
Reasoning in First-Order Theories
with Extensionality

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Bernhard Kragl
Matrikelnummer 0952989

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuerin: Priv.-Doz. Dr. Laura Kovács

Wien, 20.03.2014
(Unterschrift Verfasser) (Unterschrift Betreuerin)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Reasoning in First-Order Theories
with Extensionality

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Bernhard Kragl
Registration Number 0952989

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Priv.-Doz. Dr. Laura Kovács

Vienna, 20.03.2014
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at





Erklärung zur Verfassung der Arbeit

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit - ein-
schließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im Wort-
laut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

iii





Acknowledgements

First and foremost I want to thank my advisor, Laura Kovács. Her continuous support during
my studies was invaluable and went way beyond the supervision of this thesis. I am especially
thankful for the opportunity to present our work at the 19th International Conferences on Logic
for Programming, Artificial Intelligence and Reasoning (LPAR) in Stellenbosch, South Africa.

I like to thank Ashutosh Gupta for his guidance and the numerous hours he spent with me
developing ideas, improving my work, and explaining the natural laws of the scientific world.
Our collaboration was supported by Tom Henzinger, who provided a working environment in
his group at IST Austria.

I was lucky to meet Andrei Voronkov when I started to work on this thesis. His interest in
my work and his incredible experience in the field of automated reasoning where of great help.
Every question about first-order theorem proving and VAMPIRE was only one Skype session
away from learning what makes the world’s fastest theorem prover.

I am very grateful to my parents, who always supported me and prized my needs over theirs.
Finally, my deepest gratitude goes to Sandra for her infinite love and patience.

The research in this thesis was partly supported by the Austrian National Research Network
RiSE (FWF grants S11402-N23 and S11410-N23).

v





Abstract

Extensionality axioms are common when reasoning about collections, such as sets in mathe-
matics, or arrays and functions in program analysis. An extensionality axiom asserts that two
collections are equal if they consist of the same elements (at the same indices).

Using extensionality is often required to show that two collections are equal, a typical ex-
ample is the set theory theorem (∀x)(∀y)x ∪ y = y ∪ x. Interestingly, while humans have no
problem with proving such set identities using extensionality, they are very hard for superposi-
tion theorem provers because of the calculi they use.

In this thesis we show how addition of a new inference rule, called extensionality resolu-
tion, allows first-order theorem provers easily solve problems no modern first-order theorem
prover can solve. We illustrate this by running the world-leading theorem prover VAMPIRE with
extensionality resolution on a number of set theory and array problems.
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Kurzfassung

Extensionalitätsaxiome sind zentral für das Schließen über Containerobjekte, wie etwa Mengen
in der Mathematik, oder Arrays und Funktionen in der Programmanalyse. Ein Extensionalitäts-
axiom besagt, dass zwei Container genau dann gleich sind, wenn sie dieselben Elemente (an
denselben Indizes) beinhalten.

Die Anwendung eines Extensionalitätsaxioms ist oft erforderlich um zu zeigen, dass zwei
Container gleich sind – ein typisches Beispiel ist das Mengenlehrentheorem (∀x)(∀y)x ∪ y =
y ∪ x. Obwohl das Beweisen solcher Mengenidentitäten mittels Extensionalität für Menschen
kein Problem darstellt, sind diese für automatische Beweiser aufgrund der verwendeten Kalküle
problematisch.

In dieser Diplomarbeit zeigen wir, wie das Hinzufügen einer neuen Inferenzregel, genannt
Extensionalitätsresolution, automatischen Beweisern erlaubt, mühelos Probleme zu lösen, wel-
che kein moderner automatischer Beweiser erster Stufe lösen kann. Wir veranschaulichen dies
anhand von zahlreichen Problemen über Mengen und Arrays durch Erweiterung des weltweit
führenden automatischen Beweisers VAMPIRE um Extensionalitätsresolution.
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CHAPTER 1
Introduction

1.1 Problem Description

Logic is among the most effective formal tools in computer science [33]. As such, automated
reasoning in logic-based formalisms has a longstanding tradition and led to a rich theory as well
as sophisticated and practical tools [47, 18]. The most important problems targeted by automated
reasoners are the following.

SAT Satisfiability of propositional formulas (NP-complete)

SMT Satisfiability of ground formulas with respect to a theory (usually decidable)

First-order Validity/unsatisfiability of first-order formulas (semi-decidable)

Applications of automated reasoning include, for example, analysis/testing/verification/synthesis
of hardware and software, protocol verification, query answering over a knowledge base and the-
orem proving in mathematics.

Satisfiability Modulo Theories (SMT) solvers have become fundamental to many program
analysis tools. They implement efficient decision procedures for theories which in turn capture
domain knowledge to support the modeling of complex systems. However, ground formulas can-
not express proof obligations with quantifiers. On the contrary, automated first-order theorem
provers are refutation complete for arbitrarily quantified formulas but weak in theory reason-
ing. There are theoretical results showing undecidability of reasoning with both theories and
quantifiers.1

Verification of software libraries involves reasoning about data collections, such as arrays,
sets, and functions. Most of the interesting properties about these data types are expressed using
both quantifiers and theory specific predicates/functions. Hence, verification of such properties
requires specialized reasoning support in the existing reasoning engines, such as SMT solvers,

1Note that there is no complete first-order axiomatization for certain theories, e.g. true arithmetic.
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and automated and interactive theorem provers. There are essentially two approaches to solving
this problem of automated reasoning:

1. Analyze the properties involved in a particular verification problem and, if possible, cap-
ture the properties by a restricted fragment of the logic which still admits a decision pro-
cedure.

2. Extend “general purpose” theorem provers with theory specific techniques.

In this thesis we follow the second approach by improving theory reasoning in first-order
theorem provers. In our recent work on tree interpolation [20] we extended the first-order the-
orem prover VAMPIRE [37] to derive tree interpolants from arbitrary local proofs. Tree inter-
polation is closely related to, and can be used for, solving constrained Horn-clauses, a popular
intermediate representation for verification problems [31, 29, 17, 19, 50, 49, 38, 34]. Our re-
sults highlight the advantage of our technique on quantified problems. However, on problems
from bounded model checking of device drivers, expressed in the quantifier-free theory of linear
integer arithmetic and integer-indexed arrays, SMT-based tools perform better. By analyzing
the array reasoning part of VAMPIRE on these and other problems from the SMT community,
we identified a general problem with reasoning about collection types using superposition-based
first-order theorem provers, as follows.

For proving properties about collections one needs to use extensionality axioms asserting that
two collections are equal if and only if they consist of the same elements (at the same indices).
A typical example is the set theory theorem (∀x)(∀y)x ∪ y = y ∪ x, asserting that set union is
commutative and therefore the union of two sets x and y is the same as the union of y and x.
Proving the theorem requires set equality reasoning and cannot be proved using only standard
axiomatizations of the equality predicate. For proving set equality, one needs to prove that equal
sets contain the same elements, a property that is asserted by the extensionality axiom of set
theory.

Interestingly, while humans have no problem with proving such set identities using exten-
sionality, they are very hard for superposition-based theorem provers because of the calculi they
use. To overcome this limitation, we need specialized methods of reasoning with extensional-
ity, preferably those not requiring radical changes in the underlining inference mechanism and
implementations of superposition.

In this thesis we present a new inference rule, called extensionality resolution, which al-
lows first-order theorem provers easily solve problems no modern first-order theorem prover
can solve. Our approach makes no changes on the underlying inference mechanism of super-
position, and introduces no additional constraints on the orderings used by the theorem prover.
Building extensionality resolution in a theorem prover needs efficient recognition and treatment
of extensionality axioms. We therefore analyzed various forms of extensionality axioms and
described various choices made, and corresponding options, for extensionality resolution. We
implemented our approach in the first-order theorem prover VAMPIRE [37] and evaluated our
method on a number of challenging examples from set theory and reasoning about arrays. Our
experiments show significant improvements on problems containing extensionality axioms: for
example, many problems proved by the new implementation in essentially no time could not be
proved by any of the existing first-order provers.
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1.2 Structure of the Thesis

The thesis is structured as follows. We start with an introduction of the relevant notions of
first-order logic and theorem proving in Chapter 2. Then, in Chapter 3, we present examples of
reasoning with extensionality axioms and the technical details of why it is hard for superposition-
based theorem provers. Our new inference rule extensionality resolution and its integration into
saturation algorithms is presented in Chapter 4. In Chapter 5 we show different options for
recognizing extensionality axioms derived from the analysis of a large collection of first-order
benchmark problems. In Chapter 6 we evaluate our implementation of extensionality resolution
in VAMPIRE and compare it to other state-of-the-art theorem provers. In Chapter 7 we review
existing approaches to reasoning with both theories and quantifiers. In Chapter 8 we conclude
the thesis and suggest directions for further research.
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CHAPTER 2
Automated First-Order Theorem

Proving

In this chapter we review saturation-based theorem proving in the superposition calculus. After
fixing our notation, we introduce the notion of inference systems and the key ingredients of
efficient first-order theorem proving. The material of this section is based on [8, 40, 37].

