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Kurzfassung

Ziel dieser Diplomarbeit ist die Visualisierung einiger grundlegender Ergeb-
nisse aus dem Umfeld der Theorie der modularen Gruppe sowie der modularen
Funktionen unter Zuhilfenahme der Computer Algebra Software Mathematica.

Die Arbeit gliedert sich in drei Teile. Im ersten Kapitel werden für diese Ar-
beit relevante Begriffe aus der Gruppentheorie zusammengefasst. Weiters wer-
den Möbius Transformationen eingeführt und deren grundlegende geometrische
Eigenschaften untersucht.

Das zweite Kapitel ist der Untersuchung der modularen Gruppe aus al-
gebraischer und geometrischer Sicht gewidmet. Der kanonische Fundamen-
talbereich der modularen Gruppe sowie die daraus abgeleitete Kachelung der
oberen Halbebene wird eingeführt. Weiters wird eine generelle Methode zum
Auffinden von Fundamentalbereichen für Untergruppen der modularen Gruppe
vorgestellt, welche sich zentral auf die Konzepte der 2-dimensionalen hyper-
bolischen Geometrie stützt.

Im dritten Kapitel geben wir einige konkrete Beispiele, wie die aufge-
baute Theorie für die Visualisierung bestimmter mathematischer Sachverhalte
angewendet werden kann. Neben der Visualisierung von Graphen modularer
Funktionen stellt sich auch der Zusammenhang zwischen modularen Transfor-
mationen und Kettenbrüchen als besonders schönes Ergebnis dar.
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Abstract

The aim of this diploma thesis is the visualization of some fundamental results
in the context of the theory of the modular group and modular functions. For
this purpose the computer algebra software Mathematica is utilized.

The thesis is structured in three parts. In Chapter 1, we summarize some
important basic concepts of group theory which are relevant to this work.
Moreover, we introduce Möbius transformations and study their geometric
mapping properties.

Chapter 2 is devoted to the study of the modular group from an algebraic
and geometric point of view. We introduce the canonical fundamental region
which gives rise to the modular tessellation of the upper half-plane. Addition-
ally, we present a general method for finding fundamental regions with respect
to subgroups of the modular group based on the concepts of 2-dimensional
hyperbolic geometry.

In Chapter 3 we give some concrete examples how the developed results
and methods can be exploited for the visualization of certain mathematical
results. Besides the visualization of function graphs of modular functions, a
particularly nice result is the connection between modular transformations and
continued fraction expansions.

v



vi



Preface

The centerpiece of the present diploma thesis, Computer Algebra and Analysis:
Complex Variables Visualized, is the modular group. It plays an important
role in many areas of mathematics, as for example in number theory due to
its connection with partition numbers or continued fractions.

This thesis is structured in three parts. In Chapter 1, we introduce ba-
sic notions and definitions which are fundamental for the rest of this work.
Firstly, we summarize the most important basic concepts of group theory.
Moreover, we introduce Möbius transformations and study their connection
to stereographic projection in detail. Finally, we define the concept of gener-
alized circles and generalized disks, using an elegant characterization in terms
of Hermitian matrices which turns out to be particularly advantageous in the
context of Möbius transformations.

Chapter 2 is devoted to the study of the modular group from an algebraic
and geometric point of view. Two different and independent algorithms, the
T -U algorithm and the T -R algorithm, are presented which both yield group
word representations for arbitrary modular transformations in terms of the
transformations T : z 7→ 1

z
, U : z 7→ z + 1 and R : z 7→ 1

z+1
. Geometric

considerations come into play when introducing fundamental regions for the
action of the modular group on the extended complex plane. A canonical
fundamental region is derived which gives rise to the modular tessellation of
the upper-half plane. Lastly, the basic concepts of 2-dimensional hyperbolic
geometry are introduced in order to present an alternative and more general
method for finding fundamental regions. This method gives rise to so-called
normal polygons and works as well for subgroups of the modular group.

Finally, Chapter 3 has a clear emphasis on visualization. Firstly, general-
ized matrix powers are introduced as a device for visualizing continuous transi-
tions between given sets and their Möbius-transformed images. Secondly, the
relation between the modular transformations, Ford circles and continued frac-
tions is studied in detail and visually explained using the continued fraction
expansion of the irrational number π as an example. Lastly, documenting the
important role of the modular group within complex analysis, the most basic
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results from the theory of modular functions are summarized. Using an ade-
quate color coding, graphs of certain selected modular functions are depicted
whose inherent visual aesthetics and symmetry reflect well the beauty of this
theory.

Achievements

Complementary to this thesis, the Mathematica package ModularGroup has
been developed. This package, together with some interactive demonstrations,
may be downloaded from the website of the Research Institute for Symbolic
Computation (RISC).1 It contains essentially all algorithms described in this
thesis as well as functions for visualization of generalized circles, generalized
disks, modular tessellations and more. The main attention has been paid
to an efficient and fast implementation of these algorithms, relying in many
aspects on compiled functions using machine-precision integer and floating
point arithmetic. Note that all figures included in this thesis are based on this
package.

Furthermore it is worth noting that this thesis also contains ideas which
have not been found directly in this form in the referenced literature. During
the implementation of the enumeration algorithm for modular transformations,
it got apparent that the left- or rightmost symbol of the unique T -R group
word of any given modular transformation can be read off directly from its cor-
responding matrix. This observation leads to the T -R algorithm of Section 2.1
and to the alternative proof for the presentation for the modular group in
terms of the generators T and R (Theorem 2.13).

For the proof that the region F := {z ∈ C | |Re (z)| < 1 ∧ |z| > 1}
is a fundamental region for the action of the modular group on the upper
half-plane, we intentionally take a different and slightly longer track than for
example Klein/Fricke [7] or Schoeneberg [14]. We first derive a fundamental
region for the action of the homogeneous modular group on C2 by looking for
representative vectors of minimal Euclidean norm. By carrying over the result
to the inhomogeneous case, we indeed obtain the fundamental region F in a
very natural and instructive way.

For visualization of objects living on the upper half-plane of C, such as
the modular tessellation or graphs of modular functions, we frequently make
use of a Möbius transformation which maps the upper half-plane to the unit
disk. This allows us to visualize the whole picture rather than just an arbitrary
rectangular fragment of it. It turns out that in this context the most natural

1http://www.risc.jku.at/
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choice for such a Möbius transformation is not the well-known Cayley trans-
form, but in fact a map which we introduce in Example 1.43 as the modified
Cayley transform.

Another idea suggesting itself is to consider the inscribed circle of the
canonical fundamental region F (see Figure 2.2). Indeed, the introduction
of so-called indisks turns out to be very fruitful in the study of the relation
between modular transformations and continued fractions in Section 3.2. It
leads to the notion of indisk-paths, which in turn give rise to an alternative
proof for the presentation of the modular group in terms of the generators T
and R (Corollary 3.16).

Outlook

The Mathematica package ModularGroup may be extended for a systematic
treatment of various congruence subgroups of the modular group. The algo-
rithm which has been used for drawing the normal polygons in Section 2.4.1
has been one of the latest results of this work. It is still preliminary and may
be added to the package at a later stage.

Also the implementation of H. A. Verrill’s algorithm for the visualization
of fundamental regions of congruence subgroups2 – which has actually been
the starting point for this thesis – is easily possible based on the present Math-
ematica package.
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Chapter 1

Basic notions and definitions

1.1 Groups and algebraic constructions

In this section, we will recapitulate some basic algebraic concepts, most im-
portant the notions of free groups and free products, and the construction of
a group in terms of generators and relations. Additionally, we give the defini-
tions of the (projective) general and special linear groups. Lastly, group actions
on sets will be introduced. A reader familiar to this concepts may readily skip
this section. Moreover, we will give no rigorous proofs here, as they may be
found in many algebra books, as for example in Hungerford [5].

1.1.1 Groups and homomorphisms

If G is a nonempty set, a binary operation on G is a function G × G → G.
Commonly used notations for the image of (a, b) ∈ G × G under a binary
operation are a · b or ab (product notation), a + b (additive notation), a ◦ b,
a ∗ b, etc. In this chapter and also later on we will use the product notation,
(a, b) 7→ a · b = ab, most frequently and we refer to ab as the product of a and
b.

Definition 1.1 (Groups and monoids). Let G be a nonempty set together
with a binary operation on G. If the binary operation satisfies the following
three axioms,

(i) Associativity: ∀a, b, c ∈ G : a(bc) = (ab)c,

(ii) Existence of an identity element: ∃e ∈ G ∀a ∈ G : ea = ae = a,

(iii) Existence of inverse elements: ∀a ∈ G ∃a−1 ∈ G : aa−1 = a−1a = e,

1



2 CHAPTER 1. BASIC NOTIONS AND DEFINITIONS

then G is called a group. If the axioms (i) and (ii) are satisfied, then G
is called a monoid. Of course every group is in particular a monoid. The
notation ⟨G, ·, e⟩ will be used for making the identity element and the involved
binary operation explicit.

It is convenient to introduce the following notations operating on subsets
of a group G. For g ∈ G and A,B ⊆ G we define

A−1 := {a−1 | a ∈ A} ⊆ G,

AB := {ab | a ∈ A, b ∈ B} ⊆ G,

gA := {g}A = {ga | a ∈ A} ⊆ G,

Ag := A{g} = {ag | a ∈ A} ⊆ G.

Definition 1.2 (Subgroups). Let ⟨G, ·, e⟩ be a group. A nonempty subsetH ⊆
G which is closed under the binary operation · and inversion, i.e. HH−1 = H,
is called a subgroup of G, in symbols H ≤ G. In particular, ⟨H, ·, e⟩ is itself
a group. If H ≤ G and H ̸= G, H is called a proper subgroup of G, and we
write H ⪇ G. The subgroup {e} ≤ G is called the trivial subgroup.

Definition 1.3 (Cosets). Let H be as subgroup of a group G and g ∈ G. The
set gH is called a left coset of H in G and Hg is called a right coset.

If H is a subgroup of G, then for every g ∈ G also gHg−1 is a subgroup of
G. For h ∈ H, g ∈ G, we call the operation h 7→ ghg−1 conjugation of h by g.

Definition 1.4 (Normal subgroups). A subgroup N of a group G which is
closed under conjugation by elements of G, i.e. gNg−1 = N for all g ∈ G, is
called a normal subgroup of G, in symbols N �G.

If N is a normal subgroup of G, then we have gN = Ng for every g ∈ G, in
other words left and right cosets of N in G coincide. We can therefore define
on the set of cosets

G/N := {gN | g ∈ G}, (1.1)

a binary operation by aNbN := abNN = abN for a, b ∈ G. It is easy to see
that G/N together with this operation forms a group.

Definition 1.5 (Factor groups). Let N be a normal subgroup of a group G.
The set G/N defined in (1.1) together with the binary operation (aN, bN) 7→
abN is called the factor group (or quotient group) of G by N .

Definition 1.6 (Homomorphisms). Let G and H be groups (or monoids). A
function f : G→ H is a homomorphism from G to H, if and only if

f(ab) = f(a)f(b) for all a, b ∈ G.
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Depending on f being injective and/or surjective, one distinguishes monomor-
phisms (f is injective), epimorphisms (f is surjective) and isomorphisms (f
is bijective). We call the groups G and H isomorphic, in symbols G ∼= H, if
and only if there exists an isomorphism f : G→ H. Finally, a homomorphism
f : G → G of G to itself is called endomorphism. A bijective endomorphism
is called automorphism.

Definition 1.7 (Kernel). Let G and H be groups and denote the identity
element of H by eH . For a homomorphism f : G→ H, the set

ker f := {g ∈ G | f(g) = eH} (1.2)

is called the kernel of f.

Lemma 1.8. Let G and H be groups and f : G → H be a homomorphism.
The kernel of f is a normal subgroup of G and the image f(G) is a subgroup
of H:

ker f �G and f(G) ≤ H.

Proof. Denote the identity elements of G and H by eG and eH respectively.
Because f is a homomorphism, we have f(eG) = f(eGeG) = f(eG)f(eG).
Multiplying this by f(eG)

−1 yields eH = f(eG). In other words eG ∈ ker f
and ker f is nonempty. To see that ker f ≤ G, we need to show that for all
a, b ∈ ker f also ab−1 ∈ ker f – but this is easy:

f(ab−1) = f(a)f(b−1) = f(a)f(b)−1 = eHeH
−1 = eH .

To see that ker f is a normal subgroup of G, let a ∈ ker f , g ∈ G and observe

f(gag−1) = f(g)f(a)f(g−1) = f(g)eHf(g)
−1 = eH .

For this reason gag−1 ∈ ker f and ker f is closed under conjugation by elements
of G. For the second part of the proof, let f(a), f(b) ∈ f(G) with a, b ∈ G.
Clearly f(a)f(b)−1 = f(a)f(b−1) = f(ab−1) ∈ f(G) and therefore f(G) ≤
H.

Theorem 1.9 (First isomorphism theorem). Let G and H be groups and f :
G → H be a homomorphism. Then the quotient group G/ ker f is isomorphic
to f(G):

G/ ker f ∼= f(G).

Proof. Let us again denote the identity element of H by eH . Define N := ker f
and a map φ : G/N → f(G) by aN 7→ f(a). Now for arbitrary a, b ∈ G observe

aN = bN ⇔ ab−1 ∈ N ⇔ eH = f(ab−1) = f(a)f(b)−1 ⇔ f(a) = f(b).
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This shows two things: First (⇒), φ is well defined and second (⇐), φ is
injective. Clearly φ is also surjective and by definition we have

φ(aN)φ(bN) = f(a)f(b) = f(ab) = φ(abN) for all a, b ∈ G.

Therefore φ is indeed an isomorphism from G/N to f(G).

1.1.2 Free monoids

Let Σ be a set of formal symbols, for example Σ = {a, b, c, . . . }. For n ∈ N,
n ≥ 0, we denote by Σn the set of tuples of length n over Σ and we will
call these tuples words of length n over the alphabet Σ. For simplicity, we
will omit parentheses and commas when notating such a word, for example
(a, b, b, a) =: abba ∈ Σ4 is a word of length 4. Note the special case for n = 0.
By definition, Σ0 contains all words of length 0. Obviously, there is only one
such word, the so-called empty word, which we denote by ϵ. A second special
case occurs for Σ = ∅, where Σn = ∅ for all n > 0 and Σ0 = {ϵ}, because there
are no words over the empty alphabet except the empty word. Next, we define

Σ⋆ :=
∪
n≥0

Σn. (1.3)

as the set of all words over the alphabet Σ. It is now just natural to define a
binary operation · on Σ⋆ which is given by concatenation of words:

w1 · w2 := w1w2, w1, w2 ∈ Σ⋆.

It is obvious that this operation on Σ⋆ is associative and has the empty word
ϵ as identity element. Therefore, according to Definition 1.1, the algebraic
structure ⟨Σ⋆, ·, ϵ⟩ forms a monoid.

Definition 1.10 (Free monoid). Let Σ be an arbitrary set of symbols (called
the alphabet), and Σ⋆ be defined as in (1.3). Moreover, denote concatenation
of words by · and let ϵ be the empty word. Then the algebraic structure
⟨Σ⋆, ·, ϵ⟩ is called the free monoid over the alphabet Σ.

1.1.3 Free groups

In a similar fashion, we can construct also a group from any given formal
alphabet Σ. For this purpose we first choose a “disjoint copy” of Σ which
we denote by Σ−1. To be precise, Σ−1 may be any arbitrary set satisfying
Σ ∩ Σ−1 = ∅ and having same cardinality as Σ. In particular we could for
example set Σ−1 := Σ × {1}. Next, we choose a bijection f : Σ → Σ−1. We
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can extend this bijection between the sets Σ and Σ−1 to an involution f living
on the union Σ := Σ ∪ Σ−1 by defining f := f ∪ f−1 or more verbose:

f(a) :=

{
f(a) if a ∈ Σ

f−1(a) if a ∈ Σ−1

Now we introduce the notation f(a) =: a−1 for all a ∈ Σ and call a−1 the
(formal) inverse of the element a.

Having now defined a formal inverse for each of our symbols in the given
alphabet, we can go on and consider the free monoid Σ

⋆
. If σ1, σ2, . . . , σn are

symbols of Σ, then we say the word σ1σ2 . . . σn is reduced, if and only if no two
subsequent symbols of the word are inverse to each other, that is

σj ̸= σ−1
j+1 for all 1 ≤ j < n. (1.4)

Clearly every word w ∈ Σ
⋆
can be brought into reduced form by successively

“canceling out” adjacent inverse symbols until finally a word is obtained, which
satisfies (1.4). We call the result of this procedure the reduced form of w.
Additionally we define two words w1, w2 ∈ Σ

⋆
to be equivalent if and only if

they have the same reduced form and we write w1 ∼ w2 in this case. If we
denote the reduced form of w by φ(w), we can write

w1 ∼ w2 ⇔ φ(w1) = φ(w2).

Moreover we observe that if w1 ∼ w2 and v1 ∼ v2, then we also have w1v1 ∼
w2v2 because φ(w1) = φ(w2) =: w and φ(v1) = φ(v2) =: v implies

φ(w1v1) = φ(wv) = φ(w2v2).

Thus we see that the equivalence relation ∼ is compatible with the operation
of word concatenation. Therefore we can consider also the set of equivalence
classes Σ

⋆
/∼ as a monoid under the operation of word concatenation. Obvi-

ously the set of reduced words is a system of representatives for Σ
⋆
/∼ and we

agree to denote an equivalence class [w]∼ simply by the reduced word w. Σ
⋆
/∼

is not just a monoid, but in fact a group, as the inverse of a word σ1σ2 . . . σn−1σn
is trivially given by σ−1

n σ−1
n−1 . . . σ

−1
2 σ−1

1 . We call a reduced word of Σ
⋆
(resp.

its corresponding equivalence class in Σ
⋆
/∼) a group word over the alphabet Σ.

Definition 1.11 (Free group). Let Σ be an arbitrary set of formal symbols
and define Σ := Σ ∪ Σ−1 as above. On the free monoid Σ

⋆
define an equiva-

lence relation ∼ by identifying words with the same reduced form. Then the
algebraic structure

Σ∼ := ⟨Σ⋆
/∼, ·, ϵ⟩ (1.5)

is called the free group over the alphabet Σ.
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Remark 1.12. In the exceptional case when Σ = ∅, we obtain the trivial group
by this construction: If Σ = ∅ then we can also choose Σ−1 = ∅ (Σ and Σ−1

are then disjoint as required). It follows that also Σ is empty and we end up
with the trivial monoid Σ

⋆
= {ϵ}, which corresponds to the trivial group.

Example 1.13. Let Σ be the singleton set {a}. Now the free group over Σ
consists precisely of the following group words:

Σ∼ = {ϵ, a, aa, aaa, . . . , a−1, a−1a−1, . . . }.

If we now introduce the notation

ϵ =: a0, aa . . . a︸ ︷︷ ︸
k times

=: ak, a−1a−1 . . . a−1︸ ︷︷ ︸
k times

=: a−k,

we have an · am = an+m for all n,m ∈ Z and it is thus evident that the free
group over any one-element alphabet is isomorphic to the group ⟨Z,+, 0⟩.

Note that this is the only case (besides the trivial one, when Σ = ∅), where
the free group is commutative. In fact, the free group construction always
yields a group with “richest possible” structure in the following sense:

Theorem 1.14. Let Σ be an arbitrary set and G be an arbitrary group. If any
mapping φ : Σ → G is given, then we can always extend φ in a unique way to
a homomorphism φ : Σ∼ → G.

In fact, the property described in Theorem 1.14 completely characterizes
the free group up to isomorphism, as stated in the next Theorem:

Theorem 1.15 (Universal mapping property). Let Σ be an arbitrary set and
F be a group together with an injective map ι : Σ → F . If F has the property
that for any map φ : Σ → G, where G is an arbitrary group, there is a
homomorphism φ : F → G such that φ = φ ◦ ι, then F is (isomorphic to) the
free group over the alphabet Σ.

1.1.4 Generators and relations

Definition 1.16. Let ⟨G, ·, 1⟩ be a group and Σ ⊆ G a subset. We say G is
generated by the elements of Σ, if every element g ∈ G can be written as a
product of elements from Σ in the following sense:

∀g ∈ G ∃n ∈ N, (σj) ∈ Σn, (kj) ∈ Zn : g = σk1
1 σ

k2
2 . . . σkn

n . (1.6)

Moreover in this case we call the elements of Σ generators of G.
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Let us first consider the case when some g ∈ G can be generated in two
different ways, for example

g = σk1
1 σ

k2
2 . . . σkn

n = τ ℓ11 τ
ℓ2
2 . . . τ ℓmm

with σj, τj ∈ Σ and kj, ℓj ∈ Z. This immediately gives

σk1
1 σ

ke
2 . . . σkn

n · τ−ℓm
m τ

−ℓm−1

m−1 . . . τ−ℓ1
1 = 1. (1.7)

We call the group word occurring on the left hand side of (1.7) a relation
on G. The set of all such possible relations on G forms a normal subgroup
of Σ∼. To see this, let φ : Σ → G be the canonical embedding. According
to Theorem 1.14 there exists a unique extension of φ to a homomorphism
φ : Σ∼ → G. In fact this homomorphism just evaluates group words over Σ
in the obvious way to concrete group elements in G. By definition, the set
of all relations on G is now given by N := ker(φ) which is, by Lemma 1.8, a
normal subgroup of Σ∼. It now follows from the first isomorphism theorem
(Theorem 1.9) that G ∼= Σ∼/N . In the case when the product representation
in (1.6) is unique for all g ∈ G, then N just consists of the identity element
and G is isomorphic to Σ∼. In this case G is said to be relation-free, which is
where the terminology “free group” actually comes from.

