FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Extending the Peer Model with
Composable Design Patterns

DIPLOMARBEIT
zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering/Internet Computing
eingereicht von

Gerald Schermann
Matrikelnummer 0828114

an der
Fakultat fir Informatik der Technischen Universitat Wien

Betreuung: A.o. Univ.Prof. Dr. Dipl.-Ing. eva Kiihn

Wien, 24.04.2014

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at






FAKULTAT
FUR INFORMATIK
Faculty of Informatics

Extending the Peer Model with
Composable Design Patterns

MASTER’S THESIS
submitted in partial fulfillment of the requirements for the degree of
Master of Science
in
Software Engineering/Internet Computing
by

Gerald Schermann
Registration Number 0828114

to the Faculty of Informatics
at the Vienna University of Technology

Advisor:  A.o. Univ.Prof. Dr. Dipl.-Ing. eva Kiihn

Vienna, 24.04.2014

(Signature of Author) (Signature of Advisor)

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.ac.at






Erklarung zur Verfassung der Arbeit

Gerald Schermann
Gauermanngasse 20 L, 2700 Wiener Neustadt

Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollstindig angegeben habe und dass ich die Stellen der Arbeit -
einschlieBlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)






Acknowledgements

Zuallererst mochte ich mich bei meinen Eltern fiir deren groBartige Unterstiitzung bedanken.
Ein weiterer Dank geht an meine beiden Schwestern, die genauso immer fiir mich da sind.

Weiters mochte ich mich bei meiner Betreuerin eva Kiihn bedanken, die es mir erst er-
moglichte diese interessante Arbeit zu verfassen und mir dabei mit gutem Rat zur Seite stand.
Ebenfalls zu erwéhnen ist die Space Based Computing Group, welche sich mit dem Peer Model
beschiftigt und mir niitzliches Feedback gab. Ein besonderer Dank geht dabei an Thomas Ham-
bock, der mir mit seinen Latex-Macros ein einfaches und schnelles Umsetzen meiner Modelle
ermoglicht hat.

Ein besonderer Dank geht auch an meinen Kollegen Janos fiir das Korrekturlesen meiner
Arbeit. An dieser Stelle sind auch meine geschitzten Kollegen Bernd, Jiirgen, Michael und
nochmals Janos zu nennen, welche ich schon seit HTL-Zeiten kenne und mich auch durch das
gesamte Studium begleitet haben, sei es bei vielerlei Gruppenarbeiten oder beim Losen unter-
schiedlichster Beispiele. Danke!

iii






Abstract

In the area of software development, reuse is an essential factor. Developing each component
of a new product from scratch is costly, includes risks and has negative influence on the time
to market. Therefore, the strategic reuse of software components is an important factor for
the success of companies. It can leverage existing software investment, companies can build
systems out of well-tested components of proven quality which have been used a couple of
times and thus, both risks as well as costs for development and testing can be reduced. The
software product line approach follows this aim by creating a platform of flexible components
which can be selected and combined to different products tailored to stakeholder requirements.
This is achieved by software variability, which allows one to customize components for the use
in a particular context. It enables cost efficient mass customization of components.

In this work, a pattern based approach is presented which provides this software variabil-
ity for the Peer Model, a programming model for modelling highly concurrent and distributed
systems. Patterns are introduced as new components and their interrelations with the original
components are described. Similar to the software product line approach, design decisions are
delayed and fixed only when concrete instances are created. The pattern concept allows defining
generic patterns depending on certain parameters or properties which represent these delayed de-
cisions. Such decisions are not limited to minor effects; the variability allows for a far-reaching
influence on the functionality provided by the pattern and thus, it opens up the possibility for
reuse on a large scale. Moreover, as composition is heavily used, patterns can be combined and
nested to form more complex patterns and to encapsulate functionality.

The advantages of this approach are demonstrated by an example use case from the train
traffic telematics domain where signals of approaching trains are transferred from a sensor over
multiple network nodes to a level crossing unit. Various modelling concepts and tools ranging
from more low-level to highly abstract approaches are selected and with each of them, the exam-
ple use case is realized. In order to create a meaningful evaluation, a set of criteria is developed,
emphasizing elements which are important for the design of highly distributed and concurrent
systems and essential for the aspired-to variability. The final evaluation shows that the Peer
Model, extended with the pattern concept, stands out from the other approaches in the domain
of distributed and highly concurrent systems. Moreover, systems designed with the Peer Model
can be adapted to changing requirements without modifying the underlying architectural design
and thus, cost- and time-intensive remodelling and refactoring work can be avoided.






Kurzfassung

Die Wiederverwendung von Softwarekomponenten ist ein wesentlicher Faktor fiir den Erfolg
von Unternehmen. Jede einzelne Komponente eines neuen Produkts von Grund auf neu zu ent-
wickeln wire ein kostspieliges Unterfangen, verkniipft mit einigen Risiken. Negative Auswir-
kungen auf die Produkteinfiihrungszeit wiren eine direkte Konsequenz. Die geplante Wieder-
verwendung von Komponenten greift hingegen auf bereits getitigte Investitionen zuriick und er-
laubt es, neue Systeme auf Basis bereits entwickelter Komponenten mit erprobter Qualitiit zu er-
zeugen. Wesentliche Entwicklungszeiten und -kosten konnen eingespart werden. Bei Software-
Produktlinien wird dieser Ansatz strategisch verfolgt: Einzelne, bestehende Komponenten wer-
den ausgewihlt und maBgeschneidert an Stakeholder-Bediirfnisse zu neuen Produkten kombi-
niert. Um das zu ermoglichen, miissen die einzelnen Softwarekomponenten kombinierbar, an
den jeweiligen Einsatzzweck anpassbar und entsprechend erweiterbar sein. Diese Eigenschaften
sind unter dem Begriff der Software-Variabilitit bekannt.

In dieser Arbeit wird ein Pattern-basierender Ansatz prisentiert, welcher diese Software-
Variabilitdt mit dem Peer Modell kombiniert. Das Peer Modell ist ein Programmiermodell fiir
die Modellierung von verteilten und nebenldufigen Systemen. Patterns werden als neue Kom-
ponenten in das Peer Modell aufgenommen und deren Zusammenspiel mit den bestehenden
Komponenten erliutert. Ahnlich wie bei Software-Produktlinien sollen Design-Entscheidungen
verzogert und erst bei der Verwendung konkreter Instanzen getroffen werden. Das in dieser
Arbeit vorgestellte Pattern-Konzept erlaubt die Definition von generischen Patterns, welche von
einzelnen Parametern abhéngig sind. Diese Parameter entsprechen den verzdgerten Entscheidun-
gen, diese ermdglichen tiefgreifenden Einfluss auf die Funktionalitéit der Patterns und dadurch
erdffnen sie die Moglichkeit fiir die Wiederverwendung im groflen Stil.

Die Vorteile dieses Konzepts werden anhand eines Anwendungsfalls aus der Eisenbahndo-
méne demonstriert. Signale eines ankommenden Zuges werden iiber ein Netzwerk aus mehre-
ren Knoten entlang der Schienen an den Bahniibergang weitergeleitet und dort von einer Kom-
ponente verarbeitet. Mehrere Modellierungswerkzeuge aus dem Gebiet der verteilten Systeme
wurden ausgewihlt und damit der Anwendungsfall umgesetzt. Fiir eine aussagekriftige Evalu-
ierung wurde eine Liste von Kriterien aufgestellt, welche die wesentlichen Eigenschaften fiir die
Modellierung von solchen Systemen und im Speziellen die gewiinschte Software-Variabilitit
aufzeigen. Die Evaluierung zeigt, dass das um das Pattern-Konzept erweiterte Peer Modell her-
vorsticht. Weiters konnen damit modellierte Systeme flexibel auf sich @ndernde Anforderungen
reagieren und laufen nicht in die Gefahr von notwendigen zeit- und kostenintensiven Anderun-
gen an der zugrundeliegenden Architektur.

vii






13 Comparison of Related Work|

3.1  Comparative Use Case|

|4.2  Components|

4.3 Advanced Concepts|

IS Pattern Concept|

Contents

B W W =

O 0 00 3 O L

iX



5.3 Pattern Types| . . . . . . . . . . . 63

[5.4  Pattern Composition| . . . . . . . . . .. ... 65
[5.5 Pattern Deployment| . . . . . .. ... ... ... ... 67
[5.6  Patterns, Peers, Peer Instances and their Relationship| . . . . .. ... ... .. 67
|6  Use Case Implementation| 71
6.1  Variant Al . . . . . .. 71
ﬁ, driarl Bl . e e e 78
/__Flexibility 87
7.1 End-to-End Acknowledgement . . . . . . ... ... ... . .......... 87
(72 EventFiltering] . . . . ... ... .. 89
[/3 Conclusion| . . . ... ... . 92
8 Conclusion 95
3. SUMMATY| .+« o v v v e e v v e b e e e e e e e e e 95
B2 Future Workl. . . . . . . . . . . e 96
|A~ WS-BPEL Example Processes 97
A.1 Variant Al . . . . .. 97
A2 VarantBl . . . . . .o 106
B~ Akka Examples| 117
IB.1 Network Node Actor with End-to-End Acknowledgement|. . . . . . .. .. .. 117
IB.2  Forwarder Actor with End-to-End Acknowledgement| . . . . . . ... ... .. 118
Bibliographyi 121



List of Figures

[3.1 Train Traffic Use Case - Figure taken from [32] . . . . .. ... ... ... .... 12
[3.2” Use Case Variant B - Figure taken from [30] . . . . . . .. ... ... ... .... 12
3.3 CPN-Toplevelnet| . . . . ... ... ... ... .. ... ... . ... ...... 15
3.4 CPN (Variant A) - Network subnet| . . . . . . . . ... ... ... ... ..... 16
3.5 CPN-Transportsubnet] . . . . . . .. ... .. ... ... ... 16
3.6 CPN-Jommsubnetl. . ... ... ... ... ... 17
3.7 CPN - PacketTransport subnet| . . . . . . ... ... ... ............. 17
3.8 CPN - AckTransportsubnet{. . . . . . . ... .. ... .. ... ... ....... 17
3.9 CPN (Vaniant B) - Network subnet| . . . . . . ... ... ... ........... 18
[3.10 CPN (Variant B) - GroupTransportsubnet| . . . . . . ... ... ... ... .... 19
[3.11 CPN (Variant B) - GroupLogicsubnet| . . . . .. ... ... ... .. ... .... 20
13.12 Reo (Vaniant A) - Realization| . . . . . . . . . . ... ... ... .......... 22
[3.13 Repeated Transmission and Faulty Channels - Figure taken from [8] . . . . . . . . 23
3.14 Reo (Variant B) - Realization| . . . . . . . ... ... ... ... . 0 0. 24
[3.15 Uppaal (Variant A) - Sensor Automaton| . . . . . . . . .. ... ... ....... 26
[3.16 Uppaal (Variant A) - Node Automaton| . . . . . .. ... ... ... ........ 27
[3.17 Uppaal - EndNode Automaton| . . . . . . ... ... ... ... .......... 27
[3.18 Uppaal (Variant A) - Example System| . . . . .. . ... ... ... ... ..... 28
[3.19 Uppaal (Variant B) - Group Member Automaton|. . . . . . . ... ... ... ... 30
13.20 BPMN (Variant A) - Collaboration between Sensor and Network Nodes| . . . . . . 33
[3.21 BPMN (Variant A) - Global Process Forward| . . . . . . .. . ... ... ..... 33
[3.22 BPMN (Variant A) - Network and Level Crossing Collaboration| . . . . . . . . .. 34
[3.23 BPMN (Variant B) - Collaboration between Sensor and Group Members| . . . . . . 35
[3.24 BPMN (Variant B) - Collaboration between Group Member and Level Crossing| . . 36
[3.25 WS-BPEL (Variant A) - Graphical representation of the Sensor Process| . . . . . . 39
[3.26 WS-BPEL (Variant B) - Graphical representation of the Group Member Process| . . 41
7 D T 55
4.2 SpacePeer|. . . . . . . . .. 56
4.3 Sample Peer with Wiring and Service| . . . . .. ... ... ... ... ... ... 57
5.1 Pattern Types| . . . . . . . . . . . . 63
[5.2  Basic Pattern Example - Replicator]. . . . . . ... ... ... 0oL 64
[5.3  Peer Pattern Example - Extended Replicator] . . . . . ... ... ... ....... 65

X1



[5.5 Pattern Concept - Overview|. . . . . . . . . . . . . . e 68
(6.1 TreatEventPatternl . . . . . . .. . .. ... ... 72
6.2 Send and Retry Pattern| . . . . . ... ... L 74
6.3 Send Acknowledgement Pattern| . . . . . ... ... o ool 75
6.4 Process EventPattern] . . . . . . .. .. ... ... . 76
6.5 Variant A-Clean Up Wiring| . . . . . . . . . . ... ... .. 77
|6.6  Group-based Treat Event Pattern| . . . . . . ... ... ... ............ 78
|6.7 Register Failover Pattern| . . . . . ... ... ... ... ... ... .. ... ... 80
[6.8  Process Failover Patternl. . . . . . . ... .. ... ... .. .. ... ... ... 81
6.9 Process Pending Pattern|. . . . . . . ... ... o oo 82
|6.10 Clear Pending Pattern| . . . . . . .. ... ... ... ... ... .. ... . ... 83
|6.11 Clear Acknowledgement Pattern| . . . . . . ... ... ... ............ 84
[6.12 Release Turn Pattern| . . . . . . . . .. ... ... 84
[7.1 Extended Send Acknowledgement Pattern| . . . . . ... ... ........... 88
7.2 Configured Treat Event Pattern| . . . . . . . ... ... ... ... ......... 89
[7.3_Treat Event Pattern extended with Filted . . . . . . . .. ... ... .. ... ... 91

[3.1  Classification of the considered modelling concepts and tools| . . . . . . .. .. .. 51
[3.2  Overview of biggest strengths and weaknesses|. . . . . . . ... ... ... .... 52
(7.1 ~ Final classification (part I) of the considered modelling concepts and tools| . . . . . 94
[7.2  Fnal classification (part II) of the considered modelling concepts and tools| . . . . 94

xii



List of Listings

3.1 CPN (Variant A) - Declarations|. . . . . . ... ... . ... ... ....... 15
3.2  CPN (Vaniant B) - Declarations| . . . . . . ... ... .. .. .......... 17
[3.3  Uppaal (Variant A) - System declaration| . . . . .. .. ... ... ....... 27
[3.4  Uppaal (Variant B) - System declaration| . . . . . .. ... ... ... ..... 30
3.5 WS-BPEL - Sensor Process Excerpt| . . . . .. ... ... ........... 38
[3.6 ' WS-BPEL (Variant B) - Group Member Process Excerpt - Partner Links| . . . . 40
B/ Akka-Sensor Acton . . . . . . ... 44
3.8 Akka (Variant A) - Forwarder Actor] . . . . . . . ... ... ... ....... 45
3.9 Akka - Network Node Actor] . . . . . ... ... ... ... ... ...... 46
[3.10 Akka - Level Crossing Actor| . . . . . . . . ... ... .. 46
13.11 Akka (Variant B) - Forwarder Actor] . . . . . . . ... ... ... ....... 47
[3.12° Akka - Group Member Actor| . . . . . . . . ... Lo 48
[6.1 Service Method freatEvendl . . . . . . . ... ... ... L. 73
6.5 Service Method sendRetry . . . . . . . .. . .. 74
6.6 Service Method sendAckl . . . . . . . . ... 75
6.7 Service Method processEvent|. . . . . . . . . . . .. ... ... ... ... 76
6.8 Service Method groupTreatEvent|. . . . . . . . .. ... ... ... ...... 79
6.9 Service Method registerFailover| . . . . . . . . .. ... ... 79
[6.10 Service Method processFailover| . . . . . . . . .. ... ... ... ...... 80
|6.11 Service Method processPending| . . . . . . ... ... ... ... ....... 82
[6.12 Service Method processException| . . . . . . . . ... .. 82
[6.13 Service Method clearPending|. . . . . . . . .. .. .. .. ... ........ 83
[7.1 Service Method sendAck _Cascaded| . . . . . . ... .. .. . ... ...... 88
A.1 -BPEL - Sensor Process|. . . . ... ... ... ... ... ... ... ... 97
A.2 _WS-BPEL - Sensor Process WSDI. 102
[A.3 _WS-BPEL - Node Process WSDI 104
|A.4 WS-BPEL - Group Member Process| . . . . . ... ... .. ... ....... 106
|A.5 WS-BPEL - Group Member Process WSDL) . . . . . ... ... ........ 112

- -to-End Network Node Actord . . . . . . . .. ... .. ... .... 117

- -to-End Forwarder Actorl . . . . . . . ... ..o oo 118

Xxiii






CHAPTER

Introduction

1.1 Motivation

The Industrial Revolution ushered in a new era in which the usage of machines supported
the manufacturing process and lead to mass production. It replaced the predominant type of
production in which skilled craftsmen built products from scratch and specifically for the cus-
tomer’s needs. The advent of mass production resulted in a faster and cheaper manufacturing
process. The downside was that the uniqueness and individualism of products resulting from
labor-intensive hand-crafting work disappeared. The production of large amounts of standard-
ized products had the effect that there was no diversity any more; all products were the same.

In the twentieth century, the industry started to incorporate the customer’s wishes and re-
quirements into the production process; this is also known as mass customization. Companies
broadened their product portfolio by introducing various models and types of their goods. The
problem was that these individual products resulted in higher production costs. The difficulty
was solved by the idea of product lines. “A product line is a set of products in a product portfolio
of a manufacturer that share substantial similarities and that are, ideally, created from a set of
reusable parts.” [4}, p. 4]. The idea is to a have a platform of common parts which can be selected
and combined to form different variants of products. A typical example is the car industry where
parts can be used in various models. For instance, parts of the engine, the radiator, or the exhaust
system. These set of common parts can be produced in large amounts, and therefore, both the
benefits of such standardized “reusable” parts as well as the diversity in the product portfolio are
given.

Transferred to the software domain, both types of products, individual and mass produced,
can be identified as well. Mass produced software is typically called standard software. [48]]
Especially in the 1990s a trend arose to integrate the idea of product lines with the domain of
software. This resulted in software product lines. Northrop described a software product line
in [42] as a “set of software-intensive systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or mission and that are developed from
a common set of core assets in a prescribed way”. Typical core assets are artifacts which are




costly to develop, such as the software architecture, domain models, requirements analysis, test
cases and so on.

In traditional software development, when creating a software system from scratch, one
often attempts to encapsulate the functionality in a library for reuse in later projects. Over the
years, such a reuse has evolved from the reuse of sub-routines to modules, and later, with the
emergence of object-oriented techniques, to the reuse of classes. Nowadays, it can happen on
the level of components and services as well. In [42]], the focus of this reuse types is described
as “small grained, opportunistic, and technology driven”. In contrast, reuse in software product
line development is referred to as “planned, enabled and enforced”. That means that parts are
not developed to solve single system requirements, but designed with the initial purpose to be
used in more than one system. Thus, commonality is of central interest. In software product line
engineering, these artifacts can be created from scratch or by deriving from another platform or
earlier systems. [48]].

The different artifacts are designed in such a way that various products can be built by com-
bining and configuring them. When designing and developing these artifacts for the common
platform, future changes and requirements have to be considered. This means that it is not
possible that all decisions can be made in advance; design decisions have to be delayed and
therefore determined at a later point. This kind of delay or configuration mechanism is achieved
using variability. Svahnberg et al. [52] defined software variability as the “ability of a software
system or artefact to be efficiently extended, changed, customized or configured for use in a
particular context”. Variability opens the door to include mass customization; it allows creating
tailored software satisfying stakeholder requirements. There exist various techniques and ways
how variability can be implemented. In [4]], a detailed classification of these techniques is given,
containing techniques from traditional software engineering which have been adapted for soft-
ware product lines, as well as approaches which are invented to fulfil the specific requirements
of software product lines.

The aim of the software product line approach is to establish strategic reuse. Some of the
benefits of software product line development can be identified when looking at typical core as-
sets. Basically, a software architecture is a complex artifact which requires a lot of development
and testing effort. Developing such an architecture from scratch involves high risks and in the
worst case, these may even lead to the cancellation of the planned product or project. In contrast,
a flexible architecture which has been used a couple of times in different products has known
quality attributes and decreases both risks and costs for development and testing. Testing itself
is another field in which the strategic reuse of components can lead to reduced costs: generic
test plans, test cases and test data can be taken as a basis and adjusted to new products. There
is a determined process regulating how and to whom detected problems shall be reported and
how required fixes shall be incorporated. These mentioned benefits can be classified as software
engineering benefits and, in a broader sense, as business benefits since they have positive effects
on the budget. In [43]], a detailed overview of the benefits and the level on which they occur
can be found. It also provides information based on conducted case studies describing which
business goals are positively influenced by the product line approach.

The software product line approach has not only positive aspects. The downside is that the
development methodology of a company cannot be changed immediately. Such a change needs

2



long term management and includes risks since high investments are required and benefits might
not be visible during the first phases.

1.2 Contribution

The aim of this work is to extend the functionality of the Peer Model |31] with the ability to
design composable and configurable patterns. The Peer Model is a programming model which
supports the modelling of concurrent and distributed systems. Central components are so-called
peers, which contain both coordination and business logic. Peers can be arbitrarily nested pro-
viding means to encapsulate certain behaviour. In this work, the Peer Model is extended by a
pattern concept, whereby the involved patterns can be classified as design patterns. Gamma et
al. [16] described design patterns as “descriptions of communicating objects and classes that
are customized to solve a general design problem in a particular context”. The idea behind is
to (re-)use a solution for re-occurring problems. Above, the importance of variability for the
software product line approach has been explained. We can combine it with the design patterns
of the Peer Model. In the Peer Model, patterns can be seen as a recipe containing the compo-
nents required to attain a certain functionality. Like patterns in general, they can be instantiated
arbitrarily often in various areas. In addition, the patterns proposed in this work are flexible in
such a sense that they can be tailored to the user’s demands. These flexible patterns are designed
in a generic way and similar to the software product line approach: decisions are delayed and
determined only when a concrete instance is created. These decisions are not limited to minor
effects; the variability allows for a far-reaching influence on the functionality provided by the
pattern. Decisions are expressed by a set of properties, which are specified each time a pattern
is instantiated. As reuse is a central factor, a pattern which encapsulates certain functionality
can be used by another pattern as well. Complex patterns can be defined by combining multiple
other patterns. All these ingredients allow one to aim for the strategic reuse known from the
software product line approach, bringing with it the previously described benefits. The outcome
of this work supports the creation of a pattern concept/methodology which eases and accelerates
the development of systems by just selecting and configuring the required patterns.

1.3 Methodology

The first step is to clarify what a pattern actually means in the context of the Peer Model and how
a pattern relates to the existing components. This includes also the possibility to create nested
patterns, thus the creation of patterns by combining one or more sub-patterns.

The next step is to develop a mechanism which supports this kind of variability known from
the software product line approach. Different components of patterns which are “flexible” and
therefore configurable on pattern instantiation will be elaborated and their potential influence
on the pattern’s behaviour will be analyzed. Further, the actual usage of patterns is clarified,
including the ways to handle the flexibility when composing patterns as well as when deploying
peers containing patterns.

Afterwards, a literature study is conducted identifying different modelling concepts and tools
in the domain of distributed and concurrent systems. A use case from the train traffic telematics



domain is taken as a proper basis to evaluate the previously gathered tools as well as the extended
version of the Peer Model on their ability to create highly concurrent distributed systems with
the focus on variability and its requirements. In order to create a meaningful evaluation, a
set of criteria will be developed emphasizing the strengths and weaknesses of the considered
approaches.

The use case is split up into two concrete variants: a basic and a more complex version.
Both variants will be realized with each of the modelling concepts and tools. The realizations of
the variants provide the necessary information to assess the particular tools with respect to the
single criteria.

1.4 Structure of the Master’s Thesis
The remainder of this thesis is organized as follows:

e Chapter[2|provides related work in the area of concurrent and distributed systems. Various
modelling concepts and tools are introduced, from low level to highly abstract approaches.

e Chapter [3]introduces the example use case from the train traffic telematics domain and its
two variants. Moreover, a set of different criteria is given which is used throughout the
subsequent evaluation. The example use case is realized with each modelling concept or
tool presented in chapter 2 and used as a basis for the evaluation. The chapter concludes
with a summary of the evaluation results.

e Chapter[d]introduces the Peer Model, which represents the basis for this work. This chap-
ter shall make the reader familiar with the components of the Peer Model as well as with its
graphical notation. It also provides the required information for the reader to understand
the subsequent chapters of this work.

e Chapter [5| presents the central part and contribution of this work: the pattern concept
which extends the Peer Model. It describes the nature of patterns and their relation to
existing components. Further, it introduces the mechanism to define flexible patterns and
explains how the composition of patterns is achieved.

e Chapter [6] demonstrates the abilities of the concept introduced in chapter 5] Both variants
of the example use case are realized, whereas the majority of the components of the first
variant are reused for the more complex second variant.

e Chapter [/|emphasizes the flexibility of the proposed pattern concept regarding its capa-
bilities to react to changing requirements. Two potential additional requirements on the
use case scenario are introduced which would typically require architectural changes and
refactoring. The chapter concludes with the evaluation of the extended version of the Peer
Model with respect to the chosen criteria.

e Chapter[§] provides concluding remarks and outlook to possible future work.



CHAPTER

Related Work

This chapter introduces related modelling concepts and tools which can be used to model dis-
tributed and concurrent systems, and provides basic information about these concepts and tools.
A comparison of these approaches is conducted in chapter 3]

2.1 Petri Nets

Petri nets are widely used to model concurrent activities and describe distributed systems. Com-
pared to business process modelling languages and tools they operate on a rather low level, but
their expressiveness allows them to be applied in various scenarios. The concept of Petri nets
was first introduced in Carl Adam Petri’s dissertation [47]]. As stated in [41]], Petri nets provide
means to describe systems “characterized as being concurrent, asynchronous, distributed, par-
allel, nondeterministic and/or stochastic”. Over the last decades various extensions of the core
concept of Petri nets have been proposed. Some of them are also backward-compatible to the
original design, meaning that it is possible to reduce such a higher-level, extended Petri net to a
low-level, basic one.

Often when talking about Petri nets the so called place/transition nets are meant, a class of
Petri nets providing a formalism that allows a higher level of concurrency than the traditional
Petri nets as they permit a place to hold more than one token. For reasons of simplicity, in this
work the term Petri net is used as a synonym for place/transition nets.

Before focussing on the mechanisms and possibilities regarding composition, a brief intro-
duction to the components of Petri nets should be given: beside the already mentioned places,
place/transition nets consist of transitions and tokens. Places can hold a number of resources
called tokens. A place holding one or more tokens is called marked. Transitions are used to
transfer tokens between places. The distribution of tokens in the net represents the state of the
system.

Traditional Petri nets provide no means of abstraction including ways to form subnets or
group certain components. Therefore, simple reuse of already modelled functionality is not




possible. A component which could be reused nevertheless has to be completely re-modelled,
which leads to blown up and often confusing nets.

2.1.1 Colored Petri Nets

Colored Petri nets (or CP-nets) belong to the category of high-level nets. Tokens can be distin-
guished by their color and represent arbitrarily complex data. Further, the concept of variables
and bindings is introduced allowing an additional level of abstraction (cf. [36]). Concerning
composition and reuse, hierarchical CP-nets as explained in [28]] provide an interesting ap-
proach which will be considered in the following:

Substitution transitions and subpages are the essential components for modularity. A substi-
tution transition can be seen as the abstract part, whereas a subpage contains a CP-net (subnet).
The substitution transition is used to model the CP-net and acts as a place holder to keep the
model’s size small. A substitution transition refers to a specific subpage, which provides the
detailed description of the activity represented by the transition [28[]. In order to achieve such
a modularity, interfaces are needed to define how subpages communicate with their surround-
ing net. Therefore, so called socket and port places exist. The port places of the subpages are
assigned to socket places of the substitution transition.

