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Abstract

The Btrfs (B-tree file system) is a steadily evolving new filesystem for Linux with advanced
features not covered by existing filesystems in Linux. It brings new features such as snapshots,
subvolumes, it’s own volume management and uses checksums extensively. The context of this
thesis lies in the field of Digital Forensics and is aimed at the development of novel forensic
methods to extract data from forensic filesystems collected during an investigation.

This thesis therefore defines six distinct artifact types that shall be retrieved from such
filesystem images. These artifacts are believed to be among the most important data an in-
vestingator typically wants to extract during an investigation. These artifacts cover — among
others — the metadata of files and the contents of deleted files.

The main question to answer is to what extent the individual artifacts can be recovered from
the filesystem data and why this is the case. This question is answered after performing an
extensive literature research as well as reverse-engineering the Btrfs disk format, which has not
yet been covered in detail by the scientific community to an extent that is required by this thesis.
After this process an analysis of the data structures was conducted with the goal of describing
them well enough to specify the actual forensic methods suitable to extract the desired artifacts.
These forensic methods are later implemented in the de-facto Open Source standard forensics
toolkit “The Sleuthkit”. This makes it possible to evaluate the methods using test filesystem
images. Besides serving the purpose of evaluating the forensic methods, the implementation
enables forensic investigators to perform forensic analysis of Btrfs filesystems, which was not
possible before due to the lack of tool support.

The results show that five out of the total six artifacts can be extracted by using existing Btrfs
filesystem data, thus getting a complete result based on the data. The last artifact, namely the
contents of deleted files, are extracted based on heuristics due to incomplete data. The evaluation
and related literature shows that in practice this also yields good results.






Kurzfassung

Btrfs (B-tree file system) ist ein stindig weiterentwickeltes, neues Dateisystem fiir Linux mit
fortschrittlichen Funktionen, die derzeit von keinem existierenden Linux-Dateisystem abgedeckt
werden. Es unterstiitzt Snapshots, Subvolumes, hat sein eigenes Volume-Management und ver-
wendet weitgehend Priifsummen. Der Kontext dieser Arbeit liegt in der Digitalen Forensik und
das Ziel der Arbeit ist die Entwicklung neuartiger forensischer Methoden um Daten aus Datei-
systemen zu extrahieren, die im Rahmen forensischer Ermittlungen sichergestellt wurden.

Diese Arbeit definiert sechs verschiedene Artefakte die aus den Dateisystemdaten extrahiert
werden sollen. Diese Artefakte sind unter den wichtigsten Daten, an denen ein forensicher Er-
mittler wahrend einer Analyse interessiert ist. Diese Artefakte beinhalten unter anderem die
Metadaten von Dateien und den Inhalt geldschter Dateien.

Die Hauptfrage dieser Arbeit ist inwiefern diese Artefakte aus den Dateisystemdaten ex-
trahiert werden konnen und warum. Um diese Frage zu beantworden, wird zunéchst eine ein-
gehende Literaturrecherche und reverse-engineering des Btrfs Dateisystemformats — welches
nicht im fiir diese Arbeit bendtigten Ausmall wissenschaftlich dokumentiert ist — durchgefiihrt.
AnschlieBend werden die gefundenen Datenstrukturen analysiert um forensische Methoden spe-
zifizieren zu konnen, die die oben genannten Artefakte extrahieren konnen. Diese forensischen
Methoden werden dann im de-facto wichtigsten forensischen Open Source Toolkit ,,The Sleuth-
kit implementiert. Dies ermdglicht sowohl die Evaluierung der forensischen Methoden als auch
die forensische Analyse von Btrfs Dateisystemen im Rahmen von Ermittlungen, was vorher auf
Grund der fehlenden Werkzeuge nicht moglich war.

Die Ergebnisse zeigen, dass von den sechs Artefakten fiinf auf Grund von explizit vorhan-
denen Daten gefunden werden konnen, was zu einem vollstindigen Ergebnis fiihrt. Das letzte
Artefakt, die Inhalte von geloschten Dateien, wird auf Basis von Heuristiken extrahiert, da die
Daten unvollstindig sind. Die Ergebnisse zeigen aber, dass das in der Praxis trotzdem zu guten
Resultaten fiihrt.
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CHAPTER

Introduction

1.1 Motivation and Problem Statement

The dynamic and steadily evolving field of computing has the invariant property that new soft-
ware creates a demand for better hardware and better hardware leads to the usage of more hard-
ware resources. Both hardware and software influence each others. This is also true for the
storage specific disciplines of computing: Larger storage media creates a demand for adoption
of the operating systems. New hardware such as solid state drives render previous design crite-
ria of filesystems obsolete since locality in storage is becoming less important due to the lack of
rotating disks.

Traditional Unix filesystems [15]] are approaching a point at which relevant innovation can-
not happen due to their design and partially obsolete concepts (their conceptual origin is the
Berkeley Fast File System [28]]). Adoption to the new requirements needs new concepts which
are not happening due to the need of backwards compatibility in filesystems. This is also true for
Linux filesystems. The currently de-facto default filesystem in Linux distributions is Ext (ver-
sion 3 or 4). It has evolved from the original ext-filesystem which was merged into the Linux
kernel in 1993 [37]]. Since then it has evolved in the boundaries of being backwards-compatible
to the earlier revisions of the filesystem. It has reached a high level of stability and since Ext3
it is has journaling support to tolerate power-failures in a graceful way. Although there has ever
been innovation in the new versions of the filesystem, the huge steps towards a modern filesys-
tem couldn’t happen without breaking compatibility. So the filesystem remains a very stable
and performance optimized solution for most of today’s needs, but the future of linux storage is
lying somewhere else. [34]

The ZFS filesystem released with Solaris 10 in 2006 was a huge step in the right direction.
It solved storage limitations by using 128 bit addresses, included a decent volume manangement
to administer space efficiently and provided better abstraction from the underlying storage hard-
ware. It also provided an easy way to create snapshots, introduced checksums for metadata and
file contents and allowed many separate filesystems in a pool. [7] In short Sun Microsystems
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did lots of things right. Due to the license of the filesystem code, Linux couldn’t profit from it,
though.

In 2007 Chris Mason from Oracle jumped to the rescue and started the Btrfs project [34]. It
reuses most key concepts of ZFS but is written especially for Linux. Since then Btrfs is maturing
(Lu et al. compared the evolution of Linux filesystems during eight years and found that even
the bug count of mature filesystems doesn’t converge [27]) and probably will attract more users
since the current Linux filesystems don’t offer attractive features needed for larger storage sizes
and seem to be one generation behind ZFS.

Digital Forensics are needed whenever the forensic analysis of a filesystem needs to be per-
formed. The encounters of a specific filesystem type increase with the increasing general usage
of a filesystem. Thus it can be expected that the demand for forensic methods will increase
with the use of Btrfs filesystem. Forensic investigation of a Btrfs volume is currently not pos-
sible (feasible) due to the missing tool support. There are currently no scientific publications
which describe forensic methods for Btrfs and there are no automated tools to analyzing Btrfs
filesystems in a forensic manner.

1.2 Aim of the Thesis

The goal for this master’s thesis will be the initial development of forensic methods for the Btrfs
file system in order to be able to perform file system analysis. Brian Carrier defines file system
analysis as:

File system analysis examines data in a volume (i.e., a partition or disk) and in-
terprets them as a file system. There are many end results from this process, but
examples include listing the files in a directory, recovering deleted content, and
viewing the contents of a sector. [[10, Chapter 8]

This includes a forensic description of the relevant structures used to store data in Btrfs.
Based on this forensic description, methods can be developed to extract forensically relevant
data from these structures. To limit the scope of the thesis, no specialized methods to perform
tree forensics will be developed. Tree forensics is the application of forensic methods to restore
older states of a tree structure. Tree forensics could be an interesting approach, but would widen
the scope of the thesis too much.

Additionally to the forensic methods, a prototypical implementation of these methods should
be created to make the forensic analysis of Btrfs filesystems possible. This serves two purposes:
with just the specified methods it is not feasible to perform analysis in larger scale since too
many repetitive manual steps would be necessary, second an implementation makes it possible
to evaluate the forensic methods on sample test data.

Prior to defining methods to extract data from Btrfs filesystem images, a definition of what
to extract is necessary: The relevant artifacts to collect. Artifacts in the sense of digital forensics
is data of interest in forensic investigations. The following enumeration of artifacts is considered
in this thesis.



Al Filesystem Metadata The metadata of the filesystem which includes the layout, parame-
ters and the locations of important structures that the filesystem keeps.

A2 Filesystem Structure The structure of a filesystem includes the filesystem hierarchy, the
type of the artifacts (directories, files, etc.).

A3 File Metadata The metadata of files such as size, modification timestamps and file names.

A4 Allocation Status The allocation status of data units in the filesystem including their usage
type. This includes the information whether a data unit is used by the filesystem or if it is unused
as well as the information what is stored in the allocation unit if it is allocated.

AS Contents of Allocated Files The files stored in a filesystem are generally the most relevant
artifact for forensic investigations. They can be in two states: allocated and unallocated. Allo-
cated files might seem out of scope in the first place because they are covered by the filesystem
implementation anyway, but they are relevant because forensic investigations must cover them
too and forensic tools should use documented procedures to read the files in a correct way, while
filesystem code usually optimize on performance and their algorithms are often not documented.

A6 Contents of Unallocated Files Files which are not allocated by the filesystem are even
more interesting. They were deleted and the filesystem implementation doesn’t show them any
more. Usually their contents remain intact on disk until they are overwritten with new contents.
It is not necessarily the case that unallocated data can be restored fully, although experience
from other filesystems shows that it is possible that unallocated data can be recovered to some
extent.

1.3 Methodological Approach

The development of the forensic methods will include literature research as far as possible since
the proposal of the thesis already showed that forensics for Btrfs has not had any significant
scientific perception up to now. The lack of scientific works will have to be compensated by
original research and the studying of software documentation and source code.

After documenting the Btrfs filesystem structures and theoretically being able to read the
contents of the filesystem, the definition of forensic methods can take place. This means that the
procedure of aggregating the interesting artifacts is described in textual form.

With the methods defined, the implementation of the forensic methods will be started. The
implementation shall be able to retrieve the stated artifacts.

1.4 Structure of the Thesis

This work consists of five chapters. The first chapter being this intoduction.



The second chapter is about the foundations of Btrfs. It starts by a general introduction of the
concepts of Btrfs and continues with an in-depth analysis of the On-Disk format. This analysis
is the basis for the implementation of the prototype later on. The Analysis describes how data
is stored on the physical disk in a Btrfs filesystem. This part is naturally quite technical and
very specifying, but nevertheless it is the essential foundation of any sequent task. The section
also states the differences between Btrfs and other popular filesystems. This is important to
understand the novelty of some features along with the implications that result for the later
implementation. The last part of this chapter is a short introduction into Digital Forensics with
the relevant steps that lead to a forensic filesystem image that is the base for the later analysis.

The third chapter presents The Sleuthkit as the chosen platform for implementation along
with the justification of this choice. There were quite a number of positive and negative aspects
about it but the positive side had a bigger impact and most of the negative aspects were ne-
glectible or circumventable in some kind. A description of the relevant API of TSK introduces
the area of code which needs to be tackled when implementing support for a new filesystem.
Because the API documentation lacks some points, it is described here from a practical point
of view. Then the chapter describes the forensic methods which are an application of the anal-
ysis part of the previous chapter. Those methods represent the conceptional proceeding to gain
artifacts from a Btrfs filesystem. The second part of this chapter covers the implementation de-
tails of the defined forensic methods in the scope of the Sleuthkit API. It describes key points
from the code along with design decisions that leaded to the specific implemenation. This sec-
tion includes a lot of references to code samples in the appendix to make the implementation
clear to the technically educated reader. This section requires a certain degree of being able to
read C source code to understand, but it is not required to fully understand this section and the
referenced source code to get a good idea of the conceptional ideas behind this thesis.

The fourth chapter evaluates the suitability of the implementation to retrieve the artifacts
defined in the introduction. Thus it is structured after the artifacts to retrieve. The chapter
finishes with possible future work in the context of the topic.

The fifth chapter concludes the thesis and recaptures the main achievements made in the
course of the thesis.

The two appendices contain the technical details that disturb the flow of reading in the chap-
ters. The first appendix contains the data structures of the Btrfs on-disk format and the second
appendix contains the source code examples referenced by other chapters.



CHAPTER

Background

This chapter starts with the background knowledge needed to develop forensic methods for the
Btrfs filesystem. The first section covers the core features and the general architecture of the
Btrfs filesystem, also it compares the new Btrfs features to the state before Btrfs existed. The
next section analyzes the Btrfs filesystem in a technical way as the book “Filesystem Forensic
Analysis” by Brian Carrier does. The goal is to relate the various filesystem structures to logical
groups in order to understand them better. Those descriptions often contain references to the
appendix to make it clear how the information is physically stored in the filesystem. The last
section covers Digital Forensics, the scientific field in which the thesis is embedded. It starts by
an introduction into the field and presents the steps that are needed to obtain a forensic filesystem
image which is the base for the application of the forensic methods developed later.

2.1 Btrfs Concepts and Features

Trees

Btrfs is build around trees, it exclusively uses trees for storing anything but actual file contents
(with the exception of inline extents). The tree algorithm used in Btrfs is copy on write (COW)
friendly b-trees [|33]]. The whole Btrfs filesystem can be seen as a huge forest of trees (see Figure
[2.1). The trees are used as a form of generic data storage where every stored item has an identifier
consisting of three elements: object ID, type and offset. This triple consitutes the key used to
identify elements inside every tree [3]. Depending on which tree a key is encountered, the key’s
elements can have a different meaning. This is especially true for the offset. For reading trees,
the special meaning of the key’s elements is not required.

The trees can have multiple nodes that each have a level associated with them. The leaf level
is level 0. Each node of the tree starts with a header (see Table [A.5)). The header provides an
information about the current node (number of entries, level, etc.). The entries of a node are
either block pointers or items. In the leaf nodes actual items (see Table [A.7) exist, the inner
nodes contain block pointers (see Table [A.6). Block pointers point to other nodes. Every node
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Figure 2.1: A forest of trees. [34]

Header || Block Pointer || Block Pointer || Block Pointer B

Header || Block Pointer || Block Pointer || Block Pointer B

Header || Item O || Item 1 || Item 2 B Item n B Datan B Data 2 || Data 1 || Data O

Figure 2.2: A path in the tree structure.

content (item or block pointer) has a key (see Table[A.4) associated with it which constitutes the
ordering inside the tree. Figure[2.2| provides an example for a path from root to leaf inside such
a tree.

COW-friendly trees have more interesting features such as shadowing, a technique used to
update trees and the ability to clone trees.

Shadowing The tree is basically just a plain b-tree, the difference lies mostly in the way up-
dates are made. Btrfs uses shadowing when updates to the tree are made. While shadowing is
Rodeh’s name for this update method, copy-on-write (COW) is mostly used in context of Btrfs.
COW ensures that nodes are not updated in-place and thus simply avoiding the need for any
locking during reads and ensuring data integrity at unexpected system halts. Every write opera-
tion causes the tree to be updated up to the root node (see fig. [2.3). This concept ensures that a
reference to the top node is everything needed to address a complete filesystem tree at a specific
point of time. A shadowing operation always creates a new version of the whole tree. The path
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Figure 2.4: Cloning of a Tree: before and after. [|34]

from the original root node references the tree with the old version of the changed node while the
new root node references a tree with the new version of the changed node. With shadowing, new
trees are created with every write operation but are written to the disk in form of checkpoints
every 30 seconds by default. [33]] [|34]]

Cloning and Reference Counting While shadowing creates new tree versions on checkpoint,
it is desireable for a filesystem to clone the complete filesystem tree. Such a copy is easy to
take since only a new root node needs to be inserted into the tree to have a clone of the tree, see
Figure[2.4] Since not being referenced by the currently traversed tree is not a sufficient condition
for considering a node unused because it could be referenced by another tree, reference counting
is used to perform this task. Every node has a reference count variable which indicates by how
many other nodes it is referenced. Taking a clone typically increases this value by one for every
node since every node is part of another tree after cloning. Lazy reference counting avoids
having to change every node tough and only increases the reference count of the child nodes of
the changed node. [33]

Addressing

The Btrfs filesystem uses logical and physical addresses, both in essence being 64 bit values
thus Btrfs is able to address 8 exabytes of storage. [3|]] Logical addresses are used everywhere in
the filesystem as abstraction layer, serving as virtual address space. A logical address identifies
a position in the filesystem. Every logical address can be translated into at least one physical
address which consists of an offset and a device id needed to find the referenced data on a hard-
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disk. Since a Btrfs volume can consist of multiple disks, a logical address can link to one or
more disks. This comes handy when RAID levels are used, since in a RAID-1 volume a logical
address can be translated into two physical addresses, while on a RAID-0 volume a logical
address typically would only reference one disk.

Logical to Physical Address The translation from logical to physical addresses is done using
the chunk tree (see page [I2)) and for bootstrapping purposes, some parts of the chunk tree are
mirrored in the superblock (see Table [A.3). The logical address (la) is being translated into a
physical address (pa) by searching for matching ranges in the chunk tree (or bootstrap data).
Each Chunkltem is referenced by a Key whose offset field (o) is the first logical address of
the chunk. The ChunklItem specifies the size of the chunk and the physical offset (o0p,). If la is
between the starting address and the starting address plus size (s), the logical address is found.
The ChunklItemStripe data of this ChunklItem is then used to calculate the offset for the specified
device: pa = op, + (la — o). Figure shows a high level view of the process. For the reverse
process of translating physical addresses into logical addresses, the Dev Tree is used (see page

[13).

Physical to Logical Address The physical addres (pa) is translated into a logical address (la)
by searching the smallest key geq (dev_id, 204, pa) in the Dev Tree. The found DevExtent item
(dev_id, 204, o) is then then used to calculate the logical address. It contains the logical address
lag. The resultis: la = lag + (0 — pa).

Volume Management

A volume is a collection of addressable sectors that an Operating System (OS) or
application can use for data storage. The sectors in a volume need not be consec-
utive on a physical storage device; instead, they need to only give the impression
that they are. A hard disk is an example of a volume that is located in consecu-
tive sectors. A volume may also be the result of assembling and merging smaller
volumes. [10, Chapter 4]



In our context Volume management is the technique of managing the space of one or mul-
tiple physical storage devices in form of a virtual storage device. This can involve redundancy
algorithms, plain remapping of the address space and combinations of both.

Current State The Linux kernel offers two techniques for abstracting storage: mdadm (RAID)
and LVM. RAID allows the combination of individual storage hardware to logical arrays which
usually include some sort of redundance (except RAID-0). This can be used to avoid data loss by
adding redundancy to a storage system. The Linux kernel’s RAID subsystem offers optimized
implementations of various RAID-levels.

LVM operates on storage media and does a similar thing. It combines partitions to volume
groups which can then be used to create logical volumes (comparable to partitions). LVM logical
volumes can easily be resized, snapshots of volumes can be taken and even RAID functionality
has been implemented in LVM.

These two approaces are in practice often combined: A system with two disks can have a
RAID-1 mirroring configured and a LVM volume group on top of it to allow flexible allocation
of space to various areas of the filesystem. These two storage abstraction techniques can be
combined in many ways and are independent of the filesystem used.