Summing up, we see that every group can be described by supplying a set
of generators Σ and a the set of relations N�Σ∼. Of course it is also sufficient
to supply just a subset R of relations from which the other relations can be
derived. This leads to the following definition:

Definition 1.17 (Presentation of a group). Let Σ be an arbitrary set and
R ⊆ Σ∼ a set of group words over the alphabet Σ. A group G is said to be
the group defined by the generators σ ∈ Σ and relations R, if G is obtained
by the following construction:

1. Let N be the normal subgroup of Σ∼ generated by the relations R:

N :=
∩

R⊆N ′�Σ∼

N ′.

2. Define G := ⟨Σ | R⟩ := Σ∼/N .

Finally ⟨Σ | R⟩ is called a presentation of G.

For easier notation we may omit braces when listing Σ and R in a presen-
tation of G. Moreover we may write out relations more explicitly, for example
instead of G = ⟨{a} | {a2}⟩ we may write G = ⟨a | a2 = 1⟩.
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Remark 1.18. The presentation ⟨Σ | R⟩ of a group G is by far not unique as
the normal group N can be generated by many different subsets R ⊆ N . Even
worse, the word problem, i.e. the question, if a given group word w ∈ Σ∼ is in
N when R is given, is in general not decidable, which means that there is no
general algorithm for deciding, if two given group words represent the same
element of G.

Example 1.19. The group ⟨t, r | t2 = r3 = 1⟩ consists of all group words of
the form

rk1trk2t . . . trkn , with k1, kn ∈ {0,±1} and k2, . . . , kn−1 ∈ {±1}.

We conclude this section with the statement, that among all groups, which
satisfy a given set of relations R, the group constructed as above is in a certain
sense the largest possible one.

Theorem 1.20. Let ⟨Σ | R⟩ be a presentation of a group G. If H is any group
generated by Σ and if H satisfies all relations R, then there is an epimorphism
G→ H.

1.1.5 Free products

Let ⟨Gi, ·, ei⟩i∈I a family of pairwise disjoint groups, i.e. Gi ∩Gj = ∅ for i ̸= j.
We define the free product of the family of groups (Gi)i∈I by a construction in
terms of generators and relations (see Definition 1.17) as follows: As the set of
generators we choose the alphabet Σ =

∪
i∈I Gi and as the set of relations we

take all the relations coming from any of the groups Gi. Note that a priori the
neutral elements ei ∈ Gi are all different symbols, but the final factorization
by the normal subgroup N automatically identifies them with each other, as
N includes all the ei as trivial relations.

Definition 1.21 (Free product). Let (Gi)i∈I be a family of disjoint groups.
For every i ∈ I, let φi be the unique extension of the identity map on Gi to
a homomorphism Gi∼ → Gi according to Theorem 1.14.1 The free product of
the family (Gi)i∈I is defined as∏

i∈I

⋆
Gi := ⟨Σ | R⟩ , where Σ =

∪
i∈I

Gi and R =
∪
i∈I

kerφi.

If only a small finite number of groups is involved, for example only the
two groups G and H, we will write G ∗H for their free product.

1In other words, φi is the map which evaluates group words over the alphabet Gi to
concrete elements of Gi in the obvious way.
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Example 1.22. The free product of the groups G = ⟨t | t2 = 1⟩ and H =
⟨r | r3 = 1⟩ is the group G ∗ H = ⟨t, r | t2 = r3 = 1⟩ which we have already
seen in Example 1.19.

Example 1.23. Let Fn and Fm be the free groups generated by n and m
elements respectively. Then the free product Fn ∗Fm = Fn+m is the free group
generated by n+m elements.

1.1.6 Basic linear groups

In this section we give the definitions of some important basic groups which will
be needed throughout this document. We start with the general and special
linear group.

Definition 1.24 (General linear group). Let F be a field and n > 0. The
group of invertible n-by-n matrices over F is called general linear group and
is denoted by

GLn(F ) := {M ∈ F n×n | detM ̸= 0}. (1.8)

Definition 1.25 (Special linear group). Let R be a commutative ring with
1 and n > 0. The group of n-by-n matrices over R having determinant 1, is
called special linear group and is denoted by

SLn(R) := {M ∈ Rn×n | detM = 1}. (1.9)

Of course in the case, when R is contained in the field F , then the special
linear group SLn(R) is a subgroup of the general linear group GLn(F ).

For both, the general and special linear group, one can construct the pro-
jective groups by identifying matrices which differ by a scalar multiple. For
this purpose we define the center of a group G in the usual way:

Z(G) := {z ∈ G | zg = gz ∀g ∈ G}. (1.10)

If G is a matrix group, Z(G) consists precisely of all scalar multiples of the
identity matrix within G, which is exactly what we need for this construction.

Definition 1.26 (Projective linear groups). As above, let F be a field, R a
ring with 1 and n > 0. The projective general linear group and the projective
special linear group are defined as

PGLn(F ) := GLn(F )/Z(GLn(F )), (1.11)

PSLn(R) := SLn(R) /Z(SLn(R)). (1.12)
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Example 1.27. Consider a matrix M ∈ SL2(R). The equivalence class
[M ]∼ ∈ PSL2(R) consists precisely of the two matrices M and −M , whereas
the equivalence class [M ]∼ ∈ PGL2(R) is just the set {λM | λ ∈ R \ {0}}. For
a clearer distinction of these equivalence classes let us introduce the notation

±M := [M ]∼ ∈ PSL2(R) and

λM := [M ]∼ ∈ PGL2(R).

Clearly λM = λ(−M), which allows us to define an injective homomorphism ι
which embeds PSL2(R) into PGL2(R):

ι :

{
PSL2(R) → PGL2(R)

±M 7→ λM

Because det(λM) = λ2 det(M) = λ2 > 0, the image of ι consists of equivalence
classes of matrices with positive determinant only, whereas PGL2(R) also con-
tains equivalence classes of matrices with negative determinant. Therefore the
embedding ι is not surjective and PSL2(R) isomorphic to a proper subgroup
of PGL2(R):

PSL2(R) ∼= ι(PSL2(R)) ⪇ PGL2(R).

In contrast to that, if we switch to PSL2(C) and PGL2(C) respectively and de-
fine ι analogously, we see that for every equivalence class [M ]∼ ∈ PGL2(C), the
matrix M ′ := 1√

detM
M is in SL2(C) and satisfies ι([M ′]∼) = [M ]∼. Therefore

ι is now also surjective and thus we have

PSL2(C) ∼= PGL2(C).

More generally, for an arbitrary field F the groups PSLn(F ) and PGLn(F ) are
isomorphic, if and only if F is closed under taking the n-th root, otherwise
PSLn(F ) is isomorphic to a proper subgroup of PGLn(F ).

1.1.7 The action of a group on a set

Definition 1.28 (Group action). Let ⟨G, ·, 1⟩ be a group and S be an arbitrary
set. A function G × S → S, (g, x) 7→ gx is called a group action of G on the
set S (alternatively we say G acts on the set S), if and only if

∀x ∈ S, g1, g2 ∈ G : 1x = x and (g1g2)x = g1(g2x). (1.13)

Theorem 1.29. Let G be a group acting on the set S.
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(i) The relation ∼ on S defined by

x1 ∼ x2 :⇔ ∃g ∈ G : x1 = gx2 (1.14)

is an equivalence relation.

(ii) For all x ∈ S the set Gx := {g ∈ G | gx = x} forms a subgroup of G.

Definition 1.30 (Orbit, stabilizer). For x ∈ S, the set

Gx := {gx ∈ S | g ∈ G},

which is identical to the equivalence class [x]∼ ∈ S/ ∼ of the relation ∼ defined
in (1.14), is called the orbit of x under G. The group

Gx := {g ∈ G | gx = x} ≤ G

is called the stabilizer of x.

Theorem 1.31. The action of a group G on a set S induces a homomorphism
from G to the group of permutations on S which is given by g 7→ (x 7→ gx).

Corollary 1.32 (Cayley). The action of a group G on itself induces a monomor-
phism from G to the group of permutations of its elements. Hence every group
is isomorphic to a permutation group. In particular every finite group G is
isomorphic to a subgroup of the symmetric group Sn with n = |G|.

1.2 Möbius transformations

In the following we define the group of Möbius transformations and collect
some useful basic properties.

Definition 1.33. A non-constant rational function φ ∈ C(z) of the form

φ(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc ̸= 0

is called Möbius transformation.

Remark 1.34. The condition ad − bc ̸= 0 just ensures that φ is in fact non-
constant.

Theorem 1.35. The set of Möbius transformations forms a group under the
action of function composition and can be identified with the projective general
linear group PGL2(C) or the projective special linear group PSL2(C).
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Proof. Let φ and ψ be Möbius transformations with

φ(z) =
az + b

cz + d
, ψ(z) =

ez + f

gz + h
.

First we make the trivial observation that composing those two transfor-
mations again yields a rational function of the desired form:

φ ◦ ψ(z) =
a ez+f
gz+h

+ b

c ez+f
gz+h

+ d
=
aez + af + bgz + bh

cez + cf + dgz + dh
=

(ae+ bg)z + (af + bh)

(ce+ dg)z + (cf + dh)

(1.15)
Having a closer look on the resulting coefficients one might notice that they

relate to the following matrix product:(
a b
c d

)
·
(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
(1.16)

This motivates the definition of a mapping π between matrices in GL2(C)
and Möbius transformations:

π :

(
a b
c d

)
7→ az + b

cz + d
(1.17)

Note that the domain of π is GL2(C), i.e. the set of 2-by-2 matrices with
nonzero determinant. This is perfectly consistent with the condition ad−bc ̸= 0
we have for Möbius transformations. For this reason π is a well-defined function
from GL2(C) to the set of Möbius transformations.

But π is not just a function, it is in fact a homomorphism as we see from
(1.15) and (1.16). Trivially π is also surjective, which carries over the group
structure of GL2(C) to the set of Möbius transformations. The kernel of π
comprises of all multiples of the identity matrix. Therefore, by the first iso-
morphism theorem (Theorem 1.9), the group of Möbius transformations is
isomorphic to GL2(C)/ kerπ ∼= PGL2(C) and we have seen in Example 1.27
that PGL2(C) ∼= PSL2(C).

Remark 1.36. We note that the nature of Möbius transformations is threefold:
Firstly, as in Definition 1.33, we can regard a Möbius transformation φ as
purely algebraic object, namely as rational function, i.e. the (formal) quotient
of two polynomials in C[z]:

φalg =
az + b

cz + d
∈ C(z).
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Secondly φ has a natural interpretation as meromorphic function on the ex-
tended complex plane C∞ = C ∪ {∞} in the sense of complex analysis:

φfun :

{
C∞ → C∞
z 7→ az+b

cz+d
.

In a more formal context, this correspondence can also be seen the following
light: The group of Möbius transformations acts on the set C∞ in the sense of
Defintion 1.28 by φalgz := φfun(z). Now, the homomorphism of Theorem 1.31
is in fact an isomorphism which assigns each Möbius transformation φalg a
permutation of the set C∞ which is exactly the meromorphic function φfun.
Last but not least we have seen in Theorem 1.35 that we can also regard φ as
equivalence class of matrices:

φlin =

(
a b
c d

)
∼
∈ PGL2(C).

Whenever there is no danger of confusion, we will from now on switch be-
tween these different views on Möbius transformations seamlessly and exploit
concepts of algebra, function theory and linear algebra alternately.

Lemma 1.37. The group of Möbius transformations is generated by the fol-
lowing basic types of transformations:

• Translations: z 7→ z + α α ∈ C
• Dilations: z 7→ ρz ρ > 0
• Rotations: z 7→ eiθz θ ∈ (−π, π]
• Inversion: z 7→ 1

z

Proof. Let φ(z) = az+b
cz+d

be an arbitrary Möbius transformation. In the case
when c = 0, we may further assume w.l.o.g. that d = 1 such that the trans-
formation simply writes φ(z) = az+ b. Obviously this is dilation and rotation
by the factor a followed by translation by b.

Let’s consider the more interesting case when c ̸= 0. Without restriction
we may assume that c = 1, such that

φ(z) =
az + b

z + d
= a+

b− ad

z + d
.

Also in this case it is easy to see that φ is composed of translation by d,
inversion, dilation and rotation by the factor b− ad and a final translation by
a.

Now that we have defined the group of Möbius transformations, it is worth
to get a better geometric intuition about how these maps act on the complex
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r C
P

Q

Figure 1.1: Circle inversion with respect to the green reference circle. For a
point P within the reference circle, the inverseQ is constructed by first drawing
a ray from C through P (red). The line perpendicular to this ray through the
point P intersects the reference circle in two points. These two points together
with C determine a circle (dashed) which intersects the ray in the point Q.
The distances CP and CQ satisfy the relation CP · CQ = r2.

plane. Lemma 1.37 gives a first insight, as translations, dilations and rota-
tions are quite easy to understand. Also the map z 7→ 1

z
has a geometric

interpretation, namely as circle inversion followed by a reflection.

In 2-dimensional geometry, circle inversion with respect to a reference circle
with center C and a radius r takes each point P on the plane to a point Q lying
on the ray from C through P . Its distance from C is determined by CP ·CQ =
r2. The image of C is defined to be the point at infinity (and vice versa).
Roughly speaking, the inversion turns the circle “inside out”, i.e. points inside
the reference circle are bijectively mapped to points outside while rays from
the circle center are invariant under the circle inversion – see also Figure 1.1.
A short introduction to circle inversion can be found in Mumford [9], p. 54ff.
For a more comprehensive treatment see Schwerdtfeger [15].

Coming back to the concrete map z 7→ 1
z
, it can now be interpreted the

following way: Circle inversion with regard to the unit circle maps each z ∈ C
to z

|z|2 = 1
z
. Then reflection across the real axis (i.e. complex conjugation)

takes 1
z
to 1

z
.

Summing up, all the basic types of Möbius transformations mentioned
in Lemma 1.37 have a very direct geometric interpretation. Still, arbitrary
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Möbius transformations (especially those involving at least one inversion) are
hard to describe in a similar geometric and intuitive way. Fortunately there
is another characterization of Möbius transformations which is both, elegant
and visually accessible.

1.2.1 Stereographic projection

This section is about the great work of Douglas Arnold and Jonathan Rogness,
“Möbius transformations revealed” [1], in which the authors give a character-
ization of Möbius transformations in terms of stereographic projections and
rigid motions of spheres in 3D-space.2

In order to introduce stereographic projection, we first have to embed C
into R3. We do so by using the map

ι :

{
C → R3

z 7→ (Re (z) , Im (z) , 0)
, (1.18)

which means that we identify the complex plane with the plane x3 = 0 in R3.
Additionally we equip R3 with the standard Euclidean norm:

∥x∥2 :=
√
x21 + x22 + x23, x ∈ R3. (1.19)

Definition 1.38 (Admissible sphere). A sphere with center c ∈ R3 and radius
r > 0 is the set S := {x ∈ R3 | ∥x− c∥2 = r}. Its north-pole is the unique
point n ∈ S with maximal x3-coordinate. A sphere whose north pole lies in
the upper half-space H := {x ∈ R3 | x3 > 0} is called an admissible sphere.

Definition 1.39 (Stereographic projection). Let S be an admissible sphere
and n ∈ S be its north pole. If x ∈ S \ {n}, then denote by Lx,n the unique
line joining x with n and let y be the intersection point of Lx,n with the plane
ι(C). Now, stereographic projection with regard to S is the map PS : S → C∞
defined as PS(x) := ι−1(y) for x ̸= n and PS(n) := ∞.

Remark 1.40. Stereographic projection with regard to any admissible sphere
S ⊆ R3 maps S bijectively to C∞. Of course the most natural choice for S
in this context is the unit sphere S1 := {x ∈ R3 | ∥x∥2 = 1}, having the
advantage that stereographic projection follows the simple formula

PS1 :

x1x2
x3

 7→ x1 + ix2
1− x3

. (1.20)

2See also http://www.ima.umn.edu/∼arnold/moebius
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Also reverse stereographic projection can be done easily using the unit sphere:

P−1
S1

: z 7→ 1

|z|2 + 1

2Re (z)
2 Im (z)

|z|2 − 1

 . (1.21)

By pointwise identifying C∞ with S1 using the above two mappings, we obtain
the Riemann spheremodel of the extended complex plane. One of its benefits is
that certain functions C∞ → C∞ can be interpreted nicely as simple rotations
of the Riemann sphere.

Example 1.41. Consider the map f : z 7→ 1
z
and the map V : S1 → S1, which

rotates the Riemann sphere around the x1 axis by 180◦:

V : x 7→

1 0 0
0 −1 0
0 0 −1

 ·

x1x2
x3

 . (1.22)

The first row of Figure 1.2 shows the upper half-plane U on the left and the
unit disk D on the right together with their images under reverse stereographic
projection. We see that both, U and D, correspond to a certain “halfsphere” of
the Riemann sphere. If we rotate these halfspheres around the x1 axis (leaving
the points {±1} fixed) and continuously perform stereographic projection, we
see that after a half turn (in the last row of Figure 1.2) we end up with the
lower half-plane f(U) and the set of points z with |z| > 1, f(D).

It is worth noting that this correspondence between rotation of the Riemann
sphere by 180◦ and the map f : z 7→ 1

z
does not just hold for the specially

chosen sets U and D, but indeed pointwise for every z ∈ C∞. In other words,
we have

f = PS1 ◦ V ◦ P−1
S1
.

We show this by a simple calculation, using the fact that 1
z
= z

|z|2 as well

as (1.21) and noting that for the case z = ∞ limits have to be introduced
appropriately:

(P−1
S1

◦ f)(z) = 1
1

|z|2 + 1

2Re
(
1
z

)
2 Im

(
1
z

)
1

|z|2 − 1

 =
|z|2

1 + |z|2

2 1
|z|2 Re (z)

2 1
|z|2 Im (z)

1−|z|2

|z|2


=

1

|z|2 + 1

 2Re (z)
−2 Im (z)

− |z|2 + 1

 = (V ◦ P−1
S1

)(z).
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Figure 1.2: Inversion z 7→ 1
z
can be interpreted as rotation of the Riemann

sphere by 180◦ around the x1 axis. It maps the upper to the lower half-plane
(left) and turns the unit disk inside out (right).
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Remark 1.42. Other examples for transformations corresponding to a half-
turn of the Riemann sphere are z 7→ −z (rotation around the x3 axis) and
T : z 7→ −1

z
(rotation around the x2 axis; as product of half turns around the

x1 and x3 axes). T is a function which maps the upper half-plane to itself and
which will be important in the study of the modular group in Section 2.1.

Example 1.43 (Modified Cayley transform). In Figure 1.3, the action of yet
another interesting transformation can be seen, which maps the upper half-
plane to the unit disk. It is given by

Φ(z) =
iz + 1

z + i
(1.23)

and can be either considered as a quarter turn of the Riemann sphere around
the x1 axis or as “half of an inversion”, since indeed Φ2(z) = Φ(Φ(z)) = 1

z

(compare with left column of Figure 1.2). In contrast to its better known
brother, the Cayley transform given by

Ψ(z) =
z − i

z + i
= −iΦ(z), (1.24)

Φ leaves the points {±1} fixed, which often beneficial for visualization pur-
poses. We will call Φ the modified Cayley transform.

Remark 1.44. Also the Cayley transform Ψ can be seen as rotation of the
Riemann sphere by 120◦ around the axis which is spanned by the vector
(1,−1, 1) ∈ R3. A figure illustrating this fact can be found for example in
Mumford [9], p. 88.

We have now seen exemplarily that quite a few interesting maps are in-
duced by rotations of the Riemann sphere. If we are willing to allow not only
rotations but also translations of the Riemann sphere, we indeed obtain a new
characterization of Möbius transformations, as stated in the next theorem.

Definition 1.45. A rigid motion of R3 is an affine transformation of R3 which
is obtained purely by composition of rotations and translations.

Theorem 1.46 (Möbius transformations revealed). A function φ : C∞ →
C∞ is a Möbius transformation, if and only if it can be obtained by reverse
stereographic projection of C∞ to an admissible sphere S ⊆ R3, followed by a
rigid motion T of R3 which maps S to another admissible sphere TS, followed
by stereographic projection from TS back to C∞:

φ = PTS ◦ T ◦ P−1
S . (1.25)
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Figure 1.3: The modified Cayley transform z 7→ iz+1
z+i

maps the upper half-
plane to the unit disk, leaving the points {±1} fixed. It can be considered as
a quarter turn of the Riemann sphere around the x1 axis.
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Sketch of proof. The fact that all maps of form (1.25) are indeed Möbius trans-
formations can be seen either by direct calculation or by the observation that
φ corresponds to the map P−1

S ◦φ ◦PS = P−1
S ◦PTS ◦ T from S to itself. If we

identify S with the Riemann sphere, we can regard φ as a holomorphic auto-
morphism of the Riemann sphere which is therefore a Möbius transformation.

It remains to show that every given transformation can indeed be realized
in the form (1.25). For this purpose, we first consider the four basic types of
Möbius transformations:

Translation: The map z 7→ z + α, α ∈ C can be realized by choosing an
arbitrary admissible sphere S and setting T = Tα : x 7→ x+ ι(α), which
simply translates S in a direction parallel to the x3 = 0 plane by ι(α).

Dilation: The map z 7→ ρz, ρ > 0 can be obtained by choosing an arbitrary
admissible sphere with north pole n and setting T = Dρ : x 7→ x +
(0, 0, (ρ− 1)n3), which moves S up- (ρ > 1) or downwards (ρ < 1) in x3
direction.

Rotation: The map z 7→ eiθz, θ ∈ (−π, π] can be realized by choosing an
arbitrary admissible sphere and setting

T = Rθ : x 7→

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ·

x1x2
x3

 ,

which rotates S around the x3 axis by an angle of θ.

Inversion: We have seen in Example 1.41 that the map z 7→ 1
z
can be realized

by choosing S as the unit sphere S1 and setting T = V – as defined in
(1.22) – which is a rotation of S1 around the x1 axis by an angle of 180◦.

