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Kurzfassung

Immer öfter treten Naturkatastrophen auf, die weltweitem CO2-Ausstoß und
dem daraus resultierenden Klimawandel zugeordnet werden. Große Hoffnung
wird in die erneuerbaren Energien gesetzt, um die Emissionen zu reduzieren;
vor allem Sonnen- und Windenergie werden verstärkt forciert und ausgebaut.

Diese Diplomarbeit soll einen Beitrag leisten, um die noch vielen offe-
nen Fragen und ungelösten Probleme rund um die volatilen, erneuerbaren
Energieträger schrittweise behandeln und letztendlich auch lösen zu können.

Wir haben für unsere Simulationen die Auswirkung der Korrelation zweier
Windparks und deren Lasteinspeisung betrachtet. Mit der Korrelation wird
die geographische Distanz beider Standorte als Windabhängigkeit modelliert.

Die Erzeugungscharakteristik eines Windparks kann sehr gut durch eine
β-Verteilung dargestellt werden. Daher stand die Erzeugung von β-verteilten
Zufallsvariablen mit einer bestimmten Korrelation im Mittelpunkt.

Wir wenden das DC-Lastfluss Modell auf ein kleines Testsystem an. Dieses
besteht aus zwei Windparks, einer Last mit Weibull-Verteilung und einem
Slack. Die Berechnungen wurden für alle wichtigen Leitungen und zwei
Szenarien durchgeführt.

Einerseits wurden zwei Parks mit gleicher Wahrscheinlichkeitsverteilung
für den gesamten Bereich von keiner bis zur vollen Korrelation simuliert.

Andererseits haben wir zwei unterschiedliche Windparks betrachtet und
von keiner bis zur maximal möglichen Korrelation der beiden Verteilungen
untersucht. Diese hängt von der Ähnlichkeit der beiden β-Verteilungen ab.

Als weiteres Szenario wurden noch Speicher und Leitungslimits einbezo-
gen. Die Speicher wurden bei jedem Knoten angebunden und ermöglichen
eine ungekürzte Produktion bei Einführung von Limits. Es wurde keine Ein-
schränkungen auf eine bestimmte Speichertechnologie vorgenommen.

Mit unserer Korrelationsmethode können wir Gruppen von β-verteilten
Zufallszahlen mit einer exakten, vorgegebenen Korrelation erzeugen. Un-
sere Simulationen ergeben, dass relativ einfach die minimale und maximale
Belastung der Leitung ermittelt werden kann - dazu müssen die Lastfluss-
Ergebnisse für keine und maximale Korrelation überlagert werden.
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Abstract

This master thesis deals with probabilistic power flow analysis for correlated,
β-distributed wind power injections.

The importance of renewable energies steadily increases over time. Wind
and solar energy are playing an ever increasingly significant role in the field
of climate change and smart grid applications.

In this research we focused on wind energy. We looked specifically at the
correlation between wind power injections of different wind power farms. The
correlation models the geographical distance between these wind power plant
sites. The output of wind power plant farms can be described best by the
means of probability density functions with β-distributions. We developed
an algorithm to generate a set of β-distributed random variables to fit the
desired correlation as closely as possible.

Our simulation method is DC-load flow and uses power transfer distribu-
tion factors. We applied our method to a small grid with two wind power
injections and one load with Weibull distribution as well as a slack. We in-
vestigated the power flow on the important branches for a range from non to
maximum correlation for two scenarios with different input densities.

Firstly, we investigated the situation for two equal wind parks and calcu-
lated the line flow for the correlation range from zero to full correlation.

Secondly, we repeated the simulations with differing β-distributed power
outputs for both of the wind farms. The range of correlation does not even
come to full correlation. The maximum correlation level depends on the
similarity of the input probability densities.

We also took certain line limits into account and used storage devices
for keeping the energy surplus to avoid curtailment of energy production or
overloading of lines. The storage devices are placed at each bus, but do not
represent a specific technology.

With our methodology of correlation we can generate exact sets of corre-
lated, β-distributed random variables. Our simulation method can easily find
the absolute maximum and minimum load on a given line just by combining
the outcome of the maximum correlation and the uncorrelated result.
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Chapter 1

Introduction

1.1 Motivation

Electricity plays a significant role in the progress of prosperity and technol-
ogy. During the last centuries electricity has been available to the industry
and private households in most countries of the world. Generation of elec-
tricity was of utmost importance to achieve technological progress. However,
almost the entire electricity production was not accomplished in an envi-
ronmentally compatible fashion or form. Even today, worldwide electricity
consumption grows every year and the generation becomes more efficiently
and environmentally friendly. In Fig. 1.1, we see both, the historical, as well
as an estimated outlook of the global electricity consumption up to the year
2035 considering the current energy policies [1]. To satisfy this demand we
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Figure 1.1: Global energy consumption past and outlook 1980-2035 regarding
to current energy policies [1]
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Probabilistic Load Flow Master Thesis

need to build new power plants, as well as increase the efficiency of existing
grids and electrical equipment. Although the increasing demand and con-
tinuous expansion of electrification today, more than 1.4 billion (109) people
worldwide still have no or only restricted access to electricity [1].

Since the discovery of electricity, significant efforts have been put into
developing new energy sources. Most resources were and still are fossil fuels,
such as coal, oil and natural gas as well as water and nuclear power. Due
to various oil crises, a number of nuclear power plant incidents and the cur-
rently ongoing discussion about climate change, renewable energy resources
become increasingly important and achieve more public acceptance and sup-
port. Wind and solar power are the two most commonly mentioned sources of
renewable energy. In Fig. 1.2, we show the cumulatively installed capacity of
wind power worldwide for the time frame from 1996 to 2010 [2] and it is going
to continue to grow. With increasing wind and solar power generation the
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Figure 1.2: Global cumulative installed wind capacity 1996-2010 [2]

conventional transmission and distribution grid changes into a distributed
system. In this system a lot of small and medium sized power plants are
located on many different sites instead of only a few, large power plants.
The type of power grid is changing from traditional distribution towards dis-
tributed generation. The direction of flow is no longer only from large power
plants to households. A lot of smaller power plants are distributed through-
out the grid and the power flow goes in all directions. The major problems
about renewable energy resources like wind and solar are their volatility and
their inaccurate predictability, as well as their intermittency. This problem
does not only occur in the distribution grid, it also affects different voltage
levels. Certainly, this effect grows bigger with the increasing power output
of a wind power plant.
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For power system stability the generated power has to match the con-
sumed one as close possible at any time. This means the bigger wind farms
are introduced to the grid, the more active work will be required to secure the
reliability of the power grid. Better prediction accuracy as well as an increase
in quantities of balance energy is required to avoid both, lack of energy, or
overloading of branches. This energy comes from other power plants or stor-
age units and has to be available immediately. On the other hand most of
the connection lines are not dimensioned to deal with the maximum power
output of connected power plants or wind farms. It does not occur often
that the maximum power is produced. Therefore, it is economical cheaper
to curtail this wind instead of building new lines with more capacity.

The energy of curtailed wind is irrecoverable. Bonneville Power Admin-
istration [3] in the United States estimated a total amount of 1GWh for
curtailed energy as of March 30, 2010. ERCOT, the Electric Reliability
Council of Texas, USA [4], assumes that 500MW to 2000MW were curtailed
daily between December 2008 and December 2009. Midwest ISO [5], another
regional independent system operator in the U.S. published approximately
200GWh of curtailed energy for the year 2009. Germany illustrated 74GWh
of curtailed wind energy [6] between 2004 and 2006.

Storage devices are required to avoid losing this energy. One could store
this high-peak energy and transmit it whenever capacity is available on the
lines. However, this means the electricity grid has to become more intelligent
or a smart grid. A significant amount of effort is currently dedicated to invent
such a smart grid. Stability of power supply is an absolute must in (or for)
our future.

1.2 Problem Statement

Large amounts of electrical energy cannot be stored directly. We also cannot
bottle, sack or bag electrical energy to transport it. This means electrical
energy only can be transmitted in suitable amounts through wiring. For a
stable and reliable grid it is essential that the sum of generated power is
exactly equal to the sum of consumed power at any instant of time.

Whenever more power is generated than consumed, the frequency of the
grid increases as a result of physical laws. On the other hand, if not enough
power is produced the frequency goes down. Monitoring the frequency is the
best way to observe the power balance of the grid. During normal opera-
tion, the bandwidth of frequency variations is within a few per mill because
of continuous variations in the load. As soon as the deviation increases,
the transmission grid operator has to counteract. This means that the power

3
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generation has to be adjusted in accordance with the frequency trend. Equiv-
alent changes to the load can also be applied by connecting or disconnecting
some of the loads.

The load can be predicted with high accuracy based on historical mea-
surements. However, imbalances between supply and demand are inevitable.
There are different types of operating reserves to recover equilibrium. These
reserves are ranging from only a few seconds for small amounts up to several
minutes for larger quantities of energy. With the help of this balancing power
the daily operation is guaranteed.