The Btrfs Approach Btrfs could be used on top of a RAID or LVM volume like any other
filesystem, but the Btrfs authors chose to reimplement volume management in Btrfs. This has a
number of advantages due to limitations of the layering approach of RAID and LVM.

A RAID array with two-disk mirroring can easily prevent the loss of data when one disk fails:
the other copy is used and the array is marked as degraded. But when one copy has corrupt data it
is not defined which copy is used then. Due to the absence of checksums it cannot be determined
which copy is valid and which one is corrupt. In the worst-case the valid data is replaced with
the corrupt data. This is 50% chance. If Btrfs is used on top of a RAID-1 volume, it has no
control over that recovery mechanism. Even Btrfs checksums would only allow the detection of
corrupt data, the repairing is done by a lower level which cannot access that information. So the
Btrfs authors chose to reimplement volume management to gain control over the disks and to
ensure data integrity using checksums. In the stated RAID-1 example the process of a two-disk
Btrfs volume would be different: The Btrfs code would notice the mismatching checksum of the
file and replace it with the valid data with the correct checksum. This way data loss is prevented
and integrity is ensured by using checksums. [3]]

Recovering from data corruption/disk failure in RAID is a time consuming process as the
whole array needs to be resynced. When a filesystem on top of a RAID volume is only 1%
full, the remaining 99% of the disk need to be synced too since the RAID implementation is
filesystem agnostic and does not know which areas of the disk are used and which areas are free
space. Btrfs would only write used areas to the corrupt/new disk because it knows which parts
of the filesystem are used.

Subvolumes

Subvolumes are a technique to create multiple filesystems in a single Btrfs volume.



Current State Current Linux filesystems keep one filesystem per partition or logical volume.
That filesystem has a mount point in the filesystem tree and all of the filesystem’s files are (apart
from access control mechanisms) visible to the user. The traditional answer for isolation of
different areas of storage in a system is partitioning with the disadvantage of having to know the
partition’s sizes at install time or using LVM to gain more flexibility to resize the logical volumes
later. However both approaches lack a certain flexibility and require lots of manual steps to be
carried out before a new partion or logical volume can be used. The worst-case is dividing a
mounted partition into two partition involves umounting, fsck, resizing partition, creating a new
partition, creating a new filesystem, mounting both. This is not only work intensive and error
prone but also requires umounting the filesystem which could mean service interruption.

The Btrfs Approach Subvolumes are different in that matter. A subvolume is a filesystem in
the traditional sense, but multiple of those subvolumes can be inside a volume. A subvolume
is technically just a separate filesystem tree. [3]] Since the filesystem tree stores the filesystem-
specific data of the filesystem, each filesystem tree can be changed separately and only the
common trees (Chunk Tree, etc.) need to be updated. A subvolume is a separate logical partition
for filesystems. Each filesystem can hold completely independent files that are not related to
other subvolumes. Since creation of subvolumes is a very quick and unproblematic step, it can
help to avoid other partitioning methods. The process of creating a subvolume just involves
creating a new filesystem tree and this is very fast.

Snapshots

Snapshots are a space-efficient and fast method to make copies of subvolumes.

Current State Taking snapshots of data is not supported in current Linux filesystems, but can
be done using tools like rsnapshot, which creates snapshots of files using hard links. This is not
very fast and has disadvantages due to the use of hard links. If a file in a snapshot is changed,
it is changed in every snapshot due to being hard-linked. LVM implements filesystem-agnostic
snapshots as well. Their method of snapshotting is to save the data changed in the original
logical volume to the snapshot logical volume, thus the snapshot grows in its size when the
original filesystem is modified.

The Btrfs Approach Btrfs snapshots are very simple as taking a snapshot requires just a new
copy of the filesystem tree which is ref-counted which is the requirement for taking snapshots
[34]]. The snapshotted tree will end up with a new root node.

Checksums

Current State Current Linux Filesystems don’t create checksums for data stored on a disk.
Ext4 uses checksums for it’s journal, but data doesn’t profit from that.
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File System Content | Metadata File Name Application
ExtX | Superblock, Blocks, Inodes, inode bitmap, | Directory Journal
group de- | block extended attributes entries
scriptor bitmap
NTEFS | $Boot, Clusters, | $MFT, $MFT- | $FILE- Disk  Quota,
$Volume, $Bitmap | Mirr, $STAN- | NAME, Journal,
$AttrDef DARD_INFOR- $IDX_ROOT, Change
MATION, $DATA, | $IDX_ALLO- Journal
$ATTRIBUTE_LIST, | CATION,
$SECURITY_DESC- | $BITMAP
RIPTOR
Btrfs Superblock, Extents, Extent Tree, Check- | FS-Tree
Chunk Tree, | Inline sum Tree
Dev Tree, | Extents
Tree of Tree
Roots

Figure 2.6: The data categories of ExtX, NTFS and Btrfs. As in [[10, Chapter §]

The Btrfs Approach Btrfs checksums all of its data [3]. At mount-time when the superblock
is read, it’s checksum is verified. Every tree header contains the checksum of the current node,
which means that every tree along with its contents is checksummed. For data a checksum tree to
store checksums of data extents. Checksums are essential to detect corrupt data and metadata.

2.2 Btrfs Analysis

This section provides a deep introduction on how Btrfs works in terms of data storage. This is
relevant for forensic investigations relating to Btrfs filesystems. This section also will compare
the Btrfs filesystem to other filesystems: NTFS, ExtX and ZFS. This part is loosely structured
as the filesystem specific parts in the book Filesystem Forensic Analysis by Brian Carrier |10,
Chapter 12]. In table[2.6there is a comparison of the data types of those three filesystems which
allows to relate Btrfs data structures to the relevant data layers to gain a faster understanding
about Btrfs.

Filesystem Category

The filesystem category is defined by Carrier as a “category [that] contains the general data that
identify how this file system is unique and where other important data are located.” “Analysis
of data in the file system category is required for all types of file system analysis because it is
during this phase that you will find the location of the data structures in the other categories.” [[10,
Chapter 8]

In the case of Btrfs this includes the Superblock, Chunk Tree, Dev Tree and the Tree of Tree
Roots. The justification for the inclusion of the numerous trees in this category is that address
translation is necessary for operating on other categories of the filesystem data and thus those
trees are essential for any other operation inside the filesystem.

11



|Chunk Tree|

|Root Tree |
Bootstrap // |
Data A 1 | | | | | |

Chunk Tree |Addr.

0x10000

Figure 2.7: Function of the superblock during mount.

Superblock The general starting point for reading and analyzing filesystems is the superblock.
It is usually the first area which is read while mounting the filesystem. It contains information
about the filesystem layout, its size, used features and generally provides information about
where to go from here. Therefore filesystems usually place the superblock in a fixed location to
be able to find this essential information easily.

In Btrfs the superblock is located at 0x10000 and is the only data structure with a fixed
address. It contains important information like the addresses of the Root of Roots Tree (see
Figure[2.7)), the address of the Chunk Tree as well as the bootstrap data to resolve the addresses of
those essential trees (see Table[A.3). This information is sufficient to find all the trees stored in a
Btrfs volume. Apart from that, the superblock stores mostly parameters and general information
about the Btrfs volume such as bytes used, sector size, and many more. It contains a checksum
which covers the rest of the superblock (excluding the checksum itself). The Superblock is
copied several times for data safety.

In comparison, the ExtX superblock is 1024 bytes long and located 1024 bytes after the start
of the filesystem. It stores the information about the filesystem layout, mostly in terms of size.
The ExtX layout is much more fixed than Btrfs’ layout, so the superblock just contains some
stat information (number of inodes, number of block groups, number of inodes per block group,
etc.). [10, Chapter 14]

NTEFES keeps this essential information in the boot sector which is located in the first 16
sectors of the filesystem and is referenced as file $Boot. Otherwise it is similar: It contains the
addresses of important data structures as the Master File Table (MFT). [10, Chapter 12]

Chunk Tree Btrfs allocates space into chunks. A chunk is a continuous range of space which
is used for a designated type of storage data (data, metadata or system data). Chunks usually
have fixed sizes (1GiB for data chunks, 256MiB for metadata chunks [3]]). The Chunk Tree
holds DevItem (see Table [A.9) and Chunkltem (see Table [A.10} [A.TT)) elements. It is used as
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item 0 key (DEV_ITEMS DEV_ITEM 1)
itemoff 3897 itemsize 98 dev item devid 1
total_bytes 2048000000 bytes used 1266483200
item 1 key (FIRST_CHUNK_TREE CHUNK_ITEM 0)
itemoff 3817 itemsize 80
chunk length 4194304 owner 2 type 2 num_stripes 1
stripe 0 devid 1 offset O
item 2 key (FIRST_CHUNK_TREE CHUNK_ITEM 4194304)
itemoff 3737 itemsize 80
chunk length 8388608 owner 2 type 4 num_stripes 1
stripe 0 devid 1 offset 4194304
item 3 key (FIRST_CHUNK_TREE CHUNK_ITEM 12582912)
itemoff 3657 itemsize 80
chunk length 8388608 owner 2 type 1 num_stripes 1
stripe 0 devid 1 offset 12582912

Figure 2.8: Example of a chunk tree created with btrfs-debug-tree

an indirection layer for addressing storage which can be located on various physical disks and
even be mirrored in different ways. The contents of the tree are also used for translating logical
addresses into physical addresses (see [2.I). The separation of data and metadata allows the
volume management to have different profiles for duplication defined for each type of data. So
a user could use mirroring for metadata and striping for data. [3|]

An example of chunk tree contents are shown in figure The chunk tree in the example
contains a single Dev Item describing a 2GiB device and several chunk items which translate
the logical addresses in the key’s offset field to the physical addresses in the chunk item stripes.

NTEFS doesn’t use indirection for addressing. It references files outside the MFT by their
cluster number, which is a much simpler concept. Since the cluster size is fixed per filesystem,
the physical address is just a multiplication of cluster size and cluster number. |10, Chapter 12]

ExtX uses block numbers inside the inodes to reference files contents. Each inode can store
“the addresses of the first 12 blocks that a file has allocated. These are called direct pointers.
If a file needs more than 12 blocks, a block is allocated to store the remaining addresses.” [[10,
Chapter 14]. This is again a much simpler concept. The addressing is always done using a block
number, possibly through a block pointer if a file allocates more space.

ZFS uses a quite similar concept: It addresses files with a DVA (Data Virtual Address)
which consists of the virtual device id (32bit) and a sector offset (63[sic] bit). This concept
is comparable to the concept of Btrfs: the vdev could be seen as chunk and the offset is the
subtraction of the logical address in Btrfs minus the chunk’s logical address. [3]]

Dev Tree The Dev Tree is used to reverse the process of address translation. The Dev Tree
holds DevExtent (see Table [A.T3) structures. DevExtent items are used to translate physical
addresses into logical addresses. Their key in the Dev Tree is (device ID, 204, physical address).
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item 0 key (0 UNKNOWN 1) itemoff 3955 itemsize 40
item 1 key (1 DEV_EXTENT 0) itemoff 3907 itemsize 48
dev extent chunk_tree 3
chunk objectid 256 chunk offset 0 length 4194304
item 2 key (1 DEV_EXTENT 4194304) itemoff 3859 itemsize 48
dev extent chunk_tree 3
chunk objectid 256 chunk offset 4194304 length 8388608

Figure 2.9: Example of a dev tree created with btrfs-debug-tree

item 0 key (EXTENT_TREE ROOT_ITEM 0) itemoff 3556 itemsize 439
root data bytenr 132579328 level 1 dirid 0 refs 1 gen 23

item 1 key (DEV_TREE ROOT_ITEM 0) itemoff 3117 itemsize 439
root data bytenr 132530176 level 0 dirid 0 refs 1 gen 21

item 2 key (FS_TREE INODE_REF 6) itemoff 3100 itemsize 17
inode ref index 0 namelen 7 name: default

item 3 key (FS_TREE ROOT_ITEM 0) itemoff 2661 itemsize 439
root data bytenr 132517888 level 0 dirid 256 refs 1 gen 21

Figure 2.10: Example of a root of roots tree created with btrfs-debug-tree

With that, it’s possible to translate a known physical address into a logical address by searching
for a key which has an offset greater than or equal to the physical address. Since the items in
the tree are sorted ascending, this is very efficient. Transforming logical addresses into physical
addresses is done through the chunk tree.

An example of a dev tree follows in figure 2.9] It shows a part of the contents of a dev
tree with several Dev Extents which translate the logical addresses in the key’s offset fields to
physical addresses inside the Dev Extents.

As mentioned before, NTFS and ExtX don’t share this concept of address translation, so
there is also no concept to reverse this process.

Tree of Tree Roots The Tree of Tree Roots stores information on how the other trees can be
found in Btrfs. Its logical address is stored in the superblock and can be translated to a physical
address with help of the bootstrapping data. The tree of tree roots stores Rootltem (see Table
entries which describe how the Root node of every other tree in the filesystem can be
reached (see Figure [2;1'[) [34]] The logical address of the root node (block number of the root
node) is used to locate the root node of the individual tree. The tree also contains RootRef and
RootBackref items which are not of such great interest. A pointer to the default filesystem is
also stored in the tree.

An example of a Tree of Tree Roots is shown in figure[2.10] It shows the Root Items of the
Extent Tree, the Dev Tree and the Fs Tree along with the Inode Ref of the default Fs Tree.
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item 20 key (260 EXTENT_DATA 0) itemoff 2678 itemsize 53
extent data disk byte 336527360 nr 150798336
extent data offset 0 nr 150798336 ram 150798336
extent compression 0

item 21 key (260 EXTENT_DATA 150798336) itemoff 2625
itemsize 53
extent data disk byte 541327360 nr 150798336
extent data offset 0 nr 150798336 ram 150798336
extent compression 0

item 22 key (260 EXTENT_DATA 301596672) itemoff 2572
itemsize 53
extent data disk byte 746127360 nr 197439488
extent data offset 0 nr 197439488 ram 197439488
extent compression 0

Figure 2.11: Example of extents inside the FS tree created with btrfs-debug-tree

Neither NTFS nor ExtX share this concept, which is not surprising since they use more
or less fixed tables for addressing. ZFS interestingly works completely different too: It relies
mostly on dnodes which can have different types (just like the tree items in Btrfs), which are
grouped in Meta Object Sets (MOS) and reference each others. [5]

Content Category

Brian Carrier defines this category as follows:

“The content category includes the storage locations that are allocated to files and directories
so that they can save data. The data in this category are typically organized into equal sized
groups|...]” [10, Chapter 8]

This is not totally applicable to Btrfs since there is no such equal sized group (blocks, clus-
ters) which Btrfs uses to allocate files. Btrfs stores files in extents are continuous areas of storage
without any additional format. In Btrfs there are two types of extents: (normal) extents and inline
extents.

Normal Extents are used for larger files. The contents of the file are split up in extents. The
extents are referenced from the FS tree (see fig. [2.11]). The extent data items in there show three
extent parts of the same file, which can bee seen from their identical object ID, the offset field
of the key is equal to the offset inside the file.

Inline Extents are used for small files. The contents of the file are put directly inside the FS
tree inside the extent data items.
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The distinction between inline extents and normal extents is also used in similar form in
NTES: attributes can either be resident or non-resident. Resident attributes are stored directly in
the MFT entry, while non-resident attributes are referenced by their clusters. [[10, Chapter 12]

Ext2,3 on the other side always stores data in blocks and references them from inodes.
Blocks very similar to NTFS clusters and are fixed in size at filesystem creation time. [[10, Chap-
ter 14] Ext4 introduced extents which are stored in the inodes. They also work as in Btrfs: they
define the start of the data and the offset inside the file. [[16]]

Metadata Category

The metadata category is where the descriptive data reside. Here we can find, for
example, the last accessed time and the addresses of the data units that a file has
allocated. Few tools explicitly identify metadata analysis; instead, it is typically
merged with file name category analysis. We separate them, though, in this book
to show where the data are coming from and why some deleted files cannot be
recovered. [10, Chapter 8]

In Terms of Btrfs this data is stored in inode entries inside the FS tree. So the filesystem tree
is introduced in this category but will reappear in the file name category again.

FS Tree The filesystem tree represents a subvolume in the Btrfs volume. This means there
can be multiple FS trees inside a single volume. The FS Tree stores multiple items: Inodeltem,
InodeRef, Dirltem, Dirlndex, Xattrltem and ExtentData. These structures are sufficient to rep-
resent the file system structure in the filesystem tree.

Inodeltem (see Table [A.T4) structs are used to store the inode specific stat data of a file or
directory. The stat struct in the kernel can be seen in figure [2.12] The data can be obtained by
userspace programs with the stat command. The Btrfs Inodeltem shares most of the data (except
st_blksize, st_ino and st_dev) in the Inodeltem. The Inodeltem is very similar to the ExtX inode
in terms of the user-visible data items. In the NTFS terminology the Inodeltem would be part of
the MFT entry.

ExtentData (see Table structs reference the actual file content. The data can either
be stored directly in the tree as inline extent. In this case, the type field is set to 0 and the
data follows the mandatory data parts. The data following the ExtentData structure is exactly
n bytes long. Inline extents are used for small files. Larger files are usually stored outside the
filesystem tree in extents. In that case the structure has the optional fields filled. The file content
is found at the logical address specified in the ExtentData struct. Storing the smaller files near
their metadata has the advantages of being very space efficient because there is no block-size
which leaves unused slack-space behind if the file doesn’t match the block-size and it has the
advantage of being physically close to the metadata which is an advantage when reading the file.
Usually reading the metadata already causes a small file’s data to be in the reading cache. [3]

InodeRef (see Table [A.T5) elements translate inode numbers to file names. Their key is
(inode id, 12, directory id). The directory ID is the inode number of the directory containing the
inode.
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struct stat {

dev_t st_dev; /x ID of device containing file x/
ino_t st_ino; /% inode number x/

mode_t st_mode; /% protection x/

nlink t st_nlink ; /x number of hard links x/

uid_t st_uid ; /x user ID of owner x/

gid_t st_gid; /x group ID of owner x/

dev_t st_rdev; /x device ID (if special file) x/
off_t st_size; /x total size, in bytes x/

blksize_t st_blksize; /x blocksize for file system I/0 */
blkcnt_t st_blocks; /x number of 512B blocks allocated x*/

time_t st_atime ; /x time of last access x/
time_t st_mtime ; /x time of last modification x/
time_t st_ctime ; /x time of last status change x/

Figure 2.12: stat structure [2]

Dirltem (see Table[A.I6) structs are used to find files and directories by their name. The key
of a Dirltem consists of (parent object id, 84, crc32c hash of the file name). Finding a file by
name involves hashing the name and looking it up in the FS tree. The resulting Dirltem can have
repeated entries because of possible hash collisions.

Dirlndex (see Table are used to look up files and directories by their index in a direc-
tory. This is usually done during a directory listing.

InodeRef, Dirltem and Dirlndex would relate to directory entries in the ExtX terminology:
“An ExtX directory is just like a regular file except that it has a special type value in its inode.
Directories allocate blocks that will contain a list of directory entry data structures. A directory
entry is a simple data structure that contains the file name and the inode address where the file’s
metadata can be found.” [[10, Chapter 14] The directory entry is actually a linked list which
contains references to all inodes and the file names. In Ext4 the usage of HTrees for this purpose
became mandatory while Ext3 allowed this. [16]. NTFS uses Indexes to store directory entries in
a b-tree. The directory itself is referenced from the MFT. [[10, Chapters 11,12]. This is somehow
similar to Btrfs where the index can be seen as part of the FS tree.