Now let φ(z) = az+b
cz+d

be an arbitrary Möbius transformation. As in the proof
of Lemma 1.37, if c = 0 we may assume without restriction that d = 1 and
therefore φ(z) = az+ b. Clearly this map can be realized in the form (1.25) by
starting with an arbitrary admissible sphere S and taking T as the composition
of rotation by arg(a), dilation by |a| (in either order), followed by translation
by b:

T := Tb ◦D|a| ◦Rarg(a).

If c ̸= 0, we can scale the coefficients a, b, c, d such that c = 1 and write φ in
the form

φ(z) = a+
b− ad

z + d
.
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Now we choose S to be the sphere with unit radius centered at the point ι(−d)
and we compose T out of the following rigid motions: First, translation by d
transforms S to the unit sphere S1. Thus we can indeed apply V as the second
transformation in order to perform an inversion. Finally we apply rotation
and dilation by the factor b− ad followed by a translation by a:

T := Ta ◦D|b−ad| ◦Rarg(b−ad) ◦ V ◦ Td.

1.2.2 Generalized circles

From the geometric point of view Möbius transformations have the beautiful
property that they preserve generalized circles. Generalized circles are either
circles (in the usual sense) or lines on the complex plane C. They can also be
thought of circles on the Riemann sphere (i.e. the extended complex plane C∞
projected to the unit sphere S1, see Remark 1.40), where lines on the complex
plane stand in a one-to-one correspondence to circles through the point ∞ on
the Riemann sphere. In order to give an exact definition, we follow an idea
taken from Schwerdtfeger [15] and make the following considerations:

A circle with center m ∈ C and radius r > 0 can be described as the set of
points z ∈ C for which

|z −m| = r.

This is obviously equivalent to

|z −m|2 = (z −m)(z −m) = r2

and
zz −mz −mz +mm− r2 = 0. (1.26)

The generalization comes into play if we multiply this last equation by a con-
stant A ∈ R

Azz − Amz − Amz + Amm− Ar2 = 0

and introduce constants B, C and D appropriately such that we can write it
in the form

Azz +Bz + Cz +D = 0. (1.27)

Note that D is real and B = C are complex conjugates. From an equation of
form (1.27) we can read off the center and radius of the corresponding circle
by

m = −B
A
, (1.27a)

r =

√
mm− D

A
=

√
BC − AD

A2
. (1.27b)
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Clearly we can only do so, if A ̸= 0 and BC − AD > 0.
In the case when A = 0, equation (1.27) can be written as

Re

(
C

|C|
z

)
= − D

2 |C|
,

which defines a line on the complex plane. We see this by considering the
simpler equation Re (z) = − D

2|C| first (we omit the factor C
|C|), which obviously

defines a line parallel to the imaginary axis through the real point − D
2|C| . Then

we observe that the multiplication with C
|C| just rotates this line around the

origin by an angle which is given by − arg(C) = arg(B).
Note that equation (1.27) can also be written in matrix form:(

z 1
)
·
(
A B
C D

)
·
(
z
1

)
= 0.

If we substitute z = u/v, with u, v ∈ C, v ̸= 0 and scale by v · v = |v|2 > 0, we
obtain the equivalent equation(

u v
)
·
(
A B
C D

)
·
(
u
v

)
= 0. (1.28)

By introducing the convention to identify ∞ ∈ C∞ with the formal quotient
u/0, for arbitrary u ∈ C \ {0}, equation (1.28) makes sense for all z = u/v ∈
C∞.

Finally we emphasize that the matrix in equation (1.28) has a negative
determinant, because of the condition BC −AD > 0 from above. Moreover it
is a Hermitian matrix – a notion which we will shortly recall:

Definition 1.47 (Hermitian matrix). Let n > 0 and M ∈ Cn×n. The matrix

MH :=M
T

obtained by complex conjugation and transposition of M is called Hermitian
transpose or conjugate transpose of M . If M has the property MH = M , it is
called a Hermitian matrix.

Having now the right vocabulary and properties at hand, we can give an
exact definition for generalized circles.

Definition 1.48 (Generalized circle). Let M ∈ C2×2 be a Hermitian matrix
with det(M) < 0. A generalized circle, for short g-circle, is the set of solutions
u/v ∈ C∞ with u, v ∈ C, not both zero, to(

u v
)
·M ·

(
u
v

)
= 0. (1.29)



1.2. MÖBIUS TRANSFORMATIONS 23

Since there should be no danger of confusion, we will from now on use the
same name for a generalized circle and its corresponding Hermitian matrix
(which is uniquely determined up to a nonzero real scalar factor).

Remark 1.49. Definition 1.48 does not depend on the choice of u and v. If
u/v is a solution to (1.29) and u′/v′ = u/v, i.e. u′ = λu and v′ = λv for some
λ ∈ C \ {0}, then also

(
u′ v′

)
·M ·

(
u′

v′

)
= |λ|2

(
u v

)
·M ·

(
u
v

)
= 0.

Moreover we see that the point ∞ = 1/0 lies on the g-circle M =
(
A
C

B
D

)
exactly when its left upper matrix entry A is zero. This is consistent with
stereographic projection: The matrix entry A is zero if and only if M corre-
sponds to a line on the complex plane. The image of this line under reverse
stereographic projection is a circle on the Riemann sphere going through its
north-pole, which we have identified with the point ∞.

Going back to the our starting point, the equation |z −m| = r, we can
replace the equality sign ‘=’ with ‘<’ or ‘≤’ and repeat the above considerations
without any additional changes. This naturally leads to the notions of open
and closed generalized disks.

Definition 1.50 (Generalized disk). Let M ∈ C2×2 be a Hermitian matrix
with det(M) < 0. An open generalized disk is the set of solutions u/v ∈ C∞,
with u, v ∈ C – not both zero, to(

u v
)
·M ·

(
u
v

)
< 0 (1.30)

and a closed generalized disk is the set of solutions u/v ∈ C∞ to

(
u v

)
·M ·

(
u
v

)
≤ 0. (1.31)

In both cases we will use the term (open/closed) g-disk for shortness.

Remark 1.51. In contrast to generalized circles, the defining matrixM =
(
A
C

B
D

)
of a generalized disk is unique up to a positive real scalar factor. Switching
from M to −M turns the g-disk inside out while its border (the g-circle M)
is left intact. Dependent on the sign of the left upper matrix entry A, we can
distinguish three types of g-disks:

Case A > 0: The g-disk corresponds to a disk in the usual sense within C.
Its center is given by (1.27a) and its radius by (1.27b).
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Case A = 0: The g-disk corresponds to a half-plane of C, which is obtained
from the left half-plane, i.e. Re (z) < 0 (resp. ≤ 0), by translation by
−D
2|C| followed by a rotation around the origin by arg(B). The point ∞ is
member of the generalized disk, if and only if it is closed.

Case A < 0: The open g-disk M corresponds to the set complement (within
C∞) of the closed g-disk −M (discussed in the first case, A > 0). Ac-
cordingly, the closed g-diskM is the complement of the open g-disk −M .
Open and closed g-disks with A < 0 contain the point ∞.

It is now easy to show that g-circles and g-disks are preserved under Möbius
transformations.

Theorem 1.52. Let φ be a Möbius transformation and M ∈ C2×2 be a Her-
mitian matrix with det(M) < 0. The image of the g-circle (resp. open/closed
g-disk) M under the Möbius transformation φ corresponding to the matrix
P ∈ GL2(C) is the g-circle (resp. open/closed g-disk)

(P−1)H ·M · P−1. (1.32)

Proof. Let us write P =
(
a
c

b
d

)
, such that the corresponding Möbius transfor-

mation φ has the form

φ
(u
v

)
=
au+ bv

cu+ dv
.

Define u′ := au+ bv and v′ := cu+ dv. We need to show that

(
u v

)
·M ·

(
u
v

) 
= 0
< 0
≤ 0

if and only if (
u′ v′

)
· (P−1)H ·M · P−1 ·

(
u′

v′

) 
= 0
< 0
≤ 0.

But this follows immediately from

P ·
(
u
v

)
=

(
au+ bv
cu+ dv

)
=

(
u′

v′

)
.



Chapter 2

The modular group

In this chapter and also later, we adopt the notation of Schoeneberg [14].

Definition 2.1 (Modular transformation). A Möbius transformation A of the
form

A(z) =
az + b

cz + d
, a, b, c, d ∈ Z, ad− bc = 1

is called (inhomogeneous) modular transformation.

Theorem 2.2 (Modular group). The set of modular transformations forms
a subgroup of the group of Möbius transformations and can be identified with
the projective special linear group PSL2(Z). This group is called the modular
group.

Proof. The proof is very similar to that of Theorem 1.35. The only thing
which has to be changed is the homomorphism π defined in (1.17). Its domain
now is SL2(Z), the group of 2-by-2 matrices over Z with determinant 1, rather
than GL2(C) (or SL2(C)). It follows by the first isomorphism theorem (Theo-
rem 1.9), that the modular group is isomorphic to SL2(Z)/ ker(π) ∼= PSL2(Z).
The fact that the modular group is a subgroup of the group of Möbius trans-
formations is now also evident, since PSL2(Z) ≤ PSL2(C) ∼= PGL2(C) (see
Example 1.27).

Remark 2.3. The elements of SL2(Z) are often called homogeneous modular
transformations, whereas the transformations of PSL2(Z) are called inhomo-
geneous transformations. Strictly seen, an inhomogeneous transformation has
to be denoted as [M ]∼, which is the equivalence class in PSL2(Z) of a matrix
M ∈ SL2(Z). It is clear, that [M ]∼ is nothing but the set {±M} and again for
easier notation, we will from now on simply write either M or −M instead of
[M ]∼. Additionally we will denote equivalence of matrices by ∼, i.e. if λ = ±1,
then M ∼ λM .

25
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2.1 Generators and relations

In group theory it is an important question, which presentations (in view of
Definition 1.17) can be given for a fixed group G. This section is devoted to
the investigation of this question in the case of the modular group.

Before we start, we introduce the following notation for rounding real num-
bers to integers:

Definition 2.4 (Rounding functions). For x ∈ R, the floor function ⌊x⌋, the
ceiling function ⌈x⌉ and the nearest integer function nint (x) are defined as

⌊x⌋ := max{k ∈ Z | k ≤ x}, (2.1)

⌈x⌉ := min{k ∈ Z | k ≥ x}, (2.2)

nint (x) := sgn (x)

⌈
|x| − 1

2

⌉
. (2.3)

Remark 2.5. It is quite common to define the nearest integer function such
that half-integers are always rounded to even numbers. For our purposes this
makes no essential difference and we prefer the above definition – rounding
half-integers toward zero – for its simpler closed form.

Additionally we will need three modular transformations very frequently
from now on:

Definition 2.6. We denote by U , T and R the following modular transforma-
tions:

U : z 7→ z + 1

T : z 7→ −1

z

R = TU : z 7→ − 1

z + 1

Remark 2.7. Unfortunately in literature there is no consensus on the notation
of these transformations. We use the notation of Schoeneberg [14] here, but
other notations are frequent. For example in Klein/Fricke [7], the symbol S is
used instead of U and in other literature as well as on Wikipedia, additionally
the roles of S and T are swapped.

Theorem 2.8. The modular group is generated by the elements U : z 7→ z+1
and T : z 7→ −1

z
.

Proof. Let A : z 7→ az+b
cz+d

be an arbitrary modular transformation. Our goal is
to show that A can be written as product of the transformations U and T . For
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this purpose it is more convenient to view these transformations as elements
of PSL2(Z), namely

A =

(
a b
c d

)
, U =

(
1 1
0 1

)
, T =

(
0 −1
1 0

)
.

Let’s first consider the two special cases, when a or c are zero. If a = 0, it
follows from ad − bc = 1, that −b = c = ±1. Therefore we have (equivalence
of matrices is again denoted by ∼)

A ∼ cA =

(
0 −1
1 cd

)
= TU cd.

Similarly, c = 0 gives a = d = ±1 and

A ∼ aA =

(
1 ab
0 1

)
= Uab.

In the more general case, when a and c are both nonzero, ad− bc = 1 implies
that a and c are coprime and the Euclidean algorithm therefore yields a finite
sequence of equations

a = q0 · c + r1

c = q1 · r1 + r2

r1 = q2 · r2 + r3
...

rn−1 = qn · rn + rn+1

= qn · (±1) + 0.

Note that the quotients qj and the remainders rj depend on the choice of the
rounding method for integer division (this will be discussed in more detail in
Remark 2.11).

We can use the above sequence of equations to reduce the Matrix A by
successively multiplying powers of U and T from the left. Just note that
multiplication with Uk adds k times the second row to the first row, whereas
T swaps the rows and changes the sign of one arbitrary row.1 If we concentrate
only on the first column of A and apply the first few transformations(
a
c

)
U−q07−→

(
r1
c

)
T7→

(
c

−r1

)
Uq17−→

(
r2

−r1

)
T7→

(
r1
r2

)
U−q27−→

(
r3
r2

)
T7→

(
r2

−r3

)
7→ . . . ,

1This freedom of choice is again due to the fact that the matrices M and −M represent
the same element in PSL2(Z).
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we soon recognize the general mapping rule, which is(
rj−1

rj

)
TU−qj

7−→
(

rj
−rj+1

)
for even j and(

rj−1

−rj

)
TUqj

7−→
(

rj
rj+1

)
for odd j.

When we set r−1 := a and r0 := c, this rule is applicable for 0 ≤ j ≤ n.
Obviously the described procedure ends with

· · · T7→
(

rn
±rn+1

)
=

(
±1
0

)
.

Because we know the first column of the resulting matrix and its determinant,
which is 1, we can conclude that for some k ∈ Z it must have the form

±
(
1 k
0 1

)
∼ Uk.

By setting en := (−1)nqn we therefore have

TU−enTU−en−1 · · ·TU−e1TU−e0A = Uk,

or equivalently – noting that T−1 = T ,

A = U e0TU e1 · · ·TU en−1TU enTUk,

which gives the desired representation of A in terms of U and T in the case
when a and c are both nonzero.

Corollary 2.9. The special linear group SL2(Z) is generated by the matrices
U = (10

1
1) and T =

(
0
1

−1
0

)
. The projective special linear group PSL2(Z) is

generated by the equivalence classes ±U and ±T .
2

Proof. The second statement is obviously a simple reformulation of Theo-
rem 2.8. As a consequence, for every matrixM ∈ SL2(Z) there exists a product
of matrices T and U which evaluates to eitherM or −M . In the case when the
product is −M , multiplication with the additional factor T 2 = − (10

0
1) gives a

product for M . This also proves the first statement.

It is worth formulating the algorithm used in the proof of Theorem 2.8
explicitly in the following corollary.

2Here we use the notation ±M := M∼ = {±M} ∈ PSL2(Z) for clearer distinction
between the matrix M ∈ SL2(Z) and its corresponding equivalence class in PSL2(Z).
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Corollary 2.10 (The T -U algorithm). An arbitrary modular transformation
A : z 7→ az+b

cz+d
can be represented as product of the transformations U : z 7→ z+1

and T : z 7→ −1
z
, by performing the following steps:

1. Apply the Euclidean algorithm to a and c with the first division being
a = q0 ·c+r1 (q0 may be ≤ 0) and let n be the number of the last division
(start counting from 0). Call the arising quotients q0, q1, . . . , qn.

Note that if a = 0, the Euclidean algorithm will terminate after the first
iteration, yielding the one-element quotient sequence q0 = 0 and n = 0.
If c = 0, it will terminate immediately, giving an empty sequence of
quotients and n = −1.

2. For j ∈ {0, 1, . . . , n} set ej := (−1)jqj.

3. Calculate the matrix product TU−enTU−en−1 · · ·TU−e1TU−e0A and mul-
tiply by ±1 in order to obtain a representation with positive diagonal
elements. Read off the right-upper entry and call it k.

The transformation A can now be written as

A = U e0TU e1 · · ·TU en−1TU enTUk. (2.4)

Remark 2.11. The product representation (2.4) is not unique. In fact there
is quite some freedom of choice for the quotients q0, q1, . . . , qn in the above
T -U algorithm. With the convention r−1 := a and r0 := c, one usually sets

qj :=
⌊
rj−1

rj

⌋
for j ≥ 0. The remainders, which are determined by

rj+1 = rj−1 − qj · rj for j ≥ 0, (2.5)

are then all nonnegative and form a strictly monotonic decreasing sequence,

r1 > r2 > . . . > rn > rn+1 = 0.

All quotients, with the possible exception of q0, are positive. In contrast to
that, if we choose for each j an arbitrary rounding direction (up- or downwards)

and set qj to either
⌊
rj−1

rj

⌋
or

⌈
rj−1

rj

⌉
, then in general also negative remainders

(and consequently negative quotients) will occur. Still, the absolute values of
the remainders form a strictly monotonic decreasing sequence,

|r1| > |r2| > . . . > |rn| > |rn+1| = 0.
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Therefore the Euclidean algorithm terminates and yields a correct result.3

Depending on the choice of the rounding directions we will in general obtain
different product representations of A. Not only this, we can even go one step
further and violate the constraint |rj| > |rj+1| for a finite number of indices
j by choosing a completely random qj ∈ Z. As long as the remainders are
calculated through (2.5), all product representations obtained in this way are
correct.

Example 2.12. Consider the modular transformation A ∈ PSL2(Z) given by

A =

(
13 5
−8 −3

)
.

Applying algorithm 2.10 and setting qj :=
⌊
rj−1

rj

⌋
for all j yields the product

representation
A = U−2TU−2TU1TU−2T.

In contrast to that, setting qj :=
⌈
rj−1

rj

⌉
in each step leads to

A = U−1TU1TU−1TU1TU−2T.

Last but not least, always rounding to the nearest integer, that is setting

qj := nint
(

rj−1

rj

)
, gives the shortest representation:

A = U−2TU−3TU−3T.

Note that this is true in general: Rounding to the nearest integer always
leads to a product representation with minimal number of factors T and Uk.
According to Ore [10], already Leopold Kronecker has shown that among all
variants of the Euclidean algorithm, the one which uses rounding to the nearest
integer requires a minimum number of steps. We will come back to this fact
once more in Remark 3.7.

We have now seen that T and U generate the modular group and different
product representations for a given modular transformation A can be found
using the above T -U algorithm. Of course the questions arises, which rela-
tions (in sense of Definition 1.17) lie behind the ambiguity of these product
representations. For example, it is easy to see that T 2 = 1 and (TU)3 = 1
are relations which are satisfied by T and U . It is the goal of the following

3The determined greatest common divisor is possibly negative, which is still admissible,
because if d is a greatest common divisor of n,m ∈ Z, i.e. ∀d′ ∈ Z : (d′ | n,m ⇒ d′ | d), then
also −d is.
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paragraphs to show that these two relations are in fact the only ones in the
sense that all other relations are derived from these. We will do this by proving
the following theorem:

Theorem 2.13 (Unique T -R representation). Let T : z 7→ −1
z
and R =

TU : z 7→ − 1
z+1

. Every modular transformation A ∈ PSL2(Z) can be written
uniquely in the form

A = Rk1TRk2T · · ·Rkn−1TRkn (2.6)

with n ∈ N, k2, . . . , kn−1 ∈ {±1} and k1, kn ∈ {0,±1}.

From the uniqueness of the product representation (2.6) it follows that we
have in fact a presentation of the modular group in the sense of Definition 1.17:

Corollary 2.14 (T -R presentation). The modular group is generated by the
elements T : z 7→ −1

z
and R : z 7→ − 1

z+1
and can be presented as

PSL2(Z) ∼=
⟨
T,R | T 2 = R3 = 1

⟩
. (2.7)

Therefore PSL2(Z) is isomorphic to the free product of a cyclic group of order
2 and a cyclic group of order 3.

Proof. It is easy to see that the relations T 2 = R3 = 1 are indeed satisfied:

T 2 =

(
0 −1
1 0

)2

=

(
−1 0
0 −1

)
∼

(
1 0
0 1

)
,

R3 =

(
0 −1
1 1

)3

=

(
−1 0
0 −1

)
∼

(
1 0
0 1

)
.

Moreover the elements of ⟨T,R | T 2 = R3 = 1⟩ are precisely the group words
of the form (2.6), as we have seen in Examples 1.19 and 1.22.

Before we turn to the proof of Theorem 2.13, we first make one helpful
definition and study its consequences.

Definition 2.15. For a modular transformation A : z 7→ az+b
cz+d

, we define the
predicates t, r and s as well as a “grading” n:

t(A) : ac ≥ 0 ∧ bd ≥ 0 (2.8)

r(A) : a2 + ac ≤ 0 ∧ b2 + bd ≤ 0 (2.9)

s(A) : c2 + ac ≤ 0 ∧ d2 + bd ≤ 0 (2.10)

n(A) := a2 + b2 + c2 + d2. (2.11)
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Note that t, r, s and n are well-defined, since they do not change their
value if we switch from the matrix A ∈ PSL2(Z) to the equivalent matrix −A,
e.g. t(A) ⇔ t(−A) and n(A) = n(−A). Moreover the predicates t, r, and s
partition the elements of the modular group into three classes:

Lemma 2.16. Let A : z 7→ az+b
cz+d

be an arbitrary modular transformation. Then
one and only one of the predicates t(A), r(A) and s(A) is satisfied.

Proof. We start by considering the two easiest cases first: If A is the identity
transformation or A = T , we have t(A), ¬s(A) and ¬r(A).