The accuracy of forecasting wind speed and solar radiation is not as
precise as required. Wind energy is the kinetic energy of moving air. It is
converted to power by turbines. This kinetic energy can be calculated based
on a mass element dm and the wind velocity v of the volume of moving air
that passes through the surface A [7]

dE =
1

2
dmv2 =

1

2
ρAv3dt. (1.1)

Wind power that can be transformed into mechanical power to produce elec-
tricity can be derived to

p =
1

A

dE

dt
=

1

2
ρv3. (1.2)

The total wind power is proportional to the third power of wind velocity.
This means the error between predicted and effective wind speed causes a
deviation of the predicted power to the real power which is to the power of
three higher than the error itself.

Currently, the amount of intermittent, renewable energies for electric-
ity generation worldwide is quite small. There is enough operation reserve
distributed throughout the grid to deal with the power and frequency varia-
tions. However, we need more energy generated by environmentally-friendly
technologies to limit and counteract the climate change. Worldwide, we see
a trend of significant expansion of renewable energies. The entire world is
subject to these changes and considerations. A recent study from the Har-
vard University shows that the wind capacity available worldwide would be
capable of covering more than 40 times the currently required consumption
levels [8].

In order to ensure a stable and reliable power system in the future we have
to improve the existing power grid to become a more efficient and intelligent
system. It simply is not good enough to have sufficient operating reserves
and to build new lines to transmit all the power generated. The grid has
to become smart. It is required to control the power system in a more
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flexible manner. Both, information and communication techniques play a
decisive role. Actually, there are many additional approaches for smart grid
applications.

One idea is to have distributed generation and storage so that power can
be generated when the resource is available and be transmitted when the
energy is required. With distributed storage, the energy could be stored
at different locations starting at the site where the energy is generated.It
could then be transferred whenever capacity is available on lines to other
storage units closer to loads. In case of higher consumption than generation,
the additional energy needed could be obtained from the closest storage. An
additional advantage of such a system would also be that fact, that the power
flow of the reserve power would not affect as many lines and long distances.

Another idea for smart grids is that certain types of electrical devices,
such as washer and dryer can be turned on or off, pending on currently
available energy. Using batteries of electric vehicles as storage units to have
buffers close to the consumers would be another option for a distributed
energy storage system.

The proper calculation of the required power flow on lines is essential
ever since the deregulation of the electricity market. It will become even
more important with the introduction of smart grids in the future. There
are different reasons why calculating load flow for lines is absolutely essential.
It is of utmost importance for planning purposes to predict the possible load
flow distribution. It is required to find the trade-off between costs of building
lines with higher or lower capacity and storage units especially when peak
values do not occur very often.

The real time application and the planning phases have to be managed
in other ways. These are two entirely different problems. Historically, one
has primarily used Gaussian-distributed, independent, random variables for
the load flow calculation. These variables were supposed to model the power
injections. However, in recent years and especially due to the increasing
introduction of wind power plants, non-gaussian distributed and correlated
variables are of increasing importance. Correlation is an important factor
for wind power plants, especially when they are geographically close to each
other, because the wind affects all of them regarding to their distance.

All these problems are not only specific to North America or Europe. The
entire world is subject to this changes and considerations. A lot of research
and development is ongoing and much more is needed to have secure and
reliable technologies for the smart grid applications in the future.
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1.3 Contributions of this Thesis

World climate change is one of the most important and omnipresent topics
for power systems today. It is very important to look at unsolved issues
with regard to renewable energies and to find solutions for this issues, as
well as more efficient technologies. Every development and improvement is
a necessary step for a more environmentally-friendly energy system, start-
ing from generation through transmission and continuing through storage to
consumption.

The focus in our research is set on probabilistic load flow (PLF) for
correlated wind power plant outputs. Since 1974, as Borkowska proposed
the PLF-method for the first time [9], this method has been further de-
veloped [10]. Inputs for PLF simulations are probability density functions
(PDFs) or cumulative distribution functions (CDFs) of power injections and
loads. Outputs are also PDFs or CDFs of all branches. We decided to use
PDF for our simulations. The relative frequency of occurrence of load values
can be seen directly when using a PDF. The simulations are solved numeri-
cally by using random variables with a specific distribution. This numerical
method is known as Monte Carlo Simulation.

The probability densities for wind park power outputs can often be de-
scribed as a β-distribution [11, 12]. For two or more wind power plants,
the influence of wind on these power plants can be modeled as a correlation
between their power outputs with respect to their geographical distance to
each other.

For PLF with correlated gaussian distributions and PLF without corre-
lation, many different methods are available. Information on correlated and
non-gaussian distributed characteristics are very rare and this requires more
research activities.

For two or three wind park outputs with a specific β-distributed density
function we can generate random variables with the required distribution
and a desired correlation in the range from zero to one, if the correlation is
possible. For two variables we can see how the distribution transforms from
none to a total correlation and vice versa.

As second important part, besides the correlation, we introduced storage
units into our model. On each bus where a wind power injection is connected,
we located a storage unit. This storage facility will be used to optimize the
power transfer from its generation to the load and avoid overloading the lines.

Additionally, with a storage unit at each injection bus we can also take
certain line limits into account. We looked at a limit at the last line in a path.
No consecutive limited lines are considered. We see then how the probability
density changes on the line if a line limit is combined with storage units.

6



Chapter 2

Background

2.1 Power Flow

The power or load flow problem cannot be solved in an analytical manner
due to non-linear equations. Iterative calculations and a number of simpli-
fications are required. A number of different methods for electrical network
analysis are available to accomplish this task. A well-known and often-used
classification method is to categorize power flow models into AC and DC
versions [13].

2.1.1 AC Power Flow

Precise power flow equations are used for AC power flow models and meth-
ods. These equations are non-linear. The solution for an AC power flow
problem can be found by applying various methods using iterative calcula-
tions. Gauss-Seidel Iteration and Newton-Raphson methods are two of the
best known options.

2.1.2 DC Power Flow

A DC power flow model or method can be used for an approximate solution
of the power flow problem. Only active power is considered - no reactive
power. DC models can be described by a set of linear equations and so the
calculations are much faster [14–18].

After some approximations the linearized DC power flow equation for the
active power flow can be derived to

Pkl =
θk − θl

xkl
. (2.1)

7
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k l
xkl

n

θk θl
−−−−−→Pkl

Figure 2.1: Basic 2 bus and 1 branch DC power flow model

This equation is equivalent to Ohm’s Law applied to a resistor carrying a DC
current as shown in Fig. 2.1. Pkl represents the DC current, θk and θl the
DC voltages at the buses k and l and xkl the resistance of the transmission
line n.

For a larger system with buses k, l = 1 . . .M and branches n = 1 . . . Q
the set of linear equations can be formulated into a matrix form

P = B
′

θ (2.2)

where P is the vector (M − 1)× 1 of real power injections Pk at buses k, B
′

is the nodal susceptance matrix (M − 1)× (M − 1) with elements

B
′

kl = − 1

xkl
(2.3)

B
′

kk =

M
∑

l=1

1

xkl
(2.4)

and θ is the vector (M − 1) × 1 of bus voltage angles θk. The slack bus
has to be canceled out. For the power flow problem the nodal active power
injections are known and the voltage angles at all buses (except for the slack
bus - that is the reference bus with voltage angle θ = 0) can be calculated as
follows:

θ = (B
′

)−1P. (2.5)

Multiplying the difference of voltage angles of the terminal buses k and l of
a branch n with the inverse of the branch reactance leads to the power flow
on this line (2.7).

θkl = θk − θl (2.6)

Pkl =
1

xkl
· θkl (2.7)

2.2 Power Transfer Distribution Factor

When using a DC power flow model, an incremental method for calculating
power flow can be applied. With DC Power Transfer Distribution Factors

8
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(PDTFs) a relative change in power flow on a specific line due to a relative
change in power injection at a particular bus can be derived. The calculation
is based on DC power flow equations. From (2.2) the incremental version is
as follows:

∆P = B
′

∆θ. (2.8)

After transformation we obtain

∆θ = X∆P (2.9)

where X is the reactance matrix, the inverse of the susceptance matrix B
′

extended with a row and a column of zeros at the position where the slack
bus is located like

X =































X11 · · · X1(j−1) 0 X1(j+1) · · · X1M

...
. . .

...
...

...
. . .

...

X(j−1)1 · · · X(j−1)(j−1) 0 X(j−1)(j+1) · · · X(j−1)M

0 · · · 0 0 0 · · · 0

X(j+1)1 · · · X(j+1)(j−1) 0 X(j+1)(j+1) · · · X(j+1)M

...
. . .

...
...

...
. . .

...

XM1 · · · XM(j−1) 0 XM(j+1) · · · XMM































. (2.10)

In this case, bus j is the slack. Both vectors ∆θ and ∆P also include slack
bus information.

The power transfer distribution factors ψn,i corresponding to branch n

and power change on bus i can be formulated as

ψn,i =
dPn

dPi

(2.11)

where dPn represents the variation in power flow on branch n and dPi stands
for the relative change of power injection or consumption at bus i.

After some mathematical transformations the PTDFs can be calculated
by using

ψn,i =
1

xkl
(Xki −Xli) (2.12)

where Xki and Xli are elements from the reactance matrix X. PTDFs and
similar distribution factors are discussed in detail in [16–26].
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2.3 Methods for Probabilistic Power Flow

Probabilistic load or power flow calculations are analytical alternatives to de-
terministic techniques of solving the power flow equations. The probabilistic
nature of input and output parameters is the key feature. Power injections
and loads are modeled by random variables. Probability density functions
or cumulative distribution functions are used to describe the probabilistic
nature of these parameters.

