the Generic type can fulfill all the desired properties from the CASM syntax, that a type
can be either undefined or defined through the defined structure field. By setting the defined field
to 0 (FALSE) the type is undefined. Setting it to 1 (TRUE) equals a defined type. The run-time uses
the upper 7 bits of the defined field to perform internal checks, so the overhead of this memory
consumption is negligible. For the value field, primitive types can be directly casted and stored
into this memory location, only reference-based data-types use this value field as a C pointer
and follow the indirection. The run-time supports via type interface functions direct translations
from Generic to a specific type and vice versa. Every CASM type except the enumeration, the
ranged integer, the List and the Tuple type is statically implemented in the run-time. The other
types are either partial or not implemented at all, because they are generated.

Table 4.1 shows the di↵erent used C types (CT) to represent all other CASM types (T) in the
same way as the defined C structure in the above Listing 4.2 for the Generic type.

Undef

Self Int List(T)

T Generic Boolean Int() String RuleRef enum N Tuple(T)

CT void* uint8_t int64_t char* (*)() enum N_type T*

Table 4.1: C type mapping of CASM value field types

Undefined (Undef) As mentioned in the language chapter the Undef type is only used internally
to represent an unresolvable annotation of an AST node. For example if the undef literal
can not be annotated in a given expression the type Undef is used. The value of this field
is always 0 and is unused during execution.

Agent Reference (Self) Currently the Self type is just a representation of one single ASM
execution agent. The value field is unused and has always the value 0. In a later imple-
mentation this type can evolve to a type e.g. Agent to represent the complete set of all
possible running agents.

Boolean (Boolean) The value field of the Boolean type follows the C Boolean expression con-
vention. A 0 equals false and not 0 equals true.

Integer (Int, Int()) The normal full range integer type Int is currently implemented through a
64 bit signed integer type. As for the ranged integer type Int() there are two implementa-
tions. One uses the same C type as the Int type and another one generates a special ranged
integer type with the only necessary bit-with of either uint8_t, int8_t, uint16_t, int16_t,
uint32_t, int32_t, uint64_t or int64_t. A ranged integer is defined by the code generator
through the use of the macro DEFINE_Int(FROM,TO,MIN,MAX,CTYPE) (see Section 4.3.1).

String (String) Strings in CASM are directly mapped to character pointers. Furthermore, the
content of a String is besides a calculated String at run-time always constant data. The C
compiler translates C strings directly as constants into the text section of the binary.

39

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

Rule Reference (RuleRef) As the type name implies, a RuleRef stores rule references. The exact
type in the run-time is a function pointer to a generated rule of the input program (see
Section 4.3.1).

Enumeration (enum) The enumeration type and their operators and built-ins are implemented
via a generic macro. The code generator uses the macros DEFINE_Enum(NAME, SIZE) and
DECLARE_Enum(NAME, SIZE) to define/declare a specific type and an implementation of the
specified enumeration NAME is integrated into the target C program (see Section 4.3.1).

Tuple (Tuple) For the Tuple type there is no support from the run time at all, because this type
itself, its operators and built-ins are completely generated (see Section 4.3.1).

List (List) The List type in CASM is implemented via a generic macro. The code generator
creates for every list-based data-type a separate instance of the list implementation by
using the DEFINE_List(TYPE). The parameter TYPE is the sub-type of the list data-type e.g.
List(Int) or List(Tuple(Int,String,RuleRef)).

Type Helper Functions

The run-time type helper functions provide a dedicated interface to initialize, modify, cast, al-
locate and print CASM data-type C variables. Especially the code generator uses this interface
to handle all di↵erent CASM types in a unified way. The naming schemes of the interface is
defined as CASM_<OP>_<T>(). <OP> stands for the operation and <T> for the implemented type.
Currently CASM consists of 7 type helper functions which are:

void CASM_undef_<T>(<T>* reg) The undef API function can be used to set a CASM object to
undefined. It sets the defined field of the parameter reg of type <T> to FALSE and the value
field to 0.

void CASM_const_<T>(<T>* reg, <CT> val) To set a specific defined value for a CASM type the
const function can be used. This function is defined for every CASM type with the explicit
C type except for the Undef type. The placeholder <CT> corresponds to the mapping
which is mentioned in Table 4.1 e.g. if T = Int then is <CT> = int64_t. The function
writes the constant value val directly into the value field of the parameter reg. The defined
field is set to TRUE.

void CASM_assign_<T>(<T>* reg, <T>* val) Through the assign function a type-based assign-
ment is implemented. All primitive types perform a simple C structure assignment. For
non-primitive types the assignment is not a trivial operation. Furthermore, a di↵erent im-
plementation of the assignment for e.g. the List type can improve the performance of an
executed CASM program. This function is not provided for the Undef type.

<T>* CASM_alloc_<T>(<T>* reg) The alloc function returns the actual memory address of the
parameter reg address. For primitive types this function just returns the incoming address.
Non-primitive types can use this function to make their data which is located in the CASM
stack memory area persistent by transferring the data to the CASM heap memory area.

40

The function returns as result the new address (see Section 4.2.1). This function is called
in the update implementation for a CASM function (see Section 4.2.2) which is generated
through the code generator (see Section 4.3.1). This function is unsupported for the Undef
type.

void CASM_print_<T>(<T>* reg) The print function enables a formatted output of a CASM value.
If a value is undefined the string “undef” is written to the standard output stream. Oth-
erwise the formatted value is printed. By format means that the internal numeric value
of a type is printed in a readable format. For example an enumeration type Flags defined
as enum Flags = { A, B, C } returns the string “B” if the value field of the parameter reg
contains 1. This function is not provided for the Undef type.

void CASM_cast_<T>(<T>* reg, void* value, uint8_t defined) Casting in the CASM run-time
is defined and performed explicitly. With the clear definition of the CASM types through
C structures a type mismatch can be avoided. In some points in the program the run-time
needs a cast from the Generic to a specific CASM type.

CASM_<T>_CAST The inverse explicit cast from a CASM type to a void* value is supported through
a partial type-based macro. It is defined statically for all types and corresponds to the C
cast from a CASM type <T> to a 64 bit integer value. The run-time uses this macro in
several places to cast a value field of a CASM type <T> to a void* value e.g. a cast from
an Int value int64_t to a Generic data-type value void* is implemented over the value field
of the data-types as (void*) CASM_Int_CAST reg->value where reg is an Int C variable.

Logical & Arithmetic Operators

The logical and arithmetic operators in the CASM run-time are implemented accordingly to the
specified semantics from Section 3.2.5. The naming scheme of the operator functions is defined
as CASM_<OP>_<T>_<U>_<V>(). <OP> stands for the operation, <T> and <U> are the operand
types and <V> is the return type.

void CASM_not_Boolean_Boolean(Boolean* op1, Boolean* target) The not operator is the only
unary operator in CASM.

void CASM_<OP>_Boolean_Boolean_Boolean(Boolean* op1, op2, target) This function signature
represents in the run-time the Boolean logical operators where the placeholder OP can
either be and, or or xor.

void CASM_<OP>_<T>_<T>_Boolean(<T>* op1, <T>* op2, Boolean* target) The comparison of all
types in CASM for equality and inequality is implemented through this function signature
where the placeholder OP can be either eq (equal) or neq (not equal).

void CASM_<OP>_Int_Int_Boolean(Int* op1, Int* op2, Boolean* target) Logical operators of the
Int type are grouped into this function signature. The OP placeholder can be either les
(less), leq (less or equal), gre (greater) or geq (greater or equal).

41

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

void CASM_<OP>_Int_Int_Int(Int* op1, Int* op2, Int* target) The arithmetic operators in CASM
are only defined for the Int type. Placeholder OP can be either add (addition), sub (sub-
traction), mul (multiplication), div (division) or mod (modulo). In the division operator a
run-time error is raised if the denominator value is defined and the numerical value equals
0.

Built-ins

As described in Section 3.2.5, the run-time defines all the specified built-ins except for the Tuple
type, because this type and its operators are generated. The run-time implements the built-ins
as:

void CASM_die(void) To abort inside an expression the intrinsic die is used. Before the program
is aborted an error message is printed to the standard output stream.

void CASM_hex_Int_String(Int* i, String* s) The run-time converts the incoming integer to a
string and forms the decimal value into a hexadecimal notation. The char* inside of the
String is allocated in the CASM stack memory area.

void CASM_pow_Int_Int_Int(Int* base, Int* exp, Int* target) To perform an integer exponen-
tiation the built-in pow (to the power of) can be used. If the base value or the exp (expo-
nent) value is undefined the built-in returns an undefined value, otherwise a defined target
value is calculated and returned as:
target->value = (int64_t) pow((double)base->value, (double)exp->value);

void CASM_rand_Int_Int_Int(Int* start, Int* end, Int* target) The run-time supports the in-
teger random variable generator through the rand intrinsic. It is important that this built-in
relies on the C function rand() and the run-time kernel seeds the C random value genera-
tor with the current time stamp the beginning of the execution in the initialization phase
with the C function srand() (see Section 4.2.4). If the start value and/or the end value are
undefined the intrinsic returns an undefined value, otherwise it generates a defined target
value accordingly to the following formula:
target->value = (int64_t)(start->value + (rand()%(end->value - start->value + 1)));

void CASM_Boolean2Int_Boolean_Int(Boolean* b, Int* i) The cast from Boolean to an Int is al-
ways possible, because the value domain of the Boolean type is a sub-set of the Int type.

void CASM_Int2Boolean_Int_Boolean(Int* i, Boolean* b) For the cast from an Int to a Boolean
type in CASM the run-time performs the C Boolean expression convention where 0 equals
false and not 0 equals true. The following calculation shows the implementation in the
run-time: b->value = (i->value != 0 ? TRUE : FALSE)

void CASM_Int2Enum_Int_<N>(Int* i, <N>* e) The cast from an Int to an enumeration type N is
statically defined in the run-time. Enumeration types are generated and every enumer-
ation size is defined through an extra label <N>_SIZE which is the last element in a C

42

enumeration type. The index of the label <N>_SIZE in the enumeration directly corre-
sponds to size of the enumeration type. If the incoming integer i is outside of the range
[0,<N>_SIZE[then the result value e is undefined, otherwise the index of the enumeration
label is assigned.

void CASM_Enum2Int_<N>_Int(<N>* e, Int* i) The mapping of a generic enumeration type N to
an Int is trivial. The index of the enumeration value equals the integer value. If the
enumeration e is undefined, then the integer i is undefined as well.

void CASM_app_List_<T>_<T>_List_<T>(List_<T>* l_in, <T> *e, List_<T>* l_out) The intrinsic
app (append) adds an element e of type T to an incoming List l_in with the sub-type T and
writes the result to l_out which has the same list data-type as l_in. Currently the run-time
just copies internally the list and extends it by the element e. The allocation of the copied
list is located in the CASM heap memory area (see Section 4.2.1).

void CASM_cons_<T>_List_<T>_List_<T>(<T>* e, List_<T>* l_in, List_<T>* l_out) As mentioned
in the Section 3.2.5 the cons (constructs) intrinsic performs the same operation like app.
The only di↵erence is that cons uses a mirrored parameter signature.

void CASM_tail_List_<T>_List_<T>(List_<T>* l_in, List_<T>* l_out) The tail intrinsic removes
the first element of an incoming List l_in with sub-type T and returns the resulting list by
setting the l_out parameter. Internally the list is copied from the second element at index
1 to the end. The allocation of the copied list is located in the CASM heap memory area
(see Section 4.2.1).

void CASM_nth_List_<T>_Int_<T>(List_<T>* l, Int* i, <T>* e) To access a specific position i
of type Int in a List l of sub-type T the intrinsic nth can be used. The run-time accesses
the list element e of type T and returns it.

void CASM_peek_List_<T>_<T>(List_<T>* l, <T>* i) The peek built-in retrieves the first element
of a List l of sub-type T and returns it via the parameter i of type T. This intrinsic is
implemented via the nth built-in by accessing the first position of the list l. The internal
call equals nth(l, 1).

4.2.6 Shareds
shared ::= "DEFINE_CASM_SHARED" "(" identifier "," param { "," param } ")" "{" "}" ;
param ::= "ARG" "(" type "," identifier ")" ;

The CASM shared interface is a side e↵ect free way to extend the CASM run-time statically
with additional operators or calculation procedures directly in C. Side e↵ect free means, that it
is impossible to modify the CASM global state within a shared procedure call, because shareds
equal an expression in CASM.

In the above EBNF shared syntax the identifier has to be unique in the program. The first
parameter in the shared interface is the return value. Additional parameters can be added to
the definition. To call a shared the run-time provides the macro CASM_CALL_SHARED(NAME, VALUE,
ARGS...).

43

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

Currently this interface is used for defining a bit-vector bit-true arithmetic operator library for
the Int type. These shared functions are prefixed with BV. BV is the abbreviation for bit-vector.
This library implements about 40 to 50 operations which are used by Lezuo in [45] to have a
computer architecture model independent bit-vector operator set.

Section 3.2.5 presents the language syntax and semantics of the shared BVand. Listing 4.3
outlines the run-time implementation of this BVand with the shared interface definition.

1 DEFINE_CASM_SHARED(BVand, ARG(Int,ret), ARG(Int,width), ARG(Int,op1), ARG(Int,op2))
2 {
3 // implementation
4 }

Listing 4.3: Shared BVand Definition Example

4.2.7 Providers

A provider in CASM is equal to a program extension but directly implemented in C. The di↵er-
ence to the shared interface is that a provider functionality can have side-e↵ects. A provider can
implement external functions, rules and define new debuginfo channels for the program where
the provider is used. Furthermore, it is possible to tell the compiler that the provider needs
additional source files to compile the provider correctly. It is also possible to specify pre- and
post-hooks which will be called before/after the execution of the CASM program in the run-
time kernel. The provider identifier (see Section 3.2.3) is used for the provider C header file
name where all the intended provider functionality shall be defined. The following subsections
describe in detail all provider functionality.

Provided Functions
provFunc ::= { funcGetH [funcSetH] } ;
funcGetH ::= "DEFINE_CASM_FUNCTION_SET" "(" identifier "," param { "," param } ")" "{" "}" ;
funcSetH ::= "DEFINE_CASM_FUNCTION_GET" "(" identifier "," param { "," param } ")" "{" "}" ;
funcObjH ::= "DEFINE_CASM_FUNCTION_OBJDUMP" "(" identifier ")" "{" "}" ;
param ::= "ARG" "(" type "," identifier ")" ;

Sometimes the programmer of a CASM model has more knowledge about a specific function
behavior then the compiler itself. For example, sometimes a function is only defined in special
sub-ranges or only on distinct values in the domain. Through the funcGetH and funcSetH syntax
‘external’ functions with a unique identifier name in the used input program can be defined and
implemented. It is important that this is exactly the same run-time interface as the code generator
uses to generate the functions from the input program (see Section 4.2.2 and 4.3.1).