For all other cases, we note that at least three of the coefficients a, b, c, d
are nonzero. Therefore, if one the predicate t(A) is satisfied, then at least one
of the two inequalities involved is strictly fulfilled, i.e. ac > 0 or bc > 0. Having
this said, it is easy to see that t(A) ⇒ ¬r(A)∧¬s(A). Thus it remains to show

¬t(A) ⇒ r(A)
.
∨ s(A),

for all transformations with at least three nonzero coefficients (here,
.
∨ denotes

logical exclusive or). If t(A) is false, we have ac < 0 or bd < 0. Since both cases
are completely symmetric, we may assume without restriction that ac < 0.
Note that ac < 0 and ad− bc = 1 implies bd ≤ 0 because otherwise if bd > 0,
both nonzero terms ad and bc would have different signs and their difference
could not be 1. We conclude the proof by distinguishing three cases:

Case a2 < c2: From ac < 0 it follows that a2+ac < 0 (i) and c2+ac > 0 (ii).
Additionally, from ad − bc = 1 we can conclude that b2 ≤ d2, because
otherwise |ad| would differ from |bc| by more than 1. Therefore we also
have b2+bd ≤ 0 (iii). Taking these pieces together, we have (ii) ⇒ ¬s(A)
and (i) ∧ (iii) ⇒ r(A).

Case a2 > c2: This case is complementary to the first one: Because of ac < 0
we have a2 + ac > 0 (i) and c2 + ac < 0 (ii). The equation ad − bc = 1
here implies b2 ≥ d2 and d2 + bd ≤ 0 (iii). Thus we have (i) ⇒ ¬r(A)
and (ii) ∧ (iii) ⇒ s(A).

Case a2 = c2: Note that this case is only possible with a = −c = ±1 (as a
and c are coprime). Hence we have a2 + ac = c2 + ac = 0. However,
ad−bc = 1 implies b2 ̸= d2 and therefore we have b2+bd ≤ 0

.
∨d2+bd ≤ 0.

So, also in this case r(A)
.
∨ s(A) holds.

We have not yet seen the real benefit and meaning of the predicates t,
r and s. The following lemma will imply that they do nothing but indicate
the leftmost symbol in the unique T -R product representation (2.6) of A.
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To be precise, if we denote this leftmost symbol by α(A), we will see that
t(A) ⇔ α(A) = T , r(A) ⇔ α(A) = R and s(A) ⇔ α(A) = R−1. Moreover
we will show that the grading n(A) grows monotonically with the number of
symbols R and R−1 in the product representation of A.

Lemma 2.17. The predicates t, r, s and the grading n satisfy the following
relations:

(i) t(A) ⇔ r(RA) ⇔ s(R−1A)

(ii) t(A) ∧ t(TA) ⇔ A ∈ {1, T}

(iii) n(A) = n(TA)

(iv) t(A) ⇒ n(A) < n(RA) ∧ n(A) < n(R−1A)

Proof. For a better overview, we first write out the matrices corresponding to
TA, RA and R−1A. Since A =

(
a
c

b
d

)
, T =

(
0
1

−1
0

)
, R =

(
0
1

−1
1

)
and R−1 =

(
1

−1
1
0

)
these are:

TA =

(
−c −d
a b

)
, RA =

(
−c −d
a+ c b+ d

)
, R−1A =

(
a+ c b+ d
−a −b

)
.

ad (i): This is shown easily via two simple calculations:

r(RA) ⇔ c2 − c(a+ c) ≤ 0 ∧ d2 − d(b+ d) ≤ 0

⇔ ac ≥ 0 ∧ bd ≥ 0 ⇔ t(A)

s(R−1A) ⇔ a2 − a(a+ c) ≤ 0 ∧ b2 − b(b+ d) ≤ 0

⇔ ac ≥ 0 ∧ bd ≥ 0 ⇔ t(A)

ad (ii): It is immediate to see that t(A) ∧ t(TA) is equivalent to ac = bd =
0. Clearly, 1 and T are the only two transformations satisfying this
condition.

ad (iii): n(A) = n(TA) is trivial.

ad (iv): Note that ad− bc = 1 implies that at least one of the numbers a and
b (resp. c and d) is nonzero. Moreover, t(A) ⇒ ac ≥ 0∧ bd ≥ 0, and thus
we have

n(RA)− n(A) = c2 + 2ac+ d2 + 2bd > 0 and

n(R−1A)− n(A) = a2 + 2ac+ b2 + 2bd > 0.
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We can now formulate an algorithm which yields a product representation
of any arbitrary modular transformation in terms of the generators R and T .

Theorem 2.18 (The T -R algorithm). For a modular transformation A : z 7→
az+b
cz+d

, a product representation of the form (2.6) can be found by performing
the following steps:

1. Start with k := 0 and set A0 := A.

2. If Ak = 1 go to step 5.

3. Define Mk as follows:

t(Ak) ⇒Mk := T, r(Ak) ⇒Mk := R, s(Ak) ⇒Mk := R−1.

4. Set Ak+1 :=M−1
k Ak, increment k by one and continue with step 2.

5. If k = 0, then A = 1, which is the empty product. Otherwise, the desired
product representation is A =M0M1 · · ·Mk−1.

Proof. Note that by Lemma 2.16 the rule for the definition of the transforma-
tions Mk from step 3 is unambiguous and the described algorithm therefore
yields a unique sequence of equations

A1 = M−1
0 A0

A2 = M−1
1 A1

A3 = M−1
2 A2

...

The relations (i) and (ii) of Lemma 2.17 guarantee that for every pair of sub-
sequent transformations Mk, Mk+1, one of them is T and the other is either
R or R−1. Additionally, the relations (iii) and (iv) imply n(Ak) > n(Ak+2).
Since n(1) = n(T ) = 2 is a lower bound for n(Ak), the described proce-
dure must terminate after a finite number m of iterations and the product
A =M0M1 · · ·Mm−1 is indeed of the desired form (2.6).

Now have all tools in hand for the proof of Theorem 2.13. Note that two
alternative proofs can be found in Schoeneberg [14], §4 and in Klein/Fricke [7],
p. 452ff.4

4Volume 1, part 2, chapter 9, §1.
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Proof of Theorem 2.13. Let A : z 7→ az+b
cz+d

be an arbitrary modular transfor-
mation. The existence of a product representation of the form (2.6) is ensured
by the above T -R algorithm.

In order to prove also its uniqueness, it is sufficient to show that the identity
map has a unique product representation (namely the empty product). From
the relations (iii) and (iv) of Lemma 2.17 we see that any product P of the form
(2.6) containing at least one factor R or R−1 has a grading n(P ) > n(1) = 2
and therefore P ̸= 1. The only products which are free of factors R and R−1

are T and the empty product. Since T ̸= 1, the identity map can indeed only
be represented by the empty product.

Example 2.19. We apply the algorithm of Theorem 2.18 to the modular
transformation from Example 2.12,

A =

(
13 5
−8 −3

)
.

After substitution ofR−1 = R2, we end up with theR-T product representation

A = R2TR1TR2TR1TR2TR2.

Note that alternatively we could just as well have started with one of the
T -U product representations of Example 2.12 and substitute U = TR and
U−1 = R2T . Cancellation of terms T 2 = 1 and R3 = 1 then would, by
Theorem 2.13, necessarily lead to the same T -R product representation.

Remark 2.20. We conclude this section with the final remark that the T -R
algorithm successively reduces a given matrix A ∈ PSL2(Z) by multiplication
from the left with T , R or R−1. Of course, by using a dual approach also
multiplication from the right can be used. All we have to do in order to
adapt the algorithm appropriately is to substitute the predicates t, r, s by
predicates t′, r′, s′ and to change the definition in step 4 from Ak+1 :=M−1

k Ak

to Ak+1 := AkM
−1
k . But how do the predicates t′, r′ and s′ have to be defined?

For this consideration we denote the leftmost symbol in the R-T product
representation (2.6) of A by α(A) and the rightmost symbol by ω(A). In the
case of the empty product, we define α(1) := ω(1) := T . We have already
seen that t(A) ⇔ α(A) = T , r(A) ⇔ α(A) = R and s(A) ⇔ α(A) = R−1. In
correspondence to that, we see that we have to define

t′(A) : ω(A) = T ⇔ α(A−1) = T ⇔ t(A−1),

r′(A) : ω(A) = R ⇔ α(A−1) = R−1 ⇔ s(A−1),

s′(A) : ω(A) = R−1 ⇔ α(A−1) = R ⇔ r(A−1).
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Written out explicitly, this gives for a matrix A =
(
a
c

b
d

)
∈ PSL2(Z):

t′(A) : ab ≤ 0 ∧ cd ≤ 0 (2.12)

r′(A) : a2 − ab ≤ 0 ∧ c2 − cd ≤ 0 (2.13)

s′(A) : b2 − ab ≤ 0 ∧ d2 − cd ≤ 0 (2.14)

Note that also the Lemmas 2.16 and 2.17 remain valid, if the predicates t, r,
s are substitued by t′, r′, s′ and the order of matrix multiplication is reversed
(i.e. RA, TA, . . . have to be replaced by AR, AT , . . . ).

2.2 Fundamental sets and regions

We have seen in Remark 1.36 that considering Möbius transformations as
meromorphic functions C∞ → C∞ very naturally induces a group action of
PGL2(C) on C∞. Clearly this group action is also given for any subgroup of
PGL2(C) and in particular for the modular group: For A =

(
a
c

b
d

)
∈ PSL2(Z)

the group action is given by

Az :=
az + b

cz + d
. (2.15)

As usual we call two points z, w ∈ C∞ equivalent, in symbols z ∼ w, if there
is a transformation A ∈ PSL2(Z) such that Az = w. We are now interested in
subsets of C∞ containing exactly one point from each equivalence class of the
relation ∼:

Definition 2.21 (Fundamental set). Let G be a group acting on the set S.
Denote equivalence of points in S under G by ∼, as in (1.14). A subset F∗ ⊆ S
is called a fundamental set with respect to the group action of G on S, if F∗

contains exactly one point from each orbit Gx = [x]∼, i.e. the map F∗ → S/ ∼,
x 7→ [x]∼ is bijective.

Remark 2.22. Fundamental sets always exist, but they are not unique in any
way. If F∗ is a fundamental set, then for every subset X ⊆ F∗ and for every
g ∈ G, also the set (F∗ \X) ∪ gX is fundamental.

Remark 2.23. If F∗ is a fundamental set for the group action of G on S, then
by definition for every x ∈ S there is a g ∈ G such that gx ∈ F∗. Clearly for
g, h ∈ G and x ∈ S we have

gx = hx ⇔ h−1gx = x ⇔ h−1g ∈ Gx.

For this reason the element g with gx ∈ F∗ is uniquely determined exactly
when the stabilizerGx is trivial. Obviously gx ∈ F∗ is equivalent to x ∈ g−1F∗,
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which allows us to reformulate the above fact the following way: The images
of the fundamental set F∗ under the group action of G cover the whole set S,
that is

S =
∪
g∈G

gF∗.

A point x ∈ S is covered once, i.e. there is a unique g ∈ G with x ∈ gF∗, if
and only if Gx is trivial.

If – like in the case of C∞ – the set S is equipped with a topology, it is
often advantageous to use a concept slightly different to fundamental sets:

Definition 2.24 (Fundamental region). Let G be a group acting on a set S
which is (a subset of) a topological space. A nonempty open subset F ⊆ S
is called fundamental region with respect to the group action of G on S, if
it contains no distinct points equivalent under G and if the neighborhood of
every boundary point of F contains a point of S \ F which is equivalent to a
point within F .

Remark 2.25. The relation between fundamental sets and fundamental regions
is the following: If F ⊆ S is a fundamental region and if the images under G
of its topological closure cl(F) cover the whole set S, i.e.

S =
∪
g∈G

g cl(F),

then a fundamental set F∗ can always be obtained from F by adjoining certain
boundary points of F and we have F ⊆ F∗ ⊆ cl(F).

However, a fundamental region may not always exist: Consider the group of
translations z 7→ z+α, α ∈ R, acting on the complex plane C. No matter how
we arrange a fundamental set F∗, take for example the imaginary axis Re (z) =
0, the interior of F∗ will always be empty and thus cannot be a fundamental
region. In fact, a necessary and sufficient condition for the existence of a
fundamental region is that the group action is discontinuous on S, i.e. there
exists and ordinary point x ∈ S, meaning that there is no sequence of the
form (gny)n≥0 with distinct gn ∈ G and fixed y ∈ S which converges to x.
Otherwise, if such an ordinary point does not exist, then every open subset
of S necessarily contains distinct equivalent points. For further details see
Lehner [8], Chapter IV, 1B.

Note that in Schoeneberg [14], the term “fundamental region” is used for
any set X containing a fundamental set F∗ plus some or all of its (remaining)
boundary points. We prefer the above definition for being more close to the
commonly used meaning of “region”, i.e. a topologically connected and open
set. However, we emphasize that according to our definition a fundamental
region does not need to be topologically connected.
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The goal of the remainder of this section is to identify fundamental regions
and fundamental sets for the action of the modular group on C∞. For this
purpose it is instructive to first consider homogeneous modular transformations
and their natural action on C2.

2.2.1 The action of SL2(Z) on C2

The homogeneous modular group SL2(Z) naturally acts on the vector space C2

by matrix-vector multiplication. Written out explicitly, for A ∈ SL2(Z) and
x = (uv) ∈ C2, this group action is given by

Ax =

(
a b
c d

)(
u
v

)
=

(
au+ bv
cu+ dv

)
.

We equip C2 with the standard Euclidean norm and its induced topology:∥∥∥∥(uv
)∥∥∥∥

2

:=

√
|u|2 + |v|2

Let us denote the orbit of x ∈ C2 under SL2(Z) by

Ox := SL2(Z)x = {Ax | A ∈ SL2(Z)} ⊆ C2. (2.16)

We now wish to find a fundamental set with respect to the action of SL2(Z)
on C2. For this purpose, we need to choose exactly one vector from each of
the different orbits Ox. In order to restrict the number of candidate vectors to
an easily manageable number, we could try to first look just at vectors with
minimal norm in Ox. The problem with this idea is that in general the orbit
Ox might contain vectors of arbitrary small norm – in other words min ∥Ox∥2
might in general not necessarily exist. However, in many cases it does:

Lemma 2.26 (Existence of min ∥Ox∥2). Let x = (uv) ∈ C2 be a vector with
u, v being linear independent over R. For every r > 0, there are only finitely
many points y ∈ Ox with ∥y∥2 ≤ r. In particular, m := min ∥Ox∥2 exists and
m > 0.

Proof. Since the complex numbers u and v are linear independent over R,
they span a non-degenerate parallelogram Px := {tu+ sv | t, s ∈ [0, 1)} on the
complex plane. Translation of Px by integer multiples of u and v covers every
point in C exactly once. The set

Lx := {au+ bv ∈ C | a, b ∈ Z} (2.17)
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consists precisely of the vertices of all of these translated parallelograms. For
r > 0, denote by Dr a disk of raduis r in C and by Br a ball of radius r in C2

(both centered about the origin):

Dr :=
{
z ∈ C

∣∣ |z| ≤ r
}
, (2.18)

Br :=
{
y ∈ C2

∣∣ ∥y∥2 ≤ r
}
. (2.19)

Obviously Lx ∩Dr is finite for every r > 0. Now let r > 0 be sufficiently large
such that the set Ox ∩Br is not empty (e.g. r = ∥x∥2) and observe

Ox ∩Br ⊆ (Lx ∩Dr)
2.

We see that also the set Ox∩Br is finite andm = min ∥Ox∥2 = min ∥Ox ∩Br∥2
therefore exists. Since u and v are linear independent over R (and in particular
over Z), 0 /∈ Lx and consequently 0 /∈ Ox, which is why m > 0.

We now turn to the question how we can effectively determine an element of
Ox with minimal norm. The task is the following: Given a vector x = (uv) ∈ C2

with u, v linear independent over R, find a matrix B ∈ SL2(Z) such that ∥Bx∥2
is minimal.

In Corollary 2.9 we have seen that SL2(Z) is generated by the matrices
T =

(
0
1

−1
0

)
and U = (10

1
1). The idea is now to successively multiply x with

appropriate powers of T and U to obtain vectors of smaller and smaller norm.
We do this by first finding an integer k0 ∈ Z, such that

∥∥U−k0x
∥∥
2
is minimal.

Then we multiply with T and repeat the process for finding k1 ∈ Z minimizing∥∥Uk1TUk0x
∥∥
2
and so on. The procedure ends when kn = 0 for some n > 0.

Note that the integers kj can be determined easily:

Lemma 2.27. Let x = (uv) ∈ C2 with v ̸= 0. The statements

(i) k ∈ Z minimizes
∥∥U−kx

∥∥
2
=

∥∥∥∥(u− kv
v

)∥∥∥∥
2

,

(ii) k ∈ Z minimizes |u− kv|,

(iii) k ∈ Z minimizes
∣∣u
v
− k

∣∣,
(iv)

∣∣Re (u
v

)
− k

∣∣ ≤ 1
2
,

(v) k = nint
(
Re

(
u
v

))
,

satisfy the relations (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) and (v) ⇒ (iv).

Proof. Trivial.
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Let us now suppose that the described procedure comes to an end, i.e.
kn = 0 for some n > 0. Set B := TUkn−1 · · ·TUk0 and y = (y1y2) := Bx. It
follows from kn = 0 and from the choice of kn−1 that we have

∥y∥2 ≤
∥∥Uky

∥∥
2

and ∥y∥2 ≤
∥∥UkT−1y

∥∥
2

for all k ∈ Z. (2.20)

Using Lemma 2.27 – (i) ⇔ (iv) – we see that (2.20) is equivalent to∣∣∣∣Re(y1y2
)∣∣∣∣ ≤ 1

2
and

∣∣∣∣Re(y2y1
)∣∣∣∣ ≤ 1

2
,

which can easily be rewritten to

|y1y2 + y1y2| ≤ min{|y1|2 , |y2|2}. (2.21)

The question arises, whether y is just a “local minimum” in the sense (2.20)
or if (2.21) already implies the global minimality of y, i.e. ∥y∥2 = min ∥Ox∥2.
The following theorem will give us insight on this.

Theorem 2.28. Let A ∈ SL2(Z) be an arbitrary homogeneous modular trans-
formation and let the grading n(A) be defined as in (2.11). Let x = (uv) ∈ C2

with uv ̸= 0. Then the following statements hold:

(i) If |uv + uv| ≤ min{|u|2 , |v|2}, then ∥x∥2 ≤ ∥Ax∥2.

(ii) If |uv + uv| ≤ min{|u|2 , |v|2} and n(A) > 3, then ∥x∥2 < ∥Ax∥2.

(iii) If |uv + uv| < min{|u|2 , |v|2} and n(A) > 2, then ∥x∥2 < ∥Ax∥2.

Proof. Let us denote A =
(
a
c

b
d

)
. We need to show ∥x∥2 ≤ ∥Ax∥2, that is

|u|2 + |v|2 ≤ |au+ bv|2 + |cu+ dv|2 =
(au+ bv)(au+ bv) + (cu+ dv)(cu+ dv) =

(a2 + c2) |u|2 + (b2 + d2) |v|2 + (ab+ cd)(uv + uv),

which is equivalent to

(a2 + c2 − 1) |u|2 + (b2 + d2 − 1) |v|2 ≥ −(ab+ cd)(uv + uv).

Now we find an upper bound of the right hand side by taking its absolute value
and using |uv + uv| ≤ min{|u|2 , |v|2} =: m. The same time, m also helps us
with a lower bound of the left hand side:

(a2 + b2 + c2 + d2 − 2) ·m ≥ |ab+ cd| ·m.
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Since m is nonzero (uv ̸= 0), it can be canceled. Moreover, ad− bc = 1 implies
that the terms ad and bc can never have opposite signs. In other words we
always have (ad)(bc) ≥ 0. Obviously also (ab)(cd) ≥ 0, i.e. also the terms ad
and bc have non-opposite signs, which is why |ab+ cd| = |ab| + |bd|. For this
reason we can transform the last inequality to

(a2 − |ab|+ b2)︸ ︷︷ ︸
≥(|a|−|b|)2=:ℓ

+(c2 − |cd|+ d2)︸ ︷︷ ︸
≥(|c|−|d|)2=:r

≥ 2. (2.22)

This obviously holds for the case n(A) = 2. For the case n(A) > 2, because of
ad− bc = 1, we see:

(a) |a| = |b| implies |c| ̸= |d| (and vice versa). Therefore at least one of the
lower bounds ℓ and r is nonzero.

(b) |ab| = 0 implies |bc| ̸= 0 (and vice versa). Therefore at least one of the
lower bounds ℓ and r is in fact a strict lower bound.

These two observations prove (2.22) and consequently assertion (i). If addi-
tionally n(A) > 3, we distinguish two cases:

Case 0 ∈ {a, b, c, d}: Assume without restriction that 0 ∈ {a, b}, (the case
0 ∈ {c, d} is completely symmetric). It follows {|a| , |b|} = {0, 1} and
{|c| , |d|} = {1, N} with N > 1, since n(A) > 3. Therefore, in addition
to observation (b), both lower bounds ℓ and r are positive.

Case 0 /∈ {a, b, c, d}: In addition to observation (a), |ab| and |cd| are both
nonzero. Therefore ℓ and r are both strict lower bounds.

In both cases (2.22) is strictly fulfilled, which proves (ii). We note that in the
case n(A) > 3, (iii) already follows from (ii). It therefore remains to consider
just the special case n(A) = 3 for proving the last statement. By the same
calculation as above, the condition ∥x∥2 < ∥Ax∥2 is equivalent to

(a2 + c2 − 1) |u|2 + (b2 + d2 − 1) |v|2 > −(ab+ cd)(uv + uv). (2.23)

For n(A) = 3 we have {(a2+ c2− 1), (b2+ d2− 1)} = {0, 1}, which means that
the left hand side simplifies to either |u|2 or |v|2, whereas on the right hand
side we have |uv + uv| as upper bound, because of (ab + cd) = ±1. Since by
assumption |uv + uv| < min{|u|2 , |v|2}, inequality (2.23) is thus satisfied.