Nesting of such modules is also possible, meaning that a subpage itself can contain substi-
tution transitions. Further, two or more substitution transitions can refer to the same subpage,
allowing for the reuse of components. During execution, for each such reference a separate
instance of the CP-net of the subpage is created, therefore the substitution transitions are com-
pletely independent of each other.

In [11]], another concept based on transition fusion through annotations for structuring CP-
nets is introduced. Annotations on transitions indicate which transitions should act synchronously
and build a so called synchronous channel. CP-nets with such channels allow restructuring and
splitting the nets into multiple parts in order to get clear structured and coherent nets.

2.1.2 Objects and Petri Nets

The “nets within nets paradigm” as proposed in [54] and the previously mentioned synchronous
channels from [11]] form the basis for the so called Reference nets explained in [15,39]. “Nets
within nets” means that a token can hold a reference to another net instance. Instances of the
same net are similar to objects being an instance of a class in object-oriented programming. They
share the same “template”, but are completely independent of each other. In [39], the authors
show that such Reference nets can increase the expressive power of Petri net based workflow
languages as they allow modelling various workflow patterns in an elegant and easy way.

2.2 Reo

Reo [5] is a coordination model used for the composition of software components and web-
services. The fundamental concept relies on the notion of channels. Reo does not focus on
which computational entities are interacting, rather on how such component-instances commu-
nicate with each other through connectors. Channels are the most basic form of connectors.

6



Connectors can be composed to form more complex connectors. Component-instances which
are a non-empty set of active entities, such as processes or threads, communicate with other
entities by performing input and output operations on channel ends connected to them. As men-
tioned before, the “inter-component-instance communication” is in the focus of interest, but a
single component-instance can as well consist of further component-instances which are linked
together by channels/connectors.

Basically, in computer science, channels have two ends. A source end, where the data is
written into the channel and a sink end, where the data is read from the channel. Reo does not
limit a channel to have exactly one source and one sink end. It is possible to have either this
classic variant of one source and one sink end, or two source ends, or two sink ends. Reo offers
numerous different channel types, where each channel type specifies the sort of the two channel
ends and the relation of the input and output operations at the two ends. For example, a syn-
chronous channel has one source and one sink end and it requires that the write operation on the
source end is synchronized with its matching read operation on the sink end. The FIFO channel
is an example for an asynchronous channel with one source and one sink end. Furthermore, the
channel contains a buffer. As long as the buffer is not full, write operations on the source end
succeed, independent of the availability of a reader on the sink end. In case of a full buffer write
operations are blocked. Read operations succeed as long as there is data in the buffer. The syn-
chronous drain channel is a more exotic variant with two source ends. As there is no sink end,
every data item written into the channel is lost. A write operation on one end blocks until there
is a write operation on the other end as well. This can be used to synchronize two processes.
There are further primitive channels whose exact semantics, and differences between the various
channel types, are described in detail in [5].

2.3 Uppaal

Uppaal (37,38 provides a toolbox for the modelling, simulation and verification of real-time
systems. A system consists of multiple processes and each process is modelled as an automaton.
Uppaal is based on the theory of timed automata which extends finite state machines with the
concept of clocks. In Uppaal, a process is composed of locations and transitions. Transitions are
edges and are used to change locations. Such edges can be annotated with selections, guards,
synchronizations and update expressions. Guards represent boolean expressions or conditions
on clocks. Synchronization is used to synchronize processes by means of channels. Primarily,
synchronization was only possible between two single processes, one being a sender and the
other the receiver. As many other features, later versions of Uppaal introduced also a concept
to synchronize more than two processes (— broadcast channels). Selections are used to non-
deterministically bind an identifier to a value in a given range. The scope of the selection is
limited to its transition and therefore to the synchronization, guard and update parts. Updates
are used to change the state of the system, for example the modification of clocks or other local
or even global variables.



2.4 BPMN - Business Process Model and Notation

Business Process Model and Notation [40] is a standard for the modelling and design of business
processes maintained by the Object Management Group'. The goal was to bridge the gap be-
tween the business side responsible for the creation of business processes and the technical side
responsible for the implementation of systems executing these processes. Thus, the standard is
designed in such a way that it is understandable by the different stakeholders. It also regulates
the possibilities for model execution, which is not limited to the Web Services Business Process
Execution Language (WS-BPEL), even though that is the standardized execution language.

BPMN contains five categories of elements: flow objects, data, connecting objects, swim-
lanes and artifacts. Flow objects represent the main graphical elements separated in events,
activities and gateways. An activity can be either an atomic task, or a sub-process enabling
hierarchical (de-) composition. Gateways are used to model the control flow, including branch-
ing and merging. Connecting objects are used to combine flow objects, and swimlanes (both
pools and lanes) are a mechanism for grouping the modelling elements. Finally, artifacts allow
providing additional information about the process, for example by specifying textual annota-
tions. A more detailed information about these modelling elements can be found throughout the
comparison in chapter 3]

2.5 WS-BPEL

The Web Services Business Process Execution Language (WS-BPEL) [45] is a language for the
specification of business processes. In contrast to BPMN, WS-BPEL is an XML-based textual
language. WS-BPEL provides two ways for describing business processes: abstract and exe-
cutable. Abstract business processes are only partially specified and have a more descriptive
role. Executable business processes however, are fully specified and thus can be executed too.
WS-BPEL is all about web-services. Processes are defined by the composition, orchestration
and coordination of web-services, meaning that every kind of interaction is done by acting with
web-services. Due to its tight coupling to web-services it is highly related to standards such
as WSDL [56], SOAP [55]] and UDDI [44]]. In WS-BPEL every process has one main activity,
which can be either a basic or structured activity. According to the specification [45]], basic
activities describe the elemental steps of the process behaviour, whereas structured activities
represent the control-flow logic and can contain further basic and structured activities. Another
essential element of WS-BPEL are so called Partner Links. They define the parties that interact
with the business process. Every partner link specifies at least one role. If both interacting part-
ners offer services to each other, then two roles are used. Roles simply indicate which services
the participants provide. WS-BPEL processes can be categorized into two types: synchronous
and asynchronous. When calling a synchronous process, the caller waits until it receives the
response from the callee. This request-response interaction is a two-way operation modelled by
a receive-reply pair in the callee’s process. Asynchronous processes, in contrast, are realized by
two one-way operations: the caller invokes the callee’s service and can immediately continue

! Object Management Group (OMG): http://www.omng.org/


http://www.omg.org/

with its work. In order to receive a callback, the caller has to provide a service to the callee.
Both calls are realized using single invoke operations.

2.6 Actor Model

According to [[19], the Actor Model is a mathematical theory that treats so called actors as the
universal primitives of concurrent digital computation. It originates in 1973, proposed by Carl
Hewitt, Peter Bishop and Richard Steiger [20]. The model was further described and improved,
among others, by Gul Agha [[1]. In an interview [21]], Carl Hewitt described an actor as the
fundamental unit of computation which embodies the three essential elements of processing (to
get something done), storage (to be able to remember) and finally communication. Similar to
many object oriented programming languages, which follow the philosophy that everything is
an object, the Actor Model follows the philosophy that everything is an actor. One of the core
components of the Actor Model is messaging. Actors communicate by sending messages to
one another. The following axioms describe what an actor can concurrently do in response to a
message it receives:

e An actor can create a finite number of further actors.
e [t can send a finite number of messages to actors including itself.

e [t can influence its behaviour by specifying how it should handle the next message it
receives.

These actions are not subject to a defined order and as already mentioned, they can be executed
concurrently. Messages are sent asynchronously and delivered on a best efforts basis and at
most once. Moreover, there are no guarantees on their ordering. A message can take arbitrarily
long until it arrives at its target. In order to send a message to a particular actor, the target’s
address is needed. Address information is retrieved from incoming messages, i.e. the sender’s
address, or from actors, which are created while processing a message. In addition, the actor
can use the addresses it had known before processing the message, i.e. from previous steps. In
the Actor Model, addresses do not correspond to the actor’s identities — there is a many-to-
many relationship between actors and addresses. One actor can have multiple addresses and one
address can encompass multiple actors, which has its use for replication purposes.

Conceptually, the Actor Model specifies that an actor processes one message at a time. Every
message handling represents a side-effect free operation. The Actor Model is an inherently
concurrent model, actors share no state with each other and their only way of interaction is by
sending messages asynchronously.

According to [19], the Actor Model can be used as a framework for modelling of, under-
standing of and reasoning about concurrent systems. Further, it has influence on many pro-
gramming languages. Some of them, like Erlang, have built their concurrency directly upon the
Actor Model. Others, like Java, provide frameworks or libraries to incorporate such an actor-
based programming style.






CHAPTER

Comparison of Related Work

In this chapter an evaluation of the previously presented modelling concepts and tools is con-
ducted. The goal of this evaluation is to assess the ability of these tools to design highly dis-
tributed concurrent systems. To create a meaningful evaluation, a set of criteria is developed
whereof the majority covers the essential elements which are important for software variability
and therefore for strategic reuse.

Beside the basic information provided in chapter [2] this chapter provides more detailed in-
formation about the presented approaches. Nevertheless, due to the sheer complexity of some of
these concepts and tools and the limited resources for this work, the provided information might
not be sufficient to completely follow all presented examples. For more details, the interested
reader is enjoined to peruse the referenced literature.

3.1 Comparative Use Case

In order to identify the strengths and weaknesses of the modelling concepts and tools presented
in the previous chapter, an example use case will be introduced. As the areas of application of
the considered modelling concepts differ widely, the goal is to evaluate whether a respective tool
or concept fulfils predefined criteria.

The use case is borrowed from a research project! in the train traffic telematics domain and
has been described in [32]]. The setting is the following: along a track multiple low-power nodes
equipped with wireless communication functionality are positioned. A sensor node detects an
approaching train and forwards this information in form of an event to its following (upstream)
neighbor nodes. The event is forwarded along the track until the unit at the level crossing is
reached. The transfer of the event shall be reliable; therefore, acknowledgement messages and
potential retransmissions are necessary elements. The described use case is depicted in figure
3.1 In the following, two variants of the use case that are defined in [30]], in the remainder of
this work called variants A and B, will be summarized.

Yorww . loponode.org

11



www.loponode.org

LevelCrossing
Forwarder LN
Forwarder LN
LN

Forwarder
LN

) ActionX

Event

Level Crossing

Sensor System

Figure 3.1: Train Traffic Use Case - Figure taken from [32]

3.1.1 Variant A

Variant A covers the basic setting of the explained use case where every forwarder node has
exactly one upstream and one downstream neighbor. Each event must be acknowledged in a
point-to-point way. This variant is depicted in figure 3.1}

3.1.2 Variant B

Variant B depicted in figure [3.2] provides a more complex example where a signal is forwarded
to a group of nodes. This group-based protocol is described in [[30]. The group members coor-
dinate with each other in such a way that one member, also called the leader, is responsible for
forwarding the signal to the upstream group and, in addition, for sending an acknowledgement to
the downstream group or sensor. The other group members establish a failover mechanism such
that they take over the event-handling after a specified timeout in case that the leader fails. Com-
pared to the first variant, this one provides a higher reliability due to the grouping of network
nodes, but requires group internal coordination as well.

Sensed ack ack ack ack
Data| -~ T~ /E, T - 1 ///—_‘\‘\\ m - - ilnfo
event T event = = event ~ R event -
Y - B m) T T -
Sensor Fwd Fwd Fwd App
LN LN group LN group LN group LN

Figure 3.2: Use Case Variant B - Figure taken from [30]]

One might wonder why such an acknowledgement mechanism, as we will see throughout
this work, is necessary as there are a lot of protocols out there which support this functionality
out of the box, for example TCP. The reason is, that these nodes extracted from the use case are

12



typically not connected to the internet and these are low-power nodes meaning their communica-
tion and processing load have to be kept at a minimum. Moreover, it is not the goal of this work
to design ideal notification protocols; the existing example use case is taken as a common basis
for the comparison of the mentioned modelling concepts with respect to the criteria presented in
the following.

3.2 Evaluation Criteria

Both variants of the described use case shall be realized with the considered modelling concepts
to allow us to gain insights about their strengths and weaknesses. The following criteria will be
used throughout the context of this evaluation:

e Composition: The criterion whether the considered approach supports the “gluing” to-
gether (combination) of two or more modelled artifacts to form a new, more complex
artifact. Composition allows the introduction of hierarchical structures into the model and
provides layers of abstraction.

e Reuse: This criterion is about whether such a modelled artifact can be used more than
once. This includes the application in different models as well as the manifold usage in a
single model through multiple instances.

e Parametrization: Parametrization describes the ability to influence the behaviour of the
modelled system, for example by specifying particular options on instantiation. In con-
nection with composition and reuse it has to be distinguished whether a specified param-
eter affects all instances of the reused component or just a single instance (which results
in a higher degree of control).

e Separation of concerns: This criterion describes whether the modelling concept supports
the separation of business (or application) logic and coordination logic. Business logic
describes what has to be done in order to fulfil a certain task, for example the calculation
of the overall costs of an order. Coordination logic is about how the parts or components
of the model interact with each other. A clear separation of concerns facilitates potential
future extensions and expedites maintenance.

e Dynamics: This criterion is about how flexible and dynamic a modelling concept is. Does
it allow adding or removing or even replacing certain components at runtime? A typi-
cal example would be the registration of an additional neighbor node in the underlying
use case. A flexible tool or modelling concept would support the extension at runtime,
whereas other ones would require a complete re-design of the model to meet the new
demands.

e Addressing: Addressing specifies the capability of the underlying system to automatically
deliver messages from a sender to arbitrary nodes in the system, where it is not required
that both sender and receiver are directly connected. Therefore, it includes the possibility

13



of creating an implicit and dynamic connection between sender and receiver for the pur-
pose of transmitting the data. Further, the receiver should be able to identify the sender of
the message, which gives it the opportunity to reply.

e Scalability: (Design-) Scalability is about whether the modelling concept allows mod-
elling large artifacts or systems and whether it scales naturally to any number of partic-
ipating components. The more components involved, the more complex the models get.
However, some modelling concepts provide mechanisms to abstract the number of compo-
nents and therefore the models stay clear. For example, scaling up to five group members
in variant B would require some tools to explicitly model all five group members, whereas
others abstract the concrete number of components and need no adjustments.

e Time: This criterion embodies the capability to incorporate the factor time. This includes
the possibility to define deadlines specifying the point in time when particular objects
become invalid (or expire), as well as delayed execution, which allows controlling the time
when objects will be available. Moreover, time triggered execution shall be supported.
This allows, for example, the triggering of a certain escalation routine when a message
has not arrived within a deadline.

e Toolchain and documentation: This criterion evaluates the tool support for the considered
modelling concept. Is the modelling concept already shipped with a concrete tool or are
there various implementations available? Is there a graphical tool easing the development
of models and systems or is the toolchain limited to code-based development? Further-
more, the quality of the documentation is evaluated with respect to its support in solving
the issues arising while realizing the variants of the example use case.

e Simplicity: This criterion describes the effort needed to gather an adequate level of knowl-
edge to be able to use the considered approach both efficiently and effectively.

The first seven criteria are essential ingredients to provide a high level of software variabil-
ity. The time criterion is necessary to involve time-based processing which is required in the
realization of the presented use case. Otherwise, it would be impossible to resend a signal after
a particular timespan if no acknowledgement has been received. Further, nodes maintain a list of
processed signals to prevent additional work in case that a treated signal is received again. These
lists are getting bigger over time and might lead to memory problems — thus, a time triggered
mechanism to discard “old” signals is necessary. To keep the models readable, this memory
problem is omitted throughout this evaluation, however, the time criterion describes whether it
could be solved with a concrete tool or not. The last two criteria focus on the modelling process
and how much effort is required to realize the variants of the use case.

3.3 Petri nets

3.3.1 Use Case Implementation - Variant A

The example was realized using CPN Tools [49]], a graphical tool for modelling and simulating
(Timed) Colored Petri nets. As will be seen, the implementation also makes use of the advanced

14



features of the ML language used by CPN. ML stands for metalanguage and is a general-purpose
functional programming language. Listing[3.T|shows the colors, variables and functions required
throughout the realization of variant A. The tokens used to transfer the event have the color
PACKET. Such a packet is a tuple consisting of the event ID and the event itself. For simplicity,
the color EVENT 1is one out of the three enumerated types "A’,B’ or *C’, which correspond
to example events. The majority of the variables and the function were used to simulate the
network transmission, potential transmission failures and their resulting retransmissions. As
this simulation is out of the scope for this work’s evaluation, it won’t be described in detail, but
for the sake of completeness its corresponding subnets will be illustrated.

colset INT = int;

colset EVENT = with A | B | C;

colset PACKET = product INT * EVENT timed;
colset RESULT = list PACKET;

var n, k: INT;

var e : EVENT;

var p : PACKET;

var res : RESULT;

colset Prob = int with 0..10;

colset Range = int with 1..10;

var s : Prob;

var r: Range;

fun Ok(s : Prob, r : Range) = (r<=s);

Listing 3.1: CPN (Variant A) - Declarations

Figure [3.3] shows the top-level CP-net. Network and Join are examples for substitution transi-
tions and demonstrate the ability of CP-nets to create hierarchical structures.

[1
Application
RESULT

MNetwork

3;—;-”-”-;-”—

Receiver

PACKET

MNetwork

PACKET

Figure 3.3: CPN - Top level net

The network subnet in figure 3.4 shows how the sensor node and the receiver unit are connected
through multiple network nodes. According to variant A, every node has exactly one upstream
and one downstream neighbor. The upstream neighbor of the sensor node is node NI. The
actual transmission between two nodes is achieved using the subpage SingleTransport, which is
referenced in multiple substitution transitions as can be seen in the figure. This demonstrates
the ability to reuse a modelled component. As for parametrization, every instance of such a

15



subpage is an exact copy of the original one. A subpage may have some parameters specified as

variables or functions in the declarations part, but as these are global, they affect all instances of
the subpage.

Sensor Netwark 5 N1 Network N 1 Nz Netwark N 2
L Singlelransport PACKET SingleTransport PACKET SIngleTr ansport Out PACKET

PACKET

Figure 3.4: CPN (Variant A) - Network subnet

The already mentioned SingleTransport subpage is shown in figure 3.5} it contains the logic
to forward signals. This net is based on the transport protocol presented in [23]]. It forwards
the signals with ascending event ID. The transport logic uses two further substitution transi-
tions PacketTransport and AckTransport, which are both used to simulate transmission failures.
The bidirectional arc between the place NextSend and the transition SendPacket is a graphical
shortcut for two unidirectional arcs binding the same variable.

PACKET

Psa’irl:gt ﬂ@—)"ﬂansmit Packet
y \ PACKET [PacketTransport
n T
1Y ‘ \
INT A INT if n=k ACI(ET
| el
Y ’
R’ifi”(—@-(— Transmit Ack (—@( ghg;liﬂl
n INT AclTransport INT lse

Figure 3.5: CPN - Transport subnet

The subpage Join used in the top-level net is depicted in figure[3.6] Its task is to filter already
processed events. To achieve this, it makes use of the ML features of CP-nets, more precisely the
functions for list manipulation. The Application place stores a list of already processed events,
in case of an incoming event from the Receiver place via the transition Join it is checked for
whether the incoming event has been treated before. If that is the case, the list is kept unaltered,
otherwise the new event will be added to the list.

Figures [3.7) and [3.8] show the already mentioned subpages for the simulation of transmission
failures.

16



y res
Jein {
[n

if notimemres p)
PACKET then p :: res

glse res

Application

Figure 3.6: CPN - Join subnet

17
Prob
s
if Okis, r)
[l then 17 (n,e)
n,e else em
@ (n.e) ¥ Transmit Ly @
PACKET PACKET
Figure 3.7: CPN - PacketTransport subnet
1°7
Prob
s
if Qk(s, r)
[1 then 17 %
% else em
@ » Transmit Pty @
INT A INT

Figure 3.8: CPN - AckTransport subnet

3.3.2 Use Case Implementation - Variant B

The second variant is realized in the same fashion as the first one. In order to realize the group
coordination, certain extensions are necessary: the type and variable declarations need to be
extended by the color NodeTimeout, which corresponds to the amount of time a group member
waits for the current leader to process the event until it takes over the group-leadership and

handles the event on its own. The enhanced version of the type and variable declarations can be
found in listing[3.2]

colset INT = int;

colset EVENT = with A | B | C;

colset PACKET = product INT *x EVENT timed;
colset RESULT list PACKET;

17



var x,n,k: INT;

var e : EVENT;

var p : PACKET;

var res : RESULT;

colset Prob = int with 0..10;

colset Range = int with 1..10;
colset NodeTimeout = int with 5..10;
var s: Prob;

var r: Range;

var to: NodeTimeout;

fun Ok(s : Prob, r : Range) = (r<=s);

Listing 3.2: CPN (Variant B) - Declarations

The top-level net and the subnets Join, SingleTransport, PacketTransport and AckTransport stay
the same. The Network subpage is replaced by the net depicted in figure [3.9]

/v NT
i

PACKET INT

@ Transport G1 Groupl @ | Transport G2 Group 2| —)GDY'*-‘NU G2 Transport R
— | L L —— . e DUt
pAET PACKET e Grouploaic PACKET SleTransport Oy PACKET

Y

PACKET PACKET

Figure 3.9: CPN (Variant B) - Network subnet

The example consists of two groups. For better visibility, the first group is colored red and
the second green. Beside the actual group members Nodel and Node2 or Node3 and Node4, there
are two further places in each group. Ack and Forward are used by both group members. The
Network subpage uses three different subpages (GroupTransport, GroupLogic, SingleTransport)
in five substitution transitions.

The GroupTransport subpage shown in figure[3.10]contains the logic to distribute the signals
wrapped with packets to the group members. Similar to variant A, the subpage PacketTransport
is used to simulate transmission failures. So it might happen that both group members receive the
packet, that only one receives it, or that none receive it. Further, the subpage contains the logic
to deliver acknowledgement messages from the conjointly used Ack-place back to the sender.
Again, the AckTransport is used to simulate failures when transmitting the acknowledgement
messages.

Figure [3.TT] depicts the subpage GroupLogic. The places and transitions which belong to
the first group member are shown in red and for the second group in blue. The black colored
places are used by both group members for coordination purposes. The nextRec-place holds the
information about the event ID to be processed next, InTurn contains the ID of the current group
leader which is by default 1. Basically, only the group leader is responsible to handle incoming
events and to process them. The remaining group member buffers the incoming events too,

18



| Transmit3 | @
Out

PacketTransport = PACKET

PACKET

1

.
Sender)] *1 Send Ack
T (nel@+10
PACKET INT
Mwhode2 | Transmit2 »{{Ghodel
“ep— — Ot
PACKET FPacketTransport PACKET
[S
Y
) ke ) S
Receivelcl: € Receive j sendbcl:
INT AclTransport

Figure 3.10: CPN (Variant B) - GroupTransport subnet

which can be seen on the Buffer transition and Pending place. To prevent the current group
leader from buffering the event, the Buffer transition has an attached condition, i.e. * <> 1 for
group member 1, where = corresponds to the ID of the group leader retrieved from the InTurn
place. These buffered events become inactive for a random time which is achieved using the
time-functionality of CPN. This random time, specified between 5 and 10 time-steps, is used to
give the group leader enough time to process the event. If this failover time elapses the event
gets active again in the corresponding Pending place and then the group member can gain the
leadership of the group via the connected TakeOver transition. Such situations typically arise
when the former group leader does not receive the new event and therefore the timeout occur.
To prevent leadership changes due to already processed events, such treated events are removed
from the pending list by using the Shrink transition. The actual event processing is carried out
by the Process transitions; the counter for the event ID to be processed next is increased and the
leader’s turn-token is renewed. Finally, the event is transferred to the Forward place which is
interconnected with the previously discussed GroupTransport subnet.

3.3.3 Conclusion

As already explained in the previous sections, substitution transitions allow one to incorporate
hierarchical structures, and subpages can be used multiple times. Therefore, the criteria con-
cerning composition and reuse are fulfilled. Parametrization is possible, for example by relying
on global variables, but such parameters affect all instances of a concrete subpage — therefore,
the criterion is considered only partially satisfied.

The main purpose of Petri nets is to describe distributed systems; they are not intended to
create real world systems and applications. In order to analyze potential system states, however,

19



[n=k]

(]

Shrink2
(n,e) [n=k]
) (n,e)
Pending2 I T aleOver?
PACKET
(ne)@+to / \
[xe=2] < ¥
Buffer2
S
(n,e)
» Process2
S
if P=lk
then k+1
else k
171 Y
nextRec
INT
if n=k
then k+1
else k
ke
PACKET
(ne)
GhNodel » Processl
n,el
(n,e) k
[x<=1] v
Bufferl - \ /
(n,e)
» Takelverl
4
Shrink1

20

then k+1

then k+1
else k

Figure 3.11: CPN (Variant B) - GroupLogic subnet



one often needs to include some kind of business-logic — therefore, Petri nets as well as Colored
Petri nets do not separate between business and coordination logic.

Petri nets are of a static nature and not agile or flexible, as there are no possible changes
at runtime. An additional member in group 1 in variant B would mean that the substitution
transition Groupl has to be replaced by a substitution transition and a subpage pair capable
of handling three group members — a remodelling of the net would be necessary. Further,
an additional group member would require a lot more places and transitions. Especially the
conjointly used places InTurn and nextRec would be “overloaded” with arcs. This is a really good
example to illustrate that Petri nets and Colored Petri nets as well have deficiencies concerning
design-scalability, which also affects the readability of the models.

With Timed CP-nets the factor time can also be incorporated into nets. CPNTools allows the
specification of timed color sets. This feature was used for the PACKET color set and thereby,
it was possible to integrate the failover mechanism to the GroupLogic subnet. The timestamps
are used to control when certain tokens are available. In CPNTools, timestamps can be specified
on the initial marking inscription of places for each token, by putting them in a transition time
inscription or by appending them to outgoing arcs of a transition. Basically, they are used to
delay the execution of single tokens and therefore, they can also affect the firing of transitions.
In CP-nets, tokens cannot expire; such a mechanism requires a workaround and has to be imple-
mented into the particular net. For example by a state based approach such that after a specific
amount of time a state change happens and as a result tokens are handled differently than before.
Similarly, time triggered execution can be realized by a transition which is fired when a token
with a previously defined timestamp becomes available. Due to this necessary workarounds the
time criterion is only partially fulfilled.

Regarding addressing, Petri nets or CP-nets do not support such functionality that tokens can
be automatically transmitted between two not connected nodes. Again, the reason lies in their
static nature and no implicit transitions can be created at runtime.

CPN Tools, which was used throughout this evaluation to realize the variants provides good
support for modelling CP-nets. It offers a direct visual verification and highlights certain incon-
sistencies and problems. Furthermore, it allows simulating the nets as well. The documentation
is comprehensive and the tool itself is shipped with a couple of example nets, which allows the
user to get familiar with the tool and its features.

For understanding Petri nets not much effort is needed, models can be created quickly. Col-
ored Petri nets bring in a lot more functionality, which on the one hand allows creating less
blown-up and clearer models, but on the other hand requires some time to get a feeling for the
additional features and particularly when to use them.

3.4 Reo

3.4.1 Use Case Implementation - Variant A

Figure [3.12] shows the realization of variant A of the running example. The model was created
using the Extensible Coordination Tools (ECT) [51]], a set of plugins for the Eclipse platform
allowing, amongst others, the graphical editing, simulation, and verification of Reo connectors.

21



|=| Sensor J2d Forward 1= Mode_1 f#d Forward =] MNode_2 f2d Forward =] End
out in out i out in
in out in out in out
recAck ‘f e E recAck ; ‘f
ack ack il
Figure 3.12: Reo (Variant A) - Realization

The example shown in figure [3.12] consists of four components (sensor, two network nodes
and end-node) and three Forward-connectors. As previously described, composition is prevalent
in Reo. The connector Forward is itself composed of four nodes, two synchronization channels,
and one FIFO channel. The task of the connector is to transfer the event to the upstream neighbor.
The event will be buffered in the FIFO channel until the neighbor reads from its incoming chan-
nel. Simultaneously, the event is returned to the sending node indicating the successful transfer
(acknowledgement). It is the task of the node to cope with unavailable nodes, for instance when
no acknowledgement arrives within a specified time. The component could for example log this
problem to inform the user about the occurred unavailability of the upstream node. Basically,
the event to be forwarded stays indefinitely long in the FIFO buffer. Time-based channels which
will be discussed later allow discarding the pending event after a configured amount of time.