2.1 Basic notions

We consider the standard first-order predicate logic with equality. Let V be a set of variables and
let Σ = 〈P,F〉 be a first-order signature, where P is a set of predicate symbols and F is a set
of function symbols. Terms over F and V are defined as usual. Formulas over terms and P are
built using all Boolean connectives, quantifiers over V , and> and⊥ for always true respectively
false formulas. The equality predicate is denoted by =. We write s 6= t to mean ¬(s = t), and
analogous for every binary predicate written in infix notation. Throughout this thesis we denote
variables by x, y, z, constant symbols by a, b, c, function symbols by f, g, h, predicate symbols
by p, q, terms by l, r, s, t, u and formulas by F , possibly with indices.

An atomic formula A is of the form p(t1, . . . , tn). A literal L is either an atomic formula
A or its negation ¬A. The former is called a positive literal, the latter a negative literal. A
clause C is a finite multiset of literals, identified with their disjunction L1∨· · ·∨Ln. The empty
clause is denoted by�. All variables in a clause are implicitly universally quantified. We call an
expression E a term, atom, literal, or clause. An expression is ground if it contains no variables.

A substitution θ is a finite mapping from variables to terms, written as {x1 7→ t1, . . . , xn 7→
tn}. The application of this substitution to an expression E, denoted by Eθ, is the expression
obtained from E by the simultaneous replacements of each xi by ti. An expression E1 is called
an instance of expression E2, if E1 = E2θ for some substitution θ. A unifier of two expressions
E1 and E2 is a substitution θ such that E1θ = E2θ. If there exists a unifier, then there exists a
most general unifier (mgu) which is unique up to variable renaming.

5



We write E[s] to mean an expression E with a particular occurrence of a term s. When we
use the notation E[s] and then write E[t], the latter means the expression obtained from E[s] by
replacing the distinguished occurrence of s by the term t.

We interpret terms and formulas using standard first-order structuresM. We write tM for
the domain element t denotes inM and FM = 1 to denote that F is true inM; then F is called
satisfiable andM is called a model of F , otherwise FM = 0 andM is called a counterexample
for F . If F has no models at all, F is called unsatisfiable. We generalize these notions to sets of
formulas Γ as usual. E.g. Γ is called satisfiable if there is some structureM such that FM = 1
for all F ∈ Γ. A formula F is a logical consequence of a set of formulas Γ if F holds in all
models of Γ, symbolically Γ |= F .

We have the following equivalence between the notions of logical consequence and unsatis-
fiability:

Γ |= F if and only if Γ ∪ {¬F} unsatisfiable (2.1)

We say a set of formulas Γ defines a set of structures S, if it holds for all structuresM that
M is a model of Γ if and only ifM∈ S.

2.2 Proofs and Refutations

The problem a theorem prover aims to solve is to compute the membership predicate of the
logical consequence relation |=. That is, given formulas F1, . . . , Fn (axioms and assumptions)
and a formula F (conjecture), determine whether {F1, . . . , Fn} |= F holds or not. In general,
the problem is only semi-decidable.

Reasoning semantically about formulas in terms of models is not always desired. Especially
for automated reasoning by a computer program we need symbolic techniques. This is the
realm of proof theory, which is concerned with the construction and analysis of proofs as formal
syntactic objects. The strong correspondence between syntax and semantics in classical first-
order logic, established by the soundness and completeness of proof systems, justifies proof
search as a suitable method to determine logical consequence. Furthermore, a proof is a witness
for the answer of a theorem prover and can be verified.

There are several different proof systems for classical first-order logic, for example the nu-
merous variants of sequent calculus, natural deduction and Hilbert-type systems. However, not
all of them are well suited for automation. On of the most successful proof systems in auto-
mated reasoning is resolution, introduced in 1965 [46]. Even today the fastest theorem provers
are based on the ideas of resolution. We will use superposition as an extension of resolution
to support equality, and instantiation based methods are guided by the resolution principle (see
Chapter 7).

We now give an abstract framework for proof systems.1 An inference rule is a n-ary relation

1This framework captures e.g. resolution, superposition and Hilbert-type systems. In sequent calculus derivation
trees the nodes are sequents, not formulas. In natural deduction derivation trees there are non local dependencies for
inferences.
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between formulas. The elements of an inference rule are called inferences and are written as

F1 . . . Fn
F

.
(2.2)

F1, . . . , Fn are called the premises and F the conclusion of the inference. Inferences with no
premises, i.e. n = 0, are called axioms. An inference system I is a set of inference rules.

A derivation in I is a finite tree constructed from inferences (2.2) in I. If the root node is F ,
we call the derivation a derivation of F . A derivation from F1, . . . , Fn is a derivation where all
leaves are axioms or in {F1, . . . , Fn}. A proof is a derivation where all leaves are axioms. A
derivation of⊥ is a refutation. We write F1, . . . , Fn `I F to denote that there exists a derivation
of F from F1, . . . , Fn in I.

The abstract formulations of soundness and completeness of an inference system I are as
follows:

• Soundness: When F1, . . . , Fn `I F then {F1, . . . , Fn} |= F .

• Completeness: When {F1, . . . , Fn} |= F then F1, . . . , Fn `I F .

In fact this properties can be strengthened as follows. A derivation of F from {F1, . . . , Fn}
can be considered a derivation from any superset Γ ⊇ {F1, . . . , Fn}. If we have Γ |= F , then as
a consequence of compactness there is a finite {F1, . . . , Fn} ⊆ Γ such that {F1, . . . , Fn} |= F .
Then by the above completeness F1, . . . , Fn `I F and we can write Γ `I F . Hence we can state
soundness and completeness concisely as `I ⊆ |= and |= ⊆ `I, respectively.

2.3 Resolution

Resolution and superposition are based on the principle of proof by contradiction. According
to (2.1) we add the negation of the conjecture to the assumptions and prove the unsatisfiability of
the resulting set of formulas. Hence, instead of a derivation of F from Γ we construct a refutation
of Γ∪{¬F}. Furthermore, resolution and superposition work on formulas in conjunctive normal
form (CNF). That is, Γ ∪ {¬F} is converted into an equisatisfiable set of clauses. In the rest of
this section we denote the set S0. See [4, 41] for surveys on normal form translations.

The classic resolution inference system consists of the following rules:
Resolution:

A ∨ C1 ¬A′ ∨ C2

(C1 ∨ C2)θ
,

where θ is a mgu of A and A′.
Factoring:

A ∨A′ ∨ C
(A ∨ C)θ

,

where θ is a mgu or A and A′.
One subtle point to note here is that we always assume the premises of resolution to have

disjoint variables. That is, we apply a variable renaming before unification.
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Example 1. Consider the inference

p(x) ∨ q(z) ¬p(y) ∨ p′(z)
q(z) ∨ q′(z)

{x 7→ y}.

The conclusion merges the z variables from both premises, weakening the result. Subscripting
1 to variables in the first premise and 2 to variables in the second premise gives the desired
resolution inference

p(x1) ∨ q(z1) ¬p(y2) ∨ p′(z2)
q(z1) ∨ q′(z2)

{x1 7→ y2}.

Resolution is refutation complete, that is, exhaustively applying resolution and factoring to
an unsatisfiable set of clauses S0 will eventually produce �. This is the underlying principle of
saturation-based theorem proving: keep a set S of clauses (initially S0) called the search space
and saturate it by gradually adding conclusions of inferences with premises in S, until all con-
clusions of possible inferences are already in S. However, blindly applying inferences quickly
blows up the search space and works for non but the most trivial problems. Before present-
ing all ingredients to make saturation-based theorem proving work in practice, we investigate
how equality reasoning can be integrated into resolution, leading to the superposition inference
system.

2.4 Equality

The equality predicate is essential to formulate problems in first-order logic and hence has to
be supported by automated theorem provers. There is a philosophical principle attributed to
Leibniz2 which states that equality of two objects means that they have all properties in common.
In other words, two objects are considered equal if they behave the same in all contexts and hence
are indiscernible.

The standard approach in first-order logic is to add equality as primitive to the logic and
assign it the following fixed interpretation:

(s = t)M = 1 if and only if sM = tM (2.3)

Note that here all three occurrences of = are different: the symbol part of the logic, equality
among truth values and equality among domain elements. Hence equality is interpreted as the
identity in the domain of the respective structure. A structure which interprets equality as in (2.3)
is called equality structure. First-order logic with primitive equality and interpretation restricted
to equality structures is called first-order logic with equality.