The probabilistic load flow method was introduced by Borkowska for the
first time in 1974 [9]. Prior to that introduction only deterministic methods
were known [27, 28]. Since 1974 various techniques for solving the probabilis-
tic load flow problem were developed and the research and development is
still in progress. Initial researches only used the DC load flow method. Just
shortly thereafter, the first papers using the AC load flow were published.
Overviews and summaries, including and comparing the different methods
were also published [29, 30].

Another statistical method similar to probabilistic load flow is the stochas-
tic load flow [31–34]. A stochastic load flow analysis uses a state estimator-
type algorithm. It is a extremely fast technique, but it only can handle prob-
ability density functions of the Gaussian type. An option for non-Gaussian
probability distributions is discussed in [35]. We focused on probabilistic load
flow only, but some of the methods described below are combining proba-
bilistic and stochastic load flow models.

Borkowska [9], as well as Allan and many others [36–49] used the con-
volution technique. The probability density of the sum of two independent
random variables is the convolution of their density function [50]. With this
technique the line flow can be calculated by convoluting the density functions
of the power injections. The limitation is that each generation and load is
required to be independent from each other.

Some approaches to handle dependencies were discussed. In these papers,
discrete or Gaussian distributions for nodal power generation or loads were
used. There are different ways to calculate the convolution. One of the
two main calculation methods is the classical and well-known convolution
integral. The other one is through fast fourier transformations algorithm.

For density functions with Gaussian shape a solution of the convolution
exists in closed form (the result is also a Gaussian distribution [51]), but in
general a conversion to a discrete density function and a numerical compu-
tation is necessary. This fact and the requirement of independence for the
random variables make this technique obsolete for our research.

Different methods use a higher level of statistical techniques. Two very
important elements of such probabilistic power flow methods are known as
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moments [52–54] and cumulants [54, 55] in probability theory and statistics.
Statistical moments describe the shape of a distribution. The first four mo-
ments are well known. The first moment is the mean, the second is variance,
the third is skewness and the fourth is kurtosis.

An alternative to statistical moments are cumulants. Cumulants are a set
of quantities to approximate the shape of a distribution. A distribution is
better described by its cumulants than by its moments [56]. The cumulants
are related to the statistical moments and can be calculated by a recursion
formula using the statistical moments as a basis.

Several methods or combinations of methods using moments or cumulants
do exist. A Taylor series to obtain moments is used in [57]. A combination
of moments and cumulants extended by a mathematical method called Von
Mises [58] is used in [59] and a mix of method of cumulants and Von Mises
is applied to stochastic load flow in [60].

The cumulant method is often combined with the Gram-Charlier series
expansion theory. Edgeworth series and Gram-Charlier series are used to
approximate the probability distribution [55, 61]. The Gram-Charlier series is
used more often to build a density function from cumulants in a probabilistic
power flow computation.

The interpretation of moments or cumulants by the Gram-Charlier series
to solve a probabilistic power flow problem is explained and discussed in [62–
64]. The cumulant method in combination with Gram-Charlier series is ap-
plied to an optimal power flow problem in [65] using Gaussian and Gamma
distributions. An enhancement of this cumulant method is presented in [66].
For the enhancement discussed in this paper only a Gaussian distribution is
used.

Many other researchers used this concept of combining cumulants and
Gram-Charlier series to rebuild probability density functions. In [26, 67, 68]
network configuration uncertainties or vulnerability assessment [69], as well
as reactive power control [70] are discussed based on this method. Transfer
capability analysis can also be performed through probabilistic load flow
using cumulants [71] or moments [72] in combination with Gram-Charlier
series expansion.

Gram-Charlier series are a great tool to approximate Gaussian distribu-
tions, especially in cases where data significantly differ from a normal distri-
bution, higher orders of moments and cumulants are needed for a meaningful
approximation. For non-Gaussian distributions this method has some con-
vergence problems.

Another approach to load flow calculation was proposed in [73]. This
method uses a point estimation method [74, 75] to achieve a better fitting of
the probability density function from statistical moments. A good summary
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including different point-estimation methods and their comparison to power
flow calculation can be found in [76]. A two-point estimation method was
also used in [77, 78]. The point-estimation method was extended in [79] to
account for dependencies among random variables.

With the Cornish-Fisher expansion series [61, 80] a technique with bet-
ter convergence properties than Gram-Charlier series for approximation of
non-Gaussian density functions was found. Many researchers applied the
method of combined cumulants and Cornish-Fisher expansion to power flow
problems [81–84]. Usaola also discussed dependencies among input random
variables [85, 86].

In [85] he proposed a technique called Enhanced Linear Method. For
injection of the wind power, he uses dependent, β-distributed random vari-
ables. Loads are modeled by dependent or independent normal variables
with a given correlation matrix. To generate the correlated random variables
in [85, 86] Usaola uses a method based on the inverse transformation of a
uniform distribution, see Section 2.7.1 for details.

Cornish-Fisher series are usually much better than Gram-Charlier series
for fitting non-Gaussian distributions, but the convergence properties are
difficult to demonstrate and the complexity of this mathematical problem is
not yet completely solved [80].

A different approach is the fuzzy power flow [87, 88]. Load and generation
uncertainties are modeled as fuzzy numbers instead of random variables. This
is important in cases, where no statistical information is available – so this is
no probabilistic load flow method. An overview about the fuzzy power flow
is provided in [89].

The oldest and best known method for probabilistic load flow is Monte
Carlo simulation [90]. Monte Carlo is a numerical technique. A result can
be computed by repeated, random sampling. Many of the methods men-
tioned above are using Monte Carlo methodology to verify, or to compare
their computation results. Monte Carlo also can be combined with different
approaches, or the calculation can be finalized by using this method.

In [91, 92], Monte Carlo is applied to multi-linearized load flow equations.
A combination of Markov Chains and Monte Carlo is presented in [93]. For
transmission planning and complex power systems, Monte Carlo is applied
in [94, 95] and the wind generation cost is also considered in [96].

In addition, the correlations between loads and generation in combination
with wind power is considered in [97]. It is taken into consideration from -1
to 1 using Spearman rank correlation coefficient. In this paper the correlated
random variables are also uniformly distributed and have to be transformed.
The probability density function of the wind power injection is derived from
the wind speed distribution. If the wind speed is Weibull-distributed, than
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the distribution of the wind turbine is another Weibull distribution, otherwise
there is no closed form for the density function.

Using the Monte Carlo method, there are virtually no limitations for
assumptions of the simulation process. It is an universal technique and can
be applied to almost all problems of probabilistic load flow. It can compute
a result even in cases, where other methods are restricted. However, it might
be a rather time consuming process. For very complex problems the major
disadvantage could be the time needed to finish the computation and the
required computational effort.

Another method was proposed in [98]. It is called the sequential time-
series probabilistic load flow approach. In this paper a DC load flow model
was used and a discretization to the density function was applied. This
discretization procedure was called multi-dimensional clustering. The com-
putation was performed by linear programming optimization.

We reviewed many different ways to compute a solution for a probabilistic
power flow problem. Advantages, disadvantages and limitations of different
techniques were discussed. Most of these methods used Gaussian distributed
random variables. Correlations among loads and generation are discussed
and considered only in a few papers. The research for correlated random
variables with any distribution is still in progress.

2.4 Power Output Characteristics of Wind

Farms

The distribution of wind turbine output depends on the wind speed distri-
bution and can be calculated from it. Wind turbine power output, as well as
using its relationship to the wind speed is discussed in [81, 83]. The power
output distribution of an entire wind farm is a combination of many single
wind turbine power output distributions.

The wind farm power output distribution for a farm with 200 2MVA wind
turbines is shown in [96]. This distribution is an extrapolation of the energy
conversion from a Weibull wind speed distribution of one wind turbine up to
a total of 200 equal turbines – no restrictions or limitations were considered.

The probability density function of a wind power output for large systems
was investigated by Louie [11, 12]. The output distribution for larger areas
of wind production typically has a β-characteristic. Some of these output
distributions are similar to the one discussed in [96], except for the peak at
maximum power.

The mix of wind turbines in the greater areas discussed by Louie includes
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turbines of different types and nominal ratings. An output distribution of
a wind farm mostly is the combination of curtailed and uncurtailed wind
turbine production distributions due to power injection restrictions or con-
nection line limits.

2.5 Constitutive Probability Distributions

In this section we introduce the basics and properties of the Beta and the
elementary Gamma distribution as well as their relationship.