A more sophisticated realization of the transmission of certain signals has been presented
in [8]. The corresponding connector is depicted in figure 3.13] It is based on a faulty FIFO
channel which behaves like an ordinary one except that write operations might fail with a cer-
tain probability t. Therefore, the connector contains logic to resend the signal until the receiver
connected to the node out successfully obtains it. If that is the case, simultaneously an acknowl-
edgement message is sent to the synchronous drain between nodes B and G. This synchronous
drain together with the two synchronous channels between H and G, and G and E stop the data
flow through the FIFO channels in the middle in the following and thus, also the resending
process. The FIFO channels between nodes C and E, and nodes E and F, as well as the lossy
synchronous channel between nodes F and C are responsible for resending the signal until it is
stored in the buffer between nodes A and B, which simulates the successful transfer. A more
detailed description of this connector can be found in [[8]. The reason why the realization of
the Forward connector is kept simple is that the Extensible Coordination Tools currently do not
support such probabilistic channels.

The discussed Forward connector is used multiple times in the given model. Therefore,
reuse is an available feature and further, each of the connectors is an independent instance.
At creation time specific parameters can be passed to the corresponding constructor leading to
parametrizable behaviour. For example, one may specify the queue-size of the FIFO-channel of
the Forward connector.

3.4.2 Use Case Implementation - Variant B

The connector responsible for the transmission of signals between two groups and the group
internal logic managing the processing and failover is depicted in figure [3.14] In the presented
model each group consists of two components (members) which are more advanced compared to

22



® out

A
o ——® B
T
mn C
[ ] g
/1
o
o
fo
, o ®- G
/) F E
/
I ® L] -®

Figure 3.13: Repeated Transmission and Faulty Channels - Figure taken from [§]]

the components of variant A. The connector GroupBasedForwarder is composed of two Forward
connectors and a couple of additional channels and nodes for the group internal logic.

Basically, the receiving units (G2_Nodel and G2_Node?) interact via four ports (channel
ends) with the connector. The input port is used to receive incoming events. Events are available
on this port if the member is the leader of the group, which depends on the state of the FIFO
channel between nodes K and Turnl for the first member or the channel between nodes L and
Turn2 for the second member. In addition, an event is also forwarded to the “passive” member’s
input port when the timer channel between E and I (member 1), or F and J (member 2) is
triggered after a timeout of 5 seconds. For both cases, normal and failover, the incoming event
is buffered in the channels between A and C (member 1) or B and D (member 2). The port
createTurn allows a component to renew its “turn-token” after an event was processed. Further,
the port resetTimer allows one to reset both timers to prevent an unnecessary failover handling
and thus to signal the successful processing of the event. This is achieved by sending a specific
message to the timer channel. More about the behaviour of timers and time based channels can
be read in [7]]. Finally, the ackGroup port is used to “consume” the buffered event in the channel
of the opposite member. The timer reset and the consumption of the buffered event form the
group internal acknowledgement. After executing these three “post-processing” mechanisms,
the overall connector is reset and therefore ready to receive the next signal.

Similar to the components shown in variant A, the sending units GI_Nodel and GI_Node?2
interact with two ports: the first port forwards signals and the second receives acknowledgement
messages. It should be obvious that network nodes/groups are responsible for both tasks: first,
to receive and process the signal and second, to then forward it to the upstream group.

Finally, it should be mentioned that the connector between the initial unit (sensor) and the

23



first group must be slightly modified in such a way that it has only one Forward-connector which
writes to the node Input.

24 GroupBasedForwarder

424 Forward

[5] 61 Nodel [l 62_Nodel

3
input forward n E eri3 createTumn  forward
resetTimer rechAck O S Moz rechck

ack A
createTurn resetTimer
ackGroup EEE

ST ek
Input ResetTimerP2
/O e ] 62_Node?
6L Node2 4 Forward
. ackGroup
input forward B
in out

resetTimer  recAck

createTurn 19}

ackGroup

forward

resetTimer recAck

input

createTum

Figure 3.14: Reo (Variant B) - Realization

3.4.3 Conclusion

As already mentioned, Reo supports composition, reuse as well as parametrization to the desired
extent. Concerning separation of concerns, the idea is that the business logic is accomplished by
single components which can be arbitrary software components including web-services or can
themselves be composed of yet other connectors and components. The connectors represent the
coordination logic; therefore separation of concerns can be seen as being present as well.

Changes on connectors at runtime are covered in detail in [25H27]], whereas [27]] extends the
other two approaches. Such a connector reconfiguration is based on the theory of so-called high-
level replacement systems, which can be seen as an extension of the algebraic graph transforma-
tion theory to other high-level structures. Essential for these transformations is a set of rewrite
rules defining left-hand side (LHS), right-hand side (RHS) and a mapping between them. Such
a rewrite rule is applied on a source graph by searching for an occurrence of the LHS, which is
then replaced by the RHS leading to the corresponding transformed graph. [27] contains a cou-
ple of examples, including a reconfiguration rule where a worker component is added at runtime
to a connector. This technique can be applied in the running variants as well, for example when
an additional group member should be added. Thus, Reo fulfils the dynamics criterion.

Thinking one step ahead, it is possible to add or modify an existing connector to create a
dynamic connection between two or more components at runtime. That means that such an
addressing mechanism is realizable, even though it requires a lot of work as the needed rewrite
rules have to be defined. Addressing is thus not supported directly and this kind of workaround
is required. The criterion is seen as not completely satisfied.

24



As already mentioned, the addition of a group member would require the reconfiguration
of connectors. Further channels and nodes are introduced to connect the new member to its
group. As a result, after the transformation, the graph is a larger than before. Adding a couple of
additional group members leads to complex graphs which are hard to read as well. There is no
abstraction mechanism; every additional component has to be added to the model and therefore
Reo models do not scale to the number of participating components.

In the use case realization above, a timer channel with “off”’-option has been used. As
described in [7]], such an option allows a timer to be stopped before the expiration of its delay
when a special message is consumed by its source end. Timer channels allow the inclusion
of delayed execution into a model as the timer’s emitted signal can activate following circuits.
Further, FIFO channel and timer channels can be composed to a simple and reusable connector
which stores a particular data item for a specified period of time before it is emitted on the
connector’s sink end. With such a connector it is possible to delay the processing of single items
as well. Reo does not directly support the expiration of data items. There are expiring FIFO
channels, where data items are lost if they are not consumed within a specified amount of time,
but the expiration time is limited to this single channel and there is now way to span it over a
complete connector. A workaround would be to include the timestamp into the data item and
delegate the removal of expired items to the particular software components. As item expiration
is not completely supported, the time criterion is only partially fulfilled.

Concerning the toolchain and documentation, Reo provides the Extensible Coordination
Tools plugin for the Eclipse platform. A more detailed description of its features and the corre-
sponding research work can be found in [6, p. 199]. Unfortunately, the plugin is lagging behind
the published research articles, not all features are yet fully integrated. As already mentioned,
there is for example no support for probabilistic channels. Furthermore, when including time
based channels, the creation of animations fail. This criterion is considered only partially ful-
filled.

The last criterion to mention is simplicity. Though Reo has a manageable amount of pre-
defined channels and each with clear semantics, the act of creating models is a rather complex
task. The combination of different channels and their semantics makes especially larger models
hard to understand.

3.5 Uppaal

3.5.1 Use Case Implementation - Variant A

Both variants of the example use case have been implemented using version 4.0 of Uppaal [9],
which provides a Java-based graphical user-interface. The system of variant A consists of three
different automata, which will be presented in the following.

Figure[3.15]depicts the sensor automaton. The outgoing transition of the initial state contains
a selection and an update expression. The former is used to non-deterministically choose a value
of the range of the type e_z, which is defined in the global declarations part of listing[3.3] and bind
it to the identifier e. The latter assigns the selected value to the local variable event. This initial
transition is used to simulate the detection of a signal. The automata uses then the broadcast

25



channel forward to signal an approaching train. After broadcasting, the automaton waits in the
right location until it receives an acknowledgement (ack channel) from its upstream neighbor
or until a timeout occurs, which would result in a retransmission of the event. To be precise,
the shown automaton is a template. Uppaal provides a sophisticated concept for the reuse of
automata based on templates. Templates allow one to design abstract automata with a set of
defined parameters. These parameters can be seen as formal parameters which get substituted by
the actual parameters on process instantiation. Parameters can have arbitrary types ranging from
simple integers and channels to arrays and even more complex data structures. The concrete
types and more information can be found in the Uppaal language reference [53]]. Parameter
passing can be handled either by value or by reference, whereas channels and clocks have to be
passed by reference. The sensor automaton of figure[3.15has the following parameters:

broadcast chan &forward, chan &ack, int &f_event

The identifier timeout is globally declared constant, whereas event and x are local variables.
The identifier x is a local clock, which gets reset once the right location is reached. The upper
transition with its green annotation is an example for a guard.

Uppaal’s synchronization mechanism allows one to directly address specific nodes or loca-
tions in different automata. These nodes do not need to be explicitly connected via transitions.
But with single synchronization statements it is not possible for the receiver of the signal to iden-
tify the emitter of it. Synchronization, coupled with update expressions, is the key to solve this
“issue”. Basically, both transitions are executed at the same time, but the update expression of
the sender is evaluated before its counterpart. This allows transferring information between the
sender and the receiver. This mechanism is used throughout this model to forward the event in-
formation. The value of the variable event is assigned to the reference parameter f_event, which
is a global variable shared between the sensor and network node automata.

X == timeout

forward!

event=e o x= 0, f_event = event

Figure 3.15: Uppaal (Variant A) - Sensor Automaton

The template for the network node automaton is depicted in figure It listens on a
specific broadcast channel (input) for incoming events; in case of an arrival it acknowledges
(send_ack) it immediately. This is achieved by a so called committed location, graphically
represented by a “C”. In such a location, no time is allowed to pass and the next overall transition
which is executed must involve an outgoing edge of at least one of such committed locations —
so there is no interference with other “non-committed” transitions. After acknowledging, the
node broadcasts the event to its own follower (forward) and waits until either a timeout occurs

26



or the upstream neighbor notifies about the successful transmission (rec_ack). The network node
template has the following parameters:

broadcast chan &input, broadcast chan &forward, chan &send_ack,
chan &rec_ack, int &in_event, int &out_event

The parameter in_event corresponds to the shared variable used to exchange the incoming
event. out_event is the counterpart on the forwarding side. In this examples, the handling of
events happens sequentially. A new event is not processed before its predecessor event is not
acknowledged. Concurrent event processing would require arrays of synchronization channels
and user-defined functions for correlation-purposes. This would increase the complexity of this
examples tremendously, which is the reason why in this work sequential processing is used.

rec_ack?

event = in_event

input? send_ack! Y forward!

@
©

out_event =event, x =0

X == timeout

Figure 3.16: Uppaal (Variant A) - Node Automaton
For the sake of completeness, figure shows the end node of the system. The logic for
the level crossing is omitted. The parameters are given in the following:
broadcast chan &input, chan &ack, int &event

The parameters input and ack are used as before and event is the shared variable between the
downstream neighbor (network node automaton) and the end node automaton itself.

ack!

© ©
Figure 3.17: Uppaal - EndNode Automaton

The complete system consisting of a sensor, two network nodes and one level crossing node
is specified in listing[3.3|and a graphical representation is given in figure[3.18] The sensor node
is connected to node 1, node 1 is further wired with node 2. Finally, node 2 is connected to the
end node.

// global declarations
typedef int[0,5] e_t;

27



const int timeout 5;

// system declarations

broadcast chan sensorOut, nodelOut, node2Out;

chan ackSensor, ackNodel, ackNode2;

int nl_event, n2_event, end_event;

// parameters: broadcast chan &forward, chan &ack, int &f_event
SensorNode = Sensor(sensorOut, ackSensor, nl_event);

// parameters:

broadcast chan &input,

broadcast chan &forward,

// chan &send_ack, chan &rec_ack, int &in_event, int &out_event
Nodel = Node(sensorOut, nodelOut, ackSensor, ackNodel,
nl_event, n2_event);
Node2 = Node(nodelOut, node20ut, ackNodel, ackNode2,
n2_event, end_event);
// parameters: broadcast chan &input, chan &ack, int &event

End = EndNode(node2Out,

system SensorNode,

Nodel ,

ackNode?2 ,

end_event);

Node2, End;

Listing 3.3: Uppaal (Variant A) - System declaration

Sensoriode

x == timeout

Node1

evenl = e

T x =0, nl_event = evenl

ackNode1?

event = n1_sevent

ckSensor

e10ut!

n2_event =

event x=0

== timeout

Node2

ackMNode2?

event = n2_event

node20ut!

end_event = event x =0

== limeout

Figure 3.18: Uppaal (Variant A) - Example System

28




3.5.2 Use Case Implementation - Variant B

The template used for the sensor automaton is nearly the same as in variant A. Moreover, its
graphical representation is identical to the figure 3.15] The only difference is that the channel
ack is a broadcast channel instead of a binary channel. This modification has a semantical reason:
a binary channel “fires” if and only if both sender and receiver are “ready”. A broadcast channel
can emit signals even if no receiver is ready. This behaviour is useful when multiple members of
a group can emit such an ack signal, especially when timeouts occur and the failover mechanism
takes effect. The remaining parameters and variables stay the same. The list of arguments is as
follows:

broadcast chan &forward, broadcast chan &ack, int &f_event

The group member automaton depicted in figure [3.19]is the most complex graph contained
in this variant. As the network node template in variant A, it comprises the logic for receiving
and forwarding the event. In addition, the logic for handling the group internal coordination
is contained as well. The current leader’s ID is passed as an argument leader to every group
member instance. Further, every instance gets its member ID m_id. In cases where the ID of
the current leader and the member ID are equal, the automaton is responsible for processing the
event and forwarding it. Beyond that, the leader notifies the other group members to prevent
the execution of their failover mechanisms via the g_ack broadcast channel. Finally, after the
group member has forwarded the event successfully, another synchronization g_reset is emitted
to reset all group members such that a new incoming signal can be processed.

The failover mechanism for the passive group members is coupled to their local clocks x
and a specific failover time fo_time. If the group leader does not synchronize the processing of
the event via the g_ack synchronization and the timeout occurs such that the expression x >=
fo_time evaluates to true, then a member claims the leadership and processes the event on its
own. In order to prevent that multiple group members claim the group-leadership at the same
time, the failover times shall be chosen differently.

Compared to variant A the forwarding of the event is enhanced in such a way that the repeti-
tion of the forwarding-process is limited to the value of fotal_retries. Every retry decrements the
counter r and if its value reaches zero, the event will be discarded and the group will be reset.
The complete list of arguments of the group member template is as follows:

const int fo_time, broadcast chan &input, broadcast chan &forward,
broadcast chan &send_ack, broadcast chan &rec_ack, int &in_event,
int &out_event, int &leader, int m_id, broadcast chan &g_ack,
broadcast chan &g_reset

The graphical representation of the template for the end node automaton is the same as de-
picted in figure Because the realization of variant B uses broadcast channels for signalling
acknowledgements, the only difference compared to A’s template is the type of the argument ack
as can be seen in the following list of parameters:

broadcast chan &input, broadcast chan &ack, int &event

29



leader = m_id
x >=fo_time X >=timeout && r >0

send_ack!

x =0, event = in_event leader == m_id r =total_retries

. out_event = event, x =0, r--
send_ack! =/ g_ack!

forward!

nput?
input x < fo_time

g_ack?

g_reset?

©

g_reset! rec_ack?

Figure 3.19: Uppaal (Variant B) - Group Member Automaton

Finally, listing [3.4] provides the specification of the example system. In total, there are six
template instantiations, one sensor, four group members divided into two groups, and one end
node. The sensor is connected to the first group, which is further wired to the second group.
Additionally, the latter is connected to the end node.

// global declarations
typedef int[0,5] e_t;

const int timeout = 10;
const int total_retries = 5;

// template instantiations

broadcast chan sensorOut, grouplOut, group2Out;
broadcast chan ackSensor, ackGroupl, ackGroup2;
broadcast chan gl_ack, g2_ack;

broadcast chan gl_reset, g2_reset;

int gl_exchange, g2_exchange, end_exchange;

const int glml_id = 11;
const int glm2_id = 12;
const int g2ml_id = 21;
const int g2m2_id = 22;
int gl_leader = glml_id;
int g2 _leader = g2ml_id;

// Parameters: broadcast chan &forward, broadcast chan &ack,
// int &f_event
SensorNode = Sensor(sensorOut, ackSensor, gl_exchange);

// Parameters: const int fo_time, broadcast chan &input,

// broadcast chan &forward, broadcast chan &send_ack,
// broadcast chan &rec_ack, int &in_event,

// int &out_event, int &leader, int m_id,

// broadcast chan &g_ack, broadcast chan &g_reset

GIM1 = GroupMember (7, sensorOut, grouplOut, ackSensor, ackGroupl,
gl_exchange, g2_exchange, gl_leader , glml_id,

30



gl_ack, gl_reset);

GIM2 = GroupMember (8, sensorOut, grouplOut, ackSensor, ackGroupl,
gl_exchange, g2_exchange, gl_leader , glm2_id,
gl_ack, gl_reset);

G2M1 = GroupMember (7, grouplOut, group2Out, ackGroupl, ackGroup2,
g2_exchange, end_exchange, g2_leader , g2ml_id,
g2_ack, g2_reset);

G2M2 = GroupMember (8, grouplOut, group20Out, ackGroupl, ackGroup2,
g2_exchange, end_exchange, g2_leader , g2m2_id,
g2_ack, g2_reset);

// Parameters: broadcast chan &input, broadcast chan &ack, int &event

End = EndNode(group20Out, ackGroup2, end_exchange);

system SensorNode, GIMI1, GIM2, G2MI1, G2M2, End;

Listing 3.4: Uppaal (Variant B) - System declaration

3.5.3 Conclusion

As already discussed, Uppaal’s template concept provides a way to easily reuse models. Further,
these templates can be supplied with various parameters. Therefore, the user can instantiate
multiple instances of the same template with “configurable” behaviour.

Uppaal is not designed for the composition of single automata, as is possible with sub-
stitution transitions and subpages in CP-nets, for example. Uppaal provides so-called partial
template-instantiations, where new templates can be created out of existing ones by specifying
only a part of the existing template’s parameters. But that does not cover composition in such a
way as it has been seen in other modelling concepts.

Similar to Petri nets, Uppaal is not designed to create real-world applications, but to model,
simulate and verify systems. Therefore, there is no separation between business and coordination
logic. Once a declared system is instantiated according to its configuration, the simulation and
verification engine is in the center of focus. Uppaal is static; there can be no changes on the
model at runtime. Therefore, the described dynamics criterion is not supported. Due to the fact
that Uppaal is based on the concept of finite state machines, it is not difficult to use and to create
simple models with it — the criterion of simplicity is fulfilled.

Concerning addressing, Uppaal provides a sophisticated mechanism to synchronize pro-
cesses and in connection with shared variables also to exchange information. But as Uppaal
is static all these synchronizations have to be already considered in the modelling phase. Never-
theless, this criterion is seen as fulfilled as well.

In Uppaal, delayed execution can be realized such that a location is changed only if a certain
condition on a clock evaluates to true. This prevents data items from being processed by the
following locations. Furthermore, clock-based conditions can be used to switch the location
and to execute certain routines. As seen in the implementations of the two variants of the use
case, information between different automata is passed via shared variables. The only way to
incorporate the “age” of this information is to include an additional clock for each data item

31



which is set to zero at the time the data item is created. Then, the difference between a global
clock and this data item specific clock can be used in the following to determine whether the
information is considered as expired or not. Basically, Uppaal is not meant for handling the age
of single data items which are shared between variables. The focus lies on synchronization and
not on the data items. In conclusion, the criterion regarding time is partially supported.

The advantages of broadcast channels coupled with Uppaal’s template concept and its tem-
plate instantiation mechanism help to keep the systems clear and small. For example, addi-
tional group member instances can be easily added without changing the underlying models.
Therefore, Uppaal fulfils the scalability criterion too as it abstracts over the concrete number of
template instantiations.

Regarding toolchain and documentation, Uppaal is a toolbox, which allows modelling, sim-
ulating, and verifying systems directly. The graphical user-interface supports the user while
creating models and offers a syntax check for solving certain modelling issues. Beside the re-
search articles, there is a comprehensive online documentation providing a central access point
for information.

3.6 BPMN - Business Process Model and Notation

3.6.1 Use Case Implementation - Variant A

Figure [3.20] depicts the collaboration between sensor nodes and network nodes of variant A of
the running train example realized using BPMN 2.0. The shown model contains two pools,
each representing one participant of the variant. The focus of the model lies on the sensor node
and its interaction with its neighboring network node. The network node pool is modelled as a
black box, meaning that the internal structure is concealed. This allows us to describe the sensor
node and to clarify its interaction with the network node, without confusing the reader with the
internals of the network node pool.

The single activity in the sensor pool is a so called Call Activity. Basically, BPMN knows
five types of sub-processes used for (de-)composition. These are: Embedded, Event, Transac-
tion, Ad-Hoc and the already mentioned Call Activity. As only call activities are used in these
examples, the remaining ones won’t be further explained. Instead, the interested reader can
find further information in the BPMN specification [46]]. Call activities, formerly known (until
BPMN 2.0) as reusable sub-processes, allow defining a reference to a globally defined process.
As the process is global, it can be used by multiple activities across numerous pools. The corre-
sponding global process Forward can be found in figure [3.21]

The process Forward is used to forward an event to a specified destination. This is achieved
using the send task Forward Event. After sending the message, the process waits until it either
receives an acknowledgement or a timeout occurs. This is realized using an event-based gateway
coupled with a receive task (Receive Acknowledgement) and a timer intermediate event. In case
that the timer fires it is attempted to forward the event again.

Figure [3.22] depicts the collaboration between a network node and the level crossing unit.
Further, it shows the internal logic of the network node pool. As can be seen, the network node
process uses also the global process Forward. The level crossing process contains a receive task,

32



Networlk Node

Event Acknowledgement

Sensor

Signal Detected

Figure 3.20: BPMN (Variant A) - Collaboration between Sensor and Network Nodes

@

Receive
Acknowledgement

Forward Event

Figure 3.21: BPMN (Variant A) - Global Process Forward

33



a send task and a task for processing the event. Further, it distinguishes whether an event has
already been processed or not. This is achieved using an exclusive gateway, which is represented
as a diamond labeled with an “X”. The collaboration model between two network nodes has been
omitted, since the overall actions would be the same as between network node and level crossing
unit.

already handled

s |

at handled: ProcessEvent > x -{ ’

=]

Receive Event

Send
Acknowledgement

LevelCrossing

Acknowledgement

Event

[E]

Receive Event

Send
Acknowledgement

ot ‘.O

Network Node

Figure 3.22: BPMN (Variant A) - Network and Level Crossing Collaboration

3.6.2 Use Case Implementation - Variant B

Figure [3.23] depicts the collaboration between the sensor and network nodes of variant B. It is
almost identical to the model shown in variant A, except that the pool Network Node is renamed
to Group Member and the black box pool is specified as a so-called multi instance pool which
is pointed out by the three horizontal lines at the bottom. This allows expressing that a sensor
node forwards an event to multiple members forming a group. The used global process Forward
is the same as shown in figure [3.21]

The collaboration between level crossing and group member can be seen in figure[3.24] The
group member pool contains two lanes, one for forwarding the event (Event Processor) and one
for group internal coordination (Group Coordinator). Lanes are sub-partitions of pools and they
allow to represent the roles involved in the process. Basically, the process is started when a
group member receives an event. In the following, the current group status is retrieved and used
as a basis for the decision whether the group member shall process the event because it is its
turn or stay passive and let the group leader do the work. In the former case, the member sends
an acknowledgement message to the sender of the event, followed by another acknowledgement
message to its group members to notify them about the handled event. Finally, the event is
forwarded to the upstream neighbor, in this case to the level crossing unit.

In the latter case, the group member process waits until it receives an acknowledgement
message from the group leader. If a timeout occurs after a specified failover time, then the group

34



Group Member

Event Acknowledgement

Sensor

Signal Detected

Figure 3.23: BPMN (Variant B) - Collaboration between Sensor and Group Members

member claims the leadership of the group and informs the other group members. After this, the
process is resumed with the activities of the group leader described before.

In the left bottom corner of the figure the sequence for receiving and updating the group
status can be seen. These kinds of messages are only sent inside a group. The task Send Group
Acknowledgement of a member corresponds to the Receive Group Acknowledgement task of the
other group members. In addition, the Claim Group Leadership task corresponds to the message
start event Receive Leadership Request. Again, there is one member (the new leader) who sends
the message and multiple receivers (the other group members).

In contrast to variant A, the processes in figure [3.24] start with a message start event. In
variant A the processes start with an empty start event followed by a Message Receive Task. Both
versions have the same effect. In BPMN there are almost always various modelling alternatives,
however, these might be of different quality.

3.6.3 Conclusion

Compared to the previously discussed modelling concepts, BPMN is very high level and much
more abstract. The various capabilities regarding composition and reuse have been already
mentioned, but there is also further research ongoing in the area of process composition. The
authors of [22f follow the strategy of composing more complex processes out of simple ones by
introducing a set of so called composition operators.

As BPMN is more abstract, parametrization is completely different compared to the previous
explained approaches. First of all, beside its graphical notation, BPMN 2.0 specifies also its exe-
cution semantics. The execution of BPMN models is not limited to its WS-BPEL mapping. The
specification leaves the door open to execute models directly. Ultimately, the degree of support

35



already handled

[
e—f=f—&—A{—}——0

Acknowladgement

-} [}
e Send e Send Group —
‘

s Group Leader

LevelCrossing

Event

Event Processor

-]
@) | cancnp

Group Member

Receive Event

Request Group .
Stmws

wait for specified
Failover-Time

Update Group Receive Group
Leadership Acknowledgement

Receive Leadership
Reguest

Group Coordinator

Figure 3.24: BPMN (Variant B) - Collaboration between Group Member and Level Crossing

depends on the concrete tool implementing the specification. As parametrization, dynamics and
addressing are these criteria which are tightly coupled to the execution of the model, it is mostly
up the concrete tool whether certain functionality is supported or not. Data Objects which are el-
ements of the category of artifacts can be seen as way to include externally specifiable behaviour
(— parameters) into the designed model. As the concept of Data Objects is clearly specified,
parametrization is most likely available in the majority of such tools. Regarding dynamics, the
specification is too “high level”. The addition and removal of runtime elements is a factor where
it depends on the realization of the concrete task or sub-process which interacts with the com-
ponents whether it supports such kind of dynamics. Addressing is something which can be seen
as realized as long as the modeller uses the specified send and receive tasks, message events, as
well as message flows to explicitly illustrate the endpoints of communication.

The overall idea of BPMN is to model business processes; therefore the majority of its
notational elements is designated to express business logic. (Atomic) Tasks and sub-processes
are characteristical examples. Coordination is realized using gateways, sequences and message
flows. In conclusion, it can be stated that BPMN supports the distinction between business- and
coordination logic.

BPMN is “abstract enough” to cope with multiple instances of activities or pools. There
are numerous so-called activity markers which allow controlling the execution behaviour and
therefore also whether a specific activity is executed once or multiple times — such as when,
for example, there is more than one neighbor. Further, there is an option to specify that a pool
is a multi-instance pool meaning that the interaction is carried out with more than one partner
without the need to explicitly visualize each of these partners in the model. Therefore, the

36



criterion for scalability is fulfilled as BPMN allows abstracting over the concrete number of
components.