We can now summarize the algorithm and prove its correctness. Note that
we can slightly relax the requirement on the coordinates of x = (uv) being linear
independent over R. We will see that with a minor adaption the algorithm
works as well in the case when u and v are linear dependent over Q.



42 CHAPTER 2. THE MODULAR GROUP

Theorem 2.29. Let x = (uv) ∈ C2 with u, v being either linear independent
over R or linear dependent over Q. A matrix B ∈ SL2(Z) minimizing ∥Bx∥2
can be found by performing the following steps:

1. Set (r−1, r0) := (u, v) and j := 0.

2. If rj = 0, then goto step 5.

3. Determine qj := nint
(
Re

(
rj−1

rj

))
.

4. If j > 0 and qj = 0 go to step 5. Otherwise, set rj+1 := rj−1 − qjrj,
increment j by one and continue with step 2.

5. Set n := j − 1 and for i ∈ {0, 1, . . . , n}, set ei := (−1)iqi. The desired
matrix is

B = U−enTU−en−1 · · ·TU−e0 . (2.24)

Note that in the case n < 0 this product is empty and B is the identity
matrix.

Proof. The algorithm gives rise to the following sequence of equations:

u = r−1 = q0 · r0 + r1

v = r0 = q1 · r1 + r2

r1 = q2 · r2 + r3

r2 = q3 · r3 + r4
...

Moreover this sequence of equations corresponds to the sequence of vectors(
u
v

)
TU−q07−→

(
v

−r1

)
TUq17−→

(
−r1
−r2

)
TU−q27−→

(
−r2
r3

)
TUq37−→

(
r3
r4

)
7→ . . .

With sj := (−1)⌈
j
2⌉rj, we can write these vectors as xj :=

(
sj−1

sj

)
for j ≥ 0,

in particular we have x0 = x. Now, as in the theorem, let ej := (−1)jqj for
j ≥ 0. In this notation, we can write in general TU−ejxj = xj+1 for all j ≥ 0.

In the case when u and v are linear dependent over Q, the vector x can
be written as x = λ(pq) with λ ∈ C and p, q ∈ Z. We observe the striking
similarity between the Euclidean and the above algorithm: If we apply the
Euclidean algorithm to p and q while rounding all quotients to the nearest
integer (compare Remark 2.11), we obtain a sequence of quotients q̃0, q̃1, . . . , q̃n
and a sequence of remainders r̃0, r̃1, . . . , r̃n, r̃n+1 with r̃n+1 = 0. It is immediate
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to see that qj = q̃j and rj = λr̃j for all j ≥ 0. In particular, our algorithm
terminates and we end up with the vector

y := xn = TU−enTU−en−1 · · ·TU−e0 = λ

(
± gcd(p, q)

0

)
having minimal norm in Ox.

In the case when u and v are linear independent over R, it follows from
the choice of qj that for each pair of subsequent vectors xj, xj+1 we have
∥xj∥2 ≥ ∥xj+1∥2. Using rj+1 = rj−1 − qjrj we see that ∥xj∥2 = ∥xj+1∥2 is
equivalent to∥∥∥∥(±rj−1

±rj

)∥∥∥∥
2

=

∥∥∥∥(±rj±rj+1

)∥∥∥∥
2

=

∥∥∥∥( ±rj
±(rj−1 − qjrj)

)∥∥∥∥
2

.

Obviously this is the case if and only if |rj−1| = |rj−1 − qjrj|. If we divide by
rj and set zj :=

rj−1

rj
, we obtain

|zj| = |zj − qj| ⇔ zjzj = (zj − qj)(zj − qj)

⇔ qj (qj − 2Re (zj)) = 0.

One obvious solution to this is qj = 0. For the other factor, we substitute
α := Re (zj) and use qj = nint (α) to see that the equation nint (α) = 2α has
the unique5 solution α = 0 which again leads to qj = 0. Summing up, we
therefore have for all j ≥ 0

∥xj∥2 ≥ ∥xj+1∥2 and ∥xj∥2 = ∥xj+1∥2 ⇔ qj = 0. (2.25)

According to Lemma 2.26, the set Ox∩K∥x∥2 is finite and thus we cannot have
∥xj∥2 > ∥xj+1∥2 for infinitely many indices j. In other words, qn must be zero
for some n ∈ N and we have

TU−en · · ·TU−e1TU−e0x0 = xn.

Since the vector y := xn satisfies (2.20) and consequently (2.21), we conclude
from Theorem 2.28 that ∥y∥2 = min ∥Ox∥2.

In both cases (linear dependence of u, v over Q or linear independence of
u, v over R), we trivially have ∥y∥2 = ∥T−1y∥2 and we therefore can define B
as in (2.24).

5Here we benefit from our definition of nint, which rounds ± 1
2 to zero.
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Let us now denote by Ŝ ⊆ C2 the set of all vectors whose coordinates u and
v are linear independent over R or linear dependent over Q. It is clear that Ŝ
is invariant under the action of SL2(Z), i.e. SL2(Z)Ŝ = Ŝ. We can therefore as
well consider the group action of SL2(Z) on Ŝ. We have seen in Theorem 2.28
that within the region

R̂ :=

{(
u
v

)
∈ C2

∣∣∣∣ |uv + uv| < min{|u|2 , |v|2}
}

⊆ Ŝ (2.26)

equivalence of points can only be established by transformations A ∈ SL2(Z)
with n(A) = 2. Clearly these transformations are exactly given by 1, T, T 2 and
T 3. On the other hand, by Theorem 2.29, every vector x ∈ Ŝ is equivalent to
a point in the topological closure of R̂. Hence we can obtain a fundamental
region for the group action of SL2(Z) on Ŝ by choosing for each x ∈ R̂ exactly
one of the equivalent vectors

x =

(
u
v

)
, Tx =

(
−v
u

)
, T 2x =

(
−u
−v

)
, T 3x =

(
v

−u

)
.

This choice can be done quite arbitrarily – for example we can arrange the
fundamental region such that the coordinates u and v of each of its points lie
in a certain fixed half-plane of C, e.g. Re (u) > 0 and Re (v) > 0.

Corollary 2.30. The set

F̂ := R̂ ∩
{(

u
v

)
∈ C2

∣∣∣∣ Re (u) > 0, Re (v) > 0

}
, (2.27)

where R̂ is defined as in (2.26), is a fundamental region for the action of the
homogeneous modular group SL2(Z) on the set Ŝ.

2.2.2 The action of PSL2(Z) on C∞

In Theorem 2.29 we have seen an algorithm which naturally gives rise to a set
R̂ ⊆ C2 which can easily be restricted to a subset F̂ ⊆ R̂ being a fundamental
region for the action of SL2(Z) on Ŝ. We can exploit this fact in search of a
fundamental region for the action on of the (inhomogeneous) modular group
PSL2(Z) on C∞. For this purpose we project C2 onto C∞ using the map
π : C2 → C∞,

π :

(
u
v

)
7→ u

v
. (2.28)

Let us first consider image of Ŝ under π. If (uv) ∈ Ŝ, then by definition u and
v are linear independent over R or linear dependent over Q. In the first case
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Figure 2.1: The region R ⊆ C∞ of numbers z = u/v ∈ C∞ with |uv + uv| <
min{|u|2 , |v|2}. It is obtained by taking the strip

{
z ∈ C

∣∣ |Re (z)| < 1
2

}
and

cutting out two closed disks of unit radius centered about the real points ±1.
The arising vertices are labeled. As usual, T is the transformation z 7→ −1

z

and ρ = exp(2πi/3) is a third root of unity.

we have u
v
∈ C\R and in the second case u

v
∈ Q∪{∞}. This means u

v
may be

everything but irrational. Denoting the set of irrational numbers by I := R\Q,
we thus have

π(Ŝ) = C∞ \ I.

Projection of the set R̂ ⊆ C2 leads to the region R ⊆ C∞ (see also Figure 2.1),

R := π
(
R̂
)
=

{u
v
∈ C∞

∣∣∣ |uv + uv| < min{|u|2 , |v|2}
}
. (2.29)

It follows that R contains a fundamental region for the action of PSL2(Z) on
C∞\I. As in the homogeneous case, we see from Theorem 2.28 that equivalence
of points within R can be established only by powers of the transformation
T ∈ PSL2(Z). Since T 2 = 1, in order to obtain a fundamental region we now
need to choose for each z ∈ R just exactly one of the equivalent points z and
Tz. This can for example be done such that |z| > 1.

Note that for understanding the group action of PSL2(Z) on C∞ \ I it is
sufficient to look at either the upper or lower half-plane of C, since the group
action on one half-plane is symmetric to the group action on the other half-
plane by Az = Az. Let us therefore denote by H the upper half-plane and by
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H∗ the extended upper half-plane:

H :=
{
z ∈ C

∣∣ Im (z) > 0
}

(2.30)

H∗ := H ∪Q ∪ {∞}. (2.31)

Clearly H∗ is invariant under PSL2(Z), i.e. PSL2(Z)H∗ = H∗ and we can also
consider PSL2(Z) acting on H∗.

Theorem 2.31. Let H and H∗ be defined as above. The set

F̃ :=

{
z ∈ C

∣∣∣∣ |Re (z)| < 1

2
and |z| > 1

}
(2.32)

is a fundamental region for the action of PSL2(Z) on C∞ \ I. The part of F̃
lying in the upper half-plane H, i.e. the set

F := F̃ ∩ H (2.33)

is a fundamental region for the action of PSL2(Z) on H∗.

Proof. The second statement that F = F̃ ∩ H is fundamental region for
PSL2(Z) acting on H∗ is a simple consequence of the first statement. For
proving that F̃ is fundamental, observe that F̃ is exactly the set

F̃ = R∩
{
z ∈ C

∣∣∣ |z| > 1
}
,

with R defined as in (2.29) – compare also Figure 2.1. Obviously F̃ is a
nonempty open subset of R, which is why two distinct points of F̃ can be
equivalent only by the transformation T . However, since |z| > 1 implies |Tz| =
|−1/z| < 1, this is impossible. Therefore F̃ contains no equivalent distinct
points.

It remains to show that every z = u
v

∈ S is equivalent to a point of

the topological closure cl(F̃) of F̃ . For this purpose apply the algorithm of
Theorem 2.29 to the vector (uv) ∈ Ŝ in order to obtain a transformation B ∈
PSL2(Z) which maps z to a point of cl(R). It then follows that at least one of
the points Bz or TBz lies in cl(F̃).

We now wish to obtain a fundamental set for the action of PSL2(Z) on H∗.
For this purpose we need to consider the boundary of F and to investigate
equivalent boundary points and their associated transformations. It turns out
that we can define a fundamental set for the action of PSL2(Z) on H∗ the
following way:
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Theorem 2.32 (The fundamental set F∗). Denote by F the fundamental re-
gion from (2.33). The boundary of F shall be segmented into the four “bound-
ary arcs”,

a :=

{
− 1

2
+ yi

∣∣∣∣ y ≥
√
3

2

}
∪ {∞},

b :=

{
+

1

2
+ yi

∣∣∣∣ y ≥
√
3

2

}
∪ {∞},

c :=
{
i · e+iφ

∣∣∣ 0 ≤ φ ≤ π

6

}
,

d :=
{
i · e−iφ

∣∣∣ 0 ≤ φ ≤ π

6

}
.

These boundary arcs are mapped onto each other by Ua = b and Tc = d. The
set

F∗ := F ∪ a ∪ c (2.34)

is a fundamental set for the action of PSL2(Z) on the extended upper half-plane
H∗.

Proof. It follows from Theorem 2.28 that equivalence of boundary points of F
can only be established by transformations A ∈ PSL2(Z) with n(A) ≤ 3. The
full list of candidate transformations therefore comprises of 9 transformations:
T , U , TU , UT , TUT and the respective inverse transformations (note that T
is self-inverse). After looking at these transformations individually, it turns
out that in fact only T and U (and U−1) map boundary points to boundary
points. Indeed Ua = b and Tc = d can readily be seen.

Remark 2.33. In Figure 2.2, we see that the fundamental region F can also
be described in terms of generalized disks (see Definition 1.50): With the ter-
minology of Theorem 2.32, the boundary arcs a and b are indeed “generalized
arcs” of the closed generalized disks A and B. Their defining matrices are

A :

(
0 1
1 1

)
and B :

(
0 −1

−1 1

)
.

The boundary arcs c and d are part of the boundary of the closed unit disk D,
given by the matrix

D :

(
1 0
0 −1

)
.

We see that the fundamental region F can be characterized as set complement
of the union of these three closed g-disks:

F = H∗ \ (A ∪ B ∪ D) . (2.35)
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Figure 2.2: The fundamental region F for the action of the modular group
PSL2(Z) on the extended upper half-plane H∗. It is bounded by “generalized
arcs” a, b, c and d which correspond to the generalized disks A, B and the unit
disk D. There is a unique disk I ⊆ F which is tangent to A, B and D.

Definition 2.34. Let the generalized disks A, B and D be defined as in Re-
mark 2.33. The unique (open) g-disk I ⊆ F , which is tangent to A, B and D
is called the indisk I of the fundamental region F . Its defining matrix is given
by

I :

(
2 −3i
3i 4

)
. (2.36)

2.3 The tessellation of the upper half-plane

Since F∗ is a fundamental set for the action of PSL2(Z) on H∗, its images
under all modular transformations cover the extended upper half-plane H∗ –
compare also Remark 2.23. Thus for a point z ∈ H∗ there exists a transfor-
mation A ∈ PSL2(Z) such that z ∈ AF∗. We can effectively determine such a
transformation by adopting the algorithm of Theorem 2.29:

Theorem 2.35 (The fundamental set algorithm). Let z ∈ H∗ be a point of
the extended upper half-plane and let the fundamental set F∗ be defined as in
(2.34). A transformation A satisfying z ∈ AF∗ can be found by performing
the following steps:

1. Set j := −1 and B0 := 1.
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2. Increment j by one and set zj := Bjz. If zj ∈ F∗, then goto step 6.

3. Set ej :=
⌊
Re (zj) +

1
2

⌋
.

4. If zj − ej ∈ F∗, set Bj+1 := U−ejBj – else set Bj+1 := TU−ejBj.

5. Continue with step 2.

6. The desired matrix A is given by A = Bj
−1.

Proof. Note that the above is essentially a reformulation of the algorithm of
Theorem 2.29 with the following modifications:

(a) The algorithm is reformulated for the inhomogeneous case. The num-
bers zj from above and the vectors xj from the proof of Theorem 2.29
correspond by zj = π(xj).

(b) Instead of using the nint () function, we use the above definition for
determining the coefficients ej – see step 3. This is to ensure that zj −
ej ∈ [−1

2
, 1
2
) – otherwise we would have problems with the termination

of the algorithm for the case when some zj lies on the boundary arc b
of the fundamental domain F (see Figure 2.2).

(c) Theorem 2.29 yields a final vector xn such that w := π(xn) ∈ cl(R),
whereR is defined as in (2.29). In order to obtain a point in F∗ ⊆ cl(R),
we need to apply to w possibly T and – if this point lies on the boundary
arc b – possibly U−1. We take this into account by explicitly checking
whether the application of T in the last iteration of the algorithm is
necessary or not (see step 4) and by the modification discussed in (b).

Remark 2.36. The fundamental set algorithm also appears in Klein/Fricke [7],
p. 212ff.,6 in the proof that every point on the upper half-plane is equivalent
to a point within F∗. We note that the proof given there is different and
more direct than ours. However, formulating and proving the algorithm for
the homogeneous case first and carrying over the result to the inhomogeneous
case might be considered to be more instructive.

In Figure 2.3 on the top-left, we see the images of the fundamental region
F and its indisk I under the transformations of the modular group. Each of
these images AF resp. AI is labeled by the T -U word representation of the
corresponding transformation A ∈ PSL2(Z). We call the covering of H∗ by
images of F∗ the modular tessellation of the upper half-plane.

6Volume 1, part 2, chapter 2, §3.
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Figure 2.3: The modular tessellation. The images of the fundamental region
F and its indisk I under all modular transformations (top left) are mapped to
the unit circle by the modified Cayley transform Φ (bottom left). A continuous
transition between these images is induced by a quarter-turn of the Riemann
sphere and can be seen on the right.
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For visualization purposes, the upper half-plane has the obvious disadvan-
tage that we can never see the whole picture. We have seen in Example 1.43
that the modified Cayley transform Φ maps the upper half-plane to the unit
disk. We can therefore use Φ to translate the modular tessellation to the
unit disk. This means instead of looking at the regions AF resp. AI for all
A ∈ SL2(Z), we can alternatively depict the regions ΦAF and the correspond-
ing indisks ΦAI which is done in the bottom-left picture of Figure 2.3.

For a better understanding of this transformed representation of the mod-
ular tessellation, let us identify the drawing area with R2 rather than with C.
Now we note that the point (0, 1) corresponds to the point ∞ ∈ H∗, the points
(±1, 0) relate to ±1 ∈ H∗ respectively and the point (0,−1) refers to 0 ∈ H∗.
The center (0, 0) represents the imaginary unit i ∈ H∗. In other words, as can
be seen in the right column of Figure 2.3, Φ bends the real axis to a circle7,
gluing together its ends at the point ∞ and enclosing the upper half-plane
in its interior. As we have seen in Example 1.43, this continuous transition
between the tessellation on the upper half-plane and its image under Φ can be
explained by a quarter-turn of the Riemann sphere – compare also Figure 1.3.

Remark 2.37. In a more formal context, the bottom-left picture of Figure 2.3
can also be interpreted in two alternative ways: Firstly, we could consider a
different action of PSL2(Z) on C∞, which we may denote as A ∗ z for A ∈
PSL2(Z) and z ∈ C∞. For its definition we make use of the natural action of
the Möbius transformation ΦAΦ−1:

A ∗ z := (ΦAΦ−1)z.

Secondly, we could consider C∞ under the natural action of a group G of
Möbius transformations which is conjugate to PSL2(Z) and whose transforma-
tions are represented by certain matrices8 over the ring of Gaussian integers
Z[i] := {a+ bi | a, b ∈ Z} with determinant 1:

G := ΦPSL2(Z)Φ−1 =

{
A ∈ PSL2(Z[i])

∣∣∣∣ A =

(
α β

β α

)
∼

α, β ∈ Z[i]
}
.

Clearly both, the action ∗ of PSL2(Z) as well as the natural action of G, leave
the unit disk ΦH invariant. Consequently ΦF is a fundamental region for both
(equivalent) actions on the unit disk. In this setting, the bottom-left picture
of Figure 2.3 can alternatively be interpreted as the tessellation induced by
either of these two group actions.

7In fact, the real axis plus the point ∞ can be considered as a generalized circle.
8Compare also Mumford [9], p. 88, Recipe III.
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2.4 Hyperbolic geometry

It is the goal of this section to introduce a general method for the construc-
tion of fundamental regions with respect to the action of PSL2(Z) and its
subgroups on H∗ which relies on the concepts of 2-dimensional hyperbolic ge-
ometry. Brief introductions to the topic of hyperbolic geometry may also be
found in Lehner [8], p. 78ff.9 and Mumford [9], p. 377ff.

Plane (i.e. 2-dimensional) hyperbolic geometry is obtained from 2-dimen-
sional Euclidean geometry by replacing the parallel postulate by the following
axiom:

(A) Let X be a point and L be a line on the (hyperbolic) plane, such that L
does not pass through X. Then there is more than one line L′ passing
through X which does not meet L.

There are various mathematical models of hyperbolic geometry. We will
use a model based on the notions of generalized disks and generalized circles
which we introduced in Section 1.2.2.

Definition 2.38 (Elements of hyperbolic geometry). Let P ⊆ C be a general-
ized disk, which serves as a model for 2-dimensional hyperbolic geometry. In
this context, we will refer to P as hyperbolic plane (for short h-plane). The
interior points of P are called proper points ; the boundary points of P are
called improper points. The set of all improper points (which is a generalized
circle) is called the horizon of P .10 Every generalized circle C, which intersects
the horizon of P orthogonally in two distinct (improper) points, gives rise to
exactly one hyperbolic line (for short h-line) L which is given by L = C ∩ P .

In the above model of hyperbolic geometry, the angular measure is taken
over from Euclidean geometry, i.e. the angle between by two h-lines which
intersect each other in a proper point z ∈ P is defined as the Euclidean angle
between by the (Euclidean) tangents of the h-lines at the point z. It now
remains to introduce a measure for the distance between proper points in P .

Definition 2.39 (Metric). Let S be nonempty a set. A function d : S×S → R
is a metric on S, if the following conditions are satisfied for all x, y, z ∈ S:

(i) Non-negativity: d(x, y) ≥ 0.

(ii) Coincidence axiom: d(x, y) = 0 if and only if x = y.

9Chapter II, section 12
10The notions of proper and improper points as well as horizon are taken over from

Fenchel [3].
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(iii) Symmetry: d(x, y) = d(y, x).

(iv) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

Remark 2.40. From

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y),

we see that non-negativity (i) is implied by the conditions (ii), (iii) and (iv).

Definition 2.41 (Isometry). Let S be a set and d be a metric on S. A map
φ : S → S is called an isometry, if it leaves distances invariant, i.e. if

d(x, y) = d(φ(x), φ(y)) for all x, y ∈ S.

Remark 2.42. It is direct to see that the set of all bijective isometries forms a
group under the operation of function composition. Note that the coincidence
axiom (ii) implies that isometries are necessarily injective. However, in general
they do not need to be surjective.

We wish to introduce a metric on the h-plane P, such that every Möbius
transformation which maps P onto itself is an isometry of P . Clearly all
Möbius transformations with this property form a group. We will refer to the
transformations of this group as rigid motions11 of the h-plane.

For the definition of such a metric we will take advantage of the so-called
cross ratio. Note that in literature for the term “cross ratio” different notations
and definitions are used. We will in this regard adhere to Carathéodory [2],
whose derivation of the cross ratio’s elementary properties is particularly con-
cise and elegant.