Furthermore, the printer function interface has not to be defined in a provider, because the
code generator generates the printer function. The objdump interface specified through fun-
cObjH is optional. The setter (funcSetH) specification is optional. If it is not defined, the
compiler will treat the provided function as a read-only one which equals the function prop-
erties static and controlled (see Section 3.2.3). Listing 4.4 shows an example provided function
thesisYear which is a defined constant read-only 0-ary function and returns always the constant
value 2014.

44

1 DEFINE_CASM_FUNCTION_GET(thesisYear , ARG(Int, ret))
2 {
3 static int64_t year = 2014;
4 CASM_const_Int(ret, year);
5 return &year;
6 }

Listing 4.4: Provided function example

If a setter is provided too, the memory location of the function should be in a separate com-
pilation unit e.g. a provided rule or an initialization pre-hook.

Provided Rules
provRule ::= { ruleH ruleC } ;
ruleH ::= "DECLARE_CASM_RULE" "(" identifier { "," param } ")" ";" ;
ruleC ::= "DEFINE_CASM_RULE" "(" identifier { "," param } ")" "{" "}" ;
param ::= "ARG" "(" type "," identifier ")" ;

Through the provided rule specification ruleH in the provider header file the compiler integrates
the rule identifier name into the rule reference set of the generated program. The implementation
of a provided rule has to be in a separately C source file with the same name as the rule identifier
which contains the ruleC specification implementation. The annotation process checks if there
is an implementation provided and if there is none the compiler reports an error.

Provided Debuginfo Channels
provDebugChannel ::= { provDebugChannel } ;
debugChannelH ::= "DECLARE_CASM_DEBUG_CHANNEL" "(" identifier ")" ";" ;

If a provider uses inside a provided rule a debuginfo statement, the code generator can not see
it and has no knowledge about the used debuginfo channel if it is not used in the input program.
The debugChannelH syntax makes the used channel visible to the code generator. This defini-
tion has to be in the provider header file.

Provided Pre- and Post-hooks
provHook ::= { preHookH preHookC } { postHookH postHookC } ;
prehookH ::= "DECLARE_CASM_INIT_FUNCTION" "(" identifier ")" ";" ;
prehookC ::= "DEFINE_CASM_INIT_FUNCTION" "(" identifier ")" "{" "}" ;
posthookH ::= "DECLARE_CASM_DEINIT_FUNCTION" "(" identifier ")" ";" ;
posthookC ::= "DEFINE_CASM_DEINIT_FUNCTION" "(" identifier ")" "{" "}" ;

If there is a request to e.g. allocate special memory, load huge chunk of data, pre-set the global
state in a specific pattern the init functions can be created through the prehookH syntax. The
inverse operation to finalize or deallocate a special memory block the posthookH syntax can be
used inside the provider header specification file. For every defined hook function there exists a
C source file with the same name as the identifier. The implementation of the hook is done via
the syntax prehookC and/or posthookC. Internal in the run-time the init and de-init functions are
C functions with no parameters and no return type. The CASM kernel invokes all provided init
functions in the initialization phase and all provided de-init functions in the finalizing phase by
invoking an array of function pointers to the defined hooks (see Section 4.2.4).

45

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

Provided Additional Sources
provAddSrc ::= { addSrcH } ;
addSrcH ::= "DECLARE_CASM_ADDITIONAL_SOURCE" "(" filename ")" ";" ;

The addSrcH syntax is used by the compiler to include the mentioned source filename into the
compilation from C to binary. This definition has to be in the provider header file.

The MIPS Provider

The MIPS provider is a reimplementation of the original MIPS provider from Lezuo in [48].
This provider includes the loading of Executable and Linking Format (ELF) files, a RAM rep-
resentation and an instruction decoding facility of the MIPS computer architecture. In the cur-
rent version of the CASM tool the MIPS provider consists of the functions PMEM (program
memory), PARG (program arguments) and MEMORY. Through an init pre-hook function named
mips_load_elf it is possible to load via the provider defined command line argument –mips
<arg> an ELF file into the modeled RAM memory block function MEMORY. Further the lookup
of the global state from the function PARG and PMEM activates helper C functions in the mips
provider to perform the instruction decoding. Furthermore, there is a debuginfo channel monitor
and a provided rule mips_monitor defined. This rule is used to model and translate the MIPS
syscall2 (system call) instruction to the host computer system call.

4.2.8 Printing, Debugging & Tracing

The run-time supports the print statement (see Section 3.2.4) by type based print functions
which are described in Section 4.2.5. Furthermore, the run-time has an equivalent macro to the
C printf function with the name CASM_PRINTF(FORMAT, ARGS...) which can output formatted text.
This macro checks internally if the -q option from the CASM kernel is disabled, otherwise the
text will be suppressed. All output facilities use this macro as its basis. Additionally to end a
print statement and to output a line feed the run-time defines the macro CASM_PRINT_END.

For the debuginfo statement inside a CASM program the macros CASM_ DEBUG_START(CHANNEL)
and CASM_DEBUG_END(CHANNEL) are provided. By surrounding a C code-block with these macros, it
only gets executed if the channel CHANNEL was activated in the CASM kernel start-up phase (see
Section 4.2.4). The code generator uses a combination of CASM_PRINTF() and the CASM_DEBUG_*()
macros to generate a debuginfo statement.

The debugging of the run-time is currently implemented by a simple macro-based approach
where in every interface, operator, function, built-in, shared, etc. The macro CASM_RT(FORMAT,
ARGS...) is used to print every event of an ongoing CASM execution. By default this debug
output is deactivated. Through a CASM tool command line option (–gdebug) the code generator
activates this debugging facility in the generated code.

Another run-time facility is tracing. The run-time only defines the macro CASM_PRINTF_TRACE(
FORMAT, ARGS...) which is deactivated by default and not included into the source code. Through
a CASM tool command line option (–gtrace) the code generator defines this macro and it is

2system calls are used to implement e.g. basic file operations like open(), write(), read(), close(), etc.

46

compiled and activated in the translated CASM program. Currently only tracing of top level
expressions and update statements is supported.

4.2.9 Miscellaneous

Temporary C Variables

The macro CASM_REGISTER(TYPE, NAME) declares and defines a C variable with the CASM type
TYPE and the identifier name NAME. Furthermore, the variable will be initialized to the undef value.

Let Bindings

For the let statement (see Section 3.2.4) the run-time provides the macro CASM_LET(TYPE, VARIABLE,
VALUE). This macro defines and declares a C variable of type TYPE with name NAME, but it di-
rectly assigns the provided CASM value VALUE. There is another form of this macro defined as
CASM_LET_CONST(TYPE, VARIABLE, VALUE) which does not assign a CASM type but rather assigns
a constant C value of type CT (see Section 4.1).

Diedie & Assert

The diedie and assert statement (see Section 3.2.4) implementation in the run-time are using the
macro CASM_ERROR(FORMAT, ARGS...) to print an error message and abort the ongoing execution.
The assert statement additionally checks via the macro CASM_ASSERT(VALUE, LINE) if the Boolean
value VALUE is defined and true. If the value is either false or undefined the macro calls internally
the CASM_ERROR() macro with the CASM input program LINE number information.

If-Then-Else & Case

The if statement (see Section 3.2.4) is supported by the run-time by the following macros -
CASM_IF(VALUE) and CASM_ELSE. The value VALUE will be checked if it is defined and true.

Similar to the CASM_IF() is the CASM_CASE(VALUE) macro. It is a direct translation to the C
case keyword. The value VALUE can either be a Boolean, enumeration, numeric or string literal.
Boolean, enumeration and numeric values are provided by the CASM_CASE_CONST(VALUE) macro.
String values are provided by the CASM_CASE_VAR(VAR, REG) macro. The value VAR is a unique
hashed value of the string content. The default case is supported through the CASM_CASE_DEFAULT
macro. Furthermore, the CASM_CASE_BREAK macro is used to provide a wrapper of the C break
keyword.

Deriveds & Rule Calls

All derived specifications in a CASM program are generated through the code generator (see
Section 4.3.1). The derived C macro signature is defined in the run-time as CASM_DERIVED_<N>()
where <N> is the name from the specification (see Section 3.2.3). The code generator uses this
signature to directly use and define a CASM derived.

47

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

Just like the deriveds, all rule specifications are generated (see Section 3.2.3). The run-
time provides the macros CASM_CALL_RULE_PLAIN(NAME) and CASM_CALL_RULE(NAME, RULE_ARGS).
The first one can be used to call a rule with the name NAME without any parameters. The second
function provides a parameter RULE_ARGS which is of a Generic* type. The code generator uses
this parameter to pass a Generic array address to the called rule (see Section 4.3.1).

Forall & Iterate

The forall statement (see Section 3.2.4) allows performing a parallel execution of a statement.
The parallelism is given by a numeric range, list of elements, all elements of a Tuple value or all
elements of an enum specification. All forall macros are translations to C for loops.

The CASM_FORALL(TYPE, VALUE, BOTTOM, TOP) macro defines a forall identifier with the name
NAME of type TYPE and initializes it with the defined value of the BOTTOM parameter. The created C
for loop is bounded by the upper value of the TOP value. In this macro the BOTTOM and TOP parame-
ter are of a C type int64_t to represent a number literal range. The macro CASM_FORALL_REG(TYPE,
VALUE, BOTTOM, TOP) can be used to perform a range over two Int values. The code generator
sometimes needs an inverse C for loop iteration order. The run-time provides therefore the
macros CASM_FORALL_REVERSE() and CASM_FORALL_REG_REVERSE().

As mentioned before the forall statement can also operate over Tuple and List value domains
by executing the forall statement over all elements of these types. CASM_FORALL_LIST(SUBTYPE,
VAR, TYPE, LIST) and CASM_FORALL_TUPLE(SUBTYPE, VAR, TYPE, LIST) are provided by the run-
time to iterate through the elements. To end a forall statement the CASM_END_FORALL macro has
to be called.

The run-time supports the iterate statement (see Section 3.2.4) by the following two macros.
CASM_ITERATE starts the iteration block and CASM_END_ITERATE ends the block. These two macros
form a C do while loop which aborts if no further update is produced inside the iterate statement.

4.3 Code Generator

The CASM code generator uses the typed AST and translates each AST node directly to C.
Before the translation process starts, every node of the typed AST is uniquely labeled by a
preorder traversal. The label is an uint64_t counter value which is later used in the generation
process to construct unique C variables for temporary calculations of CASM expressions. The
approach is similar to the three-address code [1] representation where e.g. an expression of a
program is linearized into multiple sub-expressions with temporary results and each temporary
has a unique name. Figure 4.5 outlines the generation process of the code generator.

The code generation process is divided into five generation phases. The last phase of the code
generator invokes a C compiler to compile the generated code (aka Target C) which is linked
together with the run-time library to an executable. The generated files of the code generator are
summarized in the following Table 4.2 where the placeholder <P> stands for the CASM input
program name and the placeholder <*> stands for all rule identifier names:

48

Typed
AST Generate Header

Generate Main

Generate Types

Generate Init State

Generate Rules

<P>-deriveds.h

<P>.h

<P>.c

<P>-types.h

<P>-initially.c

<P>-rules.h

<P>-<*>.c

Perform CompilationBinary

Code Generator Target C

Run-Time

Figure 4.5: CASM Code Generation Process

File Phase Run-Time Component
<P>.h Header, Main Debuginfo Channels, Functions, Glue
<P>.c Header, Main Update-Set, Kernel

<P>-rules.h Rules Rules (Declarations)
<P>-<*>.c Rules Rules (Definitions), Statements, Expressions
<P>-types.h Types Enum, Tuple, List, Operator, Built-ins

<P>-deriveds.h Header Deriveds
<P>-initially.c Init-State Initial Updates

Table 4.2: CASM Target C File Layout

4.3.1 Generation Phases

Generate Header

In the Generate Header phase the code generator creates the main header file <P>.h and the
main source file <P>.c. The header file contains all includes to other headers and to the run-time
library. Then the code generator traverses the AST of all rules and searches for the debuginfo
statements. The generator collects the debuginfo channels in an internal data-structure. If a
debuginfo channel was provided (see Section 4.2.7) the code generator also adds the declared
channels to this structure. All channels are then declared in the main header file and defined in
the main source file.

After that the code generator starts with the generation of the functions. For all functions in
the main header and main source file the code generator declares/defines a numeric UID which

49

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

will be used to map a function number to a function interface call.
Then all specified CASM functions are evaluated one-by-one. To define a CASM function the

code generator uses the function getter, setter, printer and objdump interface which is provided
by the run-time (see Section 4.2.2). The code generator distinguishes three di↵erent types of
functions - static domain, dynamic domain and mixed domain functions. By a static domain
all function parameters are bounded, dynamic domain all are not bounded and mixed domain is
composed of a static and a dynamic domain. The code generator sorts the di↵erent types of the
function domain accordingly to the value domains (see Section 3.2.2) in the following order:

A < B < EN < R < I[a,b]| {z }
static domain

< I < S < TH < LH| {z }
dynamic domain

(4.1)

The code generator separates a function domain into a static domain and a dynamic domain. For
example the function f with the following defined relation:

f : I ⇥ R ⇥ B ⇥ I[a,b]| {z }
domain

! S|{z}
co-domain

The code generator rearranges the domain of the function f accordingly to the defined order in
Formula 4.1 to:

f : B ⇥ R ⇥ I[a,b]| {z }
static domain

⇥ I|{z}
dynamic domain

! S|{z}
co-domain

The code generator selects one of the four possible CASM function implementation generation
schemes. The first scheme is selected by the code generator if a function has no dynamic domain.
Due to the fact that a static domain is bound to a finite n-dimensional space the code generator
translates the domain to a linear C array of the co-domain’s data-type. If the size of the C array
is too large and will not fit in the BSS section of the executable, the code generator uses the
second generation scheme. This scheme generates run-time calls to dynamically allocate the
linear array.

The third generation scheme is used if there exists no static domain in the separated domain.
The code generator generates an extended n-dimensional geometric hashing [69] procedure for
the function arguments. Each function argument is casted to an uint64_t value. The bitmap
(args_bitmap) to perform the geometric hashing is a generated random variable C array of type
uint64_t . The code generator concatenates all function argument values args to a hash value h
accordingly to the formula:

key = (uint64_t)
|args|�1X

i=0

(�1) ⇤ argsi ⇤ args_bitmapi

The value key is used in the function implementation to access the branded hash-map func-
tion structure (see Section 4.2.2). The function structure is allocated by the CASM kernel (see
Section 4.2.4).