As seen in the implementations above, timer events allow triggering certain execution paths.
The availability of concrete data items depend on the implementation of the specification. The
specification contains no instruction whether the time when data items are available for flow
objects shall be specifiable or not. The same holds for the expiration of data items. As the models
are abstract, it is possible to include gateways checking whether data items have reached their
deadline. The concrete realization is up to the tool implementing the specification. Therefore,
the criterion describing the requirements regarding the integration of time is partially fulfilled.

There are multiple tools and systems implementing the BPMN standard. This starts from di-
agramming or vector graphic applications such as Microsoft Visio, which contain templates for
drawing business processes, leading to complete bundles of various applications, which support
also the deployment and execution of business processes such as the Oracle Business Process
Management Suite or ActiveVOS. Regarding documentation, the standard itself is the first source
of information. However, as Egon Borger remarked in [[10]], the standard contains, amongst oth-
ers, numerous ambiguities and underspecifications which could, due to a lack of precision, lead
to incompatibilities. Nevertheless, there is plenty of documentation available which supports
users in learning the subtleties of the modelling language. Therefore, the criterion toolchain and
documentation is satisfied.

Concerning simplicity, it is not a complicated task to model a simple business workflow.
But as the complexity increases, more and more rules have to be observed and often various
modelling alternatives might be suitable. The user is faced with modelling decisions and it is
completely unclear whether one alternative should be favoured against another one. Thus, the
criterion for simplicity is only partially fulfilled.

3.7 WS-BPEL

3.7.1 Use Case Implementation - Variant A

Figure [3.25]| shows the graphical representation of the sensor node’s WS-BPEL process. The
corresponding WS-BPEL and WSDL code parts can be found in the appendix [A.T} The example
has been realized with Apache ODE [3|] and the BPEL Designer plugin for the Eclipse platform.

The sensor process is implemented as a synchronous process which is initiated by invoking
the initiate operation. This invocation is expressed by the receive activity named receiveEvent
in the main sequence. The more interesting logic part is located in the repeatUntil loop. The
signal is forwarded to the upstream node process by invoking (ForwardEvent) an asynchronous
web-service of the registered partner link ForwardEventPL. Afterwards, a structured activity
for selective event processing is used. Either the upstream node process responds with an ac-
knowledgement message or a timeout occurs on the onAlarm-branch. The former results in the
termination of the loop, the latter decreases a counter variable regulating how often a retrans-
mission is tried. Listing[3.5] gives an excerpt of this mentioned selective event processing. The
pick-activity has two branches, onMessage and onAlarm. In case of an incoming message, the
flag (variable endLoop) for stopping the loop is set to true by using an assign-statement. The

37



alarm on the other branch is specified by the expression 'PT5S’, which fires after 5 seconds and
as a result the variable counter is decreased using an assign-statement as well.

The loop continues until a response arrives or the total amount of retries is exhausted. The
if-statement following the loop is used to generate a respective response message for the caller of
the sensor process. Finally, the synchronous process terminates after executing the reply activity
named replyOutput.

<bpel:pick name="Pick">
<bpel:onMessage partnerLink="ForwardEventPL"
operation="onAcknowledgement"
portType="np:NodeProcessCallback"
variable="ReceiveAckMessage ">

<bpel:assign validate="no"
name="endLoop">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve">true</bpel:literal>
</bpel:from>
<bpel:to variable="terminate"></bpel:to>
</bpel:copy>
</bpel:assign>
</bpel:onMessage>

<bpel:onAlarm>
<bpel:for>’PT5S’</bpel:for>
<bpel:assign name="decreaseCounter ">
<bpel:copy>
<bpel:from
expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0"
>
<! [CDATA[S$ counter — 1]]>
</bpel:from>
<bpel:to variable="counter"></bpel:to>
</bpel:copy>
</bpel:assign>
</bpel:onAlarm>
</bpel:pick>

Listing 3.5: WS-BPEL - Sensor Process Excerpt

3.7.2 Use Case Implementation - Variant B

The graphical representation of the WS-BPEL process for a single group member is depicted
in figure [3.26] The corresponding WS-BPEL and WSDL code is listed in the appendix [A.2] In
contrast to the previous example this process is realized as an asynchronous WS-BPEL process.
It contains three partner links as presented in listing [3.6] The partner link downstream is used
to communicate with the downstream nodes. It embodies two roles: one describes the services
the group member provides and the other one describes the single service used as callback. The
second partner link group provides access to the group coordination web-services. It allows

38



®

= main

=]

o | receiveEvent
iﬁ AssignEvent
iﬁ InitCounter

iﬁ InitFlag

Z) RepeatUntil
=

= Sequence
=

<? ForwardEvent
& Pick
=]

onfcknowledgement OnAlarm

iﬁ endlLoop = decreaseCounter

&
&
&

4 acknowledgementReceived
=]
If Elze

iﬁ AssignOK iE AssignErrorfessage
=
2| replyQutput

=

©

Figure 3.25: WS-BPEL (Variant A) - Graphical representation of the Sensor Process

39



the WS-BPEL process to gain information about the state of the group, claim its leadership or
acknowledge the completed processing of a certain event. The final partner link forward is used
to pass the event to an outsourced web-service responsible for forwarding it to the upstream
group. This outsourced service is a modification of the previously described sensor process with
the difference that the event shall be forwarded to multiple nodes instead of one.

<bpel:partnerLinks>
<bpel:partnerLink name="downstream"
partnerLinkType="tns:BPELForward"
myRole="BPELForwardProvider"
partnerRole="BPELForwardRequester" />

<bpel:partnerLink name="group"
partnerLinkType="tns:GroupCoordinationWS"
partnerRole="groupOps" />

<bpel:partnerLink name="forward"
partnerLinkType="tns:ForwardSignalWS"
partnerRole="forwardSignal"/>
</bpel:partnerLinks>

Listing 3.6: WS-BPEL (Variant B) - Group Member Process Excerpt - Partner Links

It is assumed that every group member has a specified node ID which is stored in the variable
nodelD. This ID is used along the main sequence to check whether the member is the leader of
the group or not. This is accomplished by calling a corresponding web-service of the group
partner link. The following conditional statement splits the sequence of execution into two
possible branches. If the current instance is the leader then the group is notified that the event
is handled by it. The leader then delegates the event to a web-service managed through the
forward partner link. The final action of this branch is sending an acknowledgement message
to the caller of the process. The second branch of the condition starts with a selective event
processing (pick). Basically, a group member waits a specified amount of time, after this time
has elapsed, the member notifies the other group participants via the group partner link that it
takes over the group leadership. The remaining steps are the same as in the other branch. The
event is delegated to another web-service and an acknowledgement message to the caller is sent.
In the case that an acknowledgement message from another group member arrives during the
specified waiting period, the WS-BPEL process exits. This is possible because another group
member has already handled the event.

It has to be noted that both variants were realized without using correlation. Correlation
is used to identify the messages which belong together. Basically, events and signals will be
handled concurrently. Therefore, the system must discern to which event certain messages (for
example the acknowledge messages) belong. Multiple instances of WS-BPEL processes run in
parallel and the messages have to be routed to the right instances. This is achieved using the
correlation functionality of WS-BPEL where certain parts of the messages are specified as the
properties used for correlation.

40



main
o | receivelnput
= AssignModelD

= AssignLeadershipMsg

& checkleadership

& if
isLeader Elze
Sequence i Pick
= AssignGroupickMsg groupAck OnAlarm
& grouphck E Esit : Secluence
= AssignForwardMsg = AssignLeadMsg
& EventForwarder & claimleadership
= AssignickMsg = AssignForwardMsg
) & EventForwarder
= AssignAckMsg
& sendhck

@

Figure 3.26: WS-BPEL (Variant B) - Graphical representation of the Group Member Process

41



3.7.3 Conclusion

Composition is a central factor in WS-BPEL — web-services can be composed to form more
complex web-services. A small weakness is that WS-BPEL does not support the definition of
process-fragments or sub-processes which could be reused within a process or across multiple
processes as explained in [24]]. The typical workaround is to outsource these process-fragments
into a particular web-service, which could be called on a by-need basis. Then, the former “par-
ent” process as well as other web-services can make use of it. Nevertheless, both composition
and reuse criteria in the context of this evaluation are fulfilled. The authors of [24] examine
various kinds of sub-processes and provide syntax and semantics for their WS-BPEL extension.
Concerning parametrization, web-services provide a natural support for passing certain parame-
ters. As seen in the sensor process example, the occurred event has been passed as a parameter.
Parameters are not restricted to simple types as used in the presented examples — WSDL in
conjunction with XML-Schema [57] allow to define much more complex messages.

Basically, business logic is encapsulated in web-services and the WS-BPEL process spec-
ifies in which order and how they are to be used. Coordination logic can be expressed using
programming language-like constructs as seen in the example using loops, conditional state-
ments, assignments and so on. Therefore, the separation between business- and coordination
logic can be considered as satisfied as well.

Due to its support for composition, WS-BPEL allows the definition of flexible and dynamic
processes. The example regarding the inclusion of a further group member has been solved
in the second variant by outsourcing the group coordination and forwarding functionality to
individual web-services. Therefore, it is not necessary to modify the original WS-BPEL process
when changes in the group neighborhood occur. The outsourced services can be themselves
WS-BPEL processes or any other kind of technology which can be published as web-services.
WS-BPEL is code based and its control structures allow abstracting over the concrete number
of components which are incorporated into the process. The criterion for scalability is fulfilled.

Single nodes are not directly connected. Instead, they interact by invoking web-services
of each other. Such implicit connections as required for the addressing criterion are given. A
network node running a WS-BPEL process can call any other network node as long as the
target node provides a web-service to call. Further, the recipient can identify the caller and
therefore it can also perform callbacks. The underlying technologies such as SOAP, WSDL and
WS-Adressing provide the necessary basis for this.

The execution of a process can be delayed using the wait activity which allows one to spec-
ify a period of time or a even deadline. Moreover, the pick activity or the event handler of scopes
support the execution of concrete branches if particular time-based conditions are met. There is
no direct support for the expiration of data items. Timestamps can be added to the data types
specified in the WSDL part and conditional statements can be used in the process implementa-
tion to filter out such expired items. A similar workaround is possible if data items shall not be
processed before a particular point in time is reached. As the data item specific time handling is
not directly supported, the criterion regarding time is only partially fulfilled.

Concerning simplicity and especially compared to the previously discussed modelling con-
cepts, much effort is needed to create even simple processes. The formerly mentioned underlying
technologies are a downside here since they require additional background knowledge. The act

42



of writing WS-BPEL processes and web-services is tremendously verbose.

Further, the used toolchain for solving the variants of the use case is far away from being
technically mature. The BPEL Designer plugin which has been used as graphical designer for the
processes has a multitude of bugs which make the creation of WS-BPEL processes hard work.
It would have been faster to directly code the WS-BPEL process and the WSDL files. Apache
ODE, which has been used as WS-BPEL engine, has its flaws too. For example, the current
version does not support WS-Addressing which makes the testing of especially asynchronous
WS-BPEL processes extremely cumbersome. However, there are a lot of WS-BPEL engines
available, both Open Source and proprietary, which have been used successfully in practice.
Compared to BPMN, the specification of WS-BPEL is better structured and therefore, it is easier
to find certain information. Thus, the criterion toolchain and documentation is considered as
fulfilled.

3.8 Actor Model

3.8.1 Use Case Implementation - Variant A

Both variants of the example use case were realized using the Java programming language and
the Open Source library Akka [2] in the version 2.2.3. Beside its availability for Java, Akka is
incorporated into the standard library for the Scala programming language.

Actors are components encapsulating state and behaviour; their only way of communication
is by exchanging messages. Every actor has a so called mailbox in which the incoming messages
are placed. In Akka, the mailbox is managed by the system; messages are processed by calling
the actor’s onReceive method. Akka’s default behaviour is that messages are handled in FIFO
order.

Basically, the Actor Model follows the “one actor is no actor” strategy. Therefore, actors
“come in systems”. Actors build hierarchies by creating child actors, split tasks into smaller
ones and delegate them to their child actors. The hierarchy can be as deep as necessary for
processing the tasks in manageable pieces. Child actors are supervised by their single parent
actor. The handling of failures occurs in the opposite direction: if one actor is not able to handle
a situation, it can send a failure message to its parent. Therefore, errors can be handled on the
right level. Akka provides comprehensive support for this; different configurable supervisor
strategies define what should happen with a child actor in case of a failure. For the concrete life
cycle of actors in Akka and the various pre-defined strategies, the reader is enjoined to peruse
the Akka documentation [2].

The code for the Sensor actor is provided in listing Every Sensor actor is initialized
with the address of its upstream neighbor. One of the benefits of Akka is that it does not dis-
tinguish between local and remote actors. As the documentation states “Akka is distributed by
default”. [2]] Actors in Akka are location transparent. For the developer, there exists no differ-
ence whether a system of actors runs on a local machine or is distributed on multiple network
nodes; the code to be written is the same. There is no need for an additional software layer as
often seen in various programming languages when remote functionality is required. Further,
Akka does not require that parent and child actors are located on the same network node. To

43



achieve this location transparency, actors are addressed using paths. The structure of a path and
a concrete example is given in the following:

akka.<protocol>://<actorsystemname>@<hostname>:<port>/<actor path>
akka.tcp://train@10.0.0.1:2552/user/sensor/forwarder

The user actor of the example above denotes the parent-actor of all user-created actors. Its
termination leads also to the shutdown of all created actors.

/7.
public class Sensor extends UntypedActor ({
private LoggingAdapter log =
Logging . getLogger(getContext().system (), this);
private final String upstream;

public Sensor(String upstream) {
this .upstream = upstream;

}

public static Props makeProps(String upstream) {
return Props.create(Sensor.class, upstream);

}

@Override
public void onReceive (Object o) throws Exception {
if (o instanceof EventMsg) {
EventMsg m = (EventMsg) o;
log.info (m.toString ());

this . getContext().actorOf (Forwarder.makeProps(this.upstream, m));
}else {

unhandled (o) ;
}

Listing 3.7: Akka - Sensor Actor

The onReceive method in listing shows that the sensor actor handles only messages of
type EventMsg. The actor’s only task is to create a new instance of a Forwarder actor, which
is responsible to forward the event. This structure allows a fast processing of incoming events.
Every event is handled by a single lightweight child actor.

The code for the already mentioned Forwarder actor is given in listing [3.8] The actor is
initialized with the event to forward and the address of the receiver. The preStart method is
invoked after the actor is created and used to instantiate a scheduler which repeatedly resends
the event every 5 seconds. In order to send a message, the receiver needs to be looked up
beforehand. This is achieved using the actorSelection method of the actor’s context. The path
specified on the method call can also contain wildcards, which allows for multiple actors to be
addressed and to receive messages. The tell method of the ActorSelection sends the message
specified on the first parameter asynchronously. The second parameter transfers the actor’s

44



address which allows the receiver to reply. Furthermore, a receive timeout is set which leads to
a ReceiveTimeout message after 25 seconds.

The remaining onReceive method completes the actor’s functionality. In case of an AckMsg
message, the resending scheduler is stopped and the actor terminates. If a ReceiveTimeout mes-
sage arrives after the specified amount of time, then the actor is stopped without forwarding the
event.

/7.
public class Forwarder extends UntypedActor ({

private LoggingAdapter log =
Logging.getLogger(getContext().system (), this);

private final String upstream;

private final EventMsg event;

private Cancellable handler;

public Forwarder(String upstream, EventMsg event) {
this .upstream = upstream;
this.event = event;
this . handler = null;

}

public static Props makeProps(String upstream, EventMsg event) {
return Props.create (Forwarder.class, upstream, event);

}

@Override
public void preStart() throws Exception {
super . preStart () ;

final ActorSelection selection =
getContext().actorSelection (upstream) ;
this.handler =
this . getContext().system () .scheduler ()
.schedule (
FiniteDuration.Zero () ,
Duration. create (5L, TimeUnit.SECONDS) ,
new Runnable () {
@Override
public void run() {
selection. tell (event, getSelf());
}
}, this.getContext().dispatcher());
this . getContext ()
.setReceiveTimeout (Duration. create (25L, TimeUnit.SECONDS)) ;
1

@OQOverride
public void onReceive(Object o) throws Exception {
if (o instanceof AckMsg) ({
log.info(o.toString ());
this . handler.cancel () ;
this . getContext().stop(getSelf());

45



} else if (o instanceof ReceiveTimeout) {
log.info ("Timeout occured, could not forward event!");
this . handler.cancel () ;
this . getContext().stop(getSelf());
} else {
this .unhandled (o) ;
1

Listing 3.8: Akka (Variant A) - Forwarder Actor

Listing [3.9] gives an excerpt of the NetworkNode actor. In case of an incomming EventMsg
message, the actor replies to the sender a new acknowledgement message AckMsg. Moreover, if
the received event has not been processed before, then a new Forwarder child actor is created and
charged with forwarding the event. If any other message arrives, it is passed to the unhandled
method which leads by default to debug output.

/]
public class NetworkNode extends UntypedActor {
// ...
@Override
public void onReceive (Object o) throws Exception {
if (o instanceof EventMsg) {
EventMsg m = (EventMsg) o;
log.info (m.toString ());

//send ack
this . getSender (). tell (new AckMsg(m. getID ()), this.getSelf());

if (! this.processed.contains(m.getID())) {
this . processed.add (m. getID());
this . getContext().actorOf(
Props.create (Forwarder. class, this.upstream, m));
}
}else
unhandled (o) ;

Listing 3.9: Akka - Network Node Actor

For the sake of completeness, listing[3.10|shows the onReceive method of the LevelCrossing
actor. Similar to the NetworkNode actor, the actor sends an acknowledgement message back to
the sender. Furthermore, if the event has not been processed, then the corresponding business
code has to be executed.

/7.
public class LevelCrossing extends UntypedActor ({
/7. ..
@Override
public void onReceive(Object o) throws Exception {
if (o instanceof EventMsg) {

46



EventMsg m = (EventMsg) o;

log.info (m.toString ());

// send ack

this . getSender (). tell (new AckMsg(m. getID ()), this.getSelf());

if (! this.processed.contains (m.getID())) {
this . processed.add (m. getID () );

//
// call business code here

}

}else
unhandled (o) ;

Listing 3.10: Akka - Level Crossing Actor

3.8.2 Use Case Implementation - Variant B

In variant B, an event is forwarded to multiple nodes. Therefore, the Sensor actor is initialized
with a list of addresses. This list is then, on each event, passed to the created Forwarder child-
actor. Beside the fact that the single address string is replaced by an ArrayList<String>, the
Sensor actor stays the same as already shown in listing

The Forwarder actor needs to be adjusted in such a way that the event is forwarded to
multiple actors. Therefore, the preStart method needs to be modified as shown in listing[3.11]

/7.

public class Forwarder extends UntypedActor ({
/7.
private final ArrayList<String> upstream;
/7.
@Override
public void preStart() throws Exception {

super.preStart () ;

final ArrayList<ActorSelection> list =
new ArrayList <>();

for (String path : upstream)
list.add(this.getContext().actorSelection(path));

this . handler =
this . getContext().system () .scheduler ()
.schedule (
FiniteDuration .Zero () ,
Duration. create (5L, TimeUnit.SECONDS) ,
new Runnable () {
@Override
public void run() {
for (ActorSelection selection : list)
selection. tell (event, getSelf());

47



}, this.getContext().dispatcher());
this . getContext ()
.setReceiveTimeout (Duration.create (25L, TimeUnit.SECONDS)) ;

Listing 3.11: Akka (Variant B) - Forwarder Actor

Between the Sensor actor and the LevelCrossing actor the event is passed by GroupMember
actors which replace the NetworkNode actors of variant A. Each group is formed by one or more
GroupMember actors. The group leader forwards the event to the members of the upstream
group. For this purpose, each actor is initialized with a list of the upstream nodes, a list of its
group members and a flag whether the actor is the group leader at start. In addition, a failover
time is specified which corresponds to the amount of time a group member waits before it takes
over an unprocessed event and the group leadership.

The GroupMember actor shown in listing [3.12] embodies the following functionality: if an
EventMsg message arrives and the considered actor is the group leader, then the actor replies
with an acknowledgement message to the sender. In addition, it creates a Forwarder actor as
usual. Finally, the leader needs to notify the other group members about the processed event.
Therefore, a GroupAckMsg message is sent to all group members. If the considered actor is not
the current leader of the group, then the actor registers a handler which gets activated when the
specified failover time elapses. In the handler’s run method, the same message exchange is done
as explained before. In order to stop the handler from being executed when the group leader
has processed the event, a reference to the handler is stored in a hashmap. If a GroupAckMsg
message is received and a handler is registered for the corresponding event in the mentioned
hashmap, then the handler is deleted to prevent the execution of the failover mechanism.

/7.
public class GroupMember extends UntypedActor {
/7.
public GroupMember( ArrayList<String > upstream , ArrayList<String> members,
FiniteDuration failover , boolean isLeader) {
/7.
}

@Qverride
public void onReceive(Object o) throws Exception {
if (o instanceof EventMsg) {
final EventMsg m = (EventMsg) o;

if (this.isLeader) {
//send ack
this.getSender (). tell (new AckMsg(m. getID()), this.getSelf());

if (!this.processed.contains (m.getID())) {
this . processed.add(m. getID () );
this . getContext ()
.actorOf (Props.create (Forwarder.class , this.upstream, m));

48



GroupAckMsg g_ack = new GroupAckMsg(m. getID ());
for (String path members)

this . getContext ()
.actorSelection (path).tell (g_ack,
}
}else {

final ActorRef sender = getSender();

this. getSelf());

Cancellable ¢ =
this.getContext().system () .scheduler ()
.scheduleOnce (
this . failover ,
new Runnable () {
@Override
public void run() {
log.info ("failover starts");

sender . tell (new AckMsg(m. getID ()), getSelf());
isLeader = true;

if (!processed.contains (m.getID())) {
processed .add (m. getID () );
getContext () .actorOf (

Props.create (Forwarder. class , upstream, m));

GroupAckMsg g_ack = new GroupAckMsg(m. getID ());
for (String path

members )
getContext().actorSelection (path)
.tell (g_ack, getSelf());
}

}

}, this.getContext().dispatcher());
this . handler.put(m. getID (), c¢);
}

} else if(o instanceof GroupAckMsg) {

GroupAckMsg g = (GroupAckMsg) o;

log.info(g.toString ());
if (this.handler.containsKey (g.getID())) {
this . handler. get(g.getID()).cancel();

}

this .isLeader = false;
}
else {

unhandled (o) ;
}

Listing 3.12: Akka - Group Member Actor

As the LevelCrossing actor does only receive events, no modifications are required and there-
fore, the actor is exactly the same as presented in listing[3.10]in variant A.

49



3.8.3 Conclusion

As explained, actors form hierarchies. Complex tasks are split up and are delegated to child
actors which are supervised by their parent actor. According to the axioms, actors can create a
finite number of child actors while processing a message. There is no limitation regarding the
amount and type of child actors. Thus, there can be multiple instances of actors too. To sum
things up, the possibility to create such hierarchical structures fulfils the composition criterion
described earlier in this work. Moreover, multiple independent instances of actors can be used
throughout the system and therefore also the reuse criterion is satisfied.

Parametrization depends on the concrete realization of the Actor Model, therefore this cri-
terion will be evaluated with respect to Akka. As already presented but not yet mentioned, in
Akka, actors are created by calling the actorOf method of the actor’s context. See for example
listing The method’s only argument is an instance of the class Props, which is a configura-
tion class to specify options for the creation of actors. It allows the introduction of both system-
and user-defined parameters. Furthermore, Akka makes heavy use of configuration files, which
can be complemented by user-defined information as well. In conclusion, the criterion concern-
ing parametrization is fulfilled.

Actors can be added and removed arbitrarily at runtime. In Akka, actors are lightweight
components and according to its documentation about 2.7 million actors per GB RAM are sup-
ported. Therefore, systems created with Akka allow scaling up to meet the user’s demands. Just
like WS-BPEL, Akka is code based and its control structures allow abstracting over the concrete
number of components which are incorporated into the process. Thus, the criteria regarding
dynamics and scalability are both fulfilled.

In Akka, separation of concerns is not directly given. But as common in software devel-
opment it can be introduced using a layered design, e.g. a particular business layer which is
accessible using a defined interface. Then, the coordination logic comprising the messages, ac-
tor life cycles, schedulers and so on can be separated from the business logic. As encapsulation
is a common task in software development, this criterion can be seen as supported too.

The Actor Model is all about messages, therefore addressing is ubiquitously used. As al-
ready explained, Akka is completely location transparent. The developer can write code without
wondering about network communication issues. There is no difference in communicating with
local or remote actors. Actors can be looked up using a path based mechanism where wildcards
are supported as well. Thus, the criterion concerning addressing is satisfied.

The conceptual Actor Model makes no mention of the factor time. Actors create further
actors, send messages and can change their behaviour. There are no rules regarding the temporal
validity of messages or delayed execution. Therefore, it is up to the concrete realization of the
Actor Model whether such time based processing is provided. As seen in the examples, Akka
allows scheduling the execution of a given function or the sending of a message. Therefore,
time triggered execution is supported. Moreover, a message which shall not be processed before
a specific point in time is reached can be “delayed” with such a scheduler. On the other hand,
Akka does not support the expiration of messages. There are two potential workarounds, both
require to include a timestamp into the message data. The first is the implementation of an
appropriate mailbox replacing the default mailbox of Akka which removes expired messages.
The second is to ignore such invalid messages in the particular onReceive method. As there is

50



no direct support in Akka, the criterion regarding time is only partially fulfilled.

The Actor Model has a clear set of rules, the “usability” depends on the used tool implement-
ing the Actor Model. The model itself has no graphical notation; systems have to be realized
by coding. Thus, programming skills are a necessary prerequisite. Beside the required instal-
lation of Java or Scala and the Akka library itself no further preparations are required. The
Akka documentation is comprehensive and supplemented with numerous examples. Non soft-
ware developers would have their problems with the Actor Model (as well as with the previously
presented concepts), but for the group of software developers the Actor Model and especially
Akka can be learned easily. In conclusion, the criterion regarding simplicity is fulfilled and
due to the lack of a graphical tool supporting the creation of actors, the criterion toolchain and
documentation is partially fulfilled.

3.9 C(lassification Summary

In this section the previously conducted textual evaluation of the various modelling concepts
regarding the initially described criteria is graphically summarized in form of a table. In table[3.1]
the results of the classification can be found. A ’+’ denotes that the related approach fulfils
the considered criterion, whereas a *~’ denotes that the criterion is partially fulfilled. A *—’
indicates non-fulfilment.

CPN | Reo | Uppaal | BPMN | WS-BPEL | Actor Model
Composition + + — + + +
Reuse + + + + + +
Parametrization ~ + + + + +
SoC - =+ - + + +
Dynamics — + — ~ 4 I
Addressing — ~ + ~ + +
Scalability — — + + + +
Time ~ ~ ~ ~ ~ ~
Toolchain & Docs ~ ~ + + + ~
Simplicity + — + ~ — i

Table 3.1: Classification of the considered modelling concepts and tools

As can be seen in table [3.1) none of the considered approaches fulfils all presented and
desired criteria. The Actor Model obtains the best results as it has only two criteria which are not
completely satisfied. Table [3.2] provides an overview of the biggest strengths and weaknesses
of the modelling concepts and tools gathered throughout the evaluation. The complexity of
these tools (3 out of 6) can be considered as the biggest problem, as it requires often enormous
knowledge to design even simple models. On the other hand, composition is the most commonly
satisfied criterion (3 out of 6).

51



biggest strength | biggest weakness
CPN composition scalability
Reo composition simplicity
Uppaal reuse composition
BPMN composition simplicity
WS-BPEL addressing simplicity
Actor Model | addressing time

Table 3.2: Overview of biggest strengths and weaknesses

3.9.1 Concluding Remarks

As seen throughout this chapter, the use case realizations of the different modelling concepts and
tools have some slight deviations in their functionality. The solutions for Uppaal, WS-BPEL, and
the Actor Model contain further logic which stops the event forwarding process after a specified
amount of failed attempts. Such a logic would have been possible in the CPN realization as
well, but it would have ended in more complex nets and was therefore omitted. The same holds
for Reo; an additional sub-connector would have been necessary which counts the attempts and
influences the behaviour of the Forwarder connector. In BPMN, the global process Forward
would require an additional exclusive gateway to integrate such a case distinction.