2.5.1 γ-Distribution

The standard γ-distribution [99] on the interval [0,∞) is:

f(x, α, λ) =
λα

Γ(α)
xα−1 exp−λx x ∈ [0,∞); α, λ > 0 (2.13)

with Gamma function:
Γ(α) = (α− 1)! (2.14)

where α is the shape parameter and λ is the scale parameter. The expected
value or mean can be calculated like

µ = αλ (2.15)

and the variance as
σ2 = αλ2. (2.16)

2.5.2 β-Distribution

The standard β-distribution [100] on the interval [0, 1] is:

f(x, α, β) =
1

B(α, β)
xα−1(1− x)β−1 x ∈ [0, 1]; α, β > 0 (2.17)

with Beta function

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
=

∫ 1

0

uα−1(1− u)β−1du (2.18)

where α and β are real shape parameters of the distribution. Both shape
parameters can be calculated if mean µ and variance σ2 are known for a
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specific distribution by using

α = µ

(

µ (1− µ)

σ2
− 1

)

(2.19)

β = (1− µ)

(

µ (1− µ)

σ2
− 1

)

. (2.20)

These equations can be derived from equations for the expected value

µ =
α

α+ β
(2.21)

and the variance

σ2 =
αβ

(α + β)2 (α + β + 1)
. (2.22)

We obtain the β-distribution for the interval [a, b]:

f(x′, a, b, α, β) =
1

B(a, b, α, β)
(x′ − a)α−1(b− x′)β−1 x′ ∈ [a, b]; α, β > 0

(2.23)
with Beta function

B(a, b, α, β) =
Γ(α)Γ(β)

Γ(α + β)
(b− a)α+β−1 =

∫ b

a

(u− a)α−1(b− u)β−1du (2.24)

by applying the transformation

x =
x′ − a

b− a
(2.25)

to (2.17).

2.6 Linear Correlation

Dependencies between random variables can be formulated in different ways,
measures, or functions. One measure of dependency is the covariance [52]

CovX,Y = σX,Y = E [(X − E[X ])(Y − E[Y ])] . (2.26)

The covariance is unit dependent and this can be the problematical depen-
dently of the application. The covariance is positive, if the random variables
X and Y have a linear relationship and the same direction. The covariance
is negative, if the linear relationship is in reverse direction.
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For a unit independent measure of dependency, the covariance can be
divided by the product of the standard deviations of the random variables.
This fraction is called the Pearson correlation coefficient or the coefficient of
linear correlation [52].

CorrX,Y = ρX,Y =
σX,Y

σXσY
. (2.27)

The correlation coefficient has the same sign as the covariance. Because of
Cauchy–Schwarz inequality, following can be formulated

|σX,Y | ≤ σXσY . (2.28)

The range of the correlation coefficient is bounded to −1 ≤ CorrX,Y ≤ 1.
If the correlation is zero, the random variables are uncorrelated, but they
do not have to be independent. On the other hand, independent random
variables are definitely not correlated.

This correlation coefficient is the one most commonly used. Others are for
instance Spearman’s rank correlation coefficient and Kendall’s rank correla-
tion coefficient. Rank correlation coefficients work differently. If an increase
of X always comes with an increase of Y , the correlation would be consid-
ered perfect. However, it is not required that all single values are lying on a
straight line, as it is for the Pearson coefficient.

Another way to describe the relationship between random variables are
copulas [101]. A copula is a function which describes any type of relationship
between random variables. It is a much more complex method to describe
dependencies.

A good overview of the different kinds of dependencies of random vari-
ables, or correlated random variable generation methods and algorithms can
be found in [102].

2.7 Correlated Random Variables

There are different ways of generating correlated β-distributed random vari-
ables. In this section we give a short overview of different ways to produce
such random variables.

2.7.1 Uniformly Distributed and Correlated Random

Variables Transformed to Desired Distribution

The classical way to produce correlated random variables with a required
distribution is to start with generation of uniformly distributed random vari-
ables within the interval (0,1) and the desired correlation. These random
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variables are then transformed to random variables with the desired distri-
bution. This method is used and explained in [86, 103, 104] for generating
β-distributed random variables.

With this conversation the correlation changes depending on the target
distribution and the range of the distribution. Some adjustments might be
necessary to obtain the desired correlation. In addition, sometimes there are
restrictions for the range of correlation.

2.7.2 Dirichlet Distribution

Mario Catalani describes a method for generating positively correlated ran-
dom variables with β-distribution in [105]. He uses the fact that the marginals
of a Dirichlet distribution are beta variates.

Basically, this method uses the nature of composition a β-distribution
from two or more γ-distributions. Based on the Dirichlet distribution a
correlation among beta variates exists. This method has restrictions with
respect to the shape parameters of β-distributions. One limitation is, that
the sum of the parameters has to be equal for all β-distributions like

α1 + β1 = α2 + β2. (2.29)

2.7.3 Shared Random Variables for Correlation

This method uses similar properties of β-distributions as the Dirichlet method
we discussed in Section 2.7.2 and was proposed by Magnussen [106]. The
composition of a β-distribution from two or more γ-distributions is the first
basic idea of his method. The second essential step is, to use the well-known
additivity of γ-distributed random variables.

By combining the additivity and the composition as fundamental third
step, Magnussen created a β-distribution with parameters α and β, where
each shape parameter is a sum of two specific sub-parameters. To obtain a
certain correlation for two β-distributions, he shared one of these two sub-
parameters per shape parameter between both compositions. To share a
sub-parameter means to share a γ-distributed random variable.

Magnussen used parameters α1 = 1, 3, 5 . . . , 31 and β = α1, α1 + 10, α1 +
20, . . . , α1 + 100. He also stated, that a bias occurs due to the cutting of
the series expansion. The smaller the parameters α and β, the larger the
bias. For wind applications the parameters for β-distributions are normally
smaller than 3, see Section 2.4. For such small values, a bias of more than
10% to 20% occurs.
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Chapter 3

Methodology of Correlation

For our work we decided to use and enhance the method from Magnussen as
mentioned in Section 2.7.3. We noticed that this method offers significant
possibilities. Therefore, we adopted it to fit our requirements. The main
issue was the calculation of the shared variables and we developed a method
that was usable for our simulations.

3.1 Application of Available Methods

Let U1 and U2 be two γ-distributed random variables and V a β-distributed
one. The composition V out of U1 and U2 is calculated like

V =
U1

U1 + U2
. (3.1)

U1 ∼ G(γ1, λ)
U2 ∼ G(γ2, λ)

}

V ∼ B(γ1, γ2) (3.2)

The symbol ∼ stands for distributed as and G(γ, λ) or B(γ1, γ2) denotes
a γ-distribution with shape parameter γ and scale parameter λ, and a β-
distribution with shape parameters γ1 and γ2, respectively. As shown above,
the shape parameter of each γ-distribution turns into a shape parameter of
the composed β-distribution. The scale parameters have to be equal.

The sum of two γ-distributed random variables also results in a random
variable W1 that is γ-distributed, like

W1 = U1 + U2. (3.3)

U1 ∼ G(γ1, λ)
U2 ∼ G(γ2, λ)

}

W1 ∼ G(γ1 + γ2, λ) (3.4)
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The shape parameter of the result is the sum of the shape parameters of each
summand.

In his method, equations (3.1) and (3.3) are combined like

V =
W1

W1 +W2
=

U1 + U2

U1 + U2 + U3 + U4
. (3.5)

U1 ∼ G(γ1, λ)
U2 ∼ G(γ2, λ)
U3 ∼ G(γ3, λ)
U4 ∼ G(γ4, λ)























V ∼ B(γ1 + γ2, γ3 + γ4) (3.6)

Each shape parameter of the β-distribution is split into two parts

α = γ1 + γ2 (3.7)

β = γ3 + γ4. (3.8)

To achieve a certain correlation among β-distributed random variables,
Magnussen shared γ-distributed random variables among their composition
calculation. For two correlated random variables Y1 and Y2 this looks like

Y1 =
X1 +Xa

X1 +Xa +X2 +Xb

(3.9)

Y2 =
X3 +Xa

X3 +Xa +X4 +Xb

. (3.10)

Xa and Xb are shared variables added to obtain the desired correlation.
These variables are calculated from all shape parameters and their respective
correlation. Depending on the correlation factor the shape parameters for
the shared random variables have different values. Magnussen split α and β
in a specific way by calculating a first-order Taylor series approximation to
the covariance between Y1 and Y2.

We started applying this method to our research work and generated cor-
related β-distributed random variables Y1 and Y2. To analyze the full range of
correlation from 0% to 100% in 10% steps we composed each combination
of corresponding, γ-distributed random variables and checked their actual
actual correlation.

From the results of our simulations with respect to this method with
shape parameters α1 = 0.87 and β1 = 1.23 for the first and α2 = 0.87 and
β2 = 1.23 for the second β-distribution, it can be verified that the shape
parameters α and β are too small for this method to achieve the desired
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correlations. The values of the achieved correlations are a slightly more than
half of what they should be (e.g. 26% instead of 50% or 55% instead of
100%). Tests with larger parameters achieved the right correlation levels.

In the derivation of this method, Magnussen used a first-order Taylor
series expansion. This approximation may have caused the bias. A bias
larger than 10% may be restricted to β-distributions with near exponential
or exponential-types. For smaller values of parameters α and β the bias is
larger. Therefore, this method cannot be used for small parameters.

3.2 Adaptation for Better Correlation

However, we appreciated the option of using a shared random variable to
control the correlation. Our work focused on the issue that the achievable
correlation gets closer to the target correlation. We worked on a method to
derive the shape parameters γa and γb for the shared random variables Xa

and Xb.
We developed a method to achieve a better method to calculate correla-

tion for small values of shape parameters. Applying a marginal correlation
allows us to achieve a perfect correlation. This is shown in Section 3.4.

We define the parameters α1, β1 and α2, β2 in general as follows:

α1 = αρ · a1 + a1,0 (3.11)

β1 = βρ · b1 + b1,0 (3.12)

α2 = αρ · a2 + a2,0 (3.13)

β2 = βρ · b2 + b2,0 (3.14)

where αρ and βρ are shared factors, and a1, b1, a2, b2 are scale parameters for
the correlation and a1,0, b1,0, a2,0, b2,0 are independent terms.