50

The fourth function generation scheme is used when a function is specified with a mixed
domain. The code generator applies the same translation as in the third generation scheme with
the extension that the static domain values are packed into groups of 64 bit values via the type
uint64_t. These packed values are concatenated with the hash value key.

The code generator also generates the predefined program function into the main header file.
And if a provider specification (see Section 3.2.3) is used, all function implementations from
the provider are directly copied into the main header file, because a provided function has to be
implemented with the same function interface (see Section 4.2.2).

After the function generation the code generator declares/defines the glue code between
the update-set and the functions. This is done by mapping the used functions to a previously
generated UID number. The glue logic consists of the macro DECLARE_CASM_UPDATESET_APPLY(
FUNCTION_VARIABLES, FUNCTION_MAPPING) and DECLARE_CASM_UPDATESET_PRINT(FUNCTION_MAPPING)
which define the apply and print mechanism from the update-set structure (see Section 4.2.3).

The code generator creates the deriveds header file <P>-deriveds.h and writes all derived
specifications into this file. A derived is defined directly via the CASM_DERIVED_<N>() derived
macro signature (4.3.1). The C preprocessor will replace the derived expression with its imple-
mentation.

Generate Main

In the Generate Main phase the code generator continues with the generation in the main source
file. First it generates the before mentioned random variable bitmap array which is used for
the geometric hashing procedure of dynamic domain function implementation generation. The
code generator continues with generating all the static known information of the CASM input
program. It generates the rule names, enumeration names and debuginfo channel names. In the
next step all provided pre- and post-hook functions are defined (see Section 4.2.7) and afterwards
the statically allocated CASM functions are defined and the casm_function structure (see Section
4.2.2) is used to generate the global state of the program. Last the code generator generates the
CASM kernel into the source main file by using the macro CASM_MAIN(RULE). RULE is the name of
the init rule (see Section 4.2.9).

Generate Types

In the Generate Types phase the code generator creates the types header file <P>-types.h. This
file declares all types which are not implemented directly in the run-time. The generation order
of the types is enumeration-, ranged integer-, Tuple- and then List-based types. The code gener-
ator recognizes all used types from the CASM input program in the Generate Header phase.

All specified enumerations (enum, see Section 3.2.3) are directly generated into the types
header file as C enumeration types. After the last element of an enumeration an additional entry
with the name <N>_SIZE is added to the definition. <N> stands for the name of the generated
enumeration and this size field corresponds to the size of the enumeration type. This field is
used e.g. in the casting facility of the run-time (see Section 4.2.5). The code generator generates

51

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

then CASM type of the enumeration with the DECLARE_Enum() macro. An enumeration with type
name <N> is then declared in C with the same name.

A ranged integer type Int() is declared by the generic macro DEFINE_Int() which is provided
by the run-time (see Section 4.2.5) to define new ranged integer types. This macro creates a
new CASM type with a C structure name Int_<A>_. The place holder <A> and stand for
the lower and upper bound of the ranged integer type. If negative numbers are used the type is
defined by using a lowercase ‘n’ (negative) character. For example the CASM type Int(-12..34)
is defined as a C structure Int_n12_34. It is important that the code generator only has to define
this macro and all built-in, operator and type interface C functions are implicitly created in the
target program. Furthermore, the macro defines a range checking type function with the name
void CASM_check_Int_<A>_(Int_<A>_* i). This function is called in the later generated rule
if a calculated Int type value is assigned to a ranged integer type. There are only two possibilities
in a CASM program where this can happen, either the ranged integer type is used as a co-domain
of a function or the type is used as a parameter of a function domain, a derived parameter or a
rule parameter. CASM always calculates in the Int value domain and when the assignment or
usage of this value has to fit the ranged integer definition then the check type interface function
is used to check if the integer value is in the correct range.

The Tuple type is the only CASM type which for every sub-type signature is completely
generated from scratch by the code generator, because the run-time has no knowledge about
this type at all. From scratch means that besides the Tuple C structure definition all built-in,
operator and type helper functions (see Section 4.2.5) are generated for the specific used sub-
type. The resulting CASM Tuple(<H>) type name in C corresponds to Tuple_<H> where <H> is the
underscore separated sub-type signature of the tuple. For example the type Tuple(Int, String,
RuleRef) is generated into a C structure type Tuple_Int_String_RuleRef.

Similar to the Int() type the List is predefined in a generic macro in the run-time. The
code generator just has to generate each list-based type with the macro DEFINE_List() and a
new CASM List type is created. For example if a List(Int(0..7) is used in the CASM input
program the code generator creates through the macro the new type List_Int_0_7 in the types
header file.

Generate Init-State

In the Generate Init-State phase the code generator creates the initially source file<P>-initially.c.
This file contains a C function which will be called from the CASM kernel in the initialization
phase (see Section 4.2.4) to preset the global state of the CASM functions accordingly to the de-
fined initially expressions from the CASM input program. First the code generator generates
the static initial state and then the dynamic initial state. The static initial state generation assigns
all specified constant expressions to the CASM function’s global state. This is necessary to gen-
erate afterward the dynamic initial state, because the initially specifications can depend on the
static ones. The compiler resolves the dependencies within the dynamic initially specifications
in the annotation process (4.1.1). The code generator uses the provided CASM_UPDATE_INITIALLY()
macro from the run-time (see Section 4.2.3) to set functions to an initial state.

52

Generate Rules

The last step in the generation process is the Generate Rules phase. Before the code generator
translates every CASM rule specification into statements, expressions etc. it creates the rule
header file <P>-rules.h. All specified rule C declarations are written to this file. The macro
DECLARE_CASM_RULE() declares a rule specification in the rule header file (see Section 4.2.9). The
run-time represents rules as C functions. Afterwards the rule generation starts by executing the
following procedure for each rule specification. First the generator creates for each rule a sepa-
rate C source file with the name <P>_<*>.c where <*> stands for the rule name identifier. This
file contains the actual implementation of a rulewhich is defined through the DEFINE_CASM_RULE()
macro. This macro defines the C function of the rule.

The code generator then calls a recursive function to traverse in preorder over the AST of a
rule to generate all statements and expressions to the rule implementation file. It is important
that the code generator assures that the composition hierarchy of parallel and sequential execu-
tion blocks is always generated in the nesting order of PAR ! SEQ, SEQ ! PAR, PAR ! SEQ, etc.
This property minimizes the fork and merge operation calls to the update-set. Furthermore, the
update-set structure (see Section 4.2.3) needs this property, because the semantics of the fork
and merge operations assumes only execution semantics block transitions either from PAR! SEQ
or SEQ! PAR.

The code generator always generates by default each rule into a separate file. If large pro-
grams with thousands of rules are compiled the code generator will create a C compilation unit
for each rule. The compilation time of a C compiler to translate the complete CASM program
will be huge. Another problem is that if one rule C file has so many Lines Of Code (LOC) that
a C compiler is either unable to compile the file or the compile time is not feasible. The code
generator can perform two optimized generations to achieve more compilation speed.

The first optimization is called packed where the code generator packs multiple C rule im-
plementations into one compilation file bounded by a maximal C LOC amount. This can be
specified with the command line option –gpf (generate packed file). The size can be configured
with –gpf-size <arg> where <arg> stands for the amount of LOC per compilation rule file.

The second optimization is called split rules. The code generator splits a rule into multiple
files to support the C compiler with small compilation units. The split procedure is based on a
heuristic. The longest connected statement chain of a rule AST is split into multiple split rules.
Before the rule generation process starts the code generator calculates the number of nodes in
the rule AST. Then the longest statement chain in the AST is detected. This statement chain is
divided by the containing AST nodes which can be specified with the –gsplit <arg> command
line into sub-trees. <arg> stands for the upper bound of maximal AST nodes in a sub-tree. This
generation optimization applies for flat rules with huge consecutive statements very well.

Perform Compilation

In the last process step the code generator executes the Perform Compilation phase. Therefore,
an external C compiler is used. The code generator calls the external C compiler and compiles
all generated files from previous phases. Afterwards the code generator links all object files to

53

CHAPTER 4. CASM RUN-TIME & CODE GENERATOR

the final executable.

4.3.2 Generation Example

The following Listings 4.5 and 4.6 show an example code generation from the code generator.
The CASM program example implements a simple counter application. The rule main incre-
ments every step the content of a function by one. If the content of the function is greater than
a specific value, a sequential block is executed. This block prints the content of the function
and performs the termination update to the program function. Due to the lack of space only the
generated main rule implementation file is shown in Listing 4.6.

1 CASM example init main
2
3 function counter : -> Int initially { 0 }
4
5 rule main =
6 {
7 counter := counter + 1
8
9 if counter > 0xfeed then

10 {|
11 print counter
12 program(self) := undef
13 |}
14 }

Listing 4.5: CASM Counter Example

1 DEFINE_CASM_RULE(main)
2 {
3 /* example.casm:7 | UPDATE */
4 CASM_REGISTER(Int, r22__);
5 CASM_REGISTER(Int, r23__);
6 CASM_FUNCTION_LOOKUP(counter, Int, r23__);
7 CASM_REGISTER(Int, r24__);
8 CASM_const_Int(&r24__, 1);
9 CASM_add_Int_Int_Int(&r23__, &r24__, &r22__);

10 CASM_UPDATE(7, counter, Int, r22__);
11 /* example.casm:9 | IF */
12 CASM_REGISTER(Boolean, r27__);
13 CASM_REGISTER(Int, r28__);
14 CASM_FUNCTION_LOOKUP(counter, Int, r28__);
15 CASM_REGISTER(Int, r29__);
16 CASM_const_Int(&r29__, 65261);
17 CASM_gre_Int_Int_Boolean(&r28__, &r29__, &r27__);
18 CASM_IF(r27__)
19 {
20 /* example.casm:10 | SEQBLOCK */
21 CASM_UPDATESET_FORK_SEQ(updateset);
22 /* example.casm:11 | PRINT */
23 CASM_REGISTER(Int, r34__);
24 CASM_FUNCTION_LOOKUP(counter, Int, r34__);
25 CASM_print_Int(&r34__);
26 CASM_PRINT_END;
27 /* example.casm:12 | UPDATE */
28 CASM_REGISTER(Self, r40__);
29 CASM_const_Self(&r40__, SELF);
30 CASM_REGISTER(RuleRef, r41__);
31 CASM_UPDATE(12, program, RuleRef, r41__, &r40__);
32 CASM_UPDATESET_MERGE_SEQ(function , updateset);
33 }
34 }

Listing 4.6: Counter Example Rule main C Code

54

CHAPTER 5
CASM Optimization Framework

The CASM compiler is composed of a new optimized run-time and new optimized code gener-
ator. Furthermore, the compiler consists of an optimization framework. This chapter introduces
the CASM optimization framework, the CASM IR, several analyses and transformations.

5.1 Overview

First of all the optimization framework uses the typed AST as input representation and performs
its passes on the typed AST. The output of the optimization framework is always a correct
and valid typed AST. Therefore, both the code generator and the interpreter can profit from all
transformations, because the transformations modify directly the typed AST. Figure 5.1 gives
an overview of the optimization framework.

. . . Typed
AST

Pass
Manager

Typed
AST

. . .

Pass
Registry Passes CASM IR

Figure 5.1: CASM Optimization Framework

The main component of the optimization framework is the pass manager. It performs di↵er-
ent passes on the input typed AST and returns a typed AST as output. The implementation of
the pass manager, all including components and the pass interface structure were inspired by the
LLVM compiler framework implementation [43].

55

CHAPTER 5. CASM OPTIMIZATION FRAMEWORK

5.2 Pass Manager, Registry & Pipeline

The first function of the three main tasks of the pass manager concerns the acquisition of all
selected passes from the command line, storage of all available passes via pass registry and
comparison of those with the (already) registered passes. The second task causes the assignment
to one of the four predefined pass pipeline buckets for all passes, which leads to the third and
last task, the execution of all passes for all rules.

Passes can be assigned to four distinct buckets. The assignment is defined in the pass in-
formation description of a pass implementation (see Section 5.2.1). The pipeline buckets are
defined as:

preprocessing Passes which shall run before the pipeline fixpoint mechanism are located in
the preprocessing bucket. For example all analysis or information dumping passes are
located in this bucket. If a pass in the pass information is not assigned to a bucket it will
be assigned by default to the preprocessing bucket.

trivial fixpoint Analysis and transformation passes which are standard compiler optimizations
are assigned to the trivial fixpoint bucket.

non-trivial fixpoint Specialized CASM passes are contained in the non-trivial fixpoint bucket.
For example this bucket contains the CASM Redundant Lookup Elimination transforma-
tion pass (see Section 5.4.4). The separation between trivial and non-trivial is needed to
optimize the pass results of the non-trivial passes, because those passes are costly com-
pared to the trivial passes.

postprocessing All passes which should be executed after the fixpoint mechanism have to be
assigned to the postprocessing bucket.

After the execution of bucket assignment, the pass manager schedules all buckets according
to a scheduling algorithm. The execution order of passes inside a bucket is defined by their
dependency to other passes. This dependency is defined by a specific pass interface. The pass
manager guarantees for a distinct set of selected passes always the same schedule. As the name
pass pipeline implies the four buckets form an execution pass pipeline. Figure 5.2 shows the
implemented pass pipeline scheduling algorithm in the pass manager.

Typed
AST

Pre-
Processing

Trivial
Fixpoint

Non-Trivial
Fixpoint

Post-
Processing

Typed
AST

Figure 5.2: CASM Pass Pipeline Execution

56

After the pass manager executes the preprocessing pass set, the pass manager enters the
fixpoint mechanism and all trivial fixpoint passes are executed. As long as the AST is modified
by at least one pass the pass manager repeats the trivial fixpoint bucket, otherwise the pass
manager executes the non-trivial fixpoint pass bucket. If the AST is modified by at least one
pass, the pass manager repeats the trivial fixpoint bucket, otherwise the pass manager continues
with the postprocessing pass bucket.

During the execution of a single pass no matter what in which pass pipeline state the pass
was called, the pass manager perform a fixpoint iteration of this pass as well. Before the pass
manager calls the actual pass procedure, all passes the pass depends on are executed first. To
optimize the optimization speed of the compiler, the pass manager implements a history (linear
list) of previously executed passes which also store the last AST changes of the passes. If the
pass manager finds the same pass which is scheduled next and its last AST changes in the history
was zero, the pass is skipped. If the pass manager finds any other pass with a last AST change
which is greater than zero, the scheduled pass has to be executed.

A complete run of the pass pipeline is repeated for every CASM input program rule. There
are command line options to select just a sub-set of rules to perform the selected optimization
passes.