Checksum Tree The checksum tree stores checksums for extents. Since checksums are meta-
data, they are mentioned here, but for the forensic analysis they don’t provide new information.
The only possible thing would be the detection of corrupt extents.

ExtX and Ext4 don’t provide checksums for data, but Ext4 provides checksums for journal-
ing and block groups. [16].

Extent Tree The extent tree is the reverse of all FS trees. It constitutes a single tree which
does the bookkeeping of allocations for the whole filesystem. The extent tree stores Extent Item
objects which constitute the reference counted allocation map of the Btrfs volume. Extents are
contiguous on-disk areas that hold user-data without additional headers or formatting. [|34] Items
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are referenced by the Extent Data items of the filesystem/subvolume tree. They are reference
counted to support cloning filesystem trees. The extent items store an array of references to the
actual data.

File Name Category

The file name category is already covered by the FS Tree in the Metadata Category (DirIndex
and Dirltem in the FS Tree) and thus not covered here again.

2.3 Digital Forensics

The term Digital Forensics describes Forensic Science applied to digital data. Often it is also
called Computer Forensics [10, Foreword]. Digital Forensics is a wide field that not exclusively
covers network forensics [[14]] [6], mobile forensics [36], memory forensics [35] and forensic
data analysis, which is the topic of this thesis.

The NIST defines Computer Forensics, another often used term for Digital Forensics, as:

The application of science to the identification, collection, examination, and analy-
sis of data while preserving the integrity of the information and maintaining a strict
chain of custody for the data. [23]]

Brian Carrier defines Digital Forensics as:

A digital forensic investigation is a process that uses science and technology to
analyze digital objects and that develops and tests theories, which can be entered
into a court of law, to answer questions about events that occurred. [10, Chapter 1]

Digital Forensics originated in the in the 1970s in the form of data recovery procedures. In
the 1980s specialized tools were developed and widely used (e.g. “undelete”). This time was
characterized by a huge diversity of hardware and software, widespread use of proprietary and
undocumented file formats, centralized computing facilities compared to today’s omnipresence
of computing equipment and the lack of formal processes, tools and education. Relatively small
storace capacities often didn’t require digital forensics methods as printouts of storage media and
manual analysis was possible. The years from 1999 to 2007 may be characterized as a “Golden
Age” for digital forensics as the previous diversity in both hardware and software consolidated
into a dominance of Microsoft Windows on the software side and a thorough standardization
on the hardware side. The amount of relevant file formats of forensic interest (Microsoft Office
formats, JPEG, AVI, WMYV) decreased and forensic tools became better. [[19]]

The digital forensics process shares commonalities with the physical forensic process which
could consist of the following phases [|12]:

Preservation Phase Usually securing the exits of the crime scene, helping the wounded, de-
taining the suspects and identifying the witnesses.

Survey Phase Walking through the scene and identifying physical evidence, developing a first
theory, documenting the fragile evidence.
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Documentation Phase Involves taking photos, drawing sketches of the scene; the goal is to
capture as much information as possible about the crime scene.

Search and Collection Phase The intensive search and collection of additional physical evi-
dence in the crime scene, often with a concrete missing evidence (e.g. a weapon). After
this phase the process usually continues outside the actual crime scene.

Reconstruction Phase The collected evidence is organized and a theory for the happened inci-
dent is developed.

Presentation Phase The evidence is presented to a court along with the theory developed dur-
ing the investigation.

This process is of course not directly appicable for digital evidence as the physical device
containing the digital data (e.g. a personal computer) should be treated as a crime scene on its
own, so the above stated phases should be adopted to each physical device containing digital
data separately.

The NIST defines the forensic phases as follows [23|:

Collection Data related to a specific event is identified, labeled, recorded, and collected, and its
integrity is preserved

Examination Forensic tools and techniques appropriate to the types of data that were collected
are executed to identify and extract the relevant information from the collected data while
protecting its integrity. Examination may use a combination of automated tools and man-
ual processes.

Analysis Involves analyzing the results of the examination to derive useful information that ad-
dresses the questions that were the impetus for performing the collection and examination.

Reporting May include describing the actions performed, determining what other actions need
to be performed, and recommending improvements to policies, guidelines, procedures,
tools, and other aspects of the forensic process.

The Preservation or Collection Phase is especially important in this process since computers
store a lot of important data in volatile memory. Thus evidence collection should be done in the
order of volatility, which has been defined in RFC3227 8] as follows:

1. registers, cache

2. routing table, arp cache, process table, kernel statistics, memory

3. temporary file systems

4. disk

5. remote logging and monitoring data that is relevant to the system in question

6. physical configuration, network topology
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7. archival media

The focus of this work concentrates on the disk, but the data with higher volatility are also
becoming increasingly important. For example full disk encryption can prevent the analysis of
data unless the encryption passphrase is known. [|13|] The acquisition of the passphrase could be
part of the physical evidence collection (e.g. passphrase written on paper), acquired by interro-
gation or collected from the memory of the running system. The acquisition of a memory dump
of a running system could be obtained with specialized hardware such as the prototypical “Trib-
ble” PCI device [11]. Another possibility is the access of the system memory over DMA over
Firewire [4] if the target system has an active Firewire port. Another possibility is the “warm-
reboot” memory acquisition which dumps the memory to an USB drive after a reboot [38]]. The
“cold-boot” attack is also an interesting method to obtain a memory dump. It uses multipurpose
duster spray to cool the memory chips to -50 degrees celsius, which causes the volatile data to
persist longer before removing them from the device and reading out their contents on another
machine [22].

The Preservation Phase should, apart from the above mentioned preservation of the mem-
ory, also cover the separation of the device from networks, the recording of processes, logged in
users, and so on. These things are already covered by a memory dump, which has the additional
advantage of not modifying the memory during the collection process. RFC3227 [_8]] suggests
the usage of statically linked utilities to collect information about the running system, but since
then the techniques for dumping system memory have been improved and should be preferred
because they enable the investigator to see the complete state of the target device. Modern mem-
ory analysis frameworks such as volatility [39]] enable the investigator to extract information
directly from the memory dump instead of relying on a small subset of information that was
captured from a running system.

The acquisition of a hard drive of a non-running system or a system that was shut down
after acquiring a memory dump should start by using a write blocker to prevent accidential
modification of data. Nelson et al. [30] suggest using a flag in the Windows registry to turn off
writes to USB devices and using a USB interface to connect the hard disk to acquire the image
from. A hardware write blocking device is a safer choice especially since the NIST didn’t verify
Windowsﬂ The NIST suggests using a three step process to aquire hard disk images [23]]:

e Develop a plan to acquire data
e Acquire data
e Verify integrity of acquired data

As long as it can be assured that the data is not modified and when the data can be verified to
be the same as the captured data, and the chain of custody is strictly documented, the forensic
process can continue with the Examination phase. The result of the Collection phase is the input
to the methods described later in this thesis.

The natural antagonist of Digital Forensics shall also be mentioned here: Anti-Forensics is
the summarization of techniques to prevent forensic methods to be applied successfully. This

1http: //www.cftt.nist.gov/software_write_block.htm, Accessed 16.03.2014
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includes secure deletion of data in hard drives [21]] or SSDs [41]], steganography [40] and cryp-
tography [13]]. Cryptography and its possible countermeasures on running systems have been
discussed before, secure data deletion would certainly leave nothing left to analyze for any foren-
sic scientist, but in practice people exhibit a more careless attitude towards data safety [[17].
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CHAPTER
Design

This chapter starts with a presentation of The Sleuthkit and continues with a justification why it
has been chosen as the platform for the implementation of the forensic methods. It also gives an
overview about the most important command line tools it provides and finishes with a description
of it’s filesystem specific API. The chapter continues with a definition of the forensic methods
to retrieve artifacts from the Btrfs filesystem data. The methods apply the theoretical knowledge
from the analysis part of the previous chapter and provide the necessary dynamic aspects to turn
the static filesystem data into forensic artifacts. The methods defined here are structured by the
artifacts they retrieve. The third section describes the implementation details of the methods
inside The Sleuthkit.

3.1 The Sleuthkit

Finding digital evidence during an investigation is not something that is usually done by manu-
ally investigating filesystem images with the help of a hex editor. It usually is done with the help
of software. Several commercial and free systems exist for the purpose of analyzing filesystems
to find evidence.

Implementing forensic methods for a new filesystem, as this thesis tries to do, could be done
as a completely independent tool with its own user interface, own parameters and file formats.
However, the taken approach is another one. The implementation will be in form of a extension
of a very widespread open-source forensics toolkit called The Sleuth Kit by Brian Carrier, which
is the de-facto standard package in the open source world:

The Sleuth Kit (TSK) and the Autopsy Forensic Browser are open source Unix-
based tools that [Brian Carrier] first released (in some form) in early 2001. TSK
is a collection of over 20 command line tools that can analyze disk and file system
images for evidence. To make the analysis easier, the Autopsy Forensic Browser
can be used. Autopsy is a front end to the TSK tools and provides a point-and-click
type of interface. [[10, Appendix A]
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This has some advantages and disadvantages which will be discussed in this section.

Reasons for the Implementation in The Sleuth Kit

Efficiency The Sleuth Kit already provides forensic analysis for a large number of filesystems.
The code is separated into general code and filesystem specific code. This is a quite obvious
design decision because it is desireable to have a generic codebase instead of reimplementing
the same functionality for every filesystem. At the same time this means that an API needs to be
specified which the filesystem specific code is implemented against. That is a certain risk since
Btrfs offers quite new features which didn’t exist in previous Linux filesystems and thus raises
the question whether The Sleuth Kit API is suitable for extending it for Btrfs.

Existing User Base A very clear advantage for extending TSK is its existing user base. Every
new program requires learning it’s syntax, usage and reading documentation to understand the
way it works. This can be a cumbersome process, especially in more complex fields. Extending
TSK in essence eliminates the learning phase for everybody knowing how to use TSK for other
filesystems as the usage for analysing Btrfs is exactly the same.

Related Tools Related tools which use TSK for the forensic analysis of filesystems can ana-
lyze Btrfs filesystems as well because their side of the API respectively the command line (de-
pending on how TSK is integrated into another tool) doesn’t change. This is a clear advantage
for extending TSK instead of the own implementation.

Existing Design This is somehow related to efficiency. Designing a new piece of software is
a complex process which constitutes a risk for the later implementation if done wrong. Relying
on an existing design clearly reduces the risk of coming to wrong design decisions as there
already exists an implementation which is working. But again this point is not a clear win for
extending TSK since the API wasn’t designed for the advanced features of Btrfs. This places a
risk on implementing Btrfs in TSK, especially since a similar approach for ZFS failed, although
no concrete details were mentioned. [26]]

Proven Code Base Due to being actively used by forensic investigators and having a commu-
nity based around TSK, a higher level of quality can be supposed than the implementation by
a single person. The large and tested common codebase is clearly an advantage for extending
TSK. The fact that TSK is open source software origniating from an academic background may
be an advantage too. [9]]

Freedom of Choice Chosing the programming language, libraries and the environment (build
system, scm, etc.) is an advantage mostly in the standalone implementation choice. Extending
TSK fixes the choice of most of the previously listed parameters. This includes the programming
language, the libraries to a high extent (since the goal of the extendsion is the integration of the
Btrfs code into the upstream TSK code the final patch should be compact and not have a huge
list of dependencies). Using a modern build system (such as CMake) is also impossible. The
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TSK project’s choice of Git as SCM is very suitable for working independently of the upstream
project on the new features.

Image Format Support Raw filesystem images are not the only type of image that is created
during the collection phase of a forensic investigation. TSK supports six other formats besides
Raw, including the open AFF format [18]]. A standalone tool would have to implement support
for these formats itself.

In sum the arguments for extending The Sleuth Kit had more weight than implementing a
standalone tool which has the high risk of not being used in practice. Thus the implementation
of a standalone application or tool is discarded.

Command Line Tools

TSK consists of many command line tools which follow the Unix principle of serving a single
purpose. It’s tools are designed to work on different layers of a filesystem [10, Appendix A] of
which the most relevant are:

e File System Category: fsstat

e Content Category: dcat, dls, dstat, dcalc[]
e Metadata Category: icat, ifind, ils, istat

e File Name Category: ffind, fls

The filesystem layer is the highest layer and referes to the filesystem as a whole. Thus only
very general information is relevant here. The file name layer is the second highest layer, it
works with file names which assign meta data elements their names. That is usually the level
that the user of an operating systems means when he refers to the term filesystem. The metadata
layer is below the file name layer and contains the basic information about allocations. This
includes various timestamps, the sizes of allocations and similar. Also the file contents fall into
this category as their locations are defined by metadata. The content category operates on the
allocation units.

fsstat Displays some general information about a filesystem. It depends on the filesystem ana-
lyzed which information is displayed here [10, Appendix A]. Usually it covers basic parameters
of the filesystem such as size of the filesystem, size of allocation (block size) and similar.

fls The fls command (see Figure lists the file names in a given directory either in human
readable form (see Figure [3.2) or in machine readable form (see Figure [3.3). [10, Appendix A]
It is comparable to the s command in a normal Unix filesystem. It’s arguments include various
filtering and output format options besides filters for deleted files. In the example in Figure [3.2]
a small filesystem is shown which contains a directory and three files. One file is contained in
the directory while the others are located in the filesystem root.

"These tools are called blkcat, blkls, blkstat and blkcalc in newer TSK versions.
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$ fsstat ext3.img

FILE SYSTEM INFORMATION

File System Type: Ext3

Volume Name:

Volume ID: 58c992e6b7aebcafb94554a37ebdc693

Last Written at: Sat Feb 1 16:56:17 2014
Last Checked at: Sat Feb 1 16:56:17 2014

Last Mounted at: emptyUnmounted properly
Last mounted on:

Source 0S: Linux

Dynamic Structure

Compat Features: Journal, Ext Attributes, Resize Inode,
Dir Index

InCompat Features: Filetype,

Read Only Compat Features: Sparse Super, Has Large Files,

[...]

Figure 3.1: Example of an fsstat invocation for a Ext3 filesystem image.

$ fls -r ~/Diplomarbeit/testdata/fsl
r/r 1: testfile

d/d 2: testdir

+ r/r 3: file2

r/r 4: linux-3.7.tar

Figure 3.2: Example listing recursively all files in normal format.

./fls —-f btrfs -a -r -m / ~/Diplomarbeit/testdata/fsl

Ol /testfilel|l|r/r-———-————~ [01011811353402818]
13479641401011347964140

Ol /testdir|2|d/d-———-———~ [01011011353404607|
13534046191011353404619

Ol /testdir/file2|3|r/r————————~ [010113]11353404619|
13534046191011353404619

0|/linux-3.7.tarl4|r/r————————~ 0101499036160

136661219111366612199|011366612199

Figure 3.3: Example listing recursively allocated files in a machine-readable format.
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usage: fls [—adDFlpruvV] [—-f fstype] [-1 imgtype]

[-b dev_sector_size] [-m dir/] [-o imgoffset] [-z ZONE]

[-s seconds] image [images] [inode]

If [inode] is not given, the root directory is used

—a: Display "." and ".." entries

—d: Display deleted entries only

-D: Display only directories

—-F: Display only files

—-1: Display long version (like 1ls -1)

-1 imgtype: Format of image file (use ’'—-1i list’ for
supported types)

-b dev_sector_size: The size (in bytes) of the device
sectors

-f fstype: File system type (use ’'—-f list’ for
supported types)

-m: Display output in mactime input format with
dir/ as the actual mount point of the image

-0 imgoffset: Offset into image file (in sectors)

-p: Display full path for each file

-r: Recurse on directory entries

—u: Display undeleted entries only

-v: verbose output to stderr

-V: Print version

—z: Time zone of original machine (i.e. ESTS5EDT or GMT)

(only useful with -1)
-s seconds: Time skew of original machine (in seconds)
(only useful with -1 & -m)

Figure 3.4: Command line options of fls.

icat The icat command outputs the contents of a file referenced by a metadata address. The
metadata address is the internal address a file is given by a particular filesystem. [10, Ap-
pendix A]

ils The ils command lists the known metadata allocations of the filesystem. An example of the
output of this command is given in Figure 3.5]

istat The istat command outputs the allocation status of a specific data unit (see Figure [3.6).
[10) Appendix A]

blkcat The blkcat command outputs the contents of a data unit (e.g. block). [10, Appendix A]
An example of the blkcat output of a part of a Btrfs superblock can be seen in Figure[3.7]
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01al0]0]136661219111366612149|136661219110140555|1]56
11al0]0]1134796414011353402818|1347964140]1011006441/18
21al01011353404619]1135340460711353404619(0140755]11110
31al0]0113534046191135340461911353404619]1011006441113
41al0]011366612199]11366612191|1366612199]101100644111499036160

Figure 3.5: ils output listing the allocated inodes on a filesystem.
=== stat info ===
Size: 10
Access time: 1353404607

Modified time: 1353404619
Create time: 1353404619

Figure 3.6: istat information for a metadata address.