Further, we define

αρ = max(α1, α2) (3.15)

βρ = max(β1, β2) (3.16)

for positive correlation, and

αρ = max(α1, β2) (3.17)

βρ = max(β1, α2) (3.18)

for negative correlation. To archive the proper level of correlation we set
the scale parameters a1, b1, a2, b2 equal to the correlation factor ρ. Inde-
pendent parameters are assigned to the shape parameters of the non-shared
γ-distributed random variables γ1, γ2, γ3, γ4.
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For a positive correlation with correlation factor ρ between Ya and Yb we
consequently calculated our shape parameters γa and γb like

γa = ρ ·max(α1, α2) (3.19)

γb = ρ ·max(β1, β2). (3.20)

For negative correlation the calculation is as follows

γa = ρ ·max(α1, β2) (3.21)

γb = ρ ·max(β1, α2). (3.22)

Using these parameters, we obtain random variables with distributions

Xa ∼ G(γa, λ) (3.23)

Xb ∼ G(γb, λ). (3.24)

The parameter calculation of all independent non-shared γ-distributed ran-
dom variables for positive correlation is performed by

γ1 = α1 − γa (3.25)

γ2 = β1 − γb (3.26)

γ3 = α2 − γa (3.27)

γ4 = β2 − γb. (3.28)

For negative correlation, the parameter calculation of γ3 and γ4 is different

γ3 = α2 − γb (3.29)

γ4 = β2 − γa. (3.30)

The corresponding random variables can be generated by

X1 ∼ G(γ1, λ) (3.31)

X2 ∼ G(γ2, λ) (3.32)

X3 ∼ G(γ3, λ) (3.33)

X4 ∼ G(γ4, λ). (3.34)

The composition of the β-distributed random variables Y1 and Y2 is the
same as (3.9) and (3.10)

Y1 =
X1 +Xa

X1 +Xa +X2 +Xb

Y2 =
X3 +Xa

X3 +Xa +X4 +Xb

.

A flow chart of our algorithm for parameter calculation can be found in
Fig. 3.1.
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Begin

Parameter Input

Correlation Factor ρ

Parameter α1, β1 of PDF1

Parameter α2, β2 of PDF2

Parameter Calculation for
Shared γ-distributed RVs

γa = ρ ·max(α1, β2)
γb = ρ ·max(β1, α2)

Parameter Calculation for
Shared γ-distributed RVs

γa = ρ ·max(α1, α2)
γb = ρ ·max(β1, β2)

Parameter Calculation for
Non-Shared γ-distributed RVs

γ1 = α1 − γa γ2 = β1 − γb

γ3 = α2 − γb γ4 = β2 − γa

Parameter Calculation for
Non-Shared γ-distributed RVs

γ1 = α1 − γa γ2 = β1 − γb

γ3 = α2 − γa γ4 = β2 − γb

Generation of RVs

Xa ∼ G(γa, λ) Xb ∼ G(γb, λ)
X1 ∼ G(γ1, λ) X2 ∼ G(γ2, λ)
X3 ∼ G(γ3, λ) X4 ∼ G(γ4, λ)

Composition of β-distributed RVs

Y1 =
X1 +Xa

X1 +Xa +X2 +Xb

Y2 =
X3 +Xa

X3 +Xa +X4 +Xb

Y1 ∼ B(α1, β1) Y2 ∼ B(α2, β2)

End

ρ < 0 ρ > 0

Figure 3.1: Flow chart of parameter calculation algorithm
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3.3 Summation of Two Random Variables

For testing purposes we simulated the summation of two β-distributed ran-
dom variables at different levels of correlation. We used steps of 10% from
0% to 100% correlation. These simulations were equivalent to the super-
position of different flows at one branch in the power flow application. The
total power flow corresponds to Z, and

Z = Y1 + Y2 (3.35)

with Y1 ∼ B(α1, β1) and Y2 ∼ B(α2, β2).
We generated the γ-distributed random variables using the MATLAB

gamrnd function from the statistics toolbox. Each set of generated random
variables consists of a total of one million samples. All six random vari-
ables are generated this way for each level of correlation and then both β-
distributed random variables are composed out of this pool, as described in
the previous section. All calculations have a resolution of 0.5% steps.

The convolution is performed by the elementary math function conv in
MATLAB. For convolution method the density functions with beta charac-
teristics are generated by the betapdf-function of the statistics toolbox. The
first value is infinity and is limited to the value one. For the case of identical
variables, the random variables are generated by the same algorithm than for
any other correlation, using the composition of random variables generated
by the gamrnd-function.

First, we tested a configuration with two identical β-distributions. These
distributions have of course same shape parameters α1 = α2 = 0.87 and
β1 = β2 = 1.23. The simulation result can be found in Fig. 3.2. The different
colored lines are representing different levels of correlation.

Additionally, the light blue curve shows the calculation result of the con-
volution of the two probabilistic density functions of independent random
variables. The black curves represent the original source density functions.
In this case both distributions are congruent and quite the same than a 100%
correlation. With higher resolution they would also coincide.

The achieved correlation is reasonably good but it still has a small bias of
smaller than 20%. The smaller the correlation the higher the bias. Now, we
can see the transformation of the sum from the case of independent random
variables represented by the dark blue curve to totally correlated or identical
variables shown as the brown curve.

In Fig. 3.3, we show the simulation result for an opposite shape, but same
parameters for the β-distributions with positive correlation. This proofs, that
the shape parameters are contrary with α1 = β2 = 0.87 and α2 = β1 = 1.23.
With this difference in shape only about 77% of correlation is possible. The
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Figure 3.2: Positive correlation and distributions with the same shape

term NaN stands for Not a Number and this means that no valid result
during the simulation could be achieved.

In Fig. 3.4 and Fig. 3.5, the same simulations are shown, but with negative
correlation. Fig. 3.4 shows identical shapes of distributions, so the black
curves are congruent again and in Fig. 3.5 opposite shapes can be found.

Here, of course, a totally correlation is possible for contrary shapes. For
identical shapes only about 77% can be achieved. A correlation of 80%,
90% or 100% is not possible at all in this case. For a total correlation, the
density function is only a peak at zero.

For contrary shapes the bias is a little bit different. It is max. 10% and
can be smaller or larger than the desired value while the bias for distributions
with same shapes is only smaller.
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Figure 3.3: Positive correlation and distributions with contrary shapes
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Figure 3.4: Negative correlation and distributions with the same shape
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Figure 3.5: Negative correlation and distributions with contrary shapes
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3.4 Linearity Error Compensation

In our research we especially focused on the case of β-distributions with
similar shapes and positive correlation. We worked towards perfecting the
random variable generation method proposed in section 3.1. Negative corre-
lation as well as shapes with parameters where α > β are not that important
for the application to wind farms.

We startet our analysis for β-distributions with exact same parameters.
In this case we can reach any correlation in the full range from 0 to 100%.
For the following considerations we used the parameters α1 = α2 = 0.87 and
β1 = β2 = 1.23. In Fig. 3.6, we see a red straight line which represents a
perfect correlation. The green, sagging curve shows the measured correlation
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Figure 3.6: Correlation characteristics of generated beta random variables
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of our generated β-distributed random variables with the same parameters.
The bias can clearly be seen and is represented by the non-linearity.

We measured the bias for different parameter combinations and developed
an algorithm for its compensation. The bias characteristic can be approxi-
mated by an arc with the straight line of perfect correlations as a chord. For
this fit we used the least square algorithm. The length of the sagitta depends
on the parameters. The sagitta is a distance perpendicular to the chord from
the midpoint of this chord to the arc.

The formula of the circle is:

r2 = (x− xM )2 + (y − yM)2 (3.36)

where r is the radius, xM and yM are the coordinates of the center point and
x and y are describing a point on the circle. Instead of this formula, we need
a different function for our fitting computation. We used following functional
equation:

y = yM −
√

r2 − (x− xM)2. (3.37)

This function returns one y-coordinate corresponding to a given x-coordinate
of the circle which we need for our calculation. All unknown xM , yM and
r depend on the unknown sagitta z. The coordinates of the center can be
calculated as follows

xM (z) =
2z2 + 2

√
2z − 1

4
√
2z

(3.38)

yM(z) =
−2z2 + 2

√
2z + 1

4
√
2z

(3.39)

and the radius by

r(z) =
2z2 + 1

4z
. (3.40)

Now, we can fit an arc for each set of distribution parameters α1, β1, α2 and
β2 with the variation of the sagitta parameter z and can find the optimal z
with the method of least squares.

This method can also be applied to distributions with different shapes,
but for this case the application of this method has limitations. The maxi-
mum possible correlation is limited to the difference in shape. A correlation
of 100% can only be achieved with exact equally shape parameters.