5.2.1 Pass Information & Interface

Similar to LLVM every pass in CASM consists of a statically defined pass information, a pass
header and a pass implementation file. The information contains a string for the unique com-
mand line option, the pass description, its name and the setting for the pass pipeline into which
bucket a pass belongs. Furthermore, the pass implementation has to fulfill a pass interface which
defines specific entry points for the pass manager to initialize, run, finalize and verify a pass im-
plementation.

Furthermore, the pass interface defines a usage function which allows defining for a pass a
dependency relation to other passes. This usage function is called in the scheduling process in
the pass manager (see Section 5.2).

5.2.2 Pass Statistics

The optimization framework tracks for each pass the performed AST modifications and spend
time. By enabling through a command line option, the compiler outputs after the pass pipeline
execution a text-based table. Listing 5.1 shows an example pass statistic output.

1 | PASS STATISTICS | SCHED | TIME [ms] | [%] | CHANGES | [%] |
2 |----------------------------------+-------+-----------+-------+---------+-------|
3 | ASTPrinterPass | 1 | 0.127 | 20.73 | 0 | 0.00 |
4 | IRPrinterPass | 1 | 0.242 | 39.62 | 0 | 0.00 |
5 | CFGPrinterPass | 1 | 0.151 | 24.68 | 0 | 0.00 |
6 | IntermediateRepresentationPass | 1 | 0.092 | 14.96 | 0 | 0.00 |
7 | Total | 4 | 0.612 | | 0 | |

Listing 5.1: Example Pass Statistics

57

CHAPTER 5. CASM OPTIMIZATION FRAMEWORK

5.3 CASM Intermediate Representation

Besides the typed AST intermediate representation, the optimization framework defines an ad-
ditional intermediate representation - the CASM IR. This IR was motivated by the fact that it is
intricate and complex to perform all the desired analysis and transformations on the typed AST
intermediate representation. Especially the need of parallel aware analysis constructs made it
indispensable to design and implement a CASM specific representation. The CASM IR is an
n-ary tree-based representation which is generated by the Intermediate Representation analysis
pass (see Section 5.4.1) of the typed AST. Each structural element in the CASM IR has a direct
connection (pointer) to the typed AST. The structure of the IR is divided into five main classes
which are visualized in Figure 5.3.

Instruction An Instruction is a representation of a single temporary (sub-)expression or a state-
ment of the typed AST. The idea behind the Instruction class is to form three-address
code [1] instructions to create a SSA form of all used CASM language constructs just like
the code generator creates its intermediate code.

Basic Block The Basic Block is an abstract class which is used to create the actual n-ary tree of
the CASM IR.

Statement A Statement is inherited of Basic Block to represent all possible CASM statements.
A Statement class consists of a linear list of Instruction objects.

Scope The class Scope represents the parallel and sequential composition blocks is also inher-
ited from Basic Block. Every Scope has knowledge about its execution semantics, pseudo
state and consists of a linear list of Basic Block objects. So the elements in a Scope can
either be Statements or nested Scope objects.

Rule The Rule class is the top-level node of the CASM IR. It is composed of a by default
parallel Scope.

Rule

Scope*

Scope

BasicBlock*

BasicBlock*
. . .

Statement

Instruction*

Instruction*
. . .

Instruction

Scope

BasicBlock*
. . .

. . .

. . .

Figure 5.3: CASM IR Structure

58

The Rule class supports several auxiliary functions to access the CASM IR elements in dif-
ferent behaviors. These auxiliary functions implement traversal and iteration schemes. The pass
developer can decide between pre-, in- and post-order traversals and forward or backward itera-
tions. Furthermore, the auxiliary functions return either all CASM IR objects or only Statements,
Scopes or Instructions. It is for example possible to traverse over the IR Instruction objects, or
just over all Scope objects. The forward and backward iteration enables a sequential forward or
backward flow through the IR. This allows a classical forward flow through the program state-
ments like in a CFG. These auxiliary functions are used e.g. in the IR Printer and CFG Printer
pass (see Sections 5.4.2).

The approach described in this work is a generalization of the PAR/SEQ Control Flow Graph
which was presented by Lezuo, Paulweber and Krall in [49]. Instead of creating from the typed
AST a CFG representation which includes the parallel and sequential composition formation
directly, the CASM IR generalizes this with its parallel sequential tree structure and auxiliary
functions.

5.3.1 Instructions

For each CASM statement, expression and literal syntax (see Section 3.2) there exists a separate
Instruction class which is inherited from Instruction. For example to represent a constant number
literal in the CASM IR a typed Int Const Instruction is used. Furthermore, the Instruction IR
provides full knowledge about the underlying AST of a statement, expression, etc. which means
that when the CASM IR is created an identifier of the CASM input program is mapped to a
concrete Instruction class. This procedure avoids reinterpreting of identifiers in analysis and
transformation passes which use the CASM IR. Listing 5.2 shows an example update statement.
Listing 5.3 shows the CASM IR of the example update statement with its underlying instructions.

1 ...
2 bar(baz, BVand(32, 0xdead, 0xbeef)) := bar("txt", 0xfeed)
3 ...

Listing 5.2: CASM Example Update

1 ...
2 +UpdateStatement // UpdateStatement
3 r21__ = const ’txt’ // StringConstInstruction
4 r23__ = const int 65261 // IntConstInstruction
5 r18__ = lookup bar(r21__, r23__) // LookupInstruction
6 r8__ = derived baz // DerivedInstruction
7 r13__ = const int 32 // IntConstInstruction
8 r15__ = const int 57005 // IntConstInstruction
9 r17__ = const int 48879 // IntConstInstruction

10 r10__ = BVand r13__, r15__, r17__ // SharedInstruction
11 update bar(r8__, r10__), r18__ // UpdateInstruction
12 ...

Listing 5.3: CASM IR of Example Update

By default the Instruction class defines an instruction return value where the instruction oper-
ation result is stored. This return value is also known as the register of the CASM IR instruction.
Every register gets a unique number and a prefix ‘r’ character (see Section 3.2). Only a few In-

59

CHAPTER 5. CASM OPTIMIZATION FRAMEWORK

struction classes do not return a register value which are the Update Instruction and the Call
Instruction, because they do not modify a temporary register.

The Update Instruction and Lookup Instruction are special in the CASM IR. In Listing 5.3
the lookup of a function is specified directly by a location signature (line 3). Similar applies
for the first parameter of the Update Instruction (line 11). This location is created through an
internal Location Instruction which encapsulates the location signature. It is important that from
every Instruction object it is possible to acquire the enclosing Statement object.

5.3.2 Statements

The implemented Statement classes are containers for the underlying instructions. The CASM
IR distinguishes between Trivial Statement, Branch Statement and Loop Statement sub-classes.
Trivial statements are update, call, assert, diedie, print, debuginfo, push, pop and skip state-
ments. For each Trivial Statement exists a concrete sub-class in the Statement hierarchy. These
statements are trivial, because they consist only of a linear list of Instruction objects. Branch
Statement classes consist also of the linear list for the instructions, but they consist additionally
of one or more inner Scope objects. So it is possible to represent lets, if-then-else and case
statements in concrete sub-classes.

Furthermore, the Loop Statement includes beside the linear list of instructions one Scope
object which is the actual ‘loop body’. This distinction is necessary to implement the di↵erent
auxiliary function behaviors (see Section 5.3). Similar to Instruction objects, it is possible to get
the enclosing Scope object from Statement objects which they belong to.

5.3.3 Scopes

The CASM IR Scope classes represent the parallel and sequential execution block and therefore
exists a class Parallel Scope and a class Sequential Scope. From every Scope it is possible to get
the enclosing parent Scope until the top-level Scope object is reached.

Common Scope

A very important property of two objects in the CASM IR is the so called common scope. A
common scope is the scope intersection of two CASM IR objects. Every Instruction belongs
to a Statement and every Statement belongs to a Scope. Every Scope has a parent Scope unless
it is the root node. Therefore this chain can be constructed for every CASM IR object. The
common scope property is important for the Use Definition analysis pass to determine of an
update statement and a lookup instruction reside in a parallel or sequential common scope (see
Section 5.4.3).

5.4 Passes

The following sub-sections outline all current implemented passes of the optimizing compiler.

60

5.4.1 Framework Internal Passes

Intermediate Representation Pass

The Intermediate Representation pass generates the CASM IR from a typed AST of a rule body
specification. This pass is a compiler internal one, which can not be selected in the command
line of the CASM tool.

Register Renaming Pass

The Register Renaming pass re-writes all identifiers in a rule body specification. This is espe-
cially needed to achieve a SSA form for the CASM IR. The Intermediate Representation and
Loop Unwinding pass use this pass to rename let and local AST node identifier.

5.4.2 Printer Passes

As the name implies the printer passes can be used to output the internal representation of the
CASM input program in a specific format or view. Figure 5.4a, 5.4b and 5.4c show the hello
world example as AST, a CFG and the IR.

AST Printer Pass

The AST Printer pass prints the typed AST rule body specification to a file in Graphviz dot
format [26].

example

2
PARBLOCK

r2__
18227168

3
STATEMENTS

r3__
18227520

4
PRINT

r4__
18216640

7
STATEMENTS

r7__
18227872

5
LIST
r5__

18216896

6
str Hello, World!

r6__
18228384

8
UPDATE

r8__
18190736

9
LOOKUP

r9__
18228736

13
UNDEF
r13__

18197104

10
ident program

r10__
18200928

11
LIST
r11__

18201360

12
SELF
r12__

18201856

(a) AST

example

P1

P1

����������	
���������������

����
�����

�����������	
�����

�����

�����������	
�	��

����
���� ��!"�����#�������

��$

(b) CFG

1 example:
2 *PAR@1
3 +PrintStatement
4 r6__ = const ’Hello, World!’
5 print r6__
6 +UpdateStatement
7 r13__ = const undef
8 r12__ = const self
9 update program(r12__), r13__

(c) IR

Figure 5.4: CASM AST, CFG and IR of the Hello World Example

61

CHAPTER 5. CASM OPTIMIZATION FRAMEWORK

CFG Printer Pass

In the CFG Printer pass the CASM IR is iterated through an auxiliary function which performs
a forward flow iteration over the containing Statement objects. The printer generates a Graphviz
dot file and writes the CFG into this file.

IR Printer Pass

The IR Printer pass emits the CASM IR of a rule to the standard output stream.

5.4.3 Analysis Passes

Possible Update Pass

This pass acquires all update location function names. The pass is based on the typed AST and
simply traverses over the AST and searches for AST update nodes. Furthermore, if the analysis
finds a AST call node the analysis is aborted and all possible function names are returned.

Reaching Definition Pass

The Reaching Definition pass performs a classic DFA algorithm [1]. Whereas this analysis does
not detect the definition of variables, it is a modified implementation to acquire the sequential
view of all update statements in the CASM IR. The pass iterates in a forward flow through an
auxiliary function over all Statement objects. If a Statement object is a Update Statement a new
location definition is generated and all previous ones of the same name are deleted. This pass
does not consider the parallel execution semantics.

Use Definition Pass

In the Use Definition pass function lookups (uses) are mapped to the correct update (def) defi-
nitions. The definitions in the program flow are analyzed through the Reaching Definition pass.
The Use Definition pass iterates over all CASM IR instructions which considering the sequential
and parallel execution semantics and decides for each lookup if it has a global, local or merge
property. A global property means that a lookup has no definition in the Reaching Definition
result set and at run-time the lookup will always read the global state of the function. If there
is exactly one definition in the Reaching Definition result set for a lookup, the local property
is detected. At run-time a local lookup will receive the same value an update had stored to
the update-set before. If the Use Definition pass detects multiple definition sites for a function
lookup, a merge property is assigned to the lookup. If a function is updated twice or only in one
branch of an if-then-else statement, a later lookup will see both definition sites.

For the lookup local property it is important that the pass always checks in which common
scope the lookup and update are located (see Section 5.3.3). If the common scope is parallel, the
local lookup gets promoted to a global lookup, because when the only definition in a program
is detected to be a parallel definition, the lookup will never see this value, and will always
retrieve the global state of the function. If the common scope is sequential the local property

62

...
rule r =
{|
{
x := x + 1

}

if x = 10 then
{
x := 20

}

print x

print x
|}
...

1 ...
2 r:
3 *SEQ@1
4 *PAR@2
5 +UpdateStatement
6 r9__ = lookup x // global lookup of x
7 r10__ = const int 1 //
8 r8__ = add r9__, r10__ //
9 update x, r8__ // definition of x <---+ <-+ <--+

10 +IfStatement // | | |
11 r14__ = lookup x // local lookup of x --+ | |
12 r15__ = const int 10 // | |
13 r13__ = equ r14__, r15__ // | |
14 r12__ = if r13__ // | |
15 *PAR@3 // | |
16 +UpdateStatement // | |
17 r20__ = const int 20 // | |
18 update x, r20__ // definition of x <---+ <---+ |
19 +PrintStatement // | | | |
20 r24__ = lookup x // merge lookup of x --+---+ | |
21 print r24__ // | |
22 +PrintStatement // | |
23 r28__ = lookup x // merge lookup of x -------+--+
24 print r28__
25 ...

Figure 5.5: Use Definition Pass Example

stays a local property. If the definition is not an update but a call statement, the Use Definition
determines through the Possible Update pass if a statically known rule call has updates of a
specific function. If the lookup function is not contained in the result set, the Use Definition pass
uses the next definition of the location.

Figure 5.5 shows an example (left) and its Use Definition pass result (right). The first lookup
of x (line 6) has no previous definition and therefore this lookup equals a global lookup. In
line 11 the lookup of x is a local lookup, because in line 9 is a definition (update to x) and this
definition and the lookup have a sequential common scope which means that this lookup will
read exactly this updated value. In line 20 and 28 the lookups of x are both merge lookups,
because both lookups see both definitions of x at line 18 and 9. The reason for that is that the
Reaching Definition pass propagates both definitions to the two print statements, because of the
if statement with the optional update.

Definition Use Pass

The Definition Use pass is the inverse of the Use Definition pass which simply creates a pass
result with a map of Update Statement objects to multiple Lookup Instruction objects.

Conflict Update Pass

This pass is a simple verification pass which emulates the run-time update-set behavior and can
detect conflicting updates. If locations are fully specified, or the signature of an update equals
another update, the Conflict Update pass returns an error of the conflicting updates.

63

CHAPTER 5. CASM OPTIMIZATION FRAMEWORK

5.4.4 Transformation Passes

Case to If Conversion Pass

This AST-based transformation converts all AST case statement nodes into equivalent if-then-
else AST statements. Figure 5.6 shows an example Case To If Conversion transformation.

1 ...
2 case data of
3 1: diedie
4 2: print "2"
5 default: skip
6 endcase
7 ...

=)

1 ...
2 if data = 1 then
3 diedie
4 else
5 if data = 2 then
6 print "2"
7 else
8 skip
9 ...