$ blkcat -a ~/Diplomarbeit/testdata/fsl 0x10000 | fold -w 60

............................... G..tM.......1........
......... _BHRES M.t i i e e e e e e @ e e
AR e
..................................... A O <
................................. F:2..C (g .. G tM. ...,

cl.mytestlabel . e e e e et e e e e et e e
....................................................... Q@....
.......................................................... B
2..C P (e P e oo
............................ Q......F:2..C. R e A L
....... B

Figure 3.7: blkcat output of the Btrfs superblock of a test image.
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TSK_FS_INFO btrfs.c
fs_open 3 | btrfs_tsk_open

[ fsstat D | btrfs_tsk_fsstat
close btrfs_tsk_close
inode_walk ;E btrfs_tsk_inode_walk
istat — > | btrfs_tsk_istat

block_walk btrfs_tsk_block_walk

load_attrs btrfs_tsk_load_attrs
block_getflags btrfs_tsk_block_getflags

Figure 3.8: Usage of generic function pointers for blkls.

blkls This tool outputs the contents of all unallocated data units by default. Options to output
the allocation status or outputting allocated data units are avaliable too [10, Appendix A].

blkstat This command outputs the allocation status of a specific data unit. [[10, Appendix A]

TSK Filesystem API

The Sleuth Kit provides an API for implementing filesystem analysis code. The central entity
that stores the state of an opened filesystem is the TSK_FS_INFO (see Figure [3.9) structure
(tsk_fs.h). It keeps track of some general information such as start and size of the filesystem
currently opened as well as the function pointers of functions to be implemented by filesystem
specific code. The first handover of control from the TSK library code to filesystem specific code
happens on opening an image (method tsk_fs_open_img in fs_open.c). This is the only
place where the filesystem specific code is called directly. After opening the image, the filesys-
tem specific code is called indirectly through function pointers defined in TSK_FS_INFO. This
can be seen in an example for the blkls command in Figure [3.8]

The function pointers defined in TSK_FS_INFO are the main interface between the general
TSK code and the filesystem specific code. What follows is a high level description of these
methods.

fs_open This method is called after TSK has determined the basic information about the
filesystem image: Its image format, contained partitions and other details hidden by the vol-
ume abstraction layer. The open method can rely on having access to the data of the filesystem.
It is the first method from the filesystem specific code that is called by TSK. This function is a
place for initializing things and creating and populating the TSK_FS_INFO struct. Typically
it is also checked whether an image really has the right format: Usually filesystems define a
specific signature which is checked by the open method.

fsstat This method prints general information about the filesystem to a file handle. Every
filesystem implementation can print relevant information to the file handle without any con-
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struct TSK_FS_INFO {

30

int tag;
TSK_IMG_INFO *img_info;
TSK OFF T offset;

/¥ meta data */

TSK_INUM_T inum_count;
TSK_INUM_T root_inum ;
TSK_INUM_T first_inum;
TSK_INUM_T last_inum ;

/x content x/

TSK_DADDR_T block_count;
TSK_DADDR_T first_block;
TSK_DADDR T last_block;
TSK_DADDR T last_block_act;
unsigned int block_size;
unsigned int dev_bsize;

/x [...] %/

uint8_t (xblock_walk) (TSK_FS_INFO x fs, TSK DADDR_T start ,
TSK_DADDR_T end, TSK FS_BLOCK WALK _FLAG_ENUM flags ,
TSK_FS_BLOCK_WALK CB cb, veoid xptr);

TSK_FS_BLOCK_FLAG_ENUM (xblock_getflags)(TSK_FS_INFO x a_fs,
TSK_DADDR_T a_addr);

uint8_t (xinode_walk) (TSK_FS_INFO x fs, TSK_INUM_T start ,
TSK_INUM_T end, TSK_FS_META_FLAG_ENUM flags , TSK_FS_META_WALK CB

cb, void xptr);

uint8_t (xfile_add_meta) (TSK_FS_INFO x fs, TSK_FS_FILE x fs_file ,
TSK_INUM_T addr);

TSK_FS_ATTR_TYPE_ENUM (x get_default_attr_type)(const TSK_FS_FILE x)

uint8_t (xload_attrs)(TSK_FS_FILE x);

/x [...] %/

uint8_t (xistat)(TSK_FS_INFO % fs, FILE x hFile , TSK_INUM_T inum,
TSK_DADDR_T numblock, int32_t sec_skew);

TSK_RETVAL_ENUM (xdir_open_meta) (TSK_FS_INFO x fs, TSK_FS_DIR xx
a_fs_dir, TSK INUM_T inode);

/x [...] %/

uint8_t (xfsstat)(TSK_FS_INFO x fs, FILE % hFile);

int (xname_cmp) (TSK_FS_INFO %, const char x, const char x);

uint8_t (xfscheck) (TSK_FS_INFO x, FILE x);

void (xclose) (TSK_FS_INFO x fs);

uint8_t (xfread_owner_sid) (TSK_FS_FILE =x, char xx);

Figure 3.9: TSK_FS_INFO from tsk_fs.h



straints. The output is used to get a broad idea about the filesystem under investigation. The
information obtained here is usually not related to concrete data of the filesystem but rather the
metadata of the filesystem. These things could include the version of the filesystem, used fea-
tures, volume name, block size etc. The information is not passed internally to TSK, it is just
printed out for the user. The printed data is usually read by fs_open and could be stored in the
superblock or similar information blocks.

close This method closes the filesystem. This is a place to empty caches, free lists and similar.

inode_walk This method allows to iterate over a range of metadata addresses. Each metadata
address is read from disk using the file_add_meta method. A specified callback decides
whether to continue the iteration or to stop.

istat This method retrieves information about an inode and prints it out in textual form. It is
similar to the fsstat method. Although its name contains inode, it is a general function which
displays information on metadata addresses. As the fsstat method, it just prints information
out for the user without internally storing the aggregation. Of course the read metadata could be
stored in a structure, but the output of this method is just printed out.

block_walk This function allows TSK to iterate over the filesystem blocks. The argument is
a disk block range which is specified in times of the block size. The block size is the size which
is used by filesystems to internally address space in the filesystem. The block_walk method
also has a callback parameter which is called for every block. The callback method recieves the
block details in form of a TSK_FS_BLOCK struct and returns whether to continue reading the
rest of the block range or if the process should be interrupted.

file_add_meta The method allows TSK to fetch the details of a metadata address (inode). It
loads the required data from disk and populates the metadata attributes of a TSK_FS_FILE
struct. Thus it is a mechanism to lazy-load file metadata information.

load_attrs This method is important for communicating file positions to the TSK API. An
attribute is TSK’s termininology for file content. The file content is represented through a list of
data runs, each run describing a continuous area of space which is part of the file’s content. The
unit in which those file contents are declared is blocks. This means that each declared data run
position needs to be a multiple of the block size. Smaller files can be represented as pointer to a
memory area which carries the file’s content.

get_default_attr_type This is mostly for NTFS compatibility as a file can have multiple data
streams there. This method returns the default data stream for a filesystem. Usually this methods
just returns a default value as most filesystems just have a single file content for each metadata
address.
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block_getflags This method is used to get information about a specific filesystem block. The
information includes the allocation status (free, allocated) and the type of block (metadata, data).
It is called by block_walk to gain information about a single block.

Limitations of the TSK API

Metadata Addressing As mentioned before the TSK API was not designed to support sub-
volumes. This simple fact becomes manifest in the way files are addressed in the API. TSK
uses a so called Metadata Address to refer to metadata units (inodes in Ext and Btrfs terminol-
ogy). This is a single value of type TSK_INUM_T (defined as unsigned 64bit number). This is
not suitable for Btrfs because with TSK’s implementation it is possible to address 264 metadata
units while Btrfs can address 264 inodes in each subvolume, which is apparently a problem. A
possible solution to bypass this limitation is the creation of an indirection layer to map virtual
metadata addresses to real metadata addresses, thus simulating a single domain of addresses for
TSK while in reality there are multiple independent domains of inodes. This is of course only
possible under the assumption that the individual subvolumes in sum use less than 264 inodes,
which is such a high number that this workaround will work long enough to adapt the TSK API
until such huge filesystems become relevant in future.

Subvolumes Related to the metadata addressing issue but in fact a different problem. Since
subvolumes are not supported in TSK, there is no way to specify subvolumes for individual
commands. In practice this means that it is not possible to list the files of a single subvolume or
limit TSK commands to individual subvolumes. This problem can be worked around by using a
virtual directory structure which puts files in a virtual prefix such as /subvolume256/etc/
fstab. This virtual directory trick is already used in TSK for displaying deleted files. Altough
specifying subvolumes on the command line is desireable for file layer operations (eg. listing
files), it is not suitable for operations on other Btrfs trees which operate independently of the
subvolume hierarchy such as listing the free space of an image. The free space is tracked for
the whole volume and though limiting it to a subvolume is possible to implement, the results
are dubious because files belonging to other subvolumes would appear as free space and thus
make the wrong impression of being deleted/unreferenced. So the subvolumes seem to be more
relevant for the file naming layer and the workaround of using virtual directories to represent the
subvolumes seems feasible.

3.2 Forensic Methods

After the forensic description of the Btrfs filesystem in the previous chapter, it is now necessary
to define the forensic methods to analyze Btrfs filesystem images in order to retrieve the desired
artifacts. In a this step the the methods itself are the desired outcome. This section describes the
methods itself in a high level way without any implementation details. To simplify the process
of explaining the methods, a simple test filesystem has been created which will be used in this
section to simplify the usage of examples in this section. It is a 1GiB Btrfs filesystem with a
single subvolume with the id 5. Its contents are:
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e the root directory with the inode number 256.

e a file named “testfile” having the inode number 257. The content is Testfile con-
tents. Its size is 18 bytes.

e adirectory named “testdir” having the inode number 258.

e a file named “file2” having the inode number 259. It’s content is file2content. Its
size is 13 bytes.

e a file named “linux-3.7.tar” having the inode 260. It contains a tar of the linux kernel
sources of version 3.7. Its size is 499036160 bytes.

The Btrfs driver in the Linux kernel is accompanied by several userspace tools to create the
filesystem, mount it and among others the btrfs-debug-tree utility which prints the contents of
the Btrfs trees of a volume. It’s output is used here to describe the forensic methods. It is noted
that these methods are based upon the generic methods for resolving addresses and for reading
the generic trees of Btrfs. It is not described how to iterate over a tree but rather what criteria
is used for querying the tree. A matching element is a structure referenced by a key that fulfills
the conditions stated. This makes the description of forensic methods better readable by not
repeating technical details all over again.

Retriving the Filesystem Metadata (A1)

The relevant filesystem metadata for Btrfs includes the chunks of the filesystem, which is nec-
essary to verify the address translation of the filesystem, the basic parameters of the filesystem
such as the free size, allocated size and the addresses of the most relevant data structures of the
filesystem. This includes the most important trees. Further it is relevant to retrieve the subvol-
ume structure.

To get this information, the prime source is the superblock. This is analog to ExtX and
involves reading the superblock. Since the location of the superblock is clearly defined, the rel-
evant metadata can be extracted by parsing the superblock’s data. After the superblock has been
interpreted, it is necessary to read the chunk tree to get a list of the chunks of the filesystem. This
is done by reading the bootstrap data in the superblock first to get a working address translation
and then starting to read the chunk tree at the translated physical address.

The subvolumes are stored in the root of roots tree. There is a Root Item entry for each
subvolume. The entries for subvolumes differ from other tree entries in their object id. Every
tree has a fixed object id, only subvolumes have ids that lie in the range 5 = x [256 < z <
UINT64MAX.

To list all the subvolumes a simple query of the root of roots tree with [7, ROOT_ITEM, 7]
is sufficient, the result must be filtered with above criteria.

For our example filesystem the only result is the first subvolume with the fixed id of five:

item 3 key (FS_TREE ROOT_ITEM 0) itemoff 2661 itemsize 439
root data bytenr 132517888 level 0 dirid 256 refs 1 gen 21
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fs tree key (FS_TREE ROOT_ITEM O0)

leaf 132517888 items 23 free space 1997 generation 21 owner 5

fs uuid e5d14793-a874-4ddf-a3ba-0cbe06e5691b

chunk uuid 33bb6alb-3492-4287-a%9a4-c77fea8cabba

item 0 key (256 INODE_ITEM 0) itemoff 3835 itemsize 160
inode generation 3 size 56 block group 0 mode 40555 links 1

item 1 key (256 INODE_REF 256) itemoff 3823 itemsize 12
inode ref index 0 namelen 2 name:

item 2 key (256 DIR_ITEM 982728850) itemoff 3785 itemsize 38
location key (257 INODE_ITEM 0) type 1
namelen 8 datalen 0 name: testfile

item 3 key (256 DIR_ITEM 2818265978) itemoff 3748 itemsize 37
location key (258 INODE_ITEM 0) type 2
namelen 7 datalen 0 name: testdir

item 4 key (256 DIR_ITEM 3645954615) itemoff 3705 itemsize 43
location key (260 INODE_ITEM 0) type 1
namelen 13 datalen 0 name: linux-3.7.tar

item 5 key (256 DIR_INDEX 2) itemoff 3667 itemsize 38
location key (257 INODE_ITEM 0) type 1
namelen 8 datalen 0 name: testfile

item 6 key (256 DIR_INDEX 3) itemoff 3630 itemsize 37
location key (258 INODE_ITEM 0) type 2
namelen 7 datalen 0 name: testdir

item 7 key (256 DIR_INDEX 4) itemoff 3587 itemsize 43
location key (260 INODE_ITEM 0) type 1
namelen 13 datalen 0 name: linux-3.7.tar

item 8 key (257 INODE_ITEM 0) itemoff 3427 itemsize 160
inode generation 6 size 18 block group 0 mode 100644
links 1

item 9 key (257 INODE_REF 256) itemoff 3409 itemsize 18
inode ref index 2 namelen 8 name: testfile

item 10 key (257 EXTENT_DATA 0) itemoff 3370 itemsize 39
inline extent data size 18 ram 18 compress 0

Figure 3.10: Filesystem Tree output of btrfs-debug-tree with the example filesystem
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This entry states that the filesystem tree starts at the defined logical address and has a root
inode with the number 256.
The artifact must then be presented in human readable form.

Retrieving the Filesystem Structure (A2)

The file and directory structure of Btrfs is stored in the filesystem tree (see page [I6). This is the
most important tree for operating on the file name layer. Every file has a unique number in the
scope of a filesystem tree: the inode number. This number is used as the Object ID part of a key.
The item type field of the key describes the actual structure that is referenced by the key. The
offset field’s meaning dependes on the type of the referenced structure. Thus the Filesystem tree
contains keys of the scheme [k, 2, y| for an inode k. This means that every structure related to a
certain inode is located next to each other because of the ordering keys.

The first step of listing the filesystem structure includes the finding of the root inode. This is
stored in the root of roots tree which contains references to every tree. It contains an Root Item
entry with a dirid of 256 which denotes that the inode 256 is the root inode of this filesystem
tree. The filesystem tree is referenced by the Root Item entry by the block number field. This
number is a logical address which is translated to a physical address. At this address the tree
starts with it’s header structure.

item 3 key (FS_TREE ROOT_ITEM 0) itemoff 2661 itemsize 439
root data bytenr 132517888 level 0 dirid 256 refs 1 gen 21

Having found the inode number of the root inode, it is possible to query for it’s contents.
Therefore a listing based on the inode number is possible by querying the filesystem tree for
inodes with the number 256. This results in the following list of items:

item 0 key (256 INODE_ITEM 0) itemoff 3835 itemsize 160
inode generation 3 size 56 block group 0 mode 40555 links 1
item 1 key (256 INODE_REF 256) itemoff 3823 itemsize 12
inode ref index 0 namelen 2 name:
item 2 key (256 DIR_ITEM 982728850) itemoff 3785 itemsize 38
location key (257 INODE_ITEM 0) type 1
namelen 8 datalen 0 name: testfile
item 3 key (256 DIR_ITEM 2818265978) itemoff 3748 itemsize 37
location key (258 INODE_ITEM 0) type 2
namelen 7 datalen 0 name: testdir
item 4 key (256 DIR_ITEM 3645954615) itemoff 3705 itemsize 43
location key (260 INODE_ITEM 0) type 1
namelen 13 datalen 0 name: linux-3.7.tar
item 5 key (256 DIR_INDEX 2) itemoff 3667 itemsize 38
location key (257 INODE_ITEM 0) type 1
namelen 8 datalen 0 name: testfile
item 6 key (256 DIR_INDEX 3) itemoff 3630 itemsize 37
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location key (258 INODE_ITEM 0) type 2
namelen 7 datalen 0 name: testdir
item 7 key (256 DIR_INDEX 4) itemoff 3587 itemsize 43
location key (260 INODE_ITEM 0) type 1
namelen 13 datalen 0 name: linux-3.7.tar

The resulting inodes contain the Inode Item of the root inode with its corresponding inode
ref. The Inode Ref is the name entry for an inode. In the case of the root directory is “..”. The
contents of the directory are represented by pairs of Dir Item and Dir Index entries. Dir Index
items always contain one entry and their key is the index of the file in the current directory. So
the key [256, DIR_INDEX, 3] means that the directory inode is 256, the item is a Dir Index and
the element is the third element in this directory. So the Dir Index elements allow access of
files by their index. This is useful for directory listings and similar operations. The Dir Item
entries work different. They allow the lookup of files by by their names. Therefore the key
[256, DIR_ITEM, 982728850] means that there is a file in the directory with the inode number
256 which is a Dir Item and it’s filename matches the hash number 982728850. Of course with
hash numbers (especially short ones) there can be collisions. Therefore Dir Items can reference
multiple files if their hashes are the same. The struct is the same as a Dir Index, but can be
repeated. The Dir Index and Dir Item elements have a type field which specifies the type of the
file (directory, regular file, devices, etc.).

At this point everything needed for a file listing is already present. The list of files in a
directory among their types and their inode numbers. It is possible to recursively list all the files
in a filesystem by iterating over every found directory and to query it after the same scheme as
used above. If we were interested to find the file “file2”, we would have to query the filesystem
tree for elements with key [258, 7, 7] (“testdir”). This would result in similar results as above.

The data we queried above does not contain very detailed information about files though. To
get more details of a file, it is necessary to fetch their individual Inode Item elements by querying
for [x,INODE_ITEM, 0], x being the inode number of the element.

Retrieving the File Metadata (A3)

File metadata is stored in Inode Items in Btrfs, they don’t share much of the concepts that inodes
have in other Unix filesystems besides the name. In ExtX an inode can be described as:

The metadata for each file and directory are stored in a data structure called an
inode, which has a fixed size and is located in an inode table. [[10, Chapter 14]

The difference is the following: In ExtX there is a single domain of inodes which are stored
in an inode table. Accessing an inode is very simple due to the fixed size of the entry and the
well-defined start of the inode table. It is simply a multiplication of the inode number with the
inode size that results in the offset where the inode is located in the inode table. In Btrfs there is
no such thing as a single domain of inodes as every subvolume contains subvolumes which have
the same numbers but refer to different files. Also since there is no table which stores inodes in
a fixed location, it is not possible to find deleted inodes by a simple lookup in the inode table. It
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requires tree forensics (or brute force methods with good heuristics) to find unreferenced Inode
Items in a filesystem tree. So it is necessary to limit the list of inodes to referenced inodes.

The filesystem table contains Inode Items for every allocated inode in the subvolume. Hav-
ing found the richt filesystem tree makes it possible to query the tree for elements matching
[?,INODE_ITEM, 0]. The result list contains every item that is allocated in the current filesys-
tem tree. In our example filesystem this would find the following elements:

item 0 key (256 INODE_ITEM 0) itemoff 3835 itemsize 160
inode generation 3 size 56 block group 0 mode 40555
links 1

item 8 key (257 INODE_ITEM 0) itemoff 3427 itemsize 160
inode generation 6 size 18 block group 0 mode 100644
links 1

item 11 key (258 INODE_ITEM 0) itemoff 3210 itemsize 160
inode generation 17 size 10 block group 0 mode 40755
links 1

item 15 key (259 INODE_ITEM 0) itemoff 2963 itemsize 160
inode generation 17 size 13 block group 0 mode 100644
links 1

item 18 key (260 INODE_ITEM 0) itemoff 2754 itemsize 160
inode generation 21 size 499036160 block group 0 mode
100644 links 1

If it is necessary to know the type of the inode (regular file, directory, etc.), more queries
must be made for every inode. The type is only stated in the corresponding Dir Index or Dir
Item elements. The problem is that those elements are not referenced by a key containing the
actual file’s inode number but rather the inode number of the directory containing the file. There-
fore it is necessary to fetch the Inode Ref element with the query [z, INODE_REF, ], = being
the inode number of the file, ¥ matches everything. The found element contains the inode
number of the parent directory in y. So it is possible to get the Dir Index by querying for
[y, INODE_INDEX, ?].

Retrieving the Allocation Status (A4)

When iterating over the blocks of the image, one actually iterates over physical addresses. These
physical addresses can have a logical address defined or not. The first step of validating if a
block is allocated is the resolving of the logical address. If it is not defined, the block is unused
because it cannot be addressed by the filesystem. If the address exists, it could be allocated or
unallocated.

The whole space of a Btrfs volume is managed in the subvolume independent extent tree.
It contains Extent Item elements whose keys have the meaning [Logical Address, EXTENT-
_ITEM, Bytes ]. So we query the extent tree for keys matching [Logical Address < a, EX-
TENT_ITEM, (Logical Address + Bytes) < al, with a being the logical address of interest.
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If the query has results, that means that the start address of the block is used by the filesystem.
The type field of the Extent Item states whether the extent is used by a tree or by data. The
structure continues with back references to the actual data, which is not needed here.