This arc fitting algorithm allows us to generate almost perfectly positive
correlated β-distributed random variables with a specific desired correlation
between 0% and 100% for distributions with same shape parameters.
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For verification purpose, we ran the simulation for generating those ran-
dom variables in combination with this algorithm. The result can be found
in Fig. 3.7. The correlation values are rounded to the first decimal place after
the comma. This proves that our algorithm works quite well.
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Figure 3.7: Perfect positive correlation and distributions with same shape

In Tab. 3.1 we show a summary and comparison of correlated random
variables generated with different methods. At the end of each calculation
run the values are slightly different. Therefore, all values in the table have
exemplary character and shall not be taken as they are. The original method
introduced by Magnussen is listed as method 1 in this table. Our adapted
method as described in section 3.2 is referenced as method 2 and the enhance-
ment of this method as presented in section 3.4 is referred to as method 3.

We generated random variables by using these three methods for a cor-
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Desired Generated Correlation with Calculated Bias for

Values Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

0 −0.07 −0.06 −0.01 ——— ——— ———

5 2.59 4.08 5.12 48.20% 18.40% 2.40%

10 4.88 8.04 10.04 51.20% 19.60% 0.40%

15 7.44 12.03 15.08 50.40% 19.80% 0.53%

20 9.98 16.33 20.10 50.10% 18.35% 0.50%

25 12.43 20.72 25.17 50.28% 17.12% 0.68%

30 15.03 25.16 30.20 49.90% 16.13% 0.67%

35 17.70 29.64 35.12 49.43% 15.31% 0.34%

40 20.32 34.11 39.97 49.20% 14.73% 0.08%

45 22.99 38.88 44.99 48.91% 13.60% 0.02%

50 25.68 43.52 50.00 48.64% 12.96% 0.00%

55 28.42 48.62 54.95 48.33% 11.60% 0.09%

60 31.27 53.67 59.88 47.88% 10.55% 0.20%

65 34.08 58.86 64.78 47.57% 9.45% 0.34%

70 36.93 64.29 69.82 47.24% 8.16% 0.26%

75 39.92 69.74 74.76 46.77% 7.01% 0.32%

80 42.72 75.41 79.77 46.60% 5.74% 0.29%

85 45.67 81.21 84.83 46.27% 4.46% 0.20%

90 48.76 87.25 89.86 45.82% 3.06% 0.16%

95 51.80 93.52 94.95 45.47% 1.56% 0.05%

100 55.08 100.00 100.00 44.92% 0.00% 0.00%

Table 3.1: Correlation of random variables generated by different methods

relation range from 0% to 100% in 5% steps. Afterwards, we measured the
achieved correlations and compared them with the desired ones. The corre-
lation results achieved by these three different methods were also compared
with each other.

The values of the achieved correlations were rounded to the third decimal
place. In the table we can easily compare the improvement from one method
to the other. The bias is also calculated in percent for all three methods and
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also rounded at the third decimal place. The values for zero correlation are
marginal they are in such a tiny neighborhood around zero and they can be
negative or positive as well. However, this does not represent any correlation
at all.

These results illustrate the enhancements of our method of adaptation
and linearity error compensation very well. We are now able to generate sets
of β-distributed random variables with a correlation as close as possible to
the desired one.

Going straight forward, we extended this compensation method to allow
a perfect correlation for distributions with different shapes and positive cor-
relation, as well. In Fig. 3.8 we show a correlation chart that is equivalent
to the one represented in Fig. 3.6. For this chart, we used a shape combi-
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Figure 3.8: Correlation characteristics for beta variables with different shapes
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nation with the following parameters: α1 = 0.76, β1 = 1.25 and α2 = 0.46,
β2 = 0.99. For each parameter combination this chart looks different. The
upper endpoint of the arc depends on the maximum correlation the shape
combination can reach. The correlation characteristic is scaled down and ro-
tated at base point (0, 0). The new characteristic not only has the linearity
error, it also has a pitch error.

The final arc is fitted again with the least square algorithm. The equations
for calculation the new center point and the radius were adjusted. The
new functions have more parameters than just z. They are also depend on
the coordinates of the upper endpoint. These coordinates can be directly
obtained from the correlation computation.

The value yc is the maximum value of the achievable correlation and the
value xc can be calculated in accordance with the step width and the count
of steps of the correlation computation.

xc =
count of steps − 1

step width
. (3.41)

Thus, the coordinates of the center point can be calculated as follows:

xM (z, xc, yc) =
1

2

(

xc −
(

1

2z
− z
√

x2c + y2c

)

yc

)

(3.42)

yM(z, xc, yc) =
1

2

((

1

2z
− z
√

x2c + y2c

)

xc + yc

)

(3.43)

and the radius as shown below:

r(z, xc, yc) =
2z2 +

√

x2c + y2c
4z

. (3.44)

With this extension of the linearity error compensation, correlated ran-
dom variables for different β-distributions can be generated and the target
correlation can be matched as closely as possible. This method is tested only
with positive correlation and shape parameters where β > α.

33



Probabilistic Load Flow Master Thesis

3.5 Linear Interpolation of Two Correlated

Probabilistic Density Functions

The focus of this investigation is again on positively correlated same shaped
distributions. It is a fact that 0% correlation and 100% correlation are the
boundaries of correlation and also in general the probabilistic density func-
tions of 0% and the 100% correlation are also boundaries for the curves
representing the probabilistic density function between them. At the inter-
section areas between the original distribution curve and the convoluted one,
this PDF boundary statement is not applicable but for the other areas and
the largest range the statement is valid. This can be seen at Fig. 3.9. The
circled areas are the intersection areas.
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Figure 3.9: Intersection areas
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Because of this fact, we started to investigate a linear interpolation of
probabilistic density function between the original probabilistic density func-
tion and the one from the convolution result. We calculated probabilistic
density functions for every ten percent step of correlation with respect to
section 3.4. Therefore, we can compare the interpolation results with the
results from our simulations. The 0% correlation curve is equal to the calcu-
lation result of the convolution computation. The 100% correlation curve is
the probability density function of the given β-distribution with parameters
α1 = α2 = 0.87 and β1 = β2 = 1.23.

A set of density functions representing the full range of positive correlation
can be seen in Fig. 3.10. It is clear that in this case the intersection areas are
shrunken to the actual intersection points of the two main curves 0% and
100% correlation. All interpolated graphs are intersecting at these points.
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Figure 3.10: Linear interpolation result
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In Fig. 3.11 we overlay the original diagram as shown in Fig. 3.9 and the
interpolation result from Fig. 3.10 to show the similarities and differences
between time series calculation and interpolation result. We can see there
are more parameters needed to achieve a better approximation in further re-
search. In general the time series calculation is not really linearly distributed.
Especially at zero, there are huge deviations. Also at one, there are different
angles making a larger deviation. The differences are highest in the middle
at 50% correlation. This should be part of further investigations.
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Figure 3.11: Simulation result with overlayed linear interpolation result
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Chapter 4

Probabilistic Power Flow for

Wind

4.1 Monte Carlo Simulation

We decided to use the Monte Carlo Simulation method for our research. This
is the only method where we can compute and simulate all required scenarios
without numerous restrictions or unwanted approximations.

4.1.1 Model

We used an effective model with three buses and three branches to satisfy all
our requirements as shown in Fig. 4.1. The model consists of two wind power
injections W1 and W2, one load L, and the slack S. The slack is required
to counterbalance any differences between the sum of the power of the wind
generation and the load.

To define our test case, we specify important parameters for our model.
The parameters we decided to use for all lines to describe this model are

L

SW2

W1

AB

C

1

2

3

Figure 4.1: Model with 3 buses and 3 branches and 2 wind power injections
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shown in Tab. 4.1. The series reactance Xl is represented in per unit and the
transfer limits are in absolute values.

Line Number Start bus Final bus Xl Transfer limit

1 A B 0.50 135MW

2 A C 0.33 180MW

3 B C 0.45 100MW

Table 4.1: Definition of line parameters for 3 bus and 3 branch test system

For the DC load flow simulation we extended the model to four buses
and four branches as documented in Fig. 4.2. We split the mutual bus A
into separate buses for the slack and the load. This was done to simplify
the process for the DC load flow algorithm for which each injection, load,
or slack requires its own bus. We placed the slack at a separated bus and
connected it with the load bus by an idealized line. From the electrical point
of view, this alteration achieves the same result than directly connecting the
slack with the load bus.

L
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D

1

2
3

4

Figure 4.2: DC load flow model with 4 buses and 4 branches

The distribution of this line is not considered significant for our simula-
tions, because it only connects the slack and transfers the required power
to compensate the imbalance. Therefore, it is neither relevant nor an inter-
esting power flow over this line. All the injected wind power flows through
branches one and two to bus A, partially via the line between bus B and C.

The modified model needs a changed table of parameters. For that reason,
the table above was extended by a row for the new ideal line. The line
numbering was re-arranged with respect to this additional branch. The new
listing with respect to Fig. 4.2 can be found in Tab. 4.2.
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Line Number Start bus Final bus Xl Transfer limit

1 A B 0.50 135MW

2 A C 0.33 180MW

3 A D ideal connection line

4 B C 0.45 100MW

Table 4.2: Definition of line parameters for 4 bus and 4 branch test system

4.1.2 Input and Output

Our method uses probability density functions as input for every power injec-
tion or node of load. For power injection we selected β-distributions as type
of density functions. The distributions used for our work are fully described
by their parameters. The distribution parameters are the most effective and
best inputs for our method.

In addition to the statistical distribution of the power generation, we also
need the maximum power output for each power plant. With this informa-
tion, the density functions can be scaled correctly. Thus, all distributions
are completely determined.