Figure 5.6: Case To If Conversion Pass Example

Skip Removal Pass

The Skip Removal pass eliminates all AST skip statement nodes by traversing over the rule AST
body specification and removes all the AST nodes of type skip. This pass can be used to clean up
the AST of other transformations which insert skip statements to avoid multiple implementations
of the Skip Removal pass. Figure 5.7 outlines an example where a sequence of skip statements
is reduced to one skip statement. This transformed result can be optimized further by the Trivial
Block Removal pass.

1 ...
2 {|
3 skip
4 skip
5 skip
6 |}
7 ...

=)
1 ...
2 {|
3 skip
4 |}
5 ...

Figure 5.7: Skip Removal Pass Example

Trivial Block Removal Pass

Through the Trivial Block Removal pass it is possible to remove unnecessary nesting of parallel
and sequential composition blocks, or remove if, forall, iterate, etc. statements which only
consist of a skip statement. Therefore, a trivial block is replaced by a single skip statement which
enables the Skip Removal pass to remove this even further. Figure 5.8 presents an example were
three di↵erent trivial blocks are removed by the Trivial Block Removal pass. First, the forall
statement can be reduced to a skip statement since the inner statement is a skip statement.
Second, the sequential block can be removed because the only statement is a skip statement.
Third, the parallel block can be removed and replaced by a skip statement.

64

1 ...
2 {
3 {|
4 forall i in [0 .. 100] do
5 skip
6 }|
7 }
8 ...

=) 1 ...
2 skip
3 ...

Figure 5.8: Trivial Block Removal Pass Example

Dead Code Elimination Pass

This AST-based transformation removes every local definition which is not used inside a com-
position block. The pass removes especially let and local statements1 which were introduced
through the Constant Propagation pass (see Section 5.4.4). Figure 5.9 shows the result of an
example Dead Code Elimination pass.

1 ...
2 let tmp = 10 in
3 {
4 print "no tmp usage"
5 }
6 ...

=)
1 ...
2 {
3 print "no tmp usage"
4 }
5 ...

Figure 5.9: Dead Code Elimination Pass Example

Debuginfo Removal Pass

The Debuginfo Removal pass traverses over the AST and removes every debuginfo statement
specification by replacing it with a skip statement. The advantage of this transformation is that
by eliminating the debuginfo statement, all its expressions are eliminated too. If e.g. a function
is only used inside a debuginfo statement, it can be determined with the Use Definition analysis
that a function is only updated but never used so the complete function can be removed by the
Dead Function Elimination pass (see 5.4.4). Figure 5.10 shows an example transformation.

1 ...
2 debuginfo channelA x + y + z
3 debuginfo channelB (x + y + z)
4 ...

=) 1 ...
2 skip
3 skip
4 ...

Figure 5.10: Debuginfo Removal Pass Example

1local statements are currently not valid CASM syntax

65

CHAPTER 5. CASM OPTIMIZATION FRAMEWORK

Dead Function Elimination

The Dead Function Elimination pass allows to remove ‘updated-only’ functions from the pro-
gram. This transformation determines with the Use Definition pass if a function is used some-
where in the CASM program. If the function has no use in any rules, it can be removed. If
a function was defined in CASM and it is used in a provider it should be defined in the func-
tion specification as undead (see Section 3.2.3) otherwise this transformation will remove the
complete function, because the compiler framework can only analyze the CASM input program.
Figure 5.11 shows an example transformation.

1 CASM DF init foo
2 function x : -> Int
3 rule foo = skip

=) 1 CASM DF init foo
2 rule foo = skip

Figure 5.11: Dead Function Removal Pass Example

Inline Derived Expression Pass

All derived specifications are per-definition read-only and just simple expressions. The Inline
Derived Expression pass performs a ‘find-and-replace’ procedure which swaps the used derived
expression and the optional arguments AST node with a copy of the derived specification AST
and replaces the variable parameter with the expression arguments. Figure 5.12 illustrates an
example transformation.

1 derived macro = 1234
2 ...
3 let tmp = macro + macro in skip
4 ...

=) 1 derived macro = 1234
2 ...
3 let tmp = 1234 + 1234 in skip
4 ...

Figure 5.12: Inline Derived Expression Pass Example

Inline Rule Call Pass

Inline Rule Call pass replaces all static rule calls by the rule body specification AST. So this
transformation is AST-based. The arguments are bound to a let statement and are renamed. The
let statements inside of the rule is also renamed through the Register Renaming pass. Further-
more, always the original AST specification gets inserted. By original it is meant that previous
optimized rules have always the original rule body AST specification and the optimized AST
stored in the memory separately. Figure 5.13 shows an example transformation.

66

1 ...
2 rule bar(a : Int, b : Int) =
3 let x = a in
4 let y = b in
5 print (x + y)
6 ...
7 rule foo =
8 {
9 call bar(1, 2)

10 }
11 ...

=)

1 ...
2 rule bar(a : Int, b : Int) =
3 ...
4 rule foo =
5 {
6 let l0 = 1 in
7 let l1 = 2 in
8 {
9 let l2 = l1 in

10 let l3 = l2 in
11 print (l2 + l3)
12 }
13 }
14 ...

Figure 5.13: Inline Rule Call Pass Example

Loop Unwinding Pass

Static known sizes of the forall statement can be unwind with the Loop Unwinding pass into
multiple equal inner statement blocks. Every forall statement block variable gets replaced
by a concrete number or enumeration literal, because the forall statement can be specified
with number ranges or e.g. with the type name of an enumeration type which equals the range
over the enumeration. The forall statement gets first replaced by a parallel composition block,
because the execution semantics of a forall statement is always parallel. Figure 5.14 illustrates
an example transformation.

1 ...
2 forall i in [1 .. 3] do
3 reg(i) := reg(i-1)
4 ...

=)
1 ...
2 {
3 reg(1) := reg(1-1)
4 reg(2) := reg(2-1)
5 reg(3) := reg(3-1)
6 }
7 ...

Figure 5.14: Loop Unwinding Pass Example

Constant Propagation Pass

In the Constant Propagation pass all constant literals are detected and hoisted to the beginning
of a CASM program. To do so, this pass uses a new AST node type local to declare local rule
states which are constant in this case. By iterating over the CASM IR all constant literals are
directly visible through the Const Instruction pattern. A new constant gets created, hoisted to
the top and another occurrences will get replaced with the previously created local identifier.
This pass introduces a new AST node type namely local. A local state bounds an expression to
an identifier similar to a let statement. Figure 5.15 shows an example transformation.

67

CHAPTER 5. CASM OPTIMIZATION FRAMEWORK

1 ...
2 rule r =
3 {
4 let x = 10 in
5 let y = 20 in
6 let z = 5 in
7 print (5 + z + 20 + y + 10

+ x)
8 }
9 ...

=)

1 ...
2 rule r =
3 local c0 = 10 in
4 local c1 = 20 in
5 local c2 = 5 in
6 {
7 print (c2+c2 + c1+c1 + c0+c0)
8 }
9 ...

Figure 5.15: Constant Propagation Pass Example

Constant Folding Pass

The implementation of the Constant Folding pass itself is straight forward. In the CASM IR
a special interface is defined which allows direct implementation of the folding process at the
Instruction class definition. A similar concept is used in the LLVM compiler [43]. The interface
is called Foldable Instruction and the Constant Folding pass calls the implemented folding be-
havior if a CASM IR object uses this interface. Constant expressions, constant Shareds, constant
Built-ins and static function lookups are folded by this transformation. Figure 5.16 outlines an
example transformation.

1 function (static) x : -> Int
initially { 10 }

2 ...
3 rule r =
4 {
5 print hex(BVand(x, x, x / 2))
6 }
7 ...

=)

1 function (static) x : -> Int
initially { 10 }

2 ...
3 rule r =
4 {
5 print "F"
6 }
7 ...

Figure 5.16: Constant Folding Pass Example

Dead Branch Elimination

The Dead Branch Elimination pass removes in this IR-based transformation the dead branch of
an if statement. Furthermore, if the condition of a case statement is constant, the case state-
ment is replaced with the correct case of the case statement. Figure 5.17 illustrates an example
transformation.

68

1 ...
2 if true then
3 {
4 if false then
5 assert false
6 else
7 assert true
8 }
9 else

10 assert false
11 ...

=)
1 ...
2 {
3 assert true
4 }
5 ...

Figure 5.17: Dead Branch Elimination Pass Example

Redundant Lookup Elimination Pass

The CASM Redundant Lookup Elimination pass presented by Lezuo, Paulweber and Krall in
[49] removes all redundant lookups which were detected by the Use Definition pass. The pass
introduces local states to prevent further lookups of the same state. If two or more lookups have a
global property then they are hoisted to the first common scope all global lookups. If two or more
merge lookups are pointing to the same definition sites these lookups are replaced by inserting
one local state lookup and all other lookups retrieve the identifier of this local lookup. This
transformation is very powerful because it increases the performance of the compiled CASM
program by minimizing the accesses to the update-set structure which are costly.

1 ...
2 rule r =
3 {|
4 {
5 x := x + 1
6 }
7
8 if x = 10 then
9 {

10 x := 20
11 }
12
13 print x
14
15 print x
16 |}
17 ...

1 ...
2 rule r =
3 local l0 = x in
4 {|
5 local l1 = l0 + 1
6 {|
7 {
8 x := l1
9 }

10
11 if l1 = 10 then
12 {
13 x := 20
14 }
15 |}
16
17 local l2 = x in
18 {|
19 print l2
20
21 print l2
22 |}
23 |}
24 ...

Figure 5.18: Redundant Lookup Elimination Pass Example

Figure 5.18 outlines an example transformation. The same example was used to visualize
the Use Definition analysis pass (see Section 5.4.3). The Use Definition pass result is that the

69

CHAPTER 5. CASM OPTIMIZATION FRAMEWORK

first lookup (left, line5) is a global lookup, the second lookup (left, line 8) is a local lookup to
the previous update (left, line 5) and the third and fourth lookup (left, line 13 and 15) are merge
lookups, because of the if statement. The global lookup gets transformed to the local l0 (right,
line 3) and the actual lookup gets replaced by the l0 identifier. The update expression (left, line
5) gets also replaced by a local l1 (right, line 5 and 8). The local lookup uses now the bound
update expression from the local l1. The two merge lookups are redundant the local l2 is used
(right, line 17) to bind the lookup of x and reuse it in the two print statements.

Redundant Update Elimination Pass

The Redundant Update Elimination pass presented by Lezuo, Paulweber and Krall in [49] re-
moves all unnecessary updates which will be overridden by other updates or update-set merges
anyway. The current implementation iterates backwards over the CASM IR and starts to mem-
orize update functions. If the pass detects in a sequential composition an update with the same
location it gets removed. The implementation aborts if a branch or something equal is detected.
There are ongoing compiler developments to improve the update elimination by providing an
accurate analysis which calculates out the unnecessary updates. This pass allows keeping the
update-set of the run-time as small as possible. The performance increases significantly which
is shown in the following Chapter.

Figure 5.19 shows an example transformation. The functions x, y and z are updated twice in
a sequential block. Therefore the first three updates can be removed.

1 ...
2 rule r =
3 {|
4 x := x + 1
5 y := y + x + 1
6 z := z + y + x + 1
7
8 x := x * 2
9 y := y * x / 2

10 z := z - y * x / 2
11 |}
12 ...

=)

1 ...
2 rule r =
3 local l0 = x + 1 in
4 local l1 = y + l0 + 1 in
5 local l2 = z + l1 + l0 + 1 in
6 {|
7 local l3 = l0 * 2 in
8 {|
9 x := l3

10
11 local l4 = l1 * l3 / 2 in
12 {|
13 y := l4
14 z := l2 - l4 * l3 / 2
15 |}
16 |}
17 ...

Figure 5.19: Redundant Update Elimination Pass Example

70

CHAPTER 6
Evaluation

The evaluation chapter consists of three parts. Section 6.1 presents the performance of the
new compiler run-time and code generation. Section 6.2 covers the performance aspects of a
not optimized and an optimized CASM program through the compiler optimization framework.
The last Section 6.3 summarizes the performance of a real application.

6.1 Compiler

6.1.1 CASM Interpreter vs Legacy Compiler vs Compiler

In this section the quality of the new CASM run-time is evaluated by comparing it to the pro-
totype implementation from Lezuo [46] (aka legacy compiler) and to the interpreter implemen-
tation from Inführ [38]. All three implementations are using the same input programs to stress
several aspects of the CASM run-time.

The program matrix.casm implements simple 2-ary function modification with very small
update amounts. It operates over the function domain of 10 ⇥ 10 to stress the performance of
handling functions with multiple arguments. This program performs only 1000 ASM steps.
The program bubblesort is a naive implementation of the bubble sort algorithm. It is used to
analyze the performance of updating CASM function locations with a small update set. The
array which is sorted is a unary function with relation Int! Int and the used value domain of
the Int is [0, 30]. The program bubblesort-large implements the same program as bubblesort
but the used array range is [0, 90]. This large data-set shall outline the e↵ect of larger update-set
sizes per top-level rule invocation. The program fibonacci is a simple implementation of the
recursive definition of the fibonacci numbers. This program prints all fibonacci numbers until
the program reaches the fibonacci number 2014. The program rulecalls evaluates the indirect
rule call behavior. A function holds a counter which is interpreted as an address and through
this address a program memory function can be accessed which stores a rule reference which
shall be executed next. Like in a micro-architecture the called rule performs some operation and
writes the result back to the memory. This program executes 4095 ASM steps. The last example

71

CHAPTER 6. EVALUATION

program is trivial. It consists only of one rule and an update to terminate the program. The
execution time of this program equals the setup time of the run-time.

For benchmarking a 64-bit Gentoo Linux-based host system is used with an Intel Core i5 at
1.80 GHz1. Additionally the CASM tool2 (interpreter, legacy compiler and compiler) and GCC
C compiler3 is used. In this section no CASM optimizations are performed, because the focus
is only one the run-time and code generation of the new implementation. The influence of the
performed C optimizations is considered. All the above mentioned programs are executed with
the interpreter (abbr. casmi), the legacy compiler (abbr. casmc++) and the CASM compiler
(abbr. casm). The generated code is compiled twice – without (abbr. -O0) and with (abbr. -O3)
C compiler optimizations.

As mentioned in the CASM kernel description (see Section 4.2.4), in the new run-time it is
possible to configure the update-set size. In the following evaluation the casm uses the default
update-set size and casm-us uses the specific update-set size. The configured update-set size
value is 1000 updates. Table 6.1 shows the execution times of all generated programs for their
-O0 and -O3 setting and also the execution time of the CASM interpreter.