The Extent Item entries for the large tar archive in the test filesystem are listed below. One
can see that each part of the file is referenced by it’s logical address and size.

item 45 key (336527360 EXTENT_ITEM 150798336) itemoff 1647
itemsize 53
extent refs 1 gen 21 flags 1
extent data backref root 5 objectid 260 offset 0 count 1
item 47 key (541327360 EXTENT_ITEM 150798336) itemoff 1570
itemsize 53
extent refs 1 gen 21 flags 1
extent data backref root 5 objectid 260 offset 150798336
count 1
item 49 key (746127360 EXTENT_ITEM 197439488) itemoff 1493
itemsize 53
extent refs 1 gen 21 flags 1
extent data backref root 5 objectid 260 offset 301596672
count 1

Retrieving the Contents of Allocated Files (AS)

To get the content of a file, it is necessary to find the filesystem tree that contains the file. The
file is then referenced by it’s inode number. Since the filesystem tree contains Extent Data items
for every file, we start by querying them with the filter [z, EXTENT_DATA, 7]. This results in
the following entries for the example filesystem:

item 10 key (257 EXTENT_DATA 0) itemoff 3370 itemsize 39
inline extent data size 18 ram 18 compress 0

item 17 key (259 EXTENT_DATA 0) itemoff 2914 itemsize 34
inline extent data size 13 ram 13 compress 0

item 20 key (260 EXTENT_DATA 0) itemoff 2678 itemsize 53
extent data disk byte 336527360 nr 150798336
extent data offset 0 nr 150798336 ram 150798336
extent compression 0

item 21 key (260 EXTENT_DATA 150798336) itemoff 2625
itemsize 53
extent data disk byte 541327360 nr 150798336
extent data offset 0 nr 150798336 ram 150798336
extent compression 0

item 22 key (260 EXTENT_DATA 301596672) itemoff 2572
itemsize 53
extent data disk byte 746127360 nr 197439488
extent data offset 0 nr 197439488 ram 197439488
extent compression 0
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The result contains five items for the three files we stored in the example filesystem. The
first two Extent Data items are inline extents. This is marked in the type field of the structure.
This means that the contents of the file are so small that the file can be placed directly inside the
filesystem tree.

The inline extent’s file contents simply follow the Extent Data structure. The length of the
data is specified by the size field of the structure and is simply read.

For the larger file with the inode number 260 there are three Extent Data elements found.
This means that the contents of the file are divided into three continuous parts (extents) on the
disk. The key marks the file offset with the offset field. The first Extent Data item starts at offset
zero, the beginning of the file. The structure specifies the location of the data along with the
length. The other Extent Data’s offset fields in the key are larger. To read the data of the file,
the Extent Data elements are iterated over in the order of their appearance in the filesystem tree.
For each element the physical address is resolved using the logical address stored inside the file.
The data is then read at this location until the length specified in the element is reached. Then
the process is repeated.

Retrieving the Contents of Unallocated Files (A6)

To get the contents of unallocated files, the position of them inside the filesystem must be known.
Since the position is unavailable because the file is deleted and thus the relevant trees don’t
reference any items that describe the unallocated file, there is no ad-hoc way to implement this
retrieval except the application of tree forensics to get back to an elder state of the relevant trees
in which the file existed.

Since the allocation status of data units (A4) has been described, there is another way to get
the contents of unallocated files: since the allocation status of the data units is known, allocated
data units can simply be excluded from the set of all data units. With the remaining unallocated
data, it is possible to apply a heuristic approach to get files out of the stream of unallocated
data. Using file signatures makes it possible to find unallocated data if it is not overwritten yet.
Since this is also a limitation of the tree forensic approach (even knowing the exact location of a
unallocated file doesn’t help if that location has been overwritten), this is no big disadvantage.

3.3 Implementation of the Btrfs Code

As described previously, there is a discrepancy between the metadata addressing in TSK and its
implementation in Btrfs: The SleuthKit is was not designed to handle filesystems with multiple
subvolumes. It relies on a single domain of inode numbers to work. In Btrfs there is a domain
of inode numbers for each subvolume. So the open method maps all present inodes of every
subvolume to a virtual inode number that is visible for all TSK methods. This way the unique-
ness of inode numbers is guaranteed at the cost of the additional overhead of iterating over all
inodes of every subvolume. This has some disadvantages, but is a workaround which is feasible
for average case filesystems.

The Btrfs implementation covers three files
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btrfs.c The algorithms and implementations of the filesystem specific methods as well as helper
methods.

btrfs_io.c Methods to read structs in from disk and to print out information.

tsk_btrfs.h Header file.

Most of the interesting code is found in btrfs.c while btrfs_io.c only holds quite repetitive
input and output code which is used in the algorithms. The header file defines the method
signatures and structs used in the Btrfs implementation.

The implementation of a new filesystem in TSK consists of the implementation of the before
listed methods. They are called by TSK and the implemented features of TSK keep working
independently of the filesystem implementation. Below follows a list of the key methods which
were implemented along with a short description about their functioning.

Method btrfs_tsk_open

The open method (see Figure starts by allocating and initializing the BTRF'S__INFO struct
which stores the state and is passed to nearly every method. In an object oriented program-
ming language the members of the struct would be member variables in a Btrfs class. The
BTRFS_INFO struct internally stores the TSK_FS_INFO struct at the beginning and is thus
usable as TSK_FS_INFO. This is a simple replacement for inheritance in object oriented lan-
guages.

After initializing the struct the method continues by verifying that the opened image really is
a Btrfs image which is done by reading the superblock first (ot rfs_io_read_superblock
_pa) and then checking for the Btrfs magic string in the superblock. The superblock stores most
of the things needed to initialize the TSK_FS_INFO struct and is also stored inside the struct.

The superblock data is then used to continue initializing the TSK_FS_INFO struct. Af-
ter this has been done, the bootstrapping data from the superblock is read into the chunk list
(btrfs_chunk_read_superblock_bootstrap_data). With that the address lookup
mechanism is able to read the entries of the chunk tree, which is done in the next step: The
entire chunk tree is read into the chunk list (bt rfs_chunk_read_tree) which is used by
the address resolving logic afterwards. After the chunk tree is read, the address lookup works
for every address in the filesystem.

The next step is the initialization of the root-, extent- and dev tree. Those trees are indepen-
dent from subvolumes and are needed by other methods. The initialization only stores the param-
eters to read the tree later on. The dev tree is read into memory (btrfs_read_dev_tree)
since it is used for the translation of physical addresses into logical addresses.

After reading those trees, the subvolumes are read and their contents are counted to create
the virtual inode mapping which is later on used to identify every inode in every subvolume.
This process can be time consuming depending on the size of the subvolumes.

The last step is the setup of the generic function pointers which are used by TSK to call the
filesystem specific methods.

(see Figure[B.2).
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Method btrfs _tsk fsstat

The fsstat method only relies upon data read in by the bt rfs_t sk_open method. It simply
prints out the information for the user and then returns (see Figure [B.3). There is no special
format or convention to follow. This method is free to print whatever seems important about the
opened filesystem.

In the implementation the printed details are:

o Total bytes of the filesystem

Used bytes

Logical addresses of chunk tree root and root tree root

Tree parameters as nodesize, sectorsize

Subvolume information as their count and the id of every subvolume

A listing of the cunk tree

The method fsstat is used by the command line tool fsstat which allows users to print meta
information about a filesystem.

$ fsstat ~/Diplomarbeit/testdata/fsl

FILE SYSTEM INFORMATION

File System Type: Btrfs

Total Bytes: 2048000000

Bytes Used: 500068352

Logical address of chunk tree root: 20971520

Logical address of root tree root: 132575232

nodesize: 4096

sectorsize: 4096

number of subvolumes: 1

subvolume id: 5

number of inodes: 5

Chunk Tree:

*%+% chunk entries x#*

KEY<object_id: 256, item_type: 228 (CHUNK_ITEM), offset: 0>
CHUNK_ITEM<size_of_chunk: 4194304, owner: 2, stripe_len:
65536, type: 2 (SYSTEM), io_align: 4096, io_width: 4096,
sector_size: 4096, num_stripes: 1, sub_stripes: 0>
CHUNK_ITEM_STRIPE<device_id: 1, offset: 0>
KEY<object_id: 256, item_type: 228 (CHUNK_ITEM), offset:
20971520>

CHUNK_ITEM<size_of_chunk: 8388608, owner: 2, stripe_len:
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65536, type: 34 (SYSTEM,MIRRORED), io_align: 65536,
io_width: 65536, sector_size: 4096, num_stripes: 2,
sub_stripes: 0>

CHUNK_ITEM_STRIPE<device_id: 1, offset: 20971520>
CHUNK_ITEM_ STRIPE<device_id: 1, offset: 29360128>
KEY<object_id: 256, item_type: 228 (CHUNK_ITEM), offset: 0>
CHUNK_ITEM<size_of_chunk: 4194304, owner: 2, stripe_len:
65536, type: 2 (SYSTEM), io_align: 4096, io_width: 4096,
sector_size: 4096, num_stripes: 1, sub_stripes: 0>
CHUNK_ITEM STRIPE<device_id: 1, offset: 0>

Method btrfs_chunk_ read_superblock_bootstrap_data

This method reads the bootstrap data of the superblock and inserts it into the BTRFS_INFO
struct (see Figure [B.4). The storage is in form of a generic List (TAILQ, from BSD). This
helps to reduce code duplication and strives to a better readablity of the code. This method calls
btrfs_chunk_add as a helper method.

Method btrfs chunk_ read tree

This method reads the entire chunk tree into the same list as the bootstrap data before (see
Figure [B.5). Reading the tree in background requires the presence of the bootstrap data. The
helper method bt rfs_chunk_add is used as before. The method btrfs_tree_listisa
shorthand for bt rfs_tree_list_filter which finds every node.

Method btrfs chunk_add

This method contains the logic to read a chunk structure from disk and to to insert it into a list
(see Figure [B.6). Reading a chunk structure includes reading the chunk item along with the
variable number of chunk item stripes. The data is stored in a TAILQ list of chunk_entry_s.

Method btrfs_chunk_print_entries

This method is used to print the contents of the chunk tree. The resulting output can be used to
manually translate virtual addresses to physical addresses and for information purposes as it is
done for the fsstat method.

Method btrfs read dev_ tree

Reads the dev tree into a list of dev extent entries (see Figure [B.7). This tree is required
for the translation of physical into logical addresses. The data is stored in a TAILQ list of
dev_extent_entry_s elements. The actual reading is done by the method btrfs_tree
_1ist which reads a tree into a result list which is then iterated over and stored in the list.
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Method btrfs_resolve_logical_address

This method uses the previously read chunk data and allows to translate a logical address into a
physical address (see Figure[B.8)). This is simply done by iterating over the list of chunk entries
(chunk_entry_s), finding the right entry and then calculating the physical address. Every
logical address needs to be translated to a physical address to read from that location.

A possible improvement would be the in-memory storage of this list in form of a tree to
find the results faster. This has been left for later improvement as it is a sole performance
optimization.

Method btrfs_resolve_physical_address

This method is the reverse of the previous one (see Figure [B.9). It translates a physical address
to a logical one. This time the dev tree is used, previously read into a list for performance
reasons (btrfs_read_dev_tree). The process is the same: finding the right entry and then
calculating the logical address and returning it.

As stated in the method description of btrfs_resolve_logical_address, the use
of a tree could improve performance.

Method btrfs_tsk istat

The istat method prints information about an inode to stdout (see Figure [B.I0). Similar to
the btrfs_tsk_fsstat method, there is no special convention to follow in the process.
Anything relevant can be printed here. The implementation prints the metadata of the inode as
well as additional information:

1. virtual inode number
2. real inode number and subvolume
3. file size

4. access-, modified- and create time

This function is used mainly in the command line tool istat. In this example below, the
metadata information for inode 4 is printed to the user by invoking the istat command:

$ istat filesystem.img 4

Inode number 4 (virtual)

Btrfs inode number is 260 on subvolume 5
=== stat info ===

Size: 499036160

Access time: 13666121091

Modified time: 1366612199

Create time: O
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Method btrfs tsk inode walk

Iterating over a range of inodes is implemented in this method (see Figure [B.TT)). It uses the
tsk_inode_lookup method to load inodes from disk and to call the callback method with
the result.

This method is used by the ils command line tool to generate a listing of inodes in a filesys-
tem. An invocation of the ils command generates a list of inodes that were found on the image
along with specific metadata. An example follows:

$ ils filesystem.img

class|host|device]|start_time

ils|andreas—desktop]| 11391182492
st_ino|st_alloc|st_uidl|st_gid|st_mtime|st_atime|st_ctime]
st_crtime|st_mode|st_nlink|st_size
0/al0]0]1366612191|136661214910]11366612191|0|0156
1/al0]0]1347964140113534028181011347964140(010118
21al0]0]113534046191135340460710]11353404619101]01(10
31al0]0]113534046191135340461910]11353404619|0101(13
41a]0]0]13666121991136661219110]1366612199|0]101499036160

Method btrfs _tsk block walk

Iterating over a range of blocks is similar to the previous method (see Figure [B.12). It iterates
over the range and reports to a callback method which decides whether to continue iterating.
Additionally there is a filter built in which decides whether to call the callback. The actual data
isread by btrfs_tsk_block_get flags which returns the flags (free, used, etc.).

This method is used by the command blkls which is used to output the data of filesystem
blocks and provides options to filter the data whether the block is used or free and other criteria.

Method btrfs tree search

The trees in Btrfs are generic and completely independent of what data they store. This means
that the code for traversing trees and searching data needs to implemented only once and can
be used for every tree in the filesystem (see Figure B.13). A tree usually is traversed from its
top level and then searched until the leaf level is reached (level 0). The inner (non-leaf) nodes
are stored as block pointers which point to another position in the tree. In every inner level the
key which is greater than the target key is searched and iteration continues at the block pointer
before this node. The method bt rfs_tree_search is called recursively for each level. The
leaf level (level 0) is special since it stores the actual data. The result of the method is always
a single entry. The method takes a compare function as parameter which is used to determine
whether the key if found or not.
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Method btrfs tree list filter

This method is comparable to btrfs_tree_search but searches for multiple results (see
Figure [B.14). It uses a compare function to determine whether a node is to be included in the
results or not. So it filters the contents of a tree compared to the search in the previous method.
This is a practical feature for reading in trees like the chunk tree. Here it is easier to fetch the
whole tree instead of doing a search every time a logical address needs to be translated. This is
also a matter of performance.

Method btrfs_cmp_func_exact

This function is one implementation of the cmp_func signature which is used as comparator for
keys (see Figure [B.I5). Thus it defines an ordering for the keys which is expressed through
the return value: an integer value which is zero when both keys are equal and greater than
or smaller than zero when one of both is bigger. Among the implementations is a method
which ignores the offset (ot rfs_cmp_func_exact_ignore_offset), a method which
matches every key (bt rfs_cmp_func_match_all) which can be used to get the whole tree
with the bt rfs_tree_list_filter method among some other implementations.

Method btrfs _subvolume init

Since a volume can have more than one subvolume, this searches the root tree for references
of subvolumes. Each found subvolume is then added into several arrays for easy access by
id, storage of the tree information and an in-memory list of the subvolume tree contents. A
convenience method bt rfs_subvolume_get_by_id is used to return the right subvolume
tree by id.

Method btrfs_inode_create_mapping

Due to the beforehand mentioned addressing problem of metadata entries, the used workaround
is the creation of a virtual inode mapping which assigns every real inode a virtual inode number.
This virtual inode number is then used in communication with TSK. The mapping data is stored
in an array with the size of the total number of inodes. The mapping itself is a struct that contains
the subvolume id and the inode number. So the mapping is from the array position which is used
as virtual inode number to the real inode number and the subvolume it is to be found.

Method btrfs_inode resolve

This method fetches the inode mapping data from the storage array created by bt rfs_inode_
create_mapping. It does some additional error checking and returns the data from the array.

Method btrfs inode resolve reverse

This method is is the counterpart of bt rfs_inode_resolve. It translates a real inode map-
ping to a virtual address. Since there is no index or similar, the whole list needs to be searched
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in memory. This can be optimized in future.

Method btrfs_tsk close

This is the last method being called by TSK. This method is for closing and freeing everything
that was opened and allocated before. This includes the list of chunk entries, the list of subvol-
ume trees, the dev tree and others.

Method btrfs_dir_open_meta

This method opens a directory and reads its contents into a result struct. Since filesystems
are hierarchically storing information, each directory can contain directories itself. With the
presence of this method, a recursive listing of a filesystem can be achieved. This methods only
returns the directory contents of a single directory, but iterating over the directories in its result
leads to a complete listing of the hierarchy of the filesystem. This method is used by the fls tool
for the sake of displaying the filesystem contents that are allocated and unallocated. In the case
of this implementation only allocated entries are returned since tree forensics is not used in this
implementation.

Method btrfs_tsk_block_getflags

This method determines the metadata of a filesystem block. Filesystem blocks can be either
allocated or unallocated. The method starts by calculating the physical address of a block which
is simple multiplication of the block address (number) with the block size. This physical address
is then translated into a logical address which is used to query the extent tree for entries with that
address. Since the extent tree contains the allocation status of every allocated address, a positive
match (an extent item) means that the block is allocated. Furthermore it can be determined
which type the block has since the extent item has a flag attribute which describes the usage of
the allocation (data, metadata). The method can thus return if a block is allocated with data or
metadata or if it’s unallocated.

Method btrfs_tsk_inode_lookup

This method finds an inode based on its virtual inode number. The virtual inode is translated to
a physical inode number and subvolume which is used to get the right subvolume tree. The tree
is then searched for matching inode item and inode ref and dir index elements. Those elements
are then used to populate the TSK_FS_FILE struct which contains the meta information about
the inode. This process includes the translation of Btrfs specific file types into TSK specific file
types for special files such as devices, pipes and others.

Method btrfs_tsk load_attrs

This method is used to construct a TSK_FS_ATTR struct which contains information about the
location of the attributes of a file. An attribute can roughly be said to be the content of a file.
The attribute consists of multiple runs which represent the parts of the file.
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Since the method argument is a virtual inode number, the first step is resolving it. Afterwards
the matching extent data item is searched in the filesystem tree for the particular subvolume of
the inode. If the file is rather small, it could be stored in an inline extent which is determined
by the type field of the extent data. Inline extents are stored as a pointer in the TSK_FS_ATTR
struct. Normal extents are converted to data runs: each of the found extent data items corre-
sponds to a part of the file which is then translated into a data run. The actual conversion is done
by the method bt rfs_convert_extent_data_to_data_run.

Method btrfs_convert extent data_to _data_run

The actual conversion from an extent data item to a data run is done in this method. It takes
a extent data item as an argument and returns a TSK_FS_ATTR_RUN struct. The first step is
resolving the logical address in the extent data to a physical address. The extent data also has
an offset stored in it’s key to mark the position inside the file which is stored inside the actual
extent. The values of the extent data item are simply recalculated to fit the block-based values of
the data run. This is a workaround since blocks don’t exist in btrfs, but since extents are usually
page-aligned, it is possible to describe the location of individual files in terms of blocks:

The start block of an extent item is calculated as the physical address of the extent divided
by the block size. The block length is the division of the size in bytes by the block size, one is
added if the rest is not zero. The offset of the data run is copied from the extent data, since it is
not defined in blocks but bytes.