The realizations of the use case for Uppaal and Reo support the processing of events only in
a sequential way. Reo is channel based, events are processed one after another. As mentioned,
in Uppaal, a concurrent processing is possible; it requires more complex data structures and
user-defined functions for event correlation.

WS-BPEL and Reo were these modelling concepts which required by far the most time
to (a) get familiar with the semantics and (b) realize both variants of the example use case.
Especially the semantics of Reo was hard to understand; many examples and a trial and error
approach were necessary to get a feeling for it. As mentioned, several bugs in the used toolchain
caused problems when solving the examples with WS-BPEL, and as a consequence these cost
a lot of time. The Actor Model was the concept which was the “simplest” to learn, followed by
Uppaal, which benefited from its automaton-based nature.

In the following chapters of this work a pattern concept for the Peer Model is introduced
with the aim to provide a high level of software variability. This concept will be evaluated in the
same fashion as the approaches in this chapter. Finally, in chapter[7] the Peer Model extended by
the pattern concept and the Actor Model are compared in more detail with a newly introduced
criterion.

52



CHAPTER

Peer Model

This chapter aims to provide the technical background for readers who are not familiar with the
Peer Model. It gives a brief introduction to the important concepts and the graphical notation of
the Peer Model, which will be relevant throughout the upcoming chapters of this work.

4.1 Basics

Typically, highly concurrent applications consist of multiple, distributed and parallel running
nodes, where the communication and synchronization between nodes is the relevant factor to
perform certain tasks. This administration of communication and synchronization between these
nodes is what is generally known as coordination. The Peer Model [31] is a programming model
for the modelling of concurrent and distributed systems with an emphasis on such coordination
tasks.

In contrast to other modelling approaches such as Petri nets, which are designed to be do-
main independent in order to support a wide range of application areas, the Peer Model focuses
on distributed environments and tries to bridge the gap between design and implementation. It
connects the designer’s view of clean and verifiable systems with the developer’s aim of “get-
ting things done” by providing a language to design, analyze and implement highly concurrent
distributed systems.

Central components are so called peers, and models can consist of one or more such peers.
Composition is an important factor as it allows forming more complex models out of “simpler”
ones and encapsulating certain functionality. Another characteristic is the possibility to reuse
such peers. To keep models readable at the one hand and maintainable on the other hand, the Peer
Model follows a clear separation of coordination- and business-logic (application-logic). This
is achieved by “outsourcing” the business logic from the designed coordination logic. Business
logic is integrated with so called “services” at specific locations in the model.

Further, the Peer Model is characterized by its dynamism and scalability. The design can
be scaled up without leading to blown-up models. Peers abstract over the concrete number of

53




instances, whereas such instances can be added at runtime as well. Models can be designed using
a graphical notation or specified by a domain-specific-language. In the following, the essential
components of the Peer Model together with their graphical notations will be presented.

4.2 Components

4.2.1 Entry

Entries are the items used to transfer information between peers. Each entry consists of two
parts: application and coordination data. The former is used to transport application-specific
data throughout the system, which can be processed by services encapsulating business- or
application-logic. As the name suggests, the latter is used for coordination purposes, and holds
meta-information for system-internal mechanisms like entry selection and transactions. [31]] The
application data can be seen as a black box for the system. Coordination data is a set of properties
represented by key-value pairs, e.g. the entry type is represented by the fype property. A further
distinction is made between user-defined and system coordination-data. As the name implies,
user-defined properties are supplemented by the programmer to express certain coordination
logic. System defined coordination properties are interpreted by built-in system functionality
and lead to specific behaviour.

4.2.2 Flow

Flows are used for correlation purposes. A flow comprises a set of entries which belong together.
The system defined coordination property Flow ID is used to indicate that an entry belongs
to a specific flow. This approach can be compared to typical internet packet or web-server
mechanisms, where such ID information is used to specify which packets belong together or
which response message corresponds to which request. Moreover, it is highly related to the
correlation functionality of WS-BPEL.

4.2.3 Container

Containers are those elements of a model which hold entries. Basically, a container in the Peer
Model is realized using a space-container from the asynchronous and blackboard-based com-
munication model XVSM [13}[34,/35]. XVSM generalizes the original Linda [17] tuple space
communication and extends it with various concepts. Containers in the Peer Model support con-
figurable coordination mechanisms [33]]. Common coordination models are for example FIFO
(first in first out), LIFO (last in first out) or random, which returns stored entries in arbitrary
order. A container can be accessed using the operations read, write and take. Read selects one
or more entries based on a query, take is a consuming read that also removes the queried entries
from the container and write is used to put entries into the container. Containers are addressable;
they are referenced by a URI in the network. The graphical representation of a container is a
grey shaded box.

54



4.2.4 Peer

According to [31]], a peer is a structured, re-usable and addressable component encapsulating
application (business) and/or coordination logic. A peer provides two stages for input and output,
the so called Peer-In-Container (PIC) and Peer-Out-Container (POC). PIC and POC correspond
to containers as defined previously. Between the containers for input and output the peer’s
internal logic is modelled. This is achieved using subsidiary peers and wirings (see [{4.2.5).
Roughly speaking, the internal logic describes how the information in form of entries flows
from the input to the output-container. As peers can use other peers to express encapsulated
behaviour, this is a clear indication for re-use and modularity. Typically, peers which are used
to model the logic of another peer are called sub-peers. Application logic can be integrated with
services. A peer is physically deployed on one single site of the network. A peer can be deployed
multiple times, meaning that there can be multiple instances of the same peer on several nodes
in the network. Such a deployed peer is called peer-instance.

Figure {.T] represents the graphical notation of a peer. As can be seen, the containers for
input and output are located on the left and the right side, respectively. The name of the peer is
entered into the label on top. The internal logic is modelled within the white area labeled with
“behaviour”.

PeerName

| behaviour

00

Figure 4.1: Peer

Space peers are a special form of peers where the PIC and POC are merged. They are used
to store data shared by multiple threads/processes and act as a medium for communication and
synchronization [31]]. The graphical notation of a space peer is given in figure 4.2l The grey
shaded area represents the single container used to store the entries. As a space peer does only
maintain entries, it does not contain internal coordination logic.

During deployment of a peer, a unique address is assigned (e.g. an URI). PIC and POC are
addressable using the peer’s address supplemented with the relevant container. Internal compo-
nents of a peer such as sub-peers are addressed by composing the peer’s URI with the sub-peer’s
name. Therefore, a peer forms a kind of namespace for its components.

4.2.5 Wirings

Wirings are the transport mechanism of the Peer Model. They are used to incorporate services
(see section[4.2.6)) into a peer and transport entries between components. The scope of a wiring
is bounded by its surrounding peer and it can create connections between the peer’s containers

55



Space Peer

Figure 4.2: Space Peer

and all containers of the peer’s sub-peers. Each wiring has a name and consists of the following
three sections:

56

1. Guard:

This section can be seen as the pre-conditions that must be fulfilled in order for the wiring
to be activated. It consists of one or more ordered input links G1, . ..,Gy with k >= 1.
An input link is a connection starting from one of the containers in the scope of the wiring
leading to the wiring’s control box. An input link is labeled with a query and an operation
which are both executed on the source container. The query denotes which entries (zero or
more) should be selected and the operation specifies whether the selected entries should
be just read, meaning that they will remain in the container, or consumed (taken) which
has the consequence that they are removed from the container. Queries are specified using
the semantics defined in [[12]]. The query results are passed to the so called entry collection
(EC), which is a temporary container of the wiring. A wiring is activated if and only if
all input links are satisfied, a side-condition is that the first input link must be a take-
operation. This side-condition is ignored if there is a “none-test” input link which checks
that a specific entry is not available and the wiring has an output link which writes such
an entry to the input link’s source container. Both conditions prevent the wiring from
entering a potentially infinite execution loop.

The usages of flow IDs (FID) influence the guard sections. Input links must query entries
with compatible FIDs, which mean that they must have the same FID, whereas entries
without specified FID can be seen as neutral elements compatible with every flow.

. Service:

The service-section is optional and allows calling services. Similar to the input links in
the guard-section, the services are also ordered and therefore executed sequentially in the
given order. They have access to the wiring’s entry collection. More about services can
be found in section

. Action:

The action section is the final section and is optional as well. It is used to distribute the
results of the wiring. An action section consists of ordered output links A1, ..., A with
k >= 1. An output link connects the wiring’s control box and one of the containers in
the scope of the wiring. Analogously to input links, output links are also labeled with



a query and an operation. They are executed on the wiring’s entry collection and the
resulting entries are passed to the output link’s targeted container. In contrast to input
links, output links don’t have to be fulfilled, but they are processed in the specified order.
If one link cannot be fulfilled the next one is executed. After executing the last output
link, the remaining entries in the entry collection are deleted.

The three mentioned sections are executed sequentially. Thus, the processing of output links
starts only after the last service has completed its work. As services are integral parts of wirings,
the graphical notation for wirings that has been defined in [29] is summarized after introducing
the concept of services in the following section. For the figures the I&IEX macros developed
by [18] are used.

4.2.6 Services

Services are used to add business- or coordination-logic which is not modelled within the Peer
Model. Basically, the majority of services are user-defined services. A service can take multiple
entries as input and emit multiple entries as its output. For both, the entry collection serves as
the basis. Similar to the input and output links, the entries can be queried with a non-consuming
read or a consuming take. Take operations are graphically represented by a filled arrowhead,
whereas read operations have an unfilled head.

A typical application-specific service would be the processing of a certain task entry. The
result is then written back to the entry collection from where output links can distribute the
resulting entry to specific locations.

4.2.77 Sample Peer

SamplePeer

S1:processTask

A
P g E P
I = o
(] v Cc
take Task Result
aKe las >G1 Al esu J
read Item [> 1] | W1 | X
G2 A2 >

Figure 4.3: Sample Peer with Wiring and Service

Figure [4.3] shows an example for a peer containing a wiring with an attached service. The
wiring W1 has two guards (input links), namely G1 and G2. In addition it contains the service

57



S1 and two actions (output links) A1 and A2. The input link G'1 takes exactly one Task-entry,
(G2 reads one or more [tem-entries from the PIC of SamplePeer. The expression “> 1” in the
square brackets is used to filter the result. It is possible to apply multiple such filters, where
the result of the left part is passed to the right part. This can be compared to the XVSM query
mechanism proposed in [[13]]. For the concrete example shown in the figure, first all available
Item-entries are selected and as a second condition it is checked whether there are more than
zero. The query for G1 shows an abbreviation: “take Task”, which is a shorthand for “take
Task[= 1]”. The wiring W1 is activated if and only if both input links can be satisfied meaning
the take operation for the Task-entry and the read operation for one or more Ifem-entries succeed.

Since there is the service S1 available, a call to the user-defined function processTask is
performed. The function takes one 7ask-entry as input and creates one entry of type Result. As
already mentioned, services can read or take multiple input entries from the entry collection and
emit multiple entries back into the entry collection.

Finally, the output links of the action-section are performed in the corresponding order. If
there is an Result-entry available in the entry collection (output link A1), then the query is
fulfilled and exactly one Result entry is transferred to the POC of SamplePeer. An entry of type
X would be also written to the POC according to output link A2.

4.3 Advanced Concepts

As already explained in the paragraph about entries, the coordination data is divided into user-
defined and system-defined coordination data. The latter makes use of built-in system behaviour
as the Peer Model automatically interprets such properties. In the following, some of these fre-
quently used system properties that were introduced in [31,32] and their effects are summarized:

o TTS (Time-to-Start): The TTS specifies the time when entries are ready to be selected
by the querying mechanism. Before the specified point in time is reached, the entries are
invisible for the wirings. Thereby, the TTS can be used to delay the processing of such
an entry. The TTS can be specified for flows as well, which has the effect that the TTS of
each of its entries is influenced.

o TTL (Time-to-Live): The TTL indicates the amount of time that can elapse before the
entry is considered as invalid and as a consequence is wrapped into an exception entry.
This can be used to prevent entries from pending indefinitely long in containers. On the
flow level, every entry of the flow is wrapped into an exception entry when its TTL expires.

o DEST (Destination): DEST is a special system property which is based on implicit trans-
port functionality. If an entry has a defined DEST value and it resides in a POC, then the
system automatically transfers the item to the specified destination. It is possible to spec-
ify more than one address — in that case, the entry is distributed to multiple receivers.
Other wirings intending to read or take such entries from the POC have no effect in a
situation where DEST is set. It makes no difference whether an address in the property
corresponds to a local peer or a remote peer, thus this transportation mechanism is location
transparent.

58



Exceptions are special types of entries used to handle failures. Timeout exceptions occurring
when the TTL of an entry expires are an example for such exceptions. An exception entry is
wrapped around the entry on which the exception has occurred during processing. Exception
entries can be queried as typical entries including the retrieval of the type of the exception as
well. This allows incorporating fine grained exception handling. The Peer Model supports also
the configuration of default rules, for example that exception entries are automatically removed
from containers or moved to specific peers.

59






CHAPTER

Pattern Concept

The following sections discuss the concept of patterns in the context of the Peer Model. 1t covers
the questions what a pattern actually is, how patterns can be composed and what their deploy-
ment looks like. In addition, it will be outlined which types of patterns exist, what differences
they have and how they relate to the existing Peer Model components.

5.1 Whatis a Pattern?

In the Peer Model, a pattern is a loose collection of components. It isn’t specified if single
components are local or remote — they can be seen as virtual and location-free. Their real
location is defined during deployment. It should be obvious that this set of components is not
an unrelated bunch of elements, but that they are tightly related from a semantic point of view.
Components in the context of patterns are:

e Wirings:
Wirings are used to connect particular components.

e Sub-patterns:
Existing patterns can be used to create compositions of patterns. A previously created
pattern used to define a new pattern is called a sub-pattern.

e Services:
A pattern can also contain services which will be attached to existing wirings on deploy-
ment. For example, consider a simple logging service echoing every time the wiring gets
executed. Such a fine grained extension of functionality is related to the concept of aspect
oriented programming.

o Guards/Actions:
Beside services, it is also possible to add guards and/or actions to existing wirings.

61



5.2

Pattern Parametrization

The pattern concept distinguishes between design time and configuration time. At design time
the user specifies the basic structure and functionality of a pattern. The more flexible the design,
the more possibilities are there to adjust the pattern to various situations. This adjustments
happen when the pattern is used, which is why this time is called configuration time. At design
time the user can rely on certain parameters which will be specified at configuration time. These
parameters introduce variability to the Peer Model and thus an increased reuse of patterns is
achieved. In the scope of this concept, such parameters are called properties. Properties can be
defined for the following purposes:

62

Location/Address Information:

As mentioned before, patterns are location-free, virtual. On usage, the location has to be
specified. Typical location properties are a guard’s or an action’s source and destination
container. Moreover, addresses used for the DEST property of entries represent location
information.

Operation Information:

Such properties allow one to specify whether an input link should use a consuming read
(also known as take) or a normal non-consuming read operation. Depending on the con-
crete operation, such an option can have deep influence on the peer’s behaviour.

Entry Information:

This allows specifying the entry types which will be processed by a pattern’s components.
Such options increase the reusability of patterns as they can be applied in various scenarios
without the need to create a model with similar functionality where the only difference lies
in the processed entry type.

Query Information:

Beside the entry type, the exact query of certain operations can be specified too. Com-
pared to the specification of the entry type, the declaration of additional query information
provides the possibility for fine-grained configurations.

Service Information:

Such parameters allow specifying the concrete service methods including the order in
which they are called if the corresponding wiring is activated. This gives the user the
opportunity to design generic patterns where the exact service implementations and as a
result the wiring’s behaviour is defined at configuration time.

Guards and actions:

Beside the input and output links which are created at design time, users have the ability to
add guards and actions also at configuration time. Since the order of input and especially
output links has significant influence on the behaviour of wirings and the system, it can be
specified as well. To prevent potential conflicts, a priority has to be specified along with
the position of the input or output link. Higher priority values have precedence during
the positioning process. In combination with configurable service methods, the adding



of input and output links gives the user the chance for a far-reaching modification of the
pattern’s behaviour at configuration time. However, it is important that a pattern is only
“modified” to a certain degree, such that the pattern’s original purpose and semantics is
retained.

In many cases, patterns are used with almost identical configurations. Therefore, it makes
sense to allow the definition of default values which will be used if a particular property value
is not set at configuration time. Another pleasant side-effect is that this leads to a reduced con-
figuration effort for the user. As will be seen in the sections about composition and deployment,
the concept of properties serves also as the instrument for connecting the pattern’s components
with the elements of the peer where the pattern will be used.

5.3 Pattern Types

Until now, the potential components of patterns and the pattern’s configuration possibilities have
been discussed. In the following, the focus is moved on to the structure of patterns. There exist
two types of patterns: basic patterns and peer patterns. A basic pattern corresponds to the loose
collection of components mentioned before. A peer pattern is a special variant of a basic pattern,
which is accompanied by input and output containers. Figure[S.1]illustrates this difference.

- “ Peer

l\ﬁ(_ ) L ,ﬁ,|| :

Basic Pattern Peer Pattern

Figure 5.1: Pattern Types

The dashed green circle on the left should illustrate this bunch of loose components forming
a basic pattern. It consists of three sub-peers and three wirings. As opposed to figure [5.1]
the pattern’s components may also be connected with each other. Often all components or at
least some of them are interconnected, although the concept itself does not require it. When
deploying the pattern, the pattern’s properties are used to connect its parts to the components of
a specific peer. The right part of the figure shows a peer pattern as the pattern’s components are
surrounded by a peer. Thereby, a self-contained component is created.

63



For better understanding, figure [5.2] shows an example for a basic pattern, the Replicator
pattern. It consists of a single wiring with two input links, one output link, and an attached
service. The pattern’s purpose is to replicate a given entry ifem a specified number of times. The
concrete number is provided by the count entry. In order to be used in various situations, the
pattern allows the following configuration options:

o Entry type of item: The item entry used in the pattern is a placeholder and can be replaced
by a specific entry type. This placeholder is shown in red in the figure.

e Guard I source container: The source container of the first guard can be specified. By
default, the source container is the PIC of the peer to which the pattern is deployed.

e Guard 2 source container: The source container of the second guard can be specified in
the same way. Again, the default source is the PIC of the peer to which the pattern is
deployed.

e Action I destination container: Similar to the source containers of the guards, the destina-
tion container of the action can be specified. By default, the destination is set to the POC
of the peer to which the pattern is deployed.

The first option is an example for the specification of entry information, whereas the last
three represent location information.

St:replicate
A A
= Al
§ 2 ]
= 8 g
take item Gl . item [> 1] R
C 1 Wiring 1 1 c
take count
1 G2 2

Figure 5.2: Basic Pattern Example - Replicator

Figure shows an example for a peer pattern, the ExtendedReplicator. It contains a sub-
peer and three wirings. The two wirings labeled with “move item” and “move condition” are
used to shift entries of types item and condition to the sub-peer FilterPeer. Such a “move” is a
graphical shortcut for a wiring which takes one entry of a specified type from a source container
and moves it to a concrete destination. The FilterPeer sub-peer contains a configurable logic
which filters entries based on the given condition entry. Appropriate item entries are then moved
to the sub-peer’s POC and replicated by the attached wiring “Wiring 1”°. The ExtendedReplicator
pattern provides the following properties:

e Entry type of ifem; shown in red in figure[5.3|

64



e Service method filterService used by the FilterPeer sub-peer. The service method is not
visible in figure[5.3] it is an internal method of the FilterPeer sub-peer.

The item entry type is used as a placeholder. When using this pattern, the concrete entry type
has to be specified. Moreover, a service method containing the filter logic has to be specified as
well. This service method is called within the sub-peer. As can be seen in the figure, the pattern
is surrounded by the PIC and POC of a peer. Therefore, such peer patterns are self-contained
components.

When viewing the ExtendedReplicator pattern, it is not hard to detect the previously de-
scribed Replicator pattern. As explained earlier in this chapter, patterns can be created by com-
posing wirings, services, guards, actions, and sub-patterns. The ExtendedReplicator pattern uses
the Replicator pattern as its sub-pattern. Pattern composition is discussed in the next chapter in
more detail.

ExtendedReplicator

FilterPeer Sl:replicate
P - —-move item —— —»| i = item count item [==1] P
' g | :
C [~ ~move condition— —»| . =
take item—> G1 item [>= 1]——]
Wiring 1
take count G2 G2

Figure 5.3: Peer Pattern Example - Extended Replicator

5.4 Pattern Composition

As said, a pattern is composed of multiple components. The most interesting of these compo-
nents are other patterns, called sub-patterns, because they allow nested and parametrized func-
tionality. Each pattern can contain further patterns and due to the passing of properties, these
can be highly flexible. Basically, the adding of another pattern as a sub-pattern enhances the
functionality of the pattern. The two pattern types have to be handled differently with regard to
composition:

e Basic Pattern:
A basic pattern is characterized by its loose components. In order to use them for the
definition of another pattern, these components need to be connected to the components
of the considered pattern. The properties of the sub-pattern therefore have to be specified
before one can use it. Concerning the shown Replicator pattern, this means that the user
needs to at least specify the type of the entry which should be replicated. For the remaining
properties the default values are applied unless otherwise specified. For the specification
of such properties, two possibilities exist. Either the value of a property of the employed

65



sub-pattern can be directly specified in the context of the pattern at design time or the
value of the property has to be passed through by relying on a property of the considered
pattern which is then specified at configuration time. The ExtendedReplicator pattern
presented previously requires the entry type of item to be defined. This is an example for
a property which is passed to a sub-pattern, as the Replicator pattern requires this option
to be specified as well. In contrast, the source and destination containers of the Replicator
pattern are directly specified within the ExtendedReplicator pattern.

A basic pattern is not a self-contained component and therefore, single parts of the pattern
may be scattered across the components of the considered pattern. In other words, not all
components of a pattern are necessarily connected.

e Peer Pattern:
If a pattern contains a peer pattern, it can treat it as if it were a regular (sub-)peer. The
pattern can define wirings starting at and leading to the containers of the peer pattern.
In order to use a peer pattern as such a self-contained component a.k.a. a sub-peer, the
properties of the peer pattern have to be specified in the same manner as required for basic
patterns.

5.4.1 Naming

As the combination of patterns results in the integration of several components like wirings or
peers into a new pattern, name-conflicts between these components may occur. To prevent such
issues, names have to be unique. This can be achieved by combining the name of a sub-pattern
component with the name of the sub-pattern. As an example, recall the special “move”-wirings
with their graphical shortcut. These entry-shifting wirings can be seen as a simple basic pattern
as well, the Move pattern. It allows specifying the entry to be moved, the source container and
the target container. A graphical representation of the pattern is provided in figure[5.4]

take Item Item
» Gl Al >

— Move_Wiring 1 —

-
N

Figure 5.4: Move Pattern

The pattern contains a Wiring I which is a general and therefore often used name. To prevent
inconsistencies regarding the names of components, the name of the sub-pattern component is
combined with the name of the sub-pattern, e.g. “Move_Wiring 1”. As seen in figure [5.3] the
Move pattern has been used two times in the ExtendedReplicator pattern. If there are multiple
instances of the same sub-pattern, then a unique counting number is required as well, for exam-
ple “Move_1_Wiring 1” for the first occurrence of the pattern and “Move_2_Wiring 1” for the
second. By following such a strategy, potential naming issues can be circumvented.

Beside potential naming issues, such a convention will be relevant for the deployment of
patterns as well. As explained, patterns are location-free, therefore the name of a pattern which

66



consists of a bunch of components is a key element which allows distinguishing to which pattern
a component belongs. In case of a distributed deployment, the name provides the basis for
implementing a lookup-alike mechanism to discover the distributed parts of the pattern.

5.5 Pattern Deployment

So far, the two types of patterns — basic and peer pattern — were introduced. Further, it was
explained with which components a pattern can be formed. It was not yet discussed, however,
how a pattern can be deployed. Basically, the deployment of a pattern such that peer instances
can be created is similar to the composition of patterns. In order to create a runtime instance
of a peer which embeds one or more patterns, the required properties need to be specified in
the same fashion as it was done for the composition of patterns. Peer patterns are special in
that sense as they form a self-contained component and can be deployed directly as long as all
configurations are provided. As basic patterns are just a loose collection of components, they
cannot be deployed directly. They have to be part of a normal peer or a peer pattern.

As patterns are location-free, it is possible to deploy parts of a pattern to different nodes.
This “part of a pattern” can be seen as a sub-pattern, either basic or peer pattern. Suppose the
Split-Join pattern where there is a pattern for each part — split and join. Then, the Split sub-
pattern can be part of a peer pattern which is deployed to node X and the Join sub-pattern is
part of another peer pattern deployed to node Y. As mentioned previously, the unique name of
the pattern-instance allows identifying the parts and thus, the scope of the pattern. The concrete
handling of distributed patterns, including the discovering of pattern parts and their effects on
the flow of entries is out of the scope of this thesis and will be subject of future work.

5.6 Patterns, Peers, Peer Instances and their Relationship

As mentioned in the previous sections, a peer instance is a runtime instance of a specific peer.
A basic pattern is a collection of several components and a peer pattern wraps such a collection
with an input and output container. In order to create a runtime instance of a peer which embeds
two or more patterns, all required properties need to be specified. Peer patterns are special in the
sense that they are self-contained peers and therefore, runtime instances can be created directly
subject to the condition that all configuration values are provided.

Keeping this information in mind and viewing the proposed concept of patterns and their
mechanism to include sub-patterns, it can be concluded that every single peer can be modelled
as a peer pattern. Every arbitrary peer can be designed as a peer pattern with the special char-
acteristic that it does not require configuration information for the creation of runtime instances.
Thus, a peer is just a special form of a peer pattern which has no properties. Recall the phi-
losophy of the Actor Model covered in chapter [2.6] which states that “everything is an actor”.
Following the proposed pattern concept, this philosophy can be adopted as “everything is a pat-
tern” in the context the Peer Model.

Figure [5.5] summarizes these findings graphically. The pattern ellipse depicts both types of
patterns, basic and peer patterns, and how they are composed. Patterns are formed by wirings,
guards, actions, and services, which is illustrated by the blue box on top. To create more complex

67



68

Wirings
Guards

used by

Actions
Services

Patterns

Peer Pattern
= Peer

instance of

consist of

uoeINBEyuoD

RBuntime Instance

Figure 5.5: Pattern Concept - Overview



patterns, a pattern can use other patterns as so called sub-patterns. This allows a deep nesting of
patterns as expressed by the arrow on the left. Runtime instances of peers or peer patterns can
be created by specifying the required configuration information. This is illustrated by the arrow
between the two ellipses and the configuration rectangle.

69






CHAPTER

Use Case Implementation

This chapter describes the implementation of the example use case following the previously
presented pattern concept for the Peer Model. 1t starts with the realization of variant A and
introduces various patterns, which will be also seen and reused in the implementation of variant
B provided later in this chapter. The protocols and figures used in this chapter for variant A and
B were defined in [30] and are used and adapted here to demonstrate the flexibility of the new
pattern concept.

6.1 Variant A

This variant makes use of the patterns Treat Event, Send and Retry, Send Acknowledgement
and Process Event. The first three were presented in [[30]] and partially covered in [32]]. These
patterns will be modified in such a way that they provide the core functionality for the compo-
nents (Sensor, Network Node and Level Crossing) of this variant and build also the basis for the
extended version of variant B.

With respect to the particular components, each pattern has to be deployed with a slightly
different configuration. As can be seen later, the components’ desired behaviour is achieved by
plugging in variable service functionality. In the following, the modified versions of the patterns
used throughout this use case will be introduced.