First-order logic with equality is more expressive than first-order logic without equality.
For example it allows to define finite models (with certain size restrictions); the clause x =
a1 ∨ · · · ∨ x = an defines the models with at most n elements. Nevertheless, the set of axioms
from Figure 2.1, denoted by E , allows the reduction of reasoning with equality to reasoning

2Known as Leibniz’s law, “the principle of substitutivity”, “the indiscernibility of identicals”, or “the replacement
property”.
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x = x (reflexivity)
x = y → y = x (symmetry)
x = y ∧ y = z → x = z (transitivity)
x1 = y1 ∧ · · · ∧ xn = yn → f(x1, . . . , xn) = f(y1, . . . , yn) (F-monotonicity)
x1 = y1 ∧ · · · ∧ xn = yn ∧ p(x1, . . . , xn)→ p(y1, . . . , yn) (P-monotonicity)

Figure 2.1: Equality Axiomatization. All variables are universally quantified. The monotonicity
axioms are actually axiom schemes and have to be added for all f ∈ F and p ∈ P .

without equality as follows: S is satisfiable in first-order logic with equality if and only if S ∪ E
is satisfiable in first-order logic without equality [2].3

There are at least two problems with this solution. First, the number of monotonicity clauses
depends on the signature. Second, the clauses in E are extremely prolific. Any equality literal
can be unified and resolved with numerous clauses in E , generating mostly useless clauses. The
solution of superposition is to add special inference rule for handling equality reasoning to the
calculus. In addition, the concepts of orderings and selection allow to impose restrictions on the
inference rule to minimize the number of necessary inferences.

In the following chapters we show how extensionality axioms give additional meaning to
the equality predicate, causing problems for automated reasoners. Our solution presented in
Chapter 4 is similar to the idea of superposition, namely special treatment of extensionality in
the calculus.

It is interesting to note that Leibniz equality can be naturally defined in higher-order logic,
e.g. as

=α
def
= λxαyα.∀pα→o ↔ (p x) (p y)

in classic type theory. But also here, despite other issues, automated reasoning methods require
built in support for equality and extensionality [16, 14, 13, 15].

2.5 Superposition

The most common inference system for first-order logic with equality is the superposition infer-
ence system, developed in the early 1990s [5, 6, 7]. The superposition inference system is, in
fact, a family of systems, parameterized by a simplification ordering and a selection function.

A simplification ordering � is a partial ordering on terms with the following properties:

• � is well-founded: there is no infinite decreasing chain t1 � t2 � . . . ;

• � is monotonic: if l � r, then s[l] � s[r];

• � is stable under substitutions: if l � r, then lθ � rθ;

3However, there is no axiomatization which defines the equality structures.
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• � has the subterm property: if s is a proper subterm of t[s], then t[s] � s.

If s � t we say that s (t) is bigger (smaller) then t (s). We lift � to literals by considering
predicate symbols and ¬ as function symbols, and further to clauses by multiset extension.

A selection function σ is a function from clauses to clauses, such that σ(C) ⊆ C and
σ(C) 6= ∅. A literal L ∈ σ(C) is called selected. When working with a selection function,
we will underline selected literals: if we write a clause in the form L ∨ C, it means that L (and
maybe some other literals) are selected in L ∨ C. A well-behaved selection function selects in
every clause either some negative literal or all maximal literals with respect to the simplification
ordering �.

In the sequel, we assume that a simplification ordering � and a selection function σ are
fixed. The superposition inference system, denoted by Sup�σ , consists of the following rules:
Resolution:

A ∨ C1 ¬A′ ∨ C2

(C1 ∨ C2)θ
,

where θ is a mgu of A and A′.
Factoring:

A ∨A′ ∨ C
(A ∨ C)θ

,

where θ is a mgu or A and A′.
Superposition:

l = r ∨ C1 L[s] ∨ C2

(L[r] ∨ C1 ∨ C2)θ

l = r ∨ C1 t[s] = t′ ∨ C2

(t[r] = t′ ∨ C1 ∨ C2)θ

l = r ∨ C1 t[s] 6= t′ ∨ C2

(t[r] 6= t′ ∨ C1 ∨ C2)θ
,

where θ is a mgu of the terms l and s, s is not a variable, rθ 6� lθ, (first rule only) L[s] is not an
equality literal, and (second and third rules only) t′θ 6� t[s]θ.
Equality Resolution:

s 6= t ∨ C
Cθ

,

where θ is a mgu of the terms s and t.
Equality Factoring:

s = t ∨ s′ = t′ ∨ C
(s = t ∨ t 6= t′ ∨ C)θ

,

where θ is an mgu of s and s′, tθ 6� sθ, and t′θ 6� tθ.
Note the general pattern that inferences are only performed with selected literals. The su-

perposition rule can be described as rewriting terms by equal terms. Let l = r ∨ C1 be the left
premise of a superposition inference. If an instance of l occurs in some other selected literal,
this occurrence can be replaced by r. We only rewrite with smaller terms and if we rewrite an
equality literal, then only the bigger side of the equality literal. Furthermore, we do not have to
rewrite variables.
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2.6 Saturation and Redundancy

Superposition is a powerful inference system, and orderings and selection already discard many
inferences. However, we are still missing one essential concept of modern resolution and super-
position theorem proving, the theory of redundancy.

The above idea of saturation was to start with the initial set of clauses S0 and saturate it with
all possible inferences. Formally, a set of clauses S is saturated with respect to an inference
system I, if for all inferences in I with premises in S, the conclusion is also in S. If I is
refutation complete and S is the smallest saturated set with respect to I containing S0, then S0
is unsatisfiable if and only if � ∈ S. To build a saturated set in practice, we need an algorithm
which gradually selects inferences and adds their conclusions to the search space. But, as it
turns out, it is even possible to delete certain clauses from the search space without affecting
completeness.

A clause C is called redundant in S if there are S′ ⊆ S such that S′ |= C and C � C ′ for all
C ′ ∈ S′. An I inference process is a sequence S0, S1, . . . of clauses such that for each inference
step Si, Si+1 either

• Si+1 = Si ∪ {C} and there is an inference

C1 . . . Cn
C

in I with {C1, . . . , Cn} ⊆ Si; or

• Si+1 = Si − {C} and C is redundant in Si.

Obviously, even without deleting redundant clauses, completeness alone does not guaran-
tee to eventually find � starting from an unsatisfiable set S0. The clauses in the limit S∞ =⋃
i≥0

⋂
k>i Sk of an inference process are called persistent. An inference process is fair, if the

conclusion of every inference with persistent premises is added at some inference step. In other
words, an inference enabled at some point is not allowed to be postponed indefinitely.

We are now ready to formulate the strong completeness property of superposition.

Theorem 1 (Completeness of Superposition). Let � be a simplification ordering, σ a well-
behaved selection function and S0, S1, . . . a fair Sup�σ inference process. Then S0 is unsatisfi-
able if and only if � ∈ Si for some i ≥ 0.

2.7 Theorem Proving in Practice

Theorem 1 not only gives us conditions for the existence of refutations, but also conditions
under which we are guaranteed to find them. An algorithm implementing inference processes is
called a saturation algorithm. Modern first-order theorem provers implement different versions
of saturation algorithms. The VAMPIRE theorem prover, for example, implements 3 saturation
algorithms from the family of given clause algorithms. For an overview of saturation algorithms
we refer to [45, 37].
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input: init : set of clauses;
var active , passive, unprocessed : set of clauses;
var given , new : clause;
active := ∅;
unprocessed := init ;
loop

while unprocessed 6= ∅
new:=pop(unprocessed);
if new = � then return unsatisfiable;
if retained(new) then (* retention test *)

simplify new by clauses in active ∪ passive ; (* forward simplification *)
if new = � then return unsatisfiable;
if retained(new) then (* another retention test *)

delete and simplify clauses in active and (* backward simplification *)
passive using new ;

move the simplified clauses to unprocessed ;
add new to passive;

if passive = ∅ then return satisfiable or unknown;
given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed:=forward_infer(given, active); (* forward generating inferences *)
add backward_infer(given, active) to unprocessed ; (* backward generating inferences *)

Figure 2.2: Otter Saturation Algorithm.

In what follows, we illustrate the essential concepts of given-clause saturation algorithms
on the Otter saturation algorithm, implemented also in Vampire. A simplified description of the
Otter saturation algorithm is shown in Figure 2.2. It uses three kinds of inferences: generating,
which add new clauses to the search space; simplifying, which replace existing clauses by new
ones, and deletion, which delete clauses from the search space.

Generating inferences are the standard inferences like resolution or superposition. The dis-
tinction of forward and backward generating inferences is explained in Chapter 4 using the
example of our new inference rule. Simplifying inferences are in principle also generating in-
ferences as they add a new clauses. However, they are guaranteed to make another clause in
the search space redundant. The redundant clause can be deleted and hence adding the new
clause comes at no cost. Deletion rules remove redundant clauses, e.g. tautologies, as part of the
retention test.

The algorithm maintains three sets of clauses:

1. active: the set of clauses to which generating inferences have already been applied;

2. passive: clauses that are retained by the prover (that is, not deleted);

12



3. unprocessed : clauses that are in a queue for a retention test.