Parse Methods

Btrfs uses a lot of data structures on disk. Reading these structure form disk into memory re-
quires consideration of endian-ness, differences in the representation of structures in-memory,
compiler optimizations and so on. A concrete example why reading data into a char array and
casting it to the struct doesn’t work (assuming the same endianness) is the alignment optimiza-
tion of the compiler. The compiler aligns data structures for performant access (depending on
compiler flags or possible optimization hints in the source code) which means that casting the
data directly to the struct will (depending on the fields of the struct) probably fail. It has to be
said that that compiler behavior can be disabled, but it is not recommended (Btrfs source code
does exactly that anyways). The other way is to read data in with methods that read the char
data and write it to the fields of the struct. In btrfs_io.c many such methods exist and they do the
work of translating on-disk data streams into structs. An example can be seen in fig. The
helper method bt rfs_io_read_field reads data from the source char array to the struct’s
field, considering length and calculating the current position in the source array. This way the
code is quite compact.

Read Methods

Data stored on disk must be read into in memory data structures at some point. This is done by
helper methods in btrfs_io.c (see Figure[B.17). Usually two such methods exist: one for reading
at a logical address and a second one for reading data from a physical address. The first method
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includes the translation step from logical to physical addresses and calls the second method. The
implementation otherwise is quite simple and just includes reading the data into an array of the
correct size and using translating it to the target struct using the parse method.

Print Methods

The print methods allow the printing of structs to human readable characters. It some helper
methods to format the data and outputs a string in the convention

STRUCT_NAME<fieldl: wvaluel, field2: wvalue2>

Nesting of data structures is possible too. The print methods were used exhaustively during
development and still serve the purpose to debug the program.
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CHAPTER

Evaluation

This chapter evaluates the implementation described in the previous chapter according to the de-
fined artifacts in the introduction. Each artifact is evaluated either manually with the performed
steps defined in the evaluation or automatically (either using a JUnit based test or some sort of
script). The goal of each evaluation is to see to what extent the artifact can be retrieved from a
Btrfs filesystem. The chapter finishes with possible future work that can be made in the context
of this thesis.

4.1 Test Environment

Hardware As hardware is usually not a factor that influences the filesystem’s on-disk data, as
that is abstracted by the operating system, it doesn’t need to be specified in detail.

Software The test data needs of course to be created by a Linux based operating system which
doesn’t have incompatible changes to the TSK implementation. The choice was made arbi-
trarly by personal preference of the author: Because the linux distributions usually don’t change
filesystem implementation in their distribution kernels, the question which distribution to use for
testing is irrelevant. Debian Wheezy 7.4 amd64 is used.

Filesystem Images For testing purposes small (1-2GiB) sparse files are used. They have the
advantage of being created very fast because the underlying filesystem (Ext4 in the test environ-
ment) keeps track of the ranges which consist only of zeroes. These images are then formatted
to Btrfs and the individual tests are carried out upon these images. Due to the lack of existing
reference Btrfs images suitable for forensic analysis, the images need to prepared by the author
for the individual tests. This is an additional effort and also has some issues (validation is harder,
the dataset could be non-representative, etc.) [20]. In absence of a better alternative, self-made
test images need to be used for the evaluation though.
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Automated Test Suite To be able to reproduce the tests, a Java-based JUnit test environment
was created for some evaluations. This test environment automatically creates test images, for-
mats it to Btrfs, copies test data in it and carries out the functionality tests. This makes it
possible to verify the functionality of the Sleuthkit implementation by invoking mvn clean
install.

4.2 Filesystem Metadata Retrieval (A1)

The goal of this evaluation is to confirm the suitability of the filesystem metadata retrieval im-
plemented in TSK.

The retrieval of the filesystem metadata is related to the Sleuthkit tool fsstat. This tool is
used to display general metadata of filesystems. The evaluation here is done manually by calling
the command. Executing fsstat leads to the following result (see Figure 4.T). Most chunk items
are skipped here for brevity. This output is comparable to the fsstat output of an Ext3 filesystem
(see Figure [d.2)).

This output includes the most relevant parameters of the filesystem metadata: The filesystem
type, the size of the filesystem, the used bytes, the addresses of the most important trees, the tree
size parameters, the subvolume structure and the chunk entries.

4.3 Filesystem Structure Retrieval (A2)

The evaluation’s goal is to verify that the forensic methods and implemented procedures are able
to reproduce the structure of the filesystem as it exists in a disk image.

This evaluation operates only on metadata and compares the contents of the test image to
the reference data. This test operates on known files since no tree forensics are used in this
implementation. The used Btrfs data structures include the chunk tree (required for address
translation) and the filesystem tree.

Automated Testing

This functionality is related to Sleuthkit’s fls tool. The test procedure is as follows:

—_—

. Creation of an empty sparse file

2. Formatting the image to Btrfs

3. Mounting the image

4. Copying a directory of test data to the mount point

5. Umounting the image

6. Run f1s —-f btrfs —-r -m / -a on the testimage

7. Comparing the pathes for equality
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$ fsstat ~/Diplomarbeit/testdata/fsl

FILE SYSTEM INFORMATION

File System Type: Btrfs

Total Bytes: 2048000000

Bytes Used: 500068352

Logical address of chunk tree root: 20971520

Logical address of root tree root: 132575232

nodesize: 4096

sectorsize: 4096

number of subvolumes: 1

subvolume id: 5

number of inodes: 5

Chunk Tree:

**x% chunk entries x#*x

KEY<object_id: 256, item_type: 228 (CHUNK_ITEM), offset: 0>
CHUNK_ITEM<size_of_chunk: 4194304, owner: 2, stripe_len:
65536, type: 2 (SYSTEM), io_align: 4096, io_width: 4096,
sector_size: 4096, num_stripes: 1, sub_stripes: 0>
CHUNK_ITEM_ STRIPE<device_id: 1, offset: 0>
KEY<object_id: 256, item_type: 228 (CHUNK_ITEM), offset:
20971520>

CHUNK_ITEM<size_of_chunk: 8388608, owner: 2, stripe_len:
65536, type: 34 (SYSTEM,MIRRORED), io_align: 65536,
io_width: 65536, sector_size: 4096, num_stripes: 2,
sub_stripes: 0>

CHUNK_ITEM_STRIPE<device_id: 1, offset: 20971520>
CHUNK_ITEM_STRIPE<device_id: 1, offset: 29360128>
KEY<object_id: 256, item_type: 228 (CHUNK_ITEM), offset: 0>
CHUNK_ITEM<size_of_chunk: 4194304, owner: 2, stripe_len:
65536, type: 2 (SYSTEM), io_align: 4096, io_width: 4096,
sector_size: 4096, num_stripes: 1, sub_stripes: 0>
CHUNK_ITEM_ STRIPE<device_id: 1, offset: 0>

Figure 4.1: An execution of fsstat with the example Btrfs filesystem.
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FILE SYSTEM INFORMATION

File System Type: Ext3

Volume Name:

Volume ID: 3730fc488dc71f£9e294£f36336e5c0el’

Last Written at: Fri Mar 7 19:55:01 2014
Last Checked at: Wed Apr 3 19:17:11 2013

Last Mounted at: Sun Feb 16 11:04:08 2014
Unmounted properly
Last mounted on: /mnt/ext

Source 0S: Linux

Dynamic Structure

Compat Features: Journal, Ext Attributes, Resize Inode,
Dir Index

InCompat Features: Filetype,

Read Only Compat Features: Sparse Super, Has Large Files,

Journal ID: 00
Journal Inode: 8

METADATA INFORMATION

Inode Range: 1 — 61038593
Root Directory: 2
Free Inodes: 60937007

CONTENT INFORMATION

Block Range: 0 - 244140287
Block Size: 4096
Free Blocks: 35639906

BLOCK GROUP INFORMATION

Number of Block Groups: 7451
Inodes per group: 8192
Blocks per group: 32768

Figure 4.2: An execution of fsstat on an Ext3 filesystem.
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The algorithm for comparing the pathes is very simple: It iterates through the first list of
pathes and tries to find a matching element in the second list of pathes. When no element is
found, false is returned. On a match the element is removed from the second list. The lists are
equal when a match for every element in the first list was found and the second list is empty.

Result Executing the automated test confirms that the structure read by the fls tool is equal to
the test data structure. Thus this evaluation’s result is clearly positive.

4.4 File Metadata Retrieval (A3)

File Metadata retrieval is handled by the TSK tools istat and ils. Istat outputs the metadata in
text form for a single inode while ils prints all found inodes in a list. The data used by those
tools are read from the filesystem tree (Inode Items).

The artifact file metadata is related to stat information, so the easiest way to verify the im-
plemented procedures is to start with the known stat information of a set of testfiles:

1. Saving the stat information of a known set of test files.
2. Creation of an empty Btrfs test image.
3. Mounting the image.

4. Copying the test files to the mounted image (cp -a, the flag preserves all necessary stat
information).

5. Retrieving the metadata of the files with the TSK tools (fls, istat, ils).

6. Comparing the metadata.

With the help of the ils tool, the metadata of all files can be displayed. The stat informa-
tion can be formatted like the output of ils by specifying the right output format (stat -c
"$ilal%ulsglSY|$Z|%X|%W|%al%h|%$s’ ). With the output it is easy to compare the
metadata.

Output of the stat command for the test files (inode numbers omitted):

S stat —c '%ilal%ul%gl%Y|%Z|%X|%W|%a|%h|%s’ «
|a]1000/1000]11390151451113901514511011393685775]16441117859002
|a]1000/1000]11390151451113901514511011393685775]16441115412610
[|a]1000/10001139015145111390151451101139368577516441114046367
|al1000]10001139015145111390151451|1011393685776]644|1118063125
|a]1000/100011390151451113901514511011393685776]6441114084421
l]a]1000/1000]11390151451113901514511011393685776|644111893341
|a]1000/1000]11390151451113901514511011393685776]16441118551922
|a]1000/10001139015145111390151451101139368577616441114922217
|al1000]11000113901514511139015145110]1393685776|64411]16913192
|a]1000]1000]1139015145111390151451|1011393685776]1644|1151300889
|al1000/1000]11390151451113901514511011393685776]1644111102312577
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Output of the ils command for the test image:

$ ils ~/Diplomarbeit/testdata/istat-test
class|host|device|start_time

ils|andreas—-desktop| 1393686048
st_ino|st_alloc|st_uid]|st_gid|st_mtime|st_atime|st_ctime]
st_crtime|st_mode|st_nlink|st_size
01al0]0]13936857761134796380411393685776|0/40555[01918
11a]1000/11000]13901514511139254070411393685775]10110064410]7859002
21al1000]110001139015145111392540704113936857751011006441015412610
31a]100011000]13901514511139254070411393685775]10110064410|4046367
41a]1100011000]13901514511139254070411393685776]0]110064410]118063125
5/a]1000/1000]13901514511139254070411393685776]1011006441014084421
6/al1000/1000]11390151451]113925407041139368577610]1100644101893341
71a]11000/11000]113901514511139254070411393685776]101100644]1018551922
81a]100011000]13901514511139254070411393685776]1011006441014922217
91al10001100011390151451113925407041139368577610]10064410]16913192
101a]1000]11000113901514511139254070411393685776|01100644|0|51300889
111al100011000]113901514511139254070411393685777|01100644101102312577

Result The relevant metadata (except inode number which cannot match across filesystems),
is the same. The access time seems to be overwritten, though. In the ils output there is an entry
for the root directory itself, which is not there because it is not covered by the wildcard in the
stat command.

4.5 Allocation Status Retrieval (A4)

The allocation status is related to the TSK tools blkstat and blkls. Every block is either allocated
or unallocated.

To start with this evaluation a test image is prepared with some testfiles (pictures from Wiki-
media Commons) copied to it. In the following table the testfiles with their relevant properties
such as file name, file size and the position inside the test image as well as the calculated block
boundaries are listed. With the help of this table it is possible to verify the output of the blkls
command. The test procedure is as follows:

1. Creation of an empty image

2. Formatting the image with btrfs

3. Mounting the image

4. Copying test files to the mounted image

5. Finding the positions of the test files inside the imagfﬂ

IThis process could be done manually or with the help of a simple tool: http://unix.stackexchange.
com/a/39739
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6. Comparing the blkls output with the positions of the test files

Filename Offset Length Block Start | Block End
4_Cilindros,_Munich, 12582912 | 7859002 12288 19963
_Alemania,_2013-02-11,

_DD_07.JPG

Ajaccio_phare_citadelle.jpg 242483200 | 5412610 236800 242086
Berliner_Fernsehturm 247898112 | 4046367 242088 246040
_November_2013.jpg

Calle_en_centro_de 251944960 | 18063125 | 246040 263680
_Maracaibo.jpg

Death_Valley_exit_SR190- 270008320 | 4084421 263680 267669
_view_Panamint_Butt_flash-

_flood_2013.jpg

Dunvegan_Castle_in_the- 274096128 | 893341 267672 268545
_mistOleditcrop_2007-08-

22.jpg

Gypful.jpg 274993152 | 8551922 268548 276900
Joshua_Tree_Park- 283545600 | 4922217 276900 281707
_approaching_thunderstorm-

_02_2013.jpg

Spb_06-2012_Palace- 288468992 | 6913192 281708 288460
_Embankment_various_01.jpg

Walking_caterpillar.ogv 295383040 | 51300889 | 288460 338559
Wikimania_2011_-_Opening- 346685440 | 102312577 | 338560 677120
_ceremony_greetings_by_Meir-

_Sheetrit.ogv

Since the blkls command outputs a single line for every block, the output is not very readable
(1GiB image means 10242, about a million lines). To summarize the block allocation status to
block ranges, a simple python script was written (see Figure £.3)). The output then becomes

readable and interpretable by humans.
The blkls execution for the image is executed and shows the following results:

$ blkls -1 -a image.img | tail -n+4 |
12288-20028]a
20484-20488|a
28676-28680|a
36884-36892|a
36912-36916|a
36924-36928|a
36932-37048|a
37056-37204 | a
37216-37220]a
37240-37256|a

collapse_blocks.py
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#!/usr/bin/env python
import fileinput

rng = None

rng_alloc = None

for line in fileinput.input() :
b, a = line.split (" |’)
block = int (b)

alloc = a.strip()
if rng == None:
rng = (block, block)
rng_alloc = alloc
else:
rng_start, rng_end = rng
if rng_end == (block - 1) and alloc == rng_alloc:
rng = (rng_start, block)
else:

[

print "%d-%d|%s" % (rng_start, rng_end,
rng = (block, block)
rng_alloc = alloc

rng_start, rng_end = rng

print "%d-%d|%s" % (rng_start, rng_end, rng_alloc)

Figure 4.3: collapse_blocks.py

136832-1368321a
136852-1368601a
136880-136884 |a
136892-136896a
136900-137016a
137024-137172a
137184-137188a
137208-137224 |a
236800-438476|a

rng_alloc)

The block ranges 12288-20028 corresponds to the first file, the last line refers to the rest of
the files. The other allocations are for trees and metadata. The comparison here is easy because
Btrfs writes all files in a continuous range in the image and the sizes are easy to check.

To show that the blkls implentation is correct, we copy the image, mount it and delete the
file “Death_Valley...jpg”. The blkls command must now show this area as free space.

$ blkls -1 -a image2.img | tail -n+4 | collapse_blocks.py
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12288-19964 |a
20484-20488|a
28672-28672a
28676-28680|a
36864-36876|a
36884-36892|a
36896-36900|a
36904-36912 | a
36920-36932 | a
36936-36964|a
36976-37048|a
37068-37204 | a
37212-37216]a
37220-37232 | a
136832-136844|a
136852-1368601a
136864-136868]a
136872-1368801a
136888-1369001a
136904-136932a
136944-137016]a
137036-137172a
137180-137184|a
137188-1372001a
236800-263680a
267672-438540a

Surprisingly Btrfs compacted the extent allocation for the first file to its real block size (the
allocation was bigger before). But the last two lines show that the blocks of the deleted file are
now reported as free. This confirms that the implementation is correctly reporting the allocation

information of the filesystem.

4.6 Allocated Files Retrieval (AS)

The contents of the files are stored either in extents or directly in the tree. The Btrfs Sleuthkit
implementation transparently enables the user to output the data of an inode to a file. This is
done with the icat command. This involves reading the chunk and filesystem tree.

The test is structured as follows:

1. Create a test image (first 5 steps of the previous test)

2. Use fls to get the inodes of all files

3. Use icat —-f btrfs

[image]

[inode] to output each inode to a new file
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4. Compare this file to the contents of the corresponding test file

The comparison of the files is a binary comparison between the testfile and the extracted file.

Result The test runs successful which means that every file known inside the Btrfs filesystem
can be read by icat and it’s contents match the test file.

4.7 Content of Unallocated Files Retrieval (A6)

This evaluation is the most intensive evaluation because it is not possible to find unallocated files
inside the filesystem tree, so the evaluation asks the question how long deleted files physically
exist first. The next part is about evaluating if allocated and unallocated data blocks can be
separated correctly. The next part is evaluating whether deleted files can be restored from the
unallocated filesystem areas. The last part evaluates whether secure file deletion works due to
the copy on write nature of Btrfs.

Time to Overwrite

One of the core questions for digital forensics is how long deleted files can be recovered until
they are overwritten with new content. This behavior limits the effectiveness of forensic methods
as they can generally just recover deleted content which is physically present on disk. Effort
has been made to automatically evaluate the behavior of the Btrfs filesystem implementation to
answer that question.

The test starts with the creation of a test image. After the creation of the test image, a single
file is deleted. The test process then iterates over the following steps:

1. Check if the contents of the deleted file are still available. This is done by comparing
the known location of the file in the image to the actual test file content in the test data
directory. If it is not available, stop the loop.

2. Create a new 1MiB sized file with random content in the mounted image.

3. Increase a counter variable storing the number of iterations.

This process is expected to overwrite the data of the deleted file at some point. Since the
free space of the image is a limited resource and after the creation of the image just new files are
created and thus steadily decreasing the free space, the freed space of the deleted file must be
reclaimed at some point.

Result The results of this test were mixed. Although with the normal process of using loop-
back mounted 1GiB sparse files as storage for the image, the expected result appears: The
deleted file is overwritten after about 200 new files created, the current number is varying, but
not of big interest for this evaluation. This is expected behavior and proves the point that files
are overwritten at some point in Btrfs. Since the exact number of data needed to be written
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until data is overwritten depends on too many factors (current state of the filesystem, size of
the created files, time when the files are created, Btrfs version, in harddisks: the position of the
head, etc.), it does not make sense to evaluate the exact behavior. For the forensic process the
important question is whether the data can be recovered or not. The answer is: yes, if it has not
been overwritten in the meantime.

Repeating the same test with a real device instead of a file-based image changes the result in
an unexpected way: The deleted file is never overwritten and the test aborts with a “No space left
on device” exception. After joining the codepaths of the evaluation procedures for both image-
types and triple-checking the implementation, the said behavior stays unexplained. The obvious
difference between the two scenarios is the usage of a real block device instead of a loopback
device whose implementation differs from a real block device’s implementation. At some point
in the Btrfs implementation the reclaiming of free space seems not to work as expected. Since
the Btrfs documentation mentions that disk full conditions are a general weakness, the author
expects that this effect is related to those documented issues.