6.1.1 Treat Event Pattern

The Treat Event pattern is responsible for handling incoming events. Thus, it represents the
starting point of the event processing. The pattern contains one wiring with two input links and
five output links and is depicted in figure[6.1] The wiring is activated if an event entry is available
and no entry of type treated with a corresponding flow ID. Such treated entries are used to keep
track of already processed events and ensure that the wiring is executed only once for a single
event. If the input links are fulfilled, the configured service methods are called. Depending on
the concrete configuration, the event is “treated” by multiple services and entries are emitted

71




to the wiring’s entry-collection. Afterwards, the output links of the wiring transfer the entries
satisfying their queries to the corresponding target containers.

S1:treatEvent S2:forwardEvent S3:handleAck S4:prepareAct
z
H f: g 2 z E z -
o = o = 13} = 13} Q
3 g S 3 3 2 z g
- 2
— tak t
akKe even Gl
read treated [none] [ | |
G2
t [ —
< even Al
C treated A2 TreatEvent_Wiring_1
1 ack_ready [ —
< A3
retry [ [—
< A4
P t ] —
< “ A5

Figure 6.1: Treat Event Pattern

As already explained in chapter [5] these patterns allow fine grained parametrization. The
pattern is shipped with four arbitrarily combinable service methods serving different purposes.
Moreover, these service methods can be replaced by user-defined services and additional ser-
vices can be plugged in. Beside the service functionality, the Treat Event pattern can be con-
figured in such a way that the source container of each of the two input links can be specified
as well as the target container of the five output links. To speed up the configuration, default
values are used if specific parameters are not specified. In this case, the default source- and
target-containers of the input links and output links are the PIC of the peer where the pattern is
deployed to.

This pattern is used by every component of variant A, but each of them requires a different
combination of the provided service methods to meet the demands. The implementations of the
provided service methods are shown in listings

The service treatEvent is used by all components. It reads the particular event entry and
emits an entry of type treated. The entry treated is more or less a clone of the event entry
containing the event information. Its purpose is to remember already processed events. For
correlation the flow ID is copied as well.

The service forwardEvent is responsible for inducing the event forwarding process con-
ducted by the Send and Retry pattern. For that purpose, a retry entry is created. Its flow ID is set
to the event’s flow ID and the TTS is set to the current time such that the entry is immediately
available for other wirings when pushed back into a container. The service is used by Sensor
and Network Node components.

72



The service handleAck is used to initiate the acknowledgement process undertaken by the
Send Acknowledgement pattern. Therefore, an ack_ready entry is created with the flow ID set to
the event’s flow ID. The entry indicates that the component is ready to acknowledge the sender
of the event about the successful transfer. As the sensor is the initial point in the network, there
is no need to send an acknowledgement anywhere, therefore this service is only used by Network
Node and Level Crossing components.

The last service is prepareAct, which “prepares” the event entry for the final processing.
An act entry is created which encapsulates the event. The service is used at the Level Crossing
component where such an act entry triggers the Process Event pattern which contains the actual
business code to handle the event.

service treatEvent service forwardEvent
read event as e; read event as e;
emit treated ; emit retry;
begin begin
treated t; retry r;
copy_app_data(e, t); r FLOW = e¢ .FLOW;
t .FLOW = e .FLOW; r. TTS = NOW() ;
emit(t); emit(r);
end service treatEvent; end service forwardEvent;
Listing 6.1: Service Method treatEvent Listing 6.2: Service Method forwardEvent
service handleAck service prepareAct
read event as e; read event as e;
emit ack_ready; emit act;
begin begin
ack_ready ar; act a;
ar FLOW = e .FLOW; copy_app_data(e, a);
a .FLOW = e .FLOW;
emit(ar); emit(a);
end service handleAck; end service prepareAct;
Listing 6.3: Service Method handleAck Listing 6.4: Service Method prepareAct

6.1.2 Send and Retry Pattern

The Send and Retry pattern is used to forward a treated event. The pattern embodies one wiring
with three input links and two output links and is illustrated in figure [6.2] As previously de-
scribed, the service methods used in this variant are designed in such a way that the different
patterns interact with each other. The Send and Retry pattern reliably forwards an event to a
specified peer in the network. Potential data transport failures are compensated by repetition.
An event is periodically resent until an acknowledgement message from the receiver of the event
arrives.

The pattern is designed in such a way that each source container of the wiring’s input links
as well as each target container of the output links can be configured. By default, C1 = PIC

73



and C2 = POC. Furthermore, the service can be specified as well as the two properties UP-
STREAM_NODE and RETRY_INTERVAL. The former represents the address of the peer to
which the event should be forwarded, the latter controls the time interval regulating how long
the pattern waits until the event forwarding is repeated.

The service sendRetry given in listing [6.5]is used by both Sensor and Network Node peers.
The pattern’s wiring is activated if a retry entry as well as a treated entry are available and no
entry of type ack with a flow ID which corresponds to the flow ID of the retry and treated entries
has been received. Then, the specified service is executed which reconstructs an event entry
out of the treated entry and sets its DEST property according to the receiver determined by the
pattern’s parameter UPSTREAM_NODE. In addition, a user defined property is used to attach
the peer’s address such that the receiver can reply with its acknowledgement message. Moreover,
the TTS of the retry entry is set to a point in time in the future regulated by the pattern parameter
RETRY_INTERVAL. This is used to trigger another execution of the wiring and therefore the
resending of the event if no ack entry has been received in the meanwhile. Similar to all patterns
presented here, this default service is replaceable, for example by an extended version which

counts and stores the total number of retries in a property of the retry entry and discards the
event if a certain threshold is reached.

S1:sendRetry

= - | :
g I A
2B 5| 2 gl
3 3
cake ret. = v
ake retry event
» Gl A2
read treated
G2
C| read ack [none] [ SendAndRetry_Wiring_1 Cc
1 >G3 2
retry
< Al

Figure 6.2: Send and Retry Pattern

service sendRetry
take retry as r;
take treated as t;
emit retry;
emit event;

begin
event e;
copy_app_data(t,e);

e .FLOW = t .FLOW;
e .DEST = UPSTREAM_NODE;
e.set_user_property (ORIGIN, this_peer());

74



r. TTS = NOW() + RETRY_INTERVAL;
emit(e, r);
end service sendRetry;

Listing 6.5: Service Method sendRetry used by Sensor and Network Node components

6.1.3 Send Acknowledgement Pattern

Figure [6.3|depicts the Send Acknowledgement pattern. The pattern is embodied by a wiring with
two input links and one output link. It is used to transfer ack entries to the sender of the event
and thus to acknowledge the receipt of the event. The wiring is activated if an event entry as
well as an ack_ready entry are available. Then, the attached service is called. The result of the
service is distributed by the output link.

Again, each source or target container of the input- and output links can be specified when
deploying the pattern to a peer. By default, the source container of both input links is the peer’s
PIC. Concerning the output link, the source container is by default the peer’s POC.

In variant A, the Send Acknowledgement pattern is used by the Network Node and Level
Crossing peers. They use the same service implementation shown in listing [6.6] The service
creates an ack entry. Furthermore, the DEST property is specified to make use of the Peer
Model’s transport functionality to transmit the entry to the sender of the event. The sender’s
address is retrieved from a property attached to the event. For correlation purposes the flow ID
has to be set according to the flow ID of the corresponding event. This allows the recipient of
the entry to determine to which event the acknowledgement belongs.

S1:sendAck
7Y —
o
- £
= &8
S
\ A
tak t ack
aKe even =G1 Al ac.
C| read ack_ready [ SendAck_Wiring_1 Cc
1 G2 2

Figure 6.3: Send Acknowledgement Pattern

service sendAck
take event as e;
emit ack;

begin
ack a;

a.DEST = e.get_user_property (ORIGIN) ;
a .FLOW = e .FLOW;

75



emit(a);
end service sendAck;

Listing 6.6: Service Method sendAck used by Network Node and Level Crossing peers

6.1.4 Process Event Pattern

This pattern is the final one in variant A. Its purpose is to execute the user-defined business code
to handle the event. The pattern is shown in figure [6.4] and consists of exactly one wiring with a
single input link and a service.

The pattern allows specifying the source container of the input link at configuration time.
By default, the source container is the peer’s PIC where the pattern is deployed to. The pattern
has one mandatory property, the user has to specify the business logic which is called by the
pattern’s service method given in listing

S1:processEvent

A

act

take act

Gl
C —{ ProcessEvent_Wiring_1

Figure 6.4: Process Event Pattern

service processEvent
take act as a;
begin
call (business_logic);
end service processEvent;

Listing 6.7: Service Method processEvent of the Process Event Pattern

6.1.5 Components and Pattern Usage

This section shows how the single components of the variant are modelled as peers, i.e. what
patterns and what additional wirings or even sub-peers they require. Unless otherwise stated,
the default values for source and target containers of input- and output links of the used patterns
apply. The first component to be discussed is the Sensor presented in the following.

Sensor Peer

The Sensor peer embodies the following patterns:

76



e Treat Event with the service methods treatEvent and forwardEvent presented in listings[6.1]
and

e Send and Retry with the service method shown in listing[6.5]

In addition to the patterns’ components, the wiring depicted in figure [6.5]is contained in the
Sensor peer. The purpose of this wiring is to keep the load of the PIC small. Events, which
have been forwarded and where the recipients have replied with an ack entry can be seen as
completely processed from the peer’s point of view. Therefore, the correlating retry and ack
entries can be removed which is achieved by the two take operations.

p take ack Gl

I take retry 1 CleanUp_Wiring [
c > G2

Figure 6.5: Variant A - Clean Up Wiring

Network Node Peer
Network Node peers make use of the following patterns:

o Treat Event with the service methods treatEvent, forwardEvent and handleAck presented
in listings [6.1H6.3]

e Send and Retry with the service method given in listing[6.5]

o Send Acknowledgement with the service method of listing[6.6]

The Send Acknowledgement pattern is used to acknowledge the receipt of event to the con-
figured downstream peer. The Send and Retry pattern’s task is to forward the event to the config-
ured upstream peer. Analogously to the Sensor peer, the Network Node peer uses an additional
wiring to clean up no more needed event fragments. Therefore, the wiring presented in figure[6.5]
is used as well.

Level Crossing Peer

The Level Crossing peer represents the final peer in the “event-stream”. It embodies the follow-
ing patterns:

o Treat Event with the service methods treatEvent, handleAck and prepareAct specified in
listings [6.1] [6.3] and [6.4]
o Send Acknowledgement with the service method shown in listing [6.6]

e Process Event, where the input link’s source container is the peer’s PIC. The user has to
specify the business logic which is called within the processEvent service method pre-

sented in listing

77



6.2 Variant B

The Level Crossing peer used in variant B is the same as in variant A. The Sensor peer requires a
slight modification in such a way that the UPSTREAM_NODE property which holds the address
of the neighboring peer is now a list of addresses. This is because the event has to be forwarded
to a group of peers. When the system-defined coordination property DEST of an entry contains
more than one address then the entry is automatically delivered to every single specified address.
The Network Node peer has to be extended with the necessary group logic. For this reason a
couple of new patterns are introduced in the following.

6.2.1 Group-based Treat Event Pattern

S1:groupTreatEvent

2|2
=
5 gl 3| 2|
S| &
o | 8
take event event
> Gl A2
- [ SubPeer
read turn
G2 c
1 | read treated [none] [ | GroupTreatEvent Wiring 1 |— group_ack 2
————>G3 A3
treated L] I
< Al

Figure 6.6: Group-based Treat Event Pattern

The pattern is depicted in figure [6.6] The purpose of it is to “treat” event entries if the par-
ticular peer is currently the leader of its group. Group leadership is indicated by the availability
of a turn entry. The pattern’s wiring is activated if and only if an event entry and such a furn
entry are available and the event has not been treated before. Then, the service shown in list-
ing[6.8]is executed. The service creates group_ack entries which are sent to the group members
of the peer to signal that the leader processes this specific event. The group members’ addresses
are contained in the parameter GROUP_MEMBERS. Therefore, the entry is delivered to each
specified group member. Moreover, a treated entry is created to prevent the event from being
processed again. The particular event is forwarded to a special sub-peer which corresponds to
the Network Node peer presented in variant A. This quite clearly shows the PM’s capability for
composition and reuse. The complete logic for acknowledging the sender and for forwarding
the event is encapsulated in the sub-peer. The Network Node sub-peer is a peer pattern where
the UPSTREAM_NODE property of the included Send and Retry pattern depends on a property
of the Group-based Treat Event pattern. When deploying the pattern, the concrete addresses of
the upstream group members have to be specified.

78



To make the distinction easier, the peer which contains both group logic and the Network
Node sub-peer will be called Group Member peer in the following. The Network Node sub-peers
forward events to the configured upstream Group Member peers or to the final Level Crossing
peer if the end is reached. Acknowledgement messages are directly sent from sub-peer to sub-
peer by relying on the attached ORIGIN property explained in variant A. To keep this pattern
flexible, the source containers of all input links can be specified at configuration time. By default,
they are set to the peer’s PIC, thus C1 = PIC.

service groupTreatEvent
take event as e;
emit event;
emit group_ack;
emit treated;
begin
group_ack ga;
ga .FLOW = e .FLOW;
ga .DEST = GROUP_MEMBERS;
treated t;
copy_app_data(e, t);
t .FLOW = e .FLOW,;
emit(e, t, ga);
end service groupTreatEvent;

Listing 6.8: Service Method groupTreatEvent

6.2.2 Register Failover Pattern

The next series of patterns cover the various cases when a Group Member peer is not in the
leadership position. The first pattern discussed is the Register Failover pattern illustrated in
figure It constitutes the starting point of two possible execution branches as will be seen
later. The task of this pattern is to consume a newly arrived event entry and wrap it with a pending
entry. The TTL of this entry is limited such that after its expiration a failover mechanism takes
place, which is realized by the Process Failover pattern. The creation of the described pending
entry happens in the registerFailover service given in listing[6.9] The concrete TTL is regulated
by the FAILOVER_TIME property and is therefore separately configurable for every single peer
which deploys this pattern. Again, source and target containers of input- and output-links can
be specified, by default C1 = PIC.
service registerFailover

take event as e€;

emit pending;
begin

pending p;

copy_app_data(e, p);

p-TTL = FAILOVER_TIME;

p -FLOW = e .FLOW;

emit(p);
end service registerFailover;

Listing 6.9: Service Method registerFailover

79



S1:registerFailover

—
a
= ZlE
2 T3
=
© &%
=
=
— take event
» Gl
read turn [none]
G2

read pending [none] ) . »
C ——————{G3| RegisterFailover_Wiring_1

1 | read treated [none] [ |
>G4

pending

Al

Figure 6.7: Register Failover Pattern

6.2.3 Process Failover Pattern

The Process Failover pattern is activated if the TTL of a pending entry has expired and as a
consequence the entry has been wrapped with an exception entry. Then, the attached service
processFailover shown in listing [6.10]is executed. It consumes the exception entry, unwraps it
such that the pending entry can be put back into the container C1 with a newly specified TTL
and generates a turn entry. Moreover, a consensus entry is created and sent to all group members
signalling that the peer has taken over the group leadership. This pattern initiates the “negative”
execution branch, in which the group leader has not processed the event.

The pattern’s wiring is executed only once in order to create a furn entry and to take the lead-
ership. The transformation of pending entries back to event entries such that the Group-based
Treat Event pattern can process them in the following is the task of the Process Pending pattern.
Moreover, there may be multiple exception entries which need to be consumed and processed,
this is also the task of that pattern. Beside the already described properties FAILOVER_TIME
and GROUP_MEMBERS, the service depends on the property TURN_INTERVAL which speci-
fies the TTL of the turn entry. This property can be used to regulate how long a peer leads the
group. Source and target containers of input- and output-links can be specified, by default C1 =
PIC and C2 = POC.

service processFailover
take EXC as x;
emit turn;
emit consensus;
emit pending;
begin
turn t;
consensus c;
pending p;

80



S1:processFailover

E 5 T LlE
= ©n
ol g Z|E z| &
Q B=}
5 g =138 8%
— take EXC consensus —
» Gl A3
|I type = pending ]]
read turn [none] i » 1
C— G2 ProcessFailover_Wiring_1 c
1 ] — 2
turn
Al
pending -
A2

Figure 6.8: Process Failover Pattern

t .TTL = TURN_INTERVAL;
¢ .DEST = GROUP_MEMBERS;
c .FLOW = x .FLOW;

copy_app_data(x.pending, p);
p .FLOW = x .FLOW;
p.TTL = FAILOVER_TIME;

emit(t, c, p);
end service processFailover;

Listing 6.10: Service Method processFailover

6.2.4 Process Pending Pattern

There may be multiple pending entries which need to be processed when a peer takes the group
leadership. These pending entries are transformed back to event entries, such that the Group-
based Treat Event pattern can consume them. This is achieved by the first wiring of the Process
Pending pattern shown in figure [6.9] In addition, there may be multiple untreated exception
entries as well. These have to be consumed and the underlying events have to be reconstructed.
This is done by the second wiring of the pattern. The corresponding service methods of the
wirings are given in listings [6.1T]and [6.12]

The Process Pending pattern completes the failover process (“negative” execution branch)
which has started with the registration of the failover mechanism in the Register Failover pat-
tern and has been activated within the Process Failover pattern. The second possible execution
branch during the processing of event entries is covered by the next pattern. As usual with the
patterns presented here, the source and target containers of input- and output-links are config-
urable. By default, the PIC is applied.

81



S1:processPending

2 -
= 5
g 3
o
take pending
» Gl
C | readtum G2|ProcessPending_Wiring_1
1 — [
event
- Al
S2:processException
A_
Ed
ul 3 B
=
= v
take EXC
>G1l
[ type = pending | L L
C | readtum G2|ProcessPending_Wiring_2
1 — [
event
Al

Figure 6.9: Process Pending Pattern

service processPending service processException
take pending as p; take EXC as x;
emit event; emit event;
begin begin
event e; event e;
copy_app_data(p, e); copy_app_data(x.pending, e);
e FLOW = e FLOW; e FLOW = x .FLOW;
emit(e); emit(e);
end service processPending; end service processException;
Listing 6.11: Service processPending Listing 6.12: Service processException

6.2.5 Clear Pending Pattern

The Clear Pending pattern represents the “positive” branch when no failover is necessary. The
pattern is activated in the following situation: the Group Member peer receives an event entry,
but the peer is not the leader of its group. Therefore, the Register Failover pattern executes and
creates a pending entry. Now the peer waits until the TTL set for this entry expires or a group_ack
entry from the group leader arrives, indicating that the event has been successfully processed.

82



The former presents the previously covered “negative” branch, the latter the “positive” one. The
peer receives a group_ack entry and can therefore remove the pending entry from the specified
container. This is achieved by the wiring illustrated in figure[6.10and the attached service given
in listing[6.13] In order to keep track of the already processed events and to prevent unnecessary
additional operation, a treated entry is created and distributed by the wiring’s output link. The
property ARCHIVE_TIMESPAN can be used to specify the amount of time before the item is
packed into an exception entry and can be removed to reduce the load of the particular container.
The source containers of the two input links and the target container of the output link can be
configured, by default C1 = PIC.

S1:clearPending

A
2 g
take pending
» Gl
take group_ack [ . -

C » G2| ClearPending_Wiring_1

1 M
treated

Al

Figure 6.10: Clear Pending Pattern

service clearPending
take pending as p;
emit treated ;
begin
treated t;
copy_app_data(p, t);
t .TTL = ARCHIVE_TIMESPAN;
t .FLOW = p.FLOW;
emit(t);
end service clearPending;

Listing 6.13: Service Method clearPending

6.2.6 Clear Acknowledgement Pattern

This pattern is used to the keep the load of the Group Member’s PIC small. It may happen that
multiple group_ack messages are sent, especially when two or more peers start with their failover
mechanism at the same time. This pattern shown in figure[6.1T|removes such group_ack entries
for already treated events. By default C1 = PIC, however, both input links can be configured to
retrieve the items from arbitrary containers.

83



take group_ack

Gl
— ClearAck_Wiring_1 —
G2

read treated

-

Figure 6.11: Clear Acknowledgement Pattern

6.2.7 Release Turn Pattern

To prevent multiple Group Member peers of one group from being leader at the same time
consensus entries are sent in the Process Failover pattern. To actually limit the group leadership
to a single peer the Release Turn pattern is required. In case of an incoming consensus entry the
peer removes its turn entries. There may be more than one even if this is a rare case when the
wiring of the Process Failover pattern is executed for multiple different exception entries at the
same time, then also multiple rurn entries can be created. The pattern is illustrated in figure[6.12]
The source containers of the input links can be specified, by default C1 = PIC.

take consensus

G1
— ReleaseTurn_Wiring_1 —

take turn [all]
G2

-0

Figure 6.12: Release Turn Pattern

6.2.8 Group Member Peer

As already described, the Group Member peer embodies all of the patterns introduced here for
variant B:

e Group-based Treat Event which includes the Network Node peer presented in variant A as
sub-peer

e Register Failover

e Process Failover

e Process Pending

e Clear Pending

e Clear Acknowledgement

e Release Turn

84



Each of them is used in its default configuration regarding source and target containers. The
presented service methods are attached. During the deployment process, the user has to specify
the concrete properties regulating failover times, resend intervals, group members, upstream
neighbors and so on.

Variants A and B consisting of the presented patterns and their default services have been
realized and tested with the C#-based implementation of the Peer Model called PeerSpace. NET
presented in [50]]. For the figures the IATEX macros developed by [18]] have been used.

85






CHAPTER
Flexibility

Business and especially the IT business is characterised by permanent changes. The authors
of [40] define new requirements which cannot be adapted to the underlying system architecture
as architecture breakers — these demand cost- and time-intensive evaluation and changes to
the architecture. Further, architecture limiters are solutions which prevent simple and direct
adaptations and require some workarounds. We can see that, an essential factor is that the
underlying architecture is capable to adapt to changing requirements and business processes
without introducing architecture breakers or limiters.

This chapter shows how the Peer Model extended with the pattern concept, with its focus
on variability, proposed in this work facilitates the handling of changing business requirements
without leading to such architecture breakers or limiters. For this reason, two potential additional
requirements for the running use case are introduced. The necessary adaptations to the Peer
Model’s solution are then compared to the changes required in the Actor Model’s realization of
the use case. The Actor Model was chosen for this additional investigation because it obtained
the best results in the previously conducted evaluation.

7.1 End-to-End Acknowledgement

Until now, the use case presented in [3.1 has been realized with immediate acknowledgement
messages. Every component receiving an event has directly replied to the sender with a mes-
sage confirming the reception. The new requirement demands for end-to-end acknowledgement
messages. Therefore, a component waits with the confirmation of the receipt until the upstream
node to which the event has to be forwarded sends an acknowledgement message. Thus, when
the event arrives at the Level Crossing component, the acknowledgement messages are sent
downstream in a cascading way as proposed in [30]. For the Peer Model’s realization of this
requirement the following adaptations are necessary:

e Extension of the Send Acknowledgement pattern used by the Network Node and Level
Crossing peers.

87




o Different configuration of the Treat Event pattern used by Network Node peers.

The Send Acknowledgement pattern is “extended” with an additional output link for ack_ready
entries. As already explained, the pattern concept allows adding additional services, guards and
actions at configuration time. Beside the new output link, a different service method is used.

The extended version of the pattern is illustrated in figure the new service method which
replaces the default one is given in listing

S1:sendAck_Cascaded

A A — —
= =
) 2 2|3
= S vl a sla
o = S| T =T
> | < [} | ]
o 4 = M| =
Q = [3) =
] 3 3|8
= v=
take event ack
» Gl Al
c read ack_ready SendAck_Wiring_1 ack_ready c
1 G2 A2 2

Figure 7.1: Extended Send Acknowledgement Pattern

service sendAck_Cascaded
take event as e;
take ack_ready as ar;
emit ack;
emit ack_ready;

begin
ack a;

a .DEST e.get_user_property (ORIGIN) ;
a FLOW = ¢ .FLOW

ar .DEST = e.get_user_property (ORIGIN) ;

emit(a, ar);
end service sendAck_Cascaded;

Listing 7.1: Service Method sendAck_Cascaded

The Treat Event pattern used by Network Node peers is configured such that compared to
the original version the handleAck service method is removed. Figure shows a visual repre-
sentation of the reconfigured pattern.

The different configuration of the Treat Event pattern for Network Node peers has the effect
that no ack_ready entries are created when processing events. Therefore, the wiring of the
Send Acknowledgement pattern is not subsequently activated. The execution of this pattern’s
wiring is triggered downwards, starting at the Level Crossing peer. In addition to the ack entry,
which is sent to the downstream neighbor by the Send Acknowledgement pattern as usual, the
extended version of the pattern attaches an ack_ready entry. When such an entry is received by

88



S1:treatEvent S2:forwardEvent

£ E £ g
N take event
G1
read treated [none] [ | ]
— " >IG2
event ™ N
< v Al
Clle treated A2 TreatEvent_Wiring_1
1 ack_ready N ||
< A3
retry I ||
< A4
act L] -
p A5

Figure 7.2: Configured Treat Event Pattern

a Network Node peer, the peer’s extended Send Acknowledgement pattern is triggered and a pair
of ack and ack_ready entries is sent downstream too. This process is repeated until the final
acknowledgement message arrives at the Sensor peer.

As can be seen, the parametrizable and adjustable patterns allow for a great deal of modi-
fication of the peers’ behaviour without changing the overall models. The concrete behaviour
is specified at configuration time before the peers are deployed. The behaviour is not carved in
stone; one could easily switch between the normal and the end-to-end acknowledgement mode,
it is just a matter of configuration.

Basically, there are two ways to realize the end-to-end acknowledgement in the solution cre-
ated using Akka (see secion [3.8.1)), which is again the representative for the Actor Model. The
first is to create a new Network Node and Forwarder actor pair capable of these end-to-end mes-
sages. The second variant is to incorporate the end-to-end acknowledgement into the existing
code and make its usage depend on a concrete flag read from a configuration file. The former has
the advantage that the code stays clean, readable and easier maintainable. The downside is that
this strategy has its problems when multiple additional requirements need to be combined. This
will be covered in the following section where a further requirement is introduced. In the ap-
pendix Bl two actors are presented where both end-to-end and basic acknowledgement strategies
are included and controlled using a boolean flag end2end.

7.2 Event Filtering

As the name implies, the purpose of this extension is to filter particular events. It shall be
possible to place such filters on arbitrary nodes within the network with the effect that the filtered

89



event shall not be further forwarded (Sensor and Network Node) or processed (Level Crossing).
Clearly, to prevent the repeated resending of the event, the necessary acknowledge messages
have to be sent to the downstream nodes. The filter condition is part of the business code and
can therefore be specified by the user. As the condition is replaceable, arbitrary variants are
possible. An example could be the filtering of events which arrive in a certain time window —
then, multiple events could be treated as a single event.

In the Peer Model, the filter is realized as an additional service for the Treat Event pattern.
This filter is designed to be executed after the configured service methods. Figure depicts
the wiring of the Treat Event pattern configured for Network Node peers and enhanced with the
filtering mechanism. The reconfigured pattern goes through the following steps:

1. The wiring’s input links are satisfied.

2. The configured service methods of the concrete peer are called. Depending on the specific
configuration, entries of the types retry, ack_ready and act may be emitted.

3. The filter-service containing the user-defined filter condition is called. It reads the corre-
sponding event and consumes the available retry, ack_ready and act entries. Depending
on the combination of the service methods, some entries may not be available, therefore
> 01is used as query condition.

4. Based on the filter condition the following outputs are possible:

a) Condition is fulfilled: The service emits only an ack_ready entry. Therefore, the
forwarding of the event is stopped as there is no retry entry which activates the
wiring of the Send and Retry pattern (for Sensor and Network Node peers). When
deployed on Level Crossing peers, the non-existent act entry prevents the event from
being processed by the Process Event pattern containing the user-defined logic. The
emitted ack_ready is used as usual to acknowledge the sender of the event.

b) Condition is not fulfilled: The items emitted of the previously executed services are
moved back untouched to the wiring’s entry collection. Therefore, the event can be
forwarded or processed ordinarily.