At each step, the algorithm either processes a clause new , picked from unprocessed , or performs
generating inferences with the so-called given clause given , which is the clause most recently
added to active . The algorithm maintains two loop invariants:

1. All generating inferences with premises in active have been performed.

2. active ∪ passive is maximally simplified with respect to the used simplification rules.

Fairness of the induced inference process is achieved through clause selection. That is, if no
clause remains passive indefinitely, we are guaranteed to perform every inference with persistent
premises.

All operations performed by the saturation algorithm that may take considerable time to
execute are normally implemented using term indexing, that is, building a special purpose index
data structure that makes the operation faster [44]. For example, all theorem provers with built-
in equality reasoning have an index for forward demodulation. The challenging task is to index
complicated data structures (e.g. sets of trees) subject to a high number of update operations
within reasonable memory expenses.
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CHAPTER 3
Motivating Examples

In this chapter we explain why theories with extensionality axioms require special treatment in
superposition theorem provers.

3.1 Set Theory

We start with an axiomatization of the set theory and will refer to this axiomatization in the rest
of the thesis. The set theory will use the membership predicate ∈ and the subset predicate⊆, the
constant ∅ denoting the empty set, and operations ∪ (union), ∩ (intersection), − (difference),
4 (symmetric difference), and complement, denoted by over-lining the expression it is applied
to, that is, the complement of a set x is denoted by x. An axiomatization of set theory with these
predicates and operations is shown in Figure 3.1.

Note that our set theory is different from axiomatic set theory à la Zermelo-Fraenkel. In
particular, we have a two sorted logic which distinguishes between sets and elements.

(∀x)(∀y)((∀e)(e ∈ x↔ e ∈ y)→ x = y) (extensionality)
(∀x)(∀y)(x ⊆ y ↔ (∀e)(e ∈ x→ e ∈ y)) (definition of subset)
(∀e)(e 6∈ ∅) (definition of the empty set)
(∀x)(∀y)(∀e)(e ∈ x ∪ y ↔ e ∈ x ∨ e ∈ y) (definition of union)
(∀x)(∀y)(∀e)(e ∈ x ∩ y ↔ e ∈ x ∧ e ∈ y) (definition of intersection)
(∀x)(∀y)(∀e)(e ∈ x− y ↔ e ∈ x ∧ e 6∈ y) (definition of set difference)
(∀x)(∀y)(∀e)(e ∈ x4y ↔ (e ∈ x↔ e 6∈ y)) (definition of symmetric difference)
(∀x)(∀e)(e ∈ x↔ e 6∈ x) (definition of complement)

Figure 3.1: Set theory axiomatization. Here we denote set variables by x, y and set elements by
e.
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Example 2. The commutativity of union is a valid property of sets and a logical consequence
of the set theory axiomatization:

(∀x)(∀y) x ∪ y = y ∪ x. (3.1)

This identity is problem 2 in our problem suite of Chapter 6. Proving such properties poses no
problem to humans. We present an example of a human proof.

(1) Take two arbitrary sets a and b. We have to prove a ∪ b = b ∪ a.

(2) By extensionality, to prove (1) we should take an arbitrary element e and prove that e ∈
a ∪ b if and only if e ∈ b ∪ a.

(3) We will prove that e ∈ a ∪ b implies e ∈ b ∪ a, the reverse direction is obvious.

(4) To this end, assume e ∈ a ∪ b. Then, by the definition of union, e ∈ a or e ∈ b. Again, by
the definition of union, both e ∈ a implies e ∈ b ∪ a and e ∈ b implies e ∈ b ∪ a. In both
cases we have e ∈ b ∪ a, so we are done.

The given proof is almost trivial. Apart from the application of extensionality (step 2) and
Skolemization (introduction of constant a, b, e), it uses the definition of union and propositional
inferences.

What is interesting is that this problem is hard for first-order theorem provers. If we use
our full axiomatization of set theory, none of the top three first-order provers according to the
CASC-24 theorem proving competition of last year [53], that is VAMPIRE [37], E [51] and
IPROVER [35], can solve it. If we only use the relevant axioms, that is extensionality and the
definition of union, these three provers can prove the problem, however not immediately, with
runtimes ranging from 0.24 to 27.18 seconds.

If we take slightly more complex set identities, the best first-order theorem provers cannot
solve them within reasonable time. We next give such an example.

Example 3. Consider the following conditional identity:

(∀x)(∀y)(∀z)(x ∩ y ⊆ z ∧ z ⊆ x ∪ y → (x ∪ y) ∩ (x ∪ z) = y ∪ z) (3.2)

The above formula cannot be proved by any existing theorem prover within a 1 hour time limit.
This formula is problem 25 in our problem suite of Chapter 6. Our problem suite contains four
other problems that no prover could solve.

It is not hard to analyze the reason for the failure of superposition provers for examples
requiring extensionality, such as Example 3: it is the treatment of the extensionality axioms.
Suppose that we use a superposition theorem prover and use the standard Skolemization and
CNF transformation algorithms. Then one of the clauses derived from the extensionality axiom
of Figure 3.1 is:

f(x, y) 6∈ x ∨ f(x, y) 6∈ y ∨ x = y. (3.3)
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(∀x)(∀i)(∀e) select(store(x, i, e), i) = e (select-over-store 1)
(∀x)(∀i)(∀j)(∀e) (i 6= j → select(store(x, i, e), j) = select(x, j)) (select-over-store 2)
(∀x)(∀y) (((∀i) select(x, i) = select(y, i))→ x = y), (extensionality)

Figure 3.2: Axiomatization of the theory of arrays. Here the variables x, y denote arrays, i, j ar-
ray indices and e an array element; select is the standard select/read function, store the standard
store/write function over arrays.

Here f is a Skolem function. This clause is also required for a computer proof, since without it
the resulting set of clauses is satisfiable.

Independently of the ordering used by a theorem prover, x = y will be the smallest literal
in clause (3.3). Since it is also positive, no superposition prover will select this literal. Thus,
the way the clause will be used by superposition provers is to use already proved membership
literals s ∈ t to derive a new set identity obtained by instantiating x = y. Note that it will be
used in the same way independently of whether the goal is a∪b = b∪a or any other set identity.
This essentially means that the only way to prove a ∪ b = b ∪ a is to saturate the rest of the
clauses until x∪y = y∪x is derived, and likewise for all other set identities! This explains why
theorem provers are very inefficient when an application of extensionality is required to prove a
set identity.

3.2 Arrays

We now give an example of extensionality reasoning over arrays. The standard axiomatization
of the theory of arrays, given in Figure 3.2, also contains an extensionality axiom. The clause
derived from the array extensionality axiom is:

select(x, g(x, y)) 6= select(y, g(x, y)) ∨ x = y, (3.4)

where g is a Skolem function. Note that this axiom is different from that of sets because arrays
are essentially maps and two maps are equal if they contain the same elements at the same
indices.

Example 4. Consider the following formula expressing the valid property that the result of
updating an array at two different indices does not depend on the order of updates:

i1 6= i2 → store(store(a, i1, v1), i2, v2) = store(store(a, i2, v2), i1, v1). (3.5)

Again, this problem (and similar problems for a larger number of updates) is very hard for
theorem provers, see Chapter 6. The explanation of why it is hard is the same as for sets: the
extensionality axiom is used by theorem provers in “the wrong direction” because the literal
x = y in the clause (3.4) is never selected.
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3.3 Solutions?

Though extensionality is important for reasoning about collections, and collection types are
first-class in nearly all modern programming languages, reasoning with extensionality is hard for
theorem provers because of the (otherwise very efficient) superposition calculus implementation.
It is interesting to note that the MUSCADET theorem prover [42] proves set theory identities
better than superposition provers, since it does not have full equality reasoning and always treats
implications as rules for reducing the right-hand side of the implication to its left-hand side.

The above discussion may suggests that one simple solution would be to select x = y in
clauses derived from an extensionality axiom. Note that selecting only x = y will result in a loss
of completeness, so we can assume that it is selected in addition to the literals a theorem prover
normally selects. It is not hard to see that this solution effectively makes provers fail on most
problems. The reason is that superposition from a variable, resulting from selecting x = y, can
be done in every non-variable term. For example, consider the clause

e ∈ x− y ∨ e ∈ x ∨ e 6∈ y, (3.6)

obtained by converting the set difference axiom of Figure 3.1 into CNF and suppose that the first
literal is selected in it. A superposition step from the extensionality clause (3.3) into this clause
gives

f(x− y, z) 6∈ x− y ∨ f(x− y, z) 6∈ z ∨ e ∈ z ∨ e ∈ x ∨ e 6∈ y. (3.7)

Note the size of the new clause and also that it contains new occurrences of x− y, to which we
can apply extensionality again.

From the above example it is easy to see that selecting x = y in the extensionality clause (3.3)
will result in a rapid blow-up of the search space by large clauses. One can think of other rad-
ical solutions, as in MUSCADET, whose drawback is that equality reasoning may become very
inefficient, with a possible loss of completeness.