[s] [s] [s] [s] [s] [s]
[s] casmc++ casmc++ casm casm-us casm casm-us

Benchmark casmi -O0 -O3 -O0 -O0 -O3 -O3
matrix 21.2951 4.7028 0.7245 0.6987 0.6261 0.2273 0.1442
bubblesort-large 3.6065 1.0286 0.1285 0.1688 0.0849 0.1112 0.0275
fibonacci 0.7351 0.0181 0.0075 0.0865 0.0032 0.0863 0.0025
rulecalls 0.1711 0.0486 0.0133 0.0893 0.0129 0.0871 0.0099
bubblesort 0.0238 0.0077 0.0034 0.0868 0.0020 0.0844 0.0017
trivial 0.0069 0.0025 0.0026 0.0839 0.0015 0.0851 0.0016

Table 6.1: Benchmark of CASM Interpreter/Legacy Compiler/Compiler

The programs are sorted descending to the execution time from casmi. The interpreter (as ex-
pected) needs the most time to perform all the benchmark programs. Depending on the produced
update-set sizes the execution time of the casmc++ and casm di↵er a lot. If small update-set sizes
are involved (fibonacci, rulecalls, bubblesort and trivial) the casmc++ -O0, casmc++ -O3 and
casmi are faster than the casm -O0 and casm -O3. But if the measured setup time in trivial is
almost equally big as the execution time it can be observed that the creation of a predefined huge
update-set (matrix and bubblesort-large) needs all the execution time. This is confirmed by the
execution times from casm-us -O0 and casm-us -O3, because now the setup is really short. The
used starting update-set size is 1000.

In the trivial program the di↵erence from casmi to casm-us -O3 is about a factor of 4.3 and
from casmc++ -O3) to casm-us -O3 about a factor of 1.6. The simple fibonacci program di↵ers

1uname -a: GNU/Linux air 3.9.0-gnu #2 SMP x86_64 Intel(R) Core(TM) i5-3427U CPU @ 1.80GHz
2casm –version: 2724b59 Mon Mar 17 12:35:36 CET 2014
3gcc –version: gcc (Gentoo 4.7.1 p1.5, pie-0.5.3) 4.7.1

72

from casmi to casm-us -O3 about a factor of 294 (!) and the fastest compilation from legacy
and normal compiler about a factor of 3. More impressive are the result di↵erences for bigger
update-set sizes. In the example matrix, a factor of 147 is between casmi and casm-us -O3.
casmc++ -O3 and casm-us -O3 di↵er about a factor of 5. Figure 6.1 shows the comparison of
all executions with casm-us -O3 as baseline.

matrix
bubblesort-large

fibonacci

rulecalls

bubblesort

trivial

101

102

14
7.

68

13
1.

15

29
4.

04

17
.2

8

14

4.
31

32
.6

1

37
.4

7.
24

4.
91

4.
53

1.
56

5.
02

4.
67

3

1.
342 1.

63

4.
85 6.

14

34
.6

9.
02

51
.0

6

52
.4

4

4.
34

3.
09

1.
28

1.
3

1.
18

1.
11.

58

4.
04

34
.5

2

8.
8

49
.6

5

53
.1

9

Fa
ct

or
sl

ow
er

th
an

ca
sm

-u
s

-O
3

(lo
g 1

0)

casmi casmc++ -O0 casmc++ -O3 casm -O0 casm-us -O0 casm -O3

Figure 6.1: Execution Time Comparison of CASM Interpreter/Legacy Compiler/Compiler

6.1.2 AsmL vs CoreASM vs CASM

Lezuo, Paulweber and Krall present in [49] an evaluation of the not optimizing CASM compiler
(abbr. casm) by comparing it to the CASM interpreter (abbr. casmi), the AsmL compiler and
the CoreASM interpreter. Similar programs are used as in Section 6.1.1.

The program quicksort implements a quick sort algorithm to sort an array. It performs many
steps with small update-set sizes. The program sieve implements Eratosthenes famous prime
number sieve. The benchmark gray calculates Gray codes of arbitrary word lengths. The pro-
gram fibonacci uses a dynamic programming approach to calculate the Fibonacci numbers. bub-
blesort implements the bubble sort algorithm to sort an array. The program trivial implements no
behavior at all. It is used to evaluate the setup time of the ASM implementations. Furthermore,
for all examples except trivial exists two variants. One with a small and a large data set. The
small data set variants are used to evaluate CoreASM and CASM. The large data set variants are
used to evaluate AsmL and CASM. Table 6.2 shows the measured execution times.

The results of the benchmark especially for the AsmL compiler are varying a lot. For sorting
and simple programs like bubblesort, quicksort and fibonacci the AsmL compiler is slower only

73

CHAPTER 6. EVALUATION

[s] [s] [s] [s]
Benchmark AsmL CoreASM casmi casm
quicksort - 32.51 0.021 0.0842
quicksort-large 3.063 - 35.41 0.5860
sieve - 13.82 0.100 0.0857
sieve-large 74.39 - 1.050 0.0822
gray - 57.61 0.229 0.0882
gray-large 24.37 - 40.83 0.7702
fibonacci - 67.24 0.011 0.0854
fibonacci-large 4.175 - 79.17 3.0436
bubblesort - 213.6 0.047 0.0859
bubblesort-large 5.275 - 95.43 2.5458
trivial 0.129 1.360 0.005 0.0865

Table 6.2: Execution Times of AsmL, CoreASM and CASM [49]

about a factor of 2 to 5. But the sieve benchmark results show that the CASM compiler performs
over a factor of 900 better than AsmL. The interpreter CoreASM does not vary so much but e.g.
the bubblesort program is over 2480 times slower than the CASM compiler. Figure 6.2 shows
the relative performance of the benchmark programs with the CASM compiler as baseline.

trivial
sieve

quicksort

gray
fibonacci

bubblesort

100

101

102

103
1.

82

90
5.

1

5.
23

31
.6

4

1.
372.

07

15
.7

3

16
1.

29 38
6.

11

65
3.

27

78
7.

362,
48

6.
85

12
.7

3

60
.4

2

53
.0

1

26
.0

1

37
.4

9

Fa
ct

or
sl

ow
er

th
an

ca
sm

(lo
g 1

0)

AsmL CoreASM casmi

Figure 6.2: Execution Time Comparison of AsmL, CoreASM and CASM [49]

74

6.2 Optimizing Compiler

The same host system is used for the evaluation of the optimizing compiler. The CASM compiler
and GCC C compiler are the same as in Section 6.1.

The execution time baseline is the casm -O0 and with no activated CASM optimizations. The
optimization focus is especially on the Redundant Lookup Elimination and Redundant Update
Elimination pass. All other passes are also activated to achive maximal lookup and update
eliminations, because some passes are needed to resolve a forall for better copy propagation
etc.

The benchmark program compsim (compiled simulation or synthesized simulation [25]) is
a very important benchmark application. It is a conceptual model of an ISS of a pipelined
micro-architecture [12]. Furthermore, the compiled ISS model does not execute arbitrary input
programs. A specific application is translated (compiled) to CASM source code and combined
with the ISS which is also described in CASM source code. Such models are used by Lezuo
[45] to evaluate di↵erent MIPS micro-architectures.

The ISA of the example program compsim consists of three instructions which are modeled
through rules (abbr. instr.). The instruction cycle is modeled by the rules fetch, execute and step.
Such compiled simulation models consists of basic blocks which contain a sequence of rule
calls to the instruction cycle rules in a sequential composition block. The compsim benchmark
consists of only one rule named bb_X which represents an example basic block rule with six
times invoking the instruction cycle rules. This rule is called multiple times from the CASM
kernel which simulates the model cycles. This rule is the focus of the optimization. Table 6.3
summarizes the run-time costs of lookups and updates in the di↵erent rules and the total for the
bb_X rule.

Rule Lookups Updates Calls
fetch 0 1 0
execute 3 0 2
step 2 2 0
instr. 2 2 0
bb_X 144 48 -

Table 6.3: Run-Time Costs of compsim Rule bb_X

Due to the sequences of the rule calls to the instruction cycle rules in the bb_X rule, the
optimizing compiler is able to remove redundant lookups and updates of the used pipeline which
is modeled as a CASM function. Table 6.4 presents the pass statistics (see Section 5.2.2) and
optimization results of the used passes to optimize the program compsim.

During the optimization of the compsim program, the compiler spends over 75% of the time
in analyses. Additionally, 17.50 % of the time is spent in constructing the CASM IR. The results
show that over 1000 AST nodes were modified (abbr. Modif.) in this small example application.

The Redundant Lookup Elimination pass removes 38 lookups and the Redundant Update

75

CHAPTER 6. EVALUATION

[#] [ms] [%] [#] [%]
Compiler Pass Runs Time Time Modif. Modif.
Redundant Update Elimination 2 0.340 0.18 15 1.39
Redundant Lookup Elimination 5 1.669 0.88 38 3.52
Use Definition 6 75.916 40.15 0 0.00
Dead Code Elimination 7 0.545 0.29 3 0.28
Reaching Definition 6 69.271 36.63 0 0.00
Inline Rule Statement 10 0.395 0.21 48 4.44
Constant Propagation 16 2.671 1.41 398 36.82
Inline Derived Expression 8 0.706 0.37 0 0.00
Case To If Conversion 8 0.113 0.06 0 0.00
Loop Unwinding 9 0.268 0.14 6 0.56
Intermediate Representation 21 33.096 17.50 0 0.00
Constant Folding 18 2.831 1.50 227 21.00
Dead Branch Elimination 10 0.768 0.41 75 6.94
Trivial Block Removal 18 0.461 0.24 271 25.07
Skip Removal 5 0.041 0.02 0 0.00
Total 151 189.117 100.00 1081 100.00

Table 6.4: Pass Statistics of Optimized compsim Rule bb_X

Elimination removes 15 updates. These numbers seem quite small compared to the calculated
run-time costs of produced updates and performed lookups in the bb_X rule from Table 6.3.
But the impact is impressive which is shown in the following paragraphs. All other changes of
the AST like the Copy Propagation pass which modifies 398 AST nodes is needed to support
the redundant elimination passes. Especially the Dead Branch Elimination promotes the Use
Definition analysis pass results. Figure 6.3 visualizes the usage in percent of pass iterations,
optimization times and modifications of AST nodes4.

The generated program, not optimized (abbr. casm) and optimized (abbr. opt. casm), is
compiled to C twice with use of the optimization flags -O0 and -O3. The binaries are executed
several times with di↵erent upper bound of CASM kernel steps (see Section 4.2.4). The ASM
kernel steps equal the ISS model cycles. Table 6.5 summarizes the execution times of all four
di↵erent compiled compsim programs.

By comparing casm -O0 and opt. casm -O0 it can be observed that the presented transfor-
mations (see Section 5.4) perform very well. The optimized version is 4 times faster than the
not optimized version. Both examples do not use any C compiler optimization. By comparing
casm -O0 and casm -O3 it can be observed that the C compiler with all optimizations enabled
achieves only a speedup factor of 3.5. By enabling all optimizations (opt. casm -O3), CASM
compiler and C compiler, the execution is about a factor 10 faster.

The direct comparison of casm -O3 and opt. casm -O3 concludes that the CASM optimiza-

4the passes Case To If Conversion, Definition Use and Skip Removal are not visualized in the figure

76

ConstantFolding

ConstantPropagation

DeadBranchElimination

DeadCodeElimination

InlineDerivedExpression

InlineRuleStatement

IntermediateRepresentation

LoopUnwinding

ReachingDefinition

RedundantUpdateElimination

RedundantLookupElimination

TrivialBlockRemoval

UseDefinition

100

101

11
.9

2

10
.6

6.
62

4.
64 5.
3 6.

62

13
.9

1

5.
96

3.
97

1.
32

3.
31

11
.9

2

3.
97

1.
5

1.
41

0.
41

0.
29 0.

37

0.
21

17
.5

0.
14

36
.6

3

0.
18

0.
88

0.
24

40
.1

4

21

36
.8

2

6.
94

0.
28

4.
44

0.
56

1.
39

3.
52

25
.0

7

U
sa

ge
[%

]

pass iterations optimization time AST modifications

Figure 6.3: Pass Statistics of Optimized compsim

[model cycles] [s] [s] [s] [s]
compsim casm -O0 casm -O3 opt. casm -O0 opt. casm -O3
100000 2.0728 0.6403 0.5505 0.2774
250000 5.0680 1.4976 1.2325 0.5109
500000 10.0045 2.8505 2.3760 0.9296
1000000 19.8885 5.6083 5.6300 1.8677
2500000 49.4895 13.7084 11.7069 4.3579
5000000 100.5347 28.0327 23.0430 8.6518
10000000 200.6449 55.5215 50.1825 17.1121

Table 6.5: Benchmark of compsim

tions improve the execution speed by a factor 3. Furthermore, by increasing the CASM kernel
steps the speedup factor especially for the opt. casm -O3 execution has an increasing tendency.
Figure 6.4 visualizes the speedup factors of all compsim versions compared to the not optimized
version (casm -O0) as baseline.

77

CHAPTER 6. EVALUATION

1 2.5 5 10 25 50 100
0

5

10
3.

24 3.
38 3.
56

3.
57

3.
61

3.
59

3.
613.
79 4.
11 4.
24

4.
28

4.
23 4.
36

4

8.
1

9.
92

10
.8

9

10
.5

9

11
.3

6

11
.6

2

11
.7

3

CASM Kernel Steps [⇥ 105]

Fa
ct

or
fa

st
er

th
an

ca
sm

-O
0

casm -O3 opt. casm -O0 opt. casm -O3

Figure 6.4: Execution Time Speedup of compsim

6.3 MIPS Instruction Set Simulator
Lezuo uses in [45] a MIPS ISS functional (abbr. smips), forwarded pipeline (abbr. mips) and
bubbled pipeline (abbr. bmips) model. First evaluations were performed by Lezuo in [48] with
the CASM legacy compiler. Those benchmark results achieved for the smips ⇡ 1 MHz, the mips
⇡ 50 kHz and the bmips ⇡ 40 kHz simulation speed. The new CASM compiler has been used
in [45] to re-evaluate all the benchmarks from [48]. The results with the new CASM compiler
achieves for the smips ⇡ 2.47 MHz, the mips ⇡ 256 kHz and the bmips ⇡ 224 kHz simulation
speed.

Furthermore, Lezuo presents in [45] the compiled simulation of the three MIPS models. All
models are optimized by the CASM optimization framework and the evaluation of those really
huge programs (over 1000 to 5000 rules) show performance gains of factor 2 to 3.

78

CHAPTER 7
Conclusion

First this thesis presents the ASM-based general purpose programming language CASM. For
this language there exists an all-in-one tool which includes numeric and symbolic execution,
and an optimizing source-to-source compiler which emits C code. The new run-time and code
generator supports the complete CASM syntax.