In Akka such a filter can be added to the existing actors and is activatable by a flag in a
configuration file or by creating specific filter based versions of the actors. As already men-
tioned such independent actors provide better readability and are easier to maintain and verify.
The disadvantage following this strategy of creating specific actors for specific requirements is
that a combination of features requires the creation of additional actors which means, as a conse-
quence, increased development effort. This ends up in having a wide range of actors which, apart
from these feature-driven deviations, provide almost the same core functionality. This common
functionality can lead to massive refactoring work as all affected actors have to be modified if
changes are made to central parts. Clearly, configuration files and libraries can help to mitigate
these problems, but the sheer quantity of these actors increases the effort for maintenance and
testing even though single actors may be maintained and tested with little effort. The other strat-
egy is to incorporate all features into concrete actors with the ability to enable and disable single

90



S1:treatEvent S2:forwardEvent S3:handleAck S4filter

S =
E S| Al =] T Al =
= 3 5 2 3 =l Al = Rl oAl SR
g 2 5] z 5 2 5 —| g A T Z| Al
2 o z o z | > > s — > <1 -
© 5 o = ® < 8| 5| 2| | E| g| B8
B 2 o= 2 -
- -
S 5]
v v v s v °v v
take event
Gl
read treated [none|
G2
treated
< Al
event e
C < A2 TreatEvent_Wiring_1
1 ack_ready
< A3
retry
- A4
act
< A5

Figure 7.3: Treat Event Pattern extended with Filter

features. This strategy might be useful if there are only small deviations like in the end-to-end
versus basic acknowledgement variants seen before, but when combining features like the ac-
knowledgement and the filter mechanism a massive amount of conditional statements have to be
included into the code and readability, testability and maintainability are significantly reduced.
Further, such checks influence the performance of systems as well. However, these problems
are not only related to the Actor Model, these are common software development problems. The
Peer Model provides a more direct way, design decisions are delayed and the system’s compo-
nents are combined on a by need basis.

The flexibility of the pattern concept, which allows specifying different service methods as
well as the chance to execute multiple service methods in a configurable order, is the key to
keep the systems clean and readable. To demonstrate this elasticity, the previously presented
end-to-end acknowledgement and the filter mechanism can be used both independently and in
a combined fashion without interfering with each other and without additional configuration
effort. As explained, the last peer in the network creates an ack_ready entry which is then sent
upstream in a cascading way triggering the single Send Acknowledgement pattern wirings. If
the filter condition is satisfied on an arbitrary peer, the coordination code of the filter service
acts like the final node in the network and emits an ack_ready entry. Independently of whether
the handleAck service method is used or not (i.e. whether the basic or the end-to-end variant is
followed), the acknowledgement messaging is triggered correctly. Moreover, the presented filter
mechanism can be used on all nodes and is not limited to Network Node peers. In Akka, this
would have required the creation of several filter based actors for the different types. Further,
in the Peer Model these two variants end-to-end acknowledgement and filtering can be used
for both the basic upstream as well as the group-based upstream variant. The reason is that as
already explained, the group-based version encapsulates the logic into a sub-peer which does
not affect the group internal communication.

91



This two small examples have demonstrated the Peer Model’s ability to react to changing
business requirements without breaking the original design and architecture and therefore keep-
ing the system clean and readable.

7.3 Conclusion

This section considers the evaluation criteria presented earlier in this work and investigates how
the Peer Model combined with the proposed pattern concept fulfils the criterion catalog.

The first criterion was composition. The Peer Model offers two kinds of composition: first,
peers can contain sub-peers, and thereby, arbitrary nesting of functionality is possible. Moreover,
the proposed pattern concept introduces also a form of composition in which patterns can be
formed out of other patterns. Chapter [5|described in detail how these two forms work together.
As composition is an important factor in the Peer Model as well as a central point in this work,
the corresponding criterion is fulfilled.

The second criterion was reuse. Basically, patterns are designed to be used more than once.
This has been demonstrated extensively in chapter [ The proposed work does indeed allow
using multiple instances of the same pattern in a single peer — thus, the reuse of functionality
is widely present in the Peer Model and the criterion is satisfied.

Patterns in the Peer Model are parametrizable to a great degree. Different service methods
can be attached to wirings or replace existing ones to influence the system’s behaviour. Further-
more, even the source or target containers of input and output links may be specified as well
as the type of the entry to be transferred or the query condition. The configuration happens on
the peer instance level meaning that every instance of a peer can be configured differently. The
capability to specify default values (including services as well) during the pattern creation helps
to mitigate configuration effort. In conclusion, the criterion concerning parametrization is also
fulfilled.

The next criterion was “separation of concerns”. As already described, the Peer Model fol-
lows the strategy of separating the coordination from the business logic, therefore this criterion
is satisfied as well. The actual business logic is outsourced to service methods which call the
corresponding code. The components of the Peer Model, namely peers, wirings, sub-peers, and
service methods containing coordination code form the coordination logic.

In the Peer Model, peer instances can be added and removed at runtime. For example, it is
possible to design a flexible version of variant B of the running use case. That would require that
a new group member sends “hello” entries to its group members as well as to the downstream
group to inform them about their new partner peer. Every group member requires maintaining a
dynamic list of its members in form of an ordinary entry. In addition, another entry is required
to store the addresses of the upstream partners. Both entries are then used whenever group
acknowledgement or event forwarding tasks have to be performed. In the presented version
of the group-based upstream example such dynamism is not provided as the addresses of the
group members and upstream partners are specified in form of properties at configuration time.
Nevertheless, the Peer Model provides the means to model such dynamic systems as explained
and therefore the criterion regarding dynamics is satisfied.

92



In the Peer Model there exists communication within a single peer using wirings, as well as
the possibility to communicate with remote peers using the system-defined property DEST. This
allows creating such flexible systems as discussed in the previous paragraph where peer instances
can be added and removed at runtime. Therefore, the connections between peers don’t have to be
“hardwired”. Moreover, the concept of system-defined and user-defined properties allows one to
also attach additional information to entries. For example, the sender of an entry delivered over
the network to a remote peer can be stored, which gives the receiver the opportunity to reply.
Thus, the requirements concerning the criterion “addressing” are fulfilled.

The next criterion that was discussed was scalability. In the Peer Model, a peer has to be
designed only once. Afterwards it is possible to create an arbitrary amount of instances of
this peer without the need for any adjustments to the original peer’s design. The design stays
the same; it is completely independent of the actual amount of runtime instances. As seen
throughout the evaluation in chapter [3| some other approaches would have ended in explicitly
modelling these additional connections and components and therefore the models would have
blown up more and more and as a consequence they have become hard to read and understand.
The Peer Model follows the strategy of distinguishing between the peer at the one hand (which
abstracts the concrete number of runtime components) and the peer instances on the other hand
(which correspond to these runtime components). This abstraction is the reason why the Peer
Model satisfies the scalability criterion.

As seen in the Send and Retry pattern of variant A as well as in the series of the Failover
patterns in variant B, the Peer Model allows the inclusion of time-functionality which influences
the processing of entries. The system-defined property “TTS” allows specifying when an entry
should be available for processing. In combination with a suitable wiring this could be used to
realize a time triggered execution of a certain service method or even a complete execution path.
Furthermore, the “TTL” property provides the means to control the amount of time before an
entry is considered as expired and wrapped with an exception entry. The flow mechanism allows
regulating these properties on an even higher level, affecting multiple entries. In conclusion, the
Peer Model satisfies the “time” criterion.

Currently, there exists a Java-based implementation which supports the execution of systems
modelled within the Peer Model. Moreover, a C# based version is already available [50]. It pro-
vides a core API, and on top of that an API with focus on usability. The extensible Peer Model
domain specific language, code generation for embedded hardware in ANSI C and documen-
tation generation is covered in [18]]. Further, an interactive, visual monitoring tool is in devel-
opment which supports developers in debugging models and understanding the flow of entries
throughout them [|14]]. Currently, the Peer Model is realized for different platforms, however, the
majority of these implementations and additional tools is not yet finished. The same holds for
the documentation — thus, the criterion “toolchain & documentation” is partially fulfilled.

First, simple, models can be created easily. The most important step is to understand how
wirings work and how they can be combined to realize the desired functionality. Wirings at-
tached with services are then the typical way to include coordination logic (and later also busi-
ness logic) and remote functionality. Therefore, users can start with simple models and extend
them with their increasing knowledge to more complex systems.

Table[7.1]shows a copy of the results of the evaluation in chapter 3] table [3.1]— except those

93



from the Actor Model. Table compares the results of the Actor Model with the previously
presented findings of the Peer Model. As can be seen, the extended Peer Model provides the best
results with respect to the set-up criterion catalog. This chapter has also shown the advantages
of the proposed work in case of changing requirements. This is the reason why table[7.2] has an
additional column containing flexibility as “new” criterion.

The results have to be read in the same fashion as in section[3.9} a’+’ denotes that the related
approach fulfils the considered criterion, whereas a *~’ denotes that the criterion is partially
fulfilled. A °’—’ indicates non-fulfilment.

CPN | Reo | Uppaal | BPMN | WS-BPEL
Composition + + — + 4
Reuse + + + + ¥
Parametrization ~ + + + +
SoC — + — + +
Dynamics — + — ~ +
Addressing — ~ + ~ +
Scalability — — + T I
Time ~ ~ ~ ~ ~
Toolchain & Docs ~ ~ + + +
Simplicity + — + ~ —

Table 7.1: Final classification (part I) of the considered modelling concepts and tools

Actor Model | Peer Model
Composition + +
Reuse + +
Parametrization + +
SoC + +
Dynamics + +
Addressing + +
Scalability + +
Time ~ +
Toolchain & Docs ~ ~
Simplicity + +
Flexibility ~ +

Table 7.2: Final classification (part II) of the considered modelling concepts and tools

94



CHAPTER

Conclusion

8.1 Summary

Developing each component of a new product from scratch is costly, includes risks and has
negative influence on the time to market. Therefore, the strategic reuse of software components
is an important factor for the success of companies. It can leverage existing software investment,
companies can build systems out of well-tested components of proven quality which have been
used a couple of times and thus, both risks as well as costs for development and testing can be
reduced. The software product line approach follows this aim by creating a platform of flexible
components which can be selected and combined into different products tailored to stakeholder
requirements. This approach enables cost efficient mass customization.

In this work, a pattern-based approach was presented which provides this variability known
from software product lines for the Peer Model. Patterns were introduced as new components for
the Peer Model and their interrelations with the original components were described. The pattern
concept of this work allows defining generic patterns which depend on certain parameters or
properties. Moreover, patterns can be combined to form more complex patterns — composition,
in fact, is an essential factor in this work. At configuration time, immediately before the patterns
are deployed, the user specifies the concrete behaviour. This influence on the behaviour is not
limited to minor changes: the pattern concept allows for far-reaching modifications and thus for
reuse on a large scale. Generic patterns can be designed and their concrete behaviour can be
tailored to the particular requirements.

The advantages of this approach were demonstrated by an example use case from a real
world domain, the train traffic telematics domain. Signals of approaching trains need to be
transferred from a sensor over multiple network nodes along the track to the level crossing unit.
The use case was split up in two variants: a basic and a more complex variant including the
clustering of single nodes into groups to form a more fault-tolerant system. Various modelling
concepts and tools ranging from more low-level to highly abstract approaches were selected and
with each of them the example use case was realized. In order to create a meaningful evaluation,
a set of criteria was developed emphasizing elements which are important for the design of

95




highly distributed and concurrent systems and essential for the aspired-to variability. The final
evaluation has shown that the Peer Model, extended with the pattern concept, stands out from
the other approaches in the domain of distributed and highly concurrent systems with respect
to the developed criteria. Systems designed with the Peer Model can be adapted to changing
requirements without modifying the underlying architectural design and thus, cost- and time-
intensive remodelling and refactoring work can be avoided.

8.2 Future Work

Following the work presented in this thesis, there is possible further work which could not be
addressed sufficiently:

e Implementation: A version of the Peer Model which provides the features of this pattern
concept is subject of future work. Currently, different variants of the Peer Model are in
development but none support patterns as “first-class citizens”. Though the parameter
mechanism can be realized using simple programming language constructs, patterns as
components and the adding of input links, output links and services at configuration time
are not yet supported. In current versions, a pattern is added to a model either by putting
its components into the particular peer or by creating a sub-peer.

e Extending the Peer Model’s domain specific language: A prerequisite for the above men-
tioned implementation is the extension of the domain specific language. The existing
domain specific language has to be analyzed and extended such that patterns and their
properties can be supported.

o Distributed Patterns: The pattern concept proposed in this work defined patterns as location-
free, virtual. This allows deploying different parts of a pattern on different nodes in the
network. However, the concrete mechanism including a lookup-alike approach to discover
the parts of a pattern in the network, as well as the effects of this distribution on the flow
of entries throughout the pattern is subject to future work.

e Pattern Catalog: This work has provided a proper basis for the creation of a so called
“pattern catalog”, which is a collection of frequently used and well-documented patterns.
The idea of this catalog is to support the development of systems where the user/designer
selects particular patterns and combines them as needed. The flexibility provided in this
work allows that arbitrary patterns can be combined and adjusted to the concrete stake-
holder requirements. Such an approach would enforce the reuse of components and as a
consequence also decrease development time and risks, and increase product quality.

e Limiting a pattern’s modifiability: In the proposed pattern concept, the parametrization
allows one to influence a pattern’s behaviour to a great extent. The question is whether
this capability should be restricted in such a way that the designed behaviour can only be
slightly modified — thus, patterns must retain their original purpose.

96



APPENDIX

WS-BPEL Example Processes

A.1 Variant A

A.1.1 WS-BPEL Sensor Process

<bpel:process name="SensorProcess"
targetNamespace="http: //sensorprocess.localhost"
suppressJoinFailure="yes"
xmlns:tns="http: // sensorprocess.localhost"
xmlns:bpel="http: //docs.oasis—open.org/wsbpel/2.0/process/

executable”

xmlns:xs="http: //www.w3.0rg/2001/XMLSchema"
xmlns:np="http: //nodeprocess.localhost">

<bpel:import namespace="http:// nodeprocess.localhost"
location="NodeProcessArtifacts.wsdl"
importType="http: //schemas.xmlsoap.org/wsdl/" />

<bpel:import location="SensorProcessArtifacts.wsdl"
namespace="http: //sensorprocess.localhost"
importType="http: //schemas.xmlsoap.org/wsdl/" />

<!— —>
<!— PARTNERLINKS —>
<!l— —_—>
<bpel:partnerLinks>
<l— The ’client’ role represents the requester of this service. —>
<!— In this case the sensor unit. —>

<bpel:partnerLink name="client"
partnerLinkType="tns:SensorProcess"
myRole="SensorProcessProvider" />

<bpel:partnerLink name="ForwardEventPL"
partnerLinkType="np:NodeProcess"
partnerRole="NodeProcessProvider"

97



98

<!—
<!— VARIABLES —>
<!l—
<bpel:variables>

<!l—

<!—
<bpel:sequence name="main">

myRole="NodeProcessRequester" />

</bpel:partnerLinks>

<bpel:variable name="input"
messageType="tns:SensorProcessRequestMessage" />
<bpel:variable name="output"
messageType="tns:SensorProcessResponseMessage" />
<bpel:variable name="ForwardEventMessage"
messageType="np:NodeProcessRequestMessage" />
<bpel:variable name="ReceiveAckMessage"
messageType="np:NodeProcessResponseMessage" />
<bpel:variable name="terminate"
type="xs:boolean"/>
<bpel:variable name="counter"
type="xs:integer"/>

</bpel:variables>

<!— ORCHESTRATION LOGIC —>
<!— Set of activities coordinating the flow of messages across
the services integrated within this business process

<bpel:receive name="receiveEvent"
partnerLink="client"
portType="tns:SensorProcess"
operation="process"
variable="input"
createlnstance="yes" />

<bpel:assign validate="no"
name="AssignEvent">
<bpel:copy>
<bpel:from>
<bpel:literal>
<tns:NodeProcessRequest
xmlns:tns="http: // nodeprocess.localhost"
xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—instance ">
<tns:input>tns:input</tns:input>
</tns:NodeProcessRequest>
</bpel:literal>
</bpel:from>
<bpel:to variable="ForwardEventMessage"
part="payload"/>
</bpel:copy>
<bpel:copy>
<bpel:from part="payload"
variable="input">




<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl .0">
<![CDATA[ tns:input ]]>
</bpel:query>
</bpel:from>
<bpel:to part="payload"
variable="ForwardEventMessage ">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<![CDATA[ np:input]]>
</bpel:query>
</bpel:to>
</bpel:copy>
</bpel:assign>

<bpel:assign validate="no"
name="InitCounter">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve">5</bpel:literal>
</bpel:from>
<bpel:to variable="counter"></bpel:to>
</bpel:copy>
</bpel:assign>
<bpel:assign validate="no"
name="1InitFlag">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve">false</bpel:literal>
</bpel:from>
<bpel:to variable="terminate"></bpel:to>
</bpel:copy>
</bpel:assign>
<bpel:repeatUntil name="RepeatUntil">
<bpel:sequence>
<bpel:invoke name="ForwardEvent"
partnerLink="ForwardEventPL"
operation="initiate"
portType="np:NodeProcess"
inputVariable="ForwardEventMessage"></bpel:invoke>

<bpel:pick name="Pick">
<bpel:onMessage partnerLink="ForwardEventPL"
operation="onAcknowledgement"
portType="np:NodeProcessCallback"
variable="ReceiveAckMessage">

<bpel:assign validate="no"
name="endLoop ">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve">true</bpel:literal>
</bpel:from>

99



100

<bpel:to variable="terminate"></bpel:to>
</bpel:copy>
</bpel:assign>
</bpel:onMessage>

<bpel:onAlarm>
<bpel:for>’PT5S’</bpel:for>
<bpel:assign name="decreaseCounter">
<bpel:copy>
<bpel:from
expressionLanguage="urn:oasis:names:tc:wsbpel:2.0
:sublang:xpathl .0">
<! [CDATA[$ counter — 1]]>
</bpel:from>
<bpel:to variable="counter"></bpel:to>
</bpel:copy>
</bpel:assign>
</bpel:onAlarm>
</bpel:pick>

</bpel:sequence>
<bpel:condition
expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<![CDATA[$ terminate or $counter = 0]]>
</bpel:condition>
</bpel:repeatUntil>

<bpel:if name="acknowledgementReceived">
<bpel:condition
expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<! [CDATA[$ terminate ]]>
</bpel:condition>

<bpel:assign validate="no"
name="AssignOK">
<bpel:copy>
<bpel:from>
<bpel:literal>
<tns:SensorProcessResponse
xmlns:tns="http://sensorprocess.localhost"
xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—instance ">
<tns:result>tns:result</tns:result>
</tns:SensorProcessResponse>
</bpel:literal>
</bpel:from>
<bpel:to variable="output"
part="payload"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from part="payload"
variable="ReceiveAckMessage">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">




<![CDATA[ np:result]]>
</bpel:query>
</bpel:from>
<bpel:to part="payload"
variable="output">
<bpel:query
queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpathl.0">
<![CDATA[ tns:result ]]>
</bpel:query>
</bpel:to>
</bpel:copy>
</bpel:assign>
<bpel:else>
<bpel:assign validate="no"
name="AssignErrorMessage ">
<bpel:copy>
<bpel:from>
<bpel:literal>
<tns:SensorProcessResponse
xmlns:tns="http: //sensorprocess.localhost"
xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—instance ">
<tns:result>tns:result</tns:result>
</tns:SensorProcessResponse>
</bpel:literal>
</bpel:from>
<bpel:to variable="output"
part="payload"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from>
<bpel:literal>
<tns:SensorProcessResponse
xmlns:tns="http: // sensorprocess.localhost"
xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—instance ">
<tns:result>Event couldn’t be forwarded!</tns:result>
</tns:SensorProcessResponse >
</bpel:literal >
</bpel:from >
<bpel:to part="payload"
variable="output"></bpel:to >
</bpel:copy >
</bpel:assign >
</bpel:else >
</bpel:if >
<bpel:reply name="replyOutput"
partnerLink="client"
portType="tns:SensorProcess"
operation="process"
variable="output" />
</bpel:sequence >
</bpel:process >

Listing A.1: WS-BPEL - Sensor Process

101



A.1.2 WS-BPEL Sensor Process WSDL

<?xml version="1.0"7>

<definitions name="SensorProcess"
targetNamespace="http: // sensorprocess.localhost"
xmlns:tns="http: //sensorprocess.localhost"

xmlns:plnk="http: //docs.oasis—open.org/wsbpel/2.0/plnktype"

xmlns="http: //schemas.xmlsoap.org/wsdl/"
xmlns:soap="http: //schemas.xmlsoap.org/wsdl/soap/">

<!—

<!— TYPE DEFINITION — List of types participating in this process —>
<!—

<types>

<schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http: //sensorprocess.localhost"
xmlns="http: //www.w3.0rg/2001/XMLSchema">

<element name="SensorProcessRequest">
<complexType>
<sequence>
<element name="input"
type="string"/>
</sequence>
</complexType>
</element>
<element name="SensorProcessResponse">
<complexType>
<sequence>
<element name="result"
type="string"/>
</sequence>
</complexType>
</element>
</schema>
</types>

<!—

<!— MESSAGE TYPE DEFINITION — Definition of the message types
used as part of the port type defintions —>

<!—

<message name="SensorProcessRequestMessage ">
<part name="payload"
element="tns:SensorProcessRequest"/>
</message>
<message name="SensorProcessResponseMessage ">
<part name="payload"
element="tns:SensorProcessResponse" />
</message>

<!—

<!— PORT TYPE DEFINITION — A port type groups a set of operations

102

—>

—>




into a logical service unit. —>
<!— _—>

<!— portType implemented by the SensorProcess BPEL process —>
<portType name="SensorProcess">
<operation name="process">
<input message="tns:SensorProcessRequestMessage" />
<output message="tns:SensorProcessResponseMessage" />
</operation>

</portType>

<!— —>
<!— PARTNER LINK TYPE DEFINITION —>

<!— —>

<plnk:partnerLinkType name="SensorProcess">
<plnk:role name="SensorProcessProvider"
portType="tns:SensorProcess"/>
</plnk:partnerLinkType>

<!— —>
<!— BINDING DEFINITION — Defines the message format and protocol

details for a web service. —>
<!— —>

<binding name="SensorProcessBinding"
type="tns:SensorProcess ">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="process ">
<soap:operation
soapAction="http: // sensorprocess.localhost/process" />
<input>
<soap:body use="literal" />
</input>
<output>
<soap:body use="literal" />
</output>
</operation>
</binding>

<l— ====== ======================================= —>
<!— SERVICE DEFINITION — A service groups a set of ports into
a service unit. —>
<l— ====== ======================================= —>
<service name="SensorProcessService">
<port name="SensorProcessPort"
binding="tns:SensorProcessBinding ">
<soap:address
location="http: //localhost:8080/o0de/processes/SensorProcess" />
</port>
</service>
</definitions>

Listing A.2: WS-BPEL - Sensor Process WSDL

103




A.1.3 WS-BPEL Node Process WSDL

<?xml version="1.0"7>

<definitions name="NodeProcess"
targetNamespace="http: // nodeprocess.localhost"
xmlns:tns="http: // nodeprocess.localhost"

xmlns:plnk="http: //docs.oasis—open.org/wsbpel/2.0/plnktype"

xmlns="http: //schemas.xmlsoap.org/wsdl/"
xmlns:soap="http: //schemas.xmlsoap.org/wsdl/soap/"
>
<types>
<schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http: // nodeprocess.localhost"
xmlns="http: //www.w3.0rg/2001/XMLSchema">

<element name="NodeProcessRequest">
<complexType>
<sequence>
<element name="input"
type="string" />
</sequence>
</complexType>
</element>

<element name="NodeProcessResponse ">
<complexType>
<sequence>
<element name="result"
type="string"/>
</sequence>
</complexType>
</element>
</schema>
</types>

<!—

<!— MESSAGE TYPE DEFINITION — Definition of the message types
as part of the port type defintions —>

used

<!—

<message name="NodeProcessRequestMessage">
<part name="payload"
element="tns:NodeProcessRequest" />
</ message>

<message name="NodeProcessResponseMessage ">
<part name="payload"
element="tns:NodeProcessResponse" />
</message>

<!—

<!— PORT TYPE DEFINITION — A port type groups a set of operations

104




into a logical service unit. —>
<!— _—>

<!— portType implemented by the NodeProcess BPEL process —>
<portType name="NodeProcess">
<operation name="initiate ">
<input message="tns:NodeProcessRequestMessage"/>
</operation>
</portType>

<!— portType implemented by the requester of NodeProcess BPEL
process for asynchronous callback purposes
—>
<portType name="NodeProcessCallback">
<operation name="onAcknowledgement">
<input message="tns:NodeProcessResponseMessage" />
</operation>

</portType>

<!— —>
<!—  PARTNER LINK TYPE DEFINITION —>

<!— —_—>

<plnk:partnerLinkType name="NodeProcess">
<plnk:role name="NodeProcessProvider"
portType="tns:NodeProcess"/>
<plnk:role name="NodeProcessRequester"
portType="tns:NodeProcessCallback"/>
</plnk:partnerLinkType>

<!— _
<!— BINDING DEFINITION —>
<!l— _—>

<binding name="NodeProcessBinding"
type="tns:NodeProcess ">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="initiate ">
<soap:operation
soapAction="http: //nodeprocess.localhost/initiate"/>
<input>
<soap:body use="literal"/>
</input>
</operation>
</binding>

<binding name="NodeProcessCallbackBinding"
type="tns:NodeProcessCallback ">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="onAcknowledgement">
<soap:operation
soapAction="http: //nodeprocess.localhost/onResult"/>
<input>

105




<soap:body use="literal"/>

</input>

</operation>

</binding>

<!—

<!— SERVICE DEFINITION —>

<!—

<service name="NodeProcessService">
<port name="NodeProcessPort"
binding="tns:NodeProcessBinding ">
<soap:address
location="http://localhost:8080/0ode/processes/NodeProcess"/>

</port>
</service>

<service name="NodeProcessServiceCallback">
<port name="NodeProcessPortCallbackPort"
binding="tns:NodeProcessCallbackBinding">
<soap:address
location="http://localhost:8080/ode/processes/NodeProcessCallback"/>

</port>
</service>

</definitions>

Listing A.3: WS-BPEL - Node Process WSDL

A.2 Variant B

A.2.1 WS-BPEL Group Member Process

<bpel:process name="BPELForward"

<bpel:import

<bpel:import

<bpel:import

106

targetNamespace="http: //node. train .demo"
suppressJoinFailure="yes"

xmlns:tns="http: //node. train .demo"

xmlns:bpel="http: //docs.oasis—open.org/wsbpel/2.0/process/

executable"

xmlns:ns="http: // group. train .demo/"
xmlns:fw="http: // forward. train .demo/"
xmlns:xs="http: //www.w3.0rg/2001/XMLSchema">

namespace="http: //forward. train .demo/"
location="ForwardSignalWS . wsdl"

importType="http: //schemas.xmlsoap.org/wsdl/"></bpel:import>
namespace="http:// group.train.demo/"
location="GroupCoordinationWS . wsdl"

importType="http: //schemas.xmlsoap.org/wsdl/"></bpel:import>
location="BPELForwardArtifacts . wsdl"

namespace="http: //node. train .demo"

importType="http: //schemas.xmlsoap.org/wsdl/" />




<!— —>

<!— PARTNERLINKS —>

<!— —>

<bpel:partnerLinks>

<bpel:partnerLink name="downstream"

partnerLinkType="tns:BPELForward"
myRole="BPELForwardProvider"
partnerRole="BPELForwardRequester" />

<bpel:partnerLink name="group"
partnerLinkType="tns:GroupCoordinationWS"
partnerRole="groupOps"></bpel:partnerLink>

<bpel:partnerLink name="forward"
partnerLinkType="tns:ForwardSignalWS"
partnerRole="forwardSignal"></bpel:partnerLink>
</bpel:partnerLinks>