Definition 2.43. Let z1, z2, z3, z4 ∈ C∞ be numbers of the extended complex
plane with the restriction that at most two of these numbers are equal. The
cross-ratio (z1, z2, z3, z4) ∈ C∞ is defined as

(z1, z2, z3, z4) :=
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (2.37)

Note that in the case of an infinite quantity zk = ∞, the cross ratio shall be
evaluated by formally dividing the two respective factors in the numerator and
denominator of (2.37) by zk and by substitution of expressions 1

∞ with zero.

We will need the following important properties of the cross ratio:

11A rigid motion is an isometry which additionally leaves angles and their orientation
invariant.
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Lemma 2.44 (Invariance under Möbius transformations). Let φ ∈ PGL2(C)
be a Möbius transformation and z1, z2, z3, z4 ∈ C∞ such that their cross ratio
is defined. Set wj := φ(zj) for j ∈ {1, 2, 3, 4}. The cross ratios of the numbers
zj and wj are equal, i.e.

(z1, z2, z3, z4) = (w1, w2, w3, w4). (2.38)

Sketch of proof. Let us write the Möbius transformation φ as φ(z) = az+b
cz+d

. For
i, j ∈ {1, 2, 3, 4}, we have

wi − wj =
azi + b

czi + d
− azj + b

czj + d
=

ad− bc

(czi + d)(czj + d)
· (zi − zj).

Consequently, if we define

A :=
(ad− bc)2

(cz1 + d)(cz2 + d)(cz3 + d)(cz4 + d)
,

we obtain
(w1 − w2)(w3 − w4) = A(z1 − z2)(z3 − z4).

On the other hand, exploiting the symmetry of A with respect to the numbers
zj, we have

(w1 − w3)(w2 − w4) = A(z1 − z3)(z2 − z4).

In the case when all involved numbers zj and wj are finite (and in particular
A is finite and nonzero), division of these two equations yields (2.38). The
prove of the general case, when one or two of the numbers zj (resp. wj) are
∞, involves some inconvenient case distinctions which we will not carry out
here.

Lemma 2.45. Let z1, z2, z3 ∈ C∞ be pairwise distinct. The function

λ :

{
C∞ → C∞
z 7→ (z1, z2, z3, z)

(2.39)

is a Möbius transformation and satisfies λ(z1) = 1, λ(z2) = ∞, λ(z3) = 0.

Sketch of proof. In the case when ∞ /∈ {z1, z2, z3}, by setting a := z2 − z1,
b := z2(z1 − z2), c := z3 − z1 and d := z2(z1 − z3) we can obviously write

λ(z) =
(z1 − z2)(z3 − z)

(z1 − z3)(z2 − z)
=
az + b

cz + d
.

Moreover, we have

ad− bc = (z1 − z2)(z2 − z3)(z3 − z1).
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By assumption the numbers zj are pairwise distinct and therefore λ is indeed
a Möbius transformation. Note that for the other case, when some zk = ∞,
the cross ratio needs to be evaluated as specified in Definition 2.43 and the
coefficients a, b, c, d need to be adapted appropriately. The statement on the
images of z1, z2, z3 under λ is readily verified.

Corollary 2.46. Denoting the extended real axis by R∞ := R∪{∞}, the map
λ : C∞ → C∞ from (2.39) satisfies λ(z) ∈ R∞ if and only if z lies on the
generalized circle which is determined by the points z1, z2, z3.

Proof. This statement is a consequence of the fact that λ is a Möbius trans-
formation and therefore maps the g-circle determined by the points z1, z2, z3
pointwise one-to-one to the extended real axis R∞.

The above properties of the cross ratio allow to define a metric on the
hyperbolic plane P the following way:

Definition 2.47 (Poincaré metric). Let z1, z2 ∈ P be two distinct proper
points of the hyperbolic plane and let L be the unique h-line joining z1 with
z2. Label the two (improper) endpoints of L by ∞1 and ∞2, such that
∞1, z1, z2,∞2 are in order along the h-line L. The hyperbolic distance be-
tween z1 and z2 is defined as

dhyp (z1, z2) :=
1

2
logχ with χ := (z1,∞2,∞1, z2). (2.40)

Additionally we define dhyp (z, z) = 0 for all proper points z ∈ P .

Theorem 2.48. The hyperbolic distance defined in (2.40) is a metric on the
hyperbolic plane P which we call the Poincaré metric on P.

Sketch of proof. The cross ratio χ in (2.40) may alternatively be written as
χ = λ(z2), where λ(z) := (z1,∞2,∞1, z) is, according to Lemma 2.45, a
Möbius transformation satisfying λ(z1) = 1 and λ(∞2) = ∞. Corollary 2.46
ensures that λ(z) is real for all z lying on the h-line L. Since λ is a continuous
map, it follows that λ maps the h-line segment S ⊆ L which is bounded by
the points z1 and ∞2 pointwise one-to-one to the interval [1,∞] ⊆ R∞. For
this reason, the hyperbolic metric is non-negative and dhyp (z1, z2) → 0 as z2
approaches z1 along S. Similarly, dhyp (z1, z2) → ∞ as z2 approaches ∞2 along
S.

The symmetry of dhyp can easily be verified: Note that exchanging z1 and
z2 also swaps the roles of the improper points ∞1 and ∞2. We therefore need
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to show that χ1 := (z1,∞2,∞1, z2) = (z2,∞1,∞2, z1) =: χ2 which is indeed
the case:

χ1 =
(z1 −∞2)(∞1 − z2)

(z1 −∞1)(∞2 − z2)
=

(z2 −∞1)(∞2 − z1)

(z2 −∞2)(∞1 − z1)
= χ2.

By the above observations, we have dhyp (z1, z2) = 0 if and only if z1 = z2.
Consequently the coincidence axiom is satisfied. The proof of the fact that
dhyp also satisfies the triangle inequality is out of scope of this work.

Remark 2.49. The hyperbolic distance along a h-line is additive, i.e. for three
points z1, z2, z3 which are in order along a h-line, we have

dhyp (z1, z3) = dhyp (z1, z2) + dhyp (z2, z3) ,

which is a consequence of

(z1 −∞2)(∞1 − z2)

(z1 −∞1)(∞2 − z2)
· (z2 −∞2)(∞1 − z3)

(z2 −∞1)(∞2 − z3)
=

(z1 −∞2)(∞1 − z3)

(z1 −∞1)(∞2 − z3)

Remark 2.50 (Poincaré disk and half-plane model). If we choose the upper
half-plane of C∞ as model for the hyperbolic plane, i.e. P := cl(H), we obtain
the Poincaré half-plane model of hyperbolic geometry. If instead the unit disk
is chosen, P := D, then we talk of the Poincaré disk model.

Clearly both models are equivalent in the sense that one model can be
obtained from the other by applying a Möbius map which transforms the upper
half-plane to the unit disk (or vice-versa). For our purposes, the Poincaré half-
plane model will be most relevant.

2.4.1 Normal polygons and fundamental regions

We can now exploit the concepts of 2-dimensional hyperbolic geometry in the
search of fundamental regions for the action of PSL2(Z) and its subgroups on
H∗.

The idea – taken from Lehner [8] – may be shortly described as follows:
Given a subgroup G ≤ PSL2(Z), we fix a point z0 ∈ H which has a trivial
stabilizer Gz0 = {1}. The points z of the sought fundamental region Nz0 shall
be characterized by the property dhyp (z, z0) ≤ dhyp (Az, z0) for all A ∈ G. It
turns out that such a fundamental region Nz0 can be obtained by a simple
geometric construction for which we will need the following notions:

Definition 2.51 (Hyperbolic half-plane). Let D be a generalized disk, such
that its boundary intersects the horizon of P orthogonally in two distinct
(improper) points. The (nonempty) set H := D ∩ P is called a hyperbolic
half-plane.
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Definition 2.52 (Perpendicular bisector). Let z1, z2 ∈ P be two distinct
proper points and denote by S the unique h-line segment whose endpoints
are z1 and z2. The set of proper points w for which dhyp (w, z1) = dhyp (w, z2)
defines a h-line and is called the perpendicular bisector of S. Additionally we
define Hz1(z2) as the hyperbolic half-plane consisting of all points w ∈ P which
are closer to z1 than to z2:

Hz1(z2) := {w ∈ P | dhyp (w, z1) < dhyp (w, z2)}. (2.41)

Note that the hyperbolic boundary of Hz1(z2) is precisely the perpendicular
bisector of the h-line segment S.

Definition 2.53 (Normal polygon). Let G ≤ PSL2(Z) be a subgroup of the
modular group. Let z ∈ H∗ with trivial stabilizer Gz = {1}. The set

Nz :=
∩

A∈G\{1}

Hz(Az) (2.42)

is called the normal polygon with respect to the group G and the point z.

Remark 2.54. The term “normal polygon” is justified by the fact that Nz, as
intersection of hyperbolic half-planes, is bounded entirely by h-line segments
and therefore can be considered as a convex (possibly generalized) polygon12

in the hyperbolic sense.

Theorem 2.55. Let Nz be a normal polygon for the group G ≤ PSL2(Z) with
respect to the point z ∈ H. Nz is a fundamental region for the action of G on
H∗.

Proof. For the proof of this fact in the more general context of principal cir-
cle groups, i.e. discontinuous groups of Möbius transformations fixing a given
generalized circle, we refer to Lehner [8], p.146ff.13

Example 2.56 (Fundamental regions for PSL2(Z)). We see in Figure 2.4
that the fundamental region F from (2.33) can alternatively be obtained by
constructing the normal polygon for a point z on the imaginary axis with
Im (z) > 1 (compare also Figure 2.2). A different fundamental region for the
action of PSL2(Z) on H∗ is displayed in Figure 2.5.

In both figures, the point z for which the normal polygon is constructed is
colored red. Its equivalent points Az, A ̸= 1 can be seen in black. For every

12A region bounded by infinitely many h-line segments is called a generalized polygon.
13Chapter IV, Section 7
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Figure 2.4: The fundamental region F can alternatively obtained by construct-
ing the normal polygon with respect to a point z on the imaginary axis with
Im (z) > 1. Above the point z = φi (red) has been chosen, where φ =

√
5+1
2

denotes the golden ratio.

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

Figure 2.5: An alternative fundamental region for the action of PSL2(Z) on
H∗. It is obtained by constructing the normal polygon for the point 2

3
(1 + i).
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Figure 2.6: A fundamental region for the subgroup Γ(2) ≤ PSL2(Z). It is
given by the normal polygon constructed with respect to the point i.

pair (z, Az), the corresponding perpendicular bisector (black) can be found
best by following the gray dashed h-line which joins Az with z.

Note that for producing an accurate picture of the normal polygon, it was
in both cases sufficient to enumerate just 9 different transformations. In case
of Figure 2.4, all transformations with n(A) ≤ 3 have been selected, where
n(A) denotes the grading of A as defined in (2.11).

In Figure 2.5, in order to achieve a good “locality” of the equivalent points
Az around z, additionally the fundamental set algorithm (Theorem 2.35) has
been utilized: The selected transformations are all of the form A = CBC−1

with B ∈ PSL2(Z), n(B) ≤ 3 and where C denotes the transformation ob-
tained when applying the fundamental set algorithm to z.

Example 2.57. As a demonstration of the normal polygon method in case of
a proper subgroup of PSL2(Z), we see in Figure 2.6 a normal polygon for the
group Γ(2) ≤ PSL2(Z). For m ∈ N, the principal congruence subgroup Γ(m)
is defined as

Γ(m) :=

{(
a b
c d

)
∈ PSL2(Z)

∣∣∣∣ a ≡ d ≡ ±1, b ≡ c ≡ 0 mod m

}
.

For drawing Figure 2.6, all nontrivial transformations in Γ(2) with a grading
≤ 18 (of which there are 12) have been selected. Note that for the particular
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chosen point z, also “the first four” nontrivial transformations of Γ(2) (whose
grading is ≤ 6) would have been enough for obtaining the same region.



Chapter 3

Applications in visualization

3.1 The action of Möbius transformations

So far we often talked about the action of Möbius transformations on C∞.
However, up to now occasions have been quite rare where we literally could see
them “in action”. Maybe the most important exceptions to this are Figures 1.2
and 1.3, showing continuous transitions between certain sets and their images
under the two transformations z 7→ 1

z
and z 7→ Φ(z) (the modified Cayley

transform), both induced by rotations of the Riemann sphere.

In this section we introduce a more direct method for visualization of such
continuous transitions, a method working for arbitrary Möbius transformations
and doing without stereographic projection and motion of Riemann spheres.
For this purpose, we exploit the “linear algebra nature” (see Remark 1.36) of
Möbius transformations. For easier notation we will not distinguish between
a matrix A ∈ GL2(C) and the corresponding Möbius transformation ±A ∈
PGL2(C). In particular with A we will denote both, a matrix and its associated
transformation.

For A ∈ GL2(C) and k ∈ Z, it follows from Theorem 1.35 that the ma-
trix power Ak corresponds to the Möbius transformation obtained by k times
composing the transformation A with itself. The idea is now to generalize the
concept of matrix powers from integral to real exponents. If we do so, then for
any set S ∈ C∞ of interest, we can visualize the transition from S to its image
under A simply by depicting a sequence of intermediate images AtS ⊆ C∞,
with a varying parameter t ∈ [0, 1].

In order to introduce such generalized matrix powers, note that for integral
exponents, powers of A can be calculated by using its Jordan normal form.1

1Also called Jordan canonical form. For more details on Jordan normal forms, eigenvalues
and eigenvectors see for example Hungerford [5], Chapter VII, Linear algebra.

61
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If J is a Jordan normal form of A, then for some P ∈ GL2(C) we have A =
P−1JP and consequently

Ak = P−1JkP, for all k ∈ Z. (3.1)

The matrix J has one of the two possible forms

(i) J =

(
λ1 0
0 λ2

)
or (ii) J =

(
λ 1
0 λ

)
and their respective matrix powers are given by

(i) Jk =

(
λk1 0
0 λk2

)
or (ii) Jk =

(
λk kλk−1

0 λk

)
. (3.2)

From here it is just a small step to the generalization of matrix powers to real
exponents: We choose a fixed branch of the natural (complex) logarithm, for
example such that the imaginary part of the logarithm ranges in the interval
(−π, π], i.e. Im (ln z) = arg z ∈ (−π, π] for all z ∈ C. Now, for λ ∈ C and
k ∈ R, we can evaluate λk as λk := exp(k lnλ).

Definition 3.1 (Generalized matrix power). Let A ∈ GL2(C) be a matrix.
For k ∈ R we say B is an k-th power of A, in symbols B = Ak, if there is a
P ∈ GL2(C) such that

A = P−1JP and B = P−1JkP,

where J is in Jordan normal form and Jk is determined by (3.2), where a fixed
branch of the natural logarithm is chosen and the expressions λk are evaluated
as λk := exp(k lnλ).

Remark 3.2 (Eigenvectors and fixed points). Writing the matrix P in the form
P = (v1 | v2) with v1, v2 ∈ C2, in case (i), v1 and v2 are the eigenvectors of
the matrix A corresponding to the eigenvalues λ1 and λ2 respectively. In case
(ii), only v1 is an eigenvector (v2 is a so-called generalized eigenvector). It is
worth noting that a vector (uv) ∈ C2 is an eigenvector of A ∈ GL2(C), if and
only if u/v ∈ C∞ is a fixed point for the Möbius transformation A:

A ·
(
u
v

)
= λ

(
u
v

)
⇔ A

(u
v

)
=
λu

λv
=
u

v
.

Therefore, in case (i), A is either the identity transformation or has exactly
two distinct fixed points in C∞. In case (ii), A has exactly one fixed point in
C∞.
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As Definition 3.1 already suggests, generalized matrix powers are not unique
but depend on the chosen branch of the natural logarithm. The following ex-
ample will illustrate this:

Example 3.3. Let A = (01
1
0) ∈ GL2(C) be the matrix corresponding to the

Möbius map z 7→ 1
z
. We wish to calculate the “square root” A

1
2 of this trans-

formation. The eigenvalues of A are λ1 = −1 and λ2 = 1; the correspond-
ing eigenvectors are v1 = (−1

1) and v2 = (11). We can therefore write A as

A = P−1JP with P =
(−1

1
1
1

)
and J =

(−1
0

0
1

)
. Next we calculate J

1
2 by

evaluating exp(1
2
lnλ1) and exp(1

2
lnλ2). Choosing a logarithm branch such

that Im (ln z) ∈ (−π, π] for all z ∈ C, and denoting equivalence of matrices in

PGL2(C) again by ∼, this yields J
1
2 = (i0

0
1) and

A
1
2 = P−1J

1
2P =

1

2

(
1 + i 1− i
1− i 1 + i

)
∼

(
i 1
1 i

)
.

We therefore see that A
1
2 = Φ and the modified Cayley transform is in this

sense a “square root” of the transformation A : z 7→ 1
z
– compare also Exam-

ple 1.43.
In contrast to that, choosing a slightly different logarithm branch, such

that Im (ln z) ∈ [−π, π) for all z ∈ C, we get J 1
2 =

(−i
0

0
1

)
and therefore obtain

a matrix conjugate to the above one:

A
1
2 =

1

2

(
1− i 1 + i
1 + i 1− i

)
∼

(
−i 1
1 −i

)
.

Note that this second transformation, just like the modified Cayley trans-
formation, can also be considered as a quarter-turn of the Riemann sphere
around the x1 axis, but it rotates in the opposite direction and maps the lower
half-plane to the unit disk.

Example 3.4. As an application of generalized matrix powers, we can visu-
alize the action of the modular transformations U : z 7→ z + 1, T : z 7→ −1

z

and R : z 7→ − 1
z+1

on the modular tessellation. For the parameter t ∈ [0, 1]
“intermediate actions” of these maps are given through the Möbius maps cor-
responding to the matrices

U t ∼
(
1 t
0 1

)
,

T t ∼
(
cos

(
πt
2

)
− sin

(
πt
2

)
sin

(
πt
2

)
cos

(
πt
2

) )
,

Rt ∼
(√

3 cos
(
πt
3

)
− sin

(
πt
3

)
−2 sin

(
πt
3

)
2 sin

(
πt
3

) √
3 cos

(
πt
3

)
+ sin

(
πt
3

)) .
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In Figures 3.1, 3.2 and 3.3 we can see the modular tessellation and its
“intermediate images” under the transformations T , U andR for the parameter
values t ∈ {0, 1

5
, 2
5
, 3
5
, 4
5
, 1}. Again we use the modified Cayley transform to map

the tessellation of the upper half-plane to the unit disk. Looking at Figure 3.2,
another advantage of seeing the upper half-plane from this different angle gets
apparent: Under Φ, the action of T corresponds to a simple rotation by 180◦

around the fixed point i. This is in close connection to Remark 1.42, where
we noted that T corresponds to a half-turn of the Riemann sphere around the
x2 axis. Finally we can see in Figure 3.3 that – with a slight distortion – R
corresponds to a rotation by 120◦ around the fixed point ρ = exp(2πi/3).

Note that the individual frames in Figures 3.1, 3.2 and 3.3 have been ar-
ranged such that the first column has to be read first in top-down direction
and then the second column has to be read in bottom-up direction, allowing
in the first row a direct comparison of the original tessellation and its image
under the respective transformations.
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Figure 3.1: The action of U : z 7→ z + 1.
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Figure 3.2: The action of T : z 7→ −1
z
.



3.1. THE ACTION OF MÖBIUS TRANSFORMATIONS 67

1

U-1

U-2

U-1T

U-1TU1
U1

U2

U1T

U1TU-1

T

TU1

TU2

U-1TU-1

U-1TU-2

TU-1

TU-2

U1TU1

U1TU2

¥

-2 2

1

0

-0.5

-1

0.5

R0

1

U-1

U-2

U-3

U-2T

U-2TU1

U-1T

U-1TU1

U-1TU2

U-2TU-1

U-2TU-2

U1

T

TU1

TU2
U-1TU-1

U-1TU-2

TU-1

¥

-2

2

1

0

-0.5

-1

0.5

R1

1

U-1

U-2

U-1T

U-1TU1

U1

U2

U1TTTU1

TU2

U-1TU-1

TU-1

TU-2

U1TU1

¥
-2

2

1

0

-0.5

-1

0.5

R
1

5

1

U-1 U-2

U-3

U-2TU-1T

U-1TU1

U-1TU2

U-2TU-1

U1

T

TU1

U-1TU-1

U-1TU-2

TU-1

¥

-2

2
1

0

-0.5

-1

0.5

R
4

5

1

U-1

U-2

U-3U-2T

U-1T

U-1TU1

U-2TU-1

U1
U2

U1T

T

TU1

U-1TU-1

TU-1

U1TU1

¥

-2

2

1

0

-0.5

-1

0.5

R
2

5

1

U-1

U-2 U-3

U-2T

U-1T

U-1TU1

U-2TU-1

U1

U2

U1T

T

TU1

U-1TU-1

TU-1

U1TU1

¥

-2

21

0

-0.5

-1

0.5

R
3

5

Figure 3.3: The action of R : z 7→ − 1
z+1

.
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3.2 Continued fractions

For an arbitrary modular transformation A, a representation as product of
shifts U j : z 7→ z + j and inversions T : z 7→ −1

z
can be found by the T -U

algorithm of Corollary 2.10. By writing out this product, for example in the
case when n = 2, we have

A = U e0TU e1TU e2TUk,

or more explicitly

A(z) = e0 −
1

e1 − 1
e2− 1

k+z

. (3.3)

Here a close relation between modular transformations and continued fractions
immediately gets apparent. In this section we will investigate this relation
somewhat deeper. First we will use Pringsheim’s more space-saving notation
for continued fractions, namely

b0 +
a1

b1 +
a2

b2+
a3

b3+...