Another important input variable is the correlation. It can be defined
as a vector representing a range of different correlation levels. We simulate
a full scenario for each correlation factor of this vector and summarize the
results in one chart to simplify comparison.

For the distribution of the load we looked at real data from the Bonneville
Power Administration [3]. The data for each year can easily be estimated by
a Weibull distribution [99]. The standard Weibull distribution is defined as

f(x, α, λ) =
α

λ

(x

λ

)α−1

e
−(xλ)

α

(4.1)

We used the data of the year 2010 [107] to compute the parameters α and λ of
a fitting Weibull distribution for the load profile by a least square algorithm.

The actual power range 4230MW-9810MW was scaled down by a factor
of ten, shifted to the origin, and fitted to a Weibull distribution between zero
and five to satisfy our needs (see Fig. 4.3 for details). Loads below 423MW
do not exist in this case. These considerations for the load distribution have
been used for all of our simulations.

There are a number of additional, rather important parameters to con-
sider in our simulations. The most important ones are the discretization res-
olution of probability distribution, and the sample count of random variable
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Figure 4.3: Load profile

generation. In addition, the line limit can also be controlled by parameters.
The parameters and the definition of the electricity grid also represent

important input data in the form of a matrix. It includes the hierarchical
structure that defines which nodes are interconnected with which line. The
admittance and the function of the node, like injections, load, or slack bus,
are also included. In addition, an IEEE Common Data Format1 [108, 109]
file can also be imported and the data stored in this input matrix.

The outputs of our simulations are probability distributions of the load
for each line with respect to the particular correlation factors. Basically, it
represents a discretized distribution model. A probability density function is
similar to a histogram, but for a density function the area below the curve is
normalized to one.

4.1.3 Method

After the random variables are generated as described in section 3, they are
applied to our simulations. In MATLAB, we programmed the DC load flow
functions ourselves, and compared the results with the ones from NEPLAN
by BCP Switzerland for different scenarios to validate the correctness of our
code. We also programmed the routines for the implementation of the power
transfer distribution factor.

As previously described, we created an input matrix where the paramet-
rical and hierarchical structure of the test grid was defined. This matrix is

1The IEEE Common Data Format is a structured table of information especially to
describe a power grid topology and technical data ranging from small up to large-scale
grids defined by the IEEE
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formatted like the IEEE common data format. The DC load flow calcula-
tions are based on these grid definitions. Therefore, the power flow direction
is represented by the algebraic sign of the power flow result.

Electrically, a negative power flow makes no sense on any line, so we
changed the result into a positive flow with additional information about
flow direction. We added an arrow with a label to show the flow direction to
the diagram and show a graph for each flow.

4.1.4 Scalability

The described and used model (with three buses and three branches) is not
only the smallest one possible, but – and even more importantly – it is the
most effective one to explain the algorithm. In addition, this algorithm does
not only work with this small model, the model can be extended to a larger
system with a significantly higher number of buses and branches.

The algorithm was applied to the grid topology of the IEEE 14-bus power
flow test case [110], see Fig. 4.4. Only the injections and loads were adapted.
The scalability of the algorithm of correlation is limited by the accuracy.
The more variables are correlated to each other the lower is the accuracy of
correlation.

For three correlated variables, the algorithm works quite well. However,
for a larger number of variables correlation can be a limiting factor. The
shared variables have smaller values if more variables need to be correlated
to each other. The smaller the values of shared variables, the higher is the
inaccuracy. In Tab. 4.3 we show an example of a correlation matrix when
three injection nodes A–C are correlated with each other.

A B C

A × 0.6 0.3

B 0.6 × 0.4

C 0.3 0.4 ×
Table 4.3: Example correlation matrix with 3 buses

However, there is no limitation on uncorrelated groups of small clusters
of correlated power generation injections and loads. So the IEEE 14-bus test
case can be used with all injections and loads. Additionally, the groups and
the correlation between their members must be defined.
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An example of a correlation matrix for eight buses is shown in Fig. 4.4.
In this matrix we show different clusters of correlated buses. Completely
separated and interconnected groups of correlated nodes are included, as
well as buses with just one correlation partner up to four correlated nodes.

A B C D E F G H

A × 0.5 0.4 — — — — —

B 0.5 × — — — — — 0.3

C 0.4 — × 0.4 — — — 0.2

D — — 0.4 × — — — —

E — — — — × 0.4 0.5 —

F — — — — 0.4 × 0.3 —

G — — — — 0.5 0.3 × —

H — 0.3 0.2 — — — — ×
Table 4.4: Example correlation matrix with 8 buses

4.2 Storage

Our original simulation did not consider storage at all. In order to point to
the advantage of storage, we decided to add storage at each power injection
node, see Fig. 4.5. This allows not only more flexibility, but also the usage
of line limits for additional simulations. These storage devices (St1 and St2)
take care of the surplus generated by the power injections and thereby provide
a meaningful alternative for the power that cannot be transferred over the
lines due to limitations.

The usage of the same entirely unchanged β-distribution for power gen-
eration is now fully consistent with our test case to remain stable. With a
restriction at one or more branches we could not inject the same amount of
power while guaranteeing stability of the grid. Thus, with these additional
storage devices at each connection node, we are able to use the uncurtailed
power generated by all of our power plants and wind farms at the time when
the wind occurs.
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Figure 4.4: IEEE 14-bus test case
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We modeled our storage as devices without conditions and limitations.
This means that regardless of the power generation or transmission, the de-
vices can release or store any additional amount of energy. We are using a
theoretical model without representing any specific storage technology. In
addition, we do not consider any limitations with respect to timing at charg-
ing and/or discharging the storage units.
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St1

Figure 4.5: Load flow model with 4 buses, 4 branches and 2 storage devices

4.3 Line Limits

We can define a line limit of power transmission for each branch. The value
of this limit represents the maximum load that the line can handle, regardless
of any technical and technological reasons. It can be set to any non-negative
value. In the case of line limits, we do not differentiate among different flow
directions. A zero-value deactivates the line limit for the specific branch.

With a line limit we have a parameter to affect and tune the power flow
in a realistic way. Normally, a connection line cannot handle the maximum
power a power plant can generate. In this case the power generation will be
reduced, and the curtailed power is lost. A better way would be to put the
surplus into storage devices.
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Chapter 5

Results & Discussion

In the following sections, we describe different simulation setups and their
results. Starting with the same probability density function for all wind
power injections, we changed the setup to use different density functions for
each power injection. Finally, we added storage and introduced line limits.
The basics for all computations are described in chapter 4. Storage and line
limits are only for the section 5.3. All simulations are applied to our small
model with 4 buses and 4 lines but the notations are with respect to Fig. 4.1.

5.1 Identical Wind Farms

In this section, we explain our simulations using the PDF and same power
values for both of the wind power injections W1 and W2 as shown in Fig. 5.1.
We are discussing the results and emphasize the most important facts.
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Figure 5.1: Identical Probability density function for injections W1 and W2
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In the following three figures (Fig. 5.2 - 5.4) we show the simulation results
for branch one, two and three with a positive and negative power flow. The
flow direction is calculated with respect to Section 4.1.3. The black curve is
the result of the convolution and the other 11 colored curves are probability
density functions from our simulation calculation in ten percent steps from
zero to full correlation.

The 100% curve is equal to the original probability density function of
both power injections. This is not additionally shown in the following figures.
On lines with only one flow direction, the direction defines the appearance.
For negative flow direction, the curve is just mirrored with respect to the
original one. If both directions do occur, then the PDF of power flow is a
completely new one.

In the next three figures (Fig. 5.5 - 5.7) of this section, we summed up the
frequency values from both flow directions to obtain the absolute amount for
values of each line. This way, we can show which amount of power occurs
how often with respect to all other values, regardless of the direction of flow
for each line.
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Figure 5.2: Simulation result for branch 1 including flow direction

With the setup of identical wind farms, we have the following situation:
All injecting wind farms have the same parameters – only the grid parameters
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(the series reactances Xl) are different and have influence on the distribution
of the power flow. If the grid parameters would be symmetrically, the dis-
tribution of power flow would also be symmetrically. If the grid parameters
are symmetrically and the maximum power outputs of the wind farms are
different, then the difference is the determining factor for the power flow.
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Figure 5.3: Simulation result for branch 2 including flow direction

The full range of correlation is available. On the one end of this range
there is 0% correlation (or the convolution result). At the other end we have
100% correlation (or the original probability density function). All other
correlations are between these two limits. This trend can also be seen on each
and any of the following figures. The curve of the convolution calculation
result and the one with the original PDF are spanning areas, where all the
other graphs of the correlation range are lying inside these areas, see Fig. 5.8 -
5.10. Only at the intersection points there are some inaccuracies with respect
to these areas. But besides that, we can say that the extremes of the power
flow can be illustrated by the graphs of 0% and 100% correlation.

If we calculate the maximum of these two graphs at each point, we can
find the maximum load. This approach is equally applicable to the minimum.
Thus, we can find the minimum and the maximum of a line load flow without
calculating anything except the original PDF and the convolution.
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Figure 5.4: Simulation result for branch 3 including flow direction
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Figure 5.5: Simulation result for branch 1 with absolute values
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Figure 5.6: Simulation result for branch 2 with absolute values
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Figure 5.7: Simulation result for branch 3 with absolute values
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Figure 5.8: Load flow minimum and maximum of branch 1
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Figure 5.9: Load flow minimum and maximum of branch 2
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Figure 5.10: Load flow minimum and maximum of branch 3

The section with maximum values of the convolution is in the middle
of the power range. That means, for less correlation it is more likely that
power flow values in the mid-range occur. The probability of the occurrence
of marginal values of the power range is very low.