Nevertheless, in real-world images, the typical writing pattern will in most cases be unequal
to the test behavior and thus the trivial finding that freed data blocks are reused at some point
holds true for Btrfs as for every filesystem which reclaims freed space.

Divide and Conquer

Since the contents of deleted files are defined as artifact that should be retrieved and due to the
decision of not using tree forensics in this thesis, the contents of deleted files must be retrieved
in some heuristical manner.

The core concept to increase the effectiveness of heuristic methods is the separation of allo-
cated and unallocated blocks. Disk images are not generally full of data, they are allocated to
some individual percentage. Applying heuristic methods to retrieve data from the whole image
increases the time of the heuristic search, as more data needs to be analyzed. The Sleuthkit
provides the blkls tool which can output the contents of allocated and unallocated blocks of an
image. In the first step, this process needs to be verified for correct results. The image with the
single deleted file from the last section is reused here because it suits the case very well.

This step can be divided into two separate evaluation steps carried out by two scripts. In the
first step the output of the allocated blocks is verified by ensuring the presence of the files that
are allocated and ensuring the non-presence of unallocated files (see [B.18)). The second step is
the verification that the unallocated blocks only contain the unallocated blocks, which is being
done by ensuring that the deleted file is present in the output, but none of the allocated areas.

Result The results were as expected: The two partitions of blocks had no intersection and the
known contents were correctly in one of the two partitions.
Finding Unallocated File Content

Based on the previous findings from this chapters, the image can be divided into allocated and
unallocated content. To find file content in unallocated areas, we start with the blkls output which
only contains the unallocated data blocks. This part of the image will be searched heuristically.
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This process can be carried out by a class of forensic software called file carvers. They usually
use signatures to find classes of files in raw data streams.

The test image has been investigated with foremostEl, scalpe]E] and recoverjpegﬂ Scalpel and
foremost failed to find the deleted image inside the unallocated blocks because their signatures
were too strict. JPEG images usually start with Oxff Oxd8 Oxff Oxe0 and end with Oxff 0xd9.
The deleted image starts with Oxff 0xd8 Oxff Oxel and ends with the same binary string. But the
image contained the end string inside the content, thus scalpel and foremost prematurely ended
the outputted file which leads to incomplete content. Recoverjpeg is using better algorithms and
instantly found the deleted image.

Result The evaluation shows that deleted file contents can be recovered based on signatures
and individual algorithms. In the case of JPEG image files, the signature based carvers are
oversimplifying the problem and thus lead to incomplete output. Generally these tools are out
of scope of this thesis, but the evaluation shows that the deleted file artifacts can be recovered
under the following premises: The files to find need to have some start and end signatures or a
specialized carving algorithm for the specific file format is needed. The file needs to be written in
a continuous extent, otherwise the heuristics will fail, the file format to find needs to be known.
The carving process has been specified and evaluated in [31] and it was stated that the process is
able to restore 87% in average of the images stored in media of different size. The problem with
the premature JPEG end sequence was not mentioned.

Zeroing File Content Before Deleting

Another interesting question is the effectiveness of intentionally clearing file contents before
deleting. This is an over-simplification of data wiping programs which usually overwrite files
in multiple passes with random data. To evaluate this aspect, a Btrfs filesystem is mounted, a
single file is overwritten with zeros using a script (see [4.4) and the contents of the file are then
searched after the image was unmounted.

Result The file contents are still readable in the image. This is the case due to the copy on write
nature of Btrfs. Since files are never updated in-place, the old contents are still reachable. Unless
wiping tools for Btrfs are developed to work around this, wiping files in Btrfs will be difficult.
This is a known limitation: “Overwriting tools rely on the following file system property: each
file block is stored at known locations and when the file block is updated, then all old versions
are replaced with the new version. If this assumption is not satisfied, userlevel overwriting tools
silently fail.” [32] Btrfs” COW nature contradicts this assumption.

nttp://foremost .sourceforge.net/
*https://github.com/sleuthkit/scalpel
‘http://www.rfcll49.net/devel/recoverjpeg
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#!/usr/bin/env python
import os, sys

filename = sys.argv[1l]
size = os.path.getsize (filename)
pos = 0

with open(filename, "rb+") as f:
while pos < size:
f.seek (pos)
f.write ("\0")
pos = pos + 1

Figure 4.4: Script to overwrite a file with zeroes

4.8 Future Work

As stated before, this thesis didn’t consider tree forensics. Since Btrfs filesystem data is stored
nearly exclusively in trees, this could be a very promising way to further improve forensic meth-
ods. Tree forensics could tackle the problem that elder states of the trees could contain explicit
information about deleted files and metadata. Explicitely reading this information from an elder
version of a tree would eliminate the need of heuristic methods to retrieve deleted contents. Ko-
ruga and Baca analyzed NTFS Catalog B-Trees to find metadata of deleted files [25]]. Also due to
the nature of trees, there will most certainly be only a limited amount of unused tree information
before it gets overwritten with current data. The presence of deleted tree entries could possibly
be detected by analyzing the fill rate of the tree nodes [24]. Depending on the write behavior
of Btrfs in a concrete usage scenario, there could be more or less of this data to retrieve. The
big advantage would of course be to have explicit information about files and metadata. A first
step could be the monitoring of the update behavior of tree data. The locations of old tree data
could be recorded with the goal of finding patterns of where to find unallocated nodes. Also the
locations of old tree roots could be monitored and thus enabling a program to reconstruct old
tree versions. Depending of the result of those processes, the best strategy to gain information
about elder tree states can be chosen. Possibly separation of the tree data into used and unused
data with a heuristic search could lead to a list of old items which can then be searched for valid
references to data extents.

Also in the area of the prototype there are a lot of possible improvements. Since the imple-
mentation of the prototype didn’t focus on runtime performance, a lot of performance optimiza-
tions can be performed. The performance could be improved by using better data structures to
speed up the search inside cached tree data or to optimize search routines by implementing better
possibilities to express search criteria. Also it would be possible to use a visitor-like pattern for
the search process if the implementation was rewritten in an object oriented programming lan-
guate. The API of The Sleuthkit could also be extended to be usable with the new Btrfs features
such as subvolumes and snapshots. This would obsolete the workarounds used in the prototype
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implementation; although this would be only practical if those changes would be merged into
the TSK source code since maintainence would be unneccessarily hard otherwise.

Since the Btrfs format is also a moving target in the sense that the on-disk format is improved
and new features are added, future work could be done in the area of multi-format capabilities.
This could mean that the implementation is extended to be able to read multiple versions of
Btrfs. This could include older versions as well as new versions yet to come.

The snapshots of Btrfs filesystems could also be of interest for the aggregation of historic
data to detect manipulations [[29]. This would be suitable for forensic analysis with the goal of
detecting tampering of data. Since The Sleuthkit doesn’t contain a tool to compare snapshots
yet, such a tool must be written at first. Ideally such a new tool would be able to compare
snapshots of ZFS filesystems too.
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CHAPTER

Conclusion

This thesis analyzed the forensic aspects of Btrfs. In the problem definition in chapter one the
general motivation and the need for forensic methods for Btrfs was justified and the artifacts to
retrieve from Btrfs filesystems were defined. The second chapter presented Btrfs in a high-level
way, describing the general ideas behind its design. After that, the filesystem was analyzed in
the same way as Brian Carrier’s reference work. The Sleuth Kit was presented for the later im-
plementation of a protoype for Btrfs forensics. Chapter three presented the the forensic methods
that were developed to retrieve the needed artifacts from Btrfs filesystems and outlined their
implementation in TSK. Chapter four evaluated the implementation of the forensic methods.
The evaluation shows that most of the defined artifacts can be retrieved by the implemented
prototype. Artifact Al, the filesystem metadata, is easily retrievable by reading the filesystem
superblock and the root of roots tree. The output of the fsstat tool is easily extendable for
more details and usage in practice will lead to improvements of the information presented by
it. The filesystem structure was also verified to be exactly the same as reported by the Linux
Btrfs driver. This artifact is also completely retrievable by the prototype implementation. The
difference between elder generations of filesystems is that the structure information of deleted
files is not retrievable without applying tree forensics. The evaluation of later artifacts shows
that this is not a big restriction though. The file metadata was also found to be retrievable for
allocated files in the same manner as it is for other filesystems supported by TSK. The relevant
information such as timestamps could be restored and validated against the metadata reported
by the stat command. The allocation status was evaluated by dividing a test image with known
contents into allocated and unallocated parts. Due to the knowledge of what content to expect
in each of the parts, the evaluation was simplified. The process of analyzing the output of blkls
was supported by a useful script which converted the allocations from a block-based listing to a
range based listing which makes it possible for humans to compare the huge listings produced by
blkls. Evaluation showed that the separation into allocated and unallocated partial images works
as expected. The next artifact of the allocated files was easy to check with an automated test
suite as it only needs to prepare test images with known content and compare the result of the
prototype output with the contents of the known test files. The evaluation of the unallocated file

63




contents gave interesting insights about the implication of the copy on write nature of Btrfs. One
question was when deleted files are overwritten in the filesystem. The automated test showed
that after a certain amount of new written content, the unallocated content was overwritten.
This was expected and is similar in other filesystems. The fact that overwriting files with new
content doesn’t lead to the overwriting of their physical content in the storage media is also not
surprising knowing that Btrfs uses the copy on write paradigm, but is surprising in the context of
the majority of existing filesystems editing files in-place. The core point of this evaluation was
the question whether unallocated file contents can be retrieved. Since the actual method relies
on heuristics or specialized algorithms to find certain file formats, the answer is yes — but with
restrictions.

The developed forensic methods are in general enabling a forensic investigator to gain in-
formation about a Btrfs filesystem and to retrieve artifacts from it. For the allocated artifacts the
output is deterministic and the evaluation showed that it is equal to the output of the Linux Btrfs
driver. The unallocated artifacts are relying on heuristics, but the search space can be easily
minimized with the help of the reference implementation such that the allocated artifacts can be
deterministically retrieved and processed and the heuristic search of the unallocated content can
be speeded up by only analyzing the unallocated blocks of the filesystem.

The choice of not using tree forensics to get elder versions of the individual Btrfs trees
was a simplification to limit the scope of the thesis and to keep the effort of the prototype
implementation in reasonable bounds. Evaluation showed though that in practice the analysis
of Btrfs is also possible without applying tree forensics, the divide and conquer strategy to look
only at unallocated areas makes it quite usable.

Looking back at the state prior this thesis, forensics for Btrfs filesystems is now in a bet-
ter shape than before, the prototypical implementation in The Sleuthkit makes it possible to
investigate Btrfs filesystem images and to perform forensic investigations. Without this imple-
mentation the investigation would be only possible by using the Linux implementation which is
not very well documented and doesn’t consider forensic aspects at all. The recovery of deleted
files would be limited to the application of heuristic methods which would return both allocated
and uallocated files.
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A.1 Conventions

APPENDIX

On-Disk-Format

The following conventions structure definitions in this section contain fixed size structs (identi-
fiable by a fixed size in the table header) and dynamic structs. Dynamic structs can be repeated
(see Table [A.T)) and optional (see Table [A.2). Repeated means that the marked part can occur
multiple times in the actual structure, optional means that the structure can be present once or

not at all.

struct RepeatingStruct (> 8B)

Type

Description

uint64 _t

A single value.

Opuint64_t | A repeated value.

time «

A repeated timestamp.

Table A.1: A repeating struct.

struct OptionalStruct (> 8B)

Type

Description

uint64 t

A single value.

S p-uint64d_t

Only there if the previous value is 42!

time <

An optional timestamp.

Table A.2: A struct with optional data.
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A.2 Data Structures

struct Superblock (4096B)
Type ‘ Description
char[32] Checksum of the superblock.
char[16] UUID
uint64_t The physical address of the superblock.
uint64_t Flags
char[8] The Btrfs magic _ BHRfS_M.
uint64_t generation;
uint64_t The logical address of the root of the root tree.
uint64_t The logical address of the root of the chunk tree.
uint64_t The logical address of the root of the log tree root.
uint64 _t log_root_transid;
uint64 _t The total bytes of the volume.
uint64_t The used bytes of the volume.
uint64_t The Object ID of the root directory (always 6).
uint64_t The number of devices in the volume.
uint32_t The sector size.
uint32_t The node size.
uint32_t The leaf size.
uint32_t The stripe size.
uint32_t The number of used bytes of bootstrap data (n).
uint64_t chunk_root_generation;
uint64_t compat_flags;
uint64_t compat_ro_flags;
uint64_t incompat_flags;
uint16_t csum_type;
uint8_t root_level;
uint8_t chunk_root_level;
uint8_t log_root_level;
struct dev_item | The dev_item of the disk.
char[256] The volume label.
char[256] Reserved.
char[2048] The bootstrap data (only the first n bytes are used).
char[1237] Unused.

Table A.3: The contents of the Btrfs superblock. [|1]]
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struct Key (17B)
Type \ Description
uint64_t | Object ID.
uint8_t | Item type.
uint64_t | Offset.

Table A.4: The structure of a Btrfs key. [1] [34]]

struct Header (101B)
Type Description
checksum 0x20 | Checksum
uuid 0x10 Filesystem UUID
uint64_t Logical address of this node
char[7] Flags
uint8_t Backref Rev.
uuid 0x10 Chunk tree UUID
uint64 t Generation
uint64 t tree 1d
uint32_t Number of items
uint8_t Level

Table A.5: The structure of a Btrfs key. [1]]

struct BlockPointer (33B)
Type Description

struct Key | Key
uint64 t The logical address of the referenced header.
uint64 _t Generation.

Table A.6: The structure of a Btrfs BlockPointer. [|1]]

struct Item (25B)

Type Description

struct Key | Key

uint32_t The offset of the data relative to the end of the header.

uint32_t The size of the data.

Table A.7: The structure of a Btrfs Item. [[1]] [34]
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struct RootItem (239B)

Type Description

struct InodeItem | Inode Item

uint64_t Expected Generation

uint64_t always 100

uint64_t Block Number of the Root Node
uint64_t Byte limit (always 0)

uint64_t Bytes used

uint64_t The last generation of a snapshot
uint64_t flags

uint32_t nr references

struct Key Drop progress (always 0:0:0)
uint8_t drop level (always 0)

uint8_t Level of the root of the tree.

Table A.8: The structure of a Btrfs Rootltem. [[1]]

struct DevItem (98B)

Type Description

uint64_t The device ID.

uint64_t The number of bytes.

uint64_t The number of bytes used.

uint32_t The optimal IO alignment.

uint32_t The optimal 10 width.

uint32_t The minimal IO size (sector size).

uint64_t The type.

uint64_t The generation.

uint64_t The start offset.

uint32_t The dev group.

uint8_t The seek speed.

uint8_t The bandwidth.

uuid 0x10 | The devce UUID.

uuid 0x10 | The filesystem UUID.

Table A.9: The structure of a Btrfs DevItem. [1]]




struct ChunkItem (48B)
Type Description

uint64_t | The size of the chunk.

uint64_t | The root referencing this chunk.
uint64_t | The stripe length.

uint64_t | The type.

uint32_t | The optimal IO alignment.
uint32_t | The optimal IO width.

uint32_t | The minimal IO size (sector size).
uint16_t | The number of ChunkItemStripes.
uint16_t | The number of sub-stripes.

Table A.10: The structure of a Btrfs ChunkItem. [/1]]

struct ChunkItemStripe (32B)
Type Description

uint64_t The device ID.
uint64_t The offset.
uuid 0x10 | The device UUID.

Table A.11: The structure of a Btrfs ChunkItemStripe. [/1]

struct ExtentItem (> 42B)

Type Description

uint64_t The reference count.

uint64_t The generation.

uint64_t The flags 1: Data, 2: Tree Block.

struct Key The Key (flags=2 only).

uint8_t Level of the node (flags=2 only).

Op-uint8_t Inline references: Type of the following structure.

struct REF «

One of TreeBlockRef, ExtentDataRef, SharedBlockRef or SharedDataRef.

Table A.12: The structure of a Btrfs ExtentItem. [|1]]
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struct DevExtent (48B)
Type Description

uint64_t | chunk tree id (always 3)
uint64_t | chunk oid (always 100)
uint64_t | logical address
uint64_t | size in bytes

char[16] | UUID

Table A.13: The structure of a Btrfs DevExtent. [|1]]

struct InodeItem (160B)
Type Description

uint64_t | The Generation
uint64_t | transid
uint64_t | st_size
uint64 _t | st_blocks
uint64_t | Block Group
uint32_t | st_nlink
uint32_t | st_uid
uint32_t | st_gid
uint32_t | st_mode
uint64_t | st_rdev
uint64_t | flags
uint64_t | sequence
char[32] | reserved

time st_atime

time st_ctime

time st_mtime

time otime (reserved)

Table A.14: The structure of a Btrfs Inodeltem. [1]]

struct InodeRef (> 10B)

Type \ Description
Owuint64_t | Index in the directory.
uintl6_t Length of name n.
char[n]« ASCII name.

Table A.15: The structure of a Btrfs InodeRef. [1]]



struct DirItem (> 30B)

Type Description

Owstruct Key | The key of the child.

uint64_t Transid.

uint16_t m

uint16_t n

uint8_t Type of child

char[n] Name of child

char[m] <« Data (empty for normal directory items)

Table A.16: The structure of a Btrfs Dirltem. [[1]]

struct DirIndex (> 30B)
Type Description

struct Key | The key of the child.

uint64 _t Transid.

uintl6_t m

uint16_t n

uint8_t Type of child

char[n] Name of child

char[m] Data (empty for normal directory items)

Table A.17: The structure of a Btrfs DirIndex. [1]]

struct ExtentData (> 21B)
Type Description
uint64_t generation
uint64_t n size of decoded extent
uint8_t Type of compression.
uint8_t Type of encryption.
uint16_t Other encoding.
uint8_t Type (inline/regular/prealloc).
3-puint64_t | The logical address of the extent.
uint64_t The size of the extent.
uint64_t The offset within the extent.
uint64_t« Logical number of bytes in the file.

Table A.18: The structure of a Btrfs ExtentData. [[1]]
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TSK_FS_INFO =

btrfs_tsk_open (TSK_IMG_INFO * img_info, TSK_OFF_T offset,
TSK_FS_TYPE_ENUM ftype , uint8_t test)
{

BTRFS_INFO xbtrfs_info ;
TSK_FS_INFO xfs;

// clean up any error messages that are lying around
tsk_error_reset () ;

/[ ]

fs = &(btrfs_info —>fs_info);

fs >ftype = ftype;
fs —>flags = 0;
fs —>img_info = img_info;

fs—>offset = offset;
fs —>tag = TSK_FS_INFO_TAG;
fs —>endian = TSK_LIT _ENDIAN;

/%
* Read the superblock struct.
x/

btrfs_superblock =xsuperblock = btrfs_io_read_superblock_pa(fs,
BTRFS_SUPERBLOCK_LOCATION) ;
btrfs_info —>superblock = superblock;

/%

x Verify we are looking at an Btrfs image

x/

if (strncmp(btrfs_info —>superblock —>magic, BTRFS_FS_MAGIC, 8)
0) {
fs—>tag = 0;

free (btrfs_info —>superblock);
free (btrfs_info);
tsk_error_reset () ;
tsk_error_set_errno (TSK_ERR_FS_MAGIC) ;
tsk_error_set_errstr("not_an_Btrfs_file_system_(magic)");
if (tsk_verbose)

fprintf (stderr, "btrfs_open:_invalid_magic\n");
return NULL;

Figure B.1: tsk_btrfs_open from btrfs.c
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/0[]

/*

x Find and set all the subvolumes.
*/
btrfs_subvolume_init(btrfs_info);

/%

* Count the number of inodes.