=: b0 +
a1
b1

+
a2
b2

+
a2
b3

+ . . . (3.4)

In the case when all aj = 1, we adhere to the standard sequence notation for
continued fractions:

b0 +
1

b1 +
1

b2+...

=: [b0, b1, b2, . . . ].

For determining a continued fraction representation for a real number α such
that all aj = 1, one usually sets α0 := α as well as bj := ⌊αj⌋ and αj+1 :=

1
αj−bj

for j ≥ 0 until some αj is zero (which is the case if and only if α ∈ Q). In this
way we obtain a finite or infinite sequence of equations

α = α0 = b0 +
1

α1

, α1 = b1 +
1

α2

, α2 = b2 +
1

α3

, . . . (3.5)

giving rise to the continued fraction representation α = [b0, b1, b2, . . . ]. The
rational number cn := [b0, b1, . . . , bn] obtained by truncating the continued
fraction representation after the coefficient bn, is called the n-th convergent of
the continued fraction. If the continued fraction is infinite, i.e. α ∈ R\Q, then
we have limn→∞ cn = α.

Remark 3.5. Note that by using the method above, all the coefficients bj with
j > 0 are positive. A representation for α of this form is called a regular
continued fraction – see also Perron [11], §9.
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In contrast to that, if we set bj := ⌈αj⌉ for some or all of the indices j,
then also negative coefficients bj, j > 0, will occur and we obtain in this way a
so called semi-regular continued fraction representation of α. This is in strong
analogy to Remark 2.11 that within the Euclidean algorithm the quotients qj
can be determined by rounding rj−1/rj either up- or downward. Note that in
Perron [11], §36, semi-regular continued fractions are defined such that for all
j > 0 the coefficients bj are positive, but allowing for aj ∈ {±1}. However this
makes no essential difference.

If we use the nearest integer function in each step, i.e. bj := nint (αj) for
all j, then we have |bj| ≥ 2 for all j > 0. If additionally α ∈ Q, then it can be
shown that the resulting continued fraction representation is one of minimal
length – according to Perron [11], §39, we call finite continued fractions with
this minimality property canonical continued fractions.

We can now reformulate Corollary 2.10 in order to construct a continued
fraction representation of any given modular transformation.

Corollary 3.6. An arbitrary modular transformation A(z) = az+b
cz+d

can be writ-
ten as continued fraction

A(z) = [q0, q1, . . . , qn, (−1)n+1(k + z)] (3.6)

where the integers n, q0, q1, . . . , qn and k are determined by the T -U algorithm
from Corollary 2.10.

Proof. By using the continued fraction representation of A given in (3.3) and
by applying the definition ej := (−1)jqj, we see

A(z) = e0 +
−1
e1

+
−1
e2

+ . . .+
−1
en

+
−1
k + z

= q0 +
−1
−q1

+
−1
q2

+ . . .+
−1

(−1)nqn
+

−1
k + z

. (3.7)

Now for every odd j ≤ n we can rewrite

−1
−qj

+
−1
. . .

to
1
qj

+
1
. . .

.

Thus if n is odd, every numerator −1 in (3.7) can be turned into +1. In
the other case, when n is even, only one negative numerator at the end, −1

k+z
,

remains, but this can easily be rewritten to 1
−(k+z)

. Taking both cases together,

we obtain (3.6).
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Remark 3.7. It is worth noting that determining a continued fraction repre-
sentation for a rational number p/q ∈ Q with p, q ∈ Z is essentially equiv-
alent to applying the Euclidean algorithm to the integers p and q: If we set
(r−1, r0) := (p, q) and substitute in (3.5) αj = rj−1/rj for all j ≥ 0, we obtain

r−1

r0
= b0 +

r1
r0

⇔ r−1 = b0 · r0 + r1

r0
r1

= b1 +
r2
r1

⇔ r0 = b1 · r1 + r2

r1
r2

= b1 +
r3
r2

⇔ r1 = b2 · r2 + r3

...
...

In other words, the coefficients bj of the desired continued fraction represen-
tation are nothing else but the quotients of the Euclidean algorithm which we
used to denote by qj.

This observation also allows it to see the T -U algorithm of Corollary 2.10
in a different light: For a given modular transformation A(z) = az+b

cz+d
, by apply-

ing the Euclidean algorithm to a and c, we effectively determine a continued
fraction representation for the rational number A(∞) = a

c
= [q0, q1, . . . , qn]. If

we set again ej := (−1)jqj, it follows that correspondingly the modular trans-
formation P := U e0TU e1T . . . U enT maps ∞ to a

c
. Since the stabilizer of ∞ is

generated by the transformation U , all transformations with this property can
be written as PUk for some k ∈ Z.

In particular, if we determine the quotients qj by rounding to the nearest
integer, we obtain a canonical continued fraction, i.e. a continued fraction rep-
resentation of minimal length. Consequently, the corresponding T -U product
representation is one with minimal number of factors T and Uk.

Corollary 3.8. Denote the extended rational numbers by Q∞ := Q ∪ {∞}
and let r ∈ Q∞. A transformation A ∈ PSL2(Z) satisfying A(∞) = r
can be found by determining a continued fraction representation of r, that is
r = [b0, b1, . . . , bn], and setting A := U e0TU e1T . . . U enT where ej := (−1)jbj.
In particular, the k-th convergent ck, k ≤ n, of this continued fraction repre-
sentation can be written as ck = U e0TU e1T . . . U ekT (∞).

We have now seen that there is a natural correspondence between rational
numbers, continued fractions and the T -U word representations of modular
transformations. In order to formalize this correspondence, let us denote by
Z⋆ :=

∪
n≥0 Zn the set of finite integer sequences (or words over the alphabet

Z). Furthermore we set Q∞ and define a map f : Z⋆ → Q∞ by

f :

{
Z⋆ → Q∞

(b0, b1, . . . , bn) 7→ [b0, b1, . . . , bn].
(3.8)
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Note that evaluation of continued fractions shall take place in Q∞ with the
natural conventions for treating infinite quantities, i.e. for a ̸= 0 and b ̸= ∞
we have

a

0
= ∞,

b

∞
= 0, b±∞ = ∞.

Moreover the empty continued fraction shall evaluate to ∞, i.e. f(ϵ) = ∞,
where ϵ ∈ Z⋆ denotes the empty sequence. We call the sequence β ∈ Z⋆ a
continued fraction representation for f(β) ∈ Q∞.

Next we set Σ := {T, U} ⊆ PSL2(Z) and let Σ∼ be the free group generated
by the symbols T and U . Moreover we denote by ⟨U⟩ both, the subgroup of
Σ∼ generated by the symbol U and the subgroup of PSL2(Z) generated by the
transformation U . We now consider left cosets of ⟨U⟩ in Σ∼ and PSL2(Z):

Σ∼/⟨U⟩ := {σ⟨U⟩ | σ ∈ Σ∼},
PSL2(Z)/⟨U⟩ := {A⟨U⟩ | A ∈ PSL2(Z)}.

It is important to note these are not factor groups, as ⟨U⟩ is not a normal
subgroup of PSL2(Z) or Σ∼. In particular, neither PSL2(Z)/⟨U⟩ nor Σ∼/⟨U⟩
carry a “natural” group structure – we will regard them just as sets.

We now have defined all domains needed for writing f : Z⋆ → Q∞ as
composition of three other functions, namely f = g3 ◦ g2 ◦ g1, where

g1 : Z⋆ → Σ∼/⟨U⟩,
g2 : Σ∼/⟨U⟩ → PSL2(Z)/⟨U⟩,
g3 : PSL2(Z)/⟨U⟩ → Q∞.

Let us first turn to the definition of g1, which maps a continued fraction rep-
resentation to a left coset of a certain T -U group word.

g1 :

{
Z⋆ → Σ∼/⟨U⟩

(b0, b2, . . . , bn) 7→ U e0TU e1T . . . U enT ⟨U⟩ where ej := (−1)jbj.

(3.9)
Note that in the case of the empty sequence ϵ ∈ Z⋆ we have g1(ϵ) = ⟨U⟩.

In order to define g2, let φ : Σ → PSL2(Z) be the canonical embedding,
i.e. φ(T ) = T and φ(U) = U . Let φ be the unique extension of φ to a
homomorphism Σ∼ → PSL2(Z), according to Theorem 1.14. Note that φ is
just the map which evaluates T -U group words to concrete elements of PSL2(Z)
in the obvious way. The function g2 now takes left cosets in Σ∼ to left cosets
in PSL2(Z) by

g2 :

{
Σ∼/⟨U⟩ → PSL2(Z)/⟨U⟩
σ⟨U⟩ 7→ φ(σ)⟨U⟩. (3.10)
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Last but not least we define g3 as the map which evaluates the transformations
of a left coset A⟨U⟩ ∈ PSL2(Z)/⟨U⟩ at the point ∞. Note that the result is
the same for all transformations within one coset because ⟨U⟩ is exactly the
stabilizer of ∞, i.e. ⟨U⟩ = {B ∈ PSL2(Z) | B(∞) = ∞}. This allows us to
define

g3 :

{
PSL2(Z)/⟨U⟩ → Q∞

A⟨U⟩ 7→ A(∞).
(3.11)

Lemma 3.9. The maps g1, g2, g3 and f , defined as above, satisfy

f = g3 ◦ g2 ◦ g1.

Proof. It follows from Corollary 3.8 that the composed map g2 ◦ g1 : Z⋆ →
PSL2(Z)/⟨U⟩ takes a continued fraction representation (b0, b1, . . . , bn) to a left
coset A⟨U⟩, such that g3(A⟨U⟩) = A(∞) = [b0, b1, . . . , bn]. Therefore we have
indeed f = g3 ◦ g2 ◦ g1.

Lemma 3.10. The map g1 defined in (3.9) is injective. Its image g1(Z⋆)
consists precisely of those cosets σ⟨U⟩ ∈ Σ∼/⟨U⟩, where the T -U group word
σ is such that:

(i) The reduced form of σ never contains the symbol T−1.

(ii) If the reduced form of σ is not empty, its rightmost symbol is T .

In particular there is a one-to-one correspondence between all continued frac-
tion representations and T -U group words of this form.

Proof. The fact that g1 is injective is obvious. It is also clear that the word

U e0TU e1T . . . U enT (3.12)

with n ≥ 0, ej ∈ Z occurring in the definition of g1 already is in reduced form
and satisfies the conditions (i) and (ii). Conversely, every reduced word w
satisfying (i) and (ii) has necessarily the form

w = Uk1T ℓ1Uk2T ℓ2 . . . UkmT ℓm ,

with m >= 0, kj ∈ Z and ℓj ≥ 1. Because for ℓ ≥ 1, T ℓ and (TU0)ℓ−1T
are identical as words, we can for sure notate w alternatively in the form
(3.12).

Lemma 3.11. The map g3 defined in (3.11) is bijective. In particular there
is a one-to-one correspondence between the left cosets of ⟨U⟩ in PSL2(Z) and
the extended rational numbers Q∞.
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Figure 3.4: The modular tessellation under the modified Cayley transform Φ.
The Ford disk L∞ (light gray, labeled with “∞”) encloses precisely the indisks
BI, B ∈ ⟨U⟩, in its interior. It can thus be considered as representative for
the subgroup ⟨U⟩ in PSL2(Z). The images of L∞ under the modular group are
all Ford disks Lr with r ∈ Q∞. For A ∈ PSL2(Z), we have AL∞ = Lr exactly
when A(∞) = r. Therefore Lr corresponds directly to both, the number r
(the point, where Lr touches the extended real axis) and the left coset A⟨U⟩
(Lr encloses precisely the indisks BI, B ∈ A⟨U⟩).
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Proof. If g3(A⟨U⟩) = g3(B⟨U⟩), then A(∞) = B(∞). This is equivalent to
B−1A ∈ ⟨U⟩ or A⟨U⟩ = B⟨U⟩. Therefore g3 is injective. Since every rational
number has a finite continued fraction expansion, f = g3 ◦ g2 ◦ g1 is surjective.
Consequently g3 must as well be surjective.

Looking at the modular tessellation, Figure 2.3, we see that the images
of the indisk I of the fundamental region F have a natural one-to-one cor-
respondence to modular transformations, i.e. the disk AI can be considered
as a graphical representative for the modular transformation A. The ques-
tion arises, whether there is such a visual and clear representation also for left
cosets of ⟨U⟩ in PSL2(Z). Indeed, we can see in Figure 3.4 – depicting the
modular tessellation under the modified Cayley transform Φ – that the disks
UkI, k ∈ Z form a “generalized ring” which asymptotically approaches the
point ∞. We can enclose this ring in a generalized disk – in Figure 3.4, this
enclosing disk is shown in light gray and is labeled with “∞”.

Definition 3.12. The unique (open) g-disk L∞ containing all the disks UkI,
k ∈ Z, in its interior and being tangent to each of them is called the Ford disk
at ∞. It contains all points z ∈ C with Im (z) > 1. In view of Definition 1.50,
its defining matrix is given by

L∞ :

(
0 −i
i 2

)
. (3.13)

For a modular transformation A =
(
a
c

b
d

)
∈ PSL2(Z), the image of L∞ under

A is called the Ford disk at a
c
, La

c
:= AL∞.

The above definition as well as the bijective correspondence between left
cosets of ⟨U⟩ in PSL2(Z) and Q∞ (Lemma 3.11) will get clearer in view of
Figure 3.4: We can see that every Ford disk Lr (the light gray disks, each of
them labeled with the corresponding number r ∈ Q∞), “touches” the extended
real axis R∞ := R ∪ {∞} (appearing as unit circle under the modified Cayley
transform) exactly in the point r, that is

cl(Lr) ∩ R∞ = {r} for all r ∈ Q∞.

For seeing the relation between Ford disks and left costets of ⟨U⟩ in PSL2(Z),
first observe that the Ford disk L∞ encloses precisely all indisks BI, B ∈ ⟨U⟩.
In this sense, we can consider L∞ as a graphical representative for the subgroup
⟨U⟩ of PSL2(Z). Every Ford disk Lr, r ∈ Q∞, is the image of L∞ under some
transformation A ∈ PSL2(Z) with A(∞) = r, i.e. AL∞ = Lr. Consequently
Lr encloses all indisks BI, B ∈ A⟨U⟩ and thus can be considered as graphical
representative for the left coset A⟨U⟩.
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Also the statement of Lemma 3.10, the one-to-one correspondence between
continued fraction representations and T -U words of the form (3.12), has a
nice visual interpretation, as we will illustrate in the following example.

Example 3.13. Consider the (semi-regular) continued fraction expansion of
the irrational number π, obtained by using the nearest integer function for
rounding the αj, as discussed in Remark 3.5. The first few coefficients of this
continued fraction are given by

π = [3, 7, 16,−294, 3,−4, 5,−15,−3, 2, 2, 2, 2, 3,−85,−3, 2, 15, 3, 14, . . . ]

More coefficients can be found by looking up the sequence A133593 in the
On-Line Encyclopedia of Integer Sequences (OEIS)2. By Corollary 3.8, the
convergents of this continued fraction give rise to a sequence of Modular trans-
formations:

[3] = 3 = U3T (∞),

[3, 7] =
22

7
= U3TU−7T (∞),

[3, 7, 16] =
355

113
= U3TU−7TU16T (∞),

[3, 7, 16,−294] =
104348

33215
= U3TU−7TU16TU294T (∞),

...
...

The T -U words occurring in this sequence can now be interpreted as “path”
through the set of indisks AI, A ∈ PSL2(Z) as follows:

1. Start with the Ford disk L∞. Label each indisk UkI (contained in L∞)
with the corresponding integer k ∈ Z. The Ford disk U3TL∞ = L3,
corresponding to the convergent c0 = 3, can be approached by starting
at the indisk I (carrying the label 0), going 3 steps right to the indisk
with label 3, U3I (marked red in the first row of Figure 3.5) and finally
applying T , that is going from there to the tangent indisk U3TI, lying
within the Ford disk L3.

2. For convenience, set A1 := U3T . Within the Ford disk L3, label each
indisk A1U

kI with the negated3 integer −k. Go from indisk A1I (labeled
0) seven steps to the indisk with label 7, A1U

−7I – see second row of

2https://oeis.org
3The negation of the sign comes from the fact that we want the indisk labels to correspond

to the coefficients bj of the continued fraction rather than to the exponents ej = (−1)jbj of
the T -U word.
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– well, almost.
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Figure 3.5. Applying T again takes us to the indisk A1U
−7TI within the

Ford disk corresponding to the next convergent of the continued fraction:
Lc1 , c1 =

22
7
.

3. Set A2 := U3TU−7T . As above, label all indisks A2U
kI within Lc1

with k and go from A2I with label 0 sixteen steps to A2U
16I with label

16 (Figure 3.5, 3rd row) and from there to A2U
16TI, lying within Lc2 ,

c2 =
355
113

.

. . .

Without explicating further steps of the above example, we can easily imag-
ine how this generalizes to different continued fraction representations of arbi-
trary real numbers: Given a continued fraction α = [b0, b1, . . . ], we start with
the indisk I(0) := I contained in the Ford disk L(0) := L∞. For every j ≥ 0, we
label the indisks contained in L(j) with successive integers in counter-clockwise
direction (if j is even) or in clockwise direction (if j is odd) in such a way that
the disk I(j) carries the label 0. Now we choose I(j+1) as the unique indisk
which is exterior to L(j) and tangent to the disk with label bj (within L(j)).
Moreover we choose as L(j+1) the unique Ford disk containing I(j+1).

Considering also “intermediate” indisks (those with labels between 0 and bj
within L(j)), we describe in this way an indisk path, or in other words a chain
of successively tangent disks, through the set of all indisks AI, A ∈ PSL2(Z).
Such a path always starts at I and, in case of a rational number α ∈ Q∞,
ends at some U e0TU e1T . . . U enTI, appending exactly one symbol U , U−1 or
T to the corresponding group word when moving one step forward along the
path. Obviously these paths can be considered as a visual representation of
T -U words of the form (3.12) and we can draw the following conclusions:

Corollary 3.14. Continued fraction representations are not unique in any
way.

Proof. All different indisk paths starting at I and ending within a given Ford
disk Lr give rise to different continued fraction representations for the same
rational number r ∈ Q∞. Continued fraction representations are therefore
not unique, unless we impose certain conditions on its coefficients bj, as for
example regularity – compare Perron [11], §9.

Corollary 3.15. Canonical continued fraction representations are in general
not unique.

Proof. Considering a continued fraction representation r = [b0, b1, . . . , bn] of a
rational number r ∈ Q∞, its length n is exactly the number of hops between
tangent Ford disks in the corresponding indisk path (or the number of symbols
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T in the corresponding T -U word). Let us call n the length of the indisk path.
Note that a given Ford disk may possibly be visited more than once while
walking along an indisk path. Clearly this is not the case if the path is one of
minimal length from L∞ to Lr. Still, minimality with regard to path length
does not imply uniqueness: Consider for example r = 2

5
. In Figure 3.4, we can

see L2/5 as the smaller of the two Ford disks being tangent to L1/3 and L1/2.
We can see that there are three paths of length 3 from L∞ to L2/5, namely

∞ → 0 → 1

2
→ 2

5
, ∞ → 0 → 1

3
→ 2

5
, ∞ → 1 → 1

2
→ 2

5
.

Since these paths are of minimal length, they give rise to three different canon-
ical continued fraction representations of r:

r =
2

5
= [0, 2, 2] = [0, 3,−2] = [1,−2, 3].

Considering indisk paths, we can also give an alternative proof for the
following fact:

Corollary 3.16. All relations satisfied by the generators T, U ∈ PSL2(Z) are
derived from T 2 = 1 and (TU)3 = 1.

Proof. As above, in the definition of the map g2 in (3.10), let again Σ∼ :=
⟨T, U⟩ be the free group of T -U words, and let φ : Σ∼ → PSL2(Z) be the nat-
ural evaluation map. We need to show that every relation σ ∈ Σ∼ (satisfying
φ(σ) = 1) can be written as product of words conjugate to T 2 and (TU)3, that
is

σ =
n∏

j=1

(τjRjτj
−1)kj , (3.14)

with kj ∈ Z, τj ∈ Σ∼ and Rj being either the word T 2 or (TU)3. From
φ(σ) = 1 we see that the indisk path corresponding to σ is closed, i.e. it starts
and ends at the indisk I. Let us call such an indisk path a loop. Next, set
ρ := exp(2πi/3) and denote by [ρ]∼ the orbit of ρ under PSL2(Z). We define
the number of times a loop L turns around a point z ∈ [ρ]∼ the winding number
νz(L). Every full turn around z in positive (resp. negative) direction shall give
a contribution of +1 (resp. −1) to νz(L) ∈ Z. If the winding number νz(L) is
zero for all z ∈ [ρ]∼, we call L a degenerate loop. In this case L consists enirely
of subpaths of the form

I → I1 → · · · → In−1 → In → In−1 → · · · → I1 → I
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and the corresponding T -U word can be reduced to the empty word just by
repeated application of the relation T 2 = 1. Finally, using the Kronecker delta
notation,

δz,w :=

{
1 if z = w,

0 otherwise,

we call a loop L a primitive loop for the point z ∈ [ρ]∼, if νw(L) = δw,z for
all w ∈ [ρ]∼. Looking at Figure 3.4 and using its indisk labeling, the relation
(TU)3 = 1 corresponds to the loop

L′
ρ : 1 → T → TU → U−1TU−1 → U−1T → U−1 → 1.

We see that L′
ρ goes once around the point ρ in clockwise (negative) direction.

Going the loop in reverse direction yields a primitive loop for the point ρ,
Lρ := (L′

ρ)
−1, corresponding to the relation (TU)−3 = 1. Next we define such

a primitive loop Lz for every z ∈ [ρ]∼. We do so by going from I to any indisk
in the “neighbourhood” of z along a path Pz, then going around z (and no
other point) once in positive direction and finally returning to I by going back
the reverse path Pz

−1. Every such primitive loop Lz corresponds to a relation
of the form τ(TU)−3τ−1 = 1.