The solution we propose and defend in this thesis is to add a special generating inference
rule for treating extensionality, called extensionality resolution, which requires relatively simple
changes in the architecture of a superposition theorem prover.
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CHAPTER 4
Reasoning in First-Order Theories

with Extensionality Axioms

In this chapter we explain our solution to problems arising in reasoning with extensionality
axioms. For doing so, we introduce the new inference rule extensionality resolution and show
how to integrate it into a superposition theorem prover.

4.1 The Generic Extensionality Axiom

In Chapter 3 we showed two particular examples of extensionality axioms, the set extensionality
axiom in Figure 3.1 and the array extensionality axiom in Figure 3.2. Although this gives some
intuition, our use of the term “extensionality axiom” is informal. Up to now we do not have a
precise way to tell if a certain formula is an extensionality axiom or not.

The extensionality principle we want to capture is the following refined notion of equality,
which abstracts from the internal definitions of objects: two objects of a certain type are equal, if
and only if they are indiscernible by a particular property. This can be considered as restricted
Leibniz equality, which requires indiscernibility by every property. For example, equal arrays
are indiscernible with respect to selection at arbitrary indices. The array extensionality axiom
is especially interesting, because it uses equality on array elements. This equality can be again
extensionally defined, e.g. for arrays of arrays.

According to the above principle, an extensionality axiom defines equality for a particular
type. And indeed, our familiar examples consist of an implication with an equality among
variables on the right-hand side. But what about the reverse implication, e.g.

(∀x)(∀y)(x = y → (∀e)(e ∈ x↔ e ∈ y))

in the set extensionality axiom? This implication is already a logical consequence of the standard
axioms of equality and a tautology in first-order logic with equality. Therefore, the reverse
implications with the equality among variables on the left-hand side are redundant.
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We conjecture that our informal extensionality principle can be expressed by formulas of the
form

(∀x)(∀y)(F → x = y) (4.1)

and hence restrict our considerations to extensionality axioms of this form. However, as we will
argue in Chapter 5, not every formula of the form (4.1) is intended to be an extensionality axiom.
Furthermore, it is a priori not clear which formulas F on the left-hand side of the implication
constitute an extensionality axiom.

4.2 Extensionality Resolution

Since extensionality axioms are not uniquely defined, our new inference rule is parameterized
by a function for recognizing extensionality axioms.

Definition 1 (Extensionality Recognizer). An extensionality recognizer is a partial function
ext_rec, such that for every clause C, ext_rec(C) is either undefined, or returns a positive
equality among variables x = y from C.

Note that every clause derived from an extensionality axiom of the form (4.1) contains a
positive equality among variables, but in general not every clause containing such an equality
corresponds to an extensionality axiom. Chapter 5 is devoted to the design of extensionality
recognizers.

We will also sometimes use an extensionality recognizer as Boolean function, meaning that it
is true if and only if it is defined. For the rest of this chapter, let ext_rec be a fixed extensionality
recognizer.

Definition 2 (Extensionality Clause). We call an extensionality clause any clause C for which
ext_rec(C) holds.

Definition 3 (Extensionality Resolution). The extensionality resolution rule is the following
inference rule:

x = y ∨ C s 6= t ∨D
Cθ ∨D

,
(4.2)

where

1. ext_rec(x = y ∨ C) = (x = y), hence, x = y ∨ C is an extensionality clause;

2. θ is the substitution {x 7→ s, y 7→ t}.

Note that, since equality is symmetric, there are two inferences between the premises of (4.2);
one is given above and the other one is with the substitution {x 7→ t, y 7→ s}.
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Example 5. Consider two clauses: clause (3.3) and the unit clause a ∪ b 6= b ∪ a. Suppose that
the former clause is recognized as an extensionality clause. Then the following inference is an
instance of extensionality resolution:

f(x, y) 6∈ x ∨ f(x, y) 6∈ y ∨ x = y a ∪ b 6= b ∪ a
f(a ∪ b, b ∪ a) 6∈ a ∪ b ∨ f(a ∪ b, b ∪ a) 6∈ b ∪ a

.

Given a clause with a selected literal s 6= t, which can be considered as a request to prove
s = t, extensionality resolution replaces it by an instance of the premises of extensionality. This
example shows that an application of extensionality resolution achieves the same effect as the
use of extensionality in the “human” proof of Example 2.

Example 6. Similarly, consider the array extensionality clause (3.4) and the clause

store(store(a, i1, v1), i2, v2)︸ ︷︷ ︸
t1

6= store(store(a, i2, v2), i1, v1)︸ ︷︷ ︸
t2

derived from negating the array theorem (3.5). Then the extensionality resolution inference

select(x, g(x, y)) 6= select(y, g(x, y)) ∨ x = y t1 6= t2

select(t1, g(t1, t2)) 6= select(t2, g(t1, t2))
.

performs the goal directed reduction of the array inequality to the inequality of some array cell.

4.3 Integration into Saturation

Let us now explain how extensionality resolution can be integrated in a saturation algorithm of
a superposition theorem prover. The key questions to consider is when the rule is applied and
whether this rule requires term indexing or other algorithms to be performed. The implemen-
tation is similar for all saturation algorithms; for ease of presentation we will describe it only
for the Otter saturation algorithm presented in Chapter 2. In fact, the architecture of VAMPIRE

allowed the complete integration in the base class of all saturation algorithms.
Extensionality resolution is a generating inference rule, so the relevant lines of the saturation

algorithm from Figure 2.2 are the ones at the bottom, referring to generating inferences. The
same saturation algorithm with extensionality resolution related parts marked by X is shown in
Figure 4.1.

As one can see from the algorithm in Figure 4.1, extensionality resolution is easy to integrate
into superposition theorem provers. The reason is that it requires no sophisticated indexing to
find candidates for inferences: extensionality resolution applies to every extensionality clause
and every clause with a negative selected equality literal. Therefore, we only have to maintain
two collections: neg_equal of active clauses having a negative selected equality literal and ext
of extensionality clauses as recognized by the function ext_rec.

Extensionality resolution has two premises and hence the implementation of the inference is
split into a forward and a backward part, depending on the role of the given clause.

21



input: init : set of clauses;
var active , passive , unprocessed : set of clauses;
var given , new : clause;
Xvar neg_equal , ext : set of clauses;
active := ∅;
unprocessed := init ;
loop

while unprocessed 6= ∅
new:=pop(unprocessed);
if new = � then return unsatisfiable;
if retained(new) then (* retention test *)

simplify new by clauses in active ∪ passive ; (* forward simplification *)
if new = � then return unsatisfiable;
if retained(new) then (* another retention test *)

delete and simplify clauses in active and (* backward simplification *)
passive using new ;

move the simplified clauses to unprocessed ;
add new to passive;

if passive = ∅ then return satisfiable or unknown;
given := select(passive); (* clause selection *)
move given from passive to active;
unprocessed:=forward_infer(given, active); (* forward generating inferences *)

X if given has a negative selected equality then
X add given to neg_equal ;
X add to unprocessed all conclusions of extensionality resolution inferences
X between clauses in ext and given;

add backward_infer(given, active) to unprocessed ; (* backward generating inferences *)
X if ext_rec(given) then
X add new to ext ;
X add to unprocessed all conclusions of extensionality resolution inferences
X between given and clauses in neg_equal ;

Figure 4.1: Otter Saturation Algorithm with Extensionality Resolution parts marked byX.

Forward Extensionality Resolution given is the right premise and for every selected negative
equality literal we retrieve matching active extensionality clauses from ext .

Backward Extensionality Resolution given is the left premise, i.e. an extensionality clause,
and we retrieve all active clauses with matching selected negative equality literals from
neg_equal .

In general, every implementation of an inference with more than one premise has a forward
and a backward part. Furthermore, the two version usually require very different indexing tech-
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niques to retrieve candidates for the inference. Note that a clause can act as both premises of
an inference. A typical example is self superposition. Hence given is moved to active before
performing inferences.

Another addition to the saturation algorithm, not shown in Figure 4.1, is that deleted or
simplified clauses belonging to any of the collections neg_equal or ext should be deleted from
the collections too. An easy way to implement this is to ignore such deletions when they occur
and instead check the storage class of a clause (that is active, passive, unprocessed or deleted)
when we iterate through the collection during generating inferences. If during such an iteration
we discover a clause that is no more active, we remove it from the collection and perform no
generating inferences with it.
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CHAPTER 5
Recognizing Extensionality Axioms

One of the key questions for building in extensionality reasoning in a theorem prover is the
recognition of extensionality clauses, i.e. the concrete choice of ext_rec. Every clause contain-
ing a positive equality between two different variables x = y is a potential extensionality clause.
However, extensionality resolution should perform only few but essential inferences to facilitate
a goal directed proof search for problems which need extensionality. Therefore, recognizing
“too much” or “wrong” clauses as extensionality clauses will result in a quick blow up of the
search space.