<!l— _—>
<!— VARIABLES —>
<!— —>

<bpel:variables>

<bpel:variable name="input"
messageType="tns:BPELForwardRequestMessage" />

<bpel:variable name="ackMsg"
messageType="tns:BPELForwardResponseMessage" />

<bpel:variable name="isLeaderRsp"
messageType="ns:isGroupLeaderResponse" />

<bpel:variable name="nodeIDMsg"
messageType="ns:isGroupLeader"/>

<bpel:variable name="groupAckMsg"
messageType="ns:groupAck"/>

<bpel:variable name="groupAckRsp"
messageType="ns:groupAckResponse" />

<bpel:variable name="forwardMsg"
messageType="fw:forwardSignal"/>

<bpel:variable name="recGroupAckMsg"
messageType="tns:GroupAcknowledgementMessage" />

<bpel:variable name="claimLeadMsg"
messageType="ns:claimLeadership"/>

<bpel:variable name="claimLeadRsp"
messageType="ns:claimLeadershipResponse" />

<bpel:variable name="nodelD"
type="xs:int"/>

</bpel:variables>

<!— —>

<!— ORCHESTRATION LOGIC —>

<!— Set of activities coordinating the flow of messages across the
services integrated within this business process —>

<!— —>

<bpel:sequence name="main">
<bpel:receive name="receivelnput"

107




partnerLink="downstream"
portType="tns:BPELForward"
operation="1initiate "
variable="input"
createlnstance="yes" />

<bpel:assign validate="no"
name="AssignNodelID ">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve">I</bpel:literal>
</bpel:from>
<bpel:to variable="nodelD"></bpel:to>
</bpel:copy>
</bpel:assign>

<bpel:assign validate="no"
name="AssignLeadershipMsg">
<bpel:copy>
<bpel:from>
<bpel:literal>

<tns:isGroupLeader xmlns:tns="http://group.train.demo/"

xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—
instance ">
<nodelD>0</nodelD>

</tns:isGroupLeader>
</bpel:literal>
</bpel:from>
<bpel:to variable="nodeIDMsg"

part="parameters"></bpel:to>
</bpel:copy>

<bpel:copy>
<bpel:from variable="nodelD"></bpel:from>
<bpel:to part="parameters"
variable="nodeIlDMsg">
<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0

:sublang:xpathl.0"><![CDATA[ nodelID ]]></bpel:query>
</bpel:to>

</bpel:copy>
</bpel:assign>

<bpel:invoke name="checkLeadership"
partnerLink="group"
operation="isGroupLeader"
portType="ns:GroupCoordinationWS"
inputVariable="nodeIDMsg"
outputVariable="isLeaderRsp"></bpel:invoke>

<bpel:if name="isLeader">
<bpel:condition>
$isLeaderRsp.parameters// return = "true"
</bpel:condition>
<bpel:sequence>

108




<bpel:assign validate="no"
name="AssignGroupAckMsg">
<bpel:copy>
<bpel:from>
<bpel:literal>
<tns:groupAck xmlns:tns="http://group.train.demo/"
xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—
instance ">
<signal>signal</signal>
</tns:groupAck>
</bpel:literal>
</bpel:from>
<bpel:to variable="groupAckMsg"
part="parameters"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from part="payload"
variable="input">
<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0
:sublang:xpathl.0"><![CDATA[ tns:signal ]]></bpel:query>
</bpel:from>

<bpel:to part="parameters"
variable="groupAckMsg">
<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0
:sublang:xpathl .0"><![CDATA[ signal ]]></bpel:query>
</bpel:to>
</bpel:copy>
</bpel:assign>
<bpel:invoke name="groupAck"
partnerLink="group"
operation="groupAck"
portType="ns:GroupCoordinationWS"
inputVariable="groupAckMsg"
outputVariable="groupAckRsp"></bpel:invoke>
<bpel:assign validate="no"
name="AssignForwardMsg">
<bpel:copy>
<bpel:from>
<bpel:literal>
<tns:forwardSignal xmlns:tns="http://forward. train .demo/"
xmlns:xsi="http: //www.w3.0rg/2001/
XMLSchema—instance ">
<signal>signal</signal>
</tns:forwardSignal>
</bpel:literal>
</bpel:from>
<bpel:to variable="forwardMsg"
part="parameters"></bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from part="payload"
variable="input">

109




110

<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0

:sublang:xpathl.0"><![CDATA[ tns:signal ]]></bpel:query>
</bpel:from>

<bpel:to part="parameters"
variable="forwardMsg">
<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0

:sublang:xpathl .0"><![CDATA[ signal []></bpel:query>
</bpel:to>

</bpel:copy>
</bpel:assign>
<bpel:invoke name="EventForwarder"
partnerLink="forward"
operation="forwardSignal"
portType="fw:ForwardSignalWS"
inputVariable="forwardMsg"></bpel:invoke>
<bpel:assign validate="no"
name="AssignAckMsg">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve "><tns:BPELForwardResponse
xmlns:tns="http: //node. train .demo"
xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—instance ">
<tns:result>is Leader</tns:result>

</tns:BPELForwardResponse></bpel:literal>
</bpel:from>

<bpel:to part="payload"
variable="ackMsg" />
</bpel:copy>

</bpel:assign>
</bpel:sequence>
<bpel:else>
<bpel:pick name="Pick">
<bpel:onMessage partnerLink="downstream"
operation="groupAck"
portType="tns:BPELForward"

variable="recGroupAckMsg">
<bpel:exit />

</bpel:onMessage>

<bpel:onAlarm>
<bpel:for>’PT10S’</bpel:for>
<bpel:sequence>
<bpel:assign validate="no"
name="AssignLeadMsg">
<bpel:copy>
<bpel:from>
<bpel:literal>
<tns:claimLeadership xmlns:tns="http://group.train .demo
I
xmlns:xsi="http: //www.w3.0rg/2001/

XMLSchema—instance ">
<nodeld>0</nodeld>




</tns:claimLeadership>
</bpel:literal>
</bpel:from>
<bpel:to variable="claimLeadMsg"

part="parameters"></bpel:to>
</bpel:copy>

<bpel:copy>
<bpel:from variable="nodelD"></bpel:from>
<bpel:to part="parameters"
variable="claimLeadMsg">
<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0

:sublang:xpathl.0"><![CDATA[ nodeld ]]></bpel:query>
</bpel:to>

</bpel:copy>

</bpel:assign>

<bpel:invoke name="claimLeadership"
partnerLink="group"
operation="claimLeadership"
portType="ns:GroupCoordinationWS"
inputVariable="claimLeadMsg"
outputVariable="claimLeadRsp"></bpel:invoke>

<bpel:assign validate="no"
name="AssignForwardMsg">
<bpel:copy>
<bpel:from>
<bpel:literal>

<tns:forwardSignal xmlns:tns="http://forward. train .demo
/o

xmlns:xsi="http: //www.w3.0rg/2001/
XMLSchema—instance ">
<signal>signal</signal>
</tns:forwardSignal>
</bpel:literal>
</bpel:from>
<bpel:to variable="forwardMsg"

part="parameters"></bpel:to>
</bpel:copy>

<bpel:copy>
<bpel:from part="payload"
variable="input">
<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0

:sublang:xpathl .0 "><![CDATA[ tns:signal ]]></bpel:query
>

</bpel:from>
<bpel:to part="parameters"
variable="forwardMsg">
<bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0

:sublang:xpathl .0 "><![CDATA[ signal ]]></bpel:query>
</bpel:to>

</bpel:copy>
</bpel:assign>
<bpel:invoke name="EventForwarder"

111



partnerLink="forward"
operation="forwardSignal"
portType="fw:ForwardSignalWS"
inputVariable="forwardMsg"></bpel:invoke>

<bpel:assign validate="no"
name="AssignAckMsg">
<bpel:copy>
<bpel:from>
<bpel:literal xml:space="preserve"><
tns:BPELForwardResponse
xmlns:tns="http: //node. train .demo"
xmlns:xsi="http: //www.w3.0rg/2001/XMLSchema—instance"
>
<tns:result>Time elapsed — take group
lead</tns:result>
</tns:BPELForwardResponse></
bpel:literal>
</bpel:from>
<bpel:to part="payload"
variable="ackMsg" />
</bpel:copy>
</bpel:assign>
</bpel:sequence>
</bpel:onAlarm>
</bpel:pick>
</bpel:else>
</bpel:if>

<bpel:invoke name="sendAck"
partnerLink="downstream"
portType="tns:BPELForwardCallback"
operation="onResult"
inputVariable="ackMsg" />

</bpel:sequence>
</bpel:process>

Listing A.4: WS-BPEL - Group Member Process

A.2.2 WS-BPEL Group Member Process WSDL

<?xml version="1.0" encoding="UTF—8" standalone="no"?7>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

112

xmlns:plnk="http: //docs.oasis—open.org/wsbpel/2.0/plnktype"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http: //node. train .demo"

xmlns:vprop="http: //docs.oasis—open.org/wsbpel/2.0/varprop"
xmlns:wsdl="http:// group.train .demo/"

xmlns:wsdll="http: // forward. train .demo/"

name="BPELForward"

targetNamespace="http: //node. train .demo">




<import location="GroupCoordinationWS . wsdl"
namespace="http: // group.train .demo/" />

<import location="ForwardSignalWS . wsdl"
namespace="http: //forward. train.demo/" />

<types>
<schema xmlns="http: //www.w3.0rg/2001/XMLSchema"
attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http: //node. train .demo">

<element name="BPELForwardRequest">
<complexType>
<sequence>
<element name="signal"
type="string" />
</sequence>
</complexType>
</element>

<element name="BPELForwardResponse">
<complexType>
<sequence>
<element name="result"
type="string" />
</sequence>
</complexType>
</element>

<element name="GroupAcknowledgement">
<complexType>
<sequence>
<element name="acknowledgement"
type="string" />
</sequence>
</complexType>
</element>

</schema>

</types>

<!— —_—>
<!— MESSAGE TYPE DEFINITION —>

<l— _—>

<message name="BPELForwardRequestMessage">
<part element="tns:BPELForwardRequest"
name="payload" />
</message>

<message name="BPELForwardResponseMessage">

<part element="tns:BPELForwardResponse"
name="payload" />

113




</message>

<message name="GroupAcknowledgementMessage ">
<part element="tns:GroupAcknowledgement"
name="payload" />
</message>

<!— _—>
<!— PORT TYPE DEFINITION —>
<!l— _—>

<!— portType implemented by the BPELForward BPEL process —>
<portType name="BPELForward">
<operation name="initiate ">
<input message="tns:BPELForwardRequestMessage" />
</operation>
<operation name="groupAck">
<input message="tns:GroupAcknowledgementMessage" />
</operation>
</portType>

<!— portType implemented by the requester of BPELForward BPEL process for
asynchronous callback purposes —>
<portType name="BPELForwardCallback">
<operation name="onResult">
<input message="tns:BPELForwardResponseMessage" />
</operation>

</portType>

<!— —>
<!— PARTNER LINK TYPE DEFINITION —>

<!— —_—>

<plnk:partnerLinkType name="BPELForward">
<plnk:role name="BPELForwardProvider"
portType="tns:BPELForward" />
<plnk:role name="BPELForwardRequester"
portType="tns:BPELForwardCallback" />
</plnk:partnerLinkType>

<plnk:partnerLinkType name="GroupCoordinationWS">
<plnk:role name="groupOps"
portType="wsdl:GroupCoordinationWS" />
</plnk:partnerLinkType>

<plnk:partnerLinkType name="ForwardSignalWS">
<plnk:role name="forwardSignal"
portType="wsdll:ForwardSignalWS" />
</plnk:partnerLinkType>

<!l— _—>
<!— BINDING DEFINITION —>
<!— RN

114




<binding name="BPELForwardBinding"
type="tns:BPELForward ">
<soap:binding style="document"
transport="http: //schemas.xmlsoap.org/soap/http" />
<operation name="initiate ">
<soap:operation soapAction="http://node.train.demo/initiate" />
<input>
<soap:body use="literal" />
</input>
</operation>
<operation name="groupAck">
<soap:operation soapAction="http://node.train.demo/groupAck" />
<input>
<soap:body use="literal" />
</input>
</operation>
</binding>

<binding name="BPELForwardCallbackBinding"
type="tns:BPELForwardCallback ">
<soap:binding style="document"
transport="http: //schemas.xmlsoap.org/soap/http" />
<operation name="onResult">
<soap:operation soapAction="http://node.train.demo/onResult" />
<input>
<soap:body use="literal" />
</input>
</operation>
</binding>

<!l— _—>
<!— SERVICE DEFINITION — A service groups a set of ports into a

service unit —>
<!— —>

<service name="BPELForwardService">
<port binding="tns:BPELForwardBinding"
name="BPELForwardPort">
<soap:address location="http://localhost:8080/ode/processes/BPELForward
">
</port>
</service>
<service name="BPELForwardServiceCallback">
<port binding="tns:BPELForwardCallbackBinding"
name="BPELForwardPortCallbackPort">
<soap:address
location="http: //localhost:8080/o0de/processes/BPELForwardCallback" />
</port>
</service>
</definitions>

Listing A.5: WS-BPEL - Group Member Process WSDL

115







APPENDIX

Akka Examples

B.1 Network Node Actor with End-to-End Acknowledgement

public class NetworkNode extends UntypedActor ({
private LoggingAdapter log =
Logging. getLogger(getContext().system (), this);
private TreeSet<Integer> processed;
private final String upstream;
private final boolean end2end;

public NetworkNode(String upstream , boolean end2end) ({
this .upstream = upstream;
this .end2end = end2end;
this.processed = new TreeSet<>();

}

public static Props makeProps(String upstream, boolean end2end) {
return Props.create (NetworkNode.class , upstream, end2end);

}

@Override
public void onReceive(Object o) throws Exception {
if (o instanceof EventMsg) {
EventMsg m = (EventMsg) o;
log.info(m.toString ());

if (!end2end) {

//send ack

this.getSender (). tell (new AckMsg(m. getID()), this.getSelf());
}

if (! this.processed.contains(m.getID())) {
this . processed.add(m. getID () );
this.getContext().actorOf (Forwarder.makeProps (

117




upstream , this.getSender(), m, end2end));
}

}else
unhandled (o) ;

Listing B.1: Akka - End-to-End Network Node Actor

B.2 Forwarder Actor with End-to-End Acknowledgement

public class Forwarder extends UntypedActor {
private LoggingAdapter log =
Logging . getLogger(getContext().system (), this);
private final String upstream;
private final EventMsg event;
private final boolean end2end;
private Cancellable handler;
private ActorRef downstream;

public Forwarder(String upstream , ActorRef downstream, EventMsg event,
boolean end2end) {
this .upstream = upstream;
this .downstream = downstream;
this.event = event;
this .end2end = end2end;
this . handler = null;

}

public static Props makeProps(String upstream, ActorRef downstream,
EventMsg event, boolean end2end) {
return Props.create (Forwarder.class, upstream, downstream, event,
end2end) ;
}

@Override
public void preStart() throws Exception {
super . preStart () ;

final ActorSelection selection = getContext().actorSelection (upstream);
this.handler = this.getContext().system().scheduler ().schedule (
FiniteDuration.Zero (), Duration.create (5L, TimeUnit.SECONDS) ,
new Runnable () {
@Override
public void run() {
selection. tell (event, getSelf());

}

}, this.getContext().dispatcher());
this.getContext().setReceiveTimeout(Duration.create (25L, TimeUnit.
SECONDS) ) ;

118




}

@Override
public void onReceive(Object o) throws Exception {
if (o instanceof AckMsg) ({
log.info(o.toString ());
this . handler.cancel () ;

if (this.end2end && this.downstream!=null) {
this .downstream. tell (o, getContext().parent());
}
this . getContext().stop(getSelf());
} else if (o instanceof ReceiveTimeout) {
log.info ("Timeout occured, could not forward event!");
this . handler.cancel () ;
this . getContext().stop(getSelf());
} else {
this .unhandled (o) ;
1

Listing B.2: Akka - End-to-End Forwarder Actor

119







(8]

Bibliography

Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, USA, 1986.

Akka.
http://akka.io/l Accessed: 27.01.2014.

Apache ODE - Orchestration Director Engine.
http://ode.apache.orqg/. Accessed: 27.11.2013.

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. Feature-Oriented Software
Product Lines: Concepts and Implementation. Berlin/Heidelberg, 2013. 308 pages, ISBN
978-3-642-37520-0.

Farhad Arbab. Reo: a channel-based coordination model for component composition.
Mathematical. Structures in Comp. Sci., 14(3):329-366, June 2004.

Farhad Arbab. Puff, The Magic Protocol. In Formal Modeling: Actors, Open Systems,
Biological Systems, pages 169-206. Springer, 2011.

Farhad Arbab, Christel Baier, Frank De Boer, and Jan Rutten. Models and temporal logics
for timed component connectors. In Software Engineering and Formal Methods, 2004.
SEFM 2004. Proceedings of the Second International Conference on, pages 198-207.
IEEE, 2004.

Christel Baier. Probabilistic models for reo connector circuits. Journal of Universal Com-
puter Science, 11(10):1718-1748, oct 2005. http://www.jucs.org/jucs_11_]
10/probabilistic_models_for_ reo, Accessed: 22.11.2013.

Gerd Behrmann, Re David, and Kim G. Larsen. A tutorial on uppaal. pages 200-236.
Springer, 2004.

Egon Borger. Approaches to modeling business processes: a critical analysis of bpmn,
workflow patterns and yawl. Software and System Modeling, 11(3):305-318, 2012.

Sgren Christensen and Niels Damgaard Hansen. Coloured Petri Nets Extended with Chan-
nels for Synchronous Communication. In Application and Theory of Petri Nets 1994, Proc.
of 15th Intern. Conf, pages 159-178. Springer.

121


http://akka.io/
http://ode.apache.org/
http://www.jucs.org/jucs_11_10/probabilistic_models_for_reo
http://www.jucs.org/jucs_11_10/probabilistic_models_for_reo

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

122

Stefan Cra. A formal model of the Extensible Virtual Shared Memory (XVSM) and
its implementation in Haskell. Master’s thesis, Technische Universitidt Wien, Institut fiir
Computersprachen, 2010.

Stefan CraB, eva Kiihn, and Gernot Salzer. Algebraic foundation of a data model for an
extensible space-based collaboration protocol. In Proceedings of the 2009 International
Database Engineering & Applications Symposium, IDEAS °09, pages 301-306, New York,
NY, USA, 2009. ACM.

Maximilian Csuk. Developing an Interactive, Visual Monitoring Software for the Peer
Model Approach. Master’s thesis, Technische Universitit Wien, Institut fiir Computer-
sprachen, 2014. in preparation.

Michael Duvigneau, Daniel Moldt, and Heiko Rolke. Concurrent architecture for a multi-
agent platform. In Proceedings of the 3rd international conference on Agent-oriented soft-
ware engineering 111, AOSE’02, pages 59-72, Berlin, Heidelberg, 2003. Springer-Verlag.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

David Gelernter. Generative communication in linda. ACM Transactions on Programming
Languages and Systems (TOPLAS), 7(1):80-112, 1985.

Thomas Hambéck. Towards a Toolchain for Asynchronous Embedded Programming based
on the Peer-Model. Master’s thesis, Technische Universitdt Wien, Institut fiir Computer-
sprachen, 2014. in preparation.

Carl Hewitt. Actor model of computation: Scalable robust information systems. arXiv
preprint arXiv:1008.1459, 2010.

Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism
for Artificial Intelligence. In IJCAI, pages 235-245, 1973.

Carl Hewitt, Erik Meijer, and Clemens Szyperski. The actor model.
http://channel9.msdn.com/Shows/Going+Deep/Hewitt—Meijer—
and-Szyperski-The-Actor-Model-everything-you-wanted-to-
know—-but-were—-afraid-to-ask. Accessed: 24.01.2014.

Paul Istoan. Defining Composition Operators for BPMN. In Thomas Gschwind, Flavio
Paoli, Volker Gruhn, and Matthias Book, editors, Software Composition, volume 7306 of
Lecture Notes in Computer Science, pages 17-34. Springer Berlin Heidelberg, 2012.

Kurt Jensen. A brief introduction to coloured petri nets. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 203-208. Springer, 1997.


http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask
http://channel9.msdn.com/Shows/Going+Deep/Hewitt-Meijer-and-Szyperski-The-Actor-Model-everything-you-wanted-to-know-but-were-afraid-to-ask

[24]

Matthias Kloppmann, Dieter Koenig, Frank Leymann, Gerhard Pfau, Alan Rickayzen,
Claus von Riegen, Patrick Schmidt, and Ivana Trickovic. WS-BPEL Extensions for Sub-
processes (BPEL-SPE). IBM Corporation and SAP AG, 2005.

Christian Koehler, Farhad Arbab, and Erik de Vink. Reconfiguring distributed reo connec-
tors. In Recent Trends in Algebraic Development Techniques, pages 221-235. Springer,
2009.

Christian Koehler, David Costa, José Proenca, and Farhad Arbab. Reconfiguration of reo
connectors triggered by dataflow. Electronic Communications of the EASST, 10, 2008.

Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab. Modeling dy-
namic reconfigurations in reo using high-level replacement systems. Science of Computer
Programming, 76(1):23-36, 2011.

Lars M. Kristensen, Sgren Christensen, and Kurt Jensen. The practitioner’s guide to
coloured Petri nets. [International Journal on Software Tools for Technology Transfer,

2:98-132, 1998.

eva Kiihn. Peer Model Tutorial. Technical report, Technische Universitit Wien, E185/1,
February 2012.

eva Kiithn. A Group based Upstream Notification Protocol. Technical report, Technische
Universitdat Wien, E185/1, January 2013.

eva Kiihn, Stefan Cral3, Gerson Joskowicz, Alexander Marek, and Thomas Scheller. Peer-
based programming model for coordination patterns. In COORDINATION, pages 121-135,
2013.

eva Kiihn, Stefan Cral}, Gerson Joskowicz, and Martin Novak. Flexible Modeling of
Policy-Driven Upstream Notification Strategies. In 29th Symposium On Applied Com-
puting (SAC), Gyeongju, Korea, March 24-28 2014. ACM.

eva Kiihn, Richard Mordinyi, Laszlé Keszthelyi, and Christian Schreiber. Introducing
the concept of customizable structured spaces for agent coordination in the production
automation domain. In Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, AAMAS 09, pages 625-632, Richland, SC,
2009. International Foundation for Autonomous Agents and Multiagent Systems.

eva Kiihn, Richard Mordinyi, and Christian Schreiber. An extensible space-based coordina-
tion approach for modeling complex patterns in large systems. In Leveraging Applications
of Formal Methods, Verification and Validation, pages 634—648. Springer, 2009.

eva Kiihn, Johannes Riemer, and Gerson Joskowicz. XVSM (eXtensible Virtual Shared
Memory) Architecture and Application. Technical report, Technische Universitit Wien.

Olaf Kummer. Introduction to Petri nets and reference nets. Sozionik Aktuell, 1:1-9, 2001.
ISSN 1617-2477.

123



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

124

K.G. Larsen, P. Pettersson, and Wang Yi. Compositional and symbolic model-checking
of real-time systems. In Real-Time Systems Symposium, 1995. Proceedings., 16th IEEE,
pages 76-87, 1995.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. [Int. Journal on
Software Tools for Technology Transfer, 1:134-152, 1997.

Daniel Moldt and Heiko Rélke. Pattern based workflow design using reference nets.
In Proceedings of the 2003 international conference on Business process management,

BPM’03, pages 246-260, Berlin, Heidelberg, 2003. Springer-Verlag.

Richard Mordinyi, eva Kiihn, and Alexander Schatten. Space-based architectures as ab-
straction layer for distributed business applications. In Complex, Intelligent and Software
Intensive Systems (CISIS), 2010 International Conference on, pages 47-53. IEEE, 2010.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541-580, 1989.

Linda Northrop. Software product lines essentials. Software Engineering Institute,
Carnegie Mellon University, 2008.

Linda Northrop, Paul Clements, et al. A Framework for Software Product Line Prac-
tice, Version 5.0. Software Engineering Institute, Carnegie Mellon University, http://

www.sel.cmu.edu/productlines/frame_report/index.html. Accessed:
07.03.2014.

OASIS. UDDI Specification Version 3.0.2. http://uddi.org/pubs/uddi_v3.
htm, October 2004. Accessed: 27.11.2013.

OASIS. Web Services Business Process Execution Language (WS-BPEL) Version 2.0.
http://docs.ocasis—-open.org/wsbpel/2.0/0S/wsbpel-v2.0-
0S.html, April 2007. Accessed: 25.11.2013.

Object Management Group (OMG). Business Process Model and Notation (BPMN) Ver-
sion 2.0.
http://www.omg.org/spec/BPMN/2.0/, January 2011. Accessed: 22.11.2013.

Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Technische Hochschule
Darmstadt, 1962.

Klaus Pohl, Giinter Bockle, and Frank Van Der Linden. Software product line engineering,
volume 10. Springer, 2005.

Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen, Jacob Frank
Qvortrup, Martin Stig Stissing, Michael Westergaard, Sgren Christensen, and Kurt Jensen.
CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets. In Proceedings of
the 24th International Conference on Applications and Theory of Petri Nets, ICATPN’03,
pages 450-462, Berlin, Heidelberg, 2003. Springer-Verlag.


http://www.sei.cmu.edu/productlines/frame_report/index.html
http://www.sei.cmu.edu/productlines/frame_report/index.html
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/

[50]

[57]

Dominik Rauch. PeerSpace.NET - Implementing and Evaluating the Peer Model with
Focus on API Usability. Master’s thesis, Technische Universitiat Wien, Institut fiir Com-
putersprachen, 2014. in preparation.

Reo - Extensible Coordination Tools.
http://reo.project.cwi.nl/reo/wiki/Tools. Accessed: 27.11.2013.

Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of variability realization
techniques: Research articles. Softw. Pract. Exper., 35(8):705-754, July 2005.

Uppaal Language Reference.
http://www.uppaal.com/index.php?sida=217&rubrik=101. Accessed:
04.10.2013.

Riidiger Valk. Petri Nets as Token Objects: An Introduction to Elementary Object Nets. In

Proceedings of the 19th International Conference on Application and Theory of Petri Nets,
ICATPN 98, pages 1-25, London, UK, 1998. Springer-Verlag.

World Wide Web Consortium (W3C). SOAP Version 1.2. http://www.w3.0rg/TR/
soap/}, April 2007. Accessed: 27.11.2013.

World Wide Web Consortium (W3C). Web Services Description Language (WSDL) Ver-
sion 2.0. http://www.w3.0rg/TR/2007/REC-wsd120-20070626, June 2007.
Accessed: 27.11.2013.

World Wide Web Consortium (W3C). XML Schema Version 1.1. http://www.w3.
org/XML/Schemal April 2012. Accessed: 27.11.2013.

125


http://reo.project.cwi.nl/reo/wiki/Tools
http://www.uppaal.com/index.php?sida=217&rubrik=101
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema

	Introduction
	Motivation
	Contribution
	Methodology
	Structure of the Master's Thesis

	Related Work
	Petri Nets
	Reo
	Uppaal
	BPMN - Business Process Model and Notation
	WS-BPEL
	Actor Model

	Comparison of Related Work
	Comparative Use Case
	Evaluation Criteria
	Petri nets
	Reo
	Uppaal
	BPMN - Business Process Model and Notation
	WS-BPEL
	Actor Model
	Classification Summary

	Peer Model
	Basics
	Components
	Advanced Concepts

	Pattern Concept
	What is a Pattern?
	Pattern Parametrization
	Pattern Types
	Pattern Composition
	Pattern Deployment
	Patterns, Peers, Peer Instances and their Relationship

	Use Case Implementation
	Variant A
	Variant B

	Flexibility
	End-to-End Acknowledgement
	Event Filtering
	Conclusion

	Conclusion
	Summary
	Future Work

	WS-BPEL Example Processes
	Variant A
	Variant B

	Akka Examples
	Network Node Actor with End-to-End Acknowledgement
	Forwarder Actor with End-to-End Acknowledgement

	Bibliography