Let now σ ∈ Σ∼ be an arbitrary relation, and call S the closed indisk path
corresponding to the word σ. There are only finitely many points z ∈ [ρ]∼ with
νz(S) ̸= 0. We can therefore define a loop V as the composition of primitive
loops Lz, where z runs over this finite set of points – each primitive loop Lz

shall be taken as often as the winding number νz(S) declares:

V :=
∏

z∈[ρ]∼

Lνz(S)
z .

Note that the particular order of the individual factors in this product is irrel-
evant for our purposes. By going through the loop S in forward and through
V in backward direction, we obtain a degenerate loop SV −1, i.e. νz(SV

−1) = 0
for all z ∈ [ρ]∼. In other words, with V we have found a word ψ ∈ Σ∼ such that
σψ−1 can be reduced to 1 entirely by applying the relation T 2 = 1, i.e. we have
σψ−1ω−1 = 1 for some product ω ∈ Σ∼ consisting entirely of factors conjugate
to the word T 2. Summing up, with ωψ we have a product representation for
the relation σ of the desired form (3.14).

Note that the above proof is essentially a discrete variant of the proof given
in Klein/Fricke [7], p. 452ff.4 We conclude this section with some final remarks
and references for further reading:

4Volume 1, part 2, chapter 9, §1.
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Remark 3.17. The connection between Ford disks and continued fractions has
been the object of many investigations in history. For example Ford [4] gives a
geometric interpretation of continued fractions by identifying rational numbers
p/q, where p, q ∈ Z are coprime, with circles of radius r = (2q2)−1 and center
C : (p/q, r). He also gives a reference to an interesting book of Züllig [16],
containing a considerable number of concrete numerical examples and accurate
figures relating continued fractions to curves along the boundary of chains of
Ford disks. Note that these interpretations are essentially equivalent to the one
given in Example 3.13. However, both authors do not use a concept similar to
indisks, nor do they make such an explicit connection to the modular group.

Remark 3.18. Considering the continued fraction expansion of π from Exam-
ple 3.13, π = [3, 7, 16,−294, . . . ], and looking at the ford disk Lc3 , c3 = 355

113
,

in the last row of Figure 3.5, we see that (starting as usual at the indisk with
label 0) we would have to go 294 (!) steps in clockwise direction to approach
the Ford disk Lc4 , c4 = 104348

33215
. From the image one can hardly to grasp how

small Lc4 must be in comparison to Lc3 . In fact, the ratio of the radii5 between
these two Ford disks is approximately 1 : 86 400. This huge difference in size
explains why the rational number 355

133
is such an extraordinary good approxi-

mation for π. The absolute errors between π and the convergents c2, c3 and
c4 are

π − 22

7
≈ −1.2 · 10−3,

π − 335

133
≈ −2.7 · 10−7,

π − 104348

33215
≈ −3.3 · 10−10.

Comparing c2 =
22
7
and c3 =

335
113

, we see that by increasing the numerator and
denominator by a relatively small factor of about 15, we achieve more than
4000-fold increase in precision. In contrast to that, blowing up numerator and
denominator further by an additional factor of roughly 300 improves precision
only by a factor of approximately 800.

In Perron [11], p. 61ff., the approximations of π obtained by its regular
continued fraction expansion are discussed in a similar fashion and some in-
teresting historical details can be found there as well.

Geometric considerations on Ford disks can also be used to prove the fol-
lowing number-theoretic theorem:

5The radius of a Ford disk Lp/q, for coprime p, q ∈ Z, is 1
2q2 – see also Ford [4].
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Theorem 3.19. If α ∈ R \Q is an irrational number and if k =
√
5, then the

equation ∣∣∣∣pq − α

∣∣∣∣ < 1

k · q2
(3.15)

is satisfied by infinitely many p, q ∈ Z. If k >
√
5, then there are irrational

numbers α, such that (3.15) is satisfied by only finitely many p, q ∈ Z.

Remark 3.20. An elementary proof of Theorem 3.19, relying on continued
fraction expansions of irrational numbers, can be found in Perron [11], §14. An
alternative proof, based purely on geometric considerations on Ford circles, is
given in Ford [4].

3.3 The modular tessellation and the expo-

nential transformation

In the theory of modular functions, which we will touch in the next section, a
map of essential importance is the transformation z 7→ exp(2πiz), as it promi-
nently occurs in Fourier expansions of modular functions – compare for exam-
ple Petersson [12] and Rademacher [13]. Adopting the notation of Lehner [8],
we will denote this transformation by

e(z) := exp (2πiz) . (3.16)

Just like the Cayley transform, e maps the upper half-plane onto the unit disk
D, as we see through

|e(z)| = exp (Re (2πiz)) = exp (−2π Im (z)) .

Obviously Im (z) > 0 implies |e(z)| < 1. The real axis is mapped to the
boundary of D. In contrast to the Cayley transform, e is not a one-to-one
map from the upper half-plane to the unit disk, as clearly e(z) = e(z + k) for
arbitrary k ∈ Z. Instead it can be considered as a bijective map from the strip

S =
{
z ∈ C

∣∣ Re (z) ∈ [−0.5, 0.5) , Im (z) ≥ 0
}

to the punctured unit disk D \ {0}. Note that the exponential function has an
essential singularity at the point ∞, but still it is sometimes useful to define
e(∞) := 0. This is motivated by a continuous extension of e from the domain
S to S∞ := S ∪ {∞} by

e(∞) := lim
Im(z)→∞

z∈S

e(z) = 0.
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In this way we obtain a bijective map from the set S∞ to the closed unit disk
D. Figure 3.6 shows the modular tessellation of the upper half-plane – to be
precise the part of it lying within S∞ – mapped to the unit disk by z 7→ e(z).

Remark 3.21. In order to trace the image of the fundamental region F and its
indisk I under the map e, we have to zoom in on the neighborhood of zero,
which is done in Figure 3.7. The top-left frame again shows the image of the
tessellation under e on the whole unit disk.

The second frame displays the images of the regions TUF and TU−1F
in more detail. Comparing with Figure 2.3, we see that originally these two
regions do not have any boundary arc in common. However, due to the pe-
riodicity of e, the left boundary arc of TUF (being a segment of the line
Re (z) = −1/2) and the right boundary arc of TU−1F (being a segment of the
line Re (z) = 1/2) have the same image under the transformation e. Therefore
the images of TUF and TU−1F touch each other along a certain interval on
the negative real axis.

The third frame reveals some more detail on the real shape of e(TF). Its
“tip” is not round, as a short look on the first two frames might suggest, but in
fact it has a kink at the point e(ρ) = e(Tρ) ≈ −0.0043. Moreover, the image
of TF completely surrounds the image of the fundamental region F as we see
in the next frame:

Denoting the boundary arcs of F by a, b, c and d as in Figure 2.2, we can
see in the fourth frame the image of the left boundary arc a and the right
boundary arc b of F are both mapped to the same interval [e(ρ), 0] on the
negative real axis. The images of the unit circle arcs c and d form the drop-
shaped boundary of e(F). Note that e(c) (resp. e(d)) is precisely the part of
the boundary of e(F) in the lower (resp. upper) half-plane.

Finally in the last row, we can see the image of the indisk I in detail. Note
that the transformed indisk touches itself in the point e(±1

2
+ 3

2
i) ≈ −0.00008.

The points within F lying “above” I (including the point ∞) are mapped to
just another tiny drop-shaped region surrounded entirely by e(I).

Having studied the image of the modular tessellation under the transfor-
mation z 7→ e(z) in detail, the question arises whether this relates somehow
to the image of the tessellation under the modified Cayley transform Φ which
we have seen in Figure 2.3. Indeed it is possible to visualize the connection
between these two images. For this purpose we take advantage of yet another
Möbius transformation:

f(z) :=
i

z + i
= − i

2
· Φ(z) + 1

2
. (3.17)

As we see, f can be considered as composition of the modified Cayley transform
Φ, a clockwise rotation by 90◦, scaling by the factor 1

2
and a final translation
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Figure 3.6: The modular tessellation under the transformation z 7→ e(z). The
equation |z| = exp(−2π Im (z)) implies that points with large imaginary part
are mapped very closely to 0. For this reason, the image of the fundamental
region F cannot be seen any more in this scale. Its points, satisfying Im (z) >√

3
2
, are mapped into a disk centered about the origin of a radius smaller than

0.005.
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Figure 3.7: The image of the fundamental region F and its indisk I under the
map z 7→ e(z) can be seen by zooming in to a close neighborhood of the point
0.
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by 1
2
. Therefore, f maps the upper half-plane to a disk of radius 1

2
centered

about the real point 1
2
. The choice of f is not as arbitrary as it first might

seem, because

f(0) = e(0) = 1 and f(∞) = e(∞) = 0.

This property allows it to establish a continuous transition between the images
of the tessellation under f and e which leaves the points 0 and 1 fixed. For
this purpose we may for example use the map

h(t, z) := f(z)1−t · e(tz), (3.18)

with varying parameter t ∈ [0, 1]. Note that complex powers zt, z ∈ C, t ∈ R
shall be evaluated as exp(t ln z), by choosing a branch of the natural logarithm
such that the imaginary part of the logarithm ranges in the interval (−π, π].
Moreover, for z = ∞ we define h(t,∞) := f(∞) = e(∞) = 0.

In Figure 3.8, we can see the images the modular tessellation under the
map h(t, ·) for the parameter values t ∈ {0, 1

5
, 2
5
, 3
5
, 4
5
, 1}. In the first frame, we

see that the image of the tessellation under h(0, ·) = f is indeed a rotated and
scaled version of the one belonging to Φ, when omitting the part which lies
outside the strip |Re (z)| ≤ 1

2
(compare with Figure 2.3).

As the parameter value t is stepwise increased in the following frames, the
image is slowly fanned out to the whole unit disk. Finally we end up with the
image of the tessellation under h(1, ·) = e.

Remark 3.22. In a more general context, the connection between a region R
of similar shape as above (i.e. a region bounded by three circular arcs having
vertex angles 90◦, 90◦ and 0◦), a parabolic Möbius transformation leaving the
vertex with angle 0◦ fixed and an exponential transformation which maps R
to the unit disk, is discussed in Lehner [8], p. 68ff.
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Figure 3.8: The modular tessellation on the strip |Re (z)| ≤ 1
2
under the

maps z 7→ f(z) = i
z+i

(top-left) and under z 7→ e(z) (bottom-right). A
continuous transition between these two images is established through the
map h(t, z) = f(z)1−t · e(tz) when the parameter t ∈ [0, 1] is varied.
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3.4 Modular functions

We devote the last section of this thesis to the visualization of modular func-
tions. The theory of modular functions is a branch of complex analysis whose
importance and beauty lies most notably in its connections to number the-
ory. We will however not dive deeply into this theory. Instead we will content
ourselves with depicting graphs of certain selected modular functions, enjoy-
ing their visual aesthetics and reading off some of its properties, like zeros
and poles as well as their order. Unfortunately such illustrations of modular
functions are rarely found in literature. Therefore this section should be con-
sidered as complementary material to more comprehensive treatments on the
theory of modular functions given for example in Klein/Fricke [7], Lehner [8]
or Schoeneberg [14].

Modular functions are meromorphic maps (i.e. maps which are holomor-
phic6 except for isolated poles, or in other words, maps which can be rep-
resented as quotient of two holomorphic functions) which are defined on the
upper half-plane and which are invariant under the transformations of the
modular group.

Definition 3.23 (Modular function). Let the upper halfplane H and the ex-
tended upper halfplane H∗ be defined as in (2.30) and (2.31) respectively. A
map F : H∗ → C∞ is called a modular function, if it satisfies the following
conditions:

(i) F is meromorphic on the upper half-plane H.

(ii) On H∗, F = F ◦ A for all modular transformations A ∈ PSL2(Z).

(iii) There is a constant C ≥ 0 such that F has a series expansion of the
form

F (z) =
∑
k≥k0

ak exp(2πikz), (3.19)

with k0 ∈ Z, ak ∈ C, ak0 ̸= 0, which converges for all z ∈ H with
Im (z) > C. Moreover,

f(∞) =


0 if k0 > 0,

a0 if k0 = 0,

∞ if k0 < 0.

Remark 3.24. For the proof that modular functions indeed exist we refer to
Schoeneberg [14], Chapter II, §3.

6Holomorphic functions are also frequently called “analytic”.
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A modular function of essential importance is the J function, also known
as the absolute modular invariant or Klein’s complete invariant. One of its
important properties is, that on the fundamental set F∗ it takes on each value
in C∞ exactly once. In other words, J can be considered as bijective map from
F∗ to C∞.

In order to discuss this one-to-one mapping between F∗ and C∞ under J ,
let us denote the boundary arcs of the fundamental region F again by a, b, c
and d, as in Figure 2.2. Moreover, denote by e := {λi | λ ≥ 1} ∪ {∞} the arc
which splits F into two symmetric halves, i.e. two open connected components
Fleft and Fright. For the special boundary points i, ρ and ∞ of F we have

J(i) = 1, J(ρ) = 0, J(∞) = ∞.

Additionally, the following mappings are pointwise one-to-one:

1. The left boundary arc a and the right boundary arc b of F are both
mapped to the set R≤0 := {z ∈ R | z ≤ 0} ∪ {∞}:

J(a) = J(b) = R≤0.

2. The boundary arcs c and d of F are both mapped to the interval [0, 1]:

J(c) = J(d) = [0, 1].

3. The “symmetry arc” e is mapped to R≥1 := {z ∈ R | z ≥ 1} ∪ {∞}:

J(e) = R≥1.

4. In particular, the boundaries of Fleft and Fright are both mapped to R ∪
{∞}.

5. Finally, the images of Fleft and Fright under J are exactly the upper and
lower half-plane:

J(Fleft) = H and J(Fright) = −H.

Unfortunately, plotting the function graph of J , or more generally the
function graph of any map f : C∞ → C∞ is not directly possible, as it is in
fact a 4-dimensional object.7 However there is a simple idea for getting around
this problem: We assign each z ∈ C∞ a certain color C(z) and obtain a picture
of f by dying each point z within the domain of f in the color C(f(z)). Our
choice of the color coding is quite simple:

7It involves two dimensions for real and imaginary part of the function argument and
two more dimensions for real and imaginary part of the function value.
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(i) The tone of the color C(z) encodes the complex argument of z:
Red (arg z = 0) → Orange → Yellow →

Green (arg z = π
2
) → Turquoise →

Cyan (arg z = π) → Blue →
Violet (arg z = −π

2
) → Magenta → Red (again).

(ii) The saturation and brightness of the color C(z) encodes the absolute
value of z. For this purpose, we use the continuous map

b(r) :=


0 if r = 0,
1
π
arctan(ln r) + 1

2
if r ∈ (0,∞),

1 if r = ∞

to first bring |z| to the interval [0, 1]. Note that b has the neat property
b(1

r
) = 1− b(r). Finally we define the saturation of C(z) as 1− b(|z|)2

and its brightness as 1 − [1 − b(|z|)]2. This means that C(z) changes
gradually from a perfect black (if z = 0) to a perfect white (z = ∞)
as the absolute value of z grows.

Remark 3.25. Obviously the color coding may be chosen very arbitrarily. How-
ever, for our purposes there are three properties making C(z) a particularly
good choice: First, z 7→ C(z) is injective, i.e. distinct points in C∞ are colored
differently. Moreover, when considering colors as three-dimensional vectors
of [0, 1]3 ⊆ R3 with red, green and blue component, z 7→ C(z) is differen-
tiable. This guarantees smooth color transitions without visible “edges” for
visualization of continuous functions. Lastly, saturation and brightness depend
logarithmically on the absolute value of z, capturing well the typical growth
behavior of modular functions and allowing a visual distinction of values rela-
tively close to 0 (resp. ∞).

We now wish to plot the J function using the above idea and the color
coding C(z). However, instead of plotting J directly on the upper half-plane,
we again prefer to translate the picture from the upper half-plane to the unit
disk using the modified Cayley transform, i.e. instead of visualizing C ◦ J on
the upper half-plane, Figure 3.9 shows C ◦ J ◦ Φ−1 on the unit disk. In order
to accentuate the symmetry of J with respect to the transformations of the
modular group, additionally the image of the modular tessellation under Φ is
displayed in gray lines. We can now read off the following properties from this
illustration:

1. J is injective from F to C∞: No two distinct points within the region
ΦF have the same color.
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Figure 3.9: Klein’s complete invariant J , defined on the upper half-plane, is
visualized by dying each point z of the unit disk in the color C ◦ J ◦ Φ−1(z),
where Φ−1 is the inverse modified Cayley transform which takes the unit disk
bijectively to the upper half-plane.
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2. J(∞) = ∞: The point Φ(∞) = i is colored in white.

3. J(Fleft) = H and J(Fright) = −H: The color tones in the left half of ΦF ,
that is ΦFleft, range from red, orange, yellow and green to cyan, and
therefore arg(J(z)) ∈ (0, π) for z ∈ Fleft. Similarly we see arg(J(z)) ∈
(−π, 0) for z ∈ Fright.

4. J has a zero of order 3 at every point equivalent to ρ: The points colored
in black are precisely those vertices of all modular triangles8 which lie
in the interior of the unit disk. These are exactly the points equivalent
to ρ. The order of a given zero (resp. pole) at a point z can be read
off by counting the number of times we go through the set of all color
tones while walking once around z along a sufficiently small circular path
which does not enclose any other zero or pole except z. Applying this to
the zero at ρ (or any of its equivalent points), this yields an order of 3,
as we visit the color tone red (as well as every other color tone) exactly
three times as we go once around this point.

The special importance of J lies in the fact that all modular functions can
be represented as rational functions in J with complex coefficients (for the
proof of this fact we refer to Schoeneberg [14], Chapter II, §3).

Theorem 3.26. The set of modular functions is identical to the field C(J) of
rational functions in J with coefficients in C.

Remark 3.27. The statement of Theorem 3.26 remains true when J is replaced
by any modular function of the form A◦J , where A is a Möbius transformation.
In other words, we have C(J) = C(A ◦ J) for A ∈ PGL2(C).

Example 3.28. In Figure 3.10, four examples for rational functions in J are
given. Note that except z 7→ J(z)2, these maps are instances of modular
functions of the form A ◦ J , where A is a Möbius transformation.

8We consider the regions ΦAF , A ∈ PSL2(Z) as triangles in the sense of hyperbolic
geometry.
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J-1 J - 1

J 2
FHJ L

Figure 3.10: Examples for rational functions in J : The function z 7→ J(z)−1

(top-left) is zero at all rational points (hence the dominant black color) and
has a pole of order 3 at all points equivalent to ρ. The function z 7→ J(z)− 1
(top-right) has a zero of order 2 at all points equivalent to i. For z 7→ J(z)2

(bottom-left), the order of the zeros at points equivalent to ρ is six, i.e. twice the
order of the zeros of the original function J at that points. Lastly, composing
J with the Cayley transform, that is z 7→ Φ◦J(z) (bottom-right) yields a zero
(resp. pole) of order 1 at every point z for which J(z) = i (resp. J(z) = −i).
Its value at rational points is Φ ◦ J(∞) = Φ(∞) = i, explaining the dominant
green coloring.
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Example 3.29. As a final example, Figure 3.11 shows what happens, when
J is composed with the generating function of the Fibonacci sequence. Al-
though it is a slight digression, we will shortly give some background about
the Fibonacci sequence here.

The Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, . . . is a so-called C-finite sequence,
i.e. a sequence satisfying a recurrence of the form

r∑
i=0

cian+i = 0 for all n ≥ 0,

where r is the order of the recurrence, ci are fixed constants and an is the n-th
element of the sequence. The Fibonacci sequence and its elements Fn satisfy
the recurrence Fn+2−Fn+1−Fn = 0, n ≥ 0, with initial values (F0, F1) = (0, 1).
The generating function of a sequence (an)n≥0 is defined as

F (z) :=
∑
n≥0

anz
n.

For C-finite sequences, the generating function is always a rational function –
see Theorem 4.3 in Kauers/Paule [6]. In particular, the generating function of
the Fibonacci sequence is given by

F (z) :=
∑
n≥0

Fnz
n =

z

1− z − z2
.

More on the topic of sequences and generating functions, as well as symbolic
sums and asymptotic estimates may be found in Kauers/Paule [6].
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Figure 3.11: The modular function G = F ◦ J , obtained by composition of
the Klein’s complete invariant J and the generating function of the Fibonacci
sequence, F (z) = z

1−z−z2
, i.e. G(z) = J(z)

1−J(z)−J(z)2
, satisfies G(∞) = 0, has zeros

of order 3 at all points equivalent to ρ and poles of order 1 at all points z ∈ H
satisfying J(z) ∈ {−φ, 1

φ
}, where φ := 1+

√
5

2
denotes the golden ratio.
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Kronecker delta, 79

Loop (closed indisk path), 78

Meromorphic function, 87
Metric, 52
Möbius transformation, 11
Modified Cayley transform, 18
Modular

group, 25
tessellation, 49
transformation, 25

Monoid, 1
Monomorphism, 2

nint (Nearest integer function), 26
Normal polygon, 57

Orbit, 11

Perpendicular bisector, 57

PGLn(F ), 9
Poincaré

disk model, 56
half-plane model, 56
metric, 55

Principal congruence subgroup, 59
Pringsheim notation, 68
Projective

general linear group, 9
special linear group, 9

Proper point, 52
PSLn(R), 9

Reduced form, 5
Riemann sphere, 15
Rigid motion, 18, 53
Rotation, 13

SLn(R), 9
Special linear group, 9
Stabilizer, 11
Stereographic projection, 15
Subgroup, 2

Tessellation, 49
Translation, 13

Winding number, 78
Word problem, 8
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