To understand the use and treatment of extensionality axioms, we analyzed first-order prob-
lems from the TPTP library [52] and derived according filter criteria for recognizing extension-
ality clauses, as reported below.

5.1 TPTP Library Analysis

It turned out that the TPTP library contains about 6,000 different axioms (mainly formulas, not
clauses) that can result in a clause containing a positive equality among variables. By different
here we mean up to variable renaming. One can consider other equivalence relations among
axioms, such as using commutativity and associativity of ∧ or ∨, or closure under renaming
of predicate and function symbols, for which the number of different axioms will be smaller.
Anyhow, having 6,000 different axioms in about 14,000 problems shows that such axioms are
very common.

The most commonly used examples of extensionality axioms are the already discussed set
and array extensionality axioms. In addition to them, set theory axiomatizations often contain
the subset-based extensionality axiom x ⊆ y ∧ y ⊆ x→ x = y.

Contrary to these intended extensionality axioms, there is one kind of axioms which is dan-
gerous to consider as extensionality: constructor axioms, describing that some function symbol
is a constructor. Constructor axioms are central in theories of algebraic data types. For example,
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consider an axiom describing a property of pairs

pair(x1, x2) = pair(y1, y2)→ x1 = y1,

or a similar axiom for the successor function

succ(x) = succ(y)→ x = y.

If we regard the latter as an extensionality axiom, extensionality resolution allows one to suc-
cessively derive from any inequality s 6= t the inequalities:

succ(s) 6= succ(t)

succ(succ(s)) 6= succ(succ(t))

. . .

This will clutter the search space with bigger and bigger clauses. Hence, clauses derived from
constructor axioms must not be recognized as extensionality clauses.

Another common formula is the definition of a non-strict order: x ≤ y ↔ x < y ∨ x = y.
We did not yet investigate how considering this axiom as an extensionality axiom affects the
search space, and consider such an investigation an interesting task for future work.

In addition to the above mentioned potential extensionality axioms, there is a large variety
of such axioms in the TPTP library, including very long ones. One example, coming from the
Mizar library, is:

(∀x0)(∀x1)(∀x2)(∀x3)(∀x4)
((v1_funct_1 (x1) ∧ v1_funct_2 (x1, k2_zfmisc_1 (x0, x0), x0)∧
m1_relset_1(x1, k2_zfmisc_1 (x0, x0), x0) ∧ v1_funct_1 (x2)∧
v1_funct_2 (x2, k2_zfmisc_1 (x0, x0), x0) ∧m1_relset_1(x2, k2_zfmisc_1 (x0, x0), x0)∧
m1subset1 (x3, x0) ∧m1subset1 (x4, x0))→
(∀x4)(∀x6)(∀x7)(∀x8)(∀x9)(
g3_vectsp_1 (x0, x1, x2, x3, x4) = g3_vectsp_1 (x5, x6, x7, x8, x9)→

(x0 = x5 ∧ x1 = x6 ∧ x2 = x7 ∧ x3 = x8 ∧ x4 = x9))).

Another example comes from problems generated automatically by parsing natural language
sentences:

x4 = x6 ∨ ssSkC0 ∨ ¬in(x6, x7) ∨ ¬front(x7) ∨ ¬furniture(x7) ∨ ¬seat(x7)∨
¬fellow(x6) ∨ ¬man(x6) ∨ ¬young(x6) ∨ ¬seat(x5) ∨ ¬furniture(x5) ∨ ¬front(x5)∨
¬in(x4, x5) ∨ ¬young(x4) ∨ ¬man(x4) ∨ ¬fellow(x4) ∨ ¬in(x2, x3) ∨ ¬city(x3)∨
¬hollywood(x3) ∨ ¬event(x2) ∨ ¬barrel(x2, x1) ∨ ¬down(x2, x0) ∨ ¬old(x1)∨
¬dirty(x1) ∨ ¬white(x1) ∨ ¬car(x1) ∨ ¬chevy(x1) ∨ ¬street(x0) ∨ ¬way(x0)∨
¬lonely(x0).
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5.2 Extensionality Recognizer Choices

Based on our analysis of potential extensionality axioms, we decided to generally exclude:

F1 clauses having more than one equality among variables, and

F2 clauses having a negative equality of the same sort as x = y.

The second criterion eliminates constructor axioms. However, in unsorted problems, i.e. every
term has the same sort, we would for example also lose the array extensionality axiom.

In addition, we designed the following increasingly restrictive filter criteria.

F3 Exclude clauses having a positive equality other than x = y.

Consider for example the contrapositive of the select-over-store 2 axiom from Figure 3.2 and the
clause

i = j ∨ select(store(x, i, e), j) = select(x, j)

obtained by converting the axiom to CNF. The axiom is certainly not intended to be an exten-
sionality axiom and recognizing the clause as extensionality clause would only distract the proof
search.

F4 Exclude clauses exceeding some maximal length n, i.e. clauses having more than n liter-
als.

Showing the actual effectiveness of a new automated reasoning technique is subject to ex-
perimental evaluation. Especially in first-order theorem proving, due to the high complexity,
experiments are central to judge the usefulness of new techniques. To this end we implemented
the filter criteria F1-F4 as options and evaluated how different combinations and parameteriza-
tions influence the proof search, as described in Chapter 6.

Further ideas for filter criteria in extensionality recognizers, which we did not yet implement
or evaluate, are the following.

• Only recognize clauses from the input as extensionality clauses.

• Only recognize a limited number of extensionality clauses. Similarly, the ratio of exten-
sionality inferences compared to other inferences could be limited.

• Recognize extensionality axioms in input formulas before CNF transformation.

• Allow the user to declare axioms as extensionality or expose a pattern match language to
specify extensionality patterns.
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CHAPTER 6
Experimental Results

We implemented extensionality resolution in VAMPIRE. Our implementation required about
1,000 lines of C++ code on top of the existing VAMPIRE code. The extended VAMPIRE is
available as binary at [1]. The extended implementation will be referred to as VAMPIREEX and
will be merged in the next official release of VAMPIRE.

In this chapter we evaluate extensionality resolution by running it on the relevant part of
the TPTP library [52], a number of handcrafted set theory problems, and SMT-LIB array prob-
lems [11], see Tables 6.1–6.4. In the TPTP library, VAMPIRE with extensionality resolution
solves many problems not solved by VAMPIRE without it. On the set theory problems our prover
significantly outperforms all theorem provers that were competing in the CASC-24 system com-
petition of last year [53]. The extended VAMPIRE is the only prover that solves all the problems,
while 17 out of 36 problems cannot be solved by any other prover, including the VAMPIRE

without extensionality resolution. When evaluating VAMPIREEX on array problems taken from
the SMT-LIB library, we observed that it solved 70% of the problems while VAMPIRE without
extensionality resolution could only solve 40% of the problems.

The rest of this chapter describes in detail our experiments. Our results on analyzing exten-
sionality axioms from the TPTP library were obtained using a cluster of dedicated servers at the
University of Manchester with 2.3GHz quad core. We ran at most three problems on a server at
a time, each run with 3GB memory limit and 60 seconds time limit, while each server has 16GB
RAM. Further, our experiments on set and array examples were obtained on a GridEngine man-
aged cluster system at IST Austria. Each run of a prover on a problem was assigned a dedicated
2.3 GHz core and 10 GB RAM with the time limit of 60 seconds.

6.1 TPTP Library Experiments

Based on the discussion of Chapter 5, we introduced three options to control the recognition
of extensionality clauses in VAMPIREEX, namely off, known and filter. The option off
does not recognize any extensionality clauses. The option known only recognizes clauses ob-
tained from the set and array extensionality axioms and the subset-based set extensionality. The
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Table 6.1: Experiments on TPTP problems with various options for recognizing extensionality
clauses in VAMPIREEX.

options solved extensionality extensionality
clauses resolvents

max avg max avg
off 2,909 0 0.0 0 0
known 2,914 5 0.7 13,090 90
filter(2,-) 2,695 1,120 5.8 280,000 1,428
filter(2,+) 2,691 1,120 6.1 280,000 1,515
filter(3,-) 2,623 1,123 8.6 280,750 1,765
filter(3,+) 2,623 1,123 8.7 280,750 1,806
filter(inf ,-) 2,485 3,531 23.0 280,750 2,936
filter(inf ,+) 2,475 3,843 23.2 280,750 3,001

option filter applies the criteria F1 and F2 given in Chapter 5 and allows further filtering
by two other options corresponding to the criteria F3 and F4. For the maximal length of the
extensionality clause we used the values 2, 3 and∞ for experiments.

We ran experiments on all 7033 TPTP problems that may contain an equality between vari-
ables. Our results are summarized in Table 6.1, where the first argument of filter is the limit
on the length of extensionality clauses and the second argument is + if extensionality clauses
are allowed to contain positive equalities other than x = y, - otherwise. All problems were run
using the default strategy of VAMPIREEX, that is the default strategy of VAMPIRE in conjunction
with extensionality resolution.