The main contribution of this thesis is the design and implementation of the new CASM run-
time, code generator, optimization framework and its optimization analysis and transformation
passes.

For the run-time and code generator part the novel idea is to represent n-ary CASM functions
through a branded hash-map data-structure (see Section 4.2.2). Furthermore, the idea to imple-
ment a specialized update-set structure similar to a linked hash-map data-structure improved the
overall update handling, forking, merging, applying and the general run-time significantly (see
Sections 4.2.3 and 6.1).

In the optimization framework part, the idea to construct a specialized CASM IR from the
typed AST enables very powerful analyses and transformations. The CASM IR includes a
PAR/SEQ Control Flow Graph forward flow iteration which enables the very powerful CASM
specific Use Definition analysis pass (see Section 5.4.3). This analysis information is used in the
Redundant Lookup Elimination transformation pass (see Section 5.4.4) to minimize the amount
of location lookups into the update-set of the run-time.

The evaluation in Chapter 6 shows the new compiler implementation performance and op-
timization impact. With the optimization framework the execution speed of a CASM program
increases significantly.

79

CHAPTER 7. CONCLUSION

7.1 Future Work
The following sections are outlining further improvements and ideas for the CASM compiler
and its optimization framework.

7.1.1 Run-Time & Code Generation

In the run-time, the memory allocator (see Section 4.2.1) can be even further improved by dif-
ferent memory allocation/deallocation algorithms. Furthermore, the current implementation of
the List type is copy-based which introduces huge drawbacks regarding memory consumption.

Another idea is to generate the C code from the CASM IR, because currently the C code is
generated from the typed AST. If the AST changes, the construction of the CASM IR in the
Intermediate Representation pass (see Section 5.4.2) and the C code generator (see Section 4.3)
has to be adopted, because both use the AST as input representation.

7.1.2 Optimizations

During the work of this thesis some new optimization ideas came up. The following subsections
give a short overview of new analyses and transformations for the CASM compiler.

Top-Level Rule Pass A Top-Level Rule pass could analyze the top-level rule calls of the CASM
kernel. It could detect if the top-level rule never gets undefined and the execution behavior
results in an infinite loop.

Integer Range Detection Pass To further improve the lookup and update behavior of not ranged
Int types an Integer Range Detection pass similar to the ABCD algorithm [8] can be im-
plemented which determines the smallest possible range for a CASM function over all
rules.

Integer Range Check Elimination Pass With the analysis information from the Integer Range
Detection pass, the Integer Range Check Elimination pass removes partially the built-in
range checking for accessing function arguments and updating the co-domain of a func-
tion.

Integer Function Domain Modification Pass The Integer Function Domain Modification pass
can use the analysis information from the Integer Range Detection pass to limit globally
the function domain to a specific range, which will improve the generated code and the
execution time significantly.

Location Address Propagation Pass Due to the concept of memory location fixed addresses
in the run-time (see Section 4.2.2) a specific location address can be ‘bu↵ered’ to avoid
re-calculations in the run-time.

Update Pseudo-State Modification Pass Every update is inserted into the update-set with a
corresponding pseudo-state counter value. This value has to be incremented in each merge
which implies that if an update is nested very deeply it is decremented by the nesting

80

depth. The Update Pseudo-State Modification could ‘mark’ an update to be inserted at a
specific position in the update-set linked hasp-map structure to minimize the decrement
cycles at every update-set merge operation (see Section 4.2.3).

81

A
Appendix

A.1 List of Acronyms
API Application Programming Interface
ASM Abstract State Machine
ASM-SL Abstract State Machine-based Specification Language
ASMETA ASM mETAmodelling framework
AST Abstract Syntax Tree
C3Pro Correct Compilers for Correct Application Specific Processors
CASM Corinthian Abstract State Machine
CCS Calculus of Communication Systems
CFG Control Flow Graph
CPU Central Processing Unit
DFA Data-Flow Analysis
EBNF Extended Backus-Naur Form
ELF Executable and Linking Format
GCC GNU Compiler Collection
GNU GNU’s Not Unix
IR Intermediate Representation
ISA Instruction Set Architecture
ISS Instruction Set Simulator
LLVM Low Level Virtual Machine
LOC Lines Of Code
MDA Model Driven Architecture
MOF Meta-Object Facility
OMG Object Management Group
OS Operating System
RAM Random Access Memory
SML Standard Meta-Language

83

A. APPENDIX

SMT Satisfiability Modulo Theories
SSA Single Static Assignment
STL Standard Template Library
TASM Timed Abstract State Machine
UID Unique Identifier
VHDL Very High Speed Integrated Circuit Hardware Description Language
VDM Vienna Development Method
XASM eXtensible Abstract State Machine
XMI XML Metadata Interchange
XML Extensible Markup Language

A.2 List of Listings
3.1 CASM Hello World Example . 11
3.2 Output of the Hello World Example . 12
3.3 CASM Swap Example . 12
3.4 Output of the Swap Example . 13
3.5 Enumeration Examples . 17
3.6 Derived Expression Examples . 17
3.7 Function Examples . 19
3.8 Program Function . 19
3.9 Rule Examples . 20
3.10 Case Example . 21
3.11 Forall example . 22
4.1 Pseudo State Counter . 34
4.2 Generic Type . 38
4.3 Shared BVand Definition Example . 44
4.4 Provided function example . 45
4.5 CASM Counter Example . 54
4.6 Counter Example Rule main C Code . 54
5.1 Example Pass Statistics . 57
5.2 CASM Example Update . 59
5.3 CASM IR of Example Update . 59

84

A.3 List of Figures

4.1 CASM Interpreter and Compiler Structure . 30
4.2 CASM Run-Time Components . 31
4.3 CASM Branded Hash-Map Function Structure . 33
4.4 CASM Linked Hash-Map Update-Set Structure 36
4.5 CASM Code Generation Process . 49

5.1 CASM Optimization Framework . 55
5.2 CASM Pass Pipeline Execution . 56
5.3 CASM IR Structure . 58
5.4 CASM AST, CFG and IR of the Hello World Example 61
5.5 Use Definition Pass Example . 63
5.6 Case To If Conversion Pass Example . 64
5.7 Skip Removal Pass Example . 64
5.8 Trivial Block Removal Pass Example . 65
5.9 Dead Code Elimination Pass Example . 65
5.10 Debuginfo Removal Pass Example . 65
5.11 Dead Function Removal Pass Example . 66
5.12 Inline Derived Expression Pass Example . 66
5.13 Inline Rule Call Pass Example . 67
5.14 Loop Unwinding Pass Example . 67
5.15 Constant Propagation Pass Example . 68
5.16 Constant Folding Pass Example . 68
5.17 Dead Branch Elimination Pass Example . 69
5.18 Redundant Lookup Elimination Pass Example . 69
5.19 Redundant Update Elimination Pass Example . 70

6.1 Execution Time Comparison of CASM Interpreter/Legacy Compiler/Compiler . . . 73
6.2 Execution Time Comparison of AsmL, CoreASM and CASM [49] 74
6.3 Pass Statistics of Optimized compsim . 77
6.4 Execution Time Speedup of compsim . 78

85

A. APPENDIX

A.4 List of Tables

3.1 Unary Logic Operator Semantics . 24
3.2 Binary Logic and Arithmetic Operator Semantics 24

4.1 C type mapping of CASM value field types . 39
4.2 CASM Target C File Layout . 49

6.1 Benchmark of CASM Interpreter/Legacy Compiler/Compiler 72
6.2 Execution Times of AsmL, CoreASM and CASM [49] 74
6.3 Run-Time Costs of compsim Rule bb_X . 75
6.4 Pass Statistics of Optimized compsim Rule bb_X 76
6.5 Benchmark of compsim . 77

86

Bibliography

[1] Alfred V Aho, Monica S Lam, Ravi Sethi, and Je↵rey D Ullman. Compilers: Principles, Tech-
niques, & Tools, volume 1009. Pearson/Addison Wesley, 2007.

[2] Matthias Anlau↵. XASM - An Extensible, Component-Based Abstract State Machines Language.
In Abstract State Machines, Lecture Notes in Computer Science, pages 69–90. Springer, 2000.

[3] Nikolas Askitis. Fast and Compact Hash Tables for Integer Keys. In Proceedings of the Thirty-
Second Australasian Conference on Computer Science-Volume 91, pages 113–122. Australian Com-
puter Society, Inc., 2009.

[4] Phil Bagwell. Fast And Space E�cient Trie Searches. Technical report, 2000.

[5] Phil Bagwell. Ideal Hash Trees. Es Grands Champs, 1195, 2001.

[6] Masanori Bando and H Jonathan Chao. FlashTrie: Hash-based Prefix-Compressed Trie for IP Route
Lookup Beyond 100Gbps. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[7] Rajkishore Barik and Vivek Sarkar. Interprocedural Load Elimination for Dynamic Optimization
of Parallel Programs. In Parallel Architectures and Compilation Techniques, 2009. PACT’09. 18th
International Conference on, pages 41–52. IEEE, 2009.

[8] Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. ABCD: Eliminating Array Bounds Checks on
Demand. In ACM SIGPLAN Notices, volume 35, pages 321–333. ACM, 2000.

[9] Egon Börger. The Origins and the Development of the ASM Method for High Level System Design
and Analysis. Journal of Universal Computer Science, 8(1):2–74, 2002.

[10] Egon Börger. The Abstract State Machines Method for High-Level System Design and Analysis.
In Formal Methods: State of the Art and New Directions, pages 79–116. Springer, 2010.

[11] Egon Börger and Joachim Schmid. Composition and Submachine Concepts for Sequential ASMs.
In Computer Science Logic, pages 41–60. Springer, 2000.

[12] Florian Brandner, Nigel Horspool, and Andreas Krall. DSP instruction set simulation. In Handbook
of Signal Processing Systems, pages 945–974. Springer, 2013.

[13] Ulrich Breymann. Designing Components with the C++ STL. Addison-Wesley, 1998.

[14] C3Pro - Correct Compilers for Correct Application Specific Processors. http://www.complang.
tuwien.ac.at/c3pro. Accessed: 2013-02-15.

87

http://www.complang.tuwien.ac.at/c3pro
http://www.complang.tuwien.ac.at/c3pro

BIBLIOGRAPHY

[15] CoreASM - Main Page. http://sourceforge.net/apps/mediawiki/coreasm. Accessed:
2014-02-14.

[16] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry Standard API for Shared-Memory
Programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

[17] Chirag Dave, Hansang Bae, Seung-Jai Min, Seyong Lee, Rudolf Eigenmann, and Samuel Mid-
ki↵. CETUS: A SOURCE-TO-SOURCE COMPILER INFRASTRUCTURE FOR MULTICORES.
Computer, 42(12):36–42, 2009.

[18] Saumya K Debray. On Copy Avoidance in Single Assignment Languages. In ICLP, pages 393–407,
1993.

[19] Giuseppe Del Castillo. The ASM Workbench: an Open and Extensible Tool Environment for Ab-
stract State Machines. In Workshop on Abstract State Machines, pages 139–154. Citeseer, 1998.

[20] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou So↵a. A practical framework for demand-driven
interprocedural data flow analysis. ACM Transactions on Programming Languages and Systems
(TOPLAS), 19(6):992–1030, 1997.

[21] Eclipse Project Homepage. http://www.eclipse.org. Accessed: 2014-02-24.

[22] Stephen A Edwards. SHIM: A Language for Hardware/Software Integration. Synchronous
Programming-SYNCHRON’04, pages 1–6, 2004.

[23] Daniel J Ernst, Daniel E Stevenson, and Paul J Wagner. Hybrid and Custom Data Structures:
Evolution of the Data Structures Course. ACM SIGCSE Bulletin, 41(3):213–217, 2009.

[24] Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Glässer. CoreASM: An Extensible ASM Execution
Engine. Fundamenta Informaticae, 77(1):71–103, 2007.

[25] Stefan Farfeleder, Andreas Krall, and Nigel Horspool. Ultra fast cycle-accurate compiled emulation
of inorder pipelined architectures. Journal of Systems Architecture, 53(8):501–510, 2007.

[26] Emden R Gansner. Drawing Graphs with Graphviz. Technical report, Technical report, AT&T Bell
Laboratories, Murray, 2009.

[27] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A Metamodel-based Language and
a Simulation Engine for Abstract State Machines. J. UCS, 14(12):1949–1983, 2008.

[28] Lars Marius Garshol. BNF and EBNF: What are they and how do they work? acedida pela última
vez em, 16, 2005.

[29] GCC, the GNU Compiler Collection. http://gcc.gnu.org/. Accessed: 2014-03-08.

[30] Arthur M Geo↵rion. The SML Language for Structured Modeling: Levels 1 and 2. Operations
Research, 40(1):38–57, 1992.

[31] Sabine Glesner. An ASM Semantics for SSA Intermediate Representations. In Abstract State
Machines 2004. Advances in Theory and Practice, pages 144–160. Springer, 2004.

[32] Yuri Gurevich. Evolving Algebras 1993: Lipari Guide. Specification and Validation Methods, pages
9–36, 1995.

88

http://sourceforge.net/apps/mediawiki/coreasm
http://www.eclipse.org
http://gcc.gnu.org/

[33] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic essence of AsmL. Theoretical
Computer Science, 343(3):370–412, 2005.

[34] Yuri Gurevich and Nikolai Tillmann. Partial Updates: Exploration. Journal of Universal Computer
Science, 7(11):917–951, 2001.

[35] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The C# Programming Language. Adobe
Press, 2006.

[36] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph Fasel, María M
Guzmán, Kevin Hammond, John Hughes, Thomas Johnsson, et al. Report on the Programming
Language Haskell: A Non-strict, Purely Functional Language Version 1.2. ACM SigPlan notices,
27(5):1–164, 1992.

[37] James K Huggins and Wuwei Shen. The Static and Dynamic Semantics of C. In Local Proc. Int.
Workshop on Abstract State Machines, pages 272–284, 2000.

[38] Dominik Inführ. AST interpreter for CASM. Bachelor’s thesis, Vienna University of Technology,
Karlsplatz 13, 1040 Vienna, 2013.

[39] Mark P. Jones. GOFER Gofer 2.28 release notes. Departement of Computer Science, Yale Univer-
sity, Februar, 1993.

[40] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. {Java}(TM) Language Specification.
Addison-Wesley, 2000.

[41] Brian W Kernighan, Dennis M Ritchie, and Per Ejeklint. The C Programming Language, volume 2.
Prentice-Hall Englewood Cli↵s, 1988.

[42] David J Kuck, Robert H Kuhn, David A Padua, Bruce Leasure, and Michael Wolfe. DEPENDENCE
GRAPHS AND COMPILER OPTIMIZATIONS. In Proceedings of the 8th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 207–218. ACM, 1981.