On lines with power flow in one direction, as on branch one and two, we
see following, rather interesting facts: The maximum at the areas close to the
marginal values are given by the original input probability density function,
the minimum by the result of the convolution. Looking from the limits into
the range, we have intersection points between the curves of the original PDF
and the one of the convolution, resulting in switching the minimum and the
maximum with respect to the line load occurrence.

On branches with bi-directional power flow a few things change. The
maximum peak is at zero. Here we can see that the maximum in the center
is not given by the convolution and we cannot say, it is the original input
PDF. However, we can find a scaled version of the original PDF. Again, the
convolution, and in this case the scaled original PDFs are the marginal curves
which bound the areas where all the correlation graphs are lying in.

With two identical input density functions, we see one to three sections
at the resulting curves. The higher the correlation, the lower the count of
the sections and vice versa.
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5.2 Different Wind Farms

Moving straight ahead, we changed the input probability density function of
wind injection W2 at bus C, as shown in Fig. 5.11b as next step. All other

 

 
Beta PDF

D
en
si
ty

Power [MW]

β = 1.25

α = 0.76

0 100 200 300
0

0.05

0.1

(a) Wind power injection W1 on bus B
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(b) Wind power injection W2 on bus C

Figure 5.11: Different Probability density functions for injectionsW1 andW2

parameters remain the same.
In the following Fig. 5.12 - 5.14 we see the computation results for branch

one to three and in Fig. 5.15 - 5.17 the same results converted to absolute
values of the load flow of each line.

With different density functions of the injecting wind farms, it is more
complicated to analyze the results. Optically, they are quite similar but there
are several differences.

Firstly, we have to compute the maximum possible correlation in this
combination of input probability density functions. The mix of two different
PDFs is no problem for the convolution process, but the highest achievable
correlation cannot be found immediately, it must be calculated. In this case,
we have a maximum correlation of 60%, but we rounded to the next ten
percent step. After this step, we can adapt the statement from the section
of identical wind farms as follows:

The graph of the maximum correlation and the one from the convolution
computation are now bordering the areas, where the other curves of the
correlation range are spread within the limits, see Fig. 5.18 - 5.20. Therefore,
we are required to replace the curve of 100% with the one of maximum
correlation. All other conclusions can be adapted in the same manner.

The most important step is to calculate the maximum possible correla-
tion for a given set of probability density functions. Following this exercise,
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minimum and maximum of line loads can be determined.
The level of complication is significantly higher for branches with bi-

directional power flows. This is much similar to the trend of identical wind
farms. In the middle, the graph with the maximum correlation gives the max-
imum and the convolution result the minimum. Moving outwards, we reach
the intersection points where the curves for maxima and minima change. Af-
ter that, the graph representing the convolution gives the maximum and the
curve with the maximum correlation illustrates the minimum of the load.

For lines with two flow directions, we cannot find a similar shape showing
the maximum correlation as we found it in the previous section for identical
wind farms. The graph representing the maximum correlation looks like
a combination of both original input PDFs. The part to the right of the
maximum of the curve is segmented into to sections for higher correlation
and become one section for no correlation. In each section we can find an
analogy to one of the original input distributions. The peak of the maximum
is again at zero. We can also interpret the left side as the same mirrored
PDF.

In general with two different input density functions we also detect one
to three sections at each line flow graph. Every section has some similarity
with the input distributions.
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Figure 5.12: Simulation result for branch 1 with flow direction
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Figure 5.13: Simulation result for branch 2 with flow direction
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Figure 5.14: Simulation result for branch 3 with flow direction
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Figure 5.15: Simulation result for branch 1 with absolute values
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Figure 5.16: Simulation result for branch 2 with absolute values
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Figure 5.17: Simulation result for branch 3 with absolute values
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Figure 5.18: Load flow minimum and maximum of branch 1
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Figure 5.19: Load flow minimum and maximum of branch 2
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Figure 5.20: Load flow minimum and maximum of branch 3
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5.3 Line Limit and Storage Extension

As additional feature of our simulations we can take line limits of the trans-
mission lines into account. For the following simulations, we considered a
line limit of 135MW for the first and 180MW for the second transmission
line. At the injection side of each bus a storage device is located. These
storage devices are being charged with the surplus of energy a line cannot
handle if the value of power is higher than the limit.

The PDFs of the lines are shown in Fig. 5.21 and Fig. 5.22. We can see
that there is a peak at the limit. All absolute values above this limit are cut
off and so each larger power value is mapped to the value of the limit. The
curve for the convolution method is not shown separately.
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Figure 5.21: Simulation result for branch 1 with a line limit of 135MW

In Fig. 5.23 the PDFs of the storage devices are shown. A peak at zero
would represent the sum of all line flow values is below the limit and is not
displayed. The presented curves are exactly the parts, which are cut-off from
the lines. For the power values, the limit is subtracted from the cut off values.

With this method we can simulate the PDFs of the storage, but not of
the state of charge (SoC). This is the reason why we need real data or time
referenced values instead of our generated random variable series.
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Figure 5.22: Simulation result for branch 2 with a line limit of 180MW
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Figure 5.23: Probability density functions of storages at injection buses
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Chapter 6

Conclusion

Based on the method of generation positively correlated, β-distributed ran-
dom variables from Magnussen [106], we modified the algorithm and added
a compensation for the bias. We applied a set of random variables ranging
from 0% to 100% correlation to our probabilistic load flow simulations as
input and derived a set of corresponding PDFs of each line flow as output.
As final part of our simulations we added transmission limits to lines and
storage devices to the injection buses. We used the DC load flow method
with PTDFs and the Monte Carlo simulation for our computations.

Our main focus was to find an algorithm for generating positively corre-
lated, β-distributed random variables to reach the desired correlation levels
as closely as possible. We adopted the method from Magnussen at first and
added compensation in a second step to to narrow our margin of error. With
our developed method we are able to generate sets of β-distributed random
variables with an exactly specified correlation.

The generation of β-distributed random variables with a specific correla-
tion is tested for positive correlation and parameters where β > α.

Depending on the correlation factors among all random variables the num-
ber of random variables generated is limited. The higher the correlation fac-
tors among the random variables, the lower the count of generated random
variables. To find the possible correlation combinations among multiple ran-
dom variables is a general mathematical problem. The best way to show the
different combinations of correlation is by the means of a correlation matrix.

We used this method to generate our input variables and ran different
simulations. We started our research by investigating the influence of two
identical wind farms to the probability density functions of the lines for the
entire range of correlation.

In this case, the original curve matches the 100% correlation curve. The
same thing is true for the convolution result and the 0% curve. As one very
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important result we found out that the curves of maximum and minimum
correlation are the marginal curves of an area where all other curves are lying
in. There is also a transformation from the maximal to the minimal curve
with respect to the correlation.

We can specify the maximum and minimum loads of a line by just looking
at the combination of these two curves of extremes. For the maximum and
minimum values of line loads we only need to calculate the convolution of the
input variables and combine it with the original distribution. No additional
computations are required. Minor inaccuracies can only be found at the
intersection points.

For a specific correlation level we are able to calculate the resulting line
load by running the full computation. This result can be used to find the opti-
mal value of line load for dimensioning the lines with respect to the economic
transmission capacity. On the other hand, we can obtain the requirements
of what a line must be able to handle.

We also looked at different wind farms and their impact on the line dis-
tributions. Different wind farms require other parameters for both of the
β-distributions. The maximum correlation depends on the variety of the
input distributions. The results are similar. The curve of the maximum
correlation must be computed this time. The curves of the maximum and
minimum are again the borders of the areas where all other correlation curves
are lying in.

These two graphs illustrate again the extreme values of the line loads.
Thus, a general statement of the load of the lines can be given by the graphs
of their extremes.

To sum it all up, we can conclude, that our method can compute the
probability density function of a line load for a certain correlation among
β-distributed random variables. If no specific correlation is given, we can
determine the range of the line load as an area bounded by the minimum
and maximum of possible line loads.

The scalability of this method is restricted by the mathematical con-
straints of possible correlation factors among multiple random variables. If
it is possible that many random variables are correlated to each other, every
shared random variable is only a very small part of the whole β-distributed
random variable and this can affect the accuracy of the reached correlation.

Finally, we added storage devices to the injection buses and introduced
line limits. For the distribution of the line flow we found out that the density
function of the limited line looks the same up to the limit and then it is zero.
At the value of the limit there is a peak because every power flow event above
the limit now occurs at the limit value.

The probability density function of the storage exactly matches the area
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of the line distribution above the limit, which is cut. The power flow values
of curse are of the storage are the values above the limit minus the limit
value. The power flow including this difference occurs on the line at the limit
and results in the peak.

Unfortunately, this is the only result we can get out of the storage simu-
lation by a probabilistic method. The main problem is that this method has
no information about time and/or order as well as dependencies of the oc-
currences. This limits the applicability of our method for any considerations
related to storage. Our result represents the density function of only filling
the storage.
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