As one can see from Table 6.1, apart from the value known, any increase in the set of
recognized extensionality clauses results in a decrease of the number of solved problems. This
means nothing per se, since some very useful options (such as set of support), can drastically
decrease the number of solved problems, but solve many problems that cannot be solved by any
other strategy. The value of a new option is mainly in whether it can solve problems not solvable
without it. Indeed, modern theorem provers treat hard problems with a cocktail of strategies.
What we observed is that all problems solvable with the value filter were also solvable with
other values. The use of the value known solves some very hard problems in nearly 0 seconds.
The conclusion from our experiments is that it is best to have an option recognizing known
extensionality axioms, which correlates with the original motivation of solving problems over
collection types.

6.2 Set Theory Experiments

We handcrafted 36 set identity problems given in Figure 6.1, which also include the problems
presented in Chapter 3. For proving the problems, we created TPTP files containing the set the-
ory axioms from Figure 3.1 as TPTP axioms and the problem to be proven as a TPTP conjecture.
As not all the axioms are needed in proving each of the problems, we also created TPTP files
containing only the respectively relevant axioms. As a result, in our set theory experiments we
used a total of 72 problems.
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1. x ∩ y = y ∩ x
2. x ∪ y = y ∪ x
3. x∩y = ((x∪y)−(x−y))−(y−x)

4. (x) = x
5. x = x ∩ (x ∪ y)
6. x = x ∪ (x ∩ y)
7. (x ∩ y)− z = (x− z) ∩ (y − z)
8. x ∪ y = x ∩ y
9. x ∩ y = x ∪ y

10. x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z)
11. x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z)
12. x ⊆ y → x ∪ y = y
13. x ⊆ y → x ∩ y = x
14. x ⊆ y → x− y = ∅
15. x ⊆ y → y − x = y − (x ∩ y)
16. x ∪ y ⊆ z → z − (x4y) =

(x ∩ y) ∪ (z − (x ∪ y))
17. x4y = ∅ → x = y
18. z− (x4y) = (x∩ (y∩ z))∪ (z−

(x ∪ y))
19. (x− y) ∩ (x4y) = x ∩ y

20. x4y = (x− y) ∪ (y − x)
21. (x4y)4z = x4(y4z)
22. (x4y)4z = ((x−(y∪z))∪(y−

(x ∪ z))) ∪ ((z − (x ∪ y)) ∪ (x ∩
(y ∩ z)))

23. ((x ∪ y) ∩ (x ∪ z)) = (y − x) ∪
(x ∩ z)

24. (∃x)(((x∪ y)∩ (x∪ z)) = y∪ z)
25. (x ∩ y) ⊆ z ⊆ (x ∪ y) → ((x ∪

y) ∩ (x ∪ z)) = y ∪ z
26. x ⊆ y → (z − x)− y = z − y
27. x ⊆ y → (z − y)− x = z − y
28. x ⊆ y → z − (y ∪ x) = z − y
29. x ⊆ y → z − (y ∩ x) = z − x
30. x ⊆ y → (z − y) ∩ x = ∅
31. x ⊆ y → (z−x)∩y = z∩(y−x)
32. x ⊆ y ⊆ z → (z−x)∩y = y−x
33. x− y = x ∩ y
34. x ∩ ∅ = ∅
35. x ∪ ∅ = x
36. x ⊆ y → (∃z)(y − z = x)

Figure 6.1: Collection of 36 handcrafted set theory problems. All variables without explicit
quantification are universally quantified.

Tables 6.2 and 6.3 show the runtimes and the number of problems solved by VAMPIREEX

compared to all but two provers participating in the first-order theorems (FOF) and typed first-
order theorems (TFA) divisions of the CASC-24 competition.1 The only provers whom we
did not compare VAMPIREEX with were PROVER9 and SPASS+T, for the following reasons:
PROVER9 depends on the directory structure of the CASC system and the TPTP library, thus it
did not run on our test system; SPASS+T only accepts problems containing arithmetic. Since
not all provers participating in CASC-24 support typed formulas, we have also generated un-
typed versions of the problems. As a result, theorem provers supporting typed formulas were
then evaluated on both typed and untyped problems. In Table 6.2 we present our experiments
obtained by evaluating theorem provers on the set theory axioms from Figure 3.1, whereas Ta-
ble 6.3 reports on our results obtained by using only the respectively relevant axioms for each
problem.

Our results show that only VAMPIREEX could solve all problems, and 22 problems could not
be solved by any other prover. Moreover, VAMPIREEX is very fast: out of the 72 typed problems,

1We used the exact programs and command calls as in the competition, up to adaptions of the absolute file paths
to our test system [1].
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Table 6.2: Runtimes in seconds of provers on the set theory problems from Figure 6.1. Each
problem includes the complete set theory axiomatization from Figure 3.1. The last row counts
the number of solved problems.

Untyped TPTP formulas Typed TPTP formulas
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1 13.70 0.10 7.61 0.08 7.78 0.02
2 41.54 8.22 0.02 7.92 0.01
3 0.29 0.06
4 30.24 1.38 1.47 0.65 9.45 0.24 0.07 9.36 0.21 0.02
5 56.05 33.98 0.89 0.10 14.64 0.25 17.19 1.92 0.02
6 54.40 0.29 10.97 0.25 15.41 0.02
7 0.03 0.03
8 0.08 0.02
9 0.09 0.02

10 0.09 0.04
11 0.27 0.04
12 50.52 0.58 14.66 0.40 0.25 15.36 0.39 0.02
13 30.34 0.35 1.10 0.09 15.13 0.17 0.02 15.23 0.14 0.02
14 7.88 0.07 2.44 0.09 8.09 0.03 0.07 10.59 6.85 7.80 0.02 0.02
15 32.15 1.55 13.80 8.04 0.15 0.03 8.55 0.12 0.02
16 4.14 3.41
17 30.94 24.31 0.02 0.09 0.44 0.02 0.01
18 1.08 0.94
19 0.04 0.03
20 0.25 0.02
21 0.25 0.03
22 1.76 1.73
23 0.50 0.24
24 0.26 0.42 0.43 0.15
25 0.05 0.05
26 0.10 0.05
27 52.47 11.80 20.97 0.08 25.80 0.03
28 34.32 11.80 37.05 0.72 0.31 33.73 0.80 0.06
29 31.33 1.64 38.63 0.26 0.04 0.22 0.03
30 27.54 3.32 0.11 11.53 0.07 0.08 23.30 12.36 0.06 0.02
31 0.27 0.03
32 0.09 0.04
33 23.28 21.00 0.01 20.92 0.02
34 2.21 30.29 0.03 0.50 0.08 6.71 0.02 0.01 0.59 2.22 6.71 0.02 0.02
35 30.34 30.23 8.23 7.24 0.25 0.02 6.87 0.23 0.02
36 44.77 1.50 21.01 0.03 20.86 0.02

2 13 0 11 16 7 15 13 36 4 2 15 14 36

only 9 took more than 0.01 seconds and only 4 took more than 1 second.2 The total runtime
of VAMPIREEX on all typed problems was 37.6 seconds. Among the problems also solved by
VAMPIRE, VAMPIREEX is only slower on problem 24 of Table 6.3 (besides problems 12 and
27, on which the runtime difference is negligible). This is due to the selected proving strategy,
which is not effective in this particular case.

2In our experiments with typed formulas, type information reduces the number of well-formed formulas and
therefore the search space. Hence VAMPIREEX is generally faster on typed problems, in our experiments 4.1 seconds
in total.
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Table 6.3: Runtimes in seconds of provers on the set theory problems from Figure 6.1. Each
problem includes only the respectively relevant axioms from Figure 3.1. The last row counts the
number of solved problems.