[43] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Anal-
ysis & Transformation. In Code Generation and Optimization, 2004. CGO 2004. International
Symposium on, pages 75–86. IEEE, 2004.

[44] Michael E Lesk and Eric Schmidt. Lex: A Lexical Analyzer Generator, 1975.

[45] Roland Lezuo. Scalable Translation Validation. Dissertation, Vienna University of Technology,
Karlsplatz 13, 1040 Vienna, 2014.

[46] Roland Lezuo, Gergö Barany, and Andreas Krall. CASM: Implementing an Abstract State Machine
based Programming Language. In Software Engineering (Workshops), pages 75–90, 2013.

[47] Roland Lezuo and Andreas Krall. A Unified Processor Model for Compiler Verification and Simu-
lation Using ASM. In ABZ, Lecture Notes in Computer Science, pages 327–330. Springer, 2012.

[48] Roland Lezuo and Andreas Krall. Using the CASM language for simulator synthesis and model ver-
ification. In Proceedings of the 2013 Workshop on Rapid Simulation and Performance Evaluation:
Methods and Tools, RAPIDO ’13, pages 6:1–6:8, New York, NY, USA, 2013. ACM.

89

BIBLIOGRAPHY

[49] Roland Lezuo, Philipp Paulweber, and Andreas Krall. CASM - Optimized Compilation of Abstract
State Machines. ACM SIGPLAN Conference on Languages, Compilers and Tools for Embedded
Systems (LCTES), 2014.

[50] LLVM’s Analysis and Transform Passes. http://llvm.org/docs/Passes.html. Accessed:
2013-02-20.

[51] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu. Register Promotion by
Sparse Partial Redundancy Elimination of Loads and Stores. In ACM SIGPLAN Notices, volume 33,
pages 26–37. ACM, 1998.

[52] Microsoft Research - AsmL: Abstract State Machine Language. http://research.microsoft.
com/en-us/projects/asml. Accessed: 2014-02-16.

[53] Steven S. Muchnick. Advanced compiler design implementation. 1997.

[54] Diego Novillo. Tree SSA A New Optimization Infrastructure for GCC. In Proceedings of the 2003
GCC Developers’ Summit, pages 181–193, 2003.

[55] Gerard O’Regan. Vienna Development Method. Mathematical Approaches to Software Quality,
pages 92–108, 2006.

[56] Martin Ouimet, Kristina Lundqvist, and Mikael Nolin. The Timed Abstract State Machine Lan-
guage: An Executable Specification Language for Reactive Real-Time Systems. RTNS’07, page 15,
2007.

[57] Overview: Abstract State Machine Metamodel (AsmM, Asmeta). http://asmeta.
sourceforge.net/. Accessed: 2014-02-13.

[58] Dan Quinlan and Chunhua Liao. The ROSE Source-to-Source Compiler Infrastructure. In Cetus
Users and Compiler Infrastructure Workshop, in conjunction with PACT 2011, October 2011.

[59] J. Schmid. Introduction to AsmGofer, 2001.

[60] Joachim Schmid. Compiling Abstract State Machines to C++. Journal of Universal Computer
Science, 7(11):1068–1087, 2001.

[61] Michael D Smith and Glenn Holloway. An Introduction to Machine SUIF and Its Portable Libraries
for Analysis and Optimization. Division of Engineering and Applied Sciences, Harvard University,
2002.

[62] Richard M Stallman. Using and Porting the GNU Compiler Collection. Free Software Foundation,
51:02110–1301, 1989.

[63] Jürgen Teich, Philipp W Kutter, and Ralph Weper. Description and Simulation of Microprocessor
Instruction Sets Using ASMs. In Abstract State Machines-Theory and Applications, pages 266–286.
Springer, 2000.

[64] Stefanus Du Toit. Working Draft, Standard for Programming Language C++. Technical report,
Technical Report, 2013.

[65] Guido Van Rossum and Fred L Drake. Python Language Reference Manual. Network Theory, 2003.

90

http://llvm.org/docs/Passes.html
http://research.microsoft.com/en-us/projects/asml
http://research.microsoft.com/en-us/projects/asml
http://asmeta.sourceforge.net/
http://asmeta.sourceforge.net/

[66] Ton Vullinghs, Wolfram Schulte, and Thilo Schwinn. An Introduction to TkGofer. Univ., Fak. für
Informatik, 1996.

[67] What is AsmGofer. http://www.tydo.de/doktorarbeit/asmgofer. Accessed: 2014-02-15.

[68] Robert P Wilson, Robert S French, Christopher S Wilson, Saman P Amarasinghe, Jennifer M An-
derson, Steve WK Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W Hall, Monica S Lam, et al.
SUIF: An Infrastructure for Research on Parallelizing and Optimizing Compilers. ACM Sigplan
Notices, 29(12):31–37, 1994.

[69] Haim J Wolfson and Isidore Rigoutsos. Geometric Hashing: An Overview. Computing in Science
and Engineering, 4(4):10–21, 1997.

91

http://www.tydo.de/doktorarbeit/asmgofer

CASM Run-Time API

CASM_<T>_CAST . 41
CASM_add_Int_Int_Int() . 42
CASM_alloc_<T>() . 40
CASM_and_Boolean_Boolean_Boolean() 41
CASM_app_List_<T>_<T>_List_<T>() 43
CASM_ASSERT() . 47
CASM_assign_<T>() . 40
CASM_Boolean2Int_Boolean_Int() 42
CASM_CALL_RULE() . 47
CASM_CALL_RULE_PLAIN() 47
CASM_CALL_SHARED() . 43
CASM_CASE() . 47
CASM_CASE_BREAK . 47
CASM_CASE_CONST() . 47
CASM_CASE_DEFAULT . 47
CASM_CASE_VAR() . 47
CASM_cast_<T>() .41
CASM_check_Int_<A>_() 52
CASM_cons_<T>_List_<T>_List_<T>() 43
CASM_const_<T>() . 40
CASM_DEBUG_END() . 46
CASM_DEBUG_START() . 46
CASM_DERIVED_<N>() . 47
CASM_die() . 42
CASM_div_Int_Int_Int() . 42
CASM_DUMPING_UPDATES() 37
CASM_ELSE() . 47
CASM_END_FORALL . 48
CASM_END_ITERATE . 48
CASM_Enum2Int_<N>_Int() 43
CASM_eq_<T>_<T>_Boolean() 41
CASM_ERROR() . 47
CASM_FORALL() . 48
CASM_FORALL_LIST() . 48
CASM_FORALL_REG() . 48
CASM_FORALL_REG_REVERSE() 48
CASM_FORALL_REVERSE() 48
CASM_FORALL_TUPLE() 48
CASM_geq_Int_Int_Boolean() 41
CASM_gre_Int_Int_Boolean() 41

CASM_hex_Int_String() . 42
CASM_IF() .47
CASM_Int2Boolean_Int_Boolean() 42
CASM_Int2Enum_Int_<N>() 42
CASM_ITERATE . 48
CASM_leq_Int_Int_Boolean() 41
CASM_les_Int_Int_Boolean() 41
CASM_LET() . 47
CASM_LET_CONST() . 47
CASM_LOCATION() . 33
CASM_LOOKUP() . 36
CASM_MAIN() . 37
CASM_mod_Int_Int_Int() .42
CASM_mul_Int_Int_Int() . 42
CASM_neq_<T>_<T>_Boolean() 41
CASM_not_Boolean_Boolean() 41
CASM_nth_List_<T>_Int_<T>() 43
CASM_or_Boolean_Boolean_Boolean() 41
CASM_peek_List_<T>_<T>() 43
CASM_pow_Int_Int_Int() . 42
CASM_print_<T>() . 41
CASM_PRINT_END . 46
CASM_PRINTF() . 46
CASM_PRINTF_TRACE() . 46
CASM_rand_Int_Int_Int() .42
CASM_REGISTER() . 47
CASM_RT() . 46
CASM_sub_Int_Int_Int() . 42
CASM_tail_List_<T>_List_<T>() 43
CASM_undef_<T>() . 40
CASM_UPDATE() . 35
CASM_UPDATE_INITIALLY() 37
CASM_UPDATESET_APPLY() 37
CASM_UPDATESET_FORK_PAR() 36
CASM_UPDATESET_FORK_SEQ() 36
CASM_UPDATESET_MERGE_PAR() 36
CASM_UPDATESET_MERGE_SEQ() 36
CASM_UPDATESET_PRINT() 37
CASM_xor_Boolean_Boolean_Boolean() 41

93

BIBLIOGRAPHY

DECLARE_Enum() . 40
DEFINE_CASM_FUNCTION_GET() 34
DEFINE_CASM_FUNCTION_OBJDUMP() 34
DEFINE_CASM_FUNCTION_PRINT() 34
DEFINE_CASM_FUNCTION_SET() 34
DEFINE_Enum() . 40
DEFINE_Int() . 39
DEFINE_List() . 40

94

Index

app() . 26
ASM Workbench . 6
ASM-SL . 6
ASMETA . 7
AsmGofer .6
AsmL . 5
assert . 21
assure . 21
AST . 30

Boolean . 15, 39
Boolean2Int() . 25
Branded Hash-Map 32
Built-in . 25
BVand() . 27

call . 23
case . 21
CASM . 17
CASM IR . 58 – 60

Basic Block . 58
Common Scope 60
Instruction . 58
Rule .58
Scope . 58
Statement . 58

CASMc++ . 7
CASMi . 7
CETUS . 9
Code Generator 48 – 55

Phases . 49
Header . 49
Init-State . 52

Main . 51
Perfrom Compilation 53
Rules . 53
Types . 51

Process . 48
cons() . 26
controlled . 18
CoreASM . 6

debuginfo . 21
defined . 18
derived . 17
DFA . 8
die . 25
diedie . 21

else . see if
enum . 17, 40, 51
Enum2Int() . 26
Expression . 23 – 27

Built-ins see Built-in
Location.see Lookup
Shareds see Shared

expression-list . 13

false . 14
forall . 22
Function . 18 – 19, 32

Property
Controlled see controlled
Defined.see defined
Staticsee static
Symbolic see symbolic

95

BIBLIOGRAPHY

Undead see undead
function . 18

GCC . 8
Generic . 38

hex() . 25

identifier . 13
identifier-list . 13
if . 21
impossible . 21
init . 17
Int . 15, 39
Int() . 15, 52
Int2Boolean() . 25
Int2Enum() . 26
iterate . 22

Legacy Compiler . 30
let . 22
List . 16, 40, 52
list . 14
Literal . 14

Boolean
False . see false
True . see true

List . see list
Number see number
Range . see range
Rule Reference.see ruleref
Self Reference see self
String . see string
Undefined see undef

LLVM . 8
Lookup . 25

nth() . 26
number . 14

objdump . 23
Optimization Framework 55

par . 23
PAR-SEQ CFG . 59

parameter . 13
parameter-list . 13
Pass

AST Printer . 61
Case to If Conversion 64
CFG Printer . 62
Conflict Update 63
Constant Folding 68
Constant Propagating 67
Dead Branch Eliminiation 68
Dead Code Elimination 65
Dead Function Elimination 66
Debuginfo Removal 65
Definition Use.63
Information . 57
Inline Derived Expression 66
Inline Rule Call 66
Interface . 57
Intermediate Representation 61
IR Printer . 62
Loop Unwinding 67
Manager . 56
Pipeline . 56 – 57
Possible Update 62
Reaching Definition 62
Redundant Lookup Elimination 69
Redundant Update Elimination70
Register Renaming 61
Registry . 56
Skip Removal . 64
Statistics . 57
Trivial Block Removal 64
Use Definition.62

peek() . 26
pop . 22
pow() . 25
print . 21
Provider

MIPS. .46
provider . 20
push . 22

rand() . 25
range . 14

96

ROSE . 9
Rule . 19 – 20
rule . 19
RuleRef . 15, 40
ruleref . 14
Run-Time . 31 – 48

Self . 16, 39
self . 14
seqblock . 23
Shared . 27
Shim . 8
skip . 20
Specification . 16 – 20

CASM Model . 16
Derived Expression see derived
Enumeration see enum
Function see function
Init-Rule .see init
Module Headersee CASM
Provider Plug-in see provider
Rule . see rule

SSA . 8
Statement . 20 – 23

Abort . see diedie
Assert . see assert
Assure see assure
Call . see call
Case . see case
Composition

Parallel . see par
Sequential see seqblock

Debuginfo see debuginfo
Diedie . see diedie
Forall . see forall
If-Then-Else see if
Impossible see impossible
Iteration see iterate
Let Binding see let
Objdump see objdump
Pop . see pop
Print . see print
Push . see push
Skip .see skip

Update . 23
static . 18
String . 15, 39
string . 14
SUIF . 8
symbolic . 18
symbolic() . 25

tail() . 26
Target C . 48
TASM . 7
then . see if
true . 14
Tuple . 16, 40, 52
Type . 15 – 16

Internal
Self . see Self
Undef see Undef

Non-Primitive
List . see List
Tuple see Tuple

Primitive
Boolean see Boolean
Enumeration see enum
RuleRef see RuleRef
String see String

Typed-AST . 30

undead . 18
Undef . 16, 39
undef . 14

XASM. .6

97

	Preface
	Declaration
	Acknowledgments
	Abstract
	Introduction
	Terminology
	Motivation
	Problem Statement
	Methodological Approach
	Structure of this Thesis

	Related Work
	ASM Languages, Interpreters & Compilers
	Other Languages, Compilers & Optimizations

	CASM Language
	Overview
	Syntax & Semantics
	Literals
	Type System
	Specifications
	Statements
	Expressions

	CASM Run-Time & Code Generator
	Overview
	AST, Annotation and Typed-AST
	Typed-AST Interpreter
	Analysis of Legacy Compiler

	Run-Time
	Memory Allocator
	Function Structure
	Updates, Pseudo State & Update-Set
	Kernel
	Types, Operators & Built-ins
	Shareds
	Providers
	Printing, Debugging & Tracing
	Miscellaneous

	Code Generator
	Generation Phases
	Generation Example

	CASM Optimization Framework
	Overview
	Pass Manager, Registry & Pipeline
	Pass Information & Interface
	Pass Statistics

	CASM Intermediate Representation
	Instructions
	Statements
	Scopes

	Passes
	Framework Internal Passes
	Printer Passes
	Analysis Passes
	Transformation Passes

	Evaluation
	Compiler
	CASM Interpreter vs Legacy Compiler vs Compiler
	AsmL vs CoreASM vs CASM

	Optimizing Compiler
	MIPS Instruction Set Simulator

	Conclusion
	Future Work
	Run-Time & Code Generation
	Optimizations

	Appendix
	List of Acronyms
	List of Listings
	List of Figures
	List of Tables

	Bibliography
	CASM Run-Time API
	Index