*/

fs —>inum_count = btrfs_inode_count(btrfs_info);
fs —>last_inum = fs—>inum_count — 1;

/*

x* Create a mapping for inodes.

x/

btrfs_inode_create_mapping (btrfs_info);

// set the top level subvolume fs tree
btrfs_info —>top_level_subvolume_fs_tree =
btrfs_subvolume_get_by_id(btrfs_info ,
BTRFS_FIRST_SUBVOLUME_ID) ;

/x Set the gemeric function pointers x/
fs—>fsstat = btrfs _tsk_ fsstat;

fs—>close = btrfs_tsk_close;

fs —>inode_walk = btrfs_tsk_inode_walk;
fs—>istat = btrfs_tsk_istat;

fs —>block_walk = btrfs_tsk_block_walk;

fs —>file_add_meta = btrfs_tsk_inode_lookup;

fs —>dir_open_meta = btrfs_tsk_dir_open_meta;
fs—>load_attrs = btrfs_tsk_load_attrs;
fs—>get_default_attr_type = btrfs_tsk_get_default_attr_type;
fs—>block_getflags = btrfs_tsk_block_getflags;

return (fs);

Figure B.2: tsk_btrfs_open from btrfs.c
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btrfs_tsk_fsstat (TSK_FS_INFO x fs, FILE % hFile)

{
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BTRFS_INFO xbtrfs_info = (BTRFS_INFO x) fs;
btrfs_superblock xsb = btrfs_info —>superblock;

// clean up any error messages that are lying around
tsk_error_reset () ;

tsk_fprintf (hFile , "FILE_SYSTEM, INFORMATION\n") ;

tsk_fprintf (hFile, "

nll ;
tsk_fprintf (hFile, "File_System_Type: Btrfs\n");
char buf[32] = "";
btrfs_io_print_uint64_t(buf, sb—>total_bytes);
tsk_fprintf (hFile, "Total_Bytes: _%s\n", buf);
btrfs_io_print_uint64_t(buf, sb—>bytes_used);
tsk_fprintf (hFile, "Bytes_Used: %s\n", buf);

/0[]

return 0;

Figure B.3: t sk_btrfs_fsstat from btrfs.c



void

btrfs_chunk_read_superblock_bootstrap_data (BTRFS_INFO x btrfs_info ,

{

Figure B.4: bt rfs_chunk_read_superblock_bootstrap_data from btrfs.c

void
btrf
{

btrfs_superblock * super)

// Initialize the TAILQ
TAILQ_INIT(&(btrfs_info —>chunks_head)) ;

int total_bytes = super—>n;

char n_bytes_valid[2048];

memcpy (n_bytes_valid , super—>bootstrap_chunks, 2048);
int read = 0O;

while (read < total_bytes) {
btrfs_key k;
btrfs_io_parse_key (n_bytes_valid + read, &k);
read += STRUCT_KEY_SIZE;

read += btrfs_chunk_add(btrfs_info , k, n_bytes_valid + read);

s_chunk_read_tree (BTRFS_INFO x btrfs_info , btrfs_tree % ct)

struct btrfs_tree_list_result_head list;
TAILQ_INIT(& list);

btrfs_tree_list(btrfs_info , ct, &list);

struct btrfs_tree_list_result_s =xiter;
TAILQ_FOREACH(iter , &list , pointers) ({

if (iter —>key.item_type == ITEM_TYPE_CHUNK ITEM) {

char xd = tsk_malloc(iter —>data_size);
tsk_fs_read (&(btrfs_info —>fs_info), iter —>
physical_address , d,
iter —>data_size);
btrfs_chunk_add (btrfs_info , iter —>key, d);
free (d);

}

btrfs_tree_list_result_free(&list);

Figure B.5: bt rfs_chunk_read_tree from btrfs.c
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ssize_t
btrfs_chunk_add (BTRFS_INFO x btrfs_info , btrfs_key k, char xdata
{

btrfs_chunk_item ci;

btrfs_io_parse_chunk_item (data, &ci

const int nr_stripes = ci.num_stripes

btrfs_chunk_item_stripe xstripes =
tsk_malloc (sizeof (btrfs_chunk_item_stripe) * nr_stripes);
int i;
for (i = 0; 1 < nr_stripes; i++) {
btrfs_chunk_item_stripe cis;
btrfs_io_parse_chunk_item_stripe (data +
+ (i x STRUCT_CHUNK_ITEM_STRIPE_SIZE) , &cis);
memcpy(&stripes[i], &cis, sizeof (btrfs_chunk_item_stripe));

struct chunk_entry_s *xce = tsk_malloc(sizeof (struct chunk_entry_s
)

memcpy(&ce—>chunk_item , &ci, sizeof(btrfs_chunk_item));

ce—>chunk_item_stripes = stripes;

memcpy(&ce—>key, &k, sizeof(btrfs_key

TAILQ_INSERT_TAIL(&(btrfs_info —>chunks_head), ce, pointers);

return STRUCT_CHUNK_ITEM_SIZE +
(nr_stripes * STRUCT_CHUNK_ITEM_STRIPE_SIZE) ;

Figure B.6: bt rfs_chunk_add from btrfs.c
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void
btrfs_read_dev_tree (BTRFS_INFO % btrfs_info)

{

struct btrfs_tree_list_result_head tlr;

TAILQ_INIT(& tlr);
btrfs_tree_list(btrfs_info , &(btrfs_info —>dev_tree), &tlr);

struct btrfs_tree_list_result_s =xiter;
struct dev_extent_entry_s sxnew_entry;

// Initialize the TAILQ
TAILQ_INIT(&(btrfs_info —>dev_extents_head));

TAILQ _FOREACH(iter , &tlr , pointers) {
btrfs_dev_extent e = btrfs_io_read_dev_extent_pa(btrfs_info ,

iter —>physical_address);

// create the new entry
new_entry = tsk_malloc(sizeof (struct dev_extent_entry_s));

memcpy (& (new_entry —>dev_extent), &e, sizeof(btrfs_dev_extent)
)
memcpy (& (new_entry —>key), &(iter —>key), sizeof (btrfs_key));

// insert it into the list
TAILQ_INSERT_TAIL(&(btrfs_info —>dev_extents_head), new_entry,

pointers);

}

// free the result
btrfs_tree_list_result_free(&tlr);

Figure B.7: bt rfs_read_dev_tree from btrfs.c
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uint64 t
btrfs_resolve_logical_address (BTRFS_INFO % btrfs_info ,
uint64_t logical_address)
{
const uint64_t our_dev_id = btrfs_info —>superblock —>dev_item.
dev_id;

struct chunk_entry_s xe;
TAILQ _FOREACH(e, &(btrfs_info —>chunks_head), pointers) {
btrfs_key k = e—>key;
uint64_t key_offset = k.offset;
uint64 _t size_of_chunk = e—>chunk_item.size_ of chunk;
if ((key_offset <= logical_address)
&& (logical_address <= (key_offset + size_of_chunk))) {
// found the address, return the address for this device
int 1i;
for (i = 0; i < e—>chunk_item.num_stripes; i++) {
btrfs_chunk_item_stripe *s =
(btrfs_chunk_item_stripe
*) (&e—>chunk_item_stripes[i]);
if (s—>device_id == our_dev_id) {
uint64_t stripe_offset = s—>offset;
return stripe_offset + (logical_address —
key_offset);

return —1;
}
}

return —1;

Figure B.8: btrfs_resolve_logical_address from btrfs.c
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uint64 _t
btrfs_resolve_physical_address (BTRFS_INFO x btrfs_info ,
uint64_t physical_address)
{
struct dev_extent_entry_s xe;
TAILQ_FOREACH (e, &(btrfs_info —>dev_extents_head), pointers) {
uint64_t key_offset = e—>key.offset;
uint64_t extent_size = e—>dev_extent.size;
if (physical_address >= key_offset
&& physical_address <= (key_offset + extent_size)) {
// found the right extent
uint64_t result = e—>dev_extent.logical_address
+ (physical_address — key_offset);
return result;
}
1

return —1;

Figure B.9: btrfs_resolve_physical_address from btrfs.c
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static uint8 t
btrfs_tsk_istat (TSK_FS_INFO x fs, FILE % hFile, TSK_INUM_T inum,

{
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TSK_DADDR_T numblock, int32_t sec_skew)

BTRFS_INFO xbtrfs_info (BTRFS_INFO =x) fs;

btrfs_inode_mapping *m
btrfs_tree fstree =

btrfs_subvolume_get_by_id(btrfs_info , m—>subvolume_id);
btrfs_inode_item _result res =

btrfs_find_inode_item (btrfs_info , &fstree ,

m—>inode_nr) ;

btrfs_inode_resolve (btrfs_info , inum);

if (res.found) {

TSK_FS_FILE xf = tsk_malloc(sizeof (TSK_FS_FILE));
f—>fs_info = fs;

f—>meta = tsk_fs_meta_alloc (0);

btrfs_read_metadata (btrfs_info , &(res.inode_item), NULL, inum

f—>meta) ;
tsk_fprintf (hFile, "Inode_number %" PRIVINUM "_(virtual)\n",

inum) ;
tsk_fprintf (hFile ,

"Btrfs_inode_number_is_%" PRIu64 " _on_subvolume_ %" PRIu64

"\n", m>inode_nr, m—>subvolume_id);
tsk_fprintf (hFile, "===_stat_info_===\n");

tsk_fprintf (hFile, "Size:\t\t\t_%" PRIu64 "\n", f-—>meta—>size

)

tsk_fprintf (hFile, "Access_time:\t\t_%" PRIu64 "\n",
f—>meta—>atime) ;

tsk_fprintf (hFile, "Modified_time:\t\t_%" PRIu64 "\n",
f—>meta—>mtime) ;

tsk_fprintf (hFile, "Create_time:\t\t_%" PRIu64 "\n",
f—>meta—>ctime) ;

return O;
}
else {
return 1;
}

Figure B.10: btrfs_tsk_istat from btrfs.c



uint8_t

btrfs_tsk_inode_walk (TSK_FS_INFO x fs, TSK_INUM_T start_inum ,
TSK_INUM_T end_inum , TSK FS_META_FLAG ENUM flags ,
TSK_FS_META_WALK CB a_action, void xa_ptr)

TSK_FS_FILE =xfile;

// Allocate TSK_FS_FILE and META
if ((file = tsk_fs_file_alloc(fs)) == NULL) {
return 1;
}
if ((file —>meta = tsk_fs_meta_alloc (BTRFS_FILE_CONTENT_LEN)) ==

NULL) {
return 1;
}
int i;
for (i = start_inum; i <= end_inum; i++) {
if (btrfs_tsk_inode_lookup (fs, file, i)) {
// ERROR
return 1;
}
else {

TSK_WALK RET ENUM retval = a_action(file , a_ptr);
if (retval == TSK_WALK STOP || retval == TSK WALK_ERROR)
{

return 0;

Figure B.11: btrfs_tsk_inode_walk from btrfs.c
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uint8_t

btrfs_tsk_block_walk (TSK_FS_INFO x a_fs, TSK DADDR_T a_start_blk ,
TSK_DADDR T a_end_blk, TSK FS_BLOCK WALK FLAG_ENUM a_flags ,
TSK_FS_BLOCK_WALK CB a_action, void *xa_ptr)

/7 [ ]

if (a_start_blk < a_fs—>first_block Il a_start_blk > a_fs—>
last_block) {

/7 [ ]

if (a_end_blk < a_fs—>first_block Il a_end_blk > a_fs—>last_block
Il a_end_blk < a_start_blk) {

/0[]

// Iterate over the blocks.

uint8_t callback;

for (addr = a_start_blk; addr <= a_end_blk; addr++) {
callback = 0;

TSK_FS_BLOCK_FLAG_ENUM flags =
btrfs_tsk_block_getflags(&(btrfs_info —>fs_info), addr);

/7 [...]
if (tsk_fs_block_get_flag(a_fs, fs_block, addr, flags) ==
NULL) {
tsk_error_set_errstr2 ("btrfs_block_walk:_block %"
PRIuDADDR,
addr) ;
tsk_fs_block_free (fs_block);
return 1;

}

if (callback == 1) {

int retval = a_action(fs_block, a_ptr);
if (retval == TSK_WALK STOP) {
break;

}
else if (retval == TSK_WALK ERROR) {

tsk_fs_block_free (fs_block);
return 1;

}

return O;

Figure B.12: btrfs_tsk_block_walk from btrfs.c
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btrfs_tree_search_result
btrfs_tree_search (BTRFS_INFO x btrfs_info ,
btrfs_key * key, btrfs_tree * tree, int verbose, compare_func cmp

)

/[ ]
if (h—>level == 0) {
// leaf node

/7 [...]

int i;

for (i = 0; 1 < h—>number_items; i++) {
/7 [ ]

btrfs_key current_key = btrfs_io_read_key_pa(btrfs_info ,
physical_end_of_header + (i *x STRUCT_ITEM_SIZE) ) ;
int ret = cmp(&current_key , key);
if (ret == 0) {
btrfs_item it = btrfs_io_read_item_pa(btrfs_info ,
physical_end_of_header + (i % STRUCT_ITEM_SIZE) ) ;
memcpy((&r.key), (&it.key), sizeof (btrfs_key));
char xd = tsk_malloc(it.data_size);
tsk_fs_read (fs, physical_end_of_header + it.
data_offset, d,
it.data_size);
r.data = d;
r.data_size = it.data_size;
r.physical_address =
physical_end_of_header + it.data_offset;

r.found = 1;
return r;
}
}
1
else {
// inner node
/7 [...]
}
1
return r;

Figure B.13: btrfs_tree_search from btrfs.c

&9



int

btrfs_tree_list_filter (BTRFS_INFO x btrfs_info , btrfs_tree x tree,
struct btrfs_tree_list_result_head xlist_head , compare_func cmp,
btrfs_key * k)

{
/7 [ ]
if (h—>level == 0) {
// leaf node
int i;
for (i = 0; i < h—>number_items; i++) {
btrfs_item it = btrfs_io_read_item_pa(btrfs_info ,
physical_end_of_header + (i *x STRUCT_ITEM_SIZE)) ;
memcpy ((&r.key), (&it.key), sizeof(btrfs_key));
char xd = tsk_malloc(it.data_size);
tsk_fs_read (fs, physical_end_of_header + it.data_offset,
d,
it.data_size);
r.data = d;
r.data_size = it.data_size;
r.physical_address = physical_end_of_header + it.
data_offset;
r.found = 1;
num_results ++;
if (cmp(k, &(r.key)) == 0) {
btrfs_tree_result_func_list(&r, list_head);
1
else {
free (d);
}
}
1
else {
// inner node
/7 [...]
}
}

Figure B.14: btrfs_tree_list_filter from btrfs.c
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int
btrfs_cmp_func_exact(btrfs_key x kl, btrfs_key * k2)

{
if (kl—>object_id > k2—>object_id) {
return 1;

}
else if (kl-—>object_id < k2-—>object_id) {
return —1;

}

if (kl—item_type > k2—>item_type) {
return 1;

}
else if (kl—>item_type < k2—>item_type) {
return —1;

}

if (kl—>offset > k2—>offset) {
return 1;

}
else if (kl-—>offset < k2-—>offset) {
return —1;

}

// they are equal
return 0;

Figure B.15: btrfs_cmp_func_exact form btrfs.c
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ssi1ze_t
btrfs_io_parse_header (char xdata, btrfs_header * header)
{
ssize_t off = 0;
off = btrfs_io_read_field (data
off = btrfs_io_read_field (data
off btrfs_io_read_field (data
0x8);
off = btrfs_io_read_field (data, (&header—>flags), off, 0x7);
off = btrfs_io_read_field (data, (&header—>backref), off, O0x1);
off = btrfs_io_read_field (data, (&header—>chunk_tree_uuid), off,
0x10) ;
off = btrfs_io_read_field (data, (&header—>generation), off, 0x8);
off = btrfs_io_read_field (data, (&header—>tree_id), off, 0x8);
off btrfs_io_read_field (data, (&header —>number_items), off, 0x4

(&header —>checksum), off, 0x20);
(&header —>uuid ), off, 0x10);
(&header —>logical_address), off,

)
off = btrfs_io_read_field (data, (&header—>level), off, 0x1);
assert (off == STRUCT_HEADER_SIZE) ;
return off;

}

ssize_t

btrfs_io_read_field (char xdata, veoid xout, ssize_t offset,
ssize_t field_size)

{
memcpy (out, (data + offset), field_size);
return offset + field _size;

Figure B.16: btrfs_io_parse_header and btrfs_io_read_field from btrfs_io.c
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btrfs_block_ptr
btrfs_io_read_block_ptr_la(BTRFS_INFO x btrfs_info ,
uint64_t logical_address)

{

uint64_t physical_address = btrfs_resolve_logical_address(
btrfs_info ,
logical_address);

return btrfs_io_read_block_ptr_pa(btrfs_info, physical_address)
}

btrfs_block_ptr
btrfs_io_read_block_ptr_pa (BTRFS_INFO x btrfs_info ,
uint64_t physical_address)
{
// Read the data from disk
const ssize_t s = STRUCT_BLOCK_PTR_SIZE;
char data[s];
tsk_fs_read (&(btrfs_info —>fs_info), physical_address , data, s);

// Parse it
btrfs_block_ptr kp;
btrfs_io_parse_block_ptr(data, &kp);

return kp;

Figure B.17: btrfs_io_read_block_ptr_la
btrfs_io_read_block_ptr_pa from btrfs_io.c

)

and
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#!/bin/bash

BLKLS=../public/sleuthkit/tools/fstools/blkls

IMG=istat-test-deletedlfile

ALLOC=istat-test-deletedlfile.allocated

IMGDIR=../public/sleuthkit-btrfs-testsuite/src/test/
resources/testfiles

PRESENT= (
"4 Cilindros,_Munich,_Alemania,_2013-02-11,_DD_07.JPG"
"Ajaccio_phare_citadelle. jpg"

)

ABSENT= ("Death_Valley_exit_SR190_view_Panamint_Butt_flash_
flood_2013.3jpg")

# Run blkls
echo "Running blkls..."
$BLKLS —-a $IMG > S$ALLOC

# Check that the present files are there
echo "Verifying present files..."
for 1 in "${PRESENT[@]}"

do
IMGPATH="S$IMGDIR/S$i"
ADDR=S$ (./find $IMGPATH S$ALLOC)
if [ $? -eq 0 ]; then
echo "OK, SADDR, S$i"
else
echo "NOK, $i"
fi
done

# Check that the absent files are not there
echo "Verifying absent files..."
for i in "S$S{ABSENTI[Q@]}™"

do
IMGPATH="S$IMGDIR/S$i"
ADDR=S$ (./find $IMGPATH S$ALLOC)
if [ $? -eq 1 ]; then
echo "OK, S$i"
else
echo "NOK, $i"
fi
done

echo "Finished."

94 Figure B.18: Script to verify the results of blkls -a
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