Untyped TPTP formulas Typed TPTP formulas
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1 37.07 0.06 0.06 0.22 0.07 7.10 0.05 0.02 0.97 3.39 0.04 0.02
2 55.30 0.11 27.18 0.30 0.11 7.25 0.60 0.02 7.23 0.60 0.02
3 0.10 0.03 0.03
4 1.32 0.05 0.21 0.03 0.09 0.33 8.92 0.02 0.01 0.05 1.44 11.86 0.02 0.02
5 0.07 6.05 0.09 0.08 11.58 0.14 0.02 1.00 9.18 0.13 0.02
6 0.06 2.55 0.10 0.08 8.81 2.11 0.01 10.87 2.10 0.01
7 0.09 0.02 0.02
8 0.01 0.02
9 0.01 0.02

10 0.11 0.02 0.02
11 0.08 0.02 0.02
12 0.10 12.10 0.11 0.07 0.07 3.08 0.02 0.02 46.18 9.59 0.02 0.05
13 0.09 0.06 0.10 0.07 9.92 0.03 0.02 0.37 9.96 0.03 0.02
14 2.68 0.63 0.25 0.02 0.11 0.12 7.50 0.02 0.01 0.11 2.60 8.41 0.02 0.02
15 30.20 0.06 0.18 0.08 8.41 0.02 0.02 7.71 0.03 0.02
16 0.16 0.46 0.44
17 1.76 0.07 32.94 0.03 2.89 0.08 5.62 0.02 0.01 0.07 1.87 42.00 0.02 0.01
18 0.15 0.03 0.04
19 0.01 0.01
20 34.90 0.08 0.02 0.02
21 0.16 0.02 0.02
22 0.26 1.29 1.26
23 0.28 0.28
24 9.03 1.70 27.54 1.69 27.55
25 0.04 0.03
26 4.67 0.08 0.01 0.01
27 0.39 0.16 0.08 13.85 0.03 0.02 1.50 12.21 0.03 0.04
28 31.16 1.77 0.30 0.08 24.63 0.06 0.03 18.78 0.06 0.04
29 30.25 0.07 0.27 0.08 21.61 0.03 0.02 2.80 16.33 0.03 0.02
30 1.81 0.15 0.14 12.20 0.03 0.02 0.30 12.60 0.03 0.02
31 1.45 0.10 35.64 0.02 23.94 0.02
32 32.67 2.83 0.09 37.21 0.02 26.61 0.03
33 12.39 14.61 0.01 15.47 0.02
34 1.35 0.06 0.05 0.03 0.08 0.07 1.89 0.02 0.01 0.02 1.35 1.69 0.02 0.02
35 7.39 0.07 9.76 0.04 0.13 0.07 2.45 0.01 0.03 0.06 3.54 2.70 0.02 0.02
36 1.37 0.10 7.84 0.08 0.04 33.12 0.06 0.04

5 17 8 18 21 28 19 18 36 13 5 19 18 36

6.3 Array Experiments

For evaluating VAMPIREEX on array problems, we used all the 278 unsatisfiable problems from
the QF_AX category of quantifier-free formulas over the theory of arrays with extensional-
ity of SMT-LIB. We translated the problems into the TPTP syntax. These problems belong
to three problem classes from [3], namely they are instances of the parametric constructions
storecomm, swap and storeinv. Table 6.4 reports on the results of VAMPIREEX on these prob-
lems and compares them to the results obtained by VAMPIRE. VAMPIREEX solves almost twice
as much storecomm and swap problems in only half (respectively two-thirds) of the time. On
storeinv problems only the runtime decreased slightly, but the same number of problems was
solved.
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Table 6.4: Evaluation of extensionality resolution on array problems. Runtimes are in seconds.

Problem Number of VAMPIRE VAMPIREEX

class problems solved runtime solved runtime
storecomm 105 47 5,161.90 87 2,466.52
swap 153 48 6,850.72 91 4,573.31
storeinv 20 15 339.55 15 315.23
Total 278 110 12,352.17 193 7,355.06
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CHAPTER 7
Related Work

Reasoning with both theories and quantifiers is considered as a major challenge in the theorem
proving and SMT communities. There is a large body of work on extending SMT-based methods
to quantified formulas, as well as extending methods for full first-order logic with theory specific
techniques. In this chapter we present some of this approaches and their relation to our work.

7.1 Satisfiability Modulo Theories

Modern SMT solvers are based on the DPLL(T) framework [39], a tight integration of a propo-
sitional SAT solver with satisfiability procedures for ground conjunctions of theory literals. The
SAT solver is responsible for case splitting on the propositional part of a formula and considers
knowledge of theory conflicts for further decisions.

SMT solvers can process very large formulas in ground decidable theories [24, 10]. Quanti-
fier reasoning in SMT solvers is implemented using trigger-based E-matching. To this end, quan-
tified formulas are annotated with patterns/triggers containing the quantified variables. When-
ever a generated term matches the pattern modulo the current set of established equalities, the
quantified formula is instantiated using the corresponding substitution. While this heuristic can
be effective in certain situations, in general, it is incomplete, sensitive to the syntax of formulas
and the state of the solver, and requires user guidance in the form of patterns. Hence, E-matching
is not as powerful as the use of unification in superposition calculi. The work of [23] shows a
tight integration of a SMT solver with superposition-based saturation, and [48] shows how to
combine E-matching with free variable approaches.

Our work is dedicated to first-order reasoning about collections, such as sets and arrays. It
is partially motivated by program analysis, since collection types are first-class types in many
programming languages and nearly every programming languages has collection libraries. In [3]
superposition with restricted orderings is shown to terminate on ground array formulas, i.e.
constitutes a decision procedure. However, this was not extended to more general cases and is
less efficient than reduction-based SMT solving [25]. The work of [22, 32] explores the limits
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of decidability in the theory of arrays. The array property fragment of [22] can express, for
example, that an array is sorted, or that two arrays are equal in a given range of indices. The
satisfiability problem reduces to formulas in the combined theory of equality with uninterpreted
functions (EUF), linear integer arithmetic, and the theory of array elements. The fragment in [32]
allows relating consecutive array elements or specifying periodic facts. However, both fragments
impose strict syntactic restrictions. E.g. no nested array reads, like select(select(a, i), j), are
allowed. The model based quantifier instantiation approach of [28] decides a class of formulas
which subsumes, for example, the array property fragment. Our work is different since we
consider collections in full first-order logic. Unlike [3], we impose no additional constraints on
the used simplification ordering and can deal with arbitrary axioms on top of array axioms.

7.2 First-Order Theorem Proving

Unlike SMT solvers, first-order theorem provers are very efficient in handling quantifiers but
weak in theory reasoning. Notoriously bad examples are theories with numeric domains, such
as integer, rational, or real arithmetic. However, arithmetic is one of the most important theories
in applications of program analysis and verification.

In the hierarchic theorem proving framework, a general-purpose “foreground” prover for
full first-order logic cooperates with a specialized “background” theory prover to derive a refu-
tation from a set of clauses. The work of [9] introduces the hierarchical superposition calculus
by combining the superposition calculus with black-box style theory reasoning. The implemen-
tation in [43] combines the superposition theorem prover SPASS with SMT solvers for arith-
metic. Since general completeness is impossible, a major goal in the hierarchic theorem proving
approach is to have sufficient conditions for completeness. The internal process of clause ab-
straction, separating foreground and background symbols in formulas, may destroy one of the
conditions given in [9]. To this end, in [12], a new form of clause abstraction is introduced, along
with a completeness result for the fragment where all background-sorted terms are ground.

A different approach to first-order reasoning is the instantiation-based theorem proving
method of [26, 36]. The idea is to generate quantifier-free instances of the first-order prob-
lem. These ground instances are passed to the reasoning engine of the background theory for
proving unsatisfiability of the original quantified problem on the ground level. In case of satis-
fiability, the ground abstraction is refined based on the generated model and new instances are
next generated. Similar to the theory of resolution, this framework provides methods for proving
completeness of instantiation calculi, redundancy elimination criteria and saturation strategies.
The current implementation in IPROVER [35] delegates ground reasoning to a propositional SAT
solver and is complete for first-order logic. The work in [27] shows how to integrate an answer-
complete theory solver into the instantiation framework. However, the practical impact of this
approach is not yet well-understood.

Hierarchic superposition and instantiation-based reasoning separate the theory-specific and
quantifier reasoning. This is not the case with our work, we introduce a new inference rule for
extensionality reasoning and apply superposition reasoning in conjunction with this rule to prove
quantified properties in full first-order theories. As many others, we are trying to bridge the gap
between quantifier and theory reasoning, but in a way that is friendly to existing architectures
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of first-order theorem provers. In a way, our approach is similar to the one of [21], where
it is proposed to extend the resolution calculus by theory-specific rules, which do not change
the underlying inference mechanisms. Indeed, our implementation of extensionality resolution
requires relatively simple changes in saturation algorithms.
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CHAPTER 8
Conclusion

We examined why reasoning with extensionality axioms is hard for superposition-based theorem
provers and proposed a new inference rule, called extensionality resolution, to improve their
performance on problems containing such axioms. Our experimental results show that first-
order provers with extensionality resolution can easily solve problems in reasoning with sets and
arrays that were unsolvable by all existing theorem provers and, also much harder versions of
these problems. Our results contribute to one of the main problems in modern theorem proving:
efficiently solving problems using both quantifiers and theories.

A possible direction for further research is to extend the applicability of extensionality res-
olution by combining it with other theory specific techniques. For example, in the theory of
arrays, proving certain problems, including the ones in our evaluation, amounts to a huge case
analysis according to the select-over-store axioms. Hence it would be interesting to incorpo-
rate SAT or SMT techniques to handle this combinatorial problem. Another possible direction
would be to add extensionality resolution to the hierarchic superposition calculus. This is es-
pecially promising when arithmetical reasoning over array indices or array content is required.
Finally, further rules for recognizing extensionality axioms, as suggested in Chapter 5, can be
implemented and evaluated.

Preliminary results of this thesis have been submitted for publication [30].
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